
ARTIFICIAL NEURAL NETWORK BASED PREDICTION OF TREATMENT 

RESPONSE TO REPETITIVE TRANSCRANIAL MAGNETIC STIMULATION FOR 

MAJOR DEPRESSIVE DISORDER PATIENTS 

 

by 

 

Dana Bazazeh 

 

B.Sc., Khalifa University, 2016 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

 

MASTER OF APPLIED SCIENCE 

in 

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES 

(Electrical and Computer Engineering) 
 

 

THE UNIVERSITY OF BRITISH COLUMBIA 

(Vancouver) 

 

December 2018 

© Dana Bazazeh, 2018 



ii 

 

 
The following individuals certify that they have read, and recommend to the Faculty of Graduate 
and Postdoctoral Studies for acceptance, a thesis/dissertation entitled: 
 

Artificial Neural Network based prediction of treatment response to repetitive Transcranial 
Magnetic Stimulation for Major Depressive Disorder patients 
 

 

submitted by Dana Bazazeh in partial fulfillment of the requirements for 

the degree of Master of Applied Science 

in Electrical and Computer Engineering 
 

Examining Committee: 

Dr. Jane Wang 
Co-supervisor 

Dr. Rabab Ward 
Co-supervisor  

Dr. Shahriar Mirabbasi 
Supervisory Committee Member 

 
Additional Examiner 

 

Additional Supervisory Committee Members: 

 
Supervisory Committee Member 

 
Supervisory Committee Member 



iii 

 

Abstract 

 

Major Depressive Disorder (MDD) is a severe medical condition that affects thousands of people 

every year. Therapy in MDD includes medication and psychotherapy, and is prescribed on the 

basis of the type and severity of depressive episodes. Treatment-resistance is common among 

MDD patients. Repetitive Transcranial Magnetic Stimulation (rTMS) is a form of deep brain 

stimulation used for relieving depressive symptoms. Due to its high cost and lengthy procedure, 

it’s reserved for patients showing treatment-resistance to at least 2 trials of antidepressants. Of all 

MDD patients, only 50% show response to rTMS, which leads to unnecessary patient frustration 

and additional costs. Prediction of resistance to rTMS treatment can thus help physicians decide 

on the best treatment course for each patient. This thesis presents a machine-learning based clinical 

assistive tool that predicts the probability of a patient to respond to rTMS treatment and if so, 

predict the probability whether they are likely to achieve remission. The most relevant clinical and 

sociodemographic variables associated with predicting treatment outcomes were selected on the 

basis of importance scores ranked using a Random Forest (RF) algorithm, and an elaborative 

analysis of their significance was presented. The most important variables were fed into a Deep 

Artificial Neural Network (DANN) for classification of patients who will respond to rTMS 

treatment. Two DANN variants were designed, trained, optimized and tested to predict each of 

rTMS treatment response and remission outcomes. Our model is based on the pre-treatment 

clinical and sociodemographic data which had been collected from 414 patients diagnosed with 

treatment-resistant MDD. Results show that our DANN model outperforms existing clinical 

procedures and yields an accuracy of 84.4% in predicting remission and 73.8% in distinguishing 

responders form non-responders. Additionally, a thorough evaluation and comparison with other 
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methods that have used machine learning algorithms to predict rTMS treatment outcome was 

carried and discussed in detail. Findings in this thesis signify the potential of individual-based 

assessments that can improve rTMS treatment procedure. 
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Lay Summary 

 

Major Depressive Disorder (MDD) is a serious condition that affects people of all ages across the 

world. Several treatments are available for reducing depressive symptoms among patients, but 

unfortunately many patients demonstrate resistance to therapeutic treatments. Recently, physicians 

have started directing patients with treatment-resistance to antidepressants towards undergoing 

deep brain stimulation therapy such as repetitive Transcranial Magnetic Stimulation (rTMS). 

Albeit beneficial to some, 50% of patients fail to respond to a complete course of rTMS treatment. 

Clinical assistive tools can be utilized to provide aid to physicians in planning adequate treatment 

plans for patients on a case-by-case basis. In this thesis, we propose a clinical tool that takes in a 

patient profile consisting of sociodemographic and clinical characteristics, and outputs a prediction 

of the patient’s most likely outcome to rTMS treatment. The findings in this thesis were evaluated 

and highlight the benefits of integrating machine-learnt models into clinical decision making. 
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Chapter 1: Introduction 

 

1.1 Overview 

Major Depressive Disorder (MDD) is the fifth most leading cause of disability around the world, 

as assessed based on years lived with disability, and its adverse effect disrupt the daily lives of 

hundreds of millions of people every year [1]. Studies have shown that most MDD patients (70-

90%) are unable to achieve remission given an initial treatment course [2-5]. This outlines the need 

for designing methods to assist physicians in the decision making process when it comes to 

depression treatment plans. Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-

invasive brain stimulation technique approved by Health Canada and FDA (U.S. Food and Drug 

Administration), and used for the therapeutic treatment of MDD [6]. rTMS treatment is commonly 

used when a patient is deemed unresponsive to an adequate dose and trial of antidepressants. 

Response to treatment is standardly defined as a 50% reduction in score from an initial baseline 

using one of the known rating scales [7-9]. Recent studies have showed response rate of 50-55% 

and remission rate of 30-35% to rTMS treatment on average [10-12]. rTMS treatments are costly 

and time-consuming, which has pushed researchers to determine ways to predict early on the 

treatment outcome to rTMS for each patient. Different studies have attempted to predict response 

to rTMS using biomarkers based on neurochemical, neurophysiological, and neuroimaging 

measures [13]. However, obtaining biomarker-related data is both expensive and complicated. 

Alternatively, clinical data can be obtained quickly, economically and only require a minimal 

amount of preprocessing.  

Machine Learning (ML) is the science of enabling computers to self-learn, by giving them 

examples in the form of data samples to initiate this learning process [14]. The ML field consists 
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of many algorithms that can be used for different learning tasks. Deep Learning (DL) is a subfield 

of ML that emulates the way a human brain learns new information. A typical DL model consists 

of several layers of increasing abstraction stacked in sequence, and usually requires large amounts 

of data to learn a given task [15]. ML and DL algorithms have been rigorously applied in the 

medical field due to their ability to detect complex patterns in large and noisy data. This had led 

the introduction of a surge of successful applications ranging from image processing and 

segmentation to diagnosis and treatment outcome prediction. Similarly in studies of depression, 

applications of ML algorithms have seen wide use for treatment outcome analysis and symptom 

significance [16].  

 

1.2 Motivation & Scope  

Assistive tools can help guide a physician’s decision towards the most appropriate treatment 

course, which would eventually improve the efficacy of rTMS treatment. Meanwhile, patients with 

treatment-resistance to rTMS can be directed to other forms of therapy that can be deemed more 

effective. This will help cut-down time and costs associated with ineffective treatment that usually 

expands over multiple weeks. Recent studies that aimed to predict treatment outcome to rTMS 

relied mainly on electroencephalogram (EEG) pre-treatment data with small datasets [17]. EEG 

data is more expensive and cumbersome to collect and analyze when compared to clinical data. 

Based on our extensive research and knowledge, there has been no work focused on predicting 

rTMS treatment outcome using only clinical and/or sociodemographic data collected at baseline. 

Prediction of treatment outcome in general could be approached in two different ways. One such 

way is using standard statistical techniques that require constant input from domain experts. Here, 

the underlying correlation between predictive variables and the treatment outcome variable is 
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investigated sequentially, and such techniques are only feasible when variable relationships are 

linear in nature. Future predictions using this approach call for an in-depth analysis of a patient 

profile made by a skilled physician, which is costly and time consuming, as well as prone to high 

levels of human error. On the other hand, ML based prediction has shown huge success in the 

medical field, as it allows for multiple and simultaneous analysis of predictor-outcome 

relationships. In many medical tasks such as diagnosis and prognosis, prior assumptions regarding 

relationships between variables can’t be made, due to the heterogeneity of a disease. Therefore 

ML algorithms can be used to model such high complex relationships and approximate functions 

to a high degree of accuracy. Performance of ML models are quantifiable and allow for easy 

comparison with different models. In addition, a well-trained model can make new predictions 

instantly, with a high degree of accuracy and without any additional analysis or input from 

specialized physicians. Given all these advantages, we determined that investigating different ML 

algorithms would be the best plausible approach to solve the problem of predicting treatment 

outcome in depression. 

 In this thesis, we present a novel ML-based framework that aims to provide high accuracy 

predictions of outcome to rTMS treatment using only a small number of patient characteristics that 

can be collected through assessment forms within 10 minutes.  

