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Abstract

Allocating authority appropriately between humans and machines in shared con-

trol applications is crucial for the performance of the system. Particularly in the

context of collaborative wheelchairs, the arbitration should be sensitive to user

needs and preferences in order to avoid confusion and frustration. Current ap-

proaches to shared control for wheelchair navigation have been designed to handle

objective and functional information such as goals and system states with limited

analyses to subjective information such as the user’s feelings when an assisted

driving intervention is introduced. This thesis explores user affective responses

on smart-wheelchairs as a potential communication channel through which users

could interact more effectively with their smart mobility device. We present an

implementation of shared control paradigms from the smart-wheelchair literature

and results from a study where participants reported their affective interpretation

of the emerging behaviours.
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Lay Summary

Emotions play a meaningful role in social interactions and human behaviour. The

same applies to interactions between human and robots when they are trying to

work together to achieve a common goal. The objective of this thesis is to inves-

tigate how humans perceive non-verbal behaviours in robotic mobility assistance

technologies at an emotional level. In this work, multiple assisted driving inter-

ventions were implemented on a smart-wheelchair and judged according to three

basic dimensions of emotion: evaluation, potency, and activity. Based on this work,

we aim to inform the design of emotion-aware collaboration strategies for smart-

wheelchairs which deliver not only the right amount of assistance but also provide

it in a way that best aligns with the user’s preferences and emotional states.
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Chapter 1

Introduction

The world’s aging population is growing, and so is the demand for technologies

that support healthy aging. Mobility is fundamental for older adults to maintain

their wellness and independence. Mobility limitations have been associated with

negative social, mental, and physical outcomes such as poor performance of daily

activities, social isolation, depression, and anxiety [1]. Older adults represent the

largest group of users of wheeled mobility devices, and it is estimated that 49%

of older adults living in Canadian institutional settings use a wheelchair [2, 3].

While traditional manual wheelchairs satisfy the needs of many individuals, a sig-

nificant segment of the older adult community finds it difficult or even impossible

to propel themselves, due to further physical, perceptual, and/or cognitive limi-

tations [4]. The potential of powered wheelchairs to enhance the well-being of

older adults and support independent mobility is well documented; some of the

benefits of independent mobility include improved self-esteem [5], increased lev-

els of activity and social participation [6], decreased dependence on caregivers and

family members [7], reduced pain and discomfort, and overall improvement on

quality of life [8]. Nonetheless, older adults often experience a range of additional

challenges such as cognitive and sensory impairments or other motor and coordi-

nation conditions [9]. Unfortunately, difficulties related to such conditions result

in the exclusion of older adults with cognitive impairments from utilizing powered

wheelchairs due to safety concerns for the users and those around them [2].

To support independent mobility among this population, researchers have lever-
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aged technologies initially developed for mobile robots to create smart-wheelchairs [4].

A smart-wheelchair typically consists of a standard powered wheelchair customized

with a computer and a collection of sensors [10]. The majority of such systems aim

to increase safe and independent mobility by providing assisted driving interven-

tions for collision avoidance and navigation support [11]. However, these systems

typically focus on objective and functional information such as goals, and system

states with limited analyses to subjective information such as the driver’s emotions

when an assisted driving intervention occurs.

In this thesis, we analyze the effects of various assisted driving behaviours of

a powered wheelchair at an emotional level as a potential communication channel

to enhance the user experience the overall system performance. Emotional factors

play a significant role in decision making [12], and have been found to be crucial

for enhanced safety and comfort in driving tasks [13]. Moreover, recent research

regarding older adults with dementia shows evidence that emotional processing

remains considerably more intact than cognitive processing [14, 15]. In light of

this finding, we propose to incorporate the user’s affect as a state variable that can

potentially inform the design and operation of assisted driving interventions, as it

may enhance the usability of such systems.

1.1 Research goal
The long term goal of our research is to fulfill the mobility needs of older adults

with mild to moderate cognitive impairments to safely and independently navigate

a powered wheelchair. The aim of the work described in this thesis is to investigate

users’ affective response to driving intelligent wheelchairs under different navi-

gation assistance modes. Specifically, we want to know whether different types

of shared (or collaborative) control interventions have similar patterns of affective

meanings, and if such responses are consistent across different emotion-measuring

instruments. Through the study described herein, we aim to answer the following

primary research questions:

1. What affective interpretation do users attribute to different smart wheelchair

behaviours? Are those interpretations consistent across users?

2. How does the user’s affective state change when interacting with various
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wheelchair behaviours? Moreover, are those changes consistent across users

and consistent with the affect attributed to the wheelchair?

Much of the motivation for our research lies in designing assistive technologies

that adapt to people’s needs by acknowledging that emotions significantly influence

human behaviour. If the different wheelchair assistance modes have consistent

affective ratings and we can predict the user’s affective state reliably, we can design

a system that switches between assistance modes according to the user’s emotions

in addition to traditional objectives such as safety, ease of use or timeliness. A

future goal of this research is to identify the features in the driving experience that

correlate with specific affective states. For example, more than recognizing very

strong emotions like anger or fear, we want to answer questions such as what kind

of events make users feel calm or nervous or frustrated? We intend to use the

principles of affect control theory (ACT) to address these questions and potentially

develop an emotion-aware smart-wheelchair.

1.2 Contributions
Within the smart-wheelchair literature, the most common way to validate a shared-

control paradigm is to compare it against no intervention, full automation, or a

simple blending strategy. However, little attention has been paid to evaluating the

driver’s feelings when the interventions are introduced. For example, the collabo-

rative system may be able to sense that there is not enough clearance to go through

a particular space, or it may know a better path (according to the planner’s qual-

ity metric), but depending on how this information is delivered to and assimilated

by the user, they can become confused or anxious when the wheelchair appears to

act on its own. Moreover, the cognitive capabilities of older adults may change

quickly over time, even as fast as in the course of the day. For example, demen-

tia patients and elderly institutionalized patients often experience “sundowning,” a

phenomenon of disruptive behaviour and agitation worsening in the late afternoon

or evening [16]. Therefore, we believe that a smart-wheelchair system for older

adults with cognitive impairment should be more aware of the driver’s current af-

fective state in order to deliver the right amount of assistance. The contributions of

this work are:
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• Implementation of a set of assisted driving interventions for powered wheelchairs

based on shared control policies described in the literature, including low-

level collision avoidance and high-level goal pursuit.

• Design and execution of an experiment to assess the effects of these interven-

tions on the driver’s emotions by characterizing the behaviours with respect

to three basic dimensions of emotional experience.

1.3 Document organization
The remainder of this thesis is organized into four chapters. Chapter 2 outlines

related work in the fields of human-robot collaboration, smart-wheelchairs, and

emotion-aware assistive technologies. Chapter 3 illustrates the hardware and com-

ponents of our smart-wheelchair and provides details on the assisted driving algo-

rithms implemented. Chapter 4 is dedicated to the two research questions listed

before. It describes the design and findings of an exploratory study conducted

to understand the affective responses to wheelchair assisted driving interventions.

Chapter 5 presents our conclusions and possible future directions for this research.
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Chapter 2

Background

In this chapter, we elaborate on two streams of research: shared control and af-

fective computing. Following this is an overview of related work on addressing

emotions in driving contexts as well as assistive technologies for older adults.

2.1 Shared control in human-machine collaboration
Over the last decades, the limitations on human-machine interaction have been

widely reported [17]. While autonomous solutions to many well-structured situa-

tions have been accepted in our society, there are still many tasks where a high

level of automation is not suitable as it can lead to undesirable effects, espe-

cially in the control of safety-critical dynamic processes in unpredictable environ-

ments [18]. For example, in the automotive field, Advanced Driving Assistance

Systems (ADAS) are becoming increasingly popular while entirely autonomous ve-

hicles still face acceptance challenges [19]. An alternative solution to complete au-

tomation is shared control. In a shared control framework, a single control signal

is generated by combining control signals from multiple agents; for example, a hu-

man controller and some form of automation. The main objective of shared control

is to keep the human in the control loop while providing continuous support [17].

Such approaches have been explored in a variety of applications; for example, min-

imally invasive telesurgical training [20], manipulator teleoperation [21], aircraft

piloting [22], and automotive applications [23, 24].
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Shared control differs from supervisory control where the user manages the

robotic system while it behaves autonomously [25] and switched control in which

the person and the automation exchange turns in generating the control signal ac-

cording to some system states [26].

Two prominent categories of shared control can be distinguished in the liter-

ature, namely mixed-initiative shared control and haptic shared control [17]. In

mixed-initiative systems, the control signal is a combination of the output of the

human’s control interface and the output of some autonomous system. For ex-

ample, adaptive cruise control in which a drive-by-wire system adjusts the speed

to maintain a time-based separation from the vehicle in front. For haptic shared

control, the final control input is determined by an interface on which both the hu-

man and the automation can exert forces [18]; for example, an automobile steering

wheel which pushes against the driver’s hands to prevent lane departure.

2.1.1 Smart-wheelchairs and older adults

Even though powered wheelchairs are becoming an increasingly common solution

to enable independent mobility, a significant portion of older adults are not allowed

to use one due to cognitive, motor, and/or sensory impairment [2]. The potential

of smart-wheelchairs has been recognized since the 1980s to help overcome the

safety and usability concerns and enable safeguarded mobility for everyone [27].

Diverse software and hardware solutions have been developed by numerous re-

search groups to enable safe and independent mobility using powered wheelchairs.

While fully autonomous solutions have been proposed, it has been observed that

powered wheelchair users want to remain active drivers, and cede only the mini-

mum control possible to the machine [27, 28]. Furthermore, a fully autonomous

wheelchair might have adverse outcomes, such as loss of residual cognitive capa-

bilities [29], or user confusion and frustration when the automation generates mo-

tion in a situation where the user was not expecting such action. Since high levels of

automation can lead to undesirable effects, many smart-wheelchairs offer a variety

of semi-autonomous control modes. Most commonly, the semi-autonomous modes

use shared control through input mixing, where the resulting motion is the combi-

nation of the output of some robotic planner and the user’s commanded velocity
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coming from an input device such as a 2-axis joystick or a sip-and-puff interface.

The main objective of using such a framework for wheelchair navigation, is to keep

the human in the control loop while providing continuous support. For example,

humans are typically good at making global plans, whereas machines are good at

fine motion control. Thus, shared control complements the user’s skills rather than

removing them from the equation.

For collaborative systems such as the smart-wheelchair, how and when the au-

tomation intervenes are two issues that determine the overall effectiveness of the

system [30]. Moreover, finding the optimal parameter which dictates how much

control is allocated to the user and how much to the robotic planner is a hard prob-

lem because it depends on the kinematics of the wheelchair, the task, the envi-

ronment, the control interface, and the user’s capabilities. For further comprehen-

sive reviews of smart-wheelchair development, we encourage the reader to refer

to [4, 10, 31]. In Section 3.3 we will discuss the specifics of some shared control

policies for wheelchair navigation which range from low level collision-avoidance

to high-level way-finding assistance.

2.2 Affective computing
Although the study of emotions dates back to the nineteenth century, the field of

Affective Computing (AC) is relatively young. It is an interdisciplinary field join-

ing computer science, engineering, psychology, neuroscience, and many other dis-

ciplines. The field was introduced in 1995 by Rosalind Picard [32] who defined it

as “computing that relates to, arises from, or influences emotions.” Research work

in the field includes building machines that have affective abilities such as recog-

nizing, expressing, modelling, and responding to emotion to improve interactions

between the sensitive human and the unemotional computer [33, 34]. The reader is

referred to [34–37] for in-depth literature reviews and descriptions of AC methods

and applications. The following sections elaborate on AC topics pertinent to our

research.
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2.2.1 Affect models

If we want to build machines that understand and react to human emotions, we need

to be able to represent affect in a way that a machine can reason with. Affective

computing researchers have incorporated theories of emotion proposed by psychol-

ogists in order to describe emotions and other affective states. Three affect mod-

elling paradigms derived from emotion theories dominate the AC literature: cate-

gorical, dimensional and appraisal-based approaches [38]. Categorical approaches

view emotions as discrete labels and state that there is a moderate number of dis-

crete emotions which can be recognized universally (e.g., anger, sadness, fear).

However, these approaches lack granularity, in the sense that they do not account

for subtle and rather complex affective states that humans can experience [38]. In

contrast, dimensional frameworks state that emotions can be described in a lim-

ited number of underlying dimensions, although the specific dimensions vary from

model to model [39]. One of the most popular dimensional approaches used by

AC researchers is Russell’s circumplex model of affect [40]. This theory posits that

affective states can be represented by a two-dimensional spatial model in which

affective concepts are organized in terms of abstract dimensions called valence

(pleasant vs. unpleasant) and arousal (relaxed vs. aroused). Appraisal-based ap-

proaches claim that emotions are elicited through evaluations of the individual’s

internal state and the state of the world [41]. In other words, specific emotions

arise from the person’s expectations and goals in relation to the situation [36]. The

Ortony, Clore and Collins’s (OCC) model of emotion [42] is one of such mod-

els widely used in affective science and one of the most influential for emotion

synthesis [43].

