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Abstract

With energy efficiency and spectrum management being major concerns in future wireless

systems, this thesis primarily focuses on the precoding and signal detection capabilities of

next generation wireless transceivers.

In the first part of the thesis, we present a parallel framework to make hybrid precod-

ing competitive in fast-fading environments. To enumerate, (i) a low-complexity algorithm

which exploits the block diagonal phase-only nature of the analog precoder in a partially

connected structure is proposed to arrive at a hybrid precoding solution for a multi-carrier

single-user system using orthogonal frequency division multiplexing (OFDM), (ii) the orig-

inal problem is broken down into independent subproblems of finding the magnitude and

the phase components which are solvable in parallel, (iii) a per-RF chain power constraint

is introduced instead of the sum power constraint over all antennas, which is much more

practical in real systems, (iv) an alternating version of this scheme is proposed for increased

spectral-efficiency gains, (v) wideband PCS architecture is critiqued for its applicability in

future wireless systems and possible alternatives are discussed.

In the second part of the thesis, we present a signal detection and time-frequency lo-

calization framework for smart transceivers. Although deep learning techniques for image

analysis have been advancing at a breakneck pace for the past few years, their applica-

tion to RF data has been relatively less explored. To enumerate our contributions, (i) we

present a modification of an existing state-of-the-art object classification technique called

Faster-RCNN (FRCNN) [1] for detection and time-frequency localization of the signal in a

spectrogram of a wideband RF capture, (ii) insights into the design choices pertaining to the
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Abstract

variables such as short-time Fourier transform (STFT) parameters, spectrogram and anchor

sizes and network thresholds are discussed, (iii) synthetic data as per the recently proposed

WiFi High Throughput (WiFi-HT) protocol [2] is generated and a mean average precision

(mAP) of up to 0.9 is achieved when the model is trained and tested on positive signal to

noise ratio (SNR) values, (iv) certain drawbacks of the model with respect to low SNR levels

and disparate signal sizes are brought to light and possible solutions are discussed.
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Lay Summary

Future wireless systems are poised for the adoption of high frequency bands in conjunction

with multiple antenna systems for increased speed of communication. However, the adop-

tion of these technologies comes with its own set of design challenges. One such challenge

is to limit the consumption of energy with increasing complexity. While future wireless

transceivers need to be energy efficient, they should also aid in security applications. As

RF communication becomes pervasive for control and data transmission, from unmanned

aerial vehicles (UAVs) to internet of things (IoT) devices, detection of the presence of a wire-

less device by passive sensing becomes paramount for security purposes. The two concerns

mentioned above will be the main focal points of this thesis.
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Mathematical Notations

The following notations are used in this thesis. Boldface lowercase and uppercase letters,

for example, a and A, refer to vectors and matrices respectively. The notation Ai,j refers

to the entry on the row i and column j of matrix A. AH denotes the complex conjugate

transpose of matrix A. |C| denotes the modulus of the complex number C and arg (C)

denotes its argument. ‖A‖F denotes the Frobenius norm of A. A† denotes the Moore-

Penrose pseudo inverse of A, i.e, A† = (AHA)−1AH . A vector with superscript of *, for

example, x∗, refers to the ground truth and a subscript of a, for example, xa, refers to the

anchor box.
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Chapter 1

Motivation

1.1 The Promise of 5G Wireless Systems

Millimeter-Wave (mmWave) is a key technology that will play a pivotal role in 5G wireless

communication systems [5]. The high capacity requirements of next-generation systems make

adoption of higher frequency bands such as mmWave inevitable. Recent measurement studies

of frequency bands from 5 GHz to 100 GHz in New York City have shown the feasibility of

using mmWave technology for cellular communication [6]. The main concern with mmWave

is the high path loss and the absorption by atmospheric elements at such high frequencies [7].

On the upside, the small wavelengths at these frequencies make viable the accommodation

of high number of antenna elements at the base station (BS) empowering massive MIMO

systems. This combination of mmWave and massive MIMO will provide spatial multiplexing

and beamforming gains to make up for the detrimental high frequency effects. Further, the

spatial diversity offered by this system can be exploited for reliable communication.

1.2 Need for Hybrid-Precoding

Conventional MIMO systems use digital precoders in the baseband which can manipulate

both magnitude and phase of signals. This fully digital precoder requires RF chains com-

prising of analog-to-digital converters (ADCs) and signal mixers, equal in number to the

number of base station (BS) antennas. The power consumption and cost of these devices

make it prohibitive to implement digital precoders for mmWave massive MIMO systems.
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1.3. Need for Automatic Signal Detection

These constraints give rise to a new type of hybrid precoding architecture that addresses

these issues by restricting the number of RF chains connecting the baseband precoder to the

analog precoder [8]. The baseband precoder is converted to a low-dimensional one and the

analog precoder is made high-dimensional, because of which low-cost phase shifters are used

instead of variable gain amplifiers (VGAs) [6]. The phase shifter network that connects the

RF chains to the antennas determines whether the system is fully or partially connected.

The fully connected structure (FCS) connects each RF chain to all the antennas, delivering

full beamforming gain. The PCS significantly reduces the number of phase shifters to be

used by connecting each RF chain to only a subset of the available antennas, sacrificing

some beamforming gain in the process. In this thesis, we adopt the PCS design, propose

a low-complexity algorithm respecting per-RF chain power constraints and investigate its

performance in a single-user mmWave wideband system.

1.3 Need for Automatic Signal Detection

With the emergence of the IoT, we are currently witnessing a steep surge in the number

of wireless devices around us. In future wireless systems, with the IoT devices, UAVs and

smart sensors-actuators coexisting alongside traditional mobile phones and access points, it

becomes imperative to distinguish between these devices from a privacy and security point of

view. Technology that can detect and differentiate such heterogeneous wireless signals and

localize their time-frequency span can be commercialized into products for wireless security

and spectrum management. From the wireless security perspective, commercial products

can be built to make ad-hoc security decisions such as, sending emergency alerts on the

potential presence of an unexpected wireless device, employing techniques to jam signals

from the detected device, and also estimating the geolocation of the detected device from the

incumbent signals. From the spectrum management perspective, commercial products can be

built to dynamically share spectrum among the vast number and variety of heterogeneous

2



1.4. Outline of the Thesis

devices in the IoT space. Knowing a priori which time-frequency resources are under-

utilized and which ones have minimum interference, smart spectrum allocations can be made

in densely populated scenarios. In this thesis, we develop a deep learning framework to

passively detect transmitting devices that are transmitting time-frequency localized content

in the wideband RF spectrum of interest. We also estimate the time and frequency span of

each detected wireless transmission.

1.4 Outline of the Thesis

In Chapter 2, we introduce a per-RF chain hybrid precoding approach for wideband PCS sys-

tems. The original joint formulation is broken down into independent magnitude and phase

formulations, which is discussed in Sections 2.3, 2.3.1, 2.3.2. The Par-ArgMod algorithm is

presented in Section 2.3.3. Following this, a joint formulation leading to an alternating ap-

proach is discussed in Section 2.4. Complexity analysis and simulation results are presented

in Sections 2.5 and 2.6. Wideband PCS systems are critiqued in Section 2.7 and finally

Section 2.8 concludes with a few insights and avenues for future work.

In Chapter 3, we introduce a signal detection and time-frequency localization framework

using deep learning. The overall framework and the FRCNN architecture is discussed in

Sections 3.2 and 3.3. The various design choices adopted are presented in Section 3.4. This

is substantiated by the numerical studies elaborated in Section 3.5 and finally Section 3.6

concludes with the insights obtained and possible avenues for future work.

In Chapter 4 we provide a few concluding remarks, consolidate the insights obtained and

motivate future research directions.
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Chapter 2

A Per-RF Chain Hybrid Precoding

Approach for Wideband PCS Systems

2.1 Introduction

With massive MIMO systems poised to take over next generation wireless systems, hybrid

precoding will become indispensable in these systems from the energy-efficiency point of

view. Several authors have investigated the hybrid precoding problem in the recent past

[9]. Orthogonal matching pursuit (OMP) algorithm is widely adopted and gives satisfactory

performance [8], [10]. A spatially sparse precoding scheme is proposed in [8] which exploits

the sparse-scattering structure of the mmWave channel to formulate the precoder design

as a matrix reconstruction problem constrained by sparsity. A phased-zero-forcing (PZF)

scheme is proposed in [11], where a low-dimensional zero-forcing method is implemented

on the equivalent channel obtained by the product of RF precoder and the actual channel

matrix. The above mentioned schemes cater to the FCS, which consumes high power due to

the number of phase shifters used [12]. PCS is seen as a promising candidate towards this

end and can provide good performance with higher energy efficiency [13].

Partially connected architectures are looked into in [14]-[18], [19]. The concept of succes-

sive interference cancellation (SIC) is used to derive the hybrid precoder in [16]. This work

assumes that the baseband precoding matrix is diagonal, implying that the power alloca-

tion is only done for different data streams, and the number of RF chains should be equal

to that of the data streams. This leaves the analog-precoder to provide the beamforming

4



2.1. Introduction

gain, which might not be an optimum strategy [16], [17]. Codebook-based design of hybrid

precoders for the narrowband systems is discussed in [14]. This codebook-based method

searches exhaustively over the analog and baseband precoders without a given design crite-

rion. The above mentioned methods are developed for narrowband systems and they do not

consider multi-carrier transmission. Alternating minimization is used as the design criterion

in [20] to optimize the analog and digital precoder iteratively. However, the method in [20]

is computationally intensive and may not be the best strategy for fast fading channels.

All the above mentioned works consider a sum-power constraint on the baseband pre-

coder. In practical hybrid precoding systems, each RF chain is equipped with its own am-

plifier and therefore it would be more natural to consider a per-RF chain power constraint.

There are works that use the per-antenna power constraint to perform hybrid precoding,

however, most of the works like [21] and [22] use the FCS and their schemes are not ex-

tendable to PCS. PCS design with per-antenna power constraint is considered in [23], but,

this design is limited to narrowband systems and the extension of their scheme to wideband

systems is not straightforward. Therefore, to the best of our knowledge, there is no exist-

ing work that addresses the problem of hybrid precoding with PCS in wideband systems

employing per-RF chain power constraints.

In this chapter we tackle the two main shortcomings in the existing literature. Firstly

we make our design adhere to the practical per-RF chain power constraint. Secondly we

separate the magnitude and phase formulations to arrive at a much faster precoding solution

than existing state of the art in [20] which has the potential to be competitive in fast fading

channels. Following this, we recognize that spectral efficiency gains can be achieved by

alternating and extend the proposed algorithm to alternate between the magnitudes and

phases of the precoders. This alternating version is faster and has better convergence than

state of the art alternating minimization in [20] because of the per-RF chain optimization

approach along with minimal performance loss at higher SNR. In the coming section we

discuss the system and channel model used in this work and also introduce the metric that

5



2.2. System Model

(a) Architecture of hybrid precoding in mmWave
OFDM systems (b) Partially connected mapping structure

Figure 2.1: Hybrid precoding partially connected scheme in mmWave OFDM systems

will be used to evaluate performance.

2.2 System Model

We consider a single-user mmWave OFDM system as shown in Fig. 2.1a, where Ns data

streams are sent over each sub-carrier by Nt transmit antennas and received by Nr receive

antennas. The number of RF chains at the transmitter and the receiver for each subcarrier

are denoted as N t
RF and N r

RF , respectively.

The hybrid precoder at the transmitter comprises of an N t
RF × Ns digital baseband

precoder FBB and an Nt ×N t
RF analog RF precoder FRF . The transmitted signal therefore

can be written as x = FRFFBBs, where s is the Ns × 1 symbol vector such that E[ssH ] =
1
Ns

INs . The baseband precoding is performed in the frequency domain for each subcarrier

followed by an inverse fast Fourier transform (IFFT) operation that consolidates the signals

of all the subcarriers. Now, as the analog precoding is a post-IFFT operation, all the

signals have to share a common analog precoder [24]. Therefore, the received signal on each

subcarrier k can be expressed as

y[k] = √ρWH
BB[k]WH

RFH[k]FRFFBB[k]s + WH
BB[k]WH

RFn, (2.1)
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where k ∈ [0, K−1] is the subcarrier index, ρ stands for the average received power, WBB[k]

is the N r
RF×Ns digital baseband decoder for the kth subcarrier, WRF is the Nr×N r

RF analog

decoder shared across all the subcarriers at the receiver, H[k] is the channel matrix for the

kth subcarrier, FRF is the Nt × N t
RF shared analog RF precoder, FBB[k] is the N t

RF × Ns

digital baseband precoder for the kth subcarrier, K is the total number of subcarriers, and

n is the additive white noise vector, the elements of which are independent and identically

distributed (i.i.d) complex Gaussian random variables with zero mean and variance σ2
n. We

assume that perfect channel state information (CSI) is available at both the transmitter and

the receiver. In practical setups, CSI can be efficiently obtained by channel estimation at

the receiver using an adaptive compressed sensing approach with discrete Fourier transform

(DFT)-based codebook design [25].

