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Abstract

A major goal of the Magnetic Resonance Imaging (MRI) community is quantifying myelin in
white matter. MRI contrast depends on tissue microstructure, so quantitative models require
detailed understanding of Nuclear Magnetic Resonance (NMR) physics in white matter’s
complex, heterogeneous environment. In this thesis, we study the underlying physics behind
two different 1H contrast mechanisms in white and grey matter tissue: T1 relaxation and the
recently developed inhomogeneous Magnetization Transfer (ihMT).

Using ex-vivo white and grey matter samples of bovine brain, we performed a comprehensive
solid-state NMR study of T1 relaxation under six diverse initial conditions. For the first
time, we used lineshape fitting to quantify the non-aqueous magnetization during relaxation.
A four pool model describes our data well, matching with earlier studies. We also show
examples of how the observed T1 relaxation behaviour depends upon the initial conditions.

ihMT’s sensitivity to lipid bilayers, like those in myelin, was originally thought to rely upon
hole-burning in the supposedly inhomogeneously-broadened lipid lineshape. Our work shows
that this is incorrect and that ihMT only requires the presence of dipolar couplings, not a
specific kind of line broadening. We developed a simple explanation of ihMT using a spin-1
system. Using solid-state NMR, we then performed measurements of ihMT and T1D (dipolar
order relaxation time) on four samples: a multilamellar lipid system (Prolipid-161), wood,
hair, and bovine tendon. ihMT was observed in all samples, even those with homogeneous
broadening (wood and hair). Moreover, we saw no evidence of hole-burning.

Lastly, we present results from ihMT experiments with CPMG acquisition on the bovine
brain samples. We show that myelin water has a higher ihMT signal than water outside the
myelin. It was determined that this was due to the unique thermal motion in myelin lipids.
In doing so, we developed a useful metric for determining the relative contributions from
magnetization transfer and dipolar coupling to ihMT. Also, we applied a qualitative four
pool model with dipolar reservoirs. Together, our results are consistent with myelin lipids
having a T1D which is appreciably longer than the T1D of non-myelin lipids, despite recent
measurements to the contrary.
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Lay Summary

In diseases like Multiple Sclerosis (MS), a material in the brain called “myelin” is damaged.
If nerve cells are like wires, then myelin is like their insulation: when myelin is damaged,
nerve signals can’t travel properly. My research focuses on methods for measuring myelin
using an MRI scanner. This is important for more accurate diagnoses and for deeper study
of diseases such as MS.

An MRI scanner is like an X-ray machine that’s really good at taking pictures of brain tissue.
Instead of X-rays, the pictures taken by MRI scanners are made using magnets and radio
waves. How to distinguish myelin’s unique radio waves, and thereby be able to quickly and
accurately measure myelin using an MRI scanner, is the topic of my thesis.
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Chapter 1

Introduction

1.1 MRI

Magnetic Resonance Imaging (MRI) uses the physical phenomenon of Nuclear Magnetic
Resonance (NMR) to create images. Nowadays, MRI is a ubiquitous medical imaging tech-
nology, given its excellent performance in soft tissue and its absence of ionizing radiation. It
is especially useful for brain and spinal cord imaging and is the only modality suitable for
diagnosing Multiple Sclerosis (MS) [1].

Ultimately, the contrast in MRI scans depends only on the NMR properties of the nucleus
under study within distinct microstructural environments. In the majority of clinical and
research contexts, the scanner detects the NMR signal from aqueous protons (1H nuclei).
That said, this signal’s properties are dictated largely by interactions between aqueous and
non-aqueous protons. Hence, these aqueous/non-aqueous interactions can allow indirect
imaging of the non–aqueous protons.

Using different pulse sequences, an MRI scanner produces images which emphasize the varia-
tion within one or more of the NMR properties of different tissue. For example, two common
ways of distinguishing between white and grey matter is by their T1 relaxation times and
aqueous proton concentrations. When a single aqueous T1 time is assumed, white and grey
matter have values of ~0.7 s and ~1.2 s respectively at a field strength of 1.5 T [3]. And grey
matter has a higher water content than white matter, so the two are distinguishable on an
image showing only differences in aqueous proton density.

To see these concepts in practice, Fig. 1.1 shows four images from different kinds of 1H MRI
scans of the same MS patient with obvious lesions. The image in panel A is weighted by
(that is, its contrast reflects) the T2 relaxation times. Aqueous proton density is emphasized
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Figure 1.1: MR images of a 30 year old patient with MS. Different types of MRI techniques
were used to generate contrast in different ways. Lesions (areas with myelin damage) can
be seen in all of the images. (A) A T2 weighted image. Short T2s appear dark. (B) A
proton density weighted image. High density appears light. (C) A fluid-attenuated inversion
recovery image, which attenuates signals from CSF. (D) T1 weighted image after injection
of a gadolinium contrast agent. Short T1s appear dark. Reproduced from ref. [2] [Journal of
Neurology, Neurosurgery & Psychiatry, Trip & Miller, Volume 76, iii11–iii18], © 2005, with
permission from BMJ Publishing Group Ltd.

by the pulse sequence used to acquire the image in panel B. The image in panel C was
acquired after inverting the magnetization in the aqueous protons and waiting for a delay
before acquisition. This reduces the signal from the cerebrospinal fluid (CSF), isolating the
signal from aqueous protons within the tissue. Finally, the patient has had a contrast agent
injected prior to acquiring the image in panel D, which is T1-weighted. The contrast agent
selectively reduces the T1 relaxation time of specific tissues.

This thesis will cover the physics behind these images extensively except for contrast agents.
These are administered intravenously or orally and selectively change the relaxation times in
specific tissues, compartments, or organs. Currently, contrast agents are used in about 25%
of all MRI exams [4,5]. Compounds with high specificity to certain tissues (such as myelin [6])
or pathologies (such as amyloid plaques [7]) have been developed. However, because of safety
and regulatory considerations, their use is often limited to animal models [8]. In this thesis,
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we are concerned with ways of improving the specificity of MRI without the use of contrast
agents, so they won’t be discussed further.

1.2 Motivation: quantitative MRI of myelin

In clinical practice, non-quantitative MRI scans are used most of the time; apart from
observing the presence and morphology of lesions, the end result rarely contains precise
measures of the tissue microstructure properties. Quantitative MRI is a highly desirable goal
for both clinicians and scientists, however: quantifying microscopic disease pathologies would
lead to better diagnosis and management, more advanced research into disease mechanisms,
and more precise metrics for judging treatment effectiveness. For these reasons, there is now
a push by the MRI research community towards developing and implementing quantitative
techniques.

Quantitative MRI sequences and models seek to develop biomarkers for specific tissue com-
ponents or morphologies. This requires a fundamental understanding of the physical origins
of the NMR signal and its properties. In this thesis, we are concerned with the development
of biomarkers for myelin. Myelin is a substance surrounding axons and is essential for proper
nervous signal transmission. It is a major component of white matter tissue.

The research in this thesis covers two approaches to myelin quantification: T1 relaxation and
inhomogeneous Magnetization Transfer (ihMT). We try to understand both of these on a fun-
damental, physical level. Currently, measurements of T1 relaxation in white matter disagree.
The values obtained by different groups show unexplained variation and even the number
of T1 components present is unclear. Our work emphasizes that there are indeed multiple
components, but they cannot be cleanly associated with specific compartments. ihMT is a
new technique which allows one to calculate a simple ratio whose value may be a biomarker
for myelin. In this thesis we argue that the original hypothesis explaining it—inhomogeneous
broadening of the non-aqueous lineshape—is incorrect. More generally, we explore its fun-
damental physics, from its origin in the non-aqueous protons to its manifestation in separate
compartments of aqueous protons.

Our tool to study white and grey matter is solid-state NMR spectroscopy, allowing straight-
forward observation of both the aqueous and non-aqueous proton signals. The samples we
use are biological materials or phantoms of tissue. In particular, the grey and white matter
we investigate is from ex-vivo bovine brain. Because we are concerned with fundamental
NMR properties, there is no imaging performed in this thesis, but we expect that the work
here will be useful in guiding future quantitative MRI development.
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1.3 Outline

The next three chapters are background material. In Chapter 2 we give an overview of the
classical and quantum physics of NMR. Topics which are relevant to the rest of the thesis are
emphasized, including the dipolar interaction and saturation theories. After this, Chapter
3 is a short introduction to the structure and function of myelin. Diseases of the myelin
are briefly covered, focusing on multiple sclerosis (MS). Moving to Chapter 4, we give some
necessary information about the relaxation and spectral properties of NMR in white and
grey matter. The spectral lineshape of the non-aqueous 1H nuclei—the super-Lorentzian—is
introduced. Then, we explore some of the controversy surrounding T1 relaxation in white
matter. We show how Magnetization Transfer (MT) and the MT ratio (MTR) is a useful
consequence of aqueous/non-aqueous magnetization exchange. T2 relaxation, which reveals
distinct aqueous compartments in white matter, is the final topic.

With the background material out of the way, Chapter 5 is the first chapter with original
work: an exhaustive study of T1 relaxation in bovine white and grey matter. There, the four
pool model is introduced and is used to analyze the results.

Chapter 6 discusses a suite of experiments investigating the fundamental physics of ihMT.
We performed ihMT experiments and measured dipolar order relaxation in a multilamellar
lipid system (a phantom for myelin), hair, wood, and bovine tendon. Based on ihMT’s
connection with dipolar couplings, we also introduce a spin-1 model of ihMT. Our results
suggest that ihMT does not rely on inhomogeneous broadening.

Our last results are in Chapter 7, where we unite concepts from the previous two chapters.
We carried out ihMT experiments with Carr-Purcell-Meiboom-Gill (CPMG) acquisition in
the same bovine white and grey matter. This allowed observation of the separate ihMT
signals from the myelin water and intra/extra-cellular water. We apply the four pool model,
now modified with the addition of dipolar reservoirs, to qualitatively model our results.

Finally, in Chapter 8 we review the results and suggest future experiments.

The appendices contain additional calculations which are not integral to the main thesis.
These include a derivation of the Provotorov equations, an outline of how to calculate the
correction factor for exchange during CPMG acquisition, circuit analogies of the four pool
model and ihMT, and modeling of pulse-train ihMT prepulses.
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Chapter 2

NMR theory

2.1 The Zeeman interaction and its implications

Nuclei with unpaired protons or neutrons have nonzero nuclear spins. This leads to a nuclear
magnetic moment, µ = γ(~I), where γ is the gyromagnetic ratio and I the nuclear spin. (We
will use the convention of unitless spin operators, hence the explicit factor of ~.) Nuclei like
this interact with magnetic fields via the Zeeman interaction. The Zeeman Hamiltonian is1

~ĤZ = −µ ·B0.

The units of ĤZ are rad/s and B0 is the main spectrometer field, which is taken to be in the
z direction: B0 = B0ẑ. Hence, the Zeeman Hamiltonian (in rad/s) is

ĤZ = −γB0Îz (2.1)
= ω0Îz,

where ω0 = −γB0 is the Larmor frequency of precession. This identification anticipates the
connection to the classical theory of precession.

With an expression for the Zeeman energy, it is illuminating to calculate the thermal polar-
ization in a typical NMR spectrometer or MRI scanner B0 field. Consider protons2, which,
as spin-1

2 particles, have I = 1
2 and m = ±1

2 . The energies of these two eigenstates are
1In this chapter we will cite references only when necessary, since the content here parallels most introduc-

tory textbooks. Sources which the author relied on for this content were Duer [9], Slichter [10], Schmidt-Rohr
& Spiess [11], and a useful report by Goldman [12].

2When NMR and MRI physicists say “protons”, they are always referring to a 1H nucleus. By the same
token, “spins” almost always refer to nuclear spins.
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〈
±1

2

∣∣∣ ĤZ

∣∣∣±1
2

〉
= ±1

2ω0 and the energy difference is ∆E = ~ω0. If N+ + N− is the total
number of spins in a sample, with N± representing the number in the | ± 1

2〉 state, then the
relative polarization is

N+ −N−
N+ +N−

≈ 1
2

(
1− N−

N+

)
= 1

2 (1− exp(−∆E/kBT ))

≈ ∆E
2kBT

,

where kB is Boltzmann’s constant and T is the temperature in Kelvin. In a 100 MHz (2.3
T) field3 at 300 K, this is only 8 ppm for protons—a very small polarization indeed! We
can compare this to the typical polarizations seen in Electron Spin Resonance (ESR). For
protons, γ/2π = 42.577 MHz /T, and for an unpaired electron, γe/2π = 28.025 GHz /T.
The thermal polarization of a sample with unpaired electrons is about γe/γ ≈ 658× higher.

The relative weakness of the nuclear Zeeman effect dictates the experimental constraints and
features of NMR and MRI. Without B0 & 0.1 T, performing NMR and MRI experiments is
difficult.4 For MRI, the range of nuclei which can be imaged in clinically reasonable times
is limited to 1H and a few others (eg. 23Na and 31P). All of these are abundant enough in
the human body to be imaged directly. However, protons are the most common nuclei to
image due to their superior signal to noise ratio (SNR) in biological samples. There are three
reasons for this. First, with tissue being ~70% water, they are ubiquitous in biochemical
systems. Second, NMR SNR is approximately proportional to ω2

0 [15, 16], so it makes sense
to use nuclei with high Larmor frequencies.5 1H also leads in this category, for only the
extremely rare 3H has a higher γ. Finally, naturally occurring Hydrogen is isotopically pure,
with ~99.98% of all H atoms containing 1H nuclei [19].

On a more fundamental level, the weak nuclear Zeeman effect sets NMR apart from many
other forms of spectroscopy because of its unique method of relaxation. Unlike optical spec-
troscopy, excited states in NMR do not relax via stimulated and/or spontaneous emission
(see Hoult [20] and references therein). Rather, relaxation is driven by environmental fluc-

3The B0 and B1 field strengths of NMR spectrometers is typically stated in the Larmor frequency (in
Hz) of protons in that field. Conversely, in MRI these are usually given in Tesla.

4But not impossible. In fact, NMR and MRI has been performed in the Earth’s magnetic field (eg. see
references [13,14]). Although weak, the Earth’s magnetic field is extremely homogeneous. However, Earth’s
Field NMR and MRI are of limited practical utility, and typically can’t observe any nuclei except 1H.

5In MRI, the SNR is more complicated. It is very sensitive to the sample geometry and composition.
Also, because repeated scans are required to cover all of k-space, it doesn’t make sense to speak of the SNR
for a single acquisition. Furthermore, the image is typically made from the magnitude of the NMR signal,
and this has a Rician noise profile. See Macovski [17] and Ocali & Atalar [18] for more details.
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tuations, i.e. coupling to the lattice. Therefore, the relaxation processes in NMR and MRI
can be a useful window into the microscopic structure and motion of a sample. We will have
much more to say on this in the following chapters.

Because of the nuclear Zeeman effect’s low energy, NMR frequencies are in the 1 MHz –
1 GHz range, corresponding to radiation wavelengths of 300–0.3 m. How then are MRI
scanners capable of sub-millimeter resolution? Even though precessing spins emit radio
waves in the far-field limit, NMR and MRI operate in the near-field limit (i.e. the distance
to the emitters is small or comparable to the wavelength) [15, 20, 21]. In this regime, the
emission from an ensemble of precessing spins manifests as an oscillating magnetic field which,
unlike electromagnetic radiation, does not impose limits on resolution based on wavelength
[20–22]. Correspondingly, the spins are manipulated with magnetic fields oscillating at radio
frequencies, and, in MRI, the spatial resolution is instead limited by the strength of the
magnetic field gradients [23]. Obviously, this is the reason for the “M” in NMR! In the
literature, the transmitted and detected magnetic fields are commonly referred to as “rf”.

Magnetization is the macroscopic result of the Zeeman interaction. The equilibrium magne-
tization in a sample inside a field B0 is

M0 = χ0B0, (2.2)

where χ0 is the static magnetic susceptibility.

2.2 Classical treatment of NMR

2.2.1 Precession and the rotating frame

The classical picture of NMR is a straightforward way to introduce basic NMR dynamics
and experiments. The equations of motion for a magnetization M in a field B are

dM
dt

= M× (γB), (2.3)

which describes the precession of M around B at a frequency ω = −γB.

Excluding relaxation, this compact equation contains all the classical dynamics of NMR. It
applies whether M and/or B are constant or varying. Nonetheless, it isn’t terribly straight-
forward to use in practice. One of the problems with Eq. 2.3 is that it describes the dynamics
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of precession in the laboratory frame. Most calculations in NMR are simplified by working
in the rotating frame, a coordinate system which rotates around the z axis.

Slichter [10] has a nice derivation of how vectors are transformed between the lab and rotating
frames. Consider an arbitrary vector function F(t) = ∑

i=x,y,z Fiî, where the î unit vectors
are aligned with the lab frame. Now, assume that this coordinate frame rotates with an
angular velocity ω. In this case, the lab frame time rate of change for î is

d̂i

dt
= ω × î.

The time derivative of F(t) in the lab frame is now more complicated, but gives a useful
result:

dF(t)
dt

∣∣∣∣∣
lab

=
∑

i=x,y,z

(
dFi
dt
î+ Fi

d̂i

dt

)

=
∑

i=x,y,z

dFi
dt
î+

∑
i=x,y,z

Fi
d̂i

dt

=
∑

i=x,y,z

dFi
dt
î+ ω × F(t)

= dF(t)
dt

∣∣∣∣∣
rot

+ ω × F(t), (2.4)

where dF(t)
dt

∣∣∣
rot

is the time rate of change in the rotating frame. If we apply this to M, then
from Eq. 2.3 we have

dM
dt

∣∣∣∣∣
lab

=M× (γB)

= dM
dt

∣∣∣∣∣
rot

−M× ω

⇒ dM
dt

∣∣∣∣∣
rot

=M× (γB + ω).

And so, in the rotating frame Eq. 2.3 still applies, provided that we replace B0 with an
effective field

Beff = B + ω

γ
. (2.5)

When only B0 is present, by convention the precession axis is taken to be ẑ. Hence, in the
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ẑ direction we have

Beff = B0 + ω

γ
(2.6)

⇒ γBeff = γB0 + ω

ωeff = ω0 − ω.

Where ωeff = −γBeff is the effective precession frequency in the frame rotating at ω. If
ω = ω0, then ωeff and Beff are both zero: the effect of the the main spectrometer field B0 has
been completely removed.

NMR uses a B1 field to manipulate the magnetization. The B1 field is applied in the
transverse plane and oscillates at ω:

B1(t) = B1 cos(ωt+ φ)x̂+B1 sin(ωt+ φ)ŷ, (2.7)

where φ is some arbitrary phase factor. We make no assumptions about ω: it could be on
or off resonance. It’s easiest to analyze the problem in a frame rotating at ω. The time
derivative is then

dB1(t)
dt

∣∣∣∣∣
rot

= dB1(t)
dt

∣∣∣∣∣
lab

− (ωẑ)×B1(t)

= B1(ω − ω) sin(ωt+ φ)x̂+B1(ω − ω) cos(ωt+ φ)ŷ,
= 0.

In this frame it appears as a constant magnetic field perpendicular to ẑ, around which M
rotates according to Eq. 2.3. This rotation around B1 is called nutation. Combining this
result for B1 with the result for B0 in Eq. 2.6, the total effective field in the frame rotating
at the frequency of the rf pulse is

Beff =
(
B0 + ω

γ

)
ẑ +B1x̂, (2.8)

where we have chosen the phase of the rf pulse φ such that B1 is along x̂. Another way to
write this is

ωeff = (ω0 − ω)ẑ + ω1x̂ (2.9)

with
ω1 = |γ|B1 (2.10)

9



ω1 x̂

z

(ω0−ω) ẑ
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Figure 2.1: Dynamics in a frame rotating at the B1 frequency ω. Field strengths are indicated
in units of rad/s (see Eqs. 2.8 and 2.9). (A) The effective field, ωeff, composed of the effective
main field ω0 − ω and the amplitude of the rf field, ω1. (B) The magnetization M precesses
around the effective field. After Fig. 2.4 in Slichter [10].

as the amplitude of the rf pulse in rad/s—which, by convention, is always positive. The
dynamics of M in this frame are shown in Fig. 2.1. If the rf pulse is on resonance (ω = ω0),
the effect of B0 is completely removed.

In the preceding discussion, we have glossed over the issue of the sign of γ and the direction
of M’s precession and nutation. Most NMR-active nuclei, including 1H and 13C, have γ > 0.
Referring to Eq. 2.3 and applying the right-hand rule, this implies a clockwise precession of
M about B, which is a negative angular frequency. Indeed, if B = B0, then the definition
ω0 = −γB0 gives a negative Larmor frequency, as required. If γ < 0 (eg. 15N), then the
precession of M is in the counter-clockwise direction and ω0 > 0. Regarding nutation in
the B1 field, the definition of ω1 (Eq. 2.10) means it will always be positive—independent
of the sign of γ—implying a counter-clockwise nutation of M about the effective field in the
rotating frame. Experimentally, we could ensure ω1 > 0 by appropriately selecting φ, the B1

rf pulse phase.

In practice, it is rarely necessary to keep track of the correct precession and nutation direc-
tions in the analysis of single-nuclei experiments, so long as one is consistent. For a deeper
discussion, the reader is referred to Levitt’s papers on the subject [24, 25]. For the sake of
clarity, we will assume counter-clockwise nutation of M about the B1 field for the remainder
of this thesis.

2.2.2 The Bloch equations

Before getting too far into the discussion of how rf pulses (the B1 field) affect the spins,
the Bloch equations should be introduced. These phenomenological equations incorporate
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relaxation into the dynamics described by Eq. 2.3. The Bloch equations are approximate
and do not accurately describe the dynamics of NMR in all situations—only in systems
of isolated spin-1

2 nuclei in low-viscosity solutions are they exact. Still, they provide an
excellent framework for intuitive understanding. And, even where they aren’t rigorously
accurate, they can often be modified to model the situation anyway.

The Bloch equations in the lab frame are

dMz

dt
= M0 −Mz

T1
+ γ(M×B)z

dMx,y

dt
= γ(M×B)x,y −

Mx,y

T2
.

(2.11)

T1 is the spin-lattice or longitudinal relaxation time, T2 is the spin-spin or transverse re-
laxation time, and T2 ≤ T1. T1 is a result of the spin-lattice coupling that returns the
magnetization to thermal equilibrium M0 = M0ẑ via

Mz(t) = M0

(
1−

(
1− Mz(0)

M0

)
exp

(
− t

T1

))
. (2.12)

There can be no transverse components of magnetization in equilibrium: Mx and My must
decay. They do so exponentially with time constant T2 via

Mx,y(t) = Mx,y(0) exp
(
− t

T2

)
. (2.13)

Dephasing of the precessing spins causes T2 relaxation. In practice, we often refer to spin-
lattice and spin-spin relaxation as T1 and T2 relaxation, even in cases where there is not a
single, well-defined value for either.

Now, consider the Bloch equations for a sample in an NMR spectrometer under the influence
of rf pulses on resonance. In this situation, Blab = B0 + B1(t), where B1(t) is rotating in the
transverse plane at ω0 (Eq. 2.7). Following the last section, in the rotating frame this becomes
Brot = B1x̂, where we have chosen the x-axis to be the direction of B1(0). Correspondingly,
M×Brot = B1(Mzŷ −Myẑ), so the Bloch equations in the rotating frame are

dMz

dt
= M0 −Mz

T1
− ω1My

dMy

dt
= ω1Mz −

My

T2
dMx

dt
= 0.

(2.14)
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Figure 2.2: The relative orientation of the sample, B0, and B1(t).

2.2.3 A simple NMR experiment and the Lorentzian lineshape

The relative orientation of B0 and B1(t) to the sample and the transceiver coil is shown in
Fig. 2.2. The solenoidal coil style in this figure was used to complete all NMR experiments
in this thesis, though many other coil styles exist.

In thermal equilibrium, the sample has a magnetization M0 = M0ẑ. In a simple NMR
experiment, a B1 pulse is applied to tilt M away from the z-axis. Experimentally, this is
achieved by applying an oscillating voltage V (t) across the coil resonance circuit,

V (t) ∼ exp(−i(ωt+ φ))

where φ is phase under the experimenter’s control. This causes an oscillating, linearly-
polarized B1 field,

B1(t) = 2B1 cos(ωt+ φ′)x̂,

where 2B1 is an amplitude under the control of the experimenter. Regarding the phase
factors, φ and φ′ vary only by an additive constant for a given sample and experimental
set-up. Therefore, the relative phases of multiple B1 pulses (either in the same experiment
or in repeated experiments) can be carefully controlled. In other words, the rf pulses used
in NMR and MRI pulse sequences are coherent.

The oscillating B1 field along the x-axis may be mathematically decomposed into two
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counter-rotating fields in the x-y plane:

B1(t) = 2B1 cos(ωt+ φ′)x̂
= B1 (cos(ωt+ φ′)x̂+ sin(ωt+ φ′)ŷ) +B1 (cos(ωt+ φ′)x̂− sin(ωt+ φ′)ŷ) . (2.15)

Under most circumstances, the field rotating opposite to the precession direction of M has
negligible effect on the spins’ dynamics, and can be safely ignored in the analysis of most
experiments. As such, with a linearly-polarized B1 field, half of the rf power is wasted. In
NMR, this rarely poses a large enough problem to address, since doing so requires non-
standard coil designs and resonance circuits. In these configurations, changing the sample
is often difficult. On the other hand, in MRI the wasted power is absorbed by the patient,
posing limitations on B1 strength and duration. In modern MRI scanners, this is addressed
by using quadrature coils [26, 27]. In the most simple configuration, two perpendicular
linearly-polarized B1 coils are used. When transmitting, the sinusoidal current in the two
coils has a relative phase shift of 90◦, producing circular B1 polarization. Due to the large
bore of MRI scanners, coils with geometries designed for imaging specific regions can be
placed directly on the patient.

Returning to the simple experiment, when B1 is turned on with an amplitude ω1 � T−1
1

and ω1 � T−1
2 , relaxation effects may be temporarily ignored. If the total duration of the

B1 pulse is τ , then in the rotating frame

M(τ) = M0 cos(ω1τ)ẑ −M0 sin(ω1τ)ŷ.

Let’s consider the case of ω1τ = π
2 , which is a “90-degree” pulse. Immediately following this

pulse, M(τ) = −M0ŷ, which is a 90◦ rotation from equilibrium. With components in the
transverse plane, M precesses around ẑ at ω0.

The precessing magnetization induces a voltage in the coil, which is now used as a receiver.
The voltage is converted into a complex signal, S(t). Up to a constant, this is given by

S(t) = Mtransverse(t) exp (i(ω0 − ωref )t) (2.16)

=
√
Mx(t)2 +My(t)2 exp (i(ω0 − ωref )t) ,

where Mtransverse(t) is the magnitude of the magnetization in the transverse (x-y) plane
precessing at ω0 and ωref is a reference frequency corresponding to the center of the spectrum.
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Taking into account T2 relaxation, the signal after the 90◦ pulse is

S(t) = M0 exp (−t/T2) exp (i(ω0 − ωref )t) . (2.17)

The 90◦ pulse gives the maximum signal intensity. If a 45◦ pulse was used instead,Mtransverse(0)
and S(0) would both be reduced by 1√

2 .

The NMR signal acquired with a single pulse is called the Free Induction Decay (FID). The
Fourier transform of the FID gives the NMR spectrum, which in this case is [28]

S(ω) = F
{
S(t)u(t)eiφ0

}
= eiφ0

[
T2

1 + (ω −∆ω)2 T 2
2
− i (ω −∆ω)T 2

2

1 + (ω −∆ω)2 T 2
2

]
, (2.18)

where ∆ω = ω0 − ωref . The first and second terms in the brackets represent the absorption
and dispersion parts of the Lorentzian lineshape. Two factors have been explicitly inserted
prior to the Fourier transform: the zeroth-order phase factor, eiφ0 , and the unit step or
Heaviside function u(t), given by

u(t) =

0 t < 0

1 t > 0.

The first is necessary to complete the Fourier transform properly since S(t < 0) = 0. The
second arises from the NMR receiver chain. In NMR, spectra are represented using the
absorption lineshapes, so phase correcting S(ω) (multiplying by e−iφ0 for a zeroth order
correction) is necessary to isolate the pure absorption part. Exponential decay of the FID
from the T2 time corresponds to a Lorentzian lineshape in the frequency domain. Evidently,
the Bloch equations naturally lead to a Lorentzian lineshape.

2.3 Quantum mechanical treatment of NMR

2.3.1 NMR in Hilbert space

Having seen the classical approach, the next step is some basic calculations using state vectors
evolving under the Schrödinger equation. This “Hilbert Space” approach is actually not used
very often, since the ensemble average of ~1023 magnetic moments in a sample lends itself
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to classical calculations (preceding sections) or density matrices (following section). Still, it
a useful bridge into the quantum mechanics of NMR.

The Schrödinger equation in the lab frame is

i
∂

∂t
|ψ〉 = Ĥ |ψ〉 (2.19)

where Ĥ has units of rad/s. For the time being we shall only deal with cases where the
Hamiltonian is constant, leading to the formal solution

|ψ(t)〉 = exp(−iĤt) |ψ(0)〉 . (2.20)

The operator exp(−iĤt) is called the propagator. Two important properties of the propa-
gator are i) Â exp(B̂) = exp(B̂)Â only if [Â, B̂] = 0; and ii) if |α〉 is an eigenstate of Â, then
exp(Â)|α〉 = exp(α)|α〉.

Let’s consider the expectation values of two different states for a spin-1/2 nucleus under
Ĥ = ω0Îz (no B1 field). The first is the eigenstate

∣∣∣12〉. Unsurprisingly,
〈Iz〉 = 〈12 | exp(iω0Îzt)Îz exp(−iω0Îzt)|12〉

= 〈12 |Îz|
1
2〉

= 1
2

In the same way we can also show that 〈Îx〉 = 〈Îy〉 = 0 for this state. For a more interesting
example, if the spin state is now |x; +1

2〉 = 1√
2

(
|12〉+ | − 1

2〉
)
, then 〈Iz〉 is

〈Iz〉 = 1
2

(
〈12 |+ 〈−

1
2 |
)

exp(iω0Îzt)Îz exp(−iω0Îzt)
(
|12〉+ | − 1

2〉
)

= 1
2

(
〈12 |+ 〈−

1
2 |
) (

1
2 |

1
2〉 −

1
2 | −

1
2〉
)

= 0.
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And 〈Îx〉 is

〈Îx〉 = 1
2

(
〈12 |+ 〈−

1
2 |
)

exp(iω0Îzt)Îx exp(−iω0Îzt)
(
|12〉+ | − 1

2〉
)

= 1
2

(
〈12 |+ 〈−

1
2 |
)

exp(iω0Îzt)Îx
(
exp(−iω0

2 t)|
1
2〉+ exp(iω0

2 t)| −
1
2〉
)

= 1
2

(
〈12 |+ 〈−

1
2 |
)

exp(iω0Îzt)
(

1
2 exp(−iω0

2 t)| −
1
2〉+ 1

2 exp(iω0
2 t)|

1
2〉
)

= 1
2

(
〈12 |+ 〈−

1
2 |
) (

1
2 exp(−iω0t)| − 1

2〉+ 1
2 exp(iω0t)|12〉

)
= 1

2 cos(ω0t).

Similar calculations also show that 〈Îy〉 = 1
2 sin(ω0t). In the lab frame, 〈Îy〉x̂+〈Îx〉ŷ represents

the precession of the spin’s magnetic moment around B0 at the Larmor frequency. One
isolated spin’s expectation values behaves like the macroscopic magnetization.

Now let’s apply a B1 pulse rotating around ẑ at a frequency ω with an amplitude ω1. In the
lab frame,

Ĥ = ω0Îz + ω1 cos(ωt)Îx + ω1 sin(ωt)Îy (2.21)
= ω0Îz + ω1 exp(−iωÎzt)Îx exp(iωÎzt).

On the second line we have applied a useful property of the angular momentum operators,

exp(−iφÎl)Îm exp(iφÎl) = Îm cosφ+ În sinφ (2.22)
for cyclic permutations of l,m, n = {x, y, z},

which arises from their well-known commutation relations, [Îl, Îm] = iÎn (and cyclic permu-
tations thereof). In other words, exp(iφÎl) is a generator of rotations around axis l. We will
use this property extensively when working with density matrices under rf pulses.

The lab frame Hamiltonian in Eq. 2.21 is unsuitable to solve with the propagator in Eq. 2.20
because of its time dependence. As in the classical case, a transformation into the rotating
frame simplifies the problem. We do this by moving the time-dependent part of the Hamil-
tonian into the state kets. This technique can be applied to any Hamiltonian in the form
Ĥ(t) = Ĥ0 + V̂ (t) and moves the problem into what is known as the interaction represen-
tation. Consider an arbitrary state ket in the lab and rotating frame, indicated by |ψ〉 and
|ψ′〉 respectively. They are related by

|ψ′〉 = exp(iωtÎz)|ψ〉
⇒ |ψ〉 = exp(−iωtÎz)|ψ′〉.
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The procedure to find the dynamics of the transformed state is similar to the one above for
the transformation of a classical vector into the rotating frame (Eq. 2.4). The time derivative
is

∂

∂t
|ψ〉 = −iωÎz exp(−iωtÎz)|ψ′〉+ exp(−iωtÎz)

∂

∂t
|ψ′〉,

which we equate to Ĥ|ψ〉 (via Schrödinger’s equation, Eq. 2.19). After some algebra, we find
Schrödinger’s equation in the rotating frame,

i
∂

∂t
|ψ′〉 =

(
(ω0 − ω)Îz + ω1Îx

)
|ψ′〉. (2.23)

i
∂

∂t
|ψ′〉 = Ĥ ′|ψ′〉.

The effective Hamiltonian in the rotating frame, Ĥ ′, is now static. The B1 field is constant
along the x-axis and the effective B0 field is

Beff = B0 + ω

γ
,

as in the classical case (Eq. 2.5).

Now, we apply this rotating frame representation to calculate the effect of a B1 pulse of
duration τ . If we start with a |12〉 state, the expectation values change in time:

〈Îz〉 = 〈12 | exp(iĤ ′τ)Îx exp(−iĤ ′τ)|12〉
= 〈12 | exp(i

(
(ω0 − ω)Îz + ω1Îx

)
τ)Îx exp(−i

(
(ω0 − ω)Îz + ω1Îx

)
τ)|12〉.

This is tedious to calculate when ω 6= ω0, since eÂ+B̂ = eÂeB̂ only if [Â, B̂] = 0, which isn’t
the case for Îz and Îx. One possible approach would be to use the matrix form of Ĥ ′ and
diagonalize it. This would be written as H ′ = PDP−1, where D is a diagonal matrix with
entries λ1, λ2, . . . , λn, the eigenvalues of H ′. Then, the properties of the matrix exponential
are such that

exp(−iH ′τ) = exp(−iPDP−1τ)
= P exp(−iDτ)P−1

= P


e−iλ1τ · · · 0

... . . . ...
0 · · · e−iλnτ

P−1.

Another approach is to use a different frame transformation, such as the double-rotated
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frame or the tilted frame, which we will meet in Section 2.5.4 below. In this example, we
will proceed assuming the B1 pulse is on resonance.

With ω = ω0, 〈Îz〉 becomes

〈Îz〉 = 〈12 | exp(iω1Îxt)Îz exp(−iω1Îxt)|12〉
= 〈12 | cos(ω1t)Îz − sin(ω1t)Îy|12〉
= 1

2 cos(ω1t),

where we used the spin operators as generators of rotation (Eq. 2.22). By the same token,

〈Îy〉 = 1
2 sin(ω1t).

B1 rf pulses allow transitions between eigenstates of Îx, Îy, and Îz. After a 90◦ pulse (ω1t =
π
2 ), the system has moved from an eigenstate of Îz to one of Îy, corresponding classically to
nutation of the magnetization around the B1 field by 90◦.

2.3.2 NMR in Liouville space: density matrices

Density matrices are used extensively in NMR since they provide a concise way of dealing
with ensembles of many spins. We will briefly review their properties and motivation, fol-
lowing Lynden-Bell [22]. Consider a spin with a wavefunction |Ψ〉 written in terms of the
eigenstates |ψn〉:

|Ψ〉 = c1|ψ1〉+ c2|ψ2〉+ · · ·+ cn|ψ3〉.

The density matrix ρ has elements given by

ρij = cic
∗
j ,

which are the elements of the Cartesian product |Ψ〉 〈Ψ| of the wavefunctions. One of the
density matrix’s strengths is that expectation value calculations are straightforward. For an
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arbitrary operator Q̂ with a matrix representation Q in the {|ψn〉} basis,

〈Q̂〉 = 〈Ψ|Q̂|Ψ〉
=
∑
i,j

c∗i cj〈ψi|Q̂|ψj〉

=
∑
i,j

ρjiQij

= Tr{ρQ} = Tr{Qρ}.

Moreover, it can be shown that the trace is independent of the basis set for ρ and Q, allowing
one to choose the simplest representation for the calculation at hand.

