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Abstract

With the success of deep learning in computer vision community, most approaches

for group activity recognition in sports started relying on Convolutional Neural

Networks (CNN) and Recurrent Neural Networks (RNN). However, how to model

the interactions among players and the interactions between players and the scene

remains a challenging problem. In order to better model these interactions, we

propose two models. Our first model combines features of all players in a scene

through an attention mechanism. The aggregated feature is then concatenated with

the feature of the frame and passed through an RNN to generate the final prediction.

In our second model, we designed a spatial grid feature and a temporal grid feature

calculated from appearance features and motion features of all players in a scene, as

well as their locations. We then apply CNNs to the spatial grid feature, the temporal

grid feature, target frame of the scene (the frame at which the event happens), and

the stack of optical flow containing the target frame separately. Results from the

four streams are fused through score fusion to make the final prediction. Inputs to

our models are: the target frame image, a stack of optical flow images, bounding

boxes of players and coordinates of players calculated from homography matrix of

the frame. We evaluated the two models on an Ice Hockey dataset, and results show

that both models produced promising results. We also provide a possible solution

for event detection in a more general setting.
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Lay Summary

Group activity recognition in sports can help teams better understand and analyze

the games, as well as provide further insight for social scene understanding in a

more general setting. The interactions among players and the interactions between

players and the scene are crucial for analyzing group activities, but modeling these

interactions remains a challenging problem. To address this issue, we propose two

models in this work. The models predict the group activity using frame images

from videos, sub-images of players and their locations. Both models are based on

deep learning architectures, which have achieved great success on image and video

applications in recent years. Our models are tested on an ice hockey dataset.
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Chapter 1

Introduction

Classification and detection in images and videos have been hot topics in the com-

puter vision research community for decades, due to their wide applications in

areas such as navigation and surveillance. Results in image-related tasks had been

improving steadily over the years with better designed hand-crafted feature repre-

sentations such as HOG [DT05] and SIFT [Low04]. But this trend was changed by

the revival of Convolutional Neural Networks (CNNs). Since the amazing perfor-

mance of AlexNet [KSH12] on the image classification task ImageNet [DDS+09]

in 2012, researchers have been improving performance in different tasks by de-

signing different CNN architectures.

Since videos are consecutive temporal sequences of images, video-related tasks

have been benefiting greatly from image-related tasks over the years. Early re-

search extended state-of-the-art hand-crafted features to 3D to from video repre-

sentations, such as HOG3D [KMS08] and HOF3D [LMSR08]. Similar to the de-

Figure 1.1: Examples from the image classification dataset ImageNet
[DDS+09]. Source: [KSH12]
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Figure 1.2: Examples from the action recognition dataset UCF101 [SZS12].
Source: [SZS12]

velopment of image-related tasks, since CNNs came back into fashion, the center

of research has changed from designing hand-crafted features to designing network

structures that can better learn feature representations by themselves. Great im-

provements have been achieved with the development of two stream architectures

[SZ14, FPW16], 3D CNNs [TBF+15, TRS+17], and Long Short Term Memory

(LSTM) networks [DHR+15].

In the above work on image and video related classification tasks, to simplify

the problem, most of these architectures are designed for and tested on single-

person action recognition datasets, such as UCF101 [SZS12] and HMDB51 [HHE+11].

However, in realistic settings, there usually would be many people involved in a so-

cial scene. So this prompts the need to further study social scene understanding in

a more general and comlex setting.

Although there has been work studying general social scenes directly [BAF+17,

AGR+16], more work in this area has been focusing on action recognition and de-

tection in sports games. There are mainly two reasons for this. First of all, they

have many applications in game analysis, which can help teams gain a better under-
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standing of games. Second of all, compared with social scenes in a more general

setting, sports games are highly constrained in terms of the number of people, size

of the area, and the rules they need to follow according to different games. How-

ever, in spite of these differences between sports games and more general social

scenes, sports games still carry important traits of social scenes, such as the multi-

level analysis for scene understanding, and the spatial and temporal dependencies

involved. So understanding activities in sports lays a solid foundation for under-

standing more general scenes.

As mentioned above, to analyze a social scene, or a group activity in a sports

game, there are two crucial factors. First of all, a group activity contains activities

happening at both scene level and individual player level. For example, for a shot

in football games, there will be a player kicking the ball (individual player level)

towards the direction of the goal (scene level). Second of all, a group activity

requires interactions among players, i.e. the spatial and temporal dependencies

among players. For example, for a pass in football or basketball games, a player

needs to send the ball in the direction of another player at the same team; while for

a block, a player tries to steal the ball from the player from the opposing team who

is in possession of the ball.

In order to combine these factors more efficiently, there has been much work

discussing what are the possible approaches for modeling the interaction between

players and the scene, and the interaction among players. In [BAF+17], authors

use fully-convolutional network (FCN) to generate multi-scale feature map of the

scene, which is then passed through RNN to predict labels for group activities.

[IMD+16] use LSTM to model temporal information of each individual player.

This temporal information of players are then concatenated with spatial informa-

tion to form the spatio-temporal representation of the players. These represen-

tations are aggregated through max-pooling, and passed through another LSTM

modeling the progress of the event. However, this approach does not include the

interactions between players and the scene, and there might be information miss-

ing through max-pooling. These problems are partially solved in [RHAEHG16].

In their model, information of players are aggregated through an attention-pooling

mechanism instead of max-pooling. Before passing into the LSTM used to model

the event, aggregation of the features of players is concatenated with feature repre-
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sentation of the scene.

It is worth noting that, although sports games have restricted rules and yield

an easier problem as a social scene, they have their own complexities as well.

For example, fast movement of players and occlusion among players make player

detection and player feature representation difficult; different games have different

rules, which might require some effort to generalize the model applied in one game

to another.

In this work, we focus on group activity recognition in ice hockey games. We

conduct our experiments on a dataset containing National Hockey League (NHL)

ice hockey game footage provided by SPORTLOGiQ. According to the annotations

provided by SPORTLOGiQ, there are 15 possible group activities in a game: face

off, whistle, pass, loose puck recovery, reception, carry, block, shot, dump out,

puck protection, dump in, and check. Detailed descriptions of these activities and

their distribution in games can be found in Appendix ??. Of these 15 labels, we

aim at classifying 6 in our work: dump in, dump out, shot, pass, carry, and puck

protection. Examples and descriptions of these six group activities can be found in

Figure 1.3 and Table 3.1.

Besides frame images that can be extracted from the footage, from annotations

in the dataset, we can also extract bounding boxes of players and calculate their

positions in the rink coordinate system. With both scene level information (frame

images) and player level information (bounding boxes and coordinates of players),

we can build networks to model their interactions resembling previous work on

sports games we mentioned above.

However, our task can be more challenging than other group activity recogni-

tion tasks in several ways. First of all, different events may have different time

spans, which is not only the case for events of different labels, but also for events

of the same label. Since information regarding the ending frame of each event, the

number of frames we choose to use as input may not cover the whole process of

the event. Second of all, there might also be cases when two events overlap or one

closely follows the other, which might cause confusion to the network. Third of

all, although the position of the puck can be crucial in identifying an event, this

information is not provided in the dataset. The high velocity of the puck makes

it blurry in many frames, and background such as lines in the rink may overlap

4



Figure 1.3: Examples of the six group activities we aim to classify in our ice
hockey dataset. In Figure (a), the player in the red box is traveling in
the rink controlling the puck. In Figure (b), the player in the red box
is dumping the puck in the direction of the arrow, so that the puck will
enter the blue line indicating his team’s offensive zone. In Figure (c),
the player in the red box is dumping the puck in the direction of the
arrow, so that the puck will go out of the blue line indicating his team’s
defensive zone. In Figure (d), the player in the red box is aiming the
puck at the direction of the player in the blue box, which is a player
on the same team with him. In Figure (e), the player in the blue box is
hiding the puck from the player in the blue box, which is a player on
the opposite team. In Figure (f), the player in the red box is aiming the
puck at the goal.

with the puck. These factors make it difficult to annotate the puck position in

many frames. Last but not least, unlike in volleyball games, we do not have ac-

tion labels for individual players. Lacking this information, we cannot fine-tune

single-person action recognition networks to make feature extraction from individ-

ual players more accurate. Due to this lack of some necessary annotations, we

mainly aim at classifying each event exploiting the annotations we have, which are

bounding boxes and coordinates of players in the scene.

