
A Two-Timescale Approach for Network Slicing in C-RAN

by

He Zhang

B.E., Xi’an Jiaotong University, 2016

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

December 2018

c⃝ He Zhang, 2018



ii

The following individuals certify that they have read, and recommend to the Faculty of

Graduate and Postdoctoral Studies for acceptance, the dissertation entitled:

Profit Maximization for Network Slicing in Cloud Radio Access Networks

submitted by He Zhang in partial fulfillment of the requirements for

the degree of Master of Applied Science

in Electrical and Computer Engineering

Examining Committee:

Vincent W. S. Wong, Electrical and Computer Engineering, UBC, Vancouver

Supervisor

Victor C. M. Leung, Electrical and Computer Engineering, UBC, Vancouver

Supervisory Committee Member

Jane Z. Wang, Electrical and Computer Engineering, UBC, Vancouver

Supervisory Committee Member



iii

Abstract

Network slicing is a promising technique for cloud radio access networks (C-RANs). It

enables multiple tenants (i.e., service providers) to reserve resources from an infrastructure

provider. However, users’ mobility and traffic variation result in resource demand uncertainty

for resource reservation. Meanwhile, the inaccurate channel state information (CSI) estimation

may lead to difficulties in guaranteeing the quality of service (QoS). To this end, we propose

a two-timescale resource management scheme for network slicing in C-RAN, aiming at

maximizing the profit of a tenant, which is the difference between the revenue from its

subscribers and the resource reservation cost. The proposed scheme is under a hierarchical

control architecture which includes long timescale resource reservation for a slice and short

timescale intra-slice resource allocation. To handle traffic variation, we utilize the statistics of

users’ traffic. Moreover, to guarantee the QoS under CSI uncertainty, we apply the uncertainty

set of CSI for resource allocation among users. We formulate the profit maximization as a two-

stage stochastic programming problem. In this problem, long timescale resource reservation for

a slice is performed in the first stage with only the statistical knowledge of users’ traffic. Given

the decision in the first stage, short timescale intra-slice resource allocation is performed in the

second stage, which is adaptive to real-time user arrival and departure. To solve the problem,
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we first transform the stochastic programming problem into a deterministic optimization

problem. We then introduce a maximum interference constraint and transform the QoS

constraint under CSI uncertainty into linear matrix inequalities. We further apply semidefinite

relaxation to transform the problem into a mixed integer nonconvex optimization problem,

which can be solved by combining branch-and-bound and primal-relaxed dual techniques.

Simulation results show that our proposed scheme can well adapt to traffic variation and CSI

uncertainty. It obtains a higher profit when compared with several baseline schemes.
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Lay Summary

Network slicing is a promising technique for the fifth generation (5G) wireless systems. It

allows multiple service providers to run on top of a shared physical network infrastructure.

Meanwhile, cloud radio access network (C-RAN) is a centralized, cloud computing-based

architecture for radio access networks to support various types of traffic demand in 5G wireless

systems. However, implementing network slicing in C-RAN is faced with critical challenges

due to time-varying network conditions and inaccurate knowledge of the conditions. In this

thesis, to tackle the aforementioned challenges, we propose a dynamic resource management

scheme for network slicing in C-RAN. Simulation results show that our proposed scheme can

achieve a better performance when compared with several baseline schemes.
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Chapter 1

Introduction

In this chapter, we first introduce the background of network slicing and cloud radio access

networks (C-RANs). We then introduce the resource management for network slicing,

followed by a discussion on the motivation and contributions of our work. The structure of

the thesis is shown at the end of this chapter.

1.1 Research Background

1.1.1 Overview of Network Slicing

The fifth generation (5G) wireless systems are expected to support diverse types of services

and meet the increasing traffic demands from the end users [1,2]. This scenario leads to higher

network capital and operating expenditures, as well as higher network resource consumption.

To tackle these problems, network slicing is introduced to virtualize the common physical

network into several logical end-to-end networks. Each logical end-to-end network is called

a network slice. As a logical end-to-end network, each slice consists of a part of core

network resources, network functions, and radio access network resources. Each slice can

be dynamically created, modified, and released by the centralized controller located at the
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infrastructure provider. The service provider, which is the owner of each network slice, is

called a tenant. Based on the network slicing paradigm, each tenant, equipped with a local

controller, is capable of managing the network slice according to a specific type of service

and quality of service (QoS) requirements including data rate, latency, reliability, and security.

There are several crucial requirements for network slicing. First, slice orchestration requires

a unified and flexible execution environment to run multiple slices. Second, slice isolation

requires separation of resources and independent slice management without interference from

other slices. Third, optimized topology and resource allocation are needed to achieve service

fulfillment assurance.

The key enablers for network slicing include software-defined networking (SDN) and

network function virtualization (NFV) [3]. The main idea of SDN is to decouple the forwarding

process of data packets in the data plane from the routing process in the control plane, so that

network management can be performed by a logical network controller. In this way, flexibility

is achieved by allowing simple and efficient network configuration. The OpenFlow [4, 5]

standard is one of the first protocols to implement SDN in the core network. For NFV [6], the

main idea is to decouple network functions from the physical network equipment and virtualize

these network functions into building blocks that may be chained together to create a specific

type of communication service.
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1.1.2 Overview of Cloud Radio Access Networks (C-RANs)

C-RAN is a novel mobile network architecture for 5G wireless systems [7]. The main idea

behind C-RAN is to detach the radio signal transceiver module and baseband signal processing

module of conventional base stations (BSs) into two parts. In C-RAN, the baseband signal

processing module is moved from BSs to a cloud server, which is referred to as a baseband unit

(BBU). Multiple BBUs running on a cloud server can form a BBU pool, offering centralized

baseband signal processing with powerful computation capability. Conventional BSs are

replaced by light and low-cost remote radio heads (RRHs) with radio signal transmission and

reception functions. To enhance the capacity of C-RAN, the coordinated multipoint (CoMP)

transmission technique is deployed by which multiple RRHs can coordinate together to serve

each user. The group of RRHs serving each user is called an RRH cluster, and the grouping

process is called user-centric RRH clustering. Furthermore, by implementing multiple antennas

at each RRH, the beamforming technique can be deployed to mitigate interference experienced

by each user.

There are two fundamental downlink data transmission strategies for C-RAN, i.e., data-

sharing strategy and compression strategy [8]. In the data sharing strategy, the BBU pool

sends messages of each user directly to multiple RRHs by fronthaul links. The RRHs locally

form the beamforming vector and cooperatively transmit the messages to each user. In

the compression strategy, the central processor located at the BBU pool is responsible for

user message precoding. Then, a compressed version of the analog beamformed signals is

forwarded to RRHs for cooperative transmission.
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1.1.3 Resource Management for Network Slicing

According to different types of network resources, network slicing can be categorized into

two types: core network slicing that partitions network nodes, links or topologies, and radio

access network (RAN) slicing that partitions baseband resources, BSs, radio resources, and

transmission power [9]. Each tenant estimates the resource demand from its subscribed

users and submits the resource reservation request to the centralized controller. With the

received resource reservation requests, the centralized controller performs inter-slice resource

virtualization and assigns the physical resources to each slice. Then, the tenant performs

intra-slice resource allocation among its subscribed users. From the perspective of a logical

centralized controller, inter-slice resource virtualization is performed by the infrastructure

provider, who owns the common physical network. The inter-slice resource virtualization,

enabled by SDN and NFV, is responsible of assigning common physical network resources

to each slice corresponding to the resource reservation request. Meanwhile, since that the

resource reservation requests from different tenants may arrive at different time, inter-slice

resource virtualization is also responsible of dynamically scheduling the resources to different

tenants [10]. From the perspective of each tenant, resource reservation process and intra-

slice resource allocation process can be jointly considered. The resource reservation decision

made by the tenant should guarantee sufficient resources for intra-slice resource allocation.

Meanwhile, intra-slice resource allocation, performed by the local controller at each tenant,

should achieve efficient resource utilization, mitigate interference among users, and guarantee

QoS of users.



Chapter 1. Introduction 5

With the development of C-RAN, implementing network slicing in C-RAN has now

attracted more attention and is still an open issue. Besides radio resources considered in

RAN slicing, resources of RRHs, fronthaul capacity, and BBU pool need to be considered

for network slicing in C-RAN. Moreover, user-centric RRH clustering and beamforming can

be integrated to enhance network capacity and achieve efficient resource utilization.

1.2 Motivation

Many research works have been conducted on resource management for core network slicing

[10–14]. Compared with core network slicing, RAN slicing is faced with new challenges due

to time-varying channel conditions, user mobility, and interference.

Conventional approaches mainly consider inter-slice resource virtualization among tenants

from the perspective of a centralized controller to achieve fairness among tenants [15–21]. To

achieve accurate resource demand estimation and efficient resource utilization, some studies

have been conducted on resource reservation for slices and intra-slice resource allocation from

the perspective of each tenant [22, 23]. However, these works consider the two processes in a

single timescale framework. To achieve real-time adaptation to varying network conditions, the

duration of the timescale is designed to be short. In this case, performing resource reservation

and intra-slice resource allocation simultaneously may lead to a high computational cost. To

tackle this problem, a two-timescale framework can be adopted. In this framework, resource

reservation is performed in a long timescale with the estimated resource demand from the slice,

and intra-slice resource allocation is performed in a short timescale to achieve adaptation to



Chapter 1. Introduction 6

real-time network conditions. The two-timescale framework is discussed in several works [24,

25]. However, these works neglect the characterization of the profit of each tenant. To achieve

profit maximization, each tenant should control the resource reservation cost and increase the

revenue obtained from its subscribed users.

In this thesis, we propose a two-timescale resource management scheme for network slicing

in C-RAN, aiming at maximizing the profit of the tenant by long timescale resource reservation

for the slice and short timescale intra-slice resource allocation among the subscribed users.

