
Data-driven Spatial Locality
by

Svetozar Miucin

B.Sc., University of Novi Sad, 2010
M.Sc., University of Novi Sad, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

January 2019

© Svetozar Miucin 2018

The following individuals certify that they have read, and recommend
to the Faculty of Graduate and Postdoctoral Studies for acceptance, the
dissertation entitled:

Data-driven Spatial Locality

submitted by Svetozar Miucin in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer
Engineering

Examining committee:

Alexandra Fedorova, Electrical and Computer Engineering

Supervisor

Ivan Beschastnikh, Computer Science

Supervisory Committee Member

Mieszko Lis, Electrical and Computer Engineering

Supervisory Committee Member

Michael J Feeley, Computer Science

University Examiner

Raymond Ng, Computer Science

University Examiner

Additional Supervisory Committee Members:

James Larus, École Polytechnique Fédérale de Lausanne

External Examiner

ii

Abstract

Over the past decades, core speeds have been improving at a much higher
rate than memory bandwidth. This has caused the performance bottlenecks
in modern software to shift from computation to data transfers. Hardware
caches were designed to mitigate this problem, based on the principles of
temporal and spatial locality. However, with the increasingly irregular ac-
cess patterns in software, locality is difficult to preserve. Researchers and
practitioners devote a lot of time and effort to improving memory perfor-
mance from the software side. This is done either by restructuring the code
to make access patterns more regular, or by changing the layout of data
in memory to better accommodate caching policies. Experts often use cor-
relations between the access pattern of an algorithm and properties of the
objects it operates on to devise new ways to lay data out in memory. Prior
work has shown the memory layout design process to be largely manual and
difficult enough to result in high level publications.

Our contribution is a set of tools, techniques and algorithms for au-
tomatic extraction of correlations between data and access patterns of pro-
grams. In order to collect a sufficient level of details about memory accesses,
we present a compiler-based access instrumentation framework called DI-
NAMITE. Further, we introduce access graphs, a novel way of representing
spatial locality properties of programs which are generated from memory
access traces. We use access graphs as a basis for Hierarchical Memory
Layouts – a novel algorithm for estimating performance improvements to
be gained from better data layouts. Finally, we present our Data-Driven
Spatial Locality techniques which use the information available from previ-
ous steps to automatically extract the correlations between data and access
patterns commonly used by experts to inform better layout design.

iii

Lay Summary

Over the past decades, the disparity between processor and main memory
speeds has grown significantly. Many important applications today suffer
from poor memory performance. To improve these applications, experts
manually tune the placement of data in memory. This process requires a
deep understanding of the algorithm and the underlying hardware on which
it runs. This work presents insights and analysis into how experts create
performant memory layouts, and proposes new abstractions, algorithms and
techniques to automate parts of the process. The proposed solutions have
the potential of helping performance-minded engineers to improve data lay-
out in their programs.

iv

Preface

Chapter 2 is a modified version of our arxiv technical report filed as:

• S. Miucin, C. Brady, and A. Fedorova. “DINAMITE: A modern ap-
proach to memory performance profiling.” arXiv preprint arXiv:1606.00396
(2016)., technical report

A shorter, peer-reviewed version of this work was published, ©2016
Association for Computing Machinery as:

• S. Miucin, C. Brady, and A. Fedorova. “End-to-end memory behav-
ior profiling with DINAMITE.” Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software En-
gineering. ACM, 2016.

I was the lead investigator on the project. Conor Brady helped build the
infrastructure to connect DineroIV [35] cache simulator and DINAMITE
compiled binaries, as well as implemented and wrote the matter appearing
in 2.3.2. I wrote the rest of the article and conducted all other experiments
in the chapter. Other authors provided editorial and technical advice.

Chapter 3 is a modified version of previously published peer-reviewed
work, ©2018 Association for Computing Machinery:

• Svetozar Miucin and Alexandra Fedorova. 2018. Data-driven Spa-
tial Locality. In The International Symposium on Memory Systems
(MEMSYS), October 1–4, 2018, Old Town Alexandria, VA, USA.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3240302.3240417

I was the lead investigator on the project. All of the research and writing
is my own, with editorial and technical advice from co-authors.

The work in 3.5.4 was conducted after the ”Data-driven Spatial Local-
ity” publication. I wrote all the text within it and conducted all described
experiments.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . viii

List of Figures . ix

List of Code Listings . xi

Acknowledgements . xii

Dedication . xiii

1 Introduction . 1

2 DINAMITE . 4
2.1 Introduction . 4
2.2 System design . 6

2.2.1 LLVM instrumentation pass 8
2.2.2 Log format . 9
2.2.3 Logging libraries . 10
2.2.4 Analysis toolkit . 14

2.3 Evaluation . 17
2.3.1 Identifying cache offenders 17
2.3.2 Structure splitting . 21
2.3.3 Shared variable detection 21

2.4 Future work and conclusions 25

vi

Table of Contents

3 Data-driven spatial locality 27
3.1 Introduction . 27
3.2 Access Graphs . 29
3.3 Hierarchical Memory Layout 33
3.4 Data-driven locality . 37

3.4.1 Generating input vectors 38
3.4.2 Coverage . 38
3.4.3 Training methodology and evaluation criteria 39
3.4.4 Tidy: a memory allocator wrapper 41

3.5 Evaluation . 42
3.5.1 Hierarchical Memory Layouts 44
3.5.2 Data layout in storage 45
3.5.3 Data-driven spatial locality 47
3.5.4 Benchmark suite experiments 53

4 Related work . 67

5 Conclusion . 72

Bibliography . 75

Appendices

Hardware . 83

vii

List of Tables

2.1 Log size comparison in 429.mcf 11
2.2 Cost breakdown of text and binary formats for 429.mcf, per

single log entry . 12
2.3 Instrumentation overhead comparison - 429.mcf 14
2.4 Logging library performance - 429.mcf 14
2.5 429.mcf top miss offenders . 17
2.6 CSV output of the miss summary tool for fluidanimate 19
2.7 Most accessed shared variables 24

3.1 SPEC CPU2017 and PARSEC analysis summary 62

viii

List of Figures

2.1 DINAMITE system diagram 7
2.2 Cost breakdown of text and binary formats for 429.mcf, per

single log entry . 11
2.3 Impact of buffering on performance of 429.mcf 12
2.4 Scaling improvements in PARSEC3.0 fluidanimate application 20
2.5 Tool output and modified code for structure splitting of 429.mcf 22
2.6 Scaling improvements WiredTiger after removing the shared

variable bug . 25

3.1 Workflow diagram . 30
3.2 Access graph example . 32
3.3 Hierarchical Memory Layout example 36
3.4 Hyperparameter search in mesh traversal 40
3.5 Hierarchical Memory Layouts cache and DTLB misses. Event

counts are normalized to original layout results. 44
3.6 Cache misses, TLB misses, and runtime for HML-derived lay-

outs in graph traversals. Normalized to original layout metrics. 46
3.7 Data feature importance and categorical accuracies, PageRank 50
3.8 Data feature importance and categorical accuracies, mesh

traversal . 50
3.9 Red-black tree grouping example 51
3.10 Stall breakdown . 54
3.11 Mesh traversal – Memory performance comparison between

different bucket sizes . 55
3.12 Pagerank – Memory performance comparison between differ-

ent bucket sizes . 56
3.13 RB Trees – Memory performance comparison between differ-

ent bucket sizes . 57
3.14 Data feature importance and categorical accuracies, red-black

trees . 57

ix

List of Figures

3.15 Performance improvement from using Tidy allocator wrapper
with hints based on the knowledge extracted by random forests 58

3.16 Performance measurements for SPEC CPU2017 and PAR-
SEC 3.0 . 60

3.17 Examples of community groupings 64

x

List of Code Listings

2.1 Trace plugin base class . 15
2.2 Example Spark Streaming kernel 15
2.3 429.mcf pbeampp.c excerpt 18
2.4 fluidanimate pthreads.cpp code excerpt 19
listings/hotcold.txt . 22
2.5 WiredTiger shared variable analysis result (JSON) 23

3.1 PageRank implementation loop body 48
3.2 Mesh traversal main loop . 49
3.3 Red-black tree search function 51
3.4 531.deepsjeng: Index calculation based on hash value 63
3.5 ferret: Sorted array accesses 65
3.6 ferret: Sorting criterion . 65

xi

Acknowledgements

I extend my sincerest thanks to my advisor Dr. Alexandra Fedorova, whose
guidance made this research possible and made me the researcher I am today.
I would also like to thank all of the contributors and co-authors for all their
hard work.

I would like to thank my family for believing in me throughout this
journey and my friends who were always there for me.

Finally, I would like to thank Mitacs, STMicroelectronics and Oracle
Labs for providing me with internship and co-op opportunities that helped
put some of my work into context.

xii

Dedication

To my wife, Nevena, whose love, support and brilliant discussions on scien-
tific methodology made life orders of magnitude more enjoyable.

xiii

Chapter 1

Introduction

Cache-based computer architectures are ubiquitous. They date back to
1970s, when hardware architects introduced them to tackle the growing di-
vide between CPU speeds and RAM bandwidth [1] [21].

Caches are banks of memory that are orders of magnitude faster than
DRAM, but also orders of magnitude smaller in size. Their purpose is to
hold a portion of the working set close to the cores for quick access. Caches
decide what data to keep local based on two assumptions about software
behaviour: spatial and temporal locality [70].

Spatial locality means that if a program accesses one location in memory,
it is likely to access its neighbouring locations in the near future. This
principle is reflected in the way cache memories transfer data. The unit
of transfer between cache memory and RAM is called a cache line and is
typically 64B in size. Furthermore, most modern caches are equipped with
next line prefetchers which take assumptions about spatial locality a step
further and issue sequential memory requests in advance.

Temporal locality means that if a program accesses one location, it is
likely to access it again in the near future. This is reflected in cache line
replacement policies such as Least Recently Used (LRU). Due to the closed
nature of cache implementations in hardware, we cannot be sure which re-
placement policies are implemented in production1, however recent research
2 shows that temporal locality is still one of the main considerations in
designing caches.

The entire mechanism of transferring data to and from DRAM is auto-
matically executed in hardware. Because of this, cache-based systems are
very easy to program compared to Explicitly Managed Memory systems de-
scribed in the prologue. The user does not need to worry about which data
are currently in the cache, they just need to ensure that their programs
exhibit good spatial and temporal locality.

As programs become more complex, preserving spatial and temporal lo-
cality becomes difficult. Studies from as far back as two decades ago [7]

1reverse-engineering work exists [6] suggesting modified Pseudo-LRU
2such as Dynamic Re-reference Interval Prediction [39] and Protection Distances [39]

1

Chapter 1. Introduction

show that modern database software spends roughly 50% of its time stalled,
waiting on memory transfers to complete. This trend continued into the era
of cloud computing [30], and the poor memory performance is attributed,
among other things, to the increase in working set size and irregular access
patterns. Improving locality of access has been shown to increase the overall
performance of programs, in some cases as much as an order of magnitude
[45] [43] [61] [14] [32] [75]. However, optimizing memory performance is
difficult. Significant advances have been made in understanding and opti-
mizing various array access patterns – static analysis of loops [22] [24], loop
tiling [57] [72], etc. Dynamically allocated pointer-based data structures,
such as lists, graphs, meshes, tell a different story. Solutions are typically
custom-tailored to a specific algorithm and data structure combination. One
approach to optimizing memory performance of programs relies on chang-
ing the layout of objects in memory to achieve better spatial locality
given the algorithm’s access pattern. The intuition for making better mem-
ory layouts is to put objects that are frequently accessed together
close to each other in memory. Prior work in the area [10] [42] [69] [65]
[17] [25] [75] [67] [36] [37] [76] [50] led us to two observations:

1. Each new data structure and algorithm requires a significant effort in
understanding the access patterns. This is done by experts in both
the domain and memory optimization areas.

2. Often, layout solutions are guided by the data itself. For example,
GraphChi [42] groups edges based on their destination node, and sorts
such groups based on their source nodes, allowing iterative algorithms
to make mostly linear accesses to storage when fetching data.

The rest of the work in this dissertation is based on the second obser-
vation that the in-domain properties of objects can be used to inform better
layouts, and aims to reduce the amount of effort and expert knowledge noted
in the first observation.

Chapter 2 presents our work in the extraction of memory access data
from programs, along with tools to process the said data. Chapter 3 intro-
duces a novel graph-based framework to capture the spatial locality proper-
ties of a program. It builds on this framework a set of techniques and tools
aimed at characterizing the potential for performance improvement, and fi-
nally extracting the kind of expert knowledge identified in prior memory
layout work. This expert knowledge entails understanding the connec-
tions between the access pattern of the algorithm and properties

2

Chapter 1. Introduction

of the accessed data objects, and how they can be used to derive
better layouts.

Hypothesis 1.1 The primary hypothesis of this dissertation
is that the type of expert knowledge about the
relationship of data and access patterns used
in prior work can be extracted automatically
from full memory trace accesses.

Hypothesis 1.2 The secondary hypothesis is that the extracted
expert knowledge can be used directly in con-
junction with hint-based allocators to improve
memory performance of programs.

The main contribution of this dissertation is the validation of hy-
potheses 1.1 and 1.2. Mainly, we have built a semi-automated method
for improving information about data and access pattern relation-
ships from programs. To that end, we contribute the following:

• A compiler-based approach to full memory access tracing, described
in chapter 2. We show the benefits of using compile-time instrumen-
tation to reduce the overhead and increase the amount of available
information in memory access tracing.

• Access graphs – a model for capturing spatial locality properties of
programs based on memory access traces, described in 3.2.

• A method for evaluating the potential for memory performance im-
provement from applying better data layout strategies. Our approach
uses access graphs to derive better data layouts, which can be used ei-
ther to estimate performance gains, or, more directly, to derive better
layouts of data in storage.

• The eponymous Data-driven Spatial Locality technique, which uses
random forest classifiers and data available from memory access traces
to find correlations between data values and access patterns of a pro-
gram. This validates hypothesis 1.1.

• An evaluation of the applicability of hint-based allocators to improve
memory performance in programs, based on the knowledge extracted
by Data-driven Spatial Locality technique. Our evaluation confirms
hypothesis 1.2 for one class of programs and reveals the obstacles to
applying hint-based allocators more widely.

3

Chapter 2

DINAMITE

2.1 Introduction

Memory performance is a limiting factor in many important programs. Tra-
ditional database systems, web servers, scientific algorithms and modern
data analytics programs alike were observed to spend 50-80% of CPU cycles
stalled on memory [7] [30]. That is, 50-80% of the time these programs are
unable to commit any instructions due to outstanding long-latency memory
accesses. Understanding and addressing the causes of these bottlenecks is
of paramount importance. Performance improvements from a more efficient
memory layout or improved locality of access are usually significant and in
some cases reach an order of magnitude [45] [43] [61] [14] [32] [75].

At the same time, optimizing memory performance is notoriously diffi-
cult. Compiler optimizations can be effective when static analysis is suffi-
cient to infer improvement opportunities. However, the scope of static opti-
mizations is limited [18], partly because insight into a bottleneck can often
be gained only during execution and partly because the compiler is limited
in how it can change data structure layout, particularly with dynamically
allocated data structures and in unmanaged languages. As a result, develop-
ers often resort to manually optimizing their data structures and algorithms,
relying on tools for dynamic program analysis and memory profiling.

Unfortunately, most existing tools suffer from either lack of generality,
portability, or flexibility. Conventional CPU profilers, such as perf [23], aim
to identify source locations that generate the majority of cache misses, but
because of skid effects in hardware counters [12], [38] or compiler optimiza-
tions, such as function inlining, this information is often imprecise or plain
wrong. Cachegrind [56] accurately identifies source lines generating cache
misses, but does not provide actionable insight that might lead the program-
mer to reduce them. Dprof [61] identifies data structures and fields that are
responsible for cache misses due to sharing among threads, but it is not flex-
ible enough to address other causes of poor memory performance and was
designed specifically for the Linux kernel. Similarly, Memprof [43] focuses
on identifying objects that cause remote accesses on NUMA systems, but

4

2.1. Introduction

the implementation is Linux-specific, tied to AMD hardware and does not
lend itself to other types of analyses.

To address this gap, we built DINAMITE – a toolkit for Dynamic
INstrumentation and Analysis for MassIve Trace Exploration. DINA-
MITE uses compile-time instrumentation to inject tracing code into the
program. At runtime, the program generates precise traces containing ev-
ery memory access, its source location and the corresponding variable name,
type and value. These traces are then used to perform various memory-
related analyses, for example, identifying highest cache-miss offenders, lo-
cating hot and cold fields of a data structure, correlating locality of accesses
with values of variables, detecting true and false sharing, building arbitrary
models of memory access patterns, and many others.

The approach of using instrumentation and tracing is by itself not new;
it is used in Pin [51], Valgrind/Cachegrind [56] and other similar tools.
Its main downside is high runtime overhead and very large execution traces,
which can reach hundreds of gigabytes even for small programs. However, for
the very challenging task of memory performance debugging this approach is
often the only practical option, because certain analyses, e.g., those relying
on cache simulation, can be performed only with a precise execution trace.

Key contributions of DINAMITE are as follows:

• The instrumentation is implemented as a pass in LLVM [44], so it is
applicable to any language with an LLVM front-end.

• Since the instrumentation is done at compile-time, the source-level de-
bug information assigned to trace entries is precise and easy to extract.

• DINAMITE is specifically designed for memory access instrumenta-
tion. By instrumenting at compile time, we can embed all of the
available debug information at no runtime cost. We show that shift-
ing the overhead to compilation and using custom binary format and
buffering in trace generation allows the runtime overhead to remain
similar or smaller than state-of-the-art instrumentation tools such as
Pin and Valgrind, while providing much more information about mem-
ory accesses.

