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Abstract

This thesis illustrates the use of machine learning algorithms and exact numeri-

cal methods to study quantum observables for different systems. The first part of

this thesis depicts how to construct accurate potential energy surfaces (PESs) using

supervised learning algorithms such as Gaussian Process (GP) regression. PESs

have a leading part in quantum chemistry since they are used to study chemical

reaction dynamics. Constructing the PES from quantum reactive scattering cal-

culations, as the reaction probability, is known as the inverse scattering problem.

Here, we illustrate a possible solution to the inverse scattering problem with a two-

tiered GP model one GP model interpolates the PES and the second in Bayesian

optimization (BO) algorithm. The end result is an accurate PES constructed with

a GP with fewer points than with standard methods previously used for PES. BO

is an optimization algorithm for black-box functions that use GP regression as an

approximation of the interrogative function. We applied BO to find the optimal pa-

rameters of hybrid-density functionals. Quantum observables can differ between

phases of matter. GP models with kernel combinations can extrapolate quantum

observables such as the polaron dispersion energy between different phases and

discover phases of matter. The same algorithm can predict quantum observables

where standard numerical techniques lack convergence.

In the second half of the dissertation, we studied the evolution of quantum

walks in various graphs with Hamiltonians permitting particle number changes.

We showed that particle number-changing interactions accelerate quantum walks

for any of the graph considered. Quantum simulators to study many-body physics

is an active research field. We proposed the use of magnetic atoms trapped in

optical lattices to experimentally mimic Bose-Hubbard type models by preparing

atoms in different Zeeman states.
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Lay Summary

In this dissertation, we used machine learning algorithms to reduce the compu-

tational resources needed to predict quantum observables such as the electronic

energy of molecules, reaction probabilities, and energy dispersions. Next, we il-

lustrate that machine learning algorithms, trained with data from a single phase,

can extrapolate quantum observables and predict new phases of matter. We also in-

troduced an optimization algorithm for black-box functions to solve problems like

the inverse scattering problem or the optimization of hybrid-density functionals

used in quantum chemistry. Additionally, we illustrate that the spread of quantum

particles used in quantum computing, like in quantum search algorithms, can be

enhanced if quantum particles are allowed to create/annihilate different particles.

Last, we proposed an experimental simulator to study many-body quantum physics

using Zeeman excitations of magnetic atoms trapped in an optical lattice.
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given by BBB = B0 (0.1x̂+ ẑ). The Zeeman states in such a mag-

netic field retain 96% of the eigenstates of JJJ2 and JJJz. Figure

from reference [184]. . . . . . . . . . . . . . . . . . . . . . 110

xxii



Figure 6.6 Anderson localization of the |J = 8,M = 0〉 → |J = 8,M =

+1〉 excitation in a one-dimensional array of Dy atoms on an

optical lattice with a = 266 nm and 20 % of the lattice sites

empty. The upper panel shows the probability distribution for

the atoms in the corresponding site to be in the excited state at

t = 2 seconds formed by a single excitation placed at t = 0 in

the middle of a lattice with 1000 sites. The lower panel shows

the width of the excitation probability distribution as a function

of time. Figure from reference [184]. . . . . . . . . . . . . . 115

Figure A.1 The iterations of BO to find the minimizer of L for the H2

molecule. The black vertical line is the next proposed point by

BO. The blue markers are the training data used to construct

the acquisition function. The blue-solid curve is the mean of

the GP model and the grey shaded area is σ(·). . . . . . . . . 148

xxiii



Glossary

This glossary uses the handy acroynym package to automatically maintain the

glossary. It uses the package’s printonlyused option to include only those

acronyms explicitly referenced in the LATEX source.

α(·) acquisition function

BO Bayesian optimization

BIC Bayesian information criterion

DFT Density functional theory

EI Expected Improvement

GP Gaussian Process

HOMO highest occupied molecular orbital

k(·, ·) kernel function

θ kernel parameters

KRR kernel Ridge regression

LHS Latin hypercube sampling

LR long-range

L loss function

ML Machine learning

xxiv

http://www.ctan.org/macros/latex/contrib/acroynym


NN Neural network

PES potential energy surface

PI Probability of improvement

QW quantum walk

RL Reinforcement learning

SR short-range

D training data

UCB Upper confidence bound

xxv



Acknowledgments

Foremost, I would like to express my sincere gratitude to my supervisor Professor

Roman V. Krems for giving me the opportunity to do a Ph.D. in his research group.

I would also like to thank him for all his patients, devotion and endless help to

make this stage of my life a grateful experience. I would like to thank Marina

Litinskaya and Evgeny A Shapiro for all the help they grant me during the first

years of my grad studies. I am thankful for the great research group I got to work

with, P. Xiang, J. Cui, J. Sous, T. Chattaraj, and J. Cantin; thank you very much

for all those great physics and non-physics discussions during these years. I would

like to thank R. Chen for all the great machine learning discussions we had.

I am grateful for the incredible experiences I had during my multiple visits to

the research group of Professor T. Schaetz in Freiburg Germany, these trips would

not had happened without the help of the IRTG-coco program. I would also like to

thank my German friends, F. Hakelberg, S. Fuchs and P. Weckesser for all the great

memories together. I would like to thank Professor D. H. Zhang and his student

Y. Guan who made my visit to the Dalian Institute of Chemical Physics a pleasant

experience.

Vancouver became my second home and I was lucky to make new friends. E.

Castillo and J. Casanova for all their help during my first years. B. Loosley for

the beer/biking moments. K. Lovering and A. Bain for all those cups of coffee.

P. L. Esquinas and A. Lee for all those quantum assignments, S. Cuen-Rochin for

the basketball moments, M. Vashista, T. Matzat, H. Neurert and R. Garcia-Rojas-

Villegas. Thank you all the great memories that we shared during my Ph.D. A

special thanks goes to Montse Rueda for helping me be a better human, bike-beers-

books.

xxvi



Like any other immigrant, leaving home behind is one of the hardest chal-

lenges because of the people we stop seeing. I am thankful for all the great Mexi-

can friends who supported me and my family during my Ph.D. Romina Arguelles

and her family, Mariana Dominguez, Paula Balbi, Izaskun Diaz, Alejandro Evaris,
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Chapter 1

Introduction

If I have seen further it is by standing on the shoulders of Giants.
— Sir Isaac Newton (1675)

The field of quantum physics has been theoretically challenging due to dimen-

sionality of the Hilbert space required to accurately describe quantum systems.

Major breakthroughs in the field of modern science have been achieved due to

growth in computational power in recent years. Nevertheless, there are still many

interesting quantum systems that cannot be fully simulated with the current com-

puting capacity and thus different methodologies have to be designed. In 1982 R.

Feynman proposed the idea to simulate quantum systems analogously [64]. This

new research field is known as quantum simulators and its only goal is to use

fully controllable quantum systems to improve the human knowledge of quantum

physics [30].

As practical as it seems, quantum simulators cannot mimic all quantum sys-

tems and the hunger for novel numerical tools to study quantum physics is still

present [30]. Recently the use of machine learning algorithms has gained momen-

tum in the fields of theoretical chemistry and physics [8, 33, 35, 71]. In this thesis

machine learning algorithms are being used to study quantum physics in a wide

range of problems; from the description of the electronic energy as a function of

the nuclei position to the discovery of new quantum phases of matter. In this chap-

ter, a brief introduction and motivation to each of the research projects that were

conducted during my Ph.D. are presented. The last part of the current chapter sum-
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marizes each of the chapters dedicated to the research projects that this thesis is

comprised of.

1.1 Machine learning to study quantum systems
Physics is devoted to studying observables quantities like position, momentum or

energy, to explain how nature behaves. The state of a system, S, determines the

measured quantity, o, that is produced by a physical observable F . This process

can be described by,

F (S) = o. (1.1)

For example, given the distance and the masses of two bodies, one can compute

the gravitational potential energy,

U(x1,x2,m1,m2) =−
G m1 m2

r1,2
, (1.2)

where r1,2 is the distance between the two particles, and mi is the mass of each

particle. G is the gravitational constant. One can observe that Equation 1.2 is

similar to Equation 1.1, where S = [x1,x2,m1,m2] and F (·)→U(·).
Things are more complicated in the quantum world since quantum observables

are described by operators, Ô [161]. In quantum mechanics, an operator acts on a

quantum state |ψ〉 and produces a scalar, λ , and another quantum state,

Ô |ψ〉 → λ |φ〉 . (1.3)

A specific group of operators is the Hermitian operators whose eigenvalues are real,

λi ∈ IR. All the quantum observables that are studied in this thesis are described by

Hermitian operators. When a Hermitian operator acts on its eigenvector, the output

vector is the same,

Ô |ψi〉= λi |ψi〉 . (1.4)

where |ψi〉 is an eigenvector of operator Ô and λi is the eigenvalue associated
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with |ψi〉. Furthermore, the dot product between two eigenvectors is equal to a

Kronecker delta,

〈ψi|ψ j〉= δi j =

{
1 if i = j,

0 if i 6= j

}
, (1.5)

i.e. they are orthogonal. Using Equation 1.4 one can rewrite any Hermitian opera-

tor using its spectral decomposition,

Ô = ∑
i

λi |ψi〉〈ψi| , (1.6)

where λi are the eigenvalues and |ψi〉 the eigenvectors of the operator Ô . Each

|ψi〉〈ψi| term in Equation 1.6 is a projector or measurement operators in the eigenspace

of Ô , P̂i = |ψi〉〈ψi|. Furthermore, any quantum state |ψ〉 can be rewritten in terms

of the eigenstates of Ô ,

|ψ〉= ∑
i
|ψi〉〈ψi|ψ〉 , (1.7)

where each 〈ψi|ψ〉 term is an inner product between the quantum states |ψi〉 and

|ψ〉. Using Equations 1.6 and 1.7, one can compute the expectation value of a

quantum observable as,

〈ψ|Ô |ψ〉 = ∑
i

λi 〈ψ|ψi〉〈ψi|ψ〉

= ∑
i

λi

[
∑

j
〈ψ|ψ j〉〈ψ j|

]
|ψi〉〈ψi|

[
∑

l
〈ψl| 〈ψ|ψl〉

]
= ∑

i
λi| 〈ψ|ψi〉 |2 (1.8)

where | 〈ψ|ψi〉 |2 = 〈ψi|ψ〉〈ψ|ψi〉 is the probability of measuring λi. Furthermore,

Equation 1.8 is the statistical definition of the expectation value for a discrete ran-

dom variable X ,

E[X ] = ∑
i

xi pi. (1.9)
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The ground state of Ô , denoted as |ψGS〉, is the eigenvector with the lowest

eigenvalue, λ0. Using Equation 1.8 and |ψ〉 → |ψGS〉 one can measure λ0,

〈ψGS|Ô |ψGS〉= λ0. (1.10)

Additionally, operators can have internal parameters; for example, the Hamiltonian

of a particle in a one-dimensional box depends on the length of the box, L, and

the mass of the particle, m. Here we collectively described the parameters of an

operator by θ̄ . In the case of a particle in a one-dimensional box, θ̄ = [L,m].

One of the central ideas in this dissertation, Equation 1.11, is the use of Ma-

chine learning (ML) algorithms to learn the relation between λ0 and θ̄ ,

〈ψGS|Ô(θ̄) |ψGS〉= λ0 → F (θ̄), (1.11)

where F (·) is the ML algorithm that mimics the computation of λ0. If F (·) is

capable to learn 〈ψGS|Ô(θ̄) |ψGS〉 accurately, one could reduce the computational

resources needed to calculate λ0 for different values of θ̄ .

In theoretical chemistry, computing the electronic ground state energy of an en-

semble of electrons and nuclei in different fixed positions can be mapped to Equa-

tion 1.11. Each of the possible spatial configurations of the nuclei is described by a

unique θ̄ = [x1, · · · ,xm], where xi is the position of each nucleus. The map between

the nuclei positions and the electronic ground state energy, F (·), is known in the

field of quantum chemistry as the potential energy surface (PES) [133]. As it is

stated above, inferring F (·) is crucial to reduce the computational power needed

to study quantum systems. This leads to the first question addressed in this the-

sis: Can ML be used to interpolate quantum observables accurately to construct

PESs?

For some quantum systems, the computation of λ0 with standard numerical

methods lacked convergence due to the size of the Hilbert space required to de-

scribe the quantum system. Furthermore, without the ability to compute λ0 in the

entire space of θ̄ , one can not construct the complete phase diagram of a quantum

system [160]. This raises the second question: Can ML be used to extrapolate

observables to learn phase diagrams?
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Quantum observables can also depend on other quantum observables, Equa-

tion 1.12, making the computations more demanding.

λ0 = 〈φGS|Ô1(θ̄ ,〈ψGS|Ô2(θ̄
′) |ψGS〉) |φGS〉 . (1.12)

Using Equation 1.11, one can rewrite Equation 1.12 as,

〈φGS|Ô(θ̄ ,F (θ̄ ′)) |φGS〉 = 〈φGS|Ô(θ̄ ,λ ′0) |φGS〉 , (1.13)

where θ ′ are the parameters of Ô2 and λ ′0 it the lowest eigenvalue of Ô2(θ
′). F (·)

computes the quantum observable of Ô2 given the values of θ ′. The parameters of

Ô are described by θ̄ .

Many types of quantum problems can be described by Equation 1.12; for ex-

ample, to compute any quantum dynamical observable one first needs to fit F (·)
to reduce the complexity of the problem. From Equation 1.13 one can observe the

causality relation between λ0 and F (·) is F (·)→ λ0, so one can raise the follow-

ing question: Can F (·) be learned from λ0?. This question amounts in the field

of quantum physics to the inverse scattering problem. Due to the complexity of

the inverse scattering problem, one could rephrase the above question as the third

question of this dissertation: Can the inverse scattering problem be solved using

ML?

1.2 Quantum walks
The goal of ML is designing robust algorithms capable of learning almost any

phenomenon given some data. In order to do so, ML algorithms are trained by

minimizing a loss function which sometimes is not a simple task. Furthermore,

the optimization of ML algorithms is computationally demanding. Some classi-

cal algorithms when they are mapped into the quantum framework became more

efficient [194]. For example, the spread of quantum walks in some regimes is

significally faster than random walks, making them more efficient for search type

algorithms. Quantum walks are the quantum counterpart of random walks, one

of the building blocks used in various classical algorithms as statistical models of

real-world processes, and they are also used in the field of quantum computing
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[46, 89, 142, 187].

There are two types of quantum walks, discrete and continuous quantum walks.

The first type resembles the classical view of a random walk by tossing a quantum

coin. The quantum coin describes the transition probabilities from heads (|+〉)
to tails (|−〉) or vice-versa. One of the main differences between quantum and

random walks is the possibility for a quantum walk to be in a superposition of

heads and tails,

|s〉= c1 |+〉 + c2 |−〉 , (1.14)

where cis are the complex amplitudes for each coin state. The time evolution of a

discrete quantum walk is done by sequentially applying the coin operator,

|s(n)〉= Ûn |s(n = 0)〉=
[

N

∏
n=1

1√
2

(
1 1

1 −1

)]
|s(n = 0)〉 , (1.15)

where Û , in this case, is the Hadamard operator and |s(n = 0)〉 the initial state.

Tossing a quantum coin one time for an initial state in heads, |s(n = 0)〉 = |+〉,
leads to a new state that is in an equal superposition of both coin states,

|s(n = 1)〉= Û |+〉= 1√
2

(
1 1

1 −1

)(
1

0

)
=
|+〉 + |−〉√

2
. (1.16)

In order to simulate the movement of the walk in a one-dimensional chain, we

introduce the shift operator, Ŝ. If the quantum coins lands heads, the quantum walk

moves to the right and if it lands tails, it moves to the left,

Ŝ = |+〉〈+|⊗∑
n
|n+1〉〈n| + |−〉〈−|⊗∑

n
|n−1〉〈n| , (1.17)

here the state |n〉 indicates the location of the quantum walk in a one-dimensional

chain. After applying the Hadamard operator on the initial state once, we obtain a
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new quantum state with equal probability in the adjacent site

Ŝ⊗ Ĥ
[
|+〉⊗ |n = 0〉

]
= Ŝ

[ |+〉⊗ |n = 0〉 + |−〉⊗ |n = 0〉√
2

]
=
|+〉⊗ |n = 1〉 + |−〉⊗ |n =−1〉√

2
, (1.18)

for this example the coin operator is Û = Ŝ⊗ Ĥ and the initial state considered is

a quantum walk located in the middle of a 1D chain with heads. As it is stated

above, the quantum walk has moved with equal probability to the adjacent sites.

The time evolution of continuous quantum walks is,

|ψ(t)〉= Û(t) |ψ(t = 0)〉 (1.19)

where Û(t) is the evolution operator and it is defined as

Û(t) = e−ih̄Ĥt , (1.20)

where Ĥ is the Hamiltonian operator. For discrete quantum walks the evolution

operator is the Hadamard operator, Equation 1.15.

One of the most common continuous quantum walks is described by the Hamil-

tonian of a one-dimensional chain with hopping only between adjacent sites,

Ĥ =−γ
[
|n+1〉〈n|+ |n−1〉〈n|

]
, (1.21)

where γ is the transition probability. Expanding the evolution operator in a Taylor

series we find that a quantum walk, initially located in the centre of a 1D chain,

moves to the adjacent sites with equal probability,

|ψ(t)〉 =
[
1− ih̄ Ĥt + · · ·

]
|n = 0〉

= |n = 0〉+ ih̄γt
[
|n = 1〉+ |n =−1〉

]
+ · · · . (1.22)

It must be pointed out that the formulation of continuous quantum walks is inde-

pendent of coin states, meaning that the movement of the walk does not depend

on tossing a quantum coin. In continuous quantum walks, the Hamiltonian itself is
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the graph where the quantum walk will move [4, 63], and the transition probabili-

ties, described by the Hamiltonian, are the vertices between different nodes as it is

described in Equation 1.21.

One of the key differences between random and quantum walks is the spread of

the walk over time. While the spread over time for random walks scales as O(
√

t),

the spread of quantum walks scales linearly, O(t), also known as ballistic expan-

sion [142]. This unique property has made quantum walks extremely valuable in

quantum algorithms [45, 47, 171]. In this thesis we also raise the following ques-

tion: Can the spread over time be enhanced for quantum walks beyond the ballistic

limit?

1.3 Quantum simulators of condensed matter
R. Feynman proposed a revolutionary idea. He suggested that one could mimic

quantum phenomena with a fully controlled simulator [64]. This simple idea had

huge experimental consequences, since, in order to achieve quantum simulators,

humans have to be able to fully control quantum systems [30]. Over the last

decades, various candidates like, ion traps [21, 166], ultracold atoms and molecules

trapped in optical lattices [115], have been proposed to mimic the interactions (or

physics) of the solid-state/condensed matter. For example, in 1998 D. Jaksch et al.

[97] demonstrated that the dynamics of an ultracold dilute gas of bosonic atoms in

an optical lattice can mimic the Bose-Hubbard model,

Ĥ =−t ∑
〈i, j〉

ĉ†
i ĉ j +

U
2 ∑

i
n̂i(n̂i−1)−µ ∑

i
n̂i, (1.23)

where ĉ†
i and ĉi are the creation and annihilation operators, n̂i is the number of par-

ticles operator in the site i, and 〈i, j〉 restricts the sum only to adjacent sites. The

first term of the Bose-Hubbard model represents the hopping of particles between

different lattice sites. The second term describes the interaction between two parti-

cles at the same lattice site. The last term is known as the chemical potential and is

related to the total number of particles in the system. For ultracold atoms trapped

in an optical lattice, the parameters of Equation 1.23 depend on the lattice depth

that is produced by the laser used to trap the atoms [97].
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In 2009 M. Ortner et al. proposed the use of polar molecules to simulate the

Bose-Hubbard model [135]. This was experimentally realized in 2013 by B. Yan et

al. [201]. Trapping polar molecules in optical lattice is arguably one of the great-

est experimental achievements in modern physics; however, the filling of optical

lattices with current experimental setups is not high, currently limited to ∼ 25%

[131].

Polar molecules trapped in different sites of the optical lattice interact by dipole-

dipole interaction. The constants of the Bose-Hubbard model simulated with polar

molecules can be tuned by an external DC electric field [73]. Since the trap depth

of the optical lattice has to be large enough to confine polar molecules, the quan-

tum particles that simulate Bose-Hubbard model are Frenkel excitons, which in the

case of polar molecules are rotational excitations [73, 84, 86, 110, 121, 128, 138,

198, 201].

On the other hand, ultracold atoms can be trapped in optical lattices with nearly

uniform filling [74, 195]. In 2005 Greismaier et al. demonstrated that atoms with

high magnetic dipole were trapped in optical lattices [75]. This raises the follow-

ing question, Can magnetic atoms trap in an optical lattice be used as quantum

simulators for Bose-Hubbard type models?

1.4 Thesis outline
The work presented in this thesis is divided into two parts. In the first part, Chapters

2-4, illustrates the use of ML to study quantum physics. In the second part of

the thesis, Chapters 5 and 6, we study quantum walks and quantum simulators of

ultracold atoms with large magnetic dipole.

Chapter 2 contains the introduction to one of the most versatile supervised

learning algorithms, GP regression. In this chapter, we also explain why GPs

are a more accurate interpolation algorithm than neural networks (NNs) for low

dimensional problems. We interpolate the electronic energy for different spatial

configurations of the formaldehyde molecule using GP regression.

Chapter 3 introduces the novel idea of combining different ML algorithms

with the purpose of solving the inverse scattering problem. It also introduces the

Bayesian optimization (BO) algorithm to optimize functions without computing
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gradients. The combination of BO and GPs can construct accurate PESs for quan-

tum dynamics observables like the reaction probability for the H+H2 and OH+H2

reactions.

Chapter 4 explores the hypothesis that by extrapolating quantum observables

one can discover new phases of matter. Illustrating that GPs with a combination

of simple kernels can extrapolate quantum observables and predict the existence

of new phases of matter. This chapter studies the evolution of the polaron dis-

persion as a function of Hamiltonian parameters and shows that the change in the

ground state momenta leads to a new phase of matter. Additionally, using the same

algorithm one can accurately extrapolate quantum observables where traditional

numerical methods lack convergence.

Chapter 5 demonstrates the possibility to enhance the spread of quantum walks

for various graphs by allowing the number of walks to be a non-conserved quantity.

Illustrating that spread of a quantum walk with number-changing interactions is

supra-linear at short times, O(tn) where n > 1. We also show that for disordered

graphs the spread of a quantum walk is larger when number-changing interactions

are considered in the Hamiltonian.

Chapter 6 is dedicated to an experimental proposal to study extended Bose-

Hubbard models using highly magnetic atoms trapped in optical lattices. The pro-

posal presented uses Zeeman excitations to tune the parameters to construct various

Bose-Hubbard type models.
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Chapter 2

Gaussian Processes

Sometimes people have to create out of pure necessity.
— Ben Shewry

Machine learning (ML) field is divided into three major areas; supervised, un-

supervised, and reinforcement learning [20, 132, 181]. Each of these three fields

studies a particular task. In the case of supervised learning, the goal is to find the

numerical mapping between an input xi and an output yi. The numerical mapping

can be viewed as, yi = f (xi). When the output value yi is discrete, the problem

is known as classification. On the other hand, when yi is continuous is known as

interpolation. This chapter describes one of the most common supervised learning

algorithms Gaussian Process (GP) regression [147].

2.1 Introduction
As in any other supervised learning algorithm, the goal of GP regression is to

infer an unknown function f (·) by observing some input, X, and output data, y.

We denote D as the training dataset that contains both X and y. One of the few

differences between GP regression and other supervised learning algorithms, like

Neural networks (NNs), is that GPs infer a distribution over functions given the

training data p( f |X,y).
Gaussian Processes (GPs) are a probabilistic method and assume that each

training point is a random variable and they have a joint probability distribution
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p( f (x1), · · · , f (xN)). As its name suggests, GPs assume that the joint distribution

is Gaussian and has a mean µ(x) and covariance K(x,x′). The matrix elements

of the covariance are defined as Ki j = k(xi,x j) where k(·, ·) is a positive defined

kernel function. The kernel function plays a key role as it describes the similarity

relation between two points. A GP is denoted as,

f (x)∼ GP
(
µ(x),K(x,x′)

)
(2.1)

In the following sections, we describe the training and prediction of GP regression.

2.2 Gaussian Processes: prediction
As it was mentioned above, a GP is the collection of random variables f (xi) that

follow a joint distribution. The joint Gaussian distribution between D , x∗, and

f (x∗) is of the form,(
f (X)

f (x∗)

)
∼N

((
µ

µ∗

)
,

(
K K∗

K>∗ K∗∗

))
(2.2)

where K is the covariance matrix of the training data X , K∗ is the covariance matrix

between X and x∗, and K∗∗ is the covariance with respect to itself.

