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Abstract

Around the globe, integrating information and communication technologies with phys-

ical infrastructure is a top priority in pursuing smart, green living to improve energy

efficiency, protect the environment, improve the quality of life, and bolster economy

competitiveness. Internet-of-Everything (IoE) is a network of uniquely identifiable, ac-

cessible, and manageable smart things that are connected through a network of hetero-

geneous devices and people, usually consisting of battery-operated nodes, and mostly

working at remote places, without human intervention. This leads us to issues con-

cerning IoE Systems such as network lifetime, battery efficiency, carbon emissions,

low-power security and efficient data transmission, which have been analysed in this

thesis and solutions have been proposed for them.

First, we investigate wireless energy harvesting (WEH), wake-up radio (WUR)

scheme, and error control coding (ECC) as enabling solutions to enhance the perfor-

mance of sensor networks-based IoE systems while reducing their carbon footprints.

Specifically, a utility-lifetime maximization problem incorporating WEH, WUR, and

ECC, is formulated and solved using a distributed dual sub gradient algorithm based on

the Lagrange multiplier method. Discussion and verification through simulation results

show how the proposed solutions improve network utility, prolong the lifetime, and

pave the way for a greener IoE by reducing their carbon footprints.
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Next, we introduce active radio frequency identification tags based cluster head se-

lection, data-awareness and energy harvesting in IoE systems. The results show that

such IoE systems are better equipped to deal with energy efficiency and data delivery

problems. Simulation results support our data aware energy saving approach and show

significant improvement over state-of-the art techniques. To design an energy-efficient

and low-resource consuming security solution for IoE systems, we propose a Physi-

cally Unclonable Function based security scheme that exploits variations of physical

sensor characteristics through a prototype printed circuit board design and challenge-

response pair generation using the quadratic residue property. Through simulations and

measurements, we show that our design scheme is better in terms of energy and com-

putation requirements and provides a two-fold secure data transfer. Finally, we apply

our solutions to a home energy management system and find an optimal model to save

energy in a broad IoE system application.
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Lay Summary

It is projected that there will be more than 50 billion smart objects connected to the

Internet of Everything (IoE) within the coming decade. These smart objects connect

the physical world with the world of computing and people are expected to revolu-

tionalize all aspects of our daily lives and transform a number of application domains

such as healthcare and transportation, etc. In this thesis, we present an overview of the

challenges involved in designing and implementing energy-efficient IoE devices and

propose promising solutions to address these challenges. Our solution takes a holistic

system design approach considering all the critical elements of the system architecture,

by implementing lightweight networking layer on sensor devices, which has energy-

efficient cross-layer data driven architecture, power-efficient security and error resilient

schemes. Most of the data will be stored and fetched through the cloud, thus concen-

trating on enhancing the system’s performance and saving energy.
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Chapter 1

Introduction

The Internet-of-Things (IoT) started in 2009 with a vision of connecting devices to de-

vices and persons to devices. Technologies like Radio Frequency Identification (RFID)

and wireless sensor networks (WSNs) form the backbone of such interactions. The in-

dustrial sector estimates that by 2020 more than half billion devices will be connected

with each other [1–3]. When virtually every device is connected with each other and

all manual commands are replaced by intelligent machines and automation, the sys-

tem will be enormous and complex spanning across a varied range of protocols and

standards. IoT aims to make the Internet ubiquitous and pervasive, and has the poten-

tial to affect many aspects of users’ quality of life. To monitor their environment and

send/receive data, the networked heterogeneous devices connected in an IoT structure

are typically equipped with sensors, controlling processors, wireless transceivers, and

an energy source (e.g., a battery) . Applications envisioned for IoT span a wide range

of fields including home automation, healthcare, surveillance, transportation, smart en-

vironments, and many more [4, 5].

The Internet of Everything (IoE) as a concept first came out from the CISCO Inter-
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Figure 1.1: Interconnections in components of Internet-of-Everything.[1]
©CISCO-IBSG

net Business Solutions Group (IBSG) [1]. It is an extension of IoT that encompasses

people, data, things and processes to give a meaningful, energy-efficient, intelligent,

relevant and secure insight to connections between the layers interconnected together

in an agile and iterative flow. Its technologies, including heterogeneous WSNs, are

used to monitor many aspects of an ecosystem ranging from a small office space to a

city, in real time. In this thesis, we will be using the terms IoE and IoT interchangeably.

Fig. 1.1 shows the flow process of IoE and a brief summary of the individual compo-

nents of its ecosystem is as given below.

People: People are an integral part of any IoE ecosystem as they are the ones who gen-

erate the enormous amount data through the usage of devices. Nowadays, connectivity

to the world of Internet can be established through numerous devices including personal

computers, smartphones, tablets, wearables and many more. Apart from the traditional

ways, there are other paths of connectivity with the world through social networking

sites such as Facebook and Twitter, entertainment on demand hubs like Youtube, Net-
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flix and Amazon Prime. As the Internet evolves toward IoE, we will be connected in

more relevant and valuable ways. This way people themselves are the most important

nodes of this ecosystem for whom the IoE exists and the research is geared towards

providing smooth technological flow for them.

Data: The widespread proliferation of internet-connected devices as described above

used by people in the era of IoE coupled with increasing fidelity and data acquisition

modality generates 2.5 quintillion bytes of data each day [6]. As the devices used to

generate data become more intelligent, these vast amounts of data will produce deeper

insights into managing the relevant data for the people.

Things: These are physical devices including smart sensors, connected objects, con-

sumer devices and many more. In IoE, these things will sense more data, become

context-aware, and provide more experiential information to help people and machines

make more relevant and valuable decisions.

Process: Processes are the ways in which the people, data and things work with each

other to provide meaningful insights for the overall structure of the IoE. Following the

right process will make sure that the right information is delivered to the right person

at the right time in an appropriate way.

In the next section we describe the layered architecture of an IoE system, its open

issues and possible solutions.

1.1 Elements of an Internet of Everything System

With the rapid development of big data and IoE, the number of networking devices and

data volume are increasing dramatically. Since portable and battery operated systems

like smartphones, tablets, and cameras will always be connected, enormous amounts

of user data will be generated and their energy consumption will dramatically increase.
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One of the important challenges is supplying adequate energy to operate the network

in a self-sufficient manner without compromising quality of service (QoS). In order to

Figure 1.2: Layered IoT architecture.

tackle these challenges, the Internet Engineering Task Force (IETF) has taken the lead

in standardizing protocols for resource constrained devices such as Routing Protocol for

Low Power and Lossy Networks (RPL) and Constrained Application Protocol (CoAP)

[3]. But, to develop them in a large scale, a considerable insight and development is

required. IEEE P2413 [7], the standard for an architectural framework for the IoT,

aims to provide an architecture framework which captures the commonalities across

different domains and provides a basis for instantiation of concrete IoT architectures.

Fig. 1.2 shows a layered architecture of a resource-constrained IoT system. The
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layers of the IoT system represent different processes through which data pass before

being sent to cloud servers via the wireless/wired media [8, 9]. The layers of IoT

represent the different stages of processing the data coming from the interconnected

system as described in Fig. 1.1.

Physical layer

The physical layer consists of end-devices of the IoT system such as sensors, smart-

phones, smart devices. These are energy-constrainted, small in size and have limited

hardware capability. Enormous amount of data is generated from these devices. As

more and more devices are connected to the Internet, data generation has reached the

order of thousands of exabytes. These devices consist of a limited energy source (e.g.,

a battery) to monitor their environment and send/receive data.

Monitoring and Preprocessing

Monitoring and pre-processing are essential parts of energy-efficient data management.

Monitoring of user data is important from the point of view of data management as

well as network security. Routing and clustering of data from the lower layer to the

upper layer also needs constant monitoring of data, which consumes energy and needs

network resources. Hence, preprocessing of data is important to extract the relevant

data for transmission, thereby reducing the transmission delay of the network.

Security

As we gradually move toward using some of the smart devices for critical operations,

security will become a primary driver. Due to the IoT devices carrying critical data

in many applications and being in an unsecured environment security is paramount for

IoT devices. This is achieved in this layer and it applies to both the wired as well as
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wireless networks.

Gateway Layer

The gateway architecture is designed in a way to support many operating systems and

several versions of other similar operating system types. Gateways connect the network

of the end-devices and core networks to the cloud servers. When the end nodes generate

resource requirements for IoT applications, they will send the data processing or storage

tasks to the cloud servers.

1.2 Open Issues in IoE Systems

Several open issues in the layered architecture are related to limited battery capacity

of the devices, their network lifetime, secure data transfer in limited energy devices

and energy-efficient data management. Since energy efficiency is of utmost importance

to the battery constrained IoT devices, IoT-related standards and research works have

focused on the device energy conserving issues [10–12]. Although the size of end

physical nodes is falling fast, the energy-storage devices are improving in a slower

pace as shown in Fig. 1.3, leading to a reducing amount of available energy in smaller

nodes. Including a battery means increased deployment cost and more importantly

maintenance cost (to change the battery periodically). Since the node’s lifetime is gen-

erally significantly higher than the battery-lifetime, it is desirable to develop energy

sensor nodes with increased node lifetime, that perpetually run on harvested energy, is

data-aware and uses energy resources intelligently. The goal of IoT systems is to pack

more and more functionality for energy-constrained nodes in a wireless environment.

This leads to an energy-gap and calls for significant improvements in energy-efficiency

for computing and communication in energy-constrained nodes [10, 11].

6



Figure 1.3: Energy gap generated with decreasing size of IoT nodes with re-
duced energy availability and increased security vulnerabilities as well as
increased data generation.

Figure 1.4: Energy efficiency models on the basis of their technologies used.
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In Fig. 1.4, we categorize the energy efficiency models on the basis of the tech-

nologies used in them. Building an energy-efficient architecture for IoE systems is

a gigantic task and is not limited to only areas defined in Fig. 1.4. However, in this

thesis we have analyzed and proposed solutions for the blocks and scopes of the IoE

system that can lead to a significant energy improvement. The specific issues consid-

ered are divided into hardware-related, harvested energy related, policy and user based,

data awareness and carbon emission reduction based. Below, these open issues in the

context of energy efficiency in IoE systems are reviewed.

1.2.1 Hardware-Based Issues in IoE

Design of integrated circuit (IC) in an IoE network is vital in conserving energy. A

concept of energy-efficient sensors on chip (SoC) [13, 14] improves the design of IoE

networks by combining sensors, processing power on a single chip to reduce the data

traffic, increase security, reduction in carbon footprint as well as the energy consump-

tion of the overall infrastructure. Energy-sparse, size-constrained end nodes have lim-

ited resources to guarantee strong security and hence are often considered as the weak-

est link in an end-to-end system. While the resource available for security is reducing

(Fig. 1.3) with reducing size, the security requirements of these leaf nodes are increas-

ing, creating a strong need for research in lightweight, resource-constrained security

technologies [15, 16]. Embedded hardware security techniques could be a potential

solution to preserve the highest level of security within this infrastructure.

1.2.2 Issues Related to Wireless Energy Harvesting

The large scale growth in the number of wirelessly connected devices however come

at the cost of a critical challenge in large scale implementation of WSNs technology
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and in a greater scope, IoE, in providing energy to the nodes. In most applications,

wireless nodes which solely rely on an energy storage device (e.g., battery) need to

be deployed in very large numbers and in hard-to-reach locations. Maintaining such a

network through replacing the batteries is a cumbersome process and is uneconomical

especially when a long life-time is desired. Energy harvesting is a promising remedy

to cope with the energy challenge. A wireless node can harvest energy from different

forms of environmental sources such as thermal, wind, solar, vibration [17]. Among

these resources, wireless energy harvesting is an attractive candidate and provides key

advantages in virtue of being controllable and having lower cost and smaller form factor

implementations [18, 19]. Incorporation of energy harvesting is a promising remedy to

cope with the energy challenge. Energy harvesting enables easier deployment of nodes

in remote areas aiding in virtually maintenance-free operation and significant reduction

in the carbon footprint associated with manufacturing and replacing batteries. Scaveng-

ing energy form the aforementioned environmental sources is an opportunistic process,

i.e., it highly relies on the presence of the source and environmental conditions. In the

context of our system, the wireless energy sources fall into two categories of dedicated

sources and Ambient sources [18]. A dedicated RF source is deliberately deployed

to supply energy to the nodes at a designated rate and optimum frequency (e.g., sink

node). An ambient source, on the other hand, is a less predictable energy source hap-

pens to exist within the operation area of the network, but are not designed as a part of

the network. Examples of ambient sources include TV and radio towers (static ambient

source) and WiFi access points (dynamic ambient source). Due to their unpredictable

nature, harvesting energy from ambient sources is an opportunistic process which re-

quires some level of adaptivity and entails a more sophisticated design both at circuit

and system levels.
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1.2.3 Poilcy Based Issues

Policies and techniques based on real time usage data in IoE systems can help reduce

the energy consumption significantly [20]. Monitoring, preprocessing, making intel-

ligent decisions based on user feedback and behaviour can play an important role in

making these policies for energy-efficiency a success. The biggest challenge in man-

aging such an ecosystem also known as a smart IoE based environment is to make

efficient and informed decisions from user data, behaviour and feedback. This task is

not easy to implement in a big ecosystem interconnect such as cities, homes, industries.

Automation alone would not be enough and require the models for user feedback and

analysing behavioural patterns [21, 22]. This can save the energy in the range of 3-6%.

Management of smart systems with optimized policy for saving energy often requires

analyzing IoT data to optimize efficiency, comfort, safety, and to make decisions faster

and in a more precise manner.

1.2.4 Data Related Issues

Data collected from different sources in IoE systems have a huge amount of informa-

tion. Processing these vast amounts of data for analysis can be resource intensive and

time consuming and hence, a large amount of energy is required. A challenging task

for IoE systems is the low power data acquisition of sensed data. The main challenge

is due to the fact that different query-driven user command generate varied sized data.

Some of them are sparse in nature, some have higher rates and some are periodic. There

have been several lossy compression algorithms devised specifically for resource con-

strained wireless motes (sensor nodes). These algorithms include: Krun-length encod-

ing (KRLE) [23], lightweight temporal compression (LTC) [24], wavelet quantization

thresholding and RLE (WQTR) [25], and compressive sampling (CS) [26], [27]. Since
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the radio on a wireless device consumes orders of magnitude more power than other

components (e.g., ADC, CPU) [28], streaming all the data may consume too much

power to be viable. As such, using data-awareness i.e dividing the data demand be-

tween critical and non-critical data, to reduce radio transmissions will help increase

system longevity, decrease overall system power requirements, and decrease system

costs. Not only their size but their behavior also varies. Some are random in nature

with no correlation to the previous datasets while others are heavily correlated versions

of their previous time samples. Several solutions like K-nearest neighbor (KNN) and

Radial basis functions (RBF) have been investigated to predict the behavior of data

[29]. But the data variability and different service quality requirements of IoE systems

are not taken into consideration yet. Thus their is a need to analyze, investigate and

develop models to utilize the data efficiently in low power motes.

1.2.5 CO2 Emissions in IoE Systems

Today, 15 billion interactive devices are exchanging information about many aspects

of our lives, and the IoT is bound to become even more ingrained in our world as 200

billion devices are expected to be actively used by 2030 [30]. If the growth of sensors

and IoT-enabling technology continues at today’s pace, 30% of the information and

communication technology (ICT) market will be made up of IoT, data, and devices in

2030. The internet releases around 300m tonnes of CO2 a year – as much as all the coal,

oil and gas burned in Turkey or Poland, or more than half of the fossil fuels burned in

the UK. Enourmous amount of data generation in IoT systems, use of multiple batteries,

electricity accounts for around 40% of the total ICT energy demand and 0.8% of global

CO2 emissions [30]. With ever increasing IoE devices, CO2 emissions are bound to

increase. Hence, a challenging task is to efficiently handle the factors affecting the
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carbon-footprint increase to save on carbon emissions, thereby making the enviroment

green.

1.3 Related Works

Here, the prior works regarding the open issues related to energy efficiency as described

in the Section 1.2 are reviewed. The shortcomings in the existing literature are high-

lighted to provide the motivations and objectives of our research.

1.3.1 Prior Work on Optimal Energy Control in Wireless Sensor
Networks Based IoE Systems

In this section, we discuss the existing works in the literature concerning the problems

and solutions related to the increase in a WSN system lifetime. WSN system forms the

backbone of an IoE system. Energy efficiency with traffic dynamics have been an active

area of research in the WSN community since last two decades. Hence we focus on

developing a complete energy efficient framework for WSN based IoE systems through

the existing work.

Optimization methods have been extensively used in previous research works to

solve for network lifetime of wireless sensor networks. Network lifetime maximiza-

tion with flow rate constraint have been studied in many prior works. Kelly et al. was

the first to propose two classes of distributed rate control algorithms for communica-

tion networks [31]. Madan et al. [32] solved the lifetime maximization problem with

a distributed algorithm using the subgradient method. In [33], Ehsan et al. propose

an energy and cross-layer aware routing schemes for multichannel access WSNs that

account for radio, MAC contention, and network constraints, to maximize the network

lifetime. But, the problems formulated and solved in all these approaches neither does
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take into account a proper energy model incorporating all the transceiver resources nor

it involves the application performance trade-off due to increase in lifetime by decreas-

ing rate flows.

System utility and network lifetime are problems that are related to each other in

a reciprocal relationship meaning maximizing one will degrade the other. Chen et al.

[34] analyzed the utility-lifetime trade-off in wireless sensor network for flow con-

straints. He et al. [35] followed a cross-layer design approach. Both of these papers

take transmission rate as the sole indicator of the system throughput, which is not true

as the reliability plays a vital role in determining the system performance. Reliability

in the system can be improved by introducing error control schemes into the sensor

nodes with multipath routing introduced by lun et al. [36]. In [37], Yu et al. analy-

ses the automatic repeat request (ARQ) as well as a hybrid ARQ scheme for WSNs.

The ARQ scheme requires re-transmission if there is a failure of packet delivery which

increases energy consumption of node. Xu et al. [38] describes a rate-reliability and

lifetime trade-off for WSNs by taking theoritical end to end error probability of pack-

ets. Similarly, Zou et al. [39] has taken a joint lifetime-utility-rate-reliability approach

for WSNs taking a generic error coding processing power model. Both [38] and [39]

lack the inclusion and analysis of an error control scheme with their encoding/decod-

ing powers as well as the delay performance of the overall system with error correction

employed.

Energy harvesting is proposed as a possible method to improve the network lifetime

and rechargeable batteries in WSNs by He et al. [40] ,Magno et al. [41] ,Deng et

al. [42] and Kamalinejad et al. [43]. Practically, energy can be harvested from the

environmental sources, namely, thermal, solar, vibration, and wireless radio-frequency

(RF) energy sources [17]. While harvesting from the aforementioned environmental
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sources is dependent on the presence of the corresponding energy source, RF energy

harvesting provides key benefits in terms of being wireless, readily available in the

form of transmitted energy (TV/radio broadcasters, mobile base stations and hand-

held radios), low cost, and small form factor implementation. Recently, dynamics of

traffic and energy replenishment incorporated in the network power model has been

an active research topic. Some of the challenges are addressed by [44], [45] and [46].

They assume battery energy to be zero at start, which may not be practical for many

application scenarios that has sensors with rechargeable batteries. challenges caused

by packet loss due to interference has also not been addressed.

Green networking of late in the past four to five years has attracted a lot of attention.

Koutitas et al. [47] has analyzed a maximization problem based on carbon footprints

generated in terrestrial broadcasting networks. In [48] Naeem et al. have maximized

the data rate while minimizing the CO2 emissions in cognitive sensor networks. But it

is yet to be seen how much carbon emissions can be minimized while maximizing the

utility and lifetime with reliability and energy harvesting constraints.

1.3.2 Prior Work on Energy-efficient and Distributed Data-Aware
Routing and Clustering Protocol

As explained in the beginning of this Chapter, IoE plays an important role by bringing

together people, process, data, and things to make networked connections more rele-

vant and valuable. Its technologies, including heterogeneous WSNs, are used to mon-

itor many aspects of an ecosystem ranging from a small office space to a city, in real

time. Routing is one of the critical technologies in IoE as opposed to traditional ad-hoc

WSNs. It is more challenging due to constrained resources in terms of energy supply,

processing capability, frequent topology changes and reliable data delivery within a
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limited time period. Based on network structure, routing protocols can be sub-divided

into two categories, flat routing and hierarchical routing. In a flat topology, all nodes

perform the same tasks and have the same functionalities in the network. Whereas, in

a hierarchical topology, nodes perform different tasks and are typically organized into

lots of clusters according to specific metrics. In clustering, members of the clusters

elect a cluster head (CH) [49]. All nodes belonging to the same cluster send their data

to CH, where, CH aggregates data and sends aggregated data to base station (BS).

Clustering algorithms in the literature are divided based on their energy efficiency

in two types of networks i.e., homogeneous and heterogeneous WSNs. Homogeneous

WSNs considers that the all sensor nodes in the system have the same energy level

and all the nodes takes turn according to a given probability to become CH. Low-

Energy Adaptive Clustering Hierarchy (LEACH) [50], Power Efficient Gathering in

Sensor Information Systems (PEGASIS) [51] and Hybrid Energy-Efficient Distributed

Clustering (HEED) [52] are examples of cluster based protocols which are designed

for homogenous WSNs. However, these techniques perform poorly in heterogeneous

WSNs scenario as nodes having less energy expire faster than higher energy nodes.

Heterogeneous WSN topology takes into account that the nodes have different ini-

tial energy. Thus they perform better than homogeneous WSNs in a real application

scenario with variety of sensors such as warehouses, home monitoring and surveillance.

Distributed Energy Efficient Clustering (DEEC) [53], Developed DEEC (DDEEC) and

Enhanced DEEC (EDEEC) [54] are some of the heterogenous WSN protocols. These

distributed clustering algorithms for heterogeneous WSNs have similar topological

structure to an IoT system. Although multi-hop routing and residual energy for se-

lecting CHs are considered, they neither incorporate the intricacies nor the benefit of a

diversified and event driven IoT system.
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1.3.3 Prior Work on Energy-Efficient, Security Design for IoE
Infrastructure

As one of the most crucial blocks of the system (Section 1.1), which provides authen-

tication, authorization, and data integrity, energy-efficient security implementation is

one of the major concerns for the wide adaptation of IoE [15, 16]. As IoE systems

are typically portable and energy and/or hardware-resource limited, and thus require

low-complexity and energy-efficient implementation of security protocols in the hard-

ware which would work on its own. This exposes IoE systems to a number of attacks,

like frequency prediction, replay, denial-of-service, and eavesdropping. These attacks

can compromise the system security, in terms of its confidentiality, privacy, and data

integrity. without much human-intervention [55, 56]. Several cryptographic mecha-

nisms and protocols have been proposed and successfully implemented in conventional

systems [15, 55–58] without any stringent energy, cost, speed, memory, or comput-

ing resource restrictions. There are a number of energy-efficient implementations of

cryptography in sensor systems [59, 60], but they are relatively easy to compromise.

Physically unclonable functions (PUFs) are among the potential solution to data

security and counterfeiting problems [61, 62]. On-chip security can be implemented

during chip production utilizing chip integration techniques. A physically unclonable

function (PUF) refers to a structure’s physical characteristic that is usually easy to mea-

sure but hard to model or predict [62, 63]. Instead of storing the secret key into a digital

system, a PUF-based security approach derives its keys from inherent natural features

of the system. A PUF-based output behaves like a random function and is unpredictable

even for an attacker with physical access to the device. Furthermore, in contrast with

conventional digital architectures, the PUF-based approaches intertwine cryptography

and sensor properties, making the attack to such systems more challenging. Various
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types of PUFs, each with its challenge/response pair generation capability have been

categorized broadly into three categories in the existing literature [63, 64]. These are

Weak PUFs, Strong PUFs, and Controlled PUFs.

Weak PUFs

They have a small number of challenge/response pairs. The response RC to a given

challenge C is used to derive a secret key, which is never shared with anyone in public.

Once an attacker gains full access to the physical device, all the challenge/response

pairs can be modeled in a short time and the security of the device can be compromised.

Some common Weak PUF designs are include SRAM PUF [65], Butterfly PUF [66],

and Coating PUF [67].

Strong PUFs

They have a complex hardware mapping to generate challenge/response pairs in a way

that makes it hard for the adversary to easily predict their behavior in a short time.

Some applications of Strong PUFs are in device authentication [68] and key formation

[69]. Typical security features of Strong PUFs are:

(a) Impossible to be cloned or physically duplicated. This means it is impossible to

design a PUF with same physical imperfections that are originally present in the PUF

to be cloned.

(b) The challenge/response pairs generated by the PUF should come in large numbers,

making it difficult for an adversary to launch a brute-force attack on the PUF to deter-

mine the challenge/response pairs in limited time.

(c) Even with known challenge/response pairs, if the distribution of the responses

comes from a polynomial distribution, the adversary will not be able to predict the

responses to a given challenge.
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One strong-PUF design [70] described a physical one-way random function-based

optical PUF. Although PUF-based, this design does not integrate a PUF into its chal-

lenge/response system. Also, it requires a large external setup to validate the system

and it is difficult to integrate into a resource-constrained sensor circuit. In [71], the au-

thors proposed an Arbiter PUF (APUF) implementation that uses the XOR of responses

from the Arbiter PUFs implemented on the same chip to decrease the predictability of

the responses. However, APUFs are susceptible to modeling attacks [64]. To address

the problems in APUFs, several other PUF-based designs were introduced to counter

the modeling attacks; these are XOR PUF [72], feed-forward PUF [73], and ROPUF

[74], which addresses stability issues with APUF outputs.