We consider two major challenges. First, user traffic varies over time, making it difficult to

accurately estimate the resource demand for resource reservation. Second, due to fast fading,

user mobility, coding error, and delay, the uncertainty of channel state information (CSI)

of the subscribed users should be considered during intra-slice resource allocation in order

to guarantee the QoS. To tackle these challenges and maximize the profit of the tenant, the

interaction between resource reservation and intra-slice resource allocation is considered. The

long timescale resource reservation characterizes the statistics of user traffic and ensures that

sufficient resources are reserved for intra-slice resource allocation. Meanwhile, the intra-slice

resource allocation is adaptive to the arbitrary arrival/departure of users while characterizing

the CSI uncertainty to achieve efficient utilization of the reserved resources and guarantee the

QoS.

Considering that the profit maximization problem involves user traffic variation as well

as the interaction between resource reservation and intra-slice resource allocation, we apply

two-stage stochastic programming to formulate our problem. Stochastic programming is a
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framework for modeling optimization problems that involve random events [26]. In the two-

stage stochastic programming problem, the decision in the first stage is made only with the

statistical knowledge of the random event. Then, based on the decision in the first stage and

a realization of the random event, the decision in the second stage is made. The objective

of the two-stage stochastic programming problem is to maximize the expectation of a certain

objective function over the random event. Therefore, by modeling long timescale resource

reservation as the decision in the first stage and short timescale intra-slice resource allocation

as the decision in the second stage, and modeling the user traffic as the random event, we

formulate the profit maximization as a two-stage stochastic programming problem. Moreover,

since the CSI uncertainty is difficult to be modeled in a probabilistic manner as many factors

(e.g., user mobility, coding error, and delay) lead to the uncertainty, for intra-slice resource

allocation in the second stage, we apply the uncertainty set to restrict the realizations of CSI.

In this way, the resource allocation decision can be made to guarantee the QoS under the CSI

uncertainty.

1.3 Contributions

The main contributions of this thesis are summarized as follows:

• We propose a two-timescale resource management scheme to achieve profit maximiza-

tion for network slicing in C-RAN. By modeling the problem as a two-stage stochastic

programming problem, the interaction between resource reservation and intra-slice
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resource allocation is achieved, and the user traffic variation is characterized.

• We design a profit model for the tenant, which captures the revenue obtained from its

subscribed users and the cost of resource reservation. The revenue is modeled as a

piecewise function consisting of a reward obtained by guaranteeing the QoS of users and

a penalty due to QoS violation. The cost is modeled as a linear function consisting of the

sub-channel and power reservation cost. We characterize the QoS under CSI uncertainty

by applying the CSI uncertainty set.

• We transform the stochastic programming problem into a deterministic mixed-integer

optimization problem by introducing a maximum interference threshold and applying

semidefinite relaxation. We combine branch-and-bound and primal-relaxed dual tech-

niques to obtain the suboptimal solution.

• We conduct extensive simulations to evaluate the properties and performance of the

proposed scheme. Results show that the proposed scheme can achieve a higher profit

when compared with four other baseline schemes.

1.4 Outline of the Thesis

This thesis is organized as follows. In Chapter 2, we introduce the related work. In Chapter 3,

we present the two-timescale resource management scheme to achieve profit maximization for

network slicing in C-RAN, analyze its properties, and evaluate its performance. Conclusion

and future work are given in Chapter 4.
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Chapter 2

Related Work

2.1 Network Slicing

2.1.1 Core Network Slicing

Many studies have been conducted on core network slicing based on SDN and NFV. The

framework of FlowVisor is introduced in [11], which is implemented as an OpenFlow proxy

that intercepts messages between OpenFlow-enabled switches and OpenFlow controllers.

FlowVisor is capable of partitioning link bandwidth and flow table in each switch. Many works

have been conducted on the standardization of core network slicing [27,28]. The latest version

of network slicing standard is Release 15 of the 3rd Generation Partnership Project (3GPP)

completed in June 2018. Several key concepts, such as network slice, network slice instance,

and lifecycle management of network slice instance, are specified.

Recently, various dynamic and flexible resource management schemes have been proposed

for core network slicing [10, 12]. Baumgartner et al. in [12] proposed a robust inter-slice

resource allocation scheme with the consideration of survivability to protect network slice

against network element (nodes/links) failure. In [10], Sciancalepore et al. applied the Holt-



Chapter 2. Related Work 10

Winters forecasting method to predict the future traffic of each slice based on historical records.

With the predicted traffic information, a slice selection and scheduling scheme was proposed,

aiming at improving network utilization. Besides resource management schemes for core

network slicing to achieve the resource efficiency and utility maximization, there are also other

works discussing the reconfiguration of network slicing [13, 14]. Paris et al. in [13] addressed

the problem that frequent flow reconfigurations for network slicing may cause QoS violation.

To tackle this problem, they proposed a control policy to minimize the flow allocation cost

while achieving the adaptation to varying network conditions. Pellegrini et al. in [14] proposed

a learning algorithm to perform optimal online flow segmentation, which can achieve minimum

signaling over the control channel and can track traffic variations over time.

2.1.2 Radio Access Network Slicing

Many studies have been conducted on RAN slicing [29]. Early studies on RAN slicing mainly

focus on the guarantee of slice isolation. Ravi et al. in [15] proposed a time domain resource

partitioning scheme to assign different slices into different time slots. However, this scheme

does not consider a multi-cell scenario, in which multi-cell interference is a critical problem

as slices may share the same spectrum in different cells. To tackle this problem, Gudipati et

al. in [16] proposed the concept of SoftRAN, which defines a virtual big-base station that

is comprised of a central controller and a group of geographically close BSs. Besides the

resource allocation of time-frequency resource blocks, the authors further proposed a power

allocation scheme, which is performed by a logical centralized controller to mitigate inter-cell
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interference among users in different slices and guarantee slice isolation. Besides the challenge

of slice isolation, partitioning RAN resources into different slices corresponding to different use

cases and QoS requirements is also an important problem. Caballero et al. in [17] focused on

achieving desirable fairness across network slices and users. They formulated an optimization

problem for dynamic resource allocation with a weighted proportionally fair objective function.

Zhang et al. in [18] proposed a mobility management scheme and a joint power and sub-

channel allocation scheme for RAN slicing to enhance resource efficiency. In [19], Xiang et al.

designed a hierarchical network slicing architecture, consisting of a centralized orchestration

layer and a slice instance layer for resource allocation in fog RAN. In [20], Chen et al. proposed

a resource pre-allocation scheme for each slice and an intra-slice resource scheduling scheme

for users with different priorities to achieve resource efficiency. The aforementioned works on

RAN slicing assume that the centralized controller can obtain the perfect knowledge of network

conditions. However, the uncertainty of network conditions may exist. Zheng et al. in [21]

proposed a delay-optimal radio resource scheduling scheme with stochastic learning. They

applied partially observed Markov decision process to characterize the uncertainty of channel

conditions and user traffic for the resource scheduling scheme design.

Instead of considering resource management from the perspective of a centralized con-

troller, some works have been conducted to design the resource reservation and intra-slice

resource allocation from the perspective of each tenant. For example, in [23], Zhu et al.

proposed a hierarchical combinatorial auction mechanism for resource management, in which

each tenant submits its bid to the centralized controller for a certain amount of resources, and
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executes an auction to allocate the reserved resources to its subscribed users. Caballero et al.

in [22] formulated a network slicing game in which each tenant takes into account the resource

demand estimation of other tenants to make a resource reservation decision so as to maximize

its user utility. Besides performing resource reservation and intra-slice resource allocation in

a single timescale, a two-timescale framework is also considered. In this framework, resource

reservation is performed in a long timescale with the predicted resource demands from the slice,

and intra-slice resource allocation is performed in a short timescale to achieve the adaptation

to real-time network condition variations. Zhang et al. in [24] proposed a static spectrum

reservation and dynamic resource requesting scheme for each tenant to maximize the aggregate

utility of users. In [25], Chen et al. designed a resource pre-allocation over a long timescale

and intra-slice resource scheduling over a short timescale for resource efficiency maximization.

2.2 C-RAN

Beamforming and user-centric RRH clustering are two major topics in C-RAN. Shi et al.

in [30] proposed a multi-stage scheme for network power minimization. They separated group

sparse beamforming and RRH clustering into different stages. Liu et al. in [31] proposed a

two-timescale RRH clustering and beamforming scheme to achieve the trade-off between the

average weighted sum rate and implementation cost. User-centric RRH clustering is performed

in a long timescale and beamforming is performed in a short timescale. Some other works

design joint RRH clustering and beamforming. Dai et al. in [32] proposed a scheme to



Chapter 2. Related Work 13

perform joint sparse beamforming and user-centric RRH clustering by formulating a zero-

norm problem, aiming at maximizing the network utility. Wang et al. in [33] proposed a robust

beamforming scheme for C-RAN to maximize the network utility. They characterized the QoS

under CSI uncertainty by applying the uncertainty set and S-procedure.

2.3 Network Slicing for C-RAN

Research on network slicing for C-RAN is now attracting more attention. Lee et al. in

[34] proposed a dynamic end-to-end network slicing scheme for heterogeneous C-RAN,

which allocates baseband resources, fronthaul/backhaul capacities, and radio resources to

multiple tenants with different priorities, aiming at achieving high network throughput while

guaranteeing fairness. Costanzo et al. in [35] proposed a prototype for network slicing in

C-RAN based on Open Air Interface platform and FlexRAN SDN controller to handle the

creation and configuration of network slices. Ezzaouia et al. in [36] focused on slicing the

BBU pool to establish a logical mapping between the BBU pool and RRHs.

2.4 Two-Timescale Resource Management and Profit

Maximization

The two-timescale resource management framework is widely used in 5G wireless systems.

Liu et al. in [31] proposed a two-timescale resource management framework for C-RAN,

in which RRH clustering is performed in a long timescale and beamforming is performed
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in a short timescale. Niu et al. in [37] proposed a dynamic resource sharing mechanism

among multiple tenants in C-RAN, in which a global resource allocation process is performed

in a long timescale and multiple local resource allocation processes are performed in a short

timescale. Gao et al. in [38] proposed a two-timescale approach for profit maximization in a

cloud transcoding system by performing resource provisioning and task scheduling.
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Chapter 3

Two-Timescale Resource Management for

Network Slicing in C-RAN

3.1 System Model and Problem Formulation

3.1.1 Architecture of Network Slicing in C-RAN

We consider network slicing in a CoMP based C-RAN system. In this system, multiple

baseband signal processing modules are located at a BBU pool. The RRHs are composed

of radio signal transceivers and are connected to the BBU pool via optical fibers. Each RRH

is equipped with multiple antennas. Each user is equipped with a single antenna. The CoMP

framework enables each user to be served by multiple RRHs, which form an RRH cluster.