The density matrix formalism provides a method of dealing with ensembles of spins. Consider
a system of N spin-1

2 nuclei which are spatially localized and therefore distinguishable. To
a good approximation, this is the case for protons in a sample of liquid water. The system
could be described by the set of wavefunctions for each spin, {|ψ1〉 , |ψ2〉 , . . . , |ψN〉}. These
would have forms like

|ψ1〉 =
∣∣∣12〉

|ψ2〉 = −
∣∣∣−1

2

〉
|ψ3〉 = 1√

2

∣∣∣12〉+ 1√
2

∣∣∣−1
2

〉
. . . etc.,

for example. Keeping track of these wavefunctions is impossible in a sample with ~1020

water molecules. Moreover, it isn’t useful, since in NMR we can only ever measure expec-
tation values from all spins at once. In other words, we don’t care about each individual
wavefunction; it is the ensemble average which is the useful quantity. Finding this is sim-
plified by the density matrix. Formally, the density matrix for this system is given by
ρ = 1

N
(|ψ1〉 〈ψ1|+ |ψ2〉 〈ψ2|+ · · ·+ |ψN〉 〈ψN |), which is a 2x2 matrix—a significant reduc-

tion in the number of terms to keep track of! And since the equilibrium density matrix is
known (see below), there is never any need to deal with the wavefunctions corresponding to
individual spins.

The time evolution of the density matrix under a Hamiltonian Ĥ (with units of rad/s) is
given by the Liouville-Von Neumann equation,

∂ρ

∂t
= −i[Ĥ, ρ]. (2.24)
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When Ĥ is constant, the formal solution is

ρ(t) = exp(−iĤt)ρ(0) exp(iĤt), (2.25)

where exp(−iĤt) is the propagator we met before in the formal solution to Schrödinger’s
equation (Eq. 2.20).

Density matrices exist in Liouville space, where they are the analogue of Hilbert space state
vectors. In Liouville space the trace is the analogue of the inner product and “superoperators”
act on state density matrices via commutators. While a comprehensive overview of the
Liouville formalism would be useful for some topics in NMR, it isn’t necessary for this
thesis.

2.3.3 A simple NMR experiment using density matrices

We’ll calculate again the evolution of a simple NMR experiment consisting of a 90◦ pulse
followed by signal acquisition, this time using density matrices. Our model system now is a
collection of isolated protons coupled loosely to the lattice. Together, they form a canonical
ensemble. At equilibrium in the spectrometer field B0, the density matrix is

ρ0 = exp(−~ĤZ/kBT )
Tr
{

exp(−~ĤZ/kBT )
}

≈ 1− ~ĤZ/kBT

Tr {1}

= 1
N
− ~ĤZ

NkBT

= 1
N
− ~ω0

NkBT
Îz.

(2.26)

with 1 as the unit operator and N as the number of spins. A density matrix of 1
N

1 describes
an ensemble of spins oriented completely randomly, which isn’t measurable. Rather, it is the
deviation from the random orientation which is detectable, so the constant term is dropped.
Also, the constant prefactor in front of Îz is usually set to 1 since it doesn’t typically change
over the course of an experiment. We are left with the simple result,

ρo = Îz. (2.27)
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The equilibrium magnetization is proportional to 〈Îz〉. If the spins have I = 1
2 ,

M0 ∝ 〈Îz〉

= Tr
{
ρ0Îz

}
= Tr

{
Îz Îz

}
= 1

2 .

Up to now, the calculations have been valid for the rotating or lab frame, since only Îz

operators have been involved. From now on, we will assume that ρ is in the rotating frame.

With the system in equilibrium, we now apply a pulse of the B1 field at frequency ω. The
first step in determining the evolution of ρ is to calculate the propagator of the Hamiltonian
in the rotating frame (Eq. 2.23):

exp(−iĤ ′t) = exp(−i
(
(ω0 − ω)Îz + ω1Îx

)
τ).

Again, we’ll assume that ω = ω0. Hence,

ρ(τ) = exp(−iω1τ Îx)ρ(0) exp(iω1τ Îx)
= exp(−iω1τ Îx)Îz exp(iω1τ Îx)
= cos(ω1τ)Îz − sin(ω1τ)Îy,

where we have used the rotation relations for the spin operators given in Eq. 2.22. We are
considering a 90◦ pulse, so ω1τ = π

2 and now

ρ = −Îy.

This corresponds to magnetization precessing in the transverse plane. The signal measured
by the spectrometer after quadrature detection, S(t), is easily found using density matrices.
In Section 2.2.3, we found S(t) classically from the precessing magnetization. The signal
from the FID detected in the coil is always mixed with a reference frequency, ωref . So, we
first need to determine the evolution of the density matrix in a frame rotating at ω0 − ωref
relative to the stationary lab frame. Since ρ = −Îz is in a frame rotating at ω0, the new
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frame has a relative rotation of −(ω0 − ωref ). The density matrix in this new frame, ρ′, is:

ρ′ = exp
(
i (ω0 − ωref ) tÎz

)
ρ exp

(
−i (ω0 − ωref ) tÎz

)
= exp

(
i (ω0 − ωref ) tÎz

)
(−Îy) exp

(
−i (ω0 − ωref ) tÎz

)
= − cos((ω0 − ωref )τ)Îy − sin((ω0 − ωref )τ)Îx.

In the rotating frame, S(t) is given by [9, 11]

S(t) ∝ Tr
{
Î+ρ

′
}
,

where Î+ = Îx + iÎy. Up to a constant we have

S(t) = Tr
{(
− cos((ω0 − ωref )τ)Îy − sin((ω0 − ωref )τ)Îx

) (
Îx + iÎy

)}
= − sin((ω0 − ωref )τ)Tr

{
ÎxÎx

}
− i cos((ω0 − ωref )τ)Tr

{
Îy Îy

}
= −1

2 sin((ω0 − ωref )τ)− i1
2 cos((ω0 − ωref )τ)

= −i1
2 (cos((ω0 − ωref )τ) + i sin((ω0 − ωref )τ))

= −i1
2 exp(i(ω0 − ωref )τ).

Ignoring the exponential decay from T2 relaxation, this is the same signal we calculated
classically (Eq. 2.17). The presence of the phase factor −i here is irrelevant and arises only
from how we have defined our pulse phases. We are free to rotate the coordinate system
within the rotating frame around ẑ without changing the physics.

2.4 Other spin interactions

2.4.1 Chemical shielding and quadrupolar interactions

So far we have not explicitly considered any interactions apart from the nuclear Zeeman
effect. This thesis focuses mostly on the effects of the dipolar interaction, a topic we will
soon cover in detail. First, however, we briefly discuss two other ways a nuclear spin may
interact with its environment.

Chemical shielding is the interaction of the electrons surrounding a nucleus in a field B0. This
results in a slightly higher or lower field at the nucleus, changing the Larmor frequency in a
measurable way. Because of this effect, the same nucleus in a molecule often has site-specific
spectral frequencies. In rapidly-tumbling molecules in solution, an isotropic part of the
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chemical shielding interaction remains. This is one of the main reasons NMR spectroscopy
is so useful in analytical chemistry.

Nuclei with I > 1
2 (~74% of all NMR-active nuclei [9]) experience quadrupolar couplings.

This is an interaction of the nucleus with electric field gradients. Quadrupolar coupling is
usually quite strong relative to other interactions. Because its interaction strength depends
on its orientation relative to B0, it can be a useful tool for studying the structure and motion
of certain molecules, like liquid crystals. To first order, the quadrupolar interaction has no
isotropic part, so it is averaged away in small molecules in solution.

2.4.2 The dipolar Hamiltonian for two nuclei

Dipolar coupling6 is the interaction of one nuclear spin’s magnetic moment with one or more
magnetic moments from neighbouring nuclear spins. Imagine a system with two spins, I and
S, separated by a vector r. Their dipolar Hamiltonian (in rad/s) is

ĤD,tot =
(
µ0

4π

)
γIγS~

(
Î · Ŝ
r3 − 3(Î · r)(Ŝ · r)

r3

)
= −d [A+B + C +D + E + F ]

in units of rad/s. Here, γI,S are the gyromagnetic ratios, Î = Îxx̂+ Îyŷ + Îz ẑ (and similarly
for Ŝ), and

d =
(
µ0

4π

)
γIγS
r3 ~

A = ÎzŜz(3 cos2 θ − 1)
B = −1

4

(
Î+Ŝ− + Î−Ŝ+

)
(3 cos2 θ − 1)

C = 3
2

(
ÎzŜ+ + Î+Ŝz

)
sin θ cos θ exp(−iφ)

D = 3
2

(
ÎzŜ− + Î−Ŝz

)
sin θ cos θ exp(+iφ)

E = 3
4

(
Î+Ŝ+

)
sin2 θ exp(−2iφ)

F = 3
4

(
Î−Ŝ−

)
sin2 θ exp(+2iφ),

(2.28)

where Î± = Îx± iÎy. In these terms θ and φ are the polar and azimuthal angles and ẑ is the
direction of B0. The angles refer to the orientation of the inter-nuclear vector with respect

6In this thesis we are dealing exclusively with magnetic dipoles and dipolar coupling.
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to B0. Proton-proton dipolar couplings in organic solids have a maximum strength of 20–30
kHz. This is small compared to the Zeeman interaction (~100 MHz), so ĤD,tot may be treated
as a perturbation. In light of this, the dipolar Hamiltonian simplifies immensely [10]. Terms
C, D, E, F are off-diagonal—they connect non-degenerate states—so their contributions to
the spectrum are small (although they are responsible for relaxation). Conversely, terms A
and B are diagonal. In any Hamiltonian, keeping terms like A and B is called the secular
approximation. The secular, homonuclear (γI = γS) dipolar Hamiltonian is

ĤD = −d(3 cos2 θ − 1)
(
ÎzŜz − 1

4

(
Î+Ŝ− + Î−Ŝ+

))
= −d(3 cos2 θ − 1)

(
ÎzŜz − 1

2(ÎxŜx + ÎyŜy)
)

= −d
2(3 cos2 θ − 1)

(
3ÎzŜz − Î · Ŝ

)
.

(2.29)

We will refer to the secular approximation as the dipolar Hamiltonian from now on, using
the three forms given in Eq. 2.29. As usual, the Hamiltonian has been written in units of
rad/s. Î+Ŝ−+ Î−Ŝ+ is often called the “flip-flop” term since it swaps the z-component of the
spins in a spin pair. The heteronuclear Hamiltonian (γI 6= γS) doesn’t have these terms—the
states it connects are non-degenerate—and so retains only ÎzŜz.

The Zeeman Hamiltonian for these two spins, ĤZ ∼ (Îz + Ŝz), commutes with ĤD: [Îz +
Ŝz, ÎzŜz] = 0 trivially, and by using the identity 2Î · Ŝ = (Î + Ŝ)2 − Î2 − Ŝ2, we can see
that [Îz + Ŝz, Î · Ŝ] = 0 as well (this is only true under the assumption that Îz and Ŝz have
identical prefactors). This implies that ĤD is the same in the lab frame and in any frame
rotating around ẑ. Also, it means that ĤD and ĤZ have simultaneous eigenstates.

As an example application, consider the special case of two identical dipolar-coupled spin-1
2

nuclei, such as protons in a methylene group. For this system,

ĤD = −d
2(3 cos2 θ − 1)

(
3Î2
z − Î2

)
.

Since the spins are identical, we can only measure the total spin, not the spin of any one
nucleus. The total spin eigenstates are separable into the singlet state,

|00〉 = 1√
2 (| ↑↓〉 − | ↑↓〉) ,
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and the triplet states,

|11〉 = | ↑↑〉
|10〉 = 1√

2 (| ↑↓〉+ | ↑↓〉)

|1− 1〉 = | ↓↓〉,

where the arrows indicate the spin of the two protons and |Is〉 indicates the total spin state
has quantum numbers I and s. The singlet state is of no interest here since no transitions
are possible and it is therefore unobservable. Using only the triplet state, we have Î2 =
I(I + 1)1 = 2 1, where 1 is the unit operator. And so, in the B0 field the total Hamiltonian
is

ĤZ + ĤD = ω0Îz − 1
3ωD(θ)

(
3Î2
z − 2 1

)
(2.30)

with 1
3ωD(θ) = d

2(3 cos2 θ − 1). (2.31)

This causes transitions at frequencies ω0 ± ωD(θ) (Fig. 2.3A and B). The splitting 2ωD(θ)
depends on the relative orientation of the two nuclei (as above, θ is the angle the inter-nuclear
vector makes with B0). At the “magic angle” ωD(θMA) = 0. This angle is

θMA = cos−1
(
1/
√

3
)

≈ 54.7◦ (2.32)

We will use this Hamiltonian again in Chapter 6 to describe ihMT.

2.4.3 Dipolar line broadening in many-spin systems

The two-nucleus dipolar Hamiltonian above (Eq. 2.29) is simple enough to solve exactly.
However, in naturally-occuring organic solids or soft matter, proton-proton dipolar couplings
are rarely limited to two spins. These systems have a many-spin dipolar Hamiltonian,

ĤD = −
∑
i 6=j

dij(3 cos2 θij − 1)
(
Îz,iÎz,j − 1

4

(
Î+,iÎ−,j + Î−,iÎ+,j

))
.

This still has simultaneous eigenstates with the Zeeman Hamiltonian for the system,

ĤZ =
∑
i

ω0,iÎz,i,
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Figure 2.3: The effects of dipolar broadening in two identical spins and in many spins. (A)
The spectrum of an isolated nucleus, with slight broadening from T2 relaxation. (B) When
two of these spins are coupled via the dipolar interaction, the spectrum is a doublet, where
ωD(θ) is given by Eq. 2.30. (C) When many spins are coupled together, individual lines
cannot be distinguished and the spectrum is broad. The spectral intensities are not to scale.

but we have no easy way of finding what they are. As more spins are added to the system,
the Zeeman energy levels are smeared out into a continuum. As a result, the spectrum is
broadened, as illustrated in Fig. 2.3C. In organic solids, 1H spectral broadening from the
dipolar interaction can be up to ~50 kHz.

Experimentally, it is found that the spectral broadening from dipolar couplings in many
systems is approximately Gaussian. This cannot easily be derived directly from the Hamilto-
nian. However, it can be motivated using other models, like assuming a randomly-fluctuating
field [29]. Also, we can approximate the lineshape of a system under the influence of the
many-spin dipolar Hamiltonian without explicitly knowing the energy eigenstates. This
technique is called the Van Vleck expansion [10, 30]. This expands the lineshape in terms
of its moments (e.g. the second moment of the Gaussian is the variance, σ2). Using this
technique, many systems, such as cubic lattices, are only non-Gaussian in negligible higher
order moments [30].

2.5 Saturation

2.5.1 The problem statement and the local field

Imagine performing an NMR experiment on a dipolar-coupled system of many spins. When
rf is applied via the B1 field, the lab frame Hamiltonian is composed of the Zeeman, dipolar,
and rf parts:

Ĥlab = ĤZ,lab + ĤD + ω1 cos(ωt)Îx,lab.
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We can pose what may seem to be a simple question: what is the evolution of the density
matrix ρ under this Hamiltonian? In fact, this is a difficult problem to solve because Îx,lab
does not commute with ĤZ,lab or ĤD, so only in simple systems are there exact solutions.
In practice we must use approximations, each valid in a different regime. (Note that we are
assuming ĤD is the secular dipolar Hamiltonian, which is the same in the lab and rotating
frames.)

In order to determine the regime, we need a relative measure of the energies of each interac-
tion. The Zeeman and rf terms have the energy scales ~ω0 and ~ω1 respectively. The dipolar
interaction energy is less straightforward. What we need for the dipolar Hamiltonian is a
measure for the typical field strengths at one spin due to its neighbouring spin. When there
is only once spin species, this is given by [31]

ωD =
√
〈Ĥ2

D〉

=
√

1
3〈∆B2〉

. (2.33)

Here, 〈∆B2〉 is the second moment of the absorption lineshape, and we call ωD the local field
strength or RMS average dipolar interaction strength. It has units rad/s. In the literature,
it is often called the local field BL, defined as

BL = ωD/γ. (2.34)

Note that ωD applies to one coupled network of spins, not to all spins of a specific species.

With an energy scale at hand for all parts of the total Hamiltonian, we can now explore
some fundamental theories which apply in various regimes. The following is the program
for the remainder of Section 2.5. After describing the trivial case of pulsed rf, we will
introduce the work of Bloembergen, Purcell, and Pound (BPP), which uses perturbation
theory to model saturation under extremely small rf irradiation (we will make explicit what
“extremely small” means later). However, BPP theory fails to explain much of the behaviour
seen in solids. This was the motivating factor for development of the next topic, Redfield
theory, which introduces the concept of spin temperature. Redfield theory applies under
strong rf irradiation. Provotorov Theory, the last topic discussed, extends the concept of
spin temperature to explain the saturation of solids under weak rf irradiation. For a more
detailed picture of how these theories fit together, the reader is referred to the introduction
of Janzen’s paper [32].

What is meant by saturation? If the system starts in thermal equilibrium, then a saturation
rf pulse slowly equalizes the populations of the states, reducing the magnetization, 〈Îz〉.
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Depending on the specific regime, 〈Îz〉 → 0 (the sample is completely saturated) or 〈Îz〉 →
const. Note that saturation also implies randomly distributed phases among the spins. A
90◦ pulse may tip the magnetization into the transverse plane, causing 〈Îz〉 = 0, but the
phases of the spins are coherent, so this is not saturation.

On a historical note, many of the theories describing saturation were developed in the early
days of NMR. At that time, continuous-wave NMR spectroscopy was used. In this technique,
one applies a constant oscillating B1 field to the sample as the B0 field is increased, allowing
for measurements of the absorption and dispersion of the sample. Obviously, quantifying
the effects (eg. saturation narrowing) on the spectrum from the continuous B1 field was
important. Nowadays, Fourier transform spectroscopy is used, where the B0 field is constant
and the spectrum is determined from the FID after a series of intense B1 pulses. However,
saturation theories are useful in MRI, where certain techniques we discuss in the next chapter
use long, low-power B1 pulses to generate contrast.

2.5.2 Pulsed rf

The simplest regime: ω1 � ωD, ω0 � ω1, and B1 duration τ is much less than the lifetime
of the FID. Hence, we can safely ignore the effects of dipolar couplings during the pulse.
Working in the rotating frame allows us to directly calculate solutions, as exemplified in
Section 2.3.3. Saturation would occur when ω1 . ωD and τ & T2.

2.5.3 BPP theory

Bloembergen, Purcell, and Pound were the first to treat the rf pulse as a perturbation to the
main Hamiltonian, consisting of the Zeeman and dipolar terms [33]. Their calculation used
two coupled spin-1/2 nuclei under a weak rf field. However, the BPP saturation theory is only
useful in the regime ω2

1T1T2 � 1. Higher rf powers will cause population equilibration, which
changes the wavefunction of the system, invalidating the perturbation theory approach [34].
While BPP saturation theory predicts the right behaviour in liquids, in solids it deviates
from observations at long times.

2.5.4 Spin temperature and Redfield theory

Redfield theory is applicable to strong rf pulses, where ω2
1T1T2 � 1 [10, 12, 30]. It uses the

concept of spin temperature. This emerges because nuclear spins form a canonical ensemble,

28



describable by a Boltzmann distribution with a well-defined temperature. This is true under
most circumstances in solids, where there is weak coupling to the lattice and spin-spin
couplings redistribute the populations of the energy levels in a time T2 � T1.

Let us first consider the system at equilibrium with no rf applied. The total Hamiltonian
consists of the Zeeman and dipolar parts,

Ĥ = ĤZ + ĤD.

Then, following the derivation of Eq. 2.27, the density matrix is

ρ = −βĤ.
= −βĤZ − βĤD (2.35)

where β is the inverse lattice temperature. The spin temperature in each reservoir is the
same, but the order (or magnetization/polarization) is not. To see this, we write

ρ = −βω0
[
Îz
]
− βωD

[
ĤD

ωD

]
.

The operators in [· · · ] are written this way to make them both unitless. The order p in each
reservoir is

pD =
〈
ĤD

ωD

〉
= −βωD

pZ = 〈Îz〉 = −βω0.

(2.36)

Because ωD � ω0, pD � pZ . Since the energy of the system is bounded, the order may be
negative or positive in general.

The partition function is

Z = Tr{exp(−βĤ)}

= Tr
{

1− βĤ + 1
2β

2Ĥ2 + · · ·
}

≈ (2I + 1)N + 1
2β

2Tr
{
Ĥ2
}
.

We have made use of the fact that Tr{Ĥ} = 0 since Tr{ĤZ} = Tr{ĤD} = 0. Tr{1} =
(2I+1)N is the dimensionality of a system with N particles of spin I. We may now calculate
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expectation values. The magnetization is [10,12]

M =
Tr
{
M̂ exp(−βĤ)

}
Z

≈
Tr
{
M̂(1− βĤ)

}
(2I + 1)N (2.37)

= CβB, (2.38)

where M̂ = (Îxx̂+ Îyŷ+ Îz ẑ) and C is the Curie constant. This result is Curie’s law. It says
that the local field has no effect on the magnetization, which is either parallel or anti-parallel
to B. In the same way we can find the entropy of the system, s, a quantity we will make
use of later. This is [10,12]

s = sZ + sD (2.39)
= −1

2β
2Tr

{
Ĥ2
Z

}
− 1

2β
2Tr

{
Ĥ2
D

}
+ const (2.40)

=
(
−1

2Cβ
2B2

0

)
+
(
−1

2Cβ
2B2

L

)
+ const. (2.41)

Now, imagine suddenly turning on an rf field ω � ωD, so Beff = (B0 − ω/γ)ẑ + (ω1/γ)x̂
(Eq. 2.5). According to Curie’s law (Eq. 2.38), M must eventually point along Beff. How long
does this take? When the rf field is turned on, M precesses around Beff until its “transverse”
components (the components perpendicular to Beff) dephase. This happens in a time ~T2

(~1/ωD). Only the projection of M along Beff is retained.

Say B1 is rapidly turned on with an amplitude and frequency such that Beff is 45◦ to B0

(realized when ω = ω0 − ω1). If the equilibrium magnetization in the lab frame was M0 =
M0ẑ, then in a time ~T2 after the rf is turned on it will be parallel to Beff and have a
magnitude of M0/

√
2 . The tilted rotating frame (henceforth the TR frame) is a rotating

frame where ẑ is along Beff. The rapid application of B1 means that once M0||Beff, the
system is in quasi-equilibrium: both the Zeeman and dipolar reservoirs in this tilted-rotating
frame are describable by different inverse spin temperatures β′Z and β′D, but neither is in
equilibrium with the lattice.

The new Zeeman inverse spin temperature β′Z in the tilted frame may be found from the

30



Curie law in Eq. 2.38:

β′Z
βZ

= B0

Beff

√
2M0

M0

=
√

2 B0

Beff
� 1. (2.42)

Thus, β′Z � βZ and the Zeeman reservoir has a significantly colder spin temperature in the
TR frame than in the lab frame. We shall not attempt a similar calculation for the dipolar
order—there is no analogue of the simple Curie law and the dipolar Hamiltonian in the tilted
frame, Ĥ ′D, is complicated.

We may also calculate the new entropy:

s′ = s′Z + s′D

=
(
−1

2CB
2
effβ
′2
Z

)
+
(
−1

2CB
′2
Lβ
′2
D

)
+ const, (2.43)

where primes indicate the TR frame.

In the above discussion, the rapid application of the B1 field with ω1 � ωD led to a quasi-
equilibrium state after time ~T2. In the TR frame, the Zeeman reservoir has energy spacings
of γBeff. In the dipolar reservoir, the energy spacings are γBL. When ω1 � ωD, γBeff � γBL

and “heat” (magnetization) cannot flow between the two reservoirs. Such transitions would
be energy non-conserving. Yet when ω1 ∼ ωD these transitions can take place: the reservoirs
are coupled together, and their spin temperatures equilibrate on timescales of ~1/ωD.

As for equilibrium with the lattice, in the TR frame this has timescales of ∼ T1ρ for the
Zeeman reservoir (the spin-lattice relaxation time in the rotating frame, ~0.1–1 s) and T1D

for the dipolar reservoir (the dipolar relaxation time, ~0.1–10 ms for the samples considered
in Chapter 6). In the following discussion, we assume the rf duration is much shorter than
T1ρ or T1D, so we may ignore their effects while the rf is on.

2.5.5 ADRF/ARRF: An application of Redfield theory

We will now give an example of an experiment which can be quantified using Redfield
theory. This is called Adiabatic Demagnetization/Remagnetization in the Rotating Frame
(ADRF/ARRF) [10, 30]. We will use this experiment in Chapter 6 to measure the dipolar
relaxation time, T1D.

From an equilibrium state with a spin temperature of β, a 90◦y on-resonance pulse rotates
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the magnetization: M = M0x̂. Immediately after (taken to be t = 0), the rf is phase-
shifted to the rotating frame’s x-axis. At this point, the Zeeman reservoir is already in
quasi-equilibrium since M0||Beff. An analysis like the one leading to Eq. 2.42 shows that the
Zeeman reservoir’s inverse spin temperature at t = 0 is βZ = B0

B1
β.

The amplitude of the rf pulse, which starts off at ω1 � ωD, is now ramped down adiabatically
to zero, leaving a final inverse spin temperature β’. The entropy is constant, so we can use
the expression in Eq. 2.43. Dropping the primes for convenience, we equate the entropy at
the start and end of the ADRF ramp (state 1 and 2 respectively):

s1 = s2

sZ,1 + sD,1 = sZ,2 + sD,2(
−1

2CB
2
1βZ,1

2
)

+
(
−1

2CB
2
Lβ

2
D,1

)
=
(
−1

2CB
2
eff,2β

2
Z,2

)
+
(
−1

2CB
2
Lβ

2
D,2

)
B2

1

(
B0

B1
β
)2
≈ B2

L,2β
2
D,2

ω2
0β

2 = ω2
Dβ

2
D,2

→ βD,2 = β
ω0

ωD
.

where we have used the fact that ω1 � ωD and that Beff,2 = 0 in the third line. At this
point, Beff = 0 hence M = 0, meaning that there is no magnetization in the Zeeman reservoir.
Instead, it has been moved to the dipolar reservoir, which now has an inverse temperature
of β ω0

ωD
and a polarization (Eq. 2.36) of −βω0. Note that because we are on resonance, ωD

is the same as in the lab frame. During demagnetization, the Zeeman and dipolar reservoirs
remain uncoupled until ω1 ∼ ωD.

Since we reached this using an adiabatic process, reversing it will transfer observable magne-
tization back to the Zeeman reservoir. This is the ARRF part of the sequence. While in the
dipolar reservoir, the dipolar order decays with spin-lattice relaxation time T1D. Therefore,
the ADRF/ARRF sequence can be used to measure T1D.

2.5.6 Provotorov theory

Provotorov Theory deals with the case where ω1 is weak so that we can’t assume the Zeeman
and dipolar reservoirs have the same spin temperature [10, 30, 34, 35]. Experimentally, this
is usually the case in solids when ω1 � ωD. It was first introduced by Provotorov [36] but
the canonical reference is Goldman’s book [30].

In Appendix A we derive the Provotorov equations. Here, we simply state the results and

32



put them into a useful form for later. We will use the form of the equations introduced by
Lee et al. [37, 38]. The density matrix in a rotating frame is

ρ = −(ω0 − ω)βZ Îz − βDĤD

= −2π∆βZĤZ − βDĤD

= −2π∆βZ Îz − ωDβD
(
ĤD

ωD

)
. (2.44)

In the above, 2π∆ = ω0 − ω, where ω is the frequency of the rf (not yet applied). ∆ is the
offset from the center of the spectrum and is stated in Hz. We can now express ρ as a vector
with

{
Iz, ĤD/ωD

}
as the basis

ρ =
 −(2π∆)βZ
−ωDβD

 . (2.45)

The components of ρ are the magnetizations or orders in each reservoir

〈Iz〉 = (ρ)1 = −(2π∆)βZ〈
ĤD

ωD

〉
= (ρ)2 = −ωDβD.

(2.46)

When weak rf is applied with amplitude ω1 � ωD, the Provotorov equations are

dρ±
dt

=W
 −1− 1

WT1
Ω

Ω −Ω2 − 1
WT1D

ρ± +
 〈Iz〉0

T1

0

 , (2.47)

with

W = πω2
1g(∆) (2.48)

Ω = 2π∆
ωD

. (2.49)

Here, g(2π∆) the symmetric, normalized lineshape (in units of s). In Appendix A we also
show how rf applied at offsets ±∆ simultaneously decouples the Zeeman and dipolar reser-
voirs, leading to [30]

dρdual
dt

= W

 −1− 1
WT1

0
0 −Ω2 − 1

WT1D

ρdual +
 〈Iz〉0

T1

0

 . (2.50)
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Eq. 2.47 and 2.50 are at the heart of ihMT, discussed in Chapter 6.

2.6 Relaxation in homogeneous systems

2.6.1 What drives relaxation?

Environmental fluctuations in magnetic fields felt by the nuclei are responsible for spin-spin
(T2) and spin-lattice (T1, T1D) relaxation. Generally, molecular motion causes these fluctua-
tions. Consider a proton on a tumbling molecule in a B0 field. Depending on the molecular
orientation, there may be different electron screening around the nucleus. Also, there will
inevitably be fluctuating fields from the magnetic moments of other protons and nuclei.
Time-independent couplings also cause precessing nuclei to dephase, so these contribute to
T2 as well. Finally, the fluctuations of paramagnetic centers also play a role.

In MRI, it isn’t typically necessary to perform exhaustive calculations of the quantum ori-
gins of relaxation. In fact, given the complexity of most biochemical environments, like
lipid bilayers, this would be impossible without molecular dynamics simulations (e.g. refer-
ence [39]). Instead, it is usually adequate to either measure the relaxation rate, predict its
magnitude from the fundamental physics, or predict its value based on knowledge of similar
systems. For example, we can measure the T1 and T2 times of aqueous protons in white and
grey matter. We can predict that the non-aqueous protons will have a T2 ∼10–100 µs due
to their slow tumbling (see next section). This short T2 time can be confirmed experimen-
tally using NMR spectroscopy and computationally using molecular dynamics simulations.
Similarly, in Chapter 7 there is an extensive discussion on predicting the relative T1D times
in different types of white matter lipids.

We shall now present some general results from BPP relaxation theory (the same theory
that describes saturation in the limit ω2

1T1T2 � 1). This provides a suitable framework for
understanding the quantum origin of relaxation in tissue.

2.6.2 BPP relaxation theory

Here we provide a flavour of BPP theory without going into the details. Relaxation is the
redistribution of populations in the density matrix. So for an arbitrary matrix element
ρnm = 〈n|ρ|m〉, how does this change in time? It can be shown (e.g. see Slichter [10]) that

d

dt
ρnm = 1

~2Jmn(ωn − ωk)
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where Jmn(ω) is the is the spectral density and ωn−ωk is the energy difference between |m〉
and |n〉. The spectral density is a measure of which frequency components are present in
the random fluctuations felt by a nucleus. Intuitively this makes sense: when the random
fluctuations are on resonance for a transition, the populations of the corresponding levels will
change. The spectral density is given by the Fourier transform of the correlation function
Gmn(τ):

Jmn(ω) = F {Gmn(τ)}

and
Gmn(τ) = 〈m|Ĥr(t− τ)|n〉〈n|Ĥr(t)|m〉.

Here, Ĥr is some Hamiltonian that is responsible for the fluctuations, such as the dipolar
Hamiltonian. The overbar indicates an ensemble average. We often make the assumption

Gmn(τ) ∼ exp(−τ/τc),

where τc is called the correlation time. This is very nearly exact for small molecules like
water. With this assumption, Jmn(ω) has a Lorentzian profile around ω = 0 with width ~τc.

The above is the starting point for deriving expressions for the relaxation times. By consider-
ing the case of two rapidly-tumbling dipolar-coupled spins (e.g. protons in a water molecule),
it can be shown that [33,40,41]

1
T1

= C

(
τc

1 + (ωoτc)2 + 4τc
1 + (2ω0τc)2

)
1
T2

= C

(
3
2τc + (5/2)τc

1 + (ω0τc)2 + τc
1 + (2ω0τc)2

)
.

(2.51)

Where C is a constant and ω0 the Larmor frequency. Fig. 2.4 plots these expressions under
various conditions, we see that they give the right qualitative behaviour. In solids, T2 � T1

and in liquids T1 ∼ T2. In tissues, the molecules are often restricted by compartment walls,
so T2 < T1.

The same sort of approach has also been applied to T1D for a dipolar-coupled proton pair [43].
Using a more general relaxation theory (Redfield theory [10]), the value is found to be [43–45]

1
T1D

= 27
8 γ

4~J1(ωD). (2.52)
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Figure 2.5: The inversion-recovery sequence used to measure T1.

Here, J1(ω) is the spectral density of the spherical tensor function F (1), and

F (1) = sin θ cos θ exp(−iφ)
r3 ,

where r is the vector connecting the two nuclei. Eq. 2.52 says that slow fluctuations around
the frequency of the local field strength ωD drive T1D relaxation.

2.7 Some experimental methods

2.7.1 T1 measurement with inversion-recovery

T1 is commonly measured in NMR studies by using an inversion-recovery (IR) experiment.
Its pulse sequence is shown in Fig. 2.5. In equilibrium the magnetization is M0ẑ. If a 180◦

B1 rf pulse is applied, now the magnetization is −M0ẑ. According to Eq. 2.12, the system
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will now return to equilibrium via

Mz(t) = M0 (1− 2 exp (−t/T1)) .

Mz(t) can be observed by a 90◦ pulse and the T1 time extracted. The IR experiment is
considered the “gold standard” for T1 measurements. But in MRI scanners, it requires
prohibitively long scan times [46–48]. Instead, Look-Locker methods (where a 180◦ pulse is
followed by a train of low flip-angle pulses) or variable flip angle methods (where a sequence
of images are acquired with varying flip angles) are used [48].

2.7.2 T2 measurements: the spin echo and CPMG acquisition

From the Bloch equations, it seems that the envelope of the FID will decay with exp(−t/T2).
We assumed this in our example above (Eq. 2.17). In reality, we often find that the FID for
aqueous protons decays with exp(−t/T ∗2 ), where T ∗2 < T2. T ∗2 takes into account inhomo-
geneities in the B0 field which are static on timescales of T2:

1
T ∗2

= 1
T2

+ 1
T2,inhomo

.

T2,inhomo is the contribution from inhomogeneities in the static field. These are caused
by varying magnetic susceptibilities throughout the sample, limitations on shimming, and
paramagnetic impurities. However, there is a simple method to reverse the effects of T2,inhomo

and measure the true T2 time. To explain what this is, we first need to introduce the concept
of the spin echo.

Fig. 2.6 gives a pictorial description of the spin echo, which is a sequence consisting of a 90◦

pulse, then a delay τ , then another 180◦. Following the 90◦ pulse, the spins will precess at
slightly different frequencies due to static field inhomogeneities. Correspondingly, they lose
phase coherence and the net magnetization decays with a time constant T ∗2 . However, after
the 180◦ pulse, the spin with the lowest precession frequency now has the most advanced
phase, and vice versa. Therefore, at a time 2τ , we are only left with the effects of T2

relaxation.

The Carr-Purcell Meiboom-Gill (CPMG) acquisition is a series of repeated spin echoes. Its
pulse sequence is shown in Fig. 2.7. The amplitude of each echo, plotted as a function of
time, decays with time constant T2. The experiments in Chapters 5 and 7 use this acquisition
method.

In MRI, B1 and B0 inhomogeneities mean that the 180◦ refocusing pulses are imperfect,
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Figure 2.6: The spin echo in the rotating frame. Because of static field inhomogeneities,
each spin has a slightly different speed of precession. As they lose phase coherence, the net
magnetization is reduced. After evolving for a time τ , a 180◦ pulse flips the phases: now the
slow spin is in front and the fast spin is behind. At 2τ , an echo is observed when the spins
refocus. While the effects of T2,inhomo can be removed, T2 relaxation from field fluctuations
is unavoidable.

τ

90x 180y

nacquire

τ τ

Figure 2.7: The CPMG acquisition sequence. A few points around the echo are acquired on
each echo. The 90◦ phase shift between the 90x and 180y pulses prevents small errors from
imperfect 180◦ pulses from accumulating.
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leaving some magnetization in the longitudinal direction after each pulse. Ultimately, this
produces stimulated echoes, which arise after two or more pulses, and causes errors when
fitting the CPMG decay curve. The effect of these stimulated echoes can be corrected post-
acquisition and is necessary when analyzing MRI CPMG curves [49]. In NMR, because the
sample is significantly smaller and the pulse widths shorter, the B1 and B0 inhomogeneities
are relatively insignificant and this correction is not usually necessary.

2.7.3 Determining FID deadtime

After an intense B1 pulse, there is a period where the resonant circuit in the probe rings
down. Following an observation pulse, this prevents immediate detection of the FID, forcing
the experimenter to wait before turning on the receiver. This delay, td, is known as the
receiver deadtime and is typically a few µs.

The deadtime must be accounted for when different frequency components of the signal
dephase or decay appreciably during the deadtime. For example, the FID of tissue contains
a signal from non-aqueous protons that decays in 10–100 µs, whereas the signal from the
aqueous protons can last up to about 1 s. If one desires to precisely model the non-aqueous
signal, a sizable portion of it may be missing due to the deadtime. It is important, therefore,
to know the true t = 0 point, otherwise the modeling could over or under-estimate the non-
aqueous signal’s amplitude. If only the aqueous protons are of interest, then the deadtime is
comparatively insignificant and the start of the acquired FID is taken to be the t = 0 point.

With some equipment, the receiver clock is easily synchronized with the pulse sequence such
that the true t = 0 time is known. However, signal propagation delays depend on filters in
the receiver chain, which may vary between experiment setups. For this reason, it is often
easier to measure td. For the work in this thesis, the following measurement technique was
used.