 

1.3 Problem at Rest 

Our assumption is that a combination of carefully selected pre-treatment sociodemographic and 

clinical data can sufficiently be used to design and drive a ML model to accurately predict 

treatment outcome to rTMS therapy. This thesis explores the following research questions: 
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● RQ1. What are the most important features that could be associated with rTMS treatment 

outcome for each of response and remission states? 

We use ML to perform an analysis of all collected features and symptoms relevant to rTMS 

and independently analyze the effect of each feature on treatment outcome. 

 

● RQ2. How can we design a clinical  predictive tool for predicting rTMS outcome? 

We use a combination of ML and DL techniques to develop an end-to-end framework that 

is trained and tested to accurately predict rTMS treatment outcome using a refined feature 

set of only the most predictive features.   

 

1.4 Contributions 

This thesis makes the following main contributions: 

● Provide a refined, cleaned dataset consisting of relevant sociodemographic and clinical 

features, labeled with appropriate response and remission rates for 414 patients diagnosed 

with MDD.  

● Design and develop a novel prediction framework that selects important features associated 

with rTMS treatment outcome and uses them as input to drive a DL model, which is trained 

and tested using multiple evaluation metrics. 

● Offer an elaborative analysis of most important predictors of rTMS treatment outcomes 

and justifications based on recent research studies.  

● Provide a systematic comparison of several ML algorithms used to drive rTMS treatment 

outcome predictions based on our private dataset. 
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1.5 Thesis Organization 

The rest of the thesis is structured as follows: Chapter 2 provides a detailed description of rTMS 

treatment, as well as the most popular ML algorithms used in the medical field. In addition, 

Chapter 2 discusses related work that also utilize ML algorithms to make predictions about  

depression treatment outcome. Chapter 3 explains our proposed approach in detail and includes a 

description of data collection, model design and architectural aspects of our method. Chapter 4 

reports our results using a comprehensive set of evaluation metrics and provides a thorough 

discussion of the limitations and constraints of our approach. Finally, Chapter 5 concludes our 

work and describes potential future work. 
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Chapter 2: Background & Related Work 

2.1 Depression Treatment Overview 

Several treatment options are in place to relieve the symptoms of depression, and with the help of 

a qualified physician, patients with MDD can explore these possibilities based on their unique 

profile and treatment history. Psychotherapy is a popular treatment given to patients with 

depression, and is informed by psychiatrists stirring cognitive, behavioral and interpersonal talks 

with patients in order to achieve mindfulness. Many physicians encourage the combination of 

psychotherapy with other forms of treatment, such as antidepressants, to improve efficacy [18]. 

Antidepressants are among the most commonly prescribed medication for depression, and consist 

of a large family of drugs with different strength and effects. The main group of antidepressants 

include Tricyclic Antidepressants (TCAs), Selective Serotonin Reuptake Inhibitors class (SSRIs), 

Mono-Amine Oxidase Inhibitors (MAOIs) and ‘atypical’ antidepressants [19]. Patients who 

develop treatment-resistance to antidepressants seek other effective forms of therapy. Transcranial 

Magnetic Stimulation (TMS) is a therapeutic procedure that works by positioning magnetic fields 

to penetrate a specific region of the brain, which has been associated with depression, in order to 

stimulate nerve cells that can help reduce depressive symptoms [20][21]. Albeit non-invasive, 

TMS is usually reserved for when antidepressants deem ineffective, mainly because of its high 

cost. Lastly, Electroconvulsive Therapy (ECT) is a technique in which electric currents are sent 

through the patient’s brain, causing a small seizure to change the biochemical brain state and 

relieve depressive symptoms. Although highly effective, ECT is considered risky considering its 

need for general anesthesia and serious side effects such as amnesia and disorientation, which is 

why physicians withhold it for only the most severe, treatment-resistant cases of depression [22].  
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2.2 Transcranial Magnetic Stimulation 

2.2.1  Repetitive Transcranial Magnetic Stimulation 

Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive therapeutic procedure for 

treatment-resistant MDD [23] It works by influencing the brain’s cerebral electrical activity using 

a repetitive pulsed magnetic field that transports across the scalp, skull and into the prefrontal 

cortex part of the brain [24]. rTMS has been extensively researched and approved by the US Food 

and Drug Administration (FDA) in 2008 for clinical practice as a safe treatment for MDD [25]. A 

complete treatment course using rTMS can add up to $12,000, which makes it more costly than 

traditional antidepressants treatments [26]. As a result, rTMS is usually recommended to a patient 

only after they fail to respond to at least 2 antidepressant trials of adequate dose and strength [23]. 

The most widely adopted protocol uses 10 Hz stimulation frequency with 4s on and 26s off bursts 

of stimulation for a total of 3,000 pulses per session, which takes around 37.5 mins to deliver [27]. 

This is done with a stimulation intensity of 120% resting motor threshold (RMT). Since rTMS is 

based on magnetic fields penetrating the brain, people with implanted metals inside the head or 

neck should avoid this treatment. rTMS has proved successful in patients with treatment-resistant 

depression and has minimal side effects, however, its efficacy is highly dependent on parameters 

such as type of coil, placement position, stimulation frequency, strength and length [23]. The 

NeuroStar TMS Therapy System (Neuronetics, Malvern, Pennsylvania) was the first device 

approved by the FDA to perform rTMS, and was later followed by several other manufactured 

devices [28]. 
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Figure 2.1 Difference in burst transmission rate between rTMS and iTBS 

 

2.2.2 Intermittent Theta Burst Stimulation 

Intermittent Theta Burst Stimulation (iTBS) is a variation of the standard rTMS protocol that has 

seen a lot of popular use in clinical practice. This was the result of several attempts to improve the 

treatment efficacy of rTMS. The main difference between rTMS and iTBS is the length of the 

protocol. iTBS is proved to be much faster with better tolerability [29][30]. In iTBS, triplet bursts 

are emitted at a frequency of 50 Hz for every 200ms time interval, which is repeated at 5 Hz, 2s 

on and 8s off for a total of 600 pulses [29]. The total duration for a single session of iTBS is around 

3 mins, which improves upon patient tolerability and comfort level. This great reduction in 

procedural length means that treatment centers can facilitate more number of people per day, which 

makes it more cost-effective, when compared to standard rTMS. A recent study has shown the 

non-inferiority of iTBS when compared with standard 10 Hz rTMS treatment [31].  

 

2.3  Machine Learning 

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that combines algorithms 

capable of learning from observed data instances and making predictions about new unseen data. 

The learning process in ML is driven by the availability of large amounts of data samples, and a 

10 Hz rtMS

iTBS
2 s 8 s
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model is designed to extract relevant information and relations from within the data, which is then 

used in the form of a general model that forecasts the behavior of new similar data. The architecture 

of a ML model is highly dependent on the complexity of a given problem and the characteristics 

of the data associated with it. ML algorithms can be divided into two main categories; supervised 

[32] and unsupervised learning [33]. Supervised learning is the most common type of ML and 

consists of input features X = {x1,x2,…,xi} extracted from a data set and paired with labeled 

output variables Y, and the ML algorithm works toward learning the mapping between X and Y. 

Classification and regression problems come under the family of supervised learning [34][35]. On 

the other hand, in unsupervised learning, data consists of only the input features X, without any 

labeled output variables Y. An unsupervised model tries to learn the underlying structure of the 

data to extract information. Data clustering is one of the most popular unsupervised learning 

problems, where data is grouped together based on shared similarities [36]. ML is widely applied 

in many domains today, and extensively used within the medical field. Its applications ranges from 

image processing and segmentation to disease diagnosis and prognosis. We will further discuss in 

more detail a number of ML algorithms that are under investigation within this thesis.  