The probability distribution over f (x∗) can be inferred by computing the condi-

tional distribution given the training data, p( f∗|x∗,D). Conditioning on the training

data is the same as selecting the distribution of functions that agree with observed

data points y. The mean and covariance matrix of the conditional distribution are,

µ(x∗) = K(x∗,X)>K(X ,X)−1y (2.3)

σ∗ = K(x∗,x∗)−K(x∗,X)>K(X ,X)−1K(X ,x∗) (2.4)

where σ∗ is the predicted variance for x∗. The mean of the conditional distribution,

equation 2.3, can be rewritten as,

µ(x∗) = ∑
i

d(x∗,xi)yi = ∑
i

αik(x∗,xi) (2.5)
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where d=K(x∗,X)>K(X ,X)−1 and α =K(X ,X)−1y. The mean of the conditional

distribution is a linear combination of the training data, y, or a linear combination

of the kernel function between the training points and x∗. Function d(·, ·) can be

understood as a distance function. It is important to state that the accuracy of the

prediction with GPs directly depends on the size of the training data N and the

kernel function k(·, ·). In Section 2.4 we illustrate the impact that different kernels

on GPs’ prediction.

In the GPs’ framework, the predicted variance or standard deviation of x∗ rep-

resents the uncertainty of the model, Equation 2.4. The uncertainty can be used

to sample different regions of the function space to search the location of the min-

imum or maximum of a particular function. This is the idea behind a class of

ML algorithms known as Bayesian optimization (BO), which will be discussed in

Chapter 3.

An example of GP regression is illustrated in Figure 2.1 where f (x) = x
10 +

x2 + 10sin(3
2 x). We use the exponential squared kernel and 7 training points. In

the following section, we describe the most common procedure to train GPs.

2.3 Gaussian Processes: training
The goal of any supervised learning algorithm is to infer a function f (·), as ac-

curately as possible, given some example data. In order to quantify the accuracy

of a model we define a loss function, L , for example, the difference between

the prediction yi and the real value ŷi (training points) such as L ≈ ∑
N
i (yi− ŷi)

2

or L ≈ ∑
N
i |yi− ŷi|. The parameters of the model w and L are interconnected.

To illustrate this idea let us assume that f (·) is a simple linear regression model,

f (x) = a+bx. The loss function for such model is,

L =
N

∑
i
(yi− ŷi)

2 =
N

∑
i
(a+bxi− ŷi)

2. (2.6)

From the previous equation, we can observe that the value of L depends on a and

b. It can be argued that when L is large f (xi) 6≈ ŷi. On the other hand when

f (xi) ≈ ŷi the value of L will tend to zero. Using a loss function to tune the

parameters of f (·) is known as the training stage in ML. It must be mentioned
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Figure 2.1: Interpolation using a GP model trained with 7 points and an ex-
ponential squared kernel. The black dashed line is f (x) = x

10 + x2 +
10sin(3

2 x). The solid blue line is the prediction of the GP model, Equa-
tion 2.5. The grey shaded area is the standard deviation of the predicted
mean of the GP model, Equation 2.4. The blue square symbols are the
training data.

that replicating the training data could also mean that the model “memorized” the

training data. This common problem in ML is known as overfitting.

GPs models can also be trained using a loss function. GP models are non-

parametric models, therefore, the dimensionality of the loss function depends on

the number of the parameters of the kernel function. Using a loss function to

determine the optimal value for the kernel parameters for non-parametric models

is computationally expensive and is prone to overfitting [132, 147]. However, it

is possible to train GP methods without a loss function. The most common way

to train GPs is by finding the kernel parameters (θ ) that maximize the marginal
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likelihood function,

θ̂ = argmax
θ

p(y|X ,θ ,Mi) (2.7)

where p(y|X ,θ ,Mi) is the marginal likelihood for a given model or kernel function

Mi. Finding the value of θ where p(y|X ,θ ,Mi) is maximized is known as type II

maximum likelihood (ML-II) [132, 147]. The marginal likelihood or evidence is

defined as,

p(y|X ,θ ,Mi) =
∫

p(y|X , f,Mi) p(f|θ ,Mi)df. (2.8)

In the case of GPs, the marginal likelihood has a closed form, Equation 2.9.

Finding the kernel parameters that maximize the marginal likelihood can be done

by maximizing the logarithm of the marginal likelihood w.r.t to θ ,

log p(y|X ,θ ,Mi) =−
1
2

y>K−1y− 1
2

log |K|− N
2

log2π (2.9)

where the first term is known as the data-fit term, the second term reflects the

complexity of the model Mi, and the third term is a constant that depends on the

number of training points, N. The value of log p(y|X ,θ ,Mi) mainly depends on

the data-fit and complexity terms. For instance, for a θ that memorizes the train-

ing data the value of log |K| is large, while y>K−1y will be small. The tradeoff

between the data-fit and the complexity term is key for the optimal value of the

kernel parameters.

Standard gradient-based optimization algorithm is the most common method

to find the optimal value of the kernel parameters. The logarithm of the marginal

likelihood has an analytic form, therefore, it is possible to compute the change of

log p(y|X ,θ ,Mi) as a function of the kernel parameters, ∂ log p(y|X ,θ ,Mi)
∂θi

. For most

cases, the function log p(y|X ,θ ,Mi) is not a convex function; thus there is a possi-

bility that the optimization algorithm gets trapped in one of the local maxima [147].

For GP regression, the value of θ does depend on the training data y, and having

different training data sets could lead to different values for the kernel parameters.

In the following section, we explain the use of GPs as an interpolation tool to fit
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multidimensional functions. In Chapter 3, we illustrate that two-tiered GPs mod-

els are capable of solving the so-called inverse scattering problem. In Chapter 4,

we also illustrate the use of GP regression to predict beyond the training data to

discover phases of matter.

2.4 Kernel functions
In the previous sections, we explained how a GP model is trained and also how it

can make predictions. We also assumed that GPs need a kernel function in order to

construct the covariance matrices K and K∗. In this section, we introduce various

kernels that are used for training GPs and illustrate how prediction with GPs can

drastically change depending on which kernel is used. As mentioned previously,

the kernel function should describe the similarity between two points. In kernel

regression, two points that are similar, under some metric, should have a similar

output value yi, predicted by Equation 2.5.

The kernel function k(·, ·) must be a positive definite function; this restriction

comes from the requirement to invert the covariance matrix during training and

prediction see, Equations 2.5 and 2.9. The covariance matrix must be a symmetric

matrix which forces the kernel function to be symmetric too, k(x,x′) = k(x′,x).
The Cholesky factorization is the most common algorithm to invert matrices with

O(N3) complexity where N is the number of training points [147].

All of the kernels that are used in this thesis are stationary kernels except for the

linear kernel. Any stationary kernel can be rewritten in terms of the Mahalanobis

distance,

r2(x,x′) = (x−x′)>Λ(x−x′) =
d

∑
i
`i(xi− x′i)

2 (2.10)

where the Λ is a diagonal matrix with `i being a particular length-scale for each

dimension. The Mahalanobis distance reduces to the square of the Euclidian dis-

tance when all `i = 1, r2(x,x′) = (x−x′)>(x−x′). Furthermore, when all `i have

the same value, the kernel function is an isotropic kernel. In the following sections,

we explain some of the most common kernels that are used in GP models.
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2.4.1 Constant kernel

The constant kernel, arguably the most simple kernel, assumes that the similarity

relation between two points is constant,

kC(r) = ` (2.11)

The kernel parameter ` can be optimized by maximizing the logarithm of the

marginal likelihood. kC(·) is a one-time differentiable function.

2.4.2 Square exponential kernel

The square exponential (SE) kernel, also known as the radial basis function (RBF)

kernel, is probably the most used kernel in GP regression. The SE kernel is a

stationary kernel since it depends on the difference between two points,

kSE(r) = exp
(
−r2) . (2.12)

The kernel parameters of the SE kernel are the matrix elements of the Λ matrix.

Each `i defines the characteristic length-scale for each dimension. Depending on

the user, the SE kernel can be isotropic, all `i have the same value, or anisotropic,

each `i has a different value. As it was mentioned in the previous section, the values

of Λi are optimized by maximizing the logarithm of the marginal likelihood. The

training of an isotropic SE kernel is faster since the total number of parameters in

the kernel is one, while anisotropic SE kernels have d parameters, d is the dimen-

sion of x. The SE kernel is infinitely differentiable. Figure 2.2 illustrates the square

exponential kernel and GPs’ prediction with SE kernel as a function of different `s.

2.4.3 Matern kernel

The Matern (MAT) kernels are probably the second most used kernel for GPs,

kMAT (r) =
21−ν

Γ(ν)

(√
2νr
`

)ν

Kν

(√
2νr
`

)
(2.13)
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Figure 2.2: a) The square exponential function with different length scales.
b) Prediction of a GP model with the SE kernel using different length
scale values.

where ν and ` are both positive constants, Γ(·) is the gamma function, and Kν is a

modified Bessel function. In the limit of ν → ∞ the Matern kernel reduces to the

SE kernel. The two most common Matern kernels are for ν = 3
2 and ν = 5

2 ,

k
ν= 3

2
(r) =

(
1+
√

3r
)

exp
(
−
√

3r
)

(2.14)

k
ν= 5

2
(r) =

(
1+
√

5r+
5
3

r2
)

exp
(
−
√

5r
)

(2.15)

when ν = 3
2 the Matern kernel is one-time differentiable, while for ν = 5

2 the

Matern kernel is twice differentiable. Both kernels, Equations 2.14 and 2.15, are

anisotropic kernels if r is computed with the Mahalanobis distance. Figure 2.3 il-

lustrates the Matern function and GPs’ prediction with Matern kernel for different

`s and ν = 3
2 or ν = 5

2 . Figure 2.3 illustrates the MAT kernel and GPs’ prediction

with these kernels for different values of the kernel parameters.
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Figure 2.3: a,c) The Matern kernel function for different length scales and
ν = 3

2 (a) or ν = 5
2 (c). b,d) Prediction of a GP model with the MAT

kernel using different length scale values and ν = 3
2 (b) or ν = 5

2 (d).

2.4.4 Rational Quadratic kernel

The Rational quadratic kernel (RQ) is also a stationary kernel,

kRQ(r) =
(

1+
r2

2α`2

)−α

(2.16)

where α and ` are the kernel parameters. In the case where α → ∞ the RQ kernel

is identical to the SE kernel. r is computed with the Euclidian distance. Figure 2.4

illustrates the RQ kernel and different GPs’ prediction for various α and ` values.
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Figure 2.4: a) The rational quadratic function with different ` and α values.
b) Prediction of a GP model with the RQ kernel using different values
for ` and α .
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2.4.5 Periodic kernel

None of the previously mentioned kernels are capable of describing periodic func-

tions. Periodicity can be described by trigonometric function like cos(x), sin(x), cos2(x)

or sin2(x). Since any kernel function must be a semi-positive define function,

cos2(x) and sin2(x) are the only capable trigonometric functions that can be used

as kernel functions. The periodic (PER) kernel has the form,

kPER(r) = exp

−2sin2
(

πr
p

)
`2

 (2.17)

where p and ` are the kernel parameters. p describes the intrinsic periodicity in

the data and ` is the length-scale parameter. Figure 2.5 shows the exponential sine

squared function for different ` and p values, and also how GPs’ prediction changes

for different ` and p.
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Figure 2.5: a) The exponential sine squared function with different length
scales and different periodicities. b) Prediction of a GP model with the
PER kernel using different values for ` and p = 8.11.
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2.4.6 Linear kernel

The linear kernel (LIN) is a non-stationary kernel and is also known as the dot

product kernel,

kLIN(x,x′) = x> x′+σ =
d

∑
i

xix′i +σ (2.18)

where σ is the offset value of the kernel. If σ = 0 the linear kernel is considered to

be homogenous. A more general form of the linear kernel is, kLIN(x,x′) = x>Λ x′,
where the matrix Λ is a diagonal matrix with unique length-scale parameters for

each dimension in x. The linear kernel is the base of the polynomial kernel,

kPOL(x,x′) =
(
kLIN(x,x′)

)p
=
(

x> x′+σ

)p
= σ +

(
d

∑
i

xix′i

)p

(2.19)

where p is the polynomial degree. Figure 2.6 shows the prediction of GP regression

with the LIN kernel with different polynomial degrees.
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Figure 2.6: Prediction of a GP with the LIN kernel using different σ and
polynomial degree.
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In the following section, we illustrate the use of GP models to interpolate mul-

tidimensional functions. We compare the accuracy of GP regression with NNs, the

most well-known ML algorithm for supervised learning.

2.5 Potential Energy Surfaces
One of the greatest challenges in computational chemistry is describing the change

of the electronic ground state energy, Eelec, as a function of the position of the

atoms. For each Eelec we need to solve the Schrödinger equation where the Hamil-

tonian (Helec) describes a system of an ensemble of N electrons and M nuclei with

fix positions. This Hamiltonian is known as the electronic Hamiltonian,

Helec =−
N

∑
i=1

1
2

∇
2
i −

N

∑
i=1

M

∑
A=1

ZA

riA
+

N

∑
i=1

N

∑
j>i

1
ri j

, (2.20)

where the first term is the kinetic energy of electrons, the second term is the

Coulomb interaction between electrons and nuclei, and the last term is the electron-

electron interaction. ZA is the atomic number of nucleus A. The eigenvalues of

Helec parametrically depend on the positions of the nuclei because of the electron-

nucleus interaction, the riA terms in Equation 2.20.

Finding the solutions of Helec is still one of the most challenging problems

in quantum chemistry. In 1998, the Nobel committee for chemistry laureated W.

Kohn and J. A. Pople for their contributions in the field of quantum chemistry. W.

Kohn is the father of Density functional theory (DFT), which is one of the most

known methodologies for solving Equation 2.20, and J. A. Pople is the pioneer in

the development of various computational methods in quantum chemistry. Both

scientists dedicated their research to find the solutions of the electronic Hamilto-

nian. It is out of the scope of this thesis to explain or propose new methodologies

dedicated to computing the eigenvalues and eigenvectors of the electronic Hamil-

tonian. Instead, we propose the use of machine learning to reduce the overall

computational resources needed to study problems in quantum chemistry.

As it is stated above, the electronic energy depends on the positions of the

nuclei. For instance, two hydrogen atoms have different energies for different in-

teratomic distances; quantum chemists call this function a potential energy sur-
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face (PES). Figure 2.7 illustrates the prediction of the hydrogen molecule’s energy

for different interatomic distances using GP regression.

A more general definition of a PES is the function that describes the electronic

energy of a system for different spatial configuration of the atoms,

Eelect = f (R0, · · · ,RM) (2.21)

where Ri is the position of the nucleus i. The function f (·) can be any quantum

chemistry method used to evaluate the electronic energy for a given configuration

of atoms, Eelec ∼ 〈Helec〉. Trying to infer f (·) from some available data is the

definition of a supervised learning problem.
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Figure 2.7: H2 molecule’s energy for different interatomic distances pre-
dicted with a GP model trained with 6 points and the SE kernel. The
exact PES (dashed black line) is from reference [23].

Using ML or any other regression model to infer f (·) is not a novel idea

[133, 165, 183]. In 2006 Manzhos et al. used NNs to fit PESs [122, 124]. The

use of GP regression to construct PESs was introduced by A. P. Bartók et al. in

Ref. [14] to study bulk crystals where the PESs are used in the calculation of var-
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ious properties at high temperatures. Cui et al. interpolated the PES of the N4

molecule [52] using GP regression. However, ML has rapidly evolved in recent

years with the creation of new algorithms that could reduce the number of training

points needed to make more accurate fits for various PESs [13, 15, 78, 169].

The prediction of bond-breaking energies, unimolecular reactions, vibrational

spectra, and reaction rates are a few of the observables that depend upon the accu-

racy of PES fits [133, 165, 183]. Being able to interpolate the energy of a system

for different molecular geometries can also give synthetic chemists information

such as reaction mechanisms or transition states [186]. Generally speaking, PESs

play a crucial role in chemistry.

In the following section, we present the results obtained using NNs and GP

regression to predict the PES for the H2CO molecule. We also discuss the impact

that different kernels have on GP regression and the number of neurons in NNs.

Additionally, we summarize the impact the training points have on the test error

for both algorithms.

2.5.1 Results

2.5.2 Gaussian Processe regression vs Neural Networks

NNs and GP regression are two of the most known supervised learning algorithms

[132, 159]. Over the course of this section, we summarize the results obtained

when NNs and GP regression both are used to fit the PES of the H2CO molecule.

We also discuss the importance of the training data size for both algorithms and

explain under which circumstances which algorithm is more accurate for interpo-

lating PESs. The results presented in this section are published in reference [102].

The PES of Formaldehyde is a 6D function where the six coordinates are,

• CO→ distance between the Carbon and Oxygen atoms.

• CH1 → distance between the Carbon atom and one of the Hydrogen atoms.

• CH2 → distance between the Carbon atom and the other Hydrogen atoms.

• ∠OCH1 → angle between the Carbon, Hydrogen and Oxygen atoms.
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• ∠OCH2→ angle between the Carbon, second Hydrogen and Oxygen atoms.

• ∠H2OCH1 → dihedral angle between the OCH planes.

We consider a data set of 120,000 energy points for the H2CO molecule ob-

tained from reference [36]. Figure 2.8 illustrates the distribution over the energy

values of the complete data set. Each training data set used to train every NN or GP

model is sampled using the Latin hypercube sampling (LHS) to ensure the points

are efficiently spread [126].
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Figure 2.8: Distribution of energy values of the PES dataset. Figure from
reference [102]

NNs are a powerful and complex supervised learning algorithm [132]. We

consider one of the simplest NNs architectures, single layer NN with sigmoid ac-

tivation functions. Even in the limit of a single layer of neurons, NNs can be used

as an interpolation algorithm. We study the effect that the number of neurons has

in the accuracy of single layer NNs. Each NN is trained using 200 epochs with

the Levenberg-Marquardt algorithm. All the results that are reported here were ob-

tained using MATLAB’s Neural Network ToolboxTM. The data used to train NNs

is scaled to [0,1]. The results obtained using NNs are summarized in Table 2.1.

GPs are a robust supervised learning algorithm; we test their accuracy by con-

sidering different kernel functions and various number of training points. The op-

timization of the kernel parameters is carried out by maximizing the logarithm of
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Table 2.1: RMSE (test errors computed on 120,000 points) of the PES ob-
tained with the NNs for different training points (Npts). The number in
the parenthesis are the number of neurons used in that particular NN.
〈NN〉10 is the average RMSE for 10 NNs with different sets of Npts. The
values are in cm−1.

Npts NN 〈NN〉10

313 198.00(20) 103.93(30) 87.77(40) 119.11(20) 53.97(30) 43.90(40)
625 21.12(50) 12.91(75) 12.03(100) 13.36(50) 7.52(75) 6.53(100)
1250 9.29(70) 5.74(100) 4.38(150) 5.74(70) 3.36(100) 2.54(150)
2500 4.59(100) 2.43(150) 1.12(250) 2.27(100) 1.23(150) 0.86(250)

Table 2.2: RMSE (test errors computed on 120,000 points) of the PES ob-
tained with GP regression. All GPs use the SE kernel function. Npts is
the number of training points. 〈GP〉10 is the average RMSE for 10 GP
models with different sets of Npts. The values are in cm−1.

Npts GP 〈GP〉10

313 29.09 17.18
625 5.98 3.87
1250 2.17 1.13
2500 1.08 0.62

the marginal likelihood, Section 2.3. All GP models are constructed with scikit-

learn’s Guassian Process Regression library [137]. Interpolation results using GPs

are summarized in Table 2.2.

As discussed, using different kernel functions leads to different accuracies in

the predictions of GPs. For example, the RMSE of a GP model with the MAT(ν =
5
2) kernel and 2000 training points is 43.63 cm−1, while with the same number

of training points but using the RQ kernel the RMSE is 49.87 cm−1. The RMSE

for both GPs is computed over 30,000 points. The kernel function is not the only

variable that GPs’ accuracy is sensitive to, different representations of the data also

make GP regression more or less accurate. For instance, if we train a GP model

with inverse of bond-lengths, like CO, CH1 and CH2, the RMSE decreases to 29.95

cm−1 using the MAT(ν = 5
2) kernel and 2000 training points.

NNs are a parametric model, meaning that the number of parameters is fixed,

unlike GP regression. We consider a single layer NN, which only single hyper-
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parameter is the number of neurons. By increasing the number of neurons we are

able to decrease the RMSE, Table 2.1. NNs become a more robust interpolation

algorithm when the number of neurons increases which means more parameters.

However, we also notice that a large number of neurons does not necessarily reduce

the RMSE. For example, a NN trained with 625 points but 75 and 100 neurons have

similar RMSEs. When the number of parameters for NN is large more training

points are needed for better training a NN. The total number of parameters of a

single layer NN is (d +1)∗nH , where d is the dimensionality of the problem and

nH is the number of neurons. A well-known problem in NNs is that for a fixed

number parameters, more training data could lead to a better optimization which

means a lower RMSE. We must remember that the loss function to train NNs is

an m−dimensional function where m is the number of parameters, whereas the

dimensionality of the cost function for GPs is the number of kernel parameters.

Consequently, GP models are often easier to train than NNs.

One of many applications of fitting PESs is the ability to predict the vibrational

spectrum of molecules. We compute the error of the predicted vibrational spec-

trum using the NNs and GPs trained to interpolate the PES of the H2CO molecule.

The vibrational spectrum is determined using space-fixed Cartesian kinetic energy

operator and Gaussian basis functions (SFGB) [123]. Figure 2.9 shows that the

GPs fit clearly outperforms the NNs fit. The RMSE between the accurate vibra-

tional frequencies and the ones computed using a GPs fit is 0.05 cm−1, while NNs’

RMSE is 0.30 cm−1, when both models are trained with 625 points. GP models are

not only more accurate than NNs in the interpolation of PESs but also in predict-

ing vibrational spectra. GP regression also offers the advantage of requiring fewer

training points than NNs.

2.6 Summary
We have shown that it is possible to fit PESs with supervised learning. Furthermore,

we compared two of the most common, novel regression tools, NNs and GP mod-

els, to interpolate the energy for a spatial arrangement of atoms. We demonstrated

that GP models are a more accurate interpolation tool over NNs for low dimen-

sional systems. Additionally, we explored the impact that the number of training
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Figure 2.9: Absolute errors in transition frequencies computed on PESs fitted
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the spectrum computed on the reference PES. Figure from reference
[102]

points has on the prediction’s accuracy for both methods, NNs and GP regression.

Vibrational spectra computed using both regression methods were compared as a

second test to determine which method is more accurate with GPs still outperform-

ing NNs.

The computational time required to evaluate a single point (x∗) depends on

the architecture of the models; for example, a single layer NNs’s prediction time

scales as O(nHd + nH) where d is the dimensionality of the problem and nH are

the number of neurons. For GPs, because of the K−1 term in Equation 2.5 the

prediction scales as O(N3) where N is the number of training points. However,

inversion of the covariance matrix K−1 just needs to be done once since it does not

depend on x∗. In the limit of few training points, GPs’ prediction is faster than NNs

only if the number of neurons needed for accurate prediction is large.

One of the unanswered questions in quantum chemistry is, which regression

model needs the least number of energy points to make accurate predictions? For

some systems, each energy point used to train a regression model may require

high computational resources and the resources needed to have a large number of

points is a problem. We argue that for low dimensional systems GPs are accurate
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interpolation algorithms that require less training points, Tables 2.1 and 2.2.

The prediction accuracy of single layer NNs depends on the number of neurons.

In Table 2.1 we showed that for a fixed number of training points the RMSE of a

single layer NN decreases as nH increase. NNs with a large number of neurons

requires more training points in order to become accurate; for example the NN’s

RMSE with nN = 100 and train with 625 and 1250 points changes from 12.03 cm−1

to 5.74 cm−1. We must remember that the dimensionality of the loss function used

to train single layer NNs directly depends on the number of neurons, dim(LNN) =

nHd + nH . The minimizer of LNN represents the best parameters of, for the NN.

The dimensionality of the negative log-marginal likelihood, GPs’ loss function,

depends only on the number of parameters in the kernel. If we consider an isotropic

kernel the dim(LGP) = 1, whereas if we consider an isotropic kernel dim(LGP) =

d. Given these points, GP models can be trained more accurately partly because

the low dimensionality of their loss function which makes the minimization more

efficiently.

The accuracy of fitted PESs can also be evaluated by computing some physical

observables that depend on the PES, for instance, the vibrational spectrum of a

molecule. We compute the absolute difference between the accurate vibrational

spectrum of Formaldehyde and the one predicted using a PES trained with NNs

or GPs. Figure 2.9 illustrates that the vibrational spectrum predicted using a GPs

trained with only 625 points and the SE kernel is more accurate than with a NN

with 100 neurons.