Meanwhile, the beamforming operation is designed for antennas to mitigate interference. We

apply the data-sharing strategy for downlink data transmission. We denote the set of RRHs

in the coverage area as B = {1, 2, . . . , B}. Each RRH is equipped with A antennas. There

are N sub-channels, each with bandwidth W . Network slicing is implemented in this CoMP

based C-RAN. Each slice corresponds to a virtual network with partial network resources and
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network functions. Each slice is owned by a tenant (i.e., service provider) to support a specific

type of service. In this thesis, we assume that each tenant owns a single slice. Our proposed

framework can be easily extended to the scenario where each tenant owns multiple slices.

We consider resource management for network slicing in C-RAN from the perspective

of a single tenant. The tenant performs resource reservation for its slice to request radio

resources of sub-channels and power from an infrastructure provider, which is the owner of

the physical infrastructure of C-RAN. The tenant then performs intra-slice resource allocation

to allocate the reserved resources to its subscribed users according to channel conditions and

QoS requirements of users.

3.1.2 Two-Timescale Framework

As shown in Fig. 3.1, we divide 24 hours of a day into K long timescale slots (minutes).

Each long timescale slot consists of T short timescale slots with the same duration (seconds).

Resource reservation is performed over long timescale with the statistical knowledge of user

traffic. Intra-slice resource allocation is performed over short timescale under an arbitrary

user arrival/departure process. The choice of the duration of each long timescale slot should

guarantee that the statistics of user traffic will not change within the long timescale slot.

Meanwhile, since that more frequent submissions of resource reservation requests may lead to

higher computation and reconfiguration cost of the network, the duration of each long timescale

slot should be chosen to avoid high computation and reconfiguration cost. The choice of the

duration of each short timescale slot should guarantee that the real-time user traffic variation
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Figure 3.1: Two-timescale framework with long timescale resource reservation and short
timescale intra-slice resource allocation.

can be captured so that the intra-slice resource allocation can be adaptive to arbitrary user

arrival and departure. In this thesis, we assume that the durations of each long timescale slot

and short timescale slot are predetermined and do not change over time. The explanations of

notations in Fig. 3.1 will be given in the following part of this section.

User Traffic Model

In this thesis, we consider the scenario where users arbitrarily arrive and leave the system. In

the coverage area of C-RAN, different regions may have different statistics of user traffic. To

address this issue, we divide the network coverage area into M disjoint regions, according to

the density of user distribution [39]. Within the long timescale slot k = 0, 1, . . . , K − 1, in

region m = 1, . . . ,M , we assume that the arrival of users follows a general distribution with

an average user arrival rate of χk,m (number of arrived users per short timescale slot). The

duration that a user stays in region m, called the sojourn time, is a random variable. It follows

a general distribution with mean µk,m, the unit of which is a short timescale slot.
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Within a long timescale slot k, we denote the set of users in short timescale slot t as Ut =∪M
m=1 Ut,m, where Ut,m is the set of users in region m and t ∈ Tk = {kT, . . . , (k + 1)T − 1}.

Users in set Ut,m are assumed to be uniformly distributed in region m.

Based on the user traffic model, the arrival and departure process of users can be depicted.

Within the long timescale slot k, in each short timescale slot t, in each region m, there will

be a random number of new user arrivals following the general user arrival distribution with

average user arrival rate χk,m. Each user stays in the region with a random sojourn time.

After the sojourn time, the user will leave the system. Since that general distributions for both

the arrival of users and the sojourn time are assumed, we can design a resource management

scheme that can be applicable for different statistical models of user traffic.

Two-Timescale Resource Management

At the beginning of a long timescale slot k, the tenant obtains the knowledge of user

arrival rate vector χk = (χk,1, . . . , χk,m, . . . , χk,M), the average sojourn time vector µk =

(µk,1, . . . , µk,m, . . . , µk,M), and the user set UkT . The tenant then makes the resource

reservation decision by choosing nk, which is the number of reserved sub-channels, and

pk = (pk,1, . . . , pk,B), in which pk,b is the amount of power reserved for RRH b ∈ B.

At the beginning of a short timescale slot t ∈ Tk, given the resource reservation decision

nk and pk, and an observation of user set Ut, we design a beamforming scheme. For a user

u ∈ Ut, the beamforming decision is denoted as vt,u = [vH
t,u,1 · · · vH

t,u,B]
H ∈ CAB×1, where

vt,u,b ∈ CA×1, b ∈ B, represents the beamforming vector from RRH b to user u for each sub-
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channel. Furthermore, based on the user location distribution, the mean channel vector of user

u ∈ Ut can be estimated as h̄t,u = [h̄H
t,u,1 · · · h̄H

t,u,B]
H ∈ CAB×1, where h̄t,u,b ∈ CA×1, b ∈ B,

is the mean channel vector between RRH b and user u. Due to user mobility and fast channel

fading, the instantaneous channel vector, denoted as ht,u, is a random vector, with mean h̄t,u.

Given the beamforming decision vector vt = [vH
t,1 · · · vH

t,|Ut|]
H and channel vector ht,u, the data

rate of user u in short timescale slot t can be obtained as follows [32]:

rt,u = nkW log

(
1 +

|hH
t,uvt,u|2∑

u′∈Ut\{u} |h
H
t,uvt,u′|2 + σ2

)
, (3.1)

where σ2 is the noise power. Since the channel vector ht,u is a random vector, rt,u is also a

random variable.

By designing the sparse beamforming vector vt,u,b for each user u ∈ Ut at each RRH b ∈ B,

the tenant can determine the power allocated to user u at RRH b. Meanwhile, the beamforming

vector can also indicate the user-centric RRH clustering decision for each user. We note that

when vt,u,b = 0AB, user u is not associated with RRH b. When vt,u,b ̸= 0AB, user u is served

by RRH b.

In this thesis, we assume that resource reservation and intra-slice resource allocation

decisions made by the tenant will not be affected by the decisions of other tenants. We also

assume that the infrastructure provider can always satisfy the resource reservation requests

from the tenant.
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QoS Requirement under CSI Uncertainty

In this thesis, the QoS requirement is the required data rate, denoted as rreq. Since only the

mean channel vector h̄t,u can be obtained, we adopt the uncertainty set to capture the CSI

uncertainty. In short timescale slot t ∈ Tk, the CSI uncertainty set of user u ∈ Ut is defined as

Rt,u , {ht,u | (ht,u − h̄t,u)
H(ht,u − h̄t,u) ≤ ε2t,u}, (3.2)

where εt,u is the radius of the uncertainty region of the channel vector ht,u. We denote ε2t,u as

the size of the CSI uncertainty set Rt,u. Then, based on (3.1) and (3.2), the QoS requirement

under the CSI uncertainty can be modeled as

rt,u ≥ rreq, ht,u ∈ Rt,u. (3.3)

Inequality (3.3) indicates that rreq should be satisfied for all the realizations of ht,u in the CSI

uncertainty set Rt,u. Therefore, by introducing the CSI uncertainty set, the QoS requirement

can be depicted as deterministic constraint (3.3) without the necessity of knowing the statistical

knowledge of the channel vector.

Revenue and Cost of a Tenant

One key motivation of the tenant to perform resource reservation and intra-slice resource

allocation is to enhance the revenue obtained from the subscribed users while controlling the

resource reservation cost so as to maximize the profit. In this section, we design a revenue
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model and a resource reservation cost model for the tenant.

In a short timescale slot t ∈ Tk, k = 0, . . . , K − 1, with the knowledge of Ut and vt, the

revenue of serving user u ∈ Ut is given as

Yt,u(vt) =


p(ε̃t,u)r

reqα, rt,u ≥ rreq, ht,u ∈ Rt,u

−β, otherwise,
(3.4)

where ε̃2t,u =
ε2t,u

h̄H
t,uh̄t,u

is the normalized size of CSI uncertainty set Rt,u, p(ε̃t,u) is the probability

that the true channel vector is within the CSI uncertainty set, rreqα is the revenue of serving

user u ∈ Ut if perfect CSI information is obtained, in which α is the revenue obtained by

offering the service with 1 Mb/s data rate. We also have β as the penalty of failing to serve

user u. According to revenue function (3.4), higher required data rate rreq results in higher

revenue obtained by the tenant, since that users need to pay more for better service. Meanwhile,

satisfying QoS constraint (3.3) is not sufficient to guarantee rt,u ≥ rreq with 100%, since that

the true realization of channel vector ht,u may be out of the CSI uncertainty set. Therefore, we

introduce the probability p(ε̃t,u), which is determined by ε̃t,u of the CSI uncertainty set. Larger

ε̃t,u may lead to a higher probability that the true realization of channel vector is included in the

uncertainty set. Thus, higher probability of QoS guarantee can be achieved for higher revenue.

The probability p(ε̃t,u) of user u can be summarized from historical channel vector records of

users located at the same place of user u.

At the beginning of long timescale slot k, given the resource reservation decisions nk and
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pk, the cost function can be defined as

Ck(nk,pk) = c1nk +
∑
b∈B

c2pk,b, (3.5)

where c1 and c2 are the costs of reserving one sub-channel and one Walt of power for one long

timescale slot, respectively.