Based on existing literature on action recognition and group activity recogni-

tion, we propose two models for group activity recognition in ice hockey, aiming at

making full use of the information of individual players. Our first model is inspired

by [RHAEHG16]. An overview of the model can be found in Figure 1.5. In this
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Figure 1.4: Examples of the volleyball dataset introduced in [IMD+16]. This
dataset contains labels for both group activities and individual actions.
Labels for individual actions allow fine-tuning action recognition net-
works, which will make feature extraction from players more suitable
for the task.

model, we use four LSTMs to track appearance of each player, position of each

player, the entire frame, and the event separately. An appearance feature of each

player extracted by CNN is used as input to the LSTM modeling the motion of

the player, which is represented by the hidden state of the LSTM. The position of

each player is used as input to the LSTM modeling the player’s change in position,

which is represented by the hidden state of the LSTM. Hidden states of these two

LSTMs are concatenated and viewed as feature for the player. To aggregate fea-

tures of different players, instead of max pooling, we adopt the attention pooling

technique described in [RHAEHG16]. The weight for each player is decided by

his feature, hidden state of the frame, and hidden state of the event. The hidden

state of the frame is then concatenated with the aggregated features of players, and

fed into the LSTM used for modeling the progression of the event. The output of

the event LSTM will be our final prediction for the event.

Our second model expands on the two stream model [SZ14] developed for

single-person action recognition. An overview of the model can be found in Figure

1.6. In order to incorporate players’ features with their positions, we develop one

grid feature based on appearance feature of players, and another grid feature based

on the motion feature of players. We then design two CNNs for classifying on

these grid features. The output of these two networks are then combined with the

6



output of the original two stream model through score fusion to make the final

prediction. Compared with the first model, this model enjoys the merit of losing

less information of individual players; and taking interactions among players into

consideration through convolution.

There are several contributions of this work. First, we learn a generalized

model with videos in the same coordinate system, which can be further applied in

event detection and team identification tasks. Second, we explore several possible

approaches for incorporating scene level features with individual player features in

group activity recognition tasks, based on current literature on single-person action

recognition using LSTM and two stream models. Third, we propose several meth-

ods for fusing player level features that have the advantage of losing less crucial

information over max-pooling.

The rest of the thesis is organized as follows: First, in Chapter 2, we review

related work in single-person action recognition and group activity recognition. In

this chapter, we briefly go over the main approaches used for action recognition

both before and after deep learning comes along, and their relations to approaches

used for image classification tasks. We also review the expansion of dataset and the

improvement in results over the years. In addition, we provide a brief introduction

of the types of deep networks that we have used in our systems, such as Recurrent

Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). In Chapter

3, we will introduce the annotations provided in the dataset we use, and the pre-

processing techniques we apply. We will also discuss the scope of our problem

and how it can fit into tasks in more realistic settings. In Chapter 4 and Chapter

5, we will explain our two models in detail and present the results. A comparison

to previous work on the same dataset will be provided, along with complementary

experiments to verify our network designing choices. We will summarize our work

in Chapter 6 with possible extensions in the future.
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Figure 1.5: Overview of our first model. Each player is tracked by an LSTM
modeling his motion, and an LSTM modeling his change in position.
The two hidden states of the two LSTMs are then concatenated together
and seen as hidden state for the player. Hidden states of the players
at the same team are aggregated by attention pooling. During atten-
tion pooling, the weight for the player is decided by hidden state of the
player, hidden state of the frame, and the hidden state of the event. Ag-
gregated hidden state of players are then concatenated with hidden state
of the frame, and fed into an LSTM used for modeling the progress of
the event.
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Figure 1.6: Overview of our second model. Final prediction is made through
score fusion of four streams. Input to the four streams are: target frame
of the event; an optical flow stack ranging from four frames before the
target frame to five frames after the target frame; a spatial grid feature; a
temporal grid feature. The grid features are designed to jointly represent
the features of the players and their locations.
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Chapter 2

Related Work

Image classification and action recognition in videos have been major tasks in com-

puter vision for many years. Previously, researchers have focused on designing

better hand-crafted features, such as SIFT [Low04] and HOG [DT05] for image

classification. These features are then extended to 3D to from video representa-

tions [LL03, WTG08, KMS08]. But these all changed since people re-discovered

the computational and representational power of neural networks [KSH12]. In this

section, we will talk about action recognition using traditional methods, the change

the research in the area has undergone ever since the success of convolutional neu-

ral networks, and how these networks work. We will also briefly talk about how

our research are related to and influenced by previous work.

2.1 Deep Neural Networks
In recent years, deep neural networks, when combined with the fast development

processing power of machines such as GPUs, have shown great potential in a num-

ber of computer vision applications. Both of our models are also based on deep

networks. Convolutional neural networks (ConvNets or CNNs) trained on action

recognition datasets are used to extract players’ features in both models. In our

first model, we apply ConvNets on aggregated players’ features besides both ap-

pearance and motion streams. In our second model, LSTMs are used to model the

dynamics of both individual players and the entire event. We will review both of
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Figure 2.1: An example of a fully connected neural network. This network
contains input and output layers, and one hidden layer. Connections
between neurons are represented by arrows. Each neuron in the hidden
layers and output layer is calculated as an activation of the weighted
sum of all the neurons in the previous layer. Source: [Karb]

these networks in Sections 2.1.1, 2.1.2 and 2.1.3.

2.1.1 Neural Networks

The structure for neural networks was first inspired by human nervous system. In

the nervous system, a neuron receives input signals (xi) from a number of other

neurons and this neuron would decide the influence each input signal will have on

its output (i.e. a weight wi). These signals are then summed up according to their

given weights (∑wixi). If the sum exceeds a certain threshold, this neuron fires (i.e.

sends a spike along its axon). Similar to this simplified structure, an example of a

simple neural network can be found in Figure 2.1. A neural network contains an

input layer, multiple hidden layers and an output layer. At each node in the hidden

layers and the output layer, we first compute the weighted sum of the signals it

receives (e.g. ∑wixi). Then we need to decide if this neuron can “fire” or not. The

thresholding function deciding if a neuron can fire is called an activation function

(e.g. f ). So the output of a neuron can be calculated as f (∑wixi). In classification

applications, the outputs of the output layer are regularized and generate confidence

scores for each class.

Ever since the 1940s, there has been continuous work on using neural networks

for classification [RHHD56, Ros58]. But it had not been the center of attention in

research community until the success of convolutional neural networks in general

computer vision applications.
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Figure 2.2: An example of a first convolution layer. Each neuron in a convo-
lution layer is only connected to a small region in width and height, but
to the full depth. Source: [Kara]

2.1.2 Convolutional Neural Networks

Although neural networks have proved to have strong representational power in

[Cyb89], they have problems when being scaled to full images. For an RGB image

that is 200 pixels in height and 200 pixels in width, one single neuron of a fully-

connected layer operating on the whole image will have 200×200×3 = 120,000

weights. The total number of parameters would explode quickly resulting in slow

training and overfitting. To solve this problem, people developed 2D convolutions

and 2D max-pooling so that the total number of parameters could be reduced while

spatial information could be preserved.

2D convolutions can be seen as small filters operating on an input volume.

Each filter is much smaller in width and height than the input volume, while the

depth is the same as the input volume, thus the number of parameters we need to

learn (i.e. number of parameters in the filters) is largely reduced. A convolution

layer is composed of this kind of small filters. An example of a convolution layer

can be found in Figure 2.2.

In order to control the number of parameters and reduce overfitting, besides

using convolution layers instead of fully connected layers, it is also common to

insert pooling layers between convolutional layers. Pooling layers can also be

seen as filters operating on a input volume. In practice, researchers mostly use

max-pooling, that is to say the value of a neuron in the next layer would be the

maximum value in its receptive field. An example of a max-pooling operation can

be found in Figure 2.3.

Convolution layers and pooling layers are the building blocks of a Convolu-
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Figure 2.3: An example of a pooling operation. The receptive field of a neu-
ron on the right is represented by squares in the same color on the left.
Source: [Kara]

tional Neural Network (ConvNet) that is widely used in computer vision applica-

tions in recent years. After learning the spatial structure of an image through a

certain number of convolution layers and pooling layers, the output volume will be

passed through one or more fully connected layers to generate final class scores.

Although [LBBH98] designed a ConvNet called LeNet for handwritten digits

recognition in the late 1980s, due to limited computational power and the huge

amount of parameters in the network, it was not widely used at the time. The big

breakthrough for ConvNets did not come until the implementation of large scale

ConvNets on GPUs became possible. [KSH12] designed AlexNet which won the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 and beat

previous hand-crafted features by a large margin. Follow up work on applying

ConvNets on ImageNet challenge, such as VGG [SZ15], GoogLeNet [SLJ+15]

and ResNet [HZRS16], has reduced the error rate on this dataset from 16% to 2%.

This line of great success of ConvNets encouraged researchers to use ConvNets in

computer vision applications other than image classification. A consistent boost

in accuracy is witnessed in many areas, such as action recognition and image seg-

mentation.

