
Preconditioners for incompressible

magnetohydrodynamics
by

Michael P. Wathen

M.Sci, Mathematics, University of Birmingham, 2012

M.Sc, Computer Science, The University of British Columbia, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

December 2018

c© Michael P. Wathen 2018

The following individuals certify that they have read, and recommend to the
Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled:

Preconditioners for incompressible magnetohydrodynamics

submitted by Michael Wathen in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

in Computer Science

Examining Committee:

Chen Greif, Computer Science
Supervisor

Robert Bridson, Computer Science
Supervisory Committee Member

Uri Ascher, Computer Science
Supervisory Committee Member

Ian Mitchell, Computer Science
University Examiner

Brian Wetton
University Examiner

Hans De Sterck, Monash University
External Examiner

ii

Abstract

The main goal of this thesis is to design efficient numerical solutions to incompressible
magnetohydrodynamics (MHD) problems, with focus on the solution of the large and
sparse linear systems that arise. The MHD model couples the Navier-Stokes equations
that govern fluid dynamics and Maxwell’s equations which govern the electromagnetic
effects.

We consider a mixed finite element discretization of an MHD model problem. Upon
discretization and linearization, a large block 4-by-4 nonsymmetric linear system needs
to be (repeatedly) solved. One of the principal challenges is the presence of a skew-
symmetric term that couples the fluid velocity with the magnetic field.

We propose two distinct preconditioning techniques. The first approach relies on
utilizing and combining effective solvers for the mixed Maxwell and the Navier-Stokes
sub-problems. The second approach is based on algebraic approximations of the inverse
of the matrix of the linear system. Both approaches exploit the block structure of
the discretized MHD problem. We perform a spectral analysis for ideal versions of the
proposed preconditioners, and develop and test practical versions. Large-scale numerical
results for linear systems of dimensions up to 107 in two and three dimensions validate
the effectiveness of our techniques.

We also explore the use of the Conjugate Gradient (CG) method for saddle-point
problems with an algebraic structure similar to the time-harmonic Maxwell problem.
Specifically, we show that for a nonsingular saddle-point matrix with a maximally rank-
deficient leading block, there are two sufficient conditions that allow for CG to be used.

An important part of the contributions of this thesis is the development of numer-
ical software that utilizes state-of-the-art software packages. This software is highly
modular, robust, and flexible.

iii

Lay Summary

The goal of this thesis is to develop new, efficient solution techniques for large-scale
multi-physics problems arising from fluid dynamics and electromagnetics. These prob-
lems appear in many physical applications, from glacial to astrophysical applications,
and thus the development of models and simulations is of great importance.

For such applications, it is either impossible or impractical to consider a pen-and-
paper approach, and hence, a computer-based solution is typically required. Large
systems of unknowns describe the physical flow, and sophisticated computational solu-
tion techniques are needed.

We focus on developing modern solution algorithms and a large computer code that
combines several state-of-the-art numerical software packages. Our algorithms exploit
the underlying numerical and physical properties of the model. Our analysis illustrates
favorable convergence properties, and by applying our algorithms to several challenging
physical problems, we show high scalability for problems of tens of millions of unknowns.

iv

Preface

This thesis describes results in three research articles:

1. M. Wathen, C. Greif, and D. Schötzau. Preconditioners for Mixed Finite Element
Discretizations of Incompressible MHD Equations. SIAM Journal on Scientific
Computing, 39(6):A2993–A3013, 2017

2. C. Greif, and M. Wathen. Conjugate Gradient for Nonsingular Saddle-Point Sys-
tems with a Maximally Rank-Deficient Leading Block. Under revision for Journal
of Computational and Applied Mathematics (13 pages)

3. C. Greif, and M. Wathen. A Scalable Approximate Inverse-Based Preconditioner
for Incompressible Magnetohydrodynamics. In final stages of preparation (15
pages)

Paper 1 has been published and is described in Chapter 2. Paper 3 is in the final
stages of preparation and is presented in Chapter 3. Paper 2 is currently under revision
and forms Chapter 4. We choose to present the papers in this order because paper
1 and paper 3 are strongly related to each other. I have taken a central role in the
research, analysis of the methods and the generated data, and the methodology for
all three pieces of work. In Paper 1, my two senior co-authors provided guidance
on the discretization process and the numerical algorithms. Papers 2 and 3 were co-
authored with my research supervisor. In all three papers, I am responsible for the
numerical solution algorithms and techniques derived, which is the core of my thesis.
I have received guidance and advice from my research supervisor. All three pieces of
work have been written in majority by me with the assistance and editing of the other
authors.

This work includes numerical software written solely by me, which effectively com-
bines the finite element software FEniCS [77] in conjunction with the PETSc4PY pack-
age (Python interface for PETSc [7–9, 30]), the multigrid package HYPRE [37, 38],
and the sparse direct solver MUMPS [4, 5]. These papers appear largely as they are
published. However, for consistency purposes we have altered notation throughout the
thesis.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . ix

List of Figures . xii

List of Programs . xiii

Acknowledgements . xiv

Dedication . xv

1 Introduction . 1
1.1 Model problem . 1

1.1.1 Incompressible magnetohydrodynamics 2
1.1.2 Navier-Stokes equations . 2
1.1.3 Maxwell’s equations . 3

1.2 Finite element discretization of PDEs . 4
1.2.1 Laplacian example . 5
1.2.2 Mixed discretizations of the model problems 6

1.3 Iterative solution of sparse linear systems 8
1.3.1 Krylov subspace methods . 9
1.3.2 Preconditioning . 12
1.3.3 Review of preconditioners for saddle-point systems 13

1.4 Numerical software . 16
1.4.1 PDE discretization: FEniCS . 17
1.4.2 Solution of the linear system: PETSc 18

vi

1.5 Outline and contributions . 21
1.6 Notation . 23

2 Preconditioners for Mixed Finite Element Discretizations of Incom-
pressible MHD Equations . 25
2.1 Discretization . 25

2.1.1 Mixed finite element approximation 25
2.1.2 Picard iteration . 27
2.1.3 Decoupling . 28
2.1.4 The linear systems . 29

2.2 Review of preconditioning techniques for the sub-problems 31
2.2.1 Fluid flow preconditioner . 31
2.2.2 Maxwell preconditioner . 33

2.3 Preconditioners for the MHD system . 34
2.3.1 Reordering . 35
2.3.2 From an ideal to a practical preconditioner 38
2.3.3 Implementation . 39

2.4 Numerical results . 40
2.4.1 2D smooth solution . 42
2.4.2 2D smooth solution parameter tests 42
2.4.3 2D smooth solution on L-shaped domain 45
2.4.4 2D singular solution on L-shaped domain 45
2.4.5 2D Hartmann flow . 46
2.4.6 3D smooth solution . 48

3 An Approximate Inverse-Based Preconditioner for Incompressible
Magnetohydrodynamics . 50
3.1 Newton’s method discretization of the MHD model 50
3.2 A new formula for the inverse of the MHD coefficient matrix 52
3.3 A new approximate inverse-based preconditioner 54

3.3.1 A sparse approximation of the Schur complement 54
3.3.2 A practical preconditioner . 55
3.3.3 Spectral analysis . 56

3.4 A block triangular preconditioner . 58
3.5 Numerical experiments . 62

3.5.1 3D Cavity driven flow . 63
3.5.2 Fichera corner . 64
3.5.3 MHD generator . 65

vii

4 Conjugate gradient for nonsingular saddle-point systems with a max-
imally rank-deficient leading block . 67
4.1 Problem statement . 67
4.2 Krylov Subspace . 69
4.3 Null-space decoupling . 72
4.4 Eigenvalue Analysis . 73
4.5 Numerical Experiments . 75

4.5.1 Krylov Subspace Solver Test . 78
4.5.2 Divergence and Non-Divergence Free Right-Hand-Side 78
4.5.3 Variable Coefficients . 80
4.5.4 Fichera Corner Problem . 81
4.5.5 Gear Domain . 81

5 Conclusions and future work . 84
5.1 Conclusions . 84
5.2 Future work . 84

Bibliography . 86

viii

List of Tables

Table 1.1 Notation for block systems . 23
Table 1.2 Notation for superscripts . 24
Table 1.3 Notation for subscripts . 24

Table 2.1 Algebraic multiplicity of eigenvalues for preconditioned matrices as-
sociated withMMHD

S and M̃MHD
S . Note that nc = nu − nb +mb . . . 38

Table 2.2 Orders of matrix entries for relevant discrete operators 38
Table 2.3 Solution methods for systems associated with separate block matrices

within (2.35) . 40
Table 2.4 2D smooth: Number of nonlinear iterations and number of iterations

to solve the MHD system with tolNL = 1e-4, κ = 1, ν = 1 and νm = 10. 43
Table 2.5 Number of nonlinear iterations for various values of ν with κ = 1 and

νm = 10. 44
Table 2.6 Average linear solver time for various values of ν with κ = 1 and

νm = 10. 44
Table 2.7 Number of nonlinear iterations for various values of κ with tolNL =

1e-5, ν = 1 and νm = 10. 44
Table 2.8 Average linear solver time for various values of κ with ν = 1 and

νm = 10. 45
Table 2.9 2D L-shaped: Number of nonlinear iterations and number of iterations

to solve the MHD system with tolNL = 1e-4, κ = 1, ν = 1 and νm =
10. The iteration was terminated before completion for ` = 9 due to
the computation reaching the prescribed time limit. 46

Table 2.10 2D singular solution on an L-shaped domain: Number of nonlinear
iterations and number of iterations to solve the MHD system with
tolNL = 1e-4, κ = 1, ν = 1 and νm = 10. 47

Table 2.11 2D Hartmann: Number of nonlinear iterations and number of itera-
tions to solve the MHD system with tolNL = 1e-4, κ = 1, ν = 1 and
νm = 1000 . 48

ix

Table 2.12 3D smooth: Number of nonlinear iterations and number of iterations
to solve the MHD system with tolNL = 1e-4, κ = 1, ν = 1 and νm = 10 49

Table 3.1 Block coefficient matrices, their corresponding continuous operators
and approximate norms for the Fluid matrices 51

Table 3.2 Block coefficient matrices, their corresponding continuous operators
and approximate norms for the Magnetic matrices 52

Table 3.3 Block coefficient matrices, their corresponding continuous operators
and approximate norms for the Newton matrices 52

Table 3.4 Solution method for block systems associated with the preconditioners 62
Table 3.5 3D Cavity Driven using both the approximate inverse and block tri-

angular preconditioner with parameters κ = 1, ν = 1, νm = 1 and Ha
= 1. 63

Table 3.6 3D Cavity Driven using both the approximate inverse and block tri-
angular preconditioner with parameters κ = 1e1, ν = 1e-1, νm = 1e-1
and Ha =

√
1000 . 64

Table 3.7 Numerical cost of using MMHD
A and MMHD

B for mesh level ` = 6 in
Table 3.6 . 65

Table 3.8 Fichera corner using the approximate inverse preconditioner. Setup
1: κ =1e1, ν =1e-2, νm =1e-2 and Ha=

√
1e5 and Setup 2: κ =1e1,

ν =1e-2, νm =1e-3 and Ha=1000. 66
Table 3.9 MHD generator using the approximate inverse preconditioner with

parameters κ = 1, ν = 1e-1, νm = 1e-1 and Ha = 10 66

Table 4.1 Eigenpairs and algebraic multiplicities for the preconditioned matri-
ces M̂−1

I K and M−1
I K. We use the notation bE ∈ Null(E), bN ∈

Null(N), rR ∈ Null(R), and l = Dim(Null(R)). 75
Table 4.2 Krylov solver test: time and iteration results for using one iterations

of the preconditioner with FCG, MINRES and GMRES. The viscosity
for these tests is νm = 1e-2 . 78

Table 4.3 Block preconditioner test: time and iteration results using the block
diagonal (MP), block upper triangular (MU) and block lower trian-
gular (ML) preconditioners with νm = 1e-2 79

Table 4.4 Divergence-free vs. non-divergence-free right-hand-side: time and it-
eration results using the block diagonal preconditioner, MP , for di-
vergence and non-divergence free right-hand-sides with νm =1e-2. . . 79

Table 4.5 Variable coefficients: time and iteration results using the block diag-
onal preconditioner,M, for various different values of a. 80

x

Table 4.6 Variable coefficients: time and iteration results using the block diag-
onal and triangular preconditioners for a = 100. 81

Table 4.7 Fichera corner: time and iteration results using the block diagonal
preconditioner,MP , for various different values of νm. 82

Table 4.8 Gear domain: time and iteration results using the block diagonal pre-
conditioner,MP , for various different values of νm. 83

xi

List of Figures

Figure 1.1 Unit square mesh generated by FEniCS 5
Figure 1.2 L-shaped domain generated using mshr. We locally refine cells that

are a distance 0.4 from the origin. 19

Figure 2.1 Eigenvalues of preconditioned matrices for the smooth solution given
in this section. The number of degrees of freedom for these matrices
is 724. 43

Figure 3.1 Preconditioned eigenvalue plots for (a) the approximate inverse pre-
conditioner in (3.12) and (b) the block triangular preconditioner in
(3.21) using the smooth solution given (3.31). The dimension of the
matrices in this example is 1399× 1399. 59

Figure 4.1 Eigenvalue distribution of the preconditioned matrix M̃−1
I K using

randomly generated blocks with n = 100, m = 20, and l = 5 76
Figure 4.2 Fichera corner domain for mesh level, ` = 1 81
Figure 4.3 Gear domain for mesh level, ` = 5 82

xii

List of Programs

1.1 mshr: construction of a locally refined mesh on an L-shaped domain in
Figure 1.1. The cells that are within a certain distance from the radius. 18

1.2 FEniCS: construction of the bilinear forms for the MHD model in (1.1) . 19
1.3 PETSc: our implementation of a block diagonal preconditioner. 21
1.4 PETSc: example of how using a Python class as a preconditioner 22

xiii

Acknowledgements

First and foremost I would like to thank my supervisor, Chen Greif. Your guidance,
help, and encouragement has been invaluable throughout my time at UBC. To my
supervisory committee, Uri Ascher and Robert Bridson – thank you for your time,
support and helpful feedback.

There are too many friends that have supported me along the way but I would like
to say a special thank you to Mike Mitchell, Michael Firmin, Anna Mittelholz, Anna
Grau Galofre, Thibaut Astic, Rowan Cockett, Hannah Loch, Greg Bex, Lili Geelhand,
Joli Fooken, Colin Rowell, Keelin Scully, Julie Nutini, Jilmarie Stephens, and Luna.
You are all a little crazy, but I suppose that’s why we have been friends for so many
years. Next, I would like to thank two very important places, Bean Around The World
and Boulevard coffee shops. I shudder to think how much I have spent at these places
in the six years I have been in Vancouver but what I do know is that without either
place this thesis wouldn’t be what it is today.

Finally, I would like to thank my family for their unwavering support throughout
my PhD. To Grandpa, I’ve enjoyed everyone of our “Skrype” talks, but now we’ll have
to make do with just telephone calls instead. To my parents, it’s simple, this thesis
wouldn’t have happened without you.

xiv

To Granny and Elizabeth – the old and the new

xv

Chapter 1

Introduction

The central topic of this thesis is the numerical solution of elliptic partial differential
equations (PDEs) that model electromagnetics problems. Developing the continuous
model, namely the PDE and its associated boundary conditions, requires significant
physical and mathematical efforts. Once the continuous model is given, the main steps
for the numerical solution may be described as follows:

1. discretization and linearization (when applicable);

2. solution of the linear system;

3. implementation.

Our interest is in the numerical solution of the problem, and we primarily focus on
items 2 and 3.

In this introductory chapter, we first look at the model problems that we consider
(Section 1.1). Following that, we briefly review finite element discretizations and rel-
evant literature (Section 1.2). We then give an overview of iterative solution of large
and sparse linear systems (Section 1.3). Next, we discuss numerical software for solving
these problems (Section 1.4). Finally, we provide an outline and contributions of this
thesis (Section 1.5).

1.1 Model problem

We consider the incompressible magnetohydrodynamics (MHD) model that describes
the behavior of electrically conductive incompressible fluids (liquid metals, plasma,
salt water, etc.) in an electromagnetic field. It has a number of important applica-
tions in technology and industry, along with geophysical and astrophysical applica-
tions. Some such applications are electromagnetic pumping, aluminum electrolysis the
Earth’s molten core, and solar flares. See [45, 111] for a comprehensive description of
the physical problem.

The two key main components of the MHD model are the Navier-Stokes equations,
which govern the fluid dynamics, and Maxwell’s equations, which govern the electro-
magnetics. These two problems are strongly coupled in the MHD model.

1

1.1.1 Incompressible magnetohydrodynamics

Following the formulation considered in [49, 95], the governing equations for the steady-
state incompressible MHD model are:

−ν∆u+ (u · ∇)u+∇p− κ (∇× b)× b = f in Ω, (1.1a)

∇ · u = 0 in Ω, (1.1b)

κνm∇× (∇× b) +∇r − κ∇× (u× b) = g in Ω, (1.1c)

∇ · b = 0 in Ω. (1.1d)

Here, Ω is a bounded Lipschitz polygonal or polyhedral domain of Rd for d = 2, 3 with
boundary ∂Ω. The unknowns are: the velocity u, the hydrodynamic pressure p, the
magnetic field b and the Lagrange multiplier r associated with the divergence constraint
on the magnetic field. We comment on the role of r in Section 1.1.3. The functions
f and g represent external forcing terms. The equations (1.1) are characterized by
three dimensionless parameters: the hydrodynamic Reynolds number Re = 1/ν, the
magnetic Reynolds number Rm = 1/νm, and the coupling number κ.

In the case of liquid metals, the ratio between magnetic viscosity, νm, and fluid
viscosity, ν, tends to be small. For example, Mercury has a ratio of about 10−7 with
νm ≈ 104 − 105, ν ≈ 10−2 − 10−4 and κ ≈ 102 − 109; cf. [6]. In [6] the authors define
strong coupling for 102 ≤ κ ≤ 109. For more discussion of the physical parameters we
refer the reader to [6, 44, 45, 72, 90].

For simplicity, we consider homogeneous Dirichlet boundary conditions:

u = 0, n× b = 0, r = 0 on ∂Ω, (1.2)

with n being the unit outward normal on ∂Ω.

1.1.2 Navier-Stokes equations

The steady-state incompressible Navier-Stokes equations that govern incompressible
fluid flow are given by:

−ν∆u+ (u · ∇)u+∇p = f in Ω, (1.3a)

∇ · u = 0 in Ω. (1.3b)

Again, here u and p are the velocity and pressure of the fluid, f is the forcing term and
ν is the kinematic viscosity. For a classical overview of the Navier-Stokes equations we

2

refer the reader to [1], and for a comprehensive numerical study of this model, see [35].
One of the key numerical challenges in the approximation and numerical solution of

the Navier-Stokes equations is the presence of the nonlinear convection term (u · ∇)u.
This term requires the use of a nonlinear iteration scheme. The simplest common choice
of a nonlinear solver is the linearly convergent Picard iteration. For a given initial guess
u0, the approximate solution at the k + 1st iteration, uk+1, is given by:

−ν∆uk+1 + (uk · ∇)uk+1 +∇p = f in Ω,

∇ · uk+1 = 0 in Ω,

where k = 0, 1, Here, the scalar pressure, p, appears in linear form and is not
iterated upon.

An alternative to the Picard iteration is the locally quadratically convergent New-
ton’s method. That is, Newton’s method will converge quadratically if the initial guess
is “close enough” to the solution. To form a suitable initial guess, it is common to use
the solution of the Picard scheme after a few iterations. Newton’s method is highly
effective, and is considered to be the method of choice for problems such as the Navier-
Stokes equations. This scheme is slightly more elaborate than the Picard iteration; see
[35, Section 8.2.2]. In Chapter 3, we will discuss Newton’s method for the MHD model.