3.1.3 Two-Stage Stochastic Programming for Profit Maximization

The objective of long timescale resource reservation and short timescale intra-slice resource

allocation is to maximize the expected profit of a tenant in each long timescale slot. For each

long timescale slot k = 0, 1, . . . , K − 1, we formulate a two-stage stochastic programming

problem. The first stage decision, i.e., resource reservation, is made at the beginning of the long

timescale slot k, with only the knowledge of the average user arrival rate vector χk, average

sojourn time vector µk, and user set UkT . We denote U seq
k = (UkT , . . . ,U(k+1)T−1). Then,

with the first stage decision and a realization of U seq
k , the second stage decision, i.e., intra-slice

resource allocation, is made over short timescale slot t ∈ Tk. The problem is formulated as

follows:

maximize
nk,pk

EU seq
k
[Q(U seq

k )]− Ck(nk,pk) (3.6a)

subject to nk ∈ {0, . . . , N}, (3.6b)

0 ≤ pk,b ≤ Pb, b ∈ B, (3.6c)
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where Pb is the maximum power a tenant can reserve for RRH b ∈ B, Q(U seq
k ) is the optimal

revenue obtained by the tenant given the knowledge of U seq
k , EU seq

k
[Q(U seq

k )] is the expectation

of Q(U seq
k ) over all the realizations of U seq

k , Q(U seq
k ) is the optimal value of the following intra-

slice resource allocation problem:

maximize
vt,t∈Tk

∑
t∈Tk

∑
u∈Ut

Yt,u(vt) (3.7a)

subject to nk

∑
u∈Ut

Tr(vt,u,bv
H
t,u,b)≤pk,b, b ∈ B, t ∈ Tk. (3.7b)

Constraint (3.7b) represents the power constraint given the decisions of nk and pk made in the

first stage.

By solving problem (3.6), the amount of reserved resources and the corresponding cost

are determined, based on which second stage problem (3.7) determines the optimal revenue

Q(U seq
k ) by making the beamforming decision vt. Therefore, by solving the two-stage

stochastic programming problem, the expected profit can be maximized.

3.2 Solution for the Profit Maximization Problem

3.2.1 Transformation into a Deterministic Problem

The two-stage stochastic programming problem can not be solved directly due to the

expectation of Q(U seq
k ) in problem (3.6). Meanwhile, resource reservation in the first

stage and intra-slice resource allocation in the second stage build a hierarchical control
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architecture. Therefore, we first transform the two-stage stochastic programming problem

into a deterministic optimization problem [40]. Based on the traffic model in Section 3.1.2,

at the beginning of the long timescale slot k, with the knowledge of (χk,µk,UkT ), we can

obtain the realizations of the user set sequence U seq
k . The l-th (l ∈ L = {1, . . . , L})

realization of U seq
k is denoted as U seq

k,l = (UkT ,UkT+1,l, . . . ,U(k+1)T−1,l). The corresponding

probability of the occurrence of realization U seq
k,l is denoted as ωl. The corresponding

beamforming decision sequence is denoted as vseq
k,l = (vkT,l, . . . ,v(k+1)T−1,l), in which vt,l =

[vH
t,l,1 · · · vH

t,l,u · · · vH
t,l,|Ut,l|]

H, and vt,l,u = [vH
t,l,u,1 · · · vH

t,l,u,B]
H, u ∈ Ut,l, t ∈ Tk, l ∈ L. Then,

the two-stage stochastic programming problem can be transformed into the following problem:

maximize
nk,pk,v

seq
k

L∑
l=1

ωl

∑
t∈Tk

∑
u∈Ut,l

Yt,u(vt,l)− Ck(nk,pk) (3.8a)

subject to nk

∑
u∈Ut,l

Tr(vt,l,u,bv
H
t,l,u,b) ≤ pk,b, b ∈ B, t ∈ Tk, l ∈ L (3.8b)

constraints (3.6b) and (3.6c),

where vseq
k = (vseq

k,1, . . . ,v
seq
k,L).

Problem (3.8) cannot be solved directly due to the nonconvexity of Yt,u(vt,l). Based on the

discussion in Section 3.1.2, the revenue function (3.4) can be equivalently depicted under a user

admission control scenario. For user u ∈ Ut,l, the tenant can obtain the revenue p(ε̃t,u)r
reqα

from the user if the QoS requirement constraint (3.3) is satisfied. The tenant will need to pay a

penalty of β if constraint (3.3) is not satisfied. To further save the resources, the tenant will then
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assign no resources to this user, which indicates that the service request of the user is rejected.

In this case, we introduce the user admission control variable at,l,u ∈ {0, 1} to indicate whether

the service request of user u is accepted. Then, for the l-th realization of U seq
k , the revenue

function (3.4) is equivalent to

Y new
t,l,u(at,l,u) = at,l,up(ε̃t,l,u)r

reqα− (1− at,l,u)β, (3.9)

with QoS constraint

nkW log

(
1 +

|hH
t,l,uvt,l,u|2∑

u′∈Ut,l\{u}
|hH

t,l,uvt,l,u′ |2+σ2

)
≥ at,l,ur

req,

ht,l,u ∈ Rt,l,u, u ∈ Ut,l, t ∈ Tk, l ∈ L, (3.10)

where ht,l,u, Rt,l,u, and ε̃2t,l,u are the channel vector, CSI uncertainty set, and its normalized size

for the l-th realization of U seq
k , respectively. Then, we reformulate problem (3.8) as follows:

maximize
a

seq
k ,nk,pk,v

seq
k

L∑
l=1

ωl

∑
t∈Tk

∑
u∈Ut,l

Y new
t,l,u(at,l,u)− Ck(nk,pk) (3.11a)

subject to at,l,u ∈ {0, 1}, u ∈ Ut,l, t ∈ Tk, l ∈ L (3.11b)

constraints (3.6b), (3.6c), (3.8b), (3.10),

where aseq
k = (aseq

k,1, . . ., a
seq
k,L), a

seq
k,l = (akT,l, . . ., a(k+1)T−1,l), and at,l = (at,l,1, . . . , at,l,|Ut,l|).

Problem (3.11) is a mixed integer optimization problem due to integer variables aseq
k and

nk. We use branch-and-bound technique [41] to determine the optimal solution of aseq
k . We
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first relax each integer variable at,l,u ∈ {0, 1} to 0 ≤ at,l,u ≤ 1, and solve the relaxed problem

to obtain nk,pk,v
seq
k , and relaxed aseq

k . We randomly choose a variable at,l,u /∈ {0, 1}, the two

new constraints developed from this variable are at,l,u = 1 and at,l,u = 0, forming two child

nodes of the current node. We then proceed to the node with the greatest optimal value and

apply the same procedure. If there is an integer solution of aseq
k with the greatest optimal value

among other ending nodes, then the process stops. For the integer variable nk, we relax it to a

continuous variable and obtain the relaxed optimal solution of nk. Then, we simply compare

the optimal profits based on the two integer values of nk that are most close to the relaxed

optimal solution of nk, and pick the optimal integer solution.

3.2.2 QoS Constraint Approximation and Semidefinite Relaxation

Based on the branch-and-bound technique, we focus on solving problem (3.11) with the

relaxation of integer variables at each node. The relaxed optimization problem is still difficult

to be solved as QoS constraint (3.10) is nonconvex. To tackle this challenge, we introduce

a maximum interference threshold to achieve the QoS constraint approximation. The relaxed

problem of (3.11) is formulated as follows:

maximize
φ

seq
k ,a

seq
k ,nk,pk,v

seq
k

L∑
l=1

ωl

∑
t∈Tk

∑
u∈Ut,l

Y new
t,l,u(at,l,u)− Ck(nk,pk) (3.12a)

subject to φt,l,u ≤
|hH

t,l,uvt,l,u|2

I + σ2
, ht,l,u ∈ Rt,l,u, u ∈ Ut,l, t ∈ Tk, l ∈ L (3.12b)∑

u′∈Ut,l\{u}

|hH
t,l,uvt,l,u′ |2 ≤ I, ht,l,u ∈ Rt,l,u, u ∈ Ut,l, t ∈ Tk, l ∈ L (3.12c)
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nkW log (1 + φt,l,u) ≥ at,l,ur
req, u ∈ Ut,l, t ∈ Tk, l ∈ L (3.12d)

0 ≤ at,l,u ≤ 1, u ∈ U relax
t,l , t ∈ Tk, l ∈ L (3.12e)

at,l,u = dt,l,u, u ∈ Ut,l\U relax
t,l , t ∈ Tk, l ∈ L (3.12f)

0 ≤ nk ≤ N, (3.12g)

constraints (3.6c) and (3.8b),

where φt,l,u is an auxiliary variable serving as a lower bound of the signal-to-interference-

plus-noise ratio (SINR), φseq
k = (φseq

k,1, . . . ,φ
seq
k,L), φseq

k,l = (φkT,l, . . . , φ(k+1)T−1,l), φt,l =

(φt,l,1, . . . , φt,l,|Ut,l|). I is a predefined maximum interference threshold. The optimal solution

of problem (3.12) is required to guarantee that the interference experienced by each user is

no larger than threshold I . By introducing φseq
k and I , the QoS constraint (3.10) is relaxed as

constraints (3.12b) (3.12c) and (3.12d) [33]. We also have that U relax
t,l ∈ Ut,l is the set of users

whose at,l,u is relaxed at the current node. dt,l,u ∈ {0, 1} is the value of at,l,u that has been

determined at the current node, in which u ∈ Ut,l\U relax
t,l , l ∈ L, t ∈ Tk.

Due to the CSI uncertainty, constraints (3.12b) and (3.12c) involves infinite number of

constraints, making it difficult to directly solve problem (3.12). To tackle this problem, we

apply S-procedure [42] to transform constraints (3.12b) and (3.12c) into finite number of linear

matrix inequality (LMI) constraints. The S-procedure is introduced in Lemma 3.1:

Lemma 3.1. (S-Procedure): Let A1, A2 ∈ HN , d1, d2 ∈ CN×1, and y1 y2 ∈ R. Consider the
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following two quadratic functions of vector x ∈ CN×1:

f1(x) = xHA1x+ 2R{d1x}+ y1, (3.13)

f2(x) = xHA2x+ 2R{d2x}+ y2. (3.14)

The implication f1(x) ≤ 0 ⇒ f2(x) ≤ 0 holds if and only if there exists a θ ≥ 0 such that

θ

A1 d1

dH
1 y1

−

A2 d2

dH
2 y2

 ≽ 0. (3.15)

We denote that ∆ht,l,u = ht,l,u− h̄t,l,u. Then, by applying Lemma 3.1 to constraint (3.12b),

we obtain the following implication:

∆hH
t,l,uIAB∆ht,l,u + 2R{0H△hu} − ε2t,l,u ≤ 0

⇒ −∆hH
t,l,u(vt,l,uv

H
t,l,u)∆hu − 2R{(vt,l,uv

H
t,l,uh̄t,l,u)

H∆hu}

− h̄H
t,l,u(vt,l,uv

H
t,l,u)h̄t,l,u + φt,l,u(I + σ2) ≤ 0, (3.16)

if and only if there exists a υt,l,u ≥ 0 such that the following LMI holds:

υt,l,uIAB 0AB

0H
AB −φt,l,u(I + σ2)− υt,l,uε

2
t,l,u

+ QH
t,l,uVt,l,uQt,l,u ≽ 0,

u ∈ Ut,l, t ∈ Tk, l ∈ L, (3.17)
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where Qt,l,u = [IAB h̄t,l,u], Vt,l,u = vt,l,uv
H
t,l,u, ε2t,l,u is the size of the CSI uncertainty set for

the l-th traffic realization.