Controlled PUFs

Controlled PUFs satisfy all the unique features of Strong PUFs, and, in addition,

implement a controlled logic based on those features to formulate a more advanced

functionality on the system, making it more secure. Recently, public PUFs, SIMula-

tion Possible but Laborious (SIMPL) PUF, device-aging- and process-variation-based

security primitives and public key protocols have been proposed that provide secu-

rity by exploiting the difference between actual execution and simulation times [61].

However, they generally require large computational efforts that result in high energy

requirements.

State-of-the art PUF designs have been proposed in recent years for the resource

constrained IoT systems. Authors in [75] present a way to use the fuzzy commitment

on unmanned IoT devices that utilizes two noisy factors from the inside and outside of

the IoT device. This work is based on input and output noise data and is very different

from our proposed method which utilizes physical variations. Another recent work in
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[76] utilizes the TERO-PUF metastable structure and is implemented in FPGA. In the

[77] paper, it is argued with experimental results that model-building machine learning

attacks can be successful in compromising security of FPGA-based PUFs. In [77] and

[63], it has been described that controlled PUFs, where physical variations are used

to hide challenge-response pairs successfully from the attackers, are able to provide a

stable and long term security solution for the IoE systems.

1.3.4 Prior Work on Policy-based Energy Management in Smart
Home IoE Ecosystem

In this section, we explain the existing state-of-art about the energy management in a

smart home IoE ecosystem. The literature shows the various solutions as to how and to

what extent user policies and feedbacks affect the IoE system.

Recent developments in the area of information and communication technologies

have provided an advanced technical foundation and reliable infrastructures for the

smart house with a home energy management system [78, 79]. Development of low

power, cost-efficient and high performance smart sensor technologies have provided

us with the tools to build smart homes [80, 81]. As a result, a service platform can

be implemented in a smart home to control the demand Response (DR) intelligently.

This type of system should also give the users enough flexibility to input their choices

while deciding on control of home devices [82] This makes the system more coherent,

user friendly and scalable. While different hardware, software, communication archi-

tectures have been proposed and compared by their power consumption, performance,

etc. [83–85], the cost of implementing the infrastructure like: hardware devices, soft-

ware framework, communication interfaces, etc. are still high enough that hinder the

process of implementing the smart home technology for ordinary users. Moreover, the
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hardware and software architectures may not be able to handle the growing number of

sensors and actuators with their heterogeneity.

Many authors have attempted to address the way to reduce peak energy based

on an agent-learning framework using multiple tools such as model predictive con-

trol [86], particle swarm optimization [87], iterative dynamic programming based [88]

and gradient-based methods [89]. However, these models are probabilistic and do not

constitute learning from interaction with the environment. Further, these models are

mostly price based, where cost saving instead of user preferences is a predominant fac-

tor. Some other solutions proposed in [90] and [91] consider Q-learning based agent

interaction system, however they target only particular appliances like air conditioners

and LED lights.

In [92], authors have proposed a fully-automated energy management system based

on the classical Q-learning based Reinforcement Learning (RL). The modelling is delay

based, where users have a way of inputting their energy requests via time-scheduling

and the agent learns gradually with time to find the optimal solution. However, this ap-

proach has several limitations. The author assumes mathematical disutility fuction and

consumer initiated energy usage. Finding disutility function for each home or residence

is costly and difficult and too much user interaction is not desired for a interoperable

energy management system. [93] focuses on applying a batch RL algorithm to control

a cluster of electric water heaters. A more relevant work is reported in [94], which

proposes device-based Markov Decision Process (MDP) models. It assumes that the

user behaviour and grid control signals are known. However, these assumptions are

not realistic in practice. In [95], authors use a discrete-time MDP based framework to

facilitate the use of adaptive strategies to control a population of heterogenous thermo-

statically controlled loads to provide DR services to the power grid using Q-learning.
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Again the application here is specific to load controlled by ambient temperature.

1.4 Research Focus and Goals

In this section, we summarize the inferences and shortcomings from the existing liter-

ature to clarify the focus of our thesis. The summary is drawn with respect to various

layers of energy-efficient architecture of IoE infrastructure.

On Optimal Energy Control in Wireless Sensor Networks Based IoE Systems

As evident from the existing literature, achieving energy savings through battery replen-

ishment and traffic dynamics optimization in a network power model of sensor systems

is an active research problem. The shortcomings of the existing literature which moti-

vated us to provide solutions to address them in our thesis are oulined as below:

• Network lifetime and utility formulation in the existing work neither takes into

account the energy consumption model nor the system performance trade-off

with lifetime increase.

• Joint lifetime- utility-rate-reliability approach for WSNs in state-of-art incorpo-

rates a generic error coding processing power model without re-transmission en-

ergy requirements or energy savings due to enhanced error correction capability.

• The existing work assumes the battery energy to be zero at start. This assumption

will not work for the scenario of an IoE system which contains rechargeable

batteries.

• The utilization of the network varies with listening power of the receiver block.

This is a major energy consuming block and whose analysis have been missing

from the existing literature.
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• Existing solution models address the needs of a narrow class of applications in

specific areas, and are not suitable for a broad range of applications.

On Energy-efficient and Distributed Data-Aware Routing and Clustering
Protocol

IoT and heterogeneous WSNs systems are similar in being equipped with sensors, base

station (data gathering and decision making node) and wireless transceivers. But IoT

system is more diversified in involving some notable variations like interaction between

multiple protocols, sensing systems having varied energy values, asynchronous event

driven processing and gateway node in between sensors and BS to route data more

efficiently. Moreover, due to the evolution of active RFID tags [96] with reading ca-

pability in the range of meters and various energy harvesting mechanisms [43, 97],

prudent techniques in IoE systems using them are better equipped to handle the energy

efficiency and network lifetime problem.

On Energy-Efficient, Security design for IoE Infrastructure

As evident from the existing literature, design of energy-efficient and resource-optimized

security system is a challenge for IoE systems. We address the shortcomings of the ex-

isting literature to design such a energy-efficient security system in Chapter 4. The

inferencs and challenges from the existing literature are oulined below :

• The existing security solutions for the IoE systems focuses on incorporating soft-

ware oriented solutions. This demands extra hardware resources for the already

resource constrained systems.

• The PUF solutions for the IoE systems focuses on FPGA-based system im-

plemetation and is not an optimised solution for a broad range of IoE systems.
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• Other existing solutions have minimal circuitry implementation but compromise

on the security and energy-efficiency problems.

On Policy-based Energy Management in Smart Home IoE Ecosystem

As evident from the existing literature, peak energy demand reduction by maximizing

user convenience in a smart home based IoE ecosystem is the major goal of Chapter 5.

The smart home system is a broad application scenario for an IoE implementation. The

existing literature lacks a comprehensive IoE system analysis. Specifically,

• Models proposed in state-of-art literature are probabilistic and do not constitute

learning from interaction with the environment. Further, these models are mostly

price based, where cost saving instead of user preferences is a predominant factor.

• The cost of implementing the infrastructure like: hardware devices, software

frame- work, communication interfaces, etc. are still high enough that hinder the

process of implementing the smart home technology for ordinary users.

• Security is a major issue in the successful implementation of an IoE system,

analysis and model of which is missing from the smart home systems.

• Time-of-Use (TOU) models of smart meters in the existing technology mostly

help the local distribution company and in order to take advantages of the TOU,

each household has to adopt a change in the use of the appliances which may

cause signicant discomfort to the consumers.

1.4.1 Broad Goals of the Thesis

To fulfill the shortcomings of the existing literature, here we broadly define the objec-

tive of our thesis.
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• Data is generated at a rapid pace and nodes of an IoE system are diminishing in

size. The energy resources are insufficient with decreasing size of nodes, increas-

ing number of nodes, volume of data and demand for embedded security. Hence,

the major goal of this thesis is to fill the energy gap required for an IoE system

as depicted in Fig. 1.3.

• The prime objective to fulfil our goal is to find an energy efficient model imple-

mentation which would consume the least amount of hardware resouces while

maintaining a high quality of service for the end users.

• To analyze the effect different techniques such as error control coding, wireless

energy harvesting and event driven data listening, has on the IoE system. And

validating their effects through simulations and experiments.

• Analyze and validate through design and meaurements, the effect of designing

a energy-efficient security block for the IoE system. As this is one of the most

important blocks for the successful implementation of the IoE system, it is im-

perative to analyze this blocks through the trade-offs of energy and security.

• Testing and validating the designed energy-efficient model for the IoE system

through a broad application scenario is also incorporated into the objective. This

is to give the users a viable and practical criteria along with its pros and cons for

their own implementation of the system.

1.4.2 Key Contributions and Results

The contributions of the thesis are described in this section for each chapter which

follows our broad goals.
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Optimal Energy Control in Wireless Sensor Networks Based IoE Systems

Our work in Chapter 2, focuses on solving the research problems mentioned above.

We achieve our goal of increasing network lifetime through incorporating a wireless

energy harvesting, error correction coding and wake-up-radio model into our system

while maintaining the quality of service requirements. We substantiate our system

through thorough simulations of various network lifetime-utility trade-offs. The details

of our objectives are as follows:

• We solve the data-utility lifetime trade-off problem by taking an approximated

lifetime function as well as the energy harversting, wake up radio duty cycling

and retransmissions into the utility function. This solves the problem of incor-

porating a proper energy model for the system. This also focuses on reducing

the reciever power (the major power hungry block of sensing system) through

wake-up radio based duty cycling approach. Through a system parameter vari-

ation in the simulation of data-utility lifetime trade-off problem, we provide the

user more flexibility in chosing the appropriate trade-off for a broad range of

applications.

• We incorporate a redundant residue number system based error correcting tech-

nique and compare it with ARQ and Bose-Chaudhuri-Hocquenghem (BCH) to

solve the problem of achieving better retransmission rate, thus enhancing energy

savings of the netowrk. Innovatively, the packet error rate and delay are being

included while computing lifetime and performance of the sensor network. This

solves the re-transmission problem in the existing literature and through simu-

lation the error-correction coding schemes’ network lifetime enhancing benefits

have been established in common sensor nodes.
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Energy-efficient and Distributed Data-Aware Routing and Clustering Protocol

Our main solutions with respect to the shortcomings in the existing literature are as

follows:

• The system is distributed in two-levels based on their initial energy as normal

nodes with standard battery energy and advanced nodes with a times more energy

than normal nodes [54]. We use the RFID tagging and reading mechanism to

reduce the energy consumption during the cluster head (CH) selection phase till

all the advanced nodes (also called gateway nodes) have their energy exhausted.

Thereby prolonging lifetime of the network.

• We validate data awareness by dividing the sensor based on urgent and regular

data demand and switch nodes between high/low power state based on data re-

quirement at the user side. The solution expects to save energy in the nodes and

improving battery life.

• We additionally incorporate RF energy harvesting for normal nodes with a power

management unit (PMU) to further improve network lifetime.

Energy-Efficient, Security design for IoE Infrastructure

Our solution described in Chapter 4 falls in the controlled-PUF category which tries to

provide long term energy efficient secure solution for the IoE systems. The focus of

our thesis is in the energy efficiency and minimal resource design. Thorough measure-

ments and testing leads to a Strong PUF design with integrated control logic to further

consolidate the security of the system. Specifically, our objectives are summarized as

below:
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• Our approach focuses on finding a challenge/response pair to authenticate the

system with minimal circuitry addition to the already resource constrained sys-

tem.

• Energy efficient implementation is the main focus of our approach. Hence a so-

lution is proposed which is hardware based instead of traditional software based

solutions.

• Rather than implementing complex computations and hardware circuitry, we fo-

cus on building a simple circuit which provides the desired security solutions.

Policy-based Energy Management in Smart Home IoE Ecosystem

In summary the contributions addressing the issues described in Section 1.4 are as

follows:

• User interface : Using a node-red development framework1 and message queue

telemetry protocol secure broker, a user interface has been designed. It incor-

porates intelligent energy management capability and provides user input op-

tions. Temperature control of appliances, operation rescheduling and On/Off

commands are initiated through the interface.

• Peak demand reduction : Using the proposed HEMaaS methodology, a reward

matrix is generated for each peak reduction threshold. There are four peak re-

duction thresholds considered in Chapter 5: 5%,10%,15% and 20%. Based on

the user convenience suitable load reduction decisions are obtained.
1Node-RED is a web-based programming tool for wiring together hardware devices, APIs and online

services. [Online] Available : https://nodered.org/.
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• Fault tolerance and user privacy : Taking different random combinations of

robustness measure, it has been shown how the user convenience is affected when

user privacy is compromised and system has hardware fault.

• Energy saving and Carbon-footprint reduction : The energy savings and car-

bon emmission reduction has been shown for a community of 85 houses over a

year.

1.5 Thesis Outline

Below, we summarize the achieved solutions for the thesis objectives in different chap-

ters of the thesis:

• In Chapter 2, we formulate and solve a joint maximization problem of system per-

formance (measured by data utilization) and lifetime for wireless sensor network.

Apart from throughput, packet loss and retransmissions and data utilization of a

network also has a major impact on the performance of a WSN system. Retrans-

missions affects the throughput of the system depending on the amount of packet

loss a network suffers in a given time slot. Data utilization for a node is depen-

dent on the time frame in which the node is active. Therefore packet loss and

data utilizations are incorporated in the system model to provide a more realistic

data loss and utilization model for the WSN system. As energy is scarce resource

for a WSN system, energy harvesting is adapted in the system model to increase

its lifetime. Energy harvesting is dynamic and varies as to how can be harvested

in each time slot. We model the harvesting as a stochastically varying Gaussian

i.i.d process. The problem throws challenges in finding an optimal solution as the

time-variation combined with retransmissions, packet loss and harvesting makes
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it complex. We, then provide a distributed solution to the problem by solving the

data-utility and network lifetime separately. We consider retransmissions as dis-

crete, packet loss is varied as the system utility and the optimal energy is found

out as a function of utility and lifetime of the network.

• In Chapter 3, we have proposed a Data Aware Energy Efficient distributed Clus-

tering protocol for IoT (DAEECI) by saving cluster head (CH) selection energy

using active RFID tags, cutting processing energy by incorporating data aware-

ness factor in the system and improving lifetime by inculcating RF energy har-

vesting. The system is distributed in two-levels based on their initial energy as

normal nodes with standard battery energy and advanced nodes with a times more

energy than normal nodes. We use the RFID tagging and reading mechanism to

reduce the energy consumption during the CH selection phase till all the ad-

vanced nodes (also called gateway nodes) have their energy exhausted. Thereby

prolonging lifetime of the network. We propose data awareness by dividing the

sensor based on urgent and regular data demand and switch nodes between high-

/low power state based on data requirement at the user side. The solution expects

to save energy in the nodes and improving battery life. We additionally incorpo-

rate RF energy harvesting through a power management unit for normal nodes to

further improve network lifetime. Our simulation depict substantial improvement

in lifetime of network and data delivery to the base station.

• In Chapter 4, we propose an IoT sensor security scheme that utilizes a physically

unclonable function (PUF) of the sensor. As a proof of concept, we present the

approach in the context of silicon photo diodes and use their dark current vari-

ations as a PUF. The challenge used for system authentication is generated by
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quadratic residues. In an effort to build a system prototype, we measure the dark

current of photo-diodes in terms of noise and energy consumption, in order to

identify an optimal configuration of the circuit. A prototype PUF circuit of the

sensor node incorporating the current amplification circuitry was designed and

tested to prove the feasibility of dark current measurements in a portable envi-

ronment. We have proposed, implemented, and tested an authentication protocol

using PUF and the quadratic residues. We have also proposed an asymmetric

digital signature-based encryption scheme, using the PUF response-generated

private key, and simulated it using parameters of the PUF circuit and the au-

thentication protocol. Our approach is validated by using measured, simulated,

and analyzed the currents, adversary attacks, and energy requirements, to val-

idate the approach. This concept can be extended to IoT applications that use

alternative types of sensors (beyond photo-diodes), as long as the sensors exhibit

random-like physical property variations.

• In Chapter 5, a new method named as Home Energy Management as a Service

(HEMaaS) is proposed which is based on neural network based Q-learning algo-

rithm. Although several attempts have been made in the past to address similar

problems, the models developed do not cater to maximize the user convenience

and robustness of the system. Here, we have proposed an advanced Neural Fitted

Q-learning method which is self-learning and adaptive. The proposed method

provides an agile, flexible and energy efficient decision making system for home

energy management. A typical Canadian residential dwelling model has been

used to test the proposed method. Based on analysis, it was found out that the

proposed method offers a fast and viable solution to reduce the demand and con-
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serve energy during peak period. It also helps in reducing the carbon footprint

of residential dwellings. Once adopted, city blocks with significant residential

dwellings can significantly reduce the total energy consumption by reducing or

shifting their energy demand during peak period. This would definitely help IoE

network administrators to optimize their resources and keep the tariff low due to

curtailment of peak demand.

• In Chapter 6, summary and concluding remarks are provided and possible future

research directions are discussed.
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Chapter 2

Optimal Energy Control in Wireless

Sensor Networks Based IoE Systems

In this chapter, we formulate and solve a joint maximization problem of system per-

formance (measured by data utilization) and lifetime for wireless sensor network. The

packet loss and data utilizations are incorporated to provide a more realistic data loss

and utilization model for the WSN based IoE system. As energy is scarce resource for

a WSN system, energy harvesting is adapted in the system model to increase its life-

time. We model the harvesting as a stochastically varying. Contrary to articles [44–46],

our model assumes that the battery starts with a initial energy and the network opera-

tions has to be sustained using harvesting and wake up radio (WUR), using harvesting

from ambient RF energy rather than using a solar energy harvester which needs ex-

tra circuitry. The overall problem throws challenges in finding an optimal solution as

the time-variation combined with retransmissions, packet loss and harvesting makes it

complex. We, then provide a distributed solution to the problem by solving the data-

utility and network lifetime separately. Motivated by the emerging concept of Green
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Wireless Sensor Network (GWSN) in which the lifetime and throughput performance

of the system is maximized while minimizing the carbon footprints, our goal is to build

an sustainable WSN system by supplying adequate energy to improve the system life-

time and providing reliable/robust transmission without compromising overall quality

of service.

The rest of this chapter is organized as follows. System model formulation is de-

scribed in Section 2.1. In Section 2.2, we propose the WEH and WUR schemes for

WSN system. In Section 2.3, we formulate the joint utility-lifetime trade-off prob-

lem and formulate a distributed solution based on subgradient method and Section 2.4

shows our simulation plots.

2.1 System Model and Problem Formulation

We consider a network of non-mobile and identical sensor nodes denoted by N. Sen-

sor nodes collect data from the surrounding information field and deliver it to the sink

node/collector node denoted by S. As in [98], sensors communicate either in an uni-

formly distributed ring topology or randomly in a multi-hop ad-hoc topology. We as-

sume that the sensor devices in an WSN system are transmitting over a set of links L.

We model the wireless network as a {edge, link} connectivity graph G(Z,L), where the

set, Z = N∪S, represents the source and sink nodes. The set of links, L, represent the

communication link between the nodes. Two nodes i and j are connected if they can

transmit packets to each other with i∈N and j∈Ni. Fig. 2.1 shows a sample connectiv-

ity graph with three sensor nodes (i1, i2, i3), one sink node (s1) and six communication

links (l1, l2, l3, l4, l5, l6). The communication between node i1 and s1 is a single-hop

transmission whereas between i3 and s1 denotes a multi-hop transmission with node

i2 acting as relay for data of node i3. The set of outgoing links and the set of incom-
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Figure 2.1: Connectivity graph

ing links corresponding to a node i are denoted by O(i) and I(i) respectively. Thus, in

Fig. 2.1, O(i2) = (l3, l6) and I(i2) = (l4, l5). Table 2.1 delineates the parameters used

for the analysis of our scenarios in Chapter 2.

Table 2.1: Notations used

Symbol Description Symbol Description Symbol Description

‖.‖∞ ∞-norm ET X Transmit energy [J/bit] Pe Packet Loss Rate

‖.‖p p-norm ERX Receive energy [J/bit] Ps Packet Success Rate

N Set of Sensor Nodes EPR Processing energy [J/bit] Pb Bit error rate

S Set of Sink Nodes ESN Sensing energy [J/bit] LP Length of packet

i Outgoing Sensor Node PLS Ideal Listening power [W] E(T ) Expected no. retransmissions

j Incoming Sensor Node EB Battery energy of Sensor h Number of hops

ri j Rate of Information Flow PH Harvested power GF(2b) Galois Field of b-bits

Ri j Source rate W
′

U Wake-up-radio on-off signal U(.) Utility function

Cl Capacity of Link γ Path loss exponent α System design parameter

Tnetwork Lifetime of Network d Communication distance ε Lifetime approx. constant

2.1.1 Routing and Flow Conservation

We model the data transmission rates and routing of data in the network using flow

conservation equation. Let ri j denote the rate of information flow from nodes i to

node j. Let Ri j denote the total information rate generated at source node i to be

communicated to sink node j∈Ni. It is assumed that no compression is performed

at the source node and data transmission is lossless. Thus satisfying flow conservation
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constraint, we have the flow equations at the nodes for time slot t as

∑
j∈Ni

(
r ji(t)− ri j(t)

)
= Ri j(t),∀i ∈ N, j ∈ Ni (2.1)

The maximum transmission rate of a link is also known as its capacity Cl . For a given

transmit power of node and bandwidth of the channel, this value is fixed and is a upped

bound of ri j as 0≤ ri j ≤Cl .

2.1.2 Energy Cost Model

The network lifetime is dependent on the power consumption of the sensor node Pi per

active duty cycle slot Ti of a node. This involves the combined operations of sensing,

processing and communication (receive/transmit). If a sensor node goes out of the ser-

vice due to energy deficiency, then all the sensing services from that node are affected

till the battery is replaced. Radio transceiver is the one of the most power hungry block

of a sensor device. The communication energy per bit per time slot Ecomm(t) consists of

ERX(t) (receiver energy per bit per time slot) and ET X(t) (transmitter energy per bit per

time slot). The computation energy includes EPR(t) (processing energy per bit per slot)

and ESN(t) (sensing energy per bit per time slot). Let, EB(t) ≥ 0 is the total residual

energy left in a sensor node operated by battery at time slot t. The power consumption

in a time slot t is modeled as

Pi(t) = ∑
i∈N, j∈Ni

ri j(t)ET X(t)+ ∑
i∈N, j∈Ni

r ji(t)ERX(t)+ ∑
i∈N, j∈Ni

Ri j(t)EPR(t)

+ ∑
i∈N, j∈Ni

Ri j(t)ESN(t)+ ∑
l∈O(i)

PLS(t)
(2.2)

From the communication energy model in [32], we modify our transmitter energy for

transmitting one bit of data from i∈N to j∈Ni across distance d as
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ET X = a1 +a2 ·dγ

i j (2.3)

Where γ is the path loss exponent varying from γ∈[2,6], a1 and a2 are constants de-

pending on the characteristics of the transceiver circuit.

2.1.3 Packet Loss and Data Re-transmission

As often as the packets are failed to be delivered to the sink node, the re-transmission

consumes extra energy from the battery source of the sensor node, thereby decreasing

its lifetime substantially. Therefore, a fundamental approach to reduce the packet loss is

necessary to be integrated together with upper layer protocols to deliver reliable WSN

management. Thus, we propose to use the approach of Error Correction Coding (ECC)

to improve transmission reliability. ECC adds redundancy to improve the transmission

reliability thereby reducing the efficiency, it is still a more preferable solution, because

it helps to improve both reliability and latency. We derived a error coding scheme on

the theoretical basis of Redundant residue number systems (RRNS) which have been

introduced in [99, 100]. The performance is evaluated in terms of the packet error rate

and compared with the state of the art Automatic Repeat reQuest (ARQ) scheme that is

widely used in IEEE 802.15.4 radio. A preliminary analysis has been done in [19] that

has been extended into our system model in this Chapter.

Analysis of packet error in ARQ scheme

In ARQ scheme, data is decoded by cyclic redundancy check (CRC) codes and the

erroneous data is re-transmitted from the sender. Here we consider stop and wait ARQ

method. Assuming the ACK bits are received without error, the packet error rate of the

ARQ scheme is given by

PARQ
e = 1− (1−Pb)

LP (2.4)
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where LP is the packet length of the payload transmitted in a single transmission, Pb is

the bit error rate. Pb for sensor nodes in IEEE 802.15.4 is given in [101].