 

2.3.1 Random Forest 

Random Forest (RF) is a supervised learning algorithm that uses a simple decision tree as its 

building block. It is an ensemble learning technique based on combining several decision trees 

together, where generally a large number of trees is preferred to yield good results [37]. Every 

decision tree in the ensemble is independently constructed using a subset of the data instances with 

the bootstrapping technique, where data is sampled with replacement from the main dataset. An 

individual decision tree may also only include a subset of the variables in the main data set, and 
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this parameter can be optimized when designing a RF. Assume we have a data set with ! samples	

{(%&,	(&),	 (%*,	(*),...,	 (%,,	(,)},	 where	 %/	 is an input vector having	 0	 variables/features and 

represented as %/	=	{	2/&,	2/*, … , 2/4}	and	(/5{0,1}	represent a binary output class label. To build 

8	number of	trees using bootstrapping technique means we need 8 number of bootstrap datasets, 

one per tree [38]. These datasets should contain !	samples, drawn from the original dataset with 

replacement, which means duplicate samples are possible. Each of the bootstrap datasets may only 

have 9 variables/features, obtained as a square root of the full list of 0 variables ( 9 =	√0 ).	Once 

all the trees 8 are trained and optimized using a training set, each individual decision tree gives 

out its own predicted output variable when given new data, and the final output of RF is a majority 

vote across ;	 = 	 {	(&, (*, … , (<	}	 representing all the individual trees outputs. For every sample 

input-output pair (%=,	(=),		there exists > bootstrap datasets that do not have the sample (%=,	(=),	

and these	 >	 datasets are known as the out-of-bag sets. The out-of-bag error (OOBE) is then 

estimated by the classification of all possible n samples (%=, (=), each using only their own of out-

of-bag sets >=. This OOBE is used to reflect the generalization error of the RF classifier, and an 

optimizer can help reduce this error. Due to its speed, intuition and flexibility in combining 

categorical and continuous data, RF have seen popular use in applied ML for both classification 

and regression problems. A detailed description of the algorithm along with its parameters can be 

found in [37].	
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Figure 2.2 Visualization of Random Forest architecture 

 

 

 

Simplified Random Forest Pseudocode 

Procedure RF 
   for t in Trees 
          Sample n data points Dn from D with replacement 
          Randomly select Vm variables from variable set Vo, where m = sqrt(o) 
          Using Dn samples with Vm features, construct decision tree  
          Cast output vote 
          Minimize out of bag error 
   end loop 
   return majority vote across all Trees 
end procedure 

 

Table 2.1 Random Forest simple pseudocode 

 

Tree 1 Tree 2 Tree N

Random Forest
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2.3.2 Logistic Regression 

Logistic Regression (LR), unlike its name implies, is a classification ML algorithm based on a 

statistical analysis approach. In binary LR, a collection of continuous independent variables is used 

to predict a dichotomous dependent variable. It differs from linear regression in that it is a 

probabilistic based approach, where the output is in the form of a probability representing which 

output class a given data point belongs to. Mathematically, this is represented using the steps below 

as described in [39] 

For simplicity, we assume a binary dependent variable Y with two independent variables 

21, 22. Given that @ is the probability that the binary output class for a specific data sample with 

feature space X is 1. 

@ = A(;	 = 	1		|% = 21, 22)	
	

	
The logistic response function is defined below where C,	represent the coefficients of the logistic 

function, found using maximum-likelihood estimation. 

 

@ = 	
DEFG	EHIHG	EJIJ

1 +	DEFG	EHIHG	EJIJ
	

 
 

To transfer the response function to linearity, we introduce the odds ratio term L
&ML

 

 

@
1 − @

= 	DEFG	EHIHG	EJIJ		

	

Finally, a logistic model can be estimated with the below logistic equation 
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OPQ	 R
@

1 − @
S = 	CT +	C&2& +	C*2*		 

 
 

LR performs well with noisy data and is fairly simple to use. Variable coefficients estimated using 

maximum-likelihood, albeit hard to interpret, can provide some insight to the way features interact 

to predict the outcome variable. For this reason, LR has seen increasing use in the medical field, 

and in depression related studies [40][41]. 

 

  

2.3.3 Artificial Neural Network 

Artificial Neural Network (ANN) [41] is a ML-based framework that was initially inspired by the 

way the neural system works in the human brain. It consists of many nodes that are interconnected 

together in a hierarchical layered architecture. A standard ANN has an input layer, hidden layer 

and an output layer, all of which are fully connected such that every node is connected to all the 

nodes in the succeeding layer. There are usually as many nodes in the input layer as there are 

variables in the variable space X. Nodes are computational units that take in weighted inputs and 

depending on a given threshold, will sometimes activate releasing an output value. The activation 

function is modeled as below: 

U(V) = U WXY/2/ + Z
,

/5&

[ 

 

The activation function U(V)	 usually has a limit between 0 and 1 for a sigmoid activation or  -1  

and 1 for a tanh function. Here ! represents the number of inputs to the node, Y/ is the weights 
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associated with each input, 2/ the input value and Z the added bias. The linear activations are fed 

into the succeeding layer in the architecture, where the weighted sum of these activations are fed 

into the second layer’s activation function and so on until it propagates to the output layer. The 

weights of the system are initialized and then adjusted by backpropagating the classification error 

calculated at the output layer for every data instance or epoch that the model inputs. This is 

iteratively done for all samples in the training set, with the aim of minimizing a given cost function 

to achieve higher classification accuracy. Deep Artificial Neural Networks (DANN) is the term 

given to a specific variant of an ANN where there is more than a single hidden layer [15]. Number 

of hidden layers are increased to account for increased abstraction and complexity. ANNs have 

several user defined hyperparameters which should be tuned to reduce error and increase accuracy. 

Parameters to be tuned include number of epochs, learning rate, step size, tolerance, momentum 

and alpha variable. ANNs can approximate most functions with a high generalization capacity.  

 

Figure 2.3 Simple multiple layer perceptron neural network 
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2.4 Related Work 

There has been few studies that explored the use of ML algorithms in predicting the outcome of 

different depression therapies. These studies can be divided into two main categories. The first 

cluster of work relates to predicting therapy outcome of MDD patients undergoing antidepressant 

treatment courses using sociodemographic and clinical data, including self-reported depression 

symptom inventories [43-47]. In [41] data from level 1 and 2 of the Sequenced Treatment 

Alternatives to Relieve Depression (STAR*D) study (n = 2,876) was utilized to construct a LR 

model that predicts remission rates, which showed promising results with an Area Under the 

receiver operating characteristic Curve (AUC) of 0.719. Similarly in [43], data from level 1 of the 

STAR*D trial (n = 1,949) was used and the most predictive variables/features consisting of 

sociodemographic and diagnostic clinical features were identified using an elastic net model. The 

features were then fed into a gradient boosting machine, which is an ensemble ML approach that 

combines weakly trained decision trees together. Their external validation results using the 

Combining Medications to Enhance Depression Outcomes (COMED) cohort data showed an 

accuracy of 59.6%. Another study [44] focused on independently collecting clinical and 

demographic data from 552 patients diagnosed with treatment resistant MDD using the 

Montgomery-Asberg Depression Rating Scale (MADRS) and fitted a random forest classifier to 

predict treatment outcome, which achieved an overall accuracy of 75% using internal 10-fold cross 

validation.  

 

The second cluster of work mainly focused on using electroencephalogram (EEG) pre-

treatment data to predict outcome of rTMS treatment [17][47][48] . In the most recent and largest 

of those studies [47], 147 MDD subjects were recruited and pre-treatment quantitative 
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electroencephalography (QEEG) data was extracted to fit a Support Vector Machine (SVM) 

classifier which had an overall accuracy of 86.4% and an AUC of 0.92 in predicting response to 

rTMS treatment. In [17], 55 patients with MDD were recruited and pre-treatment QEGG cordance 

data was collected and used to construct an ANN with 10 hidden layer neurons and a sigmoid 

activation function, using the trainlm function. The model achieved an overall accuracy of 87.27%  

in identifying responders from non-responders, using internal 10-fold cross validation. Finally in 

[48], pre-treatment resting EEG data was initially collected from 27 participants and consisted of 

142 features. A dimensionality reduction technique was performed using the minimal-redundancy-

maximal-relevance criterion (mRmR) that reduced the number of features to only four with the 

highest relevance score. The top four features were then used to fit a response prediction model 

using the Mixture of Factor Analysis (MFA) technique. The model was internally validated using 

a Leave-2-out cross-validation technique and achieved an overall accuracy of 80%. Table 2.2 

below summarizes all the related work, describing in more detail their objective, data type, data 

size, approach used to solve their task and their final results. The main challenge in this problem 

is attempting to approach a complex task such as predicting rTMS treatment outcome using only 

clinical and sociodemographic data at baseline. As can be seen in Table 2.2, all other attempts to 

predict rTMS outcome consisted of collecting EEG data, which is expensive and has a large 

overhead preprocessing cost. Additionally, these two studies included a small sample size (147 

and 27 samples), which are too small to draw meaningful generalizations from. Based on our 

thorough research, we did not identify any work that attempts to sufficiently use clinical and/or 

sociodemographic data at baseline to predict response or remission rates for rTMS based 

therapeutics, which in turn highlights the novelty  of this work. 
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Table 2.2 Summary of related work

Related Work Objective Data 

Data 
Dimension 
(samples x 
features) 

 

Data Type 
Machine 
Learning 

Technique/Model 
Results 

Antidepressant treatment outcome prediction 

Chekroud et. al  
2016 [43] 

Predict antidepressant  
(citalopram) treatment 

remission outcome 

Clinical + 
Sociodemographic 

1949 x 25 
 

Continuous 
+ 

Categorical 

Gradient Boosting 
Machine 

Accuracy 64·6% 
 

Kautzky et. al 
2018 [44] 

Predict antidepressant  
treatment response 

outcome 

Clinical + 
Sociodemographic 552 x 47 

Continuous 
+ 

Categorical 
Random Forest Accuracy 75.0% 

Iniesta et. al 
2016 [45] 