With transmission of Gaussian symbols, the achievable spectral efficiency is given by

R[k] = log det(INs + ρ

σ2
nNs

(WRFWBB[k])†H[k]FRFFBB[k]

×FH
BB[k]FH

RFHH [k](WRFWBB[k]))
(2.2)

The phase shifter only implementation of the analog precoder confines the values of its ele-

ments to satisfy the constant modulus constraint given by |(FRF )i,j| = 1√
Nt

and |(WRF )i,j| =
1√
Nr

. The nature of the phase shifter network that connects the RF chains to the antennas

makes this network partially-connected. Fig. 2.1b illustrates the partially connected map-

ping structure considered in our work, where each RF chain is connected to only a subset

of antennas, Nt/N
t
RF = Mt at the transmitter end. A similar structure is followed on the

receiver side, with the number of antennas per RF chain being Mr = Nr/N
r
RF . Unless oth-

erwise specified, just the use of M assumes M = Mt = Mr and the use of NRF assumes

NRF = N t
RF = N r

RF .
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2.2.1 Channel Model

In this work, we consider the clustered channel model which is known to characterize

the mmWave channels very well [26], [27]. Specifically, considering the theoretical Saleh-

Valenzuela (SV) model [6], the channel matrix for the kth subcarrier in the frequency domain

is given following [24] as

H[k] = β
Ncl∑
i=1

Nray∑
l=1

αilar(φril, θril)at(φtil, θtil)He−j2πik/K , (2.3)

where β =
√

NtNr
NclNray

is the normalization factor, Ncl and Nray represent the number of clusters

and number of rays in each cluster, K is the total number of subcarriers, and αil is the gain of

the lth ray in the ith propagation cluster. It is assumed that the αil terms are i.i.d across the

Nray rays in each cluster i and that they follow a complex Gaussian distribution CN (0, σ2
α,i).

The variance terms σ2
α,i across theNcl clusters satisfy the condition∑Ncl

i=1 σ
2
α,i = γ, which is the

normalization factor used to satisfy the constraint E[‖H‖2
F ] = NtNr. In (2.3), ar(φril, θril) and

at(φtil, θtil) refer to the array response vectors for the receiver and the transmitter respectively,

where φril and θril represent the angles of azimuth and elevation for arrival at the receiver

and φtil and θtil represent likewise for departure at the transmitter. For the antenna array

architecture, we consider a uniform square planar array (USPA) at the transmitter with
√
Nt ×

√
Nt antenna elements. Hence, the array response vector corresponding to the lth

ray in the ith cluster for the transmitter is given as

at(φtil, θtil) = 1√
Nt

[1, ..., ej 2π
λ
d(p sinφtil sin θtil+q cos θtil),

..., ej
2π
λ
d((
√
Nt−1) sinφtil sin θtil+(

√
Nt−1) cos θtil)]T

(2.4)

where d and λ are the antenna spacing and signal wavelength, and 0 ≤ p <
√
Nt and

0 ≤ q <
√
Nt are the antenna indices in the 2D plane. A USPA with a similar array response

vector is used at the receiver with
√
Nr×

√
Nr antenna elements and same antenna spacing.
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The results of this work can be extended to a uniform rectangular array (URA), the response

vector for which can be found in [28]. This channel model is extended to conform to practical

constraints as given in [26] to obtain the NewYork University (NYU) model and as given

in [27] to obtain the 3rd Generation Partnership Project (3GPP) model for evaluation in

realistic scenarios.

2.3 Magnitude-Phase Approach

One approach to solve the hybrid precoding problem is to make our design as close to the

unconstrained fully digital precoder as possible with respect to a cost function [29]. This

means that we have to minimize the Euclidean distance between the two designs in order to

maximize performance, as noted in [8], [20], [30]. This poses to us an interesting problem

of tensor factorization with certain constraints. The digital precoder has to deal with power

constraints and the analog precoder faces constant modulus constraint because of the phase

shifter only approach. Also, the analog precoder is shared by all the subcarriers, which means

it has to be factored out of the tensor. We know that the fully digital optimal precoder and

decoder are the first Ns columns of the unitary matrices V and U of the channel matrix H

respectively. We can obtain V and U from the singular-value decomposition (SVD) of the

channel matrix, i.e, H = UΣVH .

From here on, we mainly focus on the precoder design only. We emphasize that the same

design can be extended to the decoder as well because of the similarity in their mathematical

formulations (c.f. [8] for example). For OFDM systems, hybrid precoding is essentially a

tensor factorization problem as shown in Fig 2.2. The data tensor Fopt is decomposed into

a factor matrix FRF and a core tensor FBB according to the Tucker-1 decomposition model

[29]. The factor matrix is shared by all the subcarriers introducing an inherent suboptimality

in the decomposition approach.

We transform the above mentioned tensor factorization problem into two subproblems of
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Figure 2.2: Hybrid precoding in OFDM as tensor factorization.

Figure 2.3: Frontal slice of the tensor Fopt.

estimating the magnitudes and phases of the elements of FBB[k] and FRF . Each element of

Fopt can be written as

Fopti,j,k = Fi,j,ke
jψi,j,k . (2.5)

A frontal slice of the tensor Fopt, representing a subcarrier is illustrated in Fig. 2.3, where,

Fi,j,k = |Fopti,j,k | and ψi,j,k = arg (Fopti,j,k). Since FRF is the analog precoder, we can express

each non-zero element in FRF as FRFi,j = ejθi,j . Note that we do not include the subscript

k for the θi,j terms in FRF because the analog precoder is shared across all the subcarriers.

For the partially-connected precoder architecture under study (c.f. Fig. 2.1b), FRF takes a

block-diagonal structure because each RF chain is only connected to a small number Mt out

of the total number Nt of antennas at the transmitter. This is also illustrated in Fig. 2.4a,

where, |FRFi,j | = 1/
√
Nt for all the non-zero elements of FRF and θi,j = arg (FRFi,j).

10
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(a) Block diagonal structure of FRF .

(b) Frontal slice of the tensor FBB.

Figure 2.4: Decomposition of the frontal slice of the tensor Fopt in Fig. 2.3 into the product
of an RF precoder FRF and a baseband precoder FBB.

Moving to the baseband precoder FBB, each of its elements can be written as

FBBi,j,k = Bi,j,ke
jφi,j,k , (2.6)

where Bi,j,k = |FBBi,j,k | and φi,j,k = arg (FBBi,j,k). A frontal slice of the tensor FBB, corre-

sponding to the subcarrier k is illustrated in Fig. 2.4b. In order for our hybrid precoder to

be as close to the optimal precoder as possible, we take the metric of mean squared error

(MSE) following [16] and [20] and therefore to minimize the approximation involved adopt

the least squares L2-norm as the design objective. The optimization problem for the qth RF

chain turns out to be

minimize
θ,B,φ

qMt∑
i=(q−1)Mt+1

Ns∑
j=1

K∑
k=1
‖Fi,j,kejψi,j,k − CBq,j,kej(θi+φq,j,k)‖2

subject to ‖Bq,:,k‖2 ≤ Ns

Nt

(2.7)

where C = 1√
Nt

, is the constant modulus of the non-zero terms of the analog precoder.

Omitting the summations, subscripts and constraints for ease of representation, the norm

11



2.3. Magnitude-Phase Approach

term can be simplified as follows

‖Fejψ − CBej(θ+φ)‖2 = [F cosψ − CB cos (θ + φ)]2 + [F sinψ − CB sin (θ + φ)]2

= F 2 cos2 ψ + C2B2 cos2 (θ + φ)− 2CFB cosψ cos (θ + φ)+

F 2 sin2 ψ + C2B2 sin2 (θ + φ)− 2CFB sinψ sin (θ + φ)

= F 2 + C2B2 − 2CFB[cosψ cos (θ + φ) + sinψ sin (θ + φ)]

= F 2 + C2B2 − 2CFB cos (ψ − (θ + φ))

Taking the limits of cos(x) into consideration, we get the inequality

F 2 + C2B2 − 2CFB ≤ F 2 + C2B2 − 2CFB cos (ψ − (θ + φ)) (2.8)

Equation 2.8 will be used to pose the magnitude problem in the coming subsection. For

now, plugging this simplified version back into (2.7), the original problem boils down to

minimize
θ,B,φ

qMt∑
i=(q−1)Mt+1

Ns∑
j=1

K∑
k=1

F2
i,j,k + C2B2

q,j,k − 2CFi,j,kBq,j,k cos (ψi,j,k − (θi + φq,j,k))

subject to ‖Bq,:,k‖2 ≤ Ns

Nt

, q = 1, . . . , N t
RF

(2.9)

In the coming subsections we propose independent formulations for the magnitude and

phase of the hybrid precoder. We also provide theoretical justifications on how the formula-

tion given in (2.9), referred to from here on as the original formulation, can be relaxed into

the proposed magnitude and phase formulations. Following this, a way to alternate between

the magnitude and the phase formulations is discussed.

2.3.1 Magnitude Sub-Problem

From Fig. 2.2, we note that each row of the baseband precoder FBB is applied a different

phase shift by the different non-zero entries of the analog precoder FRF to reach different
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rows of the optimal precoder. Taking all the K subcarriers into account, we can write the

first MtK equations for the qth RF chain as

Fopti,:,k ≈ ejθiFBBq,:,k ,

1 ≤ i ≤Mt, 1 ≤ k ≤ K, q =
⌈
i

Mt

⌉
.

(2.10)

Each of the MtK equations listed above can be written as two separate equations - one

equating the magnitude of the LHS terms with that of the RHS terms and the other equating

the phase of the LHS terms with that of the RHS terms. The same procedure can be followed

for the next MtK equations and so on. From (2.6) and (2.10), we can mathematically equate

the magnitudes in the hybrid precoder for subcarrier k and RF chain q as

Fi,j,k ≈ Bq,j,k,

1 ≤ i ≤Mt, 1 ≤ j ≤ Ns, q =
⌈
i

Mt

⌉
.

(2.11)

As we consider MSE as the optimization metric, we adopt the least squares L2-norm as the

design objective and formulate the magnitude sub-problem for each sub-carrier k and the

qth RF chain as

minimize
Bq,:,k

qMt∑
i=(q−1)Mt+1

Ns∑
j=1
‖Bq,j,k − Fi,j,k

√
Nt‖2

subject to ‖Bq,:,k‖2 ≤ Ns

Nt

(2.12)

Remark 1 (On the relation between the original formulation in (2.9) and the magnitude

formulation in (2.12)). From (2.8) and (2.9), we know that the lower bound to the original
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formulation consists of only the magnitude terms and is given by

minimize
Bq,j,k

qMt∑
i=(q−1)Mt+1

Ns∑
j=1
‖Fi,j,k − Bq,j,kC‖2

subject to ‖Bq,:,k‖2 ≤ Ns

Nt

(2.13)

Note that the optimization problems in (2.12) and (2.13) are equivalent because C = 1√
Nt

.

Consequently, we note that our magnitude formulation is trying to minimize a lower bound

to the original formulation. An important aspect to note here is that by separating the mag-

nitude formulation out of the original problem, we are able to do away with the dependence

among the subcarriers. This allows us to solve the magnitude problem for each subcarrier

independently. Since we operate with a total of K subcarriers, we should solve K simi-

lar problems as (2.12) - one for each subcarrier. This can be done in parallel because the

magnitude subproblems do not have any inter-dependencies between sub-carriers.

In (2.12), we have considered a per RF chain power constraint for the baseband precoder.

Beamforming with per-antenna power constraint has been investigated in [31]-[34], however,

the philosophy in these works can be extended to a per-RF chain power constraint as well.

Most of the works on beamforming adopt a sum-power constraint on the antennas and

following [31], we believe that a per-RF chain power constraint is more realistic as in practical

hybrid precoding systems each RF chain is equipped with its own power amplifier and is

limited by the linearity of that amplifier. Having a per-RF chain power constraint would

also aid in achieving equal power allocation among different RF chains so that all RF chains

will be equally active at a given time [35]. This is further elaborated in section 2.6.2.

The per RF chain power constraint follows from the formulation of the regular precoding

constraint which limits the Frobenius norm of the precoders, i.e.,

‖FRFFBB‖2
F = Ns (2.14)
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Due to the special block diagonal structure of the analog precoder FRF (c.f. Fig. 2.4a), the

power constraint can be rewritten as

Nt

N t
RF

‖FBB‖2
F = Ns. (2.15)

Dividing the power equally among the N t
RF RF chains, (2.15) transforms into the per RF

chain power constraint given in (2.12).

To solve (2.12), we firstly relax the power constraint so as to obtain a power budget

that maintains the convexity of the problem at hand. Upon doing so, we end up with a

quadratically constrained quadratic programming (QCQP) problem which is convex and

can be solved by standard convex optimization techniques [36]. Results show that the power

limit is achieved by this formulation for each RF chain.