In recent years, ML algorithms have shown the potential to tackle high-dimension

complex problems like playing the Go game, self-driving cars, among others, mak-

ing it a popular/novel tool in many scientific areas like physics and chemistry. In

this chapter, we discussed how using 625 energy points and two of the most simple

ML algorithms, it is possible to reduce the computational time to study many-body

physics like the prediction of the vibrational spectrum of a molecule. It should

be noted that the architecture of the NNs used in our research is not the NN that

defeated Lee Sedol and future research should be done on how deep-NNs [72],

more than a single layer of neurons, can help chemists to construct the PESs for

molecules or proteins where GPs cannot be used.
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Chapter 3

Bayesian Optimization

To those who do not know mathematics it is difficult to get across a
real feeling as to the beauty, the deepest beauty, of nature. If you want

to learn about nature, to appreciate nature, it is necessary to
understand the language that she speaks in.

— Richard P. Feynman

The optimization of machine learning algorithms is one of the most important

research areas since the parameters of each supervised learning algorithm needs

to be trained [177]. However, the same tools can be used to optimize physical-

chemistry problems. Over the course of this chapter, we introduce one of the most

novel ML algorithms to optimize black-box functions known as BO. Using BO and

GPs, we present an innovative algorithm that allows us to fit PESs with accurate

quantum dynamics observables. For the H + H2 → H2 + H system we show that

a GP model trained with 30 points is enough to predict accurately the reaction

probability for this system. We also illustrate that the same algorithm works for

higher dimensional systems like OH + H2 → H2O + H, where a GP model trained

290 points fits a PES that again predicts accurate reaction probabilities.

3.1 Introduction
In Chapter 2, we introduced two of the most common supervised learning algo-

rithms, NNs and GP models. We compared the accuracy of both methods by inter-

polating the PES of the H2CO molecule when different number of training points
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were used. We conclude that GP models need fewer training points in order to ac-

curately interpolate the PES of the H2CO molecule. Also, we discussed that for low

dimensional problems, GP models are more accurate than NNs. Furthermore, in

this chapter, we exemplify how GP models can also be used to solve optimization

problems.

Here we present again the mean (µ∗) and standard deviation (σ∗) of GPs used

in the prediction,

µ(x∗) =
n

∑
i

d(x∗,xi)yi =
n

∑
i

αik(x∗,xi) (3.1)

σ(x∗) = K(x∗,x∗)−K(x∗,X)>K(X ,X)−1K(X ,x∗) (3.2)

where K(·, ·) is the covariance matrix with matrix elements Ki j = k(xi,xi) and k(·, ·)
is the kernel function. The values of the kernel parameters are optimized by maxi-

mizing the log-marginal likelihood function, Section 2.3.

The goal of an optimization problem is to find the best solution among all

potential solutions. In the field of ML, the optimization problem is associated

with the search for the values of the parameters of a model that better described

the problem, e.g. minimizing a loss function [132, 177]. Synthetic chemistry also

has optimization problems, for example varying the reaction conditions to increase

percent yield. The optimization of a function is also a supervised learning problem,

but instead of finding the best global representation of function f (·), the goal is to

find the x where f (·) is minimum,

x∗ = arg min
x

f (x). (3.3)

The most common optimization algorithm for continuous functions is gradient

descent (GD) [132]. GD algorithm is designed to minimize a function iteratively by

displacing the current point in the direction of the negative gradient of the function,

xn+1 = xn−η∇ f (xn) (3.4)

where the parameter η is known as the learning rate. η is also related in the trade-

off between exploitation and exploration and plays a key role in the convergence
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of the algorithm [132]. For example, when η is small GD is exploiting xn+1 ≈ xn;

where as for η � 0 is related to exploration. GD is one of the first optimization

algorithms used to train NNs [158].

GD has been a widely successful optimization algorithm. However, not every

function can be optimized using GD. For example, there is no analytic function

that describes the relation between the percent yield given some experimental con-

ditions for a chemical reaction, therefore one can not use GD to increase the percent

yield. There are many other problems that are described by non-analytic functions

or black-box functions, where evaluations are point-wise. BO is designed to tackle

the optimization of black-box functions where gradients are not available. For ob-

vious reasons, trying to find the minimum of f (·) by randomly sampling is not the

smartest strategy, since it may take a large number of evaluations from f (·) before

finding the minimum. BO tries to infer the location of the minimum of a black-box

function by proposing a smarter iterative sampling scheme. In the case of GD we

assume that the gradient gives us the information of where to sample the next point

in order to get closer to the minimum. Considering that black-box functions do not

have a gradient, it is necessary to propose a metric that quantifies the informational

gain as a function of the space. The core of BO relays in two components,

1. F (·)→ model that mimics the black-box function.

2. α(·)→ acquisition function that quantifies the information gain for a given

point.

To mimic the unknown function f (·) we can use any supervised learning al-

gorithm, like NNs. However, if F (·) is not capable to learn at every iteration, we

may waist some of the evaluations because of the lack robustness of the model. GP

models are a great candidate for F (·) due to the accuracy and robustness to inter-

polate any continuous function. Additionally, the ability of GP models to quantify

the prediction’s uncertainty σ(x) without the need of extra data is what makes them

the strongest candidate for BO.

Figure 3.1 illustrates how BO works to find the minimum of f (·) without using

gradients. The maximum of the acquisition function is the query point where the

black-box function is evaluated next, f (xn+1), and at each iteration we add the
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new point xn+1 to the training data and retrain the GP model. Algorithm 1 is

the pseudocode of BO [25, 170]. In Section 3.2 we explain different acquisition

functions that are used in BO.

Algorithm 1 Bayesian optimization
Input: Acquisition function α(·), black-box function f (·), data set D .

1: for n = 1,2, . . . , do
2: Optimize the acquisition function,

xn+1 = arg max
x

α(x,D)

3: Evaluate f (xn+1).
4: Augment data Dn+1 = {Dn,(xn+1, f (xn+1))}.
5: Update model.

3.2 Acquisition function
BO is an optimization algorithm designed for problems where gradients are not

available. As it was mention above, the acquisition function is designed to repre-

sent which point in the space has the most information. By iteratively evaluating

the black-box function where the acquisition function is maximum we learn a more

certain representation of f (·) where the minimum could be. There are many dif-

ferent acquisition functions, here we cover the three most used,

1. Probability of improvement (PI)

2. Expected Improvement (EI)

3. Upper confidence bound (UCB)

3.2.1 Probability of Improvement

In 1964 H. Kushner proposed as an acquisition function to maximize the probabil-

ity of improvement, the probability when f (x)> τ [112]. H. Kushner showed that

if f (x) is Gaussian distributed, P( f (x)> τ) can be written as,

αPI(x;τ) := P( f (x)> τ) = Φ

(
µ(x)− τ

σ(x)

)
(3.5)
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Figure 3.1: Example of the BO algorithm over three iterations. Blue markers
are GP’s the training data, blue curves are GP’s prediction and black
dashed line is the black-box function f (x) = x

10 + x2 + 10sin(3
2 x). The

yellow solid curves are the acquisition function, and H are the maximum
of the acquisition function at each iteration, xn+1.

where Φ(·) is the normal cumulative distribution function, µ(·) and σ(·) are the

predicted mean and standard deviation of a GP model trained with the data set Dn,

and τ is the target value. Since the goal of BO is to find τ we can approximate

it with the best known value in the set Dn, for example τ = max
i=1:N

yi. If yn+1 is

greater than the current value of τ , we update τ . PI is know as a greedy acquisition

function, however if we relax the value of τ by adding a constant, ε , we can make

exploratory moves. For example, in Figure 3.2 we illustrate how the maximum of

αPI(·) changes for different values of ε .

35



10

0

10

20

30

f(x
)

f(x) Observations GP

4 2 0 2 4
x

0.0

0.5

1.0

PI
(x

)

 = 0
 = 1
 = 2
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3.2.2 Expected Improvement

The expected improvement is one of the most known acquisition functions. The

improvement is defined as the difference between the predicted point and the best

known point (τ),

I(x;τ) = max{0,µ(x)− τ} (3.6)

and the expected improvement is defined as,

E[I(x;τ)] =
∫

I(x)p(I(x)|τ,µ(x),σ(x))dx (3.7)

where p(I(x)|τ,µ(x),σ(x)) is the probability distribution over the improvement. If

we consider that p(I(x)|τ,µ(x),σ(x)) is Gaussian distributed with a mean µ(x)−
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τ , the expectation integral has a closed-form expression [25, 100],

αEI(x;τ) =

{
0 if σ(x) = 0

(µ(x)− τ)Φ(z(x;τ))+σ(x)φ(z(x;τ)) if σ(x)> 0
(3.8)

where z(x;τ) = µ(x)−τ

σ(x) . µ(x) and σ(x) are the mean and standard deviation of a

GP. Φ(·) is the normal cumulative distribution and φ(·) is the normal probability

distribution. Figure 3.3 illustrates the EI function.
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Figure 3.3: Illustration of the EI acquisition during BO.

3.2.3 Upper Confidence Bound

The last acquisition function that we present in this dissertation is the upper confi-

dence bound (UCB) function,

αUCB(x) = µ(x)+κσ(x) (3.9)
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where µ(x) and σ(x) are the predicted mean and standard deviation of a GP model.

The constant κ plays a key role since it describes the trade-off between exploration

and exploitation. When κ is small the acquisition function relies more on the mean

of the GP which is associated with exploitation, opposite to when κ � 0 which

makes αEI(·) ≈ σ(·) and we explore the input space. Figure 3.4 illustrates how

the κ parameter changes the sampling schedule of a black-box function. There

have been many proposals on how to change the value of κ as a function of the

number of iterations; for example, set κ to a large value at the beginning for more

exploration and reduce its value at the end for exploitation [25, 170, 178]. The UCB

function can also be used with other ML algorithms that are capable of computing

the prediction’s uncertainty σ(·), like bayesian-NN [134, 172].
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Figure 3.4: Illustration of the UCB acquisition during BO. We also show how
the UCB function for different values of κ

In the following section we present the results for fitting PES through the error

of quantum dynamic calculations. We also show that by combining GP regression

38



and BO one can solve the inverse scattering problem.

3.3 Results
The main idea of Chapter 2 is to illustrate that PESs can be represented by a super-

vised learning algorithm like NNs or GPs. We conclude that GPs are more accurate

regression models when the training data is few and the dimensionality of the sys-

tem is low; for instance, the RMSE of a GP and NN trained with 1250 points is

1.13 cm−1 and 2.54 cm−1 restively, Tables 2.1 and 2.2. We also compare the vi-

brational spectra of a PES fit with GP regression and NN with respect to the real

spectrum, and our results demonstrate that when a PES is fitted using a GP model

the vibrational spectra is also more accurate [102].

PESs have a more profound meaning in the field of quantum molecular dynam-

ics. PESs are used to reduce the computational complexity of quantum dynamics

calculations. PESs are also used to understand reaction mechanisms or to study

transition states. To obtain the PES yielding the most accurate description of the

experimental dynamical results, one could start with a rough PES based on a small

number of ab initio calculations and systematically improve the surface by one of

the following two iterative procedures:
(i)

(ii)(iii)
A

(i)

(ii)(iii)
B

where (i) is computing the potential energy for a wide range of relative atomic

coordinates by an ab initio quantum chemistry method; (ii) fitting an analytical

representation of the PES; (iii) integrating the Schrödinger equation for the motion

of the atomic nuclei on this PES.

In the first approach (cycle A), one would compute and add more ab initio

points to the PES at each iteration, thus placing an emphasis on the parts of the

configuration space most relevant for the dynamics. In the second approach (cycle

B), one could attempt to solve the inverse scattering problem by first computing

the global PES and then modifying the analytical fit of the PES through an iterative

procedure [61, 92, 127]. However, there are two problems that make these iterative

approaches unfeasible in the application to quantum reaction dynamics. Firstly,

39



step (ii) above, i.e. finding the best analytical representation of the PES for multi-

atom systems is extremely laborious, almost always requiring manual work [24,

51, 79, 91, 133]. Secondly, step (iii) takes minutes to hours of computation time,

which severely limits the number of loops in any of the optimization cycles above.

Here we propose a more efficient optimization cycle,

(i)(iii)
C

where step (ii) can be easily eliminated by fitting PESs using GP models. Cycle C

can be implemented for low dimensional reaction systems by means of a two-tiered

GP regression. Where the first GP is used to fit PESs, and the second GP is used

to optimize the location and magnitude of the energy points to produce the PES

which gives the best description of the observable.

We consider two chemical reactions:

H+H2→ H2 +H (3.10)

OH+H2→ H2O+H (3.11)

and for all the results display in the following sections. We compute the reaction

probabilities using the time-dependent wave packet dynamics approach described

in Ref. [41, 55, 146, 190], explicitly accounting for all degrees of freedom. The ba-

sis sets of the reaction dynamics calculations are chosen to ensure full convergence

of the dynamical results.

Both of these chemical reactions have been studied before [42, 180]. For reac-

tion (1), Su et al [180] computed the reaction probabilities with the 3D PES from

Ref. [23], constructed using an analytical fit to 8701 ab initio energy points. For

reaction (2), Chen et al [42] computed the reaction probabilities with the 6D PES

constructed using NN fits to ∼17 000 ab initio calculations.

In the following sections we highlight how it is possible to optimize cycle C

when the quantum dynamics results are and are not known, and how to overcome

the inaccuracy of the quantum chemistry calculations to get a better fit of any PES

with experimental data.
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3.3.1 Fitting known quantum dynamics results

In this section, we explain the algorithm used to optimize cycle C when the reaction

probabilities are known. First we randomly select a small number of energy points

(n = 20 for the 3D surface and n = 280 for the 6D surface) from the original PESs

[23, 42] and construct an approximate PES with a GP, Equation 3.1. We denote this

GP model of the surface by G (n). When n is small any regression model is likely

to be highly inaccurate and the quantum dynamics calculation with this surface is

also expected to produce highly inaccurate results, Figure 3.5.

Given G (n), we then ask the following question: if one ab initio point is added

to the original sample of few points, where in the configuration space should it be

added to result in the maximum improvement of the quantum dynamics results?

In principle, this question could be answered without ML by a series of quantum

dynamics calculations based on G (n+ 1) with the added point moved around the

configuration space. However, such an approach would be completely unfeasible

as it would require about 10d dynamical calculations for each added ab initio point,

where d is the dimensionality of the configuration space. We also need to quan-

tify the improvement gained by adding a single point, which can be done with an

utility function f (·). Care must be taken since there are many ways to quantify

the improvement e.g. the RMSE function between a G (n)’s reaction probability

and the exact value from either from a calculation with the full surface or from an

experiment.

We seek the utility function’s minimum, arg min f (·), since it describes which

point shapes the PES in the most accurate manner. Finding the minimum of f (·)
could not have been done with out using current ML algorithms like BO. Fig-

ure 3.5a illustrates the change in the reaction probability as a function of a single

point added to a fix set of points. Depending on which point is considered in

G (n+1) the improvement in the reaction probability changes, Figure 3.5b.

As we state above, BO requires a model that mimics the utility function f (·).
We denoted as F , the GP model that learns the utility function and is also used to

construct the acquisition function that is needed in BO. This GP model is trained by

approximately 15× d quantum dynamics calculations. We use as utility function
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Figure 3.5: a) The reaction probability for the H2 + H → H + H2 reaction
as a function of the collision energy. The black solid curve–accurate
calculations from [23]. The dashed curves–calculations based on GPs
PESs obtained with 22+ 1 ab initio points, where the 22 initial points
(solid blue curve) are fixed and the extra point is randomly sampled in
the configuration space. b) The error of the reaction probabilities as a
function of the location extra point added to the original 22 points.

the root mean square error (RMSE),

ε(xn+1) =
√

∑
i
(z(ei)− ẑ(ei))2 (3.12)

where z(ei) is the value of the reaction probability at different collision energie ei

with a surface by G (n+1). xn+1 is the position of the added point and ẑ(·) is the

accurate reaction probability. For reaction (1) the values of ẑ(·) are reported in

Ref. [180] and for reaction (2) in Ref. [42]. Figure 3.5b displays the change in the

RMSE for different locations of the added point to G (n+1).

For both systems, reactions (1) and (2), we use the UCB acquisition function,

Equation 3.9, with κ = 0.005. After a fixed number of iterations in the BO al-

gorithm, 35 quantum dynamics calculations for H3 and 60 calculations for OH3,

we choose the point where the utility function is minimum, and added to the n

set. With this procedure, the minimization of F (·) for each value of n requires

about 35 quantum dynamics calculations for reaction (1) and 60 calculations for
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reaction (2). We carried iteratively the same algorithm until we converge to a PES

that has an accurate reaction probability. Sequentially adding the points that makes

the highest improvement corresponds to a class of ‘greedy’ reinforcement learning

strategies in ML [181].

Figure 3.6a illustrates the performance of this algorithm in search of the best

PES for reaction (1). As can be seen, the starting model G (·) of the PES based

on 22 ab initio points produces highly inaccurate results, but the BO scheme con-

verges to the correct PES after only 8 iterations. Accurate results for the reaction

probabilities (green dashed line) can be achieved with a GP model trained with

only 30 ab initio points. Figure 3.6b shows the model G (·) of the PES obtained

with n = 30 ab initio points, illustrating that Equation 3.1 produce a physical sur-

face. Figure 3.7 illustrates the dependence of BO as a function of the value of κ in

αUCB(·).
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Figure 3.6: a) The reaction probability for the H2 + H → H + H2 reaction
as a function of the collision energy. The black solid curve – accurate
calculations from Ref. [23] based on the surface constructed with 8701
ab initio points. The dashed curves – calculations based on the GP
PES obtained with 22 ab initio points (blue); 23 points (orange), 30
points (green) and 37 points (inset). The RMSE of the results with 37
points is 0.009. b) The GP model of the PES for the H3 reaction system
constructed with 30 ab initio points. This surface yields the quantum
dynamics results shown by the green curve in the upper panel.
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Figure 3.7: Convergence of the RMSE of the probabilities for H2 + H→ H +
H2 reaction with the number of BO iterations as a function of κ in UCB.

Figure 3.8 illustrates the performance of this algorithm for reaction (2). As the

dimensionality of the configuration space increases, so does the number of points

required to represent accurately the PES. Nevertheless, accurate results for the re-

action probabilities (green dashed line) are obtained with 290 ab initio points, much

smaller than the set of ∼ 17,000 points used in previous work [42] to construct the

PES with a NN fit. The RMSE of the reaction probabilities thus obtained is 0.0076.

Note that, as any supervised learning technique, this algorithm is guaranteed to be-

come more accurate when trained with more ab initio points.

3.3.2 Fitting without known quantum dynamics results

In the previous section we assume that Equation 3.12 accurately describes the im-

provement when accurate dynamics results are known. However, for all systems,

the quantum dynamics results may not be known before hand. Therefore, we pro-

pose to use an utility function that quantifies the maximum improvement between

the observables computed with G (n+1) and G (n) at each iteration. This is justified

by the observation that G (n→ ∞) must produce the best surface so the maximum

improvement of the surface at each iteration is achieved when xn+1 corresponds to

the maximum of Equation 3.12, where ẑ(·) are the results from G (n). The min-
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Figure 3.8: The reaction probability for the OH + H2→ H + H2O reaction as
a function of the collision energy. The black solid curve – accurate cal-
culations from Ref. [42] based on the surface constructed with ∼17000
ab initio points. The dashed curves – calculations based on the GP PES
obtained with 200 ab initio points (blue); 280 points (orange) and 290
points (green). The RMSE of the 290-point result is 0.0076.

imum of Equation 3.12 indicates that both G (n+ 1) and G (n) produce the same

reaction probabilities.

To illustrate the validity of this assumption, we show in Figure 3.9 a series

of computations as functions of n, showing the convergence of the iterative cal-

culations to the accurate results (black solid curve). Figure 3.9 shows that the

optimization loop converges to the accurate PES after 48 iterations. We emphasize

that the accurate results (black curve) were not used in any way in this calculation.

Care must be taken since many of the G (n+ 1) could lead to unphysical reactive

probabilities. To avoid this issue we penalized the utility function by decreasing its

value, preventing the BO algorithm from sample points from that space’s region.
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Figure 3.9: The reaction probabilities for the H2 + H→ H + H2 reaction as
functions of the collision energy. The black solid curve – accurate calcu-
lations from Ref. [23]. The dashed curves – the results of iterative cal-
culations maximizing the difference between the reaction probabilities
in subsequent iterations. The black curve is not used for these calcula-
tions. The inset shows the agreement between the reaction probabilities
(red symbols) based on the GP approach after 48 iterations (total of 70
ab initio points) and the exact results.

3.3.3 The inverse scattering problem

Integrating of Schrödinger’s equation for the motion of the atomic nuclei on any

PES is computationally demanding, step (iii); thus the computational resources

needed in quantum dynamic calculations increases as a function of the system’s

size. To overcome this problem, there is a proposal to infer the shape of a PES

using experimental quantum dynamical observables. This scheme is known as the

inverse scattering problem; however, due to its complexity, this problem has not

been fully solved for large systems. Unfortunately, it is impossible to compute the

potential energy in step (i) without errors and any theoretical predictions of observ-
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ables are subject to uncertainties stemming from the errors of quantum chemistry

calculations. These errors become more significant for heavier atoms and are often

unknown. Therefore, it would be ideal to develop an approach that either bypasses

quantum chemistry calculations or corrects the errors of the ab initio calculations.

This could be achieved by deriving the empirical PES from the experimental data

[50, 61, 92, 127].

Here, we extend the previous sections to construct a PES that, when used in

quantum scattering calculations, reproduces an arbitrary set of observables. We

first modify the exact scattering results of Figure 3.6 by shifting along the energy

axis and randomly modulating the black curve. This produces an arbitrary energy

dependence of the reaction probabilities shown by the dot-dashed curve in Fig-

ure 3.10a. The goal is to construct a PES that reproduces these arbitrarily chosen

reaction probabilities. Note that the dot-dashed curve extends the interval of en-

ergies, where the reaction probability is zero, which means that the PES for this

reaction must have a higher reaction barrier and cannot be reproduced with the

original PES for H3.

We assume that a small ensemble of energy points is known from some (not

necessarily accurate) quantum chemistry calculation, denoted by E◦i . As before,

this ensemble serves as a starting point to fit a PES with a G (n). However, in order

to allow for the improvement of the PES and to overcome the inaccuracy of the

quantum chemistry calculations we vary E◦i by the amount of ε(x), Ei = E◦i +ε(x).
Intuitively the variable ε depends on the atomic coordinates because depending on

the space’s region we many need to increase or decrease the energy to change the

shape of the PES.

In the previous sections F (·) only depended on xn+1, because we assume that

E◦i = Ei. A more robust approximation is to learn the dependence of the utility

function for both variables, ε and x. Since ε increases the dimensionality of the

utility function by one, we need more data so that BO’s F (·) accurately describes

the minimum of the utility function for xn+1 and the value of ε . Figure 3.10a shows

that this algorithm converges to the arbitrarily modified reaction probabilities after

32 iterations, producing a PES depicted in Figure 3.10b.
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Figure 3.10: a) The reaction probabilities for the modified H2 + H → H +
H2 reaction as functions of the collision energy. The black dot-dashed
curve is obtained by a modification of the previous results (black solid
curve) involving a translation along the energy axis. The ML models
are trained to obtain the PES that would describe the new reaction
probabilities. The green dashed curve is a results of such training after
30 iterations, which produces a surface constructed with 52 ab initio
points. b) Comparison of the original PES (blue) with the new PES
(red) found by the BO algorithm. The new PES yields the reaction
probabilities described by the green dashed curve in the upper panel.
The RMSE of the results shown by the green dashed curve is 0.016 ev.
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3.4 Summary
The results we present in this chapter can be summarized as,

• GPs are a robust regression algorithm that can also be used to minimize/-

maximize black-box functions.

• BO is a powerful algorithm that without relying on gradients is capable of

minimize/maximize functions like Equation 3.12.

• Accurate quantum reactive scattering results can be obtained with PES based

on a very small number of ab initio points,

– 30 for reaction: H + H2 → H2 + H

– 290 for reaction: OH + H2 → H + H2O

• Accurate quantum reactive scattering results can be obtained with PES based

on 70 points for reaction H + H2 → H2 + H when the quantum dynamics

results are not known.

• Our approach is robust enough that it can bypass the inaccuracy of the quan-

tum chemistry calculations by also learning to correct Ei.

• Most of the energy points that are used to fit PES are unnecessary for accu-

rate quantum dynamics calculations like the reaction probabilities.

• We introduce a two-tiered GP model, which gives the reaction probabilities

as explicit functions of the position of an added ab initio point.

As it was mentioned, evaluating the energy with accurate ab initio quantum

chemistry methods and quantum dynamical observables are both computationally

demanding. The results we present indicate that ML reduces the total computa-

tion of similar problems by using interpolation methods that required less training

points (Chapter 2), and better search algorithms like BO. Incorporating ML in the

quantum dynamics calculations is a research problem that should be considered,

since it could reduce the computational resources needed to evaluate quantum dy-

namics observables for large systems where is currently impossible.
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GPs are not well suited regression algorithms for high dimensional problems,

therefore the two-tiered GPs regression method we proposed has some flaws to fit

the PES for systems with large number of atoms. However the same strategy can

be used with other Bayesian optimization algorithms like the ones proposed by R.