Affect control theory

Affect Control Theory (ACT) [44, 45] is a formalized mathematical framework for

modelling emotion in social interactions. ACT postulates that an individual’s ac-

tions and emotional experiences are governed by the need to confirm established

sentiments about their self-identities and the identities of others. ACT’s models

and predictions can be applied to human-computer interaction, making it suitable

for the design and development of emotionally intelligent systems [46, 47]. We
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think of the smart-wheelchair as a social agent that should adapt to individual emo-

tional states so we choose ACT as our emotion modelling framework. Furthermore,

ACT has been used for developing emotion-aware assistive technologies for older

adults with cognitive impairment (an overview of this application will be discussed

in Section 2.3.2).

Evaluation, potency, and activity

The ACT framework and tools use a dimensional paradigm and have been con-

structed through a tradition of empirical psychological research. The three funda-

mental dimensions on which actors, actions, and objects are analyzed are Evalua-

tion, Potency, and Activity (EPA). Evaluation describes whether the concept con-

veys a positive or negative emotion (good vs. bad). Potency describes the intensity

of the emotion (powerful vs. powerless), and activity distinguishes between pas-

sive and active emotions (lively vs. calm). For example, the concept “grandparent,”

the general sentiment about grandparents is that they are quite good and helpful,

deep and powerful, and quiet and meditative. On the other hand, most people agree

that children are also good, but they are small and weak, and quite active and noisy.

Each of these aspects can be felt at different levels; something can be slightly good,

others moderately or even extremely good. These dimensions form a quantifiable

semantic space in which the connotative meaning of any concept, object or event

can be specified [48]. Moreover, the resulting EPA profiles are used in ACT for

predictions on how events transform social situations.

EPA profiles can be measured using the Semantic Differential (SD), an affective-

meaning measuring technique based on a combination of associational and scaling

procedures. The custom is to represent goodness, powerfulness, and liveliness us-

ing positive numbers; and negative numbers for representing things that are bad,

powerless, or passive. A typical range of values used in the EPA framework is

[−4.3,4.3]. The SD can reveal nuances in meaning which are clearly felt but hard

to verbalize. Further, it yields quantitative data which are presumably verifiable, in

the sense that other investigators can apply the same set of scales to similar subjects

and obtain essentially the same result [48].

This theory provides the framework for the work reported in this thesis. Based
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on the premise that any emotion-eliciting event can be described within the se-

mantic differential space, we used the EPA dimensions of affective meaning to

characterize the behaviours of the shared control wheelchair as a first step toward

building an emotionally-intelligent wheelchair.

2.2.2 Affective robotics

Given that affective processes play an essential role in human behaviour, we can in-

tuitively think of using emotion to enhance robot performance. Arkin and Moshk-

ina [49, 50] identify at least two relevant roles for the inclusion of affect in robotic

systems: social interaction and survivability. Social robotics serves to enable robots

to relate to humans in predictable and natural ways by providing a means and mech-

anism for increasing the bandwidth in communication, using nonverbal methods to

enhance the relationship between artifact and person [50]. Its applications include

education, health, quality of life, entertainment, and collaborative teamwork [51].

For example, “Pepper” is a social humanoid robot capable of recognizing faces and

basic human emotions and is currently used as a service robot in retail and financial

institutions1. Substantial research in social robotic systems has worked to facilitate

and enhance human-robot interaction (HRI) through combinations of facial expres-

sions, synthesized speech, posture and body motion (for examples, see [50, 52–55]

and the citations therein).

On the other hand, survivability serves as an adaptation function potentially

driving an action, which may result in the survival of an agent (human or robotic) in

its environment. For example, a robot backing up or slowing down near a staircase

may be perceived as fear of falling by an observer [50]. While this role in robotic

systems has received less attention, emotion has been used to control actions in

mobile robots. For example, Lee-Johnson and Carnegie [56] implemented a con-

trol architecture for autonomous mobile robots that incorporates artificial emotions

as part of the robot’s planning and control parameters. The emotions modeled in

the robot behaviour are fear, anger, surprise, happiness, and sadness. The emotion

parameters change the degree of bias toward certain driving behaviours; for exam-

ple, fear was associated with avoiding collisions and reducing the importance of

1https://www.softbankrobotics.com/emea/en/pepper
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the robot’s current goal, whereas anger was linked to achieving the goal even at

the expense of secondary considerations. While the robot can operate successfully

with constant parameters, the inclusion of affect provides optimal performance and

allows the robot to avoid dangerous behaviours by selecting appropriate settings

depending on the situation.

2.3 Affect-aware assistive technologies
While there is substantial work in shared control in the context of smart-wheelchairs,

addressing the user’s affective state in the navigation assistance process remains

understudied. The following section elaborates on previous research on emotions

in two relevant contexts: automotive driving and (non-driving) assistive technolo-

gies for older adults.

2.3.1 Intelligent driver assistants

In daily driving tasks, a neutral affective state comprises the biggest portion of time;

however, strong emotions such as road rage, fatigue, stress, confusion, nervous-

ness, sadness, and boredom have the potential to endanger driving safety [13, 57].

Furthermore, affective states play a significant role in driving safety because es-

sential cognitive processes relevant to driving are affected by emotion; for exam-

ple, perception, goal generation, evaluation, decision-making, focus and attention.

Ebyen and colleagues [13] motivate addressing emotional factors to enhance safety

and comfort in automobiles. Exemplary use-cases and acceptance of in-car af-

fective computing are investigated through a Wizard-of-Oz (WoZ) user study ap-

proach2 in which subjects communicate with a simulated virtual co-driver using

natural speech. Exemplary use-cases of emotion-sensitive technologies include

guiding drivers from negative to neutral or even happier states to prevent road rage

and to ensure a safer and more pleasant driving experience; adapting the person-

ality of the virtual assistant to match the driver’s emotion; and communicating the

driver’s emotional state to other road users. In their study, the intelligent driver as-

2The WoZ approach is widely used in human-computer interaction because it helps designers cir-
cumvent implementation challenges and explore and evaluate designs before investing considerable
developmental efforts to build a functioning prototype [58].
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sistance system supports users while they perform tasks including lane changing,

obtaining information from the internet, handling incoming and outgoing calls and

engaging in small talk. Throughout the study tasks, the wizard reacted to the sub-

jects’ responses and comments adapting his tone of voice to the user’s state and the

current situation. The reported findings suggest that a virtual assistant that adapts

to the emotional state of the user would be accepted as long as users can maintain

full control and can mute the system at any time. Furthermore, the authors high-

light the need for identifying user affect by incorporating multiple modalities such

as speech, facial expressions, and driving styles.

2.3.2 Cognitive assistants for older adults

In the context of assistive technologies for older adults, user affect has been ex-

plored for applications intended to assist older adults with dementia to fulfill ac-

tivities of daily living (ADL) more independently. Mihailidis et al. [59] proposed

the COACH system which uses a virtual assistant to monitor and prompt older

adults with dementia when washing their hands. The system employs computer

vision and artificial intelligence to provide verbal and visual cues at every step of

the hand-washing process. Even though the system can identify whether the user

needs assistance and provides the correct prompt at the right time, it is not equally

accepted by all the users. A working hypothesis on the lack of effectiveness of the

system is due to misalignment of the system with individual affective identities. For

example, it might occur that some users respond better to more servile approaches

while others prefer imperious directions; thus, a single set of pre-recorded prompts

is limiting even if they are modelled after human caregivers. More recent studies

involving the COACH system [60, 61] used the principles of affect control theory to

build explicit models of emotion into the virtual assistant. The goal was to deliver

not only the correct prompt for the given step but also the right style of prompting

(e.g., imperious vs. servile) according to the affective state of the person (e.g., is

the person feeling powerless, in control, angry, or depressed). In order to do so,

a set of audiovisual prompts representing different personalities (e.g., big sister,

boss, teenager) were implemented on a virtual character capable of displaying fa-

cial expressions and body movements. The first step toward an emotionally-aware
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COACH was to obtain EPA profiles of the prompts based on real user responses.

Similar to rating concepts in the EPA space such as grandparent or children, the

complete behaviours of the virtual assistant were judged according to the three

basic dimensions of emotion. In [61], the EPA profiles assigned to the virtual as-

sistant and the detected affective state of the user, were used in an ACT framework

to predict the prompt that aligns best with the user’s affective state. Their results

suggest that including the affective identities of the person and the assistant in the

decision control loop has the potential to improve the effectiveness of the system.

2.4 Summary
We have reviewed related work in the smart-wheelchair context as well as address-

ing emotional factors in human-machine interactions. Even though shared control

is generally a good approach for collaborative wheelchairs, the conditions under

which it brings maximum benefit are still unclear [62]. Moreover, while shared

control systems provide beneficial results, such as safer trajectories, negative ef-

fects are also reported, such as confusion and frustration when subjects are not in

complete control [e.g., 2, 63]. Driven by these findings, we believe that intelli-

gent wheelchairs should not only adapt to the user’s physical and cognitive skills

but also to the user’s affective state. We draw inspiration from the COACH sys-

tem which implements affect control theory to design assistive technology that not

only gives the right information at the right time, but it also presents it in a way

that has a higher likelihood of aligning with the user’s affective identity. In order

to implement ACT to reason over what the optimal intervention is, an EPA profile

of the behaviour must be obtained.
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Chapter 3

System Design

In this chapter, we elaborate on the elements of our robotic platform. The first sec-

tion is an overview of the hardware used for this study, whereas the second section

is an overview of the software used for mapping, localization and navigation. In

the third section, we describe a set of shared control interventions drawn from the

smart-wheelchair literature that are suitable for implementation in our system and

our experimental protocol. We conclude with a summary on the behaviour of each

control strategy.

3.1 Hardware overview
We made use of a commercially-available Permobil M300 powered wheelchair

(PWC) with R-net control system and Omni controls which we customized to

meet the needs for our research. The PWC is equipped with an onboard com-

puter, LiDAR sensors, a communication interface, and a driver-facing camera (Fig-

ure 3.1). Our system runs on a ThinkPad P51 Mobile Workstation with Intel Core

i7-7700HQ processor, 16GB of memory, and running Ubuntu LTS 14.04 as the

operating system. We use the CoPILOT system originally developed for the study

reported in [11, 64] to enable collaborative navigation of the PWC. The system

incorporates a standard off-the-shelf Arduino with a custom designed shield to

enable communication between the onboard computer and the PWC’s motor con-

troller [65]. Mounted on the base of the PWC are two Hokuyo UTM-30LX laser
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Figure 3.1: The modified Permobil M300 powered wheelchair

rangefinders providing a 270-degree horizontal field of view at ankle-height. The

lasers are used for mapping, localization, and obstacle detection. To record the

participants’ facial expressions during the driving sessions, we used a small web-

camera mounted on an overhead boom facing toward the participant. The PWC

can be controlled with two joysticks: the traditional user joystick mounted on the

PWC’s arm or a wireless (Bluetooth) Play Station 3 (PS3) joystick. The secondary

joystick enables the experimenter to take over in case of an emergency, as well as

to re-position the PWC between trials.

3.2 Software overview
A smart-wheelchair requires several software subsystems to handle perception,

planning, and control. These subsystems need to be able to communicate easily

with one another; to accommodate these requirements, we use the Robot Operating
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System (ROS)1. ROS is a flexible framework to write robotic software allowing effi-

cient integration of complex robotic algorithms into almost any velocity-controlled

robot. For the work presented in this thesis, we use the ROS Indigo distribution.

A wide variety of shared control navigation algorithms for smart-wheelchairs

have been proposed over the years. Rather than attempting to replicate the precise

requirements and resources employed by the different research groups that have

worked on this problem, we implement a few of them based on the ROS navigation

stack. The robotic side of our system is handled entirely by the ROS nodes, and

we implement the shared control algorithms in MATLAB 2018b using the Robotic

System Toolbox version 1.3 as an interface between MATLAB and ROS.

3.2.1 Mapping and localization

One of the hardware limitations of our PWC platform is the lack of odometry infor-

mation from the wheels. Driven by this consideration, we use the hector slam2 ROS

package which leverages the laser rangefinder scans to generate 2D pose estimates

based on scan-matching algorithms [66]. The hector slam package publishes an

estimate of the PWC odometry which we can use for mapping and localization.

In our experiments, the PWC operates on a known map of the indoor test en-

vironment. This map was pre-computed using a Simultaneous Localization and

Mapping (SLAM) approach available in the hector mapping3 ROS package.

Once we have a map of the environment and an estimate of the PWC’s odometry

information, we can produce reliable state estimates with the Adaptive Monte Carlo

Localization (AMCL) package. AMCL is a probabilistic approach to mobile robot

localization. It uses a particle filter to track the robot pose against a known map,

and is one of the most popular and robust localization algorithms in robotics [67].