• DINAMITE gives the user flexibility in how to handle execution traces.
The traces can be stored in the file system, but if the user does not
wish or cannot store these typically large traces, they can be analyzed
on-the-fly using a streaming analytics engine like Spark Streaming [77]
(or any other similar engine).

5

2.2. System design

• DINAMITE is easy to extend with additional analysis tools. A devel-
oper can write a new tool with a few lines of Scala (if using DINAMITE
with Spark) or any other language of choice. We target advanced devel-
opers who understand how software interacts with memory hierarchies
of modern processors, so we wanted to give them ultimate flexibility
in analysing memory traces.

We built three tools on top of DINAMITE. The first one produces vari-
able names and source lines responsible for the highest number of cache
accesses and misses. Using it, we reduced the last-level cache (LLC) miss
rate of 429.mcf from SPEC2006 by 55% and improved its performance by
12%. We also reduced the LLC missrate and improved performance of PAR-
SEC’s fluidanimate by 50% and 15% respectively.

The second tool implements Chilimbi’s structure splitting algorithm [19].
Thanks to it, we reduced the LLC miss rate of SPEC2006’s 429.mcf by 60%,
with the corresponding 20% reduction in runtime.

The third tool detects program variables that are heavily shared by many
threads. This tool enabled us to detect a previously known performance
bottleneck in WiredTiger, MongoDB’s back-end key/value store [3] [4] [5].
Even though the bottleneck was already known and fixed before we created
DINAMITE (in fact, this was one of the motivating reasons for DINAMITE),
the original discovery took several weeks, while DINAMITE pin-pointed
it in a few hours. Performance improvement of the read-only sequential
LevelDB benchmark implemented over WiredTiger reached a factor of 20
for 32 threads.

The rest of the chapter is organized as follows. Section 2.2 provides an
overview of DINAMITE design. Sections 2.2.2, 2.2.1 and 2.2.3 contain a de-
tailed discussion of the log format, LLVM instrumentation pass and logging
library. Section 2.2.4 discusses two implementations of analysis frameworks
– one in native C++ and another one using Spark Streaming. Section 2.3
describes the tools we created with DINAMITE and evaluates them on three
applications. Section 2.4 elaborates on possible avenues for future work.

2.2 System design

Our system is built from three components: an LLVM instrumentation pass,
a collection of output logging libraries and an analysis toolkit. A system
overview is shown in Figure 2.1. Different line types leaving the logging
library show possible data paths within the system. A path taken by data
depends on the type of analysis desired.

6

2.2. System design

LLVM
instrumentation pass

Cache simulator

Source
code

Filesystem

Spark Streaming
analysis framework

Instrumented
binary

logging library

Native C++
analysis framework

TCP

dynamic
linkage TCP

Figure 2.1: DINAMITE system diagram

Target applications are compiled with an LLVM [44] compiler configured
to include our instrumentation pass. Configuration is trivial: it only requires
changing the compiler invocation command. Most large software projects
allow specifying the compiler command via an environment variable.

Our instrumentation pass instruments three types of events: function
entry or exit, memory allocation, and memory access. For each event the
instrumentation pass injects a function call to an externally linked logging
library. The logging library, linked dynamically at runtime, will produce a
log record of an event in binary or text format (described below). Log records
are either stored in the file system or streamed over a socket. Stored traces
can be analyzed using pre-packaged DINAMITE scripts written in Python
or C++ (see Section 2.3), or the user can write her own tools using their
language of choice. Log records streamed over the socket are processed by
the Spark Streaming engine. DINAMITE includes several analysis kernels
for Spark written in Scala; users can also write their own.

DINAMITE allows chaining analysis passes, similar to the Unix pipe
command. For many of our analyses we stream the log data to a cache
simulator tool (written in C++) that annotates each memory access log
entry to indicate whether the access was a cache hit or a miss and forwards
the annotated log entry to the Spark Streaming engine.

The rest of this section describes the system in more detail.

7

2.2. System design

2.2.1 LLVM instrumentation pass

We chose to use the LLVM infrastructure for the implementation for the
following reasons:

1. It can be used on programs written in any language supported by an
LLVM front-end compiler. To date, those include, but are not limited
to, C, C++, D, Haskell, Objective-C, Swift, Ruby, etc. There is even
a compiler that translates Java bytecode into the LLVM intermediate
representation. Given the popularity of LLVM, we can expect this list
to grow in the future.

2. It lets us add instrumentation at the level of the intermediate repre-
sentation (IR), which is more convenient than instrumenting a binary.
LLVM IR is an assembly-like language that is more abstract than ma-
chine code (e.g., it assumes an unlimited set of registers). When IR is
translated into binary, a single memory access can be expanded into
multiple machine instructions, which can introduce noise into traces
and make it difficult to attribute accesses to source code level con-
structs.

3. Full debug information is available at IR level. The front end we used,
clang, embeds debug information into the IR as an abstraction of the
DWARF format that is easy to parse with the tools provided in the
LLVM framework.

Our instrumentation pass begins by crawling the IR debug metadata to
extract information about complex data types (structs, classes, unions) and
categorizes them by connecting their corresponding internal LLVM refer-
ences with type and field names. This is necessary because of type aliasing.
A single type in C or C++ can have multiple names because of typedefs.
Without this metadata extraction, LLVM only knows about the original type
definitions, but IR instructions may contain references to different names
for the same type. We store all the type alias information in map-like data
structures within the pass.

The core of the instrumentation pass iterates over the current module
and visits each function, each basic block and each instruction within it.

For each encountered function, it places a function begin log call at the
beginning of its first basic block, and a function end log call at the end of
each basic block that ends the function.

Memory allocation functions are treated separately. Our pass must first
recognize whether a function is a memory allocator and then gather the

8

2.2. System design

information about the allocated type, size and address. For each called
function, our instrumentation checks the function’s name against the list of
known allocator functions. We generalize allocator functions as functions
that take two arguments: number of elements and size of a single element,
and output the address that points to the start of the allocated region. This
model encompasses all allocation library APIs that we have encountered,
and, combined with type information available through LLVM, contains all
the relevant information that describes an allocation.

The list of allocators is provided in a separate file, where each entry is
described with a function name, and three indices indicating the position of
all the relevant fields (the number of elements, the size of the element and
the allocation’s base pointer) in the argument list. If the allocation address
is the function’s return value, its index will be set to −1. Standard allocation
functions (such as malloc and calloc) are included in the configuration file
that comes with our pass. If the program uses any non-standard allocator
functions, the user must add them to that file. The pass places an allocation
event log call after each call to an allocator function.

Strings written to the log are encoded with a unique integer identifier
to preserve space. The integer-to-string mappings are placed into JSON
documents created by the instrumentation pass. The mappings must be
consistent across modules, but LLVM compiler passes do not preserve any
state across modules. Therefore, we load the JSON mappings before com-
piling each module compilation and write back any updates at the end.

For ease of use with C and C++ projects, our instrumentation pass gets
registered with LLVM’s pass manager for standalone clang invocations. As
clang supports most of GCC’s compilation flags, this makes integration of
our instrumentation into existing projects in most cases as easy as changing
the compiler invocation variable.

2.2.2 Log format

All log events contain a field for a thread identifier. We limit this field to 8
bits to conserve space, but it can be easily expanded if needed. Distinguish-
ing between 256 unique threads was sufficient for our case studies.

Allocation and access events share fields that contain the file name, the
line number and the column number that correspond to the event’s source
code location. Allocation events additionally contain the base address of the
allocated memory region, the size of a single allocated element, the number
of allocated elements and their type.

Access events contain the accessed address, the type of the access (read

9

2.2. System design

or write), the name and type of the variable corresponding to the access,
and the value at the accessed address.

Function events contain the event type (entry or exit into the function)
and the function name.

Depending on the configuration, log records can be produced in text
or binary format. In text format, each field of the entry is printed to a
file, separated by a delimiter character. In binary format, different types
of events are contained in a parent logentry structure. The logentry

structure contains a type field that differentiates the payload as either a
function, access or allocation event. The payload is a union between the
corresponding three log entry types. In the current version of DINAMITE,
each log entry takes 48 bytes total.

Log format involves a surprising trade-off between performance and log
size, which we evaluate in the next section.

2.2.3 Logging libraries

Instrumented programs do not contain any logic for producing log records.
Instead, they contain calls to the externally linked logging library. Our
implementation contains three different library versions based on log format
and output destination: text-to-file, binary-to-file and binary-to-socket.
The effect of log format on log size

In our implementation, each binary log record takes up 48 bytes of stor-
age. Text entries are variable in size and depend on the number of characters
needed to encode all the values. The two extremes of an entry size in text
format are:

• Minimum: 18 bytes. Each field can be encoded with a single digit,
with added single character delimiters.

• Maximum: 77 bytes. Each field has the maximum value for its storage
type in binary format.

The reality is somewhere in-between, as shown in Table 2.1, which com-
pares log sizes in text and binary format for SPEC2006 429.mcf, with 4.5
billion memory accesses. Text format generates smaller logs; log size is im-
portant, because real workloads generate hundreds of gigabytes of logs. At
the same time, using text format results in a much higher performance over-
head (evaluated in the next section). Since we can forego storing large logs
by relying on DINAMITE’s streaming model we always use DINAMITE
with the binary log format to avoid the overhead.

10

2.2. System design

Table 2.1: Log size comparison in 429.mcf

Number of accesses: ∼4.5 billion

Binary log size: 205GB

Text log size: 172GB

Binary Text

Format

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 t

im
e
 /

 l
o
g

31.88 ns 805.84 nsBase

Log cost

Format cost

Figure 2.2: Cost breakdown of text and binary formats for 429.mcf, per
single log entry

The effect of log format on performance
For a detailed insight into the overhead of running the instrumented

binary, we break it down into the following components:

• base cost : the cost of executing the uninstrumented code

• log cost : the cost of invoking the logging library function

• format cost : the cost of preparing the log entry for writing

• output cost : the cost of writing the log entry

Table 2.2 and figure 2.2 show the broken-down cost of the instrumen-
tation for 429.mcf. We report all costs except the output cost, because it
depends on where we write the log data; the output costs for different output
destinations are reported later in this section.

Log cost is fixed and must be invoked for every instrumented event. The
only way to reduce this cost is to avoid instrumenting certain events alto-
gether, according to a user-defined criterion at compile time. For example,

11

2.2. System design

Table 2.2: Cost breakdown of text and binary formats for 429.mcf, per single
log entry

Format Binary Text

Base 2.33 ns

Log cost 13.66 ns

Format cost 15.99 ns 789.95 ns

Total time (no output) 31.98 ns 805.94 ns

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
72
40

96

Buffer size [#entries]

0

1000

2000

3000

4000

5000

6000

7000

8000

R
u
n
ti

m
e
 [

s]

Figure 2.3: Impact of buffering on performance of 429.mcf

if we are not interested in exploring the entire memory access trace of a
program, but only accesses to a single type, we can tell the compiler to
instrument only those. Similarly, we can limit instrumentation to certain
functions. Instrumenting isolated data structures or types can discover some
memory access patterns, but this kind of filtering is not appropriate for un-
derstanding whole program memory behavior or for any analysis involving
cache simulation.

Format cost is the cost of packing the log data according to the specified
format. It is dominant for the text format, because formatting strings is a
very expensive operation, relative to producing a binary record. Text format
suffers a 25× higher run time relative to the binary format. That is why
we always resort to using the binary format in our experiments, despite its
higher storage overhead.

Output cost is the cost of writing the log records into a file or sending
them over a socket. Besides the cost of accessing the storage medium, it

12

2.2. System design

requires a system call. We mitigate this overhead via buffering. Figure 2.3
shows the effects of different buffer sizes on the runtime of 429.mcf in the
binary format that writes to a RAM disk. By increasing the output buffer
size, performance improvement reaches its maximum at around 20× over
the unbuffered version. In the rest of our measurements, we used the output
buffer of 4096 entries.

Table 2.3 compares the performance of 429.mcf instrumented with DI-
NAMITE against slowdowns of two major instrumentation frameworks: In-
tel Pin and Valgrind. Valgrind performance degradation reported here is
obtained from Nethercote et al. [56], and refers to Valgrind’s MemCheck
tool which performs memory error checking with a summary output at the
end of execution. This is not a fair comparison to access instrumentation,
but to the best of our knowledge, a Valgrind tool comparable in functional-
ity with DINAMITE is not available. Numbers for Pin were obtained from
the supplied pinatrace tool, output to RAM disk. In Table 2.3, the slow-
est version of DINAMITE without analysis instruments each access with
full debug information (as described in section 2.2.2) and outputs it to a
RAM disk filesystem in binary format. Even at this level of detail and with
full output enabled, DINAMITE is only 60% slower than Valgrind’s Mem-
Check and almost 10x faster than the comparable access instrumentaion in
Pin. Even when using the Spark analysis pipeline, DINAMITE is only 35%
slower than pinatrace.

Table 2.4 compares the running times for executing 429.mcf with dif-
ferent variants of log formats and outputs. Note that the text-formatted
output makes the instrumentation run very slow: 33× slower than using the
binary format. Sending the trace over a TCP socket to netcat is faster than
writing it to a RAM disk. However, introducing Spark Streaming into the
pipeline makes the TCP streaming execution 15x slower. Optimizing this
would require a detailed analysis of Spark’s data receiving system and is left
for future work.

Our design decouples the generation of log records from their process-
ing. Alternatively, embedding analysis logic into the logging library is also
possible. We opted against it for the following reasons:

• Instrumented programs share heap with the logging library. Adding
significant bookkeeping data structures to the heap could affect the
placement of the program’s data and diminish the accuracy of traces.

• Decoupling analysis from logging allows for flexibility in the languages
and frameworks used for analyzing memory traces

13

2.2. System design

Table 2.3: Instrumentation overhead comparison - 429.mcf

Framework Slowdown

Pin (pinatrace output to RAM disk) 354x

Valgrind (MemCheck) 22x

DINAMITE (empty instrumentation) 7x

DINAMITE (binary format, no output) 14x

DINAMITE (binary format, output to RAM disk) 36x

DINAMITE (Spark analysis) 537x

Table 2.4: Logging library performance - 429.mcf

Version Destination Time [s] Slowdown

Uninstrumented nil 10.05 1x

Text (unbuffered) RAM disk 11820 1176x

Binary (file) (buff.) RAM disk 360.09 36x

Binary (file) (buff.) Hard disk 1426 142x

TCP (buffered) netcat >/dev/null 339.12 34x

TCP (buffered) Spark (access count) 5400 537x

2.2.4 Analysis toolkit

The analysis toolkit consists of two different frameworks for writing log pro-
cessing applications. Logs recorded to a filesystem are processed with the
native analysis framework written in C++. The framework includes support
for parsing logs and allows the user to easily extend the analysis by writing
a new C++ class. Alternatively, the users could write their own parsing
and analysis tools in any language of choice. Logs streamed over a TCP
socket are processed live with Spark Streaming drivers. Similarly, the user
could configure DINAMITE to use any another system to ingest or analyze
streaming logs (e.g., Kafka, Google Dataflow). Our toolkit includes a sim-
ple cache simulator program, which processes and annotates streamed log
records with cache hit/miss indicators. Next, we describe these components
in more detail.

Native analysis framework

The C++ framework provides support for writing arbitrary analysis kernels.
To write a new kernel, the programmer must extend the TracePlugin class
(shown in listing 2.1).

14

2.2. System design

Listing 2.1: Trace plugin base class

1 class TracePlugin {

2 ...

3 protected:

4 NameMaps *nmaps;

5 TracePlugin(const char *name);

6 public:

7 virtual void processLog(logentry *log) =0;

8 virtual void finalize () =0;

9 virtual void passArgs(char *args) =0;

10 };

The framework reads log records into a buffer and passes each log entry
to the chosen plugin by invoking its processLog(logentry*) method. At
the end of the log file, the framework calls the plugin’s finalize() method,
which is used for writing the output of the analysis.

Spark Streaming analysis framework

To analyze streamed log records with Spark Streaming, the programmer
must write an analysis kernel in Scala. To this end, our framework provides
a custom Spark Streaming Receiver class and a log converter. A receiver
accepts batches of log events in binary format over a TCP socket and stores
each separate log entry in its associated StreamingContext.

Listing 2.2 shows a Spark Streaming kernel for counting the number of
memory accesses per variable. To get useful information out of the entries,
the incoming DStream is routed through a map operation which invokes our
LogConverter class on each separate entry. LogConverter unpacks and
outputs log data as Scala classes, with the distinction between function
events, allocation events and access events. To get a DStream of instances of
a certain event type, logs are filtered with a class matching operation. These
events are then mapped to (varId, 1) pairs, and reduced by summing over
variable IDs. Persistent state is updated by invoking Spark Streaming’s
updateStateByKey() operation. A custom update function, omitted in our
listing for brevity, updates the counts by summing new results with the
previous state. Results are then output to the console or the filesystem.

Listing 2.2: Example Spark Streaming kernel

1 def main(args: Array[String]) {

15

2.2. System design

2 val sparkConf = new SparkConf ()

3 .setAppName("AccessCounter");

4 val ssc = new StreamingContext(sparkConf ,

5 new Duration (1000));

6 ssc.checkpoint("/checkpoints/");

7
8 val logs = ssc

9 .receiverStream(new LogReceiver (9999))

10 .map(rawlog =>

11 LogEntryReader.extractEntry(rawlog));

12
13 val counts = logs

14 .filter(log =>

15 log.isInstanceOf[AccessLog])

16 .map(access =>

17 (access.as (...)[AccessLog].varId , 1L))

18 .reduceByKey(_+_)

19 .updateStateByKey(sumUpdater);

20
21 counts.print ();

22
23 ssc.start();

24 ssc.awaitTermination ();

25 }

Integration with Spark Streaming gives the programmer access to the full
set of Spark Streaming operations and can process logs as they are output
from a live running program.