Predict antidepressant  
treatment remission 

outcome 

Clinical + 
Demographic 793 x 41 

Continuous 
+ 

Categorical 
Elastic Net AUC 72.0% 

Perlis 2012 [46] 
Predict antidepressant  
treatment remission 

outcome 

Clinical + 
Sociodemographic 4023 x 15 

Continuous 
+ 

Categorical 

Logistic 
Regression AUC 71.2.% 

Repetitive Transcranial Magnetic Stimulation (rTMS) treatment outcome prediction 
 

Erguzel et al. 
2015 [47] 

Predict rTMS 
treatment response 

outcome 
EEG 147 x 6 Continuous Support Vector 

Machine Accuracy 86.4% 

Khodayari-
Rostamabad et 
al. 2011 [48] 

Predict rTMS 
treatment response 

outcome 
EEG 27 x 4 Continuous Mixture of Factor 

Analysis Accuracy 80.0% 

Bazazeh et al. 
2018 

(our work) 

Predict rTMS 
treatment response + 
remission outcome 

Clinical + 
Sociodemographic 414 x 15 

Continuous 
+ 

Categorical 

Deep  Artificial 
Neural Network 

Response:  
Accuracy 73.8% 

Remission  
Accuracy 84.4% 
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Chapter 3: Proposed Approach 

3.1 Overview 

In this thesis, we propose a clinical assistive tool, with high accuracy and low cost for predicting 

treatment outcome to rTMS treatment. The core of our approach is built on machine learning 

algorithms that is centered around learning to differentiate between responders and non-responders 

in a pre-treatment setting. Figure 3.1 shows an overview of our proposed approach. Given a 

database of raw patient characteristics, the first task consisted of cleaning and reformatting the 

database structure to make it more readable and machine ready. An initial filtration was done to 

eliminate noisy and irrelevant variables, using the opinion of medical experts to clarify and 

eliminate unnecessary variables as well as remove patient records with missing data. The reduced 

dataset was then fed into a RF model, where ensemble learning allowed for variable ranking based 

on how each variable/feature improved the purity of a tree node. Using two RF models, top 15 

features for each of response and remission outcomes were extracted into two refined datasets. 

Due to imbalances in the datasets with low occurrence of response and remission instances, both 

datasets were inserted into an over-sampling function to avoid hindering the final model 

performance. Subsequently, the balance-adjusted datasets were each inserted into a stand-alone 

DANN. Each DANN had a repetitive tuning process, where selected model hyperparameters 

underwent performance optimization. Once the final hyperparameter settings was found, models 

were trained and tested using a cross-validation technique. The datasets were also analyzed using 

RF and LR models for providing a comparative view. Performance analysis consisted of reporting 

on evaluation metrics such as accuracy, sensitivity and specificity, and examining ROC curves. 

 
 



 

 

19 

 

Figure 3.1 Our proposed system framework 
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3.2  Participant Data 

A total number of 501 patients aged 18-65 were recruited at 3 Canadian Hospitals; Centre for 

Addiction and Mental Health, Toronto, ON, Toronto Western Hospital, Toronto, ON and 

University of British Columbia Hospital, Vancouver, BC. All selected patients were diagnosed 

with MDD using the Mini-International Neuropsychiatric Interview [49]. Inclusion criteria is a list 

of primary participant features or characteristics needed to answer certain study questions. The 

inclusion criteria here consisted of the following; inability to withstand two antidepressant courses 

with adequate dosage and length, showed at least a score of 18 for depression severity using the 

17-item Hamilton Rating Scale for Depression (HRSD-17) [9]  and having to undergo a fixed 

antidepressant course at least 4 weeks before rTMS treatment and throughout the treatment. 

Exclusion criteria is a list of characteristics found among participants who have successfully met 

a study’s inclusion criteria, but have additional undesirable characteristics that can hinder the 

success of the study. The exclusion criteria here consisted of the following; previous diagnosis of 

a personality, bipolar or  psychotic disorder or any existing substantial neurological or medical 

illness or anomalous serology. Patients were also excluded if they had undergone drug abuse 

within a 3 month period prior to treatment initiation, demonstrated suicidal behavior, pregnancy, 

undergone previous rTMS therapy, shown treatment resistance to electroconvulsive therapy (ECT) 

or at least 3 antidepressant trials, or were consuming 2 mg or more of any kind of anticonvulsant 

such as lorazepam. For safety reasons, patients with any kind of metallic substances in their head 

or neck such as a pacemakers or metallic implants were also excluded. 
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3.3   TMS Procedure & Outcome Measurement  

A total of 414 patients were identified after evaluation of the inclusion and exclusion criteria. 

Patients were then equally assigned to treatment groups based on a randomization process that 

either placed the patient to receive standard 10 Hz rTMS treatment or iTBS treatment, and these 

two groups were balanced (1:1) according to the degree of resistance to antidepressants. This 

randomization process consisted of creating a randomization table using randomly generating 

permutation blocks obtained with a computer-based algorithm and grouped according to study site. 

The rTMS therapy was delivered using either the magnetic stimulator MagPro X100 or the R30 

stimulator (MagVenture, Farum, Denmark) which targeted the left dorsolateral prefrontal cortex 

region of the brain. The visor neuronavigation system (ANT Neuro, Enschede, Netherlands) was 

used for an accurate positioning of the stimulator coil with the prefrontal cortex of each patient. 

Depression severity was assessed for each patient at baseline before commencing the treatment 

trial using three different scales; the 17-item Hamilton Rating Scale for Depression (HRSD) [9], 

the self-rated 16-item Quick Inventory of Depressive Symptoms (QIDS) (27) [8] and the 30-item 

Inventory of Depressive Symptoms (IDS-30) [7]. Anxiety has been previously correlated with 

depression treatment response and was hence also assessed using the Brief Symptom Inventory 

Anxiety Subscale (BSI-A) [50]. The delivery of standard rTMS using 120% RMT stimulation 

intensity consisted of 3,000 pulses per session at a 10 Hz frequency with 4s on and 26s off, and an 

average of 37.5 mins per session [51][52]. The iTBS treatment using 120% RMT stimulation 

intensity was completed at a significantly faster pace than that of rTMS, with an average of 3.15 

mins per session and consisted of 600 total pulses of 50 Hz burst triplets. These triplets were 

repeated with a 5 Hz frequency, 2s on and 8s off [29]. Each patient initially received 20 treatment 

sessions, one per day for a total of 5 days/sessions per week, which was continued through a period 
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of 4 weeks. Depression severity was measured using IDS-30, BSI-A, HRSD and QIDS scales and 

the results were assessed for each patient at the end of the treatment course by the same trained 

staff member who had initially assessed their baseline scores. Patients who were not able to achieve 

remission but had 30% or more drop in their depression severity scores as reported by any of the 

three depression inventories, were given 10 treatment sessions in addition to the initial 20 sessions. 

Treatment outcomes were recorded at the end of the treatment trial for each patient and consisted 

of the dichotomous variables representing response and remission. Remission is achieved with a 

score of HRSD-17 <8, IDS-30 <14, or  QIDS <6, and response was defined as a 50% decrease in 

depression severity based on scores from HRSD-17, IDS-30 or QIDS. 

 

Feature Mean Standard Deviation 

Age 42.4 11.5 

Years of education 16.3 3.2 

Age of onset 21.1 11.3 

Episode duration in months 23.4 27.3 

Baseline HRSD-17 score 23.7 4.4 

Baseline QIDS-SR score 17.2 4.6 

Baseline IDS-30 score 39.6 10.1 

Baseline BSI-A score 10.2 5.4 

Stimulation intensity  52.3 48.0 

Antidepressants Treatment History Form: Strength Score 6.3 3.4 

Years of education 16.3 3.2 
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Feature Total % 

Male 168 40.5% 

Level of education 

     Grade 6 or less 2 0.5% 

     Grade 7-12 8 1.9% 

     High school graduate 31 7.5% 

     College dropout 71 17.1% 

     2 year college degree 53 12.8% 

     4 year college degree 125 30.2% 

     Graduate program dropout 34 8.2% 

     Graduate school degree 90 21.7% 

Financial status 

     Employed 150 36.2% 

     Unemployed 41 9.9% 

     Ontario disability support program 39 9.4% 

     Ontario works financial aid program 15 3.6% 

     Insurance disability 85 20.5% 

     Spouse support 35 8.5% 

     Family support 49 11.8% 

Standard 10Hz rTMS 205 49.4% 

Received pharmacotherapy during treatment 

     Benzodiazepine 139 34% 
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Table 3.1 Baseline sociodemographic and clinical data 