3.2.2 The navigation stack

Our system aims to generate safe motion commands resulting from a collaboration

between the user and an autonomous robot navigation agent. For the latter, we use

1http://www.ros.org/
2http://wiki.ros.org/hector slam
3http://wiki.ros.org/hector mapping
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the ROS navigation stack4 which takes input from the map, odometry, laser scans,

and a goal location, and generates as output velocity commands which would safely

drive the robot. One of the fundamental elements of the navigation stack is the

move base5 node, which provides an interface for configuring and interacting with

the navigation stack. Special consideration must be taken to include the shape and

the dynamics of the mobile platform, in our case, the Permobil M300 PWC. We

describe the main components of the navigation stack in the following paragraphs.

Costmaps

The navigation stack uses 2D occupancy grids known as costmaps to store infor-

mation about obstacles in the world. The global costmap is usually constructed

from a pre-computed static map and is used to create long-term plans over the en-

tire world. On the other hand, the local costmap is a rolling window which only

considers the region surrounding the robot. It has no prior knowledge of the world

and is entirely constructed from recent sensor readings. The local costmap infor-

mation is essential for dynamic obstacle detection and short-term planning. Each

cell in the costmaps contains either free, occupied, or unknown values. Obstacle

inflation can be specified, which consists of propagating the cost from each oc-

cupied cell out to a user-specified radius. The inflation radius is an inexpensive

mechanism to approximate the configuration space of the robot using the costmap,

and it encourages the planner to find paths that ensure a minimum clearance from

obstacles. Examples of global and local costmaps are presented in Figure 3.2.

Global and local planner

Just like there are global and local costmaps, there are global and local planners.

Based on the global costmap, the global planner occasionally generates a high-

level plan from the current robot location to the goal location using either graph

traversal or sample-based planning algorithms. The local planner generates veloc-

ity commands on every control cycle based on the high-level plan, the information

4http://wiki.ros.org/navigation
5http://wiki.ros.org/move base
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(a) Global costmap (defined on the entire
map).

(b) Local costmap (defined only near the
robot).

Figure 3.2: Global and local costmaps with 0.5 m inflation radius. A cell
within an obstacle has unit cost, and the cost decreases toward zero as
the distance from the obstacle increases.

contained in the local costmap, and the current state of the robot.

A number of specific planners are readily available to use under the ROS navi-

gation framework. Driven by our applications in the smart-wheelchair context, we

adopted the eband local planner which is an implementation of the Elastic Band

method as described in [68]. The elastic band method bridges the global and lo-

cal planners by generating a global plan and deforming specific regions if changes

in the environment are detected. The approach avoids an expensive call to a path

planner by triggering a reactive collision avoidance mechanism that works on a

local level but does not limit the ability to achieve global goals.

Recovery behaviours

If the move base node of the navigation stack fails to find a valid plan, a recov-

ery behaviour can be executed. Traditional recovery behaviours in mobile robotics

include clearing the recorded obstacles in the costmaps outside a user-specified re-

gion away from the robot, and performing in-place rotations in an attempt to gather

additional sensor readings. For our experiments with the PWC, we only allow clear-

ing the local costmap because triggering a rotation may result in counter-intuitive
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trajectories for the user.

3.3 Assisted driving interventions for smart-wheelchairs
In this section we describe different driver assistance interventions from the smart-

wheelchair literature. A wheelchair control signal u is a two dimensional vector

consisting of a linear velocity v and angular velocity ω:

u =

[
v

ω

]
.

The high-level steps that are required to perform an intervention are:

1. Collect the user’s motion command coming from the wheelchair’s joystick.

We call this uuser; it consists of linear velocity, vu, and angular velocity, ωu.

2. Compute the motion command using an autonomous planner. We call this

urobot; it consists of linear velocity, vr, and angular velocity, ωr.

3. Compute the arbitration parameter. We follow a linear blending approach,

an arbitration model that has been widely adopted in the shared control liter-

ature and the assistive wheelchair community [69]. A linear blend step takes

the following form:

ushared = α ·uuser +(1−α) ·urobot (3.1)

Note that α ∈ [0,1] denotes the only degree of freedom, and we will refer

to this parameter as the “user’s control weight”. A substantial effort has

been carried out by several research groups to come up with optimal ways

to compute this parameter. We explore a few approaches in the remainder of

this section.

4. Synthesize the shared control signal. Using equation 3.1 compute the control

ushared that will be sent to the PWC’s actuators.

Figure 3.3 illustrates the shared control framework. In the remainder of this

section, we provide a detailed description of the set of shared control paradigms
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Figure 3.3: Schematic of the control architecture

considered for the experiment described in Chapter 4.

3.3.1 Dynamic Shared Control (DSC)

Li et al. [70] propose a shared control framework that optimizes the user’s control

weight according to three factors: safety, comfort, and obedience. They formu-

late the weight adjustment problem as a multi-objective optimization. The major

elements of the proposed architecture are the reactive controller and the weight

optimizer. The reactive controller is based on the minimum vector field histogram

(MVFH) and the vector force field (VFF) methods.

The algorithm includes four main steps: update an obstacle map with laser

data, generate an angular velocity ωrobot based on the reactive controller, calculate

the optimal angular velocity ω∗ using the proposed weight optimizer, and compute

a final linear and angular velocity [vfinal,ωfinal]. The linear velocity vfinal will always

be equal to vuser unless the minimum distance to an obstacle is below a threshold

(0.5 m in the experiment); in that case, vfinal will be reduced according to the nearest

obstacle’s distance.

The authors define the following three indices to evaluate wheelchair perfor-
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mance:

• Safety Measures the probability of collision according to the distance to the

nearest obstacle.

safety = 1− e(−δ ·dist),

where δ is a normalizing constant and dist is the minimum distance between

the wheelchair and the obstacle nearest to its path. The predicted path is

calculated according to the wheelchair’s kinematic model. The authors used

a prediction time of 4 seconds assuming the user’s current control as input.

• Comfort: According to their experiments, frequent changes in velocity make

users feel uncomfortable. Therefore, the comfort index measures the angular

velocity change:

comfort = e(−β |ω−ω0|)

Where β is a normalizing constant, ω is the current angular velocity and ω0

is the angular velocity from the previous control cycle. Given that the user

is in control of the linear component of the velocity, the change in linear

velocity is omitted from calculation of this index.

• Obedience: Measures the proximity between the user’s control and the final

motion command.

obedience = e(−γ|ξ−ξ ∗|)

Where γ is a normalizing constant, ξ is the orientation of the user’s input,

and ξ ∗ is the orientation determined by v∗ and ω∗. This index prefers that

the wheelchair remain under user control as long as safety and comfort are

maintained.

The proposed principle to optimize over the three often contradictory indices is

always to improve the smallest index among the three. In accordance with this

principle, the multi-objective optimization problem can formulated as a simple ob-

jective problem and solved using the minimax method:

max
v,ω

(min(safety, comfort, obedience)), (3.2)
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such that ωshared ∈ [ωuser,ωrobot], and vshared = vuser unless the distance to the closest

obstacle falls below 0.5 meters. This simplified optimization guarantees that the

precedence among indices will naturally change when facing different situations.

Our implementation

The DSC algorithm is meant to function as a purely reactive approach to collision-

free navigation; however, by using the elastic band method we can integrate a

global planner and the reactive controller to enable goal-seeking assistance as well.

The emergent wheelchair behaviour depends greatly on the constants used to

compute the safety, obedience and comfort indices. In our implementation of the

DSC approach, we estimate the safety of a given command based on the obstacle

information contained in the local costmap. Due to the inflation radius, we can

rely on the costmap information since the distance to nearest obstacles is implicit

in the cost of each cell. We calculate the PWC’s predicted pose using the forward

kinematic model, and then estimate safety by sampling the cost of the cell at the

predicted location; thus, safety = e−δ ·cost. We empirically set the safety constant

δ so that safety equals 0.63 when the cost of the cell at the predicted location is

0.1. We calculate the comfort constant β such that maximum comfort is achieved

when there is no change in the angular velocity and minimum comfort when the

angular velocity changes sharply from ωmin to ωmax or vice versa. Similarly, we

compute the obedience constant γ such that maximum obedience is achieved when

the user’s command and the shared control command have the same orientation,

and minimum obedience is achieved when the angle difference between the two

commands reaches π/2.

3.3.2 Efficiency based wheelchair collaborative control

Urdiales et al. [29, 71] propose a blending approach for collaborative wheelchairs

based on a continuous evaluation of the the user and planner motion commands.

The aim of this approach is to allow the user to contribute as much as he/she can,

and let the robot take care of the rest. The performance of the user’s and robot’s

inputs are measured according to an efficiency metric that evaluates three main fac-

tors: smoothness, directness, and safety. The importance weight of each factor is
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controlled by the constants Csm, Cdi, Cs f corresponding to smoothness, directness,

and safety respectively. These three factors are essentially the ones from the DSC

approach; however, the methods differ in the way the arbitration parameter α is

computed.

• Smoothness: Measured in terms of the direction of the provided motion vec-

tor, αdi f . Smoothness reflects that sharp changes in heading are undesirable

given the wheelchair’s kinematics. Smoothness is computed by:

ηsm = e−Csm·|αdi f |

Maximum smoothness is achieved when the heading changes as little as pos-

sible and minimum smoothness when the current motion command corre-

sponds to a sharp turn (i.e., αdi f = π/2).

• Directness: Measured in terms of the angular difference between the pro-

vided motion vector, αdi f , and the direction towards the next partial goal

provided by the global planner, αdest . Reflects that pursuing straight paths is

desirable. Directness is computed by:

ηdi = e−Cdi·|αdest−αdi f |

• Safety: Evaluated in terms of the angle to between the output motion vector

and the nearest obstacle at each instant. Safety is computed by:

ηs f = 1− e−Cs f ·|αmin−αdi f |

where αmin is the angle between the current heading and the direction of the

closest obstacle. Thus, safety increases as the αmin increases, and decreases

as the angle decreases.

The efficiencies are used to decide how much assistance the user needs. The

better the user drives, the less effect the robot has in the intervention. A set of

local efficiencies is computed for the motion command coming from the human,

uuser, and for the command coming from the autonomous planner, urobot. A single
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efficiency value for each of the human and the robot is computed by averaging the

three factors, and the linear blend is defined as:

ushared = K ·ηh ·uuser +(1−K) ·ηr ·urobot, (3.3)

where ηh is the averaged human efficiencies, ηr is the averaged robot efficiencies,

and K is a variable that modulates the contribution of human and machine. The

value of K is chosen according to the following heuristic table:

K =


0.75 if (ηh > 0.85)∨ (ηh > 1.5 ·ηr;

0.5 if (ηh > 0.85)∧ (0.5 ·ηr < ηh < 1.5 ·ηr);

0.25 otherwise.

Our implementation

The approach described in [71] extracts partial sub-goals (needed to calculate αdest)

by finding the point of maximum curvature of the path returned by the planner.

Due to the computational load required to find such a point, we opt for finding the

furthest point in the global trajectory currently lying in the local costmap.

From an initial test of the algorithm, we found that the modulation introduced

by the K parameter has a tendency to significantly scale down the velocities com-

manded by the user. To counteract this scaling, we include a normalization step

to compute the user’s control weight such that the resulting user’s and planner’s

control weight add up to 1.

Furthermore, we set all the constants Csm, Cdi, and Cs f , to the same value (4.5)

so that all factors are equally important.

3.3.3 Blending with immediate goals (collision avoidance)

Erdogan and Argall explore the effects of four shared control paradigms for robotic

wheelchairs in [72]. One of the approaches provides assistance only when an im-

minent collision is detected. The proposed algorithm checks for collisions by com-

puting a forward projection of the user’s current command uuser for a time ∆t. If

the predicted pose is found to be unsafe, the user’s command is linearly blended
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with the planner’s command in an iterative manner that takes control away from

the user based on safety constraints. Thus, as the user issues unsafe commands, the

user’s control weight α decreases.

Our implementation

The proposed method reasons over the safety of the user command by checking

whether the projected wheelchair pose lies within an obstacle. Since our experi-

mental environment is subject to small changes in the distribution of obstacles, we

sample the occupancy grid published by the local costmap (updated purely from

sensor data) to determine whether a given command is safe or not. If the cost of

landing in the predicted location is higher than a given threshold, we register it as

unsafe and perform the blend. Otherwise, the user maintains full control of the

wheelchair.

3.3.4 Blending with a high-level goal

Another navigation assistance paradigm explored in [72] consists of continuously

blending the user’s and the autonomous planner’s commands to achieve a high-

level goal. The high-level goal is determined from a set of possible locations

through perception algorithms that process RGB-D data and produce a confidence

measure based on the agreement with the current user input. When the confidence

for a given goal is above a threshold and the user is issuing commands, the user’s

and planner’s inputs are linearly blended in a way that steps control away from the

user based on Euclidean distance to the goal. Thus, as the user gets closer to the

target, the user’s control weight α decreases:

α =
1

(1+ exp(−τc · (d−dc)))
, (3.4)

where τc is the time constant that determines how fast the control steps away from

the user, d is the Euclidean distance to the goal, and dc is a coefficient that deter-

mines the distance at which the user and the planner have the same control weight

(i.e., α = 0.5).