Let f(t) be the envelope of an FID that has a resonance with a lineshape g at a frequency
ω0 in a field B0. The spectrum S(ω) with zero deadtime is

S(ω) = F {f(t) exp(−iω0t)}
= exp(−iφ0)g(ω) ∗ δ(ω − ω0)
= exp(−iφ0)g(ω0)

Here, φ0 is the the zeroth-order phase correction chosen to make a pure absorption spectral
line at ω0: S(ω) exp(iφ0) = g(ω0). Its value is determined by timing in the spectrometer
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receiver chain and can be measured by visually phasing the spectrum.

To find td, imagine two spectra are acquired on the same sample in slightly stronger and
weaker B0 fields, B0 + ∆B and B0 −∆B, where ∆B is a small offset achieved through the
z0 shim. Including the deadtime, their FIDs are f(t− td) exp(−iω0,±t), leading to spectra

S(ω±) = exp(−iφ0) exp(−iωtd)g(ω) ∗ δ(ω − ω0,±)
= exp(−i(ω0,±td + φ0))g(ω0,±)
= exp(−i(θ± + φ0))g(ω0,±),

where θ± = ω0,±td Now, θ± + φ0 is the phase correction term, where φ0 is approximately
constant over the small changes in frequency at hand. Finally, the difference (θ+ + φ0) −
(θ− + φ0) = td(ω0,+ − ω0,−) leads to

td =
1

360(θ+ − θ−)
f0,+ − f0,−

(2.53)

where θ± is in degrees and f0,± = ω0,±/2π is in Hz.

In practice, the procedure is as follows:

1. Set the spectrometer frequency to be at the center of the spectrum.

2. Adjust the z0 shim to shift the spectrum about +10 kHz off of the spectrometer fre-
quency and acquire. Phase the spectrum using the zero-order correction and record
the value (θ+). Also record the frequency of the spectrum’s central line (f0,+).

3. Adjust the z0 shim the other way to shift the spectrum about -10 kHz off of the
spectrometer frequency and acquire. Record the corresponding values for θ− and f0,−.

4. Use Eq. 2.53 to calculate td.

Note that defining ∆θ = θ+ − θ− and ∆f = f0,− − f0,+, Eq. 2.53 implies ∆θ ∝ ∆f , which
is a first-order phase correction (i.e. the phase correction is a linear function of frequency).
So finding td is the same as finding the first-order phase correction. In a spectrum with
multiple, well-defined lines over a reasonably broad frequency range, this correction can be
done by eye from a single spectrum.
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Chapter 3

White matter, grey matter, and
myelin

3.1 Introduction

Improving the sensitivity and specificity of MRI to myelin is the ultimate goal of this thesis.
This chapter’s aim is to briefly explore the biology and physics of myelin. We first introduce
the nervous system and the role played by myelin in neuron signal propagation. Myelin’s
unique structure, which is the source of its MR properties, is discussed in detail. We also
discuss Multiple Sclerosis (MS), a disease in which MRI plays a central role in diagnosis and
study.

3.2 The nervous system

The nervous system in vertebrates is separated into the Peripheral Nervous System (PNS)
and the Central Nervous System (CNS). Neurons in the PNS relay sensory information from
external and internal sources. They also relay signals to control muscles and other organs.
The CNS receives and processes information from the PNS and coordinates responses.

The CNS, comprising the spinal cord and the brain, receives a great deal of study with
MRI. However, the function of the CNS, from a cognitive to a genetic level, does not much
concern us here. Instead, our focus is on the CNS microstructure, since this determines the
properties of the NMR signals within an MR image.

The CNS tissue is separated into grey matter and white matter. White matter tissue contains
myelinated axons, glial cells, and capillaries. Its pale white appearance is from the high lipid

41



nucleus

soma

dendrite

myelin internode

Node of Ranvier axon terminal

axon

Figure 3.1: A cartoon of a neuron. Image modified from the original created by “Quasar
Jarosz” on English Wikipedia [50] with permission under the CC-BY-SA.

content in the myelin sheaths. White matter connects different parts of the grey matter
tissue, which is composed of neuronal dendrites and cell bodies, glial cells, and capillaries.
Its relatively low myelin content is responsible for its darker appearance. In the brain, grey
matter is mostly found on the surface whereas white matter is mostly found underneath in
the bulk tissue. In the spinal cord, the opposite is true.

On a microscopic level, the vertebrate nervous system is composed of neurons and glial (sup-
port) cells. Fig. 3.1 shows an idealized neuron, the fundamental unit of the nervous system.
Signals, called action potentials, are received on dendrites. Outgoing signals propagate down
the axon. At the axon terminals, neurotransmitters are released into the synapse, reaching
the next neuron’s dendrite.

3.3 Myelin

3.3.1 Myelin structure

Myelin forms a multi-layered sheath around nerve cell axons (also called compact myelin).
The myelinated regions are called internodes and alternate periodically with short, unmyeli-
nated regions called the Nodes of Ranvier. These nodes are typically about 1–2 µm long and
are spaced at intervals about 100× the axon diameter [52,53]. Myelin is a plasma membrane
extension of a specialized glial cell. In the PNS, Schwann cells form the myelin with one cell
per sheath. In the CNS, the myelin sheaths are extensions of oligodendrocyte cells, and one
oligodendrocyte can form up to about 30 nodes [53]. At the end of the internode, each layer
of the cytoplasmic membrane is attached to an invagination in the axon called the perinodal
loop. While these nodes occur at regular intervals, the relative total length of unmyelinated
axon is quite short at <0.5% of the surface length [54].
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Figure 3.2: The physical and chemical composition of myelin. The proteins are myelin
basic protein (MBP), proteolipid protein (PLP), cyclic nucleotide phosphodiesterase (CNP),
and myelin-associated glycoprotein (MAG). Note that the extracellular water and cytoplasm
water indicated on this diagram together form the myelin water pool which will covered in
detail in Section 4.5. The intra/extra-cellular water we also introduce in that section is found
areas outside the myelin sheath, such as the axon shown here. Reprinted by permission from
Springer Neurotherapeutics, Laule et al. [51], © 2007.
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Figure 3.3: Electron micrographs of human brain white matter with increasing levels of
magnification in panels A–C. In (C) the multi-layered structured of the myelin sheath is
obvious, showing the alternating major dense and intraperiod lines. Between the myelin’s
bilayers a pool of water called the Myelin Water (MW) is trapped. Figure modified from
Liu & Schumann [59] with permission under CC-BY-4.0.

Fig. 3.2 shows a diagram of the myelin sheath’s physical and chemical composition. At
each internode, the myelin sheath wraps around the axon like a toilet paper roll, forming
a system of alternating lipid bilayers, where the bilayers are the plasma membrane of the
oligodendrocyte. Cytoplasmic fluid is contained between apposed internal surfaces of the
membrane, and extra-cellular fluid is contained between apposed external surfaces. These
are called the major dense lines and intra-period lines respectively, due to their alternating
appearance on electron micrographs (Fig. 3.3). Both the extra-cellular fluid in the intra-
period line and the cytoplasmic fluid in the major dense line share a unique NMR relaxation
property: their T2 time (~10 ms) is measurably shorter than the T2 time (~50 ms) of water
elsewhere in the tissue [55–58]. Because of this collective behaviour, fluids in both the
intraperiod lines and the major dense lines are known as Myelin Water (MW) [51].

The composition of myelin (Table 3.1) is what enables its remarkable structure, where the
membrane surfaces in compact myelin are “zippered” together [60]. Its lipid content is
unusually high, comprising around 70% of the dry weight [53, 61, 62], with the remaining
weight from proteins. This is in contrast to typical biomembranes, which have much higher
protein to lipid ratios, typically somewhere between 1:1 and 4:1 [61]. Also, a high proportion
of myelin lipids are saturated (94%) and/or have very long hydrocarbon chains (20% have
more than 18 carbons). This is significant compared to the grey matter average, where only
80% of lipids are saturated and just 1% have chains longer than 18 carbons [61]. The reduced
membrane fluidity from the tight packing of the saturated chains is offset by myelin’s high
(~30%) cholesterol content, which increases fluidity [63]. The structure of the major lipid
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Myelin White matter Grey matter
Proteins 30% 39% 55%
......myelin basic protein (MBP) .....30% - -
......proteolipid protein (PLP) .....50% - -
......cyclic nucleotide phosphodiesterase (CNP) .....4% - -
......myelin-associated glycoprotein (MAG) .....1% - -
Lipids 70% 55% 33%
......cholesterol .....28% .....28% .....22%
......phospholipids .....43% .....46% .....70%
......glycosphingolipids .....28% .....26% .....7%

Table 3.1: The composition of human myelin, white matter, and grey matter. Bold numbers
are percent weight in wet tissue, all others are percent dry weight of total lipid or total protein
content. Myelin protein values are from Laule et al. [51], white and grey matter values are
from Norton & Cammer [62].
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fatty acid

phosphate

R
glycerol

sphingosine

fatty acid

galactose

glycosphingolipidphospholipid

Figure 3.4: The structure of the major lipid types in myelin. After van der Knaap [64].

types seen in myelin is shown in Fig. 3.4.

Myelin’s major proteins are myelin basic protein (MBP) and proteolipid protein (PLP). MBP
helps to stabilize the membrane structure by neutralizing the charge on the phospholipid head
group. PLP is often referred to as a “spacer” and has domains in both the intraperiod and
major dense lines. It maintains a constant spacing between the plasma membranes [64].
Other less-abundant proteins include cyclic nucleotide phosphodiesterase (CNP, an enzyme)
and myelin-associated glycoprotein (MAG, which plays a role in cellular recognition and
intra-cellular interactions) [51,64].

The values for myelin composition in Table 3.1 are averages across a number of individuals
and structures and variation from these values is expected. Variation is also seen on the
microscopic level. For example, the corpus callosum (which enables communication between
the cerebral hemispheres) has some fibre tracts with myelin sheaths on only 30% of the axons,
despite being highly myelinated in general. [65]. There may also be significant differences in
myelination between individuals, especially those of different age. Children are born with
relatively few CNS structures fully myelinated and myelination isn’t completed until early
adulthood [64].
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3.3.2 Myelin function

Neurons have resting potentials around -70 mV. The net negative charge inside the cytosol is
established by K+ and Na+ ion pumps. At rest, the Na+ concentration is higher outside but
K+ is higher inside. Signal transmission is a temporal and spatial change in this membrane
potential. It happens in two main ways: by graded potentials and by action potentials. We
shall describe graded potentials first, then action potentials, and then finally bring the two
concepts together by discussing the role of myelin.

Graded potentials are changes in membrane potential which are variable in size, are additive,
and decay spatially from a source. These can be observed in unmyelinated axons with
voltage clamp experiments and naturally occur at the postsynaptic dendrites in response to
neurotransmission. There, neurotransmitters activate ion channels (distinct from the Na+

and K+ channels already mentioned), causing membrane depolarization. The depolarization
is localized at the postsynaptic dendrite and causes a decaying membrane potential—the
graded potential—away from the synapse. This potential spreads via the attraction and
repulsions of ions inside the cytosol [66]. The length constant of this decay is a function of
the axial resistance and the membrane resistance. In a cylindrical axon the axial resistance
is [67, 68]

ra = ρc
πa2 ,

where ρc is the resistivity of the cytosol and a the axon radius, so ra has units of Ω/m.
The membrane resistance, rm, is a function of the specific resistance of an area of plasma
membrane, Rm:

rm = Rm

2πa.

Rm has units of Ωm2, so rm has units of Ω m. Graded potentials spread away from the
source, decaying exponentially in strength with a length constant λ given by [67,68]

λ =
√
rm
ra

=
√
Rm

ρc

a

2 . (3.1)

Hence, increasing the membrane resistance and the axon diameter increases the length con-
stant, allowing graded potentials to spread over longer distances. The duration of the graded
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potential is given by the time constant τ via [67,68]

τ = rmcm

where cm is the membrane capacitance in F/m. An estimation of the velocity of the graded
potential down the nerve cell is then [67]

v ≈ λ

τ

= 1
√
rmracm

∝

√√√√ a3

ρRmc2
m

=
√

a

ρRmC2
m

(3.2)

where Cm is the capacitance per unit area of the membrane. The constants which were
dropped are given explicitly in Tasaki’s work [69].

Action potentials are the second type of signals which are transmitted in neurons, where they
occur in the axons. In contrast to graded potentials, action potentials are capable of propa-
gating over long distances without decaying in strength. They are caused by voltage-gated
Na+ and K+ ion channels in the axon membrane. When an action potential approaches,
voltage-gated Na+ ion channels open, allowing external Na+ ions to diffuse down their con-
centration gradient into the axon. This causes a positive voltage across the membrane,
eventually triggering the K+ ion channels. The K+ ions then start to move out of the cy-
tosol across the membrane, causing a negative membrane potential. Finally, there is a small
delay when the section of axon is unable to transmit any signals. During this refractory
period, K+ and Na+ ion pumps re-establish the resting potential. (The number of ions that
move across the membrane is actually quite small; for K+, this is less than <0.03% of the
total number of ions within the axon [60].)

Both graded potentials and action potentials can propagate in unmyelinated axons. Of
the two, graded potentials have a much faster signal velocity, relying on short-range charge
reorganization within the cytosol instead of diffusion through ion channels, as for action
potentials. However, action potentials are able to propagate over long distances without
diminishing in strength. Nature’s ingenious solution to these problems is the myelin sheath,
which allows the best of both worlds.

In a myelinated axon, action potentials occur only at the nodes of Ranvier. These cause a
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graded potential, which then spreads underneath the internode at greater speed and over a
longer distance compared to what it could in an unmyelinated axon. To see why the speed is
greater, consider that myelin increases the membrane resistance, Rm. Referring to Eq. 3.1,
this increases the length constant λ. Myelin also increases the membrane capacitance Cm.
With a myelin thickness of b, Rm ∝ b and Cm ∝ b−1, if the approximation of a parallel plate
capacitor is used. Substituting these into Eq. 3.2 gives [67]

v ∝
√
ab.

The myelin thickness and axon diameter are key parameters in determining the conduction
velocity.

When the graded potential reaches the next node of Ranvier, it triggers an action potential,
and the process repeats. Because of the refractory period, the graded potential cannot cause
an action potential at the previous node. Thus, the signal appears to “hop” from node to
node, hence its name: saltatory conduction, from the latin word for hopping, saltare. Myelin
increases the speed of action potential transmission 10–100× compared to an unmyelinated
axon and also requires less energy, since ion pumping is required only at the nodes. [51].
Also, saltatory conduction ensures signals can travel in one direction and do not diminish in
strength.

3.3.3 Multiple Sclerosis

Changes in myelin have been associated with many cognitive disorders, including Alzheimers
[70] and schizophrenia [71]. Even mild trauma can affect CNS myelin [72]. There are also
diseases which directly damage the myelin, known as demyelinating diseases. Of these,
Multiple Sclerosis (MS) is perhaps the most well-known. MS is of particular concern in
Canada, which has one of the highest rates of in the world [73]. The cause of the disease
is unknown, and while it is likely autoimmune in nature, vitamin D deficiency (prevalence
is higher is northern countries), viral (e.g. Epstein-Barr), and genetic factors have all been
implicated [74–76]. Onset of MS is typically in early adulthood and ultimately leads to
decreased motor and cognitive abilities, although progression is generally slow—on average,
patients live 30 years after diagnosis [76]. There is no cure, but symptomatic treatments
exist.

In MS, localized areas of demyelination occur, which can be followed by axonal loss or remyeli-
nation (in earlier stages of the disease). These significant changes to the tissue microstructure
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are often (although not always) visible using MRI. For this reason, MS diagnostic criteria
relies upon localization of MRI-visible lesions in time and space [77].
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Chapter 4

Relaxation and spectra in brain:
properties and applications

4.1 Introduction

MR imaging of white and grey matter tissue makes use of their relaxation and spectral prop-
erties, which is the concern of this chapter. We first emphasize the theory behind the NMR
signal from non-aqueous protons, which is measured directly in Chapter 5’s experiments.
At the heart of this is the super-Lorentzian spectral lineshape. Then, the section on T1

relaxation highlights its inconsistent experimental results. We offer an explanation for these
inconsistencies later in our work in Chapter 5. A section on the physics and uses of magne-
tization transfer follows which includes a detailed overview of inhomogeneous magnetization
transfer (ihMT). This will be useful for Chapters 6 and 7, where we explore the fundamental
physics of ihMT. Finally, we end this chapter with an overview of T2 relaxation, which can
be used to separate signals from water inside and outside the myelin sheath.

4.2 Spectral properties of white and grey matter

The molecules in tissues can be broadly separated into two types: non-aqueous and aqueous.
The non-aqueous molecules are restricted in their motion in some way, whether by their size
(such as large proteins) or by their environment (such as molecules in lipid membranes).1

1We will use the terms “aqueous” and “non-aqueous” throughout this work. However, the nomenclature
in the literature is inconsistent. Some of the synonyms encountered are:
aqueous protons = free protons, water protons, unbound protons
non-aqueous protons = macromolecular protons, tissue-associated protons, bound protons, semi-solid protons
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Figure 4.1: Dipolar couplings in lipid molecules and lipid bilayers. (A) A generic lipid acyl
chain. There is strong 1H intra-methylene coupling. Weaker inter-methylene couplings lead
to spectral broadening. (B) In a lipid bilayer, rapid spinning averages away inter-molecular
dipolar couplings. The residual strength of the dipolar couplings is now a function of bilayer
orientation.

The aqueous protons are mostly on water molecules, which have very similar 1H spectral
properties to unconfined water. Tissue water in a homogeneous B0 field also has an FID that
decays exponentially, leading to a Lorentzian lineshape with a precisely defined T2 (Eq. 2.18).

There is significantly more to say regarding the 1H spectral properties of non-aqueous
molecules. Their motion is restricted, so the dipolar interaction is not averaged to zero
as it is for aqueous molecules. Lipid-rich tissues like white matter have a super-Lorentzian2

non-aqueous lineshape [79–82]. Fundamentally, this is caused by strong intra-methylene
dipolar couplings in the lipid acyl chains (Fig. 4.1A). At physiological temperature, lipid bi-
layers in brain are in the fluid lamellar (Lα) phase [83,84], which has three kinds of motions
that average the proton-proton dipolar couplings in the acyl chains. First, lateral diffusion
averages away the effects of intra-molecular dipolar couplings on the spectrum (although
these can still produce relaxation) [85, 86]. Second, rapid spinning of the lipid molecules
about their long axes creates a P2(cos θ) dependence on the average strength of the dipolar
couplings [87], where P2 is the second Legendre polynomial and θ is the angle between B0

and the bilayer normal, as shown in Fig. 4.1B. Third, the lipid tails fluctuate via trans-
gauche isomerisation, with motion increasing towards the tail ends in the middle of the
bilayer [87,88].

Collectively, these motions average the inter-methylene proton couplings more than the intra-
2The Super-lorentzian is named because its ratio of the width of the line at half max to the width at the

inflection points is greater than a Lorentzian lineshape [78]. It is not actually a special case of a Lorentzian
line.
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Figure 4.2: Dipolar couplings in acyl chains causes the super-Lorentzian lineshape. (A) The
1H NMR spectrum of lamellar-phase potassium palmitate - (β–ω) - d29 in D2O. In these
deteurated molecules, only the α-methylene group retains its protons. The top trace is the
signal from all protons, which is a sum of the spectrum just from the α-CH2 methylenes
(middle trace) plus contamination from the protons in the headgroup and in water (bottom
trace). The middle trace is the angular average of two Gaussian-broadened doublets with
a splitting determined by the dipolar coupling ∼ 1

2(3 cos2 θ − 1). This is also called a
Pake pattern. Because the acyl chain is deuterated, inter-methlyene dipolar couplings are
minimized. (B) A super-Lorentzian lineshape with σ0=20 kHz and σmin=40 Hz and example
contributions from specific angles. One would expect undeteurated potassium palmitate to
have such a lineshape since it has significant inter-methylene coupling. Hence, its spectra
from bilayers at specific orientations would be well described as single Gaussians rather than
the doublets seen in the deuterated case in panel A. Panel A is modified slightly to improve
readability from ref. [85] [Chemistry and Physics of Lipids, Volume 20, Higgs & MacKay,
Determination of the complete order parameter tensor for a lipid methylene group from 1H-
and 2H-NMR spin labels, 105–114], © 1977, with permission from Elsevier.
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methylene couplings. (Methyl groups can also produce super-Lorentzians [89], but their
contribution is small compared to the large number of methylenes.) Consequently, the lipid
tail spin system could well be called a system of strongly-coupled spin-1

2 pairs weakly coupled
together [88,90]. Such systems nominally have spectra of superimposed Gaussian-broadened
doublets [87, 91]. Indeed, in a sample of lamellar-phase potassium palmitate - (β–ω) - d29

in D2O where the protons have been retained only in the α-methylene group, the spectrum
(Fig. 4.2A, from ref. [85]) shows this doublet behaviour clearly. In this sample, the inter-
methylene interaction responsible for more significant Gaussian broadening is not present.
In naturally-ocurring lipids in the lamellar phase, however, the 1H spectra are substantially
broadened by these inter-methylene interactions. Therefore, the most common approach
to modeling the super-Lorentzian is as a spectrum of superimposed Gaussians with widths
modulated by P2(cos θ) [78,79,81,87,91,92]. The Gaussian standard deviation for a bilayer
whose normal makes an angle θ to B0 is

σ(θ, σ0, σmin) =
√

1
4(3 cos2 θ − 1)2σ2

0 + σ2
min. (4.1)

Here, 3σ0/2 is the maximum linewidth at θ = 0◦. Bilayer fluctuations and field inhomo-
geneities are responsible for the minimum linewidth σmin of molecules oriented at the magic
angle θMA ≈ 54.7◦ [81]. When all bilayer orientations are possible, integrating over them
(powder averaging) gives the super-Lorentzian FID and spectral lineshape: [79–81,89,93,94]

S(t;σ0, σmin) =
∫ π/2

0
dθ sin θ exp

(
−1

2σ(θ, σ0, σmin)2t2
)

(4.2)

s(ω;σ0, σmin) =
∫ π/2

0
dθ sin θg [ω, σ(θ, σ0, σmin)]

=
∫ π/2

0

dθ sin θ
σ(θ, σ0, σmin) exp

(
− ω2

2σ(θ, σ0, σmin)2

)
. (4.3)

Here, g is the Gaussian lineshape at one orientation. An example of the super-Lorentzian
along with g from different orientations is displayed Fig. 4.2B. Note that because of the nerve
fibre tracts in white matter, its in vivo lineshape in certain regions may more accurately
be described as a partially-averaged super-Lorentzian [81]. As we will discuss in the next
chapter, the ex vivo samples used in this thesis do not retain fibre tract orientation and
isotropic powder averaging (i.e. a super-Lorentzian lineshape as described by Eq. 4.3) is
seen.

The super-Lorentzian is typically discussed in the context of lipids, but it also arises from
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other macromolecules (like proteins) which undergo similar averaging. As an example, super-
Lorentzian lineshapes have been observed from suspensions of whole cells [80], and have
successfully modeled quantitative Magnetization Transfer (qMT, Section 4.4.2) in muscle [82]
and hydrated durum wheat and gluten [95]. In light of these varied applications, it seems
that a super-Lorentzian may arise in systems where there are strongly-coupled proton groups
(e.g.methylene or methyl groups) undergoing rotational thermal averaging, creating angular-
dependent dipolar couplings.

We will return to the super-Lorentzian in Chapter 5 when it is used to fit FID data from
white matter.

4.3 T1 relaxation

4.3.1 A common, simple model

T1 relaxation is a key source of contrast in brain and spinal cord imaging, but a comprehensive
understanding of its physics has been elusive. One reason for this is simplicity—the goal
of clinical MRI is to obtain adequate contrast in the shortest amount of time possible.
Complicated models that involve many parameters are less useful in a clinical context than
simple empirical or semi-empirical ones. Indeed, the assumption of a single T1 in aqueous
protons is suitable for understanding and developing many forms of MRI contrast.

The simplest approach to T1 in tissue is the solvation layer model [96, 97]. Briefly, this as-
sumes three distinct populations of protons in tissue: free water, a solvation layer surrounding
non-aqueous molecules, and non-aqueous protons. The assumption of fast exchange leads to
the well-known empirical relation,

1
T1
∝ 1

WC + const, (4.4)

where T1 is the single value measured for aqueous protons, and WC is the water content (the
weight fraction of water) in the tissue. This model suffices in many cases.

4.3.2 The controversy of quantitative T1 measurements

For quantitative imaging, the specifics of T1 relaxation become important. And in brain and
spinal cord, the details of the observed aqueous T1 relaxation unfortunately remain unclear.
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For example, when a single T1 component is assumed, the reported values in white matter
tissue at 3 T vary from 690–1735 ms depending on the site and technique used [48,98].

Many recent MRI studies have measured both a short (~100 ms) and a long (~1 s) T1

component [99–103]. These have been associated with two separate aqueous pools and
some have suggested that myelin water is responsible for the faster T1 component [101,103].
However, still more studies suggest that axonal water (water inside myelinated axons) may
have its own unique intrinsic T1 time and should be accounted for explicitly [104–106].
Finally, confounding effects from T1’s sensitivity to iron content may also play a significant
role (see MacKay et al. [3] and references therein).

Our work in Chapter 5 is an attempt to show how some of these disagreements arise and
in what situations simple models are suitable. We emphasize there that cleanly associating
any one T1 component with a specific aqueous compartment is generally not possible. This
naturally arises from multiple-compartment models, such as the two pool model explained
below and the four pool model used in Chapter 5.

4.4 Magnetization transfer

4.4.1 The magnetization transfer ratio

In tissue, magnetization can exchange between the aqueous and non-aqueous protons. Un-
der physiological conditions, this happens primarily via proton exchange between water and
the hydroxyl protons in lipid headgroups on macroscopic timescales of 0.1–1 s [83,107,108].
Microscopically, the residence time of protons in a macromolecular group is often as low
as 10−11 s [107]. If the magnetization in the non-aqueous pool is reduced, magnetization
exchange causes a subsequent reduction in the aqueous pool’s magnetization. We can re-
alize such a situation by making use of the 1H spectral properties of tissue, exemplified in
Fig. 4.3A. Magnetization Transfer (MT) is depicted in panel B. Low-amplitude rf irradia-
tion (a prepulse) is applied far off resonance from the water peak prior to acquisition. This
saturates the non-aqueous protons, reducing their magnetization. Magnetization exchange
then leads to a net magnetization reduction in both the non-aqueous and aqueous pools.

To easily see the effects of MT in MRI, we need to compare our image with (S) and without
(S0) the weak, off-resonance MT pulse. The Magnetization Transfer Ratio (MTR) is [109]

MTR = S0 − S
S0

.
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Figure 4.3: How magnetization transfer works. (A) A cartoon of the 1H NMR spectrum in
tissue, consisting of a broad line from the non-aqueous protons and a narrow line from the
aqueous protons. (B) Magnetization transfer. Weak rf irradiation at an offset ∆ from the
water peak reduces the non-aqueous magnetization. Because of magnetization exchange, the
aqueous magnetization decreases as well.

Because MT originates in the non-aqueous pool, MTR can reveal changes in tissue structure.
For example, in CNS tissue, MTR is lower in MS lesions and in areas with inflammation [110].
Also, MTR is sensitive to changes that may be invisible to other techniques. For example,
non-lesion white matter in MS patients (the normal-appearing white matter) was observed
to have a measurably different MTR than white matter in healthy controls [110,111].

4.4.2 qMT and the two pool model

MT is often modeled using a two pool model, also called the binary spin bath model (Fig. 4.4)
[35, 112, 113]. Under rf irradiation ωrf at an offset ∆ from resonance, the coupled Bloch
equations are [113,114]:

dMx,1(t)
dt

= −Mx,1(t)
T2,1

− 2π∆My,1(t)− ω1 sin(2π∆t)Mz,1

dMy,1(t)
dt

= −My,1(t)
T2,1

+ 2π∆Mx,1(t) + ω1 cos(2π∆t)Mz,1

dMz,1(t)
dt

= M1(∞)−Mz,1(t)
T1,1

− k12Mz,1(t) + k21Mz,2(t)+

ωrf sin(2π∆t)Mx,1(t)− ω1 cos(2π∆t)My,1

dMz,2(t)
dt

= M2(∞)−Mz,2(t)
T1,2

− k21Mz,2(t) + k12Mz,1(t)−WMz,2.

(4.5)

Here, kij is the exchange rate for magnetization from pool i to pool j and the M(∞) terms
are the pool sizes. Because of the short T2 in the non-aqueous pool, it may be assumed that
its transverse magnetization is zero at all times. The saturation rate W is the same as for
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Figure 4.4: The two pool model of tissue.

Provotorov theory (introduced in Section 2.5.6),

W = πω2
1g(2π∆),

where g(2π∆) is the lineshape for the non-aqueous pool. Note that these are modified
Bloch equations, because g(2π∆) is usually assumed to be Gaussian or super-Lorentzian,
not Lorentzian. This is not rigorous, but works well enough in practice [35,79,112–114].

Using these equations, “quantitative MT” (qMT) imaging can be performed by fitting dif-
ferent MT experiments to the model. Typically, one fixes T1,2 = 1 s, assumes a functional
form for g(2π∆), and measures T2,1 and T1,1 in separate experiments. Then, the remaining
parameters are fit to repeated MT experiments at different prepulse offsets.

Because of the need for multiple values of ∆, qMT MRI takes a relatively long time to
acquire in practice, about 20–30 minutes [115]. Moreover, with only one aqueous pool,
qMT is sensitive to any changes in the tissue microstructure, not only those associated with
myelin [109,115,116]. Hence, while qMT can detect changes in the myelin, it is not specific
to them [117].

4.4.3 Inhomogeneous magnetization transfer

Recently, a modification of MT, called inhomogeneous Magnetization Transfer (ihMT), has
been developed which appears to be selective for lipid bilayers, such as those found in myelin
[84, 110, 118–131]. ihMT was originally thought to arise from inhomogeneous broadening
of the non-aqueous lineshape, a hypothesis we explore at length in Chapters 6 and 7. Our
results indicate that ihMT’s specificity arises from dipolar couplings alone (a connection also
made by others), so the “inhomogeneous” name is perhaps unfortunate. In this section, we
shall describe the technique and some applications of ihMT, leaving the details of the physics
for later chapters.

In ihMT experiments, a series of NMR spectra or MRI images are acquired: first, one with
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a prepulse at a single offset frequency +∆ (spectrum S+); next, one with an offset −∆
(spectrum S−); then, one with the same power split between both +∆ and −∆ (spectrum
Sdual); and finally, one with no prepulse (spectrum S0). Experiments have shown that many
non-aqueous non-lipids (such as heat-denatured ovalbumin, agarose, and gelatin [84, 118])
result in an equal attenuation of the aqueous signals in S+, S−, and Sdual. However, materials
containing a substantial proportion of lipid bilayers (such as brain and spinal cord WM, hair
conditioner, Prolipid-161, and DPPC:Cholesterol phospholipids) show larger attenuation in
Sdual [84, 118]. A quantitative measure of this difference, the ihMT ratio, has been defined
as [118]

ihMTR = S+ + S− − 2Sdual

S0
. (4.6)

The sum S+ +S− provides a first-order correction for MT asymmetry. In this thesis, we use
a definition that also includes a 2 in the denominator:

ihMTR = S+ + S− − 2Sdual

2S0
. (4.7)

This is to maintain consistency with our publication on ihMT [131].

An example of ihMTR in various phantoms is shown in Fig 4.5. MTR shows similar signals
from the two samples with non-aqueous protons (heat-denatured ovalbumin in row 1 and
hair conditioner in row 2). Hair conditioner is a phantom for myelin, containing a high
concentration of lipid bilayers. For this reason, ihMTR’s selectivity to hair conditioner is of
substantial interest.

Since its introduction, work on ihMT has rapidly advanced. Various improvements to the
technique have been made, such as enabling measurements of T1D [127] and generating T1D-
dependent contrast [127,132,133]. Moreover, by modifying the concentration of power during
the prepulse, the ihMT signal can be boosted considerably [123,134].

Comparison between ihMT and other techniques in vivo have shown promise of myelin
sensitivity. Ercan et al. performed ihMT, MTR, diffusion tensor imaging, and myelin water
fraction imaging (MWF imaging; see Section 4.5 below) in different white matter tracts [121].
Those authors found a strong correlation between ihMTR and MWF, the latter which is
known to be a biomarker for myelin. MTR was only weakly correlated with MWF. In a study
by Geeraert et al., they found strong correlation between the myelin volume fraction and
ihMTR [129]. Finally, recent work by Prevost et al. used mice that were genetically modified
to produce green fluorescent protein in their myelin [135]. They observed a linear correlation
between the fluorescence intensity and the ihMTR values, albeit with a considerable offset.

ihMT also holds considerable promise for rapid adoption in clinical settings given the sim-

58



Figure 4.5: ihMTR compared to in different phantoms. Row 1 contains heat-denatured
ovalbumin, row 2 contains hair conditioner, rows 3–10 are aqueous solutions with varying
T2 times. (A) The measured T2 times of the phantoms. (B) The MTR shows similar signals
from two samples (hair conditioner and ovalbumin) with a non-aqueous proton pool. (C) The
ihMTR is selective to the sample with lipid bilayers (hair conditioner). Figure reproduced
from Varma et al. [118], © 2015, with permission from John Wiley & Sons, Inc.

plicity of calculating ihMTR. Like MTR, ihMTR is just a ratio and isn’t dependent on
model fitting. Two studies have shown its potential for use in patients. Rasoanandrianina et
al. used ihMT to image spinal cord in Amyotrophic Lateral Sclerosis (ALS) patients [128].
That work found correlation between ihMTR and the clinical disability scores. In a similar
study, ihMTR in lesions and in normal-appearing white matter of MS patients had a stronger
correlation than MTR with their clinical disability scores. [110].

One of the possible confounding factors with ihMT is its orientation dependence, which has
been shown in-vivo in brain [121, 129] and ex-vivo in sections of spinal cord [136]. This is
likely because ihMT is sensitive to the strength of dipolar couplings, and dipolar couplings
in lipid bilayers are orientation-dependent.

4.5 T2 relaxation

4.5.1 Myelin water and intra/extra-cellular water

In contrast to T1 relaxation, there is a consensus on T2 relaxation in white matter [3,51,55,
58,137–139]. T2 distributions calculated from CPMG decay curves show distinct peaks. MW
typically has T2 ∼ 10 ms, and the water in intra/extra-cellular compartments (the IE water
or IEW) has T2 values in the range 40–90 ms [3,51,57,139]. Often, a third peak at ~1 s from
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CSF is also present. It is somewhat remarkable that the IEW appears as one pool given
its complex environment. However, glial cells are about 80% water and their membranes
have a high concentration of aquaporin, allowing the free diffusion of water molecules on the
timescale of one CPMG echo [54].

Regularized non-negative least squares (NNLS) is used to obtain the T2 distribution from
CPMG decay curves. Let A be a matrix whose elements are

Aij = exp(−ti/T2,j).

Then, the T2 distribution f(T2) is found from the CPMG echo amplitudes y(ti) by solving

arg minf ||Af − y||22 + λ2||f ||22 subject to f > 0.

In this expression, λ is the regularization parameter chosen so the regularized NNLS fit
chi-squared is 1%–2% larger than in the non-regularized fit [58]. Regularization prevents
over-fitting by forcing f to be smooth. Examples of these types of distributions are shown
in the next chapter. Once f(T2) has been calculated, a useful quantity called the myelin
water fraction (MWF) can be found. If AMW, AIEW, and Aother are the areas of the peaks
corresponding to the MW, IEW, and other water, then

MWF = AMW

AMW + AIEW + Aother
.

The MWF has been validated as a marker for myelin using histology [140] and has found
extensive use in research. However, as a myelin-sensitive MRI technique, it does have some
drawbacks. Acquisition can be lengthy and processing can be technically demanding. Also,
MWF imaging has difficulty distinguishing between intact myelin and myelin debris. Finally,
MW/IEW and MW/non-aqueous exchange can introduce errors. For in-depth discussion of
the applications and challenges of MWF imaging, the reader is referred to the reviews by
MacKay & Laule (and references therein) [55,141].

4.5.2 CPMG exchange correction

Magnetization exchange between the MW and IEW pools can lead to slight shifts in the mea-
sured T2 and pool sizes. Exchange during CPMG acquisition will lead to an underestimation
of the T2 times and the MW size, and slight overestimation of the IEW size [142]. Previous
work by Bjarnason et al. in bovine brain showed that these corrections were approximately
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5–10% of the MW size [142]. Kalantari et al. used a slightly different procedure to estimate
corrections in human brain. They fit the four pool model (discussed in the next chapter) to
relaxation data with and without MW/IEW exchange, finding corrections up to 15% of the
MW size [143]. With this approach, the corrections were sensitive to the initial conditions.