Cache simulator

For detailed analysis of program cache behaviour, we wrote a simple cache
simulator, which is placed as an intermediate step between the generation
of the log output and the analysis framework (or the filesystem, if we are
saving the logs for offline processing).

We simulate a single-level cache, typically configured with parameters re-
flecting a last-level cache on our target system. The cache simulator accepts
log entries over a socket, much like the Spark Streaming analysis frame-
work. It annotates each memory access with an indicator whether this was
a cache hit or a miss. The annotated logs are passed on to either the analysis
framework, or stored in a filesystem for offline processing.

In our evaluation of the system, we found that having cache behaviour
information was essential for identifying certain optimization opportunities.

16

2.3. Evaluation

Table 2.5: 429.mcf top miss offenders

Variable Name File Line Miss count

arc.ident pbeampp.c 167 45247271

node.orientation mcfutil.c 85 1104784

node.basic arc mcfutil.c 86 988543

arc.cost mcfutil.c 86 767273

node.potential pbeampp.c 170 235696

2.3 Evaluation

In this section we describe three tools that we built using DINAMITE
and demonstrate how they guided our optimization of three applications:
SPEC’s 429.mcf, PARSEC’s fluidanimate and WiredTiger, a MongoDB’s
key-value store.

All experiments described in this section were performed on machines
listed in the Appendix.

2.3.1 Identifying cache offenders

”For large working sets it is important to use the available cache
as well as possible. To achieve this, it might be necessary to
rearrange data structures. While it is easier for the programmer
to put all the data which conceptually belongs together in the
same data structure, this might not be the best approach for
maximum performance.”

Ulrich Drepper, 2007[27]

This tool identifies program variables and source lines that generated
the most last-level cache accesses and misses. It works as follows:

429.mcf
429.mcf performs single-depot vehicle scheduling using the network sim-

plex method. The implementation represents nodes and arcs in the network
as C structs. In the benchmark description the author mentions reordering
fields of both node and arc structs in an attempt to reduce cache misses and
improve performance [34]. Nevertheless, DINAMITE enabled additional op-
timizations.

Table 2.5 shows the output of the cache-offender tool. We notice that
a disproportionate number of misses are being caused by the ident field of

17

2.3. Evaluation

the arc struct, more than four times as many as the second most accessed
field, node.orientation.

Upon closer inspection, we noticed that all the arc structures are allo-
cated as a single large array, even though they represent nodes in a linked
data structure. The majority of accesses to arc.ident were made within
a single loop (shown in Listing 2.3). The loop iterates over the arc array
until it finds a match, and only then accesses its other fields.

Every time arc.ident was accessed, the corresponding cache line was
filled with other fields, most of which were not used before the cache line
was evicted. These data layout and access pattern waste cache space and
memory bandwidth. We addressed the problem by restructuring the array
of arcs from the array of structures layout into the structure of arrays.

Listing 2.3: 429.mcf pbeampp.c excerpt

165 for(; arc < stop_arcs; arc += nr_group)

166 {

167 if(arc ->ident > BASIC)

168 {

169 /* red_cost = bea_compute_red_cost(arc);*/

170 red_cost = arc ->cost - arc ->tail ->potential

+ arc ->head ->potential;

171 if(bea_is_dual_infeasible(arc , red_cost)

)

172 {

173 basket_size ++;

174 perm[basket_size]->a = arc;

175 perm[basket_size]->cost = red_cost;

176 perm[basket_size]->abs_cost = ABS(

red_cost);

177 }

178 }

179 }

Our modifications brought a 55% reduction in LLC misses, and a 12%
improvement in the overall runtime.

fluidanimate
Fluidanimate is an Intel Recognition, Mining and Synthesis application

that uses the Smoothed Particle Hydrodynamics method to simulate an in-
compressible fluid. It uses the Navier-Stokes equation to derive fluid density
fields. It is included in the PARSEC 3.0 benchmark suite because of the in-
creasing significance of physics simulation in video-game programming and

18

2.3. Evaluation

Table 2.6: CSV output of the miss summary tool for
fluidanimate

Variable name File Line Miss count

Cell.next pthreads.cpp 530 184496

Vec3.x ./fluid.hpp 354 95682

Cell.next ./fluid.hpp 404 73800

Vec3.x ./fluid.hpp 346 67327

Vec3.x ./fluid.hpp 355 66657

real-time animation domains [11].
Profiling fluidanimate with perf [23] showed that it has a high LLC miss

rate of 30% on our system. We instrumented the program using DINAMITE
and ran it through the cache offender tool. Table 2.6 shows output of the
tool: variable names and source lines responsible for the most cache misses.
The top cache offenders are Cell.next and Vec3.x. The names of the
structs and fields suggest that a Cell is an element of a linked collection.
Listing 2.4 shows the code excerpt pointed to by the output of our tool. We
can immediately see that the code generating misses is a traversal of grid of
Cell structures in which only the next field is touched.

Looking at the definitions for Cell and Vec3 types we can see that Cell
represents a linked list of containers for arrays of Vec3 structures that con-
tain three-dimensional vectors. The arrays themselves are contained within
the Cell struct in their entirety. The total size of a Cell struct with the
payload was 896 bytes, making a single instance span 14 cache lines.

This data layout is poorly optimized for traversing lists of Cells, because
each new Cell access generates a cache miss. Our idea, therefore, was to
allocate the Cell’s payload, which is rarely touched, separately from the
rest of the structure. The structure would then include a pointer to its
payload; since each Cell’s payload consists of multiple arrays, adding a
layer of indirection to access the payload would not be much of a penalty.
Allocating the Cell payload separately brings the size of the structure down
to 16 bytes . Since consecutive calls to a memory allocator function for a
variable of the same size will return near consecutive addresses in most
standard libraries, consecutive Cells will be allocated close together, and
several of them will fit into a single cache line.

Listing 2.4: fluidanimate pthreads.cpp code excerpt

19

2.3. Evaluation

1 2 4 8 16 32

Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
cu

ti
o
n
 t

im
e

Modified

Original

Figure 2.4: Scaling improvements in PARSEC3.0 fluidanimate application

522 void ClearParticlesMT(int tid)

523 {

524 for(int iz = grids[tid].sz; iz < grids[tid].ez;

++iz)

525 for(int iy = grids[tid].sy; iy < grids[tid].ey;

++iy)

526 for(int ix = grids[tid].sx; ix < grids[tid].

ex; ++ix)

527 {

528 int index = (iz*ny + iy)*nx + ix;

529 cnumPars[index] = 0;

530 cells[index].next = NULL;

531 last_cells[index] = &cells[index];

532 }

533 }

This change brought a 50% reduction in the LLC cache miss rate and a
15% reduction in runtime with 16 threads (see Figure 2.4).

An interesting observation is that Cells were allocated in the original im-
plementation to be cache-aligned and padded to a fill the entire cache line,
indicating a prior effort to make better use of the cache hierarchy. How-
ever, with DINAMITE we discovered that making the Cell struct larger
by padding actually hurt performance on our system. Intricacies of modern
multi-core memory hierarchies can mislead even very experienced program-
mers. Powerful performance analysis tools are thus crucially important.

20

2.3. Evaluation

2.3.2 Structure splitting

Our structure splitting tool is based on the class splitting algorithm proposed
by Chilimbi et al. for Java programs [19]. The algorithm analyses how the
program accesses the members of a class to determine if a class is fit to split
into two separate classes. Splitting classes is motivated by the idea that hot
fields, or fields that are accessed significantly more than cold fields, should
be placed in a separate class so that more hot data can be packed into a
single cache block. To access fields that are considered cold, the hot class
includes a pointer to the cold class. (This is similar to the optimization that
we applied to fluidanimate).

The algorithm begins by identifying live classes. A class is considered
live if it is accessed more than a certain threshold, and only live classes are
considered for splitting. Next, fields in live classes are marked as hot or cold
depending on how many times their respective class is accessed. If a field
is accessed significantly more than other fields, it is considered hot. Full
details of the algorithm are described elsewhere [19].

Chilimbi et al. implemented the splitting algorithm for Java classes,
using the JVM for access statistics and a Java byte-code instrumentation
tool BIT [47]. We implemented the splitting algorithm in DINAMITE,
making it accessible to a wider range of programs, including those written
in unmanaged languages. The tool works as follows:

The Spark Streaming driver receives access logs from the instrumented
binary and produces the list of variables and corresponding access counts.
Then a Python script generates a chart for each live structure showing
weights assigned by the algorithm for individual fields; black bars for hot
fields and gray bars for cold fields. Programmers then split their structures
according to the hot and cold fields in the chart.

Figure 2.5 shows the chart produced by the structure splitting tool for
the arc struct in 429.mcf as well as the modified arc struct code. Similarly
struct node (not shown) was another live struct with both hot and cold
fields. Splitting hot and cold fields in these structs delivered 20% speedup
and reduced the LLC miss rate by 60%, as measured with perf.

2.3.3 Shared variable detection

On machines with even a handful of cores, variables updated by multiple
threads can quickly become a scaling bottleneck [14], even if these variables
are not protected by a lock or accessed via atomic instructions [26]. Repeat-
edly updating a shared variable from different cores stresses the coherency

21

2.3. Evaluation

h
e
a
d

id
e
n
t

fl
o
w

n
e
x
to

u
t

n
e
x
ti

n

ta
il

co
st

o
rg

_c
o
st

Field

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018

W
e
ig

h
t

hot

cold
s t r u c t c o l d a r c {

f l ow t f low ;
arc p nextout ;
arc p next in ;

} ;

s t r u c t hot a rc {
c o s t t co s t ;
node p t a i l , head ;
i n t ident ;
c o s t t o r g c o s t ;
s t r u c t c o l d a r c ∗ ca ;

} ;

Figure 2.5: Tool output and modified code for structure splitting of 429.mcf

protocol and can slow down the program by an order of magnitude relative to
a sharing-free execution. Tools for detecting shared variable bottlenecks do
exist, but they are hardware-specific (e.g., Intel’s VTune [53] works only on
Intel machines, DProf [61] and Memprof [43] work only on AMD hardware)
and can be non-trivial to set up (DProf and Memprof require changing the
kernel). DINAMITE is easily extended to detect shared variable bottlenecks
on any binary that can be compiled with LLVM.

To demonstrate, we created a simple tool that we then used to quickly
find a known scalability bottleneck in WiredTiger [3] [5], a MongoDB storage
engine [4]. To truly test the experience of creating new tools for DINAMITE,
the student who created the shared variable detection tool was not informed
what variables and source locations triggered the bottleneck; he was only
advised that the bottleneck exists and provided the instructions for running
the problematic workload.

The engineer who originally diagnosed the scalability issue took about
week to do so after observing poor performance; she used Memprof, which
required communication with its authors and changes to the kernel. Even
though the changes were simple, they would likely be considered “beyond
the call of duty” by many developers. The DINAMITE tool took several
hours to create by a person familiar with the overall framework and consisted
of two simple Spark Streaming kernels and a Python script.

The first and second kernel identify top shared variables. The second ker-
nel processes the execution traces again, looking only for frequently shared
variables and collects the source locations where the accesses are made. The

22

2.3. Evaluation

tool could be structured with only a single kernel that both identifies the
top shared variables and records the source lines, but we found that having
two kernels is simpler and results in better performance of Spark Streaming.

The first kernel translates memory access log entries into (accessed ad-
dress, variable identifier and thread identifier) tuples. Each tuple acts as the
key in map-reduce transformation that produces a list of variable-identifying
tuples and the corresponding total memory accesses. The result is stored in
a persistent table.

Next, a Python script reads that table and transforms the data into a
dictionary, where each accessed address serves as a key and the correspond-
ing value contains the variable identifier and access counts performed by
each thread. The script filters the results according to the following criteria:

• It removes all entries accessed by only a single thread

• It removes all entries that are not uniformly shared by threads. We
define uniform sharing as follows:

Let Asorted be a list of all the per-thread access counts for the address,
sorted in descending order, zero indexed.

if Asorted[0] < 2 ∗Asorted[1] the sharing is uniform.

The output is then sorted in descending order by the total number of
accesses. Table 2.7 shows the first five entries of the output generated for
the LevelDB sequential read benchmark over WiredTiger (release 2.6.0) ex-
ecuted with 32 threads3, which triggered the bottleneck. The top offender
is the field v in __wt_stats struct.

These results only point to the variable responsible for shared accesses.
To find the root cause, we use the second Spark kernel to find the source
location where the accesses are performed. The second kernel is very similar
to the first, except it discards all the log entries that do not correspond to the
top shared variable, and keeps the source lines where the accesses occurred.
We sort the results by the number of accesses in descending order.

Listing 2.5: WiredTiger shared variable analysis result (JSON)

1 {

2 "threadcount ": 18,

3 "totalcount ": 311881 ,

3The connection structure is shown as accessed by more than 70 threads because the
benchmark creates and tears down additional threads before the measured run.

23

2.3. Evaluation

Table 2.7: Most accessed shared variables

Address # Accesses # Threads Variable

0x64D900 42495568 32 wt stats.v

0x64D1A4 26183326 74 wt connection impl

0x64E0EC 7233836 72 wt connection impl.N/A

0x64D100 4786616 36 wt txn global.states

0x64D540 4786370 34 wt stats.v

4 "threads ": [

5 [

6 156,

7 19492

8],

9 [

10 163,

11 19520

12],

13 ...

14],

15 "file": "wiredtiger/build_posix /../ src/btree/

bt_curnext.c",

16 "line": 446,

17 "variable ": "__wt_stats.v"

18 }

Listing 2.5 shows the first entry of the output (redacted for brevity),
which correctly identifies the source location responsible for the bottleneck.
The fields in the output JSON document are self-explanatory apart from the
threads list, which contains (thread id, thread access count) pairs.
It turns out that this sequential read-only workload suffered from scalability
problems, because threads were incrementing a shared statistics counter
after each read operation. This problem was later fixed by implementing
per-thread statistic buffers.

Figure 2.6 shows the performance impact of the bug on Machine A (de-
scribed in the appendix). A seemingly benign counter increment, which
takes negligible time in a single-threaded execution, quickly escalates into a
huge scaling bottleneck with as few as four threads and slows down the work-
load by an impressive factor of 20 with 32 threads. Previous work reported
similar performance impact of shared variables on multicore machines [26].
With the increasing core counts on new hardware the importance of tools
that enable productive memory performance analysis will continue to grow.

24

2.4. Future work and conclusions

1 2 4 8 16 32

Number of threads

0

2000

4000

6000

8000

10000

12000

14000
B

a
n
d
w

id
th

 [
M

B
/s

]

With sharing bug

Without sharing bug

Figure 2.6: Scaling improvements WiredTiger after removing the shared
variable bug

2.4 Future work and conclusions

We described the implementation of DINAMITE and discussed the per-
formance implications of our design choices: a fine-grained compiler-based
instrumentation and a flexible analysis framework. Our detailed breakdown
of the costs involved in doing instrumentation of memory accesses leads us
to conclude that this kind of design is not only feasible, but allows for a great
level of detail in the generated traces, while keeping the slowdown compa-
rable to the state-of-the-art instrumentation frameworks. We introduced a
novel fusion of instrumentation and stream processing that eliminates the
need for storing traces and provides an easy to use Spark Streaming API
for analysis purposes. Finally we demonstrated the utility of DINAMITE
by performing three different types of analysis that were difficult, impossi-
ble, or constrained to a certain OS/hardware platform with the previously
available tools.

In future work, we plan to expand on the kinds of analysis that can
be done on access traces using a streaming framework. Spark Streaming
currently buffers incoming log records and processes them at the expiration
of a configurable timeslice. In our experience, the timeslice must be rather
large (e.g., one second) to avoid performance problems with Spark, but
with such a large timeslice the batches contain hundreds of thousands of
accesses. Adding support for a framework that is able to process a batch of
records after it accumulates a specified number of records would let us have

25

2.4. Future work and conclusions

finer granularity in our analysis. This kind of setup would allow discovering
access patterns within small windows of time, which is important for certain
optimizations.

Further, we plan to explore and optimize the slowdown of DINAMITE
when using the full analysis pipeline with Spark Streaming. Finding the
best way to integrate the log generation and analysis is an important factor
in improving the overall productivity of engineers using our system.

Finally, our implementation of the cache simulator is rather simplistic.
Adding a multi-level cache simulator such as Dinero IV [28] and adding
more cache information to the logs would help improve understanding how
different data organization and access patterns affect program efficiency.

26

Chapter 3

Data-driven spatial locality

3.1 Introduction

Memory wall is the phenomenon where the cost of memory accesses ex-
ceeds the cost of non-memory instructions to the point that the program
spends most of its CPU time waiting on memory. Wulf and McKee pro-
posed that modern software would hit the memory wall in the beginning
of this millennium [73]. Ailamaki, DeWitt, Hill and Wood showed in 1999
that database systems spent 20-50% of CPU time waiting on memory [7].
For modern “cloud” workloads this figure is 50% on avearage, and reaches
90% for OLTP benchmarks [30]. Caches mitigate memory latency, but it is
believed that they will never catch up with the voracious appetite of modern
applications [30].