If none of the possible goal locations is perceived as the high-level goal, the
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blending approach based on safety constraints described in Section 3.3.3 is per-

formed.

Our implementation

Since our experimental procedure assumes a known goal location, we do not use

the confidence measure and blend the user’s and planner’s inputs continuously.

Moreover, the proposed approach does not perform further collision checks for the

resulting blended command. In order to prevent a situation where the resulting

command leads to a collision, we perform the same collision avoidance algorithm

described in Section 3.3.3 and further decrement the user’s weight if necessary.

3.3.5 Steering correction and speed limit

Mitchell et al. [26] propose three intervention policies for safe wheelchair naviga-

tion which were later tested by cognitively impaired older adults on a study con-

ducted by Viswanathan et al. [11, 64]. The intervention mode preferred by partici-

pants in their study operates on a hysteretic principle. The user maintains complete

control of the wheelchair unless the distance to the nearest obstacle falls below a

threshold d0. In that case, the planner takes over control and drives the wheelchair

until the distance to the nearest obstacle is greater than d1 (where d1 > d0); then

full control is granted back to the user.

Our implementation

We empirically set d0 = 1 m and d1 = 1.5 m based on the affordances of our test

environment. We find the distance, d, to the nearest obstacle by finding the smallest

laser scan reading within a 100 degree field of view in front of the PWC.

3.3.6 Disagreement-based shared control

We have implemented an orientation correction control paradigm that modifies the

user’s angular velocity based on the disagreement between the user and the au-

tonomous planner over a window of time: If the user remains in agreement with

the planner, the planner will incrementally take control. Under normal circum-

stances the proposed approach only modifies the angular velocity. Control of the
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linear velocity is left entirely to the user unless an imminent collision is detected.

We define disagreement as the absolute angular difference between the two

input vectors:

φt = |ξr−ξu|, (3.5)

where ξr is the deflection from forward motion of the planner’s command and ξu

is the corresponding deflection from the user’s command. The operation of this

assistance paradigm works by collecting a window of disagreement measures over

the last k samples φ1:k, followed by computing a summary criterion across the

window; for example, the average over the disagreement measures:

φavg =
1
k

k

∑
t=1

φt . (3.6)

If the summary criterion is below a threshold λa, then the user is considered to

be in agreement with the planner. However, if the current φt is higher than λb

(where λb > λa) the user will immediately regain full control. Next, the user’s con-

trol weight is computed from the current value of φavg such that as the agreement

increases the user’s control weight decreases. For example,

α = 1− e(τ·|φavg|), (3.7)

where τ and Ca are constants. For our experiment, we empirically set k = 200

(which corresponds to approximately 10 seconds of data), λa = π/3, λb = π/2, and

τ = 4.5. Similar to the algorithms described before, a safety check for collisions is

evaluated for each generated command.

The proposed paradigm is expected to lead to smooth trajectories and provide

guidance towards a goal. Introducing a temporal dependence allows the algo-

rithm to be robust against small deviations from the planner’s optimal path. More-

over, this approach grants full control back to the user if he/she changes direction

abruptly or steadily disagrees with the planner, such as when he/she decide to nav-

igate to a different location than originally planned.
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3.4 Summary
We modified a commercially available PWC to leverage technologies developed for

mobile robots to create our smart-wheelchair. We implemented six shared control

strategies from the smart-wheelchair literature using the Robot Operating System

and MATLAB. Each control strategy optimizes different sub-objectives which leads

to varying levels of contribution from the autonomous system and the user. A

summary of the driving assistance intervention modes is presented in Table 3.1.

Table 3.1: Summary of driving assistance interventions for smart-
wheelchairs

Intervention Description

Dynamic Shared Control
(DSC)

Multi-objective constraints on safety,
obedience, and comfort.

Efficiency based control
(efficiency)

Optimizes smoothness, directness, and
safety based on efficiency metric.

Blending with immediate goals
(collision avoidance)

Iteratively steps control away from the
user when an imminent collision is pre-
dicted.

Blending with high-level goals
(high-level)

Smoothly steps control away from the
user as they get closer to the target.

Steering correction with speed limits
(steering correction)

The user maintains complete control
unless the distance to the nearest obsta-
cle falls below a threshold.

Disagreement-based shared control
(disagreement)

The planner incrementally takes con-
trol if the user remains in agreement
with the planner’s actions.
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Chapter 4

An Exploratory Study

In this study, we explored the emotional effects of six different driving assistance

modes on a smart-wheelchair as experienced by the driver. Twenty able-bodied

adults tested each assistance paradigm while driving the wheelchair toward goal

locations in a semi-static environment.

Recognizing the affective state of a user embodies a challenge given the com-

plexity of human emotions; therefore, we use two methods of measuring it, namely

post interaction self-report (subjective component) and facial expression emotion

recognition (physiological component). We adopt the EPA space of affective mean-

ing, a quantifiable dimensional model of emotion, as our sentiment-measuring

framework. The following sections describe the experimental setup of the study,

the collected measures, analyses of the self-reported data, a preliminary analysis of

the facial expressions of emotion, and a discussion of our findings.

4.1 Objectives and approach
The purpose of this study is to analyze the effects of various smart-wheelchair

behaviours at an emotional level. If the different driving assistance modes have

consistent affective ratings and we can estimate the user’s affective state reliably,

we can design a system that intervenes according to the user’s emotions in addition

to traditional objectives such as comfort, safety, ease of use or timeliness.

We emphasize that our implementation of various wheelchair assistance modes
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is not the novelty of this user study; instead, our aim is an exploration of a human-

robot interaction model of emotion in the context of wheelchair navigation assis-

tance.

Throughout this study we evaluate the affective responses elicited by six nav-

igation assistance behaviours designed to enable safe and independent powered

wheelchair operation. The specific objectives are:

1. Assess six different navigation modes providing low to high levels of assis-

tance to navigate to a particular goal location.

2. Obtain and analyze self-reported affective interpretations of each interven-

tion mode and emotions resulting from the interactions with the smart-wheelchair.

3. Collect and analyze facial expressions of emotion.

4. Obtain and analyze quantitative feedback regarding workload, perceived safety,

and perceived ease of use. Obtain and analyze qualitative feedback regarding

user perceived usefulness.

5. Collect and analyze joystick input data and navigation paths.

6. Determine possible consensus across users on the affective ratings of the

intervention modes.

7. Identify possible significant differences in user’s emotional experiences be-

tween assistance modes.

8. Determine whether the intervention modes have consistently distinguishable

affective patterns.

9. Determine possible applications for the use of joystick input data and navi-

gation path metrics to predict affective state.

In this description, we use “collect” to indicate data that will be recorded through

a sensor and “obtain” to indicate data that is recorded through a survey tool.
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4.2 Methods
The study was approved by the University of British Columbia (UBC)’s Behavioural

Reseach Ethics Board under certificate number H18-00256. The experiment took

place in the Collaborative Robotics Laboratory at the Institute for Computing, In-

formation and Cognitive Systems (ICICS) at UBC and informed consent was ob-

tained from all subjects. Each experimental session lasted between 70 and 97 min-

utes, and all participants received $15 in compensation for their participation.

4.2.1 Participants

We recruited 20 able-bodied participants through on-campus advertisements at

UBC. Our participants included 9 male and 11 female, aged 22 to 68 years (mean

= 30.8, SD = 12.9). Ten participants reported none to little interaction with robots

in the past; seven reported having interacted with robots on a number of occasions,

and three reported robot interaction on a regular basis. Sixteen participants re-

ported absolutely no experience with powered wheelchairs, and the remaining four

reported from 10 hours to 39 years of experience with powered wheelchairs as ei-

ther clinicians or researchers. Regarding occupation, our sample included fourteen

graduate students, two occupational therapists, one elementary school teacher, one

research engineer, one consultant in assistive technology, and one participant was

retired. The cultural backgrounds of our subjects include North America (6), the

Middle East (4), East Asia (4), South Asia (3), Southeast Asia (1), Eastern Europe

(1), and Western Europe (1).

4.2.2 Conditions

We implemented assistive navigation modes with expected affective evaluations

that span the EPA space of affective meaning. We anticipate that each intervention

mode will modify the user’s inputs in ways that can be interpreted as a particular

behaviour. For example, the word “obedient” has an average EPA representation

that places it in the octant (E+, P-, A-) of the affective space. An intervention mode

that resembles an obedient behaviour keeps the user in control unless an unsafe sit-

uation arises. We believe that the dynamic shared control (DSC) intervention might

model this behavior because the user keeps control as long as the safety constraint
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is maintained. In comparison, the word “authoritarian” has average ratings (E-, P+,

A+) and the corresponding intervention policy tends to generate motion commands

that prioritize the control signals generated by the autonomous planner rather than

the user’s inputs. We believe the efficiency based blend intervention might model

this behavior. We discuss our expected affective interpretations (in terms of an

octant of the EPA space) for each intervention condition from Section 3.3 and the

reasoning behind those expectations in Table 4.1.

Table 4.1: Affective expectations of the intervention modes

Intervention Expected affective evaluations (EPA) Trait
Dynamic

shared

control

E+ Resulting motion tends to grant high lev-

els of control to the users as long as the safety

constraints are met. The trajectories tend to be

smooth. It prevents the user from getting too

close to obstacles.

P− Modifications to the user commands are

small if the user is navigating safely.

A−May be perceived passive if the user’s inputs

are not constantly and significantly modified.

Obedient

Continued on next page
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Table 4.1 – Continued from previous page

Intervention Expected affective evaluations (EPA) Trait

Efficiency

based blend

E−Although this approach results in smooth tra-

jectories, the user’s input tends to be completely

ignored if they want to drive to a goal different

than the planner. These situations may lead to a

negative evaluation.

P+ Given that the planner produces approxi-

mately optimal commands, its efficiency is usu-

ally high. There are few or no occurrences when

the user has more control than the planner, so the

intervention feels potent.

A+ The level of activity as judged by the amount

of modification to the user’s commands could be

perceived as high.

Authoritarian

Blending

with imme-

diate goals

(Collision

avoidance)

E+ If the user is a good driver, the percep-

tion of the PWC’s behavior will also be good.

However, since this mode only provides colli-

sion avoidance and no goal-finding assistance,

the wheelchair behavior might be rated as inade-

quate.

P− The behaviour is not potent because it allows

the user to retain control most of the time. More-

over, when a possible collision is detected, the it-

erative approach ensures that only the minimum

amount of control is taken away from the user.

A− The activity levels of the PWC may be per-

ceived as low unless the user constantly comes

close to obstacles and experiences many modifi-

cations of the commands.

Cautious

Continued on next page
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Table 4.1 – Continued from previous page

Intervention Expected affective evaluations (EPA) Trait

Blending

with high-

level goals

E+ The intervention results in the user losing

control as they approach the goal location. How-

ever, the control switch happens at a slow rate

and could be perceived as pleasant.

P+ Potency may be somewhat strong: as the user

gets closer to the goal (this distance is determined

by dc), the wheelchair increasingly ignores the

user’s command, and it may be perceived as po-

tent.

A+ The wheelchair will guide the user continu-

ously to the goal location resulting in high levels

of activity.

Cooperative

Steering cor-

rection with

speed limits

E− This approach provides mostly collision

avoidance. However, if the user engages in a

situation where the planner takes control, the

wheelchair will turn in the direction to the goal.

Such change can lead to jerky trajectories.

P−We have set the threshold limits to ensure the

policy is triggered in crowded spaces during the

trials. However, given that this policy only inter-

venes when collision is imminent, we expect it to

be perceived as not so potent.

A+ The level of activity is highly affected by the

values d0 and d1. We chose values that will trig-

ger the intervention in several areas of the envi-

ronment, so we expect it to be perceived as ac-

tive.

Impatient

Continued on next page
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Table 4.1 – Continued from previous page

Intervention Expected affective evaluations (EPA) Trait

Disagreement

based blend

E+ The approach slowly steps control away

from the user as the disagreement between user

and planner decreases. However, it does not limit

the user from changing directions which we be-

lieve will be perceived as pleasant.

P+ Since small errors in the orientation will be

corrected, the user may chose to simply move

forward and the algorithm will take care of the

orientation.

A− The user may not even be aware that their

inputs are constantly being modified, since any

large disagreement results in the user regaining

full control.

Gentle

4.2.3 Tasks

All trials occurred in an open-plan office environment with approximate dimen-

sions of 20 m x 20 m (specifically rooms x210 and x209 in the ICICS building

at UBC’s Point Grey campus). Each experimental task required the participant to

drive the powered wheelchair from an initial position to a marked goal destina-

tion in the other room and then return to the first room. Completing a circuit led

the users to spend more time in each mode for a more accurate assessment of the

PWC’s behaviour. The initial and target locations were chosen to require partici-

pants to transverse through a doorway and both open and cluttered spaces, although

all obstacles were stationary. To simulate a mild cognitive impairment, we asked

participants to drive until they reach the goal in the other room, but we did not tell

them the exact location of the goal.