Upon discretization, the convection term ((u ·∇)u) causes nonsymmetry or possibly
skew-symmetry of the matrix within the discrete Navier-Stokes model. We also note
that as ν → 0, convection dominates the diffusion terms (ν∆u), which causes turbulent
(nonviscous) flow. This may cause significant difficulties both in terms of the solution
method and the discretization used. See [35] for an extensive discussion.

1.1.3 Maxwell’s equations

The second coupled subproblem in the MHD model (1.1) is the time-harmonic Maxwell
equation in mixed form [51, 60, 78]. It is given as follows:

∇× νm∇× b+∇r = g in Ω (1.5a)

∇ · b = 0 in Ω, (1.5b)

where b is the magnetic field and r is the Lagrange multiplier associated with the diver-
gence constraint on the magnetic field. The constant νm is the magnetic viscosity. We
note that it is not necessary to introduce the Maxwell’s equations with an incompress-
ibility constraint and a Lagrange multiplier; see for example [60, 61, 88]. The following

3

tensor identities involving the curl operator are useful:

∇ · (∇× a) = 0 and ∇× (∇a) = 0, (1.6)

where a is an arbitrary vector field. Taking the divergence of (1.5a) and using (1.6),
we obtain the Poisson problem

∆r = ∇ · g in Ω, r = 0 on ∂Ω.

Since g is divergence-free in many physically relevant applications, the solution for r of
the above Poisson problem is zero. Alas, from a numerical point of view the introduction
of the Lagrange multiplier may be beneficial in terms of numerical stability; see [33, 49]1.

From (1.6), the kernel of the curl operator is the gradient operator. This may cause
numerical difficulties due to the large dimension of the null-space of the discrete curl
operator. Numerical methods often attempt to exploit this null-space. This is the
approach we take.

1.2 Finite element discretization of PDEs

In this section, we briefly discuss the essential parts of the numerical discretization of
PDEs of the kind we consider. Throughout, we consider boundary value problems and
steady-state PDEs. We cover linear and nonlinear problems.

Given a continuous model expressed as a PDE, a typical numerical solution proce-
dure includes a discretization process. We first generate a mesh. Two common choices
of tessellation of this mesh are quadrilaterals or triangles. An example of a simple
uniform square mesh with a triangular tessellation is given in Figure 1.1.

Once the mesh is generated, the next goal is to approximate the continuous problem
by a discrete model. In practice this amounts to converting the differential equation
to a difference equation. There are three common choices of discretization techniques:
finite differences [79, 100], finite volumes [42, 70], and finite elements [17, 99]. We
focus on finite element discretizations, which are based on considering solutions in weak
form, expressed in terms of basis functions of a specific space. These methods have a
rich mathematical theory behind the numerical approximation, and can relatively easily
handle complex domains and unstructured meshes.

1The stability result is discussed in detail in [33, Section 3.3], where a nonzero wave number is
incorporated into the equation and is then taken to zero. The Helmholtz decomposition can be used
along with an inf-sup stability analysis.

4

Figure 1.1: Unit square mesh generated by FEniCS

A general finite element method approach follows the steps given bellow:

1. Obtain a weak formulation

2. Choose an approximation space for the so-called trial functions

3. Choose an approximation space for the so-called test functions

4. Solve the linear system

The meaning of trial and test functions is illustrated in the example that follows.

1.2.1 Laplacian example

Here we present a finite element discretization of the “hello world” numerical test prob-
lem: Poisson’s equation. For simplicity we consider homogeneous Neumann boundary
conditions to form the problem as follows:

∆u = f in Ω with
∂u

∂n
= 0 on ∂Ω. (1.7)

The standard weak form of the Poisson problem can be obtained by multiplying (1.7)
by a smooth test function v to obtain:

−
∫

Ω
v∆u =

∫
Ω
vf. (1.8)

The function u is considered the trial function. Using integration by parts and the
divergence theorem, the left-hand-side of (1.8) can be written as:

−
∫

Ω
v∆u =

∫
Ω
∇u · ∇v −

∫
Ω
∇ · (v∇u) =

∫
Ω
∇u · ∇v −

∫
∂Ω
v
∂u

∂n
,

5

where ∂u
∂n denotes the directional derivative in the direction of the normal component

on the boundary. Using the homogeneous Neumann condition (∂u∂n = 0 on ∂Ω), the
weak form is given by: ∫

Ω
∇u · ∇v =

∫
Ω
vf. (1.9)

The next step for a finite element discretization is to determine the approximation
spaces for the trial (u) and test (v) functions. For a given suitable Sobolov space, V ,
consider a solution u ∈ V .

The most intuitive choice of approximation space for the trial function is the same
as the test functions, thus, v ∈ V . This is called Galerkin finite elements. We define φi
as basis functions of V and represent the test and trial functions with respect to this
basis as:

v =
n∑
j=1

vjφj and u =
n∑
i=1

uiφi. (1.10)

Substituting (1.10) into the weak form in (1.9) gives the matrix form as:

n∑
i=1

n∑
j=1

vj

∫
Ω
∇φi · ∇φj ui =

n∑
j=1

vj

∫
Ω
φjf. (1.11)

We can re-write (1.11) as:

n∑
i=1

∫
Ω
∇φi · ∇φj ui =

∫
Ω
φjf for j = 1, 2, . . . , n.

From this an n× n linear system is defined:

Ku = b,

where
Ki,j =

∫
Ω
∇φi · ∇φj and bj =

∫
Ω
φjf.

Here K and b are known as the stiffness matrix and load vector, respectively.

1.2.2 Mixed discretizations of the model problems

It is common in many PDE settings that the continuous model has multiple unknowns.
For example, the Navier-Stokes equations (1.3) has two variables, velocity and pressure.
For such models it is common to consider different finite elements for each variable.
This is called a mixed finite element discretization. This thesis will consider mixed
finite element discretizations for electromagnetic and fluid flow problems [35, 95, 111].

6

In Section 1.1 we discussed the three model problems that are our focus. Research
into the discretization of these model problems is a very active area, ranging from
classical methods to new discretizations. Here we will give a brief overview of possible
mixed discretization strategies for each problem.

Navier-Stokes equations

Computational fluid dynamics is of huge importance. Examples of applications are
flood modeling, computational aerodynamics, glacial flows and biomedical engineering.

There are many choices for a mixed finite element discretization of the Navier-Stokes
equations (1.3). For mixed discretizations it is important to consider what is known
as stable discretizations. Suppose the weak formulation of the Navier-Stokes is defined
using the finite-dimensional spaces Xh and Mh. Then for (Xh,Mh) to be a stable
discretization the finite-dimensional spaces must satisfy the Ladyzhenskaya-Babuška-
Brezzi (LBB) (or inf–sup) compatibility condition [19]. For a positive γ independent of
the mesh size h, the LBB condition is:

min
qh 6=constant

max
vh 6=0

|(qh,∇ · vh)

‖vh‖1,Ω‖qh‖0,Ω
≥ γ,

where (vh, qh) ∈ (Xh,Mh), ‖vh‖1,Ω = (
∫

Ω vh · vh + ∇vh : ∇vh)1/2, ‖qh‖0,Ω = ‖q −
1
|Ω|
∫

Ω q‖, ∇u : ∇v =
∑d

i,j=1(∇u)ij(∇v)ij and d is the spatial dimension.
One of most widely used mixed element that is LBB stable is the Taylor-Hood mixed

element [101]. The lowest order Taylor-Hood element is (P2/P1), where the velocity field
is approximated with nodal quadratic polynomials and the pressure variable with nodal
linear polynomials. This is the discretization we use throughout the thesis. We note,
though, that low order stabilized elements are also widely used; see, for example, [35,
Section 8.3].

Maxwell’s equations

Similarly to the Navier-Stokes equations, the mixed Maxwell problem is discretized
using a mixed finite element method. The mixed discretization of the Maxwell problem
(1.5) has been extensively studied; see, for example [24, 84, 106]. It is well known that for
nonconvex domains nodal approximations of the magnetic field, b, often fail to capture
the singular solution [28]. However, for smooth domains nodal approximations appear
to be effective. Thus for the mixed formulation, the common choice of finite elements
spaces would be to use H(curl) conforming elements for the magnetic field and H1

elements for the multiplier. These are more natural for the approximation of the curl-

7

operator and can be applied in a seamless fashion, without penalty or stabilization, to
problems that involve nonsmooth domains, singularities, and other challenging settings.

This leads to a mixed finite element discretization based on H(curl) conforming
edge elements known as Nédélec [81] elements for b and nodal elements of equal order
for r. We consider first order Nédélec elements for the magnetic field and linear nodal
elements for the multiplier variables.

MHD model

The mixed finite element discretization of the MHD model incorporates many of the
proposed techniques for the two subproblems. The common discretizations for the MHD
model are derived from three-field formulation (u, p, b) or the four-field formulation
given in (1.1).

For the three-field formulation of the MHD model, (1.1) is considered without the
Lagrange multiplier. In [44, 53] the authors propose an exact penalty formulation of a
stationary MHD model. The exact penalty formulation reduces the curl-curl operator
in (1.1c) and the incompressibility condition in (1.1d) to a vector Laplacian using the
vector identity:

∆a = ∇(∇ · a)−∇× (∇× a) . (1.12)

This discretization is based on standard nodal elements for the approximation of the
magnetic field (b). As with Maxwell’s equations in isolation, nodal discretizations of the
magnetic field are effective in smooth settings, but they often fail to capture singularities
in nonsmooth domains; see [95] and the references therein.

In [95], the author introduces a mixed function space which utilizes H1 elements
for the velocity field and multiplier variable, L2 elements for the pressure variables and
H(curl) elements for the magnetic field. Therefore, the proposed mixed finite element
discretization we use incorporates the two mixed discretizations given for the Navier-
Stokes and Maxwell subproblems. This entails using the lowest order Taylor-Hood
elements for the (u, p) and the lowest order mixed Nédélec approximation for (b, r).

1.3 Iterative solution of sparse linear systems

In Section 1.2, we saw that the finite element discretization leads to large and sparse
linear systems. In this section, we discuss iterative solution methods for such linear
systems.

8

Consider the linear system:2

Kx = b, (1.13)

where K is a nonsingular matrix of dimensions n×n and b is a vector of length n. If the
dimension n is sufficiently small, direct solvers are the method of choice. However, we
are considering large and sparse linear systems arising from three-dimensional problems,
for which direct methods (that is, techniques based on matrix decompositions) are
infeasible to use due to computational time and memory requirements. Such systems
therefore require an iterative solution method. The state-of-the-art class of iterative
methods are Krylov subspace methods. There are many excellent books in this area;
see, for example, [48, 93].

1.3.1 Krylov subspace methods

For a given initial guess, x0, the initial residual of (1.13) is given as

r0 = b−Kx0.

The k-dimensional Krylov subspace is defined as:

Kk(K; r0) = span{r0,Kr0,K
2r0, · · · ,Kk−1r0}.

Krylov subspace methods are based on finding an approximate solution, xk, in the
Krylov subspace:

K−1b ≈ xk = x0 +Qk yk, (1.14)

where Qk ∈ Rn×k is a matrix whose columns form an orthogonal basis for the subspace
Kk(K; r0) and yk is a vector of length k. The procedure that forms the orthogonal
basis to the Krylov subspace is the Arnoldi process for nonsymmetric matrices and the
Lanzcos process for symmetric matrices. Here we will give a brief outline of the Arnoldi
and Lanzcos methods, which respectively form the foundation of the GMRES [94] and
MINRES methods [83]. Both GMRES and MINRES are minimum residual methods;
the approximate solution at the kth iteration is given by the minimization problem:

min
xk∈Kk(K;r0)

‖b − Kxk‖2. (1.15)

GMRES and MINRES are methods that form an orthogonal basis of the Krylov sub-
space as a first step. Other methods such as BiCG [39], BiCGstab [104] and QMR [41],
form a bi-orthogonal basis which relies on matrix-vector products using both K and

2In this section we switch to a slightly different notation, with x signifying the vector of unknowns.

9

KT ; we will not consider these methods.
The Arnoldi process is written as:

KQk = Qk+1Hk+1,k, (1.16)

where Hk+1,k ∈ R(k+1)×k is an upper Hessenberg matrix. Here, Qk+1 ∈ Rn×(k+1)

contains (k + 1) orthogonal vectors to the Krylov subspace and Qk is the same matrix
which contains the first k columns of Qk+1. This is indeed the matrix referred to in
(1.14). If we consider pre-multiplying (1.16) by QTk then we obtain:

QTkKQk = Hk,k, (1.17)

where Hk,k contains the first k rows of Hk+1,k. Thus, for the symmetric case it is
clear that Hk,k in (1.17) is symmetric. Therefore, we denote it as Tk+1,k where Tk,k
is tridiagonal and Tk+1,k has one extra row. This is called the Lanzcos process and is
written as

KQk = QkTk+1,k.

The tridiagonal matrix Tk+1,k is significantly sparser than the upper Hessenberg matrix
Hk+1,k, and indeed carrying out the Lanzcos process in the symmetric case is consider-
ably cheaper than the Arnoldi process for the nonsymmetric case.

From now on we will refer to the Arnoldi process for nonsymmetric matrices, noting
that the same can be done for the Lanczos process. Substituting (1.16) into (1.15), then
yk must solve the least-squares problem:

min
yk
‖b − K(x0 +Qk yk)‖2 = min

yk
‖r0 − KQk yk‖2

= min
yk
‖r0 − Qk+1Hk+1,k yk‖2 = min

yk
‖βξ1 − Hk+1,k yk‖2,

(1.18)

where β = ‖r0‖2 and ξ1 is the first column of the identity matrix of dimension k + 1.
Thus, the solution yk in (1.18) is now a least-squares problem. The common way
of solving this is using a QR factorization of Hk+1,k. This QR factorization is done
via Givens rotations in a sequential fashion, exploiting the structure to optimize the
computations. For more details on this we refer the reader to [48, Chapter 2.4].

In summary, minimum residual methods are based on minimizing the residual with
respect to xk ∈ Kk(K; r0). They start by constructing an orthogonal basis to the
Krylov subspace. Using this, they compute the approximate iterates via small least-
squares problems which use an upper Hessenberg matrix in the nonsymmetric case or
a tridiagonal matrix in the symmetric case.

10

Eigenvalues

The following description follows the standard for any sparse linear algebra textbook,
see for example [48, 93].

The solution at the kth iteration is given in (1.14) where we recall that Qk is made
up of orthonormal vectors that span the Krylov subspace, thus,

xk − x0 ∈ Kk(K; r0) for k = 1, 2,

Therefore, for some coefficients βi where i = 0, 1, . . . , k − 1, the residuals and the
approximate solution iterates can be expressed as

xk − x0 =
k−1∑
i=0

βiK
ir0.

We can thus write the solution iterate in terms of a polynomial of K:

xk = x0 + qk−1(K)r0, (1.19)

where qk−1 are polynomials of degree k−1. By premultiplying (1.19) byK and subtract-
ing it from b we can represent the residual at the kth iteration in terms of polynomials
of the initial residual:

b−Kxk = b−Kx0 +Kqk−1(K)r0,

rk = pk(K)r0,
(1.20)

where pk(x) = 1−xqk−1(x) are polynomials of degree k with pk(0) = 1. Since GMRES
and MINRES are both minimum residual methods then:

min
xk∈Kk(K;r0)

‖b−Kxk‖2 = min
pk∈Pk, pk(0)=1

‖pk(K)r0‖2 (1.21)

Suppose that K is diagonalizable, then

K = XΛX−1, (1.22)

where X are the right eigenvectors of K and Λ is a diagonal matrix of eigenvalues of
K. Substitution of (1.22) into (1.21) gives

min
pk∈Pk, pk(0)=1

‖pk(K)r0‖ = min
pk∈Pk, pk(0)=1

‖Xpk(Λ)X−1r0‖

≤ ‖X‖‖X−1‖ min
pk∈Pk, pk(0)=1

‖pk(Λ)‖‖r0‖
(1.23)

11

In the symmetric case, X is orthogonal and therefore (1.23) reduces to

min
pk∈Pk, pk(0)=1

‖pk(K)r0‖ ≤ min
pk∈Pk, pk(0)=1

‖pk(Λ)‖‖r0‖.

To obtain fast convergence, we require pk to be small at the diagonal elements of Λ.
This can be readily accomplished if K has a small number of eigenvalues, or if the
eigenvalues are strongly clustered.

1.3.2 Preconditioning

We saw in Section 1.3.1 that Krylov subspace methods may rapidly converge if the
eigenvalue distribution of K is favorable. However, in general, we have no control over
the spectral distribution of K. Therefore, we introduce a matrix M which is known as
a preconditioner to enable us to efficiently cluster eigenvalues and speed up convergence
of the Krylov subspace solver. The preconditioned linear systems is given by

M−1Kx = M−1b, (1.24)

where M is the preconditioner that approximates K to some degree. This is called left
preconditioning because the inverse of the preconditioner is acting on the left.

Instead of left preconditioning in (1.24), it is possible to apply right preconditioning,

KM−1y = b, x = M−1y,

or split preconditioning

M−1
1 KM−1

2 y = M−1
1 b, x = M−1

2 y,

where M = M1M2. When either left, right or split preconditioning can be applied,
there appears to be little evidence which technique speeds up the convergence of the
Krylov subspace solver the most. However, there are differences among them in terms
of the norm that is minimized and the ability to use flexible methods [92]. Henceforth,
we will focus on left preconditioning.

Generally speaking, an effective preconditioner has the following properties:

1. the construction and application of M−1 is computationally efficient;

2. the eigenvalues of matrix M−1K are clustered.

It is often the case that it is infeasible to construct either M or M−1K. Therefore, in
practice, the iterative solver operates on K and appliesM−1 at each iteration implicitly.

12

Thus, the action M−1 needs to be “fast” on a single vector which occurs within the
iterative solver.

The simpler examples of preconditioners arise from sparse factorization or approxi-
mation ofK. For example, these methods include the Jacobi preconditioner which takes
the diagonal of K as the preconditioner and the Gauss–Seidel preconditioner which uses
the lower triangular entries of K as the preconditioner. These methods can work well
for a small class of problems; see for example [107]. However, in general the effectiveness
of these preconditioners is limited. More sophisticated approaches are sought, such as
incomplete factorizations, multigrid methods, and so on. For a full review of current
preconditioning methods we refer the reader to [108].

Generally speaking, preconditioning can arguably be split into two main categories:

1. operator-based or PDE preconditioning,

2. “black-box” preconditioning.

Operator-based preconditioning typically arises from PDE based problems that utilize
the underlying physical properties and discretization of the problem. The aim for such
preconditioning approaches is to have scalable iterations. That is, as the mesh is refined
and correspondingly the matrix dimensions increase, the number of iterations which the
Krylov subspace solver takes to converge remains constant. In contrast, the “black-box”
preconditioning approach is based more on an algebraic nature of the problem and con-
structs preconditioners using the matrix entries. Scalable “black-box” preconditioning
approaches are typically harder to develop because there is no underlying application,
and hence, there is less information on the matrix properties. In this thesis, we mainly
consider operator-based preconditioning techniques.

1.3.3 Review of preconditioners for saddle-point systems

The mixed discretizations considered in this thesis lead to what is known as saddle-point
systems [10, 108]. These linear systems are block structured and they feature two block
variables, u and v. We call u and v the primary and secondary variables, respectively.
For example, in the Navier-Stokes equations the primary variable is the fluid velocity
and the secondary variable is the pressure of the fluid. These systems are comprised of
block matrices of the form:(

F BT

B 0

)
︸ ︷︷ ︸

K

(
u

v

)
=

(
f

g

)
, (1.25)

13

where F ∈ Rn×n and B ∈ Rm×n with m < n. We consider both nonsingular and
singular leading blocks, F .