Analysis of packet error in ECC schemes

For BCH and RRNS codes, let us assume that we use a (n,k,e) e-error control method

with n− k redundant bits appended to the k-data bits. We further assume that the

transmission of the packets between the sensor node and sink node is in bursts of n-

bit data. Therefore, the packet loss rate at the sink node is given as

PECC
e = 1−

1−
n

∑
i=e+1

 n

i

Pi
b(1−Pb)

n−i


⌈

LP
k

⌉
(2.5)

Where d.e is the ceiling function. We assume that due to poor channel conditions and

interference, when a packet is unsuccessful in reaching its destination, it is counted as

loss of packet and a re-transmission is required. The packet is assumed to be success-

fully delivered when the acknowledgement (ACK) for the delivery is received. Thus it

takes one complete trip for the packet to be assured as successfully delivered. Let Pe

be the probability of an event where the packet is lost in being delivered from sensor

to sink or the ACK failed to reach the sensor from sink. Thus, for a single hop the

expected number of re-transmissions is given by [32]

E(Tr) =
1

(1−Pe)
(2.6)
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Where, Pe is the packet loss rate of ARQ or ECC schemes. Accordingly, packet loss

rate for end-to-end in a h-hop scenario is given as

E(Tr,h) =
h

(1−Pe)
(2.7)

Lemma 1. Let Pe be the probability of an event where the packet is lost in being deliv-

ered from sensor to sink or the ACK failed to reach the sensor from sink. Thus, for a

single hop the expected number of re-transmissions is given by

E(Tr) =
1

(1−Pe)
(2.8)

Where, Pe is the packet loss rate of ARQ or ECC schemes. Accordingly, packet loss rate

for end-to-end in a h-hop scenario assuming each node transmission is independent of

the other as per the TDMA based MAC protocol.

E(Tr,h) =
h

(1−Pe)
(2.9)

Proof. See [32].

Redundant residue arithmetic based error correction scheme

A residue number system (RNS) is a non-weighted number system that uses relatively

prime bases as moduli set over GF (2b) [102]. Owing to the inherent parallelism of

its structure and its fault tolerance capabilities, shows fast computation capability and

reliability. RNS is defined by a set of β moduli m1,m2, . . . ........mβ , which are relatively

prime to each other. Consider an integer data A, which can be represented in its residues
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Γ1,Γ2, . . . ...Γβ

Γi = A mod mi, i=1,2,....l (2.10)

Θ =
β

∏
i=1

mi (2.11)

The maximum operating range of the RNS is Θ given by (2.11). The corresponding

integer A can be recovered at the decoder side from its β residues by using the Chinese

Remainder Theorem [102] as

A =
l

∑
i=1

Γi×M−1
i ×Mi (2.12)

where Mi = Θ/mi and the integers M−1
i are the multiplicative inverses of Mi and com-

puted apriori. One common modulus set (2b−1−1,2b−1,2b−1 +1) with a power of two

in the set makes it relatively easy to implement efficient arithmetic units. A redundant

residue number system (RRNS) is defined as a RNS system with redundant moduli. In

RRNS, the integer data X is converted in β non-redundant residues and δ -β redundant

residues. The operating range Θ remains the same and the moduli satisfy the condi-

tion m1 < m2 < . . . .... < mβ < mβ+1 < mβ+2 < . . . .... < mδ . RRNS can correct up

to b(δ −β )/2c errors. If we consider the popular modulus set, mentioned above, and

add the redundant modulus (2b+1) to it, becomes the (2b−1−1,2b−1;2b−1 +1,2b +1)

RRNS with capability to detect one error, it is explained extensively in [102]. Since the

Chinese Remainder Theorem approach require processing large-valued integers, a suit-

able method for avoiding this is invoking the so-called base-extension (BEX) method

using mixed radix conversion (MRC)[103] that reduces the computation overhead by

minimum distance decoding.

Based on RRNS, we propose an online error detection and correction scheme for the
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Figure 2.2: Analytical results of different coding schemes for IEEE 802.15.4
based sensor.

GWSN systems. A parallel to serial converter changes A into its decimal representation.

In a look-up-table (LUT), we store the modulus values of numbers 0− 9 and 10χ ( χ

∈ 1,2, .......κ) with respect to the δ moduli (β non redundant moduli and δ -β redundant

moduli). All operations are performed in parallel modulo channels without the need of

transmission of information from one modulo channel to another. So, for l moduli, we

have δ modulo channels operating in parallel, all operations in each performs modulo of

the particular modulus till δ . Finally, we append the respective MAC IDs of the sensor

devices at the front end of each set of packet data and transmit it to the gateway/sink

node. RRNS Algorithm in [19] shows the decoding process at the sink node/gateway.

It first receives the packet and tries to recover the data. After the recovery of the data

and the error moduli, it appends a 1-bit TRUE flag with the ACK signal and sends it

to the sensor node to notify the reception of data, else it sends a 1-bit FALSE flag with

ACK to the sensor node signifying to resend the packet data again. The sensor node

in turn transmits the δ -β redundant residues again instead of sending the full n bits of

data again.
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Packet loss statistics for different error correction schemes

We perform an analysis to find out the packet loss rate of the IEEE 802.15.4 based

sensor. The systems signal to noise ratio is varied from 0dB to 20dB. The packet error

rate is generated for BCH (128,57,11) and RRNS (128,60,32). These values of n are

taken to correlate with the packet load of 133 bits (payload of 127 bits and 6 bits of

header). From Fig. 2.2a, it can be inferred that ECC schemes provide approximately

a gain of 4 dB in SNR as compared to ARQ scheme for the same packet loss rate.

This is equivalent to a power gain of around 2 watts, which is essential savings in

case of energy constrained GWSN systems. RRNS code provides slightly better gain

of around 2 dB, owing to its better error correction capability compared to BCH code.

Accordingly, in Fig. 2.2b we plot the values of re-transmissions required for ARQ, BCH

codes, and RRNS codes. The plot depicts a similar nature as predicted in (2.5). As we

can see, simple ARQ scheme in a packet loss rate varying from 0 to 20% requires

expected number of re-transmissions of ∼ 1 to 17, whereas expected number of re-

transmissions in BCH and RRNS coding schemes is ∼ 1 to 4 . The figure of merit for

both BCH and RRNS shows average number of expected packet re-transmissions, even

for a packet loss of 20% as ≈ 4, significantly outperforms the simple ARQ scheme.

This can save a tremendous amount of energy leading to network lifetime enhancement.

2.1.4 Problem Definition : Network Lifetime Maximization
through Energy Cost Model

The processing energy EPR in (2.13) increases with redundancy P′ = (n− k)/k. The

re-transmissions consumes extra energy resources apart from the original transmis-

sion which is mandatory, hence incorporating the expected number of retransmissions
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E(Tr,hi) for hi-hops into (2.13), we get power consumption as in time slot t

Pi(Pe,hi, t) = ∑
i∈N, j∈Ni

ri j(t)ET X(t)(1+E(Tr,hi))+ ∑
i∈N, j∈Ni

r ji(t)ERX(t)(1+E(Tr,hi))

+ ∑
i∈N, j∈Ni

Ri j(t)EPR(t)(1+E(Tr,hi)P
′
)+ ∑

i∈N, j∈Ni

Ri j(t)ESN(t)+ ∑
l∈O(i)

PLS(t)

(2.13)

packet success rate Ps(t) affects the sample rate in the rate flow constraint as

∑
j∈Ni

Ti

∑
t=1

(
ri j(t)− r ji(t)+Ps(t)Ri j(t)

)
≤ 0, ∀i ∈ N, j ∈ Ni (2.14)

Let Tnetwork be the total number of active duty cycle slots representing the life-time

of the network. We focus on maximizing the operation time of the whole network

(Tnetwork) until the first node fails,

Tnetwork = min
n

∑
x=1

Tx,(n ∈ 1,2, ....i) (2.15)

The problem of maximizing the network lifetime can be stated as

max
t≥0,EB(t)>0

Tnetwork

subject to
Ti

∑
t=1

(
Pi(Pe,hi, t)−

1
Ti
·EB(t)

)
≤ 0,

∑
j∈Ni

Ti

∑
t=1

(
r ji(t)− ri j(t)−Ps(t)Ri j(t)

)
≤ 0, ∀i ∈ N, j ∈ Ni

ET X = a1 +a2 ·dγ , γ ∈ [2,6]

0≤ ri j ≤Cl

(2.16)

In our model, we have considered a battery with a finite maximum capacity EBmax,

where EB(t)≤EBmax. Further, due to hardware limitations the total power consumption
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is upper bounded by maximum consumption Pmax (i.e Pi(t)<Pmax, ∀ j ∈ Ni,∀t ∈ Ti).

Problem in (2.16) is not convex. By substituting s = 1/Tnetwork, we obtain a convex

problem.

min
s≥0

s

subject to
Ti

∑
t=1

(Pi(Pe,hi, t)− si ·EB(t))≤ 0,1≤ t ≤ Ti

0 < EB(t)≤ EBmax,1≤ t ≤ Ti

Constraints in (2.16)

(2.17)

2.2 Wireless Energy Harvesting and Wake-Up Radio
Scheme

Block diagram of a generic wireless energy harvesting (WEH) enabled sensor node is

shown in Fig. 2.3a. As shown in the figure, the nodes consists a rectifier, transceiver

(RX, TX), sensors and sensor interface, storage unit (rechargeable battery), power man-

agement unit (PMU) 1 and the processor. An RF-to-DC converter (also known as recti-

fier) constitute the core of the wireless energy harvesting unit. The rectifier is in charge

of converting the received RF power (by the receiver antenna) to a usable DC supply.

This stable DC energy can be used to charge a battery and/or drive the electronic cir-

cuitry of the node. The conversion from RF to DC comes with some energy loss in

the internal circuitry of the rectifier which quantified in terms of power conversion effi-

ciency (PCE) of the rectifier. PCE being the ratio of the converted DC power to the RF

input power, has significant implications on the overall performance of the power har-

vesting unit. This is further highlighted by reference to Friis free space equation which

gives the available harvested power by [104]: The PCE is optimized for a designated in-

14.2.4
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put power which corresponds to an specific communication distance. For longer (than

optimal) distances (d2
i j), the rectified power abruptly drops. When a receiver node i

is in the energy harvesting mode, the power harvested (PHi) from base station server

source in a time slot t can be calculated as follows

PHi(t) =
η ·PT X · |Hi(t)|2

d2
i j

,1≤ t ≤ Ti (2.18)

Where, η is PCE and Hi denotes the channel gain between between source and receiver

at time slot t. As shown, the PCE is optimized for a designated input power (received

form the antenna) which corresponds to an specific communication distance. Beyond

this optimal point, the rectifier provides sufficient energy for storage or to drive the node

circuitry. However, for longer distances from the sink node, the rectified power abruptly

drops. In WEH-enabled nodes, PMU is in charge of managing the flow of energy to the

storage unit, node circuitry and to the main receiver (RX). Aside from high efficiency,

other key performance metrics of a WEH unit include high sensitivity (i.e., ability to

harvest energy from small levels input power), wide dynamic range (i.e., maintaining

high efficiency for a wide range of input powers), multi-band operation (i.e., ability to

harvest wireless energy from wireless transmissions at different frequencies). Extensive

studies exist in the literature investigating on techniques to improve the performance of

WEH unit [18, 104]. The design presented in [105] studies techniques to enhance the

efficiency of WEH unit and a muliti-band approach to enable harvesting and different

frequencies.

In a wireless sensor node, although the receiver is practically called in to action only

when its service is required, it has to constantly keep listening to the communication

channel for the commands from the sink node. This so called idle listening mode power

44



(a)

(b)

Figure 2.3: WEH-enabled wireless sensor node . (a) Block diagram of WEH-
enabled sensor node, (b) Timing diagram.

(PLS) consumption when integrated over the lifetime of the node makes the receiver a

significant energy consumer and is dependent on the amount of network utilized for

given duty cycle. Let α ∈ (0,1) be the system parameter that defines the amount of

network utilization. The amount of energy consumption modeled in terms of α in
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(2.13) is

Pi(Pe,hi, t) = ∑
i∈N, j∈Ni

ri j(t)ET X(t)(1+E(Tr,hi))+ ∑
i∈N, j∈Ni

r ji(t)ERX(t)(1+E(Tr,hi))

+ ∑
i∈N, j∈Ni

Ri j(t)EPR(t)(1+E(Tr,hi)P
′
)+ ∑

i∈N, j∈Ni

Ri j(t)ESN(t)+ ∑
l∈O(i)

α(t)PLS(t)

(2.19)

In a wireless sensor node, the receiver unit despite not being the most power hungry

block, constitutes a significant portion of the overall energy consumption of the system.

While similar to other building blocks, the receiver is practically called in to action only

when its service is required, it has to constantly keep listening to the communication

channel for the commands from the sink node. This so called idle listening mode

power consumption when integrated over the life time of the node makes the receiver a

significant energy consumer.

An efficient solution to tackle the energy consumption during the idle listening

mode is duty cycling (also known as rendez-vous scheme) in which the receiver main-

tains in deep sleep mode and only wakes up when there is a message to be received from

the main transmitter (TX). There are three main classes of duty cycling, namely, syn-

chronous, pseudo-asynchronous and asynchronous [106]. In the synchronous scheme,

the transmitter and all the receivers pre-schedule designated time slots in which the re-

ceivers wake up for to receive the commands and fulfill the transmission. Such scheme

imposes considerable overhead in terms of complexity and power consumption in order

to establish time synchronization and leads to idle energy consumption if there is no

data to be received during the pre-scheduled time slots. In the pseudo-asynchronous

scheme, the receivers wake up at designated time but a synchronization between the

transmitter and receiver is not required. In the asynchronous scheme which the most

energy efficient approach among the duty-cycling classes, the receivers spends most of
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their time in deep sleep mode and only wake up when interrupted by the transmitter.

This interrupt message is generated by a wake-up radio (WUR). WUR is a simple and

low-power receiver which keeps listening to the channel and only wakes up the main

receiver when the is a request for transmission to the associated node [107]. Fig. 2.3b

schematically compares the energy profile of a conventional transceiver versus that of a

WUR-enabled transceiver. As shown in the figure, the main receiver (RX) in the WUR-

enabled transceiver is activated less frequently and only upon receipt of the wake-up

command (WU) which is followed by the interrupt message generated by the WUR.

Fig. 2.3b schematically compares the energy profile of a conventional transceiver

versus that of a WUR-enabled transceiver. As shown in the figure, as compared to

the conventional method, the main receiver (RX) in the WUR-enabled transceiver is

activated only upon receipt of the wake-up command (WU) which is followed by the

interrupt message generated by the WUR. The infrequent activation of RX facilitates

a substantial energy conservation over the life-time of the wireless node. Obviously,

WUR scheme is favourable only if the power consumption of the WUR is much smaller

than that of RX (i.e., PWUR << PRX in Fig. 2.3b).

WEH-enabled nodes provide a good opportunity for a very efficient implementation

of WUR [108]. Fig. 2.3, shows the block diagram of one such implementation for on-

off keying (OOK) WU message. As shown in the figure, the rectifier block of the WEH

unit can be re-utilized to perform as a simple envelope detector while also providing

energy supply for the rest of WUR circuitry [108].

Let PC
Hi
(t), denotes the cumulated harvested energy in all the slots of node i. For

simplicity, we assume the harvested energy is available at the start of each interval t. We

also assume that the battery has finite capacity and harvested energy can only recharge
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till the maximum capacity of battery EBmax.

PC
Hi
(t) =

t

∑
x=1

PHi(x),(t ∈ 1,2, ....Ti) (2.20)

PC
Hi
(t) is a continuous increasing function that lies between points (0,0) and (Ti,PC

Hi
(Ti))

as shown in Fig. 2.4. The cumulative node energy PC
i (t) for all (t ∈ 1,2, ....Ti) cannot

be more than PC
Hi
(t). Using this constraint, the dynamic charging and discharging of

battery can be modeled as

EB(t +1) = EB(t)−Pi(t)+PHi(t)

PC
i (t)≤ PC

Hi
(t),∀t ∈ 1,2, ....Ti

(2.21)

To find an optimal energy consumption (PC
i (t))

∗, we need to find the upper and lower

bound of consumed energy. (2.21) gives the upper bound on the consumed energy.

Further, (PC
i (t))

∗ must satisfy that, the residual energy of nodes at all time slots i.e.

(PC
i (t))

∗−PC
Hi
(t) cannot exceed the battery maximum capacity EBmax, forms the lower
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bound of (PC
i (t))

∗ . Thus the problem in (2.17), can be reformulated as

min
s≥0

si

subject to
Ti

∑
t=1

(Pi(Pe,hi, t)− si ·EB(t)−PHi(t))≤ 0,1≤ t ≤ Ti

0 < EB(t)≤ EBmax,1≤ t ≤ Ti

PC
Hi
(t)−EBmax ≤ PC

i (t)≤ PC
Hi
(t),∀t ∈ 1,2, ....Ti

Constraints in (2.15), (2.16), (2.18), (2.19) and (2.20)

(2.22)

2.3 Joint Utility & Network Lifetime Trade-off and
Distributed Solution

Solving standalone maximization of network lifetime problem by varying the source

rates will result in allocation of zero source rates to the node. Thus, it results in applica-

tion performance of the system to be worst. Therefore, it is optimal to jointly maximize

the network lifetime with the system’s application performance. We associate the net-

work performance with the utility function Ui(.). In [31], it has shown that each node

i∈N is related to a utility function and achieve different kind of fairness by maximizing

the network utility. Thus the utility is a function of the node source rate Ri j. Apart from

source rates, packet success rate Ps also affects the overall system performance. Thus,

the utility function has to be modified to accommodate the packet success rate and the

payload data efficiency as Ui(Ri j,Ps). Max-Min fairness maximizes the smallest rate

in the network whereas the Proportional fairness favors the nodes nearer to the sink

node. As given in [31], by aggregating the utility, the network lifetime can be solved

in a distributed way with an approximated approach as Fε
s (.) =

( 1
ε+1

)
· sε+1

i . Thus, the
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network lifetime problem in (2.22) becomes

min
s≥0

(
1

ε +1

)
· sε+1

i

subject to constraints in (2.22), (2.19) & (2.14)

(2.23)

Using (2.23), we can now formulate a joint trade-off between maximizing utility

and network lifetime simultaneously. Our method differs from other approaches in

Chapter 1-Section 1.3 as we consider a more realistic scenario, incorporating path loss,

fairness, packet loss statistics for error control schemes as well as energy harvesting and

a event driven radio wake-up scheme. Thus the cross-layer joint maximization problem

is given as

max
(s,Ri j,ri j)≥0

Ti

∑
t=1

(
α(t) ∑

i∈N
∑
j∈Ni

Ui(Ri j(t),Ps(t))− (1−α(t))
(

1
ε +1

)
· sε+1

i

)

subject to constraints in (2.22), (2.19) & (2.14)

(2.24)

We have introduced a system parameter α∈[0,1] in (2.19). It gives the trade-off be-

tween the utility and network lifetime. For α=0, the utility is zero and for α=1, network

lifetime is maximum with worst application performance. The maximization objective

function is concave as U(.) is concave and network lifetime problem Fε
s (.) is convex.

We try to solve the primal problem via solving the dual problem [98]. We keep the

expected number of transmissions E(Tr,hi) in hops hi as constant and vary the rate ri j.

The constraint set in (2.24) represents a convex set. According to slater’s condition for

strong duality, if the non-linear constraints are strictly positive, duality gap between

primal and dual problem is small. Thus the primal can be solved by solving the dual

problem and the desired primal variables can be obtained. The dual-based approach
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leads to an efficient distributed algorithm.

2.3.1 Dual Problem

To solve the problem in a distributed manner, we formulate the Lagrangian in terms of

the Lagrange Multipliers λ and µ by relaxing the inequality constraints in (2.24).

L(λ ,µ,s,rij,Rij,U(Rij,Ps), t) =
Ti
∑

t=1

(
α(t) ∑

i∈N
∑

j∈Ni

Ui(Ri j(t),Ps(t))− (1−α(t))
( 1

ε+1

)
· sε+1

i

)
+ ∑

j∈Ni

Ti
∑

t=1
λl(t)

(
ri j(t)− r ji(t)+Ps(t)Ri j(t)

)
+ ∑

i∈N
∑

j∈Ni

Ti
∑

t=1
µi(t)(Pi(Pe,hi, t)− si ·EB(t)−PHi(t))

(2.25)

The corresponding Lagrange dual function D(λ ,µ) is given by

D(λ ,µ) = sup
s,rij,Rij,U

L(λ ,µ,s,rij,Rij,U(Rij,Ps), t)

subject to constraints in (2.22), (2.19) & (2.14)

(2.26)

The solution is given by F∗

F∗ = min
λ>0,µ>0

D(λ ,µ) (2.27)
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The dual problem can be decomposed further into two different subproblems D1(λ ,µ)

and D2(λ ,µ).

D1(λ ,µ) = max
(Ri j,ri j)≥0

∑
i∈N

∑
j∈Ni

Ti

∑
t=1

α(t) ·Ui(Ri j(t),Ps(t))

+∑
l∈L

Ti

∑
t=1

λl(t)
(
ri j(t)− r ji(t)+Ps(t)Ri j(t)

)
+ ∑

i∈N
∑
j∈Ni

Ti

∑
t=1

µi(t) · (ri j(t)ET X(t)(1+E(Tr,hi))+ r ji(t)ERX(t)(1+E(Tr,hi))

+Ri j(t)EPR(t)(1+E(Tr,hi)P
′
)+Ri j(t)ESN(t)+α(t)PLS(t))

subject to ET X = a1 +a2 ·dγ , γ ∈ [2,6]

0≤ ri j ≤Cl

PC
Hi
(t)−EBmax ≤ PC

i (t)≤ PC
Hi
(t),∀t ∈ 1,2, ....Ti

(2.28)

D2(λ ,µ) =−{ max
(s,EB)≥0

∑
i∈N

∑
j∈Ni

Ti

∑
t=1

µt (si ·EB(t)+PHi(t))+
Ti

∑
t=1

(1−α(t))
(

1
ε +1

)
· sε+1

i }

subject to 0 < EB(t)≤ EBmax,1≤ t ≤ Ti

PC
Hi
(t)−EBmax ≤ PC

i (t)≤ PC
Hi
(t),∀t ∈ 1,2, ....Ti

(2.29)

Subproblem D1(λ ,µ) is a rate control problem in the network and transport layer of the

sensor networks. For all active links l ∈ L, we substituted ∑
i∈L

with ∑
i∈N

∑
j∈Ni

. Subproblem

D2(λ ,µ) gives the bound on the inverse lifetime. The objective function of the pri-

mal problem is not strictly convex in all its primal variables {s,Ri j,ri j}. The sub-dual

problems D1(λ ,µ) is only piecewise differentiable. Therefore, the gradient projection

method cannot be used to solve the problem. We use the subgradient method [98] to

solve the problem iteratively till a desirable convergence is reached.
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2.3.2 Solution to GWSN Distributed Algorithm and Its
Convergence Analysis

Let, {s∗(λ ,µ),R∗i j(λ ,µ),r
∗
i j(λ ,µ),(P

C
Hi
(t))∗,P∗s (t),P

∗
LS(t)} be the optimal solutions for

problems (2.28) and (2.29). The Lagrange multipliers (λl,µi) have cost interpretation

to them. λl represents the link capacity cost and µi denotes the battery utilization cost of

sensor node i. The gradients ∇λ D(λ ,µ) and ∇µD(λ ,µ) denote the excess link capacity

and battery energy respectively. Problems D1(λ ,µ) in (2.28) represent the maximiza-

tion of the aggregate utility of the network in presence of flow constraints and energy

spent in the network. The network lifetime problem D2(λ ,µ) in (2.29) maximizes the

revenue from battery capacities subtracting the lifetime-penalty function, resulting in

reduction of lifetime.The procedure for solving the algorithm is outlined as follows:

• Initialize all the inputs (ET X ,ERX ,ESN ,EPR,PLS,EB) and step sizes ϕτ ← 0.01, ψτ ←

0.01/
√

τ , ε ← 20

• Although the problem in D1(λ ,µ) and D2(λ ,µ) is convex, the solution is complex

and difficult to implement due to the intricacies introduced by incorporation of optimal

energy consumption ((PC
i (t))

∗), packet loss (P∗s (t)) and WUR (P∗LS(t)). From (2.28)

and (2.29), it is evident that (PC
i (t))

∗ is dependent on optimal lifetime (s∗i j) and sample

rate (R∗i j). Therefore we take (PC
Hi
(t))∗ as some function g of lifetime and sample rate.

g(s∗i j,R
∗
i j) = f ((PC

Hi
(t))∗) (2.30)

• We model PC
Hi
(t) w.r.t the channel gain Hi(t) distributed as i.i.d with mean 0. Once

the optimal s∗i j,R
∗
i j is found, PC

Hi
(t) is found using f−1

(
g(s∗i j,R

∗
i j)
)

.

• The packet success rate Ps(t) is varied ∈ [80,100] and system utility parameter α(t)

and overall node utilization Ui(Ri j(t),Ps(t)) determines the optimal listening power
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P∗LS(t).

• Thus from all the previous assumptions mentioned above, the time coupling property

of the node can be excluded and finding solution for limt→1 λ (t),µ(t) would be good

∀t ∈ (1,2,3, ....Ti).

• The Lagrange multipliers can be updated by

λl (t,τ +1) =

[
λl (t,τ)+ϕτ ∑

j∈Ni

(
ri j(t,τ)− r ji(t,τ)+Ps(t,τ)Ri j(t,τ)

)]+
,

µi (t,τ +1) =

[
µi (t,τ)+ψτ ∑

i∈N
∑
j∈Ni

(Pi(Pe,hi, t,τ)− si ·EB(t,τ)−PHi(t,τ))

]+
(2.31)

• From (2.31) , it can be seen that as the flow ri j exceeds the capacity of link Cl ,

the link cost and node energy cost increases. Thus higher link and node-battery prices

result in greater penalty in the objective function in (2.28) forcing source rates Ri j &

flows ri j to reduce. Although higher node-battery cost (2.29) allow greater revenue

for the same increase in battery capacities (by increasing ’s’), there is a corresponding

penalty incurred due to the consequent lower lifetimes.