Participants were asked to drive as they felt comfortable, and they were not
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Figure 4.1: Map of the environment with goal zones labeled a to h.

informed of which intervention mode was active on a given trial. The presentation

order of the modes and target locations was randomized. Each mode was used

twice with different target locations and starting from different rooms to mitigate

biases due to ordering, task difficulty, fatigue and/or learning effects. Refresh-

ments were available and breaks were provided when requested by the participant

to reduce participant burden.

Trajectories

The global map of our test environment is depicted in Figure 4.1. The eight green

zones labeled a to h indicate the predefined locations of the possible start and goal

locations for the driving tasks.

An example session of trials is described in table 4.2. A session consists of two

blocks of six trials each. Half of the participants performed six navigation tasks

starting from Room 1 followed by six tasks starting from Room 2. The other half

of the participants began in Room 2 and then moved onto Room 1. For example,

the task described by the first row of the table can be interpreted as: using the DSC
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Table 4.2: Example of task start and end locations

Begin in Room 1 Begin in Room 2
Mode Start First Second Start First Second

DSC a f d e b g
Efficiency blend b g c f a e
Collision avoidance c f b h b e
High-level blend d g a h c g
Steering correction b e a g c h
Disagreement blend c h d g d f

mode, start in location a, navigate the wheelchair to location f and then to location

d. The intervention modes were randomly assigned to each row, and the order of

the interventions was randomized and counterbalanced.

4.2.4 Measures

Emotions and affect are inherently complex, so measuring an individual’s affec-

tive state effectively and reliably is one of the most prevalent problems in affec-

tive science [39]. Emotions can become apparent through subjective experiences

(i.e., how a person feels), internal responses (e.g., physiological signals), and be-

havioural manifestations (e.g., facial expressions) [38].

For this study, we used self reports in the semantic space of affect and emotion

recognition from a video of the participant’s facial expressions during the tasks

as our emotion-measuring instruments. We also included workload, perceived

safety and difficulty because we are interested to see how these measures impact

the responses. Finally, we collected data from laser rangefinders, user joystick,

wheelchair pose, and commanded velocities to estimate the actual levels of assis-

tance delivered by each intervention.

Affect self-assessments

Upon completion of each experimental task, participants used the semantic differ-

ential technique to provide an affective interpretation of the wheelchair’s behaviour.

We used a semantic differential for each dimension of emotion (E, P, and A) with
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typical ranges of [-4.3, +4.3] on a continuous scale with increments of 0.1. The

adjectives used for each dimension:

• Evaluation: Bad/Unpleasant vs Good/Pleasant

• Potency: Powerless/Weak vs Powerful/Strong

• Activity: Passive/Calm vs Active/Excited

After the participants evaluated the wheelchair, we asked them to describe the

specific emotions elicited during the driving task. We recognize that emotion self-

report is challenging because it is common to not know how to articulate or label

individual feelings and people tend to differ in the extent to which they self-report

emotions (i.e. when asked to report their feelings, some individuals may repre-

sent their experiences with a good deal of precision while others may prefer using

global terms [73]). Driven by these considerations, we opted to ask participants

to make judgments on what emotions they had been experiencing during the driv-

ing task using a set of emotion related words. We provided them with a set of 20

emotion-related adjectives with existing validated emotional mappings to the EPA

space 1. Members of the research team selected the specific words by reflecting

on emotions that are most relevant for our experimental task and spread across

the space associated with the EPA dimensions of emotion. Participants selected as

many emotions as they needed from the following list: alert, angry, annoyed, anx-

ious, cautious, confident, cooperative, disappointed, enraged, excited, frustrated,

irritated, nervous, playful, proud, relaxed, relieved, satisfied, submissive, and up-

set. Projections of the corresponding EPA mappings for each word and male and

female genders is presented in Figure 4.2.

Facial expressions of emotion

Exploiting visual information has been used for the detection of discrete emotions

from facial expressions. Facial expressions appear to be particularly sensitive to the

valence of an individual’s emotional state [39]. We collected the participant’s facial

1 We use concepts from the USA-Indiana, 2003 EPA dictionary available at http://www.indiana.
edu/∼socpsy/ACT/data.html
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Figure 4.2: 2D visualizations of EPA mappings for 20 emotion words from
American surveys (a) averaged female ratings (b) averaged male rat-
ings. Activity is represented with the size of the word, bigger words
correspond to larger values in the Activity dimension.

expressions using a driver-facing camera mounted on the PWC. After the experi-

ment concluded, we used Affectiva Emotion Software development kit (SDK) [74]

to automatically detect facial emotion indicators and overall experience valence.

The software uses deep learning and computer vision to recognize emotions from

facial expressions. The classifiers are based on Ekman’s Emotional Facial Action

Coding System (EMFACS) [75], which provides mappings between facial expres-

sions and discrete emotions. Specifically, it measures levels of seven basic emo-

tions: anger, contempt, disgust, fear, joy, sadness, and surprise. Furthermore, the

SDK estimates valence as an indicator of the positive or negative nature of the user’s

experience. Each of the emotion scores has a range of [0, 100] and the estimated

valence has a range of [-100, 100].

Workload

To measure perceived task workload, we used a subset of the NASA Task Load In-

dex (NASA-TLX). The NASA-TLX is a multi-dimensional rating procedure that

estimates an overall workload score based on six weighted categories: mental de-
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mand, physical demand, temporal demand, own performance, effort, and frustra-

tion [76]. This workload estimation measure has been extensively used over the

past 30 years, because it is reasonably easy to deploy and reliably sensitive to ex-

perimentally important manipulations [77]. This measure was included to assess

the correlation between user emotional state and subjective workload; however,

we omit the physical demand subscale from the questionnaire because powered

wheelchairs inherently require very little physical effort to drive. Also, we omit

the effort subscale because of its overlap with other questions.

Following the driving tasks, participants evaluated the weight of each workload

category or the degree to which each of the categories contributed to the subject’s

workload. The weight is evaluated through a set of pairwise comparison cards

among the four selected factors. The procedure results in a single weighted work-

load measure with ranges [0, 100].

Safety and difficulty

We asked participants to rate their levels of perceived safety during their driving

task using a semantic differential scale on a [0, 7] range with increments of 0.1.

The lower end corresponds to “extremely unsafe” and the higher end corresponds

to “extremely safe.” Similarly, the difficulty to use was measured with a semantic

differential scale with the lower end being “extremely difficult” and the higher end

being “extremely easy.” We also asked open-ended questions regarding perceived

usefulness to complete the tasks and to avoid obstacles.

Motion commands and sensor data

In addition to the self-reported ratings, the following wheelchair and sensor data

was collected during the driving sessions:

• velocity commands from the user joystick;

• velocity commands generated by the autonomous planner;

• velocity commands sent to the PWC’s motors;

• user control weight;
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• wheelchair odometry and localization data (from which its path can be re-

constructed) and;

• measures from the two laser range finders mounted on the wheelchair.

4.2.5 Procedure

After providing consent, participants received a brief introduction to the semantic

space of affective meaning. During this introduction, participants were asked to

judge the emotional meaning of three concepts according to the evaluation, po-

tency, and activity dimensions using a graphical user interface. After the assess-

ment, values from the EPA dictionary for the three concepts appeared, and the re-

spondents were able to see how their responses compared with those of the average.

The purpose of the introduction was merely illustrative and no data was collected

at this point. Participants then filled out a pre-experimental questionnaire, which

we used to learn about the individual’s affective identity, their current emotional

state, and their affective expectations of smart-wheelchairs. The pre-experimental

questionnaire is available in Section A.2.1.

Following the pre-experimental questionnaire, each subject spent 5 to 10 min-

utes familiarizing themselves with the powered wheelchair and the experiment

tasks. Safety instructions were provided during this training period, and a prac-

tice trial was conducted to mitigate novelty effects; no data was collected during

this initial trial and no navigation assistance was provided/applied.

Next, the assisted navigation modes were tested by the participants. Each task

required them to find a randomized goal, chosen from a set of pre-selected safe

goals. A general description of the goal location was given, such as “the goal is

on the other side of that doorway,” but the specific location of the goal was not

identified. Participants were instructed to drive as they felt comfortable, but no

description of the assistance was given to the participants to mitigate biases in the

responses. Video recording of the participants’ facial expression was active during

the driving sessions using a driver-facing camera mounted on the wheelchair. The

task finished when one of the following conditions occurred:

• the participant was within a 85-centimetre radius of the goal;
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• the task time reached 3 minutes;

• a collision occurred or the experimenter was forced to stop the wheelchair

due to an imminent collision;

• a technical failure occurred.

A bell sound informed the participants when a task had finished and the video

recording stopped. Following each task, participants were asked to provide a self-

report on their momentary emotional experiences and an affective interpretation of

the behaviour of the PWC. Additionally, subjective metrics regarding the workload,

perceived usefulness, and perceived safety were collected after each interaction.

The post-interaction questionnaire is available in Section A.2.2. Participants inter-

acted with each of the intervention modes twice for a total of 12 trials per session.

Upon completion of all tasks, participants provided demographic information re-

garding age, gender, occupation, mother tongue, previous experience with robots,

and previous experience with powered wheelchair. The demographic survey is

available in Section A.2.3.

A short debriefing session was conducted after the experiment concluded, to

share information related to the research goal and give participants the opportunity

to ask questions about the study.

4.2.6 Hypotheses

We state our hypotheses guided by our research questions. For the first research

question, regarding the affective interpretations of the smart-wheelchair behaviour,

we formulate two hypotheses:

Hypothesis 1 There will be consensus/agreement across participants of affective

ratings on each dimension of emotion for each intervention mode.

Hypothesis 2 There will be a distinct pattern of affective ratings for each inter-

vention mode.

For the second research question, regarding the user’s elicited affective state when

interacting with various wheelchair assisted driving behaviours, we pose the fol-

lowing hypotheses:
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Hypothesis 3 There will be a distinct pattern of evoked emotions for each naviga-

tion mode.

Hypothesis 4 The wheelchair behaviour ratings will correlate with the reported

elicited affective state of the participant.

Hypothesis 5 The resulting quality of the trajectory will correlate with the wheelchair

affective ratings and/or self-reported emotional states. Specifically, there will be a

significant correlation between the affect attributed to the wheelchair or the indi-

vidual emotional state and

5.a the facial expressions of emotion;

5.b the degree of user input modification;

5.c the cognitive workload;

5.d the perceived safety;

5.e the perceived difficulty of use.

4.3 Analyses and results
We ran a total of 240 trials (i.e., 20 participants x 6 interventions x 2 tests) out

of which we discarded 19 due to technical failures. We conducted measurement

reliability and participant repeatability tests to ensure consistency in the participant

responses (Section A.3). Given that participants’ responses were similar in roughly

75% of the ratings between test 1 and test 2, we averaged the evaluation, potency,

and activity scores for each intervention into a single response leaving a total of 120

sets of EPA profiles. In the following sections we will elaborate on our analysis

and findings from our exploratory study.

4.3.1 Consensus analysis

To assess the similarity in user attitudes toward the smart-wheelchair’s assisted

navigation behaviours, we use the consensus analysis theory and methodology de-

veloped by Borgatti et al. [78]. Consensus analysis provides a way of conceptual-
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izing and coping with individual variability and it is based on the following three

assumptions:

1. Common truth: there is a single right answer for every question.

2. Conditional independence: responses are independent from each other both

across questions and across other respondents.

3. Item homogeneity: all questions are on the same topic for which all subjects

have a uniform level of knowledge.

The consensus method consists of constructing a person-by-intervention re-

sponse matrix X , in which element xi j corresponds to the response from person

i to intervention j. Next, a person-by-person similarity matrix M is computed in

which element mi j contains the correlation between respondents i and j, with the

correlation being computed across the respondents’ answers to all interventions.

For example, 20 subjects rated the potency of 6 smart-wheelchair behaviours; the

potency correlation matrix is 20 x 20, and each correlation is computed over 6

observations. The next step consists of conducting a principal component analy-

sis on the correlation matrix resulting in a set of eigenvectors and corresponding

eigenvalues. Evidence for agreement among participants can be assessed using the

eigenvalues: if the largest eigenvalue is at least twice as big as the second one, the

agreement is considered significant [78, 79].

We evaluate the level of consensus among participants separately for the eval-

uation, potency, and activity scores of the 6 intervention modes. Table 4.3 presents

the eigenvalues obtained in component analyses of correlations between the par-

ticipants’ ratings across all modes. The first eigenvalue was at least twice as big

as the second in the evaluation and activity dimensions, providing evidence that a

dominant factor governed the assessments made by all respondents. Regarding the

potency, the first eigenvalue was not significantly larger than the second suggest-

ing a lack of agreement among participants. Furthermore, the ratio between the

third and fourth eigenvalue was larger than the other two for this case, indicating

that more than one factor was influencing the potency ratings. As detailed in Sec-

tion A.3, we found evidence of a tendency for participants to duplicate potency and

activity ratings.
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Table 4.3: Eigenvalues obtained in principal component analyses of the cor-
relation matrices across participants for Evaluation, Potency, and Activ-
ity.