To navigate the limitations of hardware, programmers invest substan-
tial effort into software optimizations aimed at reducing cache miss rates.
One family of such optimizations is about rearranging the program data in
memory in order to improve spatial locality. Spatial locality occurs when
data items that are accessed close together in time also happen to reside
close together in memory. Hardware caches fundamentally rely on spatial
locality for efficient operation. Finding an optimal arrangement of objects
in memory is NP-hard. A guiding principle used in prior work on memory
layouts is to put objects that are frequently accessed together close
to each other in the address space . Literature review has revealed
that these optimizations are largely manual and require deep understanding
of the program’s algorithms and data structures, making many of them the
subjects of top-tier publications [10, 17, 25, 36, 37, 42, 50, 65, 67, 69, 75, 76].
These algorithms deliver significant performance improvements, but are very
difficult to implement.

Many memory layout optimization algorithms rely on using some fea-
tures of data itself to inform the placement of objects in memory. For
example, it is common in mesh traversal algorithms to pack mesh nodes
and triangles according to their in-domain proximity – objects with similar
Cartesian coordinates. We aim to generalize this approach to any program

27

3.1. Introduction

that operates on many objects in memory and automate the extraction of
knowledge needed to derive new layout strategies.

This work introduces access graphs – a novel representation of a pro-
gram’s memory access patterns, constructed from dynamic memory access
traces. Access graphs have memory objects for nodes, and their edges show
how frequently the program accesses two objects together. Using access
graphs, we reframe the memory layout problem as a combination of commu-
nity detection and graph linear arrangement – both well researched problems
with many good heuristic solutions. Based on these heuristics, we build a
new algorithm called Hierarchical Memory Layouts (HML) that computes
layouts with improved spatial locality. Hierarchical Memory Layouts com-
bined with cache simulation give an estimate of possible cache improvement
through layout changes. We use the output of HML to train random forest
classifiers to automatically extract the relationships between data features
(e.g. Cartesian coordinates) and memory access patterns (e.g. traversal).
We then use the discovered relationships to improve the layout of the pro-
gram data in memory or on disk.

The contributions of this work are as follows:

1. Access graphs: A novel way of representing memory access patterns
within a program. Access graphs reveal which objects in memory are
accessed contemporaneously. They are computed from allocation and
access traces. By using our proposed analysis techniques, programmers
can automatically extract expert knowledge of access patterns that is
key in most prior work on data layouts.

2. Hierarchical Memory Layouts (HML): A new algorithm that uses ac-
cess graphs to automatically derive improved data layouts for memory
intensive programs. HML combines prior work in graph community
detection and linear arrangement in a novel way in the context of
spatial locality optimization. Using HML, programmers can get an es-
timate of how much room for improvement there is in a program’s data
layout. In certain workloads, HML can be used directly to recompute
layouts of data in storage.

3. Data-Driven Locality: A novel application of Random Forest Classi-
fiers to detect correlations between memory access pattern and data
properties. We use random forests to learn which features of data it-
self can be used at runtime to group allocated objects, with the goal
of improving spatial locality. We use these techniques to automati-
cally infer expert knowledge from prior work on data structure layouts

28

3.2. Access Graphs

(graphs and meshes), and expand the application to red-black trees.
To evaluate the performance gains we built Tidy, a hint-based allocator
wrapper that lets us use objects’ data field values to guide allocation
at runtime.

Figure 3.1 shows a detailed workflow diagram for the techniques pre-
sented in this paper. We will not go into much detail about each of the
nodes in the diagram, but we encourage the reader to refer back to it as
they read through sections 3.2-3.4. It is divided into three different stages,
outlined with dotted lines. The first stage shows the process of access graph
creation, which is described in detail in §3.2. The second stage is layout
performance evaluation. In this stage, we evaluate the potential for perfor-
mance improvement from changing the data layout of the program. Layout
performance evaluation is covered in §3.3. Finally, if the programmer deems
it worth to change the data layout based on cache simulation results, they
proceed to the third stage – Data-Driven Spatial Locality, described in §3.4.
In this stage, we use machine learning techniques to discover data features
that can be used as hints for Tidy, our allocator wrapper.

The only parts of the workflow that require human input are the inspec-
tion of performance evaluation results and the modification to the program’s
allocator calls in the third stage. The automation of the performance eval-
uation is possible simply by setting predefined thresholds for cache miss
improvement.

The rest of this chapter contains evaluation and discussion of our results
in §3.5.

3.2 Access Graphs

Access graphs are a novel way of aggregating a program’s memory access
trace to capture properties related to spatial locality. In this section we
formally define access graphs and explain how we use them to reason about
and improve spatial locality.

To refer to units of memory holding a datum of a specific type we inter-
changeably use the terms data items, data elements and data objects. The
contents of the location could be an instance of a C struct, a C++ object
or another kind of data – this distinction is not important for our tools.

Besides accesses to dynamically allocated (heap) objects, memory access
traces contain accesses to global variables and local (stack) variables. We
focus on large data structures that generate many cache misses – they are

29

3.2. Access Graphs

Access graph creation

Layout performance evaluation

Data-Driven Spatial Locality

Memory Access Trace

Object
Access
Trace

Object Map

Access Graph

Data-Driven Spatial Locality

Hierarchical Memory Layouts

Memory
Layout

Cache Simulator

Access
Graph

Communities

Cache Simulation Results

Extracted Locality Features

Tidy Allocator Wrapper

Program with improved spatial locality

Program

Figure 3.1: Workflow diagram

30

3.2. Access Graphs

most likely to consist of dynamically allocated objects. Therefore, we filter
data objects of other kinds from the trace.

Definition 3.2.1 (Object Access Trace) Object Access Trace is a filtered
form of a program’s dynamic memory access trace. It is obtained by first
removing all stack and global accesses from the trace. Next, all the accesses
that target heap objects are replaced with accesses to the target objects’ base
addresses.

Example: If an access writes to address 0xdeadbee8 and it is deter-
mined that the address is within the bounds of an object with base ad-
dress 0xdeadbee0, the write to 0xdeadbee8 is replaced with a write to
0xdeadbee0.

Definition 3.2.2 (Object Map) An Object Map is a hash map of all the
allocated objects. It is generated by processing the original memory access
trace, before converting it into an Object Access Trace. When an object
is accessed, the offset at which the access was made is recorded in the map,
along with the type of access (read/write) and the value read/written. Object
Maps give information about the type of object and the contents of all of its
data fields.

Example: If an access writes the value 3.14 to address 0xdeadbee8 of
the object at 0xdeadbee0, the Object Map entry for that object is updated
with information about a write with value 3.14 at offset 8.

Object maps allow us to connect memory addresses with properties of
the corresponding objects. For example, the map may inform us that the
memory address 0xdeadbee0 contains an object of type mesh node t with
the value 12.34 at offset 0 (the x-coordinate field), and the value 42.1 at offset
8 (the y-coordinate field). The mapping between memory addresses and
objects will be used later to find correlations between the access pattern and
the object properties and to improve the data layout in memory or on disk.
For example, our algorithms will automatically discover that objects with
similar x, y coordinates are accessed close together in time; by allocating
mesh objects with similar coordinates close together in space we will improve
spatial locality and reduce the execution time.

Definition 3.2.3 (Access Graph) An access graph is an undirected graph
where there is a vertex for every dynamically allocated object in the Object
Access Trace. Two vertices are connected by an edge if there are at least two

31

3.2. Access Graphs

contemporaneous memory accesses to the objects represented by these ver-
tices. Two accesses are considered contemporaneous if they occur within CL

memory accesses of one another. CL is called a locality constraint. When-
ever we detect the first contemporaneous access we create an edge between
the two vertices and assign it the weight of one. Whenever we detect another
contemporaneous access to vertices already linked by an edge, we increment
the edge’s weight by one.

A B C A B B C

time

A B

CD

1

D

1

1
1

1
2

Object Access Trace

Figure 3.2: Access graph example

Figure 3.2 shows an example of an Object Access Trace with the corre-
sponding access graph for CL = 2. Note that D and C have no edge between
them because there are no contemporaneous accesses to them in the trace.
Objects B and C have an edge with the weight of two, because there are
two contemporaneous accesses to them in the example trace.

Choice of CL value for computing access graphs has two aspects that
should be considered: computational cost and captured information. From
the computational cost point of view, the CL value tells us exactly how
many edge additions/updates we have to perform for each access in the
Object Access Trace. Because of this, CL should be as low as possible,
while retaining important information in the access graph. As for the second
aspect, we empirically tested higher values for CL for Hierarchical Memory
Layout computation (described in §3.3), but did not observe a significant
improvement in the quality of results. For our analysis techniques, we used
CL = 2, meaning we only consider two immediately adjacent accesses in the

32

3.3. Hierarchical Memory Layout

Object Access Trace. Using access graphs for other purposes may require
reconsidering this choice.

From these definitions, we infer the following: The weight of edges in an
access graph tells us which objects get accessed contemporaneously the most.
The more occurrences of accesses to A and B within a window CL in the
program’s memory access trace, the heavier the weight of the edge between
A and B.

As a result, access graphs enable the automation of spatial lo-
cality optimizations that in the past, to the best of our knowledge,
were performed manually .

Given an access graph, how do we use it to improve spatial locality?
The graph tells us which objects are accessed contemporaneously. How do
we translate this information into a more efficent program? To answer this
question, we will break it down into two parts. First, we will find out if
there is a potential to reduce the cache miss rate by using a different data
layout. Given an Object Access Trace and an Object Map, we will assume
that we can rearrange the memory addresses of the objects in any way we
like (without worrying how this could be achieved in practice), replay the
access trace in a simulator and evaluate the cache miss rate resulting from
the new layout. We compute the new layout using the new Hierarchical
Layout Algorithm that we describe in §3.3. Although this is not a concrete
solution that a programmer can use directly, evaluating layout changes in
an abstract way will help us understand if there is a potential to improve
performance by changing the layout.

The second part of the question asks how we can improve the data layout
in a concrete program. Our work on Hierarchical Memory Layouts in §3.3
describes the process of obtaining good memory layouts that can be used
directly to reorder data in storage. Section §3.4 presents a machine learning
technique that trains on the Object Map and discovers the properties of the
data objects available at object allocation time that can be used to guide
object placement in memory at runtime.

3.3 Hierarchical Memory Layout

In an access graph, objects that have a lot of contemporaneous accesses are
connected by heavily weighted, i.e., strong, edges. Relying on this prop-
erty, we can reframe our grouping objective as a well-researched problem of
community detection in networks.

Community detection algorithms detect groups of nodes in graphs such

33

3.3. Hierarchical Memory Layout

that the connectivity within a group is strong (many edges, higher weights),
and the connectivity between groups is weak (few edges, lower weights). In
the context of access graphs, community detection algorithms would place
into the same groups objects that are often accessed contemporaneously,
and would place into different groups objects that are rarely accessed con-
temporaneously.

Our Hierarchical Memory Layout algorithm extends a multilevel com-
munity detection algorithm by Blondel et al [13]. Multilevel community de-
tection starts with every graph node representing its own community. It ex-
pands communities by adding close neighbours into them, making sure that
the change will result in higher inter-cluster separation, and intra-cluster
proximity (together called modularity). When such a change is impossible,
the algorithm stores the community assignment and transforms the graph
by fusing all nodes within a community into a single node, and aggregating
all edges to other such community nodes. This process is repeated on the
transformed graph until there are no changes that can be done that improve
modularity.

Applying Blondel’s algorithm on access graphs produces a hierarchy of
communities. We will refer to the level with the highest number of small
communities as the first level or bottom level, interchangeably. Subsequent
levels with fewer larger communities will be referred to as being higher in
the hierarchy.

Nodes in first level communities are not ordered internally. This may not
be a problem if the entire community fits within a unit of spatial locality
(e.g., cache line, VM page, disk page etc.). Unfortunately, we cannot choose
the size of the communities; it is dictated by the access graph’s structure.
Frequently, first level communities turn out to be so large that a random
permutation of objects within them loses any beneficial locality properties.
In these cases we need to find a good internal ordering of objects for first
level communities.

Ordering access graph nodes within first level communities has the fol-
lowing rules:

• The stronger the edge between two objects, the closer they should be
placed in the layout

• Relative placement of object pairs that have no edge between them is
irrelevant.

These rules are in line with the optimization objective of the Minimum
Linear Arrangement problem (MinLA). Minimum Linear Arrangement is a

34

3.3. Hierarchical Memory Layout

known NP-hard problem, for which researchers have explored many heuris-
tics [62]. Because access graph edges are weighted, we use the weighted
variant of the problem.

Definition 3.3.1 (Weighted Minimum Linear Arrangement) Given a
graph

G(V,E), |V | = n,
find a one-to-one function
ϕ : V → {1, .., n}
that minimizes the Linear Arrangement cost (LA), defined as
LA(G,ϕ) =

∑
(u,v)∈E |(ϕ(u)− ϕ(v)) ∗ w|

Definition 3.3.1 states that Minimum Linear Arrangement has the ob-
jective of linearly laying out graph nodes so that it minimizes the distance
between connected nodes. The weighted version of the problem prioritizes
reducing the distance between pairs of nodes with stronger edges. In the
context of access graphs, MinLA heuristics will try and place objects that are
frequently accessed contemporaneously as close as possible in the memory
layout.

In our work we use the Spectral Sequencing [40] heuristic proposed by
Juvan et al. to approximate solutions to MinLA on access graphs’ commu-
nities.

Definition 3.3.2 (Spectral Sequencing) Spectral Sequencing computes
the Fiedler vector of the graph G – the eigenvector x(2) corresponding to
the second lowest eigenvalue λ2 of the Laplacian matrix LG of the graph G.

It then produces the ordering function ϕ such that
ϕ(u) < ϕ(v)⇔ x(2)(u) < x(2)(v)

Spectral Sequencing was shown [62] to give results of good quality, at
a low computational cost. Hierarchical Memory Layouts use Spectral Se-
quencing as a sub-algorithm, but it can be replaced with any suitable MinLA
heuristic.

The Hierarchical Memory Layout algorithm operates on the Access Graph
(constructed from the Object Access Trace) in two phases, utilizing the two
previously described algorithms.

The first phase performs multilevel community detection, producing
community levels L1, ..., Ln, where L1 represents the first computed com-
munity level – one with the largest number of small communities. As the
levels increase, communities become fewer in number, and greater in size.

35

3.3. Hierarchical Memory Layout

The second phase performs Spectral Sequencing on each community in
L1. The objects within each L1 community are ordered according to the
linear arrangement obtained from Spectral Sequencing. Every community
level contains all of the nodes in the original graph – the only difference is
how the nodes are grouped.

Our use of both community detection and Minimum Linear Arrangement
heuristics begs the question: Why not use Spectral Sequencing to lay out
the entire access graph? This is a valid question, and using only Spectral
Sequencing would produce good layouts. However, a linear layout of nodes in
a graph obscures a property that is needed for our data-driven spatial locality
technique. Data-driven spatial locality needs groups of data objects to use
as training class labels (the whole process is described in detail in §3.4).
Community detection algorithms output groups with desirable properties –
strong connections within a group, and weak connections to nodes in other
groups.

To construct the final layout, we label each object with a community vec-
tor. Community vector of an object is a set of indices (In, I(n−1), ..., I1, ISS).
Index Ik is simply a unique identifier for the community at level k that the
object belongs to. ISS is the linear layout index of the node within its L1

community. Due to the nature of Blondel’s multilevel community detection
algorithm, if two nodes have the same Ik index, they are guaranteed to have
the same Ik+1 index.

We lexicographically sort the objects by their community vectors to pro-
duce the final Hierarchical Memory Layout.

A B CD E FG
Community 1_1 Community 1_2

Community 2_1

Spectral Sequencing
Order

Figure 3.3: Hierarchical Memory Layout example

Figure 3.3 shows a simple example of the information produced by Hier-
archical Memory Layouts. The two detected first level communities ({A, D,

36

3.4. Data-driven locality

B} and {E, C, G, F}) are internally ordered by Spectral Sequencing. They
belong to the same second level community and will be placed next to each
other in the final layout.

We use the output of Hierarchical Memory Layout for two purposes.
First, we rearrange the objects in the memory access trace according to the
layout and feed the new trace into the cache simulator (§3.5.1) to estimate
whether improving data layout is likely to improve performance. Second, we
train a machine learning model (§3.4) to find out if any data features of the
objects can be used during data allocation phase to improve performance in
a concrete program.

3.4 Data-driven locality

Prior work on memory layouts uses expert domain and algorithm knowledge
to obtain better layouts. These solutions often use features of the data itself,
such as object fields, to inform the generation of layouts. For example, in
mesh traversals, the visitation order goes from one mesh object (triangle,
point, edge) to its neighbours. Thus, grouping these objects in memory
based on their spatial proximity (neighbours are close together in Euclidean
space) yields layouts that exhibit better spatial locality. Another example
are iterative graph algorithms such as PageRank. Solutions like GraphChi
[42] group edges by source and destination nodes to improve spatial locality.
However, the process of deriving these layouts is largely manual and relies on
expert knowledge in both the algorithm’s domain and memory optimization.

We present a way to automate the discovery of correlations between
spatial locality expressed in the algorithm and the features of data itself.

The question our technique aims to answer is the following:
Given the Object Map described in §3.2, and first level communities de-

tected by Hierarchical Memory Layout algorithm, is it possible to decide
which community an object belongs to, based only on its data features?

We use random forest classifiers [15] for this task. Random forests are a
learning method for classification and regression that utilizes a combination
of multiple decision trees and overcomes the decision trees’ tendency to
overfit. We chose random forests for two main reasons:

1. They give good results and are relatively easy to set up compared to
other classifiers such as neural networks.

2. They are less opaque than other techniques. This means that it once
a random forest learns to classify data from a dataset, it is possible

37

3.4. Data-driven locality

to extract the contribution of input vector elements to the decision
process (further explained in §3.4.3).