2.1.3 Recurrent Neural Networks

Because of the ability to store long term information and model temporal structure

of input sequence, Recurrent Neural Networks (RNNs) have been widely used in
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Figure 2.4: An example of a RNN and how it can be unrolled. Source: [Ola]

Figure 2.5: An illustration of LSTM. Source: [Ola]

research areas such as machine translation, image caption and action recognition

in recent years and have achieved great success.

In order to store long term information, it has a basic looping structure of the

same network, which allows long term information to persist, as shown in the left

of the equation in Figure 2.4. The right side of the equation shows the unrolled

version of this looping structure. It can been seen from this figure that each network

sends information about itself to the next network in the chain.

The most-widely used kind of RNN is Long Short Term Memory (LSTM)

networks. An example of an LSTM network can be found in Figure 2.5. Each big

green block in the figure is called a cell.

Below is a detailed walkthrough about what happens inside a cell given an

input xt and the output of last cell ht following the introduction in [Ola]. We use

W and b to denote parameters for the linear transform, and σ for the activation

function. [a,b] denotes the concatenation of vector a and b. First, there is a forget

gate deciding what content from the old material should be forgotten.
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ft = σ(Wf · [ht−1,xt ]+b f ) (2.1)

Next, the cell state of the current cell Ct is decided by the cell state of the last

cell Ct−1, and a candidate Ĉt generated by a tanh layer.

it = σ(Wi · [ht−1,xt ]+bi) (2.2)

Ĉt = tanh(WC · [ht−1,xt ]+bC) (2.3)

Ct = ft ·Ct−1 + it ·Ĉt (2.4)

Finally, based on the cell state, we decide the output ht for the cell.

ot = σ(Wo · [ht−1,xt ]+bo) (2.5)

ht = ot · tanh(Ct) (2.6)

2.2 Traditional Methods for Action Recognition
Early research for video recognition before ConvNets came into fashion was largely

driven by the improvement in hand-crafted feature descriptors and interest point

detectors for image recognition. State-of-the-art hand-crafted features such as His-

togram of Oriented Gradients (HOG), Histogram of Optical Flow (HOF) and Scale-

invariant Feature Transform (SIFT), and successful interest point detectors such as

Harris detector and Hessian detector were extended to 3D to form video repre-

sentations [LL03, WTG08, KMS08]. For example, [LMSR08] first detect interest

points using a space-time extension of the Harris operator. Then these interest

points are described using HOG3D and HOF3D. The computed features at inter-

est points are further encoded into bag-of-features (BoF) representations [SZ09].

A non-linear support vector machine (SVM) classifier [CV95] is applied on these

representations to generate the final prediction.

In a later work, in order to compare different spatio-temporal detectors and de-

scription methods, [WUK+09] evaluate the performance of three space-time inter-

est point detectors and six description methods, including the HOG3D, HOG/HOF

descriptors and Harris3D detectors mentioned above, in three datasets, KTH ac-
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tions dataset [SLC04], Hollywood2 dataset [MLS09] and UCF sports dataset [RAS08].

All detectors and descriptors are evaluated under the same bag-of-features encod-

ing method and SVM recognition framework. Surprisingly, dense regular sampling

of space-time features outperforms all interest point detectors across all datasets.

As for descriptors, the combination of HOG3D/HOF3D yields the best result for

the most challenging Hollywood2 dataset, which implies the important role optical

flow might play in action recognition.

Another line of work describes video features using dense point trajectories

instead of aggregating local video features over spatio-temporal grids. Inspired

by the success of dense sampling in image classification and action recognition

[WUK+09], and the importance of optical flow in time sequences, [WKSL11] pro-

pose dense trajectories where they use optical flow to track densely-sampled local

features. This method is then further improved in [WS13] by estimating camera

motion through the matching of frame features computed by SURF descriptors and

dense optical flow.

2.3 Deep Methods for Single-person Action Recognition
Rapid improvement in the computing power of parallel machines in recent years

facilitate the fast training of large CNNs on large datasets, which makes the training

of models with higher representational power possible. This has been proved by

work on architectures of deep neural networks, such as AlexNet [KSH12], VGG

[SZ15], GoogLeNet [SLJ+15] and ResNet [HZRS16], all of which beat the result

of traditional methods on ILSVRC [DDS+09] by a large margin. This vast success

of the application of deep neural networks in image classification inspired several

streams of work for action recognition in videos.

Now there are three major ways to model temporal information in action recog-

nition:

• Add a recurrent layer, such as LSTM or RNN, to the image classification

networks used as feature extractors. The input to the networks is a sequence

of frames.

• Apply CNN on a stack of optical flow images to capture motion features. The

input to the network are a stack of optical flows and a single RGB frame.
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• Convert 2D convolutions in image classification networks into 3D convolu-

tions, so that temporal structure can be learned through convolutions in the

time domain. The input to the network is a stack of RGB frame images.

Later lines of work are mainly based on these three basic models [CZ17, XSH+17,

FPZ16, FPW16, TRS+17, MCKA17].

Besides the attempt to better modeling temporal structure of videos, researchers

also focus on other aspects of the model. [SLLG+17] replace the module for com-

puting optical flow in previous methods with state-of-the-art networks for optical

flow generation, so that optical flows are generated on-the-fly, and the whole net-

work would be end-to-end. [CLS15, GR17] develop attention strategies so that the

learned model will focus more on the parts which play more important roles in

identifying the action.

Below we will discuss these streams of work on deep neural networks for action

recognition mentioned above in detail.

2.3.1 Basic Models and their extensions

As mentioned above, the major difference between image classification and event

recognition is that, besides spatial information, the temporal component of video

provides an additional and crucial clue for the task.

Early attempts [KTS+14] use existing successful image classification networks

as feature extractors for individual frames. Final predictions are pooled across the

whole video. In this approach, deep neural networks are expected to learn motion

related features in the first layers through an input of a stack of consecutive video

frames. This proves to be difficult since information in the time domain tends to

be lost after 2D convolutions and poolings in early stages of the network. Results

[KTS+14] show that the results of all fusion methods are close to the result of

classification on one single frame, and the learned network performs worse than

state-of-the-art hand-crafted trajectory features, which means temporal structure

is not captured fully in the network. This prompts the need for better modeling

temporal change.

Recurrent neural networks show great potential in modeling long-term tem-

poral dependencies by achieving state-of-the-art performances on language tasks,
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such as machine translation. Inspired by the success, [DHR+15] proposed Long-

term Recurrent Convolutional Networks (LRCNs), which connect recurrent se-

quence models to a image classification network extracting features from frames.

Results imply that this architecture can be applied to numerous tasks, such as action

recognition, image captioning, and natural language object retrieval, all of which

achieve competitive results. This model enjoys the merit of being end-to-end and

being able to accept input of various lengths.

Another possible approach for making the architecture learn modeling tem-

poral information lies in modifications of convolution and pooling operations. In

order to preserve and model information in the time domain, [TBF+15] use 3D

convolutions and pooling instead of 2D in their network architecture design. Com-

pared with LRCNs, this C3D model only accepts a fixed number of frames as

inputs.

Before recurrent neural networks and 3D convolutions came along, optical flow

has long been known as being capable of capturing motion between frames. So

[SZ14] train a CNN on multi-frame optical flow. The output of this network, which

is called motion stream or temporal stream, is then combined with the output of the

ConvNet on single RGB frame through score fusion, which is referred to as appear-

ance stream or spatial stream. Although this two-stream model achieve state-of-

the-art results, optical flow needs to be extracted and stored prior to training and

testing. One interesting discovery from the results is that accuracy achieved by the

motion stream alone is higher than that of the appearance stream, implying that mo-

tion stream can play a more important role in action recognition than appearance

stream when it is presented to the network properly.

Later work on the topic is mainly based on these three streams of basic models.

[FPZ16] fuse output of the two stream model through 3D convolution and pooling

at the last convolution layer instead of score fusion after softmax layer. Inspired by

the success of residual networks [HZRS16], [FPW16] substitute the VGG network

in two stream models with ResNet and inject skip connections from motion stream

to appearance stream; [TRS+17] add residual units to C3D network. [CZ17] ex-

pand Inception-v1 [SLJ+15] to 3D, and apply this network on both appearance

and motion streams. Based on this work, [XSH+17] replace 3D convolutions at

the bottom of the network with 2D convolutions to achieve a better balance be-
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tween accuracy and cost. As mentioned above, although two-stream models and

3D ConvNets achieve competitive results, they have the problem of only accept-

ing input of fixed lengths, which makes them difficult to model temporal structure

of longer ranges. So to solve this problem and enable the model to learn actions

containing multiple stages and spanning over longer times, [WXW+16] propose

dividing a video into segments, which are sparsely sampled and serve as inputs to

a two stream network. Then consensus among the segments is formed through a

temporal segment network.