Lemma 2. When ε→∞, the network lifetime Tnetwork determined by the optimal solu-

tion s∗ of problem (2.24) approximates the maximum network lifetime of the wireless

sensor network.

Proof. See Appendix A

Further, let us make the following two assumptions as below:

• Assumption 1: Let Ui(Ri j,Ps) be defined as log2(Ri jPs) which is an increasing and

concave function, and its inverse and hessian exists.

• Assumption 2: Hessian of Ui(Ri j,Ps) is negative semidefinite and rmin
i j ≤ri j≤rmax

i j .
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Define L = max L as the maximum number of links that a sensor node uses. Let U = max

U
′
i (Ri j,Ps) and R = max ri j, be the maximum rate flow of the node when transmitting

information from i→ j.

Proposition 1. If the assumptions 1 and 2 above hold and the step size satisfies

0<ϕτ ,ψτ<
2

L1/2U R
. Then starting from any initial rates rmin

i j ≤ri j≤rmax
i j , & price λl,µi≥0,

every limit point of the sequence {s(λ ,µ),Ri j(λ ,µ),ri j(λ ,µ)} generated by GWSN Algorithm,

is primal-dual optimal.

Proof. See Appendix B

Proposition 2. By the above distributed algorithm, dual variables (λl ,µi) converge to

the optimal dual solutions (λ ∗l ,µ∗i ), if the stepsizes are chosen such that

ϕτ(i)→ 0,
∞

∑
i=1

ϕτ(i) = ∞,ψτ(i)→ 0,
∞

∑
i=1

ψτ(i) = ∞ (2.32)

2.4 Simulation Results

To show the joint trade-off between maximizing utility and network lifetime in terms of

system parameter α , path loss γ , packet loss statistics {Pi
e},energy harvesting PHi , we

consider a WSN as shown in Fig. 2.5 with seven nodes distributed over a square region

of 100m × 100m. The node at the middle of the network is taken as the sink node and

the other six nodes are either source or source/relay nodes. Nodes {i1, i2, i4, i5} act as

source nodes whereas nodes {i3, i6} act as source node to deliver its own data and relay

nodes for delivering nearest neighbor’s data to the sink node. The parameters taken for

the simulation are depicted in Table 2.2. The value of ET X , {a1,a2} are chosen from

[32] with γ=4. ERX and ESN are taken from [109]. Processing energy EPR is assumed
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Figure 2.5: WSN topology.

to be same as the sensing energy ESN . Also, at start t0 the initial battery energy EB in

all the nodes is taken as 1 J. We run our simulations till 500 iterations to get a desired

solution for the system.

Table 2.2: WSN simulation parameters
Parameter Description Value Parameter Description Value

a1, a2 Transceiver Constant 10−7, 0.1 ·a1 J/bit ESN Sensing energy 5 ·10−8 J/bit

γ Path Loss Exponent 4 EPR Processing energy 5 ·10−8 J/bit

ε Lifetime Approx. Constant 20 PLS Idle listening power 1 mW

ERX Receiver energy 1.35 ·10−7 J/bit EB Battery energy 1 J

2.4.1 Convergence Plots

To show the convergence of our GWSN algorithm, we plotted in Fig. 2.6a, the con-

vergence of source node rates for different sensor nodes with respect to the number

of iterations. We have chosen sensor node {i1, i3, i5, i6}, where {i1, i5} act as only

sensor nodes and {i3, i6} act as both sensor and relay node. The step size is taken as

ϕτ = 0.01, where τ is the index of iteration. It can be observed that the step size plays

a vital role as it controls the magnitude of oscillations near the optimal solution. The

larger the step size, the faster the convergence but with more variations near the point

of optimality whereas smaller step size reach a stable optimal solution with lesser fluc-

tuations near the optimal. As predicted by our algorithm, sensor nodes that have lower
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(b) Error in measuring the lifetime
with respect to the lifetime approxima-
tion coefficient.

Figure 2.6: Simulation plots of convergence of GWSN algorithm.

lifetime {i1, i5} are assigned higher rates, whereas nodes with higher lifetime {i3, i6}

have lower rates being assigned to them. Fig. 2.6b shows the error in measuring the

lifetime with respect to the coefficient ε .

Errror in Approximating Li f etime =
∣∣∣∣s− 1

ε +1
sε+1

∣∣∣∣ (2.33)

According to Appendix A, if the coefficient ε is large enough then the lifetime approx-

imated by (2.24) is the maximum lifetime. Fig. 2.6b validates the point, as it can be

seen that at ε = 10, we get less than 10% error in measurement of lifetime. For our
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(b) Network aggregate utility - lifetime trade-off with
WER and without WUR & ECC.

Figure 2.7: Simulation plots of network aggregate utility - lifetime trade-off for
different α .

Algorithm, we have initialized the value of ε as 20 with less than 5% error in lifetime

prediction.

2.4.2 Utility and Lifetime Trade-off with WEH and WUR
Constraints

The impact of the system design parameter α(t) is shown in Fig. 2.7a, 2.7b & 2.7c.

α(t) is varied between 0.1 to 0.9. The network utility is computed as (
6
∑

i=1
log2(Ri jPs))

which is the aggregate utility of all the nodes not including the sink node s1. The aggre-
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(d) Network aggregate utility - lifetime trade-off with
WER, WUR & ECC.

Figure 2.7: Simulation plots of network aggregate utility - lifetime trade-off for
different α .

gate utility have been normalized with respect to the maximum utility of the network.

Fig. 2.7a shows that the network lifetime decreases and the utility increases as the in-

crement of α . On the contrary, we can observe that as the weighted system parameter

α decreases, the corresponding optimal network lifetime increases. It can be seen in

Fig. 2.7b that the lifetime increases to 8.5s from 4.5s. Fig. 2.8a shows the harvested

energy profile from (2.18) for the farthest node in the network. Replacing the optimal

s∗i j,R
∗
i j in (2.30), PC

Hi
(t) is found using f−1

(
g(s∗i j,R

∗
i j)
)

as shown in Fig. 2.8b. Further,

if wake-up radio scheme is applied with energy harvesting, the lifetime increases to
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Figure 2.8: Energy harvesting profile and allocated energy plots.

∼10s as in Fig. 2.7c. The network utility of the system also increases to 0.87 with

energy harvesting and 0.97 with both harvesting and WUR. Hence, based on the de-

sired performance, designer can chose the value of α and solve the set of equations for

optimal lifetime and source node rates.

2.4.3 Impact of Error Control Coding on Performance and
Lifetime

Fig. 2.7d shows the utility-lifetime trade-off with error coding applied. The system

lifetime is further increased as compared to Fig. 2.7a-(c), to 14s and the network is

more utilized at 91%. To visualize the impact of error coding on the performance of the

system, we plot the network lifetime versus the packet loss rate Pi
e at α = 0.1. Fig. 2.9a

shows the plot of network lifetime for different cases with packet loss rate varying from

0 to 20%. For a packet loss rate between 10% to 20% ,the network lifetime increases

more than 3 times with only energy harvesting and wake-up radio scheme. Whereas

with the coding scheme applied, it doubles further giving a 6 times improvement. We

evaluate the network lifetime of nodes {i1, i3, i5, i6}, where {i1, i5} act as only sensor

nodes and {i3, i6} act as both sensor and relay node. The network lifetime is shown in

Fig. 2.9b versus the system parameter α incorporating harvesting and coding at packet
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loss rate of 20%. As expected from (2.25), the lifetime of node i1 is the least. Relaying

of data from i5→i6 improves the lifetime of node i5. Nodes i3 and i6 have a huge

improvement in their lifetime owing to their proximity to the sink node from where

they harvest energy according to (2.18). Even though the total energy consumption is

increased, the harvested energy increase is sufficient enough to boost its lifetime.

2.4.4 Effect of Energy Harvesting and Error Correcting Codes on
TelosB Sensor Node

For analyzing the effect of our error correcting codes performance on node lifetime,

we have taken real time sensor energy cost from [110] for different sensors as shown

in Table 2.3. The Table shows different commonly used sensing devices, their EPR

and ESN energy cost normalized w.r.t communication energy Ecomm for common sensor

mote TelosB (TelosB is a IEEE 802.15.4 compliant sensor mote that runs a TinyOS

operating system with a CC2420 radio.). The battery power is taken as 9000 milli-

Amphere-Hour (capacity of 2 standard 1.5− volt batteries used in sensors). Fig. 2.10a

is drawn for RRNS, BCH, and ARQ for a packet loss rate of 20% showing the estimated

lifetime in days for the TelosB mote versus the total average power consumption Pi

from (2.13). For low power sensors i.e acceleration, pressure, light, proximity given in

Table 2.3, TelosB motes lifetime increases by ∼1.7 times with BCH error scheme and

more than doubles with RRNS error scheme. Whereas for power hungry sensor such

as Temperature, the processing energy is higher, thus overpowering the effect of small

number of retransmissions in error coding schemes. One of the major overheads of

error correcting codes in addition to transmission and reception of redundant bits is the

delay associated with encoding and decoding of packets. Let us assume that tARQ is the

total time required for sending the packets to the sink node and receiving an ACK back.
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Table 2.3: Energy cost for TelosB mote w.r.t Ecomm = 1mW

Sensors Type & Model No. EPR
Ecomm

ESN
Ecomm

Sensors Type & Model No. EPR
Ecomm

ESN
Ecomm

Acceleration (MMA72600Q) 0.044 0.000027 Proximity (CP 18) 0.047 0.267

Pressure (2200/2600 Series) 0.044 0.00013 Humidity (SHT 1X) 0.043 0.4

Light (ISL 29002 18) 0.047 0.00068 Temperature (SHT 1X) 0.94 1.5

Further, if the decoding latency of a block code like (n,k,e) BCH is tBCH
dec . From [101],

the decoding latency is given by

tBCH
dec = (2ne+2e2)(tadd + tmult)

⌈
b

bm

⌉
(2.34)

Here, tadd and tmult are time required for additions and multiplications in GF (2b),

and bm is the number of bits of micro controller used in sensor nodes. In an 8-bit micro

controller, tadd take one cycle and tmult takes two cycles as computation time. The num-

ber of cycles depends on the frequency of the micro controller. RRNS codes of form

((2b−1−1,2b−1;2b−1 +1,2b +1)) needs tARQ

(k/n) as the total time required for sending the

packets to the sink node and receiving ACK back. The decoding latency depends on the

total additions and multiplications in the number of iterations
(

δ

β

)
. Depending on the

value of β for each step there are 2β multiplications and β additions involved. Further,

there are
(

δ

β

)
number of moduli operations involved. Thus, the decoding latency for

RRNS codes is

tRRNS
dec =

(
(δ

β
)tadd +(δ

β
)tmult

)⌈ b
bm

⌉
+
(
(δ

β
)e
)⌈ e

bm

⌉
(2.35)

To analyze the effectiveness of the coding schemes, we have plotted the delay in send-

ing one packet of data versus the packet loss rate of 10% and 20%. If we take tARQ =

50ms, from (2.34) and (2.35), delays of BCH(127,57,11) and RRNS(128,60,32) can
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Figure 2.9: Impact of ECC on lifetime of sensor nodes.

be found as tBCH
delay = tARQ ∗ (n/k)+ tBCH

dec and tRRNS
delay = tARQ ∗ (n/k)+ tRRNS

dec . TelosB has a

16-bit microcontroller and its clock frequency is 8MHZ. Fig. 2.10b shows the delay in

milliseconds. It can be inferred that the coding schemes outperforms the ARQ sheme

in terms of total transmission delay. RRNS scheme has less delay compared to BCH

coding due to its better coding rate and faster decoding. It can also be seen that as the

packet loss rate increases, the delay gap between the three schemes increases. Thus

RRNS has better performance in terms of lifetime improvement as well as lower delay
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as the packet loss rate increases in bad channel conditions.

2.4.5 Green Networking : Reduction in Carbon Footprint

For network to be green, the carbon emissions has to be reduced. The index of measure

of carbon emissions is Xgr of CO2 per year. For each packet loss in the network causes

the data server station or the sink node to transmit back NACK to sensor node. The

transmitting power (PS
T X) of the data station depends on the fuel type from which the

station derives its electrical power, can be either coal or gas. Thus value of X can be

either 870 or 370 [47]. (PS
T X) depends on the type of technology used. If we assume

that the sink node data station runs on the Long Term Evolution (LTE) network and

uses the static micro cell topology with radius 100m. Then from [111] and [47], the

carbon footprint generated by sink node is

FS
CO2

= PS
T X · (ET,hi +1) ·8.64 ·10−3 ·X [KgCO2/Year]

PS
T X =

(
PD

T X
µPA

CT X ,static +PSP,static

)
(1+CPS)

(2.36)

Where, the notations are described in Table 2.4. Apart from the sink node, the battery

is also responsible for generation of carbon footprint. Typical AA batteries used in

sensors have a end of life carbon emission of 4.3 KgCO2 per 30 batteries[112]. Thus,

the carbon footprint [KgCO2/Year] generated by number of batteries used is directly

proportional to the total batteries used in a year (Byear
u ) and is given as

FB
CO2

= Byear
u

(
4.3
30

)
[KgCO2/Year], Byear

u =
365

Tnetwork
(2.37)
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Figure 2.11: Plot of packet loss rate versus carbon footprint

Table 2.4: LTE micro base station based sink node power model parameters

Parameter Description Value

PD
T X Power consumed by sink node base station server 2 W

µPA Power Amplifier efficiency 20%

CT X ,static Static transmitted power 0.8

PSP,static Static signal processing power 15 W

CPS Power supply loss 0.11

The total carbon footprint (FCO2) is therefore the sum of carbon footprints in (2.36)

and (2.37). To show the effectiveness of using ECC, WEH & WUR, we plot FCO2

for different packet loss rate of (0,10,20). We take X=370, the fuel for production of

electricity as gas. The Tnetwork for different schemes ARQ, RRNS and BCH are taken

from Fig. 2.10a at Pi=1mW. Fig. 2.11 shows the carbon footprint at different schemes.

It can be seen that as the packet loss rate increases, the carbon footprint is tremendously

reduced for RRNS and BCH. It is∼2.5 times lesser kgCO2 per year at 10% packet loss
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and ∼4 times lesser kgCO2 per year at 20% packet loss. So, as the channel goes bad,

the carbon emissions for normal scheme like ARQ increases tremendously, whereas

incorporation ECC and harvesting the network becomes more greener.
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Chapter 3

Energy-efficient and Distributed

Data-Aware Routing and Clustering

Protocol

3.1 Introduction

In this chapter, we investigate a cross-layer approach that will provide interaction be-

tween different layers in terms of energy efficient transmissions w.r.t data-awareness,

energy harvesting and varied data-demand topology. The main pitfalls of the algorithms

delineated in Chapter 1-Section 1.3 w.r.t energy consumption and network lifetime are,

energy consumed in cluster head (CH) selection at each round, assuming nodes in al-

ways ON state [113], and limited battery capacity of energy constrained sensors [114].

Thus it is required to come up with a protocol specifically for IoT systems. Hence,

we have proposed a distributed data-aware energy-efficient clustering protocol for IoT

(DAEECI) which includes data awareness, RFID based CH selection and RF energy
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harvesting using a Power Management Unit(PMU). The rest of the Chapter is orga-

Figure 3.1: Data-aware RFID tag based IoT architecture.

nized as follows. In Section 3.2, we describe IoT network model. Section 3.3 describes

our DAEECI protocol. Section 3.4 analyzes our simulation results.

3.2 IoT Network Model: Cluster Head Selection and
Energy Cost Formulation

The IoT system taken here is depicted in Fig. 3.1. The network is a random distribution

of Ntot sensor nodes in a square area of side X meters and gateway nodes K used for data

aggregation and routing to BS. The nodes are differentiated based on their initial energy

as advanced and normal sensor nodes. Advanced nodes have a times more energy than

normal nodes and are also known as gateway nodes (K), as they route data to the base

station. Thus the total nodes in the system are (Ntot +K). Each cluster has one gateway

node based on minimum distance, as their CH. Let EB be the initial battery energy of

the normal node. Let K be the number of distributed clusters that service all nodes

and have one gateway node per cluster for data routing to base station. All the cluster

heads send the aggregated data from sensor nodes they service to BS server. The BS

server is user driven based on data request from different user generated applications.
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Let Etot−cls is the total energy of the clusters given as

Etot−cls = Ntot ∗EB +K ∗EB ∗ (1+a) (3.1)

3.2.1 Active RFID Tag Based Cluster Head Allocation

The cluster head selection is one of the major drawbacks of current clustering algo-

rithms. In LEACH [50] and DEEC [53] algorithm, cluster head selection is divided into

rounds, where each node randomly decides whether to become a cluster head based on

a threshold Ti(s) computed by apriori decided probability pi.

T (si) =


pi

1−pi·
(

r mod
(

1
pi

)) , i f Si ∈ G

0 Else
(3.2)

where, r is the current round number, and G is the set of nodes that have not been

cluster-heads in the last ni rounds (pi =
1
ni
). Let the energy dissipated in a round

(Eround) is adopted from the radio model in [53] as

Eround = L

 (Ntot +K)(Erx +Etx)+NtotEDA

+Kεampd4
toBS +Ntotε f sd2

toCH

 (3.3)

where, EDA is the data aggregation cost expended in CH, dtoBS is the average dis-

tance between CH to BS, dtoCH is the average distance between cluster members to

CH, L is the number of bits to be transmitted, εamp is the energy consumption of trans-

mitter amplifier circuit, Etx is the transmitted energy consumed per bit and Erx is the

received energy per bit, ε f s is the free space parameter. From (3), it can be inferred

that L∗(Ntot +K)∗(Etx+Erx) and L∗Ntot ∗ε f s ∗d2
toBS are the energy consumed for CH
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selection and routing data from nodes to CH, respectively.

Therefore, to save the energy consumed in CH selection, we propose to incorporate

active RFID tags coupled to member nodes and a tag reader at the gateway node. The

conceptual topology is depicted in the expanded view of the WSN in Fig. 3.1. RFID

is an emerging automatic identification technology in which information is carried by

radio waves. RFIDs are classified as passive, semi-passive, or active [96]. Passive RFID

tags function without a battery, has almost infinite lifetime but can operate in the range

of only couple of centimeters. Whereas, an active RFID [115] can be read at distances

of 100 m or more, greatly improving the utility of the device, but it is battery powered

and has shorter life. The use of active tags with sensor nodes and a tag reader at the

gateway will eliminate the need of choosing the CH till the gateway nodes are exhausted

of their energy. Nodes collect data from the environment and send them to the RFID

reader which in turn sends it to the BS. From the BS data are sent to the cloud in order to

provide it to the user through the services initiated by the cloud. With the evolution of

tags like CC2650 SensorTag1 which operate with 2.4GHz transmission and supporting

technologies such as Bluetooth, ZigBee and IPv6, it is feasible to incorporate the model

for IoT WSN systems. Using our proposed method, as the tag reader reads the sensed

data from the tags, computation for routing data to the CH is not required. The energy

consumed for CH selection becomes L∗ (Ntot ∗Erx +K ∗ (Etx +Erx)). This happens till

all the gateway nodes die in which case the routing follows energy consumption in (3)

again.

1Available[online]:http://www.ti.com/lit/ug/tidu862/tidu862.pdf
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3.2.2 Data Aware Processing

Sensors in IoT systems are not always active. There are two types of data request from

users, one is periodic monitoring type of application such as warehouses and industrial

control and another is on demand processing such as home survielience, temperature

control, smoke and water detectors. Thus data awareness of sensors is critical to its

longetivity. Sensors that service users periodically have to be in active state all the

time whereas the sensors sending data sporadically can be kept in sleeping state for

most of the time. They can be woken up from sleep by asynchronous triggering on

their pins when a certain threshold is crossed. An efficient approach to address this is

duty− cycling, in which the receiver on-demand switches between active and sleep-

ing states. Among the different categories of duty− cycling, namely synchronous,

pseudo− asynchronous and pure asynchronous, latter provides the most efficient so-

lution in terms of energy consumption [43]. In the asynchronous approach, the sen-

sor device is in deep sleep mode and only wakes up when signalled by the BS or its

neighbouring devices through an interrupt command generated by a low-power wake-

up radio (WUR). Let the transmitted energy consumption of sleeping nodes is only α

percent of Etx, where ζ≤α≤1, ζ is a small number close to 0. Let there be ns number

of sleeping nodes in the system. Therefore, the Eround is as follows

Eround = L

 (Ntot +K)(Erx +αEtx)+NtotEDA

+Kεampd4
toBS +Ntotε f sd2

toCH

 (3.4)

When α=1, all the nodes are awake and transmitting data read by the tag reader. But

when the data demand is low, the α value is small providing tremendous energy saving

in the system.
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3.2.3 RF Energy Harvesting

Energy harvesting is a promising remedy to cope with the energy challenge. The re-

cent technology trend in energy harvesting provides a fundamental method to prolong

battery longevity of sensor devices [116]. In RF energy harvesting (EH) circuit, the

antenna receives the transmitted radio waves and converts the received RF energy into

a stable direct current (DC) energy source to supply the sensor device. Energy harvest-

ing depends on the distance from the harvesting source. If the EH circuit is deployed

on the sensor devices with a power management unit, it can harvest RF energy from

the transmitted electromagnetic waves of the transmitter circuit of its own as well as

nearby nodes, gateway nodes and BS [116][43]. In practice, the conversion from the

received RF power to the usable DC supply comes with a certain amount of power loss

in the matching circuit and in the internal circuitry of the power converter. The power

conversion efficiency (η) of the converter is the ratio of the generated usable DC out-

put power to the input RF power. State-of-the-art RF-to-DC converters (also known as

rectifiers) can achieve high η values, up to 70% or more [116]. η is an indication of

the amount of harvested energy that is available for the sensor device. Here, we assume

that the energy harvested by the nodes vary randomly between 0<β≤1 of total har-

vested energy EH(t). EH(t) is the maximum harvested energy and is taken as η times

the battery energy per unit time t. At short range, it is possible to harvest a tiny amount

of energy from a typical WiFi gateway router transmitting at a power level of 50 to 100

mW. The RF energy which reaches the sensor node is efficiency η multiplied by the

energy harvest factor β and is approximately 0 to 5% of the total transmitted power of

an antenna for a distance in the range of tens of meters [117]. This amount of power is

best used for devices with low-power consumption and long or frequent charge cycles.

Typically, devices that operate for weeks, months, or years on a single set of batteries
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are good candidates for being wirelessly recharged by RF energy. In some applications

simply augmenting the battery life or offsetting the sleep current of a microcontroller is

enough to justify adding RF-based wireless power and energy harvesting technology.

[117]

3.2.4 Power Management Unit

Power management unit (PMU) is an integral part of any energy harvesting system.

PMU is in charge of controlling the storage of the harvested energy. It also manages the

distribution of the available energy among different consumers in an effort to maximize

the lifetime of the device while maintaining a high quality of service (QoS). We extend

the architecture of the PMU proposed in [118] to enable effective cooperation with the

EH unit. The architecture proposed, is an event triggered/asynchronous scheme based

on the signal generated by a wake-up radio 2. The PMU architecture also detects/pre-

empts the failure of a node in the event of energy deficiency.

The detailed block diagram of the PMU for the EH sensor device is shown in

Fig. 3.2. The PMU starts its operation by a trigger signal generated by the WUR unit

of WEH unit (INT ERRUPT ). The PMU first activates the main transceiver through

(ON/OFF) and then sends a wake up signal (WAKE UP) to the sensing unit to start its

operation. The sensing unit toggles the STOP/RUN to high, signifying the PMU that

it is in running mode. The REQ signal indicates the amount of energy required by the

sensing unit. The signals BAT and SE indicate the amount of energy left in the battery

device and the EH unit storage element respectively. Accordingly, the PMU activates

switches SW1 through signal SENSE to fulfill the power requirements of the sensing

unit. The sensor unit is in charge of sensing, data processing via a microprocessor (µp)

2Section 2.2
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and finally transmitting them to a low-power transceiver based on Bluetooth, WiFi,

IEEE 802.15.4, Zigbee, etc. The sensor devices require a minimum power of PDmin to

operate in sensing mode. When the energy in the battery device goes below a certain

threshold PT H < 1.5PDmin, the PMU sends a RECHARGE command to the storage el-

ement by activating switch SW2 of WEH unit to charge the battery. When the energy

level of the device remains 1.1PDmin, the device sends out of service (OUS) command

Figure 3.2: Proposed power management unit.

to the sink node, signaling that it goes out of the service till it recharges itself again

to more than 1.5 PDmin. The sink node in turn sends a stop all service (SAS) signal to

the device. The sink node/gateway puts the device out of the sensing service loop but

keeps transmitting RF energy for harvesting. As the device is ready for service again,

it sends a READY signal to the sink node which in turn gives resume all services (RAS)

signal to the device.
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3.3 Data Aware Energy Efficient Distributed
Clustering Protocol for IoT

In this section, we present the detail of our Data aware energy efficient distributed

clustering protocol for IoT (DAEECI) protocol. DAEECI uses similar function of initial

(Etot−cls) and residual energy (Ei(r)) level as in [53] of the nodes to select the cluster-

heads at each round. To avoid that each node needs to know the global knowledge of the

networks, it estimates the ideal value of the network life-time to compute the reference

energy (Ē(r)) consumed by a node in a round. Our DAEECI divides the problem into

different user cases based on data awareness (i.e. either α is 1 for periodic data sensing

or 0≤α<1 for sparse data sensing) and percentage of gateway nodes present in the IoT

system (K is high or low). The normal nodes are assumed to have their dedicated RF

energy harvesting circuit. The algorithm is summarized as in Algorithm 1.