However, our technique is not inherently tied to random forests. It can
use any other suitable classification algorithm without modification.

3.4.1 Generating input vectors

The input vectors for our classifier are generated from the set of all detected
data features. We split data features into three categories: primary features,
secondary features and meta-features.

The first, trivial, type of data features are primitive data fields - primary
features. Primary features are all non-pointer fields within an object. An
example of this would be the coordinates of an object in a mesh.

The second type of data features are primitive features of neighbour-
ing objects - secondary features. Here, object A is a neighbour of object B
if B contains a pointer field that holds the value of A’s memory address.
Secondary features can be used in allocation policies when the neighbour-
ing objects are initialized and known in advance. For example, if the mesh
traversal workload’s triangle object is written so that it only contains point-
ers to the triangle’s points, we can use the points’ Euclidean coordinate
features to inform the allocation of triangles (provided points are initialized
before triangles).

The third type of data features are meta-features. These are not present
in the data itself as object fields, but rather describe some inherent prop-
erties of objects. Examples of meta-features are array indices of objects,
memory addresses assigned to objects within the observed execution trace,
size/type of object, allocation point in the source code, etc. A correlation
between spatial locality and array index (or memory address) of objects can
indicate that the current layout already does well in terms of spatial lo-
cality. A correlation between size and spatial locality would mean that one
should use an allocator that bins objects based on allocation size (a common
strategy [46] [29]).

3.4.2 Coverage

Our technique focuses on the relationship between contents of data that is
being accessed and the sequence of accesses to it. From that point of view,
in terms of coverage, it is important to capture two properties that reflect
the subsequent run we are optimizing for:

38

3.4. Data-driven locality

• The taken code paths should exhibit the same access patterns over
large data structures as the program we are optimizing for. For exam-
ple, if one is trying to improve spatial locality of a PageRank imple-
mentation, they should not profile an execution of depth-first search.
Even though the data structure may be the same, the access pattern
is not, so the extracted relationships between features of data and ac-
cess pattern would not carry over. If a program does exhibit different
traversal patterns in a single run, our technique would arrive at the
“least common denominator” for them. The edges contained in the
access graph would be weighted as the sum of the weights of the differ-
ent traversal patterns, so our technique would take both into account
when producing layouts and grouping criteria.

• The data structure contents should be similar to those encountered
in the target program. For example, to extract relationships between
data and access patterns in a PageRank algorithm, one should make
sure that the input graph in the profiling run has similar characteristics
to realistic graphs (e.g. similar degree distribution). If the user fails
to provide a similar input, the conclusions about the best grouping
criteria might not be optimal for executions on different inputs.

3.4.3 Training methodology and evaluation criteria

Our full dataset consists of all the objects in the access graph, with their
input feature vectors and community labels. When training the classifier, we
generate 5-fold cross validation datasets with an 80% / 20% split between
training and testing data. The 80% partition is used for training, and we
verify and compute accuracy on the remaining 20%.

To extract the features that contribute the most to the accuracy (feature
importance), we use the gini method proposed by Breiman [16], implemented
in scikit-learn’s [59] RandomForestClassifier class. This method evaluates
a feature’s importance as the measure of all decision tree splits that include
the said feature, normalized over the entire forest. The more decision tree
splits a feature is involved in, the more important it is deemed for the
classifier. Categorical accuracy is the percentage of samples in the test
dataset for which the classifier predicted the correct label. Top-5 categorical
accuracy is the percentage of samples in the test dataset for which the correct
label was within the top 5 choices of the classifier. We report categorical
accuracy, top-5 categorical accuracy and feature importance information in
§3.5.3.

39

3.4. Data-driven locality

1
0

0

2
0

0

4
0

0

5
0

0

Trees

0.0

0.2

0.4

0.6

0.8

1.0
Categorical accuracy

Top-5 categorical accuracy

Figure 3.4: Hyperparameter search in mesh traversal

We performed all our experiments with
√
Nfeatures random features

considered when splitting a node. The number of trees is chosen between
100, 200, 400 and 500 trees. We performed each classifier training run on
all four tree counts and found that, in general, higher tree counts yield
slightly better classifiers for our datasets. In further text, all classifier re-
sults represent the best classifier we found through exploration for the given
dataset. Figure 3.4 shows the categorical and top-5 categorical accuracy for
our mesh dataset for different tree counts. As we can see, the categorical
accuracy shows very little variance, but our classifier is able to improve the
quality of mislabeled results (higher ranked correct results) with more trees.
More advanced hyperparamater tuning techniques exist and can be used
with our technique, however, this is out of scope of our work as it pertains
to the specifics of chosen classification algorithms.

We verify that the detected fields are indeed correlated to the locality
groups of objects in two ways:

1. In algorithms for which there is published research on layout opti-
mization using data features, we verify that the properties detected
by Data-driven Spatial Locality techniques have been used in prior
work to inform layout design.

2. In all algorithms, we manually inspect the code under analysis. We
identify the main accessor code portions for the given data structure,
and reason about the sequence in which data structure is traversed
and how it relates to the object properties, as visible from the source
code. We show code snippets responsible for the algorithms’ access
patterns, and present our reasoning to support our conclusions. We
perform the steps that an expert would perform to find correlations

40

3.4. Data-driven locality

between access patterns and data features. We then verify that the
features discovered by our technique are the same as those identified
manually.

3.4.4 Tidy: a memory allocator wrapper

To test the impact of using detected data features to inform layout at run-
time, we built Tidy. Tidy is an arena-based allocator, meaning that it orga-
nizes allocated objects into different arenas. Unlike most other arena-based
allocators, Tidy chooses the arena for the newly allocated object based on a
hint provided by a programmer. In our context, the hint is the feature of the
object that correlates with the desired object grouping – the feature that
we discover using random forests. The idea is that upon object allocation
the programmer would pass to the allocator wrapper the value of that fea-
ture. For example, if the programmer is allocating a vertex of a triangle, she
would pass the X and Y coordinates to Tidy. Tidy would then convert these
values into an arena index, such that vertices with similar X,Y coordinates
would get allocated in the same arena. Using this method we achieve the
desired grouping of objects, the one suggested to us by the access graph, in
a concrete execution.

The idea of hint-based allocators is not new. Chilimbi et al. [19] propose
ccmalloc – a cache conscious allocator that accepts hints. Hints in ccmalloc

are addresses of previously allocated objects; the allocator attempts to place
the new item as close as possible to the one whose address was provided as
the hint. Tidy can be adapted to use different kinds of data for hints, and
we consider it a generalization of the ccmalloc’s approach.

The hint taken by Tidy has a form of an n-dimensional vector; the size
of the vector is given to Tidy upon initialization and is stored in a Tidy
context. Tidy then allocates an n-dimensional array of arenas, and the
vector elements (modulo the size of the dimension) will be used to index
into that array. This implies a linear mapping of hints to the arena space.
Non-linear mappings are also possile; we plan to explore them in the future.

To use Tidy, the programmer needs to replace calls to existing memory
allocators with calls to Tidy. If a call to a standard malloc routine has the
interface of:

malloc(size_t size);

a call to Tidy looks like:

41

3.5. Evaluation

tidy_alloc(tidy_ctx_t *ctx,

size_t size,

unsigned int *hint);

The programmer can configure the size of the arena as well as the size
of the dimension, or opt to use the default settings. More experiments are
needed to determine whether an optimal arena size can be pre-determined
from the properties of the access graph, if it needs to be tuned individually
for the workload or if there is a single (perhaps architecture-dependent)
default that works well across the board.

The programmer needs not specify the total number of arenas in advance
or the total number of allocated elements; if Tidy runs out of space in an
arena, it allocates a new one for the same set of hints. To allocate arenas,
Tidy uses libc malloc, but it can be changed to use any other allocator.

3.5 Evaluation

In this section we first show how Hierarchical Memory Layouts (§3.3) can
be used to estimate potential performance improvements from improved
data layouts (§3.5.1). Following that, in §3.5.2 we show how HML can be
used directly to derive better data layouts in storage. We show that data-
driven layout techniques (§3.4) can be used to detect correlations between
data features of objects and their layout, where such correlations exist, and
guide dynamic memory allocations. Finally, we apply the data-driven spatial
locality techniques to a subset of the SPEC benchmark suite and discuss our
findings in §3.5.4.

In our experiments we use nine applications, two of which are used to
evaluate improved storage layout only.

Simple data structure benchmarks. The three benchmarks in this
set are our own implementations of PageRank, mesh traversal and red-black
trees in C/C++.

PageRank stores data as node and edge objects. The graph is initialized
from an edge list file. Each node and edge is separately allocated using
C++’s operator new(). Nodes contain their ID, the data field and vectors
of pointers to their in-edges and out-edges. Edges contain the IDs of the
source and destination nodes, and a floating point data field.

Mesh traversal operates on a 2D network of node and triangle objects.
Triangles contain pointers to their three nodes, and three adjacent triangles.
Nodes contain their x and y coordinates and a vector of pointers to all

42

3.5. Evaluation

adjacent triangles. The data is initialized by allocating objects one by one,
according to input from a node and triangle list file.

Red-black trees are collections of nodes, where each node has pointers
to its parent and two children, a floating point payload, and a colour field.
The benchmark fills the tree with random nodes, and then executes a series
of lookups.

SPEC CPU2017 memory intensive benchmarks. SPEC
CPU2017 is the 2017 release of the popular benchmark suite. For our Hierar-
chical Memory Layout experiments, we used three memory-intensive bench-
marks (according to Amaral et al.[8]): 505.mcf, 520.omnetpp and 531.deep-
sjeng. 505.mcf is a mass transportation route planning program written in
C. 520.omnetpp is a discrete event simulator of a large 10 gigabit network,
written in C++. 531.deepsjeng is a speed-chess program with deep posi-
tional understanding, written in C++. Each manipulates a large number of
heap objects, making them suitable for applying our Hierarchical Memory
Layout algorithm.

Kyoto Cabinet’s kcstashtest. Kyoto Cabinet is a key-value database
management library. It is a direct successor of Tokyo Cabinet, developed by
FAL Labs and used by Japanese social network Mixi. It contains multiple
different implementations of the data store back-end. The benchmark shown
here, kcstashtest, performs writes and reads in Kyoto Cabinet’s StashDB
data store variant. StashDB internally keeps records in hash tables.

Graph traversal benchmarks. To evaluate how using HML can im-
prove data layouts in storage, we use graph traversal benchmarks of our own
implementation.

We obtain the memory access traces required for generating the access
graphs using DINAMITE [55]. DINAMITE is an LLVM pass that instru-
ments every memory access and compiles the program, such that informa-
tion about memory allocations, accesses, and data types is emitted to a log
file. Our techniques would work with any memory access tracing tool that
provides this information.

To estimate the performance effect of changing the data layout via HML,
we simulate a cache hierarchy using Dinero IV[35]. The simulated Dinero
cache is modelled after Intel® CoreTM i5-7600K. L1 D-cache has the capacity
of 64kB, and is 8-way set associative. L2 has the capacity of 256kB, and
is 4-way set associative. LLC has the capacity of 8MB, and is 16-way set
associative. Our DTLB simulator has 128 4kB page entries, and is 4-way
associative.

43

3.5. Evaluation

3.5.1 Hierarchical Memory Layouts

The main purpose of our Hierarchical Memory Layout algorithm is to pro-
vide an estimate of the upper bound on performance improvement from
changing the data layout. The output of the algorithm are multilevel com-
munities produced by the first stage described in §3.3 and the final layout
which maps original object addresses to addresses of the objects in the im-
proved layout.

50
5.m

cf

52
0.o

mne
tpp

53
1.d

ee
psj

en
g

kcs
tas

hte
st

mesh
 tra

ve
rsa

l

pa
ge

ran
k

rbt
ree

Benchmark

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Ev
en

t c
ou

nt
 (n

or
m

al
ize

d
to

 b
as

el
in

e) L1 misses
L2 misses
L3 misses
DTLB Misses

Figure 3.5: Hierarchical Memory Layouts cache and DTLB misses. Event
counts are normalized to original layout results.

Figure 3.5 shows simulated cache event counts for the first seven bench-
marks after applying the Hierarchical Memory Layout algorithm. The num-
bers are normalized to the simulated cache event counts of the original lay-
out. Five benchmarks out of seven show significant improvements in cache
miss rates.

We notice a consistent trend: HML improves the miss rate at the higher
levels of the memory hierarchy, such as the last-level cache (LLC) and the
TLB, to a larger extent than at the lower level of the hierarchy (L1 and L2).
That is because it is easier to organize objects in larger groups accessed
contemporaneously within a relatively large time window (macro grouping)
than into small groups accessed contemporaneously within a very short time
window (micro grouping).

Furthermore, performance improvements depend on the size of data ob-
jects. In 505.mcf, for example most of the allocated objects are over 100B in
size and do not fit into a single cache line. Thus, performance improvements
that could occur due to more efficient packing of objects within the same

44

3.5. Evaluation

cache line do not happen.
From the red-black tree benchmark we learn that the extent of improve-

ments from HML also depends on the access pattern. In red-black trees, the
allocated objects are not as big as the ones in 505.mcf, but the tree itself
exceeds the cache memory capacity by far. The combination of the large
dataset and random lookups means that the algorithm does not revisit the
same tree nodes often. The improvement in cache performance is thus low.
However, DTLB misses improve by 51%.

Our conclusion is that the concrete performance gains from HML depend
largely on the size of objects, size of the working set and the access pattern
of the program. Furthermore, HML tends to better improve spatial locality
at a coarser granularity: at the level of the TLB or the LLC.

Let us look back on what these HML results mean. Our algorithm oper-
ates under the assumption that it is possible to reorder objects in memory
in an arbitrary way. This assumption does not hold for the majority of real-
world programs. Recorded memory access traces, on the other hand, are
an idealized environment for testing different layouts. The main purpose
of HML is to give an estimate of how much performance is to be gained
from changing the layout of items in the best case. We show that for the
selected memory-intensive benchmarks there is much room for performance
improvement from reordering data.

We explore two ways in which output from Hierarchical Memory Layouts
can be used in practice to achieve better performance in programs. In §3.5.2
we explore the possibility of using HML to directly inform the layout of data
in storage, and in §3.5.3 we show the results of applying data-driven layout
techniques (§3.4) to our benchmark set.

When such optimizations are not possible in practice, Hierarchical Mem-
ory Layouts provide a starting point for work on layout improvement. The
output of HML is a concrete layout of data that improves spatial local-
ity, groups of objects that get accessed frequently together within the given
program, and a descriptive Object Map which ties the previous two to the
actual data within the program. Researchers in the future can use these
layouts as stepping stones towards new locality optimization techniques.

3.5.2 Data layout in storage

Programs whose data layout is directly inherited from an input file, for
example those that mmap the input file to materialize data in memory or those
that dynamically allocate data objects in the same order as they appear
in the input file, can directly benefit from the HML technique. We can

45

3.5. Evaluation

L1
 m

iss
es

L2
 m

iss
es

L3
 m

iss
es

DT
LB

 m
iss

es

Ru
nt

im
e

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

to
 o

rig
in

al

Breadth-first search

L1
 m

iss
es

L2
 m

iss
es

L3
 m

iss
es

DT
LB

 m
iss

es

Ru
nt

im
e

0.0

0.2

0.4

0.6

0.8

1.0

Depth-first search

Figure 3.6: Cache misses, TLB misses, and runtime for HML-derived layouts
in graph traversals. Normalized to original layout metrics.

reorganize the input data in the file in the same order as suggested by the
HML algorithm and as a result obtain better spatial locality at runtime.

To evaluate such a scenario we wrote an application in C++ that per-
forms graph traversal using either breadth-first search (BFS) or depth-first
search (DFS) order. We ran two benchmarks. The first one performs ten
BFS traversals starting from a randomly selected code each time. The sec-
ond benchmark works the same way, but uses DFS.

For these benchnmarks, an optimal strategy for spatial locality would be
to allocate the nodes in the same order as they are traversed, but because
the traversal begins with a different node each time, there is not a single
“optimal” layout that we can use. Instead, we run the HML algorithm on
the memory access traces for these benchnmarks to suggest an improved
layout. HML outputs the order of the nodes, where each node is identified
by its unique ID. We then reorganize the input file such that the nodes
appear in the same order as suggested by HML. We create one input file for
the BFS benchmark and another one for DFS.

Figure 3.6 shows the runtime, cache misses and TLB misses obtained
using the HML, relative to the baseline layout, where nodes in the input
file are sorted by their numeric ID. These measurements were obtained on
the actual hardware. We do not provide simulation results, because we are
able to apply HML directly. We observe an improvement in runtime of
14% for the BFS and 18% for the DFS. L1 and L2 miss counts show a slight
degradation, which is made up for by a significant reduction in L3 and DTLB

46

3.5. Evaluation

misses. Again, we see the pattern observed in §3.5.1, where HML tends to
optimize better for L3 and TLB, while keeping L1 and L2 cache misses the
same or slightly worse than the original layout. The improvements in L3
and DTLB misses outweigh this degradation and produce a positive effect
on the running time.

3.5.3 Data-driven spatial locality

We applied the data-driven spatial locality techniques to the first seven
benchmarks described in §3.5. In three of these, mesh traversal, PageRank
and red-black trees, our system identified data features that could be used
as hints for the Tidy memory allocator.

For PageRank and mesh traversal, our system automatically identified
the same features that in the past were discovered manually: source nodes
for PageRank [42] and Cartesian coordinates for mesh traversal [75]. This
was a positive confirmation of the effectiveness of our techniques.