     Antidepressant  318 77% 

     Antidepressant combination 91 22% 

     Antipsychotic augmentation  77 19% 

     Lithium augmentation 13 3% 

Antidepressants Treatment History Form: Trials 

     One failed antidepressant  185 45% 

     Two failed antidepressants 116 28% 

     Three failed antidepressants  81 20% 

     Unable to tolerate two trials 32 8% 

Antidepressants Treatment History Form: High 

     0  1 0.24% 

     1 15 3.8% 

     2  19 4.6% 

     3  149 36% 

     4 199 48% 

     5  31 7.5% 

Treatment outcomes 

     Response rate 152 36.7% 

     Remission rate 97 23.4% 
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3.4   Data Description & Predictor Selection 

Data collected from patients included a combination of sociodemographic and diagnostic clinical 

features, this was in addition to the depression severity scores deduced from the three depression-

symptom inventories (IDS-30, HRSD-17, QIDS) and the anxiety score measured by BSI-A, all of 

which were collected at baseline. The initial patient dataset can be represented as {"#, %}', where 

"# is the input space, having ( = 117 variables/features, % is the binary output response and , =

414 is the total number of patient samples. Due to the overlap of scale descriptors found common 

between the three depression-symptom inventories, we decided to only include the IDS-30 

descriptor set in our finalized dataset. Our choice of the IDS-30 scale is justified by the findings 

of a previous study that revealed a high degree of correlation between IDS-30 and QIDS scale 

descriptors and expressed limitations of the HRSD-17 scale in including all possible depression-

related symptoms [53]. Eighteen features were pre-selected from an initial large pool containing 

50 features, which was done using recommendations from medical experts. Treatment variant was 

an important feature that reflects whether the patient had undergone standard rTMS or iTBS 

treatment. The feature space included both continuous, binary and categorical variables. A 

description of all included features can be found in Table 3.1. Across the entire data, 27 samples 

had missing data and were hence simply excluded from the dataset. This filtration of variables and 

removal of samples with missing entries lead to a new dataset {"., %}/, where 0 = 52 

variables/features and 3 = 387	patient samples. In this model, we define response and remission 

as the two binary output variables % to be modeled, where 0 represents non-response and non-

remission, as reported at the end of each patient trial. 
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Inventory of Depressive Symptoms Descriptors 

Each descriptor is rated on a scale of 0 - 3 

Falling Asleep 

Sleep During the Night 

Waking up Too Early 

Sleeping Too Much 

Feeling Sad 

Feeling Irritable 

Feeling Anxious 

Response of Your Mood to Good or Desired Events 

Mood in Relation to the Time of Day 

The Quality of Your Mood 

Appetite change 

Weight change 

Concentration 

View of Myself 

View of My Future 

Thoughts of Death or Suicide 

General Interest 

Energy Level 

Capacity for Pleasure or Enjoyment 

Interest in Sex 
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Feeling slowed down 

Feeling restless 

Aches and pains 

Other bodily symptoms 

Panic/Phobic symptoms 

Constipation/diarrhea 

Interpersonal Sensitivity 

Physical Energy 

Energy Level 

Capacity for Pleasure or Enjoyment 

Interest in Sex 

Feeling slowed down 

Feeling restless 

Table 3.2 IDS-30 scale description 

 

Brief Symptom Inventory – Anxiety subscale (BSI-A) 

Each descriptor is rated on a scale of 0 – 4  

(based on past 7 day experience) 

Nervousness or shakiness inside  

Suddenly scared for no reason  

Feeling fearful  

Feeling tense or keyed up  
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Spells of terror or panic  

Feeling so restless you couldn’t sit still  

Table 3.3 BSI-A scale description 

 

3.5 Proposed Model Framework 

3.5.1 Variable Selection 

The 18 clinical and sociodemographic variables, the 6 BSI-A descriptors and the 28 IDS-30 

descriptors were combined together to form a data set where each patient was represented by 52 

independent variables. Variable reduction is an important pre-processing step in ML. It is leads to 

a decrease in the computational complexity of an algorithm as well as the development of a more 

refined variable set that can reduce noise and improve model performance. For our specific 

problem task, variable reduction can allow us to design a more practical ML model capturing only 

the most relevant characteristics from the dataset. Variable transformation is a type of variable 

reduction that works by completely transforming the original variables into a new set of variables. 

The aim of this method is to combine similar characteristics seen across variables into a smaller 

set of variables that explain most of the data set variance. Principal Component Analysis (PCA) is 

a popular variable transformation procedure that linearly projects a variable set into a set of 

‘principal components’, which is a term given for the constructed linearly uncorrelated variables 

[54]. To investigate this, we show how PCA projection can be applied to our data set by 

constructing different components and visualizing how each component contributes to the amount 

of total data variance. Figure 3.2 demonstrates the fraction of the total variance explained by each 

component constructed using all 52 variables in our data set. Generally, components are combined 

until their variances sum up to around 80-90% of the total variance. However, as shown in Figure 
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3.2, the first and second components contribute only 12% and 6% of the total variance respectively, 

with most of the other components having less than 2% variance contribution. This means that 

PCA is not suited for our data set, in which the variables are highly uncorrelated. Moreover, in 

order to preserve variable interpretability, it is best to deploy a variable selection procedure, rather 

than f variable transformation. Several variable selection techniques exist, but we mainly focused 

on classifier-embedded variable selection, as it explores the relationship between the independent 

variables and the dependent output. It works by identifying strongly relevant variables that highly 

contribute to a classifiers performance. RF is classifier constructed with a large number of 

independent decision trees. In addition, RF has been widely used as a variable selector, and proven 

to outperform other embedded methods in terms of variable robustness [55]. For this reason, we 

have chosen to use RF as our algorithm of choice to perform variable selection. Nodes within a 

single decision tree represent a split condition for a specific variable. The split parameter is 

optimized using nodal Gini impurity [56]. For each variable during the classifier training, the Gini 

decrease in impurity is found, and this corresponds to how well a specific variable can help 

improve the classifier’s accuracy. This impurity decrease of each variable is then averaged across 

all the decision trees and each variable receives an importance score, represented in the form of a 

fraction of the total variable importance. At this stage, no preprocessing or standardization of the 

data was needed as the RF is insusceptible to it. Two different dichotomous RF classifiers were 

used to identify the most important variables related to each of the two outcomes; response and 

remission. In order to optimize the performance of the RF, the model parameters were obtained 

using a grid search algorithm [57] which works by sweeping through a pre-defined set of 

parameters and testing the classifier using 4-fold cross validation until the best set of parameters 

is found. The parameters under consideration were the number of decision trees and the max tree 
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depth, which were set to 25 trees with a max depth of 5 levels. The classifier was trained using 

bootstrapping to reduce out of bag error estimate and validated using internal 4-fold cross 

validation. In 4-fold cross validation, the data is split into 75% training set constituting the 3 folds 

and 25% validation set for 4th fold, and this is repeated 4 times such that each data instance appears 

in the training set 3 times, and in the validation set once [58]. Variable importance was then 

extracted post classifier training and the top 15 most relevant variables/features for each of 

response and remission models were recorded. The aim of this step is to reduce the variable space 

in an attempt to promote practicality of the predictive tool and to make it easier for the physician 

to collect and predict treatment outcome based on a smaller set of variable. Variable selection lead 

to a smaller dataset {"7, %}/	where	8 = 15	variables/features and	3 = 387	patient samples. 

Additionally, neural networks work best when noise and redundancy is reduced from the input 

data. Therefore, the 15 top variables /features for each treatment outcome will then be scaled and 

loaded into a deep neural network model as described in a later section. 



 

 

31 

 

Figure 3.2 PCA components using rTMS dataset 

 

3.5.2  Data Over-Sampling  

Imbalance in a dataset refers to the case where class distribution is not uniform, meaning we have 

a majority class with more instances than those of a minority class. Class imbalance in a dataset 

can hinder a classifier’s performance in terms of its sensitivity towards detecting the minority class. 

In our dataset, the ratio of response to non-response is 38:62, and remission to non-remission is 

25:75. Imbalances in the dataset can be overcome in a number of ways. When the dataset is large 

in size, under-sampling is done where samples of the majority class is removed using either 

ensemble learning or cluster methods, keeping only the most informative samples until almost 1:1 

class ratio is achieved. However when the dataset size is small, as in our situation, under-sampling 

can significantly reduce the ability of a dataset to construct an accurate classifier, and hence, an 
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over-sampling technique is favored. Over-sampling has been previously done by simply 

duplicating instances of the minority class with replacement, however studies [59] have shown 

that the prediction accuracy of minority class instances did not significantly increase using this 

technique. A new method known as the Synthetic Minority Over-sampling Technique (SMOTE) 

[60] oversamples the minority class by creating new synthetic instances using k-nearest neighbors 

algorithm. The designers of this over-sampling method showed that it results in classifiers with 

higher generalization of the minority class due to bigger and less specific decision regions [60]. 