A similar formulation as given in (2.12) can be formed for each of the N t
RF successive

rows of the baseband precoder FBB (one per RF chain). That is, in order to cover the entire

precoder, we need to solve a total N t
RF magnitude problems per subcarrier. We can solve

these N t
RF problems simultaneously in parallel because of the block diagonal nature of the

analog precoder FRF (c.f. Fig. 2.4a) as the partially connected nature of the hybrid precoder

renders each RF chain to be independent of the others. We can visualize the optimal precoder

as a group of N t
RF tensors stacked on top of each other which allow us to deal with each of

them separately. The resulting baseband precoder may not directly maximize the spectral

efficiency [8], [24], but it makes for a good substitute because it helps simplify the given

problem. The magnitudes of the baseband precoder for all the subcarriers are obtained by

solving these independent set of N t
RF formulations per subcarrier.

The system of equations in (2.11) is overdetermined because the number of independent

equations (MtNs) is much higher than the number of variables (Ns) involved. Specifically,

the magnitude equations in (2.11) reveal that, for a given subcarrier k, each of the rows of

the magnitude matrix B of the baseband precoder tries to approximate a set of Mt rows of
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the magnitude matrix F of the optimal precoder. For an optimal solution to exist we require

that

Ns ≥ Ns
Nt

N t
RF

(2.16)

i.e, we need N t
RF ≥ Nt. This is not practical for hybrid precoding systems, because of

which we end up with an overdetermined system with a minimum norm solution.

2.3.2 Phase Sub-Problem

The phase sub-problem can derived from (2.10) by equating the phase terms on the l.h.s

with those on the r.h.s. We obtain the following set of MtKNs equations for the qth RF

chain as

ejψi,j,k ≈ ejθiejφq,j,k ,

∀ 1 ≤ i ≤Mt, 1 ≤ j ≤ Ns, 1 ≤ k ≤ K, q =
⌈
i

Mt

⌉
where− π ≤ θi ≤ π, −π ≤ φq,j,k ≤ π,∀i, j, k

(2.17)

Observe from (2.17) and (2.11) that the main difference between the phase and magnitude

formulations is that the phase equations (c.f. (2.17)) are obtained upon including the con-

straint that the analog precoder needs to be shared across the K subcarriers. This is unlike

the magnitude formulation, where the equations (c.f. (2.11)) are obtained upon including

the constraint that the baseband precoders for the K subcarriers are independent of each

other. Applying a logarithmic transformation on the l.h.s and r.h.s of (2.17), we have the

following set of MtKNs equations

ψi,j,k ≈ θi + φq,j,k,

∀ 1 ≤ i ≤Mt, 1 ≤ j ≤ Ns, 1 ≤ k ≤ K, q =
⌈
i

Mt

⌉
where − π ≤ θi ≤ π, −π ≤ φq,j,k ≤ π,∀i, j, k

(2.18)
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Following the method of linear least squares to solve for the phases θi and φq,j,k of the digital

and analog precoders respectively, we formulate the phase sub-problem corresponding to the

RF chain q in the hybrid precoder as

minimize
θi,φq,j,k

qMt∑
i=1+(q−1)Mt

Ns∑
j=1

K∑
k=1

(θi + φq,j,k − ψi,j,k)2,

subject to− π ≤ θi ≤ π, −π ≤ φq,j,k ≤ π,∀i, j, k

(2.19)

The optimization problem in (2.19) is a linear-constrained quadratic programming (QP)

problem and can be solved using standard convex optimization techniques [36]. A similar

formulation as given in (2.19) can be formed for each RF chain q. Since we have a total of

N t
RF RF chains at the transmitter, we should solve a total of N t

RF subproblems to obtain all

the phases of the hybrid precoder.

Remark 2 (On the relation between the original formulation in (2.9) and the phase for-

mulation in (2.19)). The phase formulation given in (2.19) tries to reduce the gap between

the original formulation in (2.9) and the magnitude formulation in (2.12), as explained be-

low. Note from (2.12) that in the magnitude formulation, we solve for a lower bound to the

original formulation given in (2.9). The cos (ψi,j,k − (θi + φq,j,k)) terms in (2.9) are respon-

sible for the gap between the objective functions in (2.9) and (2.12). To reduce this gap, we

can maximize the cos (ψi,j,k − (θi + φq,j,k)) terms w.r.t (θi and φq,j,k)), i.e., we can solve the

following optimization problem

maximize
θi,φq,j,k

qMt∑
i=1+(q−1)Mt

Ns∑
j=1

K∑
k=1

cos (ψi,j,k − (θi + φq,j,k))

subject to − π ≤ θi ≤ π, −π ≤ φq,j,k ≤ π,

(2.20)

The problem in (2.20) is non-convex because the cosine function is not convex in (−π, π).

By resorting to a first order Taylor approximation, we can simplify (2.20) as
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maximize
θ,φ

qMt∑
i=1+(q−1)Mt

Ns∑
j=1

K∑
k=1

1− (ψi,j,k − (θi + φq,j,k))2

2

subject to − π ≤ θi ≤ π, −π ≤ φq,j,k ≤ π

(2.21)

Note that the optimization problem in (2.21) is equivalent to the phase formulation given

in (2.19). That is, our phase formulation is trying to minimize the difference between the

objective functions in the original formulation and the magnitude formulation.

An important aspect to note from the phase formulation in (2.19) is that, unlike the

magnitude formulation in (2.12), (2.19) has to deal with the dependence among the K

subcarriers because all the subcarriers share the same analog precoder. Consequently, we

cannot solve the phase sub-problems for each subcarrier independently. However, we note

from (2.19) that the phase formulation for each RF chain q is independent of the remaining

RF chains due to the block-diagonal nature of the analog precoder. Therefore, we can still

solve N t
RF phase sub-problems in parallel (one for each RF chain q) to obtain the entire

analog precoder.

Similar to the magnitude formulation, the system of linear equations in (2.18) is overde-

termined. This is because the available degrees of freedom, i.e, the variables θi and φq,j,k, are

lesser in number than the number of constraints on these degrees, i.e., the number of equa-

tions involved. Specifically, the overdetermined system of phase formulations has MtKNs

equations for a set of Mt +KNs variables. The main cause for the overdetermined nature of

the system is that the analog precoder, represented by the phase shifts θi, is shared across

the K subcarriers. In order to have an optimal solution we need to have

Nt

N t
RF

+NsK ≥
Nt

N t
RF

NsK

Nt +NsK(N t
RF −Nt) ≥ 0

Therefore, for N t
RF ≥ Nt, we always have an optimal solution and for N t

RF < Nt, we have
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an optimal solution if

Nt ≥ NsK|Nt −N t
RF | (2.22)

It can be seen that as Ns or K increase, it becomes increasingly difficult to satisfy (2.22).

Thus we end up with an overdetermined system with a minimum norm solution, similar to

the magnitude formulation.

2.3.3 Par-ArgMod Algorithm

Algorithm 1 : Par-ArgMod algorithm
1: Input: H
2: Compute SVD to get Fopt and set q=1;
3: Solve in parallel for q = 1, . . . , N t

RF

4: For a given subcarrier k, find the magnitude values of the qth row of FBB[k] using the
magnitude formulation (2.12). Solve K such optimization problems, i.e., one for each
subcarrier, in parallel.

5: Find the qth block diagonal column entry of FRF and phases of the qth row of FBB using
the phase formulation (2.19).

6: end when the N t
RF parallel problems are solved

7: Rearrange the magnitude and phase values to form FRF and FBB

In Algorithm 1, also referred to from here on as the Par-ArgMod algorithm, we present

a summary of the steps followed in our hybrid precoder design. The input to the proposed

algorithm is the channel matrix H, which is assumed to be perfectly known at the transmitter.

We then apply SVD to the channel matrix and obtain the fully digital precoder Fopt. Next, we

consider the Mt transmit antennas connected to the RF chain q and obtain the magnitude

and phase terms of the hybrid precoder by solving (2.12) and (2.19) respectively. This

procedure is repeated in parallel for the N t
RF RF chains, so as to fully obtain the hybrid

precoder matrices FRF and FBB.
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2.4 Joint Formulation and Alt-ArgMod

Introducing the approximation in (2.21) in (2.9) we have

F 2 + C2B2 − 2CFB cos (ψ − (θ + φ)) = (F − CB)2 + CFB
(ψ − (θ + φ))2

2 (2.23)

Alt-ArgMod given in Algorithm 2, alternates between the magnitude and the phase formu-

lations using equation (2.23). A good choice for the initial phase values is arrived at by

using the phase formulation in (2.19). Essentially, when the phases are fixed in (2.23), the

resulting formulation becomes a QCQP problem which can be written as

minimize
Bq,j,k

qMt∑
i=(q−1)Mt+1

Ns∑
j=1

(Fi,j,k − Bq,j,kC)2 + C1Fi,j,kBq,j,k

subject to ‖Bq,:,k‖2 ≤ Ns

Nt

(2.24)

where C1 = C
(ψi,j,k−(θi+φq,j,k))2

2 is the resulting constant after fixing the phases. Likewise

when the resulting magnitudes from (2.24) are fixed in (2.23), the resulting formulation

becomes a QP problem with linear constraints which can be written as

minimize
θ,φ

qMt∑
i=1+(q−1)Mt

Ns∑
j=1

K∑
k=1

C1 + C2
(ψi,j,k − (θi + φq,j,k))2

2

subject to − π ≤ θi ≤ π, −π ≤ φq,j,k ≤ π

(2.25)

where C1 = (Fi,j,k −Bq,j,kC)2 and C2 = CFi,j,kBq,j,k.

In the coming section, we present a detailed analysis on the computational costs incurred

by the proposed Par-ArgMod and Alt-ArgMod algorithm and compare them with existing

wideband PCS schemes.
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Algorithm 2 : Alt-ArgMod algorithm
1: Input: H
2: Compute SVD to get Fopt and set q=1;
3: Solve in parallel for q = 1, . . . , N t

RF

4: Initialize the phases in (2.23) using the phase formulation (2.19).
5: Solve for the magnitudes using the resulting formulation as in (2.24).
6: Solve for the phases by replacing the resulting magnitudes from step 5 as in (2.25).
7: Rearrange the magnitude and phase values to form FRF and FBB per RF-chain.
8: Repeat steps 5,6,7 until convergence criteria is met.
9: end when the N t

RF parallel problems are solved

2.5 Complexity Analysis

In this section we compare the computational complexity of our proposed algorithm with two

existing wideband schemes namely the SDR-AltMin algorithm [20] and the Fixed-Wideband

scheme [18]. Other hybrid precoding algorithms also exist, for example, the SIC-based

hybrid precoding scheme [16], but the extensions of such schemes to OFDM systems are not

currently available and are therefore skipped here.

In Par-ArgMod, we may note that the first step involves the SVD of the Nr ×Nt matrix

H, which can be computed in O(N2
rNt) operations. The magnitude formulation is a convex

QCQP problem, which can be solved using interior point methods in O(N3
s ) computations.

As noted in [37], [38], QCQP and QP problems are given by an iteration complexity of

O(
√
Ns log(Ns/ε)) with an ε-approximate solution using the primal-dual interior-point algo-

rithm for small updates. This should be done once per transmit RF chain and subcarrier,

leading to a total of N t
RFK problems for obtaining the magnitude terms of the hybrid pre-

coder. The phase formulation in (18) is a QP problem which can be solved by using interior

point methods with a computational complexity of O((MtNsK)3) and iteration complexity

of O(
√
MtNsK log(MtNsK/ε)). This process is followed in N t

RF parallel problems - one per

RF chain. Alt-ArgMod also takes similar time along with an additional factor of L which is

the number of iterations taken to converge.

The SVD step is common to Par-ArgMod, Alt-ArgMod and SDR-AltMin algorithms be-
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2.5. Complexity Analysis

cause it is required to obtain the optimal precoder values. The SDR-AltMin algorithm [20]

has a semidefinite programming (SDP) problem inside an alternating minimization block,

which makes it increasingly complex. Each iteration of the SDR AltMin algorithm requires

O((NsN
t
RF )3) computations for the baseband precoder and O(NtNsK) for the analog RF

precoder. Assuming the SDR-AltMin algorithm takes L iterations to converge, the total com-

plexity would be O(LNtNsK+L(NsN
t
RF )3). SVD is also carried out in the Fixed Wideband

algorithm [18] to obtain the singular values of the covariance matrix. The covariance matrix

itself can be obtained in O(M2
t NrK) and the baseband precoder can be got in O(M2

t Ns).

The complexities of these algorithms are juxtaposed in Table 2.1.

Algorithm Complexity
SDR-AltMin [20] O(LNtNsK + L(NsN

t
RF )3

√
NsN t

RF log(NsN
t
RF/ε))

Fixed Wideband [18] O(M2
t NrK +M2

t Ns)
Par-ArgMod O(

√
MtNsK log(MtNsK/ε)(MtNsK)3 + (Ns)3√Ns log(Ns/ε))

Alt-ArgMod O(L
√
MtNsK log(MtNsK/ε)(MtNsK)3 + L(Ns)3√Ns log(Ns/ε))

Table 2.1: Complexity comparison.