PageRank
Figure 3.7 shows that the source node is the main contributor to ac-

curate community prediction in PageRank. The edge weight also has high
predictive power, but it is not available at runtime, so we disregard it when
testing new layout strategies with Tidy. Listing 3.1 shows the code that gets
executed for each node n in the graph. The first loop iterates over all the
in-edges of the node, meaning these edges would share a destination node
value. The second loop iterates over all out-edges of the node, and these
edges share the same source node. This means that, to optimize access lo-
cality for the first loop, one would group edges based on their destination
nodes, and to optimize for the second, they would group based on the edges’
source nodes. Our dataset is a snapshot of a Twitter follower graph. The
graph has a power law distribution of in-degrees – few highly popular nodes
with many followers and many nodes with few followers. Popular nodes will
be a destination for many edges. In order to detect destination node field
as a feature correlated with locality of access, edges with the same desti-
nation node would need to belong to the same community. However, the
community size in our algorithm decides on community sizes based on the
edge weights in an access graph, typically producing communities that are
smaller in size than the in-edge counts of highly popular nodes. This means
that observing the first loop in listing 3.1 for one such node, the same des-
tination feature would be distributed over many locality communities. Due
to the nature of the graph, source edge feature corresponds more closely
to the structure of communities, which is what our classifier has detected

47

3.5. Evaluation

successfully.
In GraphChi [42], edges are grouped by their destination node, and edges

within a group are ordered based on the their source node IDs. Grace [63]
groups edges based on their source node, and sorts groups based on their
destination node. Chronos [33] processes temporal graphs, and stores each
epoch’s edges in segments grouped by their source node. Our technique
was able to automatically detect source node as a grouping factor in our
PageRank implementation – a grouping criterion used in graph processing
systems optimized for data locality.

Listing 3.1: PageRank implementation loop body

1 //read neighbors

2 int num_in_edges = n->num_inedges ();

3 if(num_in_edges > 0){

4 for(int j=0; j<n->num_inedges (); j++){

5 sum += n->inedges[j]->weight;

6 }

7 }

8
9 // compute pagerank and store

10 float pagerank = RANDOMRESETPROB + (1 -

RANDOMRESETPROB) * sum;

11 float cmp = fabs(n->data - pagerank);

12 if(cmp > 0.00000001){

13 value_changed = 1;

14 }

15 n->data = pagerank;

16
17 // distribute pagerank to the other nodes

18 int num_out_edges = n->num_outedges ();

19 if(num_out_edges > 0){

20 float pagerankcont = pagerank /

num_out_edges;

21 //int sum = 0;

22 for(int j=0; j<num_out_edges; j++){

23 n->outedges[j]->weight = pagerankcont;

24 }

25 }

Mesh traversal
Figure 3.8 shows importance scores of mesh node fields in the mesh

traversal algorithm. We can see that the x and y Cartesian coordinates were
picked up by the random forest as being the most important for classifica-
tion. Listing 3.2 shows the main traversal loop in our implementation. The

48

3.5. Evaluation

algorithm runs for a predetermined number of steps, starting from the first
triangle in the mesh. Traversal follows the path through least visited neigh-
bouring triangles, and for each triangle touches all of the triangles points
by reading and accumulating the points’ coordinate values. Two triangles
that get processed in succession will thus have similar spatial coordinates,
and so will their points. In prior work, mesh layouts typically follow similar
strategies of placing geometrically close points and triangles close together
in memory.

Cache oblivious mesh layouts [75] order vertices to minimize the layout
distance between neighbors. This approach effectively groups vertices that
are close to each other in the mesh – their coordinates have similar values.
Other layout algorithms [9] [71] [68] place neighbouring objects in volumet-
ric grid cells that are laid out in memory according to space-filling curves.
Space-filling curves linearize multi-dimensional spaces for improved spatial
locality. Volumetric grid cells that are close together in domain space (have
similar coordinates) will be placed together in the layout. Gopi et al. [31]
produce mesh layouts by organizing objects into single-triangle strips. A
single-triangle strip is a linearization technique that follows a path of neigh-
bouring triangles until encompasses the entire mesh. Again, this technique
groups neighbouring triangles in the layout – ones with similar spatial co-
ordinates.

Our analysis of our program’s access pattern and literature review sup-
port our framework’s output – that x and y fields (spatial coordinates within
the mesh) correspond to locality groups.

The community prediction accuracy is high, meaning we can use the x
and y coordinates to group objects at allocation time with Tidy.

Listing 3.2: Mesh traversal main loop

1 while (steps -- > 0) {

2 int idx = find_min_neighbour(triangle);

3
4 next = triangle ->neighbours[idx];

5
6 triangle ->data += 1;

7 triangle = next;

8
9 touch_points(triangle ->points [0], triangle ->

points [1], triangle ->points [2]);

10 }

Red-black trees

49

3.5. Evaluation

destination_node
source_node weight

Categorical accuracy: 0.758, Top-5 categorical accuracy: 0.904

0.0

0.1

0.2

0.3

0.4

Im
po

rta
nc

e
PageRank, graph_edge_t

Figure 3.7: Data feature importance and categorical accuracies, PageRank

y x

triangle_vec.count

triangle_vec.capacity

triangle_vec.array

Categorical accuracy: 0.633, Top-5 categorical accuracy: 0.928

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Im
po

rta
nc

e

Mesh traversal, mesh_node_t

Figure 3.8: Data feature importance and categorical accuracies, mesh traver-
sal

50

3.5. Evaluation

nil

139

60

L

166

R

41

L

98

R

30

L

55

R

14

L 33

R

L R

32

L

36

R

L R L R

53

L

58

R

L R L R

67

L 124

R

60

L

89

R

L R L R

101

L

128

R

L 104

R

L R

L 136

R

L R

155

L

172

R

141

L 155

R

L R

155

L

164

R

L R L R

168

L

175

R

L 171

R

L R L R

Figure 3.9: Red-black tree grouping example

Red-black trees are considered difficult to optimize for spatial locality,
and we are not aware of any heuristics used in the past to improve their
layout. Our system, on the other hand, was able to discover one. Figure
3.14 shows that the payload field, which is used to rebalance the tree, has
the highest predictive power. Listing 3.3 shows the code of our red-black
tree search implementation. Intuitively, small values will be stored in the
left side of the tree, and large values in the right side. To illustrate how this
reflects on grouping objects by payload, we refer to figure 3.9. The figure
shows a small red-black tree with 30 nodes, containing random payloads
in the (0, 200) range. Leaf nodes connect to the sentinel node, which is a
null value guard object in our implementation. We use this example tree
to verify that the conclusion of our analysis – that payload corresponds to
access locality – is indeed true. We assigned different colours to nodes, based
on 20-wide payload binning. From this example, we can see that grouping
objects by value ranges of their payload has the property of splitting the
tree into vertical slices. A single tree search execution will visit nodes along
a path from root to one of the leaves in the worst case. From the figure,
we can see that such paths are localized to few colour groups. A search
path corresponds to access pattern locality, and colour groups in figure 3.9
correspond to payload value similarity. From this, we conclude that our
algorithm did find a meaningful correlation between locality groups and the
payload feature value.

51

3.5. Evaluation

Listing 3.3: Red-black tree search function

1 rbt_node_t *cur = T->root;

2 while ((cur ->payload != value) && (cur != T->

sentinel)) {

3 if (value < cur ->payload) {

4 cur = cur ->left;

5 } else {

6 cur = cur ->right;

7 }

8 }

9
10 if (cur == T->sentinel) {

11 return NULL;

12 } else {

13 return cur;

14 }

With categorical prediction accuracy of 0.98, red-black trees have the
features with the strongest predictive power of all three benchmarks.

Hint-based allocation
We used the discovered fields in all three benchmarks to generate hints

for Tidy allocator wrapper. Our mapping is relatively simple, performing
one or two-dimensional binning. We bin values into buckets by dividing the
value space into a grid. Each grid cell corresponds to one integer hint value.
The grid size was experimentally tuned to the best performing value, and
the performance numbers on real hardware are reported in Figure 3.15.

The results of our Tidy experiments are in line with the results from the
simulated evaluation presented in §3.5.1. We see a runtime improvement
of 25% for mesh traversal, 27% for PageRank and 14% for red-black tree
queries. These improvements correlate with the reduction in cache/DTLB
misses. We observe the same trend we saw in simulation – grouping items
with Tidy does better for memories with higher latencies, in case of red-
black trees even degrading L1 and L2 miss counts by 20%. As we observed
earlier, HML is better at macro grouping than at micro grouping, providing
improvements at the higher level of the memory hierarchy (L3 and TLB),
but not necessarily at the lower level. This will sometimes result in L1
and L2 cache miss degradation, but L3 and DTLB improvements typically
outweigh these losses.

Discrepancies in numbers between the simulation and Tidy results can
be attributed to two factors. First, Tidy is a best-effort layout strategy. It
opportunistically allocates objects within the same memory buckets without
ordering them in the exact same way as HML would. This is a limitation of

52

3.5. Evaluation

using dynamic allocation – we cannot expect the program to anticipate the
exact place in memory where each object should be stored. Second factor
is the imprecision in the simulator itself. We use Dinero IV, configured to
mimic the caches of our test hardware, however, we have no way of knowing
how it differs from the hardware itself.

To show that the layout obtained with Tidy is responsible for the run-
time improvements we observed, we show detailed stall measurements for
the three benchmarks in figure 3.10. Instruction cache miss rates for each
benchmark fall under 1%, meaning that interference between code and data
caching is insignificant, so we omit instruction cache reports for brevity. For
each benchmark, we measure only the data structure traversal segments (ex-
cluding setup and allocation). Each benchmark executes the same amount
of instructions over the course of our measurements. Further, the code that
is being measured does not differ between baseline and Tidy layout versions.
Figure 3.10 shows a significant reduction in memory stalls over all levels of
hierarchy. In the controlled context of our experiments, we can conclude
that the layout imposed by Tidy did indeed reduce the amount of time
CPU spends stalled during execution.

Finally, figures 3.11, 3.12 and 3.13 show memory performance of the
three analyzed benchmarks, obtained by changing the bucket size from 64B
(cache line size) to 4096B (page size) in a geometric sequence. The results
indicate that increasing the bucket size improves performance in most cases.
Smaller buckets will fill up faster, thus requiring Tidy to allocate new ones.
With a random allocation sequence, this means that new buckets associated
with the same hint will be scattered around in memory.

In the red-black tree benchmark, we see a degradation of L1 and L2
performance with the increase in bucket size, while LLC and DTLB misses
improve. The size of a red-black tree node in our experiment is 40 bytes.
If we group nodes in buckets of 64 bytes, we can fit only two nodes per
bucket. As the buckets are allocated in a random sequence, the final layout
will resemble the malloc baseline more than the ideal grouping obtained by
HML. As shown in previous experiments, HML does worse in L1 and L2
misses for red-black trees and we observe a gradual increase in miss counts
on these levels as we move from a layout resembling baseline to a layout
resembling simulated HML results.

3.5.4 Benchmark suite experiments

In this section, we show our experiments with running the full data-driven
spatial locality pipeline on a set of benchmarks. This work is done towards

53

3.5. Evaluation

M
es

h
tra

ve
rs

al

Pa
ge

Ra
nk

Re
d-

bl
ac

k
tre

es

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
co

un
t

Stall analysis

Metric
L1D miss stalls
L2 miss stalls
LLC miss stals

Figure 3.10: Stall breakdown

54

3.5. Evaluation

DT
LB

 m
iss

es

L1
 m

iss
es

L2
 m

iss
es

LL
C

m
iss

es

Metric

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
co

un
t

Mesh traversal, bucket size analysis

Bucket size
64
128

256
512

1024
2048

4096
8192

Figure 3.11: Mesh traversal – Memory performance comparison between
different bucket sizes

55

3.5. Evaluation

DT
LB

 m
iss

es

L1
 m

iss
es

L2
 m

iss
es

LL
C

m
iss

es

Metric

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
co

un
t

Pagerank, bucket size analysis

Bucket size
64
128

256
512

1024
2048

4096
8192

Figure 3.12: Pagerank – Memory performance comparison between different
bucket sizes

56

3.5. Evaluation

DT
LB

 m
iss

es

L1
 m

iss
es

L2
 m

iss
es

LL
C

m
iss

es

Metric

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
co

un
t

RB Trees, bucket size analysis

Bucket size
64
128

256
512

1024
2048

4096
8192

Figure 3.13: RB Trees – Memory performance comparison between different
bucket sizes

left_child
right_child

right_child->payload
payload

left_child->payload

Categorical accuracy: 0.983, Top-5 categorical accuracy: 0.999

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
po

rta
nc

e

Red-black trees, rbt_node_t

Figure 3.14: Data feature importance and categorical accuracies, red-black
trees

57

3.5. Evaluation

Mesh traversal PageRank Red-Black Tree
Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
to

 b
as

el
in

e

L1 misses L2 misses L3 misses DTLB misses Runtime

Figure 3.15: Performance improvement from using Tidy allocator wrapper
with hints based on the knowledge extracted by random forests

the validation of our hypothesis 1.2.

Selecting benchmarks

For our evaluation, we chose the most recent versions of two popular bench-
mark suites - SPEC CPU2017 and PARSEC 3.0 apps suite. SPEC and
PARSEC benchmarks are standardized versions of various scientific and in-
dustrial algorithms that have been designed and optimized by experts. The
benchmarks were compiled with gcc and run with perf to collect hardware
performance counters. Due to problems with the 2017 version of SPEC
benchmarks, we omit cache measurements for 520.omnetpp (missing data
files), 500.perlbench (crash), 502.gcc (compilation fails), 503.bwaves (does
not finish). The 500.perlbench benchmark crashes near the end of execution,
so we did perform the data-driven spatial locality analysis on it, up to the
point of crash. We considered the remaining 21 benchmarks from SPEC,
and 5 benchmarks from PARSEC.

Our final selection was based on two criteria: the benchmarks need to be
written in either C or C++ and they need to put significant strain on the
memory hierarchy. The first condition is due to the fact that our tracing
framework currently supports C and C++, which eliminated a number of
SPEC benchmarks written in Fortran. The second condition is imposed by
our goal of improving memory performance.

We measure the memory performance of programs by collecting hard-
ware performance counter values with perf. The selected performance coun-
ters are percentage of time the program was stalled waiting on any memory
operation, cache miss rates for L1, L2 and LLC caches. The measured per-

58

3.5. Evaluation

formance is shown in figure 3.16. We set a cut-off point of 30% for LLC
misses and time spent waiting on memory to capture all the significant high
values of these metrics across the benchmark suite. The cut-off is repre-
sented by a dashed horizontal line in figure 3.16. Table 3.1 shows a list of all
the benchmarks we considered, along with whether they were included in our
data-driven spatial locality analysis, and a short summary of our findings.
We colour-code the table entries for readability – red entries are the ones
that were not considered due to some limitation (typically compiler incom-
patibilities, or build/runtime problems), blue entries are the benchmarks
which we do not consider memory intensive (according to previously dis-
cussed criteria), and black coloured entries are the ones that we performed
data-driven spatial locality analysis on. In the latter group of benchmarks,
bold typeface shows the ones we discuss in more detail in further text.

The general steps of our data-driven spatial locality analysis are outlined
in chapter 3.4. For the selected suite of benchmarks, first we generate an
access graph and an object map by observing all the allocations the program
makes. We extract the access graph communities, and form feature vectors
for each detected community, across all community levels. We split the input
data – feature vector and label pairs – into training and test datasets with
an 80%/20% ratio. We then feed the training feature vectors, paired with
community labels into a random forest classifier, and observe errors from the
subsequent classification of the test dataset. We always pick the community
level that yields the lowest classification error. If this first analysis pass does
not succeed in learning the classification, we re-generate the access graph and
object map using only the three data structures with the highest allocation
counts within a program and repeat the process. We omit primitive types
from our analysis, as they are always allocated as parts of arrays.

Out of the benchmarks selected for analysis, 557.xz uses most of its
allocated memory on opaque buffers – these we have no programmatic way of
analyzing with current tools, 523.xalancbmk and 519.lbm and fluidanimate
reveal no correlation between accesses and data.

59

3.5.
E
valu

ation

Figure 3.16: Performance measurements for SPEC CPU2017 and PARSEC 3.0

60

3.5. Evaluation

Results

505.mcf
No correlation between access patterns and data was detected in the

full trace of 505.mcf. However, when we filtered the access trace so that it
contains only the accesses to the most allocated data structures, arc and
node, our classifier detected correlation between the arc objects’ positions
in the allocated array and the access pattern of the algorithm. Both arc

and node are allocated in large arrays, and the arc data structure is ac-
cessed linearly in the function primal bea mpp(). This property has been
successfully detected by our tools, and there is no optimization we can apply
in terms of laying out separate objects since the accesses to array elements
are already linear. However, in our prior analysis of the CPU2006 version
of the same benchmark, discussed in section 2.3 , we discovered that mcf
iterates over a subset of data fields in an Array of Structures (AoS). We have
shown that both extracting cold fields in a separate data structure (§2.3.2),
and converting the data into the Structure of Arrays (SoA) (§2.3.1) format
improves performance.

510.parest First, we analyzed 510.parest by looking at the access graph
created from allocated objects of all types. Our tools have found no correla-
tion between data fields and the access graph communities. We then focused
our analysis on the two most-allocated data types: STL’s Rb tree node

and the Point class from 510.parest ’s dealii namespace. With a categor-
ical accuracy score of 72.06% and top 5 categorical accuracy of 92.06% for
RB tree node classification, our predictor can recognize a correlation be-
tween the data fields and access graph communities. The random forest
classifier shows that the strongest candidate feature of RB nodes is the al-
location sequence number (ordered integers increasing with each allocation
made during execution) followed by the addresses of parent and child nodes.
This indicates that the memory placement of nodes is already aligned with
the locality of access.