P. Adams et al. suggested in Ref. [172], PHOENICS in Ref. [83] or using random

forest (RF) [94].

The optimization of cycle C using GP models and BO show that the total num-

ber of points needed to fit a PES with accurate quantum dynamics observables can

be reduced. However, the total number of points used by BO to minimized the util-

ity function could be reduced by studying different acquisition functions or change

the value of κ as a function of the iteration number [25, 170, 178].

The optimization algorithm for cycle C is greedy since at each iteration we only

consider points to train G (n) with data that represent the minimum of the utility

function. However, we did not explore the impact of a non-greedy policy in both

the accuracy and the number of points required for a G (n) with accurate reaction

probabilities. A non-greedy policy, know as ε-greedy [181], allow us to make new

moves that could lead to a better over all strategy that could reduce the number

points or achieve even more accurate quantum dynamics observables.

One of the key elements in the scheme we proposed is the utility function. f (·)
describes the quality of the points, e.g. Equation 3.12 computes the difference in

the complete range of the collision energy. However we could benefit from the

intrinsic correlations that multiple utility functions could have, e.g partition the

collision energy to have multiple error functions as utility functions. This new

strategy can be tackled using multi-task BO [182] and could cut down the number

of quantum dynamics calculations. Also, multiple quantum dynamics observables

could be used to fit a single PES instead of a single one which is the strategy we

present.

We must emphasize that the most important concept of this chapter is the ability

to optimize black-box functions with the current ML tools without using gradients.

There are many open problems in chemistry and physics that can be formulated

in terms of the optimization of black-box functions, e.g. improve the percentage

yield in chemical reactions [152], or in cold atoms physics tuning the experimental

parameters to enhance the lifetime of quantum particles. It must be remembered,
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however, that while using BO the utility function should capture the problem in the

most robust manner so that ML can help us solve new problems.
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Chapter 4

Extrapolation of quantum
observables

The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are thus

completely known, and the difficulty is only that the exact application
of these laws leads to equations much too complicated to be soluble.

It therefore becomes desirable that approximate practical methods of
applying quantum mechanics should be developed.

— Paul A. M. Dirac

In the field of many-body physics quantum observables like ground state ener-

gies, particle correlations, particle densities, to mention few, are key to understand

the underline physics of a phenomenon. The computation of quantum observables

can be understood as the prediction of a scalar black box function where the goal

is to infer such function given some training data,

〈Ô〉 ∼ f (x) (4.1)

where f (·) represents the numerical or experimental method used to evaluate the

quantum observable of operator Ô. In the case of electronic ground state ener-

gies, the operator Ô is the electronic Hamiltonian, Equation 2.20, and x is all the

distances between the nuclei in the molecule. For a condensed matter system, x
is the value of the parameters of the Hamiltonian; for example, for the Hubbard
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model x can be the values of the onsite energy, hopping amplitude, to mention few,

Chapter 6.

Using ML to infer quantum observables has been proved to be a novel ap-

proach to study many-body physics. For example, J. Carrasquilla et al. used NNs

to characterize many-body quantum states from different phases of matter for var-

ious spin Hamiltonians [35]. The quantum observable used to train the NNs is a

discrete variable that labels the phase of matter, i.e. ferromagnetic or antiferro-

magnetic. As L.-F. Arsenault et al. stated in Ref.[8], the use of ML algorithms

should be focused to solve true quantum many-body problems. Here the authors

predict the self-energy Σ(ω) or the local Green function G(ω) for the Hubbard

model with second-neighbour hopping for a 3D cubic lattice using kernel Ridge

regression (KRR) method [132]. The phase diagram of this many-body system

has one transition, from the metallic to the Mott insulator phase. For each phase,

a different KRR method was used to predict the quantum observable. The phase

transition as a function of the Hamiltonian parameters is also learned by a classifi-

cation algorithm, decision forest [8].

Predicting discrete or continues quantum observables is a daily task for com-

putational physicists; naturally, the use of ML algorithms has reduced the com-

putational effort needed to study many-body physics. However, when the goal is

to discover new physics like unknown phases of matter or the value of quantum

observables where the current experimental/numerical tools cannot be assed, more

novel and powerful ML algorithms have to be developed. Over the course of this

chapter, we present the idea of applying ML algorithms like GP models to extrap-

olate quantum observables to discover new phases of matter.

This chapter exemplifies the power of GP models with non-single kernels by

extrapolating the energy dispersion, denoted as E(·), of a single particle dressed by

bosons in an infinite 1D lattice. We also illustrate a non-bias manner to construct

more robust kernels that can interpolate between different phases of matter and also

extrapolate where training data is not used.
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4.1 Introduction
It is common in quantum physics to encounter a problem described by a Hamilto-

nian like,

Ĥ = Ĥ0 +αĤ1 +β Ĥ2 (4.2)

whose eigenspectrum can be computed/measured in certain limits of α and β e.g.

α = 0 or α � β , but not at arbitrary values of α and β . For such problems, it

is necessary to interpolate the quantum properties of a system between the known

limits, if there are more than one like we did in Chapters 2 and 3. If only one limit

is accessible, one must extrapolate from this limit, which we will exemplify bellow,

Section 4.2. Both the interpolation and extrapolation become exceedingly complex

if the system properties undergo sharp transitions at some values of α and/or β .

Sharp transitions separate the phases of the Hamiltonian (4.2), as shown schemat-

ically in Figure 4.1. Since the properties of the quantum system vary drastically

in the different phases [160], an extrapolation of quantum properties across phase

transition lines is generally considered unfeasible [160]. We consider the phase

diagrams of polaron Hamiltonians, some of which have three phases as depicted in

Figure 4.1, and show that the sharp transitions in these diagrams can be identified

by machine learning models trained with data from only one of the phases.

Phase	I

Phase	II

Phase	III

Figure 4.1: Schematic diagram of a quantum system with three phases.

To illustrate the possibility to extrapolate quantum observable using ML, we

consider a generalized polaron model describing an electron in a one-dimensional
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lattice with N→ ∞ sites coupled to a phonon field:

Ĥ = ∑
k

εkc†
kck +∑

q
ωqb†

qbq +Ve−ph, (4.3)

where ck and bq are the annihilation operators for the electron with momentum k

and phonons with momentum q, εk = 2t cos(k) and ωq =ω = const are the electron

and phonon dispersions, and Ve−ph is the electron - phonon coupling. We choose

Ve−ph to be a combination of two qualitatively different terms Ve−ph = αH1+βH2,

where

H1 = ∑
k,q

2i√
N
[sin(k+q)− sin(k)]c†

k+qck

(
b†
−q +bq

)
(4.4)

describes the Su-Schrieffer-Haeger (SSH) [125] electron - phonon coupling, and

H2 = ∑
k,q

2i√
N

sin(q)c†
k+qck

(
b†
−q +bq

)
(4.5)

is the breathing-mode model [113]. The eigenstates of the model (4.3) are polarons

that are known to exhibit two sharp transitions as the ratio α/β increases from zero

to a large value [87]. At α = 0, the model (4.3) describes breathing-mode polaron,

which have no sharp transitions [69]. At β = 0, the model (4.3) describes SSH

polarons, which exhibit one sharp transition in the polaron phase diagram [125].

At these transitions, the ground state momentum of the polaron changes abruptly,

as shown in Figure 4.3 and in the black curve in Figure 4.4 for the SSH polaron.

In the following section, we first illustrate how a GP model with a combination

of simple kernels became a more robust supervised learning model. Furthermore,

we explain how with GP regression it is possible to extrapolate quantum observ-

ables of any quantum system like the polaron Hamiltonian that can lead to the

discovery of new phases of matter.

4.2 Combination of kernels
The efficiency of GP models depend on the kernel function and the size of the

training data set [147]. In the limit of a large number of training points, any GP
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model with a stationary kernel produces accurate results. However, there is no

restriction to use more than one kernel to construct the covariance matrices, thus

we could ask what is there to gain by combining kernels?. In this section, we

investigate the premise of using GPs with more than one kernel.

For many problems, there might be a suitable kernel form that describes the

system more accurately, for example, the periodic kernel for recurrent data. How-

ever, to custom made a kernel function for every single problem is not trivial. One

of the restrictions is that the kernel function used in GP models must be a positive-

defined function [147]. It is possible to construct more robust kernels that satisfied

the positive-defined restriction using two simple operations [58–60],

kα + kβ = kα(·, ·)+ kβ (·, ·) (4.6)

kα × kβ = kα(·, ·)× kβ (·, ·) (4.7)

where ki(·, ·) is any of the simple kernels introduced in Chapter 2 .

To illustrate the power of combining kernels, we go back to fitting the PES for

H2CO [102], Chapter 2. For a GP model with kMAT the RMSE is 29.95 cm−1,

while using kMAT × kRQ the RMSE is 10.97 cm−1; both GP models were trained

with the same 2,000 points, and tested on a set of 30,000 points. By including a

new kernel we reduced the RMSE by a factor of two, however, we must consider

that a GP model with kMAT ×kRQ has more parameters than a GP model with kMAT ,

making it a more robust supervised model.

The core of GP models is the kernel function which must capture the similar-

ity relation between two points. So far we have shown that GPs with single and

multiple kernel functions are accurate interpolation models, but can GPs work for

extrapolation?. Extrapolation is defined as the ability to predict beyond the train-

ing data range. In principle, if we could design or propose a kernel function that

captures the correlation of the data in a robust manner GPs would be capable of ex-

trapolating observables. For example, a GP model with a periodic kernel is capable

of extrapolating if there is some intrinsic periodicity in the data.

As we already state in Chapter 2, there are two types of kernels, stationary and

non-stationary. In the case of the stationary kernels, it indisputable that they are

not suited for extrapolation since the kernel function for two distant points should
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be zero. Consequently, if the distance between the training data and the new point,

x∗, is large, the prediction with GPs is zero, as can be seen in Figure 2.2a. On the

contrary, a non-stationary kernel, like the linear kernel Equation 2.18, allows the

mean of the predicted distribution to be non-zero, as is illustrated in Figure 2.6.

In the following sections, we illustrate the possibility of using multiple kernels

to extrapolate quantum observables to predict phase transitions.

4.2.1 Kernel combination to predict a single phase transition

D. Duvenaud et al. proposed that the multiplication of any stationary kernel with

the linear kernel, kLIN , leads to a GP model with a non-zero mean that can be used

for extrapolation [58, 60]. Here we illustrate that this simple kernel i.e. kMAT ×
kLIN , is robust enough to make extrapolation predictions and to envision changes

in the shape of the energy dispersion of the SSH polaron.

The first case we study is the energy dispersion of the polaron, when β/α

is held fixed to β/α = 1.0. Using Equation 4.1 we defined the lowest polaron

eigenenergy or polaron dispersion as,

E(K,α,β ,ω) = 〈Ĥ (K,α,β ,ω)〉 (4.8)

where K is the total momentum, α and β are the polaron constants and ω is

the phonon frequency. E(·) depends on the parameters of the Hamiltoninan 5.1,

K,α,β and ω . We denote value of the K where the polaron dispersion is minimum

as,

KGS = arg min
K

E(K,α,β ,ω). (4.9)

The first case we consider is to extrapolate the polaron energy for β/α ≥ 1.0,

where KGS = 0 [87, 113]. We used GP regression with kMAT × kLIN to illustrate

that if is possible to predict E(·) for λSSH > 1.3 while only being trained from

0 < λSSH < 1.3, Figure 4.2. We defined λSSH = 2α2/th̄ω as the effective SSH

coupling strength.

Predicting energy dispersion with roughly the same shape is still challenging;

however, the energy dispersions of the SSH model, for β = 0, suffer a change of
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shape as a function of α . Due to the change in the polaron dispersion, the ground

state momentum gets shifted from KGS = 0 to KGS > 0. Figure 4.3 illustrates that

in the case for ω/t = 3 the change in KGS happens right at λSSH = 0.6, denoted as

λ ∗SSH . Indicating that the SSH polaron undergoes a phase transition [125].

We use GP models to extrapolate E(·) for λSSH > λ ∗SSH using the same kernel,

kMAT × kLIN , to exhibit that simple ML algorithm can predict phase transitions

without knowing there exists such phases of matter. Here, λ ∗SSH denotes the value

where the shift in KGS happens. The shape of the energy dispersion before and

after λ ∗SSH changes, Figure 4.3; nevertheless, GP model trained with only values

of λSSH before the transition (λSSH < λ ∗SSH) are capable to learn the intrinsic trend

in E(·) that shifts the ground state momenta, Figure 4.2. The training data and

the kernel are equally important in GP regression. When GP models have more

information like an extra λSSH point, they became more accurate as it is displayed

in Figure 4.4 where two different GP models were considered. The first GP model

was trained from 0.2≤ λSSH ≤ 0.5 and the second from 0.2≤ λSSH ≤ 0.6. All the

GP models are trained with only 250 total points. To quantify the accuracy of the

GPs prediction we computed the RMSE between the predicted energy dispersion

and the accurate energy dispersion [16, 87, 174, 175]. In Figure 4.2 we can observe

that GP models can make accurate extrapolation for at least |λSSH − λ̂SSH | ≈ 1,

where λ̂SSH is the greatest/smallest training value.

In the following section, we consider alternative kernel combinations to predict

the complete phase diagram of the polaron model.
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Figure 4.2: The upper panel is the RMSE of GPs’ prediction as a function
of λSSH . The markers illustrate the values of λSSH used to train the
GPs. We consider two sets of training values, (a) 0.4≤ λSSH ≥ 1.3 and
(b) 1.6 ≤ λSSH ≥ 2.5. The lower panels illustrate the GPs prediction
(solid colour curves) and the accurate energy dispersion (dashed colour
curves). We use kMAT ×kLIN as the kernel function for both GP models.
ω/t = 3 is held fixed.
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Figure 4.3: The upper panel is the RMSE of GPs’ prediction as a function of
λSSH . The markers illustrate the values of λSSH used to train the GPs.
We consider two sets of training data (a) 100 points distributed from
0.2≤ λSSH ≤ 0.5 and (b) 125 points distributed in 0.2≤ λSSH ≤ 0.6. The
lower panels illustrates the GPs prediction (solid colour curves) and the
accurate energy dispersion (dashed colour curves). We use kMAT × kLIN

as the kernel function for both GP models. For all the energy dispersions
display here, we consider ω/t = 3 and β = 0.
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Figure 4.4: For both panels we illustrate the change in KGS as a function of
λSSH . The blue curves is the KGS from the GP’s prediction of the energy
dispersion. The black dashed curve is the correct KGS for each λSSH .
The markers are the values of λSSH that we use to train each GPs. The
upper panel shows 0.2≤ λSSH ≥ 0.5, wile the lower panel shows 0.2≤
λSSH ≥ 0.6. We use kMAT × kLIN as the kernel function for both GPs.
For all the calculations ω/t = 3 and β = 0.

4.2.2 Kernel combination to predict multiple phase transitions

The complete phase diagram of the polaron model has three different phases [87],

as is sketched in Figure 4.1. Each phase represents the value of KGS as function of

the Hamiltonian parameters,

• Phase I→ KGS = π

• Phase II→ 0 < KGS < π

• Phase III→ KGS = 0

In this section, we exploit the power of ML to learn the complete phase dia-

gram of the polaron model when few values of α and β are used as training data.
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The first problem we consider is to determine the phase transitions by training a GP

model with a few data points from phase I and III. Figure 4.5 illustrates the KGS of

the predicted E(·) with a GP model trained with different simple kernels. As it can

be observed, the only kernel that is capable to predict the existence of phase II is the

Matern kernel, however the transition lines are only predicted quantitatively close

the the training data regime, Figure 4.5. The interpolation of the energy disper-

sions inside phase II is challenging due to the difference in the physical properties

between the other two known phases.
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Figure 4.5: KGS for the mixed model 4.3. The black dashed curves are the
calculations from Ref. [87]. The color map is the prediction of the GP
models with the fully optimized kernels. The models are trained by the
dispersion of the polarons at the locations represented by the black dots.
The different kernels were considered, kMAT , kRQ and kRBF .

As we showed in the previous section, Section 4.2.1, to increase the learning

capacity of a GP model we can use any possible combination of simple kernels
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using Equations 4.6 and 4.7. The kernel parameters of any complex kernel were

optimized by maximizing the log marginal likelihood. Here we evaluated all the

possible combinations of two simple kernels. Each kernel combination proposed

was trained with the same data points, 1250 points distributed from 2.0 < λSSH ≤
2.5 for phases I and III, and−4≤ β/α ≤−3 (phase I) and 1.0≤ β/α ≤ 2.0 (phase

III). More over, for each value of α and β we used 25 points from 0 < K < π .

The phase diagram predicted with each of all the possible combination of two

kernels is shown in Figures 4.6 and 4.7. Figure 4.6 displays the predicted phase

diagram when two kernels are combined by the addition operation, Equation 4.6.

The predicted phase diagrams in Figure 4.7 were computed by multiplying two

kernels, Equation 4.7.

As discussed in Chapter 2, ML models with a large number of parameters are

not always more capable of learning. This can be observed in Figures 4.6 and

4.7, where increasing the number of kernels does not make the GPs regression

prediction of E(·) more accurate. For example, a GP with kRQ + kRQ is still not

capable of predicting phase II where 0 < KGS < π . On the other hand, if the right

combination of two kernels is chosen, e.g. kMAT + kRBF ,kRBF + kRBF , kMAT × kRBF

or kMAT × kLIN , GP predicted phase diagram improves significantly,

With current computational power training GPs models with a more complex

combination of kernels is doable; however, there are two major issues. The first

problem is the number of kernel combinations that are required to fully describe a

system, and the second obstacle is the need for test data to evaluate the accuracy of

each kernel combination. In the following section, we address the lack of test data

to construct more a robust kernel by reformulating the kernel combination problem

into a Reinforcement learning (RL) problem where each taken action is towards

constructing the ‘best’ kernel.
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Figure 4.6: KGS for the mixed model 4.3. The black dashed curves are the
calculations from Ref. [87]. The color map is the prediction of the
GP models with the fully optimized kernels. The models are trained by
the dispersion of the polarons at the locations represented by the black
dots. The different kernels considered here are all the possible pairwise
addition, Equation 4.6, of two simple kernels, kMAT , kRQ and kRBF .
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Figure 4.7: The momentum of the polaron ground state for the mixed model
4.3. The black dashed curves are the calculations from Ref. [87]. The
color map is the prediction of the GP models with the fully optimized
kernels. The models are trained by the dispersion of the polarons at the
locations represented by the black dots. The different kernels consid-
ered here are all the possible pairwise amutiplication, Equation 4.7, of
two simple kernels, kMAT , kRQ and kRBF .

4.3 Model selection
As we stated in the previous section, we could define a GP with a complex kernel

structure by combining simple kernels. However, given two GP models with totally

different kernels, how do we select the ‘best’ kernel form?. Under the supervised

learning framework, once can simply evaluate the test error for each GP model and

choose the one with the lowest test error. In order to the compute test error, extra set

of data is required, raising the question: How can the most accurate combination
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of kernels be elected with the lack of test points?. This section presents that taking

the advantage that GPs are probabilistic methods, it is possible to select the most

accurate model without test points.

Under the framework of Bayesian statistics, it is possible to compute how prob-

able is the data given a model Mi, p(D |Mi). In the case of GPs, p(D |Mi) is used

to optimize the kernel parameters as we explained in Section 2.3 and can be evalu-

ated analytically. For illustrative purposes let us defined a first GP with kMAT +kRQ,

and a second GP with kMAT +kMAT . For each model, we compute the marginal like-

lihood p(y|X ,θ ,Mi), where Mi is one of the two proposed kernels and θ are the

kernel parameters. Once both GP models are trained we can select the GP model

with the highest marginal likelihood, since it resembles the relationship between

the data and the model. However, it may not be fair to compare marginal likeli-

hoods for kernels with different number of parameters. We must remember that a

model with a larger number of parameters tends to memorize the data easily which

could lead to a higher marginal likelihood [20, 132]. It is possible to penalize the

marginal likelihood to compare models with different number of parameters more

fairly using the Bayesian information criterion (BIC) [58, 132, 168].

4.3.1 Bayesian information criterion

The training stage of a GP with a fixed kernel form is also known in the Bayesian

statistics framework as model selection, where each different kernels parameters’

value is a unique model. The most appropriate model is the one with the highest

marginal likelihood. In the case of GPs, the parameters of the kernel are contin-

uous variables and the optimization can be carried out numerically as shown in

Section 2.3. Unfortunately, we can not use the exact same procedure to search

for the ‘best’ kernel combination since the combination of kernels is not a con-

tinuous variable that can be numerically optimized. To overcome this problem,

we select different kernel combinations using the Bayesian information criterion

[58, 132, 168],

BIC(Mi) = log p(y|X , θ̂ ,Mi)−
1
2
|Mi| logN (4.10)
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where |Mi| is the number of parameters of kernel Mi, and N is the number of train-

ing points. The term −1
2 |Mi| logN is a penalizing term for kernels with a larger

number of parameters. The log p(y|X ,θ ∗,Mi) is the logarithm of the marginal like-

lihood for an optimized kernel. Using the BIC we can compare different kernels

without the need of test data, however, there can be more than one good combina-

tion of simple kernels that could accurately represent the structure of the training

data. With the computational power available today, it may seem possible to cre-

ate and train GP models with as many combinations of kernels as can be imagined.

Unfortunately, the combination of kernels is a non-tractable combinatorial problem

and this makes the problem almost impossible.

4.3.2 Greedy search for model construction

To overcome the combinatorial problem of possible kernel combinations, we use a

greedy algorithm to narrow the search space for the most suitable combination of

kernels [58, 60]. As we mentioned in Chapter 3, greedy strategies are well known

in the RL literature [181]. We use BIC as our selection criteria to find the ‘best’

combination of kernels.

The first step in searching for a more robust kernel is to train different GP

models with different simple kernels. We denoted simple kernels as all the kernel

listed in Section 2.4. We select the kernel with the highest BIC, and denoted as

k0(·, ·). In the following step, we use k0(·, ·) as a base kernel and we combine it

with all ki(·, ·). We combine the two kernels by multiplying them, k0(·, ·) × ki(·, ·),
or adding them, k0(·, ·) + ki(·, ·). For all the possible combinations we compute

the BIC and select the kernel with the heights BIC which is denoted as k1(·, ·). We

carried the same procedure iteratively where the base kernel is k`(·, ·), and k`+1(·, ·)
is the kernel combination that has the highest BIC. Figure 4.8 illustrates the greedy

search algorithm explained above.

4.4 Results
In this section, we illustrate the use of GP models with complex kernels that are

constructed by an iterative maximization of the BIC explained in the previous sec-

tion. We illustrate the possibility to extrapolate quantum observables to regimes
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Figure 4.8: Schematic diagram of the kernel construction method employed
to develop a GP model with extrapolation power. At each iteration, the
kernel with the highest Bayesian information criterion (Equation 4.10)
is selected.

in the spaces where traditional numerical algorithms have a lack of convergence.

Furthermore, we also trained a GP model with data only form phases I and III, as

explained in Section 4.2.2 and predicted the complete phase diagram of the polaron

model.

4.4.1 Extrapolating quantum observables to unconverged regimes

This section illustrates how kernel combinations can predict quantum observables

where standard numerical methods fail to converge due to the Hilbert space di-

mensionality. We consider the Holstein polaron model, where the Ve−ph term in

Equation 4.3 is,

H2 =
g√
N ∑

k,q
c†

k+qck

(
b†
−q +bq

)
. (4.11)

Many methods have been developed to study dressed particles like the Holstein

polaron, e.g. quantum Monte Carlo based methods, variational exact diagonal-

ization [22], momentum average approximation [16], to mention few. All these

methods demand higher computational resources when the value of ω decreases
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Figure 4.9: Left panel: Holstein polaron dispersion predicted with a GP
model with kRQ, black dashed curves, and kRQ×kRQ×kRBF +kLIN , blue
dashes curves. The red solid curves are polaron dispersions computed
with the momentum average approximation method [22]. Right panel:
The change in the RMSE as a function of depth in the kernel combina-
tion search guided by the BIC. We plot the RMSE between GP predicted
polaron dispersion and the exact polaron dispersion at different values
of ω . The grey area is the range in ω considered for training the GP. For
both figures, the value of g = 1.5 is fixed.

since the increase of the Hilbert space dimension. As a proof-of-principle, we

present that GP models with kernel combination can also extrapolate E(·) in the

regime where ω is small. The phonon frequency range considered for training

was, 2.0 < ω < 3.0. We used the BIC to search for the most appropriate kernel

combination to extrapolate E(·) in the low phonon frequency regime, Figure 4.8.

Figure 4.9b illustrates that at each iteration of the BIC search, the learning of a GP

model has a better representation of E(·) for ω < 2.0. We must point out that the

single kernel with the highest BIC, kRQ, is capable to extrapolate E(·) qualitatively.