3.4 Results and Analysis

In this section we provide performance evaluation of our DAEECI algorithm. We define

a network area of 100 ∗ 100 m2. The simulation parameters are provided in Table 3.1.

The performance metrics taken in the simulations are number of Alive nodes, Residual

energy of nodes and Packets sent to BS. We used Matlab for evaluating our algorithm

with other known protocols. In our scenario, we have evaluated the system with four

different cases based on α and K for 10000 rounds. For all the cases, we assume that

the advanced nodes (gateway nodes) have a = 3 times the more energy than the sensor

nodes. The cases are as follows:

Case 1 : a = 3, Ntot = 100, K = 30, 0.8 ≤ α ≤ 1, noEh. Here, the data demand on

sensor nodes is high with no energy harvesting present.

Case 2 : a = 3, Ntot = 100, K = 30, 0.8≤ α ≤ 1, Eh. Here, the data demand on sensor
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Algorithm 1: Data aware energy efficient distributed clustering protocol
1 Initialize :
2 Uniformly distributed region X*X.
3 Ntot , K, EDA, Etx, Erx, ε f s, εamp, Eh(t), L.

4 dtoCH=
X√

2∗K ∗π
, dtoBS=0.765∗ X

2
.

5 Start :
6 The average energy of rth round is given as

E (r) =
1

(Ntot +K)
Etot−cls

(
1− r

R

)
(3.5)

where, R denotes the total rounds and is defined as

R =
Etot−cls

Eround
(3.6)

If nodes have different amounts of energy, pi of the nodes with more energy
should be larger than popt (optimum probability of choosing a cluster head).

7

pi =


(1+a)poptEi(r)

E(r) ,∑
K

EK (r)> 0
poptEi(r)

E(r) ,∑
K

EK (r)≤ 0
(3.7)

The energy dissipated in a round Eround , incorporating total cluster energy
∑
K

EK (r), data awareness factor α and RF energy harvesting factor η is given as

8 −→for ∑
K

EK (r) > 0

Eround = L
(

NtotErx +K (Erx +αEtx)+
NtotEDA +Kεampd4

toBS

)
−NtotβEH(t) (3.8)

−→for ∑
K

EK (r) ≤ 0

Eround = L


Ntot (Erx +αEtx)
+K (Erx +αEtx)
+NtotEDA +Kεampd4

toBS
+Ntotε f sd2

toCH

−NtotβEH(t) (3.9)

Thus we can find the lifetime of network R by putting (1), (8) and (9) in (6).

9 End
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Table 3.1: IoT simulation parameters

Parameters Value

Network Size 100x100 m2

Sensor nodes Ntot in each Cluster 100

Initial battery energy of nodes EB 0.5 J

Packet Size L 4000 bits

Etx and Erx 50 nJ/bit

ε f s 10 nJ/bit/m2

εamp 0.0013 pJ/bit/m4

EDA 5 nJ/bit/signal

popt 0.1

α and β rand(0,1)

η 0.4

nodes is high with energy harvesting present.

Case 3 : a = 3, Ntot = 100, K = 30, 0.2 ≤ α ≤ 0.4, Eh. Here, the data demand on

sensor nodes is low with energy harvesting present.

Case 4 : a = 3, Ntot = 100, K = 50, 0.8 ≤ α ≤ 1, Eh. Here, the data demand on sen-

sor nodes is high with energy harvesting present. Moreover, there are higher number

of gateway nodes present compared to previous three cases. Fig. 3.3 represents the

0 2000 4000 6000 8000 10000
x(rounds)

0

10

20

30

40

50

60

70

80

90

100

y(
no

de
s 

al
iv

e)

LEACH
DDEEC
EDEEC
DAEECI,,-high, no E

h
, Medium K

DAEECI,,-high, E
h
, Medium K

DAEECI,,-low, E
h
, Medium K

DAEECI,,-low, E
h
, High K

Figure 3.3: Number of alive nodes in an IoT system versus number of rounds.
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0 2000 4000 6000 8000 10000
x(rounds)

0

2

4

6

8

10

y(
pa

ck
et

s 
se

nt
)

#105

LEACH
DDEEC
EDEEC
DAEECI,,-high,no E

h
,Medium K

DAEECI,,-high,E
h
,Medium K

DAEECI,,-low,E
h
,Medium K

DAEECI,,-low,E
h
,High K

Figure 3.5: Total packets delivered to the base station server from nodes .

number of nodes alive during the lifetime of the network. It clearly shows that by intro-

ducing RFID based cluster selection and data aware processing, the lifetime improves

significantly of the IoT network. LEACH and DDEEC perform poorly as all its nodes

are dead by the end of 4000 rounds. Our DAEECI algorithms performance without en-

ergy harvesting is comparable to the EDEEC algorithm. With the introduction of EH ,

our method outperforms the EDEEC method as around 20% nodes are still alive at the

end of 10000 rounds. It can also be inferred that the low data demand of the sensors in

case of sparse sensor data requirement almost boosts up the lifetime of the system by
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100%.

Fig. 3.4 represents the sum of residual energy of all the nodes in the network. The

DAEECI algorithm incorporating RFID tags and data awareness again allows nodes

to have higher residual energy compared to the LEACH, DDEED and EDEEC meth-

ods. The EDEEC and higher data demand systems DAEECI almost perform similarly.

Fig. 3.5 represents the packets sent to the BS from the cluster heads. The notable thing

to infer is that low data demand reduces the amount of packet sent to the BS, whereas

irrespective of the high data demand (high α), our algorithm still delivers more packets

to the BS than other state-of-the-art methods.
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Chapter 4

Energy-Efficient, PUF-Based Security

Design for Internet-of-Things (IoT)

Infrastructure

4.1 Introduction

As IoT devices are deployed in unmonitored, unsecure environments, secure IoT sys-

tems are needed, based on security algorithms, whose hardware implementation pro-

vides a balance between security and energy efficiency, in order to also support com-

munication among large number of IoT nodes. Embedded security implementation of

a physically unclonable function (PUF) is described in this chapter. A PUF models a

(partly) physical system S that can be challenged with randomly generated challenges

c ∈ C, upon which it reacts with corresponding responses r ∈ RC. Furthermore, in

contrast with conventional digital architectures, the PUF-based approaches intertwine

cryptography and sensor properties, making the attack to such systems more challeng-
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ing.

Metrics like uniqueness, randomness, and bit-aliasing [119][120] have been used

to evaluate PUF performance. They are described below.

Uniqueness: Given two PUFs (i and j) of the same optical sensor type, each having

an l-bit response, let ri and r j define their responses to a given challenge c. The mean

uniqueness among a group of p PUFs is

Uniqueness =
2

p(p−1)

p−1

∑
i=1

p

∑
j=i+1

HD
(
ri,r j

)
l

×100% (4.1)

where HD is the hamming distance from different instances of PUF chips of the same

sensors and p is the number of PUFs. Ideally, this value is around 50%.

Randomness: This is measured by the probability of obtaining a ′0′ or ′1′ in the

PUF response to a challenge. Ideally, it should be 50%, for a PUF response to be

considered as unbiased. It is obtained by computing the bth bit (′0′|′1′) of the l-bit

response of the pth PUF.

Randomness =
1
l

l

∑
b=1

rp×100% (4.2)

Bit-aliasing: Due to changes in ambient operating conditions, like temperature and

power supply voltage, the response to a challenge may be slightly varying. To compute

this, the mean of flipped bits among responses is found. Generally, it is best to calculate

the worst-case scenarios at the boundary conditions of operating parameters. Ideally,

the error should be 0%, but in actual measurements this should be as small as possible.
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4.1.1 Security Requirements

IoT has various applications in military, e-health, banking etc. Therefore, security and

privacy issues are becoming major concerns in the operation of IoT. Attacks on IoT

may include eavesdropping, Denial of Service (DoS), and Man-in-Middle [16]. DoS

happens when unauthorized access to the system occurs. Eavesdropping is an attack on

confidentiality, where intruders may listen to the communication between sender and

receiver. Adversaries who get hold of the key may appear as genuine senders. This

type of attack is known as Man-in-Middle attack and may occur when the key can be

predicted easily, thus helping the adversary to break into the system. Various param-

eters are used to measure the robustness, reliability, and integrity of a IoT system. As

our design uses a sensor PUF, we will first define metrics related to the robustness of

PUF implementation against adversaries [15]. Then, we will define metrics related to

the security of an IoT system secure [16]. Let F : C→ R : F(C) = R, c ∈C,r ∈ RC be

a function that maps the challenge/response pairs of a PUF system. Next, we discuss a

set of possible attacks that can be attempted against a PUF.

Frequency Prediction Attack ( Also known as modeling attack): In this attack, the

adversary collects previous output values and tries to make a probability distribution

model to predict the future outputs Oi as P(Oi = 0/1) [121]. The randomness property

of the PUF has to be satisfied to resist this type of attacks.

Replay Attack: In this attack, the adversary tries to predict the output by studying the

outputs that have similar inputs. If the hamming distance between subsequent input

output pairs form a polynomial distribution, as defined in the uniqueness PUF property,

generally the associated cipher would resist this attack [121].

Cloning Attack: In this type of attack, the adversary tries to clone the original PUF
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to replicate the challenge/response behavior, as in the original PUF. So, if F is trans-

formed to F ′ with a very high probability, but F(RC) 6=F(RC′), then the PUF is resistive

from such type of attacks.

Side-Channel Attack: A PUF may be attacked passively by using side-channel infor-

mation, such as power consumption or electromagnetic radiation emanated from a chip

containing a PUF. Generally, this type of attacks changes the physical properties of the

PUF.

Apart from successfully resisting the attacks on the PUF circuits, the IoT system

also needs to provide successful protection from cyber attacks on the internet. Require-

ments for implementing security in IoT-based applications [122] include:

Device Authentication: When the device is plugged into the network, it should authen-

ticate itself prior to receiving or transmitting data. Just as user authentication allows a

user to access a network based on user name and password, machine authentication al-

lows a device to access a network based on a similar set of credentials stored in a secure

gateway server. Once the device is recognized as authentic, the data transfer happens.

Confidentiality and Privacy: Latest technologies can be used to gain access to the

message sent from the source to the destination. Therefore, it needs to be hidden from

the adversaries and an end-to-end secrecy of the data must be maintained.

Data Integrity: In addition to confidentiality and privacy, integrity is also an important

security factor during the transmission of data in IoT. An adversary can insert some

malicious code or data into the system to corrupt it. The altered data may reach the

destination node and prove fatal to safety-critical IoT systems, like e-health and bank-

ing. Therefore, an integrity mechanism is crucial in protecting the original data from

external attacks.

Access Control: Access control ensures that the intruder has as minimal access to other
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parts of the system as possible. It is important to authenticate the device at regular in-

tervals to stop an intruder from gaining access to the system. Sensors which are not

authenticated are excluded from the system network.

In a previous paper[123], we proposed a PUF-based cryptographic system that is

based on optical sensors used in e-health systems, such as heart rate monitors and pulse

oximeters [124], using photodiodes. In this Chapter, we analyze the intricate details

of the internal circuitry and have built the prototype of the system. A generic crypto-

graphic system is proposed for IoT applications, as infrared optical sensors find appli-

cations in various fields, like defense, e-health, banking, and home automation[125].

The design we propose is different from all designs mentioned in the introduction as it

does not exploit digital variations [72–74]. Instead, our approach leads to Strong PUF

with integrated control logic to further consolidate the security of the system.

The rest of the Chapter is organized as follows. In Section 4.2, we describe the

proposed method and algorithms. Section 4.3 presents a prototype PUF circuit design

and the effects of noise constraints and energy consumption in reaching an optimal

design point. In Section 4.4, we analyze the simulation and measurement results.

4.2 Proposed Security Approach and Protocol

Among the biggest challenges in the design and implementation of a PUF-based sys-

tems are:

1. Finding a physical property of the device, whose variations are difficult to predict.

2. Designing large cycles of random-like binary challenges to authenticate the sys-

tem, so that the authentication process cannot be easily predicted in a short time

frame.
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3. Encrypting the system through PUF-based digital signature generation, and ver-

ifying only through public key information.

4. Requiring minimal circuitry changes in the existing system hardware.

Note that we are using here the optical sensor as a proof-of-concept. The technique

can be also applied to other sensors with random-like physical properties. The physical

property that we have chosen is the dark current of the photodiode and the large cy-

cles of binary pseudo-random challenge/response pairs (i.e., input-output pairs to and

from the target sensing system) generated by quadratic residue property to validate the

approach.

The dark current in silicon-based photodiodes depends on the doping concentration

of carriers as well as changes in temperature. For a given temperature and operating

conditions, the dark current varies due to inherent variation in doping concentration. No

two photodidodes can have exactly the same dark current. We have measured and plot-

ted dark current variations for different silicon-based (Si-based) photodiodes at room

temperature and operating at wavelength λ = 940 nm. Fig. 4.1 shows the measured

value of dark currents in nA (nano-amperes) versus the reverse voltage of photodiodes,

varying from 0 to 25 Volts. Our region of measurement spans from 0 V upto the diodes’

breakdown voltage. The measurements are shown for photodiodes of the same manu-

facturer as well as those of different vendors (two from Vishay, two from Everlight, and

one from Fairchild). The measurement procedure is explained in detail in the results

section.

As the IoT devices are commonly resource-constrained, the computational resources

of gateway nodes (cloud server) as mentioned in previous section about IoT architec-

ture are utilized. After the authentication of the device the encryption of the data using
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Figure 4.1: The dark current vs. reverse voltage of different silicon PIN photodi-
odes.

digital signatures follows.

4.2.1 Quadratic Residue based Device Authentication

As the dark current of each photodiode is uniquely varying, we use a quadratic residue

based scheme to propose a device authentication protocol. Let a and N be positive

integers, with N 6= 0. We note the following definition [126].

Definition 1. Given an integer number a ∈ Z and a natural number n ∈N that are rel-

atively prime, then a is called the quadratic residue (QR) modulo n, if the congruency

x2 ≡ a mod n has a solution, that is, a is a perfect square modulo n.

In general, the quadratic residues follow a residue cycle starting with an initial seed

S0, which is also a QR modulo n itself. To illustrate this concept, we provide an example

in Fig. 4.2 by computing the QRs mod 319 (note that in this example, 319 = 29 × 11,

that is, we have p = 29 and q = 11). If we take initial seed S0 as 16 or 146 which are

QRs, i.e., S2
0 mod 319, we achieve the cycles shown in Fig. 4.2.
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S0=16 256 141 103 82 25

257 53 190 170 169 306

S0=146 262

59291

Figure 4.2: Quadratic residue cycles with seeds S0 = 16 & S0 = 146

Algorithm 2: Sensor PUF authentication protocol
challenge/response Pair Generation
(1) The cloud server generates two large prime numbers p and q, and initial seeds
Si∈QR mod [p ∗ q(= n)], i ∈ 0,1,2, ...,k. The value of k is determined by the
iterations needed to validate the system as decided by the authenticating party.
(2) The server then fills up a mapping table starting from S0 as shown in Fig. 4.3.
After the first seed cycle is complete, it completes the table S1 as in step 1 and starts
filling the rest of the table. It continues generating seeds till the table is completed
for all seeds from S0 to Sk.
(3) The server randomly chooses values from the mapping table to send to the
sensor node and forms a response voltage output pair corresponding to the sent
values, using its pre-measured (voltage) values (nv(table)) of dark currents of the
photodiode (or in general, any other PUF variable) of the circuit.

Key Generation
(1) Let g < n be a randomly chosen generator of the multiplicative group of integers
modulo n (Z∗n).
(2) Let H be a collision-resistant hash function.
(3) The sensor node’s voltage (nv(measured)) w.r.t. dark current is measured
corresponding to the QR value sent from the cloud server and hash function of an
XOR operation with its ID and the data is performed to generate the public key as
Pkey=H(nv(measured)⊕ID⊕Data).
(4) The public key Pkey is then sent back to the cloud through a wireless channel.

Authenticating and Pairing
(1) Upon receiving the Pkey, the cloud decodes the message using the challenge/re-
sponse pair table D̂ata=H−1{Pkey}⊕ID⊕nv(table) by comparing the values of
nv(measured) with its own values nv(table) . If a satisfying level of confidence is
found in the correlation between challenge/response pairs, it sends acknowledgment
to the sensor node.
(2) Upon receiving the acknowledgment, the device is authenticated and the pairing
is formed. The process is repeated after every defined time interval to re-enforce the
integrity of the device.
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It can be seen that the two seeds form a residue cycle of lengths 12 and 4, respec-

tively. Note that these two cycles are disjoint, that is, the intersection of the two sets

of residue cycles is a null set. This is true in general for any two residue cycles. Sim-

ilarly, other QR seeds can be randomly chosen and the residue cycles can be formed

that would be difficult to predict because of the random nature of the choice [127]. In

our approach, since we are using n = p×q, where p and q are odd prime numbers, to

determine whether a is a quadratic residue modulo n, one has to know how we have

factorized n in terms of its odd primes p and q and then find the solution of the con-

gruence x2 mod n. We will randomly change p and q and thus due to the difficulty of

finding p and q, it is computationally time consuming to find x satisfying x2 ≡ a mod n

[128] [129][130].

The authentication process consists of three different stages. The first stage is the

challenge number generation based on QR at the cloud server and sending it to the

sensor node using a secure transmission channel. Second stage is the key generation

at the sensor end and transmitting it back to the cloud server. The final stage involves

decoding of the key at the server and sending back the acknowledgment for pairing.

Algorithm 2 explains the three stages in detail.

4.2.2 IoT PUF Security Encryption through Digital Signatures

We will describe the QR based PUF security variant of the ElGamal digital signature

protocol [131] to do encryption of the data. An adversary that can introduce malicious

data may cause the system to respond inappropriately. The receiver of message needs

assurance that the message belongs to the sender and he should not be able to repudiate

the origination of that message. This requirement is very crucial in IoT applications.

As many IoT devices are sensors broadcasting observations, cryptographic digital sig-
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Figure 4.3: Proposed sensor PUF authentication protocol architecture.

natures ensure the integrity of the device’s data stream. Algorithm 3 describes the

signature generation process in detail.

4.3 Energy-Efficient Circuit Design

Fig. 4.4a shows the simplified circuit diagram of the sensor node, involved in mea-

surement of dark current for a given challenge value generated by the cloud. Fig. 4.4b

shows the details of current-to-voltage conversion circuitry. The sensor node consists

of mainly three parts : an IoT sensor processor, a photodiode, and a trans-impedance

amplifier (TIA). When the challenge value is received by a processor, the digital value

is converted to its corresponding analog voltage (reverse bias of the photodiode) by a

digital-to-analog converter (DAC). Then, the dark current generated by the photodiode

is converted to voltage by the TIA circuit, which consists of low-offset/low-leakage

OpAmp with a gain resistor RF connecting the input and output of the OpAmp. The

dark current (typically in the range of 100pA to 1nA) flows through this resistor, cre-

ating the voltage (in the range of 1mV to 100mV) at the output of the TIA, which is

then amplified by a simple non-inverting low-offset OpAmp, and the amplified voltage
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Algorithm 3: PUF-based Digital Signatures
System parameters
(1) The cloud server generates two large prime numbers p and q, and initial seeds
a∈QR mod [p∗q(= n)].
(2) Let g < n be a randomly chosen generator of the multiplicative group of integers
modulo n (Z∗n).
(3) Let H be a collision-resistant hash function.

Key Generation
(1) The server fills up a mapping table starting from a0 as shown in Fig. 4.3. After
the first seed cycle is complete, it completes the table a1 and starts filling the rest of
the table. It continues generating seeds till the table is completed for all seeds from
a0 to ak.
(2) Generate the private key XA. The server randomly chooses values from the
mapping table to send to the sensor node and forms a response voltage output
pair corresponding to the sent values, using its pre-measured (voltage) values
(XA = nv(table)) of dark currents of the photodiode (or in general, any other PUF
variable) of the circuit.
(3) Generate the public key YA as gXA mod n.
(4) Thus the sender has the set of keys {XA,YA}.

Signature generation
(1) Message m is ID⊕Data.
(2) Choose a random a such that 1<a<p-1 and gcd(a, p−1) = 1.
(3) Compute r = gk(mod n). Compute s = (H(m)−XA.r)a−1(mod n−1).
(4) If s=0, start over again. Then the pair (r,s) is the digital signature of m. The
signer repeats these steps for every signature.

Verification
(1) Look Up public key YA for device d.
(2) Verify gm = Y r

A ∗ rs(mod n)
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is converted by an analog-to-digital converter (ADC) to digital values, which the pro-

cessor uses to convert to a key that is then sent to the cloud server. The DAC of the

circuit can be either external components or integrated parts of the processor.

(a) Simplified internal circuitry of an IoT sensor to measure
the dark current.

(b) Current-to-voltage conversion circuit with TIA.

Figure 4.4: Circuit to measure the dark current
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One of main challenges of using dark current in a portable sensor node is that the

magnitude of the dark current is in the order of pA to nA, and any measurement attempt

of such tiny current requires careful attention to the effect of noise on the measurement

result. It requires an accurate measurement method with limited energy budget. In our

prototype, the current is first converted to voltage by low-noise/high-gain TIA which is

amplified by a simple non-inverting voltage amplifier before being measured by ADC.

Depending on the level of output voltage from TIA, this voltage amplifier can be also

omitted from the design, but in this prototype version we have included it for measure-

ment. In IoT applications like the ones proposed here, the energy budget of the sensor

node is limited, and the amount of energy consumption is mainly determined by the

minimum amount of time required for the circuit to process the challenge voltage re-

ceived from the processor of the sensor node. The speed bottleneck of the sensor node

is on the bandwidth of the TIA circuit, and the trade off between the bandwidth and

noise relationship of TIA are studied through measurements described in the following

sections.

4.3.1 PUF Prototype Circuitry Design with Consideration of
Leakage Current

As the range of dark current of photodiode is in the order of pA to nA, special design

consideration is required in order to prevent leakage current from interfering with accu-

rate measurements of such small amounts of current. Several factors could contribute

leakage current in the design, and one of main factors that can have direct impact on

our measurement is the leakage current through the inverting input of the OpAmp used

in TIA. When the impedance of the input of OpAmp is not large enough, a significant

fraction of the dark current can leak through the OpAmp instead of flowing through the
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gain resistor of TIA, degrading the measurement accuracy. For our initial measurement,

we chose the LMV793 OpAmp from Texas Instruments[132], which is low-noise/low-

leakage and CMOS-based. The LMV793 has input bias current of 100fA at 5V Vdd ,

Vcm=2V at 25oC, which is much smaller than the typical range of dark current of pho-

todidoes. Another contributor of leakage current is the material used in the PCB. The

solder mask used in the PCB generally helps to reduce moisture infiltration on to the

PCB material, but too much area of the solder mask could build up surface charge,

affecting measurement accuracy. Therefore, the solder mark was removed near the

sensitive region of our circuit (near the photodiode and the input of TIA). The dust and

moisture accumulated between the inverting input of TIA and low-impedance supply

trace on the PCB could also induce leakage current flow. This leakage between traces

could get worse when the voltage difference between adjacent traces is large. In order

to address this issue, we implemented a guard ring, whose potential is driven by the

same voltage applied to the inverting input of TIA. This guard ring surrounds the trace

connected to the inverting input of TIA to remove potential difference. Fig. 4.5 shows

the PUF prototype layout of the circuit used to measure the dark current of the photo-

diode, amplify it and derive the desired voltage in the measurement range of millivolts.

The figure shows two different versions of circuit without and with a guard ring to

minimize leakage current.

4.3.2 Circuit Design Optimization through Noise Analysis

Due to the small magnitude of the dark current from photodiodes, it is important to

investigate the effects of noise on measurements. Fig. 4.6 shows the noise model of the

TIA part of the circuit. RD is the output impedance of photodiodes and CIN is the sum

of capacitances of the photodiode and the input of the OpAmp. RF is the feedback gain
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Figure 4.5: The PUF prototype circuit for measuring dark current from a photo-
diode. (Top: with a guard ring around the input of TIA to minimize the
leakage current, Bottom: without a guard ring).

resistor and CF is the compensation capacitor of TIA. The compensation capacitor

(CF ) is required in the TIA to create a zero to stabilize the circuit since without the

compensation capacitor the circuit is essentially a differentiator, which is inherently

unstable. Since the feedback factor (β ) of the TIA is defined as VIN /VOUT , β can be

expressed as below:

β =
VIN

VOUT
=

(
1+ sRFCF

1+ RF
RD

+ sRF(CIN +CF)

)
(4.3)

The zero and pole frequency from 1
β

with the feedback capacitor are
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Figure 4.6: Noise model of TIA circuit with a photodiode.

fZ = 1
2πRF (CIN+CF )

fP = 1
2πRFCF

(4.4)

In order to investigate the magnitude of the voltage noise spectral density appearing

at the TIA output (eo), we need to consider both the feedback factor β of the TIA and

the noise spectral density of the OpAmp itself (en). The input referred voltage spectral

density of OpAmp (en) is scaled by a factor of 1/β to become the voltage spectral

density at the output of TIA (eo). The voltage spectral density profile of the OpAmp

(en) can be obtained from the datasheet of the component [132], and the total output

noise due to en can be calculated by integrating the square of the output noise density

over the entire frequency and taking the square-root of the value.