We primarily consider two preconditioning methods which arise from block LDL
decompositions of (1.25), or a regularized version thereof, with −W in the trailing
block. First, if rank(F) = n, then it is possible to directly invert F , and thus, an ideal
preconditioner for (1.25) would be of the form:

M1 =

(
F 0

0 BF−1BT

)
, (1.26)

where BF−1BT is known as the dual Schur complement. It has been shown in [68, 80]
that the preconditioned matrix M−1

1 K has three distinct eigenvalues. If F is singular
then it is not possible to consider preconditioners similar to (1.26). For such problems,
one often considers preconditioners of the form:

M2 =

(
F +BTW−1B 0

0 W

)
, (1.27)

where F + BTW−1B is known as the primal Schur complement for the regularized
saddle-point matrix (

F BT

B −W

)
,

and W is an arbitrary symmetric positive definite matrix. There are various natural
choices for W based of the underlying discrete operators; see, for example, [87]. The
authors in [50] show that if rank(F) = n −m then the preconditioned matrix M−1

2 K

has two distinct eigenvalues.
In general, the construction of both the primal and dual Schur complements will lead

to dense matrices which are computationally impractical to form and subsequently solve
for. Therefore, state-of-the-art methods aim to design effective sparse approximations
to F +BTW−1B or BF−1BT . These approximations are often based on mimicking the
essential spectral properties of the Schur complement.

Navier-Stokes equations

The numerical solution of the Navier-Stokes problem is of great importance. Three-
dimensional fluid applications often lead to systems in excess of 10’s of millions of
degrees of freedom. In Section 1.3.3 we mentioned how effective Schur complement
based preconditioners can be.

For the Navier-Stokes problem, F in (1.25) is defined as discrete convection-diffusion

14

operator and thus rank(F) = n. Therefore, the aim is to approximate the dual Schur
complement in (1.26).

The “SIMPLE” preconditioner in [103], uses the approximationX = B diag(F)−1BT .
This preconditioner is known to work well for moderate to large values of the kinematic
viscosity. However, for small values of ν the preconditioned iterations degrade. Other
“SIMPLE” type preconditioners use other algebraic approximations to F−1.

In this thesis, we utilize the approaches from [35] where the authors introduce the
pressure convection diffusion (PCD) and least-squares commutator (LSC) precondition-
ers. These approaches are based on minimizing a commutator operator; see Section 2.2.1
for more details.

An alternative to the Schur complement approximations presented in [35, 103] are
monolithic multigrid methods. In [105] Vanka introduced a “all-at-once” multigrid ap-
proach to the Navier-Stokes problem.

Mixed Maxwell problem

Applications of computational electromagnetics, just like computational fluid dynamics,
lead to large sparse systems and are widely used within industrial and geophysical
applications.

For the mixed Maxwell problem, F in (1.25) is the discrete curl-curl operator and
therefore rank(F) = n−m. Thus, in [51] that authors propose a preconditioner based
on (1.27) where they introduce the approximation F + BTW−1B ≈ F + X. Here X
is a mass matrix (finite element identity operator), so that F + X is a shifted curl-
curl operator; see Section 2.2.2 for more details. Due to the large null-space of the
discrete curl-curl operator, effective “black-box” scalable solvers which can be used in
the Navier-Stokes case do not work as well. Thus, more specialized solvers are required.

There are several effective multigrid solvers designed specifically for shifted curl-
curl operator. The method proposed in [59] is based on geometric multigrid, using
specialized smoothers. More recent work has been done using algebraic multigrid for
unstructured meshes or where a sequence of meshes is hard to construct; see [14, 43,
63, 88]. These methods use smoothers developed for the geometric multigrid case in
[59]. The nodal auxiliary space preconditioner introduced in [61] has proven to be
particularly effective. It reduces the solution of the shifted curl-curl problem to a nodal
shifted vector Laplacian and scalar Laplacian solve. In Chapter 2, the numerical results
are produced with an in-house implementation of [61] whereas for Chapters 3 and 4
we use the more efficient Hypre [37, 38] implementation. A full description of the
implementation aspects of [61] can be found in [67, 72].

15

MHD model

The development of block preconditioning techniques for this model is relatively limited.
A number of attempts have been made to develop scalable solution methods for the
MHD model, with limited success [20–22, 66, 76, 96, 97]. We are particularly interested
in the class of block preconditioning methods. These techniques are often based on
effective Schur complement approximations [10, 50, 80]. Such methods are known to be
robust with respect to mesh refinement and nondimensional parameters.

In recent years, the interest in the development of block preconditioning methods for
the MHD model has increased; see [2, 29, 71, 85, 86, 109, 110]. The work that is the most
relevant to ours is [85, 86]. The authors in those papers consider approaches based on
utilizing effective preconditioners for the separate subproblems, and then incorporating
the coupling terms. Our work in [110] capitalizes on a useful tensor identity introduced
in [85, Equation (3.15)] and also uses block preconditioners. However, in contrast to
[85] we formulate a different block matrix and use other approximations to the Schur
complements. Similarly to the “all-at-once” multigrid for the Navier-Stokes equations
in [105], the authors in [2] develop “all-at-once” multigrid methods for the MHD model.
In [29], the aim is to use block factorizations to reduce the dimension of the model and
thus develop block preconditioning techniques based on this reduced model.

So far there appear to be limited block preconditioning strategies that are fully
scalable for large scale three-dimensional problems. This thesis introduces progress on
this front.

1.4 Numerical software

The number of open-source numerical software packages that deal with the discretization
and linear solution methods for PDE-based problems has risen dramatically in the last
few decades. Theses packages are used in a variety of different settings; from the design
of new and more complex solution methods for a variety of different models to users
that require a “black-box” type solution method to PDEs.

Numerical software for a linear or linearized elliptic PDEs of the kind considered in
this thesis may be split into the following components:

1. PDE discretization, including domain construction and mesh generation;

2. solution of the linear system.

16

1.4.1 PDE discretization: FEniCS

There are many open-source software packages that consider discretizations of PDEs –
most of these are based on either finite elements or finite volumes. A few examples can
be found in [3, 13, 25, 27, 54, 77] but by no means is this an exhaustive list. In this
thesis, we limit our discussion to FEniCS [77], which is a finite element package.

The FEniCS project started in 2003 and the aim was create software that automates
a finite element discretization and solution of differential equations. One of the main
strengths of the FEniCS package is its easy-to-use code to create efficient large-scale
numerical examples for any type of PDE-based problem. The main underlying code
base for FEniCS is written in C++ and Python, with interfaces in both languages.

FEniCS supports a large range of different finite element function spaces, thus al-
lowing it to be used for a variety of different applications, including electromagnetics
and fluid flow problems, which are our focus of interest. We use FEniCS primarily for
its discretization modules but note that it is possible to use its linear solver packages
as well. For our specialized block-based linear solvers we use PETSc.

As mentioned in Section 1.2, the first step of numerical discretization is domain
construction and mesh triangulation. Often domains of interest for PDEs are standard
rectangles in 2D or boxes in 3D. Such domains are commonly written into the finite
element discretization software. However, for certain physical applications, nonstandard
domains and meshes are typically required.

For the more complex geometries and meshes, we use the mshr mesh generation
software [65]. Using Constructive Solid Geometry (CSG) [40], mshr generates 2D and
3D meshes using both CGAL [102] and Tetgen [98] as the mesh generation backends.
This enables the user to define several points as the domain and then mshr will form
a quasi-uniform mesh triangularization from those points. It is possible to use the
CGAL or Tetgen libraries in isolation. However, since mshr incorporates both and it
links seamlessly into FEniCS, it is the natural choice of meshing software for FEniCS
discretizations.

For complicated physical domains and meshes, local mesh refinement is often re-
quired. There are a number of different types of mesh refinements. These include
graded mesh refinement, adaptive mesh refinement and cell-wise refinement; see, for
example, [89]. In Program 1.1 we give an example of cell-wise mesh refinement using
mshr and FEniCS. This sort of refinement is done by flagging the cells depending on
their location in the mesh and refining them. For example, in Program 1.1 we flag the
cells which are within a certain distance from the singular point and refine the mesh in
that area.

One of the most common complex domains considered is an L-shaped domain; see

17

Figure 1.2. The mesh refinement introduced in Figure 1.2 is based on cell-wise mesh
refinement around the singular point.

Program 1.1 mshr: construction of a locally refined mesh on an L-shaped domain in
Figure 1.1. The cells that are within a certain distance from the radius.

1 from dolfin import Point, mesh
2 import mshr
3 import matplotlib.pylab as plt
4

5 # L-shaped domain and mesh generation
6 domain = mshr.Rectangle(Point(-1,-1), Point(1,1)) - mshr.Rectangle(Point(0,0),

Point(1,1))↪→

7 mesh = mshr.generate_mesh(domain, 32)
8

9 # Specifying local mesh refinement
10 cell_markers = CellFunction("bool", mesh)
11 cell_markers.set_all(False)
12 for cell in cells(mesh):
13 p = cell.midpoint()
14 if sqrt(p.x()**2+p.y()**2) < 0.4:
15 cell_markers[cell] = True
16 mesh = refine(mesh, cell_markers)
17

18 plot(mesh, interactive=True)
19 plt.show()

Once the domain and mesh are constructed, the next step is to define the discretiza-
tion used. We consider a mixed finite element approach for the MHD model (1.1). This
thus requires the construction of the mixed function space and then the linear weak
form (bilinear form) associated with the model problem. Program 1.2 demonstrates
how FEniCS discretizes the complex MHD model in (1.1). The variational form we
use for the MHD model is given in Section 2.1. The seamless fashion of implementing
the variational form is one of the main strengths of the FEniCS software package, as
evident from Program 1.2. The program constructs the bilinear form for the Navier-
Stokes equations (1.3), the mixed Maxwell model (1.5) and the coupling terms defined
in (1.1).

1.4.2 Solution of the linear system: PETSc

Three of the main and most widely used linear algebra software packages are Trilinos
[56, 57], Eigen [52], and PETSc [7, 9, 30]. Theses three packages are all available in
the C++ and Python programming languages. Each package incorporate additional
external solvers (direct methods, multigrid methods, etc.) within their solver classes.
This therefore allows users to incorporate state-of-the-art external software packages all
within one framework. In this thesis, we are particularly interested in the development

18

Program 1.2 FEniCS: construction of the bilinear forms for the MHD model in (1.1)

1 (u, p, b, r) = TrialFunctions(W)
2 (v, q, c, s) = TestFunctions(W)
3

4 # the bilinear form for the mixed Maxwell’s equations in (1.5)
5 Maxwell = kappa*nu_m*inner(curl(b),curl(c))*dx + inner(c,grad(r))*dx +

inner(b,grad(s))*dx↪→

6

7 # the bilinear form for the mixed Navier-Stokes equations in (1.4)
8 NavierStokes = nu*inner(grad(u), grad(v))*dx + inner((grad(u)*u_k),v)*dx +

(1./2)*div(u_k)*inner(u,v)*dx - (1./2)*inner(u_k,n)*inner(u,v)*ds - div(v)*p*dx -
div(u)*q*dx

↪→

↪→

9

10 # the bilinear form for the coupling terms of the MHD model in (1.1)
11 Coupling = kappa*inner(cross(v, b_k), curl(b))*dx - kappa*inner(cross(u, b_k),

curl(c))*dx↪→

12

13 # the bilinear form associated with the Newton linearization of the MHD model in
(1.1)↪→

14 Newton = inner((grad(u_k)*u), v)*dx + (1./2)*div(u)*inner(u_k, v)*dx -
(1./2)*inner(u, n)*inner(u_k, v)*ds + kappa*inner(cross(v, b), curl(b_k))*dx -
kappa*inner(cross(u_k, b), curl(c))*dx

↪→

↪→

15

16 # the bilinear form for the MHD model in (1.4)
17 MHD = Maxwell + NavierStokes + Coupling + Newton
18

19 # assembling MHD coeffi matrix
20 K = assemble(MHD)

Figure 1.2: L-shaped domain generated using mshr. We locally refine cells that are a
distance 0.4 from the origin.

of block-based preconditioning techniques. All three of these packages have block-based
preconditioning classes, however within the Python interface, PETSc seemed the most

19

usable package.
The three key components which we use PETSc for are its library of Krylov subspace

solvers, its interface with external packages, and the ability to apply block precondi-
tioners in a seamless fashion. A few examples of external packages are:

• Hypre [37] - the LLNL preconditioner library.

• MUMPS [4, 5] - MUltifrontal Massively Parallel sparse direct Solver.

• ParMeTiS [64] - parallel graph partitioner.

• PaStiX [55] - a parallel LU and Cholesky solver package.

• SuiteSparse, including KLU [32], UMFPACK [31], and CHOLMOD [23] - sparse
direct solvers, developed by Timothy A. Davis.

• SuperLU [73, 74] and SuperLU_Dist [112] - robust and efficient sequential and
parallel direct sparse solves.

• Trilinos/ML [57] - ML: Multilevel Preconditioning Package. Sandia’s main multi-
grid preconditioning package.

Several of these packages have been used throughout this project, e.g., Hypre, MUMPS,
PaStiX, ML and UMFPACK. For the eventual software package that is being exper-
imented with, we use Hypre and MUMPS. We use Hypre primarily as the multigrid
package due to its large range of different smoother types and, particularly, its imple-
mentation of the auxiliary space preconditioner in [61]. The auxillary space precondi-
tioner has been proven to be highly robust for shifted curl-curl problems, and thus, is an
important component in the new preconditioning techniques we propose. MUMPS is a
widely used direct solver for many problems and for exact inverses we use this software
package.

The primary focus of this work is on the development of block-based linear solvers,
and as such, it was necessary to use software features that support this methodology.
PETSc has a builtin function known as fieldsplit, which is used to apply block-based
preconditioners. A key feature of the application of our block-based preconditioning
techniques is the ability to apply a nested set of linear system solves for an individual
block. In this work, we use various Schur complement approximations that give rise
to nested sets of matrix solves; see Section 1.3.3. It appears that this sort of nested
solves is not well supported in fieldsplit, therefore, we create a Python class which
can be used to define the inverse of block preconditioners. A generic example of the
application of a block diagonal preconditioner is given in Programs 1.3 and 1.4. The

20

code examples demonstrate how it is possible to split the application of a block diagonal
preconditioner of the form: (

F 0

0 L

)
.

ksp1 and ksp2 in Program 1.3 are the action of F−1 and L−1, respectively, and IS

denotes the indices of the the two variables. Program 1.4 is set up so that a linear
system Kx = b is solved using FGMRES [92] with the application of the preconditioner
done using a Python class.

Program 1.3 PETSc: our implementation of a block diagonal preconditioner.
1 class ApplyD(object):
2

3 def __init__(self, ksp1, ksp2, IS):
4 # ksp1 and ksp2 are the individual solvers for the (1,1) and (2,2) blocks,

respectively↪→

5 self.ksp1 = ksp1
6 self.ksp2 = ksp2
7 # IS is the index set where IS[0] denotes the indices associated with the

primary variable and IS[1] the secondary variable↪→

8 self.IS = IS
9

10 def setUp(self, pc):
11 A, P = pc.getOperators()
12 self.B = A.getSubMatrix(self.IS[1], self.IS[0])
13

14 def apply(self, pc, x, y):
15

16 x1 = x.getSubVector(self.IS[0])
17 y1 = x1.duplicate()
18 x2 = x.getSubVector(self.IS[1])
19 y2 = x2.duplicate()
20

21 self.ksp1.solve(x1, y1)
22 self.ksp2.solve(x2, y2)
23 y.array = np.concatenate([y1.array, y2.array])

Using classes similar to the one in Program 1.3, it is possible to create sophisticated
block preconditioners for the four-field MHD model considered in this work.

1.5 Outline and contributions

This thesis is organized into five chapters. In Chapter 2, we introduce a new block trian-
gular preconditioner for the MHD model (1.1)–(1.2). We use a finite element approach
based on Taylor-Hood elements [101] for (u, p) and the lowest order Nédélec [81] pair
for (b, r) in (2.2). Using this discretization, we propose a preconditioning approach that

21

Program 1.4 PETSc: example of how using a Python class as a preconditioner
1 ksp = PETSc.KSP()
2 ksp.create(comm=PETSc.COMM_WORLD)
3 pc = ksp.getPC()
4

5 ksp.setType(’fgmres’)
6 pc.setType(’python’)
7 pc.setPythonContext(ApplyD(ksp1, ksp2, IS))
8

9 ksp.setTolerances(rtol=rtol, atol=atol, divtol=divtol, max_it=max_it)
10 ksp.setOperators(K)
11

12 ksp.setFromOptions()
13

14 ksp.solve(b, x)

combines well-known preconditioners for the two subproblems, together with a novel
approach of dealing with coupling terms and approximating Schur complements. We
analytically show that the proposed preconditioning technique effectively clusters eigen-
values of the preconditioned matrix. Finally, we numerically test this preconditioner
and demonstrate its merits.

In Chapter 3, we derive a new formula for the inverse for the MHD matrix (2.8).
The formula uses the nullity of both the coupling terms and curl-curl operator, which
is the leading block of the Maxwell subproblem. Along with showing that the exact
inverse formula has a number of zero blocks, we are able to efficiently approximate it
using a sparse matrix, by dropping small entries of the inverse. We show several three-
dimensional numerical results which illustrate the strong scalability of this approach.

In Chapter 4, we consider the use of conjugate gradient (CG) [58] for a class of
indefinite matrices. The class of matrices considered are nonregularized or regularized
nonsingular saddle-point problems with a highly rank deficient leading block. We show
that there are two sufficient conditions for which CG can be used. The conditions
rely on the null-space of the leading block of the saddle-point problem. We show that
these conditions are perfectly satisfied by the Maxwell problem in (1.5). Our extensive
numerical tests show that these conditions can be relaxed slightly but still enable the
use of CG for the example we consider, namely the mixed Maxwell problem (1.5).

In the final chapter we offer concluding remarks and areas for future work.
The main contributions are:

1. We propose a new block preconditioner that utilizes state-of-the-art precondi-
tioners for the Navier-Stokes and Maxwell subproblems. Using a result from [85]
we form a practical version of it and test its robustness with respect to matrix
dimension. The numerical results show strong scalability with respect to two-

22

dimensional problems and a small increase in iterations with respect to the mesh
for three-dimensional problems3.

2. We numerically show that for moderate nondimensional parameters it is possible
to decouple the MHD model into its subproblems, either the Navier-Stokes and
Maxwell problems or the Stokes and Maxwell problems.

3. We design a new approximate inverse-based preconditioner for the MHD matrix.
To our knowledge, this is one of the only strongly scalable preconditioning ap-
proaches for large-scale three-dimensional problems with strong coupling.

4. Given a symmetric saddle-point matrix with a leading block that is maximally
rank deficient which still leads to a nonsingular matrix, we show that there are
sufficient conditions on the construction of a block diagonal and triangular pre-
conditioner that enable the use of CG. This work builds upon and complements
[36, 51, 72].

5. I have developed a large-scale code to solve the MHD problem (1.1)–(1.2) and
its essential subproblems. This code combines several well-known open-source
software packages to produce large-scale numerical examples within the Python
programming language.

1.6 Notation

We follow the notation rules given in Tables 1.1 to 1.3. We will denote closely related
matrices (either permutations of the original or an extra off diagonal block) with a tilde
or hat.