In the previous two stream models, optical flow is computed using state-of-

the-art traditional methods such as [BBPW04, CTH07]. So besides only accepting

input of a fixed length, this approach would also require computing optical flow

beforehand. After compressing optical flow with JPEG, the size for flow data for

UCF101 is 27GB. So the size for flow data for Kinetics would be nearly 810GB.

With the recent development of using ConvNets for optical flow computation, this

storage space can be saved by computing optical flow using neural network flow

methods such as FlowNets [DFI+15, IMS+17] and SpyNet [RB16]. According to

[SZ14, IMS+17], the temporal stream trained by optical flow generated by state-of-

the-art neural network flow methods and traditional methods have close classifica-

tion accuracy (79.64% versus 81.2%). Besides enjoying the merit of saving storage

space and having an end-to-end model, [SLLG+17] claim that through fine-tuning

flow methods in order to minimize classification error instead of end-point-error

(EPE), it is learning features that will be better suited for the task of action recog-

nition. However, although results show that optical flow learned for the task of

action recognition is different from traditional optical flow, there are no evident

results suggesting that overall classification accuracy benefits from this end-to-end

fine-tuning. This can be difficult to prove considering the doubling in time for

flow generation compared with traditional methods [SZ14, IMS+17], and the two

degrees more parameters FlowNet2 has than action recognition networks.

Besides the effort to optimize the structure of the networks to make them bet-

ter model temporal information, researchers have also been aiming at developing

attention strategies, so that the model can focus on the part of a frame which

might play a more important role in identifying the action. Previous work on

the generation of regions-of-interest [GDDM14] and pose estimates of the hu-
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man body [YR11, NYD16, CSWS17] provides numerous possibilities for atten-

tion. [GGM15] argues that besides the person carrying out the action, contextual

cues, such as scene surrounding the person or the actions of other people, can

also play an important role in action recognition. So based on RCNN [GDDM14],

they build an R*CNN network to encode both key person and auxiliary informa-

tion from the proposed regions of interest in a image. Based on state-of-the-art

pose estimators, instead of focusing on key person and auxiliary information sepa-

rately, [CLS15] focus on different body parts of the person carrying out the action.

They design a network that extracts temporal and spatial information from different

patches of sub-images around human pose keypoints. Although these two atten-

tion mechanisms have proved to be able to boost performance, this kind of “hard

attention” require labeling and detecting prior to training and testing. To solve this

issue, [GR17] propose learning attention by low-rank second-order pooling, which

takes place of the average pooling in ConvNets after forming the final spatial fea-

ture map. [STWH16] focus on attending the frames that play more important roles

in the action recognition process.

2.3.2 Development of Datasets, Computational Costs and Beyond

Network UCF101 HMDB51

LRCN [DHR+15] 82.9% -
C3D [TBF+15] 85.2% -

Two Stream [SZ14] 88.0% 59.4%
Convolutional Two Stream [FPZ16] 92.5% 65.4%

Temporal Segment Network [WXW+16] 94.2% 69.4%
I3D [CZ17] 98.0% 80.9%

Table 2.1: Accuracy of different networks

A comparison of the accuracy on HMDB51 and UCF101 using different mod-

els can be found in Table 2.1. From this table, we can see that as the model is

designed so as to better model temporal structure of the video, the accuracy has

drastically increased over time. However, similar to image classification, in ad-

dition to more and more complex models, the development of action recognition
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has also benefited greatly from the expansion of datasets. Pre-training in action

recognition on large datasets has been proved to be of great help in previous work.

Experiments in [TBF+15] show that C3D pre-trained on Sports-1M improves the

performance of the model on UCF101. [SZ14] discovered that using weights pre-

trained on ILSVRC-2012 dataset gives the spatial stream a 30% boost in perfor-

mance. Because large datasets for action recognition were unavailable at the time,

to solve the issue that there were not enough examples to train temporal ConvNets,

[SZ14] develop multi-task learning, so that results on HMDB51 and UCF101 could

both benefit from the expansion of training examples. This drives the need to de-

velop datasets which contain more training examples and more complex actions,

such as [KTS+14] and [KCS+17]. The availability of these large datasets facili-

tates the training of even larger networks such as I3D [CZ17]. The accuracy on

HMDB51 and UCF101 also benefits from the pre-training on these large datasets

in return.

A comparison of the datasets for action recognition can be found in Table 2.2.

From the table, we can see that early datasets used in the training and testing of

traditional methods, such as KTH [SLC04], UCF sports [RAS08] and Hollywood2

[MLS09] are fairly small. Relatively larger datasets such as HMDB51 [HHE+11]

and UCF101 [SZS12] facilitate the early development of action recognition using

deep neural networks. The development of even larger datasets such as Kinetics

further boost the representational power of the models.

Datasets Number of Classes Number of Examples

KTH actions [SLC04] 6 2,391
UCF sports [RAS08] 10 150

Hollywood2 actions [MLS09] 12 1,707
HMDB51 [HHE+11] 51 51,000

UCF101 [SZS12] 101 13,330
ActivityNet200 [HEGN15] 200 15,410

Sports1M [KTS+14] 487 1,133,158
Kinetics [KCS+17] 400 300,000

Table 2.2: Action Recognition Datasets

More complex models and larger datasets also make training more expensive
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in terms of computational resources. Early models such as the original two stream

model and temporal segment network usually use 4 GPUs to train, while [CZ17]

use 64 GPUs for larger sizes of batches during training I3D on Kinetics.

Although results on previous work show that as the network is designed toward

the goal of better modeling temporal structure of video sequences, and the expan-

sion of dataset facilitate the training of more and more complex models, it is still

unclear what these networks are capturing. [FPWZ14] study what different lay-

ers of image classification networks are learning through activation maximization,

where gradient ascent is applied to the input to find the image that could increase

the activation of some neurons. Inspired by this work, [FPWZ18] perform acti-

vation maximization on a four-dimensional input to find out what the network is

learning. The results give some intuitions as to what the networks are learning, and

can partly explain some failure cases in classification.

2.4 Deep Methods for Multi-person Event Recognition
Similar to image classification and single-person action recognition, multi-person

event recognition, or group event recognition, has also enjoyed the benefit of the

fast development of deep neural networks. However, unlike image classification

and single-person action recognition, in a social scene that contains a number of

people, such as sports games, actions of one person (or player) might have a large

impact on others. Thus, besides extracting spatial features from the whole image or

modeling the temporal structure of individual players, understanding and modeling

the dynamics among players propose a new challenge for network structure design

in group event recognition tasks.

In terms of how the actions one player take might influence others, there are

mainly two aspects: changes in position and movements of body parts (or pose).

Positions can easily be represented by coordinates, while there are different ways

of representing the movements/changes in pose. Some possibilities include ex-

tracting features from the bounding box that contains the player using a action

recognition network, such as two stream [SZ14] or [TBF+15], or representing the

movement through the change in pose using state-of-the-art pose estimators such

as [YR11, NYD16, CSWS17]. Individual action labels, if available, can make fea-
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ture extraction of each player more accurate than directly using ConvNets trained

on general action recognition datasets, which will help group activity recognition

greatly. For example, in [BAF+17], there are labels of each player’s action, such as

moving, blocking or spiking, so researchers can aim at fine-tuning ConvNets used

for feature extraction of players, or jointly predicting individual’s action and group

activity.

Another key issue besides what features of players to use (coordinate, output

of fully connected layer of ConvNets, or pose) is how to merge/pool the features

so that the dynamics among the players and the feature of the entire scene could be

modeled properly. There has been much work exploring the different possibilities

for modeling the dynamics among players in a sports game setting, and various

pooling strategies have been developed. However, it is worth noting that since

each sport has its very unique characteristics, a model designed and learned for a

particular sport might be hard to generalized to other sports. So most of the models

proposed so far are targeted at particular sports.

[IMD+16] develop a hierarchical LSTM model to classify events in volleyball.

They represent person-level dynamics by concatenating output of fully connected

layer of ConvNets and output of an LSTM tracking the player, so that both spatial

and temporal features are concluded. The features of players on both teams are ag-

gregated by max-pooling. Then dynamic of the entire scene is modeled by another

LSTM. A potential problem of this model is that there might be useful information

missing during the process of max-pooling.

In an effort to jointly detect players, infer their actions and predict group event

in volleyball, [BAF+17] first pass each frame through a fully-convolutional net-

work. The output is then separately passed into another fully-convolutional net-

work for player detection, and a RNN for individual action prediction and group

activity recognition.