Eo,rms =

√∫
∞

−∞

e2
o( f )d f =

√∫
∞

−∞

1
β 2( f )

e2
n( f )d f (4.5)
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Since the magnitude of the dark current is quite small (in the order of hundreds of

pA to a few nA), the TIA needs to have very large V/I gain, which is defined by the

feedback resistor. However, as RF becomes comparable to the output impedance of the

photodiode (RD), some of the dark current would leak through RD. Therefore, we chose

10MOhm for RF , considering the typical value of 100MOhm of shunt resistance RD of

the photodiode for initial calculation in this section [133]. The compensation capacitor

CF was set to be 10pF to filter out the high frequency noise and to make the TIA stable.

The value of input capacitance CIN was set to 15 pF considering typical capacitance of

photodiodes, and the output impedance of the photodiode RD was chosen to 100MOhm.

The zero and pole frequency of TIA are calculated as fZ = 700Hz and fP = 1592Hz.

Using the datasheet of LMV793 [132], we calculate the corner frequency ( fc), where

the transition from 1/f flicker noise to white noise occurs, as fc = 340.2Hz. Now, we

can proceed to calculate the voltage noise of the TIA circuit.

For f < fc, the rms-noise in this frequency region becomes

Eo,rms,1 =

√∫ fc

fo

(
1
β

)2

e2
n( f )d f = 0.347µVrms (4.6)

For fc < f < fz, both 1/β and en are constant, and the rms-noise in this region becomes

Eo,rms,2 =

√∫ fz

fc

(
1
β

)2

e2
nd f = 0.125µVrms (4.7)

For fz < f < fp, the rms noise is

Eo,rms,3 =

√∫ fp

fz

(
1

β ( f )

)2

e2
nd f = 0.330µVrms (4.8)
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Finally, for fp < f , the noise spectral density is

Eo,rms,4 =

√∫ f∞

fp

(
1

β ( f )

)2

e2
nd f = 111.536µVrms (4.9)

The voltage noise density at the output of TIA due to the current noise of the

OpAmp is equal to the input referred current noise of OpAmp multiplied by the impedance

of feedback resistor and capacitor. Therefore, when a very large gain resistor is used,

it is important to include the contribution from the current noise of the OpAmp for

complete noise analysis. The rms output noise due to the current noise is

Eo,rms =

√∫
∞

−∞

e2
nid f =

√∫
∞

−∞

i2n×
(

RF ||
1

sCF

)2

d f (4.10)

From the datasheet of LMV793, we assumed that the corner frequency ( fi) where the

current noise starts increasing is 30kHz in this calculation. For f < fp region, both in

and RF are constant, and the rms-noise from current noise source becomes

Eo,rms,5 =

√∫ fp

fo
i2nR2

Fd f = 3.99µVrms (4.11)

For fp < f < fi and fi < f , the rms-noise becomes

Eo,rms,6 = 3.88µVrms

Eo,rms,7 = 39.44µVrms

(4.12)

The thermal noise of the feedback resistor also needs to be considered for complete

noise calculation of TIA. The noise of feedback resistor RF at the room temperature
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can be calculated as

Eo,rms,RF =

√
4kT RF

(
π

2
1

2πRFCF

)
=

√
kT
(

1
CF

)

Eo,rms,RF = 20.28µVrms

(4.13)

Note that the rms-thermal noise of the RF appearing at the output of TIA does not

depend on the value of resistor any more. This is because as RF increases the bandwidth

of TIA decreases at the same rate as the increase in thermal noise. Therefore, the

value of RF doesn’t have any impact on the thermal noise contribution. However, the

signal is amplified by the gain of TIA, which is equal to RF . Thus, it is important to

maximize RF to obtain the best SNR ratio. The contribution due to OpAmp’s noise

is a little bit less intuitive. One might think that as the bandwidth of TIA decreases

by increasing RF , the output noise due to the OpAmp should be reduced since the

high frequency noise would not appear at the output of TIA. However, the calculation

shows that this is not the case. Also, the current noise also increases slightly since ZF

increases by (4.10). Despite this increase in OpAmp noise, however, the amount of

added noise is not significant compared to the amount of amplification on the signal

achieved by increasing RF . Therefore, it is still valid to say that using a largest possible

RF maximizes SNR. Finally, the total rms output noise of TIA can be calculated by

adding squared values of rms noise from different sources of noise, and taking a square-
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root of the final value.

Eo,rms,Total =

√(
7
∑

i=1
(Eo,rms,i)

2
)
+(Eo,rms,RF )

2

Eo,rms,Total = 120.16µVrms

(4.14)

If the maximum range of dark current from a photodiode is 200pA, the maximum

output voltage swing appearing at the TIA output with the gain of 10MOhm is

Vmax−pp,T IAout =
{

200pA×
(

RD
RF+RD

)}
×10MΩ

= 1.82mVpp

(4.15)

Therefore, we find the dynamic range of the TIA from (4.14) and (4.15)

DyR =
Vmax−pp,T IAout

Vnoise,rms,T IAout

=
1820µVpp

120.16µVrms
= 15.15 (4.16)

4.3.3 Circuit Design Optimization

Since the key generation is done by measuring the dark current of the photodiode using

a TIA circuit, the role of the sensor node processor is minimized to a few tasks – (a)

receive challenge/ response from cloud server, (b) convert digital challenge values to

analog bias voltage to the photodiode, (c) convert received analog voltage from TIA to

digital and encrypt it into a key using Algorithm 2, and (d) send the response back to

cloud server. The speed of processing these tasks is much faster than the speed bottle-

neck of the TIA circuit. Since other computation effort required by the processor is not

significant compared to the amount of time TIA needs to process challenge voltages,
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the energy consumed by the sensor node is estimated to be inverse-proportional to the

bandwidth of TIA. As a result, the total energy required for the sensor node depends

on three major factors -(a) the time required for TIA to convert dark current to corre-

sponding voltage response for each challenge, (b) the number of challenges required

for one authentication by the proposed protocol and (c) the energy consumed by the

components, such as the OpAmp required for dark current measurement. Since only

the processor part of the sensor node needs to be powered when no challenge/response

is received from the cloud server, the energy consumed by the other part of the sensor

node, including the TIA circuitry, during idle time, is assumed to be zero. In short,

the energy saving of the sensor node can be achieved by maximizing the speed of TIA

circuitry, minimizing the number of challenges required by the security algorithm, and

choosing power-efficient components for dark current measurement.

As shown earlier, the bandwidth of the TIA depends on the feedback capacitance

(CF ) and the gain (RF ) of TIA. The speed of the TIA, however, is closely related to the

noise at the TIA output. In general, as the bandwidth increases, the maximum allowable

speed of varying challenge voltages increases, reducing the amount of computation

time, but the TIA with large bandwidth also allows the high frequency noise to appear

at the output, degrading the SNR and the dynamic range (DyR) of the TIA. From the

pole frequency we obtained in the previous section, the minimum time required for the

TIA to process each challenge voltage can be calculated as

tp =
1
fp

=
1

1592Hz
= 628.3µs (4.17)

Therefore, the energy required to process each challenge voltage by the TIA is the

power consumed by the TIA multiplied by tp. From the datasheet of LMV793, the
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power consumption for the chosen OpAmp is 7mW with 5V supply voltage [132].

Therefore, the estimated energy is calculated as

Ebit,T IA = tp×PT IA = 628.3µs×7mW = 4.40µJ (4.18)

One of the options for further reducing the energy consumption of the TIA is to

increase the bandwidth of TIA by either decreasing the gain (RF ) or decreasing the

compensation capacitance (CF ). However, larger bandwidth inevitably increases the

noise floor due to high frequency noise of the OpAmp that starts appearing at the output

of TIA, degrading the dynamic range of the TIA. Fig. 4.7a and Fig. 4.7b show the

trade-off between energy consumption and dynamic range of TIA with LMV793, for

different values of RF and CF . The maximum range of dark current was assumed to be

200pA, and dynamic range was calculated by taking the ratio of the estimated output

voltage to the output voltage noise in rms as defined in (4.16). As CF increases, the

output signal voltage remains the same but the overall noise decrease, improving DyR.

As RF increases, the noise floor stays almost the same while the output signal voltage

increases; improving DyR. However, for both cases, the reduced bandwidth decreases

the speed of TIA and worsens the energy consumption.

Another option for reducing the energy consumption is to choose more power-

efficient OpAmp for TIA. The LMV793 we used for earlier energy estimation con-

sumes 7mW which is not very power efficient. Choosing the OpAmp for battery-

powered applications could significantly reduce the energy consumption. To improve

the energy savings, we used OpAmp LMP2231 that is designed for battery-powered

applications which draws only 50uW of power from 5V supply [134]. The noise cal-

culation for LMP2231 is redone and the energy/noise trade-off is shown in Fig. 4.8.
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(a) Dynamic range vs. energy for various CF
values for TIA LMV793.

(b) Dynamic range vs. energy trade-off for
various RF values for TIA LMV793.

Figure 4.7: Plots for different CF values with RF = 10MOhm for TIA LMV793.

Compared to LMV793, the energy consumption is significantly reduced down to an

order of tens of nanoJoules. For example, with RF=6MOhm and CF=8pF, a dynamic

range of 18.0 can be achieved with energy consumption of 0.0151 uJ. It is noticeable

that as CF increases, the energy consumption increases linearly, while the rate of in-

crease in dynamic range eventually slows down. Fig. 4.8 shows the magnitude of total

TIA noise for different CF values. Since the gain is fixed to 6MOhm, DyR in Fig. 4.8a

and total noise in Fig. 4.8b are inverse-proportional to each other.

Fig. 4.9 shows the trade-offs between dynamic range and energy consumption as

the value of RF changes from 4 to 100 MOhm. As RF increases, energy consumption

of TIA increases linearly, but the slope of dynamic range slightly decreases as more

current starts flowing through RD instead of RF . Fig. 4.9b shows that the amount of to-

tal noise is relatively constant for different RF values, and Fig. 4.9c shows the source of

noise. As mentioned earlier, changing the value of RF did not affect the thermal noise

appearing at the output of TIA since the rate of thermal noise increase is the same as

the rate of bandwidth decrease of TIA, canceling each other. The noise contributed by
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(a) Dynamic range vs. energy trade-off for var-
ious CF values for TIA LMP2231.

(b) Total noise vs. energy trade-off for various
CF values for TIA LMP2231.

Figure 4.8: Plots for different CF values with RF = 6MOhm for TIA LMP2231.

the OpAmp slightly increases as RF increases. The above results show that changing

the values of RF and CF affects the amount of energy consumption linearly. However,

changing RF has more drastic impact on the dynamic range than changing CF , as the

value of RF and CF become larger. Therefore, it is better to increase the dynamic range

of TIA by increasing RF , and decrease the energy consumption by lowering CF . Note

that as RF approaches the output impedance of photodiode, a fraction of dark current

could start leaking through the internal resistance of the photodiode. However, this

may not be an issue in implementing the proposed idea in terms of true dark current

measurement since the purpose of measuring dark current is to identify a unique pho-

todiode for security purpose, and the output impedance of individual photodiodes can

be pre-measured and stored in the cloud along with the pre-measured dark-current pro-

file required for key verification. Therefore, the variance of output impedance between

photodiodes can be compensated in the cloud during the authentication process, adding

an extra layer of complexity and making the system more secure.

Fig. 4.10a and Fig. 4.10b show the trade-off between dynamic range and energy
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(a) Dynamic range vs. energy trade-off for
different RF values with CF = 2pF for TIA with
LMP2231.

(b) Total noise vs. energy trade-off for dif-
ferent RF values with CF = 2pF for TIA with
LMP2231.

(c) Noise contribution for different RF val-
ues with CF = 2pF for TIA with LMP2231.

Figure 4.9: Plots for different RF values with CF = 2pF for TIA with LMP2231.
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(a) Dynamic range vs. energy trade-off
for different CF values with RF = 50MOhm
and CD = 15pF for TIA with LMP2231.

(b) Total noise vs. energy trade-off for
different CF values with RF = 50MOhm and
CD = 15pF for TIA with LMP2231.

(c) Noise contribution for different CF
values with RF = 50MOhm and CD = 15pF
for TIA with LMP2231.

Figure 4.10: Plots for various CF values with RF = 50MOhm for TIA with
LMP2231.
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consumption for larger gain values of RF =50MOhm. The results show that a dynamic

range of 119.6 can be achieved with smaller energy consumption of 0.126uJ with RF

=50MOhm and CF = 8pF. It clearly indicates that increasing RF gives better energy

saving for the same dynamic range, as long as the leakage current through the internal

shunt resistance of the photodiode can be compensated accurately. Fig. 4.10c shows

the contribution to the total noise for different CF values. As CF increases, both the

thermal noise of RF resistor and OpAmp noise decrease. The decrease in thermal noise

comes from the decreased pole frequency by (4.13), and the decrease in OpAmp noise

comes from decreased noise gain 1/β at the high frequency region by (4.3).

The compensation capacitance values used in all Figures in this section are at least

10 times greater than the minimum capacitance required for guaranteeing stability of

the TIA. The above results suggest when configuring the TIA for IoT sensor nodes

choosing RF = 50MOhm and CF= 10pF. This leads to a dynamic range of 130.3 (7bits)

with energy consumption of 0.157uJ.

4.4 Results and Analysis

4.4.1 Output Measurements of the PUF Prototype Circuit

Fig. 4.11 shows the TIA circuit with OpAmps having offset at their inputs. The current

from the photodiode and the output voltage of TIA can be expressed as

ID =
VT IA OUT−V ∗T IA+

RF

VT IA OUT = IDRF +V ∗T IA+

(4.19)

where V∗T IA is the voltage appearing at the “–“ input of the first OpAmp when the
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Figure 4.11: TIA circuit with input offset of the OpAmp.

output voltage is zero, and it can be expressed as a sum of VT IA+ and the input offset

voltage of the OpAmp as

V ∗T IA+ =VT IA++Vo f f set opamp1 (4.20)

The voltage output of a non-inverting amplifier can be written as

VOUT = G(V ∗T IA OUT −VT IA+)+VT IA+ (4.21)

where the gain of non-inverting amplifier (G) is 1+ R1
R2

. The voltage at the “-“ input

of the second OpAmp when the output voltage is zero is described as

V ∗T IA OUT =VT IA OUT +Vo f f set opamp2 (4.22)

where Vo f f set opamp2 is the input offset voltage of the second OpAmp. Then, the
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voltage at the output of the second OpAmp can be written as

VOUT = G
(
VT IA OUT +Vo f f set opamp2−VT IA+

)
+VT IA+

= G
(
IDRF +V ∗T IA++Vo f f set opamp2−VT IA+

)
+VT IA+

= G
(
IDRF +Vo f f set opamp1 +Vo f f set opamp2

)
+VT IA+

(4.23)

Then, the current can be re-written as

ID =
VOUT −VT IA+

RFG
−

Vo f f set opamp1 +Vo f f set opamp2

RF
(4.24)

The input offset voltage of the OpAmp comes from the mismatch between two in-

puts of OpAmp due to manufacturing variation, and it is constant for a given device

when the common-mode voltage is constant at a fixed temperature. Therefore, we can

expect that the real value of dark current might differ from the measured one by the

constant value due to the input offset voltage of OpAmp. Fig. 4.12 shows the measured

dark current of various surface-mount photodiode devices with LMV2231 OpAmp with

a TIA gain of 50MOhm at 24 Celsius. As the reverse bias voltage applied to the pho-

todiode increases, the amount of dark current also increases. Some photodiodes, such

as Vishay and Everlight, appear to have less than 20pA of dark current variation when

the reverse bias voltage changes from 5 to 25V. However, this could be also due to the

dark current leaked through the internal shunt resistor of photodiodes, which could hap-

pen when the shunt impedance of photodiode is comparable to the gain resistor value

(50MOhm). The dark current measurement can be affected by two main factors: input

offset voltage of the two opamps in our circuit, and tolerance of gain resistance. The
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Figure 4.12: TIA amplified output voltage (response) vs. reverse voltage (chal-
lenge) of different silicon PIN photodiodes.

input offset voltage of an opamp is caused by mismatch of differential input transistors

created during manufacturing process. Although the range of offset values can be found

from the datasheet of the opamp vendors, the exact value is not known. Also, the gain

resistor has its own tolerance. As shown in (4.24), the exact amount of dark current

can be shifted from the true value based on these factors. Through the experiments, the

resistance of a resistor is found to be a constant here and the input offset voltage is also

constant at a fixed input voltage level; therefore, the difference between the measured

and true dark current value is constant. Since knowing the exact dark current value

is not important to identify between different sensor nodes as long as pre-measured

dark current profile matches with the ones from a sensor node, these variation from
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Figure 4.13: Measured and stored values of dark currents (ID) in Everlight silicon
photodiode.

manufacturing process does not play a negative roles for our security system.

Table 4.1: Amplified voltage response for different challenge voltages between 0
to 5V with respect to various silicon photodiodes.

Reverse
Bias

Voltage (V)

QSB34GR
(mV)

(Fairchild)

PD93-21C
(mV)

(Everlight)

VEMD2020X01
(mV)

(Vishay)

PD70-01B
(mV)

(Everlight)

VBP104S
(mV)

(Vishay)
0.01 547 32 53 462 250

1 625 41 57 511 281
2 699 49 60 557 305
3 770 56 62 602 324
4 839 62 64 643 340
5 908 68 66 684 354

In Fig. 4.12, we have plotted the output voltage measurements using (4.23) with

respect to the reverse bias voltage for the photodiode dark currents shown in Fig. 4.1.

The measurements shown in Fig. 4.12 are for an ambient room temperature of 25oC and

an operating voltage range of 0 to 25V. The TIA amplified voltages are the measured

responses to each challenge in the form of reverse voltage generated as in Algorithm 2.
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Measurements in Fig. 4.12 are used in testing the IoT-PUF circuit in the lab environ-

ment before deployment. Where not possible to maintain laboratory voltage range, the

proposed circuit also works well in the low voltage range on 0 to 5V. Table 4.1 depicts

the TIA amplified voltage response for different challenge voltages between 0 to 5V

with various silicon photodiodes taken in this Chapter as samples for validation. As

can be interpreted from the table that with a 12-bit ADC, the resolution can be as small

as 1.22 milli-Volts. Hence all the photodiodes with amplified voltage w.r.t their dark

currents are in the range much higher than the ADC resolution. Further, the photo-

diodes are distinguishable even with an error in measurement accuracy of 1%-2% for

very low values as in the VEMD2020X01 and PD93-21C photodiodes and ≈20 times

more accurate for other photodiodes.

Fig. 4.13 depicts the measured and stored values of dark current (ID) of an Everlight

silicon photodiode. The measured value is the response to the corresponding challenge

to the IoT sensor. The plot in Fig. 4.13a shows the QR voltage challenge generated

by the server with two different seeds and sent to the sensor. Fig. 4.13b shows the

value of (ID) stored in the serve as a response to the corresponding challenge, which

is then compared to the measured ID, i.e., the response from sensor in Fig. 4.13c. The

error,shown in Fig. 4.13d, is small and the correlation between the two current values

is ∼ 0.9996. This means that using Algorithm 2 the device can be authenticated.

4.4.2 Security Characteristics

Earlier, we presented various PUF-IoT security metrics. Here, we will evaluate how

our proposed algorithm and design satisfy the key metrics of a secure system from our

measurements and algorithmic simulations. First, we will analyze our design for PUF-

targeted attacks on the system.
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Frequency Prediction Attack : We challenged the circuit with 10000 challenges and

measured the response Oi of the system. From Fig. 4.14a, it can be inferred that the

probability of Oi being a particular value is always around 0.5, which makes the ran-

domness parameter to be ≈ 50%. Therefore, our method is resilient to this kind of

attack.

Replay Attack : In this attack, the adversary tries to predict the output by studying

the outputs that have similar inputs. In the proposed design, the randomness of input-

output in the sensor PUF is enhanced by using a QR challenge/response pair generator.

From Fig. 4.14b, it is evident that the proposed method generates a polynomial distri-

bution with respect to the input-output hamming distance, i.e., the distance between the

output vectors by changing one bit of input vectors in every iteration, for two different

PUFs, i and j. This shows resiliently to this type of attack.

Cloning Attack : As the cipher generator knows the ID issued to the sensor, as well

as the measured values of challenge/response pairs, it is difficult for the attacker to au-

thenticate its own PUF. Further, as the mapping is a PUF function, it is impossible to

exactly replicate the physical variations of the system.

Side-Channel Attack : This type of attack changes the physical properties of the orig-

inal PUF. Once the inherent PUF properties are changed, challenge c will not generate

the same response rc as before. Rather, it will generate r
′
c. So, the adversary will not

be able to validate its system. Once that will fail, the system will remove access for the

affected IoT node. The node will be flagged as malicious and will not be able to send
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Figure 4.14: Optical IoT sensor PUF’s resilience towards various adversary at-
tacks.

any further data.

Device authentication is performed using Algorithm 2. Only when successful pairing

is done and access is granted to the a particular IoT node, the data transfer happens.

Depending on the vulnerability of the network, authentication and pairing are done at

regular intervals to maintain data integrity and authorized access to the system. This

makes the system robust to DoS type of attacks. Also a bit-aliasing error is observed

for various optical sensors. The error is the worst-case error, at boundary temperature

conditions. We have taken a temperature range of 5oC−40oC for our measurements,

although a larger range is possible as per the datasheet. The worst-case error is found

to be 5.39% and the best case is 0.8%. To ensure integrity in the system, a public key is

generated using the private key generated by the challenge/response pair of the IoT-PUF

circuit. As shown in Algorithm 3, the encryption algorithm resist any eavesdropping

attacks on the system.
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4.4.3 Threat Analysis

Security threat to the PUF-based IoT system is through the user, manufacturer and

external adversary. All the threats posed by external adversaries are explained in the

previous section with the corresponding various types of attacks on the system. In this

section, we will explain our system’s defense to the other two threats.

Malicious user : It is the owner of the IoT device with potential to perform attacks

to learn the secrets to gain access to restricted functionality. By uncovering the flaws in

the system the malicious user tries to sell secrets to third parties, or even attack similar

systems. Our proposed system will not be able to stop such an user to model some

systems, but as our dark current property is unique it can stop the malicious user from

modeling the system altogether. Although such a threat can be initially successful, but

it will not give long term results for the user.

Bad Manufacturer : Is the producer of the device with the ability to exploit the tech-

nology to gain information about the users, or other IoT devices. Such a manufacturer

can deliberately introduce security holes in its design to be exploited in the future for

accessing the user’s data and exposing it to third parties. Again the manufacturer’s

attack cannot be successful on our proposed system due to its random like properties.

It is impossible to change the physical properties of a photo-diode using external re-

sources. By doing so the diode will be corrupted and is unusable for the PUF circuit.

Thus making this threat ineffective.

External threat : External adversary does not have access to the physical device. The

secure cloud used in our authentication protocol if intercepted by the external adver-
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sary, can only give them access to the public key. The public key in turn is generated

from the private key derived by PUF variations of our proposed system. Hence, this can

give adversary initial success. But, without knowing the actual voltage used to generate

the dark current, it is impossible for the adversary to decode the message. And such

an interception will alert the receiving server system, which will in turn block the ma-

licious node. Thus, the adversary would have to start again. In the worst case scenario,

the nodes may become unusable by the system, but still the message will remain safe

from being decoded.

4.4.4 Energy Consumption

Energy is a central concern in the deployment of IoT nodes having limited battery size

and computational resources. Here, we investigate and compare the energy cost of var-

ious cryptographic protocols with our IoT PUF, from a computation at energy point of

view. The energy consumption is linearly proportional to the processing time as de-

scribed in (4.18) . The design proposed in this Chapter, uses RF = 50MOhm and CF=

10pF with a dynamic range of 130.3 (7 bits), having energy consumption of 0.157uJ.

Depending on the length of the encryption bits, the energy consumption can be com-

puted from the TIA measured data. Our Op-Amp draws only 50uW of power from a

5V supply voltage. PUFs provide lightweight hardware fingerprints just like hash func-

tions and can be used alternatively for authentication of the device [135]. Some of the

hash functions found in the literature are MD5 (Message Digest 5)[136], SHA-1 (Se-

cure Hash Algorithm 1)[137], and HMAC (Hash Message Authentication Code)[138].

MD5 is a cryptographic hash function to derive the authentication token, also called

white list. SHA-1 is a 160-bit hash function, which resembles the MD5 algorithm.