Eigenvalue Ratio
1 2 3 4 1 to 2 2 to 3 3 to 4

Evaluation 19.24 6.68 4.63 3.82 2.88 1.44 1.21
Potency 13.40 7.14 4.36 1.78 1.86 1.64 2.45
Activity 12.53 4.92 3.91 3.15 2.55 1.26 1.24

4.3.2 Intervention effect on wheelchair E, P, and A ratings

Consensus analysis revealed that users agree on evaluation and activity factors of

the intervention judgments across all modes. In the following, we assess whether

those judgments are different depending on the condition. For example, we want

to discard the possibility that all ratings ended up in the same octant of the af-

fective space. A one-way repeated-measures multivariate analysis of variance

(MANOVA) was conducted to evaluate whether there is a difference between the

combined dependent variables (i.e., evaluation, potency, and activity) for the six

smart-wheelchair behaviours. There was a statistically significant difference in the

combined E, P, and A ratings depending on the intervention mode F(15,257) =

2.802, p < 0.005, Wilks’ Λ = 0.658, partial η2 = 0.130. We performed post hoc

univariate analyses to determine which interventions were different and which di-

mension caused the distinction. A Bonferroni correction was applied, resulting

in a significance level set at p ≤ 0.003. We found significant differences in the

evaluation scores of the following intervention pairs: DSC / high-level, high-level /

disagreement, high-level / collision avoidance, efficiency / collision avoidance, and

collision avoidance / steering correction with speed limits. We did not find signif-

icant differences in potency and activity ratings between interventions. From the

pairwise comparison results between modes, and with the help of Figure 4.3, we

can recognize that collision avoidance, DSC, and disagreement blend have similar

patterns of evaluation scores making them practically indistinguishable from each

other. On the other hand, efficiency, high-level blend, and steering correction with

speed limits also have similar ratings between them.
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EPA ratings per intervention mode
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Figure 4.3: Smart-wheelchair scores in evaluation, potency, and activity di-
mensions of emotion. Activity scores are represented with the size of
the point, larger points corresond to higher activity values. Each column
corresponds to an intervention mode, data from all modes is plotted in
the background in grey.

4.3.3 Intervention effect on user affective state

We analyze the elicited user affective state with two emotion-measuring instru-

ments: a post interaction self-report (subjective component) and overall experi-

ence valence estimated using facial expression emotion recognition (physiological

component). Even though we have estimates for seven discrete emotions from the

facial expressions, we conduct the following preliminary analyzes using only the

overall estimated experience valence.

User affect self-reports

As described earlier, participants were instructed to report their affective state by

choosing as many words as needed from a set of 20 emotion-related words upon

completion of the driving task. We examined the number of times each word

was used to describe the elicited emotions across interventions. With 20 partic-

ipants and 2 trials per intervention, the maximum number of times a word can
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be selected is 40. The counts per word are presented in Figure 4.4, which illus-

trates that overall, the six smart-wheelchair behaviours elicit more positive than

negative emotions. The intervention mode that elicited the highest percentage of

positively-valenced emotions (31.1%) was DSC while high-level blend elicited the

least (17.3%). high-level blend also elicited the highest number of negatively-

valenced emotions (12.6%) and the collision avoidance mode elicited the least

(3.55%) closely followed by DSC (3.71%). Furthermore, while the count distri-

bution across words is mostly uniform, a pattern between two groups of interven-

tions is recognizable. The first group contains DSC, disagreement blend, and colli-

sion avoidance whereas the second group contains high-level blend, efficiency, and

steering correction with speed limits. The first group tends to elicit more positively-

valenced emotions (e.g., confident and satisfied) and less negatively-valenced (e.g.,

irritated and annoyed) than the second group.

We continued our analyses of the self-reported user affective state by construct-

ing a resulting emotion vector for each trial. We used the EPA mappings for every

emotion-related word (from the EPA dictionary), and computed a resulting emo-

tion vector by averaging the EPA values of the selected words. Subtle differences in

the EPA mappings depending on the gender of the participant were accounted for.

We then conducted a one way-repeated measures MANOVA test to find differences

in the participants’ affective state depending on the intervention mode. Significant

differences in the emotions reported by the users were found F(15, 257) = 2.746,

p= 0.001, Wilks’ Λ= 0.664, partial η2 = 0.128. Post hoc pairwise univariate anal-

yses with Bonferroni correction (so p < 0.003) revealed significant differences in

the reported evaluation and potency components of the resulting emotion vectors

between the following pairs of interventions: DSC / high-level, DSC / efficiency,

high-level / collision avoidance, efficiency / collision avoidance, and disagreement

/ efficiency. DSC elicits significantly more positive and more potent emotions than

high-level and efficiency. High-level and efficiency elicit more negative and less

potent emotions than collision avoidance. Disagreement blend elicits more potent

emotions than efficiency based blend. The activity levels of elicited emotions were

similar across all intervention modes.
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Figure 4.4: Number of times each word was selected to describe elicited af-
fective state per intervention mode. Words ordered by valence from left
to right (negative valence on the left and positive on the right) and by
a combination of potency and activity from top to bottom (high poten-
cy/activity on top and low on the bottom).
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Estimated experience valence

We used the Affectiva SDK to estimate the subject’s valence from facial expressions

recorded at 20 frames per second. The software computes a frame-by-frame va-

lence metric based on a set of observed facial expressions; for example, if a smile is

observed the likelihood of positive valence is increased, and if a brow furrow is ob-

served, the likelihood of negative valence is increased. We averaged the resulting

valence values over time for each task separately. We then looked for relationships

between the averaged valence, wheelchair judgments, and self-reported emotions.

A statistically significant correlation between the averaged estimated valence from

facial data with the resulting emotion vector from the self-reports or the wheelchair

judgments did not appear (all p≥ 0.053).

User affect relationship with wheelchair judgments

To assess whether the user affective state is consistent with the affect attributed to

the wheelchair, we computed the correlations between the resulting emotion vector

of each participant and the powered wheelchair rating separately for each dimen-

sion of emotion. We found a moderate significant linear relationship between the

evaluation of the wheelchair and the evaluation of the averaged emotion vector

(r = 0.63, p < 0.005), but no relationships between the activity and potency judg-

ments (r = 0.04 and r =−0.03 respectively).

We conducted further analyses to explore how the wheelchair judgments and

the self reported user affect related to the user control weight, modifications to

the user commanded velocities, cognitive workload (NASA TLX), and perceived

safety and difficulty. Figure 4.5 summarizes the product-moment correlation re-

sults. The first three columns represent the evaluation, potency, and activity ratings

attributed to the wheelchair behaviour and the following three columns represent

the computed EPA vector from the reported user emotions. The first row, labeled

Facial valence, corresponds to the time averaged valence from the Affectiva SDK.

The following row, User weight (α), is the time averaged amount of control granted

to the user throughout the trial. Angular change (%) represents the time averaged

modification of the user’s commanded angular speed as a percentage of the max-

imum possible modification. Similarly, Linear change (%) is the time averaged
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modification of the participant’s linear speed as a percentage of the maximum pos-

sible modification. The final three rows—Workload, Perceived safety, and Per-

ceived difficulty—are self-reported values from the post-interaction questionnaire.

As presented in Figure 4.5, the user’s control weight and the degree of user

command modification (both linear and angular) have an impact on the evaluation

of the wheelchair. Contrary to our expectations in Table 4.1, they did not corre-

late with the potency and activity ratings attributed to the wheelchair. On the other

hand, the same parameters have a small relationship with the reported user affec-

tive state. The reported workload and perceived difficulty have moderate negative

correlations with the evaluation scores attributed to the wheelchair and the evalu-

ation and potency components of the resulting emotion vector of each participant.

Finally, the reported perceived safety has a moderate positive correlation with the

evaluation score of the wheelchair.

4.4 Discussion
We conducted an experiment to explore the emotional responses to different as-

sisted navigation interventions on a smart-wheelchair. In this section, we discuss

the findings and answer our research questions. At the end of this section we elab-

orate on the limitations and challenges associated to this research.

4.4.1 What affective interpretation do users attribute to different
smart-wheelchair behaviours?

Furthermore, are those interpretations consistent across users?

Hypothesis 1 There will be consensus/agreement across participants of affective

ratings on each dimension of emotion for each intervention mode. –Partially sup-

ported.

We followed consensus analysis methodology to evaluate the level of consensus

among participants in each dimension of emotion. By examining the eigenvalues

of the correlation matrices across participants, we found evidence of agreement on

two dimensions of emotion: evaluation and activity. However, we also noted a

moderate tendency to duplicate potency and activity ratings. These results relate to
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Figure 4.5: Correlation coefficients r between wheelchair judgments and re-
ported user affect with estimated valence from facial expressions, aver-
aged user control weight, percentage of modification to user angular and
linear velocity, self-reported workload, perceived safety, and difficulty
to use. All |r|> 0.154 found significant with p < 0.05.

those obtained by Malhotra et al. [60] which observed low levels of agreement in

potency and activity dimensions when introducing non-verbal behaviours to a vir-

tual character. Moreover, the lack of consensus on the potency dimension, as well

as the large variance in activity scores might derive from different interpretations

of the dimensions. We did not instruct the respondents to associate the dimensions

of emotion with any particular characteristic of the wheelchair and left it to them to

decide. Some respondents indicated that they associated activity/potency with the

amount of resistance presented by the wheelchair while others associated it with

an opposite concept such as the obedience of the wheelchair.
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Hypothesis 2 There will be a distinct pattern of affective ratings for each inter-

vention mode. –Not supported

Even though we carefully chose and tuned the shared control interventions for

smart-wheelchairs to represent what we thought would be distinguishable behaviours

in the EPA affective space, the participant’s ratings for potency and activity were

not significantly different across modes. Only for the evaluation assessments were

there significant differences depending on the intervention mode. Post hoc analyses

delineate two clusters of similarly rated intervention modes:

• Group 1. Interventions where by design the user’s control weight is high

for most of the trial: dynamic shared control, disagreement based blend, and

collision avoidance. This group has significantly more positive scores in the

evaluation dimension.

• Group 2. Interventions where by design the planner’s control weight is high:

high-level blend, efficiency-based blend, and steering correction with speed

limits. This group has significantly more negative scores in the evaluation

dimension.

This result corroborates that users favour control paradigms that grant higher levels

of autonomy [11, 27, 28, 64]. Moreover, there is not a single control paradigm that

elicits only positive emotions for every user, suggesting that it is imperative to

accommodate individual preferences.

4.4.2 How does the user’s affective state change when interacting
with various wheelchair behaviours?

Moreover, are those changes consistent across users and consistent with the affect

attributed to the wheelchair?

Hypothesis 3 There will be a distinct pattern of evoked emotions for each naviga-

tion mode. –Partially supported

When inspecting the reported emotions experienced by the participants, we

found that interventions which grant higher levels of autonomy to the user elicit
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more positively-valenced and fewer negatively-valenced emotions than those that

grant more control to the robotic planner. We then mapped the reported emotions

into the EPA space of affective meaning and found differences in the evaluation

and potency components of the DSC vs High-level, DSC vs Efficiency, High-level

vs Collision Avoidance, Efficiency vs Collision Avoidance, and Disagreement vs

Efficiency interventions. It should be noted that a limitation of this analysis is that

the emotion-related words used for the self-report are subject to misinterpretation

by the subjects.

Although the processed recordings of the participant’s facial expressions were

not used in depth during this analysis, they provide an insight of the user experience

at a much higher sampling rate than post-trial self-reports and could prove useful

in future investigation efforts.

Hypothesis 4 The wheelchair behaviour ratings will correlate with the reported

elicited affective state of the participant. –Partially supported

Participants reported their affective state by selecting from a set of emotion-related

words. We constructed a resulting emotion vector by averaging the emotional map-

pings of each word from the Canadian EPA dictionary. A significant correlation

between the evaluation score attributed to the wheelchair behaviour and the user

self-reported affect was found. However, no significant similarities between the

potency and activity dimensions were apparent. It is important to note that dur-

ing our analysis we mapped the reported emotions to the EPA space assuming a

uniform weight (i.e., each emotion was experienced equally) which may not nec-

essarily reflect what the user felt.

Hypothesis 5 The quality of the trajectory will correlate with the wheelchair affec-

tive ratings and/or individual emotional states. Specifically, there will be a signifi-

cant correlation between the affect attributed to the wheelchair or the participant’s

emotional state and:

5.a The facial expressions of emotion. –Not supported

We averaged the estimated experienced valence over the trial and found no sig-

nificant correlation with the affective judgments of the wheelchair or the self-

reported affective state. We note that this admittedly limited form of analysis
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could be improved by integrating the remaining seven discrete emotion values

estimated with the Emotion SDK. Furthermore, analyzing the data throughout

the whole driving task could potentially help to detect cognitive states relevant

to driving such as user fatigue, confusion, and frustration.