531.deepsjeng
This benchmark is based on a commercial chess engine Deep Sjeng [58].

The engine solves different chess placements using a proprietary algorithm.
Analyzing the data object clusters with our random forest classifier yields

a categorical accuracy of only 42.19%, however, top 5 categorical accuracy
is very high at 89.44%. Upon manual inspection, we discovered that the
low categorical accuracy can be contributed to different clusters having very
similar feature values.

This is due to the fact that the structure of clusters is dictated by the

61

3.5. Evaluation

Table 3.1: SPEC CPU2017 and PARSEC analysis summary

Benchmark Included Summary

500.perlbench No Crashes during execution
502.gcc No Compilation fails
520.omnetpp No Missing data files
508.namd No Good memory performance
511.povray No Good memory performance
525.x264 No Good memory performance
526.blender No Good memory performance
538.imagick No Good memory performance
541.leela No Good memory performance
544.nab No Good memory performance
548.exchange2 No Good memory performance
997.specrand fr No Good memory performance
999.specrand ir No Good memory performance
blackscholes No Good memory performance
swaptions No Good memory performance
vips No Good memory performance

519.lbm Yes No correlation found
523.xalancbmk Yes No correlation found
557.xz Yes Mostly opaque buffers
fluidanimate Yes No correlation found
505.mcf Yes Found correlations between array

index and access pattern for struct

arc. This means accesses to the ar-
ray are already linear.

531.deepsjeng Yes Found correlations for the hash field
of ttbucket t. Detected field is al-
ready used for indexing into arrays.

510.parest Yes Found correlation between alloca-
tion sequence and access pattern for
RB tree nodes. Objects allocated to-
gether are already close together in
memory.

ferret Yes Found correlations in a small data
structure that gets moved a lot.
Cannot apply hint-based allocator
optimizations to objects that move
around the memory space.

62

3.5. Evaluation

access graph and the community detection algorithm. Even when the cor-
relation between access patterns and field values exists, the size and bound-
aries of access graph communities determines whether this correlation will
be visible to the random forest classifier. To illustrate, figure 3.17 shows
three different feature/community groupings. Gray boxes depict data ob-
jects, and the inscribed numbers are feature values. Figure 3.17a shows the
ideal scenario where the detected communities correspond well to the object
features. Figure 3.17b shows a scenario illustrating our findings in 531.deep-
sjeng: similar feature values belonging to different clusters. This results in
lower categorical accuracy because similar feature vectors map onto different
labels, making it difficult for the classifier to make good predictions. How-
ever, in this scenario, the top-k accuracies will still be high, as all the similar
communities will get high votes from the classifier. Figure 3.17c shows the
opposite, where the communities are too large, and different feature vectors
are mapped to a single community. We have not encountered this in prac-
tice, but it is possible because the output of community detection is based
solely on access graph edges.

It is important to note that, while high categorical accuracy is desirable,
low values are not indicative of absence of correlation. The user needs to ob-
serve the combination of community structure and size, categorical accuracy
and top-K categorical accuracy to draw accurate conclusions.

Our random forest classifier has identified the hash field of struct

ttbucket t as being tied to locality. Source code inspection revealed the
hash field to be used as the first index into a 2-dimensional array of struct
ttbucket t objects that store computation results. In both of the main ac-
cessor functions StoreTT() and ProbeTT() the array is indexed into using
the calculation provided in listing 3.4.

Listing 3.4: 531.deepsjeng: Index calculation based on hash value

1 index = (unsigned int)nhash;

2 temp = &(TTable[index % TTSize]);

The algorithm traverses this object store (temp pointer in listing 3.4
linearly over its second index. As such, these objects are already grouped
based on their hash fields and we can confirm that the identified correlation
is indeed present, and proper grouping implemented.

PARSEC ferret
PARSEC’s ferret benchmark is based on the Ferret toolkit [52] for content-

based similarity search of feature-rich data such as audio recordings, digital

63

3.5. Evaluation

Figure 3.17: Examples of community groupings

(a) good community grouping

4.2 4.6 3.9 4.3 50.1 51.6 50.8 51.1

community 1 community 2

(b) similar features mapping into different communities

4.2 4.6 3.9 4.3 50.1 51.6 50.8 51.1

community 1 community 3community 2 community 4

(c) different features mapping into the same communities

4.2 4.6 3.9 4.3 50.1 51.6 50.8 51.1

community 1

64

3.5. Evaluation

images and sensor data. The version included in the benchmark suite is
configured specifically for image search.

Our analysis yielded a classifier with categorical accuracy of 63.56%, and
top-5 categorical accuracy of 78.95%. The most important features for the
classifier were identified to be reg1 and reg2 fields in the RegionPair data
structure. The start of the main accessor loop for the RegionPair data
structure is shown in listing 3.5.

Listing 3.5: ferret: Sorted array accesses

1 sorted = bucket_sort (pair , num_edges);

2
3 /* Merge similar regions */

4 for (ik = 0; ik < num_edges; ik++)

5 {

6 reg1 = find_set (parent , sorted[ik].reg1);

7 reg2 = find_set (parent , sorted[ik].reg2);

The algorithm, however, relies on the RegionPair array being sorted by
a calculated cumulative histogram value (shown in listing 3.6).

Listing 3.6: ferret: Sorting criterion

1 /* Perform bucket sort */

2 for (ih = 0; ih < num_elems; ih++)

3 {

4 sorted[cum_histo[pair[ih].delta]++] = pair[ih];

5 }

While it is possible to add a level of indirection to the accesses (allowing
us to sort pointers instead of objects), doing so would not be beneficial in
this case since the data structure is only 12 bytes in size – only 50% larger
than a 64-bit pointer.

Conclusion

The evaluation presented here shows that a subset of the selected bench-
marks exhibits correlation between data features and the programs’ access
patterns. However, existing software is often written in such ways that the
use of Tidy allocator is impossible without rewriting the code. The main
obstacle to applying Tidy that we identified are arrays of objects. Access

65

3.5. Evaluation

semantics of arrays are index-based. This means that the algorithm will ac-
cess the data objects using their integer indices. In such cases, the identified
link between data features and access pattern cannot be exploited out of
the box, because a new layout would alter the indexing scheme of the data
set. For example, consider an implementation of a hash-table using an array
of linked lists. In such a data structure, the indices are calculated using a
hash function. Exploiting the discovered correlation between object features
and access pattern would require writing a new hash function. Kraska et
al. explore the possibility of using neural networks to learn better indexing
schemes[41], and there is a potential for future work in combining their work
with our Data-Driven Spatial Locality techniques.

Using arrays is commonly understood to be better for performance than
using linked lists or other dynamically changing data structures. This is true
as long as the access pattern of the array items is linear or strided. Our study
shows that attempting to design performant data structures from the get-
go often leaves out opportunities for applying Data-Driven Spatial Locality
techniques at a later stage. This aligns with our observation that expert-
optimized data layouts typically approach layout as a first-order citizen in
the design process.

To conclude, we note three classes of programs with respect to the ap-
plicability of our Data-Driven Spatial Locality techniques:

1. Programs in which correlations are present, and applying
hint-based allocation is feasible. This category contains programs
with ”textbook” versions of pointer-based data structures. Objects
are allocated separately and no memory optimizations are applied in
the original code.

2. Programs in which correlations are present, and point to op-
timizations that are already applied. An example of this class of
programs is 531.deepsjeng in which our techniques detected a correla-
tion between hash values used to index into arrays, and the program’s
access pattern. Our techniques can be used to verify that such opti-
mizations are already applied.

3. Programs in which correlations are present, but changing the
layout would require significant changes to the program.

66

Chapter 4

Related work

Several instrumentation frameworks have been designed previously with the
goal of solving memory bottleneck problems. Limitations of these frame-
works include targeting a specific programming language, providing coarse
grained instrumentation abstractions, or providing fine grained instrumen-
tation abstractions that are sampled to reduce overhead. Other tools are
not as flexible in that users can only view output through a user interface,
or are designed for a specific use case.

Existing instrumentation frameworks like Pin [51] and Valgrind [56] in-
strument programs and allow programmers to build dynamic analysis tools
on top of them much like DINAMITE. Pin achieves instrumentation through
a highly optimized JIT compiler that intercepts the first instruction of a sup-
plied executable and compiles instrumentation functions to execute where
appropriate. Pintools are created by the programmer using the Pin frame-
work that describe the instrumentation analysis. Runtime binary instru-
mentation is limited in that information gleaned from the framework does
not translate to code level data structures out of the box. Without know-
ing what machine instructions relate to higher level data, programmers do
not immediately see patterns related to their original work. DINAMITE
instrumentation is inserted at compile-time allowing it to retain code level
information about data that is valuable to the programmer using the tool.

Valgrind is another framework that performs runtime binary instrumen-
tation. It addresses the lack of code level information other runtime analysis
frameworks suffer from by supporting a technique called ”shadow values”.
Shadow values replace values in memory and registers with values that de-
scribe them. Valgrind requires tool writers to implement their own shadow
values – a technique difficult to implement. The framework supports the im-
plementation of shadow values by providing registers to store shadow values
and extra output functionality for printing these values during execution.
Though this technique enriches instrumentation by providing more context
about memory accesses during execution, it is a complex task in practice,
and can easily slow down instrumentation if not done carefully. DINAMITE
provides memory access information by default; each log entry contains the

67

Chapter 4. Related work

address of the memory location accessed and is available for tool writers
to query, though register information is absent but can be easily extended
using the llvm.read register instrinsic [2]. Programmers using DINAMITE
are not left to implement complex and bug-prone functionality to obtain
memory access information.

Zhao et al. [79] describe a tool designed to detect true and false shar-
ing built on top of the memory shadowing framework Umbra [78]. Umbra
is a performant implementation of shadow values while remaining general
purpose, and is achieved by mapping only allocated memory instead of the
whole address space. Memory sharing is detected by associating cache lines
with shadow memory exposed by Umbra. Association of thread to address
is done via a bitmap describing thread ids responsible for each access. Sher-
iff [48] addresses the same problem, but requires either the programmer to
rewrite source code or rely on sampling to catch culprits, and is specifically
designed to detect false sharing. DINAMITE achieves the same result by
inserting thread IDs in each log entry, which also contain accessed addresses.
The log entry also contains all the source level details necessary to pinpoint
exactly where in the code the accesses were performed and to what data
type.

Memprof [43] is a tool that profiles objects that make remote mem-
ory accesses on NUMA machines so programmers can potentially minimize
them. Memory accesses are measured through instruction-based sampling
(IBS) that relies on hardware support and requires using a kernel module,
constraining the tool to the Linux/AMD platforms. DINAMITE can be
extended with a native plugin or Spark kernel to generate the same infor-
mation. It sacrifices performance over accuracy and portability as it does
not rely on hardware support for instruction sampling.

Similar to Memprof, DProf [61] uses IBS to acquire memory traces to
locate data types that stress the cache. Programmers can view data type
statistics and how they behave in the cache, what data types generate the
most cache accesses and misses, and the most common functions that oper-
ate on these data types. DProf required changes to the operating system,
which is significant barrier for its adoption. The flexibility of DINAMITE
enabled us to plug in a cache simulator into the framework and to generate
the same information as DProf, but with greater flexibility to add new anal-
ysis and without attachment to a particular operating system or hardware.

Other tools provide more source-level detail but are slower and less flexi-
ble. Memspy [54] provides rich information on program execution, including
the execution time, miss rate, and memory stall time broken down by code
and data. Details are tracked by executing the application through a mem-

68

Chapter 4. Related work

ory simluator and instrumention through a preprocessor, which is not as
portable as LLVM. Memspy reported a 22×-58× slowdown in execution
time. DINAMITE’s slowdowns are competitive with modern instrumenta-
tion frameworks and provide a pluggable framework for all kinds of data
analyses.

Like MACPO [64], our tool instruments data accesses at the compiler
level instead of the binary level to keep source-level information. To com-
bat overhead, MACPO limits instrumentation to ”snapshots” of program
execution, that are staggered in an attempt to capture complete program
behaviour. Trace size is reduced by limiting instrumentation not only to
”snapshots” but also to non-scalar data types. Similarily Dprof and Mem-
prof use IBS and only output the most commonly accessed data and their
cache statistics. DINAMITE instruments all memory accesses inviting un-
limited flexibility of analysis at the expense of higher runtime overhead.

Cache-conscious structure layout and definition [20] [19] blazed the trail
for the ideas presented here. Collocating contemporaneously accessed ob-
jects and hint-based allocators (the previously discussed ccmalloc) were
both explored by the authors. The access graphs allow for novel analyses
that help programmers understand which data should be grouped at runtime.

Profile-based data layout optimizations were explored by Rubin et al.
[66] Their approach uses profiling techniques to identify objects that are top
offenders to cache performance. This information is used to apply a series of
known layout optimizations, such as structure splitting, field reordering and
reordering of whole objects. Our work attempts to solve the layout problem
in a more holistic fashion – by understanding the interplay between accesses
to all of the objects in a data set.

The use of data structure fields to inform data layout creation was in-
spired by GraphChi [42]. The authors proposed a layout specifically for
bulk synchronous processing on graphs; we aspired to capture the essence
of these ideas, so they could be used for data structures in general. With
access graphs, we aimed to remove the necessity of domain knowledge for
reasoning about good layouts. We showed that our techniques reach similar
conclusions about laying out edges for Pagerank.

Higher order theory of locality (HOTL) [74] sets up a mathematical
framework for thinking about different locality metrics. From it, Xiang et al.
develop a novel low-overhead way of locality sampling, and demonstrate the
ability to predict miss rates from the acquired information. While providing
an excellent basis for reasoning about locality, techniques presented in HOTL
do not expose actionable data on how to improve locality in a program.
Access graphs take a different approach of observing the full access trace and

69

Chapter 4. Related work

providing insight into how objects relate to each other, in terms of access
locality. This level of detail, while incurring large overheads compared to
sampling techniques, brings new information on what can be done to data
layout to improve performance.

Yoon et al. [75] use a graph representation for generating a cache-
oblivious layout of the mesh, but their representation is very different from
locality graphs. Edges are formed between vertices connected in a mesh; in
other words this representation is specific to the mesh data structure and
requires knowing which vertices are connected. Locality graphs operate on
any generic memory access trace and require no knowledge of data structure
specifics.

Liu et al. propose a sampling tool [49] that correlates bad memory
performance with data objects: static or dynamically allocated variables.
Similar approaches can be found in DProf [61] and MemProf [43], which
correlate cache misses and remote memory accesses to data items. Looking
at data as the first order citizen in memory performance analysis is a good
approach to helping programmers better understand memory bottlenecks.
Access graphs use a similar data-centric approach, but aspire to bring more
actionable insight by observing the entire execution trace and extracting
locality-related relationships between data objects.

Peled et al. propose a context-based cache prefetcher model [60], that
detects semantic locality and issues prefetches based on it. Their approach is
to implement a machine learning model in hardware that observes ”contexts”
of memory accesses during execution. A context contains information such
as register contents, access and branch histories, compiler provided type
information, etc. The approach used by Peled et al., and our data-driven
spatial locality method are similar in that they both base their techniques on
data-centric contextual information. They are on two sides of the trade-off
spectrum: semantic locality is generally applicable out of the box and has
insight into lower-level information, but the amount of data it can observe
at any point in time is limited due to hardware constraints. Access graphs
and their related tools observe a much larger body of information about the
execution, but at a higher level. They do not provide performance benefits
on-the-fly, but is used to derive better locality optimizations.

Previous allocator work such as dlmalloc [46] and jemalloc [29] inspired
Tidy’s arena-based allocation. However, these allocators rely on the informa-
tion available through regular allocation calls, namely the size of the object
being allocated, to group data. Our approach with Tidy was redefining what
an allocation call looks like, and showing that additional information can
further improve locality. We do not compare against dlmalloc or jemalloc,

70

Chapter 4. Related work

as our work is mostly orthogonal – we show that informed hints can im-
prove a layout’s performance even when allocating objects of the same size
throughout the program. Tidy is a proof of concept allocator wrapper, and
our implementation does not focus on the allocation speed. The insights
from Tidy can be used to bring hint-based allocation into state-of-the-art
allocator libraries.

71

Chapter 5

Conclusion

In the past decades, the gap between CPU speeds and RAM bandwidth has
been increasing. To make matters worse, the amounts of data modern pro-
grams process is growing rapidly as well. Hardware architects are working
on tackling the problem using technologies such as novel cache prefetchers
and near-memory processing units. On the software side, experts spend a
lot of time and effort devising new ways of laying data out in memory to
bring better spatial locality back into programs. We have observed a trend
in prior work on memory layouts of gaining knowledge about the access pat-
tern of an algorithm, relating it to the data itself, and using that data to
guide memory layout design. This process has been mostly manual, and dif-
ficult enough to warrant top-tier publications. Based on these observations,
we set out to investigate whether the burden of obtaining the knowledge
about the relationship between access patterns and data can be delegated
to machines.

The first step towards our goal is data collection. With the advent of
big-data and the revival of machine learning, the opportunity arose to ana-
lyze full, detailed memory access traces. To this end, we built DINAMITE
(chapter 2), an LLVM compiler pass that instruments memory accesses, al-
locations and function events in a program. We show that compiler-based
instrumentation can be used to deliver very rich information about every ac-
cess, at a fraction of the runtime cost of previously available instrumentation
tools. When compared against the pinatrace access tracing tool from the
Pin instrumentation framework DINAMITE reduced the overhead of tracing
by an order of magnitude, while delivering a higher level of details about
the accesses (section 2.2.3). We show how DINAMITE’s modular library
structure can be used to feed access traces into existing big-data processing
systems, which allows for faster exploratory memory performance debugging
(section 2.3.3).