One of our models resembles the one described in [RHAEHG16], which adopts

an architecture similar to the hierarchical LSTM model for group activity recogni-

tion in basketball. But instead of max-pooling, a form of attention-pooling strategy

is developed so as to identify the key player in the scene, which will contribute most

to the final group activity recognition. Through this attention-pooling process, al-

though there would still be information of the players missing, but information
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from the key player in the scene can be completely preserved. The presumption is

that this player’s information is most crucial for identifying the group activity.

Besides bounding boxes of players, coordinates of players can also be calcu-

lated given the position of bounding boxes in the frame and the homography matrix

of the frame. A detailed explanation of the homography matrix can be found in

Section 3.2.3. [MZT+17] apply 1D convolution networks on concatenation of co-

ordinates of players in a single frame, so that motion patterns for different activities

can be learned. Although there has not been much literature studying how coor-

dinates of players can influence group activity recognition, [AGR+16] proposed a

social LSTM model to predict human trajectory in a social scene, which provides

an interesting possibility for representing trajectories of players.

In our work, we aim at modeling the interactions among players with as little

crucial information about the players missing as possible. In our first model, we

use a combination of [RHAEHG16] and [AGR+16] in an attempt to identify the

group activity with the key player who contribute most to the activity and at the

most important locations in the rink. In our second model, position and motion

information of all players are preserved in the grid feature we design. Then a

CNN is used to model the dynamics in the information. Unlike max-pooling or

attention-pooling, this has the benefit that not only information of all players can

be preserved, but all of their interactions are modeled in the CNN as well.
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Chapter 3

Problem Formulation

In this chapter, we will give a detailed introduction about the problem we will solve.

We will describe the dataset along with the annotations included in the dataset, the

events we are trying to classify, the scope of our research and how it can fit into

more complicated tasks in a more realistic setting.

3.1 Dataset
Group activity recognition in sports has been studied by research community for

many years. As a social scene, sports games are highly constrained in terms of the

number of people involved, the area where they may take place, and the compli-

cated rules they follow according to the type of sports. But they still carry many

basic features of general social scenes. First of all, understanding social scenes

involves analyzing all individuals in the scene as well as the environment they are

in and positions they are at, which is a multi-level analysis. Second of all, social

scenes involve spatial and temporal dependencies. For example, what one person

does can have a great influence on what another person does; some actions can only

happen when certain actions are carried out first. Fully understanding these depen-

dencies is crucial to scene understanding. So studying group activity recognition

in sports is a good first step towards social scene understanding. In our study, we

focus on group activity recognition in ice hockey.

Our experiments are conducted on a dataset containing NHL ice hockey game
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footage provided by SPORTLOGiQ. Each game consists of three twenty-minute

periods. Information for certain periods are missing from some games, so we can-

not use all three periods for all games. In our experiments, a total of 10 periods

from 5 games are used.

The six group activities we are trying to classify are: dump in, dump out, shot,

pass, carry and puck protection. Of the ten periods of games we use, these six

events add up to 4257 examples in total. We randomly select 3,406 for training and

851 for testing. Descriptions of the six labels can be found in Table 3.1. From the

distribution of the six events shown in Figure 3.1, we can see that the six classes

are highly imbalanced, which is one of the challenges we are facing.

Event Description

Dump in
A player strikes the puck into the offensive
zone

Dump out
A defending player dumps the puck up the
boards without targeting a teammate for a
pass

Shot
A player strikes the puck in the direction of
the net in order to score a goal

Pass
The possession of the puck change from one
player to another player at the same team

Carry
A player travels in the rink with possession
of the puck

Puck protection
A player in possession of the puck shields
the puck from defender players

Table 3.1: Description of event labels

3.2 Data Preprocessing

3.2.1 Event Labels and Target Frames

In the dataset, annotation for each example contains an event label and a target

frame marking the beginning of the event. Although duration of different events

might be different, we make the assumption that all events are of equal length,
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Figure 3.1: Distribution of events

since there is no annotation for the duration of the event. Based on the original

two stream paper [SZ14], which uses 10 frames for feature extraction from optical

flow stacks, we use ten frames for each event in our experiments as well. 5 frames

before the target frame and 4 frames after are used for each event.

3.2.2 Bounding Boxes of Players

In each frame, bounding boxes of all people in the rink (players and referees) are

provided in the dataset. Annotation for one player includes the position (x,y) of

the player, and the width and height (w,h) of the bounding box of the player in

the image coordinate system. Given this information, we can crop sub-images of

players and use them as ConvNet inputs, so that we can extract features from these

players. It is worth noting that these bounding box annotations can be noisy due to

the fast movement of players and occlusions.
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Figure 3.2: Detailed diagram of an ice hockey rink. Source: [rin]

3.2.3 Mapping from image to rink

In an ice hockey game, the rink is as shown in Figure 3.2. The rink is 85 ft in width

and 200 ft in length. The two blue lines on both sides split the rink into three zones.

From left to right, the three zones are attacking zone, neutral zone and defending

zone. On the rink, there are 9 face-off spots in total. Eight of them are denoted in

red, with two in attacking zone, defending zone, and each end of the neutral zone

separately. One of them is denoted in blue and at the center of the rink. Face-off

spots in attacking and defending zone are centers of red face-off circles, while the

face-off spot at the center of the rink is the center of a blue face-off circle. All

circles are 30 ft in diameter. At each end of the rink, there is a goal that is 11 ft

away from the closer edge of the rink.

According to the description of events in Section 3.2.1, events can be highly

position dependent. For example, dump in can only happen near the offensive zone

of the attacking team, shot can only happen near a goal, and dump out can only

happen near the defensive zone of the defending team. So positions of players are

crucial for our task.

Because of the movement of cameras, annotations for players’ location in the

image coordinate are not good indications of the players’ actual positions in the

rink. But this information can be available if we combine bounding box annotations
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with the homography matrices provided in the dataset.

A homography matrix is a 3 by 3 matrix relating two images viewing the same

plane from a different angle. Because of the wide applications of homography

matrix in areas such as camera calibration, image rectification and image registra-

tion, there has been much work exploring possible approaches for its estimation

[GLW11, Tho07, Dub09].

Given the coordinates of a pixel (xa,ya) in image A, the coordinates of a pixel

(xb,yb) in image B, and the homography matrix H that transforms pixels in image

A to that in image B, the transformation between the two pixels can be denoted as:xb

yb

1

= H

xa

ya

1

=

h11 h12 h13

h21 h22 h23

h31 h32 h33


xa

ya

1

 (3.1)

In our case, (xa,ya) denotes the position of a player in the image coordinate

system provided in the bounding boxes annotations. (xb,yb) denotes the position

of a player in the template as shown in Figure 3.2. After projecting positions of

players to the template, the xy coordinates in rink coordinate system can be ob-

tained by shifting (xb,yb) by (720,32) and scaling by 6.95. The rink coordinate

system is shown in Figure 3.3.

Example for visualization of bounding boxes of players and coordinates of

players in world coordinate system calculated using homography matrix can be

found in Figure 3.4

3.2.4 Team Identifications of Players

In the bounding boxes annotations we talked about above, referees in each frame

are also annotated, which is unnecessary information in terms of group activity

recognition. Besides the need to exclude bounding boxes of referees, team iden-

tifications can be useful in modeling the dynamics of interactions among players

from different teams. For example, a pass event occurs between two players from

the same team, while puck protection involves players from opposing teams. Un-

fortunately this information is not available in this dataset. So we label the team

identifications of players in all target frames by hand.
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Figure 3.3: An illustration of the rink coordinate system and offensive/defen-
sive zones

Figure 3.4: Examples for bounding box annotation of players (left side), and
their transformed coordinates in rink coordinate system calculated using
the homography matrix (right side).
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3.3 Problem Scope
In an ice hockey game, when a new period starts, two teams will switch side. For

example, in Figure 3.3, if in the first period team A attacks from left to right and

defends from right to left, in the second period it attacks from right to left and

defends from left to right.

In our experiments, we flip all events into the rink coordinate system shown

in Figure 3.3, so that all players in all periods attack from left to right (offensive

zone on the right hand side) and defend from right to left (defensive zone on the

left hand side). Examples for flipping can be found in Figure 3.5.

This presents a slightly easier problem for the network, since some events can

only happen in certain areas of the rink. For example, dump in and shot can only

happen in the offensive zone on the right, while dump out can only happen in the

defensive zone on the left.

Besides simplifying problem, building a model trained on flipped images also

has another benefit. Since when given a raw video of a game, we will not have

information regarding at which frame there is an event happening or which team

is carrying out an event, event detection will be more useful in realistic settings.