Par-ArgMod allows for parallelization; the magnitude and phase problems are solved

in parallel and these two problems are in turn solved as N t
RF parallel subproblems. In

addition, each of the N t
RF subproblems for the magnitude formulation are solved for the K

subcarriers as K parallel subproblems. The Alt-ArgMod also alternates separately for N t
RF

RF chains. The SDR-AltMin algorithm is linear in the number of transmit antennas Nt,

which is the term we vary in massive MIMO studies. In contrast, thanks to the multiple

levels of parallelization involved, our proposed algorithms increase as O(M7/2
t log(Mt/ε)) and

are therefore dependent on Mt rather than Nt, which as we show in section 2.7, needs to be

kept relatively constant with increase in Nt.

The proposed algorithms also offer other distinct advantages over existing schemes. Al-

ternating minimization does not have convergence guarantees to a global minimum or even

a stationary point, and only converges to a solution where the cost function ceases to de-

crease [39], [40], [41]. It also requires multiple runs because it imposes the non-trivial task of
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choosing good initial values to avoid convergence to bad local optima [20]. These drawbacks

are observed in Alt-ArgMod as well, however, convergence is achieved sooner than SDR-

AltMin on average because of a good initialization mechanism. This is discussed further in

section 2.6.2. Also, the per-RF chain power constraint considered in the proposed algorithms

is a safer approach when allocating power to the different RF chains than the sum-power

constraint used in Fixed Wideband and SDR-AltMin.

2.6 Simulation Results

In this section, we evaluate the performance of our proposed algorithm. Ns data streams are

sent over each of the K = 12 subcarriers with Nt = 36 and Nr = 16 antennas. The antenna

elements are separated by half wavelength distance. For the theoretical Saleh-Valenzuela

model we set Ncl = 5 clusters, Nray = 10 rays and the average power of each cluster is set

to σ2
α,i = 1. The azimuth and elevation AoDs and AoAs follow the Laplacian distribution

with uniformly distributed mean angles over [0,2π) and angular spread of 10 degrees [20].

All the results are averaged over 1000 independent channel realizations. We compare the

spectral efficiency performance achieved by the proposed algorithm with that of the SDR-

Alternating Minimization algorithm [20], the Fixed Wideband algorithm proposed in [18],

and the codebook-based [42] methods. These three methods serve as our baseline for hybrid

precoding with PCS in massive MIMO OFDM systems. We also consider two fully-connected

precoding schemes, namely, the OMP [8] and the PE-AltMin [20] for comparison.

2.6.1 Spectral-Efficiency Evaluation

Firstly, Fig. 2.5 shows the variation of spectral efficiency with respect to SNR. Note that all

baseline schemes presented in the figure consider a sum-power constraint on the RF chains,

whereas, we consider a more-realistic per-RF chain power constraint. We notice that the

fully connected architectures follow closely after the optimal precoder, whereas the partially
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connected structures lag in terms of spectral efficiency performance. The partially connected

architectures exhibit near similar performance for low SNR regions which is rather poor

when compared to the fully connected architectures and deviate slightly when SNR is high,

although the performance gap is not too conspicuous. The DFT-codebook based method

is seen to perform poorly in our setting mainly because of the finite size of the codebook.

The size of the codebook for a given dimension is fundamentally limited by the number of

mutually unbiased bases that are available and the lower bound to the minimum distance

that can exist between the codewords.
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Figure 2.5: Spectral efficiency achieved by precoding algorithms when Ns = N t
RF = N r

RF = 4.

Previous works [31],[43] have shown that the achievable capacity with the per-RF chain

power constraint is much lower than than the achievable capacity with the sum-power con-

straint on the RF chains. This difference in the maximum achievable spectral efficiency is

a major reason for the suboptimal performance of our scheme at high SNR. Although the

Alt-ArgMod outperforms the non-alternating version considerably, further investigation is

required on building non-alternating precoding schemes that can respect the per-RF chain

power constraint but not degrade in spectral efficiency performance at high SNR. Another

reason for the sub-optimality of Par-ArgMod is that we separate the original joint formula-

tion in (2.9) into parallelizable magnitude and phase optimization problems. This separation

introduces additional constraints on the degrees of freedom available in the precoder design,
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thus resulting in a decreased spectral efficiency performance [44]. This argument is validated

by the improved performance of Alt-ArgMod which works with the joint formulation given

in (2.23). Lastly, due to the partially connected wideband nature of the hybrid precoder,

both our magnitude and phase formulations solve overdetermined systems and this adds to

the sub-optimality.
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Figure 2.6: Spectral efficiency achieved by Par-ArgMod algorithm (a,b) with varying NRF

and (c,d) with varying SNR for different values of NRF .

Next, we fix the number of data streams Ns = 4, the signal to noise ratio (SNR) ρ
σ2
n

= 0 dB

and vary the number of RF chains N t
RF and N r

RF at the transmitter and receiver respectively.

It can be observed from Fig. 2.6a that increasing number of RF chains at the transmitter

can increase the spectral efficiency. In order to achieve further gains, increasing the number

of RF chains at the receiver is a reasonable solution. A similar trend is observed when we
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2.6. Simulation Results

increase the SNR to 5 dB and redo the experiment as seen in Fig. 2.6b. There is a jump in

spectral efficiency when N r
RF = Nr in both the cases. These figures illustrate the trade-off

introduced by hybrid precoders having limited RF chains - we achieve energy savings at the

cost of loss in spectral efficiency. It can be observed from Fig. 2.6c that with increasing

N t
RF the spectral efficiency increases, while Ns and N r

RF are kept constant. Increasing the

number of RF chains at the receiver has a similar effect as seen in Fig. 2.6d. Moreover,

using N r
RF = Nr is equivalent to having a fully digital architecture at the receiver.

2.6.2 Power Analysis

The per-RF chain power constraint considered in the proposed algorithm is a safer approach

when allocating power to the different RF chains than the sum-power constraint used in

Fixed Wideband and SDR-AltMin. This is because unequal power allocation among the RF

chains would feed into the non-linearity of the power amplifier and also decrease the overall

amplifier efficiency. For further insight, we note that the power expenditure on linear power

amplifiers can be expressed as PPA = Pin/η, where Pin is the input power to the power

amplifiers and η is the power amplifier efficiency. Typically, η depends on the output power

Pout of the PA and is given by η = ηmax
√

Pout
Pmax

[45], where ηmax is the maximum power

amplifier efficiency and Pmax is the maximum output power of the power amplifier. When

Pmax is higher than the Pout (which happens in the case of unequal power allocation), we

note that η is smaller and consequently, the power expenditure PPA at the power amplifier

is higher. Techniques which minimize the power amplifier losses in massive MIMO systems

are still an ongoing topic of investigation [46].

The power achieved by different RF-chains over time is shown in Fig 2.7. The maximum

allowed sum power is NsN
t
RF/Nt and per-RF power is Ns/Nt. SDR-AltMin is disparate in

the way it assigns power to different RF-chains and breaches the per-RF power limit as seen

in Fig. 2.7a, which is not acceptable from a hardware perspective. It also has difficulties

converging on some occasions as observed in Fig. 2.7b. On the contrary, Alt-ArgMod is fair
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Figure 2.7: Power level achieved by different RF-chains (a,b) with SDR-AltMin and (c,d)
with Alt-ArgMod.
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in its allocation of power and does not breach the power limit for any RF chain because of

the built-in constraints which is shown in Fig 2.7c. Also, as the algorithm alternates per-RF

chain, even when convergence may not be achieved for a particular RF-chain, other RF-chains

are still able to converge as can be seen in Fig 2.7d. This is in contrast to the SDR-AltMin

where all RF chains don’t achieve convergence. The above mentioned arguments emphasize

that the per-RF chain approach is a welcome departure from most existing schemes which

use the sum-power constraint, resulting in unequal power allocation.

2.6.3 Run-Time Evaluation

For practical fast fading systems, it would be of interest to adopt the algorithm that produces

faster results by sacrificing some spectral efficiency. Table 2.2 shows the time taken by the

SDR Alt-Min, Par-ArgMod and the Alt-ArgMod algorithms, when averaged over 200 runs.

The simulations are conducted on a machine with Intel(R) Xeon(R) CPU E5-2630 v2 running

at 2.6GHz (24CPUs). The SDR-AltMin algorithm is run on K parallel workers to find FBB.

The Par-ArgMod algorithm is run on NRFK parallel workers for the magnitude problem

and NRF parallel workers for the phase problem. Alt-ArgMod is run on similar number of

workers as Par-ArgMod.

Algorithm Mag time Phase time Total time
SDR-AltMin [20] - - 9.534 s

Par-ArgMod 0.9301 s 1.1241 s 1.1241 s
Alt-ArgMod - - 7.2135 s

Table 2.2: Run time comparison

The time taken by the Par-ArgMod algorithm is the maximum of the time taken by

magnitude and phase problems. The phase formulation is solved using the primal-dual

interior point method for sparse QP problems [38]. We see a nine fold decrease in time taken

when using the parallel framework as compared to the alternating approach. This time

gain could be significant in fast fading environments where the channel changes rapidly and
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precoding has to be sped up in tandem. Moreover, the per RF-chain alternating Alt-ArgMod

is much faster than SDR-AltMin.

2.6.4 Realistic Scenarios

In this section, the Saleh-Valenzuela (SV) channel model [6], is extended to realistic scenarios.

An Urban Microcell - Street Canyon (UMi-Sc) scenario is considered at a frequency fc =

30GHz with a bandwidth of 100MHz and number of subcarriers K = 12. Two practical

channel models are considered, namely, the 3GPP and NYU channel models. The 3GPP

clustered delay line (CDL) channel model is extended to the OFDM case according to [27].

The model assumes that power angular spectrum in azimuth is a wrapped Gaussian and the

zenith is Laplacian. The concept of time clusters is maintained with the delay for each cluster

generated using an exponential distribution. The delay and the angle are characterized by a

joint distribution. The NYU channel model [26], brings in the concept of time clusters and

spatial lobes (TCSLs) in addition to the underlying aspects of the 3GPP model. The TC

powers are generated using an exponential function of delay and each multipath component

is assigned an unique lobe according to a uniform distribution.
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Figure 2.8: Spectral efficiency achieved by Par-ArgMod using different channel models when
Ns = N t

RF = N r
RF = 4.

In addition to this, we demonstrate the performance of our scheme taking into account
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the beam squint effect in wideband systems using large arrays which is investigated in [47],

[48]. We model beam squint in USPA following [49] and as noted by the authors observe

that the spectral efficiency does suffer. It is also verified that with increasing Nt and K

(i.e. bandwidth), the performance worsens due to increased beam-squint. We also show the

performance of our scheme with the channel model used in [18], where each ray in a cluster

is given a unique phase shift, departing from the channel model used in this work which

assigns a unique phase shift to each cluster.

Fig. 2.8 demonstrates the effect of using different channel models to evaluate the perfor-

mance of the system. The spectral efficiency is estimated optimistically in the case of the

3GPP cluster delay line channel model as the number of clusters and subrays in each cluster

are assigned high values for the given UMi-Sc scenario. The number of clusters and subrays

used in this work with the SV channel model is lesser when compared to the 3GPP speci-

fications and is closer to the NYU channel model which derives its values from real world

channel measurement data. The NYU model claims to be closer to the mmWave setting as

the mmWave scattering environment is sparse and won’t have large number of multipaths

[8]. It is observed that while beam squint affects the spectral efficiency adversely, the use

of channel model in [18] does not change the performance to a large extent. Moreover, it is

more optimistic in its estimation of spectral efficiency values when compared to the channel

model used in our work.

2.7 Critique of Wideband PCS

The variation of spectral efficiency with increasing number of transmit antennas for the

optimal precoder in OFDM systems is shown in Fig. 2.9a. The rise in spectral efficiency

with increasing number of transmit antennas is expected by the promise of massive MIMO.

Increase in number of receive antennas also pumps the spectral efficiency up. This trend is

lost in hybrid systems as can be seen in Fig. 2.9b.
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Figure 2.9: Spectral efficiency achieved by Optimal and hybrid precoders with increasing Nt.

A number of experiments are run to validate this observation. It is seen that having

Ns and NRF constant with rising Nt leads to rapid deterioration in performance, with the

spectral efficiency dropping to a near zero. In this case we also observe that increasing

Nr also results in degradation of performance and could be because increasing number of

antennas (both at the transmitter and the receiver) adds to the suboptimality (increasing

M leads to highly overdetermined systems in hybrid precoding) but doesn’t leverage the

positives with fixed NRF . When the number of RF chains is taken to be half the number

of antennas (both at the transmitter and the receiver), the spectral efficiency reduces with

increasing Nt but at a much lesser pace. This we see as a more realistic experiment as the

number of RF chains need to be scaled accordingly with the antennas to take advantage of

the increased number of degrees of freedom for spatial multiplexing. However, it is seen that

the rising number of antennas makes the hybrid system increasingly suboptimal in all three

partially connected architectures compared here. Even though the ratio M of the number

of transmitter antennas to the number of RF chains is fixed,i.e., M = Nt/N t
RF is fixed, the

spectral efficiency worsens with Nt because the number of subproblems for magnitude and

phase formulations is equal to NRF and the suboptimality in each problem adds up with
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increasing NRF . Adding to this, each RF chain is limited in power by Ns/Nt, which reduces

as Nt increases, hampering the range of values the baseband precoder can take. Lastly,

when NRF = Nt, it is observed that the spectral efficiency improves with increasing Nt. In

this case, there is very little suboptimality in the system and the performance can add up.