Notation Meaning

K coefficient matrix
M preconditioner
S Schur complement

Table 1.1: Notation for block systems

3Black-box preconditioners such as the Jacobi and Gauss-Seidel do not utilize the underlying physical
properties of the PDE, and hence, the iteration increase is directly proportional to the mesh level.

23

Superscript Meaning Used for

NS Navier-Stokes K,M
S Stokes K,M

MX Maxwell K,M
MHD Magnetohydrodynamics K,M
C Coupling for MHD K
N (1,1) block rank deficient K

Table 1.2: Notation for superscripts

Subscript Meaning Used for

I ideal M
P practical M
S Schur complement based M
A Approximate inverse M
B 2-by-2 Block triangular (lower/upper) M

Table 1.3: Notation for subscripts

24

Chapter 2

Preconditioners for Mixed Finite
Element Discretizations of
Incompressible MHD Equations

This chapter consists of our new preconditioning results, which were published in the
SIAM Journal of Scientific Computing [110]. The structure of the chapter is as fol-
lows. In Section 2.1, we introduce the finite element discretization, consider decoupling
schemes for the nonlinear iterations, and discuss the resulting matrix systems. In Sec-
tion 2.2, we review relevant preconditioners for the Navier-Stokes and Maxwell sub-
problems. Our new preconditioning approach for the fully coupled MHD discretization
is introduced and analyzed in Section 2.3. We also give details of a scalable implemen-
tation of the proposed preconditioners in this section. In Section 2.4 we show a series
of numerical results in two and three dimensions. The two-dimensional results show
good scalability with respect to the mesh. However, for three-dimensional problems,
we observe a small increase in iterations with respect to the mesh.

2.1 Discretization

In this section we specify the mixed finite element discretization for the incompressible
MHD model (1.1)–(1.2), the nonlinear Picard iteration, decoupling approaches for the
nonlinear problem, and the resulting linear systems arising in each iteration step.

2.1.1 Mixed finite element approximation

Our mixed finite element approximation is based on the variational formulation for (1.1)–
(1.2) introduced and analyzed in [95]. It consists in finding a weak solution (u, p, b, r)

25

in the standard Sobolev spaces

u ∈ V =
{
v ∈ H1(Ω)d : v = 0 on ∂Ω

}
,

p ∈ Q = { q ∈ L2(Ω) : (q, 1)Ω = 0},

b ∈ C =
{
c ∈ L2(Ω)d : ∇× c ∈ L2(Ω)d̄, n× c = 0 on ∂Ω

}
,

r ∈ S = {r ∈ H1(Ω) : r = 0 on ∂Ω}.

(2.1)

Here and in the following, we write (·, ·)Ω for all L2-inner products, and use d̄ = 2d− 3

to define the curls simultaneously for two- and three-dimensional vector fields [49].
Now let the domain Ω be divided into regular meshes Th = {K} consisting of

triangles (d = 2) or tetrahedra (d = 3) with mesh size h. We consider Taylor-Hood
elements for (u, p) and the lowest order Nédélec pair for (b, r). The corresponding finite
element spaces are:

V h = {u ∈ V : u|K ∈ P2(K)d, K ∈ Th },

Qh = { p ∈ Q ∩H1(Ω) : p|K ∈ P1(K), K ∈ Th },

Ch = { b ∈ C : b|K ∈ R1(K), K ∈ Th },

Sh = { r ∈ S : r|K ∈ P1(K), K ∈ Th }.

(2.2)

Here Pk(K) denotes the space of polynomials of total degree at most k on K and
R1(K) = {a+ b× x : a ∈ Rd, b ∈ Rd} denotes the linear edge element space on K in
terms of the position vector x on K.

With the finite element spaces in place, our mixed finite element approximation to
problem (1.1)–(1.2) reads: find (uh, ph, bh, rh) ∈ V h ×Qh ×Ch × Sh such that

A(uh,v) +O(uh;uh,v) + C(bh;v, bh) +B(v, ph) = (f ,v)Ω,

B(uh, q) = 0,

M(bh, c)− C(bh;uh, c) +D(c, rh) = (g, c)Ω,

D(bh, s) = 0,

(2.3)

for all (v, q, c, s) ∈ V h×Qh×Ch×Sh. Here, we denote by (·, ·)Ω the inner product in
L2(Ω)d. The bilinear forms A, B, M and D are given by

A(u,v) = ν(∇u,∇v)Ω, B(u, q) = −(∇ · u, q)Ω,

M(b, c) = κνm(∇× b,∇× c)Ω, D(b, s) = (b,∇s)Ω.

26

Moreover, the trilinear forms O and C are defined as

O(w;u,v) =
(
(w · ∇)u,v

)
Ω

+
1

2

(
(∇ ·w)u,v)Ω,

C(d;v, b) = κ
(
v × d,∇× b

)
Ω
.

The forms A, B, and O are associated with the variational formulation of the incom-
pressible Navier-Stokes sub-problem, M and D with that of the Maxwell sub-problem
in mixed form, and C is the coupling form which combines the two sub-problems into
the full MHD system. We note that the convection form O appears in a standard skew-
symmetric fashion. As a consequence, the discretization (2.3) is energy-stable without
violating consistency.

The discrete problem (2.3) falls into the class of conforming mixed discretization
studied in [95]. Hence, it is stable and has a unique solution for small data (i.e., for
sufficiently large ν, νm, κ and forcing terms f and g with sufficiently small L2-norms).
Moreover, we have optimal-order error estimates in natural norms, both for smooth and
non-smooth solutions. In particular, the strongest singularities of the curl-curl operator
in non-convex domains are correctly captured and resolved.

Remark 1. The pairs V h ×Qh and Ch × Sh form standard and optimally convergent
mixed discretizations for the fluid and magnetic equations in isolation. However, the
approximation properties of these pairs are not properly matched for the fully coupled
system (2.3). Specifically, the optimal order O(h2) of the Taylor-Hood spaces V h ×
Qh (for the H1-norm velocity errors and the L2-norm pressure errors) are potentially
reduced due to the coupling with the lower-order magnetic spaces Ch × Sh in (2.2).
Nonetheless, we have chosen to work with the spaces in (2.2) due to computational
considerations and availability of fast solvers. In particular, we avoid the need for
stabilized or enriched fluid elements, and are able to use the well established auxiliary
space preconditioner [61] for the lowest-order Nédélec pair.

2.1.2 Picard iteration

A common choice for dealing with the nonlinearity within the incompressible Navier-
Stokes equations in isolation is to perform Picard or Oseen iterations [35]. We adapt this
approach for the fully coupled MHD system, and linearize around the current velocity
and magnetic fields. Hence, given a current iterate (uh, ph, bh, rh), we solve for updates

27

(δuh, δph, δbh, δrh) and introduce the next iterate by setting

uh → uh + δuh, ph → ph + δph,

bh → bh + δbh, rh → rh + δrh.

The updates (δuh, δph, δbh, δrh) ∈ V h×Qh×Ch×Sh are found by solving the Picard
system

A(δuh,v) +O(uh; δuh,v) + C(bh;v, δbh) +B(v, δph) = Ru(uh, bh, ph;v),

B(δuh, q) = Rp(uh; q),

M(δbh, c) +D(c, δrh)− C(bh; δuh, c) = Rb(uh, bh, rh; c),

D(δbh, s) = Rr(bh; s),

(2.4)

for all (v, q, c, s) ∈ V h × Qh × Ch × Sh. Note that this system is linearized around
(uh, bh). The right-hand side linear forms correspond to the residual at the current
iteration (uh, ph, bh, rh) and are defined by

Ru(uh, bh, ph;v) =(f ,v)Ω −A(uh,v)−O(uh;uh,v)

− C(bh;v, bh)−B(v, ph),

Rp(uh; q) =−B(uh, q),

Rb(uh, bh, rh; c) =(g, c)Ω −M(bh, c) + C(bh;uh, c)−D(c, rh),

Rr(bh; s) =−D(bh, s),

(2.5)

for all (v, q, c, s) ∈ V h × Qh ×Ch × Sh. For small data, the iteration (2.4) converges
for any initial guess [95].

2.1.3 Decoupling

Let us consider two important cases where simplifications to the Picard iteration (2.4)
can be used. We introduce the following variants, referred to as magnetic decoupling
and complete decoupling.

As mentioned in the Introduction, [6] discusses the notion of strong coupling, ac-
cording to the value of κ: cases where κ < 100 are considered to have weak coupling.
Otherwise, the problem is treated as one with strong coupling. We have found this to
be useful from a computational point of view, too. For κ < 100 we may converge to a
solution by taking the coupling terms explicitly, i.e., we omit them in the LHS of (2.4).
Therefore, for a given solution (uh, ph, bh, rh), neglecting the coupling terms in (2.4),

28

results in solving for the updates (δuh, δph, δbh, δrh) ∈ V h ×Qh ×Ch × Sh such that

A(δuh,v) +O(u; δuh,v) +B(v, δph) = Ru(uh, bh, ph;v)

B(δuh, q) = Rp(uh; q),

M(δbh, c) +D(c, δrh) = Rb(uh, bh, rh; c),

D(δbh, s) = Rr(bh; s),

(2.6)

where Ru, Rp, Rb and Rr are defined in (2.5). We call this magnetic decoupling (MD).
When we have both weak coupling and small convection terms in the system (2.4),

the simplest strategy is to take all the nonlinear terms explicitly. This is the simplest
technique, as it removes all nonlinear terms. For a given solution (uh, ph, bh, rh), re-
moving the coupling and convection terms in (2.4) results in solving for the updates
(δuh, δph, δbh, δrh) ∈ V h ×Qh ×Ch × Sh such that

Ah(δuh,v) +B(v, δph) = Ru(uh, bh.ph;v)

B(δuh, q) = Rp(uh; q),

M(δbh, c) +D(c, δrh) = Rb(uh, bh, rh; c),

D(δbh, s) = Rr(bh; s),

(2.7)

where again Ru, Rp, Rb and Rr are given in (2.5). We call this complete decoupling (CD).

2.1.4 The linear systems

For the matrix representation of (2.4)–(2.5), we introduce the basis function for the
finite element spaces in (2.2):

V h = span〈ψj〉nu
j=1, Qh = span〈αi〉mu

i=1,

Ch = span〈φj〉
nb
j=1, Sh = span〈βi〉mb

i=1.

The aim is to find the coefficient vectors u = (u1, . . . , unu) ∈ Rnu , p = (p1, . . . , pmu) ∈
Rmu , b = (b1, . . . , bnb

) ∈ Rnb , and r = (r1, . . . , rmb
) ∈ Rmb of the finite element functions

(uh, ph, bh, rh) in terms of the chosen bases. To this end, we define the following stiffness

29

matrices and load vectors:

Ai,j = A(ψj ,ψi), 1 ≤ i, j ≤ nu,

Bi,j = B(ψj , αi), 1 ≤ i ≤ mu, 1 ≤ j ≤ nu,

Mi,j = M(φj ,φi), 1 ≤ i, j ≤ nb,

Di,j = D(φj , βi), 1 ≤ i ≤ mb, 1 ≤ j ≤ nb,

fi = (f ,ψi)Ω, 1 ≤ i ≤ nu,

gi = (g,φi)Ω, 1 ≤ i ≤ nb.

We define the stiffness matrices for the two nonlinear forms, O and C, with respect to
the current finite element iterates uh ∈ V h and bh ∈ Ch and their associated coefficient
vectors u and b as

O(u)i,j = O(uh;ψj ,ψi), 1 ≤ i, j ≤ nu,

C(b)i,j = C(bh;ψj ,φi), 1 ≤ i ≤ nb, 1 ≤ j ≤ nu.

We denote by (u, p, b, r) and (δu, δp, δb, δr) the coefficient vectors associated with
(uh, ph, bh, rh) and (δuh, δph, δbh, δrh), respectively. Then it can be readily seen that
the Picard iteration (2.4) amounts to solving the matrix system

A+O(u) BT C(b)T 0

B 0 0 0

−C(b) 0 M DT

0 0 D 0

δu

δp

δb

δr

 =

ru

rp

rb

rr

 , (2.8)

with

ru = f −Au−O(u)u− C(b)T b−BT p,

rp = −Bu,

rb = g −Mu+ C(b)b−DT r,

rr = −Db.

(2.9)

At each nonlinear iteration, the right hand side vectors and matrices O(u) and C(b)

in (2.8), (2.9) must be assembled with the solution coefficient vectors (u, p, b, r) of
the current iterate. Here, the matrix A is symmetric positive definite, O(u) is non-
symmetric and −C(b), C(b)T appear in a skew symmetric fashion. We also note that
M is symmetric positive semidefinite with nullity mb corresponding to the dimension
of the scalar space of the discrete gradients, see [78]. In the sequel, we shall often omit

30

the dependence of O(u) and C(b) on u and b, respectively, and write O and C.
The linear system associated with the magnetic decoupling scheme in (2.6) then is:

A+O BT 0 0

B 0 0 0

0 0 M DT

0 0 D 0

δu

δb

δp

δr

 =

ru

rb

rp

rr

 , (2.10)

with the right-hand side quantities as defined in (2.9). While still non-symmetric, the
system decouples into a Navier-Stokes block and a Maxwell block. Thus, allowing the
problems to be solved with well known specifically designed preconditioners and possibly
in parallel.

The linear system connected with the complete decoupling scheme in (2.7) is:
A BT 0 0

B 0 0 0

0 0 M DT

0 0 D 0

δu

δb

δp

δr

 =

ru

rb

rp

rr

 , (2.11)

again with the right-hand side quantities as defined in (2.9). The system is now sym-
metric and decouples into a linear Stokes problem and a Maxwell problem. Then, we
may apply MINRES to both of the sub-problems.

2.2 Review of preconditioning techniques for the
sub-problems

The linear systems in Section 2.1.3 are associated with a few important sub-problems, as
discussed. These are the Navier-Stokes, Stokes, and Maxwell problems. In this section
we review preconditioners for each of these sub-problems.

2.2.1 Fluid flow preconditioner

For the magnetic decoupling scheme (2.10), the governing equations for the fluid flow
are the Navier-Stokes equations. Their associated discretized and linearized operator is
given by

KNS =

(
F BT

B 0

)
, (2.12)

31

with F = A + O. One of the principal preconditioning approaches in the literature is
based on approximations to the Schur complement. Using [35, 80], we look at precon-
ditioners of the form

MNS
I =

(
F BT

0 −S

)
, (2.13)

where S = BF−1BT . In practice, the leading block, F , and the Schur complement, S,
are approximated by linear operators that are easier to invert. Two common choices for
an approximation to the Schur complement, S, are the least squares commutator (LSC)
and pressure-convection diffusion (PCD). The approximations are based on finding an
operator Fp which minimizes the commutator:

E = BF − FpBT =⇒ (BF−1BT)−1 ≈ (BBT)−1Fp, (2.14)

where F and B are the continuous convection-diffusion and divergence operators, re-
spectively. Loosely speaking, one can split up LSC and PCD in the following two ways:

PCD: Works with the continuous operator (2.14) and tries to find Fp such that E
is small. Discretization is done once the continuous operator Fp is found.

LSC: Discretizes the left equation in (2.14) straight away and then finds the
discrete analog to Fp, which effectively minimizes the discretized commutator.

We use the PCD approximation developed in [35] which has proven to be robust
with respect to viscosity, different choices of mixed finite elements and type of mesh
triangulation (i.e., squares or triangles in 2D). The approximation is based on

S = BF−1BT ≈ Ap F−1
p Qp, (2.15)

where the matrix Ap is the pressure Laplacian, Fp is the pressure convection-diffusion
operator and Qp is the pressure mass matrix:

(Ap)i,j = (∇αj ,∇αi)Ω 1 ≤ i, j ≤ mu,

(Fp)i,j = ν(Ap)i,j + (uh · ∇αj , αi)Ω, 1 ≤ i, j ≤ mu,

(Qp)i,j = (αj , αi)Ω, 1 ≤ i, j ≤ mu,

where uh ∈ V h is the given velocity field in the current iteration step. Note that Ap
and Fp are well-defined since we work with continuous pressure elements. An effective
implementation of this preconditioning approach is discussed in Section 2.3.3.

For the complete decoupling scheme (2.11), the governing equations for the fluid flow

32

are the Stokes equations. Their discrete form is given by the matrix

KS =

(
A BT

B 0

)
. (2.16)

Here we opt to use a standard block diagonal (i.e., withBT zero in (2.13)) and symmetric
positive definite preconditioner of the form

MS
P =

(
A 0

0 Ŝ

)
.

A natural choice for Ŝ is Ŝ = 1
νQp, where Qp is the pressure mass matrix in (2.15).

It is important here to note that the system is completely decoupled, hence, using a
symmetric positive definite preconditioner allows use of MINRES and therefore short
recurrences within the Krylov solver. This preconditioner allows one to obtain mesh-
independent convergence rates; see [35].

2.2.2 Maxwell preconditioner

A key part of each decoupling scheme is an efficient preconditioner for the discrete
Maxwell sub-problem, whose associated matrix is given by

KMX =

(
M DT

D 0

)
. (2.17)

In [51], it was shown that an ideal block diagonal positive definite preconditioner is

MMX
I =

(
M +DTL−1D 0

0 L

)
. (2.18)

Here L is the scalar Laplacian on Sh defined as

Li,j = (∇βj ,∇βi)Ω, 1 ≤ i, j ≤ mb. (2.19)

Using this preconditioner yields precisely two distinct eigenvalues, 1 and −1, hence
a symmetric preconditioned Krylov solver such as MINRES will converge within two
iterations in the absence of roundoff errors.

Remark 2. Given that the MHD problem is nonsymmetric, and hence we would have
to use a nonsymmetric solver anyway, one may be tempted to ask whether it would make
sense to incorporate the (1,2) block of the coefficient matrix (2.17) into the precondi-

33

tioner, namely replace (2.18) by

M̃MX
I =

(
M +DTL−1D DT

0 L

)
.

Interestingly, it turns out that there is no advantage in doing so in terms of eigenvalue
distribution and consequently, the convergence of the iterative solver. The preconditioned
eigenvalues of (M̃MX

I)−1KMX are 1 and 1±
√

5
2 , that is there are three of them, whereas

the block diagonal preconditioner (2.18) gives rise to two eigenvalues. Therefore, the
additional computational cost entailed in a matrix-vector product with DT does not
translate into a benefit in terms of iteration counts.

Inverting the (1,1) block of the preconditioner,

ML = M +DTL−1D, (2.20)

is typically computationally prohibitive. Let X be the scalar mass matrix on Ch,
defined as

Xi,j = (φj ,φi)Ω, 1 ≤ i, j ≤ nb. (2.21)

Then, it has been shown in [51, Theorem 3.3] that ML and M + X are spectrally
equivalent. Hence, we may use the preconditioner

MMX
P =

(
MX 0

0 L

)
, where MX = M +X. (2.22)

The preconditioner MMX
P still has rather attractive spectral properties; in particular,

the preconditioned operator (MMX
P)−1KMX has the two eigenvalues 1 and −1 with al-

gebraic multiplicity mb each, and the rest of the eigenvalues are bounded by a constant
independent of the mesh size; cf. [51]. We thus will use MMX

P as a preconditioner for
the Maxwell sub-problem. As discussed in Section 2.3.3, we shall use certain approxi-
mations to MX and L to achieve maximal scalability with respect to computing time
and problem size.

2.3 Preconditioners for the MHD system

In this section, we propose a preconditioning approach for the discrete MHD sys-
tem (2.8), which is based on keeping the coupling matrix C in the preconditioner,
and on applying the preconditioners discussed in Sections 2.2.1 and 2.2.2 to the Navier-
Stokes and Maxwell sub-problems. Leaving the coupling terms in and applying these

34

known preconditioners to each of the sub-problems in the MHD system yields the ideal
preconditioner:

MMHD
I =

F BT CT 0

0 −S 0 0

−C 0 ML 0

0 0 0 L

 ,

where ML and S are defined as the Schur complement approximations in (2.20) and
(2.15), respectively.