Similarly, by applying Lemma 3.1 to constraint (3.12c), we obtain the following implica-

tion:

∆hH
t,l,uIAB∆ht,l,u + 2R{0H△hu} − ε2t,l,u ≤ 0

⇒ ∆hH
t,l,u

(∑
u′∈Ut,l\{u} Vt,l,u′

)
∆ht,l,u + 2Re

{(
(
∑

u′∈Ut,l\{u}Vt,l,u′)h̄t,l,u

)H
∆ht,l,u

}
+ h̄H

t,l,u

(∑
u′∈Ut,l\{u}Vt,l,u′

)
h̄t,l,u − I ≤ 0, (3.18)

if and only if there exists a ξt,l,u ≥ 0 such that

ξt,l,uIAB 0AB

0H
AB I − ξt,l,uε

2
t,l,u

−QH
t,l,u

(∑
u′∈Ut,l\{u} Vt,l,u′

)
Qt,l,u ≽ 0,

u ∈ Ut,l, t ∈ Tk, l ∈ L. (3.19)

Then, problem (3.12) is equivalent to

minimize
ok

Ck(nk,pk)−
L∑
l=1

ωl

∑
t∈Tk

∑
u∈Ut,l

Y new
t,l,u(at,l,u) (3.20a)

subject to constraints (3.6c), (3.12d)−(3.12g), (3.17), (3.19),

nk

|Ut,l|∑
u=1

Tr(BH
b BbVt,l,u) ≤ pk,b, b ∈ B, t ∈ Tk, l ∈ L (3.20b)

υt,l,u ≥ 0, u ∈ Ut,l, t ∈ Tk, l ∈ L (3.20c)



Chapter 3. Two-Timescale Resource Management for Network Slicing in C-RAN 30

ξt,l,u ≥ 0, u ∈ Ut,l, t ∈ Tk, l ∈ L (3.20d)

Vt,l,u ≽ 0, u ∈ Ut,l, t ∈ Tk, l ∈ L, (3.20e)

Rank(Vt,l,u) ≤ 1, u ∈ Ut,l, t ∈ Tk, l ∈ L, (3.20f)

where ok = (φseq
k ,υseq

k , ξseq
k , aseq

k , nk,pk,V
seq
k ), Bb , (0T

b−1, 1,0
T
B−b) ⊗ IA, so that vt,l,u,b =

Bbvt,l,u and Tr(vt,l,u,bv
H
t,l,u,b) = Tr(BH

b BbVt,l,u). For constraint (3.20f), Rank(Vt,l,u) = 0

happens when at,l,u = 0, meaning that the service request of user u is rejected and there is no

resource assigned to that user.

Problem (3.20) is still nonconvex due to constraint (3.20f). We adopt semidefinite

relaxation (SDR) [43] by removing constraint (3.20f) to arrive at a tractable problem, given

as:

minimize
ok

Ck(nk,pk)−
L∑
l=1

ωl

∑
t∈Tk

∑
u∈Ut,l

Y new
t,l,u(at,l,u)

subject to constraints (3.6c), (3.12d)−(3.12g), (3.17), (3.19),

(3.20b)−(3.20e).

(3.21)

For the optimal solution of problem (3.21), if the rank of Hermitian matrix Vt,l,u is no larger

than one for all u ∈ Ut,l, l ∈ L and t ∈ Tk, then problems (3.20) and (3.21) have the same

optimal solution and the same optimal objective value. Otherwise, the optimal objective value

of problem (3.20) serves as the lower bound of the optimal objective value of problem (3.21).

The tightness of the SDR in problem (3.21) is revealed in the following theorem:

Theorem 3.1. Assuming problem (3.21) is feasible, a solution for Vt,l,u, ∀ u ∈ Ut,l, l ∈ L,
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t ∈ Tk, can always be constructed to guarantee that the rank of the beamforming matrix is less

than or equal to one.

Proof. Please refer to Appendix A for the proof of Theorem 3.1. �

Theorem 3.1 illustrates that if the optimal beamforming solution of problem (3.21) does

not meet constraint (3.20f), we can solve problem (A.1) in Appendix A to obtain the optimal

solution for beamforming matrix, denoted as V̄t,l,u, u ∈ Ut,l, t ∈ Tk, l ∈ L, which satisfies

constraint (3.20f). The rank zero solution of V̄t,l,u indicates that the service request of user u

is rejected, i.e., at,l,u = 0. The rank one solution of V̄t,l,u indicates that the service request of

user u is accepted, i.e., at,l,u = 1. Then, the optimal beamforming vector, denoted as v̄t,l,u, is

the principle eigenvector of matrix V̄t,l,u.

3.2.3 Primal-Relaxed Dual Technique

Problem (3.21) is still difficult to be solved directly due to the nonconvexity of constraints

(3.12d) and (3.20b). One observation is that by fixing variables nk and pk, problem (3.21)

is convex with respect to variables φseq
k , υseq

k , ξseq
k , aseq

k , Vseq
k . By fixing variables φseq

k , υseq
k ,

ξseq
k , aseq

k , Vseq
k , problem (3.21) is linear with respect to nk and pk. One classical technique

to solve this type of optimization problem is the primal-relaxed dual technique [44]. The key

idea of primal-relaxed dual technique is to convert the original problem into primal and relaxed

dual subproblems that provide valid upper and lower bounds respectively on the global optimal

objective value.
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We fix variables φseq
k ,υseq

k , ξseq
k , aseq

k ,Vseq
k and solve the primal problem of (3.21) with

respect to nk and pk, which is formulated as follows:

minimize
nk,pk

Ck(nk,pk)−
L∑
l=1

ωl

∑
t∈Tk

∑
u∈Ut,l

Y new
t,l,u(at,l,u)

subject to constraints (3.6c), (3.12d), (3.12g), (3.20b).

(3.22)

The obtained optimal value is denoted as f upper, serving as an upper bound of problem

(3.21). The corresponding solutions of Lagrange multipliers for constraints (3.12d), (3.20b),

(3.12g), and (3.6c) are denoted as λ1,t,l,u, λ2,t,l,b, (for all u ∈ Ut,l, b ∈ B, t ∈ Tk, l ∈ L), λ3, λ4,

λ5,b, λ6,b (for all b ∈ B). We use λ as the vector of all Lagrange multipliers.

In order to obtain the relaxed dual problem of problem (3.21), we derive the Lagrangian of

problem (3.21) with constraints (3.12d), (3.20b), (3.12g), and (3.6c), given as

L(φseq
k , aseq

k ,Vseq
k , nk,pk,λ)

= c1nk +
∑
b∈B

c2pk,b −
L∑
l=1

ωl

∑
t∈Tk

∑
u∈Ut,l

(at,l,up(ε̃t,l,u)r
reqα− (1− at,l,u)β)


−nk

L∑
l=1

∑
t∈Tk

∑
u∈Ut,l

λ1,t,l,uW log(1 + φt,l,u) +
L∑
l=1

∑
t∈Tk

∑
u∈Ut,l

λ1,t,l,uat,l,ur
req

−
∑
b∈B

pk,b

L∑
l=1

∑
t∈Tk

λ2,t,l,b + nk

L∑
l=1

∑
t∈Tk

∑
b∈B

λ2,t,l,b

∑
u∈Ut,l

Tr(BH
b BbVt,l,u)

−λ3nk − λ4N + λ4nk −
∑
b∈B

λ5,bpk,b −
∑
b∈B

λ6,bPb +
∑
b∈B

λ6,bpk,b

= nkG1(φ
seq
k ,Vseq

k ,λ) +G2(a
seq
k ,pk,λ), (3.23)
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where

G1(φ
seq
k ,Vseq

k ,λ) = c1 −
L∑
l=1

∑
t∈Tk

∑
u∈Ut,l

λ1,t,l,uW log(1 + φt,l,u)

+
L∑
l=1

∑
t∈Tk

∑
b∈B

λ2,t,l,b

∑
u∈Ut,l

Tr(BH
b BbVt,l,u)− λ3 + λ4,

and

G2(a
seq
k ,pk,λ) =

∑
b∈B

pk,b

(
c2 −

L∑
l=1

∑
t∈Tk

λ2,t,l,b − λ5,b + λ6,b

)

−
L∑
l=1

ωl

∑
t∈Tk

∑
u∈Ut,l

(
at,l,up(ε̃t,l,u)r

reqα− (1− at,l,u)β
)

+
L∑
l=1

∑
t∈Tk

∑
u∈Ut,l

λ1,t,l,uat,l,ur
req − λ4N −

∑
b∈B

λ6,bPb.

With the Lagrangian, we further have

inf
0≤nk≤N

L(φseq
k , aseq

k ,Vseq
k , nk,pk,λ) = inf

0≤nk≤N
nkG1(φ

seq
k ,Vseq

k ,λ) +G2(a
seq
k ,pk,λ)

=
N − δN

2
G1(φ

seq
k ,Vseq

k ,λ) +G2(a
seq
k ,pk,λ), (3.24)

where δ ∈ {−1, 1} such that δG1(φ
seq
k ,Vseq

k ,λ) ≥ 0. It indicates that when G1(φ
seq
k ,Vseq

k ,λ) ≤

0, δ will be equal to −1, which is equivalent to have nk = N that achieves the minimization of

Lagrangian over nk. When G1(φ
seq
k ,Vseq

k ,λ) ≥ 0, δ will be equal to 1, which is equivalent to

have nk = 0 that achieves the minimization of Lagrangian over nk.