This confirms our hypothesis that the reduction in the number of RF chains is the major

bottleneck in performance scaling with wideband PCS.

The above discussion can be formalized as is done by Proposition 1 in [23]. Extension of

Proposition 1 in [23] to wideband systems can be found in the appendix. We follow a similar

approach and arrive at conditions for optimality for our system in (2.16) and (2.22). Now,

because we use N t
RF ≤ Nt (violating (2.16)) and also as Nt is not large enough to satisfy

(2.22), the solutions that we obtain are not optimal solutions, but minimum norm solutions

in both magnitude and phase. From Fig 2.9b, it can be seen that whenever N t
RF < Nt, the

spectral efficiency grows worse as Nt increases. This is because (2.16) requires us to have

at least NRF = Nt, which when satisfied, leads to an increase in spectral efficiency with Nt.

Even if we manage to satisfy (2.22), we will violate the more stringent (2.16) and obtain a

suboptimal solution. Further investigation is required on how the losses in spectral efficiency

with increasing Nt can be mitigated. The current state-of-the-art on hybrid precoding with

PCS, including the proposed algorithm suggests that from the spectral efficiency point of

view it would be favourable to implement PCS only in systems where the number of RF

chains are comparable to the number of antennas.

2.8 Conclusion and Possible Future Work

In this Chapter, we have considered a single-user MIMO system. When OFDM is employed,

we have proposed a low-complexity algorithm for the design of a partially connected hybrid

precoder which turns out to be much faster than the existing state-of-the-art. The following

insights are obtained:
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• The run time comparison shows the superiority of the Par-ArgMod algorithm over

existing schemes for wideband PCS. In fast fading practical scenarios this would be

very desirable. Also, our proposed Alt-ArgMod outperforms other alternating schemes

with respect to run-time.

• The per-RF chain power constraint used is more practical in nature than the sum-power

constraint because each RF chain is generally equipped with its own power amplifier.

• Departing from the original joint formulation of magnitude and phase in conventional

precoding, we solve for the magnitude and phase as two independent subproblems in

Par-ArgMod. This allows us to solve the magnitude formulations in parallel for each

RF chain and subcarrier. The phase formulations, on the other hand, can be solved

in parallel for each RF chain but not for each subcarrier because the analog precoder

is shared among the subcarriers. The alternating version (Alt-ArgMod) alternates in

parallel for each RF chain but follows a similar parallelization structure.

• Increasing number of antennas without increasing the number of RF chains in tandem

is seen to reduce the spectral efficiency performance considerably in wideband PCS

due to the overdetermined nature of the hybrid precoding system and the restrictive

power constraint on the baseband precoder. From the spectral efficiency point of view,

it would therefore be favourable to implement PCS only in systems where the number

of RF chains are comparable to the number of antennas.

• Although we propose algorithms that are faster and adhere to practical constraints

under the PCS setting, our observations in Section 2.7 tell us that PCS is not a rec-

ommended solution for massive MIMO systems where good spectral efficiency is a

requirement, especially the ones employing multicarrier transmission like OFDM.

Some possible avenues for future work:
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• It is also worthy of investigating further whether the spectral efficiency values in wide-

band PCS can be improved while respecting the per-RF chain power constraint.

• Mitigate the detrimental effects of increasing the number of transmit antennas with

limited RF chains on spectral efficiency in wideband PCS.

• Consider the statistical distribution of phases of the analog precoder in the optimization

process and their relationship with the array response vector.

• For massive MIMO systems with high spectral efficiency requirement, investigate FCS

design respecting the per-RF chain power constraint. Extend the design to make it

workable in real life fast fading scenarios. The resulting design would be the ideal

marriage between spectral efficiency, practical implementation and energy savings.

• Extend the proposed hybrid precoding design to the multi-user massive MIMO sce-

nario. The main challenge in this extension would be to integrate the interference

cancellation procedure among the multiple users with the proposed procedure of par-

allelizing the hybrid precoder.

• Extension to distributed massive MIMO systems would also be an interesting avenue

to explore as the inherent parallelization in the approach would inspire a distributed

setup.
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Chapter 3

Signal Detection and Time-Frequency

Localization Using Deep Learning

3.1 Introduction

As wireless devices become pervasive in our day-to-day life, being able to passively detect

these devices in the spectrum is an important concern from the security as well as spectrum

management perspective. Signal detection techniques have been investigated extensively

in literature. A multi-band joint detection technique which jointly detects signal energy

levels in multiple frequency bands is introduced in [50] where the spectrum sensing problem

is formulated as an an optimization problem in an interference limited network. Wavelet

edge detection followed by blind source separation is done to separate the signals in the

frequency domain in [51]. In both these works, although the signals can be accurately

localized and separated in frequency, the joint time-frequency information is lost. In many

applications such as detection of the hopping pattern of a wireless device and joint frequency

and temporal optimization of the shared spectrum, it becomes a necessity to detect both the

time and frequency information of the signals present. In [52], periodic signals are detected

using a blind energy detection followed by a cyclostationary detection method where the

extracted signals are then classified based on a Chinese restaurant process (CRP). Defining

custom features based on RF signatures and cyclostationarity properties may be a viable

solution but might not be the best approach to detect various types of heterogeneous signals

that deviate from cyclostationary assumptions. This limitation is accompanied by the loss

35



3.1. Introduction

of temporal information.

Moving away from cyclostationary assumptions requires an agnostic feature extractor

network. With advances in deep learning techniques for time-series and image analysis, we

can extract rich features out of RF data for downstream tasks such as detection, localization

and classification. Audio event detection (AED) is one example where the application of

deep learning has been explored in the recent past. The underlying philosophy is that

by converting the time series data into spectrograms and then employing deep learning

techniques, we can extract certain specific patterns that help detect and localize audio events.

In [53], a state-of-the-art object detection framework was adapted to detect monophonic and

polyphonic audio events from the spectrograms. A similar approach is proposed in [54], with

the added functionality of capturing the long-term temporal context from the extracted

features through the use of a convolutional recurrent neural network (CRNN). Both [53]

and [54] detect the presence of audio events by converting time series information into time-

frequency spectrograms and then learning from the features present in the spectrograms.

However, the same philosophy has not been well explored yet for detecting general purpose

wireless RF signals present in wideband spectrum.

The idea of using deep learning based frameworks to detect wireless signals has been

looked into recently. The work [55] converts the time-frequency information into power

spectral density (PSD) based spectrograms. The spectrogram is then fed into a five-layer

convolutional neural network (CNN) which is used to perform multi-class classification over

different wireless technologies like WiFi, Bluetooth and ZigBee. Although the approach is

able to perform classification over heterogeneous devices, it cannot localize them in time

and frequency. Localization in time and frequency, if achieved, can be used to study various

other properties of these devices like hopping patterns, signal bandwidth and dwell time.

This information will be crucial for security purposes because it helps us perform narrow-

band jamming to mitigate rogue devices without effecting the other friendly devices on the

industrial, scientific and medical (ISM) band. A different time-frequency transformation,
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called the Choi-Williams distribution (CWD), is used in [56] to distinguish between different

type of coding schemes like polytime codes, Frank code and Costas codes. After image

preprocessing, this transformation is fed into a two-layer CNN with pooling and the recorded

ratio of successful recognition (RSR) is about 90% for most codes. However, it faces a similar

drawback of not being able to localize the signal in time and frequency.

The problem of detecting signals in a spectrogram falls under the more general problem of

object detection in images. The state-of-the-art in this regard is to employ CNNs to identify

whether an image contains an object(s) and predict the bounding box of the detected object

[57]-[63]. Previous state-of-the-art methods, for example [57][58], have employed one-stage

object detection using a single CNN to simultaneously obtain the category and location

of the objects. Such one-stage methods have recently been outperformed by certain two-

stage object detection methods [59]-[63]. In these methods, the first stage generates a set

of candidate bounding boxes, commonly referred to as the region proposals. Popular region

proposal methods include selective search [62], which is based on greedy superpixel merging,

and EdgeBoxes [63], which is based on edge maps and edge groups. The second stage

performs a classification task on the region proposals to identify the objects and a refining

task on the dominant region proposals to provide the bounding boxes. A major bottleneck

of the above mentioned CNN methods is that they perform supervised machine learning

and therefore require large amounts of labelled datasets to achieve high accuracy in object

detection and localization [57]-[63]. Large labelled datasets are currently available for object

detection in day-to-day real-life images containing humans (c.f. PASCAL VOCO [64] and

MS COCO [65]) and audio signals (c.f. UrbanSound8k [66] and DCASE [67]). However,

there are no standard labelled datasets available online for wireless signals present in the

wideband RF spectrum.

In this chapter we introduce a real-time deep learning framework based on the FRCNN [1],

for detection and time-frequency localization of narrowband signals present in a wideband RF

spectrum. Firstly, we find the most suitable feature extraction network and our experiments
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suggest that while weights pretrained on regular images are a good starting point for medium

sized networks, making the weights trainable gives much better performance. Following this,

we provide design insights with respect to multiple variables such as the STFT parameters,

spectrogram and anchor sizes and various thresholds of the model. To evaluate the detection

and localization performance of the proposed system, we generate synthetic data as per the

recently proposed WiFi-HT protocol, adopt the mAP metric [68] and make the necessary

modifications to account for evaluation over varying SNR values. An mAP of 0.9 is recorded

when the model is trained and tested on positive SNR values with single-bandwidth signals.

In the coming sections we discuss our signal detection framework and introduce the Faster-

RCNN architecture.

3.2 Framework for signal detection and

time-frequency localization

Spectrogram creation, 

pre-processing

Box detection in 

spectrograms

Time-frequency 

information extraction
RF time-series capture

Figure 3.1: Proposed framework for signal detection and time-frequency localization

We propose a deep learning framework to detect and estimate the time-frequency span of

all wireless signals present in a wideband RF spectrum. The proposed framework takes the

wideband RF time-series data as the input and provides the time and frequency information

of each detected signal as the output. An outline of the proposed framework is presented in

Fig. 3.1. Details on each stage are presented below.
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Figure 3.2: The time content, frequency content, and spectrogram of an example wideband
RF capture, when the capture duration is 633 ms, center frequency is 2.4 GHz, wideband

bandwidth is 56 MHz, and sampling rate is 56 MHz.
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RF time-series capture

In the first stage, we employ a wideband sensor with center frequency fc and bandwidth W

to record time-series RF data in fragments of T ms each. The time and frequency content

of an example wideband capture with fc = 2.4 GHz, W = 56 MHz, T = 633 ms, and a

sampling rate of 56MHz is given in Fig. 3.2. While Fig. 3.2a plots the signal amplitude

as a function of time, Fig. 3.2b plots the magnitude of the fast Fourier transform (FFT)

components as a function of frequency.

Spectrogram creation and pre-processing

For a compact representation of the wideband signal in terms of time and frequency, we apply

STFT on the RF time-series captures and obtain the PSD as a function of time and frequency.

Three-dimensional spectrogram images are then created by plotting the PSD values along

the time and frequency axes. Fig. 3.2c illustrates the spectrogram image created for the

RF capture in Fig. 3.2a-3.2b, when the STFT parameters are chosen as follows: number of

frequency bins is 4096, number of time bins is 4096, the STFT window is of hann-type, and

the window overlap is of 2048 time bins. Few insights on the choice of STFT parameters are

given in Section 3.4.1. As may be noted from Fig. 3.2c, the signals to be detected appear in

the form of rectangular boxes in the spectrogram image.

From the spectrogram in Fig. 3.2c, we may note that the dimensions of each rectangular

box within the spectrogram give us the time and frequency information of the corresponding

wireless signal. The problem of signal detection and time-frequency localization therefore

boils down to the problem of detecting and estimating the dimensions of rectangular-shaped

boxes present in the spectrogram. Before attempting box-detection in the spectrogram

image, we may employ some pre-processing steps. For example, we may remove out-of-band

transmissions to eliminate unreliable information. We may also employ denoising methods,

such as wavelet denoising [69], to improve the SNR of the spectrogram.
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Box detection in spectrograms

To detect the rectangular-shaped boxes present in the spectrograms, we take a supervised

machine learning approach, wherein, we train a FRCNN model [1] with several labelled

spectrogram images. The trained FRCNN model, when input with a test spectrogram image,

detects the rectangular-shaped boxes present in the image and reports their dimensions. In

Section 3.3, we present details on FRCNN architecture and provide an overview on how the

FRCNN model achieves the box detection task at hand.