2.3.1 Reordering

We note that by reordering the blocks inMMHD
I , such that the solution vector is of the

following form (u, b, p, r), we obtain a 2× 2 block triangular preconditioner of the form:

M̃MHD
I =

F CT BT 0

−C ML 0 0

0 0 −S 0

0 0 0 L

 . (2.23)

If we are to use this preconditioner, then we must reorder the linear system accordingly:
F CT BT 0

−C M 0 DT

B 0 0 0

0 D 0 0

δu

δb

δp

δr

 =

ru

rb

rp

rr

 , (2.24)

with the right-hand side quantities as defined in (2.9). Let us denote by KMHD the co-
efficient matrix defined in (2.24). From this point on, we consider the reordered system.

The computational bottleneck is solving systems associated with the matrix(
F CT

−C ML

)
, (2.25)

in the (1, 1) block matrix of (2.23). To invert the matrix in (2.25), we apply a block
triangular preconditioner based on the Schur complement given by(

F +MC CT

0 ML

)
, where MC = CTM−1

L C.

35

Using the above approximation in M̃MHD
I yields:

MMHD
S =

F +MC CT BT 0

0 ML 0 0

0 0 −S 0

0 0 0 L

 . (2.26)

To analyze the spectral properties of MMHD
S , we refer to vectors b ∈ null(M) as

discrete gradients. With the discrete Helmholtz decomposition, it follows that for each
b ∈ null(M) there is a unique r ∈ Rmb such that b = Gr for a discrete gradient matrix
G ∈ Rnb×mb ; cf. [51, Section 2]. Hence, dim(null(M)) = mb. The following result holds
true.

Theorem 1. The matrix (MMHD
S)−1KMHD has an eigenvalue λ = 1 with algebraic

multiplicity of at least nb + nc where nc is the dimension of the nullspace of C = C(b)

and an eigenvalue λ = −1 with algebraic multiplicity of at least mb. The dimension
of the nullspace of C is nc = nu − nb + mb. The corresponding eigenvalue-eigenvector
(λ,x) pairs are:

λ = 1, xT = (uTc , b
T , (−S−1Buc)

T , (L−1Db)T),

with uc ∈ null(C) and b ∈ Rnb arbitrary, and

λ = −1, xT = (0, bTg , 0, (−L−1Dbg)
T),

with bg = Gr a discrete gradient for r ∈ Rmb.

Proof. The corresponding eigenvalue problem is
F CT BT 0

−C M 0 DT

B 0 0 0

0 D 0 0

u

b

p

r

 = λ

F +MC CT BT 0

0 ML 0 0

0 0 −S 0

0 0 0 L

u

b

p

r

 .

The four block rows of the generalized eigenvalue problem can be written as

(1− λ)(Fu+BT p+ CT b)− λCT (M +DTL−1D)−1Cu = 0, (2.27)

−Cu+ (1− λ)Mb− λDTL−1Db+DT r = 0, (2.28)

Bu = −λS p, (2.29)

Db = λLr. (2.30)

36

If λ = 1, (2.27) is satisfied if

CT (M +DTL−1D)−1Cu = 0.

This only happens when u ∈ Null(C). Using uc to denote a nullspace vector of C then
(2.29) simplifies to:

p = −S−1Buc.

Equation (2.30) leads to r = L−1Db. If this holds, (2.28) is readily satisfied. Therefore,
(uTc , b

T , (−S−1Buc)
T , (L−1Db)T) is an eigenvector corresponding to λ = 1. There exist

nc linearly independent such vectors u and nb linearly independent such vectors b.
Hence, it follows that λ = 1 is an eigenvalue with algebraic multiplicity of at least
nu +mb.

If λ = −1, (2.30) leads to r = −L−1Db. Substituting it into (2.28), we obtain
Cu = Mb. If b = bg is a discrete gradient then Mb = 0 and CT b = 0. If we take u = 0,
then Cu = 0 and the requirement Cu = Mb is satisfied. If u = 0 and b = bG is a
discrete gradient, equation (2.27) becomes BT p = 0. Since B has full row rank, this
implies p = 0. Therefore, if b = bg is a discrete gradient, then (0, bTg , 0, (−L−1Dbg)

T)

is an eigenvector corresponding to λ = −1. There are mb discrete gradients. Therefore
λ = −1 is an eigenvalue with algebraic multiplicity at least mb.

Remark 3. In the spirit of Remark 2, looking at (2.26) one may ask whether incorpo-
rating DT into the preconditioner, such that

M̃MHD
S =

F +MC CT BT 0

0 ML 0 DT

0 0 −S 0

0 0 0 L

 ,

may generate a slightly better eigenvalue distribution for the preconditioned system.
Consistently with Remark 2, it turns out that doing so does not practically generate an
improvement of the eigenvalue distribution. From Table 2.1, we see that both precondi-
tioned systems yield exactly the same number of eigenvalues. However, (MMHD

S)−1KMHD

only has 2 distinct eigenvalues whereas (M̃MHD
S)−1KMHD has 3 distinct eigenvalues.

Thus, the insertion of DT does not theoretically decrease the number of iterations for a
Krylov subspace method to converge; this has been confirmed by numerical experiments.
Since incorporating DT into the preconditioner slightly increases the cost of a single
iteration, we opt for usingMMHD

S rather than M̃MHD
S .

37

(MMHD
S)−1KMHD (M̃MHD

S)−1KMHD

1 nb + nc nu

−1 mb 0
1+
√

5
2 0 mb

1−
√

5
2 0 mb

Total nu + 2mb nu + 2mb

Table 2.1: Algebraic multiplicity of eigenvalues for preconditioned matrices associated
withMMHD

S and M̃MHD
S . Note that nc = nu − nb +mb

2.3.2 From an ideal to a practical preconditioner

We now consider further simplifications ofMMHD
S in (2.26), to make the preconditioner

computationally feasible. Effective sparse approximations are required for the relevant
Schur complements that arise. We use the approximations in Sections 2.2.1 and 2.2.2
for S and ML. For approximating MC , we follow a similar approach to that taken
in [85, Section 3.1]. For a given magnetic field b, let Cb be the continuous differential
operator analogue of MC = CTM−1

L C:

Cbu = κ
(
∇×

(
(κνm∇×∇×+∇∆−1∇ ·)−1κ∇× (u× b)

))
× b

= κ2∇×
(
κνm∇×∇×+∇∆−1∇ ·

)−1∇× (u× b)× b.
(2.31)

The discretization of (2.31) is

Cbu = κ2G
(
κνmG

TG+DTL−1D
)−1

GT (u× b)× b, (2.32)

where G is a discrete curl matrix and u and b are vectors of velocity and magnetic
coefficients, respectively.

Discrete
Order

Operator
G O(h−1)

L O(h−2)

D O(h−1)

Table 2.2: Orders of matrix entries for relevant discrete operators

In Table 2.2 we state the order of the discrete differential operators that are involved
in (2.32). We observe that the discrete curl-curl matrix, GTG, contains entries of
magnitude O(h−2) and DTL−1D is order O(1). Thus for small h and moderate values

38

of κ and νm the curl-curl matrix will be the dominant term. Therefore we consider:

Cbu ≈ κν−1
m G

(
GTG

)−1
GT (u× b)× b.

Furthermore, G
(
GTG

)−1
GT is an orthogonal projector onto the range space of GT ,

hence, it acts as an identity operator within that space. We therefore use the approxi-
mation

Cbu ≈ κνm−1b× (u× b). (2.33)

From (2.33), Cb can approximated by a scaled mass matrix determined by the coefficients
of the magnetic field b. We thus approximate MC by a scaled mass matrix, which we
denote as QS , and whose elements are:

(QS)i,j = κν−1
m (bh ×ψj , bh ×ψi)Ω, 1 ≤ i, j ≤ nu. (2.34)

Combining the sparse Schur complement approximations in (2.15), (2.22) and (2.34)
in the MHD preconditioner (2.26) gives the approximate preconditioner:

MMHD
P =

F +QS CT BT 0

0 M +X 0 0

0 0 −Ap F−1
p Qp 0

0 0 0 L

 . (2.35)

In the transition from the ideal preconditioner (2.23) to the practical preconditioner
(2.35), some spectral clustering is inevitably lost. But as we show, the spectral struc-
ture of the preconditioned matrix associated with MMHD

P is still very appealing. We
illustrate this in Section 2.4.

2.3.3 Implementation

So far we have introduced the matrix systems with possible preconditioners, but have
not discussed practical implementation considerations. One of our main goals is to
provide a fully scalable solution method. To this end, we will consider mesh-independent
solvers for the separate block matrices within the preconditioners. Table 2.3 outlines
the methods we use to solve the systems associated with Qp, Ap, F +Qs, M +X and
L which are the block diagonal matrices in (2.35). Let us provide a few additional
comments:

1. For solving systems involving Qp, we have experimentally observed that scaling
by a multiplicative scalar α smaller than 1 results in a slight decrease of iteration

39

Matrix Implementation method
Qp diagonal of αQp where α = 0.75

Ap single AMG V-cycle
F +Qs single AMG V-cycle
M +X AMG method developed in [61]
L single AMG V-cycle

Table 2.3: Solution methods for systems associated with separate block matrices within
(2.35)

counts, especially in the 3D case. In our numerical experiments we provide results
that correspond to using α = 0.75.

2. For solving systems involving M +X, the method developed in [61] aims to over-
come issues with standard AMG methods for the discrete curl-curl operator by
using an auxiliary space approach [113] for H(curl) finite element discretizations
of elliptic problems. The construction of the auxiliary space multigrid (ASM)
preconditioner relies on three additional matrices. First, the discrete Nédélec in-
terpolation operator P ∈ Rnb×dmb (where d is the spatial dimension), the discrete
gradient operator G ∈ Rnb×mb and mass matrix defined on the scalar space Sh as
Q; see [67, 72].

2.4 Numerical results

This section examines the efficiency of our preconditioning approaches to the MHD
model (1.1)-(1.2). The auxiliary space multigrid is used as a preconditioner within
a Conjugate Gradient solver. Since this practically means that the Krylov subspace
associated with the preconditioned iterations varies in every outer solve, a flexible solver
for nonsymmetric matrices is required. We chose to use Flexible GMRES (FGMRES)
[92]. In all experiments, unless otherwise stated, we use a 2-norm absolute tolerance
of 1e-4 for the nonlinear solver and relative error of 1e-5 for both FMGRES and the
auxiliary space multigrid [61].

All numerical experiments have been carried out using the finite element software
FEniCS [77] in conjunction with the PETSc4PY package (Python interface for PETSc

[7, 9]) and the multigrid package HYPRE [38].
We test our methods on problems with inhomogeneous Dirichlet boundary condi-

tions in the hydrodynamic variables, even though the analysis has been carried out
solely for the homogeneous Dirichlet case. Other boundary conditions may be handled

40

by our finite element framework, and our preconditioning approaches can be extended
accordingly.

In the subsequent tables we use the following notation:

• timesolve is the average FGMRES time to solve systems associated with KMHD;

• timeNL is the total nonlinear solve time (including all matrix assembles, FGMRES
solves and updates to nonlinear iteration);

• itNL is the number of nonlinear iterations;

• it∗av is the average number of FGMRES where ∗ is either I or D. Superscript I
denotes an approximate/iterative application of the preconditioner; for example,
this could be a multigrid solve. See Table 2.3 for a complete list of methods
used to solve systems associated with the block diagonal matrices of the precon-
ditioner. Superscript D denotes a direct solve for block diagonal matrices of the
preconditioner.

The time and nonlinear iteration columns (timesolve, timeNL, and itNL) are computed
using an iterative application of the preconditioner (itI

av). We run the program twice,
once for itI

av and once for itD
av.

Mesh sequences. In our tests, we consider sequences of uniformly refined simplicial
grids (i.e., triangles in 2D and tetrahedra in 3D). We define ` to be the mesh level, such
that there are 2` edges along each boundary. In our tables, we usually show the grid
level ` in the first column. We also note that DoFs (in the second column), refers to
the total number of degrees of freedom of the linear system.

Stopping criteria. Throughout, we enforce the following nonlinear stopping criteria
for the updates:

‖δu‖2 + ‖δp‖2 + ‖δb‖2 + ‖δr‖2 < tolNL,

where ‖ · ‖2 is the absolute error in the 2-norm of a vector and tolNL =1e-4.
Initial guess tolerance. For all numerical experiments, we formulate the initial guess

by iteratively solving a Stokes problem and mixed Maxwell problem in isolation. We
choose the a tight Krylov 2-norm relative tolerance as 1e-10 to ensure that the approx-
imations of the inhomogeneous boundary conditions are sufficiently accurate; see [109,
Chapter 2.5]. This is to ensure the accuracy of the initial solution on the boundaries
since subsequent Picard iterations are solved for homogeneous boundary conditions and
hence, any errors in the initial guess will be carried throughout Picard iteration.

41

2.4.1 2D smooth solution

The first example considered is a simple domain with a structured mesh. We use a
unit square domain, Ω = [0, 1]2. We take ν = κ = 1, νm = 10; then the source terms
f , g and inhomogeneous Dirichlet boundary conditions on ∂Ω are defined from the
analytical solution:

u(x, y) =

(
xy exp(x+ y) + x exp(x+ y)

−xy exp(x+ y)− y exp(x+ y)

)
,

p(x, y) = exp(y) sin(x),

b(x, y) =

(
exp(x+ y) cos(x)

exp(x+ y) sin(x)− exp(x+ y) cos(x)

)
,

r(x, y) = x sin(2πx) sin(2πy).

We note that r 6= 0 in this example. Indeed, while the right-hand-side is often divergence
free in applications, which leads to an identically zero Lagrange multiplier, for testing
purposes we set r as above and test convergence to the exact solution.

To illustrate the eigenvalue distribution, we compute the eigenvalues of the precon-

ditioned matrix
(
M̃MHD

I

)−1
KMHD in Figure 2.1a and (MMHD

P)−1KMHD in Figure 2.1b.
We note that there are no imaginary parts of the eigenvalues for Figure 2.1a. From Fig-
ure 2.1b we see that we still observe strong clustering of eigenvalues around 1 and −1

with only a few complex conjugate pairs. Thus, the spectral structure is still rather
appealing in terms of eigenvalue clustering. Therefore, the preconditionerMMHD

P seems
a viable approximation to M̃MHD

I .
To test the scalability of our method, we considered a uniformly refined sequence of

meshes. The results are presented in Table 2.4. The iterations appear to remain fairly
constant with the increasing mesh level for both itDav and itIav.

2.4.2 2D smooth solution parameter tests

We next test the performance of the three nonlinear iteration schemes Picard (P),
magnetic decoupling (MD) and complete decoupling (CD) introduced in Section 2.1.
The convergence of the nonlinear iterations is likely to be affected by the parameter
setup of the problem, i.e., by the values of the fluid viscosity (ν), the magnetic viscosity
(νm) and the coupling number (κ). By varying κ and ν, we examine the robustness of
the three schemes with respect to these parameters. If the nonlinear iterations do not
converge then this is denoted by “-” in the tables.

42

(a) Eigenvalues of the preconditioned matrix(
M̃MHD

I

)−1

KMH
P associated with the ideal pre-

conditioner.

(b) Eigenvalues of the preconditioned matrix
(MMHD

P)−1KMH
P associated with the practical

preconditioner. The eigenvalues in this case are
complex; the blue curves represent their real
parts, and the red curves represent their imag-
inary parts.

Figure 2.1: Eigenvalues of preconditioned matrices for the smooth solution given in this
section. The number of degrees of freedom for these matrices is 724.

` DoFs timesolve timeNL itNL itIav itDav

4 3,556 0.33 2.7 7 24.4 20.1
5 13,764 1.11 9.2 7 25.9 20.4
6 54,148 4.48 37.2 7 27.1 20.9
7 214,788 20.32 166.4 7 28.4 21.4
8 855,556 94.29 762.0 7 31.3 21.8
9 3,415,044 486.53 3835.0 7 34.3 -
10 13,645,828 2231.71 17944.6 7 34.0 -

Table 2.4: 2D smooth: Number of nonlinear iterations and number of iterations to solve
the MHD system with tolNL = 1e-4, κ = 1, ν = 1 and νm = 10.

Viscosity test

As a first test we consider varying the fluid viscosity, ν, for tolNL = 1e-4, κ = 1 and
νm = 10. The nonlinear iteration results are shown in Table 2.5 and the average linear
solve times are shown in Table 2.6.

As the fluid viscosity (ν) decreases, the fluid flow equations (1.1a) and (1.1b) become
more convection-dominated. Thus we see that the (CD) scheme breaks down for small
ν, as in this decoupling scheme the convection term is taken explicitly. On the other
hand, the Picard and (MD) schemes perform similarly. We note that for smaller ν
both (P) and (MD) have trouble converging without a sufficiently refined mesh. From

43

ν = 1 ν = 0.1 ν = 0.01

` DoFs (P) (MD) (CD) (P) (MD) (CD) (P) (MD) (CD)
4 3,556 5 5 9 7 7 - 11 11 -
5 13,764 5 5 9 15 7 - 11 11 -
6 54,148 5 5 9 7 7 - 13 11 -
7 214,788 5 5 9 7 7 - 11 11 -
8 855,556 5 5 9 7 7 - 11 11 -

Table 2.5: Number of nonlinear iterations for various values of ν with κ = 1 and
νm = 10.

ν = 1 ν = 0.1 ν = 0.01

` DoFs (P) (MD) (CD) (P) (MD) (CD) (P) (MD) (CD)
4 3,556 0.04 0.04 0.03 0.08 0.04 - 0.04 0.04 -
5 13,764 0.18 0.17 0.14 0.97 0.18 - 0.19 0.18 -
6 54,148 0.90 0.91 0.67 0.95 0.92 - 2.05 0.93 -
7 214,788 4.48 4.48 3.49 4.68 4.57 - 5.02 4.48 -
8 855,556 25.52 22.81 16.67 25.63 23.03 - 25.01 22.61 -

Table 2.6: Average linear solver time for various values of ν with κ = 1 and νm = 10.

Table 2.6 we see that the direct solve for the Picard (P) system and magnetic decoupling
are very similar, but as expected the complete decoupling solve time is shorter.

Coupling number test

κ = 1 κ = 10 κ = 100

` DoFs (P) (MD) (CD) (P) (MD) (CD) (P) (MD) (CD)
4 3,556 5 5 9 7 10 17 8 - -
5 13,764 5 5 9 7 10 18 8 - -
6 54,148 5 5 9 7 10 18 8 - -
7 214,788 5 5 9 7 10 18 8 - -
8 855,556 5 5 9 7 10 18 8 - -

Table 2.7: Number of nonlinear iterations for various values of κ with tolNL = 1e-5,
ν = 1 and νm = 10.

The next parameter test examines the effects of the coupling terms in the three

44

κ = 1 κ = 10 κ = 100

` DoFs (P) (MD) (CD) (P) (MD) (CD) (P) (MD) (CD)
4 3,556 0.06 0.06 0.04 0.06 0.06 0.03 0.06 - -
5 13,764 0.23 0.23 0.21 0.24 0.25 0.19 0.24 - -
6 54,148 1.12 1.08 0.80 1.01 1.05 0.79 0.98 - -
7 214,788 4.80 4.92 3.65 5.05 4.92 3.74 5.52 - -
8 855,556 25.21 25.93 18.03 25.49 26.03 18.49 26.75 - -

Table 2.8: Average linear solver time for various values of κ with ν = 1 and νm = 10.

nonlinear iteration schemes. We expect the Picard scheme to outperform the other
schemes for large values of κ. The results in Table 2.7 show that this is indeed the case.
Both the (MD) and (CD) schemes completely break down for κ ≥ 100. This is the
point at which the Picard iteration (P) becomes the most viable option. Altogether,
as expected, the full Picard iteration is more robust than (CD) and (MD). We see a
similar trend with the timing results in Table 2.8 as we saw in the timing results for
the viscosity in Table 2.6.