On the other hand, a GP model with kRQ× kRQ× kRBF + kLIN yields to accurate

results even when ω ≈ 1.0, Figure 4.9a.

4.4.2 SSH-BM polaron phase diagram

In this section, we present predicted phase diagram of the SSH-BM polaron with a

GP model where the kernel is constructed by the BIC, as it is depicted in Figure 4.8,
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For clarity, here, we use the notation “GPL-X” for the kernel with the highest

BIC obtained after X depth levels of the algorithm depicted in Figure 4.8 of the

main manuscript. We considered two different sets of training data, the first one

where the training data is only from phase III, same as in Figures 4.6 and 4.7,

and the second from phases I and II. In the first case, Figure 4.10 illustrates the

change in the prediction of the polaron phase diagram depth levels of the algorithm

depicted in Figure 4.8. As it can be noticed the first kernel GPL-0, kMAT , does

predict the change in KGS from zero to π qualitatively. At the third level GPL-3

is (kMAT + kRBF)× kLIN where the phase diagram is predicted quantitatively. We

state that any GPL-X predicts E(K,α,β ) in the complete range of the Hamiltonian

parameters, then we search for KGS which we used to construct the phase diagram.

Here, we also test if GP models are capable to predict quantum observables

in-between phases. Predicting quantum observables in between different quantum

phases is also a challenging problem. The training data used for this example is

sampled from phases I and III. Again, the kernel form, GPL-X , is proposed by

the algorithm described in Figure 4.8. GPL-4, in Figure 4.11, is (kMAT × kLIN +

kRBF)× kLIN and accurately predicts the entire SSH-BM polaron phase diagram.

GPs are a non-parametric method, meaning that the data is one of the key

components to train GPs. Here, we illustrate that even with kernel combinations,

different data lead to a different combination of kernels. With only considering

data from phase III, as in Figure 4.10, and used Section 4.3.2 algorithm to predict

the polaron phase diagram. We consider two different training sets, one were the

training points are closer to the transition line and one where the points are further

away. Each set has the same amount of points, 900, but different values of α and

β . For each pair of values of α and β we consider 20 points distributed 0 < K < π .

The predicted phase diagram with a GP trained with both set of points is illustrated

in Figure 4.12.

For both training sets, the first selected kernel is kMAT , Figure 4.12. A GP

model with a single kernel trained with data closer to the phase transition is capable

to qualitatively predict the existence of phase II where KGS > 0. Additionally,

neither of both kernels can predict the existence of phase III, KGS = 0. The right

column panels of Figure 4.12 are the predicted phase diagrams with GPL-2 for

both training sets. kMAT + kRBF + kLIN is the GPL-2 for where the training data is
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Figure 4.10: KGS for the mixed model (4.3) as a function of β/α for λSSH =
2α2/th̄ω . The dotted curves are the quantum calculations from Ref.
[87]. The color map is the prediction of the GP models. Each panel
illustrates the improvement of the predicted phase diagram. The panels
correspond to the optimized kernels GPL-0 (left), GPL-1 (right), GPL-
2 (centre), where “GPL-X” denotes the optimal kernel obtained after
X depth levels in the algorithm depicted in Figure 4.8. The models are
trained by the dispersion of the polarons at the locations represented
by the white dots.

the furthest from the first phase transitions, while GPL-2 is (kMAT + kRBF)kLIN for

the data closer to the transition. Both kernels are capable to predict the existence

of phase I where KGS = π . The left column of Figure 4.12 shows that the two sets

of training data contain different physical information.
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Figure 4.11: KGS for the mixed model (4.3) as a function of β/α for λSSH =
2α2/th̄ω . The dotted curves are the quantum calculations from Ref.
[87]. The color map is the prediction of the GP models. Each panel
illustrates the improvement of the predicted phase diagram. The panels
correspond to the optimized kernels GPL-0 (left), GPL-1 (right), GPL-
2 (centre), where “GPL-X” denotes the optimal kernel obtained after
X depth levels in the algorithm depicted in Figure 4.8. The models are
trained by the dispersion of the polarons at the locations represented
by the white dots.

4.5 Discussion
Predicting phase transitions using ML learning algorithms is currently a ‘hot’ re-

search topic in the field of many-body physics. One of the most known works was

proposed the use of NNs with multiple layers to learn how to classify different

spin configurations in order to characterize the ferromagnetic or antiferromagnetic

phase by J. Carrasquilla et al. in Ref [35]. Another influential work was proposed

in 2015 by L.-F. Arsenault et al. where it is showed that ML algorithms can also

classified different phases of matter and interpolate quantum observables such as
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Figure 4.12: KGS for the mixed model (4.3) as a function of β/α and λSSH =
2α2/th̄ω . The black dashed curves are the calculations from Ref. [87].
The color map is the prediction of the GP models with the fully opti-
mized kernels. The models are trained by the dispersion of the po-
larons at two different locations represented by the white dots. Left
column panels are the predicted phase diagram with GPL-0 for both
training data sets and right column panels are with GPL-2.

the quasi particle weight in the Hubbard model [8]. The interpolation of the quan-

tum observables was done using KRR. Identifying different phases of matter in

the Ising model can also be done with unsupervised learning as L. Wang showed

in Ref. [188].

The approach proposed over this chapter illustrates how GP models are capa-

ble of robust interpolation and extrapolation of quantum observables to construct

phase diagrams. We also state that the learning capacity of GP models can be en-

hanced using multiple kernels. We highlight the impact that different combination

of kernels have in the prediction of GP models. It is important to emphasize that

combining a large number of kernels does not ensure a more accurate model, as

many of the kernels predicted incorrect phase diagrams in Figures 4.5 to 4.7

Over the course of this chapter, we illustrate that a hand-crafted kernel com-
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bination, like kMAT × kLIN , can predict quantum observables beyond training data

under some regimes. This kernel form is robust enough to even predict the change

of form in the energy dispersion of the SSH polaron model as a function of λSSH

or α . The prediction of GP models intrinsically depend on the number of training

points since they are non-parametric methods; Figures 4.2, 4.3 and 4.4 display the

increase in the accuracy in the GPs extrapolation when more training data is used.

The prediction of E(·) in the low phonon frequency regime is computationally de-

manding as a result of the Hilbert space dimensionality required. Section 4.4.1

presents that quantum observables can be accurately learned where traditional nu-

meric methods have a lack of convergence.

Constructing the most appropriate combination of kernels to study different

systems is a complex problem on its own, and a lack of test data increases the

difficulty of the problem. We examine the use of BIC to reduce the combinato-

rial space of kernels; specifically, we used greedy selections. However, different

strategies can be used to construct the most accurate combination of kernels. For

example, using auto-econders we can reformulate the search of the ‘best’ kernel

to a continuous space as R. Gómez-Bombarelli et al. did for molecules in Ref.

[71]. The advantage of searching for the most accurate kernel combination in a

continuous space is the possibility to use optimization algorithms as BO discussed

in Chapter 3.

The BIC is the selecting criteria used to pick the most appropriate kernel com-

bination to overcome the lack of test data for comparing the robustness of each

model. Further work should be carried out to study the impact of different met-

rics, like the Akaike information criterion [132], for constructing different kernel

combinations,

AIC(Mi) = log p(y|X , θ̂ ,Mi)−|Mi|, (4.12)

where the first term is the logarithm of the marginal likelihood for an optimized

kernel and |Mi| is the number of kernel parameters. It is important to mention that

there can be more that one single kernel that can accurately predict phase diagram,

as it is shown in Figures 4.6 and 4.7.
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As we discussed in Chapter 2, when non-optimal kernel parameters are used

for prediction, GP models have a lack of accuracy. The algorithm introduced in

Section 4.3.1 sequentially constructs more robust kernels using the BIC. The BIC

depends on the optimal values of θ , meaning that it is possible to select a wrong

kernel if the kernel optimization is not converged. GP models with extremely com-

plex kernels cannot be used since the optimization of such kernels is challenging

and could lead to inaccurate predictions.

The prediction of phase diagrams is one of the key problems in condensed-

matter physics, however, we can use ML to push the boundaries of a physical

problem and try to infer new phases of a diagram without knowing its existence.

With the rise of more complex ML algorithms like deep-NN [72], bayesian-NN

[134], GPs of GPs (deep-GPs) [53] or even with different kernel functions [191,

192], it may be possible to discover new quantum systems or study the quantum

world in new regimes.

76



Chapter 5

Accelerating quantum walks

If you are receptive and humble,
mathematics will lead you by the hand.

— Paul A. M. Dirac

This chapter presents a study for the spreading of a quantum particle placed

in a single site of a lattice or binary tree with the Hamiltonian permitting particle

number changes. We show that particle number-changing interactions can accel-

erate the spreading beyond the ballistic expansion limit by inducing off-resonant

Rabi oscillations between states of different numbers of particles. We consider

the effect of perturbative number-changing couplings on Anderson localization in

one-dimensional disordered lattices and show that they lead to a decrease of lo-

calization. The effect of these couplings is shown to be larger at larger disorder

strength, which is a consequence of the disorder-induced broadening of the parti-

cle dispersion bands. Results presented in this chapter are published in Ref. [185]

5.1 Introduction
An important class of quantum computing algorithms is based on quantum walks

(QWs) [89, 187], the quantum analog of random walks [46]. Random walks on lat-

tices and graphs are powerful mathematical objects that can be used as algorithmic

tools for a variety of problems, including optimization, search and classification.

The efficiency of many such algorithms is determined by ‘hitting’ and ‘mixing’
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times, quantifying how long it takes random walks to explore the underlying graphs

[4]. Depending on the Hamiltonian, quantum walks can be accelerated by dynam-

ical interferences and have potential to offer polynomial or, for some problems,

exponential, computation speedup [63]. The role of interferences in QWs is per-

haps best exemplified by the ballistic expansion of a quantum particle with time T

in a periodic lattice [45, 47, 89, 171], leading to the ∝ T growth of the probability

distribution, compared to the ∝
√

T expansion of the classical random walk. QWs

have been proven to offer the
√

N speed-up of spatial search over N items arranged

in a d-dimensional lattice, with d > 4 [44].

With recent advances in the experiments on controlling atoms [19, 57, 66, 103,

143, 184], molecules [32, 111, 176], photons [9] and arrays of superconducting

qubits [17, 31, 80, 98, 136], it has become possible to engineer lattice Hamiltoni-

ans. This, combined with the importance of the speed of QWs for the quantum

computing algorithms and for the study of the fundamental limits of the velocity

of quantum correlation propagations [117, 149], raises the question if and how lat-

tice or graph Hamiltonians can be engineered to accelerate quantum walks. The

effect of Hamiltonian engineering on quantum walks has been studied in many

different contexts. For example, Giraud et al. [70] showed that Anderson local-

ization impeding quantum walks in disordered systems can be mitigated by adding

hopping terms, which provide shortcuts in circular graphs. QWs can also be ac-

celerated by coupling a Hamiltonian system to an external bath. While the general

belief is that particle-environment interactions destroy the coherence of quantum

walks leading to transport suppression in ordered systems, multiple recent studies

showed that interactions with certain non-Markovian baths provide new pathways

for interferences [130, 144, 148]. The range of particle hopping and particle inter-

actions are also known to determine the speed of quantum information propagation

[39, 54, 149, 153].

Engineering many-particle (as opposed to a single particle) quantum walks is

becoming an important research goal [139]. As shown by Childs et al., QWs on

a sparse graph can be used to efficiently simulate any quantum circuit [43] and

interacting quantum walks are capable of universal quantum computation [48].

Quantum walks of interacting pairs can be used to determine if graphs are iso-

morphic [67]. Particle correlations can be exploited to change the directionality of
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quantum walks [28]. Quantum walks of interacting particles can be used to realize

quantum Hash schemes [116]. Two-body or multi-particle correlations have been

shown to affect quantum walks of few- and many-particle systems in interesting

ways [18, 28, 38, 39, 68, 108, 109, 145, 154, 155, 157, 162, 179, 189]. These stud-

ies consider particle correlations arising either as a consequence of direct density -

density interactions or particle quantum statistics.

This chapter presents an alternative mechanism for accelerating quantum walks,

namely quantum walks in a dynamical system governed by a Hamiltonian allow-

ing particle number changes. Such Hamiltonians can be engineered with quasi-

particles, such as excitons [34, 84, 128, 201], or with ultracold atoms trapped in

optical lattices and immersed in a condensate [40, 99]. They are also of signifi-

cant experimental and theoretical interest due to the relation to the topologically

protected states and their possible use in quantum computing [106]. The present

work shows that the particle-number-changing interactions lead to Rabi oscilla-

tions, which significantly accelerate the spreading of quantum wave packets in

ideal lattices and binary trees. Also considers the effect of such terms on Anderson

localization and show that they lead to decrease of the inverse participation ratio

in disordered systems. This work also shows that the effect of number-changing

interactions on the participation ratio becomes stronger with increasing disorder

strength.

5.2 Models
Consider the quantum dynamics governed by the following lattice Hamiltonian:

Ĥ = ∑
i

ωiĉ
†
i ĉi + t ∑

〈i, j〉
ĉ†

j ĉi + v ∑
〈i, j〉

c†
i cic

†
jc j +V̂nc, (5.1)

where

V̂nc = ∆ ∑
〈i, j〉

(ĉ†
i ĉ†

j + ĉiĉ j)+ γ ∑
i
(ĉ†

i + ĉi), (5.2)

ĉi is the operator that removes the particle from site i, the quantities ωi, t, ∆ and v

are the Hamiltonian parameters, and the angular brackets indicate that the hopping

79



and interactions are only permitted between nearest neighbour sites. The on-site

energy ωi is defined as ωi = ∆ε + εi, where ∆ε is a constant and εi is varied in the

calculations for lattices with on-site disorder (more details below and in Chapter 6).

The term V̂nc couples different particle-number states.

Model (5.1) is a special case of the full Hamiltonian for the Frenkel excitons

in an ensemble of coupled two-level systems [2]. At ∆ = 0, γ = 0 and v = 0, this

Hamiltonian reduces to the tight-binding model. At ∆ = 0 and γ 6= 0, the model

describes the quantum annealer setup of D-wave [80], where currents in interacting

superconducting qubits are mapped onto spin states.

This work considers the few-particle limit of Hamiltonian (5.1) and calculates

the dynamics of quantum walks by diagonalizing the Hamiltonian and constructing

the full time evolution operator from the complete set of the corresponding eigen-

vectors, as was done, for example, in Ref. [199]. In order to describe properly

the dynamics governed by the models with ∆ 6= 0 and/or γ 6= 0, the Hilbert space

must include multiple particle-number states. The Hilbert spaces is truncated and

only includes one and three particles for the case ∆ 6= 0,γ = 0. When ∆ = 0,γ 6= 0,

the Hilbert space includes the vacuum state (zero particles), one, two, and three

particles. As discussed below, this chapter considers the Hamiltonian parameters,

for which the multiple-particle states have high energy. Since the energy of such

states increases with the number of particles and the couplings can only change the

number of particles by one or two, the contribution of such states decreases with

the number of particles. Previous calculations done, verified that for a lattice with

19 sites that including the states of five particles does not change the results for the

Hamiltonian parameters considered here, Figure 5.2.

The on-site energy ∆ε + εi determines the energy separation between states

with different numbers of particles. Throughout this work, we consider the limit

∆,γ� ∆ε . For ideal lattices, εi = 0. For disordered lattices, εi is drawn from a uni-

form distribution of random numbers. In this limit, the state corresponding to one

particle at zero time becomes weakly dressed with higher particle-number states.

The effect of the dressing can be accounted for by the Schrieffer-Wolf transforma-

tion [167], which in first order leads to the appearance of next-nearest-neighbour

hopping terms, as shown in Appendix B. Including higher order terms resulting

from the transformation induces longer-range hopping. The particle can effec-
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tively hop by undergoing virtual transitions to higher particle-number states and

back. Note that in models with γ 6= 0, the particle can also hop by virtual transi-

tions to the vacuum state (the state of no particles) and back.

5.2.1 Ideal 1D lattices

The first considered case is the well-studied problem of ballistic spreading in an

ideal one-dimensional (1D) lattice. At ∆ = 0 and v = 0, a particle placed in an

individual lattice site expands as shown by the solid black line in Figure 5.1. This

spreading is much faster than the expansion of the area covered by the classical

random walk, illustrated in Figure 5.1 by the dotted curve. Figure 5.1 shows that

the quantum dynamics of a single particle initially placed in a single lattice site is

drastically different from both the random walk result and the ballistic spreading

when governed by the model (5.1) with ∆ 6= 0. In particular, the width of the wave

packet oscillates at short times, approaching the ballistic-expansion-like behaviour

at long times. These calculations are performed for the 1D lattice with N = 41

lattice sites with open boundary conditions. As can be seen from Figure 5.1, the

effect of the boundaries is not important until time reaches ≈ 11 t−1.

In order to understand the origin of the oscillations, we plot in the insets of

Figure 5.1 the average number of particles 〈n〉 as a function of time. It can be seen

that 〈n〉 oscillates with the same period as the wave packet size. Thus conclude

that the oscillations observed in Figure 5.1 are due to off-resonant Rabi flopping

between the state of one particle and the states of multiple particles induced by

V̂nc. Figure 5.1 shows that these coherent oscillations accelerate quantum walks

beyond the ballistic limit. Note that 〈n〉 in Figure 5.1 is an average of one and

three particles. For ∆ε/t = 20, 〈n〉 < 1.2, which illustrates that the three-particle

subspace remains largely unpopulated at all times.
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Figure 5.1: Time dependence of the standard deviation (in units of lattice
constant) of the wave packet for a particle initially placed in a single
site of a one-dimensional ideal lattice. The solid black curves represent
the ballistic expansion governed by the Hamiltonian (5.1) with v= 0 and
V̂nc = 0. Upper panel: The oscillating curves show the size of the wave
packets governed by the Hamiltonian (5.1) with v = 0, γ = 0, ∆/t = 1,
t = 1 and two values of ∆ε: ∆ε = 10/t (blue) and ∆ε = 20/t (red).
Lower panel: The oscillating curves show the size of the wave pack-
ets governed by the Hamiltonian (5.1) with v =±1, ∆/t = 1, t = 1 and
∆ε = 20/t. The insets show the average number of particles 〈n〉 as a
function of time for the corresponding Hamiltonian parameters. No-
tice that for ∆ε = 20/t, 〈n〉 stays below 1.2 at all times. Figure from
reference [185].
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Since the c†
i c†

j term generates pairs of particles in adjacent sites, it is important

to consider the role of inter-site interactions v. Such interactions appear in extended

Hubbard models, leading to non-trivial properties of the lattice systems [135, 164,

184] and inducing correlations in quantum walks [39]. Here, they are transient as

the mutliple-particle subspaces are populated only virtually. The inset of Figure 5.1

illustrates that repulsive interactions stabilize the oscillations at long times, while

the short-time dynamics appears to be largely unaffected by the density-density

interactions.

The ∆ 6= 0 term couples the subspaces with the odd number of particles. Thus,

the state of a single particle is coupled to a state of three-particles, but not to the

state of two particles or the vacuum state. By contrast, the γ 6= 0 term couples

subspaces differing in the number of particles by one. To illustrate the effect of

such couplings on the dynamics of quantum walks, we compare two models: (i)

∆ = 0,γ = t and (ii) ∆ = t,γ = 0. The results shown in Figure 5.3 illustrate that the

couplings in case (i) have a much stronger effect, leading to larger amplitudes of

the oscillations and the persistence of the oscillations for much longer time.
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Figure 5.2: Time dependence of the standard deviation (in units of lattice
constant) of the wave packet for a particle initially placed in a single
site of a one-dimensional ideal lattice. The solid black curves represent
the ballistic expansion governed by the Hamiltonian (5.1) with v = 0
and V̂nc = 0. The oscillating curves show the size of the wave packets
governed by the Hamiltonian (5.1) with v = 0, γ = 0, ∆/t = 1, t = 1,
∆ε = 20/t and a Hilbert space with different number of particles, 1 par-
ticle (black), 1 and 3 particles (red) and 1,3 and 5 (blue). The upper
inset shows the logarithm of the particle probability distributions in a
disordered 1D lattice with 19 sites. The results are averaged over 50 re-
alizations of disorder and are time-independent with w = 10/t. And the
lower inset depicts the average number of particles 〈n〉 as a function of
time for the three different wave packets. Figure from reference [185].
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Figure 5.3: Time dependence of the standard deviation (in units of lattice
constant) of the wave packet for a particle initially placed in a single
site of a one-dimensional ideal lattice. The solid black line represents
the ballistic expansion governed by the Hamiltonian (5.1) with v = 0,
∆ = 0 and γ = 0. For the dotted red curve ∆ = 0 and γ = t while for
the blue solid curve ∆ = t and γ = 0. For all of these calculations,
∆ε = 20/t. The inset shows the average number of particles 〈n〉 as a
function of time for ∆ = 0 and γ = t (dotted red curve) and ∆ = t and
γ = 0 (blue solid curve). Figure from reference [185].

5.2.2 Disordered 1D lattices

We next consider disordered 1D lattices. The disorder is generated by randomizing

the on-site energy εi by drawing the random values from a uniform distribution

[w/2,w/2], where w quantifies the strength of disorder. Non-interacting particles

are exponentially localized in 1D disordered systems [7]. Our goal is to explore

the role of the ∆ 6= 0 interactions on the localization.

In all of the disordered models we consider γ = 0, ∆/t ≤ 1 and ∆ε/t = 20.

Notice that for the ideal lattice with ∆/t = 1 illustrated in Figure 1, this value

of ∆ε ensures that the average number of particles 〈n〉 < 1.2 at all times. The

three-particle sub-space is thus far off-resonant and contributes to the dynamics

perturbatively.
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Upper panel of Figure 5.4 shows the average lattice population distributions

illustrating the localization. To obtain these distributions, we place a particle in a

single lattice site, propagate the wave packet to long time and average the resulting

probability distribution over 100 random instances of disorder. We have verified

that this number of disorder realizations ensures converged results. The averaging

removes the time-dependence in the long-time limit. The results show that the term

V̂nc induces non-exponential wings of the distribution, which rise with the magni-

tude of ∆. To illustrate the quantitative contribution of these wings, we compute

the inverse participation ratio (IPR) defined as

I(t) = ∑
i

( |ψi(t)|2
∑i |ψi(t)|2

)2

, (5.3)

where |ψi(t)|2 is the probability of the population of lattice site i at time t. The

value of the IPR ranges from 1/N for the state completely delocalized over the

lattice with N sites to 1 for the state localized in a single lattice site. We find

that the couplings with ∆/t = 1 decrease the IPR, indicating decrease of local-

ization. Surprisingly, the effect of these couplings increases with increasing dis-

order strength. This phenomenon is reminiscent of noise-induced delocalization

[49, 130, 140, 148]. Here, the variation of on-site energy due to disorder brings

the energy of the different particle-number states for random lattice sites closer to-

gether, thereby enhancing the effect of the couplings induced by V̂nc. With increas-

ing disorder strength w, the probability of the different number states becoming

closer in energy increases, leading to more and stronger high-order hopping terms,

thereby decreasing localization more significantly. Note that this result applies

only in the limit ∆� ∆ε , i.e. in the limit where the number-changing interactions

are much weaker than the energy separation between the number subspaces.
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Figure 5.4: Upper panel: The logarithm of the particle probability distribu-
tions in a disordered 1D lattice with 41 sites: diamonds – ∆/t = 1,
squares – ∆/t = 1/2, circles – ∆/t = 1/10. The results are averaged
over 100 realizations of disorder and are time-independent. The dashed
line is an exponential fit to the ∆/t = 1/10 results. Lower panel: the
long-time limit of the IPR defined in Eq. (5.3) averaged over 100 in-
stances of disorder as a function of the disorder strength w: solid line –
∆ = 0, dashed line – ∆/t = 1. The inset shows the IPR averaged over
100 realizations of disorder for two disorder strengths w = {5/t,10/t}
as functions of time: the solid black curves – ∆ = 0; the dotted and
dot-dashed curves – ∆ = t. Figure from reference [185].
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5.2.3 Binary trees

Figure 5.5: Schematic diagram of an ideal binary tree with depth-5 (G 5).

This sections considers quantum walks in binary trees. A binary tree is charac-

terized by the number of layers and the connectivity of the lattice sites. Here, we

consider the binary tree G 5 with five layers schematically depicted in Figure 5.5.

The model (5.1) adapted to binary trees becomes

H =
2g−1

∑
i=1

(∆ε + εi)ĉ
†
i ĉi +

2g−1

∑
i=1

2g−1

∑
j=1

ti j

(
ĉ†

i ĉ j + ĉ†
j ĉi

)
+

2g−1

∑
i=1

2g−1

∑
j=1

∆

(
ĉ†

i ĉ†
j + ĉ jĉi

)
(5.4)

γ = 0 is set for all binary tree calculations. Each node of the binary tree is connected

to three nodes: its father, the left child 2i and the right child 2i+1, so

H =
2g−1

∑
i=1

(∆ε + εi)ĉ
†
i ĉi + t

2g−1

∑
i=1

(
ĉ†

i ĉ2i + ĉ†
i ĉ2i+1 +h.c.