Time-frequency information extraction

As the final step, we convert the dimensions of each rectangular box reported by the FR-

CNN model into time and frequency information. For example, using the STFT parameters

employed in the spectrogram creation stage, we may scale the x and y dimensions of each

box into the time and frequency span of the corresponding signal. The same approach may

also be followed to obtain the narrowband center frequency of the signal. In the next section,

we present details on the FRCNN architecture and expose several design choices that need

to be made to perform the signal detection and time-frequency localization task.

3.3 Faster RCNN Architecture

Faster RCNN is an object detection framework composed of three modules, as illustrated

in Fig. 3.3. The first module, which is the base network (BN), takes the image as the

input (spectrogram in our case), extracts features that are relevant to the object detection

task at hand and outputs a down-scaled feature image. The second module, which is the

region proposal network (RPN), takes as input the down-scaled feature image, a set of anchor

boxes (ABs) and the ground truths (GTs). The RPN provides as output the region proposals,

which are nothing but candidate boxes that are likely to contain the objects of interest. In

our case, the objects of interest are the rectangular boxes in the spectrogram. The region
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Figure 3.3: Faster RCNN Architecture.

proposals from the RPN, along with the feature image, are fed into the detector network,

which is the third module. The detector network assigns object class labels to each region

proposal from the RPN, performs a regression task to localize the object within the region

proposal, and also provides probabilities with which the assigned labels are true. Essentially

the RPN acts as an attention mechanism [70] over the feature image to help the classifier

with the object detection and localization task. When spectrograms are provided as input,

the entire FRCNN network can be thought of as a single unified framework for detecting

and localizing the rectangular boxes (which are nothing but a manifestation of the signals of

interest) present in the spectrograms. Details on each module in the FRCNN are presented

below.

3.3.1 Base Network

The base network is a CNN that can be either shallow or deep depending on the complexity

of features that need to be extracted from the input image. The convolutional layers are

interleaved with max pooling layers and the combination of these layers decide the total

down-scaling factor. In Section 3.5, we experiment with multiple feature extraction networks,
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namely, the VGG-13 [71] with the first 10 convolutional layers, the VGG-13 [71] and the

ResNet-50 [72]) networks, and report the impact on the performance of the FRCNN model.

3.3.2 Region Proposal Network

In the RPN, the down-scaled feature map obtained from the base network is passed through

an n × n convolutional layer, where n = 3 typically, to obtain a low-dimensional feature

vector. Also, a fixed number of user-defined raw region proposals, known as anchors, are

created for each pixel in the input feature map to serve as the raw region proposals. The low-

dimensional feature vector, along with the raw region proposals created from the anchors,

are fed into two fully connected layers to perform a classification and a regression task

respectively. The classification task assigns probabilistic labels to each raw region proposal

as positive or negative, to denote whether the proposal is likely to contain an object of

interest or not. For proposals that are deemed positive by the RPN, the regression task

tunes the size of the proposals to suit the dimensions of the object. The role of the anchors

is explained next.

Anchors

As briefly mentioned earlier, for each pixel of the down-scaled feature map from the BN, the

RPN generates a predefined number Na of raw region proposals centered at the pixel, where

Na is the number of anchors. Anchors are user-defined raw region proposals whose size and

aspect ratio needs to be specified before the training process begins. During the training, if

any anchor box has an intersection over union (IoU) greater than a certain threshold (referred

to as the RPN max overlap) with the ground truth, the RPN treats the anchor box as a

positive target. On the other hand, if the IoU is lesser than a certain threshold (referred to

as the RPN min overlap) the RPN treats the anchor box as a negative target. Any anchor

box whose IoU with the ground truth falls between the RPN min and RPN max overlap, is

left unutilized and is not acted upon for any further decision making. If the total number of
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anchors is Na, we would therefore have Na number of proposals per pixel in the input feature

map. The regression layer in the RPN will have 4Na outputs per pixel, which correspond to

the corner coordinates of the Na anchor boxes per pixel. Also, the classification layer will

have Na outputs per pixel, to denote the probabilities with which the associated proposals

contain the object of interest. Also, for an input feature map of size W ×H, we would have

a total of WHNa region proposals in total.

On the WHNa region proposals thus obtained, we perform a non-max suppression (NMS)

operation, as explained below, and obtain a filtered list comprising a small predefined num-

ber, say Nr, of region proposals. The filtered list of proposals are fed into the third module,

which is the detector network, for further action.

Non-Max Suppression

From the WHNa region proposals, we choose a small predefined number of region proposals,

referred to from here on as the regions of interest (RoIs), and feed them into the detector

network. The motivation for NMS is that, by restricting the number of RoIs, improvements

are observed in the performance of the detector network and also the overall processing

time. During NMS, we firstly sort all the region proposals in decreasing order of their

probabilities. Next, we retain the region proposal with the highest probability and suppress

all other proposals whose IoU with the retained RoI is greater than a predefined threshold,

referred to as the NMS threshold. The same procedure is followed for the RoI with the next

highest probability and so on until we have retained a small predefined number Nr of RoIs.

This process of suppression is agnostic to the anchor type that the RoI belongs to and only

relies on the RPN classification probabilities. After NMS, the RoIs which have high IoU

with the ground truth are treated as positive targets and the rest are treated as negative,

i.e., background, targets, for the classification and regression tasks executed in the detector

network.
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3.3.3 Detector Network

The detector network performs an RoI convolutional pooling operation, followed by a clas-

sification and a regression operation.

RoI Convolutional Pooling

The ROIs provided by the RPN (after the NMS operation) can be of different sizes, depending

on our choice of the anchors and the result of regression task in the RPN. The RoIs need

to be converted into fixed size inputs in order to be able to feed them into convolutional

layers for classification and regression within the detector network. This action is carried

out by a convolutional network known as the RoI pooling network [73]. It takes two inputs,

namely, the convolutional feature map from the BN and the filtered RoIs after the NMS

operation. For every RoI from the filtered RoI list, the RoI pooling network takes the

section of the convolutional feature map that corresponds to the RoI and scales it to some

pre-defined output size (e.g., 7×7). The scaling process is carried out by doing the following:

(i) dividing the RoI into equal-sized sections of the same dimension as the output, and (ii)

finding the maximum value in each section and copying these to the output. The result is

that from a list of RoIs of different sizes, we can obtain modified RoIs of a fixed size. The

RoI pooling output dimension depends neither on the size of the feature map from the BN

nor on the size of the filtered RoIs, but only on the number of sections we divide each RoI

into. By yielding fixed-size RoIs as the output, the RoI pooling layer allows us to use densely

connected convolutional layers for the ensuing classification and regression tasks.

Classification and Regression in the Detector

After performing RoI convolutional pooling, the fixed size RoIs are fed into a bunch of

convolutional layers to convert them into low-dimensional feature vectors. These feature

vectors are then input to two densely connected networks to perform a classification and a

regression task respectively. The classification task focuses on assigning probabilities that
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the RoIs contain an object of interest. The regression task focuses on fine-tuning the size of

each positive-labelled RoI to match the dimensions of the object present in it.

When training the detector, if any RoI has an IoU greater than a certain threshold

(referred to as the Detector max overlap) with the ground truth, the RoI is treated as a

positive target. If the IoU is less than the Detector max overlap but is greater than a certain

threshold, namely the Detector min overlap, the RoI is treated as a negative target. Any

RoI whose IoU with the ground truth is less than the Detector min overlap, is left unutilized

for any further decision making. During test time, if the total number of RoIs after the NMS

operation is Nr, the classification task in the detector yields Nr outputs, each denoting the

probability with which the associated RoI contains the signal of interest. For all the RoIs

with probability higher than a certain threshold, namely the Detector positiveness threshold,

the regression task yields 4 outputs, corresponding to the corner coordinates of the regressed

RoI.

3.3.4 Loss Functions

For the classification and regression tasks in both the RPN and the detector networks, we

need to optimize appropriate loss functions. A standard multi-task loss function, as defined

in [1], can be given as:

L(pi, ti) = 1
Ncls

∑
i

Lcls(pi, p∗i ) + λ
1

Nreg

∑
i

p∗iLreg(ti, t∗i ), (3.1)

where Ncls is the mini-batch size, Nreg = 4 ∗ Ncls is the total number of coordinates in the

mini-batch, i is the anchor index and pi is the predicted probability of the anchor i containing

the object of interest. The p∗i is the GT label which takes a value of 0 or 1, depending on

whether the anchor is negative or positive respectively. The t∗i is a vector comprising the four

parameterized coordinates of the GT box associated with a positive anchor and ti is that of

the predicted bounding box. The pi and ti terms are the outputs from the classification and
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regression respectively. The classification loss Lcls is a simple binary cross-entropy loss [74]

over the two object classes of interest, namely the signal and the background. On the other

hand, the regression loss Lreg is given as

Lreg(ti, t∗i ) = R(ti − t∗i ) (3.2)

where R is the robust loss function defined in [75]. The term p∗iLreg indicates that the

regression loss is turned on only for positive anchors, i.e., when p∗i = 1, and is quiescent

otherwise. Elements of the parameterized coordinate vectors t∗i and ti in the regression

task are obtained from the corner coordinates of the ground truth, the anchor box and the

bounding box as [1]:

tx = (x− xa)/wa, ty = (y − ya)/ha,

tw = log(w/wa), th = log(h/ha),

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha,

t∗w = log(w∗/wa), t∗h = log(h∗/ha),

(3.3)

where x, y, w, and h denote the time and frequency coordinates of the center, the time

span and the frequency span of the bounding box in the spectrogram respectively. The

xa, ya, wa, ha and x∗, y∗, w∗, h∗ are similarly defined for the anchor box and the GT respec-

tively. The regression tasks in both the RPN and the detector networks can be thought of as

bounding-box regressions from an anchor box/region proposal to a nearby GT signal, with

some transformation of the optimization variables, as given in (3.3), for ease of training.

Similar loss functions are used for both the RPN and the classifier with appropriate targets

in each case.
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3.3.5 Training procedure

We employ the approximate joint training method proposed in [1] to train our system. In

this method, during each forward pass, the RPN generates proposals which are used for

the backpropagation. The updated RPN from the backpropagation generates an additional

round of proposals which are then treated as precomputed proposals when training the

detector network. After the forward pass of the classifier, both the RPN loss and the detector

loss are summed and the resulting loss is used to backpropagate through both the networks.

As mentioned in [1], this method ignores the derivative of the sum-loss with respect to the

proposal boxes and therefore is an approximation. However, it reduces the training time

significantly, is easier to implement, and the loss in performance due to the approximation

is minor.

3.4 Design Choices to Adopt FRCNN for Signal

Detection and Time-Frequency Localization

As may be noticed from our description of the FRCNN architecture, there are several design

choices that we need to make in order to adopt the FRCNN model for the signal detection

and time-frequency localization task at hand. Below we provide multiple insights on the

major design choices that we have made.

3.4.1 Choice of STFT parameters

To generate the spectrogram images from the raw RF time-series data, we need to apply

discrete-time STFT and this in turn requires us to choose a few hyperparameters, namely,

the window size, the window type, the window overlap, and the FFT size. We may choose

these STFT parameters based on the minimum time and frequency resolutions that we need

to achieve. The window size governs the maximum achievable frequency resolution. If the
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window is T seconds long, the minimum detectable narrowband bandwidth is 1/T Hz. For

example, when the sampling rate is fs = 56 × 106 Hz and the window size is 5600, the

minimum detectable bandwidth is 10 kHz. While respecting this lower limit, the FFT size

allows us to control the number of frequency bins in the spectrogram. For example, an FFT

size of 1500 divides the spectrogram into 1500 frequency bins. Therefore, if the wideband

bandwidth is 56 MHz, the minimum detectable signal bandwidth would be ≈ 37.3kHz.

The window size, the window overlap, and the sampling rate govern the maximum achiev-

able time resolution. For example, if the captures signal duration is Tsig = 0.633 seconds, the

sampling rate is fs = 56× 106 Hz, the window size is Twin = 5600 and the window overlap is

Tov = 2800, the maximum achievable time resolution is Tsig∗(Twin−Tov)/(Tsig∗fs−Tov) ≈ 50µ

seconds. Lastly, the window type governs the amount of discontinuities between successive

window segments. For example, windows which are tapered at the ends, such as the Hann

and Hamming windows [76],[77], introduce much fewer unnatural discontinuities in the time

domain than the ones with non-tapering ends, such as the rectangular window.