By fixing Lagrange variables λ and pk, based on the analysis in [44], we obtain the relaxed
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dual problem of problem (3.21) as follows:

minimize
φ

seq
k ,υ

seq
k ,ξ

seq
k ,a

seq
k ,V

seq
k ,δ

N − δN

2
G1(φ

seq
k ,Vseq

k )+G2(a
seq
k ) (3.25a)

subject to constraints (3.12e), (3.12f), (3.17), (3.19), (3.20c)−(3.20e)

δG1(φ
seq
k ,Vseq

k ) ≥ 0, (3.25b)

δ ∈ {−1, 1}. (3.25c)

The optimal value of problem (3.25) is denoted as f lower, serving as a lower bound of problem

(3.21). We iteratively solve the primal problem (3.22) and the relaxed dual problem (3.25) until

the gap between the upper and lower bounds is below a predetermined threshold.

We present a flow chart to depict the whole process of our problem transformation, as

shown in Fig. 3.2. In order to efficiently solve the profit maximization problem, which is

originally formulated as a two-stage stochastic programming problem, several transformation

and approximation steps should be taken. The two-stage stochastic programming problem

consists of problems (3.6) and (3.7). We first transform the problem into deterministic

optimization problem (3.8). Due to the nonconvexity of revenue function (3.4), then we

transform the revenue function into a linear function with QoS constraint (3.10) by introducing

a user admission control variable at,l,u for each user. Moreover, problem (3.8) can be

transformed into problem (3.11). Due to the nonconvexity of QoS constraint (3.10), we

introduce a maximum interference threshold I to achieve QoS approximation. We also relax the

integer variables to continuous variables and obtain the relaxed optimization problem (3.12).
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Figure 3.2: The transformation and relaxation steps taken from problems (3.6) and (3.7) to
obtain the solutions of profit maximization problem.

Then, we apply the branch-and-bound technique to obtain the optimal integer solution of at,l,u

for each user. In the framework of the branch-and-bound technique, we solve the relaxed

optimization problem (3.12) for each node. To solve this problem, we apply S-procedure and

SDR to obtain problem (3.21), which can be solved by applying primal-relaxed dual technique.

In Fig. 3.2, a bidirectional arrow represents a transformation into a equivalent problem. The

unidirectional arrows from problem (3.11) to problem (3.12), and from problem (3.20) to

problem (3.21), represent transformations involving approximations.

3.2.4 Joint Resource Reservation and Allocation Algorithm

In this section, we design the algorithm to achieve the two-timescale resource management

for network slicing in C-RAN, with the objective of maximizing the profit of the tenant. We

first design the algorithm to depict the primal-relaxed dual technique for each node, which is
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shown in Algorithm 3.1. We then design the global algorithm for resource reservation and

Algorithm 3.1: Primal-Relaxed Dual Technique for Node i

1 Input D(i), aseq
k (i), and U relax

t,l (i), t ∈ Tk, l ∈ L.
2 j := 1.
3 Initialize φseq

k (i, j),υseq
k (i, j), ξseq

k (i, j),Vseq
k (i, j) subject to constraints (3.17), (3.19),

(3.20c)−(3.20e); Set ϵ := 10−3

4 aseq
k (i, j) := aseq

k (i).
5 f lower(i, j) := −∞, f upper(i, j) := 0.
6 while |fupper(i, j)− f lower(i, j)| ≥ ϵ do
7 Solve problem (3.22) with fixed φseq

k (i, j), υseq
k (i, j), ξseq

k (i, j), aseq
k (i, j), Vseq

k (i, j),
update nk(i, j + 1), pk(i, j + 1) and f upper(i, j + 1) with the optimal solutions.

8 Solve relaxed dual problem (3.25) with fixed pk(i, j) and dual variables obtained in
Step 7, with D(i) and U relax

t,l (i), t ∈ Tk, l ∈ L; update φseq
k (i, j + 1), υseq

k (i, j + 1),
ξseq
k (i, j + 1), aseq

k (i, j + 1), Vseq
k (i, j + 1), f lower(i, j + 1).

9 j := j + 1.
10 end
11 Return f upper(i, j), f lower(i, j), and optimal solution ok(i, j) := (φseq

k (i, j),υseq
k (i, j),

ξseq
k (i, j), Vseq

k (i, j), aseq
k (i, j), nk(i, j), pk(i, j)).

intra-slice resource allocation in long timescale slot k = 0, . . . , K based on the branch-and-

bound technique and integrate Algorithm 3.1 in the inner iteration. This algorithm is shown in

Algorithm 3.2.

In Algorithms 3.1 and 3.2, we introduce set D(i) at node i to record the determined value

dt,l,u and the corresponding index for the user admission control variable at,l,u. In Algorithm

3.2, steps 7 − 14 depict the process to calculate the optimal solutions for the two child nodes

generated from the last chosen node. Steps 15 − 18 depict the process of choosing the

ending node with the greatest optimal objective value and initializing the two child nodes.

Theoretically, the worst case time complexity of Algorithm 3.2 is dominated by the branch-

and-bound technique, and is O(2n), where n is the total number of user admission control



Chapter 3. Two-Timescale Resource Management for Network Slicing in C-RAN 37

Algorithm 3.2: Global Algorithm for Resource Reservation and Intra-Slice Resource
Allocation in Long Timescale Slot k
1 Set i := 1, in which i represents the index of the node of the branch-and-bound

technique.
2 Initialize the admission control decision vector aseq

k (i) for the outer iteration by
randomly assigning a value within [0, 1] to each at,l,u(i), u ∈ Ut,l, t ∈ Tk, l ∈ L.

3 U relax
t,l (i) := Ut,l, t ∈ Tk, l ∈ L.

4 Initialize D(i) := ∅ to record the set of (dt,l,u, t, l, u) at the current node.
5 Initialize Fnode := ∅ to record the optimal values and solutions of ending nodes and the

indexes of the nodes.
/* Outer Iteration: Branch-and-Bound technique */

6 while ∃ at,l,u(i) ̸∈ {0, 1}, ∀u, t, l, do
7 s := 1.
8 while s ≤ 2 do

/* Inner Iteration: Primal-Relaxed Dual Technique */
9 Perform Algorithm 3.1, with input D(i), aseq

k (i), and U relax
t,l (i), t ∈ Tk, l ∈ L.

10 f := fupper(i,j)+f lower(i,j)

2
.

11 ok := ok(i, j).
12 Fnode := Fnode

∪
{(f,ok, i)}.

13 i := i+ 1, s := s+ 1.
14 end
15 (f ∗,o∗, i∗) := argminf∗{Fnode}; update aseq

k (i) and aseq
k (i+ 1) based on o∗;

Randomly choose at∗,l∗,u∗ /∈ {0, 1} in o∗.
16 D(i) := D(i∗)

∪
{(0, t∗, l∗, u∗)}, D(i+ 1) := D(i∗)

∪
{(1, t∗, l∗, u∗)}.

17 U relax
t∗,l∗ (i) := U relax

t∗,l∗ (i
∗)\{u∗}, U relax

t∗,l∗ (i+ 1) := U relax
t∗,l∗ (i

∗)\{u∗}.
18 Fnode := Fnode\{(f ∗,o∗, i∗)}.
19 end
20 Return −f ∗.
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variables. However, in practice, the algorithm can run fast as only a small number of nodes are

searched before reaching the optimal solutions.

3.3 Performance Evaluation

3.3.1 Simulation Environment and Parameter Setup

The coverage area of the C-RAN network is 300 × 300 m2. It is divided into nine regions.

Each region is 100× 100 m2 with an RRH at its center. Thus, the number of RRHs is 9. Each

RRH is equipped with two antennas. The total bandwidth is 20 MHz, which is divided into 20

sub-channels. The channel model consists of path loss and small scale fading which follows

Rayleigh fading. The reference distance for path loss estimation is 2 m. The path loss exponent

is 3.6. The mean channel vector h̄t,u of user u ∈ Ut in short timescale slot t ∈ Tk is determined

by the path loss. The noise power σ2 is −101 dBm, and the noise of each user follows the

zero-mean complex Gaussian distribution with variance σ2. We set the interference threshold

I = 28σ2. The duration of each long timescale slot and short timescale slot are 20 minutes

and 5 seconds, respectively. The sub-channel reservation cost c1 is set to be $0.05. The power

reservation cost c2 is set as $0.05. The reward α is $0.005. The penalty β is $0.003. The arrival

process of users follows Poisson distribution. The average user arrival rate χk,m, m ∈ M is

chosen uniformly within [χ̄−∆χ, χ̄+∆χ], ∆χ = 1 (number of users per short timescale slot).

The sojourn time of users follows the uniform distribution within [2, 10], the unit of which is

a short timescale slot. The normalized size ε̃2t,l,u of CSI uncertainty set is chosen uniformly

within [ε̄2 − ∆ε̄2, ε̄2 + ∆ε̄2], ∆ε̄2 = ε̄2

2
. In our simulation, dividing the coverage area into
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disjoint regions is only for characterizing different statistics of user traffic in different regions.

The RRHs located in different regions are still able to coordinate together to serve each user.

3.3.2 Algorithm Properties
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Figure 3.3: Convergence of Algorithm 3.1 with different average user arrival rate χ̄ (number of
users per short timescale slot), rreq = 1.5 Mb/s, ε̄2 = 0.05.

In this section, we evaluate the properties of the proposed algorithm. We first conduct

simulations to evaluate the impact of user traffic on the convergence of Algorithms 3.1 and 3.2.

The simulation results are shown in Figs. 3.3, 3.4 and 3.5. Fig. 3.3 shows the convergence of

Algorithm 3.1. Each iteration represents the process of solving problems (3.22) and (3.25) to

obtain an upper bound and lower bound. The algorithm converges when the gap between the

upper bound and lower bound is smaller than a predetermined threshold. As the average user

arrival rate χ̄ (number of arrived users per short timescale slot) increases, the convergence rate

becomes slower. This is because that larger χ̄ leads to a larger number of users in the coverage
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Figure 3.4: Outer iteration convergence of Algorithm 3.2, rreq = 1.5 Mb/s, ε̄2 = 0.05, χ̄ = 2
(number of users per short timescale slot).

area, thus a larger number of variables to be solved at each iteration in Algorithm 3.1. However,

the difference among convergence rates under different χ̄ is negligible. So we can conclude

that the user traffic variation only has a minor impact on the convergence of Algorithm 3.1.