5.b The degree of user input modification. – Partially supported

The time averaged user control weight over the driving task has a weak positive

correlation with the evaluative dimension of wheelchair behaviour as well as the

reported user affect. On the other hand, the averaged linear and angular speed

modifications have a weak negative correlation with the evaluative dimension

of the wheelchair scores. Moreover, as the degree of modification in the user’s

commands increases, the user’s feelings tend toward the bad and powerless part

of the EPA space.

5.c The cognitive workload. –Supported

The reported cognitive workload has a moderate negative correlation with the

evaluative ratings of the wheelchair as well as the elicited user affect.

5.d The perceived safety. –Supported

The levels of perceived safety correlate positively with the evaluation of the

wheelchair but not so much with the evoked user affective state.

5.e The perceived difficulty of use. –Supported

Difficulty of use has a strong negative correlation with evaluation and a substan-

tial negative impact on the user’s affective state. Usability should be improved

to ensure a positive user experience. Open ended comments from the study

participants indicate that a lack of feedback on what the wheelchair is trying to

accomplish and not moving in their desired direction contribute to the difficulty

of use.

4.4.3 Limitations

A significant limitation of this study is the fact that we are attempting to charac-

terize the behaviour of a collaborative mobile robot as felt by the user sitting on
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it. Since the users have different driving styles, the amount of contribution from

the robotic planner varies even for the same intervention mode. For example, some

drivers always keep a considerable distance from obstacles; consequently, some

control sharing paradigms may not intervene as strongly as with others. Moreover,

we conducted our experiments in a laboratory setting which may have influenced

the participants’ judgments. Often we noticed that interventions that take too much

control away from the user led to frustration and annoyance; however, we cannot

assume that cognitively impaired older adults will have the same responses because

our test subjects are quite able to perform safe navigation independently. Nonethe-

less, this study provides building blocks for potential future studies with the target

user population.

Recognizing an individual’s affective state is challenging, and there is no gold

standard for the measurement of emotion. Estimates constructed from self-report

or facial expressions each have their own issues, and perhaps neither should be

treated as the ground truth. Self-reporting is limited in the sense that users might

not be aware of their own emotional state, or they might not be willing to report

it. Additionally, self-reported data can only be collected after the interaction be-

cause asking participants to provide continuous ratings while they are operating

the wheelchair is infeasible and unsafe. Although self-assessments are among the

most commonly used methods of evaluation in HRI studies, they lack objectivity

and can be unreliable, as they reflect a large amount of individual differences [50].

Specifically for our study, we used a set of emotion-related words for users to report

their experienced emotion which raises the question of whether the reports reflect

differences in actual feelings or merely differences in how participants understand

the words. On the other hand, facial expressions are subject to many factors such

as gender, culture, expressiveness, and the inferred presence of an audience [39].

A significant challenge around facial expressions in this study was just capturing

facial data consistently for every subject. When participants turned their heads to

prepare for turning or backing up, the fixed camera could only catch the side of

their faces. Consequently, the facial expression recognition software cannot find

markers for those frames, resulting in a discontinuity in the estimated emotion val-

ues.

Finally, characterizing robotic behaviours on a three-dimensional affective space
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using the semantic differential technique is also limited because it only gets the

connotative meaning, not the denotative one. This limitation can result in users

allocating two different behaviours in approximately the same part of the affective

space without implying that they are equal. The technique identifies that some-

thing is good or pleasant and strong or weak, but it does not directly identify the

root cause.
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Chapter 5

Conclusions

In this thesis we explored user affect as a potential input for the behaviour of a

smart-wheelchair. We compared a set of shared control policies, not with the goal

of finding one that beats the others, but with the purpose of characterizing the

resulting behaviours in terms of the effect their behaviour had on the affect of

the driver. Twenty healthy subjects tested the driving assistance interventions and

judged them with respect to three basic dimensions of affective meaning: evalua-

tion, potency, and activity. We also asked participants to report their emotions after

the interaction using emotion-related words. Consensus analysis and analyses of

variance were used to determine the agreement among participant judgments and

the effects of the interventions on the affective state of the users. Results show that

the interventions are rated consistently among participants in evaluation and activ-

ity dimensions but not so much in the potency. The different intervention modes

had a significant impact on the self-reported affective state of the participants. Fur-

thermore, judgments for interventions that take more control from the user tend

to have more negative evaluations and a negative impact on the user’s emotions.

Adjusting the affect of the shared control intervention could potentially enable a

communication channel through which users could interact more naturally with

their smart mobility device and thereby enhance their own autonomy.
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5.1 Future work
In our study, we collected data from the PWC sensors throughout each driving task,

but we analyzed it based on a single summary value (a time average over each task).

This analysis could be enriched by looking at the data as a time series. In order to

get a real-time estimation of the driver’s emotional state, it is crucial to take into

account the interaction between the wheelchair and the user through the control

interface, and also track emotions longitudinally to create an emotional profile. In

the future, we could leverage the information from the user joystick, the environ-

ment (lasers and costmaps), and/or the current state of the wheelchair (pose and

velocities) to give some context to the reported emotions and the estimated values

from the facial recognition software. Analyzing joystick data is not uncommon in

the shared control literature; for example, Carlson and Demiris [80, 81] analyze

the smoothness of the joystick signals as characterized by the jerk (the change in

acceleration) to measure the efficiency of the generated trajectories. We could look

for relationships between joystick motion metrics, such as jerk, and emotion values

from self-reported measures or facial expression emotion recognition data. There

are also several additional ways to characterize the quality of a given trajectory;

for example, we could look for relationships between metrics such as trajectory

smoothness, fluency of the velocities or distance from obstacles and the affective

ratings of the wheelchair’s behaviour or the participant’s reported emotions. Fi-

nally, we could use that data to make timely predictions on specific affective states

that are critical for wheelchair navigation and prevalent in the older adult commu-

nity; for example, fatigue, irritation, and confusion.

A key limitation of this exploratory study is that we used cognitively intact

healthy adults rather than our target population of older adults with significant

mobility and mild to moderate cognitive impairments. Before conducting a study

with the latter population we need to improve our robotic platform and refine our

experimental protocol.

5.1.1 Improvements to experimental protocol

We observed duplication between potency and activity ratings of the wheelchair

behaviours. This suggests that a two dimensional model of emotion may be suffi-
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cient for our application. Furthermore, we only observed significant differences in

the affective interpretations between two clusters of interventions. For future stud-

ies, we could select and fine tune only two or three representative interventions to

reduce participant burden during the trials.

5.1.2 Improvements to robotic platform

The robotic platform can be enhanced in both hardware and software. We experi-

enced multiple technical failures due to interference between the laser rangefinders.

When testing with healthy adults, we simply explained the situation, fixed the issue,

and moved on to the next trial. However, having constant failures during the trials

may lead to lack of acceptance of robotic assistive technologies. Other research

groups rely on RGB-D sensors for localization and obstacle detection, although

vision-based approaches are not without their own shortcomings and challenges.

Moreover, the scan-based odometry estimation is never as reliable as odometry

from wheel encoders. Mounting custom wheel encoders is challenging, but it could

prove useful for better state estimation. Regarding the software improvements, we

need to consider that the performance of the shared control algorithm significantly

depends on the quality of the incoming signals (i.e., the automation and the user).

We used a robotic planner designed to control unmanned mobile robots. However,

wheelchairs have humans riding the robot which means that the generated controls

need to be intuitive for humans. For example, in some situations the planner would

prefer to stop, turn, and then move forward, while the user would prefer to drive

in a curved trajectory without stopping. We may be able to overcome such dis-

agreements if we use a planner that better accounts for what a human would do in

a similar situation.
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Consent Form 

Affective user response to shared control interventions on a smart wheelchair:  

An exploratory study 

 
 

Principal Investigator: Dr. Ian M. Mitchell, Professor, Department of Computer Science, University of 

British Columbia, mitchell@cs.ubc.ca, 778-223-7538 

 

Co-Investigator: Ariadna Estrada, M.Sc. Student, Department of Computer Science, University of British 

Columbia,  aestra42@cs.ubc.ca, 604-704-1845 

 

This study is being funded by the Aging Gracefully across Environments to Ensure Well-being, 

Engagement and Long Life (AGEWELL) Network Centre of Excellence (NCE), and the Natural Sciences 

and Engineering Research Council of Canada (NSERC).  

 

Introduction: Thank you for participating in this study. This work is affiliated with the Collaborative 

Robotics Laboratory at UBC. Please note that we are seeking people aged 19 and over who are able to sit 

and drive a powered wheelchair using a joystick for up to 90 minutes. You are being invited to take part 

in this research study to help us understand how intelligent powered wheelchairs and their autonomous 

behaviors are perceived at an emotional level. The results may help us to design smart wheelchairs which 

support older adults with cognitive and mobility impairments to more safely and effectively use powered 

wheelchairs.  

 

Purpose: The overall purpose of this study is to explore whether different types of assistance behaviors 

of intelligent wheelchairs are interpreted consistently across users.  For each assistance behaviour, we are 

seeking to measure users’ affective (emotional) response, level of physical and mental effort, and 

perception of performance, usefulness and safety while driving the wheelchair to a goal location. 

 

What you will be asked to do: After you have read this document, the experimenter will respond to any 

questions or concerns that you may have. Once you have signed this consent form, you will be asked to: 

 

- Familiarize yourself with driving a powered wheelchair.  You will be given a 10 minute training 

session to explain the features of the wheelchair and so you can get used to driving the wheelchair 

in the test environment without navigation assistance.  We will not collect any data during the 

training session. 

- Drive an intelligent powered wheelchair with different assistance modes.  After you are trained, 

you will complete up to 12 driving tasks where you will drive the wheelchair to a goal location.  In 

all cases we will provide only a general location of the goal.  The smart wheelchair may or may not 

modify your input commands to assist you in the navigation task. The task will terminate once you 
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are near the goal, when the driving time reaches 3 minutes, if you get too close to an obstacle, or if 

you give up, whichever happens first. During your driving sessions we will collect data about the 

location of nearby obstacles, your joystick commands, the wheelchair’s motion and any modification 

of your commands, and a video of your face (for facial emotion recognition analysis). 

 

- Complete a questionnaire. After each driving task, you will be asked to provide an assessment of 

the wheelchair behavior on three affective (emotional) dimensions: Evaluation (good/bad), Potency 

(powerful/powerless), and Activity (Active/Passive). Similarly, you will be asked to provide an 

assessment of your own emotional state based on your ability to perform the task. Finally, you will 

be asked to rate the task workload, as well as the safety and difficulty of the interaction.  Once you 

have completed every task, you will be asked to complete a brief demographic survey.  

 

Time commitment: This study should take 60 to 90 minutes and be completed in 1 session. 

 

Potential risks:  There is a possibility to bump into obstacles when you are operating the wheelchair. 

Bumping into obstacles is not likely and the potential for injury to yourself or others has been minimized 

by setting the maximum speed of the wheelchair to 0.6 m/s (a slow walking pace) to give you enough time 

to react to potential collisions and by having an automated collision avoidance algorithm and a researcher 

with a remote control ready to stop the wheelchair if a collision appears imminent. In addition, you will 

be asked to keep your arms inside the wheelchair and your feet on the pedals, so that any obstacles in the 

environment make contact with the wheelchair rather than your body.  You may experience discomfort 

when sitting on the wheelchair used in this study. You may take breaks between the driving sessions to 

mitigate fatigue and discomfort.  

 

Potential benefits: There are no direct benefits to you from your involvement in this study; however, 

your responses may contribute to the design of new technologies that may benefit others in the future. 

 

How the data collected will be used: Data collected will be used for analysis and may also be used by 

the student investigator to form the basis of thesis research which might be submitted as a research 

publication and/or presentation. The data could be used in the future to develop emotionally-aware 

intelligent wheelchairs.  

 

Video recordings: During each driving task, we will record a video of your face. After the experiment 

session, the video will be processed to estimate the type and level of emotion you were feeling based on 

your facial expression at each time during the task.  This estimated emotion data will be de-identified and 

used with the other data from the experiment.  The original video excerpts will not be used in any reports, 

presentations or publications. 

 

Confidentiality:  Your confidentiality will be respected. Any information that could identify you as a 

participant in this study will be kept confidential. All information that you provide will be stored in 

Canada.  Your identity will not be revealed in reporting the study results.  

 

Data Retention: Identifiable data and video recordings will be stored securely in a locked metal cabinet 

or on an encrypted and password protected computer storage device. All data from individual participants 
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will be coded so that their anonymity will be protected in any reports, research papers, thesis documents, 

and presentations that result from this work.  All data will be destroyed or deleted after 5 years. 

 

Compensation: You will receive monetary compensation of $15 for this session. 

 

Contact for information about the study: If you have any questions, concerns, or desire for further 

information about the study before or during participation, you may contact Ariadna Estrada at 604-704-

1845 or aestra42@cs.ubc.ca. 

Contact for information about the rights of research subjects: If you have any concerns or complaints 

about your rights as a research participant and/or your experiences while participating in this study, contact 

the Research Participant Complaint Line in the UBC Office of Research Ethics at 604-822-8598 or if long 

distance e-mail RSIL@ors.ubc.ca or call toll free 1-877-822-8598. 