3.4.2 Spectrogram size

When feeding the spectrogram into the FRCNN model, care should be taken to ensure that

the size of the input image is not too large. This is mainly because of two reasons. Firstly,

when we use large images as input to the model, each pass of training takes a long time

to complete because of the large input feature map, number of anchors, and the resulting

set of computations. This would mean large convergence time. Secondly, the base network

that extracts the features has a particular receptive field depending on the base network

used, such as the VGG and ResNet. When these receptive fields are large when compared

to the size of the signals, it would be hard for the network to make sense of the extracted

features as they would contain more of the background than any given signal. In light of

these two observations, we restrict the length of our input image to 600 pixels in time. This is

achieved by chopping the input spectrogram into chunks of 600 pixels each and recalculating
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the relative positions of the ground truths accordingly. Doing so ensures that the size of the

signals in the spectrogram is comparable to the full spectrogram size. This approach is also

seen to decrease the training time significantly.

3.4.3 Choice of base network

As may be noted from Section 3.3.1, the base network in the FRCNN model handles the

crucial task of feature extraction and therefore needs to be chosen based on the type of

input data used and the type of object detection task at hand. Standard feature extraction

models used in computer vision include VGG-13 [71], ResNet-50 [72], and MobileNet [78],

among many other popular ones [79]. These models have been built to detect objects in

benchmark datasets for computer vision, such as PASCAL VOC2007 [64] and MC COCO

[65]. Example objects that are to be detected from these datasets include humans, animals,

and automobiles. It is therefore not clear whether the standard base network models such

as VGG-13 and ResNet-50 can perform feature extraction for the signal detection task on

RF datasets. We may conduct a few experiments to choose the base network for the task

at hand. Firstly, we may consider the publicly available pretrained weights in the VGG-13

and ResNet-50 models and verify if the extracted features are useful for the signal detection

task at hand. Secondly, we may set the pretrained weights in these models as initialization

points to optimize the weights in the VGG-13 and ResNet-50 models to perform tailor-made

feature extraction for the task at hand. Thirdly, we may only consider the architecture of the

VGG-13 and ResNet-50 models, randomly initialize the weights and optimize the weights

for the feature extraction. We pursue these three experiments in Section 3.5 and provide

insights based on the observations we make.

3.4.4 Anchor box sizes and aspect ratios

As we may recall from Fig. 3.3 and Section 3.3.2, anchor boxes aid the RPN in generating

region proposals for the detector network. The RPN acts upon the anchor boxes generated
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per pixel of the input feature map by performing (i) a classification task which assigns to

each anchor the probabilities of it containing the signal of interest and (ii) a regression task

which regresses the corner coordinates of the anchor boxes to generate the region proposals.

When training the RPN for the classification and regression, anchor boxes whose IoU with

the GT are larger than the RPN max overlap are treated as positive targets and the ones

having IoU lower than the RPN min overlap are treated as negative targets. Consequently,

in order for the training to be successful, we need to carefully choose the anchor sizes and

aspect ratios, as well as the RPN min and max overlap values.

Since the anchor boxes serve as raw region proposals for the RPN to act upon, we may

choose the anchor sizes and aspect ratios to match the dimensions of the signals that we wish

to detect and localize. For example, if the narrowband signals are known follow the IEEE

802.11n HT protocol, we know that the signals have a bandwidth of either 20 MHz or 40

MHz and their duration ranges from about 300 microseconds to the order of 15 milliseconds

[2][80]. We may therefore choose multiple anchor boxes, each with a frequency span of either

20 or 40 MHz and with a time-span chosen uniformly randomly in the range [0.3, 15] ms.

3.4.5 RPN max and min overlap

The RPN max overlap needs to be chosen such that at least a few anchor boxes per image

have a high enough IoU with the GT to be considered as positive targets for the RPN

training. Typically, the RPN max overlap is chosen to be greater than or equal to 0.5

because an IoU of 0.5 or more gives us confidence that the anchor box indeed contains the

signal of interest. On a similar note, the RPN min overlap needs to be chosen such that

at least a few anchor boxes per image have a low enough IoU with GT to be considered as

negative targets for the RPN training. Typically, the RPN min overlap needs to be less than

0.5 because an IoU less than 0.5 denotes that the anchor box may not contain the signal

of interest. Higher RPN max overlap and lower RPN min overlap values would deem fewer

anchors as positive and negative targets respectively. This would consequently result in the
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convergence rates being slower but smoother.

3.4.6 Detector network min and max overlap

The detector max overlap needs to be chosen such that at least a few RoIs per image

have a high enough IoU with the GT to be considered as positive targets for training the

classification and regression layers present in it. Typically, the detector max overlap is chosen

to be greater than or equal to 0.5 because an IoU of 0.5 or more gives us confidence that the

RoI indeed contains the signal of interest. On a similar note, the detector min overlap needs

to be chosen such that at least a few RoIs per image have an IoU value between the detector

max and min overlaps to be considered as negative targets for the training. Typically, the

detector min overlap needs to be less than 0.5 because an IoU less than 0.5 denotes that the

RoI may not contain the signal of interest. The higher the detector max overlap, the fewer

the number of positive target RoIs. Also, the smaller the difference between the detector

max and min overlap values, the fewer the number of negative target RoIs. For the training

to converge faster, we need to make sure that the pool of positive and negative targets

per image is as large as possible and therefore choose the detector max and min overlaps

accordingly. In Section 3.5, we conduct simple grid search experiments to select the best

possible values for these thresholds.

3.5 Numerical Studies

We now present numerical studies on the performance of the Faster RCNN model for the sig-

nal detection and time-frequency localization task under study. Below we provide details on

the training and test datasets, the spectrogram generation, the various numerical thresholds

chosen for the FRCNN model, and the metric for performance evaluation.
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3.5.1 Dataset for training and testing

We consider RF transmissions as per the IEEE 802.11n HT mode protocol [2], popularly

known as the WiFi-HT protocol, and generate the time-series data synthetically using MAT-

LAB WLAN toolbox [81]. All the generated RF captures are centered around the 5.8 GHz

range, have a time duration of 630ms, a wideband bandwidth of 56 MHz, and an SNR drawn

uniformly randomly from the set {0, 10, 20, 30} dB. The data sampling rate is 56MHz and

the total useful bandwidth, after removing unreliable out-of-band transmissions, is 44.8MHz.

On an average, each RF capture contains about 90 WiFi-HT signal packets, each having a

narrowband bandwidth of 20MHz. All the signals are randomly subject either to line-of-sight

or to non-line-of-sight small-scale fading effects. In total, we generate a dataset of 7 captures

per SNR, amounting to around 3780 signals. Out of the 7 captures per SNR, we randomly

choose 5 for training and the remaining 2 for test purposes.

3.5.2 Spectrogram generation

For each RF capture, we apply STFT with the following choice of parameters: window size is

5600, window overlap is 2800, window type is Hann, and the FFT size is 1500. The resulting

spectrogram, after removal of out-of-band transmissions, contains 1200 frequency bins and

12599 time bins. Each spectrogram image is chopped into fixed chunks of 600 bins in time

in order to speed up the training process, as bigger spectrograms take longer time to train

and also to maximize the performance of FRCNN (c.f. Section 3.4.2 for details). This allows

us to detect signals that span a minimum of 0.05 ms in time and 37.3 kHz in frequency (c.f.

Section 3.4.1). Each spectrogram image therefore results in a total of 21 input images to the

FRCNN model. Consequently, the FRCNN model encounters a total of 630 input images

during training and a total of 252 input images during testing.
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3.5.3 Numerical thresholds for the FRCNN model

The convolutional layer at the start of the RPN (c.f. Section 3.3.2), which is used to create

a low-dimensional feature vector from the feature map generated by the base network, is

chosen as per [1] to be of size 3 × 3. The anchors are defined such that (i) the time-axis

sizes are chosen from the set {20, 40, 80, 120}, to represent signal time-spans of {1, 2, 4, 6}ms

respectively, and (ii) the frequency-axis size is chosen to be 17.92, which corresponds to the

90% useful bandwidths for the 20 MHz narrowband transmissions. In total, we therefore

have a maximum of Na = 4 anchor boxes. The RPN max overlap and the detector max

overlap are chosen from the set {0.5, 0.7, 0.9}. The RPN min overlap and the detector min

overlap are chosen from the set {0.1, 0.3}. Also, following [1], we set the number of RoIs Nr

from the NMS operation to 300, the output RoI size from the RoI pooling network to 7× 7,

and the Detector positiveness threshold to 0.5. The λ value in the loss function is set to 1

for all four classification and regression tasks in the RPN and detector. The mini-batch size

Ncls is set to 256 for the RPN and 32 for the detector.

3.5.4 Training performance evaluation

As may be recalled from Sections 3.3.2-3.3.3, there are four main machine learning tasks

within the FRCNN model, namely the RPN classification, RPN regression, Detector classi-

fication, and Detector regression. To evaluate the training performance, we consider an ex-

ample experiment with the base network set to VGG-13 (initialized with pre-trained weights

and configured as trainable), each training is carried out with one spectrogram chunk, the

RPN min overlap set to 0.1, RPN max overlap set to 0.9, Detector min overlap set to 0.1,

detector max overlap set to 0.5, the weighted-sum loss function chosen as in Section 3.1 with

λ = 1, and a total of 20 training epochs. In Fig. 3.4, we plot the training loss for the four

tasks mentioned above as a function of time. To focus on the trends, moving average was

applied over a window of 5 time steps. We notice that all the four training losses converge
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with time to zero. The convergence rates and the fluctuations in the training loss depend

on the quantity and quality of positive and negative targets available per mini-batch to the

RPN and the Detector. Example positive targets on a spectrogram chunk for the RPN and

the positive RoI inputs for the detector networks are shown in Fig. 3.5. As may be noted

from Sections 3.3.2 and 3.3.3, the RPN targets are the anchor boxes whose IoU with the

ground truth is ≥ RPN max overlap and the detector inputs are the RoI proposals chosen

after non-max suppression.
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(c) Detector classification loss vs time
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(d) Detector regression loss vs time

Figure 3.4: Training loss convergence for the RPN classification, RPN regression, Detector
classification, and Detector regression tasks in the FRCNN model.
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(a) RPN Targets (b) Positive Regions of Interest

Figure 3.5: Targets for the RPN and the inputs for the Detector. The red boxes are the
computed targets and the RoIs where as the blue ones indicate the GT signals.

Algorithm 3 Calculation of the mean average precision (mAP) metric
Require: SNR levels, ground truths, bounding box predictions, detection probabilities
1: for Each SNR level s do
2: Sort the predictions in decreasing order of detection probabilities
3: for Each bounding box prediction i do
4: Assign a True label if it has IoU ≥ 0.5 with any GT (or False if otherwise)
5: Calculate number of true positives (TP), false positives (FP), and false negatives (FN) so

far
6: Calculate precision preci until the current prediction as

preci = TP/(TP + FP)
7: Calculate recall ri until the current prediction as

ri = TP/(TP + FN)
8: end for
9: for recall levels rj= {0, 0.1, 0.2, . . . , 1} do

10: Calculate the maximum achieved precision p̃recj for recall rj as
p̃recj = max

rk≥rj
prec (rk), where prec(rk) is the precision at recall rk

11: end for
12: Calculate the average of the maximum precisions for the 11 recall levels as APs =

11∑
j=1

p̃recj
13: end for
14: return mean average precision (mAP), calculated as 1

S

S∑
s=1

APs, where S is the number of
SNR levels.
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3.5.5 Prediction Performance evaluation

To evaluate the performance of the FRCNN model in signal detection and time-frequency lo-

calization, we consider the mAP metric [68]. The mAP is a standard and widely-used metric

for performance evaluation of object detection algorithms in computer vision. An overview

of the mAP calculation is given in Algorithm 3. We begin by sorting all the bounding

box predictions from the FRCNN model in the decreasing order of the detector classifica-

tion probabilities. Next, we assign a True or False label for each prediction, depending on

whether it has an IoU ≥ 0.5 with any ground truth or not. We also calculate the precision

and recall values until the current prediction using the formulae given in Steps 5 and 6 of

Algorithm 3. We then consider 11 specific recall levels rj ranging from 0 to 1 in steps of 0.1

and record the maximum achieved precision p̃recj for each recall level. The mAP is then

obtained as the average of the p̃recj values recorded for the 11 recall levels. Higher mAP

values denote better prediction performance.

Figure 3.6: Test images of the trained model. The red boxes are the predicted bounding
boxes where as the blue ones indicate the GT signals.

Sample prediction images of the model are shown in Fig. 3.6. It should be noted that

these images are a result of a particular combination of parameters of the network. In the

next few subsections, we analyze the mAP performance of the trained FRCNN model for
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various parameters such as different base networks, anchors, RPN min and max overlaps,

detector min and max overlaps, and SNR values.

Impact of different base networks
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Figure 3.7: mAP for different base networks.