This was designed by the US National Security Agency (NSA) to be part of the Digital
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Signature Algorithm. The standard for implementing hash-based authentication is the

HMAC as in FIPS (Federal Information Processing Standards) [138]. HMAC is used in

combination with an approved cryptographic hash function and needs a secret key for

the calculation and the verification of the MACs. In Table 4.2, we of show the energy

consumption the hash functions. MD5 and SHA-1 are lightweight hash functions and

consume less energy as compared to HMAC. HMAC is a keyed function, for bit ranges

of 0 to 128 bits, and the energy consumption fluctuates by a very minute amount. SHA1

has more steps of computation than MD5, hence it consumes more energy than MD5.

All the values are shown per Byte of data. Our design consumes 0.1794 uJ/Byte, the

least of all other hashing functions.

Table 4.2: Energy cost of various hash functions compared to our design

S.No. Hashing Method Energy Consumption (uJ/Byte)

1 Our IoT PUF 0.18

2 MD5 0.59

3 SHA-1 0.76

4 HMAC 1.16

Table 4.3: Energy cost of various asymmetric encryption algorithms as imple-
mented in different sensor motes

Algorithm MICAz mote TelosB mote

Cycles Energy Cycles Energy

ECC-160 [139] 15.6 M 55 mJ 14.0 M 17 mJ

Our IoT PUF 128-bit 4640 16 µJ 3480 4 µJ

RSA-1024 [139] 108.1 M 378 mJ 60.4 M 73 mJ

Our IoT PUF 1024-bit 5.9 M 21 mJ 4.4 M 5 mJ

Algorithm 3, uses an asymmetric approach to encrypt our IoT-PUF system. This

secures the system from intruders and provides resistance to malicious attacks. It also

provides confidentiality, privacy, and integrity to the IoT node. Rivest-Shamir-Adleman
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(RSA) and Elliptic Curve Cryptography (ECC) are two lightweight secure asymmetric

algorithms for IoT[139–142]. Both work by generating public and private keys. Public

keys are published openly, whereas private keys are made secure. ECC has faster com-

putation times and bit-shifting operations instead of multiplications, to save energy for

low power devices. In Table 4.3, we have compared our method with ECC and RSA in

terms of energy cost, and number of computation cycles, using tiny sensors, such as the

MICAz and TelosB. Note that the computation energy values are taken from [139]. It

can be inferred from the table that the proposed method consumes less energy as com-

pared to other public cryptographic algorithms. This is due to the fact that our private

and public keys are generated by PUF functions rather than complex multiplications as

in RSA and ECC. Further, the decryption is done at the receiving end in a cloud server,

thus relieving the low power IoT devices of computation burdens.
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Chapter 5

Energy Management in Smart Cities:

Peak Demand Reduction and Energy

Savings

5.1 Introduction

Smart cities in brief can be defined as a city which uses information and communication

technologies (ICT) such as smart sensors, cognitive learning, and context awareness to

make lives more comfortable, efficient, and sustainable [2]. Cities today face mul-

tifarious challenges, including environmental sustainability, low carbon solutions and

providing better services to their citizens. Given these trends, it is critical to understand

how ICT can help make future cities more sustainable. As microcosms of the smart

cities, smart and green buildings and homes stand to benefit the most from connect-

ing people, process, data, and things. The Internet of Things (IoT) is a key enabler

for smart cities, in which sensing devices and actuators are major components along
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with communication and network devices. Management of smart homes often requires

analyzing IoT data from the interconnected networked devices to optimize efficiency,

comfort, safety, and to make decisions faster and more precise [143].

The significant efficiency gains from home automation can make cities sustainable

in terms of resources. Importantly, the IoT ambitions and scope are designed to respond

to the need for real-time, context-specific information intelligence and analytics to ad-

dress specific local imperatives [144]. Further, realization of smart, energy-efficient

and green home infrastructure would allow the development of ’livable’ interconnected

communities, which will form the backbone of a futuristic green city architecture [145].

Hence, energy management in smart homes is a key aspect of building efficient smart

cities [146]. Energy management consists of demand side management (dsm), peak

load reduction and reducing carbon emissions[147]. In an industrialized country, res-

idential and commercial loads in urban centers consume a significant amount of elec-

trical energy. As per the survey report [148] nearly 39%− 40% of the total energy

consumption in Canada is consumed by the residential and commercial complexes. It

is evident from various load surveys that the demand of electricity in these residences is

highly variable and changes throughout the day. Therefore, finding suitable strategies

for efficient management of home energy demand and to help reduce the energy con-

sumption during peak period will make the communities’ more energy efficient. The

Canada Green Building Council is working towards finding ways of making buildings

greener and community sustainable1. Therefore, the need for energy efficient buildings

is growing rapidly.

The power systems require equilibrium between electricity generation and demand

[149]. Power system operators dispatch generating units primarily based on operating

1[Online] Available : http://www.cagbc.org
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cost or market bid price. In order to meet the increased demand during peak period,

more resources are often required to increase the generation capacity. Since addition

of resources to meet the peak demand is an expensive investment, distribution system

planners and utility engineers very often consider the reduction in peak load as a fea-

sible solution to the problem. However, peak load reduction is mostly valuable for

utilities and most popular only in a purely market-driven energy management environ-

ment. Under these circumstances, Demand Response (DR) [150] and [151] offers an

opportunity for consumers to play a significant role in the operation of the electric grid

by reducing or shifting their electricity consumption during peak periods in response

to time-based rates or other forms of financial incentives. In most of the cases, DR is

a voluntary program that compensates the consumers. There are many modern meth-

ods that reduce the peak load and load at peak time which is referred as Demand Side

Management (DSM) [152]. Current market framework and lack of experience and un-

derstanding of the nature of demand response are the most common challenges in DSM

nowadays [152].

Newer technologies like energy management using smart meters are now becoming

popular in places like Ontario, Canada where few utilities have introduced energy tariff

based on the Time-Of-Use (TOU) model in which a consumer pays differently for the

energy consumption at the different time of the day. This has been possible due to

the implementation of smart meters which track the energy usage in a home on an

hourly basis [153] and then consumption information is bundled into multiple TOU

price brackets. However, all these processes mostly help the local distribution company

and in order to take advantages of the TOU, each household has to adopt a change in

the use of the appliances which may cause significant discomfort to the consumers. In

this scenario home appliance scheduling with electrical energy services for residential
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consumers is useful.

In this Chapter, a home energy management system named as Home Energy Man-

agement as a Service (HEMaaS) is proposed which provides intelligent decisions, is

interactive with the environment, scalable and user friendly. Wi-Fi connected smart

sensors with centralised decision-making mechanism can identify peak load conditions

and employ the automatic switching to divert or reduce power demand during peak

period, thereby reducing the energy consumption. Therefore, by implementing moni-

toring and controlling sections of the HEMaaS platform using web services, one may

achieve the agility, flexibility, scalability, and other features required for a feasible and

affordable HEMaaS platform.

We have based our experimental findings on a typical Canadian residential apart-

ment IoE system to investigate the effectiveness of the proposed home energy manage-

ment service. The main objective of HEMaaS is to shift and curtail household appliance

usages so the peak demand and total energy consumption can be reduced. A new neural

network based reinforcement learning algorithm has been proposed in this Chapter to

achieve the objectives. The classical Q-learning problem of the reinforcement learning

has been formulated as a neural fitted supervised learning problem here and is named

Neural Fitted Q-based Home Energy Management (NFQbHEM) algorithm. We design

a node-red framework based user interface for controlling home appliance action based

on NFQbHEM algorithm. The reward matrix incorporates user convenience parameters

for state- action transition and includes user preference, power cost savings, robustness

measure and user input preferences to initialize the algorithm.

Rest of the Chapter is organized as follows: Section 5.2 describes the HEMaaS

platform and its architecture. Section 5.3 formulates the home energy management

problem as a markov problem and its possible solution strategy is described using vari-
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ous modelling parameters. The NFQbHEM algorithm is explained in Section 5.4. The

experimental results are shown in Section 5.5 for different cases.

5.2 Home Energy Management as a Service

Home energy management is a service platform for the users to efficiently perform de-

mand side management and control. It consists of home appliances connected through

a grid of interconnected network of devices with preference given to the user conve-

nience. The platform may be used for different types of community houses (condo and

town homes) to manage their energy consumption. The systems may be categorized

into hardware and software architectures.

5.2.1 The Hardware Architecture

A typical home consists of various appliances. These appliances establish a connection

with the user and provide them with the monitoring and controlling capabilities. They

are to be monitored and controlled locally or remotely by a HEMaaS platform using a

Sonoff wireless switch 2. Most of the common home devices fall within the (current,

voltage) range of Sonoff currently commercially available in the market.

The architectural diagram is shown in Figure 5.1. It consists of a Main Command

and Control Unit (MCCU), Sonoff wireless switch, Smart meter, Gateway router and a

Community Cloud Management panel (CCM). The MCCU is the main intelligence of

the network which is responsible for triggering grid signals based on the output of the

machine learning algorithms. It also has an input port which monitors for user input

signals and accordingly provides user input to the controller. Sonoff Switch receives

2The Sonoff is a device that is to be put in series with the power lines allowing it to turn any device on
and off remotely. Its voltage range is 90-250V and it can handle a max current of 10A.[Online] Available
: https://www.itead.cc/sonoff-pow.html.
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Figure 5.1: HEMaaS hardware architecture of a typical Canadian condo

the trigger at its input port from the MCCU and turns the appliance Off/On accordingly.

Smart meter provides power consumption data to the power station for overall efficient

community energy management. Gateway router translates the MCCU messages using

network address translation (NAT) in order to translate from a private network address

(like 192.168.x.x, 10.0.x.x) to a public facing one. The smart meter and CCM are

outside of gateway router and are separated by a secured firewall. CCM is monitored by

the city power substation. The substation according to its generation and distribution

has a set amount of available power for the community to use. CCM receives input

from the substation and sends those commands to the each home’s MCCU which in

term updates its power management strategy.
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Figure 5.2: Software architecture and communication framework of HEMaaS
platform

5.2.2 The Software Architecture and Communication Interface

The HEM MCCU needs to process the NFQbHEM algorithm integrating historical

data as well as the user input preferences. Thus a decision needs to be formed quickly.

Moreover, the state-action pair and user preferences change rapidly throughout the day

and HEMaaS platform needs to provide service in a timely manner. Therefore, here

a Linux-based fast microcontroller has been used, namely Raspberry Pi33. Raspberry

Pi3 runs the NFQbHEM algorithm using python programming language and plots the

charts with its matplot library. Figure 5.2 shows the software architecture and com-

munication framework of HEMaaS platform. The web-based node-red programming

model have been choosen to implement the controlling structure of the HEMaaS plat-

form. It is easy to implement with a flow and is easily explandable if more appliances

3[Online] Available : https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.
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join the network. The user input is modelled inside the flow with a switch. User

input manually can cause either a delay in the operation of the appliance or it will

reset its temperature. These settings can also be changed via the smart MCCU algo-

rithmic decision. A lightweight, low-power and secure protocol has been used in the

Chapter to communicate between home appliances and the MCCU over Wi-Fi. The

protocol is called Message Queue Telemetry Transport (MQTT) [154] and it is opti-

mized for high-latency or unreliable networks. MQTT provides three level security for

the data over the network. It uses a broker to publish messages to clients who sub-

scribe to a particular topic. Topic are in the form of a hierarchy of devices in the home

[Home/(Room)/(Device)/RaspberryPi GPIO Pin]. Mosquitto4 broker has been used

in this architecture. Broker performs authentication via username and password, client

ID and X.2 certification to validate the clients in the HEM network. Thus intrusion can

be prevented. A dashboard user interface (UI) for desktop and mobile have been de-

signed to give users ample interaction opportunities. The design of the UI is described

in detail in the result section.

5.3 HEM as a Markov Decision Process and Its
Solution

We formulate our HEM problem as a set of discrete states, where each state represents

a binary formulation of the power levels of home appliances. The MCCU issues com-

mand to switch these power states. We model the power states as a Markov Decision

Process (MDP) and derive its solution using reinforcement learning (RL) based Neural

Fitted Q-Iteration (NFQI) algorithm. The reason for choosing RL with neural network

function classifier is based on the type of system being modeled and its behavior. As

4[Online] Available : https://mosquitto.org/.
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per [155] and [156], the machine learning algorithms are divided into unsupervised

and supervised learning. For unlabeled data algorithms like k-means, gaussian mix-

ture models are applied to the data. However, as we have historical data [148] to be

used for our modeling, these algorithms will not be the best suited for our scenario.

For labeled data training and fitting, algorithms like regression, decision trees, support

vector machines, naive Bayes classifier and neural networks are used. As the HEMaaS

system has user interaction and feedback from wireless access point of the appliances,

only using supervised learning algorithms to fit the data for maximum accuracy/mini-

mizing cost will be time and resource consuming. The algorithm has to interact with

the environment and objects, learn from their feedback and should update its goals

accordingly. Thus reinforcement learning (RL) [157], which starts from a particular

state, learns from the environment and update its goals is the best suited for our appli-

cation. As the algorithm will pass through multiple states in order to reach its optimum

goal, a supervised classifier can be used in conjunction with the RL algorithm. Neural

network is slow, but classifies accurately in comparison to other supervised learning

methods [158]. Hence it is chosen as the modeler for our system.

MDP [159] is a set of discrete time stochastic control process where outcomes are

obtained with a combination of partly random events and partly by a decision making

process. At each time step, the MDP is modeled as a sequence of finite states si ∈ S,

the agent action ai ∈ A that are evaluated based on a random process to lead the agent

to another state. For each action performed, the agent receives an award R. As in [159],

MDP is formulated as a set of four-tuple <S,A,P,R>, where P is the state transition

probability when agent moves from state (s(t)→s(t + 1)) ∈ S. From the current state

si(t) ∈ S to state s j(t) ∈ S in response to action a ∈ A, the transition probability is

P(si,a,s j) and an award R(si,a) is received. Let sk denote the state of the system
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just before the kth transition. In an infinite horizon problem (s→ 1...∞), maximum

average discounted reward received is found using the action executed at each state

using a reward policy π(s). RL [157] is a machine learning approach that solves the

MDP problem. It learns the policy online with real-time interaction with the dynamic

environment and adjusts the policy accordingly. After a certain set-up time, the optimal

policy can positively be found.

Q-learning is an online algorithm that performs reinforcement learning [160]. The

algorithm calculates the quality of a state-action pair which is denoted by Q and is ini-

tialized to zero at the beginning of the learning phase. At each step of environment

interaction, the agent observes the environment and decides on an action to change

state based on the current state of the system. The new state gives the agent a reward

which indicates the value of the state transition. The agent keeps a value function

Qπ(s(t),a(t)) according to an action performed which maximizes the long-term re-

wards. The Q-factor update equation with discounted reward is as follows

Qt+1(s(t +1),a(t)) = Qt(s(t),a(t))+α(s(t),a(t))[R(t)+

γ ·MAX
(
Qt(s(t +1),a(t))

)
−Qt(s(t),a(t))]

(5.1)

Where, α(s(t),a(t)) is the learning rate (0<α<1) and γ is the discount factor within

the range 0 and 1. If γ is close to 0, the agent chooses immediate rewards, else it will

choose to explore and aim for long-term rewards. In [160] it is proved that the learning

rate α is a function of k, where k is the number of state transitions. It satisfies the

condition as

α
k =

A
B+ k

(5.2)
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Where, A and B need to be found out using simulations.

Online learning methods like Q-learning are good from a conceptual point of view

and are very successful when applied to problems with small, discrete state spaces.

But for more realistic systems, the ‘exploration overhead’, stochastic approximation

inefficiencies and stability issues cause the system to get stuck in sub-optimal policies.

Updating the Q-value of state-action pair (s(t),a(t)) in time step t this may influence

the values (s(t−1),a(t)) for all a ∈ A of a preceding state st−1. However, this change

will not back-propagate immediately to all the involved preceding states. Batch Rein-

forcement Learning (BRL) typically address all three issues and come up with specific

solutions. It performs efficient use of collected historical data and yield better policies

[161]. It consists of three phases, which are exploration, learning and application. Ex-

ploration has an important impact on the quality of the policies that can be learned.

The distribution of transitions in the provided batch must resemble the ‘true’ transition

probabilities of the system in order to allow the derivation of good policies. For achiev-

ing this, training of samples is done from the system itself, by simply interacting with

it. When samples cover the state spaces closed to the goal state, policy achieved will

be closed to the optimal policy and convergence would be faster. NFQI algorithm is

one of the popular algorithms described in [162]. Given a set of transition samples over

(s(t),a(t),R(t),s(t+1)) and an initial Q-value q0
s,a = 0, derive an initial approximation

Q0 with Q0 = q0
s,a. Update the value of qk

s,a at each iteration. Define a training set T k

and convert the update problem into a supervised neural network based learning prob-

lem. Finally, find the resulting function approximator Q̂i using the pattern trained using

set T k. At the end, a greedy policy is used to define the policy π(s).

π(s) = argmax
a∈A

Q(s,a) (5.3)
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5.3.1 State-Action Modelling of Appliances

The software architecture of the homes in communities shown in Section 5.2.2 de-

scribes a typical condo home architecture with living room, bedroom, kitchen and

washroom. Each of the sections have various common home appliances having var-

ied peak load power rating as in Table 5.1 as taken from [163]. The states s(t) defined

in the Algorithm 4 are different combinations of power levels derived from the peak

power rating of the appliances. Apart from refrigerator all other appliances can be

turned On/Off in a smart home as the refrigerator needs to continuously run throughout

the day and should not be stopped. Usage pattern of all other appliances vary through-

out the day and can be controlled through the MCCU. Therefore, in total there are 10

appliances and a 2n−1 transition states depicting various combination of power levels

(n = 9) which results in 511 states. Lets depict each appliance in ascending order of

their peak power level from Table I with level ’pl’. Thus Lighting will be symbolized

by p1 and WasherDryer by p9. The power values are coded as binary states i.e. 0

represents the Off state and 1 represents On state. For example, 001001010 means

Microwave, Heater−2(Bedroom) and Stove are in On state and rest all are in Off con-

dition. The total power consumed at that instant t is 7600 Watts if every On appliance

is operating at peak load.
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Table 5.1: Maximum load rating of home appliances

Appliances Peak Power Rating [Watts]

Heater - 1 (Living Room) 2500

Heater - 2 (Bedroom) 2000

Heater - 3 (Kitchen) 1500

Iron Center 1000

Microwave 1100

Dishwasher 1300

Lighting 600

Stove 5000

Washer Dryer 5500

Refrigerator 150

There are four different actions that can be performed based on the states. Turning

the appliance Off, turning it On, pausing the operation and postponing the operation.

For the case of simplicity, turning the appliance Off is considered as an required action.

Also pausing and postponing the operation of the appliance can be selected for the sym-

bolic Off state through the MCCU control based on the situation. The representation

remains the same but power level changes. Moreover, we also define User Input Prefer-

ences (UIP) as a user input control which changes the decision of the MCCU controller

algorithm as desired by the user at a certain time interval. After the scheduling task is

over, the control is shifted back to MCCU algorithm. Agent can move from one state

to another state after performing an action. The user inconvenience is modeled in the

reward matrix and the goal of the strategy is to minimize the user inconvenience.
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5.3.2 User Convenience and Reward Matrix

In this section, user convenience UC(t) is modeled at a time instant t and the goal is to

maximize the UC(t). The reward values for turning off an appliance is based on the user

inconvenience. The parameters taken to model UC(t) are user preference (Pa(t)) of

the appliances, power consumption energy cost saving (Ca(t)), and robustness (Sa(t)).

Maximum inconvenience is caused by turning off an user preffered appliance at a given

time. The time slot is discretized for every 15 minutes regarding the preferences and is

divided into four times of the day i.e. Morning(MR), Afternoon(AF), Evening(EV) and

Night(NT). Table 5.2 depicts the (Pa(t)) values of the appliances for different times of

the day and the preferences are set according to a typical winter usage in Canada.

Table 5.2: User preference of appliances (Pa)

Appliances Morning(MR) Afternoon(AF) Evening(EV) Night(NT)
Heater - 1 (Living Room) 1 0.3 1 0.3
Heater - 2 (Bedroom) 1 0.3 0.4 1
Heater - 3 (Kitchen) 0.6 0.3 0.7 0.1
Iron Center 0.6 0.1 0.1 0.1
Microwave 1 0.1 0.8 0.1
Dishwasher 0.5 1 0.3 0.7
Lighting 0.4 0.1 0.7 0.1
Stove 0.7 0.1 1 0.1
Washer Dryer 0.6 0.6 0.3 0.5

User inconvenience UIC(t) due to turning off an appliance with preference repre-

sented by Table 5.2 will become

UIC(t) =C1 ·Pa(t) (5.4)

C1 is a constant and is set to 1 to give user preference maximum importance while

choosing the agent action. As appliances are turned off, energy savings in terms of

the cost is achieved. So turning Off the maximum power consuming appliance at a

given time t will give the maximum convenience to the users in terms of cost savings.
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Rest all appliances’ energy cost is normalized w.r.t the maximum power load of the

maximum power consuming appliance at t. User inconvenience UIC(t) due to turning

off an appliance is also dependent on the cost saving (Ca(t)).

UIC(t) =C2 · (1−Ca(t)) (5.5)

The more the cost saving, lesser the user inconvenience. But cost cannot be saved

sacrifising preference comfort for users. Hence, constant C2 will have lower contribu-

tion to the UIC(t). We take C2 as 0.5 here for our case. Emergency (Ea(t)) gives users

options for choosing to start an appliance regardless of the time of the day, power con-

sumed and preference control. When the user choose to run an appliance, it becomes

a don’t care condition in the state for that instant t. Hence the number of state-action

pair for the reward matrix decreases. The appliance power is substracted fom the goal

usage power.

Section 5.2.2 describes how MQTT handles broker security with Password Authen-

tication, Client ID Authentication, SSL/T LS Certification and firewalls. Robustness of

a system shows how it is immune to security threats and fault tolerant. Less robust

system also creates inconvenience to the users. Robustness of the system is modelled

behaviouraly has been categorized as {Good, Medium and Bad}. For each behaviour

of the system a constant C3 value have been assigned to the UIC(t) function as

UIC(t) =C3 ·Sa(t)

C3 =


0.2,Good

0.3,Medium

0.5,Bad

(5.6)
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The user experiences more inconvenience for a Bad system as compared to a Good

system in terms of their robustness measure. User convenience UC(t) is calculated

from (5.4), (5.5) and (5.6) as

UC(t) = 1−
{

C1Pa(t)+C2 (1−Ca(t))+C3Sa(t)
3

}
(5.7)

Algorithm 4: Reward Matrix (R) Computation Algorithm
Initialize: n,R(s,a) = Zeros(2n−1)

Initialize: Threshold Power (Th)

Load : Actual power consumption curve

1 while (s,a) ! = (2n−1) do

2 R(s,a)←−1; (State Transition Not possible)

3 if cumulative power ≤ Th (Goal State) then

4 R(s,a)←0; (Turning Off an Appliance)

5 R(s,a)←1; (transition to the same state)

6 else

7 R(s,a)←0; (transition to the same state)

8 R(s,a)←UC(t); (Otherwise)

9 end

10 end

Reward matrix (R) is based on the user convenience values for each appliance using

Algorithm 4. Size of the reward matrix depends on the number of appliances and the

number of power levels the house agent can occupy. The size of the reward matrix for

this problem is 255×255. Power level zero is not taken into consideration as it is im-

possible for the power to reduce to zero level in a home throughout the day. Algorithm

4 depicts the steps to formulate the reward matrix and is true for any number of state
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Algorithm 5: Reward Matrix (R) Computation Algorithm
1 {

1: function UC(C1,C2,C3,Pa,Ca,Sa)
if Goal reached without turning Off appliance then
UC(t)← 1
end
if Goal reached after turning Off appliance then
UC(t)← 1−UIC(t)
end
if Goal not reached after turning Off appliance then
UC(t)← 1−UIC(t)−0.2
end
if Goal reached but resulting power level ≤ 0.6·Th then
UC(t)← 1−UIC(t)−0.1
end
UC(t)←0

2: return UC(t)

}

transitions. According to required threshold power (T h) to be achieved, reward matrix

R(s,a) is computed as per Algorithm 4. T h is the goal state where the optimization of

power stops. Algorithm 5 depicts the process to compute the user convenience. The

goal state may be reached with or without turning off an appliance. According to the

power level where the goal state is reached, user convenience value is penalized. The

most penalty is for goal state not being reached even after turning off an appliance. The

penalties are 0.1 at goal state power less than or at 60% of threshold power and 0.2 for

goal not being reached even after turning off an appliance.

5.4 Neural Fitted Q-based Home Energy Management

The proposed Neural Fitted Q-based Home Energy Management (NFQbHEM) algo-

rithm is described in this section. The algorithm is based on RL based NFQI method
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as in Section 5.3. The algorithm works in three phases: exploration, training and appli-

cation. In the exploration phase, NFQbHEM captures the historical demand data based

on different seasons [163]. Winter month data has been chosen in our application. The

algorithm is defined in Algorithm 6 and the steps are listed as follows,

Algorithm 6: NFQbHEM Algorithm
Input : Define Q0 = q0

s,a = 0, sk = T h
Output : π(s)

1 IT ER←200
2 T k←empty set
3 θ←randomweight
4 while (||Q(s+1,a)−Q(s,a)||< 10−4) do
5 qi

s,a = r(t) + γ·MAX Qi−1
(s(t +1),a(t)) ;

6 for 1:ITER do
7 T k←T k−1∪(s,a;qi+1

s,a );

8 δ←Q̂(s(t +1),a(t))−Qi
(s(t +1),a(t));

9 φk(s,a)←exp
−
||s− sk||2

2∗σ2
k ;

10 θ←θ+αδφ(s,a);
11 end

12 P(s,a)← eExplorationCount ·age ·Q(s,a)
Σ(eExplorationCount ·age ·Q(s,a))

13 end
14 return π(s)

Exploration Phase:

Step 0 (Inputs): Set the Q-factors to some arbitrary values (e.g. 0).