Based on existing literature discussing how to design an event detection network

using event classification networks [EHNG16], we can easily modify our network

so that it can perform event detection. So now when given a clip, suppose team

A attacks from left to right, and team B attacks from right to left. We run both

original clip and flipped clip through the event detection network. When an event

x is detected in the original clip, we can say that team A carried out the event x;

when an event y is detected in the flipped clip, we can say that team B carried out

the event y.

3.4 Evaluation Metrics
Since the number of examples of different classes are highly imbalanced, we use

average precision instead of accuracy as evaluation metric. In information retrieval

tasks, we define precision and recall in terms of a set of retrieved documents and a

set of relevant documents.

Precision evaluates how many of the retrieved documents are actually related
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Figure 3.5: Examples of events after flipping. Upper left corner was a dump
in by the blue player from right to left. Upper right corner is the event
after flipping. Now the player dumps in (attacks) from left to right.
Lower left corner was a dump out by the blue player from right to left.
Lower right corner is the event after flipping. Now the player dumps out
(defends) from right to left.

to the query:

P =
|{relevant documents}∩{retrieved documents}|

|{retrieved documents}|
(3.2)

Recall evaluates how many of the relevant documents are retrieved eventually:

R =
|{relevant documents}|∩ |{retrieved documents}|

|{relevant documents}|
(3.3)

For a list of retrieved documents in a specific order, we can have a precision-

recall curve, which is precision P as a function of recall R. Average precision is

calculated as:

AP = ∑
n
(Rn−Rn−1)Pn (3.4)
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where Pn and Rn are the precision and recall at the nth document.

3.5 Loss Function
During training, since the number of examples across the six class labels are highly

imbalanced, we use weighted softmax cross entropy loss as our loss function.

Given an example, or observation o, its loss can be calculated as:

L =−
M

∑
c=1

wcyo,clog(po,c) (3.5)

where c represents the predicted labels; M is the number of classes in total; y equals

1 if predicted label c is the correct classification for observation o, and equals 0

otherwise; p is the predicted probability observation o is of class c.

The weight for each class wc is calculated as:

wc =
N
Nc

(3.6)

where N is the total number of training examples, and Nc is the number of training

examples of class c.
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Chapter 4

Hierarchical LSTM Model with
Attention

As discussed in Section 2, there are three main approaches for modeling temporal

information in videos: 3D convolution, two stream, and LSTM. In our first model,

we explore using LSTM to model group activity in ice hockey. In this chapter,

we will first walk through different parts of the model in Section 4.1, followed by

implementation details in Section 4.2. We will present our experiment results in

Section 4.3.

4.1 Model Overview
An overview of the model can be found in Figure 1.5. In our model, we use LSTM

to model both scene level information and player level information, which are the

actions and the trajectories of the players. When aggregating player level infor-

mation, instead of max-pooling, we adopt the attention mechanism proposed in

[RHAEHG16]. The major difference between our model and the one proposed

in [RHAEHG16] is that, for each player, besides using the LSTM to model the

player’s action, we also use it to model the trajectory of the player, and the influ-

ence nearby players have on this player. In this section, we will introduce each part

of our model in detail.
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4.1.1 Feature Extraction

Since we do not have annotation regarding the length of each event, we make the

assumption that all events have the same length in time. For each event, we use

four frames before the target frame, the target frame, and five frames after the

target frame, altogether ten frames, for its classification. For each frame in the

event, we need feature representation for both the frame image and each of the

individual players, which will be the inputs to our LSTMs modeling scene-level

information and player-level information separately.

For feature extraction from frame images, we fine tune ResNet50 [HZRS16]

on target frame images. Then for each frame image, we pass it through the fine-

tuned network, and use the activation of the last fully connected layer as the feature

representation. We denote the feature vector for a frame at time instant t as ft .

For feature extraction from players, we fine tune ResNet50 on UCF101 [SZS12]

and HMDB51 [HHE+11]. Then similar to above, we pass each bounding box

through the fine-tuned network, and the activation of the last fully connected layer

is perceived as the feature representation for the player. The feature vector for a

player i at time instant t is denoted as pt,i.

4.1.2 Hierarchical Temporal Component Modeling

In this section, we will denote LSTM as follows:

ht = LSTM(ht−1;A1⊕A2⊕ ...⊕An) (4.1)

where ht represents the hidden state at time t; ht−1 represents the hidden state

at time (t − 1). Input to the LSTM is the concatenation of different features A1

through An.

We use an LSTM to model the progression of the event:

ha
t = LSTMevent(ha

t−1;h f
t ⊕ pt) (4.2)

where h f
t represents the latent representation of the frame at time t, and pt repre-

sents the aggregation of the latent representations of the players in the frame, as

described below.
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Scene Level Temporal Component Modeling

At each time instant t, we derive a latent representation for the frame image using

an LSTM:

h f
t = LSTMframe(h

f
t−1; ft) (4.3)

where h f
t and h f

t−1 represents the hidden state of the frame at time t and t − 1

separately; ft is the feature we extracted from the frame as described above.

Player Level Temporal Component Modeling

For each player i at time t, we form a latent representation ha
t,i from his bounding

box, and latent representation hc
t,i from his position in the rink coordinate sys-

tem. The concatenation of these two vectors pt is our feature representation for the

player. Then the feature representations for all players at time t are aggregated into

pt through a weighted sum, which is our attention mechanism as described below.

pt =
N

∑
i=1

wt,ih
p
t,i (4.4)

hp
t,i = ha

t,i⊕hc
t,i (4.5)

The latent representation for player i at time t is derived by the hidden state ha
t,i

of the LSTM tracking the bounding box of the player:

ha
t,i = LSTMappearance(ha

t−1,i; pt,i) (4.6)

where ha
t,i represents the hidden state for the bounding box of the player i at time t;

pt,i is the feature extracted from player i at time t using the approach we mentioned

above.

For modeling the trajectory of the player, we adopt the approach described in

[AGR+16]. The latent representation for the trajectory of a player is described by

both his own coordinate, and the trajectories of other players who are close to him:

hc
t,i = LSTMtrajectory(hc

t−1,i;ci,t ⊕di,t) (4.7)
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where hc
t,i represents the hidden state for the position of the player i at time t, ci,t is

derived from the position of player i at time t in the rink coordinate system; di,t is

derived from the hidden state of the players within a certain distance as described

below.

The position embedding for a player i is derived as follows:

ct,i = φ(xt,i,yt,i) (4.8)

where φ is a multi layer perceptron; (xi,t ,yi,t) is the coordinate of the player i at

time t in the rink coordinate system.

Then for each player, we form a “social hidden-state tensor” Ht,i following the

approach described in [AGR+16]. For this player i, a 2× 2 grid is formed with

his position (xt,i,yt,i) at the center. Then for a cell (m,n) in the grid, we find the

players within. The sum of the latent representations of these players is the (m,n)th

element for Ht,i. This process can be described as follows:

Ht,i(m,n, :) = ∑1mn[xt, j− xt,i,yt, j− yt,i]hc
t−1, j (4.9)

where 1mn[x,y] is an indicator function which returns 1 if (x, y) is in the (m,n)th

cell of the grid, and 0 otherwise; hc
t−1, j is the latent representation for the trajectory

of player j at time t−1.

The social hidden-state tensor Ht,i for the player i is then embedded into dt,i

through a multi layer perceptron:

dt,i = φ(Ht,i) (4.10)

Attention Mechanism

When combining the features of all the players at time t, instead of max-pooling,

we calculate the aggregation of features as a weighted sum of the player represen-

tations:

pt =
N

∑
i=1

wt,ih
p
t,i (4.11)
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The weight for each player i is calculated through a linear layer:

wt,i = φ(ha
t ⊕h f

t ⊕hp
t,i) (4.12)

where φ represents the multi layer perceptron. The input is the concatenation of

the latent representation of the activity ha
t , the latent representation of the frame h f

t ,

and the latent representation of the player pt,i.

4.2 Implementation Details
The entire model is implemented using the PyTorch [PGC+17] framework. Part

of the code for feature extraction from frame images and players is from the work

[Hua17]. We train the model for 70 epochs with an initial learning rate of 1e−5.

We use the Adam optimizer [KB] for training and apply exponential decay. Hidden

dimension for the model is 512. All hyper-parameters are chosen through grid

search. The model is trained on a single NVIDIA Titan X GPU.

4.3 Results
Training our model following the protocols described above achieves an overall

average precision of 50.02%. The final confusion matrix can be found in Figure

4.1.

From the confusion matrix, we can see that the most frequent class pass has

the highest accuracy. Dump out, shot and carry have relatively lower accuracies,

and tend to be mis-classified as pass. Almost all dump in and puck protection are

mis-classified as the more frequent classes pass and carry.