2.4.3 2D smooth solution on L-shaped domain

To further test the robustness of our preconditioning technique, we will consider non-
convex domains. We first consider a problem with a smooth solution in the L-shaped
domain Ω = (−1,−1)2 \ ([0, 0) × (1, 1]). We prescribe the same analytical solution
as in Section 2.4.1. The results in Table 2.9 show very good scalability with respect to
mesh refinement for direct solves of the preconditioner. On the other hand, we report
that when using iterative inner solvers with a reasonably loose tolerance, the iterations
dramatically deteriorate and scalability is lost. We speculate that the AMG solver
cannot handle well the non-convexity of the domain. In such cases it may be necessary
to apply a rather strict convergence tolerance.

2.4.4 2D singular solution on L-shaped domain

We next consider the model singular solution from [49] on the L-shaped domain Ω =

(−1, 1)2 \ ([0, 1)× (−1, 0]). That is, taking ν = κ = 1 and νm = 10, we set the forcing
terms and the boundary conditions such that the analytic solution is given by the
strongest corner singularities of the underlying Stokes and Maxwell operators subject
to the boundary conditions (1.2) on the two inner sides meeting at the reentrant corner.

45

` DoFs itNL itDav

5 12,880 5 24.4
6 51,678 5 26.0
7 203,712 5 27.4
8 809,705 5 29.6
9 3,219,082 - -

Table 2.9: 2D L-shaped: Number of nonlinear iterations and number of iterations to
solve the MHD system with tolNL = 1e-4, κ = 1, ν = 1 and νm = 10. The iteration was
terminated before completion for ` = 9 due to the computation reaching the prescribed
time limit.

In polar coordinates (ρ, φ) at the origin, the fluid solution (u, p) is then of the form

u(ρ, φ) = ρλΨu(φ), p(ρ, φ) = ρλ−1Ψp(φ), (2.36)

with the singular exponent λ ≈ 0.54448373678246 and where (Ψu,Ψp) are smooth
functions in the angle φ. Similarly, the magnetic pair (b, r) (with ∇ · b = 0 and
∇× b = 0) is of the form

b(ρ, φ) = ρ−1/3Ψb(φ), r ≡ 0, (2.37)

Detailed expressions of the fluid components (u, p) and the magnetic field b can be
found in [49, Section 5.2]. Using Nédélec elements allows us to properly capture this
singular solution, whereas applying standard nodal elements for b fail to do so. As
with the smooth solution on an L-shaped domain in Section 2.4.3, we only consider
direct applications of the preconditioner. The results are shown in Table 2.10. We draw
similar conclusions with respect to mesh independence. Overall, the iterations show
good scalability.

2.4.5 2D Hartmann flow

As a final 2D numerical example, we consider the two-dimensional Hartmann flow prob-
lem, which involves a steady unidirectional flow in the channel Ω = (0, 10) × (−1, 1)

under the constant transverse magnetic field bD = (0, 1) on ∂Ω. We impose the analyt-
ical solution given in [49, Section 5.3] with Dirichlet boundary conditions for u on the

46

` DoFs itNL itDav

3 740 4 13.8
4 2,724 4 14.5
5 10,436 4 15.8
6 40,836 4 17.5
7 161,540 4 18.5
8 642,564 4 20.0
9 2,563,076 4 21.8

Table 2.10: 2D singular solution on an L-shaped domain: Number of nonlinear iterations
and number of iterations to solve the MHD system with tolNL = 1e-4, κ = 1, ν = 1
and νm = 10.

entire boundary ∂Ω. The MHD solution then takes the form:

u(x, y) = (u(y), 0), p(x, y) = −Gx+ p0(y),

b(x, y) = (b(y), 1), r(x, y) ≡ 0.
(2.38)

The exact solution is given by (2.38) with

u(y) =
G

νHa tanh(Ha)

(
1− cosh(yHa)

cosh(Ha)

)
,

b(y) =
G

κ

(
sinh(yHa)

sinh(Ha)
− y
)
,

p0(y) = −G
2

2κ

(
sinh(yHa)

sinh(Ha)
− y
)2

,

where Ha =
√

κ
ννm

is the Hartmann number. We impose inhomogeneous Dirichlet
boundary conditions from the exact solutions.

The results are reported in Table 2.11. We observe that for the two-dimensional
Hartmann flow example the solver appears to accomplish an excellent degree of scala-
bility. For the last two mesh levels the preconditioner approximation becomes better in
terms of lower iterations, itIav. More exploration of the conditioning of the problem and
the norm of the (preconditioned) residual is needed for fully understanding the reason
for this; the large size of the problems presents a challenge in fully exploring this.

47

` DoFs timesolve timeNL itNL itIav itDav

2 1,212 0.66 1.58 2 18.0 13.5
3 4,500 1.71 3.82 2 17.5 13.0
4 17,316 5.13 11.04 2 17.5 12.5
5 67,908 21.06 44.73 2 18.5 12.5
6 268,932 97.16 204.36 2 19.0 13.0
7 1,070,340 447.66 935.03 2 19.0 12.5
8 4,270,596 921.90 1001.37 1 8.0 7.0
9 17,060,868 1459.82 1778.95 1 3.0 -

Table 2.11: 2D Hartmann: Number of nonlinear iterations and number of iterations to
solve the MHD system with tolNL = 1e-4, κ = 1, ν = 1 and νm = 1000

2.4.6 3D smooth solution

We next consider a 3D example with a smooth solution on Ω = [0, 1]3. Let ν = κ = 1,
νm = 10 and let the analytical solution be given by:

u(x, y, z) =

−xy exp(x+ y + z) + xz exp(x+ y + z))

xy exp(x+ y + z)− yz exp(x+ y + z)

−xz exp(x+ y + z) + yz exp(x+ y + z)

 ,

p(x, y, z) = exp(x+ y + z) sin(y),

b(x, y, z) =

− exp(x+ y + z) sin(y) + exp(x+ y + z) sin(z)

xy exp(x+ y + z)− yz exp(x+ y + z)

− exp(x+ y + z) sin(x) + exp(x+ y + z) sin(y)

 ,

r(x, y, z) = sin(2πx) sin(2πy) sin(2πz).

Then the source terms f and g and inhomogeneous boundary conditions are defined
from the analytical solution. The corresponding results are shown in Table 2.12. We
observe good scalability when we consider direct solves for the preconditioner. However,
the average iterations degrade when using multigrid methods to solve the preconditioner
and we do not obtain full scalability with respect to the three-dimensional results.

48

` DoFs timesolve timeNL itNL itIav itDav

1 527 0.03 0.9 4 18.8 18.0
2 3,041 0.22 3.5 3 26.7 22.3
3 20,381 1.77 26.6 3 37.0 24.7
4 148,661 22.11 237.0 3 40.7 26.0
5 1,134,437 206.43 2032.7 3 44.3 -
6 8,861,381 2274.28 19662.0 3 50.0 -

Table 2.12: 3D smooth: Number of nonlinear iterations and number of iterations to
solve the MHD system with tolNL = 1e-4, κ = 1, ν = 1 and νm = 10

49

Chapter 3

An Approximate Inverse-Based
Preconditioner for Incompressible
Magnetohydrodynamics

This chapter is currently unpublished and presents a new block approximate inverse
preconditioner for the MHD model (1.1)–(1.2). The structure of the chapter is a follows.
In Section 3.1, we introduce the Newton system for the MHD model. In Section 3.2 we
derive a new formula for the inverse of the MHD matrix. In Section 3.3, we form an
effective sparse approximation to the inverse and analyze spectral properties for an ideal
case. A new block triangular approach is derived and analyzed in Section 3.4. Finally,
we present several numerical experiments which demonstrate the strong scalability of
this approach in Section 3.5.

3.1 Newton’s method discretization of the MHD model

For this Chapter, we consider two non-linear iteration schemes, namely, Picard iteration
and Newton’s method for the MHD model (1.1)–(1.2). Using the notation

uk+1 = uk + δu, pk+1 = pk + δp,

bk+1 = bk + δb, rk+1 = rk + δr.

where ∗k+1 is the k + 1th iteration of either the Picard or Newton’s iteration, then the
linearized system becomes

−ν∆δu+ (uk · ∇)δu+ α(δu · ∇)uk +∇δp− κ(∇× δb)× bk − ακ(∇× bk)× δb = ru,

∇ · δu = rp,

κνm∇× (∇× δb) +∇r − κ∇× (δu× bk)− κα∇× (uk × δb) = rb,

∇ · δb = rr,

50

where
ru =f − [−ν∆uk + (uk · ∇)uk +∇pk − κ (∇× bk)× bk] ,

rp =−∇ · uk,

rb =g − [κνm∇× (∇× bk) +∇r − κ∇× (uk × bk)] ,

rr =−∇ · bk.

Here we note that the Picard system is for α = 0 and the Newton system is α = 1.
We consider a finite element discretization of the MHD model (1.1)–(1.2) where

the hydrodynamic unknowns (u and p, respectively) are discretized with any stable
mixed finite elements and the magnetic and multiplier unknowns are discretized though
a mixed edge and nodal element pair. Using the same format as [110], we use Taylor-
Hood elements [101] for (u, p) and the lowest order Nédélec [81] pair for (b, r). Upon
discretization, we obtain the following matrix system to solve:

F + αFNT BT CT + αCTNT 0

B 0 0 0

−C 0 M + αMNT DT

0 0 D 0

δu

δp

δb

δr

 =

ru

rp

rb

rr

 , (3.1)

with
ru = f − Fuk − CT bk −BT pk,

rp = −Buk,
rb = g −Muk + Cbk −DT rk,

rr = −Dbk.

Similarly to [86], the individual matrix blocks in (3.1) are defined in Tables 3.1 to 3.3.

Matrix-vector Continuous Approximate
product operator norm

F δu ν∆ δuk + (uk · ∇)δuk ν/h2 + ‖uk‖/h

BT δp ∇δp 1/h

B δu ∇ · δu 1/h

CT δu −κ (∇× δb)× bk κ‖bk‖/h

Table 3.1: Block coefficient matrices, their corresponding continuous operators and
approximate norms for the Fluid matrices

The recent work in [86] expanded the class of block preconditions to the 4 × 4

block formulation of the incompressible MHD model. Using the formulation in [95], the

51

Matrix-vector Continuous Approximate
product operator norm

M δb κνm∇× (∇× δb) κνm/h2

DT δr ∇r 1/h

D δb ∇ · δb 1/h

−C δb −κ∇× (δu× bk) ‖bk‖/h

Table 3.2: Block coefficient matrices, their corresponding continuous operators and
approximate norms for the Magnetic matrices

Matrix-vector Continuous Approximate
product operator norm

FNT δu (δu · ∇)uk ‖∇uk‖
CTNT δu −κ (∇× bk)× δb κ‖∇ × bk‖
MNT δb −κ∇× (uk × δb) ‖uk‖/h

Table 3.3: Block coefficient matrices, their corresponding continuous operators and
approximate norms for the Newton matrices

authors derive a block triangular preconditioning approach based on Schur complement
approximations as well an additive mass matrix shift to the curl-curl operator. The
results show a moderate increase in linear iterations with respect to mesh refinement.
Our approach looks at deriving an approximate inverse preconditioner for the same 4×4

block system.

3.2 A new formula for the inverse of the MHD coefficient
matrix

To preserver the null space properties of the block system, we will derive the new
approximate inverse preconditioner for the Picard iteration, α = 0. In practice, the
numerical results produced in this paper will be done using the Newton nonlinear iter-
ation scheme. Let us denote by KMHD the coefficient matrix in the MHD model (3.1)
and write it as:

KMHD =

(
KNS (KC)T

−KC KM

)
,

52

where KNS is the Navier-Stokes sub-problem, KC is the block for the coupling and KM

is the Maxwell sub-problem:

KNS =

(
F BT

B 0

)
, KM =

(
M DT

D 0

)
,

(KC)T =

(
CT 0

0 0

)
and KC =

(
C 0

0 0

)
.

Then, by [10, Equation (3.4)], the inverse is given by

(KMHD)−1 =

(
(KNS)−1 + (KNS)−1(KC)TS−1KC(KNS)

−1 −(KNS)−1(KC)TS−1

−S−1KC(KNS)
−1 S−1

)
,

(3.2)
where S denotes the Schur complement,

S = KM +KC(KNS)−1(KC)T . (3.3)

The inverses (KNS)−1 and S−1 appear multiple times in (3.2), and we now derive
explicit formulas that further reveal their block structure. Notably, using results that
have appeared in [36], we show that S−1 has a zero (2,2) block, and can be expressed
in terms of a free matrix parameter. Let us write

(KNS)−1 =

(
K1 K2

K3 K4

)
. (3.4)

We then have the following useful result.

Theorem 2. Let KNS be written in block form as in (3.4). Then

S−1 =

(
M−1
F (I −DTW−1GT) GW−1

W−1GT 0

)
, (3.5)

where W is a (free) symmetric positive definite matrix,

MF = M +DTW−1D + CK1C
T and G = M−1

F DT .

Proof. Writing out all the matrices involved in formula (3.3) for S, we have

S =

(
M + CK1C

T DT

D 0

)
.

53

Since the discrete gradient operator is the null space of M and CT we have

dim(null(M + CK1C
T)) = mb,

where mb is defined as the number of rows of the magnetic discrete divergence matrix
D. Thus the (1,1) block of the Schur complement has the maximum nullity which still
leads to a non-singular saddle point system. Therefore using [36, equation (3.6)], the
inverse of the Schur complement is given by (3.5).

Using the inverse formula (3.2) and (3.5) together gives the exact expression for the
inverse of (3.1) as

(KMHD)−1 =

K1 −K1V K1 K2 −K1V K2 −K1C

TM−1
F H 0

K3 −K3V K1 K4 −K3V K2 −K3C
TM−1

F H 0

M−1
F CK1 M−1

F CK2 M−1
F H GW−1

0 0 W−1GT 0

 . (3.6)

where V = CTM−1
F C and H = I −DTW−1GT .

3.3 A new approximate inverse-based preconditioner

In this section we aim to sparsify the inverse formula in (3.6) exploiting the null-space
properties and the approximate order of the block system.

3.3.1 A sparse approximation of the Schur complement

Recall that K1 is the (1, 1) block matrix of the inverse of the Navier-Stokes sub-
problem. Thus forming it is very computationally costly and will often yield a dense
matrix. Therefore, CK1C

T is a major bottleneck within MF which is a integral part of
the Schur complement, S. Defining

MF = MW + CK1C
T

where MW = M + DTW−1D, then using a generalization of the Sherman-Morrison-
Woodbury theorem, the Binomial inverse formula we can re-write MF as

M−1
F = M−1

W −M
−1
W CK1(K1 −K1C

TM−1
W CK1)−1K1C

TM−1
W . (3.7)

54

Using (3.7) for G in (3.5) we obtain

G = (M−1
W −M

−1
W CK1(K1 −K1C

TM−1
W CK1)−1K1C

TM−1
W)DT ,

= M−1
W DT −M−1

W CK1(K1 −K1C
TM−1

W CK1)−1K1C
TM−1

W DT = M−1
W DT ,

since M−1
W DT (being a definition of the discrete gradients from [36, Proposition 3.6]) is

the null space matrix of M and CT .
In order to approximate M−1

F we again use the Binomial inverse formula and note
that the approximation orders for C, MW and K1 are O(h−1), O(h2) and O(h2),
respectively. Therefore it can be seen that:

M−1
W ≈ O(h2) and M−1

W CK1(K1 −K1C
TM−1

W CK1)−1K1C
TM−1

W ≈ O(h4).

Thus, we use the approximation

M−1
F ≈M−1

W .

The final step is to consider what matrix to use forW . From [36] we take DG = W ,
recalling that G is the matrix of null vectors of M . Since G is made up of discrete
gradients then from [51, Proposition 2.2], W is defined to be the scalar Laplacian.
Also, as shown in [51], the vector mass matrix, X, is spectrally equivalent to DTW−1D.
Therefore, we set W to be the scalar Laplacian and therefore change the notation to
L. Using these two results and the observation that a multiplication of the Schur
complement involves multiplications of the leading block with M (GTM = 0), then the
simplified inverse Schur complement becomes:

S−1 ≈ S−1
P =

(
M−1
X GL−1

L−1GT 0

)
, (3.8)

where MX = M +X and G = M−1
X DT .

3.3.2 A practical preconditioner

We observe that the application of the inverse, (3.6), involves multiplications of H =

I −DTW−1GT with M where GT is the null-space of M . Thus, in a similar fashion to
(3.8), we can reduce H to the identity. Also, we note that

KiV Kj & O(h3)

55

for any i, j = 1, 2, 3, 4. Hence, removing these terms we form the first step for the
approximation of (3.6) as:

(M̃MHD
A)−1 =

K1 K2 −K1C

TM−1
X 0

K3 K4 −K3C
TM−1

X 0

M−1
X CK1 M−1

X CK2 M−1
X GL−1

0 0 L−1GT 0

 . (3.9)

The final step to approximate (3.9) is to consider the inverse of the Navier-Stokes
system KNS. For this we return to the exact inverse formula of a block matrix in (3.2).
Applying this to the Navier-Stokes system gives the precise expression for the inverse

(KNS)−1 =

(
F−1 − F−1BTS−1

NSBF
−1 F−1BTS−1

NS

S−1
NSBF

−1 −S−1
NS

)
. (3.10)

Practically, we use the pressure-convection diffusion (PCD) approximation developed
in [35]. Substituting (3.10) into the expression for (M̃MHD

A)−1 in (3.9) gives

(M̃MHD
A)−1 =

K F−1BTS−1

NS −KCTM−1
X 0

S−1
NSBF

−1 −S−1
NS −S−1

NSBF
−1CTM−1

X 0

M−1
X CK M−1

X CF−1BTS−1
NS M−1

X GL−1

0 0 L−1GT 0

 ,

(3.11)
where

K = F−1 − F−1BTS−1
NSBF

−1.

As with the approximation of M−1
F in Section 3.3, we consider the approximate orders

of the individual blocks of (3.11). Removing the O(h3) terms in the (1,3) and (3,1)
blocks of (3.11) yields the approximation:

(MMHD
A)−1 =

K F−1BTS−1

NS 0 0

S−1
NSBF

−1 −S−1
NS −S−1

NSBF
−1CTM−1

X 0

0 M−1
X CF−1BTS−1

NS M−1
X GL−1

0 0 L−1GT 0

 .

(3.12)

3.3.3 Spectral analysis

To analyze the spectral properties of our approximate inverse preconditioner, we in-
vestigate the eigenspectrum of (M̃MHD

A)−1KMHD where (M̃MHD
A)−1 is given in (3.11).

56

We consider the O(h3) approximate inverse, (3.11), to simplify the complex eigenvalue
analysis. The form of (M̃MHD

A)−1KMHD is given by:

(M̃MHD
A)−1KMHD =

Iu +KCTM−1

L C 0 KCT (I −M−1
L M) 0

S−1
NSBF

−1CTM−1
L C Ip S−1

NSBF
−1CT (I −M−1

L M) 0

0 0 M−1
L (M + CKCT) G

0 0 0 Ir

 .