)
+V̂nc,tree (5.5)

where

V̂nc,tree = ∆

2g−1

∑
i=1

(
ĉ†

i ĉ†
2i + ĉ†

i ĉ†
2i+1 + ĉiĉ2i + ĉiĉ2i+1 +h.c.

)
(5.6)

The spread of the quantum wave packets in such trees can be described by,

σ(t) =
√
〈ν2〉−〈ν〉2 =

√
2g−1

∑
ν=1

ν2 pν(t)− (ν pν(t))
2 (5.7)

Quantum walks started at the root of a graph and comparison between the dynamics
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Figure 5.6: Upper panel: The growth of the wave packet for a single particle
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in both figures γ = 0. Figure from reference [185].
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of models with ∆ = 0 and ∆ 6= 0 is carried.

Upper panel of Figure 5.6 shows that the couplings V̂nc,tree accelerate quantum

walks on the tree. To quantify the effect of ∆ 6= 0 on quantum walks, we compute

the mixing time defined as

Mε = min{T |∀ t ≥ T : ‖P(t)−π‖1 ≤ ε} (5.8)

where P(t) is the probability distribution at time t, π is a distribution that the quan-

tum system is expected to approach, and ‖·‖1 is the L1 norm.

Two distributions π are considered, the uniform distribution πU and the station-

ary distribution πS. The uniform distribution is characterized by the same value of

probability for each node. The stationary distribution is defined by the following

values of the probability for node ν

πS(ν) = lim
T→∞

p̄ν(T ), (5.9)

where p̄ν(T ) is the time average of the probability of populating node ν ,

p̄ν(T ) =
1
T

T−1

∑
t=0

pν(t) =
1
T

T−1

∑
t=0
|〈ν |Ψ(t)〉|2 (5.10)

=
1
T

T−1

∑
t=0
〈ν |Ψ(t)〉〈Ψ(t)|ν〉

=
1
T

T−1

∑
t=0

{
∑
λ

e−iEλ t〈ν |λ 〉〈λ |Ψ(0)〉
}

p̄ν(T ) =

{
∑
λ ′

eiE
λ ′ t〈Ψ(0)|λ ′〉〈λ ′|ν〉

}
(5.11)

90



Here, h̄ = 1 is set. Defining 〈λ |Ψ(0)〉 as cλ
n0

,

p̄ν(T ) =
1
T

T−1

∑
t=0

{
∑
λ

e−iEλ tcλ
n0
〈ν |λ 〉

}{
∑
λ ′

eiE
λ ′ tcλ ′∗

n0
〈λ ′|ν〉

}

=
1
T

T−1

∑
t=0

∑
λ

|cλ
n0
|2 |〈ν |λ 〉|2

+
1
T

T−1

∑
t=0

∑
λ ,λ ′

(
cλ

n0
cλ ′∗

n0
ei(E

λ ′−Eλ )t〈ν |λ 〉〈λ ′|ν〉
)
. (5.12)

In the limit of long time T → ∞ the imaginary part of p̄ν(T ) tends to zero. The

factor 1
T in the real part of p̄ν(T ) cancels because ∑

T−1
t=0 ei(Eλ−Eλ )t = T . We can

thus rewrite πS(ν) as

πS(ν) = ∑
λ

|cλ
n0
|2 |〈ν |λ 〉|2. (5.13)

From Eq. (5.13) it can be observed that πS(ν) depends on the initial condition

(|Ψ(t = 0)〉).
Lower panel of Figure 5.6 illustrates the effect of the couplings V̂nc,tree on the

speed of approaching the uniform distribution πu(ν) and Figure 5.7 the effect of the

couplings V̂nc,tree on the stationary distribution πS(ν). The approach to the uniform

distribution is accelerated by the V̂nc,tree terms at short times. As can be seen from

Figure 5.6, the couplings V̂nc,tree enhance the stationary distribution, illustrating that

the graph is explored more efficiently by the dynamics with the V̂nc,tree couplings.

5.2.4 Glued binary trees

If two binary trees of Figure 5.5 are joined together as shown in Figure 5.8, one

obtains a glued binary tree. Transport through glued binary trees represents an

important class of problems [96, 104]. Of particular interest is the probability of

transfer from the head node to the bottom node in disordered glued trees. Studies of

such processes have been used to understand the consequences of quantum local-

ization for the application of quantum walks for quantum computing and quantum

communication algorithms [96, 104].

To study quantum walks in a glued binary tree, model (5.4) was used but with

91



7 15 23 30
Node index

0.015

0.020

0.025

0.030
S(

)

0 10 20 30
Node index

0.00

0.12

0.25 S( )
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ary distributions πS(ν) for quantum walks with ∆/t = 1 and ∆ε = 10/t
and ∆ε = 20/t, respectively. Figure from reference [185].

Figure 5.8: Schematic diagram of an ideal glued binary trees with depth-4
(G BT −4).

an adapted summation index to the tree shown in Figure 5.8. Figures 5.10 and 5.9

illustrate the effect of the particle-number fluctuations on quantum walks through

a glued binary tree. The results shown in the insets of 5.10 are for a single particle

92



placed at zero time in the head node of an ideal glued tree depicted in Figure 5.8.

The upper panel of 5.10 shows the probability

p j(t) =
2d

∑
j=0
|〈 j|ψ(t)〉|2 (5.14)

summed over all nodes of depth level j = 3. The lower panel of Figure 5.10 is

the probability of particle density transfer between the two ends of the glued tree.

Interestingly, while the ∆ 6= 0 interactions affect the population of the j = 3 level,

it can observed a small effect of these interactions on the head-to-bottom transfer

of the particle for times < 10 t−1 (see the inset of the lower panel of Figure 5.10).

In contrast, the same interactions have a much stronger effect on the head-to-

bottom transfer through a disordered tree. As can be seen from Figure 5.10, the ∆ 6=
0 interactions accelerate the efficiency of particle transfer through the disordered

tree, especially at short times by inducing oscillations as in the case of an open-

ended binary tree discussed above. Figure 5.9 shows that these oscillations survive

averaging over 100 disorder realizations. The disorder strength was set to w = 5/t

for these calculations.

While the methodology used here limits the size of the glued tree to seven

levels, results indicate that the localization of quantum particles in disordered glued

trees must be affected by the couplings between particle number subspaces. It

would be interesting to see if the head-to-bottom transfer remains insensitive to

these interactions and how the localization length is affected by such interactions

in larger trees. To treat such problems, it is necessary to develop approximate

computation techniques for few-particle systems in glued trees.
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Figure 5.9: Average particle probability distribution in a disordered G BT 4
graph: upper panel − ∆/t = 0, middle panel − ∆ε = 10/t and lower
panel − ∆ε = 20/t. For all panels we consider 100 realizations of dis-
order with a strength of w = 5/t and γ = 0. The wave packet for a
particle is initially placed in the head node of a G BT 4 graph. Figure
from reference [185].

5.3 Conclusion
In this work, coherent quantum dynamics governed by the lattice Hamiltonians

with number non-conserving interactions in the few-body limit was considered.

As it is illustrated, the couplings between particle-number subspaces, even if much

smaller than the energy separation between these subspaces, accelerate the dynam-

ics of quantum walks in ideal lattices and binary trees and increase the localization

length in disordered lattices. Effectively, these couplings provide new degrees of

freedom, increasing the range of hopping due to virtual excitations and/or tran-

sient elimination of a single particle due to coupling to the vacuum state. As is

showed, the number-changing interactions decrease the mixing and hitting times

for quantum walks on binary trees.
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Results show that the inverse participation ratio in disordered one-dimensional

lattices decreases in the presence of number-changing interactions, signalling de-

crease of localization. This effect increases with increasing disorder strength, lead-

ing to larger changes of the inverse participation ratio in lattices with stronger on-

site disorder. This is a direct consequence of the disorder-induced broadening of

the particle energy bands. This broadening brings different particle number sub-

spaces closer in energy, increasing the effect of the number-changing couplings

and, consequently, the effective range of particle hopping.

Engineering lattice Hamiltonians to accelerate quantum dynamics has been of

much recent interest due to potential applications in quantum computing and the

study of the fundamental limits of the speed of correlation propagations in quantum

many-body systems. Also of much interest is the localization dynamics of particles

with long-range hopping in disordered lattices and graphs. This work illustrates

that models of the type (5.1) can be used to study the effect of hopping range on

Anderson localization and quantum walks spreading faster than ballistic expansion.

While non-interacting particles are known to be always localized in disordered

1D lattices, there is a localization - diffusion transition in 3D lattices [156]. Results

indicate that the number-changing interactions must affect this transition. It would

be interesting in future work to explore the quantitative effect of such interactions

on the localization transition in 3D disordered lattices. It would also be interesting

to explore the effect of such interactions on localization in 2D lattices. While non-

interacting particles with short-range hopping are known to be always localized

in 2D disordered latices, particle interactions may lead to delocalization. Since

the ∆ 6= 0 terms considered here create pairs of interacting particles in adjacent

sites, these interactions may have non-trivial consequences on the localization in

disordered 2D lattices.
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Figure 5.10: Average particle probability distribution in a disordered
G BT − 4 graph with strength w = 5/t. The wave packet for a sin-
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Chapter 6

Quantum simulators with highly
magnetic atoms

Nature isn’t classical, dammit, and if you want to make a simulation
of nature, you’d better make it quantum mechanical, and by golly it’s

a wonderful problem, because it doesn’t look so easy.
– Richard P. Feynman

We show that Zeeman excitations of ultracold Dy atoms trapped in an optical

lattice can be used to engineer extended Hubbard models with tunable inter-site

and particle number-non-conserving interactions. We show that the ratio of the

hopping amplitude and inter-site interactions in these lattice models can be tuned

in a wide range by transferring the atoms to different Zeeman states. We propose

to use the resulting controllable models for the study of the effects of direct particle

interactions and particle number-non-conserving terms on Anderson localization.

Results presented in this chapter are published in Ref. [184].

6.1 Introduction
There is currently growing interest in engineering lattice Hamiltonians with ul-

tracold atoms and molecules [115]. Of particular interest are extended Hubbard

models, which include interactions between particles in different lattice sites. Such

models exhibit rich physics and have been used to explain the role of long-range
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interactions in the context of superfluid - Mott insulator transitions [74], antiferro-

magnetism [27, 101], high-Tc superconductivity [56], twisted superfluidity [173],

supersolids [141], self-trapping of bipolarons [175]. Extended Hubbard models are

very difficult to solve numerically, especially for two- and three-dimensional lat-

tices. Hence, the need to build experiments, where a many-body quantum system

is described by an extended Hubbard model, whose parameters (in particular, the

ratio of the hopping amplitude and the inter-site interaction energy) can be tuned

by varying external fields, and where the particle densities can be imaged prefer-

ably with single site resolution. Tuning the parameters of the model, one could use

such experiments to map out the phase diagrams.

There are many proposals for realizing lattice models, including extended Hub-

bard models [11, 29, 129, 135, 164, 202], with ultracold atoms or molecules trapped

in optical lattices. However, if ultracold atoms or molecules are used as probe

particles of such models, the inter-site interactions are usually very weak. There-

fore, the measurements of the phase diagrams require extremely low temperatures

and extremely long coherence times, which are often difficult to achieve in cur-

rent experiments. A more promising approach is to trap ultracold molecules in

an optical lattice in a Mott insulator phase (with one molecule per site) and use

rotational excitations of trapped molecules as probe particles of lattice models

[73, 84, 86, 110, 121, 128, 138, 198, 201]. Such excitations can be transferred

between molecules in different sites due to dipole - dipole interactions. The dy-

namics of the excitations as well as their interactions can be controlled by external

dc electric and/or microwave fields, leading to lattice models with tunable parame-

ters. Experiments using excitations as probe particles of lattice models can tolerate

much higher temperatures of atomic or molecular motion. However, it is currently

not possible to create an optical lattice filled uniformly with molecules. On the

other hand, ultracold atoms can be trapped in optical lattices with nearly uniform

filling [74, 195]. Thus, it would be desirable to engineer extended Hubbard models

with internal excitations of atoms (instead of molecules) trapped in a Mott insulator

phase.

A series of experiments have recently demonstrated the cooling of highly mag-

netic Cr [75], Dy [119, 120], and Er [5, 65] atoms to quantum degeneracy. Such

atoms interact via long-range magnetic dipole interactions and one can envision en-
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gineering the same lattice models with magnetic atoms as with ultracold molecules.

However, the internal level structure of magnetic atoms is more complex than the

rotational structure of molecules and the nature of magnetic dipole interactions is

different from that of electric dipole interactions. Motivated by the experiments on

magnetic atoms and the work with ultracold molecules, we explore here the possi-

bility of engineering extended Hubbard models with internal Zeeman excitations of

ultracold magnetic atoms, such as Dy, trapped in a Mott insulator phase. Exploit-

ing the unique nature of magnetic dipole interactions, we show that, for Zeeman

excitations, the ratio of the hopping amplitude and inter-site interaction energy in

the resulting lattice models can be tuned in a wide range by transferring the atoms

to different Zeeman states. We discuss the advantages of using Zeeman excitations

of magnetic atoms over rotational excitations of ultracold molecules. In particular,

we show that the hopping of the Zeeman excitations in the lattice is insensitive to

the magnitude of the magnetic field, which makes the coherent dynamics of exci-

tations robust to field fluctuations. We show that Zeeman excitations in a diluted

lattice of Dy atoms undergo Anderson localization over time scales less than one

second and propose the models derived here for the study of the role of interactions

and particle number fluctuations on Anderson localization.

6.2 Lattice Hamiltonian with Zeeman excitations
We consider an ensemble of open-shell atoms with non-zero electron spin (SSS) and

orbital angular momentum (LLL) trapped in an optical lattice in the presence of an

external DC magnetic field. We assume that the atoms fill the lattice uniformly

with one atom per lattice site and that the atoms are not allowed to tunnel between

different lattice sites. Thus, the atoms are separated by a large distance (≥ 260

nm) equal to half the wavelength of the trapping field. At such separations, the

dominant interaction between the atoms in sites i and j is the magnetic dipole -

dipole interaction V̂i j. For simplicity, we assume that the atoms are arranged in a

one-dimensional array along the z-axis of the space-fixed coordinate frame. In this

case,

V̂i j =
α

r3
i j

{
1
2
[
Ĵi,+Ĵ j,−+ Ĵi,−Ĵ j,+

]
−2Ĵi,zĴ j,z

}
. (6.1)
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where Ĵz and Ĵ± are the z-component and the raising/lowering operators of the total

angular momentum JJJ = LLL+ SSS, acting on the space of the eigenstates |JM〉 of JJJ2

and Ĵz, and α is the fine structure constant. Equation 6.1 is derived in Appendix C.

The full Hamiltonian of the many-atom system is

Ĥ = ∑
i
{ALLLi ·SSSi +µB(LLLi +2SSSi) ·BBB}+

1
2 ∑

i
∑
j 6=i

V̂i j (6.2)

where A is the constant of the spin-orbit interaction, µB is the Bohr magneton and

BBB is the vector of an external magnetic field.

We assume that all atoms are initially prepared in the Zeeman state |g〉 and a

small number of atoms is then transferred to another Zeeman state |e〉. Note that

the state |e〉 can be lower or higher in energy than the state |g〉. Following the

approach described in Refs. [2] (see also [196]), we derive the second-quantized

Hamiltonian describing the Zeeman transitions in this system:

Ĥex = vg +∑
i

∑
e′

{
εe′− εg +∑

j 6=i

[
〈e′i|〈g j|V̂i j|e′i〉|g j〉−〈gi|〈g j|V̂i j|gi〉|g j〉

]}
ĉ†

i,e′ ĉi,e′(6.3)

+ ∑
i, j 6=i

∑
e′,e′′
〈gi|〈e′j|V̂i j|e′′i 〉|g j〉ĉ†

i,e′′ ĉ j,e′+ ∑
i, j 6=i

∑
e′,e′′

(
1−δe′,e′′

)
〈e′i|〈g j|V̂i j|e′′i 〉|g j〉ĉ†

i,e′ ĉi,e′′(6.4)

+
1
2 ∑

i, j 6=i
∑

e′,e′′
∑
f ′, f ′′

[
δe′,e′′δ f ′, f ′′〈gi|〈g j|V̂i j|gi〉|g j〉+ 〈e′i|〈 f ′j|V̂i j|e′′i 〉| f ′′j 〉

−2δ f ′, f ′′〈e′i|〈g j|V̂i j|e′′i 〉|g j〉
]

ĉ†
i,e′ ĉi,e′′ ĉ

†
j, f ′ ĉ j, f ′′(6.5)

+ ∑
i, j 6=i

∑
e′

[
〈gi|〈g j|V̂i j|gi〉|e′j〉ĉ j,e′+ 〈gi|〈e′j|V̂i j|gi〉|g j〉ĉ†

j,e′

]
(6.6)

+
1
2 ∑

i, j 6=i
∑

e′,e′′

[
〈gi|〈g j|V̂i j|e′i〉|e′′j 〉ĉi,e′ ĉ j,e′′+ 〈e′i|〈e′′j |V̂i j|gi〉|g j〉ĉ†

i,e′ ĉ
†
j,e′′

]
(6.7)

+
1
2 ∑

i, j 6=i
∑

e′,e′′, f ′

[
〈e′i|〈g j|V̂i j|e′′i 〉| f ′j〉−δe′,e′′〈gi|〈g j|V̂i j|gi〉| f ′j〉

]
ĉ†

i,e′ ĉi,e′′ ĉ j, f ′(6.8)

+
1
2 ∑

i, j 6=i
∑

e′,e′′, f ′

[
〈e′i|〈 f ′j|V̂i j|e′′i 〉|g j〉−δe′,e′′〈gi|〈 f ′j|V̂i j|gi〉|g j〉

]
ĉ†

i,e′ ĉi,e′′ ĉ
†
j, f ′(6.9)
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where

vg = Nεg +
1
2 ∑

i
∑
j 6=i

V gg
i j , (6.10)

N is the number of atoms, εg and εe′ are the energies of the atomic states |g〉 and

|e′〉, and

V gg
i j = 〈gi|〈g j|V̂i j|gi〉|g j〉. (6.11)

Here, we assume that the Zeeman states e′,e′′, f ′, f ′′ 6= g and use the operators ĉ†
i,e′

and ĉi,e′ defined by ĉ†
i,e′ |g j〉= δi j|e′j〉 and ĉi,e′ |e′j〉= δi j|g j〉. For the purposes of this

work, it is convenient to rewrite this complex Hamiltonian as

Ĥex = vg +∑
i
(∆εeg +di)ĉ

†
i ĉi +∑

i
∑
j 6=i

ti jĉ
†
j ĉi + (6.12)

1
2 ∑

i
∑
j 6=i

vi jc
†
i cic

†
jc j + (6.13)

1
2 ∑

i
∑
j 6=i

ti j

(
ĉ†

i ĉ†
j + ĉiĉ j

)
+∑

i
∑
j 6=i

si j

(
ĉ†

i + ĉi

)
+∑

i
∑
j 6=i

pi j

(
ĉ†

i + ĉi

)
ĉ†

j ĉ j (6.14)

+H (e′ 6= e,g) (6.15)

where the operators ĉ†
i and ĉi are defined by ĉ†

i |g j〉 = δi j|e j〉 and ĉi|e j〉 = δi j|g j〉,
∆εeg is the energy separation between the states |e〉 and |g〉, and the parameters of

the Hamiltonian are

di = ∑
j 6=i

di j, (6.16)

di j =
{

V ge
i j −V gg

i j

}
, (6.17)

vi j =V ee
i j +V gg

i j −2V eg
i j , (6.18)
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V eg
i j =V ge

i j = 〈gi|〈e j|V̂i j|gi〉|e j〉 (6.19)

V ee
i j = 〈ei|〈e j|V̂i j|ei〉|e j〉 (6.20)

ti j = 〈gi|〈e j|V̂i j|ei〉|g j〉 (6.21)

si j = 〈ei|〈g j|V̂i j|gi〉|g j〉 (6.22)

and

pi j = 〈ei|〈g j|V̂i j|ei〉|e j〉−〈ei|〈g j|V̂i j|gi〉|g j〉. (6.23)

The terms (6.12), (6.13) and (6.14) are a part of the full Hamiltonian that de-

scribes the Zeeman transitions only within the four-state subspace |a〉|b〉 with both

|a〉 and |b〉 being either |g〉 or |e〉. If the energy gap for the |g〉→ |e〉 transition were

far detuned from all other energy gaps in the Zeeman level spectrum, it would be

sufficient to consider the part of the Hamiltonian given by Eqs. (6.12), (6.13) and

(6.14). It is important to note that for highly magnetic atoms it may be necessary to

consider Zeeman states outside of this subspace. Figure 1a shows that the Zeeman

states of a Dy atom in the ground electronic state form a ladder of nearly equidis-

tant levels at weak magnetic fields. This pattern of energy levels is characteristic of

highly magnetic atoms with zero or negligible hyperfine structure. This pattern of

energy levels allows for transitions to states outside of the subspace spanned by |g〉
or |e〉. For example, two atoms in the |g〉 state may interact to produce two Zeeman

states with energies just above and just below that of |g〉. Such interactions are in-

duced by the matrix elements in Eq. (6.7). The full Hamiltonian must also include

the terms that describe the interactions of two atoms in states e′,e′′ 6= g to produce

atoms in other states f ′, f ′′ 6= g,e. Since the majority of atoms are in a particular

state |g〉, we assume that such interactions are unlikely and neglect them.

Various lattice models can be engineered by controlling the magnitude of the

different matrix elements of the magnetic dipole interaction entering Eqs. (6.3) -

(6.9).
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Figure 6.1: Upper panel: Zeeman levels of a Dy(5I) atom in the lowest-
energy spin-orbit state characterized by J = 8 in a magnetic field
BBB = B0ẑ. Lower panel: the solid curve – difference of the energy
gaps (εM=2− εM=1)− (εM=1 − εM=0); the dot-dashed curve – differ-
ence of the energy gaps (εM=2−εM=1)−(εM=0−εM=−1). The horizon-
tal dashed line shows the magnitude of the matrix element ti,i+1 in Eq.
(6.21) for Dy atoms with |g〉= |J = 8,M = 0〉 and |e〉= |J = 8,M = 1〉
in an optical lattice with a = 266 nm. Figure from reference [184].
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6.3 Engineering lattice models
In this section we show (i) how to simplify the lattice Hamiltonian presented in

Section II by applying magnetic fields; and (ii) how to tune the relative magnitudes

of the parameters of the resulting lattice models by transferring atoms into different

states. We illustrate the tunable range of the parameters by calculating the model

parameters for the specific example of Dy atoms in an optical lattice.

6.3.1 t−V model

Eqs. (6.12) and (6.13) represents a t−V model [37], an extended single band, Hub-

bard model for hard-core bosons [76, 135, 141]. This model can be studied with

the Zeeman excitations if the effect of the terms (6.14) and (6.15) are suppressed.

As we show below, this can be achieved by applying a finite magnetic field and

introducing a small admixture of different M-states into the eigenstates |JM〉.
Eqs. (6.3) - (6.9) and (6.12) – (6.14) can be separated into terms that conserve

the number of excitations (Eqs. 6.3 – 6.5, 6.12 and 6.13) as well as particle number-

non-conserving terms (Eqs. 6.6 – 6.9 and 6.14). If the Zeeman states form a ladder

of equidistant states, the particle number-non-conserving terms can be further sep-

arated into energy-conserving (some terms in Eq. 6.7) and energy-non-conserving

terms (Eqs. 6.6 – 6.9, 6.14). The effect of the energy-non-conserving terms can

be eliminated by applying a finite magnetic field such that the energy difference

between the Zeeman levels is significantly larger than the magnitude of the matrix

elements appearing in Eqs. (6.6) – (6.9) and (6.14).

In order to eliminate the effect of all terms in Eq. (6.15), it is necessary to

make the energy gap for the |g〉 → |e〉 transition unique, i.e. different from the

energy gaps in the Zeeman spectrum just below and just above the states |g〉 and

|e〉. This can be achieved by applying a magnetic field strong enough to shift

the Zeeman levels due to couplings between different total angular momentum

states. As illustrated in the lower panel of Figure 6.1, these couplings introduce

a differential in the energy gaps between different Zeeman states. To illustrate

this, we plot in Figure 6.1 the of the energy gaps between the states correlating

with the states |J = 8,M = −1〉 and |J = 8,M = 0〉; states |J = 8,M = 0〉 and

|J = 8,M =+1〉 and states |J = 8,M =+1〉 and |J = 8,M =+2〉, as functions of
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B0. As Figure 6.1 shows, the magnetic field with B0 ≈ 200− 300 G produces the

differential of the energy gaps equal to the matrix elements ti,i+1 for Dy atoms on

an optical lattice with a = 266 nm. At fields with B0 > 300 G, the difference in the

energy gaps becomes much larger than any of the matrix elements in Eq. (6.15) so

the Hamiltonian (6.12) – (6.15) reduces to the t−V model.