Figure 3.3 shows their comparison of SMOTE with standard oversampling with replacement, 

proving how accuracy of the minority class detection improves with different degrees of 

oversampling. 

 

Using SMOTE, we calculate the degree of over-sampling needed based on our class 

imbalance ratio which is 63% for the response dataset and 200% for the remission dataset. Next, 

a subset of the minority class is chosen at random, and for each sample within the subset, a variable 

vector is found. For variables with continuous values, this vector is calculated using the Euclidean 

distance between the minority sample under consideration and its nearest neighbor, which is then 

scaled using a randomized factor between 0 and 1 to create a new sample lying between the original 

sample and its nearest neighbor. In terms of variables consisting of a number of categories, a 

majority vote among the k-nearest neighbors found for the considered observation will determine 

the new variable category. Binary variables should remain unchanged. Over-sampling lead to a 

larger dataset {"7, %}9	where 	8 = 15 variables/features and		3 = 474	patient samples for response 

dataset and		3 = 584	patient samples for remission dataset. To prevent any information leakage 

between the testing and training sets, over-sampling is done independently for each of the sets. 
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Figure 3.3 SMOTE performance compared with standard over-sampling [60] 

 

3.5.3 Classification Models 

Selecting the right classification algorithm is a crucial step in designing a good ML model. There 

does not exist a single ML model that works well for all kinds of classification tasks, as model 

performance is highly dependent on the nature of the data and the complexity of the task. An 

analysis of the data size, variable types and interrelationships can give us a better idea about a 

more narrow group of ML models to target. Our data set has a mixture of categorical and 

continuous features, and for that reason, we focus on evaluating three different ML algorithms 

known for their ability to handle mixed features well; ANN, RF and LR. ANN has the capability 
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of approximating complex functions or mappings between input variables and output response to 

a high degree of accuracy. RF is an ensemble classifier known for its high robustness and 

interpretable structure that resembles the process of medical reasoning and decision making. 

Furthermore, LR is one of the most widely used algorithms in the medical field, mainly due to its 

easy interpretability and mathematical mapping between the independent variables and the output 

response. As discussed, each of these ML algorithms have their own perks, and performance 

evaluations will help us decide which of them to deploy.  

 

Machine Learning Classifier Preliminary Results 

Support Vector Machine Accuracy: 63.7%  Sensitivity: 30.3% Specificity: 85.2% 

Linear Discriminant Analysis Accuracy:  65.4% Sensitivity: 68.4% Specificity 62.5% 

K Nearest Neighbor  Accuracy:  50.6% Sensitivity: 42.1% Specificity 56.1% 

Gaussian Naïve Bayes Accuracy:  65.6% Sensitivity: 70.5% Specificity 60.7% 

Decision Tree Accuracy:  59.5% Sensitivity: 61.6% Specificity 59.5% 

Table 3.4 Preliminary study results 

 

Medical data is highly complex and usually consists of several data types, so determining the best 

classifiers can be a challenging task. Although most ML classifiers have certain underlying 

assumptions, these assumptions may not be necessarily met when dealing with real data. 

Therefore, to test the assumptions we made regarding our choice of classifiers and better 

understand our specific data, we carried out a preliminarily analysis of some of the most commonly 

deployed ML algorithms. Our wide selection of classifiers included Support Vector Machine 

(SVM) [61], Linear Discriminant Analysis (LDA) [62], K Nearest Neighbor (KNN) [63], Gaussian 
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Naïve Bayes (GNB) [64] and Decision Tree (DT) [65]. The results of this preliminary analysis is 

shown in Table 3.4 above. All the results were obtained using 4-fold cross validation. As can be 

seen in the results, all the classifiers have low performance, measured using the accuracy metric 

(accuracy < 66% ). As for SVM, there is a huge bias towards predicting the response instances 

(class label 1), as reflected by the very high specificity measure (85.2%) and very low sensitivity 

measure (30.3%). Although SVM is an excellent classifier for high sparsity problems, it does not 

perform well in smaller data sets with mixed data types. The above results confirms our initial 

choices of  selecting LR, RF and ANN to be used as classifiers in this problem. This will be further 

discussed and proved in Chapter 4. 

 

We developed an ANN with an input layer, 2 hidden layers and an output layer for each 

treatment outcome. The input layer consisted of 15 nodes, one node per variable/feature, and the 

output layer consisted of a single node that can either output a 1 or a 0. The dimensionality and 

number of hidden layers were found through a grid search, along with other parameters which 

included 1) The activation function used in the hidden layer, 2) The loss function solver for weight 

optimization, which represents the L2 penalty (regularization term) parameter and 3) The number 

of maximum iterations. Selected parameters can be seen in Table 3.5 below. This neural network 

has a feed-forward architecture which means that the information moves along the network layers 

from the input layer, across the hidden layer and into the output layer, without going through any 

loops. The function which was used to activate the nodes in the hidden layer is the tanh function 

which is represented as: 

8:3ℎ(=) 	= 	
?@ 	−	?B@	
?@ 	+	?B@
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Where z is the weighted sum of the inputs and biases of all inputs to the node. Tanh is generally 

more suitable than the sigmoid function as it has larger derivatives which allows for a faster 

minimization of the loss function. In addition, the tanh function has a range of [-1,1] which maps 

the outputs to center around 0 rather than 0.5 as in the case of sigmoid, which allows for easier 

learning when the information is passed to the next layer. Backpropagation is used to adjust the 

weights in the network layers through a minimization of the cost function. The cost function used 

in our model is the logarithmic loss, also known as the cross-entropy cost function [66]. Cross 

entropy loss for binary classification can be shown as: 

 

DEFGG	H38EFI%	JFGG = −(%KF((I) + (1 − %)KF((1 − I))		

 

Where % is the expected class output and I is the predicted probability. The Adam optimizer [67]  

is an extension of the stochastic gradient descent and is used in the optimization of the cross 

entropy loss as it updates the network weights during the training phase. Two main measures were 

taken to avoid overfitting. Firstly, the dataset was validated using 4-fold cross-validation where 

the samples were split to 75% training and 25% testing, iterated over 4 times. Additionally, an 

early stopping mechanism was in place such that 10% of the training samples were used as 

validation, and a validation score was estimated once no improvement was seen within a tolerance 

level of 1x10-6 for 10 iterations, causing the training to immediately stop. Once training was 

complete, the optimal neural network was evaluated using a testing set to analyze its ability to 

accurately predict the outcome to rTMS treatment. 

 

 



 

 

37 

Parameter Response Neural Network Remission Neural Network 

Number of hidden layers 2 2 

Nodes per hidden layer (i,j) (25, 12) (26, 14) 

Activation function tanh tanh 

Loss function solver Adam Adam 

Alpha	⍺ 0.1 0.1 

Maximum iteration 3000 5000 

Learning rate 0.015 0.015  

 

Table 3.5 Hyperparameter values for the deep neural networks 

 

The LR model was built based on the below equation where M1, M2, … , M15	 ∈ 	P/ 

represent the top 15 variables,  %Q = 	 {0,1} represent the output of the model and S/	represent the 

coefficients/weights of the logistic function 

 

 
% = 	0(M) = 	ST +	SUMU +	SVMV + ⋯	+	SUXMUX 

 
 

 
Sℎ?E?	0(M) = 	KF(	 Y Z

UBZ
[ = 	?\]^	\_`_^	\a`a^⋯^	\_b`_b			
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L1 regularization using the liblinear optimizer [68] with penalty parameter D = 0.8	 was used for 

our LR models, as determined using a grid search with 4-fold cross validation. L1 regularization 

can be described as minimizing the below function with weight vector S ∈ 	P/: 

 

,d3d,d=?						‖S‖U + D	f(log	(1 + ?BjkSlMQ)
m

QnU

 

Sℎ?E?						‖S‖U = 	f|SQ|
/

QnU

 

 

Finally, the RF classifiers consisted of 50 decision trees, each having a maximum depth of 

5, as found by a parameter grid search. Bootstrapping was enabled, which means that each tree 

was built using a sub-sample of the original data samples, drawn with replacement. In our RF 

classifier, the quality of the binary node splits were evaluated based on the Gini index given by: 

 

pd3d	q3r?M = 1 − (sTV +	sUV) 

 

Where sT and sU represent the proportion of samples having class labels 0 and 1 respectively [69]. 