There could be several possible reasons for the mis-classifications. First of all,

although we use the weighted cross entropy loss during training, accuracies for less

frequent classes are still relatively lower, indicating that more training examples are

required for the model to learn the dynamics of these classes. Second of all, as the

camera moves as the players move towards a certain direction, feeding a sequence

of frames into LSTMs might interfere with the classifier learning the correlation

between certain activities and the location in the rink they usually take place.

To verify our model design, we also conducted an ablation study. We ran the
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Figure 4.1: Confusion matrix for hierarchical LSTM model with attention

model with only LSTMscene, without LSTMscene, and using max-pooling instead of

attention pooling. The results for the experiments can be found in Table 4.1. From

the table, we can see that classifying on only frame images yields a low average

precision, while classifying on only information of players has a competitive re-

sult compared with the full model. This indicates that scene information is useful

for classification, but not to a great extent. The low average precision classifying

on only scene information could be due to the fact that camera movement across

time causes confusion for the classifier as to the location of each event. The results

achieved by the full model is slightly higher than that achieved by max-pooling,

indicating that the attention mechanism we adopted does better in combining in-

formation of players as intended.

Average Precision
Only LSTMscene 15.46%

Without LSTMscene 49.23%
Max Pooling 49.62%
Full Model 50.02%

Table 4.1: Results for ablation studies
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Chapter 5

Grid Feature Model

In this chapter, we will first walk through different parts of our grid feature model

designed for group activity recognition in ice hockey in Section 5.1. Then we

will explain our implementation details in Section 5.2. We will present our results

achieved by this model in Section 5.3.

5.1 Model Overview
An overview of the model can be found in Figure 1.6. Inspired by the two stream

model developed in [SZ14], we added two more streams, a spatial grid stream and a

grid temporal stream. Input to the two streams are spatial grid feature and temporal

grid feature. These four streams are then combined through score fusion. In the

following subsections, we will discuss different parts of the model in greater detail.

5.1.1 Two Stream Model for Frame Images

The original two stream model was first proposed by [SZ14]. The authors de-

compose video into spatial and temporal components. They argue that the spatial

component of the video carries appearance information of the video, such as what

objects are in the frame, and the environment they are in. Meanwhile the temporal

component captures motion information about the objects, such as the direction

and velocity of the movement.

For figuring out the spatial component, using one single RGB frame image
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Figure 5.1: The structure of the two stream model. Spatial stream ConvNet
is applied on one single RGB frame from videos, while temporal stream
ConvNet operates on a stack of optical flow images. Source: [SZ14]

would be adequate. A ConvNet pre-trained on ImageNet can learn about certain

features of certain objects. Fine-tuning this network on individual frame images

of each event from the action recognition dataset can make the ConvNet learn the

objects and scenes related to certain actions.

As for representing temporal components, there are several features extracted

across several frames that might be good representations of the movements of ob-

jects. [SZ14] carried out experiments using different stacking methods of trajec-

tories and optical flow, and came to the conclusion that a ConvNet trained using a

stack of 10 optical flow images yielded the highest accuracy.

The softmax scores generated by the two ConvNets trained on spatial and tem-

poral streams separately are then fused through score fusion. The entire structure

of the model adopted in [SZ14] is as shown in Figure 5.1.

Following this structure, we train two ConvNets using our ice hockey dataset.

For each event, RGB frame image of the target frame is used as input to the frame

spatial stream; an optical flow stack containing four frames before the target frame

up to five frames after the target frame is used as input to the frame temporal stream.

We adopt ResNet50 [HZRS16] as our ConvNet structure considering its capability

for reducing overfitting. We use the weights pre-trained on UCF101 and HMDB51

for frame spatial stream, and the averaged weights across channels at each layer

for frame temporal stream.
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5.1.2 Two Stream Model For Grid Feature

Two stream model described in Section 5.1.1 can be used to extract frame level

appearance and motion features of each event, such as how many players are in

the rink, and the approximate locations of the players. But it does not provide a

detailed description of the appearance and motion of individual players, their exact

location, and the interactions between the players. In order to solve this problem,

we design a spatial grid feature and a temporal grid feature that can be used to

model these information inspired by the two stream model described above. In

this section, we will describe how we compute the grid features for events, and the

network designed to predict labels for events given these grid features.

Feature Extraction of Players

As mentioned in 2.4, there are several possible approaches for representing the

movement of players. In our work, we adopt the two stream model as described

in Section 5.1.1 to extract spatial and temporal feature from individual players in

each event. Since we do not have action labels for each individual player, we cannot

fine-tune the network on players in the dataset. The network we used is pre-trained

on general action recognition dataset UCF101 and HMDB51.

For each player in an event, the inputs for the two stream model are: the bound-

ing box of the player at the target frame, and its optical flow images from four

frames before the target frame to five frames after the target frame. The activation

of the fully connected layer of spatial stream ConvNet is considered as the spa-

tial feature of the player, while the activation of the fully connected layer of the

temporal stream ConvNet is considered as the temporal feature of the player. So a

player i is represented by a 2048 dimensional spatial feature vector si, and a 2048

dimensional temporal feature vector ti.

Grid Feature Calculation

As discussed in Section 2.4 and Section 3.2.3, there are several key factors we

should consider when doing group activity recognition. First, event label is highly

position dependant. For example, in dump in, key player dumps the puck into his

offensive zone; in shot, many players will be gathering near the goal. Second,
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Figure 5.2: Grid layout designed for ice hockey rink. Based on the position
of attacking zone, neutral zone on both sides, defending zone and the
end zone faceoff spot and circle, we divide the rink into 8× 12 grid
cells.

the interactions between players and their team identifications are important for

recognizing the group activity. For example, in pass, the player sends the puck in

the direction of another player at the same team; in puck protection, two players

from opposing teams will be very close to each other. In order to model these

information, we develop a spatial grid feature and a temporal grid feature which

preserve information about the appearance and motion feature of players, as well

as the positions of these players in the rink.

We first divide the rink into 8× 12 grid cells as shown in Figure 5.2. Then

for each target frame of an event, we iterate through these grid cells and aggregate

spatial and temporal features of the players in the cell to form a grid feature for the

event. The m,n element of the grid feature is given by:

Gspatial(m,n) = ∑1mn[si] (5.1)

Gtemporal(m,n) = ∑1mn[ti] (5.2)

1mn[si] or 1mn[ti] are indicator functions checking if the player i is in the (m,n) cell

of the grid. Gspatial and Gtemporal are both of dimension 8×12×2048.
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Figure 5.3: An illustration of the spatial grid feature calculation process.
Given a target frame, we first calculate each player’s location using ho-
mography matrix, and extract the spatial feature from players as shown
in the two upper left images. Then we iterate through the grid cells in
the rink as shown in the lower left image. For each cell (m,n), we find
the players in the cell and sum up the features of the players. This vector
is the (m,n) element of the final spatial grid feature.

As discussed before, team identifications of players are important for recogniz-

ing group activity. If we take team identification of players into consideration, at

each cell, we sum up the features from both teams separately. These two sums are

then combined through concatenation. So the dimensions of Gspatial and Gtemporal

would be 8×12×4096

An illustration of the process for calculating Gspatial can be found in Figure 5.3.

ConvNets for Grid Features

To classify a group activity given the grid features, we design two ConvNets with

the same structure as shown in Figure 5.4. The input to the two networks are

Gspatial and Gtemporal separately, the output are both the confidence scores of the six

classes. The building block of each network are Residual Blocks [HZRS16], each

composed of a convolution layer, batch normalization [IS15], and a Rectified Lin-
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Figure 5.4: Block diagram of our grid feature model.

ear Units (ReLU) activition function [NH10]. The convolution layer is composed

of 3× 3 filters. The stride for the convolutions is 1, so that the width and height

of the output of each convolution layer can be preserved. After each convolution,

the channel of the feature volume is reduced. Output of the residual blocks is then

passed through pooling and fully connected layer to generate the final class scores.

Attention Pooling

For different activities, since the location where they take place differ, we would

want the model to learn different areas to focus on for different events. To learn

this attention, we replace the average pooling layer in ConvNets with an attention

pooling layer.

As describe above, the output of the residual block is a 8× 12× 128 volume,

with 8 and 12 representing the height and width of the grid layout of the rink. Each

of the 128 channels of the volume is a 8× 12 slice denoted by A. In attention

pooling, output of the channel is 1
n ∑i ∑ j Ai, j. In attention pooling, we learn two

sets of weights w1 and w2. The dimensions of the weights are 1× 8 and 1× 12.