Indicate your agreement to collect a video of your facial expression by providing your initials:  

- I consent to being video recorded for this study. _______ 

 

 

I, ________________________________, have read the explanation about this study. I have been given 

the opportunity to discuss it, and my questions have been answered to my satisfaction. I hereby consent 

to take part in this study. However, I realize that my participation is entirely voluntary and that I am free 

to withdraw at any time.  

 

 

Participant’s Signature                                                                           Date______________________                                         
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                        Faculty of Science 

                        Department of Computer Science 

                        2366 Main Mall 

                                                 Vancouver, B.C., V6T 1Z4 

 

 

 

Call for Participation: 
 

Affective user response to shared control interventions on a smart wheelchair: An exploratory 

study 

 

Principal Investigator: Dr. Ian M. Mitchell, Professor, Department of Computer Science, University of 

British Columbia, mitchell@cs.ubc.ca, 778-223-7538 

 

Co-Investigator: Ariadna Estrada, M.Sc. Student, Department of Computer Science, University of 

British Columbia,  aestra42@cs.ubc.ca, 604-704-1845 

 

You are invited to participate in a research study involving intelligent wheelchairs and their emotional 

effects conducted by the Collaborative Robotics Lab in the Department of Computer Science at the 

University of British Columbia. 

 

Who can participate? 

You must be 19 years of age or older and be able to: 

• sit and drive a powered wheelchair for up to 90 minutes; 

• understand and respond to tablet-based questionnaires written in English; 

• operate a joystick.  

 

What is involved? 

You will be asked to: 

• Drive an intelligent powered wheelchair to different locations in a laboratory with different 

navigation assistance modes helping you to accomplish the task. We will be recording your 

facial expression during the driving sessions.  

• Rate the wheelchair behaviors with respect to three basic dimensions of emotional experience: 

evaluation, potency, and activity.  

• Report the emotions that you felt while driving the powered wheelchair. 

• Provide feedback on the workload, helpfulness, safety and difficulty of using each intervention 

mode. 

• Complete a demographic survey.  

 

What is the time commitment? This study should take 60 to 90 minutes and be completed in 1 

session.  

 

Is there compensation? You will be compensated with $15. 

 

Interested in Participating? 

Please contact Ariadna Estrada at aestra42@cs.ubc.ca 
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Bad / Unpleasant Good / Pleasant

Powerless / Weak Powerful / Strong

Passive / Calm Active / Excited

Bad / Unpleasant Good / Pleasant

Introduction

Introduction
  

Thank you for participating in this study. Our overall goal is to understand the emotional effects of driving intelligent
wheelchairs under different navigation assistance modes.  
 
The purpose of the following questions is not to test you in any kind of way; we just need to get an idea of your
personality. 

Preliminary Self-Evaluation

Please identify yourself using the following scales: 

Evaluation
 

Potency
 

Activity
 

Wheelchair affective expectations

How would you describe a "smart-wheelchair"? 

Evaluation
 

 

  

Infinitely
 
Extremely

 
Quite

 
Slightly

 
Neutral

 
Slightly

 
Quite

 
Extremely

 
Infinitely

 
 

 

  

Infinitely
 
Extremely

 
Quite

 
Slightly

 
Neutral

 
Slightly

 
Quite

 
Extremely

 
Infinitely

 
 

 

  

Infinitely
 
Extremely

 
Quite

 
Slightly

 
Neutral

 
Slightly

 
Quite

 
Extremely

 
Infinitely

 
 

 

  

Infinitely
 
Extremely

 
Quite

 
Slightly

 
Neutral

 
Slightly

 
Quite

 
Extremely

 
Infinitely
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Powerless / Weak Powerful / Strong

Passive / Calm Active / Excited

Potency
 

Activity
 

Current mood

How are you feeling today? Select all that apply.

 

  

Infinitely
 
Extremely

 
Quite

 
Slightly

 
Neutral

 
Slightly

 
Quite

 
Extremely

 
Infinitely

 
 

 

  

Infinitely
 
Extremely

 
Quite

 
Slightly

 
Neutral

 
Slightly

 
Quite

 
Extremely

 
Infinitely
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Bad / Unpleasant Good / Pleasant

Powerless / Weak Powerful / Strong

Passive / Calm Active / Excited

Wheelchair behavior evaluation block 1

How would you describe the wheelchair's behaviour based on your most recent interaction? 

Evaluation
 

Potency
 

Activity
 

Post-interaction self-evaluation 1

How would you describe your mood based on your experience in completing the driving task?
Select all that apply. 

 

  

Infinitely
 
Extremely

 
Quite

 
Slightly

 
Neutral

 
Slightly

 
Quite

 
Extremely

 
Infinitely

 
 

 

  

Infinitely
 
Extremely

 
Quite

 
Slightly

 
Neutral

 
Slightly

 
Quite

 
Extremely

 
Infinitely

 
 

 

  

Infinitely
 
Extremely

 
Quite

 
Slightly

 
Neutral

 
Slightly

 
Quite

 
Extremely

 
Infinitely
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Unsafe Safe

Difficult Easy

Workload 1

How much mental activity was required (e.g. thinking, deciding, calculating, remembering,
looking, searching, etc.)? Was the task easy or demanding?

How much time pressure did you feel due to the pace of the task? Was the pace slow and leisurely
or rapid and frantic?

How successful were you in accomplishing what you were asked to do?  How satisfied were you
with your performance in accomplishing this goal?

How irritated, stressed and annoyed versus content, relaxed and complacent did you feel during
the task?

Safety and difficulty 1

 
Did you feel safe or unsafe in the wheelchair? How safe/unsafe?

 
 

 
Did you find the wheelchair easy or difficult to use? How easy/difficult?

 
 

 
Did you feel like the wheelchair helped (or made it difficult for) you to avoid obstacles? How? 

 
Did you feel like the wheelchair helped (or made it difficult for) you to complete the task? How? 

 

 

Easy Mental Demand Demanding

 

 

 

Slow Temporal Demand Rapid

 

 

 

Good Performance Poor

 

 

 

Content / Relaxed /
Complacent Frustration Level

Irritated / Stressed /
Annoyed

 

 

  

Extremely
 

Quite
 

Slightly
 

Neutral
 

Slightly
 

Quite
 

Extremely
 

 

 

  

Extremely
 

Quite
 

Slightly
 

Neutral
 

Slightly
 

Quite
 

Extremely
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Workload Comparison Cards

Sources of workload
  

You will be presented with a series of pairs of rating scale titles (for example, Performance vs. Mental
Demand) and asked to choose with of the items was more important to your experience of workload in
the tasks that you just performed. 

  
Please consider your choices carefully and make them consistent with how you used the rating scales
during the particular tasks that you were asked to evaluate. Don't think that there is any correct pattern:
we are only interested in your opinions. 

Each of the six boxes below contains two different sources of workload. In each of the six
boxes click on the source which you feel was the more important contributor to your workload. 
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Demographics

Demographics

How old are you? 

What is your gender?

What is your occupation?

What is your mother tongue?

How often do you interact with robotic systems? 

What is your experience driving powered wheelchairs? 

How long have you spent driving a powered wheelchair? 

Male

Female

Non-binary/third gender

Prefer to self-describe 

Prefer not to say

I never interact with robots

I have interacted with robots once or twice

I have interacted with robots on a number of occasions

I interact with robots regularly

I do research on robots

This is the first time I have ever used a powered wheelchair

I have used a powered wheelchair in the past

ACT-SWC-exploratory study. Demographic questionnaire Version 1 – September 19, 2018 Page 1 of 1



A.3 Data verification

A.3.1 Measurement reliability

We followed the approach presented in Chapter 8 of Heise’s book Surveying Cul-

tures to assess the reliabilities of the Evaluation, Potency, and Activity measures

across stimuli. Table A.1 summarizes the test-retest data for the ratings attributed

to the wheelchair behaviour. The column Intervention shows which intervention

mode was rated, the column Dim shows whether the statistics are for evaluation,

potency, or activity ratings. The columns under Test 1 give the means and vari-

ances of ratings and the number of subjects who rated the intervention during the

first block of trials. For example, 17 participants rated the Dynamic shared control

intervention during the first block and their mean Evaluation was 1.48 with a vari-

ance of 2.68. The columns under Test 2 gives the corresponding statistics of the

repeated measure. Small discrepancies occur since some respondents did not rate

an intervention due to technical failures with the platform. The column titled N

under T1, T2 gives the number of participants who rated each behavior at both test

1 and test 2. The column titled r shows Pearson’s correlation coefficient between

individuals’ test 1 and test 2 ratings, and the column titled p-value shows the level

of significance for that coefficient.

Overall, no significant differences were found on the variances between test 1

and test 2 of Evaluation, Potency, and Activity ratings considering the 6 interven-

tion modes. Furthermore, 10 out of the 18 correlations between test 1 and test 2

ratings were significantly greater than 0. Correlations of 0.48 or more are signifi-

cant with p≤ 0.05 in a two-tailed test. The mean overall correlation was 0.49, the

mean correlation for Evaluation was 0.35, the mean correlation for Potency was

0.46, and the mean for Activity was 0.67.

The individual variance in Activity ratings was significantly higher (p≤ 0.05)

than those of Evaluation and Potency. The large variance in Activity might derive

from different interpretations of the dimension. We did not instruct the respon-

dents to associate the Activity dimension with a particular characteristic of the

wheelchair. We found that some respondents associated it with the amount of re-

sistance presented by the wheelchair while others associated it with an opposite
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Table A.1: Statistics for E, P, and A ratings of wheelchair behaviours

Test 1 Test 2 T1, T2
Intervention Dim N Mean Var N Mean Var N r p-value
Dynamic
shared
control

E 17 1.48 2.68 18 1.98 1.87 16 0.50 0.05
P 17 1.35 3.62 18 1.61 3.09 16 0.73 0.00
A 17 0.56 6.68 18 0.93 5.07 16 0.75 0.00

High
Level

E 20 0.12 3.84 18 0.14 5.18 18 0.40 0.10
P 20 1.10 3.32 18 1.47 4.96 18 0.45 0.06
A 20 0.69 4.86 18 1.29 5.06 18 0.83 0.00

Disagreement
E 20 1.86 2.57 17 1.19 2.91 17 0.28 0.28
P 20 1.59 3.10 17 1.39 3.73 17 0.20 0.44
A 20 0.98 4.60 17 0.78 5.20 17 0.48 0.05

Efficiency
Blend

E 20 0.25 4.35 18 1.19 2.73 18 0.39 0.11
P 20 1.65 2.71 18 2.08 1.22 18 0.12 0.63
A 20 1.06 4.17 18 0.98 5.32 18 0.54 0.02

Collision
Avoidance

E 17 1.86 2.93 17 2.05 0.40 15 0.08 0.78
P 17 1.91 2.51 17 1.26 2.71 15 0.57 0.03
A 17 0.79 4.64 17 0.89 4.00 15 0.81 0.00

Steering
Correction

E 19 0.95 2.55 18 0.86 4.13 17 0.43 0.09
P 19 1.23 2.00 18 1.32 4.57 17 0.67 0.00
A 19 0.52 3.69 18 1.22 5.95 17 0.63 0.01

concept such as the obedience of the wheelchair.

A.3.2 Participant repeatability

To assess the repeatability of each subject, we computed two measures: the num-

ber of times a respondent judged an intervention within the same octant and the

Euclidean distance between the first and second trial ratings. For both measures,

we only considered the ratings where the participant tested each mode twice. Out

of the 240 trials (20 subjects, 6 modes, 2 blocks), 19 trials had no rating due to

some technical failure leaving 202 trials (i.e., 240− 19 ∗ 2) or 101 complete pairs

of ratings.

Out of the 101 pairs of ratings, 52 (51.49%) were rated within the same octant

for both trials. The average euclidean distance between the two ratings was 2.83.

Considering the distance between the center of an octant to the origin (3.724) as a
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Figure A.1: Distribution of rating distance between trials across participants

reasonable margin of error roughly 75% of the trials were rated within a reasonable

distance between trial 1 and trial 2. Figure A.1 shows a summary of the distances

across modes and across participants.

We followed an approach similar to the one described by Heise in [79] to exam-

ine whether the Potency and Activity ratings were affected by more than one factor.

We computed the Pearsons correlation between Evaluation-Potency, Evaluation-

Activity, and Potency-Activity ratings across all subjects. The correlation between

Evaluation-Potency (r = 0.41, p< 0.05) and Potency-Activity (r = 0.57, p< 0.05)

show a moderate linear relationship. Figure A.2 shows the scatter plots of the rela-

tionships between E, P, and A ratings.

Summarizing, the somewhat large second eigenvalues in the Potency and Ac-

tivity component analyses reflect the fact that Potency or Activity ratings among

some respondents were moderately predictable from the Evaluation and Potency

ratings respectively.
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Figure A.2: Relationships between E, P, and A with a linear model fit to the
data. The shaded area represents the 95% confidence bounds.
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