(3.13)
whereML is the exact primal Schur complementM +DL−1DT . Let us introduce a few
identities utilizing the null space properties of CT andML. Proposition 1 is particularly
useful to simplify (3.13).

Proposition 1. The following relations hold:

(i) CT (I −M−1
L M) = 0,

(ii) CT (I +M−1
L M) = 2CT

Proof. Since CT and ML have the same null space (space of discrete gradients), by
using the Helmholtz decomposition

b = d+∇φ,

we obtain
CT (I −M−1

L M)b = CT (I −M−1
L M)d,

where d /∈ Null(M). Since M−1
L M is zero on the null space of M and an identity on

the range space of M , then

(I −M−1
L M) ∈ Null(M).

Therefore, identity (i) holds due to the fact the null spaces of CT and M are the same.
Using similar arguments, identity (ii) can also be shown to be true.

Using Proposition 1 simplifies (3.13) to:

(M̃MHD
A)−1KMHD =

Iu +KCTM−1

L C 0 0 0

S−1
NSBF

−1CTM−1
L C Ip 0 0

0 0 M−1
L (M + CKCT) G

0 0 0 Ir

 , (3.14)

where we recall that G = M−1
L DT and K = F−1 − F−1BTS−1

NSBF
−1.

57

Theorem 3. The matrix (M̃MHD
A)−1KMHD has an eigenvalue λ = 1 of algebraic multi-

plicity at least nu − nb + 3mb +mu. The corresponding eigenvectors {vi}nu−nb+3mb+mu
i=1

are given by
vi = (ui, pi, bi, ri)

where ui ∈ Null(C), bi ∈ Null(M) and pi and ri free.

Proof. Since (3.14) is block diagonal where the two blocks are also triangular, the
generalized eigenvalue problem

(M̃MHD
A)−1KMHDv = λv,

where v = (u, p, b, r) can be simplified to solving:

λu = (Iu +KCTM−1
L C)u, (3.15)

λp = p, (3.16)

λb = M−1
L (M + CKCT)b, (3.17)

λr = r. (3.18)

Consider λ = 1, then trivially (3.16) and (3.18) are automatically satisfied. Taking
u ∈ Null(C) and b ∈ Null(M +CKCT) then (3.15) and (3.17) also hold. Since the null
space of M and CT are the same we choose b ∈ Null(M).

Figure 3.1a shows the preconditioned eigenvalues for (MMHD
A)−1 in (3.12) using

the PCD approximation (from [35]) for the fluid Schur complement and the vector
mass matrix approximation of the magnetic Schur complement. Here we see that the
clustering around the eigenvalue λ = 1 is very strong.

3.4 A block triangular preconditioner

As well as the approximate inverse preconditioner, we introduce a Schur complement
based preconditioner for (3.1). Again we will consider the simpler Picard case, α = 0,
but in practice use the Newton nonlinear scheme. We follow the well known setting of
[62, 80] for experimental comparison. Let us define M̃MHD

B as:

M̃MHD
B =

(
KNS (KC)T

0 −S

)
. (3.19)

From [62, 80] the preconditioned matrix, (M̃MHD
B)−1KMHD, has precisely two eigen-

values ±1 and is diagonalizable. We would therefore expect an appropriate Krylov

58

(a) Real (blue) and imaginary (red) parts
of eigenvalues of preconditioned matrix
(MMHD

A)−1 KMHD.

(b) Real (blue) and imaginary (red) parts
of eigenvalues of preconditioned matrix
(MMHD

B)−1 KMHD.

Figure 3.1: Preconditioned eigenvalue plots for (a) the approximate inverse precondi-
tioner in (3.12) and (b) the block triangular preconditioner in (3.21) using the smooth
solution given (3.31). The dimension of the matrices in this example is 1399× 1399.

subspace solver to converge within two iterations in exact precision. To use M̃MHD
B as a

preconditioner, we require a direct Navier-Stokes solve and a Schur complement solve.
The direct solve for the Navier-Stokes system is too costly, so we approximate KNS

with the Schur complement system:

MNS
I =

(
F BT

0 −SNS

)
, (3.20)

where SNS = BF−1BT is the fluid Schur complement. Using (3.20), we obtain the more
practical preconditioner

MMHD
B =

(
MNS KC

0 −S

)
. (3.21)

Theorem 4. The matrix (MMHD
B)−1KMHD has an eigenvalue λ = 1 of algebraic mul-

tiplicity at least nu, and an eigenvalue λ = −1 of algebraic multiplicity at least nb. The
corresponding (known) eigenvectors are given as follows:

λ = 1: with eigenvectors {vi}nb−mb
i=1 and {vj}nu

j=nb−mb+1, as follows:

vi = (ui,−S−1Bui, bi, 0) and vj = (uj ,−S−1Buj , 0, 0),

where bi ∈ null(D) 6= 0, Cui = (2M + CK1C
T)bi and uj ∈ null(C).

59

λ = −1: with eigenvectors {vi}nb−mb
i=1 and {vj}nb

j=nb−mb+1, as follows:

vi = (ui, 0, bi, ri) and vj = (0, 0, bj , rj), (3.22)

where ui ∈ null(B) 6= 0, Fui + CT bi = 0, bj ∈ null(M), ri and rj free.

Proof. The corresponding eigenvalue problem is
F BT CT 0

B 0 0 0

−C 0 M DT

0 0 D 0

u

p

b

r

 = λ

F BT CT 0

0 −SNS 0 0

0 0 −(M +KC) −DT

0 0 −D 0

u

p

b

r

 ,

where KC = CK1C
T . The four block rows of the generalized eigenvalue problem can

be written as

(1− λ)(Fu+BT p+ CT b) = 0, (3.23)

Bu = −λSNS p, (3.24)

(1 + λ)(Mb+DT r) + λCK1C
T b− Cu = 0, (3.25)

(1 + λ)Db = 0. (3.26)

If λ = 1, (3.23) is automatically satisfied. Equation (3.24) simplifies to:

p = −S−1
NSBu.

From (3.26) we have Db = 0, hence, b ∈ null(D). Let us take r = 0, then (3.25) yields

Cu = (2M + CK1C
T)b. (3.27)

Case 1: Consider 0 6= b ∈ null(D), then Cu = (2M +CK1C
T)b. Since, rank of C and

(2M +CK1C
T) is nb−mb, then the condition (3.27) has at least nb−mb linearly

independent eigenvectors.

Case 2: Consider b = 0, then we have that Cu = 0. Hence, u must be in the null space
of C. Since

dim(null(C)) = nu − nb +mb,

this accounts for nu − nb +mb such eigenvectors.

Therefore λ = 1 is an eigenvalue with algebraic multiplicity at least nu.

60

If λ = −1, (3.26) is satisfied, hence, r is free. Simplifying (3.25) obtains

CK1C
T b+ Cu = 0. (3.28)

Let us take u ∈ null(B), then p = 0 and the condition for b is

Fu+ CT b = 0. (3.29)

Under the condition that u ∈ null(B), (3.29) satisfies the equality (3.28).

Case 1: Consider u ∈ null(B) and u 6= 0, then from (3.29) we have u = −F−1CT b.
Since the rank of CT is nb −mb and F is full rank, then there are only nb −mb

such linearly independent b’s that determine u. Hence, for this case we obtain at
least nb −mb such eigenvectors.

Case 2: Consider u = 0, then for (3.29) to hold CT b = 0. Therefore, we take b ∈
null(CT). Since, the null space of CT is made up of discrete gradients then

dim(null(CT)) = mb.

Therefore λ = −1 is an eigenvalue with algebraic multiplicity at least nb.

Remark 4. Note that in (3.22), {ui} is a subset of the null vectors of B.

An approximation of the fluid Schur complement, SNS, is needed to create a practical
preconditioner. For SNS we will use the PCD preconditioner developed in [35]. The
approximation is based on

SNS = BF−1BT ≈ Ap F−1
p Qp,

where the matrix Ap is the pressure Laplacian, Fp is the pressure convection-diffusion
operator and Qp is the pressure mass matrix.
MMHD

B is defined in (3.21), but in practice we use the approximation for the inverse
of the Schur complement from Section 3.3 which is

S−1 ≈ S−1
P =

(
M−1
X GL−1

L−1GT 0

)
.

The eigenvalues of the preconditioned matrix (MMHD
B)−1KMHD are represented in Fig-

ure 3.1b. As with the eigenvalues for the approximate inverse preconditioned matrix we

61

see a small degradation of the eigenvalue clusters. However, we still see strong clustering
around 1 and −1.

3.5 Numerical experiments

In this section, we present several 3D numerical results to illustrate the performance of
our preconditioning approaches. We use FEniCS [77], a finite element software package,
to create the matrix system and PETSc [7, 9]) and HYPRE [38] to solve the resulting
system.

In line with [86], we set the non-linear stopping tolerance to 1e-4 and the linear
solve tolerance as 1e-3. For all experiments we us FGMRES [92] and the Newton
(α = 1) nonlinear iteration scheme. This means that for every solve associated with
F and multiplication associated with CT we replace them with F̂ = F + FNT and
ĈT = CT + CTNT. Table 3.4 details the methods which we use to solve the systems
associated with the block preconditioner.

Matrix Implementation method
Qp single AMG V-cycle
Ap single AMG V-cycle
F̂ Preconditioned AMG GMRES with tolerance 1e-2

M +X AMG method developed in [61] with tolerance 1e-2
L single AMG V-cycle

Table 3.4: Solution method for block systems associated with the preconditioners

We use the Notation: ` is the mesh level, DoF is the total degrees of freedom,
time is the average solve time to solve systems associated with KMHD at each nonlinear
iteration, itNL is the number of nonlinear/Newton iterations to reach the stopping
criteria, itO is the average number of linear/FGMRES iterations to solve KMHD, itMX

is the average of CG/Auxiliary Space iterations to solve M +X and itF is the average
of GMRES iterations to solve F̂ . Adding an A or B superscript to time or it∗ denotes
whether we use the approximate inverse or block preconditioner, respectively

62

3.5.1 3D Cavity driven flow

The first example we consider is the classic lid driven cavity problem [35]. The problem
is designed by the following Dirichlet boundary conditions:

u = (1, 0, 0) on z = 1,

u = (0, 0, 0) on x = ±1, y = ±1, z = −1,

n× b = n× bN on ∂Ω,

r = 0 on ∂Ω,

(3.30)

where bN = (−1, 0, 0).

Scalability results

Tables 3.5 and 3.6 show the time and iteration results using the approximate inverse
and block triangular preconditioners. We can see that the approximate inverse pre-
conditioner exhibits near perfect scaling with respect to the FGMRES iterations for
both tables, whereas the FGMRES iterations for the block triangular preconditioner
increase each mesh level for the harder problem, Ha =

√
1000. For the easier parameter

setup, Table 3.5, we can see that both preconditioners exhibit scalable iterations. We
note that for the latest mesh level (` = 6) for both Tables 3.5 and 3.6 the approximate
inverse preconditioner yields a faster solution method. In fact, for the more difficult
problem (Ha =

√
1000) the approximate inverse preconditioner is almost exactly two

times quicker than the block triangular precondition for ` = 6.

` DoFs timeA itANL itAO itAMX itAF timeB itBNL itBO itBMX itBF

1 14,012 1.18 3 10.0 1.70 1.61 0.81 4 21.5 2.00 1.96
2 28,436 2.79 3 10.0 1.78 1.65 1.93 4 21.5 2.00 1.96
3 64,697 11.43 3 9.7 1.85 1.78 6.90 4 21.0 2.00 2.00
4 245,276 34.64 4 11.0 2.11 1.85 13.65 3 18.3 2.00 2.00
5 937,715 255.25 4 10.5 2.21 1.95 135.88 3 19.0 2.47 2.00
6 5,057,636 1979.22 3 9.7 2.71 2.11 2273.48 3 22.3 3.00 2.50

Table 3.5: 3D Cavity Driven using both the approximate inverse and block triangular
preconditioner with parameters κ = 1, ν = 1, νm = 1 and Ha = 1.

Numerical cost of preconditioners

From the definition of the approximate inverse preconditioner it is obvious that each
iteration is more expensive than the block triangular preconditioner. However, as seen

63

` DoFs timeA itANL itAO itAMX itAF timeB itBNL itBO itBMX itBF

1 14,012 7.58 4 57.0 1.96 2.00 5.58 4 146.2 2.00 2.00
2 28,436 22.21 4 56.2 1.98 2.00 14.88 4 147.2 2.00 2.00
3 64,697 65.95 4 56.0 1.99 2.00 47.79 4 154.2 2.00 2.00
4 245,276 271.48 4 56.0 2.15 2.00 205.63 4 160.5 2.23 2.00
5 937,715 1255.15 4 55.5 2.79 2.01 1003.92 4 168.8 2.91 2.00
6 5,057,636 17656.36 4 58.5 2.99 2.07 35563.15 4 217.5 3.03 2.03

Table 3.6: 3D Cavity Driven using both the approximate inverse and block triangular
preconditioner with parameters κ = 1e1, ν = 1e-1, νm = 1e-1 and Ha =

√
1000

in Table 3.6 the scalability of this preconditioner for harder and larger problems yields
smaller timing results.

Table 3.7 shows the number of solves and matrix-vector products associated with the
individual block matrices that make up the approximate inverse and the block triangu-
lar preconditioners for mesh level ` = 6 in Table 3.6. We can see that the approximate
inverse preconditioner has a smaller number of solves for both systems associated with
vector (F̂ and MX) and scalar (Ap, Qp and L) valued matrices. Also, the total number
of matrix-vector products is less for the approximate inverse preconditioner. This is
reflected in the time it takes to solve this system, where the approximate inverse pre-
conditioner is faster than the block triangular one. We also note that the iterations in
Table 3.6 remain constant for the approximate inverse preconditioner compared to the
block triangular one. Therefore, for harder problems on larger meshes it seems that
the approximate inverse preconditioner seems more efficient with respect to time and
iterations.

3.5.2 Fichera corner

The second solution we consider is a smooth solution on a non-convex domain. Specif-
ically, the domain is a cube missing a corner and is defined as Ω = (0, 1)3/[0.5, 1) ×
[0.5, 1)× [0.5, 1). The exact solution is

u = ∇× (u1, u1, u1) on Ω,

p = xyz(x− 1)(y − 1)(z − 1) exp(x) on Ω

b = ∇× (b1, b1, b1) on Ω,

r = xyz(x− 1)(y − 1)(z − 1) exp(x+ y + z) on Ω,

(3.31)

64

Linear Number of operations
operation MMHD

A MMHD
B

F̂−1 4*58.5 = 234.0 1*217.5 = 217.5
A−1
p 3*58.5 = 175.5 1*217.5 = 217.5

Q−1
p 3*58.5 = 175.5 1*217.5 = 217.5

M−1
X 2*58.5 = 117.0 1*217.5 = 217.5

L−1 2*58.5 = 117.0 1*217.5 = 217.5
ĈT or C 2*58.5 = 117.0 1*217.5 = 217.5
BT or B 4*58.5 = 234.0 1*217.5 = 217.5
GT or G 2*58.5 = 117.0 2*217.5 = 435.0

Average total FMGRES
17656.36 35563.15

iteration time

Table 3.7: Numerical cost of usingMMHD
A andMMHD

B for mesh level ` = 6 in Table 3.6

where
u1 = x2y2z2(x− 1)2(y − 1)2(z − 1)2 cos(x),

b1 = x2y2z2(x− 1)2(y − 1)2(z − 1)2 sin(y),

which defines the inhomogeneous Dirichlet boundary conditions and forcing terms f
and g.

Table 3.8 shows the timing and iteration results for the following two setups:

• Setup 1: κ = 1e1, ν = 1e-2, νm = 1e-2 and Ha =
√

1e5,

• Setup 2: κ = 1e1, ν = 1e-2, νm = 1e-3 and Ha = 1000.

We can see that for Setup 1 (Ha =
√

1e5) that the outer FGMRES iterations remain
constant. However, when considering Setup 2 (Ha = 1000) we start to see a large
degradation in terms of the iteration counts. This is not unexpected for such problems.

3.5.3 MHD generator

This is a problem that describes unidirectional flow in a duct which induces an elec-
tromagnetic field. We consider the channel [0, 5] × [0, 1] × [0, 1]. On the left and right
boundaries we enforce the boundary condition u = (1, 0, 0) and on the other walls a no
slip boundary condition is applied. Defining δ = 0.1, b0 = 1, xon = 2 and xoff = 2.5 the
boundary condition associated with the magnetic unknowns is n × b = n × (0,by, 0)

where
by =

b0
2

[
tanh

(
x− xon

δ

)
− tanh

(
x− xoff

δ

)]
.

65

` DoFs
Setup 1 Setup 2

timeA itANL itAO itAMX itAF timeA itANL itAO itAMX itAF

1 34,250 15.64 4 29.2 2.56 2.00 102.34 7 211.7 2.04 2.00
2 57,569 30.41 4 29.2 2.74 2.00 242.27 7 237.0 2.10 2.00
3 89,612 52.90 4 28.8 2.91 2.00 440.66 7 252.1 2.15 2.00
4 332,744 232.23 4 27.8 2.96 2.00 2361.45 7 294.3 2.40 2.00
5 999,269 1026.31 4 27.8 2.98 2.95 8657.89 7 303.9 2.76 2.12
6 5,232,365 11593.47 5 28.6 2.99 3.00 111675.33 7 321.4 2.93 2.48

Table 3.8: Fichera corner using the approximate inverse preconditioner. Setup 1:
κ =1e1, ν =1e-2, νm =1e-2 and Ha=

√
1e5 and Setup 2: κ =1e1, ν =1e-2, νm =1e-3

and Ha=1000.

The timing and iteration results for the approximate inverse preconditioner are
represented in Table 3.9. From the table we can see that the iteration counts decrease
as the problem gets larger. We suspect this is due to the fact the the mesh size h is
becoming small enough for mesh level ` ≥ 3 that the fluid and magnetic viscosities are
correctly capture on these meshes.

` DoFs timeA itANL itAO itAMX itAF

1 2,199 1.50 3 172.7 1.50 1.92
2 13,809 13.32 3 108.0 1.54 1.99
3 96,957 260.81 4 105.2 1.95 2.00
4 724,725 1693.26 3 70.7 1.98 2.79
5 5,600,229 8515.71 3 68.0 2.10 2.64

Table 3.9: MHD generator using the approximate inverse preconditioner with parame-
ters κ = 1, ν = 1e-1, νm = 1e-1 and Ha = 10

66

Chapter 4

Conjugate gradient for nonsingular
saddle-point systems with a
maximally rank-deficient leading
block

The final chapter is currently under revision for publication in the Journal of Com-
putational and Applied Mathematics. In Section 4.1, we introduce the saddle-point
matrix and the specific properties considered. In Section 4.2 we derive conditions under
which this saddle-point system can be solved using preconditioned conjugate gradient.
In Section 4.3, we consider a null-space decoupling of (4.1). In Section 4.4 we analyze
the spectral properties of the block preconditioners. Section 4.5 presents several nu-
merical results for the mixed Maxwell problem (1.5) using the preconditioned conjugate
gradient method.

4.1 Problem statement

In this chapter, we derive two sufficient conditions that allow the use of the conjugate
gradient (CG) [58] method to solve an indefinite saddle-point system with a maximally
rank-deficient leading block. Our work builds on [36], where the authors developed
an indefinite approximate inverse preconditioner for such problems. We expand this to
consider the family of block diagonal and block triangular preconditioners from [50, 51].