In this thesis, we will use the correction method introduced by Bjarnason et al., which uses
a two-pool model of exchange between the MW and IEW to calculate the correction factors
for both the pool sizes and the T2 times. How to do so was introduced by Bjarnason et
al. in ref [142]. In Appendix B, their derivation is repeated using slightly different notation.
Fig. 4.6 gives some examples of this correction on the T2 times and the MW pool size. In
that plot, Tcr is a measure of the MW/IEW exchange time, where lower values mean faster
exchange. With a typical Tcr time of about 1 s, corrections are usually <20%. With this
approach, the correction factor is independent of the initial conditions.
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Figure 4.6: Examples of the CPMG exchange correction to pool sizes and T2 under different
conditions. Tcr (defined in Section 5.2) is a measure of the MW/IEW exchange time, where
lower values mean faster exchange. (A) T2/T̃2 (corrected T2 / observed T2) for MW and IEW
for different observed MWFs and Tcr,MW/IEW. The tilde indicates the observed value prior to
having the correction applied. (B) The actual MWFs under the same conditions. Here we
are assuming MW and IEW are the only aqueous pools and have fixed T̃2,MW = 6 ms and
T̃2,IEW = 55 ms. These values were typical of our measurements in bovine brain (Chapter 5).
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Chapter 5

Aqueous and non-aqueous T1
relaxation in brain under six different
initial conditions

5.1 Introduction

Ever since Edzes and Samulski’s pioneering work on cross-relaxation in hydrated tendon
[144], it has been known that in general, the intrinsic spin-lattice relaxation time of aqueous
protons in tissue is not directly observable. Instead, the observed aqueous T1s (called T ∗1 s in
this work) convolve intrinsic spin-lattice relaxation with cross-relaxation to the non-aqueous
protons and pools of other aqueous protons.

Some recent studies have emphasized the fact that only T ∗1 s are directly observable [100,
102, 145, 146]. They have also highlighted how a system’s relaxation depends on the initial
conditions [102, 142, 145–147]. This may help explain the disagreement in the number of T1

components present in white matter as highlighted in Section 4.3.2. As was noted, repro-
ducibility is difficult in T1 measurements, where pulse sequence, field strength, and site seem
to be confounding variables [48,98,147].

One significant limitation to studying T1 relaxation with MRI scanners is their difficulty in
observing the rapidly-decaying signal from the non-aqueous protons. Yet this is straight-
forward with NMR spectrometers, and there has been some work on solid-state NMR spec-
troscopy in white matter. For example, some groups have looked at magic angle spin-
ning (MAS) spectra of white matter [148, 149], while others have investigated the short T ∗2
times [89,148,150]. Wilhelm et al.’s recent publication on high-resolution spectra of extracted
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myelin lipids and rat thoracic spinal cord in D2O clearly showed their super-Lorentzian line-
shapes [89]. However, the author is only aware of one previous paper by Bjarnason et al. [142]
that followed the aqueous and non-aqueous magnetization during T1 relaxation.

This chapter discusses T1 relaxation in bovine white matter brain tissue under six different
initial conditions. We analyzed the data in the context of a four pool model, where the two
aqueous pools are MW and IEW, and the two non-aqueous pools are in myelin and non-
myelin. As in Bjarnason’s work, an NMR spectrometer was used to acquire both FIDs and
CPMGs, allowing the magnetization in different pools (MW, IEW, and total non-aqueous)
to be found. The data and analysis here are significant improvements on this previous
study, however. Because of improved sample holders and new equipment, we were able to
acquire more FID data points and perform lineshape fitting instead of relying on moment
analysis. This new approach gives deeper insights into the physico-chemical composition
of the non-aqueous signal fraction. Furthermore, our CPMG analysis technique allowed for
modeling of negative amplitude components, whereas Bjarnason et al. required subtraction
of two complimentary experiments to ensure a positive signal. Also, their four pool model
parameters were estimated from relaxation analysis on the data, whereas we fit the data
directly. Finally, we also present FID experiments on grey matter for the first time.

Our analysis is performed with an eigenvector solution to the four pool model, introduced in
Barta et al.’s recent work [145]. We emphasize how the eigenvector coefficients provide rich
information about the effects the initial conditions have on relaxation. Lastly, we discuss
how our results may be used guide pulse sequence design.

5.2 Theory: the four pool model

In white matter, there are at least two distinct pools of aqueous protons, separable by
their T2 times: the myelin water (MW) and the intra/extra-cellular water (IEW). Also, as
discussed in Section 4.3.2, measurements of T1 using MRI typically reveal two additional
time constants, one short (~100 ms) and one long (~1 s). With the assumption that these
four time constants are distinct, then in a simple model with first-order exchange between
pools, four pools are required. The Four Pool Model [142,143,145,151–153] assumes that the
MW and IEW pools exchange with each other via self-diffusion. Physiological considerations
also require that each aqueous pool also exchanges with an adjacent non-aqueous pool. For
MW, this is the non-aqueous myelin (pool M), composed of lipids and proteins in the myelin
bilayers. IEW exchanges with the non-aqueous non-myelin (pool NM), which is mostly lipids
and proteins in the glial cell membranes. The aqueous/non-aqueous exchange is mediated
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primarily by proton exchange (see Section 4.4).

Fig. 5.1 is the schematic of the four pool model. The dynamics of the longitudinal magneti-
zation in the four pools are described by a system of coupled differential equations:

dMM

dt
=− MM −MM(∞)

T1,M
− kM,MWMM + kMW,MMMW

dMMW

dt
=− MMW −MMW(∞)

T1,MW
+ kM,MWMM − kMW,MMMW−

kMW,IEWMMW + kIEW,MWMIEW

dMIEW

dt
=− MIEW −MIEW(∞)

T1,IEW
+ kMW,IEWMMW − kIEW,MWMIEW−

kIEW,NMMIEW + kNM,IEWMNM

dMNM

dt
=− MNM −MNM(∞)

T1,NM
+ kIEW,NMMIEW − kIEWMNM.

(5.1)

Here, Mi(∞) and T1,i are the size and intrinsic spin-lattice relaxation time of pool i, respec-
tively; and kij is the magnetization exchange rate between pools i and j. kij and kji are
related through

kijMi(∞) = kjiMj(∞) (5.2)

and
1

Tcr,ij
= 1
kij

+ 1
kji
. (5.3)

Tcr,ij is the cross-relaxation time between pools i and j, which depends on the pool size
through the kijs.

It is convenient to work in reduced magnetization units m, which are defined for pool i
as [144]

mi = −Mi −Mi(∞)
2Mi(∞) . (5.4)

In these units, m = 0 corresponds to equilibrium magnetization, m = 1 is inverted magneti-
zation, and m = 1/2 is zero magnetization (in the longitudinal direction). This transforms
Eq. 5.1 into a homogeneous system of differential equations,

dm
dt

= Rm, (5.5)
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where R is

R =


− 1
T1,M
− kM,MW +kM,MW

+kMW,M − 1
T1,MW

− kMW,M − kMW,IEW

0 +kIEW,MW

0 0

· · ·

· · ·

− 1
T1,M
− kM,MW +kM,MW

+kMW,M − 1
T1,MW

− kMW,M − kMW,IEW

0 +kIEW,MW

0 0



(5.6)

and m is a vector of the pools’ reduced magnetizations. The solution to Eq. 5.5 is [154]

m(t) =
4∑
p=1

cpvp exp(λpt)

=
4∑
p=1

cpvp exp(−t/T ∗1,p), (5.7)

where vp and λp are the pth eigenvector and eigenvalue of R, cp is a coefficient that depends
on the initial conditions, and

T ∗1,p = −1/λp (5.8)

is the pth apparent T1 relaxation time. T ∗1,p is associated with eigenvector p, not with just
one specific pool.1

Finally, in regular magnetization units, the solution for pool i is

Mi(t) = Mi(∞)
1− 2

4∑
p=1

cpvp,i exp(λpt)
 , (5.9)

where vp,i is the ith component of the pth eigenvector.

In Appendix C, we show how there is an analogous electronic circuit for the four pool model.
1A few words on notation: despite sharing the “*” superscript with T ∗2 , T ∗1 has nothing to do with B0

homogeneity. Both are apparent relaxation times, but T ∗1 is intrinsic to the sample microstructure and
reflects the inability to distinguish between changes in longitudinal magnetization due to exchange and due
to spin-lattice relaxation. On the other hand, T ∗2 is a function of sample geometry and shimming and can
be distinguished from T2 by means of a CPMG acquisition. Also, our definition of “apparent T1 relaxation
time” is different than Rioux et al.’s [147]. They define T ∗1 (same symbol) to be the single T1 time one would
measure if mono-exponential behaviour is assumed in a system relaxing with multiple exponentials. In our
work, we take it to mean the time constants of those multiple exponentials.
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Figure 5.1: The Four Pool model.

5.3 Methods

5.3.1 Sample preparation

A chilled, unfrozen bovine brain was ordered from Innovative Research (Novi, MI, USA) and
received about 30 hours after harvesting. The age of the cow at the time of slaughter was
less than 30 months old. Tissue samples were immediately excised and stored at 5 ◦C until
use. All experiments were completed within 72 hours of receiving the brain.

Four tissue samples were extracted: 11.6 mg and 36.7 mg of white matter from two different
locations in the splenium of the corpus callosum (samples WM-sp1 and WM-sp2), 52.2 mg
of frontal white matter (sample WM-fr), and 28.6 mg of basal ganglia grey matter (sample
GM-bg). Each sample was sandwiched between two cylindrical spacers made from proton-
free Kel-F (the flourinated polymer PCTFE) inside a 3.5 mm NMR tube. This improved B0

homogeneity over previous experiments which did not use spacers [145]. Proton-free o-rings
on the spacers minimized water loss. During white matter sample preparation, the tissue
was folded several times, ensuring that the nerve fiber tracts were oriented isotropically.

5.3.2 NMR experiments

The pulse sequences, shown in Fig. 5.2, consisted of three parts. First, the preparation
pulses put the longitudinal magnetization into a non-equilibrium state. Second, the lon-
gitudinal magnetization relaxed (via intrinsic spin-lattice relaxation and exchange between
pools) during the variable cross-relaxation delay, TI. Finally, an FID or CPMG echo train
was acquired. The preparation pulses are the only variation between the sequences. Fig.
5.3 shows how the preparation pulses of each experiment gives the four pools unique ini-
tial magnetization values. The size and direction of the arrows qualitatively represent the
magnitude and direction of the longitudinal magnetization.

The hard inversion-recovery (IR-hard, Fig. 5.2A) and soft inversion-recovery (IR-soft, Fig.
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τf=1 or 50 ms

(D) Goldman-Shen (4 kinds: GS-1ms-up, 
GS-1ms-down, GS-50ms-up, GS-50-ms-down)

(C) Soft inversion-Recovery (IR-Soft)

(B) Hard Inversion-Recovery (IR-Hard)

TI=0.7 ms – 10 s

90

Preparation Cross Relaxation
Acquisition

(CPMG or FID)

or

(A) Pulse sequence scheme

180 90

TI

180 90

TI

~6 μs rectangular 
(broadband)

inversion pulse

3 ms 3-lobe sinc
(narrowband) 

inversion pulse

180ϕ90ϕ

90-ϕ ("down", magnetization along +z)

Acq

Acq

90

TI

90ϕ ("up", magnetization along -z)

Acq

7 s recycle delay

7 s recycle delay

7 s recycle delay

7 s recycle delay

Figure 5.2: The NMR pulse sequences. All sequences have the general form shown in (A) con-
sisting of three periods: preparation, cross relaxation, and acquisition. The hard inversion-
recovery sequence (IR-hard) shown in (B) uses a broadband inversion pulse, inverting the
aqueous and non-aqueous magnetization. The soft inversion-recovery sequence (IR-soft) in
(C) uses a narrowband inversion pulse (1.1 kHz bandwidth), completely inverting only the
aqueous magnetization. (D) shows the Goldman-Shen sequences, consisting of a spin-echo
T2 filter of 1 or 50 ms followed by a broadband pulse that either rotates the magnetization
in the +z (“up”) or −z (“down”) direction.
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Figure 5.3: The initial conditions on the four pools immediately after the preparation period
in the various pulse sequences. The arrows’ sizes and directions represent the longitudinal
magnetization’s direction and magnitude. Ideally, no two experiments have similar initial
conditions, ensuring that the behaviour during cross-relaxation depends on a wide range of
the four pool model parameters.

5.2B) experiments use different types of inversion pulses. The “hard” inversion pulse is a
short (∼6 µs) rectangular pulse whose broadband excitation profile completely inverts the
magnetization in all the pools. The “soft” inversion pulse is a 3 ms three-lobe sinc pulse that
has a narrow (1.1 kHz) excitation bandwidth. This pulse is designed to invert the magnetiza-
tion of the aqueous protons (due to their narrow linewidth) while only marginally decreasing
the non-aqueous protons’ magnetization. This is similar to the soft pulses typically used in
MRI sequences.

Goldman-Shen (GS) experiments separate proton populations with distinct T2 times [155,
156]. Our implementation (Fig. 5.2C) uses a spin-echo as a “T2 filter” followed by a pulse
that puts the magnetization back in the +z (“up”, parallel to B0) or -z (“down”, antiparallel
to B0) direction. The spin echo in the middle of the T2 filter is necessary due to the short T ∗2
time, which is ~10 ms for the aqueous signals from all samples. The echo or filter time, τf , is
either 1 ms or 50 ms. τf = 1 ms separates the non-aqueous and aqueous magnetization due to
the latter’s short, ∼10–500 µs decay time. τf = 50 ms separates the myelin water (T2∼6 ms)
and the IE water (T2∼60 ms). The two τf times, combined with the two directions possible
for the magnetization after the spin echo, give a total of four Goldman-Shen experiments:
GS-1ms-up/down and GS-50ms-up/down.

Experiments were performed using a Bruker solenoidal probe (HP WB73ASOL10) in a 200
MHz (4.7 T) magnet with a home-built NMR spectrometer. The temperature was regulated
at 37 ◦C. This setup allows acquisition of both FID and CPMG signals. During the FID,
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131072 points were acquired with a dwell time of 1 µs (106 samples/sec).

The CPMG acquisition collected 300 echoes spaced 2 ms apart. 100 data points spaced 10
µs apart were collected around the center of each echo and averaged. For all samples, the
90◦ pulse width was within the range of 3.1–3.3 µs (a B1 amplitude of 18–19 mT). The
recycle delay was 7 s and 8 acquisitions were averaged in all experiments. During the cross-
relaxation delay, 23 TI times were used, arrayed logarithmically from 0.77 ms to 10 s. With
TI = 10 s, the system had fully recovered to equilibrium.

5.3.3 Analysis
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Figure 5.4: (A) The analysis flowchart for fitting and combining the FID and CPMG data and (B) for fitting the four pool
model parameters. BW is an isolated bulk water pool, discussed below.
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The analysis pipeline, drawn in Fig. 5.4, broadly consists of two parts. In part A, the FID
and CPMG data are fitted and then combined to extract the signals of different separable
pools as functions of TI. Ultimately, separate signals from MW, IEW, and the sum of all
non-aqueous protons are extracted. We remind the reader that in the context of the four
pool model introduced in Section 5.2, the non-aqueous protons are composed of separate
pools of non-aqueous myelin (pool M) and non-aqueous non-myelin (pool NM). In part B,
these separate signals (MW, IEW, and M+NM) are fit to the four pool model. These steps
will be covered in detail below.

Except when stated otherwise, for each parameter pi its errors σ+
i and σ−i were determined in

the following way. Using a least squares minimizer (regardless of the minimizer used to find
pi), 50 repeated fits were performed with synthetic Gaussian noise whose standard deviation
was equal to the standard deviation of the best fit residuals. The initial guess for the ith

parameter in these fits was chosen randomly from [0.8pi, 1.2pi] each time. Then, σ±i were
determined from the average positive and negative deviation from pi over the repeated fits.

All analysis was performed in Python with the Scipy/Numpy library [157] and with the
LMFIT library [158].

5.3.3.1 FID fitting

The FID signals were modeled using one or more super-Lorentzians for the broad, non-
aqueous component and a combination of Voigtians, Lorentzians, and Gaussians for the
aqueous components (yellow boxes on the flow chart in Fig. 5.4A). In a perfectly-shimmed
B0 field, the aqueous lineshapes are nominally Lorentzian. However, one Lorentzian could
not adequately model the aqueous component in our samples due to field inhomogeneities.
In such cases, the Voigtian lineshape, which is a Gaussian-broadened Lorentzian, is often
appropriate [159, 160]. In the time domain, the functions of the Lorentzian, Gaussian, and
Voigtian positioned at f0 are

gLorentzian(w, f0; t) = exp(−πwt) exp (−i(2πf0)t) (5.10)
gGaussian(σ, f0; t) = exp

(
−(2πσ)2t2

)
exp (−i(2πf0)t) (5.11)

gVoigtian(σ, f0, w; t) = exp(−πwt) exp
(
−(2πσ)2t2

)
exp (−i(2πf0)t) . (5.12)

We use widths to characterize all the lines. For the Lorentzian, w is the FWHM, and
T ∗2 = (πw)−1. For the Gaussian, the width σ is the standard deviation. The Voigtian’s widths
correspond to its Gaussian and Lorentzian parts. In the frequency domain, the Voigtian is
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a convolution of Gaussian and Lorentzian lines, which is a complicated function [160]. For
completeness, the super-Lorentzian function is repeated from Eq. 4.2:

gSL(σ, σ0, f0; t) =
∫ π/2

0
dθ sin θ exp

(
−1

2σ(θ, σ0, σmin)2t2
)

=
∫ π/2

0
dθ sin θ exp

(
−1

2(1
4(3 cos2 θ − 1)2σ2

0 + σ2
min)t2

)
,

where 3σ0/2 is the maximum linewidth at θ = 0◦ and σmin is the minimum linewidth at the
magic angle.

Fitting was performed directly on both the real and imaginary parts of the phased time-
domain data; there are two reasons why this was done instead of fitting in the frequency
domain. First, the non-aqueous component in the frequency domain is low amplitude and
spread out over multiple data points. Second, because of probe ring-down, the FIDs do
not start immediately after the end of the 90◦ acquisition pulse. With our equipment, this
deadtime had to be determined by calculating the first-order phase correction, the procedure
for which is outlined in Section 2.7.3. Without knowledge of this, the amplitude of the
rapidly-decaying non-aqueous signals may be over- or under-estimated by fitting. With the
time of the first FID datapoint known, the data were phased to achieve a zero imaginary
component at t = 0 when extrapolated backwards. Accounting for the deadtime in the
frequency domain is not straightforward.

Fits to all FIDs give the total aqueous and total non-aqueous magnetizations at each TI:

Maq(TI) = [MMW(TI) +MIEW(TI) +MBW(TI)] (5.13)
Mnon-aq(TI) = [MNM(TI) +MM(TI)] . (5.14)

The terms in [...] cannot be individually determined by FID data alone. But, by fitting
the CPMG, one can determine the relative sizes of the isolated MW, IEW, and BW terms.
Note that this is not so for the NM and M terms: they cannot be separated by any of the
experiments in this work.

5.3.3.2 CPMG fitting

Multi-exponential regularized NNLS distributions, introduced in Section 4.5, are the usual
way of fitting CPMG data when one is interested in separating the MW and IEW [51,55,57,
58]. However, this approach can’t account for signals where different components may have
opposite signs, as may occur in our experiments. Moreover, in regularized NNLS, separate
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peaks in the T2 spectrum often coalesce when dealing with low-amplitude signals. In light of
these issues, we used a sparse exponential distribution instead to fit the CPMG data (blue
boxes in flowchart A). With this method, there is one exponential for the low-amplitude MW
peak, two exponentials for the IEW peak (separated by 10 ms), and a final exponential for
the low-amplitude ~200 ms peak.

Two comments in anticipation of the results are necessary here. First, we found the use of
two exponentials instead of one for the IEW signal gave superior fits to the CPMG. This was
especially true when the longitudinal magnetization was in a non-equilibrium state. Second,
we have identified this last ~200 ms peak as bulk water (BW). This will be justified later.

With this sparse exponential distribution, we can measure the magnetization, positive or
negative, of each aqueous component as a function of TI. The signal fraction p(TI) of each
aqueous pool is

p̃MW(TI) = ÃMW(TI)
ÃMW(∞) + ÃIEW(∞) + ABW(∞)

p̃IEW(TI) = ÃIEW(TI)
ÃMW(∞) + ÃIEW(∞) + ABW(∞)

pBW(TI) = ABW(TI)
ÃMW(∞) + ÃIEW(∞) + ABW(∞)

,

(5.15)

where Ai(TI) is the total intensity of the signal from pool i and Ai(∞) is the amplitude of
the pool’s exponential fits to the CPMG at TI = 10 s. The tilde on the MW and IEW terms
indicates observed values—as covered in Section 4.5.2 and Appendix B, MW/IEW exchange
during the CPMG acquisition means the actual pool amplitudes and T2 times cannot be
directly measured. The actual values are determined later in the analysis. In contrast, the
BW pool is relatively isolated from exchange, so its actual value can be directly observed
(indicated by the absence of a tilde).

5.3.3.3 Combining CPMG and FID fits

Steps in combining the CPMG and FID fits are shown in grey in part A of the analysis
pipeline in Fig. 5.4. Using Eqs. 5.15 and 5.17 together gives the magnetization in each
aqueous pool,

M̃MW(TI) = p̃MW(TI)Maq(∞)
M̃IEW(TI) = p̃IEW(TI)Maq(∞)
MBW(TI) = pBW(TI)Maq(∞).

(5.16)
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M̃MW(TI), M̃IEW(TI), and, from Eq. 5.14,Mnon-aq(TI) are the inputs to the four pool model
fitting routines. For each of the six experiments, we take the initial conditions in pool i from
extrapolation back to TI = 0. Similarly, at the longest TI time the magnetization will be
close to equilibrium, giving a measure of the pool sizes:

Mi(∞) ≈Mi(10 s). (5.17)

The median value from Mi(10 s) in each of the six experiments is used. MBW(TI) is fit
separately to the standard equation for T1 relaxation,

MBW (TI) = MBW (∞) (1− f exp(−TI/T1,BW )) , (5.18)

where f is the inversion efficiency, which depends on the initial magnetization (f = 2 for
complete inversion) and T1,BW is the single T1 time of the BW pool. When fitting, f is
allowed to vary in each experiment while MBW (∞) and T1,BW vary as global values.

5.3.3.4 Four pool model analysis

In Fig. 5.4’s flowchart B, the input data to the fitting routine is in green boxes and cal-
culations to modify those data are in red. One such modification is the CPMG exchange
correction, applied at each iteration to find the “actual” magnetization in MW and IEW
(assuming the trial parameters are correct in that iteration). This is done first by correcting
the pool size (finding MMW(∞) and MIEW(∞) as described in Section 4.5.2). Then, each
data point in these pools is multiplied by M̃MW (∞)/MMW(∞) or M̃IEW (∞)/MIEW(∞) to
propagate the correction across all TI times.

Another modification is splitting the total non-aqueous data, Mnon-aq(TI) into its approx-
imated constituent contributions from MM(TI), and MNM(TI). To do so, we define a pa-
rameter αM = MM(∞)/(MNM(∞) +MM(∞)) such that

MM(TI) = αMMnon-aq(TI)
MNM(TI) = (1− αM)Mnon-aq(TI).

This also gives values for the initial conditions in these pools,MM(0) andMNM(0). Following
previous work [142,143,145,152], we set αM = 0.5, which assumes equal proton amounts in
both non-aqueous pools.

Fig. 5.4B’s white boxes are the core steps to simulate the magnetization evolution. We used
Scipy’s implementation of the Differential Evolution algorithm, which is a global minimizer
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[161]. On each iteration, the algorithm first introduces new four pool model test parameters
(4 T1s and 3 Tcrs). It also could vary the pool sizes by ±5% (not shown on the flowchart).
The penalty function is found using the model’s estimation for the MW, IEW, and M+NM
data. Once the global minimum is found, the fitting terminates. The penalty function is
nominally the sum of the residuals squared, and we use this calculation with one slight
adjustment—as we explain later, some of the MW early-time data data points are weighted
slightly higher.

5.4 Results

5.4.1 Spectra and FIDs

The 1H equilibrium spectrum of white matter (Fig. 5.5A) has a narrow, intense line from the
aqueous protons sitting on a low-amplitude, broad ~10–15 kHz line from the non-aqueous
protons. This non-aqueous lineshape was fit well by a super-Lorentzian, characterized by
broad wings and a sharp central peak. The grey matter spectrum (Fig. 5.5B) is similar, but
with a much smaller non-aqueous amplitude. In both the grey and white matter spectra,
some additional structure is also visible, likely from metabolites, lipid headgroups, and/or
methyl groups [80,89,148,149]. The B0 shimming was imperfect due to sample geometry, so
interpreting small spectral details is difficult.

While the fitting was ultimately performed in the time domain, we will discuss the frequency-
domain spectra in detail since some aspects are easier to interpret. Fig 5.6A and B shows two
examples of fitting WM-sp2’s spectrum at a short and long time after a soft inversion pulse,
and Table 5.1 lists all of the lineshape functions used for fitting each sample’s spectra. While
numerous functions are involved, the end result is simply an overall amplitude for the aqueous
and non-aqueous signals. Through trial and error, we found that the aqueous line in each
sample was fit well by one main Lorentzian (for WM-fr, WM-sp2, and GM-bg) or Voigtian
(for WM-sp1). The need for the Voigtian indicates the B0 field was less homogeneous in
WM-sp1, likely due to its small size (11.6 mg of tissue compared to WM-sp2’s 36.7 mg).
Lower-intensity lines were also necessary to supplement this main aqueous line. These helped
to isolate the wings of the main water peak, which due to its intensity, had a width of about
2 kHz near the baseline. In the case of IR-soft (Fig 5.6A), the central portion of the aqueous
peak was inverted by the 1.1 kHz-wide inversion pulse, so the extremities of the wings were
largely untouched. Even though the maximum amplitude of these wings was <1% of the
aqueous line, we found they must be accounted for in order to distinguish their signal from
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Figure 5.5: The equlibrium NMR spectra from WM-fr and GM-bg. The narrow peak is
from aqueous protons: IEW, MW (in white matter), and BW. The broad super-Lorentzian
is from non-aqueous protons: NM and, in white matter, M. “SL” indicates the peak of the
super-Lorentzian, clearly visible on the white matter spectra in (A) but not in the grey
matter spectrum in (B), where the non-aqueous pool is smaller and composed of relatively
fewer lipids.
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Figure 5.6: Fits to the equilibrium and non-equilibrium spectra for sample WM-sp2. (A)
When the center of the aqueous peak is inverted, multiple low-amplitude lines are necessary
to fit the non-inverted wings of the aqueous signal. (B) In equilibrium, the aqueous peak in
this sample is largely accounted for by a Lorentzian, although a small, negative correction
is required for better definition near the baseline. In both cases, two super-Lorentzians (one
broad, one narrow) at the same frequency account for the non-aqueous magnetization. (C)
When the second, narrower super-Lorentzian is not present, the fit to the same data as (B)
is comparatively worse, as indicated by the arrows.

the super-Lorentzians from the non-aqueous protons. As seen in the example in Fig 5.6A, a
series of Gaussians modeled these wings. These Gaussians were fixed at zero amplitudes at
all TI times after the entire aqueous line relaxed enough to have a positive amplitude.

Two super-Lorentzians, one broad and one relatively narrow, with both constrained to be
at the same frequency, were required in all white matter samples to fit the non-aqueous
signal. Fig 5.6B and C demonstrates why two were needed by comparing the same equi-
librium spectrum fit with two and one super-Lorentzians. Arrows in plot C indicate where
the single super-Lorentzian’s fit was inferior. Moreover, when single super-Lorentzian fits
were attempted on non-equilibrium spectra like the one in plot A, the results were often
unphysical estimations for the non-aqueous magnetization (i.e. Mnon-aq(TI) > Mnon-aq(∞)).
Specifically, using only one broad super-Lorentzian alone did not adequately fit the intensity
near the center. The additional ~2 kHz super-Lorentzian ensured the central singularity fit
well at all TI times. This extra intensity in the second, narrower super-Lorentzian may be
from other, distinct proton groups. For example, in Wilhelm et al.’s high-resolution spec-
tral fits of purified myelin [89], they included lower-intensity super-Lorentzians from Choline
CH2s and acyl CH3s at approximately the same frequency as the broad, intense methy-
lene super-Lorentzian. Whether this is the reason the spectra here required an additional,
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narrow super-Lorentzian is difficult to judge. Our B0 shimming was comparatively worse
than in the Wilhelm study (their sample was a solution of myelin extract, allowing a high-
resolution probe to be used), so the lines from these other protons, if present, could not be
definitively resolved. Another potential explanation for the necessity of including the nar-
rower super-Lorentzian is inadequate numerical integration of the broader super-Lorentzian.
From Eq. 4.3, one can see that around the magic angle, the super-Lorentzian’s constituent
Gaussians rapidly decrease in width, which has has a nearly P2(cos θ) dependence. How-
ever, doubling the resolution from the 400 evenly-spaced steps in θ used here to 800 did not
change the results appreciably. Beyond this, the fitting routine takes too long, though a
more efficient discretization scheme could be used.

Since FID fitting was performed mainly through trial and error, there was a risk of over-
fitting. Yet, for our purposes, any over-fitting introduced negligible error, since we were only
interested in the sum of all aqueous and non-aqueous lineshape function amplitudes. With
the non-aqueous lineshape functions consisting solely of super-Lorentzians, the aqueous/non-
aqueous contributions were easily distinguishable. On the other hand, if the goal was to
distinguish contributions from specific metabolites, then the inclusion of multiple lineshape
functions must be carefully mapped to each species (which would probably be impossible
with the B0 field homogeneity seen here). As it stands, we added additional lineshape
functions until plots of the total aqueous and total non-aqueous amplitudes as a function of
TI were seen to vary negligibly (not shown).

For all white matter samples, the spectral frequency of the super-Lorentzians were fixed
at the position of the visible central peak of the non-aqueous spectrum. This peak was
not visible in GM-bg so the position was approximated from the white matter samples.
Correspondingly, without the obvious central peak, it wasn’t necessary to include the more
narrow super-Lorentzian when fitting the data as in the white matter samples. The central
peaks were found to be about 3 ppm upfield from the water line. This is consistent with the
signal originating mostly from acyl methylene groups [87, 89, 94, 162]. The minimum width
was set to σmin=40 Hz, which is close to the narrowest width of the aqueous line.

Examples of time domain (FID) data are given in Fig. 5.7, along with the total aqueous and
total non-aqueous fits (the sum of the functions in Table 5.1). Here, the broad, non-aqueous
super-Lorentzians correspond to signals which have mostly decayed by ∼100 to 500 µs. This
means that the number of FID data points with non-aqueous signals was relatively small.
Consequently, we found it essential to have appropriate lineshape functions for the beginning
of the FID. Also given in this table are the approximate T ∗2 times, when the aqueous part of
the FID decayed to about 1/e of its initial amplitude. These times are much shorter than
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Sample Non-aqueous equilibrium lines Aqueous equilibrium lines Aqueous

T ∗2 (ms)

WM-fr 54 · SL(σ=16.2 kHz, σmin=40 Hz, f0=−673 Hz)
19 · SL(σ=2.4 kHz, σmin=40 Hz, f0=−673 Hz)

158 · L(w=44 Hz, f0=0 Hz) 10.3

WM-sp1 27 · SL(σ=14.9 kHz, σmin=40 Hz, f0=−679 Hz)
15 · SL(σ=4.5 kHz, σmin=40 Hz, f0=−679 Hz)

161 · V (σl=41 Hz, σg=33 Hz, f0=4 Hz)
5 ·G(σ=11 Hz, f0=7 Hz)

8.6

WM-sp2 29 · SL(σ = 13.6 kHz, σmin = 40 Hz, f0 = −679 Hz)
1 · SL(σ = 549 Hz, σmin = 40 Hz, f0 = −679 Hz)

−5 · V (σl = 224 Hz, σg = 176 Hz, f0 = 35 Hz)
5 · L(w = 9 Hz, f0 = 3 Hz)
126 · L(w = 45 Hz, f0 = 0 Hz)

6.6

GM-bg 12 · SL(σ=18.8 kHz, σmin=40 Hz, f0=−679 Hz) −35 · V (σl=118 Hz, σg=795 Hz, f0=39 Hz)
33 ·G(σ=1.0 kHz, f0=21 Hz)
99 · L(w=96 Hz, f0=−3 Hz)
13 · L(w=25 Hz, f0=10 Hz)

6.3

Table 5.1: The functional forms of the equilibrium FID fits (TI = 10 s) for all samples and
their aqueous T ∗2 s. The functions’ amplitudes are adjusted at every TI and then summed
together to determine the total aqueous and total non-aqueous signal. All lineshape functions
are normalized to 1. The amplitudes are in relative units. SL=super-Lorentzian function
(Eq. 4.2; 3σ/2 is the standard deviation of the widest component Gaussian, σmin is standard
deviation the narrowest component Gaussian), G=Gaussian function (Eq. 5.11; σ is standard
deviation), L=Lorentzian function (Eq. 5.10; w = (πT2)−1 is FWHM) V=Voigtian function
(Eq 5.12; σ and w correspond to its Gaussian and Lorentzian widths). The widths vary
from sample to sample to account for differences in B0 homogeneity. The centers of the non-
aqueous lines were fixed at the center of the super-Lorentzian, visible in the white matter
samples. In GM-bg, the super-Lorentzian center not visible on the spectrum and so was
approximated from the white matter samples. The aqueous T ∗2 s are approximately the time
it took for the aqueous portion of the FIDs to decay by 1/e.
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Figure 5.7: Examples of fits to FIDs in an IR-Soft experiment on WM-sp1 at different TI
times. (A) The FID shortly after the soft inversion pulse. Here, the non-aqueous signal’s
magnetization is positive, whereas the aqueous magnetization is inverted. (B) The same TI
after a hard inversion pulse. The non-aqueous magnetization is now inverted as well. The
equilibrium FID in (C) shows the long-lasting signal from the aqueous protons as well as the
short-lived signal from the non-aqueous protons.

the IEW T2 (~60 ms) because of B0 inhomogeneity.

5.4.2 CPMG multi-exponential fitting

Fig. 5.8 shows the difference between the regularized NNLS and sparse exponential distribu-
tions of WM-fr. The distributions of all white matter samples were similar. In GM-bg, no
MW contribution was detected, even in the sparse exponential distribution. Possible reasons
for this are explored in the discussion. Another difference was that GM-bg’s BW T2 time
was closer to 300 ms (instead of 200 ms as for the white matter samples). In the sparse
distribution, two exponentials were necessary to fully account for the IEW’s potential for
high positive and negative signals across the whole range of experiments. The sparse distri-
butions were fairly consistent with Barta et al.’s work in bovine brain [145], although their
BW T2 was much higher (650 ms) than ours. This was likely due to the confined volume of
our sample, where the BW could only form a thin film between the sample and the walls of
the NMR tubes and plugs. This restriction would have reduced the T2. Barta et al. used
a small piece of tissue inside an NMR tube without any spacers, so the BW pool was less
restricted.
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Figure 5.8: The regularized NNLS distribution compared to the sparse exponential distri-
bution. The distributions were calculated from WM-fr’s equilibrium CPMG. The sparse
distribution allowed for negative amplitudes. Two exponentials were used for the IEW peak,
which has the highest intensity.