The parameters of the t −V model can be tuned by transferring atoms into

different Zeeman states. If the |g〉 and |e〉 states are the Zeeman states |g〉= |JM〉
and |e〉= |JM′〉, the matrix elements (6.11) and (6.21) of the operator (6.1) can be

written as follows:

di j =V ge
i j −V gg

i j =
2α

r3
i j

(
M2−M′M

)
(6.24)

and

ti j =
α

2r3
i j

[
ai
+b j
−δ

i
M′,M+1δ

j
M′,M−1 +ai

−b j
+δ

i
M′,M−1δ

j
M′,M+1

]
, (6.25)

with

ai
± = [J(J+1)−M(M±1)]1/2 (6.26)

b j
± =

[
J(J+1)−M′(M′±1)

]1/2 (6.27)

The interaction between the Zeeman excitations (6.18) can be written as

vi j =−
[
(V eg

i j −V gg
i j )+(V eg

i j −V ee
i j )
]
=−2α

r3
i j

(
M−M′

)2 (6.28)

These equations show that the diagonal matrix elements V gg
i j and V eg

i j , and hence

di j and vi j are non-zero, provided both M 6= 0 and M′ 6= 0. This is different from

the case of the electric dipole - dipole interaction between molecules [85]. The

electric dipole interaction must couple states of the opposite parity. Therefore, if

|g〉 and |e〉 are the eigenstates of a molecular Hamiltonian in the absence of electric

fields, the matrix elements di j and vi j of the electric dipole - dipole interaction

vanish. These interactions can be induced in an ensemble of polar molecules by
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applying an external electric field that mixes the rotational states with different

parity [85, 197]

In contrast, the matrix elements of the magnetic dipole - dipole interaction

(6.24) and (6.25) should not be expected to vary significantly with an external

magnetic field. This will be illustrated and discussed in the following section,

using the example of Dy atoms on an optical lattice. As follows from Eqs. (6.24)

and (6.25), the relative weights of the two couplings can be tuned by choosing

different Zeeman states |JM〉 as the |g〉 and |e〉 states. Notice, for example, that

for the particular case of |g〉 being the state |J,M = 0〉, the magnitudes of di j, and

consequently di, vanish.

6.3.2 t−V model with Dy atoms

We illustrate the range of controllability of the parameters of the t −V models

using an example of Dy atoms in an optical lattice. The absolute magnitudes of

di j, ti j and vi j increase with J as the square of the magnetic moment. The ground

electronic state of Dy is characterized by the total angular momentum J = 8 so

Dy atoms have a large magnetic moment (10 Bohr magnetons) and a manifold of

Zeeman states displayed in Figure 6.1. The Zeeman structure of Dy allows for the

possibility of using the state |M = 0〉 as the |g〉 state, leading to the value di j = 0.

If the states for the Zeeman excitations in an ensemble of Dy atoms are chosen

to be well-defined angular momentum states |g〉= |JM〉 and |e〉= |JM′〉, Eq. (6.25)

shows that ti j = 0 unless |M−M′| = 1. Eq. (6.28) shows that the interaction vi j

is ∝ (M−M′)2 so it is independent of M and M′, if |M−M′| = 1. However, the

parameter ti j is sensitive to the magnitudes of M and M′. This is illustrated in

the upper panel of Figure 6.2. The ratio ti j/vi j can thus be tuned by transferring

atoms into the Zeeman states with different M, as illustrated in the lower panel of

Figure 6.2. Notice that the ratio ti j/vi j is always negative, which means that the

interactions between the excitations are always effectively attractive. The largest

magnitude of the ratio ti j/vi j ≈−18 can be achieved when the atoms are prepared

in the Zeeman state with M = 0 and excited to the Zeeman state with M =+1, while

the smallest magnitude of the ratio ti j/vi j ≈ −4 can be achieved by preparing the

atoms in the maximally stretched state |J = 8,M =−8〉 or |J = 8,M =+8〉.
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Figure 6.2: The magnitudes of the coupling constants ti j (upper panel) and
the ratio ti j/vi j (lower panel) with j = i± 1 for the Zeeman states of
Dy corresponding to |g〉 ⇒ |JM〉 and |e〉 ⇒ |JM′〉. The calculations are
for the magnetic field BBB = B0 (0.1x̂+ ẑ) with B0 = 100 G. The Zeeman
states in this magnetic field retain 96% of the eigenstates of JJJ2 and JJJz.
Figure from reference [184].
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As illustrated in Figure 6.3 the absolute magnitude of vi j can be tuned if the

atoms are prepared in coherent superpositions of states with different M. Consider

for example the superpositions |g〉 = α|JM〉+ β |J,M + δ 〉 and |e〉 = α ′|JM′〉+
β ′|J,M′+ δ ′〉. For the parameter ti j to be non-zero, either |M−M′| or |M−M′+

δ − δ ′| must be 1. However, there is no such restriction on the matrix elements

determining the magnitude of vi j. As follows from Eq. (6.28), the magnitude

of vi j is expected to increase with increasing the difference between the angu-

lar momentum projections of the states participating in the excitation. This is

graphically illustrated in Figure 6.3, showing that the magnitude of vi j can reach

600 Hz, if M −M′ = 16. This suggests that the ratio ti j/vi j can be tuned by

preparing the atoms in the coherent superpositions of the following kind: |g〉 =
α|JM〉+ β |J,M + δ 〉 and |e〉 = α ′|JM + 1〉+ β ′|J,M + δ ′〉, Figure 6.4. The pa-

rameters ti j and vi j for these states are both non-zero and the magnitude of vi j can

be modified by varying the value of |δ −δ ′|.
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Figure 6.3: The magnitude of the coupling constant vi j with j = i±1 for the
Zeeman states of Dy corresponding to |g〉⇒ |JM〉 and |e〉⇒ |JM′〉. The
calculations are for the magnetic field BBB = B0 (0.1x̂+ ẑ) with B0 = 100
G. The Zeeman states in this magnetic field retain 96% of the eigenstates
of JJJ2 and JJJz. Figure from reference [184].
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The calculations are for the magnetic field BBB = B0 (0.1x̂+ ẑ) with B0 =
100 G. The Zeeman states in this magnetic field retain 96% of the eigen-
states of JJJ2 and JJJz. Figure from reference [184].

The interaction of atoms with a magnetic field couples states with different to-

tal angular momenta J, which may - in principle - modify the atomic states |g〉
and |e〉, and, consequently, the lattice model parameters. It is important to exam-

ine the effect of an external magnetic field on the lattice model parameters. To

do this we diagonalized the full Hamiltonian of the Dy atom in a magnetic field

BBB = B0 (0.1x̂+ ẑ) and used the eigenstates to evaluate the model parameters in

Eqs. (6.12) – (6.13). Since the states of different J in the Dy atom are separated by

large energy gaps (> 1000 cm−1) due to the spin-orbit interaction, the eigenstates

of Dy in a magnetic field are nearly identical to the angular momentum states |JM〉.
Figure 6.4 shows the nearest-neighbour coupling parameters ti,i+1 and vi,i+1 for a

one-dimensional array of Dy atoms on an optical lattice with the lattice site sepa-

ration a = 266 nm computed for two pairs of Zeeman states at different magnetic

fields. The results shown in Figure 6.5 illustrate that the Hamiltonian parameters
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do not change with the magnetic field in the interval of field strengths between zero

and 5000 G. This is important because it shows that the magnetic field can be used

to separate the Zeeman states in order to create isolated two-level systems or tuned

to the limit of vanishing field where the terms in Eq. (6.14) become important,

without affecting the parameters of excitation interactions.
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Figure 6.5: The magnetic field dependence of the quantities ti,i+1 (squares)
and vi,i+1 (circles) defined in Eqs. (6.24) and (6.25) for two different
pairs of the Zeeman state of Dy(J = 8) atoms: the full symbols – the
results for |g〉 = |J = 8,M = −8〉 and |e〉 = |J = 8,M = −7〉; the open
symbols – the results for |g〉= |J = 8,M = 0〉 and |e〉= |J = 8,M =+1〉.
The magnetic field is given by BBB = B0 (0.1x̂+ ẑ). The Zeeman states in
such a magnetic field retain 96% of the eigenstates of JJJ2 and JJJz. Figure
from reference [184].

6.3.3 Particle number-non-conserving interactions

In the limit of weak magnetic fields, as ∆εeg → 0, the energy separation between

different particle number states of the model (6.12) decreases to the minimum of

di. As follows from Eq. (6.24), this parameter can be eliminated if the ground

state |g〉 is chosen to be |J,M = 0〉. At weak magnetic fields, the particle number-
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non-conserving terms (6.14) as well as the terms in Eq. (6.15) must be included in

the Hamiltonian. Number non-conserving interactions may mediate effective long-

range hopping (for example, a particle can move in a lattice by virtual transitions to

the three-particle subspace and back). As such, these interactions may have non-

trivial effects on the dynamics of quantum walks and localization in disordered

lattices. Such interactions arise in the context of excitons in molecular crystals

[3, 12]. However, they are usually negligibly small and difficult to investigate. As

shown below, number non-conserving interactions can be made significant in the

system considered here.

We first note that if the array of atoms is arranged along the magnetic field

direction, the matrix elements of the operator (6.1) that determine the parameters si j

and pi j in Eq. (6.14) vanish. This simplifies the resulting lattice models to include

only the first of the particle number-non-conserving terms in Eq. (6.14). If desired,

the terms si j and pi j can be tuned to finite values if the magnetic field direction is

changed or the atoms are prepared in coherent superpositions of different M-states.

For example, if |g〉 = |J,M = 0〉 and |e〉 = α|J = 8,M = 0〉+ β |J = 8,M = 1〉,
all of ti j, si j and pi j become non-zero. Here, we assume that the magnetic field is

directed along the atomic array and that si j = 0 and pi j = 0.

Care must be taken when considering the limit ∆εeg→ 0. In this limit, multiple

Zeeman states become degenerate and it may be necessary to consider interband

couplings determined by Eq. (6.15). This may be useful if complicated models,

including multiple excitations of different kind, are desired. Note, however, that if

|g〉 and |e〉 are states with well-defined M and M′, a two-atom state |M〉|M′〉 can

only be coupled to the same state, the state |M′〉|M〉 or a state |M±1〉|M′∓1〉. The

matrix elements of the dipole - dipole interaction 〈M,M′|V̂i j|M±1,M′∓1〉 change

the number and type of excitations in the atomic ensemble. These processes can

be eliminated if the state |g〉 is chosen to be |J,M =±J〉. In this case, the effective

lattice model describing the dynamics of |g〉 → |e〉 excitations is
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Ĥex = vg +∑
i
(∆εeg +di)ĉ

†
i ĉi +∑

i
∑
j 6=i

ti jĉ
†
j ĉi +

1
2 ∑

i
∑
j 6=i

vi jc
†
i cic

†
jc j +

1
2 ∑

i
∑
j 6=i

ti j

(
ĉ†

i ĉ†
j + ĉiĉ j

)
(6.29)

It is important to note that this model is valid as long as ∆εeg (which is deter-

mined by the magnitude of the magnetic field) is significantly larger than ti j. In

this limit, the effect of the number-non-conserving terms is perturbative, i.e. a sin-

gle excitation remains predominantly in the single-particle subspace, undergoing

virtual transitions to the three-particle subspace. If the energy gap ∆εeg is so small

that the interactions (6.29) lead to the creation of multiple particles, other terms in

Eq. (6.7) must be included, making the Hamiltonian more complex.

If the effects of the interactions vi j are to be removed, one can choose the states

|g〉 = |J,M = 0〉 and |e〉 = |J,M = 1〉. In this case, |ti j| � |vi j| (see Figure 4).

However, the lattice model for these excitations is also affected by terms in Eq.

(6.7), which lead to leaking of the |e〉-state populations to other Zeeman states of

higher energy. These terms lead to the spontaneous creation of atoms in Zeeman

states above and below the energy of the state with M = 0, as well as the inverse

process. The Zeeman state populations must eventually return to states e and g, as

the total number of the Zeeman states is finite and small. These terms thus serve as

an additional source of particle number-non-conserving interactions that generate

atoms in state e.

6.3.4 Anderson localization of Zeeman excitations

Until now, we assumed that the atoms populate the optical lattice uniformly. If

the lattice is populated partially (which is more often the case in experiments), the

empty lattice sites serve as impurities that can scatter the Zeeman excitations. Since

the distribution of empty sites is random, the Zeeman excitations thus propagate in

a randomly diluted lattice. Tuning the models as described above suggests an in-

teresting opportunity to explore the role of direct particle interactions and number

non-conserving forces on Anderson localization in disordered lattices [7, 62]. In
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addition, the ability to design optical lattices with various dimensionalities and ge-

ometries can be used to verify the scaling hypothesis of Anderson localization [1]

as well as Anderson localization of particles with long-range hopping in various

geometries [118]. Here, we explore if the parameters of the models based on Zee-

man excitations of Dy are significant enough to allow Anderson localization over

experimentally feasible time- and length-scales.

We consider an isolated Zeeman excitation in a one-dimensional array of 1000

Dy atoms trapped in an optical lattice with a = 266 nm containing 20 % of empty

lattice sites. We use the parameters correpsonding to the |J = 8,M = 0〉 → |J =

8,M =+1〉 excitation and compute the dynamics of quantum walk for the Zeeman

excitation placed at t = 0 on a single atom in the middle of the lattice. The wave

packet of the excitations is propagated by computing the time-evolution operator,

as described in detail in Ref. [200]. The results of each dynamical propagation

are averaged over 100 disorder realizations (random distributions of empty lattice

sites).

The results shown in Figure 6.6 illustrate that the Zeeman excitation forms

an exponentially localized spatial distribution within one second. The width of

the distribution characterized as the length L containing 90 % of the excitation

probability exhibits a short-time oscillation which is likely an effect of coherent

back scattering and approaches the value of ∼ 20 lattice sites in the limit of long

time. These results can be directly mapped onto the results describing Anderson

localization for rotational excitations in an ensemble of polar molecules [200] and

the electronic excitations in an ensemble of Rydberg atoms [150].

6.4 Conclusion
In this work, we consider Zeeman excitations in an ensemble of highly magnetic

atoms (such as Dy) trapped in an optical lattice, with one atom per lattice site.

The Zeeman excitations can travel in the lattice due to energy transfer between the

atoms. The most important results of this work can be summarized as follows:

• We show that superpositions of the Zeeman excitations can be used to sim-

ulate the t −V model (the single-band, extended Bose-Hubbard model for

hard-core bosons). The parameters of the model (most importantly, the ra-
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tio of the hopping amplitude and the inter-site interaction energy) can be

tuned by preparing the atoms in different Zeeman states. For an ensemble of

Dy atoms on an optical lattice with a = 266 nm, we show that the inter-site

interaction can be engineered to be as large as 600 Hz.

• We illustrate that the parameters of the model (hopping amplitudes and inter-

site interactions) are insensitive to the magnetic field. This has two signifi-

cant consequences. First, an external magnetic field can be used to uncouple

the electron degrees of freedom from nuclear spins, thereby removing com-

plications associated with the hyperfine structure of atoms and the degenera-

cies of the Zeeman states. Second, an external magnetic field can be used

to separate the Zeeman states, leading to suppression of energy- and particle

number-non-conserving terms.

• We show that the same Hamiltonian can be used to simulate a lattice model

with significant c†
i c†

j terms, leading to particle number interactions. These

interactions mediate effective interactions modifying the hopping of particles

and can be used to produce entangled pairs [88].

• Since the lattice with randomly distributed empty sites leads to a quan-

tum percolation model for the Zeeman excitations, we propose to apply the

models derived here for the study of Anderson localization induced by off-

diagonal disorder. In particular, our results suggest the possibility of study-

ing the role of inter-site interactions and particle number fluctuations on

quantum localization in diluted lattices. We show that for an optical lattice

with a = 266 nm partially populated with Dy atoms, Anderson localization

of excitations placed on individual atoms occurs over timescales less than a

second.
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Figure 6.6: Anderson localization of the |J = 8,M = 0〉 → |J = 8,M = +1〉
excitation in a one-dimensional array of Dy atoms on an optical lattice
with a = 266 nm and 20 % of the lattice sites empty. The upper panel
shows the probability distribution for the atoms in the corresponding site
to be in the excited state at t = 2 seconds formed by a single excitation
placed at t = 0 in the middle of a lattice with 1000 sites. The lower panel
shows the width of the excitation probability distribution as a function
of time. Figure from reference [184].
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Chapter 7

Conclusion

Our intelligence is what makes us human,
and AI is an extension of that quality.

— Yann LeCun

The journey to understand quantum phenomena has been challenging. In the

last decades, knowledge about the quantum world has gained a huge boost both by

building quantum simulators and by the growth in the computational power. For

example, the field of theoretical physics has been able to study larger systems as the

computational power has grown over the years. Furthermore, quantum simulators

have also improved in recent years due to progress in the precision and power of

electronics used in the experiments. This thesis has explored new theoretical and

numerical possibilities to study novel quantum phenomena; for example, using

machine learning algorithms that allow the discovery of new phases of matter or a

possibility to accelerate the transport of quantum particles. This dissertation also

proposed an experimental scheme to study many-body physics.

7.1 Summary of the thesis
The first part of the dissertation illustrated that quantum observables, like the elec-

tronic energy of a molecule or the polaron dispersion energy, can be learned using

supervised learning algorithms. The second part of the thesis introduced a novel

approach to accelerate quantum walks in various graphs and the possibility to sim-
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ulate extended Bose-Hubbard models using magnetic atoms trapped in an optical

lattice.

All the ML algorithms that were introduced in this dissertation are supervised

learning methods, where the only goal is to learn the map from an input to an

output,

yi = F (xi), (7.1)

where xi is the input and yi the output. For example, in the case of PESs xi is the

position of the nuclei and yi is the electronic energy. In the case of the polaron

Hamiltonians, xi is the parameters of the Hamiltonian and yi is the dispersion en-

ergy. Here it was showed that given some training data, F (·) can be approximated

using GP models, where the only assumption made is the analytic form of the ker-

nel function. Chapter 2 compared the accuracy of GP models with another famous

supervised learning algorithm, Neural networks. As it is pointed out in Chapter 2,

when the dimensionality of xi is low, GP models are a more accurate interpolation

algorithm.

As was illustrated in this thesis, the main message of Chapter 3 is the use of

GPmodels as an optimization algorithm. In quantum physics, there are numerous

problems that can be formulated as an optimization problem. The goal for any

optimization algorithm is to find the minimizer of a function,

x∗ = arg min
x

f (x), (7.2)

where the minimum of function f (·) is at x∗. For example, the optimization of

experimental setups to increase the trapping time of an ion in a surface-electrode

trap [21, 166]. A great variety of optimization algorithms are gradient based meth-

ods. However, in quantum physics the function that describes the phenomena is

not analytic and ∇ f (x) can not be evaluated. On the other hand, the ability of GP

models to accurately approximate f (x) given some training data is what makes

them a suitable tool for BO. Also, GP models can compute the uncertainty of the

prediction, something simple NNs can not do. The uncertainty is key in BO since

we can use it to explore the volume space of f (·) to find x∗.
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GPs are a non-parametric supervised method and the choice of the kernel func-

tion is fundamental. For interpolation problems, GP models can predict accurately

using distance-based kernel functions as e−(xi−x j)
2
. Chapter 4 introduced an algo-

rithm that finds more robust kernels by combining simple kernel functions, chal-

lenging the idea that one can quantitatively and qualitatively predict quantum ob-

servables beyond the original observation range. Furthermore, it is demonstrated

that by extrapolating continuous quantum observables, like the polaron dispersion,

one can discover new phases of matter.

The second part of this dissertation presented the possibility to enhance the dif-

fusion of quantum walks and an experimental proposal to simulate Bose-Hubbard

type models. Quantum walks are used in different algorithms due to their ability

to spread faster than a random walk. Major efforts have been devoted to enhanc-

ing the linear time dependence of quantum walks diffusion, O(t). One possibility

is to allow quantum walks to interact with an external environment [130, 148].

However, we decided to tackle the same problem by allowing the quantum walks

to create/annihilate more walks in a graph. The possibility of making the number

of initial particles be a non-conservative quantity made the quantum walk spread

faster than the ballistic expansion at short times, O(tn) where n > 1. We also

showed that in the presence of disorder a quantum walk is less localized if parti-

cle number-changing interactions are considered. These conclusions are important

since the diffusion and localization of quantum walks is key in quantum computing

[47, 89, 171] and quantum transport [49, 140].

The Bose-Hubbard Hamiltonian was proposed to describe the electrons in a

solid state in 1963 [77, 93]. It is practically impossible to computationally sim-

ulate quantum systems with a large number of particles; therefore, the ability to

experimentally study them is key. Chapter 6 presented an experimental proposal to

study Bose-Hubbard type Hamiltonians using magnetic atoms trapped in an optical

lattice. This Illustrates the possibility to tune various Bose-Hubbard type Hamil-

tonians by experimentally preparing magnetic atoms in different Zeeman states.

Additionally, it was explained in Chapter 6, in the limit of low external magnetic

field particle a Bose-Hubbard model with number-changing interactions can be de-

scried.
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7.2 Future work
This section discusses some of the future possible research directions given the

results presented in this dissertation.

ML has recently caught the attention in the fields of theoretical chemistry and

physics. However, in the field of theoretical chemistry, the first paper where a NN

was used to construct PESs was published in 2006 [124]. Furthermore, if one were

to construct the PES of a big polymer using GP models is practically impossible

due to the computational resources needed to invert the covariance matrix. As it

is mentioned, one of the limitations of GPs is the scalability for large dimensional

systems. Nevertheless, there have been new proposals in the ML field to improve

the scalability of GPs models for large dimensional systems [59, 192]. The com-

putational bottleneck for GPs’ prediction is the inversion of the covariance matrix,

which scales as O(N3), where N is the number of training points. In principle, GPs

are dimensionally independent; however, the volume space increases as a function

of the dimensions and so does the training data required to fill the volume. Thus,

the need for robust kernel functions to learn the intrinsic similarity of the data it is

crucial.

Another salient point introduced in this dissertation is the optimization of black-

box type functions. Black-box type functions do not have an analytic form and only

output a value given a specific input. Optimization of black-box type functions is

an active research field in computer science and could also have a great impact in

experimental physics. Chapter 3 explains how BO works to find the minimizer of

black-box functions. The experimental challenges in ultracold physics can benefit

by the use of BO type algorithms to search for better parameters that could in-

crease, for example, the lifetime of quantum particles. In a current collaboration

with Prof. Tobias Schaetz, from the University of Freiburg, we are exploring the

use of BO to increase the trapping time of ions in surface-electrode traps by simu-

lating the lifetime of an ion in a trap with different voltages. The assumption made

here is that there exists a function f (v) that maps a set of voltages, v, applied to the

trap to the trapping time of an ion. Thus, one can use BO to search for v∗ that will

increase the trapping time of an ion.

In the field of chemistry, BO already has had a great impact. Recently, BO was
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introduced in the field of experimental chemistry to improve the yield of chemistry

reactions [82, 152]. Moreover, as explained in Appendix A, BO can optimize

hybrid-exchange functionals for a benchmark of molecules. Most of the hybrid-

exchange functionals are optimized by computing the square error between the

predicted property of a molecule and the accurate one,

L =

√
1
M

M

∑
i=1

(
EDFT − Ê

)2
, (7.3)

where M is the total number of molecular properties, EDFT is the predicted property

using density functional theory (DFT) and Ê is the accurate molecular property.

These types of functions cannot be minimized with gradient descent based meth-

ods since the gradient of a molecular property given different values of exchange-

correlation functional parameters, a0,ax and ac do not exist. However, the er-

ror function L does depend on the values of a0,ax, and ac [105, 151], L =

f (a0,ax,ac). Thus, the minimizer of L is the values of a0,ax, and ac that best

reproduce the molecular properties.

Chapter 4 introduced how GP models are capable of extrapolating continuous

variables if the right kernel function is selected. This has a great implication since

one can study quantum problems where the observables cannot be accessed due to

convergence problems or lack of computational power. For example, it is illustrated

that GP models can extrapolate the Holstein polaron dispersion for low phonon fre-

quencies, where traditional condensed matter methods have a lack of convergence

due to the dimensionality of the Hilbert space. This is not the only possibility, one

can think of extrapolating quantum observables over time 〈Ô(t)〉. For example,

F. Häse et al. [81] used a deepNN to interpolate for different times the excitation

energy transfer properties for different Fenna-Matthews-Olson (FMO) pigment-

protein complex with eight chlorophyll pigments. Along these lines, one could use

GP models with a combination of kernels to extrapolate the same time-dependent

observables and reduce the computational cost, since the time-dependent calcula-

tions for longer time periods are computationally demanding.