Step 1 : For each state s, the set of admissible actions, a is defined, and an action a ∈ A

is chosen randomly and applied. After applying a(t) in s(t), the next state s(t + 1) is

reached and the immediate reward r(t) from Algorithm 4 is calculated.

Step 2 : The set of (s(t),a(t),R(t),s(t +1)) is inserted from the environment as a new

136



sample F . Repeating the process, sufficient samples are found to train the algorithm.

Training Phase:

Step 1 : The training initializes Q0 = q0
s,a = 0, and tries to find a function approximator

Q̂i.

Step 2 : Similar to the Q-update process, append a corresponding pattern set T k to the

set (s,a;qi+1
s,a ).

Step 3 : As our historical data is a curve fitting problem, Radial Basis Function Neural

Network (RBFNN) [164] is chosen to approximate the function Q(s,a).

Step 4 : The feature function φ : S x A maps each state-action pair to a vector of feature

values.

Step 5 : θ is the weight vector specifying the contribution of each feature across all

state-action pairs. The weight is updated at each iteration. The training is done for 200

iterations in our case.

Execution Phase:

Step 1 : Current data determine the state of the system.

Step 2 : A greedy policy is used to find the policy π(s) as in (5.3).

Step 3 : Later in learning with more episodes, exploitation makes more sense because,

with experience, the agent can be more confident about what it knows.

Step 4 : Stopping criterian with absolute error

||Q(s+1,a)−Q(s,a)||< 10−4.
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5.5 Experimental Results

This section describes the results of HEMaaS platform with the NFQbHEM algorithm

to control 10 appliances in a sample condo home in a smart community. The sample

condo home is a one bedroom condo with 10 appliances connected wirelessly to the

MCCU. Power measurements have been taken consistently for a month and NFQb-

HEM algorithm have been applied to the measured load. Due to the experimental

nature of the setup and results, the results have been presented in the context of the

sample condo home. Comparison with other architectures in literature have not been

drawn as the method described here is unique to the setup and it would be unfair to

compare algorithms with different setup. Due to hardware complexity, it is very hard

to implement other algorithms for the setup explained in this Chapter. As explained

in the software architecture and communication interface in Section 5.2.2, the MCCU

consists of a Raspberry-Pi3 deploying a node-red platform. MQTT (Mosquitto) is used

as the broker between the MCCU publisher and subscribing home appliances. Custom

python code with the NFQbHEM algorithm deployed on it runs on the Raspberry-Pi3 to

control the home appliances’ Delay/Pause/On/Off operation via sonoff wi-fi switches

through a MQTT gateway. The node-red dashboard interface designed in this Chap-

ter offers an easy and convenient user interface (UI) for a homeowner to interact with

the HEMaaS system. Figure 5.3 and Figure 5.4 illustrates our user interface (UI) flow

design and dashboard control respectively. The UI shows the node-RED flow of the

different appliances as connected to the MCCU. Each appliance is controlled through

a GPIO pin and follows the Home/(Room)/(Device)/Pin hierarchy. The proposed UI

also offers several visualization features to a user. They can have access to real-time

and historical appliance usage information with graphs via the sonoff accumulated data
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information of real time power usage. User Input preferences (UIP) can be set via the

dashboard. The different options which are available include setting a temperature for

Heater-1, Heater-2, Heater-3 and washer-dryer, rescheduling washer-dryer operation

and starting necessary appliances immediately bypassing the automated control for a

particular duration. The UI is also accessible from anywhere in the world via the smart-

phone app. If for any reason there is a communication failure, the local settings of the

appliances will take precedence.

Figure 5.3: User interface design.
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Figure 5.4: HEM interface.

Matplot library of python gives us the tool to analyse the power demand data for

different cases. Two different cases have been discussed here for analyzing and plotting

our results.

Case I : A sample day’s total power consumption data is compared with different peak

power reduction of 5%,10%,15% and 20% of the total peak demand. The user conve-

nience is also shown as a comparison.

Case II : The user convenience in terms of random (Good, medium and bad) behavior

of the system is analyzed in this case.

For the Case I above, the energy in KWh savings and reduction in carbon-footprint for

a community consisting of 85 condos of our typical architecture as in Section 5.2.1 is

also plotted.
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Figure 5.5: Plot of the total demand versus time during a typical Canadian winter
month in Ontario

5.5.1 Case I

Figure 5.6: Plot of sample episodic run NFQbHEM learning process
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In this section, the actual power consumption plot is generated using 10 smart appli-

ances. The plot in Figure 5.5 shows the peak demand in watts versus time of the day.

The interval of time duration is 15 minutes. Starting with initial Q(s,a), the HEMaaS

platform has to learn to find the optimal path when peak demand power during a cer-

tain interval exceeds the available power. The available power is taken as a percentage

reduction of the peak power. 5%,10%,15% and 20% are taken as the peak reduction

percentages to test and validate our methodology. Algorithm 6 has been initialized

with starting parameters of learning α = 0.5, discount γ = 0.8, A and B as 90 and 100

respectively. The center state sk is taken as the median power consumed at a particular

interval. The peak power is 6300 watts and Algorithm 4 depicts the reward matrix ini-

tial computation. The total energy consumption historical data of a typical condo has

been taken from national resources canada [165] for a typical winter month in Canadian

ontario province. The feature function φ is derived from approximating the curve of

the historical data and is used to train the weight vector θ . When the total power con-

sumption is greater than the peak power power reduction, it selects actions (randomly)

and moves from current state to a new state, receives reward and then it starts issuing

control signals (Delay/Pause/On/O f f ) to other appliances until one of the goal states

is reached.

Figure 5.6 depicts the learning process of the NFQbHEM algorithm. The graph

is plotted between number of episodes algorithm running for look-up table based Q-

learning and the neural network Q-learning based NFQbHEM algorithm. The pro-

posed algorithm learns faster and reaches a stable value in only about 570 episodes as

compared to look-up only based Q-learning. The algorithm is stopped at 570 episodes

as the error achieved is 10−5. Thus neural network modeler helps the Q-learning

achieve its goal state faster. Figure 5.7 shows the total demand versus time for different

142



peak reduction percentages. Once the optimal policy is found, the MCCU will execute

the sequence of rules (turning off appliances, rescheduling their timing of operation and

temperature control one by one) until the goal state with maximum user convenience is

reached. At the optimal policy, MCCU determines when the power goes above the de-

sired reduction, it modifies its power as in Figure 5.7. Table 5.3 shows the appropriate

actions taken by the MCCU unit at varied time intervals for different appliances.

Table 5.3: Actions taken by MCCU

Time
Required

Load Reduction
Required Action

5% Reduction Threshold

10:15-10:30 am 400 W Turn off the Heater-1 and Heater-3

10% Reduction Threshold

10:15-10:30 am 650 W Turn off the Heater-1, Heater-2 and Heater-3

6:00-6:15 pm 600 W Reduce the temp. setting of Heater-1

15% Reduction Threshold

6:00-6:15 am 500 W Reduce the temp. setting of Heater-1 and Heater-2

10:00-10:15 am 1500 W

The temperature setting of the washer-dryer may be

changed to reduce the power demand or washer-dryer

operation may be rescheduled to another time.

10:15-10:30 am 1500 W

The temperature setting of the washer-dryer may

be changed to reduce the power demand or washer-dryer

operation may be rescheduled to another time.

5:00-5:15 pm 250 W Turn off the Heater-1

5:15-5:30 pm 300 W Turn off the Heater-2

6:00-6:15 pm 600 W Reduce the temp. setting of Heater-1
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Time
Required

Load Reduction
Required Action

20% Reduction Threshold

6:00-6:15 am 500 W Reduce the temp. setting of Heater-1 and Heter-2

6:30-6:45 am 500 W Turn off the Heater-2

10:00-10:15 am 1500 W

The temperature setting of the washer-dryer may

be changed to reduce the power demand or washer-dryer

operation may be rescheduled to another time.

10:15-10:30 am 1500 W

The temperature setting of the washer-dryer may be

changed to reduce the power demand or washer-dryer

operation may be rescheduled to another time.

11:15-11:30 am 150 W Refrigerator Turned Off

4:45-5:00 pm 150 W Turn off the Refrigerator

5:15-5:30 pm 500 W Turn off the Heater-3

5:30-5:45 pm 800 W Turn off the Heater-2 and Heater-3

6:00-6:30 pm 600 W Reduce the temp. setting of Heater-1

The user convenience (UC), is shown in Figure 5.8 for the four peak reduction

threshold values. It can be inferred from the figures that the UC decreases with the

increase in the threshold for power saving. Some of the peak load consumption which

lies during the afternoon and evening time slots are affected severely. One suggestion

of improvement in the user convenience could be having a variable thresholds for the

NFQbHEM algorithm. Therefore the times of day having maximum user utility power

consumption, the available power threshold can be increased and can be compensated

with a lower available power threshold during other Off peak times while maintaining

the overall average power threshold at the same level. If the user convenience level can

be maintained more than 70% for most times of the day, then the HEMaaS system can
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Figure 5.7: Plot of the total demand versus time for different peak reduction per-
centages
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Figure 5.8: Plot of the user convenience (uc) versus time

Figure 5.9: Plot of the user convenience (uc) versus time for (20% Good, 60%
Medium and 20% Bad) and (10% Good, 40% Medium and 50% Bad) ro-
bustness measure.
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be successful in delivering a coherent and inter-operable platform.

In this section, the behavioral modeling of the system is considered in terms its

robustness. Robustness measure evaluates a systems quality in terms of security and

fault tolerance. To simulate this behavior in the system, the UC(t) from (5.6) has been

chosen with randomly assigning measure of robustness C3 at different time intervals.

The power level of peak reduction at 15% is taken as the threshold. Figure 5.9 depicts

the UC w.r.t the time of the day and is compared for two different situations. The

first situation has (20% Good, 60% Medium and 20% Bad) robustness measure and

the second situation has (10% Good, 40% Medium and 50% Bad) robustness measure

respectively. The user convenience is severely affected for both cases specifically in

the second situation, due to presence of more faulty/malicious channel. Thus security

and fault tolerance is shown to have significant effect to the users. Once the UC goes

below 50%, the system is considered as a very poorly managed system where users are

forced to save energy sacrificing their comfort, which is highly undesirable.

5.5.2 Case II

The carbon intensity per KWh (CIPK) is a fundamental measure of a sustainable soci-

ety. The lesser the CIPK, the better the society in terms of its environment and livability

index. The energy savings that are obtained from results in Section 5.5.1 can be seen

as potential price saving for the community as well as a means of reducing the CO2

gas emissions. As Canada is progressing towards a sustainable green building infras-

tructure, it is a healthy sacrifice to have some inconvenience to achieve the greater

benefit of having a greener environment in terms of achieving lesser carbon emissions.

From [165], the Ontario province’s CIPK is obtained as 125 gr−CO2 per KWh. Using

the CIPK, the energy savings and carbon emission savings have been computed for a
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community consisting of 85 condos. Figure 5.10 shows the energy savings in Mega-

Watt-hour (MWh) per year. It also shows the carbon-footprint savings in Kg−CO2

per year. The improvement is nearly 14 times from 5% to 15% peak power reduction,

which is quite substantial.

(a) Energy savings with peak demand reduction

(b) Plot of carbon-footprint reduction

Figure 5.10: Comparison of peak reduction energy savings and carbon-footprint
reductions
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, the major challenges of energy efficient implementation of architectures

and technologies with respect to an IoE network have been discussed and different

solutions to solve these problems have been critically evaluated. In Chapter 1, we

have discussed the layered architecture of IoE systems and showed how physical layer,

monitoring and security layers are linked to each other. Our thesis tackles the issue of

energy-efficient implementation in these layers. In Section 1.2, we categorize the prob-

lem of energy-efficiency based on hardware design, wireless energy harvesting, energy

saving policies, data transmission, management and control, and carbon-footprint gen-

eration for IoE networks. We have proposed solutions to the issues mentioned in Sec-

tion 1.2 through Chapter 2-5. In Chapter 2 and Chapter 3, issues related node battery

related issues are discussed and solutions were found out to increase the network life-

time through wireless energy harvesting, data transmission , error correction coding

and data awareness. In summary the major take aways of the work in this thesis are as
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follows:

• The major contribution of the work in Chapter 2 is to provide a solution for

data-utility lifetime trade-off problem by incorporating a detailed energy model

combining various strategies of maximum network utilization and network life-

time increase by error correction, proper duty cycling and wireless battery energy

replenishment. We provide user the flexibilty of choosing their system trade-off

parameters by showing sumulation results for varied cases. This caters to a broad

application scenario for the IoE systems having wireless sensing objects.

• Continuing our objective of saving energy, in Chapter 3, we have applied our

energy model solution from Chapter 2 to save energy through data awareness in

an event driven IoE system as compared to a traditional WSN system. Our first

goal is to apply the energy saving problem with respect to a IoE system and then

use the diversified nature of the IoE systems to solve the problem and save battery

energy and increase network lifetime.

• Our major contribution in the Chapter 4, is the design of a low energy, resource

limited PUF prototype current amplification circuit that mitigates the key attacks

aimed at the system such as man in middle, cloning, and modelling attacks.

Replicating and authenticating the system for the intruder is specifically blocked

by our proposed solution. The results are verified by measurements and simula-

tions. This provides the solution for an energy-efficient security design.

• After proposing, testing, validating and implementing energy-efficient design for

individual layers and blocks in Fig. 1.2 through Chapter 2 to Chapter 3, in Chap-

ter 5 we have implemented the algorithmic models in to smart homes as micro-
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cosms of smart cities based on IoE systems (which has a system level implemen-

tation and application). This implementation deals with the policy-based issues

that have an impact throughout the system architecture. Through measurements,

we validated our energy and data awareness model incorporating security for a

typical IoE application scenario. This gives the users of this work flexibility in

choosing their system. It also shows the merits and demerits of applying each

criteria of energy-efficient models of Chapter 2-4 to their overall convenience

and system’s QoS.

Specifically in Chapter 2, Wireless energy harvesting is investigated as a remedy

to prolong the lifetime of sensor nodes and enable maintenance-free operation. Wake-

up radio scheme is incorporated as an efficient solution to address the idle listening

energy dissipation of sensor nodes. RRNS Error control coding is proposed to improve

the reliability of the transmission and reduce re-transmission, hence, reducing energy

consumption. A utility-lifetime maximization problem incorporating WEH, WUR and

ECC schemes is formulated and solved using distributed dual subgradient algorithm

based on Lagrange multiplier method. Simulation results verify the effectiveness of

the proposed schemes in reducing the energy consumption and accordingly, carbon

footprint of wireless sensor nodes, providing the means for a greener wireless sensor

network.

In Chapter 3, we propose a Data aware energy efficient distributed clustering pro-

tocol for IoT (DAEECI) by saving CH selection energy using active RFID tags, cutting

processing energy by incorporating data awareness factor in the system and improv-

ing lifetime by inculcating RF energy harvesting. We propose a PMU architecture that

accommodates a battery charging scheme using the harvested energy through a WEH

unit. We formulate energy consumption models in each round data is sent from sensor
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nodes to BS through gateway nodes. Our simulation depict substantial improvement in

lifetime of network and data delivery to the BS.

The hardware-based related energy efficiency issues are dealt in Chapter 4. These

issues are discussed in terms of security layer implementation of an IoE system. The

energy-efficient security hardware design is an important part of the IoE system which

can’t be neglected. A hardware based energy-efficient PUF current amplication proto-

type have been developed and tested. Specifically, in Chapter4, we have proposed an

IoT sensor PUF-based security design that exploits variations of physical sensor char-

acteristics (e.g., dark current, is presented in this work) and challenge/response pair

generation using the quadratic residue property. We have proposed algorithms for de-

vice authentication and encryption by using the PUF challenge/response outputs. Our

analysis shows that there is strong relationship between the energy consumption of the

sensor node and the dynamic range of the TransImpedance Amplifier (TIA) circuit,

which is determined by signal strength and noise at the output of TIA. Thus, one of

possible design choices for configuring the PUF circuit is to use RF = 50MOhm and

CF= 10pF to get a dynamic range of 130.3 (7bits) with energy consumption of 0.157 J.

Through simulations and measurements, we have shown that design is better in terms

of energy and costs requirements than other state-of-the-art security algorithms. More-

over, it provides a two-fold secure data transfer and is resilient towards various attacks.

This method can be extended to other IoT sensors, if suitable physically varying and

unclonable circuit properties are chosen.

Energy management in smart cities is an indispensable challenge to address due to

rapid urbanization. In Chapter 5, we first present an overview of energy management

in smart homes to build a green and sustainable smart city, and then present a unify-

ing framework for IoT in building green smart homes. To achieve our goal, a neural
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network based Q-learning algorithm is proposed to reduce the peak load demand of

a typical Canadian home while minimizing the user inconvenience and enhancing the

robustness of the system. The user convenience level for 5% and 10% load reduction

is maintained at and above 80%. Whereas other levels of peak power reduction causes

more discomfort for the users. While Canada Green Building Council is working to-

wards finding ways of making buildings greener and community sustainable, a novel

method has been applied for finding suitable strategies for efficient management of

home energy demand and reducing the energy consumption during peak period in a

typical Canadian condo. In a purely market-driven energy management environment,

peak-reduction is mostly valuable for utilities. In order to make the demand side man-

agement more user friendly and consumer centric, a reward matrix based self-learning

algorithm has been applied. The energy savings and carbon-footprint reduction is also

shown to be quite significant. In future, it has been planned to incorporate real time

scheduling into the system to schedule and pause appliance operation. Moreover, it is

also proposed to design a system that learns from feedback smart sensors in the envi-

ronment to ease the MCCU decision making and reduce user input, yet still maintaining

a high enough user convenience.

6.2 Future Work

The approaches presented in this thesis are not exhaustive. In this section, we propose

some possible research directions that can be followed from this thesis.
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6.2.1 Highly Efficient, Low-cost, and Small-Form-Factor Wireless
Energy Harvesting System

The key challenge in successful large-scale deployment of sensor devices in an IoE

infrastructure is to minimize their impact on users and the environment. Non-intrusive

devices need to be small, be fabricated and deployed at very low cost, and are expected

to operate in a selfsufficient manner for a long time. A WEH unit as an integral part

of such devices must comply with such cost and size requirements. Efficiency is an-

other crucial factor for a WEH system. High efficiency becomes increasingly relevant

considering that the transmitted power by the dedicated source is usually limited due

to health issues and interference constraints. Commercial RF harvesting systems cur-

rently existing in the market enable single-band RF harvesting at sub-milliwatt power

levels with efficiencies as high as 50 percent. However, extensive studies are still be-

ing carried out to improve the performance of WEH systems at the circuit and system

levels. Energy beamforming [166], high gain antennas, and multi-band harvesting are

among the other hot topics in the context of WEH systems for IoE.

6.2.2 Channel Statistics for IoE Systems

The scenarios and their respective analysis in our thesis in chapter 2 and Chapter 3 as-

sume the channel as static and time invariant. Practically, channel characteristics vary

depending on the environment in which the number of interferers and the number of

paths available from source device to sink. Harvested energy depends on the distance

between sink and sensor node. In the presence of fading or multipath, the received

energy for the purpose of harvesting and the transmitted data are adversely affected. In

[167], a compressive sensing based approach is proposed to recover sparse signals from

multiple spatially correlated data transmitted to a fusion center. Recently, in [168], re-
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searchers have proposed techniques to reduce the amount of packets to be retransmitted

in case of faulty transmission, eventually saving energy.

6.2.3 Cross-Layer Design

Although in Chapter 3 we have used data-awareness for our design in the physical

layer, the sensor device still has to operate in duty-cycled mode due to limited en-

ergy collection from the environment, and dynamically adjust duty cycles to adapt to

the availability of environmental energy. Such dynamic duty cycles pose challenges

for medium access control (MAC) layer protocol design in terms of synchronization,

reliability, efficiency of utilizing channel resource and energy, and so on. Therefore,

solutions of duty-cycling-aware middleware between MAC and physical layer power

management are highly desired. Moreover, dynamic duty cycling also has nontrivial

impact on the end-to-end performance of the network layer, including end-to-end de-

lay, throughput, and so on. However, the current routing protocol design for IoT has

paid very little attention to duty cycling. The problem of seamlessly integrating duty-

cycle awareness into the multi-path routing scenario has been dealt with in [169] using

a sleep scheduling mechanism; however, it still remains an open question.

6.2.4 Security and Privacy Concerns

In Chapter 4, we have not dealt with profiles of same manufacturer’s photodiode dark

currents in detail. In the future work, investigating the range of dark current profile

for the large sample of the same type of photodiode can provide a useful background

to determine the required range of bias voltage. Then, the existing actual dark current

profile can be used to evaluate the necessity of a step-up voltage converter which can

boost the typical voltage range used for a microcontroller (3.3V 5.0V) to the voltage
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level which is large enough for biasing a photodiode. In our prototype circuit, separate

discrete components such as a TIA and an opamp were used with an external power

source. However, these circuits can be more optimally designed and integrated in a

single die to increase the performance of a sensor node such as lower noise and reduced

power consumption. Integrating to a single chip would also increase the portability of

a sensor node, which is one of key requirements for IoT application.

6.2.5 Home Energy Management

Real-time management is a challenging issue for resource constrained sensor networks.

In the Chapter 5, the IoE system needs to rely on effcient service gateway to minimize

the amount of data to be sent by constantly receiving the feedback data from users, and

intelligent data oriented middleware design to only transmit real time information when

a reward matrix is to be calculated. The modelling is done through radial-basis neural

network. In future works, deep learning with boosting can be applied to faster train the

data to achieve better models.

Dynamic registration, bootstrap and management will be particularly considered for

a large scale deployment with devices coming in and out and changing their character-

istics and functionalities. The IoE device management should be suitable to develop an

open and universal ecosystem with sustainable interactions and interoperability among

things.
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Appendix A

Proof of the Lemma 2

We define Ē1 and Ē2 in ℜ|N|+|L(i)| as ET X(1+E(T,hi))+ERX(1+E(T,hi)) and EPR(1+

E(T,hi)P
′
)+Ri jESN respectively. If we denote ∞-norm as ‖.‖∞ and q-norm as ‖.‖q,

the lifetime objective functions of (2.17) are represented by -‖Ē1r + Ē2R‖∞ and -

(1/(ε +1))‖Ē1r+ Ē2R‖ε+1 respectively. Suppose {r∗,R∗} and {r∗ε ,R∗ε} be the optimal

solutions for the two objective functions. Then we have the following inequalities using

approximation of ‖.‖∞ from [170]

‖Ē1r∗ε + Ē2R∗ε‖∞

≤ ‖Ē1r∗ε + Ē2R∗ε‖ε+1

≤ ‖Ē1r∗+ Ē2R∗‖ε+1

≤ |N|1/(ε+1)‖Ē1r∗+ Ē2R∗‖∞

(A.1)
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The corresponding network lifetimes become Ti=1/‖Ē1r∗+Ē2R∗‖∞ and T ε
i =1/‖Ē1r∗ε +

Ē2R∗ε‖∞. From (39) we have,

1
|N|1/(ε+1)

Ti ≤ T ε
i ≤ Ti (A.2)

At limε→∞ T ε
i = Ti, and thus the lemma holds.

175



Appendix B

Proof of the Proposition 2

From (27), the gradient of the objective function D(λ ,µ) w.r.t λl ,

∇λ D(λ ,µ) =α ∑
i∈N

∑
j∈Ni

∇λUi(Ri j,Ps)− (1−α)sε
i ·∇λ si

≤ α ∑
i∈N

∑
j∈Ni

∇λUi(Ri j,Ps)≤ αU
(B.1)

By Definition 1 and Assumption 1 in Chapter 2, we can find the error in the cost

estimation of the link price λl when iteration c→c+1

‖D(λ (c+1))−D(λ (c))‖ ≤ ‖∇λ D(λ )T (λ (c+1)−λ (c))‖

≤ ‖∇λ D(λ )‖ · ‖(λ (c+1)−λ (c))‖

≤ L1/2
αU‖(λ (c+1)−λ (c))‖

(B.2)

From the above inequalities, we see that function is Lipschitz. Thus the solution gen-

erated with step size ϕc is optimal [170]. Let the update at each iteration c is given by
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∆λ (c). Then,

|∆(λ (c))|= |
ri j(c)

α∇λUi(Ri j,Ps)
∇λ D(λ )| ≤ R

α
|∇λ D(λ )| (B.3)

|∇λ D(λ )T ∆(λ (c))|
‖∆(λ (c))‖2 ≤

R
α
‖∇λ D(λ )‖2

( R
α
)

2
‖∇λ D(λ )‖2

=
α

R
(B.4)

According to [170], the step size satisfies 0<ϕc<
2

L1/2U R
. Similarly, the step size

bound can be proven for ψc.
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