Figs. 3.4 and 3.5 show the outer iteration convergence of Algorithm 3.2 with the average

user arrival rate χ̄ = 2 (number of arrived user per short timescale slot) and χ̄ = 4 (number of

arrived user per short timescale slot), respectively. Each iteration consists of obtaining the

converged solution of Algorithm 3.1 at the two child nodes generated from the last node,

preceding to the node with the greatest optimal objective value, and generating two new child

nodes. The algorithm converges when we obtain an integer solution of aseq
k with the greatest

optimal objective value among all ending nodes. In Fig. 3.5, χ̄ = 4, which is larger than χ̄ = 2

in Fig. 3.4. So, there is a larger number of users in the system, which leads to a larger number
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Figure 3.5: Outer iteration convergence of Algorithm 3.2, rreq = 1.5 Mb/s, ε̄2 = 0.05, χ̄ = 4
(number of users per short timescale slot).

of user admission control variables of at,l,u. Therefore, for branch-and-bound technique, it

takes longer time to find integer solutions for all at,l,u, u ∈ Ut,l, l ∈ L, t ∈ Tk. In this case, the

convergence rate in Fig. 3.5 is slower than that in Fig. 3.4. However, the convergence is still

fast in practice, compared with the theoretical worst case complexity of O(2n). This is because

that at the first iteration of Algorithm 3.2, at,l,u for those users with good channel quality are

directly assigned to be one. Meanwhile, for those users with really bad channel quality, at,l,u

are directly assigned to be zero. Then, the branch-and-bound technique only needs to justify

the optimal integer solutions of at,l,u for a small number of users.

As discussed in Section 3.2.2, we can not get the exact optimal solution and the optimal

profit for two reasons. First, we introduced a maximum interference threshold. Second, we

applied semidefinite relaxation. The semidefinite relaxation has been analyzed in Appendix
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Figure 3.6: Impact of maximum interference threshold on optimal profit, rreq = 1.5 Mb/s,
ε̄2 = 0.05.

A. In this part, we focus on evaluating the impact of maximum interference threshold on

the optimal profit. As shown in Fig. 3.6, We find that the optimal profit increases and

then decreases slightly as I increases. Thus, a suitable I can be obtained by running offline

simulations. We can also find that the changes of the optimal profit with different I/σ2 is not

obvious, so the optimal profit is not very sensitive to the choice of I/σ2.

3.3.3 Profit Comparison

We evaluate the performance of the proposed scheme with four other baseline schemes. In

baseline schemes I and II, we maximize the profit obtained by the tenant. But in baseline

scheme I, we only consider the CSI uncertainty. In baseline scheme II, we only consider the

user traffic variation. We use these two baseline schemes to characterize the impact of user

traffic variation and CSI uncertainty on the optimal profit. In baseline schemes III and IV,
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Figure 3.7: Profit comparison with different average user arrival rate χ̄ (number of users per
short timescale slot), rreq = 1.5 Mb/s, ε̄2 = 0.05.

both CSI uncertainty and user traffic variation are considered, but the resource management

schemes are slightly different from our proposed scheme. In baseline scheme III, we maximize

the profit of the tenant while accepting all service requests from the users. This scheme is

based on several resource management schemes for C-RAN which do not consider the user

admission control [32,33]. In baseline scheme IV, we maximize the profit of the tenant. In this

scheme, the beamforming and user-centric RRH clustering are separated into two processes.

User-centric RRH clustering is performed first for each new arrived user. Then, beamforming

is designed for the user according to real-time network conditions.

Fig. 3.7 shows that the profit of the proposed scheme is larger than the profit of the four

baseline schemes under different average user arrival rate χ̄ (number of arrived users per short

timescale slot). Meanwhile, with the increasing of χ̄, the superiority of the proposed scheme
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Figure 3.8: Profit comparison with different QoS requirements rreq (Mb/s), χ̄ = 3 (number of
users per short timescale slot), ε̄2 = 0.05.

in terms of the profit is more obvious compared with the four baseline schemes. It is because

that higher revenue can be obtained from serving more users and the impact of the traffic

variation and CSI uncertainty become more significant. Moreover, as the average user arrival

rate increases, the increasing rate of the proposed scheme becomes slower. The reason for this

behavior is that larger χ̄ leads to a larger number of users that may be close to each other in the

coverage area. To mitigate interference, more resources need to be reserved, leading to higher

resource reservation cost. We also find that the profit of baseline scheme III is close to the profit

of the proposed scheme when χ̄ is no larger than 5. The reason is that when the number of users

in the coverage area is small, the proposed scheme also tends to accept most of the users. The

gap between the proposed scheme and baseline scheme III is due to the fact that the proposed

scheme will reject users with really bad channel quality to save resources. The gap between
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Figure 3.9: Profit comparison with different average normalized size ε̄2 of CSI uncertainty set,
rreq = 1.5 Mb/s, χ̄ = 3 (number of users per short timescale slot).

the proposed scheme and baseline scheme IV is due to the fact that our proposed scheme is

more flexible to the network condition variations by designing user-centric RRH clustering and

beamforming simultaneously.

Fig. 3.8 shows that the profit of the proposed scheme is larger than the profits of the four

baseline schemes under different data rate requirement rreq. When rreq is large, the proposed

scheme can achieve more than 16% profit improvement compared with the performance of the

four baseline schemes. It is because higher data rate leads to higher revenue per user, making

it more important to consider the user traffic variation and CSI uncertainty to obtain higher

revenue from all users.

Fig. 3.9 shows that the proposed scheme achieves a higher profit compared with four

baseline schemes under different choices of average normalized size ε̄2 of CSI uncertainty set.
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Meanwhile, for most choices of ε̄2, the proposed scheme can achieve a higher profit compared

with baseline scheme II, which does not consider the CSI uncertainty. When ε̄2 is close to zero,

the CSI uncertainty is not fully considered for QoS guarantee in the proposed scheme. Thus,

the gap of the profits between these two schemes is close to zero. With the increase of ε̄2, higher

profit can be obtained by the proposed scheme according to revenue function (3.4). However,

when ε̄2 is larger than 0.15, the profit will not increase further. It is because when ε̄2 is large,

most of the CSI variations are considered in the CSI uncertainty set, and it is unnecessary to

further increase ε̄2.

3.3.4 Resource Reservation and Allocation Performance
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Figure 3.10: Total reserved power with different average user arrival rate χ̄ (number of
users per short timescale slot) and different average normalized size ε̄2 of CSI
uncertainty set, rreq = 1.5 Mb/s.

In this section, we evaluate the performance of the proposed scheme in terms of the resource
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Figure 3.11: Power assigned to a user from all RRHs, rreq = 1.5 Mb/s, χ̄ = 3 (number of users
per short timescale slot), ε̄2 = 0.05.

reservation and allocation corresponding to different network conditions. Fig. 3.10 shows the

decision of power reservation under different conditions of user traffic and CSI uncertainty.

The total amount of reserved power increases as the average user arrival rate χ̄ increases in

order to guarantee QoS requirements of more users. Meanwhile, the amount of reserved power

increases as the average normalized size ε̄2 of CSI uncertainty set increases. When ε̄2 is getting

smaller, the reserved amount of power will converge to the value of the reserved amount of

power under the CSI certainty scenario. When ε̄2 is large, the increasing rate of the reserved

amount of power will become small to avoid high power reservation cost.

Fig. 3.11 shows the power allocated to a certain user in a certain short timescale slot from all

the RRHs by intra-slice resource allocation. From this figure, we notice that the power allocated

to the user varies with different RRHs. The RRHs that are close to the user will allocate more
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power to the user and the RRHs that are far away from the user will almost allocate no power

to the user to save energy and reduce resource reservation cost. Therefore, the beamforming

designed in our proposed scheme can help achieve user-centric RRH clustering.
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Chapter 4

Conclusion and Future Work

In this chapter, we conclude the thesis by summarizing the research work. We also suggest

some possible extensions for future wok.

4.1 Conclusion

In this thesis, we proposed a resource management framework for network slicing in C-

RAN from the perspective of each tenant. We maximized the profit of each tenant while

characterizing the user traffic variation and CSI uncertainty by proposing a two-timescale

resource management approach. To tackle two key challenges of user traffic variation and CSI

uncertainty, we designed long timescale resource reservation with the statistical knowledge

of user traffic, and designed short timescale intra-slice resource allocation, which is adaptive

to arbitrary arrival/departure of users. The uncertainty set was applied for CSI uncertainty

characterization to achieve robust intra-slice resource allocation for QoS guarantee. We

formulated the profit maximization as a two-stage stochastic programming problem. We

transformed the stochastic programming problem to a deterministic optimization problem, and

performed QoS constraint approximation and semidefinite relaxation. We then applied branch-

and-bound and primal-relaxed dual techniques to solve the problem. We conducted extensive

simulations to evaluate the performance of our scheme. Based on the simulation results, we
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concluded that the convergence of the proposed scheme can be fast. The proposed scheme can

achieve higher profit compared with other baseline schemes.

4.2 Future Work

In terms of future work, possible extensions are as follows:

1. In this thesis, we considered the required data rate as the QoS requirement needed to be

guaranteed by each tenant. We proposed a profit model based on this QoS requirement.

In 5G wireless systems, there are various types of services requiring different QoS.

For example, ultra-reliable low-latency communications (URLLC) require low data

transmission delay and high probability of successful data transmission. Massive

machine type communications (mMTC) require efficient connectivity for a massive

number of devices. Therefore, in our future work, we can consider new metrics for

designing new QoS models under different types of services. Meanwhile, we can

consider different profit models with revenue and cost functions according to different

types of services.