The nodal impurity for a specific split is minimized (Gini index = 0)  when a pure state is achieved, 

having all samples at the split belonging to a single class: 

 

pd3d	q3r?M	td3 = 	1 − (sTV +	sUV) = 	1 − (1V +	0V) = 	1 − (0V +	1V) 	= 0 
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Meanwhile, the nodal impurity for a specific split is unfavorably maximized (Gini index = 0.5) 

when a mixed state is achieved, where the samples at the split are equally distributed: 

 

pd3d	q3r?M	t:M = 	1 − (sTV +	sUV) = 	1 − (0.5V +	0.5V) = 	0.5 

 

The motivation behind assessing nodal impurity is to achieve child nodes that have high nodal 

purity in terms of the output variable, by minimizing the Gini index. The tree splits are determined 

at each node using a greedy search that tests all possible splits to select the one resulting in the 

lowest impurity (Gini Index). 

 

Figure 3.4 Architecture of DANN for treatment outcome prediction 
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3.6 Model Evaluation 

We compared the performance of the deep neural network model with that of logistic regression 

and of random forests using the top 15 selected variables/features. Each model was evaluated using 

several metrics; accuracy, sensitivity, specificity, positive predictive value (PPV) and negative 

predictive value (NPV) [70]. Sensitivity measures the fraction of all the positive-labeled instances 

that are correctly identified as positive. Similarly, specificity measures the fraction of all the 

negative-labeled instances that are correctly identified as negative. PPV is the probability that an 

instance identified as positive, truly is positive and similarly NPV is the probability that an instance 

identified as negative, truly is negative. All these metric values were obtained as an average of all 

validation folds using 4-fold cross-validation. Receiver Operating Characteristic (ROC) curve is 

an important tool used to evaluate binary classifications. It provides a visualization of every 

possible sensitivity (also called true positive rate) and 1-sensitivity (also called false positive rate) 

pair for different thresholds [71]. Additionally, the Area Under the ROC Curve (AUC) reflects 

how well a classifier is able to distinguish between two different classes [72]. An ROC analysis 

was conducted for each of DANN, LR and RF classifiers, with two variants per classifier to predict 

each of remission and response. Finally, all models were tested for accuracy significance using p-

values calculated with permutation tests and 4-fold cross validation. 
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Chapter 4: Results & Discussion 

4.1 Results 

4.1.1 Selected Variables 

All 52 variables combining the IDS-30 scale descriptors, BSI-A scale descriptors and other clinical 

and sociodemographic data were used to construct two RF variable selectors, for response as well 

as remission outcomes. The top predictors of response outcome, represented as a fraction of the 

total Gini importance, can be seen in Figure 4.1 below. The most important predictor of treatment 

response is the IDS-30 descriptor for future outlook with importance weight 0.0571 (STD 0.0166), 

followed by the IDS-30 descriptor of feeling sad 0.0436 (0.0143), BSI-A descriptor of feeling fear 

0.0423 (0.0174) and the sociodemographic variables indicating age 0.0368 (0.0091) and financial 

status 0.0343 (0.0086). Financial status is a categorical variable consisting of 7 subcategories. 

Using one-hot encoding, we further expanded the financial status variable to analyze the individual 

categorical importance and found that employed status 0.0393 (0.01918) had the highest 

contribution to prediction accuracy followed by family support 0.0075 (0.0089), receiving 

insurance disability 0.0073 (0.0051), unemployed 0.0044 (0.0033), supported by the Ontario 

disability support program 0.0030 (0.0025), supported by spouse 0.0022 (0.0021) or supported by 

the Ontario works program 0.0013 (0.0020). Similarly for remission outcome, Figure 4.2 shows 

the top outcome predictors. IDS-30 descriptors for suicidality and future outlook had the highest 

importance scores with 0.0892 (0.0142) and 0.0873 (0.0268) respectively. IDS-30 descriptor of 

anxiety 0.0659 (0.0153) and sadness 0.0480 (0.0222) ranked 3rd and 4th most important predictors 

of remission followed by the sociodemographic feature representing financial status 0.0353 

(0.0075). 
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Figure 4.1 Top 15 variables/features associated with response prediction 

 

The most insignificant variables were common for both response and remission models within the 

pool of 52 variables. Binary variables indicating different types of pharmacotherapy a patient 

might have undergone during treatment had almost no importance on predicting response or 

remission with feature scores ranging between (0.0003-0.0056) for response and (0.0002-0.0041) 
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for remission. Additionally, the undergone treatment variant (rTMS or iTBS) showed low 

importance for both response 0.0080 (0.0049) and remission 0.0056 (0.0035).  

 

 

 

Figure 4.2 Top 15 variables/features for remission prediction 
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Furthermore, the RF variable selection models showed good performance when compared with 

chance performance. The response prediction model had an accuracy of 72.8 % (STD 2.5), 

sensitivity of 67.1% (5.1), specificity of 73.4 % (3.6), PPV of 73.4 % (3.6) and NPV of 69.3% 

(3.4). Remission prediction yielded better results with an accuracy of 86.1 % (STD 1.0), sensitivity 

of 84.9% (4.5), specificity of 83.9 % (3.0), PPV of 85.0 % (2.0) and NPV of 84.6% (3.3). Results 

of the ROC analysis can be seen in Figure 4.3 below. The AUC values for response and remission 

prediction were calculated as 0.76 and 0.92 respectively, where an ideal predictor would have an 

AUC of 1.0 and a random predictor would have an AUC of 0.5. 

 

4.1.2 Performance Metrics 

The set of the 15 top variables were extracted from both response and remission RF feature 

selection models and each inserted into a deep neural network with 2 hidden layers. For 

comparison, LR and RF models were also developed using each of the top variable/feature sets. 

Table 4.1 provides a comparability analysis of all three model performances for each of response 

and remission outcome predictions. All evaluation metrics were obtained using an average of 4-

fold cross validation results. All models were tested for accuracy significance and had p < 0.01. 

Deep neural networks yielded better accuracy in both response and remission prediction with 

73.8% and 84.4% respectively. RF models came in next with accuracies of 71.5% and 82.7% for 

response and remission prediction respectively. LR, RF and DANN models all yielded 

significantly superior results when compared with random chance, standardly taken at an accuracy 

of 50%. It is also evident that remission prediction models had overall better performance than that 

of response. As demonstrated in Table 4.1, remission had better class separability when compared 

with response. Ideally, the probability curve of the positive class should peak around a probability 
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score of 1.0, and similarly 0.0 for the negative class. However, in the case of response prediction, 

a majority of the instances belonging to the responders class are misclassified as non-responders, 

explaining the lower performance results in comparison with that of the remission model.  

 

 

Figure 4.3 ROC curve for RF feature selection models 

 (upper curve - response model, lower curve - remission model) 
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4-fold Cross Validation 

  Deep Neural Network Logistic regression Random forest 

  Mean SD Mean SD Mean SD 

Response Models 

Accuracy 73.8% 4.5 68.1% 2.0 71.5% 2.6 

Sensitivity 70.0% 4.0 67.9% 6.1 69.2% 4.0 

Specificity 77.6% 7.9 68.4% 3.8 72.6% 3.7 

PPV 76.2% 6.4 68.3% 1.6 73.2% 1.7 

NPV 72.1% 3.3 68.3% 3.0 73.4% 5.0 

 Remission Models 

Accuracy 84.4% 2.4 74.8% 1.6 82.7% 1.9 

Sensitivity 78.8% 2.5 79.1% 1.1 82.4% 3.7 

Specificity 90.1% 5.0 70.5% 2.5 86.6% 1.5 

PPV 89.1% 4.8 72.9% 1.8 81.5% 3.9 

NPV 80.9% 1.3 77.1% 1.4 88.0% 2.4 

Table 4.1 Performance measures in predicting treatment outcome 
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4.1.3 ROC Analysis 

ROC curves represents a visual trade-off between the benefits (true positives) and costs (false 

positives) of a classifier. Figure 4.4, Figure 4.6 and Figure 4.8 shows ROC curves for the DANN, 

RF and LR models respectively, where the top curve represents response prediction and the lower 

one represents remission prediction. AUC of an ROC curve is another way to measure a classifier’s 

accuracy, with a value of 1 representing a perfect classifier and a value of 0.5 representing a 

random classifier. The average AUC for the DANN model was 0.78 for response and 0.91 for 

remission, for the RF model it was 0.76 for response and 0.90 for remission and for the LR model 

it was 0.72 for response and 0.83 for remission. To visualize how good each of the models were 

at discriminating between response/non-response and remission/non-remission, we plotted 

probability distribution curves for each class in Figure 4.5, Figure 4.7 and Figure 4.9 for each of 

DANN, RF and LR models respectively. Ideally in these class distribution plots, the positive class 

plot should be on the right side, peaking around a score of 1, while the negative class should be all 

the way towards the left, peaking around a score of 0. The overlap between the positive and 

negative class distributions should be minimal in the case of a good classifier. This is evident when 

comparing class distribution plots for the DANN models with that of the LR models. The LR 

models had the lowest accuracy when compared with RF and DANN, and looking at Figure 4.9, 

we can see this through the large overlap region between the two class distributions plots. 
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Figure 4.4 ROC curve for DANN models 