The constructing procedure to combine simple kernels proposed by D. K. Du-

venaud et al. in Ref. [60] is based on the maximization of the BIC. The BIC
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allows the comparison of different kernel combinations without the need for test

data, which makes it a powerful tool to extrapolate quantum observables. BIC is

unbiased to models with a large number of parameters since it also penalizes ker-

nels with a larger number of parameters to avoid memorization and enhance the

learning. One of the problems with the methodology presented in Chapter 4 is the

lack of criteria to stop the search for the optimal kernel combination. In theory,

one can run the algorithm and create complex kernel forms with a large number of

parameters but this does not guarantee a better extrapolation prediction. An inter-

esting research direction is to understand why BIC prefers certain types of kernel

combinations. This will allow the use of GPs to extrapolate quantum observables

with a more physical intuition.

As Jeff Hawkins said: The key to artificial intelligence has always been the

representation. The most remarkable point of this dissertation is the possibility for

scientists to break free from the old mathematical analytics and study more com-

plex or new problems, whose representation can be better captured and described

with machine learning algorithms.
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Appendix A

Bayesian optimization for
hybrid-density functionals

Electronic structure methods developed by quantum chemists are designed to eval-

uate the ground state energy, EGS, of a given ensemble of electrons and fixed posi-

tion nuclei,

EGS
[
V̂ ,N

]
= min

Ψ→N

[
〈Ψ| Ĥ |Ψ〉

]
, (A.1)

where N is the number of electrons, V̂ is the potential energy that electrons feel by

the fixed position nuclei and Ψ is the N−electrons wave function. The Hamilto-

nian, Ĥ, describe the total energy Ĥ = T̂ +Û +V̂ , where first and second terms are

the kinetic energy operator and electron-electron interaction potential. The min-

imization of EGS is still an active research problem due to the complexity of the

problem.

In 1964 a new methodology, known as Density functional theory (DFT), was

introduced to evaluate Equation A.1 [90]. DFT assumes that for N−electrons pro-

duced by V̂ there is a single electronic density, n(r), [107]. Given V̂ and n(r) one

can compute EGS as,

EGS
[
V̂ ,N

]
= min

n→N

[
F [n(r)]+

∫
n(r)v(r)dr3

]
, (A.2)
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where F [n(r)] is the universal functional and the second term is the nuclear at-

traction potential energy function for a electron density n(r) given fixed position

nuclei, also denoted as VNe[n(r)]. More condensed notation can be used to rewrite

EGS
[
V̂ ,N

]
,

EGS
[
V̂ ,N

]
= F [n(r)]+VNe[n(r)] = T [n(r)]+Vee[n(r)]+VNe[n(r)], (A.3)

where T [·] is the kinetic energy functional and Vee[·] is the electron-electron

interaction functional. The form of F [n(r)] is still unknown and is still an open

research problem; recently F [·] was constructed using ML [26]. The functional

Vee[·] plays a key role in DFT since it described the electron-electron interaction,

also denoted as EXC[n(r)]. Over the last decades, DFT researchers have proposed

more accurate descriptors of EXC[n(r)]; one of the most successful ones is,

EXC = a0 EHF
X +a1 EPBE

X +a2 EPBE
C , (A.4)

where EHF
X is the Hartree-Fock exact exchange functional, EPBE

X is the PBE ex-

change functional and EPBE
C is the PBE correlation functional. This type of func-

tionals are known as hybrid exchange-correlation functionals, the trade off between

the three terms in hybrid EXC is described by the ai constants. ā denotes collec-

tively the parameters of EXC It is out of the scope of this dissertation to give a more

complete explanation about DFT.

From Equations A.3 and A.4, one can observe that the accuracy in DFT’s pre-

diction directly depend on the values of ā. In most of the cases, the values of ā are

set by minimizing an error-type function, where EGS is compared with an accurate

value, ÊGS, for a given set of molecules or atoms.

For illustrative purposes, this chapter shows that DFT parameters can be tuned

using BO. A similar type of exchange-correlation functional is considered here,

range-separated exchange functionals where Vee is segmented in short and long-
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range interactions [6, 10, 95, 114, 163],

Vee ∝
1

ri, j
= SR+LR =

ω(γ,ri, j)

ri, j
+

1−ω(γ,ri, j)

ri, j
(A.5)

where ri, j is the distance between two electrons, ω is a function that depends on ri, j

and a parameter, denoted by γ . The idea behind the ω function is to switch from

short-range (SR) to long-range (LR) interactions to achieve a better description.

Given an analytical form for ω , the only free parameter in EXC is γ . In the case of

range-separated exchange functionals, γ is tuned by minimizing the a loss function,

L (γ|M ) =
|M |
∑

i

∣∣εHOMO
i (γ)+ IPi

∣∣ (A.6)

where the summation is over different molecules, εHOMO
i (γ) is the energy of the

highest occupied molecular orbital (HOMO) for molecule i computed with a given

value of γ and IPi is the ionization potential of molecule i. |M | is the total number

of molecules or atoms considered. Equation A.6 is an optimization problem under

the eyes of ML,

γ∗ = arg min
γ

L (γ|M ), (A.7)

where γ∗ is the minimizer of L that best describes the IP of each Mi. Equation A.6

cannot be minimized using gradient descent methods; however, as we explained in

Chapter 3, low dimensional black-box type functions can be optimized using BO.

The example considered here is the optimization of γ for hydrogen molecule which

IP is 16.2 eV. The value of the optimal γ̂ is 1.2 for an LCY −PBE functional. For

illustrative purposes a UCB acquisition function was used, Equation 3.9, to find

the minimizer of L for the hydrogen molecule. Figure A.1 illustrates the first

fourth iterations of BO. The first two points were sampled randomly and at the

fifth iteration γ = 1.24.
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Figure A.1: The iterations of BO to find the minimizer of L for the H2
molecule. The black vertical line is the next proposed point by BO.
The blue markers are the training data used to construct the acquisition
function. The blue-solid curve is the mean of the GP model and the
grey shaded area is σ(·).
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Appendix B

Schrieffer–Wolff transformation

Here, we show that the particle-changing interactions in Eq. (5.2), if perturbative,

modify the range of particle hopping. In particular, we show that, to leading order,

the couplings (5.2) lead to next-nearest-neighbour hopping.

It is clear that the Hamiltonian (5.1) is not block diagonal in the site repre-

sentation basis due to couplings in Eq. (5.2). Using the Schrieffer–Wolff (SW)

transformation, it is possible to block diagonalize this Hamiltonian. We follow the

notation in Ref. [193]. The total Hamiltonian is defined as Ĥ = Ĥ0 +Ĥ ′, where

Ĥ0 contains all the operators that commute with the particle number operator, and

Ĥ ′ = V̂nc. The SW transformation assumes that the transformed Hamiltonian

H̃ = e−SĤ eS (B.1)

can be written as

H̃ = H(0)+H(1)+H(2)+ · · · , (B.2)

with the different terms defined by the following matrix elements:

H(0)
mm′ = H0

mm′ (B.3)

H(1)
mm′ = H ′mm′ (B.4)

H(2)
mm′ =

1
2 ∑

`

[
1

Em−E`
+

1
E ′m−E`

]
H ′m`H

′
`m′ . (B.5)
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Here, the indices m and m′ refer to any one-particle state, while ` is an index of a

three-particle state. H0 is the Hamiltonian (5.1) with V̂nc = 0. All matrix elements

of H(1) are zero: H(1)
mm′ = 0. The first correction to H̃ appears in H(2) whose matrix

elements depend on V̂nc. Here we only consider the case of a 1D lattice with γ = 0,

∆ 6= 0, and nearest-neighbour interactions. The matrix elements H(2)
mm′ depend on

the matrix elements of the ∆–dependent term in V̂nc,

H ′m` = 〈m|∆∑
i
(ĉ†

i ĉ†
i±1 + ĉiĉ±1)|abc〉= ∆∑

i
〈m|ĉiĉi±1|abc〉

= ∆ [δm,c (δb±1,a +δa±1,b)+δm,b (δc±1,a +δa±1,c)

+δm,a (δc±1,b +δb±1,c)] (B.6)

where a, b and c are the lattice indices of the three particles. In the case of an ideal

system, Eq. (B.5) can be rewritten as,

H(2)
mm′ = − 1

2∆ε
∑
`

H ′m`H
′
`m′ (B.7)

where the summation ∑` is over all possible combinations of lattice indices for

three particles. Inserting Eq. (B.6) into Eq. (B.5) for both H ′m` and H ′`m′ we obtain,

H(2)
mm′ = − 1

2∆ε
∑
`

∆
2 [δm,c (δb±1,a +δa±1,b)+δm,b (δc±1,a +δa±1,c)

+δm,a (δc±1,b +δb±1,c)]×
[
δc,m′ (δa,b±1 +δb,a±1)

+δb,m′ (δa,c±1 +δc,a±1)+δa,m′ (δb,c±1 +δc,b±1)
]

(B.8)

The diagonal elements of H(2) are

H(2)
mm =−∆2

∆ε
m∗, (B.9)

where m∗ is the total number of nearest-neighbour lattice sites without considering
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the site m. The value of m∗ can be computed as,

m∗ =
m−1

∑
i=0

m−1

∑
j=i+1

δi, j±1 +
N

∑
i=m+1

N

∑
j=i+1

δi, j±1, (B.10)

where the first summation is over all pairs of lattice site interactions for i < m, and

the second summation is for i > m. For example, when m is any of a 1D lattice site

edges, m∗ = N− 2, where N is the total number of lattice sites. In the case when

m 6= m′,

H(2)
mm′ =−

3∆2

2∆ε

[
δm,m′±2 +δm±2,m′

]
, (B.11)

which leads to next-nearest-neighbour hopping with t ′ = − 3∆2

2∆ε
. Combining Eqs.

(B.9) and (B.11) we see that the SW transformation, to first order, leads to the

following one-particle Hamiltonian:

H̃ = ∑
i

ω
′
i ĉ

†
i ĉi +∑

i
t
(

ĉ†
i±1ĉi

)
+ t ′

(
ĉ†

i±2ĉi

)
, (B.12)

where ω ′i = ∆ε− ∆2

∆ε
m∗ and t ′ =− 3∆2

2∆ε
.
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Appendix C

Magnetic dipole–dipole
interaction

The potential energy between two dipoles d1 and d2 is

V̂dd =
Cd

4π

d1 ·d2−3(d1 · r)(d2 · r)
r3

12
, (C.1)

where di is any of the dipoles, and r is a unit vector in the direction of r12. r12 is

the distance between the two dipoles. As it is described in Chapter 6, the magnetic

dipole-dipole interaction between two atoms can be used to tune various Hubbard

models. Here we derive the matrix elements relation to compute of the magnetic

dipole-dipole interaction between atoms with different Zeeman states.

In spherical tensor algebra, the dot product is defined as [203]

a ·b = −
√

3
[
a(1)⊗b(1)

](0)
0

= −
√

3 [−a+b−+a0b0−a−b+] , (C.2)

where
[
a(1)⊗b(1)

](0)
0 is the tensor product between vectors a and b, and a± =

∓ 1√
2
(ax± iay) and a0 = az. A more general expression of a tensor product is,

[
T (1)⊗T (1)

](k)
q

= ∑
m
〈1m,1q−m|kq〉T (1,m)T (1,q−m), (C.3)
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where 〈1m,1q−m|kq〉 are the Clebsch-Gordan (CG) coefficients, and T (k,q) are

spherical tensors of rank k. Any vector is a first rank spherical tensor, T (1), where

k = 1. Equations C.2 and C.3 are identical when k = 0 and q = 0, and we can

deduce the value of the CG coefficients.

The second term of V̂dd , Equation C.1, can be rewritten using the following

identity,

(a ·b)(c ·d) = 3
[[

a(1)⊗b(1)
](0)

0
⊗
[
c(1)⊗d(1)

](0)
0

](0)
0

=
1
3
(a · c)(b ·d)+ 1

2
(a×b)(c×d)

+
2

∑
q=−2

(−1)2−q
[
a(1)⊗ c(1)

](2)
q

[
b(1)⊗d(1)

](2)
q

. (C.4)

Combining Equations C.3 and C.4 we can rewrite V̂dd as,

V̂dd =
Cd

4π

2

∑
p=−2

(−1)2−q
[
r(1)⊗ r(1)

](2)
p

[
d(1)

1 ⊗d(1)
2

](2)
−p

, (C.5)

where the first term
[
r(1)⊗ r(1)

](2)
p is a second rank spherical tensor, T (2)(r), and

the second term is the tensor product between the two dipoles.

Let us describe the term
[
r(1)⊗ r(1)

](2)
p when p = 0 and using Equation C.3 we

find that,[
r(1)⊗ r(1)

](2)
0

= ∑
p1,p2

〈1 p1,1 p2|20〉T 1
p1(r)

1
p2(r) (C.6)

= 〈1 1,1 −1|20〉T 1
1 (r)

1
−1(r)

+〈1 −1,1 1|20〉T 1
−1(r)

1
1(r)+ 〈1 0,1 0|20〉T 1

0 (r)
1
0(r)

=− 1√
6

(
x2 + y2)+√2

3
z2, (C.7)

where we use T 1
±1 = a±1 and T 1

0 = a0, previously defined. We observe that Equa-

tion C.7 is proportional to the spherical harmonic Y 2
0 =

√
15

16π

2z2−x2−y2

r2 . Multiply-

ing Equation C.7 by
√

6 we found that
[
r(1)⊗ r(1)

](2)
0 is the C2

0 modified spherical
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harmonic,

[
r(1)⊗ r(1)

](2)
0

=−
√

6T 2
p (C) =−

√
6

r3 C2
p(θ ,φ), (C.8)

where Ck
q =

√
4π

2k+1Y k
q . Here we list some of the the spherical harmonics for k = 2,

m Y 2
m C2

m

0 (5/16π)1/2(3cos2θ −1) 1
2(3cos2θ −1)

±1 ∓(15/8π)1/2cosθsinθe±iφ ∓(3/2)1/2cosθsinθe±iφ

±2 (15/32π)1/2sin2θe±2iφ (3/8)1/2sin2θe±2iφ

Using Equations C.5 and C.8, V̂dd is

V̂dd = −
√

6
Cd

4π

2

∑
p=−2

(−1)2−pT 2
p (C)T 2

−p(d1,d2)

= −
√

6
Cd

4π

2

∑
p=−2

(−1)2−pC2
p(θ ,φ)

r3 ∑
p1,p2

〈1 p1,1 p2|2− p〉T 1
p1
(d1)T 1

p2
(d2) (C.9)

which fully expanded is,

V̂dd = − Cd

4πr3

{√
6

2
(3cos2

θ −1)
(
〈1 1,1 −1|2 0〉T 1

1 (d1)T 1
−1(d2)+ 〈1 −1,1 1|2 0〉T 1

−1(d1)T 1
1 (d2)

+〈1 0,1 0|2 0〉T 1
0 (d1)T 1

0 (d2)

)}
p=0

− Cd

4πr3

{√
6(3/2)1/2cosθsinθe±iφ

(
〈1 −1,1 0|2 −1〉T 1

−1(d1)T 1
0 (d2)

+〈1 0,1 −1|2 −1〉T 1
0 (d1)T 1

−1(d2)

)}
p=1

+
Cd

4πr3

{√
6(3/2)1/2cosθsinθe±iφ

(
〈1 1,1 0|2 1〉T 1

1 (d1)T 1
0 (d2)

+〈1 0,1 1|2 1〉T 1
0 (d1)T 1

1 (d2)

)}
p=−1

− Cd

4πr3

{√
6(3/8)1/2sin2

θe±2iφ
(
〈1 −1,1 −1|2 −2〉T 1

−1(d1)T 1
−1(d2)

)}
p=2

− Cd

4πr3

{√
6(3/8)1/2sin2

θe±2iφ
(
〈1 1,1 1|2 2〉T 1

1 (d1)T 1
1 (d2)

)}
p=−2

, (C.10)
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when θ = 90◦, all the terms except when p = 0 vanish leading to a z−axis parallel

to the internuclear vector that connects both dipoles. Under this assumption, the

dipole-dipole equation is,

V̂dd = − Cd

4πr3

{
2
√

6
(
〈1 1,1 −1|2 0〉T 1

1 (d1)T 1
−1(d2)+ 〈1 −1,1 1|2 0〉T 1

−1(d1)T 1
1 (d2)

+〈1 0,1 0|2 0〉T 1
0 (d1)T 1

0 (d2)

)}
= − Cd

4πr3

{
2
√

6

(√
2
3

T 1
0 (d1)T 1

0 (d2)+

√
1
6

T 1
−1(d1)T 1

1 (d2)+

√
1
6

T 1
1 (d1)T 1

−1(d2)

)}

= − Cd

4πr3

{
2T 1

0 (d1)T 1
0 (d2)+T 1

−1(d1)T 1
1 (d2)+T 1

1 (d1)T 1
−1(d2)

}
. (C.11)

C.0.1 Matrix element

The total magnetic dipole operator looks like dJ = µ0gLL+ µ0gSS where µ0gLL
is the magnetic dipole moment from the electron orbital angular momentum and

µ0gsS is the magnetic dipole moment from the electron spin angular momentum.

Here we describe how to compute the matrix elements of V̂dd for two magnetic

dipoles in the total angular momentum basis set, |ψi〉= |ηi;JiMi〉, where, the total

angular momentum is J = L+S. η denotes any further quantum number required

to characterize the state,

〈
ψ
′
i

∣∣〈ψ ′j ∣∣ V̂dd
∣∣ψi
〉∣∣ψ j

〉
=

〈
η
′
i ;J′i M

′
i

∣∣〈η ′j;J′jM
′
j

∣∣ V̂dd
∣∣ηi;JiMi

〉∣∣η j;J jM j
〉

= − Cd

4πr3

{
〈η ′i ;J′i M

′
i |〈η ′j;J′jM

′
j| T 1

1 (d1)T 1
−1(d2) |ηi;JiMi〉|η j;J jM j〉

+〈η ′i ;J′i M
′
i |〈η ′j;J′jM

′
j| T 1
−1(d1)T 1

1 (d2) |ηi;JiMi〉η j;J jM j〉
}

−2
Cd

4πr3 〈η
′
i ;J′i M

′
i |〈η ′j;J′jM

′
j| T 1

0 (d1)T 1
0 (d2) |ηi;JiMi〉|η j;J jM j〉

(C.12)
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The computation of 〈ψ ′i |〈ψ ′j| V̂dd |ψi〉|ψ j〉 only depends on the values of
〈
J′i M

′
i

∣∣T 1
p1
(d)
∣∣JiMi

〉
because,

〈
η
′
i ;J′i M

′
i

∣∣〈η ′j;J′jM
′
j

∣∣ T 1
0 (d1)T 1

0 (d2)
∣∣ηi;JiMi

〉∣∣η j;J jM j
〉
=
〈
η
′
i ;J′i M

′
i

∣∣T 1
0 (d1)

∣∣ηi;JiMi
〉

×
〈
η
′
j;J′jM

′
j

∣∣T 1
0 (d2)

∣∣η j;J jM j
〉

(C.13)

where 〈η ′j;J′jM
′
j|T 1

0 (d2)|η j;J jM j〉 can be computed using the Wigner-Eckart theo-

rem [203],

〈
η
′;J′ M′

∣∣T k
p (A)

∣∣η ;J M
〉
= (−1)J′−M′

(
J′ k J

−M′ p M

)〈
η
′;J′
∥∥T k(A)

∥∥η ;J
〉

(C.14)

In the case of magnetic dipoles, T k(di) has no physical dependence on the

quantum number η , and the reduced density matrix
〈
η ′;J′

∥∥T k(A)
∥∥η ;J

〉
is equal

to δη ′,ηδJ′,J [J(J+1)(2J+1)]1/2. The matrix dipole element is,

〈J′ M′|T 1
p1
(d)|J M〉 = (−1)J′−M′

(
J′ 1 J

−M′ p1 M

)
〈J′‖T k(d)‖J〉

= (−1)J′−M′
(

J′ 1 J

−M′ p1 M

)
[J(J+1)(2J+1)]1/2

δJ′,J

= (−1)−(M
′+M+1)

δJ′,J(2J+1)−1/2〈J′ −M′;1 p1|J −M〉 [J(J+1)(2J+1)]1/2

(C.15)

from the above equation, we can deduce the first selection rule, the magnetic
dipole-dipole interaction only couples states with the same J. To derive the

rest of the selection rules we first present the value of the 3 j symbols of the CG

coefficients, (
J 1 J

−M 0 M

)
= (−1)J−M M

[J(J+1)(2J+1)]1/2 . (C.16)

Using the above equation we can fully compute 〈J′ M′|T 1
p (d)|J M〉 = (−1)J′−M′ .
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The first case we consider is for p = 0,

〈
η
′
i ;J′i M

′
i

∣∣T 1
0 (d1)

∣∣ηi;JiMi
〉

= (−1)J′i−M′i

(
J′i 1 Ji

−M′i 0 Mi

)〈
Ji
∥∥T 1(d1)

∥∥Ji
〉

δη ′i ,ηi

= (−1)Ji−M′i

(
Ji 1 Ji

−Mi 0 Mi

)
[Ji(Ji +1)(2Ji +1)]1/2

= (−1)2J′i−2M′i
M

[Ji(Ji +1)(2Ji +1)]1/2 [Ji(Ji +1)(2Ji +1)]1/2

= Mδη ′i ,ηi (C.17)

therefore,

〈η ′i ;J′i M
′
i |〈η ′j;J′jM

′
j| T 1

0 (d1)T 1
0 (d2) |ηi;JiMi〉|η j;J jM j〉= Mi×M jδη ′i ,ηiδη ′j,η j (C.18)

The other two terms left in equation C.12 have the same form,

〈η ′i ;J′i M
′
i |〈η ′j;J′jM

′
j| T 1
±1(d1)T 1

∓1(d2) |ηi;JiMi〉|η j;J jM j〉= 〈η ′i ;J′i M
′
i |T 1
±1(d1)|ηi;JiMi〉

×〈η ′j;J′jM
′
j|T 1
∓1(d2)|η j;J jM j〉

(C.19)

and its value depends on the 3j symbol when j2 = 1 and m2 =±1,(
J 1 J

−M∓1 ±1 M

)
= ±(−1)J−M

[
(J∓M)(J±M+1)
2J(J+1)(2J+1)

]1/2

= ±(−1)J−M
[

J(J+1)−M(M±1)
2J(J+1)(2J+1)

]1/2

(C.20)

Inserting Equation C.20 into any of the rand-hand side terms in Equation C.19
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we obtain,

〈
η
′
i ;J′i M

′
i

∣∣T 1
±1(d1)

∣∣ηi;JiMi
〉

= (−1)J′i−M′i

(
J′i 1 Ji

−M′i ±1 Mi

)〈
Ji
∥∥T 1(d1)

∥∥Ji
〉

δη ′i ,ηi

= (−1)Ji−M′i

(
Ji 1 Ji

−M′i ±1 Mi

)
[Ji(Ji +1)(2Ji +1)]1/2

= ±(−1)Ji−Mi+1(−1)Ji−Mi

[
Ji(Ji +1)−Mi(Mi±1)

2Ji(Ji +1)(2Ji +1)

]1/2

[Ji(Ji +1)(2Ji +1)]1/2

= ∓ 1√
2
[Ji(Ji +1)−Mi(Mi±1)]1/2

δM′i ,Mi±1 (C.21)

〈η ′i ;J′i M
′
i |〈η ′j;J′jM

′
j| T 1

1 (d1)T 1
−1(d2) |ηi;JiMi〉|η j;J jM j〉=−

1
2
[Ji(Ji +1)−Mi(Mi±1)]1/2

× [J j(J j +1)−M j(M j∓1)]1/2

(C.22)

where the second selection rule appears, the magnetic dipole-dipole interaction
couples states with |M−M′|= 1.

Inserting Equations C.18 and C.22 into Equation C.12, we obtaine,

〈
V̂dd
〉

= − Cd

4πr3

{
−1

2
[Ji(Ji +1)−Mi(Mi +1)]1/2 [J j(J j +1)−M j(M j−1)]1/2

}
δM′i ,Mi+1δM′jM j−1

− Cd

4πr3

{
−1

2
[Ji(Ji +1)−Mi(Mi−1)]1/2 [J j(J j +1)−M j(M j +1)]1/2

}
δM′i ,Mi−1δM′jM j+1

−2
Cd

4πr3

{
Mi×M j

}
δM′i ,MiδM′jM j (C.23)

Equation C.23 can be rewritten into a more compact form by remembering that

[J(J+1)−M(M±1)]1/2 looks like the eigenvalue of the raising and lowering op-

erator Ĵ±, and M is the eigenvalue of the Ĵzi ,

V̂dd =
Cd

4πr3

{
1
2
[
Ĵi,−Ĵ j,++ Ĵi,+Ĵ j,−

]
−2Ĵi,zĴ j,z

}
(C.24)
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