2. In this thesis, we considered the profit maximization for a single tenant, and assumed that

the resource reservation requests from the tenant can always be satisfied. In the future

work, we can consider the scenario where multiple tenants coexist in the network. In this

scenario, due to the limitation of network resources, the resource reservation request from

each tenant may not always be satisfied. Therefore, we can apply auction and bidding

techniques to formulate a new resource management framework for multiple tenants.
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3. In this thesis, we assume constant durations of each long timescale slot and each short

timescale slot. In the future work, we can consider the durations of the long timescale

slot and short timescale slot as two variables to be optimized for achieving real-time

adaptation to network conditions while controlling the computation cost.
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Appendix A

Proof of Theorem 3.1

We follow approaches introduced in [45,46] to prove Theorem 3.1. For the optimal solution of

problem (3.21), if the rank of any optimal beamforming matrix is larger than one, we consider

the following optimization problem:

minimize
ok

c1nk +
c2
LT

∑
l∈L

∑
t∈Tk

∑
u∈Ut,l

Tr(Vt,l,u)−
L∑
l=1

ωl

∑
t∈Tk

∑
u∈Ut,l

Y new
t,l,u(at,l,u)

subject to constraints (3.6c), (3.12d)−(3.12g), (3.17), (3.19),

(3.20a)−(3.20e).

(A.1)

Problem (A.1) is a transformation of problem (3.21) by replacing
∑

b∈B c2pk,b with c2
LT

∑
l∈L∑

t∈Tk

∑
u∈Ut,l

Tr(Vt,l,u) in the objective function. In problem (3.21),
∑

b∈B c2pk,b in the

objective function represents the cost of power reservation, where
∑

b∈B pk,b serves as the

upper bound for intra-slice power allocation in each short timescale slot for each realization

of U seq
k . In problem (A.1), 1

LT

∑
l∈L
∑

t∈Tk

∑
u∈Ut,l

Tr(Vt,l,u) represents the average power

consumption over short timescale slots, and c2
LT

∑
l∈L
∑

t∈Tk

∑
u∈Ut,l

Tr(Vt,l,u) can be regarded

as the corresponding cost. We now prove that by solving problem (A.1), we obtain the optimal

beamforming matrix, the rank of which is guaranteed to be either one or zero. Rank one

solution indicates that the service request of the corresponding user is accepted, i.e., at,l,u = 1.

Rank zero solution indicates that the service request of the corresponding user is rejected, i.e.,
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at,l,u = 0.

We first obtain the Lagrangian of problem (A.1) but only focus on the terms that are related

with out proof. The Lagrangian is given as follows:

Γ(Vseq
k ,φseq

k ,υseq
k , ξseq

k , aseq
k , nk,pk,Λ)

=
∑
l∈L

∑
t∈Tk

∑
u∈Ut,l

Tr

(
Vt,l,u

(
c2
LT

IAB + nk

∑
b∈B

ϱt,l,bB
H
b Bb −Qt,l,uL1,t,l,uQ

H
t,l,u

+
∑

u′∈Ut,l\{u}

Qt,l,u′L2,t,l,u′QH
t,l,u′ − L3,t,l,u

+△,

(A.2)

where △ represents the collection of the terms in the Lagrangian that are not related with our

proof, Λ contains all the dual variables, ϱt,l,b is the dual variable for constraint (3.20b), L1,t,l,u

is the dual matrix for constraint (3.17), L2,t,l,u is the dual matrix for constraint (3.19), L3,t,l,u is

the dual matrix for constraint (3.20e).

We focus on the following KKT conditions that are related with our proof:

∇Vt,l,u
Γ(Vseq

k ,φseq
k ,υseq

k , ξseq
k , aseq

k , nk,pk,Λ)|ōk,Λ̄ = OAB, u ∈ Ut,l, t ∈ Tk, l ∈ L (A.3)

L̄3,t,l,uV̄t,l,u = OAB, u ∈ Ut,l, t ∈ Tk, l ∈ L (A.4)(
S1,t,l,u(φ̄

seq
k , ῡseq

k ) +QH
t,l,uV̄t,l,uQt,l,u

)
L̄1,t,l,u = OAB+1, u ∈ Ut,l, t ∈ Tk, l ∈ L (A.5)

L̄2,t,l,u ≽ 0, u ∈ Ut,l, t ∈ Tk, l ∈ L (A.6)

V̄t,l,u ≽ 0, u ∈ Ut,l, t ∈ Tk, l ∈ L (A.7)

ϱ̄t,l,u ≥ 0, u ∈ Ut,l, t ∈ Tk, l ∈ L (A.8)

ῡt,l,u ≥ 0, u ∈ Ut,l, t ∈ Tk, l ∈ L, (A.9)
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where ōk , (V̄seq
k , φ̄seq

k , ῡseq
k , ξ̄seq

k , āseq
k , n̄k, p̄k) and Λ̄ represents the optimal solutions of

problem (A.1) and the corresponding optimal dual variables, respectively. We also have

S1,t,l,u(φ̄
seq
k , ῡseq

k ) =

ῡt,l,uIAB 0AB

0H
AB −φ̄t,l,u(I + σ2)− ῡt,l,uε

2
t,l,u

 . (A.10)

By considering (A.3) and (A.4), we have

Xt,l,uV̄t,l,u = Qt,l,uL̄1,t,l,uQ
H
t,l,uV̄t,l,u, u ∈ Ut,l, t ∈ Tk, l ∈ L, (A.11)

where Xt,l,u , c2
LT

IAB + n̄k

∑
b∈B ϱ̄t,l,bB

H
b Bb +

∑
u′∈Ut,l\{u}Qt,l,u′L̄2,t,l,u′QH

t,l,u′ . Moreover,

since n̄k > 0, ϱ̄t,l,b ≥ 0 and Qt,l,u′L̄2,t,l,u′QH
t,l,u′ ≽ 0, we have Xt,l,u ≻ 0. Then, we have

Rank(V̄t,l,u)

= Rank(Xt,l,uV̄t,l,u)

= Rank(Qt,l,uL̄1,t,l,uQ
H
t,l,uV̄t,l,u)

≤ min
{

Rank(Qt,l,uL̄1,t,l,uQ
H
t,l,u),Rank(V̄t,l,u)

}
, u ∈ Ut,l, t ∈ Tk, l ∈ L. (A.12)

To evaluate Rank(Qt,l,uL̄1,t,l,uQ
H
t,l,u), we post-multiply QH

t,l,u to (A.5) and obtain

St,l,u(φ̄
seq
k , ῡseq

k )L̄1,t,l,uQ
H
t,l,u +QH

t,l,uV̄t,l,uQt,l,uL̄1,t,l,uQ
H
t,l,u = O(AB+1)×AB,

u ∈ Ut,l, t ∈ Tk, l ∈ L. (A.13)

We then pre-multiply the left-hand side of (A.13) by [IAB 0AB]. Considering that Qt,l,u =

[IAB h̄t,l,u], we have
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[IAB 0AB]St,l,u(φ̄
seq
k , ῡseq

k )L̄1,t,l,uQ
H
t,l,u + [IAB 0AB]Q

H
t,l,uV̄t,l,uQt,l,uL̄1,t,l,uQ

H
t,l,u = OAB

⇔ ῡt,l,u[IAB 0AB]L̄1,t,l,uQ
H
t,l,u + IABV̄t,l,uQt,l,uL̄1,t,l,uQ

H
t,l,u = OAB

⇔ ῡt,l,uQt,l,uL̄1,t,l,uQ
H
t,l,u + V̄t,l,uQt,l,uL̄1,t,l,uQ

H
t,l,u = ῡt,l,u[OAB h̄t,l,u]

⇔ (ῡt,l,uIAB + V̄t,l,u)Qt,l,uL̄1,t,l,uQ
H
t,l,u = ῡt,l,u[OAB h̄t,l,u], u ∈ Ut,l, t ∈ Tk, l ∈ L. (A.14)

Based on the derivation in (A.14), we now calculate the rank of matrix Qt,l,uL̄1,t,l,uQ
H
t,l,u.

Without the loss of generality, we consider two cases of ῡt,l,u. The first case is that ῡt,l,u ̸= 0,

and the second case is that ῡt,l,u = 0.

Case 1: ῡt,l,u ̸= 0. According to (A.7) and (A.9), we can claim that the inverse matrix of

ῡt,l,uIAB + V̄t,l,u exists. Based on the derivation in (A.14), we have

Rank(Qt,l,uL̄1,t,l,uQ
H
t,l,u)

= Rank(ῡt,l,u(ῡt,l,uIAB + V̄t,l,u)
−1[OAB h̄t,l,u])

≤ Rank([OAB h̄t,l,u]) = 1. (A.15)

Then we have

Rank(V̄t,l,u) ≤ min
{

Rank(Qt,l,uL̄1,t,l,uQ
H
t,l,u),Rank(V̄t,l,u)

}
≤ 1,

u ∈ Ut,l, t ∈ Tk, l ∈ L. (A.16)

For user u ∈ Ut,l, if the service request is rejected, i.e., āt,l,u = 0, according to constraints

(3.12d), (3.17) and (3.19), it is possible that Rank(V̄t,l,u) = 0, indicating that no power will be
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assigned to the user. If the service request of user u ∈ Ut,l is accepted, i.e., āt,l,u = 1, in order

to guarantee QoS requirement (3.12d), Rank(V̄t,l,u) = 1 is required.

Case 2: ῡt,l,u = 0. In this case, we have

V̄t,l,uQt,l,uL̄1,t,l,uQ
H
t,l,u = OAB. (A.17)

According to (A.11), we have

V̄t,l,uXt,l,u = OAB. (A.18)

Since that Xt,l,u ≻ 0, we have V̄t,l,u = OAB. For user u ∈ Ut,l, l ∈ L, t ∈ Tk whose service

request is accepted, i.e., āt,l,u = 1, V̄t,l,u = OAB contradicts the QoS constraint (3.12d). In

this case, ῡt,l,u = 0 will not happen. For user u ∈ Ut,l, l ∈ L, t ∈ Tk whose service request

is rejected, V̄t,l,u = OAB is reasonable as no power will be assigned to the user. In this case,

ῡt,l,u = 0 will happen.

Thus, for both Case 1 and Case 2, we have Rank(V̄t,l,u) ≤ 1.
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