(upper curve - response model, lower curve - remission model) 
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Figure 4.5 Probability score distributions for DANN models 

(upper curve - response model, lower curve - remission model) 
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Figure 4.6 ROC curves for RF models 

(upper curve - response model, lower curve - remission model) 
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Figure 4.7 Probability score distributions for RF models 

(upper curve - response model, lower curve - remission model) 
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Figure 4.8 ROC curves for LR models 

(upper curve - response model, lower curve - remission model) 
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Figure 4.9 Probability score distributions for LR models 

(upper curve - response model, lower curve - remission model) 
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4.2 Discussion 

The result shown in this thesis highlight the possible advantage that clinical assistive tools could 

provide to aid physicians in deciding whether a MDD patient is likely to respond to rTMS 

treatment. Our system is based on a set of 15 clinical and sociodemographic variables/features at 

baseline, which can be collected from a patient within a couple of mins. The results demonstrated 

in this thesis are the first of its kind among brain stimulation studies, which is based on machine 

learning algorithms utilizing only clinical and sociodemographic data to predict the rTMS 

treatment outcome in MDD patients. Using a DANN, the patient’s showing responsive symptoms 

can be accurately distinguished with an accuracy of 73.8% from those not likely to respond to 

treatment. Remission prediction had superior results with an accuracy of 84.4% using the DANN 

model. This difference in performance is notably backed by the nature of patient score distribution. 

Figure 4.10 shows how the % change in IDS-30 score between baseline and post-treatment phases 

varies between patients. Three main patient groups are visible in the distribution plot, mainly the 

highly responders on the far right, the highly non-responders on the far left and those wavering 

around the 50% score change in the region encompassed by the two green lines. The response is 

defined as a 50% or more drop in the IDS-30 score, and therefore a threshold right at the 50% 

mark separates responders from non-responders. This causes a lot of difficulty in identifying 

patients hovering right close to the 50% mark. In the case of remission prediction however, the 

threshold is shifted towards the right, close to 79.2% which is the average % score change 

calculated for patients with remission. With this new threshold, the first 2 groups representing non-

responders and those having response without remission is combined into a single group, reducing 

the complexity of the prediction task.  
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Figure 4.10 Sample distribution curve of our dataset 

 

The DANN demonstrates superior performance for both prediction tasks in comparison with RF 

and LR. This can be attributed to DANN’s ability to infer complex relationships between the 

predictors and the output variables, that may not be feasible using LR. Additionally, DANN 

provides high flexibility with a large set of hyperparameters, different activation functions and 

optimizers that can be modeled depending on the size of the dataset and the nature of the task. 

 The main downside of using a DANN is its concept of a ‘black box’ with vague 

understanding of the underlying variable relationships as well as its high computational cost. RF 

is known for its robustness to overfitting, application ease with only a small number of parameters 

and its embedded feature selection ability, but lacks feature interpretability. Therefore, given only 
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the small difference in the performances of RF and DANN, one should identify whether 

interpretability is an important factor, in which RF would be preferred over DANN.  

One of the main debates surrounding the applicability of machine learning based models 

in the medical field is their generalization capacity. Usually smaller datasets have limitations when 

complex models are applied to them. The bias-variance tradeoff means that the higher accuracy 

achieved using a given dataset may lead to poor generalization when given unseen data. Dealing 

with model overfitting is a common issue in machine learning models. We took several measures 

to reduce model overfitting which included using cross-validation technique to train and test our 

model. This is sufficient for internal validation, however a more rigorous approach is necessary 

for clinical approval. External validation requires the use of an independent dataset of similar 

structure but collected from different sources and tested with the model under investigation, 

showing adequate results. This wasn’t possible in this work due to the unavailability of publicly 

available datasets that have resembling characteristic to our model data, which is mainly due to 

the restrictions and privacy concerns put within the medical domain. 

 

Analysis of the most important predictors of treatment outcome revealed interesting 

findings. There is a large overlap between the top predictors for response and for those of 

remission. IDS-30 descriptor for future outlook was the single best predictor of treatment response 

and the second best predictor of remission. Optimism about the future was found to have a strong 

correlation with depression [73]. Suicidality, which is also portrayed using the IDS-30 scale was 

found to be the top predictor of treatment remission among MDD patients. This concurs with 

results found by the group for the study of resistant depression [74], which shows suicidality being 

ranked the third descriptor to be affiliated with treatment resistant depression, preceded by anxiety 
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comorbidity which was the third most important predictor of treatment remission in our results. 

Other common predictors found in both response and remission models are sadness, mood 

response to good events and interpersonal sensitivity descriptors from IDS-30, the fear descriptor 

from BSI-A and financial status. A study analyzing outcome predictors of citalopram 

antidepressant showed strong correlation between higher income and higher remission rate [75], 

which overlaps to a degree with our results showing employment as a strong predictor of both 

response and remission. A study on the same data used in this thesis showed the non-inferiority of 

iTBS to standard 10 Hz rTMS treatment [31], which is affirmed with our results having low 

importance score for the predictor which represents treatment condition.  
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Chapter 5: Conclusion & Future Work 

5.1 Summary 

MDD is a widely prevalent disorder that affects thousands of people every year. Current treatments 

in place for depression vary based on patient severity and treatment history. Deep brain stimulation 

therapy like rTMS has been reserved for patients who are deemed unresponsive to adequate dosage 

of an antidepressant trial. Due to its lengthy procedures and large costs, there is a great benefit to 

identifying patients who are unlikely to show responsiveness to rTMS treatment. In this thesis, we 

introduce a novel framework that allows us to first detect the most important variables/features 

related to treatment outcome and then train and deploy a machine learning based model on the 

extracted features for two different classification tasks. An in-depth analysis of the most important 

variables extracted using the RF algorithm was followed by a discussion providing supportive 

arguments from other related studies. Classification tasks consisted of identifying patients likely 

to be responders to rTMS treatment and identifying patients likely to achieve remission from 

MDD. To approach this, we designed and trained a DANN with backpropagation and optimized it 

using a grid search of the hyperparameters to maximize performance. Evaluation consisted of 

cross-validation metrics, ROC analysis and comparison with the RF and LR models. Our deep 

neural network model achieved an accuracy of 73.8% in distinguishing responders form non-

responders and 84.4% in identifying remission candidates. Meanwhile, the RF and LR classifiers 

had lower performances with accuracies of 71.5% (response), 82.7% (remission) and 68.1% 

(response), 74.8%  (remission) respectively. We show how a selective model with only a small 

number of variables and limited preprocessing can have high performance with accurate 

predictions. We find that our model has significantly higher performance compared with pure 

chance, which is standardly the basis of how clinicians propose rTMS treatments to patients.  
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Our findings support the introduction of new clinical assistive tools to aid physicians with 

decision making in terms of treatment plans. It is fairly difficult for a physician to make an 

informed judgment about a patient by just looking at a small number of clinical and 

sociodemographic characteristics, which is where machine learning can be used to instantly 

provide case-by-case predictions. There is a lot of exciting opportunities for clinical adoption, 

however this is pending external validation.  

 

5.2 Future Work 

This thesis can be extended in the future to accommodate several possibilities: 

 

5.2.1 Response & Remission as Continuous Scales 

This work can be further improved by altering the task to perform regression in place of the 

existing binary classification. Regression analysis would allow us to categorize patients according 

to continuous response and remission scales. This additional information will remove the 

ambiguity of a standard binary classification, where a patient likely to achieve a 49% score drop 

would be classified as a non-responder, and discouraged from undergoing treatment, which would 

otherwise provide significant help. Similarly, this can also be achieved through a multi-

classification adjustment, where instead of 2 binary classes, we relabel the data with 10 classes for 

example, based on scores representing least responsive to most responsive patients. Physicians 

will hence better explain the outcome expectations and allow patients to make an informed 

decision.  
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5.2.2 Time-Series Classification 

Data collection at several time points between treatment initiation and termination would allow 

for a time series classification using Long Short Term Memory (LSTM) [76] units in a Recurrent 

Neural Network (RNN) [77] architecture. RNN is a variant of an ANN that is capable of processing 

and predicting sequenced patterns using LSTM memory units to capture temporal characteristics 

in time-series data. Using a RNN model would potentially produce more accurate predictions by 

considering how patient characteristics change within the first few treatment sessions and using 

that additional information in the learning process. The more time-series data points available per 

patient, the more refined a prediction would be. Instead of a class label, it would also be possible 

to predict a time-series sequence showing how response and remission rates change post-treatment. 

This would give physicians a better tool for analyzing the underlying long term effect of rTMS 

treatment. 

Finally, we hope that our work can further motivate other work and trials to investigate 

similar approaches in data mining and machine learning for the advancement of mental health 

research. 
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