The second step towards our goal is the analysis of collected memory
access traces, and formulation of techniques that enable the detection of
relationships between data and access patterns. We created a novel repre-
sentation of access patterns called access graphs (section 3.2). Access graphs

72

Chapter 5. Conclusion

capture spatial locality properties of a program. Their nodes represent data
objects allocated within a program, and their edges the number of contem-
poraneous accesses of two objects. Based on the spatial locality principle of
caches, placing objects that often get accessed contemporaneously close in
memory has the potential for improving performance. To detect groups of
such objects, we use a novel combination of community detection and lin-
ear graph layout algorithms to form a new heuristic – Hierarchical Memory
Layouts (section 3.3). Hierarchical Memory Layouts approximate solutions
to the NP-Hard problem of optimal data layout in memory. We show that
our solution manages to outperform the baseline in all observed cases in
terms of LLC and DTLB miss rates 3.5.1. Further, Hierarchical Memory
Layouts can be used to directly generate better layouts of data in the cases
where layouts in storage match layouts in memory (section 3.5.2). Finally,
we developed the eponymous Data-Driven Spatial Locality technique that
detects correlations between the data itself and groups of data objects that
should be placed close in memory (section 3.4). Our findings indicate that
many programs exhibit such correlations (section 3.5.4), validating our pri-
mary hypothesis. However, applying memory optimizations based on that
knowledge is feasible only for a subset of programs with simple allocation
patterns, which partially validates our secondary hypothesis.

Our work sets a foundation for different research directions in the future.
Starting from DINAMITE, the computation model which most stream pro-
cessing engines provide today is not well suited for tasks such as creation of
access graphs. It is worth investigating what changes need to be introduced
in order to support a scalable sliding window processing of memory access
traces. The overheads of using Spark Streaming with DINAMITE are no-
tably very high – over an order of magnitude higher than simple storage of
traces. There is potential for improvement here that could make exploratory
memory performance debugging a more attractive and feasible option to be
included in engineers’ tool sets. The overhead of DINAMITE itself could
further be reduced by using static instead of dynamic linkage for the logging
libraries. This would tie the compiled binary to a single logging variant,
which is a trade-off we have not looked into in detail.

The second avenue of potential future work would be the exploration of
access graphs themselves. Access graphs are a novel tool in the context of
memory optimizations, and we have explored only one application of them –
grouping of objects based on graph communities. More work could be done
to explore possible new uses for access graphs.

The Data-Driven Spatial Locality technique presented in this disserta-
tion uses random forests for the sake of simplicity of use and transparency of

73

Chapter 5. Conclusion

results – random forests deliver good results without extensive tuning, and it
is possible to analyze the decision process to find features that contributed
the most to successful classification. With the rapid progress happening
in the area of artificial neural networks, it is reasonable to expect them
to attain similar characteristics to random forests. Given the amount of
work that goes into optimizing the performance of neural networks and the
possibility of compiling trained networks into native code, it would be in-
teresting to look into the feasibility of directly embedding neural networks
into hint-based allocators.

74

Bibliography

[1] Cache memory store in a processor of a data processing system, July 22
1975. US Patent 3,896,419.

[2] Llvm language reference manual, 2016.

[3] Wired tiger: making big data roar, 2016.

[4] Wiredtiger storage engine, 2016.

[5] Wt-2029 improve scalability of statistics, 2016.

[6] Andreas Abel and Jan Reineke. Reverse engineering of cache replace-
ment policies in intel microprocessors and their evaluation. In Perfor-
mance Analysis of Systems and Software (ISPASS), 2014 IEEE Inter-
national Symposium on, pages 141–142. IEEE, 2014.

[7] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and David A
Wood. Dbmss on a modern processor: Where does time go? In VLDB”
99, Proceedings of 25th International Conference on Very Large Data
Bases, September 7-10, 1999, Edinburgh, Scotland, UK, number DIAS-
CONF-1999-001, 1999.

[8] José Nelson Amaral, Edson Borin, Dylan Ashley, Caian Benedicto,
Elliot Colp, Joao Henrique Stange Hoffmam, Marcus Karpoff, Erick
Ochoa, Morgan Redshaw, and Raphael Ernani Rodrigues. The alberta
workloads for the spec cpu 2017 benchmark suite.

[9] Tetsuo Asano, Desh Ranjan, Thomas Roos, Emo Welzl, and Peter Wid-
mayer. Space-filling curves and their use in the design of geometric data
structures. Theoretical Computer Science, 181(1):3–15, 1997.

[10] Michael A Bender, Erik D Demaine, and Martin Farach-Colton. Cache-
oblivious b-trees. In Foundations of Computer Science, 2000. Proceed-
ings. 41st Annual Symposium on, pages 399–409. IEEE, 2000.

75

Bibliography

[11] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[12] Georgios Bitzes and Andrzej Nowak. The overhead of profiling using
pmu hardware counters. CERN openlab report, 2014.

[13] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Eti-
enne Lefebvre. Fast unfolding of communities in large networks. Journal
of statistical mechanics: theory and experiment, 2008(10):P10008, 2008.

[14] Silas Boyd-Wickizer, Austin T Clements, Yandong Mao, Aleksey
Pesterev, M Frans Kaashoek, Robert Morris, Nickolai Zeldovich, et al.
An analysis of linux scalability to many cores. In OSDI, volume 10,
2010.

[15] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[16] Leo Breiman. Manual on setting up, using, and understanding random
forests v3. 1. Statistics Department University of California Berkeley,
CA, USA, 1, 2002.

[17] Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob. Cache oblivious
search trees via binary trees of small height. In Proceedings of the
thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages
39–48. Society for Industrial and Applied Mathematics, 2002.

[18] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infras-
tructure for adaptive dynamic optimization. In Code Generation and
Optimization, 2003. CGO 2003. International Symposium on. IEEE,
2003.

[19] Trishul M Chilimbi, Bob Davidson, and James R Larus. Cache-
conscious structure definition. In ACM SIGPLAN Notices, volume 34.
ACM, 1999.

[20] Trishul M Chilimbi, Bob Davidson, and James R Larus. Cache-
conscious structure definition. In ACM SIGPLAN Notices, volume 34,
pages 13–24. ACM, 1999.

[21] William P Churchill Jr. Memory access technique, November 1 1977.
US Patent 4,056,845.

[22] Daniel Cordes, Heiko Falk, and Peter Marwedel. A fast and precise
static loop analysis based on abstract interpretation, program slicing

76

Bibliography

and polytope models. In Code Generation and Optimization, 2009.
CGO 2009. International Symposium on, pages 136–146. IEEE, 2009.

[23] Arnaldo Carvalho de Melo. The new linux’perf’tools. 2010.

[24] Marianne De Michiel, Armelle Bonenfant, Hugues Cassé, and Pascal
Sainrat. Static loop bound analysis of c programs based on flow analysis
and abstract interpretation. In Embedded and Real-Time Computing
Systems and Applications, 2008. RTCSA’08. 14th IEEE International
Conference on, pages 161–166. IEEE, 2008.

[25] Erik D Demaine. Cache-oblivious algorithms and data structures. Lec-
ture Notes from the EEF Summer School on Massive Data Sets, 8(4):1–
249, 2002.

[26] Dave Dice, Yossi Lev, and Mark Moir. Scalable statistics counters. In
Proceedings of the twenty-fifth annual ACM symposium on Parallelism
in algorithms and architectures. ACM, 2013.

[27] Ulrich Drepper. What every programmer should know about memory.
Red Hat, Inc, 11, 2007.

[28] Jan Edler and Mark D Hill. Dinero iv trace-driven uniprocessor cache
simulator, 1998.

[29] Jason Evans. A scalable concurrent malloc (3) implementation for
freebsd. In Proc. of the bsdcan conference, ottawa, canada, 2006.

[30] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the clouds:
a study of emerging scale-out workloads on modern hardware. In ACM
SIGPLAN Notices, volume 47. ACM, 2012.

[31] M Gopi and David Eppstien. Single-strip triangulation of manifolds
with arbitrary topology. In Computer Graphics Forum, volume 23,
pages 371–379. Wiley Online Library, 2004.

[32] Kazushige Goto and Robert A Geijn. Anatomy of high-performance
matrix multiplication. ACM Transactions on Mathematical Software
(TOMS), 34(3), 2008.

[33] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Li-
dong Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen.

77

Bibliography

Chronos: a graph engine for temporal graph analysis. In Proceedings of
the Ninth European Conference on Computer Systems, page 1. ACM,
2014.

[34] John L. Henning. Spec cpu2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News, 34(4), 2006.

[35] Mark D Hill and J Elder. Dineroiv trace-driven uniprocessor cache
simulator, 1998.

[36] Martin Isenburg and Peter Lindstrom. Streaming meshes. In Visual-
ization, 2005. VIS 05. IEEE, pages 231–238. IEEE, 2005.

[37] Martin Isenburg, Yuanxin Liu, Jonathan Shewchuk, and Jack Snoeyink.
Streaming computation of delaunay triangulations. In ACM transac-
tions on graphics (TOG), volume 25, pages 1049–1056. ACM, 2006.

[38] Marty Itzkowitz, Brian JN Wylie, Christopher Aoki, and Nicolai
Kosche. Memory profiling using hardware counters. In Supercomputing,
2003 ACM/IEEE Conference. IEEE, 2003.

[39] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer.
High performance cache replacement using re-reference interval pre-
diction (rrip). In ACM SIGARCH Computer Architecture News, vol-
ume 38, pages 60–71. ACM, 2010.

[40] Martin Juvan and Bojan Mohar. Optimal linear labelings and eigen-
values of graphs. Discrete Applied Mathematics, 36(2):153–168, 1992.

[41] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzo-
tis. The case for learned index structures. In Proceedings of the 2018 In-
ternational Conference on Management of Data, pages 489–504. ACM,
2018.

[42] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. Graphchi: Large-
scale graph computation on just a pc. USENIX, 2012.

[43] Renaud Lachaize, Baptiste Lepers, and Vivien Quéma. Memprof: A
memory profiler for numa multicore systems. In Presented as part of
the 2012 USENIX Annual Technical Conference (USENIX ATC 12),
2012.

[44] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In Code Generation and

78

Bibliography

Optimization, 2004. CGO 2004. International Symposium on. IEEE,
2004.

[45] Chris Lattner and Vikram Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap. In ACM
SIGPLAN Notices, volume 40. ACM, 2005.

[46] Doug Lea. Dlmalloc, 2010.

[47] Han Bok Lee and Benjamin G Zorn. Bit: A tool for instrumenting
java bytecodes. In USENIX Symposium on Internet technologies and
Systems, 1997.

[48] Tongping Liu and Emery D Berger. Sheriff: precise detection and
automatic mitigation of false sharing. ACM SIGPLAN Notices, 46(10),
2011.

[49] Xu Liu and John Mellor-Crummey. Pinpointing data locality prob-
lems using data-centric analysis. In Code Generation and Optimiza-
tion (CGO), 2011 9th Annual IEEE/ACM International Symposium
on, pages 171–180. IEEE, 2011.

[50] Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. Concurrent
data structures for near-memory computing. In Proceedings of the 29th
ACM Symposium on Parallelism in Algorithms and Architectures, pages
235–245. ACM, 2017.

[51] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: building customized program analysis tools with dy-
namic instrumentation. In Acm sigplan notices, volume 40. ACM, 2005.

[52] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li.
Ferret: a toolkit for content-based similarity search of feature-rich data.
ACM SIGOPS Operating Systems Review, 40(4):317–330, 2006.

[53] Rama Kishan Malladi. Using intel® vtune™ performance analyzer
events/ratios & optimizing applications. http:/software. intel. com,
2009.

[54] Margaret Martonosi, Anoop Gupta, and Thomas Anderson. Memspy:
Analyzing memory system bottlenecks in programs. In ACM SIGMET-
RICS Performance Evaluation Review, volume 20. ACM, 1992.

79

Bibliography

[55] Svetozar Miucin, Conor Brady, and Alexandra Fedorova. Dinamite:
A modern approach to memory performance profiling. arXiv preprint
arXiv:1606.00396, 2016.

[56] Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In ACM Sigplan notices,
volume 42. ACM, 2007.

[57] Preeti Ranjan Panda, Hiroshi Nakamura, Nikil D Dutt, and Alexandru
Nicolau. Augmenting loop tiling with data alignment for improved
cache performance. IEEE transactions on computers, 48(2):142–149,
1999.

[58] Gian-Carlo Pascutto. Sjeng 11.2 deep sjeng, 2018.

[59] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[60] Leeor Peled, Shie Mannor, Uri Weiser, and Yoav Etsion. Semantic lo-
cality and context-based prefetching using reinforcement learning. In
Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual Inter-
national Symposium on, pages 285–297. IEEE, 2015.

[61] Aleksey Pesterev, Nickolai Zeldovich, and Robert T Morris. Locating
cache performance bottlenecks using data profiling. In Proceedings of
the 5th European conference on Computer systems. ACM, 2010.

[62] Jordi Petit. Experiments on the minimum linear arrangement problem.
Journal of Experimental Algorithmics (JEA), 8:2–3, 2003.

[63] Vijayan Prabhakaran, Ming Wu, Xuetian Weng, Frank McSherry, Li-
dong Zhou, and Maya Haridasan. Managing large graphs on multi-cores
with graph awareness. 2012.

[64] Ashay Rane and James Browne. Enhancing performance optimization
of multicore chips and multichip nodes with data structure metrics. In
Proceedings of the 21st international conference on Parallel architec-
tures and compilation techniques. ACM, 2012.

80

Bibliography

[65] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles,
pages 472–488. ACM, 2013.

[66] Shai Rubin, Rastislav Bod́ık, and Trishul Chilimbi. An efficient profile-
analysis framework for data-layout optimizations. In ACM SIGPLAN
Notices, volume 37, pages 140–153. ACM, 2002.

[67] Pedro V Sander, Diego Nehab, and Joshua Barczak. Fast triangle re-
ordering for vertex locality and reduced overdraw. In ACM Transac-
tions on Graphics (TOG), volume 26, page 89. ACM, 2007.

[68] Shankar Prasad Sastry. Dynamic meshing techniques for quality im-
provement, untangling, and warping. 2012.

[69] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing
framework for shared memory. In ACM Sigplan Notices, volume 48,
pages 135–146. ACM, 2013.

[70] Alan Jay Smith. Cache memories. ACM Computing Surveys (CSUR),
14(3):473–530, 1982.

[71] Huy T Vo, Claudio T Silva, Luiz F Scheidegger, and Valerio Pascucci.
Simple and efficient mesh layout with space-filling curves. Journal of
Graphics Tools, 16(1):25–39, 2012.

[72] Michael Wolfe. More iteration space tiling. In Proceedings of the 1989
ACM/IEEE conference on Supercomputing, pages 655–664. ACM, 1989.

[73] Wm A Wulf and Sally A McKee. Hitting the memory wall: implications
of the obvious. ACM SIGARCH computer architecture news, 23(1):20–
24, 1995.

[74] Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao. Hotl: a higher order
theory of locality. In ACM SIGARCH Computer Architecture News,
volume 41, pages 343–356. ACM, 2013.

[75] Sung-Eui Yoon, Peter Lindstrom, Valerio Pascucci, and Dinesh
Manocha. Cache-oblivious mesh layouts. In ACM Transactions on
Graphics (TOG), volume 24. ACM, 2005.

[76] Sung-Eui Yoon and Dinesh Manocha. Cache-efficient layouts of bound-
ing volume hierarchies. In Computer Graphics Forum, volume 25, pages
507–516. Wiley Online Library, 2006.

81

[77] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion
Stoica. Discretized streams: an efficient and fault-tolerant model for
stream processing on large clusters. In Presented as part of the, 2012.

[78] Qin Zhao, Derek Bruening, and Saman Amarasinghe. Umbra: Effi-
cient and scalable memory shadowing. In Proceedings of the 8th an-
nual IEEE/ACM international symposium on Code generation and op-
timization. ACM, 2010.

[79] Qin Zhao, David Koh, Syed Raza, Derek Bruening, Weng-Fai Wong,
and Saman Amarasinghe. Dynamic cache contention detection in multi-
threaded applications. In ACM SIGPLAN Notices, volume 46. ACM,
2011.

82

Appendix A

Hardware

All experiments in chapter 2 evaluation were performed on one of the fol-
lowing machines:

• Machine A - AMD Opteron 6272, 4 chips with 16 cores and 16MB of
last level cache each, and 512GB of RAM

• Machine B - AMD Opteron 2435, 2 chips with 6 cores 6MB of last
level cache each, and 32GB of RAM

83

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Code Listings
	Acknowledgements
	Dedication
	Introduction
	DINAMITE
	Introduction
	System design
	LLVM instrumentation pass
	Log format
	Logging libraries
	Analysis toolkit

	Evaluation
	Identifying cache offenders
	Structure splitting
	Shared variable detection

	Future work and conclusions

	Data-driven spatial locality
	Introduction
	Access Graphs
	Hierarchical Memory Layout
	Data-driven locality
	Generating input vectors
	Coverage
	Training methodology and evaluation criteria
	Tidy: a memory allocator wrapper

	Evaluation
	Hierarchical Memory Layouts
	Data layout in storage
	Data-driven spatial locality
	Benchmark suite experiments

	Related work
	Conclusion
	Bibliography
	Hardware