5.4.3 White matter four pool and bulk water fitting

Using the four pool model, MMW(TI), MIEW(TI), and Mnon-aq(TI) (=MM(TI) +MNM(TI))
data series were fit for the three white matter samples. Given its lack of a measurable
MW pool, sample GM-bg was fit to a two pool model, discussed later. These results are
presented in Fig. 5.9, which also includes the BW fits using Eq. 5.18. The MW and IEW
data in this plot have been corrected for MW/IEW exchange during the CPMG and so
represent the actual magnetization in these pools. In the case of MW, we found data points
near MMW(TI) ≈ 0 tended to be unreliable and were omitted (indicated by “×” markers).
The sparse exponential distribution could not adequately detect the MW when its absolute
intensity is very small, leading to values which tended to correlate (erroneously) with the IEW
signal. Because the omitted data includes the start of the GS-50ms-up/down experiments,
in these cases MMW(0) was fixed at 0. The MW plots also show the observed magnetization,
calculated by performing the CPMG exchange correction in reverse. The same correction
was applied to the IEW data but the difference is not visible on the graph.
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Figure 5.9: Four pool model fits to WM-fr. All MW and IEW data with opaque markers have
been corrected for exchange during the CPMG and are the actual magnetizations in those
pools. For MW, the observed magnetization, M̃MW(TI), is plotted (translucent markers)
along with its fit (dashed line). These are not plotted for IEW because the difference between
its observed and actual magnetization is very slight. “×” markers indicate data which were
omitted (data points where MMW(TI) ≈ 0, as described in the text). The BW was fit
separately using Eq. 5.18; for this pool, each experiment was well characterized using a
unique initial magnetization and a single, global T1 time. This is evidence that the BW pool
can be considered isolated from the the other four pools.
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(A)​​ White matter four pool model fit parameters 
 

Parameter Units WM-fr WM-sp1 WM-sp2 

T​cr​,M/MW 

s 

0.13 (+0.01/-0.01) 0.16 (+0.01/-0.02) 0.154 (+0.007/-0.016) 
T​cr​,MW/IEW 0.82 (+0.05/-0.04) 0.84 (+0.07/-0.07) 0.73 (+0.05/-0.07) 
T​cr​,IEW/NM 0.67 (+0.04/-0.03) 0.86 (+0.16/-0.06) 0.86 (+0.19/-0.05) 
T​1,M 

s 

0.23 (+0.01/-0.01) 0.19 (+0.05/-0.01) 0.149 (+0.066/-0.004) 
T​1,NM 

 0.63 (+0.06/-0.06) 1.0 (+0.5/-0.2) 2.5 ​b 

T​1,IEW ​
a 3.0 (+0.2/-0.1) 2.4 (+0.2/-0.1) 2.24 (+0.10/-0.08) 

T​1,MW ​
a 3.0 (+0.2/-0.1) 2.4 (+0.2/-0.1) 2.24 (+0.10/-0.08) 

M​M​(∞) 

rel. ​c 

14.92 (+0.06/-0.07) 9.26 (+0.07/-0.07) 9.11 (+0.04/-0.04) 
M​NM​(∞) 14.92 (+0.06/-0.07) 9.26 (+0.07/-0.07) 9.11 (+0.04/-0.04) 
M​IEW​(∞) 85.9 (+0.1/-0.2) 91.65 (+0.14/-0.10) 84.2 (+0.2/-0.2) 
M​MW​(∞) 8.92 (+0.08/-0.10) 5.46 (+0.03/-0.02) 6.92 (+0.08/-0.04) 
M​non-aq​(∞)=​M​NM​(∞)+​M​M​(∞) 29.8 (+0.1/-0.1) 18.5 (+0.1/-0.1) 18.22 (+0.09/-0.08) 
T​2,MW 

ms 
8.6 7.9 8.3 

T​2,IEW 63 66 66 

 

- 

0.9 0.86 0.87 

 0.93 0.93 0.92 

 0.78 0.7 0.73 

 1 1.00 1 
M​BW​(∞) rel. ​c 5.19 (+0.03/-0.03) 2.892 (+0.02/-0.02) 8.88 (+0.04/-0.04) 
T​1,BW s 2.20 (+0.02/-0.02) 1.60 (+0.02/-0.02) 2.19 (+0.02/-0.02) 
T​2,BW ms 211 (±5%) 211 (±5%) 184 (±5%) 
MW residual weight​, 𝜂 - 8 10 5 
 
a) Parameters were constrained to be the same value 
b) Parameters are at the limit of allowed range 
c) Relative pool size units are scaled so that aqueous pools add to 100 
 

(B)​​ Fit eigenvectors and eigenvalues 
 

WM-fr 

T1* 
22.9 (+1.1/-0.8) 
ms 74 (+3/-4) ​​ms 130 (+4/-4) ​​ms 1.268 (+0.004/-0.005) ​​s 

M 6.16 2.19 -11.71 5.25 

MW -8.11 0.32 -5.09 4.05 

IEW 2.67 -14.97 7.65 51.55 

NM -0.15 14.52 3.32 8.29 

Size 17.09 32 27.78 69.15 

E/R 
0.03 0.06 0.21 1 

 
WM-sp1 

T1* 22 (+1/-2) ​​ms 67 (+5/-4) ​​ms 102 (+6/-5) ​​ms 1.453 (+0.006/-0.005)​​ s 

M 2.94 1.25 -8.01 3.01 

MW -5.17 0.01 -2.55 2.59 

IEW 2.66 -9.6 4.92 53.71 

NM -0.11 9.13 1.62 5.29 

Size 10.88 19.98 17.1 64.6 

E/R 
0.03 0.04 0.24 1 

 
WM-sp2 

T1* 24 (+1/-2) ​​ms 72 (+3/-3) ​​ms 91 (+6/-2) ​​ms 1.376 (+0.005/-0.004) ​​s 

M 3.99 2.73 -7.22 2.74 

MW -6.21 0.78 -3.45 3.17 

IEW 2.96 -10.81 3.19 49.1 

NM -0.13 8.55 3.16 5.46 

Size 13.3 22.87 17.02 60.47 

E/R 
0.05 0.05 0.25 1 

 

 
 
 
 
 
 
 
 

Table 5.2: The results of the four pool model fits on all white matter samples. (A) The fit parameters. Errors on the T2s
are estimated to be 5%, which is close to the FWHM of the peaks on the regularized NNLS distributions (Fig. 5.8). Errors
on other parameters are the standard deviations of repeated fits with noise, as described in the Methods section. (B) The
eigenvectors and eigenvalues derived from the fit parameters. To show the amount of magnetization flow represented each
eigenvector, the components listed are v′i = viMi(∞). The size (∑4

i=1 |v′i|) is a measure of how much magnetization flow is
associated with each eigenvector. Eigenvectors with larger sizes generally have more easily observable T ∗1 values. E/R is the
exchange/relaxation factor from Eq. 5.21 (E/R=0 means the T ∗1 corresponds to pure exchange, whereas E/R=1 indicates pure
spin-lattice relaxation).

84



The data show that the expected initial conditions in the six experiments (Fig. 5.3) were
achieved, leading to unique relaxation behaviour in each case. The fits from the model
described the magnetization in each pool well, with the largest relative deviation occurring
in MW during the GS-50ms-up experiment around TI ∼ 100 ms. However, this large
relative error was consistent with MW being the smallest pool. In fact, when the standard
penalty function was used in the fitting routine (the sum of residuals squared), the solver was
relatively insensitive to the MW pool due to its comparatively lower amplitude. This led to
the solver omitting a short, ~30 ms T ∗1 component, present most obviously in MW. To ensure
this component was accounted for, the fitting results shown here have had the residuals from
the start (TI<37 ms) of the MW data up-weighted by a factor η when calculating the fitting
penalty function:

MW Residuals =

MMW,data(TI)−MMW,fit(TI) TI > 37 ms

η (MMW,data(TI)−MMW,fit(TI)) TI < 37 ms.
(5.19)

We will deal with choosing the value of η and the consequences of this choice in the next
section.

Turning now to the best fit parameters listed in Table 5.2A, the size of the MW pool,
MMW(∞), is immediately understandable. Because the pool sizes in the table have been
normalized so that MMW(∞) + MIEW(∞) + MBW(∞) = 100, this is equal to the myelin
water fraction (MWF). WM-fr had the highest MMW(∞), likely due to the presence of more
myelin. This was reflected in WM-fr’s total non-aqueous pool size, Mnon-aq(TI), which was
larger than in the other samples. In all cases T1,MW and T1,IEW were constrained to have the
same value, which could vary. Without this constraint, T1,MW had large (~1 s) variability.

The ratios of the observed to true values for IEW and MW pool sizes and T2s are also given
in the table. The largest correction was for M̃MW(∞) of WM-sp2, where the true pool size,
MMW(∞), was about 40% larger. In other words, the observed value only underestimated
the pool size by less than 2% of the total aqueous signal (the size of MMW(∞) in WM-sp2
is 6.9% of the total aqueous signal). The effect on the IEW pool size was negligible.

The T ∗1 s and eigenvectors in Table 5.2B offer a simple way to consider the meaning of all of
the fitted parameters at once. In the table, the values listed are scaled eigenvectors v′ whose
components are

v′i = Mi(∞)vi. (5.20)

v′i can be interpreted as amount of physical magnetization entering (positive values) or
leaving (negative values) the pool, keeping in mind that only the relative sign differences
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in the eigenvector components matter—multiplying and eigenvector by -1 does not change
the physics. Each eigenvector describes a varying amount of magnetization exchanging or
relaxing, so it is convenient to define their “size” as ∑4

i=1 |v′i|. Generally, the larger the size,
the easier it is to observe the T ∗1 associated with this eigenvector—although this ultimately
depends on the initial conditions. Another related metric is the relaxation/exchange factor
[145],

E/R = |
∑4
i=1 v

′
i|∑4

i=1 |v′i|
, (5.21)

where E/R=0 indicates the corresponding T ∗1 arises from inter-pool exchange only, and
E/R=1 indicates the T ∗1 is from pure spin-lattice relaxation. All the white matter samples’
eigenvectors had a similar structure and matched well with those found in a previous study in
bovine brain [145]. Looking at WM-fr, the most rapid relaxation time was T ∗1 = 23 ms from
an eigenvector that primarily described M/MW exchange. This matches with the theory that
MW’s short T2 time is caused by exchange with the myelin lipids [57, 145]. There was also
some MW/IEW exchange on this timescale as well, which was more significant with the WM-
sp1/sp2 samples. This is consistent with their smaller non-aqueous pool sizes. A smaller
myelin sheath would be more permeable, increasing the MW/IEW exchange. The next
eigenvector (T ∗1≈60–80 ms) was almost pure IEW/NM exchange. The last two eigenvectors
can be associated with MW/IEW or (M+MW)/(IEW+NM) exchange (T ∗1≈90–130 ms) and
spin-lattice relaxation (T ∗1 > 1 s). Because this last one had the largest size and the longest
T ∗1 , it is therefore the easiest to observe using MRI. T1 measurements of brain often only
report this relaxation time.

Fig. 5.9 and Table 5.2 also show the results of fitting the BW data to Eq. 5.18, the single
inversion-recovery equation. BW was well-described using a single, global T1 and MBW(∞)
values, but with unique initial magnetization for each experiment. The majority of its
relaxation was single-exponential, with only small fluctuations indicating some exchange
with other pools. In light of this, treating BW as an isolated pool outside of the four pool
model seems justified.

5.4.4 White matter fitting variations

As mentioned in the last section, when all MW, IEW, and M+NM residuals were treated
without weighting in the fitting penalty function, the four pool model tended to ignore
the ~30 ms T ∗1 component. Its associated eigenvector in Table 5.2 shows this component
represents M/MW exchange. Fig. 5.10 summarizes this issue by plotting the residuals from
fits to the first 10 points of the MW magnetization on a linear scale. The GS-50ms-up/down
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Figure 5.10: Residuals from four pool model fits to short-TI MW data in sample WM-fr.
In the weighted fit, the residuals for the 10 MW data points across all experiments where
TI < 37 ms were multiplied by η (defined in Eq. 5.19), emphasizing the importance of these
points. This forced the rapid, 20–30 ms decay most visible in the MW pool to be accounted
for. This is particularly clear on this graph’s linear scale in the case of IR-Soft, where the
weighted fit was superior. The GS-50ms-up/down experiments were not included since their
initial MW data points were excluded from the four pool model fit.

χ2
tot

WM-fr WM-sp1 WM-sp2
three pool 6.83 7.61 3.67

four pool, η = 1 (unweighted) 2.98 4.16 2.27
four pool, η > 1 (MW start weighted) 5.86 6.79 3.05

Table 5.3: Comparison of total chi-squares for three pool, weighted four pool, and unweighted
four pool model in white matter. The three pool model consisted only of MW, IEW, and one
non-aqueous pool. The unweighted four pool model treated the residuals of all data points
the same. η, the weighting factor, is given in Table 5.2. Larger values force recognition of
the T ∗1 ∼ 30 ms time. Weighting was removed prior to calculation of χ2

tot (see Eq. 5.24). The
values of η when η > 1 are listed for each sample in Table 5.2.
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Figure 5.11: The effect of varying the weighting of the start of the MW residuals (η, Eq. 5.19)
for sample WM-fr. (A) Chi-square from each data series across all experiments (Eq. 5.23)
and the total chi-square (Eq. 5.24). (B) The change in the four T ∗1 times as η is increased.
Only at larger values were the times from MW/M exchange and IEW/NM distinguishable.
The longest T ∗1 time, associated with spin-lattice relaxation, is minimally influenced by η.
For this sample, the optimal factor was η=8, determined by the start of the plateau in most
of the chi-square and T ∗1 values.
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Figure 5.12: A comparison of three different models applied to WM-sp2: two four pool
models (one weighted, one not) and one unweighted three-pool model (consisting only of
MW, IEW, and one combined non-aqueous pool). The chi-square plotted, χ2(xs, xe), is the
sum over all data points for each data series xs and experiment xe (Eq. 5.22). Overall, the
four pool models provided a better fit, particularly in the IEW pool. However, weighting
was necessary in order to fit the MW pool properly.

MW data was not plotted since it was excluded from the fits (as explained above).

The four pool model fits shown were performed in two different ways. The first fit method
treated all data points in the residuals with the same weight (η = 1, where η was defined
in Eq. 5.19). With no weighting, the rapid decay seen most clearly at the beginning of
the IR-soft and GS-1ms-up/down experiments was ignored. This was also visible in IR-soft
non-aqueous magnetization (not shown). In the second method, the residuals from the first
ten MW data points (TI < 37 ms) in each experiment were up-weighted by the factor, η
defined in Eq. 5.19. As evident by the weighted fits, η > 1 forced recognition of this short
time constant. However, forcing the fit to more closely match the beginning of the MW
curve came at the price of a worse overall fit.

Fig. 5.11 motivates the ultimate choices of η, which are reported for each sample in Table
5.2. The total chi-square for fits to the MW, IEW, and total non-aqueous (M+NM) data are
shown in panel A, and T ∗1 times are in panel B. Both are plotted as functions of η. There is
an inflection point in the plotted quantities around a similar value of η. For WM-fr, this was
around η = 8. Note that without a large η, the T ∗1 times associated with MW/M exchange
and IEW/NM exchange were unacceptably close (the corresponding eigenvalues were also
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equal).

Table 5.3 gives the total chi-square values, χ2
tot, for different fitting methods, including

weighted and unweighted four pool models.2 The chi-square χ2(xs, xe) for data series xs ∈{MW,
IEW, M+NM} and experiment xe ∈{IR-Hard, IR-Soft, GS-50ms-up, GS-50ms-down, GS-
1ms-up, GS-1ms-down} is

χ2(xs, xe) =
NT I∑
i=1

(data(xs, xe;TIi)− fit(xs, xe;TIi))2 , (5.22)

where NTI is the number of TI times in that series (which depends on xs and xe since data
points were removed in certain series). From this, the total chi-square for a particular series
xs across all experiments is

χ2(xs) =
∑
xe∈

experiments

χ2(xs, xe), (5.23)

and the total chi-square for all series and experiments has the form

χ2
tot =

∑
xs∈
series

χ2(xs). (5.24)

Importantly, these values are calculated independent of the value of η.

In the three white matter samples, χ2
tot was ~1.2–1.8× worse in the weighted fits than in

the unweighted fit. To investigate why, the chi-square values for each experiment and data
series, χ2(xs, xe), are shown in Fig. 5.12. Unsurprisingly the weighted four pool model fit
gave superior MW modeling, particularly for the IR-soft experiment where the ~30 ms T ∗1
component is most obvious. However, the trade-offs were worse IEW and total non-aqueous
fits.

To confirm the four pool model is necessary to model white matter, we also tried fitting the
same data to an unweighted (η = 1) three pool model. In the three pool model, the two
non-aqueous pools in the four pool model (M and NM) are combined into a general non-
aqueous pool. Exchange happens between MW/IEW, IEW/non-aqueous, and MW/non-
aqueous. This was motivated by the fact that we were unable to observe the M and NM
magnetization separately. When this model was used, the result was a worse overall chi-
square than either of the four pool fitting methods (Table 5.3). Looking at the chi-square

2The χ2as defined here is actually the Residual Sum of Squares (RSS). If the errors on each data point
were independently and identically distributed with a variance σ2 (which is not the case for our data), then
RSS/σ2 has a chi-square distribution.
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(A)​​ Grey matter two pool model fit parameter 
 

Parameter Units GM-bg 

T​cr​,non-aq/aq s 1.42 (+0.12/-0.11) 

T​1,non-aq 
s 

0.23 (+0.02/-0.01) 
T​1,aq 3.63 (+0.25/-0.18) 
M​non-aq​(∞) 

rel. 
8.26 (+0.12/-0.04) 

M​aq​(∞) 98.52 (+0.20/-0.16) 
T​2,IEW s 1.482 (+0.016/-0.014) 

M​BW​(∞) rel. 1.480 (+0.016/-0.011) 
T​1,BW s 1.823 (+0.036/-0.026) 
T​2,BW ms 288 (±5%) 

 

(B)​​ Fit eigenvectors and eigenvalues 
 

T​1​* 73 (+1/-2) ​​ms 2.000 (+0.003/-0.008) ​​s 

Aqueous -5.83 80.5 

Non-Aq 8.25 4.7 

Size 13.08 85.1 

E/R 0.16 1 

 

 
Table 5.4: The fitted two pool model parameters (A), and eigenvectors and T ∗1 s (B) for the
grey matter sample GM-bg. Values listed in the eigenvectors are viMi(∞). Error values are
described in the caption of Fig. 5.2.

values of the individual experiments, the three pool model performed better in MW than
the unweighted four pool model. This may hint that the assumption of equal non-aqueous
protons in the M and NM pools was incorrect. Yet, the three pool fit was significantly worse
in both the IEW and the total non-aqueous than either of the four pool models.

5.4.5 Grey matter two pool fitting

With no detectable MW, the GM-bg sample was fit to a two pool model representing aqueous
and non-aqueous protons. The fit results are summarized in Fig. 5.13 and Table 5.4. The
non-aqueous data are comparatively noisier than in the white matter samples, due to GM-
bg’s smaller non-aqueous pool size (8% of the total aqueous pool size compared to about
18% in WM-sp1/sp2 and 30% in WM-fr). The IR-soft non-aqueous data was especially
noisy; as in the white matter samples, this was the most difficult experiment for FID fitting
because of its complicated lineshape. This was exacerbated by the relatively low non-aqueous
signal in the grey matter. Looking at the eigenvectors and T ∗1 times, the rapid, 73 ms T ∗1 is
associated with aqueous/non-aqueous exchange, whereas the longer 2.0 s time is associated
with spin-lattice relaxation.
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Figure 5.13: Two pool fits to grey matter sample GM-bg. Since there was no detectable MW
in this sample, the two pool model was more appropriate. Bulk water was fit separately using
Eq. 5.18.
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5.5 Discussion

5.5.1 Comparison with other studies

Overall, the values measured in the four pool model fits were reasonable and in-line with
previous ex-vivo and in-vivo studies. Comparing the size of the MW pool (i.e. the MWF) in
white matter, we find it is on average lower than in previous human and bovine studies (see
Minty et al. and references therein [163]). For example, our white matter values were about
2–10% smaller than those from two previous studies in bovine brain [142, 145]. That said,
our data was internally consistent: the fittedMMW(∞) in WM-sp1 and WM-sp2 were similar
(within 2 units of amplitude, where 100 units comprises the entire aqueous magnetization).
This is expected given that they are from the same brain and same area. Differences in the
sample preparation and between individual cows (such as their age) likely account for the
discrepancies between our work and the other studies.

Between the WM-sp1/sp2 and WM-fr samples, WM-fr had a ~2× larger non-aqueous frac-
tion. Confirmation of this in the literature is mixed: one quantitative MT (qMT) in-vivo
human study also showed a 10-15% higher non-aqueous fraction in frontal white matter than
in splenium [116, 164], although a different study found little difference [165]. Still, because
we are able to directly compare the aqueous and non-aqueous FIDs, our accuracy in this
regard is likely better than in previous work, with one caveat: with the ex-vivo sample used
here, there is the potential for water loss.

The intrinsic T1s of the aqueous and non-aqueous pools are also of interest. In all our samples
(acquired at 4.7 T and 37 ◦C), T1,M ≈ 200 ms, which is similar to both the value of 171±22 ms
measured in human brain in-vivo at 1.5 T [166]; and the values of 250 ms at 3 T and 500
ms at 7 T for human brain in-vivo [102]. Both of these studies used a two-pool model, so
their values would include protons in what we consider the NM pool as well. However, our
value is shorter than another study’s 0.5–1 s measured in bovine optic nerve at 20 ◦C and 1.5
T [151]. Evidently, the T1 of the non-aqueous pool is temperature and field dependent. The
former is primarily a result of correlation time changes from increased or decreased thermal
motion away from physiological temperatures [83, 84, 167]. The field-dependence, discussed
in Section 2.6, arises from T1 relaxation’s sensitivity to fluctuations at ω0 and 2ω0 (ω0 is
the Larmor frequency) [3, 10, 102, 168]. In contrast, the intrinsic aqueous protons already
experience significant averaging, so their T1s (T1,MW and T1,IEW) don’t depend as strongly
on the field [102]. Our data suggest a large, >1 s T1 for both MW and IEW. However, the
values obtained from the data here may be imprecise.

Another important quantity to compare with previous work is the MW/IEW “exchange
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time”. Using the T ∗1 associated with the MW/IEW exchange eigenvector, our samples are in
the range of about 90–130 ms. These are perhaps slightly faster than with previous reported
values of similar quantities, including ~200 ms (for human white matter in-vivo [169]), 127
ms (for human white matter in-vivo [170]) ~220 ms (bovine splenium ex-vivo [145]), and
~140 ms (bovine white matter ex-vivo [142]). Still, this confirms previous conclusions that
MW/IEW exchange has only a slight effect on the MWF measurements. Indeed, the error in
the MW amplitude due to exchange during the CPMG, (MMW(∞)− M̃MW(∞))/M̃MW(∞),
is about 20% for WM-fr and for WM-sp1/sp2.

Turning now to the FID results, there are relatively few studies which have directly observed
the non-aqueous proton FIDs in CNS tissues (e.g. references [89, 142, 148]). In fact, most
measurements of the super-Lorentzian lineshape in white and grey matter have been pre-
sented in qMT studies [79, 81, 93, 94, 116, 171, 172]. In those experiments, the non-aqueous
protons are indirectly observed via their influence on the aqueous protons’ magnetization.
Grey matter is less frequently studied this way, given its smaller non-aqueous pool [171].
Still, qMT studies have generally shown that the effective T2—the T2 that is measured if
one assumes a Lorentzian lineshape—for the non-aqueous signals is similar in both white
and grey matter (see Sled [171] and references therein). Although assigning an effective T2

to the distinctly non-Lorentzian non-aqueous NMR signal is crude, it is consistent with our
results: The wide super-Lorentzians in our white (13.5–16.2 kHz) and grey matter (18.8
kHz) samples have similar spectral widths. Techniques to perform in-vivo observations of
the non-aqueous signal also support this: in T ∗2 measurements in ovine (sheep) brain, Fan et
al. found white and grey matter values of 209±9 µs and 258±4 µs respectively [173].

The similarity between the non-aqueous lineshapes in white and grey matter may hint at the
inability of FID fitting to distinguish between M and NM protons (those non-aqueous protons
within the myelin bilayers and those outside it). If NM had a very different lineshape, this
would dominate in grey matter where there is little myelin. However, this doesn’t appear to
be the case. There is an analogous observation in the aqueous protons: nothing in our results
suggests MW and IEW have different lineshapes, a possibility previously raised [169]. While
the broad linewidths from field inhomogeneities may have been a limitation in this regard,
the same result was present in a high-resolution study of rat thoracic spinal cord [89]. That
said, fitting the non-aqueous component is intrinsically difficult compared to the aqueous
component; in the frequency domain its highest amplitude is ~50× lower than the aqueous
peak (Fig. 5.5), and in the time domain its longest signal lasts for ~1/300 as long as the
aqueous FID.

The lack of a MW pool in the GM-bg sample is surprising. Indeed, grey matter has signif-
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icantly less myelin, yet in-vivo human MWF measurements typically show non-zero values
(eg. Laule et al. [140]). It may be that the little myelin present in our GM-bg was damaged
during sample preparation and loading. Due to its higher water content, grey matter tissue
is significantly more delicate than white matter tissue. Still, with only one grey matter sam-
ple, it is hard to draw any definitive conclusions, and more measurements would be required.
This is especially true given that GM-bg is sub-cortical grey matter; hence, future work
should also include samples of cortical grey matter as well.

5.5.2 Imaging applications

It is unlikely the four pool model could ever be completely characterized in-vivo, given the
number of parameters involved. Moreover, acquiring the FIDs of both the aqueous and non-
aqueous protons is probably unfeasible on clinical MRI systems due to the short, intense,
broadband pulses required. Instead, this work may prove useful in experimental design and
analysis, particularly when there is an interest in the MW pool signal.

The total aqueous signal, MMW(TI) +MIEW(TI), is approximately what is measured in an
imaging experiment (BW is excluded since it is external to our samples). As an example, we
can analyze this quantity in detail for IR-soft and IR-hard. Following standard procedure
in IR experiments, each recovery curve is fit to a multiple-component inversion-recovery
equation,

MMW(TI) +MIEW(TI) =
n∑
i=1

ai(1− fi exp(−TI/τi)). (5.25)

Here ai is the amplitude of the component with an apparent relaxation time of τi and fi its
inversion efficiency. We use the generic notation ai instead of Mi(∞) to emphasize that each
component is most likely associated with multiple pools—and using this type of analysis
alone, we can’t know which pools these are, only what their combined magnetization is.
Fig. 5.14A shows how a single component fit is clearly inadequate in the soft-IR experiment:
it requires two components (τ1 = 1.4 s and τ2 = 63 ms), whereas in plot B the IR-hard fits
well with just one (τ1 = 1.4 s). These relaxation times are comfortably similar to two of the
T ∗1 s (71 ms and 1.27 s) from the four pool model fitting (Table 5.2B). Taken together, the
results strongly suggest that broadband inversion and selective inversion will generally result
in measurably different T1 relaxation values. Note that broadband inversion is possible in
clinical MRI using adiabatic pulses [174].

This behaviour—where the value and number of components measured depends on the initial
conditions—has been discussed by some recent publications [102, 142, 145–147]. Both two
and four pool models can explain this result. However, the eigenvector formalism that we
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Figure 5.14: One and two-component fits to IR-soft and IR-hard for sample WM-fr. These
were fit to Eq. 5.25. The IR-soft curve in (A) appears to be bi-exponential (τ1 = 1.4 s and
τ2 = 63 ms), whereas the IR-hard curve in (B) is mono-exponential (τ1 = 1.4 s).

used (following Barta et al. [145]) can give a particularly clear depiction of how the initial
conditions affect T1 relaxation. This is made explicit by Fig. 5.15 where the eigenvector
coefficients are plotted. Plot A are these coefficients (the cjs in Eq. 5.7), showing which T ∗1
components are excited by the preparation pulses. Plot B shows cp

(∑4
i=1 |v

′
pi|
)
, where each

coefficient is multiplied by the sum of the absolute values of the eigenvector components. This
roughly corresponds to the magnitude of the perturbation from equilibrium corresponding
to that eigenvector.

Turning again to the contrast between IR-hard and IR-soft, the coefficient plots make a
few things clear. First, the most prominent appearance of the shortest T ∗1 time (23 ms) is
in the IR-soft experiment; in IR-hard, it is negligible. In fact, IR-hard primarily excited
the T ∗1 = 1.3 s eigenvector, consistent with Fig. 5.14. The IR-soft behaviour is remarkably
different, despite having almost exactly the same total aqueous signal amplitude. Here, the
soft inversion pulse excited all components except T ∗1 = 130 ms. The nonzero signal strengths
(plot B) from the other eigenvectors hints they should all be observable. Indeed, even in
the bi-exponential T ∗1 fit of IR-soft data above (Fig. 5.14A), there appears to be a small
component in the <100 ms range, likely corresponding to the 23 ms T ∗1 . Still, it is not very
well-defined, since the lowest two T ∗1 s were separated only by a few tens of ms (23 ms vs. 74
ms). The difficulty separating these components was one of the reasons for up-weighting the
start of MW residuals during the four pool fitting.

This type of eigenvector analysis may be useful when interpreting the T ∗1 components mea-
sured in a particular experiment. Importantly, it can be applied to two or three pool models
as well, since—as we discuss next—the four pool model may not always be necessary.
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Figure 5.15: The eigenvector excitation and aqueous pool magnetizations of the initial con-
dition for sample WM-fr. (A) The eigenvector coefficients cjs, showing which T ∗1 components
are excited by the different preparation pulses. (B) The same coefficients weighted by the
scaled eigenvector sizes. This is approximately a measure of the expected signal size from
each component. In IR-hard and IR-soft, there are distinctly different sets of eigenvectors
which will relax. This is despite the aqueous magnetization being essentially the same, which
is shown in (C).
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5.5.3 Is the four pool model necessary to understand T1 relax-
ation?

The comparison of the MW weighted and unweighted four pool model fits with the three
pool model fits (Table 5.3 and Fig. 5.12) makes it clear that while the four pool model’s
fits were superior, none of the three performed best in all pools simultaneously. What’s
more, different models performed better in different experiments. The fact that we had to
up-weight the start of the MW data in order to fit the ~30 ms T ∗1 component indicates that
the experiments did not equally expose all time constants. In Barta et al.’s recent work,
they fit only the MW and IEW signals from IR-soft and IR-hard experiments similar to the
ones performed here. Yet, their fit picked up the ~30 ms T ∗1 component without any need to
weight the MW residuals as we have done [145]. This is an indication that our inclusion of
four more experiments washed out the importance of the ~30 ms component’s appearance
in the IR-soft experiment.

To summarize, the four pool model provides the most comprehensive description of relaxation
in all the protons at once, and future refinements will probably help improve its accuracy.
However, this information may not always be required. For example, the commonly-used
two pool model (Section 4.4.2) ignores the distinction between MW and IEW on the one
hand, and M and NM on the other. This is reasonable in many applications given the MW’s
small size compared to the IEW. The eigenvector analysis just discussed could be a useful
tool in determining which model is adequate for quantitative and/or qualitative modeling.

5.5.4 Limitations

While the present study has shown the applicability of the four pool model to white matter,
there were a number of limitations. Perhaps the most significant of these was the assumption
of equivalent M and NM pool sizes. Myelination varies in different brain structures, and
presumably this results in different proportions of M and NM pool sizes [65]. At present,
there is no clear way to separate the FIDs from these two non-aqueous pools, although some
ideas are given in the last chapter. When this proportion was allowed to vary, it was poorly
constrained by the data from these experiments and tended to put all the protons in one of
M or NM and none in the other. Histology may yield better estimation in specific tissues,
and one recent study applied this to quantify the myelin volume fraction in mice [117].

On the experimental front, the choice of initial conditions could be improved in similar future
studies. The need for additional weighting in order to fit the short ~30 ms T ∗1 component
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means that most of the experiments used here did not sufficiently excite this corresponding
eigenvector. Eigenvector analysis (the plots in Fig. 5.15) may be a useful tool in choosing
groups of experiments in the future. Combinations with MT and ihMT (see the next two
chapters) could also be explored. Because we can directly measure the magnetization after
the preparation pulses, these can be arbitrarily complicated without concern about modeling
them. Some suggestions for future experiments are given in the last chapter.

Regarding the samples, experimental constraints meant that we were limited in the number
of samples we could study. With only three white matter samples, one grey matter sample,
and all of them coming from the same brain, more work will be needed before the results
here can be conclusively generalized. Sample preparation could also be improved, perhaps
by soaking the tissue in D2O to reduce the intensity of the aqueous peak. This approach was
successfully used by Willhelm et al. in spinal cord and by Fan et al. in ovine brain [89,173].
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Chapter 6

Is “inhomogeneous” MT mis-named?

6.1 Introduction

Inhomogeneous Magnetization Transfer (ihMT) seems to show enhanced contrast in ma-
terials containing lipid bilayers, such as myelin.1 We introduced the ihMT technique in
Section 4.4.3, and in the work below we investigate its physical origins in detail. The origi-
nal ihMT paper by Varma et al. suggested that it relied upon the non-aqueous spectrum of
lipids being inhomogeneously-broadened [118]. They claimed it would be possible to “burn a
hole” in such a spectrum, thereby causing sensitivity to the prepulse frequency [118,120,175].
Fig. 6.1 is reproduced from their paper and its caption outlines this hypothesis, which was
the origin of ihMT’s name.

Portis was the first to define homogeneous and inhomogeneous broadening of magnetic res-
onance spectra (the publication focused on electron spin resonance, but the same physics
applies to NMR) [176]. That paper defined a homogeneously-broadened spectrum as one
which spreads any absorbed energy equally throughout the spin system. In other words,
an rf saturation pulse will attenuate the magnetization in a homogeneously-broadened spec-
trum equally. Additionally, Portis called spectra consisting of overlapping narrow lines from
isochromats inhomogeneously broadened. In such a spectrum, a low power rf pulse will sat-
urate a localized frequency range only, corresponding to the spins whose resonance condition
is met. Thus, one will “burn a hole” in the spectrum.

Maricq and Waugh introduced a slightly different definition of homogeneous and inhomo-
geneous in their paper on magic angle spinning (MAS) [177]. If a spectrum is broadened

1This chapter is modified from the following publication:
AP Manning, KL Chang, AL MacKay, CA Michal, Journal of Magnetic Resonance 274, 125–136 (2017)
https://doi.org/10.1016/j.jmr.2016.11.013
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Figure 6.1: The original explanation of ihMT, which suggested that the prepulses were burn-
ing holes in the non-aqueous spectra of lipids. This would necessarily require the spectrum
to be inhomogeneously-broadened under the definition of Portis (see text). Under these
conditions, the S− (A) and S+ (B) prepulses would burn a hole at single offsets, whereas the
Sdual prepulse (C) would burn a hole at both offsets. The difference (D) would lead to an
observable ihMT signal. Figure modified slightly for readability from Varma et al. [118], ©
2015, with permission from John Wiley & Sons, Inc.
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by a Hamiltonian Ĥ (such as the many-spin dipolar Hamiltonian) and [Ĥ(t1), Ĥ(t2)] = 0 at
times t1 6= t2, then by their definition the spectrum is inhomogeneously-broadened. During
MAS experiments, one would see spinning sidebands as a result. These are NMR signals
that appear in the spectrum separated by the NMR spinning frequency. Conversely, if
[Ĥ(t1), Ĥ(t2)] 6= 0, then under this definition it is homogeneous and no spinning sidebands
are seen.

Portis’s definition relies only on the spectrum, whereas Maricq and Waugh’s definition arises
from the properties of the Hamiltonian. Hence, the nomenclature in the literature is incon-
sistent. Schmidt-Rohr and Spiess discuss this point in Section 3.13.4 of their book [11]. In
fact, in certain situations, an inhomogeneous Hamiltonian may give rise to a homogeneously-
broadened spectrum [11,177]!

To connect this to the lipid systems of interest to this thesis, we discussed in Section 4.2
how dipolar couplings within methylene groups on lipid acyl chains lead to their super-
Lorentzian 1H lineshape. The rapid translational diffusion and spinning of the lipid molecules
results in an effective homonuclear dipolar Hamiltonian that commutes with itself at all
times while spinning [178]. High-resolution MAS spectra of lamellar lipids can be obtained,
where spinning sidebands are evident [178,179]. Therefore, in these systems the Hamiltonian
is inhomogeneous by the Maricq and Waugh definition. However, as we explore below, the
overlapping nature of the orientation-dependent subspectra in the super-Lorentzian lineshape
characteristic of lipids does not permit asymmetric hole burning—so the spectra are not
inhomogeneous in the Portis sense.

In any case, in addition to the explanation based on inhomogeneous broadening, more recent
work by Varma et al. used Provotorov Theory to describe the fundamental physics of ihMT
[30,119]. When rf irradiation is applied at one offset, magnetization is able to flow between
the Zeeman and dipolar reservoirs, but when rf is applied at both offsets simultaneously, the
coupling between the reservoirs is severed. In this framework, the dipolar relaxation time T1D

is a key parameter in determining the ihMT signal magnitude. Notably, the application of
Provotorov Theory does not require any assumptions about the type of spectral broadening,
only that there be dipolar couplings present.

To summarize, to date there are two possible explanations for ihMT: one based on hole-
burning, which assumes an inhomogeneously-broadened spectrum in the Portis sense for lipid
membranes’ methylenes; and one based on Provotorov theory, which makes no assumptions
on the type of broadening. In this chapter, we test both explanations by focusing on the NMR
behavior of the non-aqueous protons. In the Theory section, we describe the fundamental
physics of ihMT rigorously, first through a minimal model of an isolated methylene group
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using density matrices, and then for any system using Provotorov Theory. In doing so we
characterize the fundamental timescales of the non-aqueous protons required for a non-zero
ihMTR. Our experimental results show that the model lipid system, Prolipid-161 (PL161),
does not exhibit hole-burning and that its non-aqueous spectrum behaves like that of a
weakly-coupled ensemble of strongly-coupled spin pairs. Moreover, our results make clear
that some samples with homogeneously-broadened lineshapes do exhibit ihMT, refuting the
explanation based upon inhomogeneous broadening. Taken together, we show that ihMT
arises simply from the dipolar interaction, not from a specific broadening mechanism.

6.2 Theory

The physics of both MT and ihMT may be considered as two separate processes: 1) the
irradiation of non-aqueous protons, and 2) magnetization exchange between the non-aqueous
and aqueous protons. A complete model of ihMT using Provotorov Theory that considers
both processes (by including aqueous and non-aqueous protons) has already been published
by Varma et al. [119], and we do not seek to replicate it here. What sets ihMT apart from
MT is only a change in prepulse irradiation (comparing single vs dual-sided irradiation).
Therefore, fundamental understanding why ihMT appears more selective to lipids requires
modeling the behavior of the non-aqueous protons only, which we do in the models below.

Both of our models describe calculation of a “non-aqueous ihMTR” in analogy to the “aque-
ous ihMTR” typically used in ihMT. Experimentally, since NMR spectroscopy can detect
both the non-aqueous and aqueous parts of the proton spectrum, the two ihMTRs are found
by integrating the corresponding parts of the spectrum. In a sample that exhibits MT sig-
nals, a non-aqueous ihMT (where the non-aqueous ihMTR 6= 0) will cause an aqueous ihMT
because of magnetization exchange.

Our first model of ihMT is based on the simplest system in which ihMT can occur: a spin-1
system. Our second model uses Provotorov theory to describe ihMT. It predicts ihMT can
arise in spectra with either inhomogeneous or homogeneous broadening.

6.2.1 ihMT model 1: a simple spin-1 system

6.2.1.1 Selective and non-selective pulses in a spin-1 system

We now consider the behavior of a simple spin-1 system, which is motivated by the behaviour
of coupled protons in the methylene groups in lipid acyl chains (Section 4.2). We will
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use this to both semi-quantitatively model the non-aqueous protons in the lipids and as a
straightforward means of understanding the general mechanism of ihMT.

The Hamiltonian of a dipolar-coupled spin-1
2 pair or a single spin-1 particle was given in

Eq. 2.30. Repeating it here:

Ĥ = ĤZ + ĤD

= −ω0Îz + ωD

3 (3Î2
z − 2 1).