Output of the channel is calculated as 1
n w2(w1A)T .
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Fusion Method

From the frame-level two stream model and the two stream grid feature model

described above, we will have four sets of softmax scores. Through these four sets

of scores, we make our final prediction through score fusion:

p = argmax
4

∑
i=1

wi (5.3)

w1,w2,w3 and w4 denote the four sets of scores generated by the four streams

separately.

5.2 Implementation Details
The entire model is implemented under the PyTorch [PGC+17] framework. Part

of the code used for frame-level two stream network is inspired by [Hua17]. For

optical flow estimation, we use the approach described in [CTH07]. The frame-

level two stream model is pre-trained on ImageNet, and fine-tuned on UCF101 and

HMDB51. This pre-trained model is also used for extracting spatial and temporal

features from players. We further fine-tune the model on our ice hockey dataset

with an initial learning rate of 5e− 4 and apply exponential decay. For the two

stream grid feature model, we use an initial learning rate of 1e− 4, and apply

exponential decay. A batch size of 16 is used in all parts of the model. All hyper-

parameters are chosen through grid search. All parts of the model are trained using

the Adam optimizer [KB], and trained on a single NVIDIA Titan X GPU.

5.3 Results

Fusion Among All Streams

Figures 5.5, 5.6, 5.7 and 5.8 show the confusion matrices for the classification

results of the four streams separately. From the confusion matrices, we can see that

frame temporal stream does better in more frequent classes such as pass and carry;

while frame spatial stream, grid spatial stream and grid temporal stream do better

in less frequent classes such as dump in, dump out and shot. This difference in
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Figure 5.5: Confusion matrix for classifying on RGB image of the target
frame of each event

Figure 5.6: Confusion matrix for classifying on a stack of optical flow images
in each event ranging from 4 frames before the target frame to 5 frames
after the target frame

per-class accuracy implies that fusion among the four streams can further improve

accuracy.

Table 5.1 shows the average precision of the four streams separately, fusion

between the two frame streams, fusion between the two grid streams, and the fusion

among all four streams. From the table, we can see that among the four streams,

frame temporal stream has relative lower average precision. This indicates that the

performance of the model is not well balanced across classes, which can also be

seen from its confusion matrix in Figure 5.6.
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Figure 5.7: Confusion matrix for classifying on Gspatial

Figure 5.8: Confusion matrix for classifying on Gtemporal

Figure 5.9: Confusion matrix for score fusion among all streams
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Average Precision
Frame Spatial 45.52%

Frame Temporal 41.07%
Grid Spatial 47.33%

Grid Temporal 46.18%
Frame Streams Fusion 49.27%
Grid Streams Fusion 48.18%
All Streams Fusion 50.71%

Table 5.1: Accuracy and average precision for each stream and different fu-
sion methods

Average Precision
Fine-tuned C3D [Meh15] (Unknown key player) 37.87%

Trajectory [Meh15] (Unknown key player) 39.54%
Fine-tuned C3D [Meh15] (Known key player) 48.21%

Trajectory [Meh15] (Known key player) 50.08%
Grid Streams Fusion (Ours) 48.18%

Frame Streams Fusion (Ours) 49.27%
Four Streams Fusion (Ours) 50.71%

Table 5.2: Comparison with existing models.

Although the fusion between the two frame streams and the fusion between

the two grid streams both improve average precision compared to the four streams

individually, fusion among the four streams gives an overall highest average pre-

cision. Fusion among all streams improves average precision by 3.4% compared

with the highest of individual stream. Adding the two grid streams to the original

two stream model improves average precision by 1.5%.

Table 5.2 compares our model with C3D [TBF+15] and trajectory representa-

tions for players developed in [MZT+17]. [MZT+17] provides both results under

conditions where key players in the scene are known and unknown, while we do

not use information about key players in our model. From the table we can see that

when key players are unknown, our model outperforms C3D and trajectory repre-

sentation by a large margin. Our model still outperforms both models by a small

margin when these two models are provided with the information on key players.
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Grid Spatial Grid Temporal Fusion
w/o attention 46.59% 44.67% 50.41%
w/o team id 46.59% 45.18% 49.63%

Ours 47.33% 46.18% 50.71%

Table 5.3: Ablative analysis

Figure 5.9 shows the confusion matrix for fusion among all streams. From the

confusion matrix, we can see that the less frequent classes dump in, dump out, shot

and puck protection have a much lower accuracy than the more frequent classes

pass and carry. This indicates that, although we use the weighted cross entropy

loss during training, accuracies for the less frequent classes still suffer from the

inadequacy of training examples. Among the less frequent classes, we can see

that the most misclassified class is puck protection. Besides inadequate number

of training examples, this also could be due to the fact that during puck protection,

there would usually be occlusion between players, so the bounding box annotations

can be highly inaccurate. The less frequent classes dump out and shot are mostly

misclassified as pass. Since we are only looking at 10 frames around the target

frames, which is approximately 0.3 seconds, the puck might not have reached its

target. For example, the puck has not reached the blue line marking the defensive

zone in dump out, or the puck has not reached the goal in shot.

Ablation Studies

We performed an ablative analysis to verify the need to form Gspatial and Gtemporal

based on team identifications and the need to perform attention pooling instead of

average pooling. The results can be found in Table 5.3. From the table, we can

see that both removing team identifications and removing attention pooling lead to

a decrease in average precision in grid spatial stream, grid temporal stream, and

fusion of all streams. Between these two factors, removing team identifications

lead to a larger decrease in average precision.
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Chapter 6

Conclusions

In this work, we focused on the group activity recognition task in an ice hockey

dataset with bounding boxes and positions of players available in each event. Be-

cause of the lack of information in individual action labels and puck positions, the

problems we aimed at providing possible solutions for are:

• How to combine scene-level information and player-level information more

effectively

• How to incorporate appearance and motion features of players with their

positions more effectively

• How to combine features of all players in a scene, aiming at losing minimum

information, and modeling the interactions among players more effectively

To solve these problems, we proposed two models: a hierarchical LSTM model

based on LSTM used for single-person action recognition; a four stream model

based on two stream model used for single-person action recognition. Both of

these models achieved competive results on the ice hockey dataset.

In the first model, scene-level information and player-level information are

combined through concatenation of the hidden states of LSTMs; appearance fea-

ture and the trajectories of players are combined through concatenation of hidden

states of LSTMs, with interactions among players modeled by a “social state ten-

sor”; features of all players in a scene is combined through an attention mechanism,
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so that more crucial information of the players can be kept and considered during

classification.

In the second model, scene-level information and player-level information are

combined through score fusion among different classification networks; appear-

ance and motion features of players are incorporated with their positions through

a grid feature we designed; features of different players are combined through a

CNN, during which process the interactions among players can also be considered.

Results achieved with these two models and comparison with previous work

can be found in Table 6.1. [Meh15] provides results under conditions when key

player in the scene are known and unknown separately, while we do not use key

player annotation in our model. From the table, we can see that both models out-

perform C3D and trajectory modeling by a large margin. Our model still have

competitive results when C3D and trajectory model are trained with key player

annotation. Of these two models, Model 2 achieved a slightly higher overall ac-

curacy. When provided with only information of players, the two models achieve

similar results. However, Model 1 performs much worse when trained only on

scene information. One possible explanation is that for Model 2 we only use the

target frame for classification, which contains information regarding the location

of the event. But this information could be missing in Model 1, which is trained

on a consecutive sequence of frames, due to camera motion. This might indicate

the need to deal with camera motion when feeding the network with a consecutive

sequence of frames.

Using state-of-the-art object detection and homography matrix estimation al-

gorithms, we can easily get information about the bounding boxes of players, and

their position in the world coordinate system. With these information available, we

can apply our models to group activity recognition tasks in other sports, or general

social scenes as well.

To test if our models can be applied with more flexibility to group activity

recognition in other sports and other tasks in a more realistic setting, there are

several possible future directions to this work:

• Experiment with other descriptors to represent the appearance and motion

features of players, such as pose
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Average Precision
Fine-tuned C3D [Meh15] (Unknown key player) 37.87%

Trajectory [Meh15] (Unknown key player) 39.54%
Fine-tuned C3D [Meh15] (Known key player) 48.21%

Trajectory [Meh15] (Known key player) 50.08%
Model 1 with only player information (Ours) 49.23%
Model 1 with only scene information (Ours) 15.46%

Model 1 full model (Ours) 50.02%
Model 2 with only player information (Ours) 48.18%
Model 2 with only scene information (Ours) 49.27%

Model 2 full model (Ours) 50.71%

Table 6.1: Results of our models and comparison to previous work

• Test our model on group activity recognition tasks in other sports, such as

volleyball and basketball

• Expand our model to perform group activity detection instead of recognition,

using methods similar to the one described in [EHNG16]
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