In Fig. 3.7, we plot the mAP values achieved by the FRCNN model when the base network is

chosen to be VGG-10, VGG-13, and ResNet-50, where the numbers 10, 13, and 50 denote the

number of convolutional layers present . While the architectures for VGG-13 and Resnet-50

are available online [71][72], the VGG-10 architecture is obtained from VGG-13 by removing

the last three convolutional layers. We try different three different combinations of feature

extraction: (i) use pretrained weights as the initialization for the BN and configure it as non-

trainable, (ii) use pretrained weights as the initialization for BN and configure it as trainable,

and (iii) use random weights as the initialization for BN and configure it as trainable. With

the VGG-10, we only attempt the third method because there are no pretrained weights

available for this architecture. We notice that the VGG-13, with the BN set as trainable

and the pretrained weights used as the initialization, gives the best mAP performance. The

performance drops slightly when the initialization is random and even more when the BN is

set as non-trainable. Also, we notice that a very deep network such as the ResNet-50 may
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not provide any improvement in mAP over moderately deep network such as the VGG-13

because the training complexity increases with the depth and a moderate depth may actually

be sufficient to extract all the features necessary for the task at hand. The VGG-10, which

is a slightly shallower network than the VGG-13, achieved poor mAP performance, possibly

because it fails to perform feature extraction. For all the experiments presented henceforth,

we fix the base network to VGG-13, initialize it with pretrained weights and configure it as

trainable.

Impact of the number of anchor boxes

We now analyze the effect of using different number of anchors on the mAP performance of

the FRCNN model. In Table 3.1, we list out the mAP values achieved with Na = 1, 2, 3, 4.

It is observed that the mAP values are fairly constant across different Na values, with only

marginal improvements when Na is increased from 1 to 4. This reveals that the regression

tasks in the RPN and the Detector network are powerful enough to regress from arbitrarily

close anchors to the ground truths. Also, the chosen anchors need not have very high IoU

with the ground truths for the training to be successful. For all the experiments presented

henceforth, we fix the number of anchors to 3, with the anchor dimensions as given in Table

3.1.

Number of anchors Anchor dimensions mAP
1 [1ms, 20MHz] 0.791322
2 [1ms, 20MHz], [2ms, 20 MHz] 0.79436
3 [1ms, 20MHz], [2ms, 20 MHz], 0.8176363

[3ms, 20MHz]
4 [1ms, 20MHz], [2ms, 20 MHz], 0.8172389

[3ms, 20MHz], [4ms, 20 MHz]

Table 3.1: mAP with different number of anchors.
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Impact of RPN and Detector Min and Max Overlaps
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Figure 3.8: mAP with different RPN and Detector thresholds.

We now analyze the impact of the RPN and DET min and max thresholds. Since a grid

search can be computationally exhaustive, we employ an alternate-once strategy for finding

the optimal threshold values. We first fix the DET Min and Max overlaps to be 0.1 and

0.5 respectively and search over different combinations of RPN min and max overlap values

as shown in Fig. 3.8a. Among the different thresholds, we observe that the (RPN Min,

RPN Max) combinations (0.1, 0.9) and (0.3, 0.5) achieve better mAP values than the rest.

We therefore fix the RPN Min and Max values to these two combinations and search over
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the different DET min and max overlap values, as shown in Fig. 3.8b and 3.8c. We notice

that the best (DET min, DET max) combination among these runs is (0.1, 0.5) and fix this

combination for all ensuing experiments.

The alternate-once strategy presented above is a simplified search approach to obtain

the RPN and DET min and max overlap thresholds. Naturally, a more exhaustive grid

search method may help us choose better threshold values but would require many more

experimental runs. Note that the optimal threshold values obtained either via grid search

or via the alternate-once strategy, may not be universal for the FRCNN model because the

optimal values can depend on the type and quality of the training data.

Impact of SNR

We now proceed to evaluate the performance of the FRCNN model for different SNR levels.

We begin with a training dataset comprising 5 captures per SNR level in the set {0, 10, 20, 30}

dB. In Fig. 3.9, we plot the mAP values achieved when the test dataset comprises of captures

with SNR = −10, 0, 10, 20, and 30 dB respectively. We notice that the mAP values are

consistently around 0.9 for positive SNR levels while dropping to a little over 0.5 for −10

dB. To verify whether this trend is universal, we next consider a training dataset comprising

5 captures per SNR level in the set {−10, 0, 10, 20, 30} dB, i.e., we have now included a

negative SNR level. The mAP values for each SNR level in the test dataset are given in

Fig. 3.9. When compared to the case with non-negative SNR levels, we notice a drop in

the mAP performance for all the SNR levels except for −10 dB. This is expected as the

model should perform well on the data it has seen before, however, the drop in mAP values

corresponding to positive SNR when trained with images of negative SNR points to the lack

of generalization of the model across positive and negative SNR. It is also observed that the

mAP on test captures with SNR less than -10 dB is very poor irrespective of the training

strategy. This exposes the need for a denoising mechanism as a preprocessing step on the

spectrograms before we feed them into the FRCNN model. We have conducted experiments
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with the general-purpose wavelet denoising [69] as a simple pre-processing step and have

observed no significant improvement in the mAP values. This observation motivates the

need for an advanced custom-made denoising function that can take captures with strongly

negative SNR and bring the SNR level at least up to the -10 dB level before feeding them to

the FRCNN model. The design of such a custom-made denoising function is an interesting

topic of investigation for future work.
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Figure 3.9: mAP vs SNR.

Impact of disparity in signal sizes

In all our experiments so far, we have considered signals with a fixed bandwidth of 20MHz.

We now consider an artificially generated WiFi dataset comprising two different signal band-

widths, namely, the 5 MHz and 40 MHz, and SNR levels in the set {−10, 0, 10, 2030}dB. Due

to the nature of the WiFi protocol, both the 5MHz and 40MHz signals have variable dwell

time but their bandwidths are different by a factor of 8. We conduct this experiment to

verify whether the trained FRCNN model is indifferent to the disparity in the ground truth

sizes. The number of anchor boxes Na is set to 6, with the time spans drawn from {1, 2, 3}ms

and the frequency spans drawn from {5, 40}MHz. We notice that the mAP values drop by a
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considerable amount to 0.5320695 from 0.7917968 in the single-bandwidth case. Sample test

images showing the prediction performance of the model are given below in Fig. 3.10. The

drop in performance could have come from multiple sources: (i) the use of a single non-max

suppression threshold may favor region proposals arising from a particular class of ground

truth signals, thereby ignoring the other types, (ii) the base network may not be able to

simultaneously extract all the important features for both the small and large bandwidth

signals, (iii) since the anchor sizes are vastly different, the use of a single RPN min overlap

(and RPN max overlap) may result in the RPN assigning higher classification probabilities

to region proposals from one particular type of signals. A deeper investigation needs to be

conducted on these probable causes and appropriate architectural modifications need to be

developed in order to achieve uniform mAP performance across different signal sizes. We

are currently exploring this research direction.

Figure 3.10: Test images of model trained on disparate anchor sizes. The red boxes are the
predicted bounding boxes where as the blue ones indicate the GT signals.
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3.6 Conclusion and Possible Future Work

In this Chapter, we have proposed a deep learning framework to perform real-time signal

detection and time-frequency localization in a wideband RF spectrum of interest. We convert

the data capture into a spectrogram and transform the given problem into an object detection

problem. The following insights are obtained:

• Our experiments suggest that while weights pretrained on regular images are a good

starting point for medium sized networks, making the weights trainable gives much

better performance. It is also verified that deeper feature extraction networks don’t

necessarily improve performance.

• An mAP of up to 0.9 is recorded when the model is trained and tested on positive

SNR values with single-bandwidth signals. This is seen to deteriorate as negative SNR

signals are included in the training process thus motivating the need for a custom

denoiser. The experiments also reveal that the model is agnostic to the number of

anchor boxes because of the two-stage regression framework.

• When trained with disparate signal sizes it is noted that the mAP decreases notice-

ably. We hypothesize that this could be because of the inadequacy of the non-max

suppression technique, feature extraction network and the RPN to handle anchors at

disparate scales.

Some of the avenues for future work would be:

• The performance of negative SNR captures is observed to be not satisfactory with

respect to the mAP. A custom denoising mechanism can be investigated to make sure

the SNR level is acceptable before feeding the spectrogram to the signal detection

framework.
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• It is seen that generalizing over SNR values is not very easy for the model to do.

Custom made models corresponding to different SNR ranges can be introduced and

their performance improvement over general purpose detectors can be observed.

• It is observed that the employed non-max suppression technique may favour a par-

ticular anchor box over another during the training process. A non-max suppression

technique could be devised that does not favour any particular anchor box type.

• The performance of the model is seen to deteriorate when disparate signals are intro-

duced in the training process. It would be interesting to change the architecture to

accommodate disparity in anchor sizes and come up with custom feature extractors

and region proposal networks for disparate sizes.

• The experiments conducted in this work ignore the diversity and distribution in data.

It would be interesting to investigate the impact of these two variations on the perfor-

mance of the model.

• The Faster RCNN model is capable of classifying distinct signal patches. It would be

natural to extend the proposed framework to perform modulation classification.

• While models pretrained with regular image datasets such as PASCAL VOC2007 [64]

and MC COCO [65] are good starting points for training, it would be favorable to have

a model pretrained on RF data to enable enhanced feature extraction and a multitude

of diverse downstream tasks.
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Chapter 4

Conclusion

In this thesis, we focused on two important directions involving next generation wireless

systems. The first chapter of this thesis addressed an energy efficient partially connected

transceiver architecture considering practical hardware as well as run-time constraints. While

a case could be made about the energy efficiency of partially connected architectures, it

should be noted that spectral efficiency does indeed take a hit as a result of the approxima-

tions in the design. While the promise of massive MIMO in terms of spectral efficiency is

real, this promise it would appear, does not translate very well to the energy efficient hybrid

precoding regime. The experiments also do suggest strongly that carefully designed alter-

nating algorithms outperform non-alternating ones, which is accompanied with increased

run-time hindering real time implementation of these algorithms. Nevertheless, in applica-

tions where energy efficiency is an important requirement and spectral efficiency is not, these

architectures could still play a vital role.

The second chapter of this thesis proposed a real-time signal detection and time-frequency

localization framework. It is demonstrated that deep learning indeed has the ability to

perform high quality signal detection over a range of positive SNR. It would of course be

unrealistic to demand that the model perform well across negative SNR as well, as this task

would be equivalent to detecting objects in blurred images. A custom denoiser before the

signal detection framework would aid in enhancing performance in such a scenario. While

the model is very good with single-bandwidth signals, it falls short when multiple signals

of disparate sizes are included. We are looking to address this issue in our future research

work.
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Appendix A

Proof of results in Chapter 2

A.1 Optimality condition for wideband systems PCS

Extending Proposition 1 in [23] to wideband systems, to achieve the maximum data rate in

PCS, we have K sets of identical equations, where K is the total number of sub-carriers.

Each set of equations is of the form Ax = b and has an optimal solution only if

N t
RF ≥ rH [k] (A.1)

where rH [k] is the rank of the channel matrix corresponding to the kth subcarrier. Assuming

that we have a full column rank channel matrix for all sub-carriers, we have rH [k] = Nt,∀k ∈

1, 2, ..K. Therefore, it is required that N t
RF ≥ Nt for an optimal solution to exist.

A.2 Results with varying number of streams and

subcarriers

We note from equation (2.22) that the system becomes increasingly overdetermined with

increase in number of data streams (Ns) and number of sub-carriers (K). We verify this by

observing the spectral efficiency performance for different values of Ns and K as shown in

Fig. A.1.
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A.2. Results with varying number of streams and subcarriers
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Figure A.1: Spectral efficiency at SNR = 0 dB, with N t
RF = N r

RF = 4.

77


	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Mathematical Notations
	List of Abbreviations
	Acknowledgements
	Dedication
	Motivation
	The Promise of 5G Wireless Systems
	Need for Hybrid-Precoding
	Need for Automatic Signal Detection
	Outline of the Thesis

	A Per-RF Chain Hybrid Precoding Approach for Wideband PCS Systems
	Introduction
	System Model
	Channel Model

	Magnitude-Phase Approach
	Magnitude Sub-Problem
	Phase Sub-Problem
	Par-ArgMod Algorithm

	Joint Formulation and Alt-ArgMod
	Complexity Analysis
	Simulation Results
	Spectral-Efficiency Evaluation
	Power Analysis
	Run-Time Evaluation
	Realistic Scenarios

	Critique of Wideband PCS
	Conclusion and Possible Future Work

	Signal Detection and Time-Frequency Localization Using Deep Learning
	Introduction
	Framework for signal detection and time-frequency localization
	Faster RCNN Architecture
	Base Network
	Region Proposal Network
	Detector Network
	Loss Functions
	Training procedure

	Design Choices to Adopt FRCNN for Signal Detection and Time-Frequency Localization
	Choice of STFT parameters
	Spectrogram size
	Choice of base network
	Anchor box sizes and aspect ratios
	RPN max and min overlap
	Detector network min and max overlap

	Numerical Studies
	Dataset for training and testing
	Spectrogram generation
	Numerical thresholds for the FRCNN model
	Training performance evaluation
	Prediction Performance evaluation

	Conclusion and Possible Future Work

	Conclusion
	Bibliography
	Proof of results in Chapter 2
	Optimality condition for wideband systems PCS
	Results with varying number of streams and subcarriers