(6.1)

The first and second terms are the Zeeman and dipolar Hamiltonians, ω0 is the Larmor fre-
quency, and ωD is the dipolar interaction strength (where ωD � ω0). In thermal equilibrium
the density matrix is

ρ0 = M0 diag(1, 0,−1) = M0Îz. (6.2)

The spectrum of this system, g(ω), following a broadband on-resonance rf pulse is

g(ω) ∝ δ(ω0 + ωD) + δ(ω0 − ωD). (6.3)

This is a doublet centered at ω0 with a splitting of 2ωD.

Now, a non-selective pulse is applied at ω0 with an amplitude ω1 � ωD such that both
transitions are affected. If the pulse is applied on the y-axis in the rotating frame, then via
Eq. 2.22,

ρ = M0 cos(ω1τ)Îz − sin(ω1τ)Îx,

where τ is the duration of the non-selective pulse. In this spin-1 system, this is exactly the
case of the dual ihMT prepulse, so we may write

Mdual = 〈Îz〉
= M0 cos(ω1τ). (6.4)

Alternatively, we may also use a selective pulse with ω1 � ωD such that it is on resonance
for only one transition. If the pulse frequency is ω0 +ωD, then we can analyze just the {1, 0}
subspace of ρ [9, 180]. In this subspace, there is one transition, so it is identical to a spin-1

2
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particle. In equilibrium, the subspace is

ρ0,1/2 =
 1 0

0 0


= M0

2

 1 0
0 1

+ M0
2

 1 0
0 −1


= M0

2 11/2 +M0Îz,1/2,

where we have used spin-1
2 operators. The same subspace in the rf Hamiltonian is

Ĥrf =
 0 −iω1

iω1 0


= 2ω1Îy,1/2.

Outside of this subspace, Ĥrf is zero, since the pulse is selective to the one transition. Again,
using Eq. 2.22, we find that the density matrix evolves under this Hamiltonian to

ρ1/2 = M0
2 11/2 +M0 cos(2ω1τ)Îz,1/2 −M0 sin(2ω1τ)Îx,1/2.

The nutation frequency is twice as fast than in the dual case. This is a well-known effect
and is seen in the nutation of the central transition in quadrupolar couplings as well [9,180].
Now, substituting this subspace back into the complete spin-1 density matrix, we find for a
selective pulse on a single transition

Msingle = M0
(

3
4 + 1

4 cos(2ω1τ)
)
. (6.5)

Selectively irradiating the other transition at ω0 − ωD yields the same result.

6.2.1.2 Application to ihMT

We now show how the spin-1 system is sensitive to the frequency of selective pulses explicitly
through one simplified example. The selective pulses are used to saturate or invert one or
both transition populations. This has a corresponding impact on the spectral line amplitudes.

Consider a selective pulse applied at ω0 + ωD, with an amplitude ω1 and pulse length τ

calibrated to invert the transition (a π pulse), yielding
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ρ+ = M0 diag(0, 1,−1) = M0
2 Iz −

M0
2 (3I2

z − 2 1), (6.6)

in which the subscript + on ρ+ indicates a pulse applied at a positive frequency offset. The
(3I2

z − 2 1) term indicates the presence of dipolar order. Similarly, applying the selective π
pulse at ω0 − ωD to invert the other transition yields

ρ− = M0 diag(0, 1,−1) = M0
2 Iz + M0

2 (3I2
z − 2 1), (6.7)

In either case, the coefficient of the Îz term is reduced from the thermal equilibrium value
of M0 to M0/2. Next, we consider applying the same pulse power to both transitions simul-
taneously. We know from Eqs. 6.4 and 6.5 that if 2ω1τ = π in the selective case, the flip
angle in the dual case will be π/2 (half as much). Since we don’t care about the off-diagonal
elements, we will call this a saturation pulse. Thus,

ρdual = M0 diag(0, 0, 0), (6.8)

where now clearly there is no magnetization or dipolar order.

The difference from equilibrium for the single prepulse cases areM0−M0/2 = M0/2, whereas
in the dual case it is M0 − 0 = M0. Therefore in his example, irradiating both transitions
simultaneously provides twice as much difference from the equilibrium value of 〈Iz〉 for the
same rf power. Calculating the non-aqueous ihMTR for this experiment, we have

ihMTR = 〈Iz〉+ + 〈Iz〉− − 2〈Iz〉dual
2〈Iz〉0

= M0/2 +M0/2− 2(0)
2M0

= 1/2

(6.9)

Using Eqs. 6.4 and 6.5, we can determine this generally for any prepulse power, showing that
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the spin-1 system always has a nonzero ihMTR:

ihMTR = 〈Iz〉+ + 〈Iz〉− − 2〈Iz〉dual
2〈Iz〉0

=
2M0

(
3
4 + 1

4 cos(2ω1τ)
)
− 2M0 cos(ω1τ)

2M0

= 3 + cos(2ω1τ)− 4 cos(ω1τ)
4 > 0.

(6.10)

In the absence of spin-lattice relaxation, the limit τ →∞ averages the cosine terms to zero
and ihMTR approaches 3/4.

If our spin-1 system here represents a typical methylene group in a lipid bilayer, then magne-
tization exchange would take place with aqueous protons on the timescale of 10–100 ms. This
would decrease the aqueous magnetization by an amount proportional to the non-aqueous
〈Iz〉, thereby causing a non-zero aqueous ihMTR. This shows that a non-zero aqueous ihMT
signal is expected from a system consisting of water in contact with strongly-coupled spin
pairs. Moreover, it shows that ihMT does not arise from a specific type of spectral broad-
ening, but from dipolar couplings alone.

6.2.1.3 Spectral asymmetry from dipolar order

The population differences in the density matrices of Eqns. 6.6, 6.7, and 6.8, suggest that
inverting (or saturating) the transition of one of the lines in the doublet spectrum should
result in an enhancement in the amplitude of the other line. Perhaps surprisingly, a non-
selective π

2 (or any (2n + 1)π2 ) pulse applied to this system produces a spectrum with both
peaks of the doublet having identical amplitudes. However, if the flip angle is 6= nπ2 , an
intensity difference between the two lines is observed. This is a manifestation of the “flip-
angle effect” [181,182].

The diagonal of the density matrix following an arbitrary prepulse can be written as

ρ = diag(ρ11, ρ22, ρ33) = aIz + b
3(3I2

z − 2 1) + c1, (6.11)

where a = 1
2(ρ11 − ρ33), b = 1

2(ρ11 + ρ33)− ρ22, and c = 1
3(ρ11 + ρ22 + ρ33). The off-diagonal

components are set to zero, which may be accomplished experimentally by appropriate phase
cycling. Next, we calculate the effect of a hard observe pulse of flip angle α along the +x
axis using product operators (Eq. 2.22). Keeping only the observable terms, we find

ρ = −a sinαIy − b cosα sinα(IzIy + IyIz). (6.12)
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The Iy term is from the initial Zeeman magnetization (given by a), and the IzIy+IyIz term is
antiphase magnetization from the initial dipolar order (given by b). Evolving this expression
under the Hamiltonian in Eq. 6.1 gives the amplitudes of the two transitions:

A± = a sinα± b cosα sinα, (6.13)

where A± are the amplitudes of the transitions at ±ωD. It is clear that when the flip angle
is π

2 , A+ and A− are identical (A±(π2 ) = a = 1
2(ρ11 − ρ33)), and both lines have identical

amplitudes regardless of the amount of dipolar order. However, for flip angles 6= nπ2 , the
amplitudes of the lines will differ by 2b cosα sinα. For small flip angles, where cosα ≈ 1,
A± = (a± b) sinα, so that A+ = (ρ11−ρ22) sinα and A− = (ρ22−ρ33) sinα as expected. For
all flip angles, the amplitudes of the two lines are correlated. The amplitude of one cannot be
reduced independently of the other. This is in contrast to hole burning, where the amplitudes
of the overlapping lines that make up the spectrum can be changed independently.

Experiments like the ones considered here, demonstrating the interplay between dipolar
coupled spectral lines, have been carried out experimentally on the ensemble of dipolar
coupled 1H spin pairs in oriented 5CB (which has a spectrum of two lines) by Lee et al. [37].
When one of the spectral lines of the dipolar coupled pairs was irradiated, the intensities
behave as predicted by the model described above. Nakashima et al. have also shown similar
effects in the behavior of spin-3/2 systems in 23Na NMR of NaNO3 crystals [182].

Spin-1 behavior is not immediately obvious from the proton NMR spectra of lamellar lipids,
where the chain-position dependent coupling strength, along with residual inter-molecular
and inter-methylene couplings broaden the doublets to the point where the lipid lineshape
is well described as a superposition of Gaussian singlets having widths and intensities mod-
ulated by P2(cos θ) [80,87,91]. This fact is explored more deeply in Section 4.2.

6.2.2 ihMT model 2: a homogeneously-broadened system using
Provotorov theory

6.2.2.1 The Provotorov equations for continuous-wave ihMT prepulses

While the spin-1 theory just described forms a minimal model demonstrating the origin of
the ihMT effect, a general approach for all systems is based on Provotorov Theory. This
describes the evolution of dipolar-coupled spins under weak rf irradiation (i.e. 2πν1 � ωD),
such as ihMT prepulses [30, 183, 184]. We introduced Provotorov Theory in Section 2.5.6
and derive it in Appendix A.
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Previous ihMT studies have used two varieties of prepulses. The “Continuous-Wave” (CW)
type applies a single rectangular prepulse, which is sine-modulated in the case of the Sdual

experiment [118]. The “pulse-train” type uses prepulses consisting of a train of shaped pulses
(typically Hann or Gaussian) [84,119,120]. We analyze the behavior of a coupled spin system
under both varieties. Because our experiments use CW prepulses, their analysis is presented
below. Appendix D contains a similar treatment of pulse-train prepulses, which are common
in imaging applications. The derivation below follows the approach by Lee et al. [37, 38].

We briefly review the Provotorov equations. The density matrix for a dipolar-coupled system
in a rotating frame at angular frequency ω0 + 2π∆ is [30,38]

ρ = 1− (2π∆)βZIz − ωDβD
(
ĤD

ωD

)
. (6.14)

Or, as a vector with {Iz, ĤD

ωD
} as the basis (the 1 term is dropped):

ρ =
 −(2π∆)βZ
−ωDβD

 . (6.15)

Here, βZ,D are the inverse spin temperatures for the Zeeman and dipolar reservoirs, and the
vector basis is {Îz, ĤD

ωD
}, with ĤD as the dipolar Hamiltonian. When weak rf is applied at a

single offset ∆, the Provotorov equations including spin-lattice relaxation are [30]

dρ±
dt

= W

 −1− 1
WT1

Ω
Ω −Ω2 − 1

WT1D

ρ± +
 〈Iz〉0

T1

0

 , (6.16)

with

W = π(2πν1)2g(2π∆) (6.17)
Ω = 2π∆

ωD
. (6.18)

Here, ν1 is the prepulse amplitude (in Hz), and g(2π∆) the symmetric, normalized lineshape.
ωD is the RMS average dipolar interaction strength (the residual dipolar couplings).

Eq. 6.16 describes the evolution during the S+ or S− prepulse, the only difference between
the two being the sign of Ω and consequently the sign of dipolar magnetization. However,
qualitatively different behavior occurs during the Sdual prepulse, where rf irradiation with
amplitude ν1/

√
2 is applied to dual offsets ±∆ simultaneously. This causes the Zeeman and
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dipolar reservoirs to decouple, leading to [30]

dρdual
dt

= W

 −1− 1
WT1

0
0 −Ω2 − 1

WT1D

ρdual +
 〈Iz〉0

T1

0

 . (6.19)

Applying standard differential equation techniques (e.g. see reference [154]) to solve Eqs.
6.16 and 6.19 under a prepulse of duration τ yields

ρ(t) = c1v1e
λ1Wτ + c2v2e

λ2Wτ + v0 (6.20)

where

λ1,2 = −1
2

 1
WT1

+ 1
WT1D

+ 1 + Ω2 ±
√( 1

WT1
− 1
WT1D

+ 1− Ω2
)2

+ 4Ω2

 (6.21)

v0 = 〈Iz〉0
WT1(λ1 − λ2)

 λ2+Ω2+(WT1D)−1

λ2
− λ1+Ω2+(WT1D)−1

λ1
Ω
λ2
− Ω

λ1

 . (6.22)

Lee et al. also give the steady-state solution vector v0 explicitly, assuming the system starts
from thermal equilibrium [37]. The non-aqueous ihMTR as a function of prepulse duration
τ is

ihMTR(τ) = 〈Iz〉+(τ) + 〈Iz〉−(τ)− 2〈Iz〉dual(τ)
2〈Iz〉0

. (6.23)

In Appendix C, we present an analogous electronic circuit of the above equations.

6.2.2.2 Model details

We now consider the behavior of the non-aqueous protons under the three different types
of prepulses, assuming the system starts at equilibrium, ρ(0) = 〈Iz〉0Iz. In the S+ and S−
cases, 〈Iz〉 decays bi-exponentially since the eigenvalues Wλ1 and Wλ2 are always negative.
This is in contrast to the mono-exponential decay behavior in the Sdual case.

Under the Sdual prepulse, the two reservoirs are decoupled. In the Zeeman reservoir, relax-
ation and saturation are responsible for a loss of magnetization at the rate (W + T−1

1 )〈Iz〉.
The solution to Eq. 6.19 is

〈Iz〉dual(τ) = 〈Iz〉0
1 +WT1e

−(W+T−1
1 )τ

1 +WT1
,

〈ĤD

ωD
〉(τ) = 0.

(6.24)
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The magnetization in the Zeeman reservoir decays exponentially toward the steady-state
value (1 +WT1)−1 at a rate that is independent of T1D, because no magnetization enters the
dipolar reservoir.

During the S+ prepulse (or with Ω → −Ω, the S− prepulse), the dipolar reservoir must
also be considered, where magnetization saturates and relaxes at a rate (WΩ2 + T−1

1D )〈 ĤD

ωD
〉.

Magnetization flows into the dipolar reservoir from the Zeeman reservoir at a rate WΩ〈Iz〉.
If T1DW � 1, rapid relaxation means very little magnetization is left to flow back to the Zee-
man reservoir. The net result is that 〈Iz〉+(τ) (and 〈Iz〉−(τ)) behaves similarly to 〈Iz〉dual(τ)
and ihMT is negligible. Alternatively, if T1DW & 1, then non-negligible magnetization flows
back into the Zeeman reservoir at a rate WΩ〈 ĤD

ωD
〉. This leads to a significant deviation in

behavior of the Zeeman magnetization from the Sdual case, so ihMT is measurable.

From this, we see that WT1D is a key parameter in controlling ihMT. If W is held constant,
then, as others have pointed out, ihMT generates T1D-dependent contrast in MRI [84, 119,
133]. However, since W is, within limits, under control of the experimenter (by controlling
ν1), it may afford detection of ihMT in systems with short T1D.

Fig. 6.2 explores the dependence of non-aqueous ihMTR on prepulse duration, WT1D and
offset frequency. Fig. 6.2A shows the ihMTR dependence on prepulse length, τ . Generally,
there is a peak followed by a falloff to a lower steady-state value. At short times (τ ∼ 1
ms), the bi-exponential decay of 〈Iz〉+(τ) (and 〈Iz〉−(τ)) and the mono-exponential decay
of 〈Iz〉dual are similar, so ihMTR is small. At times τ ∼10–100 ms, the difference between
the two behaviors is at a maximum, leading to a maximum ihMTR. At longer times, the
difference decreases as the system achieves steady state, yielding constant ihMTR values.
Also shown in this plot is that ihMTR increases with WT1D.

Fig. 6.2B isolates the WT1D dependence more explicitly for a prepulse duration of τ = 500
ms. This plot shows similar behavior in ihMTR as in Fig. 6.2A, where ihMTR is plotted
as a function of τ . Analysis of Eqs. 6.21 and 6.24 shows that only Wτ appears, not τ
alone. Therefore, holding τ and T1D constant and varying W produces the same behaviour
as holding T1D constant and varying Wτ . This plot also shows the highly-sensitive T1D-
dependence, which is approximately linear unless T1 ∼ T1D.

Fig. 6.2C shows the dependence on the offset frequency of the prepulse. The general shape
of these curves is similar to plots of aqueous ihMTR vs. |∆| in previous studies [84,118–120].
At short prepulse lengths, the maximum ihMTR occurs near the resonance condition in the
local field (Ω = 1). However, at long prepulse lengths, the maximum shifts to higher offset
frequencies where saturation effects are suppressed.

This model considers a system of isolated, non-aqueous protons only. However, including an
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Figure 6.2: Simulation of non-aqueous ihMT in an isolated spin system using CW prepulses
(Eq. 6.23). No coupling to aqueous protons is included. (A) The dependence of ihMTR on
prepulse length. If couplings to aqueous protons were included, the long-time behavior would
deviate from what is shown here. (B) The effect of WT1D and T1D. The T1D-dependence
is approximately linear and for WT1D � 1, ihMT is unobservable. (C) The dependence on
offset for different prepulse lengths. The resonance condition in the local field is Ω = 1.
Parameters unless otherwise indicated: T1 = 1 s, Ω = 1, ν1 = 400 Hz, with g(2π∆) as a
Gaussian with standard deviation ωD = 10 kHz.
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exchangeable aqueous proton pool would not change the qualitative behavior significantly,
except in the case of ihMTR as a function of prepulse length (Fig. 6.2A). When ihMT is
performed in the presence of an aqueous proton pool, a longer prepulse produces a greater
change in the aqueous magnetization due to the slow exchange. In this case, there will not
be a maximum in the aqueous ihMTR at a prepulse length of 10–100 ms.

Appendix D contains simulations of the pulse-train model (Fig. D.2) similar to those shown
for the CW model. The term WeffT1D is shown to play the role of WT1D, where the effective
W (Weff) is scaled by the duty cycle.

6.2.2.3 Spectral asymmetry from dipolar order

As in the spin-1 model, dipolar order in large spin systems gives rise to spectral asymmetry.
Starting with the rotating-frame density matrix in Eq. 6.14, a hard pulse of flip angle α is
applied along y. After a time t, the components of magnetization are [30]

〈Ix〉(t) ∝ −(βZ(2π∆) sinα)f(t)
〈Iy〉(t) ∝ (βD sinα cosα)df(t)

dt
.

(6.25)

Here, f(t) is the envelope of the FID. The resonance frequency at the center of the spectrum
is ω0, so the spectrum (up to a constant) is

A(ω) = [−βZ(2π∆) sinα− (ω − ω0)βD sinα cosα] g(ω − ω0). (6.26)

Here, g(ω−ω0) is the Fourier transform of f(t) and describes a symmetric spectrum centered
at ω0. The factor of ω − ω0 in the second bracketed term causes spectral asymmetry, which
is only visible when α 6= nπ/2.

We can use this equation to re-derive the spin-1 model amplitudes. Substituting the spin-1
spectrum (Eq. 6.3) into the expression for A(ω), we calculate

A± ∝
∫ ±∞

0
A(ω)dω

= −βZ(2π∆) sinα∓ βDω0 sinα cosα,
(6.27)

which has the same form as Eq. 6.13, showing that it is applicable to any dipolar-coupled
lineshape.
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Figure 6.3: Pulse sequences used in this work. The dipolar order creation sequence uses a
Gaussian prepulse. The two ihMT sequences were used to measure ihMTR. During their
prepulses the rf power was the same. The ADRF/ARRF sequence was used to measure T1D.

6.3 Methods

PL161 samples were prepared by melting ca. 50 mg of prolipid-161 (Ashland Specialty Ingre-
dients, DE, USA) at 80-90◦ C in distilled water and/or deuterated water (Cambridge Isotope
Laboratories, Inc. MA, USA). Samples of PL161/D2O (10%/90% w/w), PL161/D2O/H2O
(10%/88%/2% w/w), and PL161/H2O (10%/90% w/w) were made. PL161 forms a lamellar
liquid crystal with MT properties similar to those of myelin [118,185–187]. A 63 mg sample
of curly, black human hair was obtained 10–20 cm from the scalp. This was thoroughly
washed in water and soap then air-dried prior to measurement. A 61 mg sample of Douglas
Fir (Pseudotsuga menziesi) sapwood was obtained from a branch with a ∼3 cm diameter
and was air-dried for 2 weeks prior to measurement. A 57 mg sample of Western Red Cedar
(Thuja plicata) sapwood was obtained from a branch with a ∼1 cm diameter and dried the
same way. Beef (Bos taurus) tendon was obtained frozen from a local butcher. A 70 mg
sample was extracted from the tendon sheath, patted dry, then sealed inside an NMR tube.
Experiments on tendon were completed within 48 hours of thawing.

The four styles of pulse sequences used are shown in Fig. 6.3. The dipolar order creation
sequence was used for spectral asymmetry experiments. It features a short, intense Gaus-
sian prepulse three standard deviations wide (typically, τ =1–3 ms, ν1 = 2.5 kHz, ∆ = 8
kHz, δ variable). For ihMT-related experiments, the S+ and S− spectra were produced
by a rectangular prepulse at offsets +∆ and −∆ respectively, whereas the Sdual spectra
were produced with a rectangular prepulse modulated by sin(2π∆), thereby irradiating ±∆
simultaneously. The S0 spectra had no prepulse. When observing the differences in the
non-aqueous portions of S0, S+, S−, and Sdual spectra, typically τ =2–50 ms and ν1 = 10
kHz. When measuring aqueous ihMTR, typically τ = 500 ms and ν1 = 460 kHz. In both
cases, δ ≤ 0.5 ms. Lastly, the Adiabatic Demagnetization/Remagnetization in the Rotating
Frame (ADRF/ARRF) sequence was used for measuring the dipolar order decay constant
T1D, discussed in Section 2.5.5. It had a ramp time τ = 1 ms and a variable relaxation delay
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δ. In all experiments, the observe pulse flip angle α was either 33◦ (pulse width 2 µs) or 90◦

(pulse width 5.5 µs).

All spectra were acquired at 21±1◦C using 64 acquisitions, a 10 s recycle delay, and were
processed with 500 Hz of Gaussian line broadening. ∆ = 0 kHz is approximately the center
of the non-aqueous lineshape. Experiments were carried out using a horizontal solenoid coil
probe on a 200 MHz home-built NMR spectrometer incorporating a digital receiver, based
on an Oxford Instruments 4.7 T, 89 mm bore superconducting magnet [188]. Curve fitting
was performed with SciPy’s least squares package [157]. Errors given on fitted parameters
are one standard deviation found with the bootstrap method using 1000 permutations.

6.4 Results

6.4.1 PL161 spectral asymmetry from dipolar order

1H NMR spectra of a PL161/D2O sample showing the effects of an off-resonance prepulse for
33◦ and 90◦ observe pulses are shown in Fig. 6.4. The spectra consist of a super-Lorentzian
arising from the non-aqueous lipid protons and a residual HDO line. Because τ = 1 ms
and δ = 0.5 ms, magnetization transfer to the aqueous protons is insignificant. Therefore,
plotting S+ − S0 removes the HDO line and highlights differences between the non-aqueous
S+ and S0. Spectra acquired with an observe flip angle of α = 33◦ (Figs. 6.4A and 6.4C)
are asymmetric: the prepulses with ∆ = 8 kHz attenuate the spectrum near +8 kHz and
enhance it near -8 kHz, indicating the presence of dipolar order. When α = 90◦ (Figs. 6.4B
and 6.4D), the prepulse appears to attenuate the entire non-aqueous spectrum uniformly. In
Fig. 6.4, a single prepulse at positive offset was used. In work by Swanson et al. [84], plots
of S+ − S− for PL161 also show asymmetry from dipolar order, but remove the effects of
Zeeman order, obscuring any potential hole-burning. Plotting S+ − S0 as done here shows
both the effects of both Zeeman order and dipolar order on the spectrum.

These experiments show no evidence of hole-burning in the non-aqueous parts of the PL161
spectrum as would be expected based on the explanation of the ihMT effect in Ref [118].
The behavior is consistent with the presence of strong dipolar couplings within the lipid
methylenes. Two discrete spectral peaks are not observed for the non-aqueous component
due to the orientation and chain-position dependence of the dipolar coupling strengths and
residual dipolar couplings to neighboring methylene groups.

S0, S+, S−, and Sdual for PL161/D2O using CW ihMT sequences are plotted together in
Fig. 6.5. The purpose of these experiments is to highlight the response of the non-aqueous
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Figure 6.4: Effect of the observation flip angle α on the PL161 non-aqueous proton spectrum.
For S+, a Gaussian prepulse (τ = 1 ms, ν1 = 2.5 kHz, ∆ = 8 kHz, δ = 0.5 ms) was applied
with α = 33◦ (A) or α = 90◦ (B). (C) and (D) are difference spectra which highlight the
asymmetry caused by dipolar order observed in α = 33◦ case.

protons to the various ihMT prepulses. Again, enhancement of the non-irradiated side of the
spectrum can be seen in S+ and S−. In contrast, the non-aqueous component of the Sdual

spectrum is symmetric and strongly suppressed.

We can approximate the degree of Zeeman and dipolar magnetizations in these four spectra.
Integrals of the positive frequency (I>) and negative frequency (I<) sides of the non-aqueous
components of a spectrum S(f) are calculated by

I> = ∑fi=+80 kHz
fi=+3 kHz S(fi),

I< = ∑fi=−3 kHz
fi=−80 kHzS(fi).

(6.28)

Following the description of the spectral lineshape in the presence of dipolar order (Eq. 6.26),
the sum and difference are approximate measures of the Zeeman and dipolar magnetizations,
respectively:

〈Iz〉 ≈ I> + I< (6.29)∣∣∣〈 ĤD

ωD
〉
∣∣∣ ≈ |I> − I<|. (6.30)

Fig. 6.6 compiles these results for our samples, allowing comparison of the different behaviors.
The spectra used in the calculations are shown in Figs. 6.5 and 6.7. The prepulse length τ
varies and was chosen to give the maximum dipolar order in the S+ and S− spectra for each
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Figure 6.5: Manifestation of dipolar order in ihMT. Spectral asymmetry from dipolar order
is present in S+ and S− but not S0 or Sdual. Sequence parameters are listed in the caption
of Fig. 6.6.

sample. Also, the recovery time δ was decreased for samples with smaller T1D values. In
contrast to the short duration used here, in ihMT-MRI experiments reported to date, τ + δ

is typically ∼ 1 s [84, 118–120]. However, a prepulse this long would push the non-aqueous
protons toward steady-state conditions, decreasing the visible differences in their portion of
the spectra, observation of which is our goal for these experiments.

In all of these samples, we see that non-aqueous ihMT occurs since 〈Iz〉dual < 〈Iz〉±. In
PL161/D2O, these results are consistent with the behavior of the spin-1 view of the lipid
spin system. The non-aqueous Zeeman magnetization 〈Iz〉 in the S+ and S− cases are 0.71
and 0.70, respectively, which is a reduction of about 0.3 from the S0 case where 〈Iz〉 = 1.
In the Sdual case the reduction is about twice as much, i.e. 〈Iz〉 = 0.34 ≈ 1− 2× 0.3. This
two-fold reduction in the case of Sdual is consistent with the predictions of the spin-1 model
above.

6.4.2 Flip-angle dependence of spectral asymmetry

Fig. 6.8A shows the observe pulse flip-angle (α) dependence of the non-aqueous spectrum of
PL161/D2O. I> and I< of S+−S0 as functions of α are fit to the A+ and A− line intensities
of the spin-1 model (Eqs. 6.13 and 6.27). In order to account for B1 inhomogeneity effects,
A+ and A− were multiplied by exp(−π δB1 α/2πB1), where δB1 is the full-width at half-max
of a Lorentzian distribution of B1 field strengths.

The best fit was found with a Zeeman order of a = 6.4±0.7, a dipolar order of b = 4.4±0.6,
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Figure 6.6: Summary of the positive/negative frequency integrals I>/I<, approximate
dipolar magnetization

∣∣∣〈 ĤD

ωD
〉
∣∣∣, and Zeeman magnetization 〈Iz〉 for the non-aqueous proton

portions of the S+, S−, and Sdual spectra from Figs. 6.5 and 6.7. I< and I> are normalized to
the S0 values. The ihMT sequences were used with ν1 = 1 kHz, |∆| = 10 kHz, and α = 33◦.
τ was chosen to maximize the amount of dipolar order, and δ decreased for samples with a
shorter T1D. PL161/D2O: τ = 50 ms, δ = 0.5 ms, Douglas fir: τ = 50 ms, δ = 0.1 ms, hair:
τ = 2 ms, δ = 0.1 ms, tendon: τ = 2 ms, δ = 0.01 ms.

118



−60−40−200204060

Frequency f (kHz)

0.0

0.5

1.0 Cedar

0.0

0.5

1.0

1
H

In
te

ns
it

y
(a

.u
.)

Hair

0.0

0.5

1.0 Tendon
S0

S+

S−
Sdual

Figure 6.7: Beef tendon, human hair, and Western Red Cedar sapwood spectra following
CW ihMT prepulses. These are used to calculate the Zeeman and dipolar magnetizations
shown in the chart of Fig. 6.6, which also lists the pulse sequence parameters. Spectral
asymmetry from dipolar order is evident in all three samples. The hair and tendon spectra
had more line broadening applied due to their lower signal-to-noise ratio.

0 90 180 270 360 450

Observe pulse flip angle, α (degrees)

−5

0

5

S
+
−

S
0

in
te

gr
at

ed
in

te
ns

it
y

di
ff

er
en

ce
(a

.u
.) (A)

I>
I<

A± fit

10−3 10−2 10−1 100 101

Recovery time, δ (s)

−20

−10

0

10

S
+
−

S
0

in
te

gr
at

ed
in

te
ns

it
y

di
ff

er
en

ce
(a

.u
.) (B)

I>
I<
T1D , T1 fit

Figure 6.8: Flip-angle dependence of spectral asymmetry and saturation method measure-
ment of T1D in PL161. (A) The I> and I< integrals of S+−S0 as functions of α closely follow
Eq. 6.13. A single Gaussian prepulse was used with τ = 3 ms, ν1 = 2.5 kHz, ∆ = +10 kHz,
and δ = 0.5 ms. (B) Saturation method data, showing T1 and T1D relaxation in PL161 from
the recovery of the S+ − S0 difference spectrum. I> and I< are fit to Eq. 6.32. A Gaussian
prepulse with τ = 1 ms, ν1 = 2.5 kHz, ∆ = +8 kHz, and α = 33◦ was used. In both plots,
deviations apparent in nearby data points provide estimates of the measurement error.
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aqueous protons, since their dipolar couplings are averaged away. This also applies for lipids
oriented near the magic angle, hence the dip at 0 kHz.

and a B1 inhomogeneity of γδB1/2π = 11± 1 kHz (about 20% of ν1).

6.4.3 PL161 dipolar order relaxation

Measurements of the dipolar order relaxation time T1D in PL161 were made with two different
methods. The ADRF/ARRF sequence converts Zeeman magnetization to dipolar order and
allows it to relax for time δ before reconverting to an observable signal. An example of
an ADRF/ARRF spectrum of PL161/D2O is shown in Fig. 6.9. In comparison to the S0

spectrum, the residual HDO peak is absent and the peak of the super-Lorentzian is replaced
with a dip. The peak of the super-Lorentzian corresponds to lipids in bilayers whose normal
points along the magic angle. When aligned with the magic angle, the intra-methylene
residual dipolar coupling strength is averaged to near zero. The signal from these lipids and
from the water are eliminated by the pulse sequence phase cycle.

Measurements of T1D made with the ADRF/ARRF sequence were not well fit with single
exponential decays, likely due to the distribution of bilayer orientations and chain positions.
Stretched exponentials of the form

〈Iz〉(t) = C exp(−(t/T1D)s), (6.31)

did adequately describe the data. Best fit parameters are given in Table 6.1. Our value of
~60 ms for PL161/D2O is similar, but somewhat greater than, the 48.8 ± 2.5 ms measured
by Swanson et al. [84]. The discrepancy is probably due to their slightly higher sample tem-
perature (25◦C) and their measurement technique. They used a Jeener-Broekaert sequence,
which weights T1D distributions differently than ADRF/ARRF sequences [189].

We have also measured T1D for PL161 in 88%/2% D2O/H2O and 90% H2O. Increasing the
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Figure 6.10: Inversion-recovery T1 measurements in PL161/D2O. The aqueous proton in-
tensity is integrated in a 1 kHz-wide window around the aqueous peak. Integrals of
the entire spectrum and the aqueous protons only were fit to a stretched exponential of
the form 〈Iz〉(t) = C [1− γ exp (−(δ/T1)s)] . The fit values are as follows. Entire spec-
trum: T1 = 1.245 ± 0.007 s, γ = 1.831 ± 0.004, s = 0.818 ± 0.005. Aqueous peak only:
T1 = 1.594± 0.005 s, γ = 1.961± 0.003, with s set to 1. Here, γ is the inversion efficiency, δ
is the recovery time, and C is a constant.

aqueous proton concentration decreases the T1D, from 61 ms in D2O to 23 ms in H2O. This
suggests that both spin diffusion from within the bilayer to the surface and exchange with
aqueous protons at the surface, which destroys the dipolar order, are important contributors
to the rate.

Another way to measure the T1D is by using the “saturation method” [190–192]. A weak, off-
resonance pulse first creates dipolar order. Then, the sample’s T1D is extracted by observing
the decay of spectral asymmetry (assuming α 6= π

2 ) as a function of δ. We have performed this
experiment on PL161/D2O. In the difference spectrum S+ − S0, the non-aqueous integrals
I> and I< relax toward zero with time constant T1D. The sum I> + I< decays toward zero
with time constant T1. The data were fit simultaneously to

I< = C1 exp(−δ/T1) + C2 exp(−δ/T1D)
I> = C1 exp(−δ/T1)− C2 exp(−δ/T1D),

(6.32)

where C1,2 are constants. The results are shown in Fig. 6.8B. The best fit is T1D = 58±4 ms
and T1 = 390± 60 ms. This T1D value agrees with the value found from the ADRF/ARRF
sequence, but the T1 value disagrees with measurements made with an inversion-recovery (IR)
sequence. These data, which are shown in Fig. 6.10, were also fit to a stretched-exponential,
yielding T1 = 1.245± 0.008 s. However, the IR non-aqueous signal is likely contaminated by
the residual HDO, causing the apparent T1 to shift toward the longer aqueous T1. This is
supported by a fit to the aqueous peak intensities only, which was found to be longer (about
1.6 s).
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Sample T1D (ms) s Measurement Technique

PL161/D2O (10%/90% w/w) 61± 1 0.74± 0.01 ADRF/ARRF

58± 4 1 (fixed) saturation method

PL161/D2O/H2O (10%/88%/2% w/w) 49.8± 0.8 0.70± 0.01 ADRF/ARRF

PL161/H2O (10%/90% w/w) 23± 1 0.66± 0.02 ADRF/ARRF

Douglas fir 2.6± 0.1 0.84± 0.05 ADRF/ARRF

Human hair 1.58± 0.03 0.84± 0.02 ADRF/ARRF

Beef tendon 0.634± 0.010 1 (fixed) saturation method

Table 6.1: T1D values for our samples. T1D values greater than about 1 ms could be measured
using the ADRF/ARRF technique. The saturation method had to be used to measure the
short tendon T1D. s is the stretched exponential parameter defined by Eq. 6.31. In the case
of Beef Tendon, a single exponential fit the data well, hence s was fixed at 1.

6.4.4 Dipolar order of homogeneously-broadened spin systems

Here, we show explicitly that homogeneously-broadened spin systems can behave similarly
to the PL161 spin system discussed so far, in agreement with the predictions from Provo-
torov Theory. Measurements were made of three biological materials with homogeneously-
broadened non-aqueous spectra: Douglas fir sapwood, human hair, and beef tendon. Fig.
6.6 displays measures of their Zeeman and dipolar magnetizations following the ihMT pre-
pulses, as well as their T1Ds. In contrast to PL161, these samples are not well-described by
the spin-1 model, due the large size of their coupled spin systems.

The Douglas fir S0, S+, S−, and Sdual spectra are shown in Fig. 6.5. As in PL161, the S+

and S− spectra display spectral asymmetry from dipolar order, as predicted by Eq. 6.26.
The S0 lineshape is approximately Gaussian, due to the large, rigid spin system of wood
constituents including cellulose, xylan, and lignin [193]. Of these, cellulose makes up about
half the mass of wood. In Douglas fir, these exist as crystalline microfibrils with diameters
of about 12–20 nm, interspersed with amorphous regions every 100–200 nm [194,195]. From
the aqueous and non-aqueous zero-time intercepts of the FID, the moisture content of the
Douglas Fir sample was found to be about 10% [196]. At this level, most of the remaining
water is in the cell wall, where it hydrates the cellulose microfibrils [196]. Experiments on a
sample of Western Red Cedar sapwood (Fig. 6.7) gave similar behavior as the Douglas Fir.

The spectra of Human hair (Fig. 6.7) also revealed the presence of dipolar order and a
similar ratio of aqueous to non-aqueous intensities. In hair, crystalline α-keratin filaments
about 8 nm in diameter are embedded in an amorphous hydrophilic keratin matrix [197,198].
The water signal originates from this matrix, where the water hydrates the keratin filament
exteriors.
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Figure 6.11: T1D of beef tendon as measured by the saturation method. The data are fit to
a mono-exponential decay (Eq. 6.31 with s fixed at 1), yielding T1D = 634± 10 µs. For S+,
a Gaussian prepulse was used with a width τ = 3σ = 0.5 ms and ν1 = 7 kHz. The observe
pulse flip angle was 33◦.

The behavior of tendon (Fig. 6.7) is similar, although the short T1D hinders the creation and
observation of dipolar order under these experimental conditions. The non-aqueous spectrum
is visually similar to the PL161 super-Lorentzian. Tendon is highly-ordered, consisting of
triple helices of collagen, which are organized into fibrils that run parallel to the tendon [199].
As large, relatively immobile molecules, collagen proteins have substantial dipolar couplings.
At the same time, mobile water molecules permeate the entire fibril and are partially ordered
by its structure [200].

The T1D values from the three non-lipid samples (Table 6.1) reflect the microstructure of the
samples. As with lipid bilayers, dipolar order in the non-aqueous protons of hair, wood, and
tendon is destroyed at the aqueous/non-aqueous proton interface due to proton exchange.
When there is no exchange, the dipolar order can evolve for much longer: crystalline cellulose
prepared in D2O has T1D ∼ 50 ms, for example [201].

The T1D of tendon was too short to be measured by the ADRF/ARRF sequence. Instead,
the saturation method was used. As shown in Fig. 6.11, this gave a value of T1D = 634± 10
µs. This is comparable to the value of 230 ± 20 µs measured by Swanson et al. for chicken
hyaline cartilage at 25◦ using a Jeener-Broekaert sequence [84]. The unique samples probably
account for the difference between these values. Tendon is mostly type I collagen (about
86% of the dry weight), whereas hyaline cartilage is mostly type II collagen (about 60% of
the dry weight) [202–204].

The saturation method was used to measure the T1D of beef tendon. Fig. 6.11 shows the
decay of the spectral integrals of S+ − S0 and the fit to Eq. 6.31 with s was fixed at 1,
describing a mono-exponential decay. In contrast to PL161, in tendon T1 � T1D, so T1

relaxation can be ignored during this analysis. A single exponential fit this data well so it
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Figure 6.12: Aqueous and non-aqueous ihMTRs as functions of offset frequency. CW ihMT
sequences were used with τ = 500 ms, ν1 = 460 Hz, and δ = 0.5 ms. Samples with
homogeneously broadened spectra show non-zero ihMT, in contradiction to the hypothesis
that ihMT occurs due to inhomogeneous broadening.

was not necessary to introduce the stretched exponential (i.e. s was fixed at 1).

6.4.5 ihMT in lipids and homogeneously-broadened systems

Fig. 6.12 shows the ihMTR for hair, Douglas fir sapwood, PL161, and tendon as functions of
offset frequency |∆|. We have calculated two ihMTRs: one using aqueous proton intensities
(integrated in a 1 kHz window around the aqueous peak), and one using non-aqueous proton
intensities (= I< + I>, where I< and I> are defined in Eq. 6.32). The general shape these
curves follow is consistent with previous studies and follows our model of non-aqueous ihMTR
using CW prepulses (Fig. 6.2C). At low offset frequencies, the ihMTR becomes unreliable,
due to discretization of the sin(2π∆t) modulation in the Sdual prepulse, the direct saturation
of the aqueous protons, and smaller differences between the S+/S− and Sdual spectra.

Another observation is that the ∼ 3× larger ihMTR seen in the non-aqueous protons of
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Figure 6.13: ihMTR vs. prepulse power (which is ∝ WT1D) in the samples with the longest
and shortest T1D values. These curves are qualitatively similar to those in our model of CW
ihMTR (Fig. 6.2B). A CW ihMT sequence was used with τ = 500 ms, δ = 0.5 ms, and with
ν1 calibrated by nutation of the water peak. |∆| is 11 kHZ in PL161 and 19 kHz in tendon,
which are close to the values that maximize the ihMTR in Fig. 6.12.

PL161/D2O than in the aqueous protons is due to diffusion-limited proton exchange to the
aqueous pool. Even the slightly higher concentration of aqueous protons in the sample with
2% H2O causes more similar non-aqueous and aqueous ihMTRs. This provides confirmation
that ihMT occurs due to the behavior of the non-aqueous protons’ dipolar reservoir only,
and that it is observable via the aqueous protons because of proton exchange. In samples
with abundant protons, under long prepulses the aqueous and non-aqueous ihMTRs will be
very similar.

These results are in agreement with Varma et al.’s claim that ihMTR is highly sensitive to
T1D [119]. However, the differences in T1D alone are not enough to account for the differences
in ihMTR between the samples. For example, despite having a T1D that is 20–40 times larger
than Douglas Fir or hair, PL161 has a maximum ihMTR only 4–5 times greater. This is
likely due to differences in W contributing to WT1D. Different values of W arise due to
the different lineshapes g(2π∆) and local field strengths ωD amongst the samples. Testing
the model’s predicted sensitivity to WT1D would involve quantifying these values accurately,
and was not attempted here.

We have not attempted to fit the results of Fig. 6.12 to the models described above, as
our models do not include the effects of exchange with the aqueous proton pools. Varma
et al. did quantitative fits of a Provotorov-theory based model to experimental data and
found excellent agreement [119]. Our goal here is not to reproduce that work, but instead
to consider simplified models that provide greater understanding of the fundamental physics
underlying the ihMT effect.
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We have also measured ihMTR vs. prepulse power (ν2
1) for the samples with the highest

(PL161/D2O) and lowest (beef tendon) T1Ds. These results are shown in Fig. 6.13. The
offset frequencies were set to the values that maximized the non-aqueous ihMTR in Fig.
6.12, these are 19 kHz for tendon and 11 kHz for PL161. As shown in Eq. 6.17, W ∝ ν2

1 .
Furthermore, T1D is constant, so these are effectively plots of ihMTR vs. WT1D. These
results follow the behaviour predicted by our model of ihMT in Fig. 6.2B: at low values of
WT1D ihMTR increases linearly and at high values it saturates.

6.5 Discussion

Our results have clearly shown that ihMT originates in the non-aqueous protons but is
observed in the aqueous protons following magnetization exchange. Moreover, ihMT does not
arise because of inhomogeneous broadening but instead through dipolar couplings, and does
in fact occur in homogeneously-broadened spin systems. Finally, a hole cannot be burned
in the PL161 proton spectrum. Hole-burning is not a part of the mechanism responsible for
the ihMT signals observed here.

These experimental findings are consistent with our theoretical models of the non-aqueous
spin systems under ihMT prepulses. Spin-1 theory provides a minimal model allowing an
intuitive understanding of the origin of the effect. The Provotorov theory-based approach
allowed the identification of the timescale ratioWT1D for CW ihMT, andWeffT1D and τ2/T1D

for pulse-train ihMT (see Appendix D), as key parameters controlling whether ihMT occurs.
Moreover, the spin-1 model results can be derived from the Provotorov theory model, showing
their generality beyond spin-1 systems. Neither of our models require assumptions about
the type of spectral broadening (homogeneous vs. inhomogeneous) present. All they require
is the presence of the dipolar interaction.

We are now in a position to definitively answer the question, “When will a material have
an ihMT response?” The short answer to this for CW ihMT sequences is that WT1D for
the non-aqueous protons must be “large enough”. A quantitative cutoff can be estimated
by estimating WT1D for tendon and PL161, which respectively have the lowest and highest
ihMTR among our samples. We assume a Gaussian lineshape with a standard deviation ωD
equal to the offset that maximizes the ihMTR in Fig. 6.12 (about 11 kHz for PL161 and 19
kHz for tendon). Then, using |∆| = ωD and ν1 = 460 Hz, we find WT1D ≈ 5.6 for PL161
and WT1D ≈ 0.04 for tendon. From this, we may estimate a rule of thumb that ihMT will
not be easily observable unless WT1D > 0.01.

Experimentally, for a given W , ihMT depends sensitively upon a material’s T1D. This value

126



reflects structure of the microstructure and its motion. Dipolar order relaxes from motions
that occur on a timescale ∼ ω−1

D , and is also destroyed by proton exchange. In most tissues,
motions from exchange with water are probably the primary driver of T1D [201, 205]. In
proteins, reorientation of methyl groups also play a role, and in lipids the residual inter-
and intra-molecular dipolar couplings weakly contribute as well [205, 206]. If a bottleneck
exists for spin diffusion from a reservoir to these sites of relaxation, then T1D can be large
enough for ihMT to occur. This is exemplified using simple spin diffusion models of PL161
and cellulose crystallites.

Lamellar lipids tend to have very slow spin diffusion along the lipid tails due to the weak
inter-methylene coupling. In contrast, dipolar order relaxation proceeds rapidly once mag-
netization reaches the headgroup because of proton exchange. Taken together, this means
spin diffusion along the lipid tails in PL161 is the rate-limiting process for dipolar order
relaxation. As shown in Table 6.1, T1D of PL161 seems sensitive to aqueous proton concen-
tration only when the aqueous proton concentration is small. T1D decreases by ∼20% when
the sample is changed slightly from pure 90% D2O (10% PL161) to a 88%/2% D2O/H2O
mixture. Yet, the PL161 sample in neat H2O shows a further decrease of only 50% in T1D.
Aqueous protons destroy non-aqueous dipolar order at the headgroups via proton exchange,
but after a critical concentration of aqueous protons is reached, this is not the rate-limiting
process, rather spin diffusion inside the lipid bilayer is.

A simple one dimensional model of spin-diffusion in an infinite plane can be solved analyt-
ically (e.g. Eq. 4.16 in Crank [207]). With parameters chosen to represent a single lipid
bilayer (D ≈ 0.016 nm2/ms [208] and layer thickness l ≈ 3 nm and D ≈ 0.016 nm2/ms [208],
corresponding to a 15–18 carbon chain), initial conditions of uniform dipolar order within
the plane, and boundary conditions where the dipolar order is destroyed at the plane sur-
faces, the decay of dipolar order predicted fits well to a stretched exponential (Eq. 6.31),
with T1D ≈ 45 ms and s = 0.8. This T1D value is within a factor of 2 from the measured
value of 23 ms.

A similar analysis can be performed for wood cellulose. We assume that H2O permeates
the cellulose microfibrils and relaxes dipolar order at the surface of each cellulose crystal-
lite. These crystallites have a diameter of about 5 nm and lengths 4–10× this [209]. The
crystallites can be modelled as infinitely long cylinders with radius a ≈ 2.5 nm. In solid
organic polymers like these, the spin diffusion coefficient is ∼ 1 nm2/ms [11]. With these
parameters, and similar initial conditions and boundary conditions as before, the solution to
the diffusion equation in this geometry (e.g. Eq. 5.18 in Crank [207]) is again well described
as a stretched exponential, with T1D = 1.05 ms, s = 0.98. Here T1D is within a factor of
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three from the measured value of 2.6 ms.

The agreement between these models and our results show that in systems with magnetiza-
tion exchange to abundant aqueous protons, T1D is largely dependent on the spin diffusion
rate. It also suggests that even if spin diffusion is relatively fast, T1D may be long enough
for ihMT to be observable if the physical size of the reservoir is large enough, as in the case
of cellulose crystallites in wood and keratin crystallites in hair.

The observation of non-zero ihMT in tendon suggests that this technique may not be as
myelin-specific as previously thought. In brain, lipid membranes in myelin and glial cells
are likely the only structures with an ihMT response. Such experiments however may prove
to be useful in imaging other areas of the body, Further work to rigorously identify tissues
producing non-zero ihMT is required.

Taken together, this work suggests that thinking of ihMT as resulting from a type of spec-
tral line broadening is misleading. While ihMT may occur in inhomogeneously-broadened
systems, it occurs in homogeneously-broadened ones as well. The presence of a dipolar term
in the Hamiltonian of the non-aqueous protons is enough to ensure the presence of a dipolar
reservoir, and if WT1D is large enough, then ihMT will be visible from the non-aqueous pro-
ton intensities. If magnetization exchanges with aqueous protons, then ihMT will be visible
from their intensity too. Others have already shown the applicability of Provotorov theory,
and our results have confirmed that ihMT is driven by the dipolar interaction alone and that
inhomogeneous broadening is not involved. For this reason, we suggest changing the name
ihMT to dipolar magnetization transfer (dMT) to better reflect the underlying mechanism.
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Chapter 7

Pool-specific ihMT in white matter

7.1 Introduction

There is little doubt of ihMT’s sensitivity to T1D. Indeed, studies performed on phantoms
[84, 125, 131] and in-vivo [127] show how ihMT may be considered a T1D-weighted imaging
modality. It is also clear that ihMT is sensitive to myelinated tissues such as white matter.
Moreover, myelin bilayers are known to be unique, possessing on average fewer proteins, more
long-chained lipids, and a higher proportion of saturated lipids than in other biomembranes
[51,61,63,64,84]. Accordingly, the prevailing theory for ihMT’s sensitivity to myelin is that
myelin’s unique lipid bilayers possess a long T1D.

Recent measurements of T1D in white and grey matter are inconsistent with this under-
standing of ihMT. Using the sequence developed by Varma et al. to measure T1D in-vivo
with ihMT prepulses [127], multiple studies have shown remarkably similar T1D values in
white and grey matter. However, still other measurements by Swanson et al. give very dif-
ferent T1D values in these two tissues. The state of T1D measurements is summarized in
Table 7.1. Differences in the samples (fixed vs. in-vivo) may account for the large variation.
Also, each technique for measuring T1D is biased towards certain values.

These discrepancies show the need for closer examination of the ihMT signal from myelin.
To this end, the present study combines ihMT with CPMG acquisition in order to measure
the distinct signals from myelin water (MW) and intra/extra-cellular water (IEW). This is
possible through multi-exponential fitting of the CPMG decay. Since MW is nominally the
first aqueous pool in which the ihMT signal from myelin arises, observing its ihMT signal
directly may highlight the differences between the non-aqueous protons inside and outside
the myelin. To qualitatively model the results, we apply the four pool model of white matter
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Study Sample Technique White
matter T1D

(ms)

Grey matter
T1D (ms)

Muscle
T1D (ms)

Prevost et
al. [125]

Mouse
in-vivo

T1D-ihMT 6.1±0.8 (IC) 5.6±1.2
(cGM)

2.2±0.6

Swanson et
al. [84]

Formalin-
fixed bovine
spinal cord
in D2O

Jeener-
Broekaert

11.1±1.8
(SC)

4.06±1.20
(SC)

-

Varma et
al. [127]

Human
brain in-vivo

T1D-ihMT 6.2±0.4
(avg)

5.9±1.2
(avg)

-

Carlvalho et
al. [210]

Mouse brain
in-vivo

T1D-ihMT 4.9±1.0 (IC) 4.8±0.7
(cGM)

1.9±0.3

Rat spinal
cord ex-vivo

6.6±0.5 (SC) 6.6±0.9 (SC) -

Table 7.1: Measurements from the literature of white and grey matter T1Ds. IC = internal
capsules, cGM = cortical grey matter, SC = spinal cord. T1D-ihMT refers to the sequence
developed by Varma et al. for measuring T1D using ihMT prepulses [127].

from Chapter 5. The model is modified to include dipolar reservoirs in each non-aqueous
pool.

7.2 Theory

7.2.1 The four pool model with dipolar reservoirs

The four pool model, used extensively in Chapter 5, models longitudinal relaxation in white
matter tissue. To model ihMT as well, a four pool model with dipolar reservoirs is required
(Fig. 7.1). The dipolar couplings in the non-aqueous pools must now be taken into account.
The protons in these pools are on large molecules like lipids, which either tumble slowly or are
restricted in some way. As a result, the proton-proton dipolar interactions are incompletely
averaged. This causes broad non-aqueous NMR lineshapes, such as the super-Lorentzian seen
extensively in previous chapters. What is relevant here is that the residual dipolar couplings
also forms a thermodynamic reservoir. This reservoir can store dipolar magnetization (also
called dipolar order) [10,30].

Provotorov Theory, derived in Section 2.5.6 and applied in the previous chapter, describes the
coupling of Zeeman and dipolar magnetization. We remind the reader of its key equations.
In an isolated system of dipolar-coupled protons, the evolution of a vector ρ = [MD, M ]T
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T1,M T1,MW T1,IEW Tcr,IEW/NM
T1,NM

Pool 1: non-aqueous
myelin (M)

Pool 2: myelin water 
(MW)

Pool 3: intra/extra-
cellular water (IEW)

Pool 4: non-aqueous
non-myelin (NM)

Tcr,MW/IEWTcr,M/MW

MM(∞) MMW(∞) MIEW(∞) MNM(∞)

non-aqueous myelin 
dipolar reservoir

non-aqueous 
non-myelin dipolar 

reservoir
T1D,M T1D,NM

Rate depends on
gNM, Δ, ωD,NM, B1

Rate depends on
gM, Δ, ωD,M, B1

Figure 7.1: The four pool model with dipolar reservoirs. Pools 1 to 4 can hold Zeeman
(longitudinal) magnetization. The dipolar reservoirs hold dipolar magnetization.

(where MD and M are the dipolar and Zeeman magnetizations respectively) under weak rf
irradiation is described by

dρ

dt
=
 −W − 1

T1
WΩ

WΩ −WΩ2 − 1
T1D

ρ± +
 〈Iz〉0

T1

0

 . (7.1)

T1 and T1D are the Zeeman and dipolar spin-lattice relaxation times and

Ω = 2π∆/ωD,

where ∆ is the offset frequency of the rf and ωD is the RMS dipolar interaction strength.
Finally,

W = π(2πB1)2g(∆), (7.2)

which is a function of the prepulse RMS amplitude B1 and the lineshape of the non-aqueous
protons g evaluated at the offset. The Sdual prepulse causes the off-diagonal elements of the
matrix above to vanish.

Combining this with the four pool model is straightforward. This combined model builds
off of two pool models with a dipolar reservoir for modeling MT [35,93], and Varma et al.’s
introduction of this two pool model for simulating ihMT [119]. In the last chapter, we used
Provotorov Theory in a single non-aqueous proton system as a model for discussing ihMT
physics. In the combined model below, the dipolar reservoirs remain coupled to non-aqueous
pools only, which in turn can exchange with aqueous pools. The combined model is described
by a coupled system of homogeneous differential equations,

dM
dt

= RM. (7.3)
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M is a vector of Zeeman (M) and dipolar (MD) magnetizations

M(t) = [MD,M(t), MM(t), MMW(t), MIEW(t), MNM(t), MD,NM(t), 1]T. (7.4)

Starting from thermal equilibrium, the initial condition vector is

M(0) = [0, MM(∞), MMW(∞), MIEW(∞), MNM(∞), 0, 1]T. (7.5)

The last component of these two vectors is a constant equal to 1 whose purpose is to convert
the inhomogeneous differential equations in Eqs. 2.47 and 5.1 to homogeneous equations.
This approach is possible because the inhomogeneous terms (the Mi(∞)/T1,is) are constant.
This last dimension in M(t) has no physical interpretation and can be ignored. When the
four pool model is used without a dipolar reservoir, substituting reduced magnetization units,
mi = −Mi−Mi(∞)

2Mi(∞) , also makes the system homogeneous [144, 145]; this was our approach in
Chapter 5. That is not possible here because M(∞) in the dipolar reservoirs is close to
zero [30].

The matrix R containing the dynamics is given by

R =



− 1
T1D,M

−WMΩ2
M ΦWMΩM 0

ΦWMΩM − 1
T1,M
− kM,MW −WM kMW,M

0 kM,MW − 1
T1,MW

− kMW,M − kMW,IEW

0 0 kMW,IEW

0 0 0
0 0 0
0 0 0

...

0 0 0 0
0 0 0 MM(∞)

T1,M

kIEW,MW 0 0 MMW(∞)
T1,MW

− 1
T1,IEW

− kIEW,MW − kIEW,NM kNM,IEW 0 MIEW(∞)
T1,IEW

kIEW,NM − 1
T1,NM

− kNM,IEW −WNM ΦWNMΩNM
MNM(∞)
T1,IEW

0 ΦWNMΩNM − 1
T1D,NM

−WNMΩ2
NM 0

0 0 0 0


(7.6)
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where

Φ =

1, during S+ and S− prepulse

0, during Sdual prepulse.
(7.7)

In experiment S0 there is no prepulse and WM = WNM = 0.

One significant limitation of this combined model is that it assumes single values for physical
parameters. For the four pool model alone, its excellent fit to the relaxation experiments in
Chapter 5 shows little need to model distributions for pool sizes, Tcr times, and T1 times.
This is likely because rapid diffusion of magnetization in aqueous compartments averages out
local variations. However, the same simplification is not necessarily expected with regards
to the dipolar reservoir parameters.

We showed that the non-aqueous lineshape from our white matter samples were super-
Lorentzian in Chapter 5; in the notation here, that is the function gM(∆) + gNM(∆). The
super-Lorentzian itself is an integral of orientation-dependent lineshapes, primarily from the
acyl chains in lipid bilayers. Therefore, the use of single values for gM and gNM (via Eq. 7.2)
implicitly assumes the presence of angular averaging in the lipid bilayers, occurring much
faster than magnetization transfer to the aqueous pool. Orientation dependence of ωD and
T1D (see Eq. 2.52) means there is a distribution of these parameters as well. Nonetheless,
accounting for distributions is beyond the scope of this work. Rather, the purpose of this
simple model is to lead to straightforward, qualitative conclusions.

7.2.2 The grey matter analogue

In addition to modeling the MTR and ihMTR data for a white matter sample, the four
pool model with dipolar reservoirs can be used to model a “grey matter analogue”. From
a structural perspective, grey matter is very roughly like white matter with the myelin
removed. In both cases, the components (glial cells, unmyelinated axons, blood vessels, etc.)
are similar, though there are some obvious structural differences: the presence of neuron cell
bodies in actual grey matter, for example. Still, in a thought experiment where the myelin in
white matter is removed and replaced with water, this reduces the quantity of non-aqueous
protons by about half, nicely matching with the fact that there are roughly half as many
non-aqueous protons in grey matter compared to white matter (when measured as a fraction
of total proton number) [165,211]. And so, to simulate ihMTR in the white matter sample’s
grey matter analogue, we set Tcr,IEW/MW → ∞ and record the signal from the IEW pool
only.
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This grey matter analogue is indeed a crude model, but it has been used before in biochemical
assays. Norton & Cammer note that despite being an oversimplification, this model does
yield accurate results when quantifying lipids in grey and white matter [62]. Its use here is
justified given the qualitative nature of our analysis.

7.3 Methods and materials

7.3.1 Sample preparation

The same four samples (bovine white matter samples WM-fr, WM-sp1, WM-sp2, and grey
matter sample GM-bg) were used here as in the T1 relaxation experiments in Chapter 5. See
Section 5.3.1 for details of the sample preparation.

7.3.2 NMR experiments

The pulse sequences used are shown in Fig. 7.2. This style of ihMT experiment, where the
prepulse is continuous-wave rf, requires three experiments with different prepulses plus a
reference experiment for a total of four experiments. Experiments S+ and S− use prepulses
at offsets +∆ and −∆ relative to the center of the lipid super-Lorentzian. Experiment
Sdual uses a prepulse which is sine-modulated at ∆ to irradiate ±∆ simultaneously. The
maximum prepulse amplitude in Sdual is

√
2B1, but in S+ and S− it is B1. This ensures

that the prepulse RMS power is the same in all three cases. In the reference experiment S0,
B1 = 0 during the prepulse.

For sample WM-sp1, 20 ihMT experiments were acquired, varying the prepulse duration, τ ,
and the relaxation delay, δ. In the first 14 experiments, τ was increased from 10 to 1000 ms
(with δ held at 0.01 ms), and in the last 7 experiments, δ was increased from 0.01 to 500
ms (with τ held at 1000 ms). In order to complete all experiments on all samples within 72
hours, for the remaining samples only 12 experiments were acquired, where τ was increased
from 10 to 1000 ms in the first 7 (holding δ constant at 0.01 ms), and δ was increased from
0.01 to 500 ms in the last 6 (holding τ constant at 1000 ms). More data was acquired at low
values of τ and δ in order to capture any short-time behaviour.

|∆| was fixed at 7 kHz and B1 was either 141 or 283 Hz (3.32 or 6.64 µT). In a previous
study by Varma et al., similar parameters gave a large ihMT in human WM [119]. This is
also close to the optimal parameters (∆=7–9 kHz and an RMS B1 of 4–5.5 µT) suggested
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Figure 7.2: The four ihMT NMR experiments with CPMG acquisition. Sdual uses a sine-
modulated prepulse to irradiate offsets at ±∆ simultaneously. In experiment S0 there is no
prepulse.

by Mchinda et al., although their in-vivo study used a pulse-train prepulse instead of cosine-
modulation [123]. Our CPMG acquisition used broadband rectangular pulses with a typical
90◦ pulse duration of 3.1–3.3 µs (a B1 amplitude of 18–19 mT). The CPMG train used 300
echoes with 2 ms spacing. 8 or 4 transients were acquired with a recycle delay of 7 s.

Like the experiments on these samples reported on earlier, the data for this study was
collected using a Bruker solenoidal probe (HP WB73ASOL10) in a 200 MHz (4.7 T) magnet
with a home-built NMR spectrometer. The temperature was regulated at 37 ◦C.

7.3.3 CPMG fitting

As in the T1 relaxation experiments in Chapter 5, the CPMG curves were analyzed using
sparse exponential distributions. Section 5.3.3.2 outlined this approach, where the CPMG
signal was modeled as a sum of four exponentials: one corresponding to the MW peak
(~6 ms), two corresponding to the IEW peak (constrained to be 10 ms apart, centered
near 60 ms), and a last one for a small ~200 ms component. Previously, we identified this
longest component as an external bulk water (BW) pool, based off of its mono-exponential
T1 relaxation behaviour. Our magnetization transfer results below confirms this association.
The amplitudes of these exponentials give the relative amount of magnetization in each pool.

From the four experiments, the standard Magnetization Transfer Ratio (MTR) can be cal-
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culated separately for single and dual-sided ihMT prepulses. For each pool, the MTR is

MTRsingle = 2A0 − A+ − A−
2A0

(7.8)

MTRdual = A0 − Adual

A0
, (7.9)

and the ihMTR calculated through

ihMTR = MTRdual −MTRsingle

= A− + A+ − 2Adual

2A0
.

(7.10)

As in the last chapter, we caution the reader that this definition of ihMTR has a two in the
denominator, which most imaging studies now omit. We keep it here for internal consistency
within the thesis. When we later quote results from other papers, we will convert the values
appropriately.

Because the quantities of interest in this chapter are ratios, we can ignore the effects of
MW/IEW exchange during the CPMG in this chapter. MW/IEW exchange causes the the
measured amplitudes (and T2s) of the MW and IEW pools to deviate slightly from their true
values (see Section 4.5.2). In Chapter 5, we calculated a multiplicative correction factor for
the pool amplitudes which was applied to each of the observed A0, Adual, A+, and A− terms
at all times. However, this cancels out in MTR and ihMTR.

Fitting was performed using the least squares solver in the SciPy package [157]. Errors on T2

component amplitudes are the standard deviations of 50 repeated fittings to the CPMG with
synthetic Gaussian noise. The noise standard deviation was equal to the standard deviation
of the best fit residuals.

7.3.4 Four pool model fitting

When the four pool model with dipolar reservoirs is fit to the data from the white matter
samples, the following constraints are imposed on physiological grounds:

T1D,NM ≤ T1D,M

ωD,NM ≤ ωD,M. (7.11)

These are justified by the properties of the myelin lipid bilayers, which Chapter 3 mentioned
are unique in three ways. When compared to other membranes, myelin has, on average, i)
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longer lipid acyl chains, ii) a higher degree of saturated lipids, and iii) a smaller protein:lipid
ratio [51, 61, 63, 64, 84]. Taken together, compact myelin is more closely-packed and rigid
than other biomembranes [60], meaning the membrane fluctuation amplitudes which drive
T1D relaxation are expected to be smaller [84,210], whereas ωD is similar or slightly higher.
This last point is supported by the similar linewidths seen in our measurements of the non-
aqueous spectra of WM-fr, WM-sp1, WM-sp2, and GM-bg (Table 5.1).

Fitting used SciPy’s implementation of the Differential Evolution algorithm [161] via the
LMFIT package [158]. The four pool parameters from the results in Chapter 5 were used,
so only the dipolar reservoir parameters need to be fit. These include T1D, ωD, and g(∆) in
both non-aqueous pools, which is six parameters in total.

7.4 Results

Figure 7.3: Comparison of regularized NNLS distributions in WM-fr after the four ihMT
prepulse conditions. The equilibrium distribution (experiment S0, no prepulse) shows the
three peaks from distinct populations of aqueous protons. The integrated intensity is dis-
played beside each peak. Immediately after a prepulse (B1 = 283 Hz, τ = 215 ms, δ = 0.01
ms), the Sdual experiment showed a significantly larger reduction of the MW and IEW peaks
compared to the S+ or S− experiments. The BW pool appears to increase due to regularized
NNLS fitting artifacts.

To illustrate how the different prepulses uniquely affect each aqueous pool, Fig. 7.3 shows the
regularized NNLS distributions in WM-fr for all four experiments under a 215 ms prepulse.
Each peak is labeled with its integrated intensity. The MW and IEW peaks decreased more
when a dual-sided prepulse was used (Sdual) than in the case of single-sided prepulses (S+

and S−). Conversely, the BW pool appeared to increase in intensity. However, this is an
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artifact of the NNLS fitting. As the total signal decreases, so too does the SNR. Smaller SNR
values are known to introduce errors into the regularized NNLS distribution [212]. However,
the more robust sparse exponential fits below showed only a decreasing BW amplitude for
the white matter samples.

The MTRs (Eqs. 7.8 and 7.9) are plotted in Fig. 7.4 for the white matter samples (MW,
IEW, and BW pools) and for GM-bg (IEW and BW pools). The corresponding ihMTRs
(Eq. 7.10) are given in Fig. 7.5. We first focus on the white matter MTR and ihMTR, leaving
the GM-bg results for later.

The ihMTR and MTR values are plotted as functions of increasing prepulse duration τ and
recovery time δ. The results in all white matter samples are visually similar. The MT re-
sponse from MW was the largest, followed closely by IEW. This matches with the results
found in previous MT-CPMG experiments [169]. The BW MT response was significantly
lower, confirming that this pool is relatively isolated. Across all pools, B1 = 283 Hz caused
a higher MT response. There are striking differences in MW and IEW MTRs during the
relaxation period, when δ > 0. These can be explained by comparing the size of their corre-
sponding non-aqueous pools (given by the four pool fits in Table 5.2). MW relaxes quickly,
since it is ~0.5× the size of pool M and these two pools are in close contact. Conversely, the
IEW pool size is about 5–7× the NM pool, so the magnetization exchange rate between the
two is much smaller. For example, when B1 = 141 Hz, the IEW MTR appears to plateau
until about δ = 100 ms, whereas MW’s MTR starts decreasing immediately.

Focusing now on the ihMTR plots (Fig. 7.5), given the relatively small difference between
MTRdual and MTRsingle, these ihMTR data were much noisier than the MTR data. All
white matter samples showed gradual growth in MW and IEW ihMTR as τ increases when
B1 = 141 Hz. However, whenB1 = 283 Hz, the MW ihMTR peaks and then decays. Previous
in vivo studies [125] and modeling [119,131] that looked at the total aqueous response have
also shown similar behaviour. The same feature would be expected in the IEW pool at higher
B1 values. This occurs because the MW magnetization became saturated more rapidly than
the IEW magnetization. When this saturation happened, the effect of the single and dual
prepulses became similar, and ihMTR decreased.

We also plot ihMTR for the combined MW and IEW pools in white matter, which is ap-
proximately what would be observed for the total aqueous signal in-vivo (assuming TE, the
time between the MRI excitation pulse and acquisition, was short compared to the MW
T2). Excluding the BW pool is justified due to its isolation. This MW+IEW ihMTR closely
followed the IEW ihMTR since that pool was 90–95% of the aqueous signal.

Concerning the grey matter, the results indicate a relatively poor fit. Firstly, the MTR from
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Figure 7.4: MTR for all samples after single and dual prepulse irradiation as a function of
prepulse duration τ and recovery time δ. The consistently lower MTR in the BW pools
confirms its relative isolation. In general, MW and IEW showed a higher MTRdual than
MTRsingle, indicating ihMT occurs in these pools. Error bars are plotted but are smaller
than the data points for most series. In GM-bg, no MW signal was observed and the BW
MTR was constrained to be positive. This was necessary due to the large fitting error on the
BW pool. Note that in the interests of completing all experiments on the samples promptly,
fewer τ and δ times were acquired on WM-fr, WM-sp2, and GM-bg compared to WM-sp1.
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WM-fr WM-sp1 WM-sp2
T1D,M (ms) 7.4 30* 8.9

ωD,M/2π (kHz) 4.1 8.4 6.0
gM/10−6(s) 3.4 5.0 12
T1D,NM (ms) 3.8 7.5 4.0

ωD,NM/2π (kHz) 3.8 7.4 5.3
gNM/10−6(s) 3.0 9.6 7.5

Table 7.2: The dipolar reservoir fit parameters. In these simulations, the four pool model
parameters in Table 5.2 were used. Errors on parameters were not included since this model
is qualitative only, as evident from the fits in Fig. 7.6. T1D,M for WM-sp1 was at the allowed
limit for that value (30 ms). Parameter constraints are listed in Eq. 7.11.

GM-bg’s BW pool (Fig. 7.4D) had to be artificially constrained to be positive, otherwise
unphysical negative values appeared. This fitting difficulty is reflected in the large error
bars on GM-bg’s BW MTR data, which are about ±2%; in the white matter samples, these
are <0.5%. It is unsurprising that the lowest ihMTR signal did come from GM-bg’s IEW
pool, which had a maximum signal about half that of the white matter samples. This is
expected, given the low quantity of myelin in grey matter. Yet, the negative ihMTR values,
particularly in the B1=141 Hz data, are not expected—these are clearly unphysical. We will
delay an exploration of possible causes for this until the Discussion.

The plots in Fig. 7.6 show the four pool model fits to the data, using the technique described
in the methods. It’s immediately clear that the model describes the MTR data well, but
only qualitatively describes the ihMTR. Still, the general trends are captured. For instance,
the model matches how the MW ihMTR rose rapidly compared to the IEW ihMTR. Also,
in the case of B1 = 283 Hz, it simulates the maximum in the MW ihMTR at short τ . Where
the model falls short is the magnitude of the IEW ihMTR. This is the case even though we
make no assumptions about the functional form of gM and gNM or the relationship between
these factors and the respective ωDs. No fitting was performed on the GM-bg sample—its
negative ihMTR values at small τ are unphysical.

Table 7.2 gives the dipolar reservoir fit parameters (the four pool parameters were fit in
Chapter 5 and are listed in Table 5.2). The qualitative nature of this model means the
precision of these values is low. Indeed, two pool model fits to similar data tended to have
large variations in the parameters [119]. Even so, the relative magnitudes are illuminating.
For example, these parameters are consistent with the view that M has a significantly longer
T1D than NM. Also, the gM and gNM values are similar, which is expected if these two pools
have similar lineshape widths.
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Figure 7.5: The ihMT response for all samples under the two different prepulse amplitudes.
The maximum MW ihMTR was always higher than IEW’s. The total aqueous ihMTR
(MW+IEW) was very close to the IEW ihMTR, since that pool contains the majority of the
aqueous protons. Error bars are not drawn for clarity on the line for MW+IEW, but they
are approximately the same size as IEW’s error bars. GM-bg sample had no measurable
MW pool so no combined ihMTR is plotted. The negative ihMTR values in that sample are
non-physical. In all cases, the solid lines are plotted as guides to the eye.
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Figure 7.6: The fits of the four pool model with dipolar reservoirs in all white matter data.
The fits to the MTR data are shown in plots (A,C,E) and the fits to the ihMTR data are
shown in plots (B,D,F). There is significantly higher error in the ihMTR fits due to ihMT’s
sensitivity to subtle differences between MTRdual and MTRsingle. The model fails to capture
the details, but is qualitatively correct. The simulation used parameters from Tables 5.2 and
7.2.
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Figure 7.7: ihMT in white matter samples and in their grey matter analogues. The four
pool simulations are the same fits shown in Fig. 7.6. The grey matter analogues are a
simulation of the same sample with the myelin removed. The maximum ihMTR in both
cases is indicated.

Using these parameters, we also simulated the grey matter analogue. This is plotted in
Fig. 7.7. If we imagine the white matter sample’s myelin being removed, the behaviour in
the dashed lines is expected, which shows lower ihMTRs in every case.

7.5 Discussion

The work here has two main portions: ihMT-CPMG measurements, which allow the ihMT in
MW and IEW to be observed separately; and qualitative simulations using a four pool model
with dipolar reservoirs. While the precise values of ihMTR depend on sequence, sample, and
parameters used, in general the total ihMTR (MW+IEW) we measured matches well with
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previous in-vivo ihMT studies. For example, in a previous study also using cosine-modulated
Sdual prepulses, doubling the RMS prepulse power also roughly doubled the ihMT signal [118].
The same was seen with pulse-train prepulses [120]. Moreover, the grey matter sample had a
maximum ihMTR that was roughly half the maximum ihMTR in the white matter samples,
which was also seen previously [118,120].

The measurements of ihMT in MW are one novel aspect of the work here. Its higher MT
response reflects the close contact between this pool and the myelin lipids. Tracing the
origin of the higher ihMT response is less clear. On one hand, we expect the myelin lipids
to have more ihMT compared to non-myelin non-aqueous protons since their lipid bilayers
are unique: as mentioned previously, they are more rigid, more compact, and—although
measurements disagree on this—are thought to have a long T1D [84, 119,131]. On the other
hand, MW’s MTR is larger (especially at δ<500 ms, see Fig. 7.4), which, all things being
equal, would allow a higher ihMTR to be realized. The essential question is the following:
is MW’s ihMTR higher than IEW’s because of i) a difference in the dipolar reservoirs of the
non-aqueous pools to which they are coupled, or ii) the higher MT in MW because of its
more intimate contact with its non-aqueous pool?

In an attempt to answer this, we define the ratio

ihMTR
MTR

= MTRdual −MTRsingle
1
2 (MTRdual + MTRsingle)

, (7.12)

which will be large when ihMTR is due mainly to the behaviour of the dipolar reservoir
and small when it is mostly caused by MT. This ratio doesn’t contain much information on
its own, but it is illuminating to compare its values for different pools like MW and IEW,
as is plotted in Fig. 7.8 for the duration of the prepulses. Because of MW/IEW exchange
effects, 50 ms <δ< 200 ms is the easiest period to interpret. (The eigenvectors from the four
pool model fits show that MW/IEW exchange in these samples operates on a timescale of
100-150 ms, see Table 5.2.) While the MW data were noisy, a general trend emerges across
the samples and prepulse amplitudes: ihMTR

MTR is higher in MW than in IEW. In short, this
is good evidence that MW’s higher ihMT is at least partially due to a distinction between
the dipolar reservoir in myelin non-aqueous protons and the dipolar reservoir in non-myelin
non-aqueous protons.

The four pool model with dipolar reservoirs, though qualitative, provides a description of
ihMT that is also consistent with the dipolar reservoir in myelin being unique. In the model,
this uniqueness manifests as T1D,M > T1D,NM, which has indeed been the accepted theory
for the sensitivity of ihMT to tissues with a high abundance of myelin [119]. However, as
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Figure 7.8: The relative contribution of MT to ihMT during the prepulse. The ratio plotted
is defined in Eq. 7.12. Higher values indicate ihMTR is from dipolar reservoir properties,
not from MT behaviour. After about 200 ms, MW/IEW exchange effects start to become
significant, making interpretation difficult. Values of δ<50 ms are not plotted because in
that regime there is little distinction between MTRsingle and MTRdual.
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mentioned, there have been conflicting measurements of T1D in white and grey matter, the
latter of which has similar structural and biochemical properties as the NM pool [62]. Some
studies report different values [84], and others have measured similar values [127,210]. Taken
together with our work, there is obviously a clear need for a careful measurement of T1D in
white and grey matter. We explore how this could be accomplished in Chapter 8.

Future studies like the work here could be improved in a number of ways. Firstly, we only
varied two parameters: the prepulse duration, δ, and the prepulse peak amplitude, B1.
Varying the offset frequency, ∆, may allow the lineshapes of the M and NM pool to be
determined. More generally, the SNR could be improved upon with more signal averaging.
This is particularly important for the small MW pool. FID acquisitions may also be useful
in constraining model fitting by providing information about the non-aqueous amplitudes.

Any continuation of this work should also ensure multiple grey matter samples are studied,
for the negative ihMTR values at low prepulse times in the single grey matter sample (GM-
bg) are difficult to interpret. If real, it would suggest that response to single-sided prepulses
is completely different in grey matter than in white matter. It is not an artifact of the
analysis: in the cases where GM-bg’s ihMTR is negative, the CPMG decay curves (not
shown) do have a slightly larger amplitude in Sdual than in any other experiments. One
possibility is the presence of paramagnetic ions (eg. iron in blood), which could introduce
spectral asymmetries. Still, such an effect should be mitigated by the inclusion of both
S+ and S− in the ihMTR calculation. Besides, the S+ and S− experiments show similar
attenuation. In any case, it is a small enough effect to largely ignore for the purposes of this
work. And notably, none of the other experiments discussed in this chapter or in Chapter 5
show similar behaviour, so there is little concern of a systematic error.
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Chapter 8

Conclusions and future work

8.1 Conclusions

This thesis looked at the fundamental physics of T1 relaxation and ihMT in brain. T1

relaxation is a key contrast mechanism which is highly-dependent on myelin, but quantitative
studies have so far disagreed on the value, number, and source of T1 components in white
matter. ihMT is a new technique that is sensitive to materials rich in lipid bilayers, like
myelin. However, the hypothesis that it requires inhomogeneous spectral broadening is
unproven. Also, recent studies with conflicting T1D measurements in white and grey matter
have questioned how it is selective to myelin lipids in particular. Together, these factors
provided the motivation for this work. More broadly, the research here is part of a larger
effort to improve quantitative MRI of myelin.

In Chapter 5 we reported on a suite of solid-state NMR spectroscopy experiments on ex-vivo
bovine grey and white matter brain tissue. We separately observed T1 relaxation of the MW,
IEW, and total non-aqueous protons from six unique initial conditions. For the first time, we
performed non-equilibrium lineshape analysis on the non-aqueous signal from these samples.
These data were fit to a four pool model, and the fit parameters in general matched well
with the literature values. Our results also confirmed that MW/IEW exchange only causes
minor errors in the accuracy of MWF measurements. We also explored why different initial
conditions lead to different relaxation behaviour, showing this explicitly for hard and soft
inversion-recovery experiments. In doing so we exemplified how eigenvector analysis could
be a useful tool for predicting the relaxation behaviour under different pulse sequences.

Chapter 6 encompassed a close look at the physics of ihMT. We introduced a simple spin-1
model, showing how ihMT arises from the dipolar interaction. Then, an analysis of the
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Provotorov Theory model of ihMT showed how WT1D was a key parameter in determining
its strength. Our experiments showed how the off-resonance pulses created dipolar order
in PL161, tendon, wood, hair—the last two having homogeneously-broadened non-aqueous
spectra. None of the samples showed evidence of hole burning, but all exhibited ihMT. T1D

measurements were carried out using ADRF/ARRF and saturation-recovery experiments,
showing the validity of WT1D as a rough measure of the intensity of ihMT.

The last study in Chapter 7 combined aspects of the four pool model and ihMT. ihMT
experiments with CPMG acquisition were used to observe MW and IEW separately in the
same bovine brain samples from Chapter 5. A higher ihMT signal from MW was observed.
To separate out the relative contribution from MT and ihMT in this larger signal, the ratio
IHMTR/MTR was compared for MW and IEW. This new metric showed evidence that the
comparatively higher MW ihMT is due to a distinction between the myelin and non-myelin
lipids. A qualitative four pool model with dipolar reservoirs suggested that this was due to
a difference in T1Ds, which matches with earlier explanations. Together, this suggests that
recent observations of similar T1Ds in grey and white matter need to be carefully examined.

8.2 Future work

The work performed in this thesis has shed new light on T1 relaxation and ihMT in brain.
Inevitably, certain areas of this research could be refined, and it has also raised new questions.
Below, we offer some suggestions on how research in this area could proceed.

8.2.1 The non-aqueous lineshape and the effect of soft pulses

When fitting the non-aqueous lineshapes in Chapter 5, we used super-Lorentzians, which
are superpositions of Gaussians with orientation-dependent widths. When a low-amplitude,
off-resonance pulse is applied, do these Gaussians get saturated individually, or does the
entire lineshape get saturated as a whole? Typically, the latter behaviour is assumed when
super-Lorentzians are used in qMT studies (e.g. see references [79,81,93,171]), but the former
seems correct on a fundamental level. We were unable to study this in the ex-vivo samples
because of the intense aqueous line. Varma et al. considered this in one of their models for
ihMT [119], but they did not directly observe the non-aqueous protons and could not make
any firm conclusions on this point.

The ideal experiment might be to simply use the PL161/D2O from Chapter 6 with a sat-
uration pulse of variable length and offset followed by a 90◦ pulse and FID acquisition. In

148



order to remove confounding effects from dipolar order [93], one could saturate at an offset
±∆ simultaneous (decoupling the Zeeman and dipolar reservoirs), as in an Sdual ihMT pre-
pulse. Experiments on ex-vivo brain samples could also be performed. Soaking the sample
in D2O to reduce the intensity of the water line may help to isolate the non-aqueous signal.
This would be similar to Wilhelm et al.’s recent high-resolution spectra of rat spinal cord in
D2O [89].

It may be worthwhile attempting these experiments in a high-resolution probe. This would
require longer 90◦ pulse lengths, therefore causing more truncation at the start of the FID.
Also, adiabatic pulses may be required to completely excite the broad, ~20 kHz non-aqueous
line. However, these may be worthwhile trade-offs if the resolution is significantly better.

8.2.2 Improved quantification of T1 relaxation

The six different experiments in Chapter 5 were chosen to establish a diverse set of initial
magnetization within the distinct pools of protons in the brain tissue sample. Future studies
could build upon this by using other experiments to better separate the two non-aqueous
pools (M and NM). We used the assumption of an equal number of protons in M and NM,
but this should be a well-constrained free parameter, or if possible, a measured value.

One experiment which may help reveal this is saturation of the non-aqueous protons during
the cross-relaxation period [100, 213, 214]. Low-amplitude, continuous rf would be applied
at offsets ±∆, saturating the non-aqueous protons (the dual offsets are to prevent dipolar
order creation). If the rf power was high enough, it may be possible to saturate the non-
aqueous protons completely while leaving the aqueous protons relatively unaffected. This
would turn the non-aqueous pools into magnetization sinks. The relaxation dynamics would
be extremely different, and may help reveal differences in the M and NM pools. It may also
more obviously show the contribution from M/MW exchange, which had to be manually
emphasized when fitting our data in Chapter 5.

Better separation of the relaxation associated with MW/M exchange (T ∗1 ≈ 30 ms) and
IEW/NM exchange (T ∗1 ≈ 70 ms) is also desirable. One way to do this may be with a double
inversion-recovery sequence [215]. In this sequence, one inverts the magnetization and then
waits until the MW magnetization passes through zero (~30 ms). Another inversion pulse
brings the magnetization into the +z direction. Then, during the cross-relaxation period, it
may be easier to view the M/MW exchange behaviour. The inversion pulses could be hard
or soft.

Complimentary data could also be collected using two different B0 field strengths. We
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discussed how the intrinsic spin-lattice relaxation time (T1 for each pool) is a function of
the B0 field strength in Section 2.6. However, all other four pool model parameters—the Tcr
and M(∞) values—will remain constant. One could run the same experiments on the same
sample in two different spectrometers with different B0 fields. Then, when fitting the model,
one could impose all parameters except the T1 times to be identical in the two experiment
sets. Sample aging, shimming, and variation in T2 times may be confounding factors with
this approach.

8.2.3 T1D measurements in brain

In the introduction to Chapter 7, it was mentioned that recent measurements of grey and
white matter T1Ds are inconclusive. Some research has suggested that grey and white matter
T1Ds are the same, whereas other papers have measured very different (~10 ms) values. The
outcome of these measurements seems to depend on the technique and sample used. Still,
the sensitivity of ihMT to myelin is thought to rely on it having a uniquely-long T1D time.
Our results seemed to confirm this, although we did not measure T1D directly—something
that future research should focus on.

Measuring T1D is difficult because most techniques are biased towards certain values. For
example, the ADRF/ARRF sequences used in Chapter 6 could not measure T1Ds less than ~1
ms. It would likely be necessary (and illuminating) to perform the measurements with mul-
tiple techniques on both white and grey matter. These could include the saturation method,
the ADRF/ARRF sequence, the Jeener-Broekaert sequence, and the ihMT sequence. Re-
garding the analysis of this type of data, regularized NNLS may help identify distributions
in T1D.

Because the presence of the intense water signal makes measurement difficult in tissue sam-
ples, a sample soaked in D2O may prove useful here too. Even though D2O will likely affect
T1D due to the reduced chemical exchange rate, it may still show a relative difference between
white and grey matter.
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Appendix A

Derivation of the Provotorov
equations

Provotorov first published the theory of saturation under weak rf fields for long times in
1962 [A1]. However, the canonical derivation is in Goldman’s book [A2]. We now derive
the equations in another way, hinted at in Section 6.7 of Slichter’s book [A3]. This follows
Schumacher’s work on the thermodynamics of coupled generic reservoirs in spin systems
[A4]. Our derivation is by no means rigorous, but provides a simple sketch of where the
Provotorov Equations come from.

Consider a spin system governed by a total time-independent Hamiltonian

ĤT = Ĥ1 + Ĥ2

where Ĥ1 and Ĥ2 contain terms from the Zeeman and secular many-spin dipolar interac-
tions. This Hamiltonian does not include terms leading to spin-lattice relaxation. Also, we
assume [Ĥ1, ĤT ] = [Ĥ2, ĤT ] = 0, so both Ĥ1 and Ĥ2 are constants of motion. These terms
may be thought of as forming separate thermodynamic reservoirs, each with a unique spin
temperature, θ1 and θ2 [A3]. Therefore, the high-temperature density matrix is

ρ ≈ − 1
θ1
Ĥ1 −

1
θ2
Ĥ2.

Section 2.5.4 shows how a situation where θ1 6= θ2 could be realized by working in the
rotating frame, where θ1 and θ2 correspond to the Zeeman and dipolar reservoirs. For now
we don’t specify what frame we are working in or what Ĥ1 and Ĥ2 are.

Our ultimate goal is find d
dt

( 1
θ1,2

). Using the fact that time rate of change for the energy in

169



a reservoir is dE
dt

= dE
dθ

dθ
dt
, for any reservoir [A4]

d

dt

(1
θ

)
= dE/dt

−θ2dE/dθ
. (A.1)

The derivative in the denominator is relatively straightforward. For a generic reservoir with
a Hamiltonian Ĥ and spin temperature θ

E =
Tr
{
Ĥ exp(−Ĥ/kθ)

}
Tr
{

exp(−Ĥ/kθ)
}

=
Tr
{
Ĥ(1− Ĥ/kθ + Ĥ2/(kθ)2 + · · · )

}
Tr
{
1− Ĥ/kθ + Ĥ2/(kθ)2 + · · ·

}
≈ −1

kθ

Tr
{
Ĥ2
}

Tr {1}

= −1
kNθ

Tr
{
Ĥ2
}
. (A.2)

Where N is the dimensionality of the Hamiltonian. This uses the high–temperature ap-
proximation and the assumption that Tr{Ĥ} = 0, which is true for dipolar and Zeeman
Hamiltonians. And so,

dE

dθ
= 1
kNθ

Tr
{
Ĥ2
}
. (A.3)

Finding dE/dθ is more involved. Assume there are M energy levels in a reservoir (because
of the possibility of degeneracy, M ≤ N). Then,

dE

dθ
=

M∑
n=1

dpn
dt
En, (A.4)

where pn is the population of the nth level and En is its energy. We use the standard approach
to calculate changes in populations: a first-order rate equation [A3,A4]:

dpn
dt

=
∑
m6=n

(Wm→npm −Wn→mpn) +
∑

m6=n,r 6=s

(
V(m→n),(s→r)pmqs − V(n→m),(r→s)pnqr

)
. (A.5)

This is also known as the “master equation”. Here, p and q indicate populations of specific
levels in reservoirs one and two, andWm→n is rate of transitions from levelm to n in reservoir
one. V(m→n),(s→r) is the rate of a simultaneous transition in reservoir one from m to n and
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in reservoir two from s to r.1

We assume that the reservoirs are coupled via energy-conserving interactions, such as the
flip-flop transitions from dipolar coupling. Therefore, V(m→n),(s→r) = V(n→m),(r→s) and the
energy difference in both reservoirs is the same: ∆Enm = ∆Ers, where n and s are the
higher-energy states. Then,

pn
pm

= exp
(
−∆Emn

kθ1

)
≈ 1− ∆Emn

kθ1

qs
qr

= exp
(
−∆Emn

kθ2

)
≈ 1− ∆Emn

kθ2
.

(A.6)

If we substitute this high-temperature expansion into the second term of Eq. A.5, we get

∑
m6=n,r 6=s

V(m→n),(s→r)pmqr
∆Emn
k

( 1
θ1
− 1
θ2

)
.

Eq. A.4 tells us that we need to know dpn

dt
En. Calculating this for the second term in Eq. A.5

yields:

dpn
dt
En

∣∣∣∣∣
term2

=
∑

m 6=n,r 6=s
EnV(m→n),(s→r)pmqr

∆Emn
k

( 1
θ1
− 1
θ2

)

=
∑

m 6=n,r 6=s
V(m→n),(s→r)pmqr

∆E2
mn

2k

( 1
θ1
− 1
θ2

)

=
∑

m 6=n,r 6=s
V(m→n),(s→r)

∆E2
mn

2kM1M2

( 1
θ1
− 1
θ2

)
. (A.7)

Where M1,2 specifies the number of energy levels in reservoirs one and two. On line two, we
used the fact that ∑m 6=nEn∆Emn = −∑m6=nEm∆Emn. On line three, we expanded pm as

pm = exp(−Em/kθ1)∑M1
j=1 exp(−Ej/kθ1)

≈ 1∑M1
j=1 1

= 1
M1

.

These are standard maneuvers when dealing with master equations for NMR relaxation (see
1There is an error in Schumacher’s paper on the last line in equation 4. The termW ′nr,mspnqs should read

W ′nr,mspnqr. This term relies upon flip-flop transitions from n→ m in reservoir 1 and r → s in reservoir 2.
The same term is written correctly later in that paper in equation 6.
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Section 5.2 in Slichter [A3]).

We can substitute Eqs. A.3, A.5, and A.7 into Eq. A.1, giving [A3]

d

dt

( 1
θ1

)
= −R1

(
1
θ1
− 1
θ1,L

)
−R12

( 1
θ1
− 1
θ2

)
d

dt

( 1
θ2

)
= −R2

(
1
θ2
− 1
θ2,L

)
−R21

( 1
θ2
− 1
θ1

) (A.8)

where

R12 =
∑
m6=n,r 6=s V(m→n),(s→r)∆E2

mn

2Tr{Ĥ2
1}M1

,

R12 =
∑
m6=n,r 6=s V(m→n),(s→r)∆E2

mn

2Tr{Ĥ2
2}M2

,

R1 =
∑
n6=mWm→n∆E2

mn

2Tr{Ĥ2
1}

,

R2 =
∑
n 6=mWm→n∆E2

mn

2Tr{Ĥ2
2}

.

(A.9)

We have manually inserted the term 1/θ1,L in the equation above, forcing the system to relax
to the lattice temperature. The justification for this is discussed in Slichter [A3] and Slichter
& Hebel [A5].

The above treatment has been quite general, but now we shall assume explicit forms for the
Hamiltonians. Let

Ĥ1 = ∆
∑
j

Îz,j

which is a many-spin Zeeman Hamiltonian in a frame rotating at ω, and ∆ = ω0 − ω. Also,

Ĥ2 = ĤD,

a many-spin dipolar coupling Hamiltonian. With this, we can immediately identify [A3–A5]

R1 = 1
T1

and R2 = 1
T1D

.

Next, R12 is tackled. This is a constant, so we may find it from comparison to BPP saturation
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theory, which is correct for short times [A3]:

R12 = W

= πω2
1g(∆),

which is defined in Eq. 2.48. We find the last rate

R21 = R12
Tr{Ĥ2

1}M1

Tr{Ĥ2
2}M2

= W
Tr
{(

∆∑
j Îz,j

)2
}

Tr
{
Ĥ2
D

}
= W

∆2

ω2
D

,

making use of the fact that M1 = M2. Here, ωD is the local field strength, discussed in
Section 2.5.

Finally, we have the Provotorov Equations (using “Z” for Zeeman and “D” for dipolar):

d

dt

( 1
θZ

)
= − 1

T1

(
1
θZ
− 1
θL,1

)
−W

( 1
θZ
− 1
θD

)
d

dt

( 1
θD

)
= − 1

T1D

( 1
θD

)
−W ∆2

ω2
D

( 1
θD
− 1
θZ

)
.

(A.10)

The dipolar reservoir lattice temperature θL,2 is extremely hot, so that term is dropped.

We can put these into a more useful form. The density matrix for this system is

ρ = −∆
θZ

∑
j

Îz,j −
ωD
θD

(
ĤD

ωD

)
,

so we define the Zeeman and dipolar polarizations as (see Section 2.5.6)

pZ = 〈Îz〉 = −∆
θZ

pD =
〈
ĤD

ωD

〉
= −ωD

θD
.

Substituting these into Eq. A.10 yields the form of the Provotorov equations introduced in
Section 2.5.6.

[A1] B. N. Provotorov. A quantum-statistical theory of cross-relaxation. Soviet Physics JETP
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Appendix B

CPMG exchange correction

B.1 Introduction

Exchange between myelin water (MW) and intra/extra-cellular water (IEW) occurs during
CPMG acquisition. This can cause erroneous observed values of their pool sizes and T2

times. The percent error depends on the exchange rate, but in bovine brain it is typically
10–20% (see Chapter 5 and ref [B1]). This can be corrected for, however; how to do so is
the focus of this appendix. This correction was described by Bjarnason et al. in ref [B1] and
by Bjarnason in ref [B2]. It has been repeated here in a slightly different form for clarity.

In the following, we indicate observed values (found from CPMG acquisition with no cor-
rection) by a tilde, and set MW as pool 1 and IEW as pool 2. Our goal is to develop two
algorithms:

1. Take the actual T2 times (T2,1 and T2,2) and actual sizes (M0,1 and M0,2) as inputs.
Return the observed values (T̃2,1, T̃2,2, M̃0,1, M̃0,2) as outputs. Note that we use this
notation for the pool sizes instead of M(∞) as in the rest of this thesis since M → 0
as t→∞ in the CPMG.

2. Takes the observed values (T̃2,1, T̃2,2, M̃0,1, M̃0,2) as inputs. Return the actual values
(T2,1, T2,2, M0,1, M0,2) as outputs.

B.2 Equations from a two pool model

To develop these algorithms, the strategy will be to first derive equations linking the actual
and observed values, then determine how to convert between the two. Using a vector M(t)
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to represent the actual magnetization,

M(t) =
 M1(t)
M2(t)

 , (B.1)

the time evolution for these two pools is represented by

d

dt
M(t) =

 −k12 −R1 k21

k12 −k21 −R2

M(t) (B.2)

= AM(t)

where Ri = 1/T2,i and R1 > R2 (since pool 1 is MW). As Bjarnason pointed out, we do not
have to include the non-aqueous pools; their short T2 times means they act like transverse
magnetization sinks. They return no magnetization to the aqueous pool, so their effects can
be incorporated into R1 and R2.

We can simplify matters by noting that total magnetization remains constant before and
after the correction,

Mtot = M̃0,1 + M̃0,2

= M0,2 +M0,2
. (B.3)

Using

k12M0,1 = k21M0,2

and
Tcr = k−1

12 + k−1
21 ,

we write
k12 = Mtot

M0,1Tcr

k21 = Mtot

M0,2Tcr
= Mtot

(Mtot −M0,1)Tcr
.

To solve Eq. B.2, in which the matrix A contains the dynamics, we use the well-known
equations for the eigenvalues λ± and eigenvectors v± of a 2x2 matrix:

λ± = T
2 ±

√
T 2

4 −D (B.4)
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v± =
 λ± − A2,2

A2,1


=
 λ± + k21 +R2

k12

 (B.5)

where

T = Tr(A)
= A1,1 + A2,2

= −k12 − k21 −R1 −R2

and

D = Det(A)
= A1,1A2,2 − A1,2A2,1

= (k12 +R1)(k21 +R2)− k12 − k21

= k12R2 + k21R1 +R1R2.

After some simplification,

λ± = −1
2(k12 + k21 +R1 +R2)± 1

2

√
(R1 −R2 + k12 − k21)2 + 4k12k21. (B.6)

Assuming T̃2,1 < T̃2,2, the eigenvalues are related to the observed T2 times via

T̃2,1 = − 1
λ−

T̃2,2 = − 1
λ+
,

(B.7)

since |λ−| > |λ+|The formal solution to Eq. B.2 is

M(t) = c+v+e
λ+t + c−v−eλ−t M1(t)

M2(t)

 =
 c+v+,1e

λ+t + c−v−,1e
λ−t

c+v+,2e
λ+t + c−v−,2e

λ−t

 . (B.8)

Here, v+,1 is the first component of the v+ eigenvector (and similarly for the other terms),
and c± are constants defined below. Connecting this equation to the observed pool sizes,
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the total CPMG signal is

M1(t) +M2(t) = {c+v+,1 + c+v+,2} eλ+t + {c−v−,1 + c−v−,2} eλ−t,

where the prefactors in {} are the observed pool amplitudes:

M̃0,1 = c+v+,1 + c+v+,2 (B.9)

M̃0,2 = c−v−,1 + c−v−,2

= Mtot − M̃0,1.
(B.10)

If the actual values are known, the c± constants are determined by the t = 0 initial condition:

M(0) =
 M1(∞)
M2(∞)

 =
 M0,1

Mtot −M0,1

 = c+v+ + c−v−

= V

 c+

c−

 ,
(B.11)

where V is a matrix whose columns are v+ and v−. This leads to

c+ = 1
Det(V ) (V2,2M0,1 + V1,2(Mtot −M0,1))

c− = 1
Det(V ) (−V2,1M0,1 + V1,1(Mtot −M0,1))

. (B.12)

With that, we have derived the necessary equations. Now we will see how they are applied.

B.3 Algorithm 1: Actual to observed values

Given the actual T2 times (T2,1 and T2,2) and pool sizes (M0,1 and M0,2), along with a Tcr
time, Eqs. B.6 and B.7 give the observed T2 times T̃2,1 and T̃2,2. The observed pool sizes,
M̃0,1 and M̃0,2, are found using Eqs. B.9 and B.10.

B.4 Algorithm 2: Observed to actual values

Going the other way (finding the actual T2 values and pool sizes from the observed values)
is less straightforward. The observed values (T̃2,1, T̃2,2, M̃0,1, and M̃0,2) are typically taken
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from a CPMG acquisition when the system starts in equilibrium. The first step is to find
the R1 and R2 values (the inverse of the actual T2 times). Using Eq. B.6,

λ+ + λ− = −(k12 + k21 +R1 +R2)
=⇒ R1 = −(k12 + k21 +R2 + λ+ + λ−) (B.13)

and

(λ+ − λ−)2 = (k12 − k21 +R1 −R2)2 + 4k12k21

=⇒ R2 = −1
2

√
(λ+ − λ−)2 − 4k12k21 − k21 − 1

2(λ+ + λ−). (B.14)

Note the choice of the negative root:
√

(k12 − k21 +R1 −R2)2 = −(k12 − k21 + R1 − R2).
This ensures that when Tcr → ∞ (causing k12 → 0, k21 → 0, λ+ → −R2, and λ− → −R1),
then the RHS of Eq. B.14 correctly becomes −1

2((−R2)− (−R1))− 1
2(−R2)− 1

2(−R1) = R2.

Now, Tcr and M0,1 are the only remaining unknown parameters (M0,2 is found via Eq. B.3).
In the case of fitting the four pool model (Chapter 5) Tcr is a fit parameter. At each
step in the solver iteration, Tcr will have some trial value, so M0,1 is found by solving the
transcendental equation given in Eq. B.9. We found that a bracketed root finder like SciPy’s
implementation of the quadratic Brent algorithm [B3] worked well.

[B1] Bjarnason, T., Vavasour, I., Chia, C. & MacKay, A. Characterization of the NMR
behavior of white matter in bovine brain. Magnetic Resonance in Medicine 54, 1072–1081
(2005). URL https://doi.org/10.1002/mrm.20680

[B2] Bjarnason, T. The Effect of Cross Relaxation on the NMR Behaviour of Bovine White
Matter. UBC Master’s thesis (2005). URL http://hdl.handle.net/2429/16429

[B3] Brent, R. P. Algorithms for Minimization Without Derivatives. Englewood Cliffs, NJ:
Prentice-Hall, (1973). Ch. 3-4.
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Appendix C

Circuit analogies in NMR relaxation

C.1 Introduction

Certain relaxation problems have one-to-one correspondence with electric circuits. These
amusing circuit analogies offer no new physics, but they do provide an interesting way of
looking at certain problems which may be more intuitive. Circuit analogies have been used
before by Bloch to describe the Nuclear Overhauser Effect [C1]. Here, we apply them to the
four pool model and Provotorov equations.

 

R1 R2 R3 R4

R12 R23 R34

C1 C2 C3 C4

V

Figure C.1: The equivalent circuit of the four pool model.
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C.2 Four pool model

The four pool model equations are

dMM

dt
=− MM −MM(∞)

T1,M
− kM,MWMM + kMW,MMMW

dMMW

dt
=− MMW −MMW(∞)

T1,MW
+ kM,MWMM − kMW,MMMW−

kMW,IEWMMW + kIEW,MWMIEW

dMIEW

dt
=− MIEW −MIEW(∞)

T1,IEW
+ kMW,IEWMMW − kIEW,MWMIEW−

kIEW,NMMIEW + kNM,IEWMNM

dMNM

dt
=− MNM −MNM(∞)

T1,NM
+ kIEW,NMMIEW − kIEWMNM.

The circuit in Fig. C.1 is described by equivalent equations. Consider the node where C1,
R1, and R12 meet. The current flowing into the node from the capacitor is dQ1/dt, where
Q1 is the charge on the capacitor. Kirchoff’s node rule gives

dQ1

dt
= V −Q1/C1

R1
+ Q2/C2 −Q1/C1

R12

= −(Q1 − C1V )
R1C1

− Q1

C1R12
+ Q2

C2C12

= −(C1R12)−1Q1 −
(Q1 − C1V )

R1C1
+ (C2R12)−1Q2.

Comparing this to the expression for dMM/dt above, we make the connections

Q1 = MM

(C1R12)−1 = kM,MW

(C2R12)−1 = kMW,M

MM(∞) = C1V

T1,M = R1C1.

Similar expressions will apply for the other pools.

In this analogy, magnetization is charge, and our goal is to quantify all of the component
values. We do this by putting different initial charges on the capacitors, and then observing
how it returns to equilibrium.
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CD CDRD RD CZCZ

RDZ

RDZ RDZ

RZRZ

(A) (B)
rf applied at +∆ or -∆ rf applied at ±∆ simultaneously

V V

Figure C.2: The equivalent circuit of the Provotorov equations with Ω = 1.

C.3 Provotorov equations

The Provotorov equations also lend themselves to an analogous circuit, shown in Fig. C.2A
and B. In this case, only with Ω = 1 does the circuit provide an easy analogy. The Provotorov
Equations (Eq. 2.47) for the Zeeman and dipolar magnetizations MZ and MD are then

dMZ

dt
= −(MZ −MZ(∞))

T1
−WMZ +WMD

dMD

dt
= −MD

T1D
−WMD +WMZ .

(C.1)

Panel A shows the case for single-sided irradiation. Here, we have for the charge across each
capacitor (following the analysis from the previous section)

dQZ

dt
= −(QZ − V CZ)

CZRZ

+ (CZRDZ)−1QD − (CZRZ)−1QZ

dQD

dt
= − QD

CDRD

− (CDRDZ)−1QD + (CZRZ)−1QZ.

(C.2)

The D and Z subscripts refer to dipolar and Zeeman reservoirs respectively. Comparing
Eqs. C.1 and C.2, we can make the connections:

V CZ = MZ(∞)
QZ,D = MZ,D

CZRZ = T1

CDRD = T1D

(CDRDZ)−1 = (CZRDZ)−1 = W.
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In ihMT, this would be the case for a single off-resonance prepulse (an S+ or S− prepulse).
In panel B, the equivalent circuit behaves like the Zeeman and dipolar reservoir for an Sdual

prepulse: they are uncoupled.

This analogy makes it clear why WT1D is a key parameter for ihMT. This is

WT1D = CDRD(CDRDZ)−1

= RD/RDZ

If RDZ →∞ (W = 0), there is obviously no ihMT. If RD ≈ 0 (T1D ≈ 0), then the discharge
of CZ behaves the same in both cases, and there is also no ihMT. In the intermediate case,
if RD ∼ RDZ , then the discharge of CZ will behave differently in both cases, and there is
ihMT.

[C1] Bloch, F. Dynamical theory of nuclear induction. II. Physical Review, 102 104–135
(1956). URL https://doi.org/10.1103/PhysRev.102.104

183

https://doi.org/10.1103/PhysRev.102.104


Appendix D

Model of ihMT using pulse-train
prepulses

The pulse-train variety of ihMT experiments use prepulses consisting of trains of shaped
pulses. Typically, in the S+ or S− experiments, these shaped pulses are all at the offset
+∆ or −∆, respectively. In the Sdual experiment, these shaped pulses alternate between
+∆ and −∆. In the following, we show a simple model of the behavior of a many-spin
system under these prepulses. As with the model of CW prepulses presented above, we
ignore magnetization transfer to aqueous protons.

Fig. D.1 shows our simple model of pulse-train prepulses. We make the assumption of
rectangular pulses so that while the RF is on the Provotorov equations in Eqs. 6.16 and 6.19
apply. As discussed earlier in Chapter 7, we can add an extra dimension to eliminate the
inhomogeneous term from T1 relaxation, leading to

dρ±
dt

= W


−1− 1

WT1
Ω 〈Iz〉0

T1

Ω −Ω2 − 1
WT1D

0
0 0 0

ρ±
= Aρ±.

(D.1)

where A is the coefficient matrix. The solution to this equation for an arbitrary initial
condition vector ρ(0) = (ρ1, ρ2, 1) and an irradiation length τ1 is [154]

ρ+(t) = P+ρ+(0)
P+ = F(τ1)F−1(0),

(D.2)
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Figure D.1: A model of ihMT prepulses of the pulse-train variety. With the assumption
of square pulses, the sequence can be modeled as a product of matrices. An actual ihMT
experiment consists of many cycles (n ∼ 100–1000).

where the matrix F(τ1) has columns composed of

F(τ1) =
[
v1e

λ1τ1 v2e
λ2τ1 v3e

λ3τ1
]
. (D.3)

Here, v1,2,3 are the eigenvectors of A and λ1,2,3 are the eigenvalues, given by Eq. 6.21. The
matrix for irradiation at −∆ is P− = P+(∆→ −∆). During the delay τ2 between pulses, a
matrix R describes the dipolar relaxation:

R =


− 1
T1

0 〈Iz〉0
T1

0 − 1
T1D

0
0 0 0

 . (D.4)

As shown in Fig. D.1, we can now represent a pulse-train prepulse sequence of n cycles by
products of matrices. The Zeeman magnetization at the end of the pulse train is

〈Iz〉+(n) = ((P+ RP+ Rρ0)n)1

〈Iz〉−(n) = ((P−RP−Rρ0)n)1

〈Iz〉dual,1(n) = ((P+ RP−Rρ0)n)1

〈Iz〉dual,2(n) = ((P−RP+ Rρ0)n)1,

(D.5)

where the subscript 1 indicates the value of the first (Zeeman) component of the vector.
Finally,

Non-aqueous ihMTR = 〈Iz〉+ + 〈Iz〉− − 〈Iz〉dual,1 − 〈Iz〉dual,2
2〈Iz〉0

. (D.6)

Although we do not consider this here, some recent studies with pulse-train prepulses also
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used dual irradiation during τ1 to measure and increase sensitivity to T1D [127, 133]. This
could be included through the equation

dρdual
dt

= W


−1− 1

WT1
0 〈Iz〉0

T1

0 −Ω2 − 1
WT1D

0
0 0 0

ρdual. (D.7)

This approach can also be used to model shaped pulses by discretizing them as rectangular
pulses. Also, coupling to the aqueous protons could be included as well. Here we only
consider the effect of rectangular pulses on isolated non-aqueous protons..

Fig. D.2 shows the results of simulations using this pulse-train model. Unless otherwise
stated, the following parameters were used: ∆ = ωD/2π = 10 kHz, T1 = 1 s, τ1 = τ2 = 3
ms, n = 41, and g(2π∆) as a Gaussian with standard deviation of ωD. Fig. D.2A replicates
Fig. 6.2A. The plot is discretized because the prepulse time increases in steps of 2(τ1 + τ2),
which is the time for one cycle. Because there is a delay of time τ2 between pulses in the
pulse train, the effective transition rate Weff is

Weff = W τ1
τ1+τ2

. (D.8)

The relative rates term for the pulse-train model is WeffT1D, and for the equivalent value of
WT1D in the CW model, the ihMT behavior is nearly identical.

Fig. D.2B replicates Fig. 6.2B using the pulse-train model. Again, very similar behavior
is seen. This plot also shows the importance of inter-pulse period τ2. The non-aqueous
ihMTR will have a multiplicative term of exp(−τ2/T1D)n, so the ihMTR is suppressed unless
τ2 & T1D.

Finally, Fig. D.2C plots the offset frequency dependence, as in Fig. 6.2C for the CW model.
A similar trend is seen, albeit with a smaller effect, at shorter overall pulse lengths. This is
likely because the effective irradiation time is actually 25/2=12.5 ms, which is too short to
generate a large ihMT effect.
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Figure D.2: Simulation of non-aqueous ihMT in non-aqueous spin system using pulse-train
prepulses. Coupling to aqueous protons has not be included. (A) shows the dependence
on prepulse duration, which is discretized to fit in an integer number of cycles. This shows
similar behavior as in the CW model (see Fig. 6.2A). (B) shows the dependence on the
effective relative rates term WeffT1D. Again, the behavior is very similar to the CW model
in Fig. 6.2B. Finally, (C) shows the offset-dependence, similar to Fig. 6.2C. Because the
duty cycle is only 50%, when τ = 25 ms, the ihMT repsonse is significantly smaller than
in the CW case. Unless otherwise indicated, in all plots ∆ = ωD/2π = 10 kHz, T1 = 1 s,
τ1 = τ2 = 3 ms, n = 41, and g(2π∆) as a Gaussian with standard deviation of ωD.
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