Consider the regularized saddle-point system(
N ET

E −R

)
︸ ︷︷ ︸

KN

(
b

r

)
=

(
h

0

)
, (4.1)

where N ∈ Rn×n, E ∈ Rm×n and R ∈ Rm×m with m < n. In many situations we have
R = 0, however for some PDE discretizations, using a symmetric positive semi-definite

67

matrix R 6= 0 can be utilized as a stabilization procedure. We focus our investigation
on symmetric positive semi-definite matrices N . In particular, we are interested in
maximally rank-deficient leading blocks that still yield to a nonsingular block matrix,
KN. For R = 0, we require the following properties to ensure (4.1) is invertible:

rank(N) = n−m, rank(E) = m, and ker(N) ∩ ker(E) = {0}.

For R 6= 0, the requirement on rank(E) can be relaxed.
Applying CG to indefinite linear systems has been extensively considered; see for

example [11, 12, 18, 34, 47, 69, 75, 91]. In [75], the authors show that negating the second
block row of a symmetric saddle-point matrix obtains the property that the new saddle-
point matrix is real positive. The authors use this property to derive conditions for
positive definiteness with respect to a certain bilinear form. The authors in [11, 12, 34]
show that for the class of constraint-based preconditioners the preconditioned matrix
has all positive eigenvalues. Thus, even though the preconditioner and saddle-point
matrix are indefinite, CG can still be used. Finally, in [18, 69] the authors use a non-
standard inner product and [47, 91] start (and remaining) on a certain manifold, both
to ensure that CG is possible.

In this work, we consider the class of maximally rank-deficient regularized and un-
regularized saddle-point systems. The class of preconditioners we use do not rely on the
spectral structure of the preconditioner matrix, and thus, do not lead to similar tech-
niques as mentioned above. Therefore, the approach we take relies on the construction
of the Krylov subspace:

Kk(M−1K, r0) = span{r0, M−1K r0, . . . , (M−1K)k−1 r0},

where r0, K andM are the preconditioned initial residual, the coefficient matrix, and
the preconditioner, respectively. If K andM are both SPD then clearly it is possible to
use a solver such as CG for SPD matrices. In this work K is indefinite andM is either
SPD or structurally nonsymmetric (block triangular preconditioners), thusM−1K will
not be SPD or even real positive. However, by explicitly forming the Krylov subspace
we show that for two sufficient conditions the Krylov subspace is constructed using
products of SPD and SPSD matrices arising from individual blocks of K andM. These
conditions rely heavily on the maximal nullity of the leading block of (4.1). Thus, even
though (M−1K)k is not SPD, the application of (M−1K)kr0 can be defined as a product
of SPD and SPSD matrices on the preconditioned residual. This therefore means that
we can use CG even though the preconditioned system has both positive and negative
eigenvalues and it is also structurally nonsymmetric.

68

As we show in subsequent sections, the above properties are critical for accomplish-
ing our main goal stated, which is to establish conditions under which CG may be used,
despite the matrix KN being indefinite. We accompany our analytical observations with
numerical experiments.

4.2 Krylov Subspace

In [50], the authors show that an ideal preconditioner for saddle-point systems of the
form (4.1) with a maximally rank-deficient leading block is the augmented precondi-
tioner: (

N + ETU−1E 0

0 U

)
, (4.2)

where U is an arbitrary symmetric positive-definite matrix. The authors of [47] promote
the use of projected conjugate gradient.

Our goal is to find conditions on an approximation Q to the augmented term,
ETU−1E, such that we can use preconditioned CG. We consider a preconditioner of
the following form:

MP =

(
N +Q 0

0 U

)
,

where Q is chosen so that N + Q is SPD. It is possible to use CG to solve (4.1) when
the preconditioned matrix M−1

P KN is symmetrizable and its symmetrized version is
positive definite. Given an initial preconditioned residual r0, the Krylov subspace is
given by:

Kk(M−1
P K

N, r0) = span{r0, M−1
P K

N r0, . . . , (M−1
P K

N)k−1 r0}. (4.3)

Considering a zero initial guess, the initial preconditioned residual is given by:

r0 =M−1
P

(
h

0

)
=

(
(N +Q)−1h

0

)
. (4.4)

To construct (4.3), an essential step is multiplication with the preconditioned matrix,
which is given by:

M−1
P K

N =

(
N +Q 0

0 U

)−1(
N ET

E −R

)
=

(
(N +Q)−1N (N +Q)−1ET

U−1E −U−1R

)
.

Theorem 5. Given a symmetric indefinite block 2× 2 matrix and symmetric positive-

69

definite preconditioner

KN =

(
N ET

E −R

)
and MP =

(
N +Q 0

0 U

)
,

assuming a zero initial guess, for the preconditioned residual r0 given in (4.4), the
resulting multiplications with the preconditioned matrices can be simplified as follows:

[M−1
P K

N]i r0 =

(
[(N +Q)−1N]i(N +Q)−1h

0

)
for i = 0, 1, . . . (4.5)

as long as the following conditions hold:

ZTh = 0, (4.6a)

NZ = 0, (4.6b)

where Z = (N +Q)−1ET .

Proof. The proof follows by induction. For i = 0 we have r0, and for i = 1 we have

M−1
P KN r0 =

(
(N +Q)−1N(N +Q)−1h

U−1E(N +Q)−1h

)
. (4.7)

Thus by condition (4.6a) we see that (4.7) holds for i = 1. Now assuming

[M−1
P KN]i−1r0 =

(
[(N +Q)−1N]i−1(N +Q)−1h

0

)
, (4.8)

it readily follows that

[M−1
P KN]ir0 = [M−1

P KN][M−1
P KN]i−1r0

=

(
(N +Q)−1N (N +Q)−1ET

U−1E −U−1R

)(
[(N +Q)−1N]i−1(N +Q)−1h

0

)

=

(
[(N +Q)−1N]i(N +Q)−1h

U−1E(N +Q)−1N [(N +Q)−1N]i−2(N +Q)−1h

)

=

(
[(N +Q)−1N]i(N +Q)−1h

0

)
,

where in the last step we used (4.6b). This completes the proof.

70

From (4.6b) in Theorem 5 it readily follows that the null-space of N is defined as
Z = (N + Q)−1ET . Multiplying by N + Q we can express the approximation Q in
terms of ET and the null-space of N .

Corollary 1. To satisfy (4.6b) in Theorem 5, Q must be chosen such that:

ET = QZ.

Remark 5. In Theorem 6, we considered left preconditioning. However, for right pre-
conditioning the preconditioned matrix is KNM−1

P and the associated Krylov subspace
would be

Kk(KNM−1
P , r) = span{r, KNM−1

P r, . . . , (KNM−1
P)k−1 r},

where r is the initial residual for a zero initial guess. Using the the conditions (4.6) one
can prove a similar result to Theorem 5, that is:

[KNM−1
P]i r =

(
[N(N +Q)−1]ih

0

)
for i = 0, 1,

Thus, it is possible to use CG with left or right preconditioning.

Remark 6. The matrix Q does not necessarily have to be positive definite, for the
conditions in (4.6) to be satisfied. For example, if Q = ETU−1E then X is defined as:

Z = (N + ETU−1E)−1ET . (4.9)

In [36, Proposition 3.6] the authors show that if Z is defined as in (4.9), then NZ = 0.
Thus, condition (4.6b) in Theorem 5 is automatically satisfied.

We now show that we are not restricted to the block diagonal preconditioner to
enable the use of CG.

Proposition 2. Consider the upper and lower triangular preconditioners:

M̃P =

(
N +Q ET

0 U

)
and M̂P =

(
N +Q 0

D U

)
.

Then

[(
∗
M)−1KN]k r0 =

(
[(N +Q)−1N]k(N +Q)−1h

0

)
,

where ∗ denotes upper or lower triangular preconditioner, holds under the same condi-
tions as in Theorem 5.

71

The proof follows by induction. The preconditioned matrices are

M̃−1
P KN =

(
(N +Q)−1N − (N +Q)−1ETU−1E (N +Q)−1ET

U−1E −U−1R

)
;

M̂−1
P KN =

(
(N +Q)−1N (N +Q)−1ET

U−1E − U−1E(N +Q)−1N U−1E(N +Q)−1ET − U−1R

)
,

and it follows that

[(
∗
M)−1KN]k r0 =

(
[(N +Q)−1N]k(N +Q)−1h

0

)
,

where ∗ denotes the upper or lower triangular preconditioner.

4.3 Null-space decoupling

Consider the saddle-point form of (4.1) with R = 0. Since the null-space of N is of
dimension m, there is a matrix Z ∈ Rn×m whose columns form a linearly independent
basis for the null-space of N . Using this null-space matrix, it is possible to decouple
the saddle-point system (4.1) by multiplying the first block row with ZT to obtain:

ZTBT r = ZTh.

The solution procedure for (4.1) becomes:

ZTET r = ZTh, (4.10a)

Nb = g − ET r with Eb = 0. (4.10b)

The solution of (4.10) is unique if and only if EZ is nonsingular and N is positive
definite on the null-space of E.

To aid discussion of the null-space decoupling, we introduce a Helmholtz-type de-
composition similar to [36]. The intersection of the null-spaces of N and E are zero,
thus:

ker(N)⊕ ker(E) = Rn. (4.11)

This decomposition provides key insights into the null-space decoupling of (4.1). Using
(4.11) we write the primary variable solution

b = bN + bE

72

where bN ∈ ker(N) and bE ∈ ker(E).
Using [36, Proposition 3.6] and [36, Theorem 3.5], there exists a formulation of the

null-space of N such that U = EZ is SPD which allows the use of CG. From the
Helmholtz-type decomposition, (4.10b) can be written as:

NbE = f − ET r with EbN = 0.

Since bN ∈ ker(N) then EbN 6= 0 unless bN = 0. Thus the decoupled system becomes

ZTET r = ZTh and NbE = h− ET r. (4.12)

Since N is positive definite on the null-space of E, it is possible to use a CG-type solver
for the second equation in (4.12). In practice, since N is singular, one may apply a
null-space method, which amounts to applying CG on:

V TNV bE = V Th where EV = 0.

We note that a null-space matrix V does not need to be explicitly constructed; see [46].
We conclude this section with a few comments for the case when ZTh = 0. In

this setting (dim(null(N)) = m), it is very common that the secondary variables, r,
arise from a Lagrange multiplier formulation (4.1); see for example [33, 49] for the
mixed formulation of Maxwell’s equations and [16] for norm minimization problems
with equality constraints. Thus, the construction of h is often independent of the
secondary variables which leads to ZTh = 0 for these sorts of formulations. Thus, the
solution to (4.10a) is zero and then the solution to (4.12) becomes:

NbE = h. (4.13)

Considering a preconditioner of the form N +Q for (4.13) would form the same block
Krylov subspace defined in (4.5) where r = 0.

For a non-zero r, the discussion around (4.12) may indicate that the condition (4.6a)
might be relaxed for the preconditioned saddle-point system.

4.4 Eigenvalue Analysis

We now analyze the ideal forms of the preconditioner where we do not use the approx-
imation Q but rather the augmented term ETU−1E. We will consider the upper block

73

triangular preconditioner:

M̃I =

(
N + ETU−1E ET

0 U

)
.

Extension to block diagonal and block lower triangular can easily be done using the
same techniques.

Theorem 6. The preconditioned matrix M̃−1
I K has eigenvalue λ = 1 with algebraic

multiplicity n −m and eigenvalue λ = 1±
√

5
2 with algebraic multiplicity m − l for each

eigenvalue, where l = Dim(Null(R)). The corresponding eigenpairs (λ,x) are:

λ = 1, x = (bD, 0), and λ =
1±
√

5

2
, x = (bN , rR),

where bD ∈ Null(D), bN ∈ Null(N), and rR ∈ Null(R).

Proof. The corresponding generalized eigenvalue problem is given by:(
N ET

E −R

)(
b

r

)
= λ

(
N + ETU−1E ET

0 U

)(
b

r

)
. (4.14)

Since W and Q are SPD and SPSD, respectively, λW +Q is nonsingular for all λ 6= 0.
Substituting r = (λW +R)−1Db into the first block row of (4.14), we obtain:

(1− λ)Nb+ (1− λ)ET (λW +R)−1Db = λETU−1Eb.

From this, it follows immediately that if b ∈ Null(D) then λ = 1 is an eigenvalue.
Now, assume that λ 6= 1 and Db 6= 0. Substituting Db = (λW + R)r into (4.14)

gives:
(λ− 1)Nb+ (λ2 + λ− 1)ET r + λETU−1Rr = 0.

Thus by setting b ∈ Null(N), and r ∈ Null(R), we have λ = 1±
√

5
2 .

From Theorem 6 it follows that if R = 0, we have the full spectrum of the precondi-
tioned matrix, with just three distinct eigenvalues that have high algebraic multiplicities.

Corollary 2. For the non-regularized saddle-point form of (4.1), with R = 0, M̃−1
I K

has eigenvalue λ = 1 with algebraic multiplicity n−m and eigenvalues λ± = 1±
√

5
2 with

algebraic multiplicities m.

Proposition 3, given below, outlines the algebraic multiplicities of eigenvalues and their
corresponding eigenvectors for block diagonal and block lower triangular precondition-

74

ers. The full eigenvalue analysis for these preconditioners is omitted since it is very
similar to what we show in Theorem 6.

Proposition 3. Consider the preconditioners

MI =

(
N + ETU−1E 0

0 U

)
and M̂I =

(
N + ETU−1E 0

D U

)
.

Then the eigenpairs and algebraic multiplicities of the preconditioned matrices are given
in Table 4.1.

Preconditioned
Eigenvalue Eigenvector

Algebraic
matrix multiplicity

M−1
I K 1 (b, rR) n− l

M−1
I K −1 (bN , rR) m− l

M̂−1
I K 1 (bE , 0) n−m

M̂−1
I K 1+

√
5

2 (bN , rR) m− l
M̂−1

I K 1−
√

5
2 (bN , rR) m− l

Table 4.1: Eigenpairs and algebraic multiplicities for the preconditioned matrices
M̂−1

I K andM−1
I K. We use the notation bE ∈ Null(E), bN ∈ Null(N), rR ∈ Null(R),

and l = Dim(Null(R)).

In Figure 6 we show an example of the eigenvalue distribution of the preconditioned
matrix.

4.5 Numerical Experiments

In this section we use the time-harmonic Maxwell equation in mixed form [51, 78] to
illustrate our findings. The continuous problem is given as follows:

∇× νm∇× b+∇r = g in Ω

∇ · b = 0 in Ω,
(4.15)

where b is the magnetic field and r is the Lagrange multiplier associated with the
divergence constraint on the magnetic field. The constant νm is the magnetic viscosity.
This model is well understood and gives rise, upon finite element discretization, to a
symmetric system; see [51, 72]. It also arises in coupled electromagnetic flows such as
magnetohydrodynamics; see [86, 110] and the references therein.

75

Figure 4.1: Eigenvalue distribution of the preconditioned matrix M̃−1
I K using randomly

generated blocks with n = 100, m = 20, and l = 5

We consider a finite element discretization of (4.15) which uses Nédélec elements
for the magnetic field and nodal elements for the multiplier variable. See [51, 72] for
more details. Upon discretization, N , E and ET are defined to be the discrete curl-curl,
magnetic gradient and magnetic divergence operators, respectively. Thus, the null space
of N is the discrete gradient operator and has dimensionm. The resulting discretization
of (4.15) falls into the class of saddle-point systems with a maximally rank-deficient
leading block. We note that a sparse construction of the discrete gradient operator for
first order Nédélec elements is possible [72, Section 2].

In [51] it was shown that the vector mass matrix and scalar Laplacian are appropriate
choices for Q and U , respectively. Since U is now the scalar Laplacian, use the notation
U = L. We now show that for these choices, the conditions (4.6a)–(4.6b) in Theorem 5
hold. In [51, Proposition 2.2] the authors prove the identity

ET = QZ,

where we recall that ET and Z are the magnetic divergence and discrete gradient
operators, respectively. Thus, by Corollary 1, (4.6b) holds. Typically, the right-hand-
side is divergence-free for physical applications; see [49, 110]. Since Z is the null-space

76

operator of the curl-curl matrix, ZT is a discrete divergence operator. Hence, the
divergence-free condition (4.6a) holds.

Therefore, for the Maxwell problem of the form (4.15) the conditions (4.6a)–(4.6b)
hold and enable the use of CG with either a block diagonal, upper or lower block
triangular preconditioner. The coefficient matrix and block diagonal preconditioner for
the mixed Maxwell problem in (1.5) are:

K =

(
N ET

E 0

)
and M =

(
N +Q 0

0 L

)
,

where we recall that N , E, ET , Q, and L are the curl-curl operator, magnetic di-
vergence operator, a gradient operator, the vector mass matrix, and scalar Laplacian,
respectively.

Let us consider a 3D example with a smooth solution on Ω = [0, 1]3. The analytical
solution is set to be

b(x, y, z) =

 − exp(x+ y + z) sin(y) + exp(x+ y + z) sin(z)

xy exp(x+ y + z)− yz exp(x+ y + z)

− exp(x+ y + z) sin(x) + exp(x+ y + z) sin(y)

r(x, y, z) = 0.

(4.16)

Then the source terms g in (4.15) and inhomogeneous boundary conditions are defined
from the analytical solution. By construction, we have ensured that the right-hand-
side is divergence-free. We use this setup as a basis for all numerical experiments and
outline any alterations (e.g., the domain or multiplier variable) we make for the specific
example.

In each experiment we use a tolerance of 1e-6 for the outer flexible CG (FCG) itera-
tion [82]. For the inner solves (N +Q and L), we use the auxiliary space preconditioner
of [61]. This entails a CG solve for N + Q and L with a tolerance of 1e-3 for each. In
the subsequent tables we use the following notation:

• `: mesh level;

• DoFs: number of degrees of freedom for Magnetic field plus the multiplier vari-
ables;

• Time: total time for FCG to converge for the specified tolerance;

• it: number of outer FCG iterations to converge for the specified tolerance;

• it1: number of inner CG/Auxiliary Space iterations for N +Q;

77

• it2: number of inner CG/Auxiliary Space iterations for L.

4.5.1 Krylov Subspace Solver Test

The first numerical experiment we consider is to test the robustness and performance
of FCG compared to other Krylov subspace methods. We set the inner tolerance to
be 1e-4 and test against MINRES [83] and GMRES [94]. The results are shown in
Table 4.2. We observe that the iteration counts are similar for all three methods tested,
and FCG is slightly superior in terms of computational time. Given that the cost of
single iterations is lower for FCG compared to MINRES, and given that the memory
consumption of FCG is significantly lower than that of GMRES, we conclude that FCG
is the most effective method of the three, although not by a significant margin.

FCG MINRES GMRES
` DoFs Time it it1 it2 Time it it1 it2 Time it it1 it2
3 4913 0.06 14 2.4 1.4 0.07 13 3.0 1.9 0.07 12 3.0 1.9
4 35,937 0.70 14 2.7 1.7 0.72 13 3.6 1.9 0.78 13 3.5 2.1
5 274,625 5.82 13 3.1 2.2 7.42 14 3.9 2.9 7.57 13 3.9 2.8
6 2,146,689 61.78 15 3.3 2.1 60.36 12 4.2 2.8 78.06 14 4.2 2.9
7 16,974,593 580.22 14 3.9 2.5 601.85 13 4.5 2.9 712.28 13 4.9 2.9

Table 4.2: Krylov solver test: time and iteration results for using one iterations of the
preconditioner with FCG, MINRES and GMRES. The viscosity for these tests is νm =
1e-2

Let us now consider preconditioned CG with diagonal and upper/lower triangular
preconditioners. The results are given in Table 4.3. From Theorem 5 and Proposition 2,
we have shown that the Krylov subspace for both the diagonal and block triangular pre-
conditioners are the same. Thus we would expect the number of iterations for FCG to
converge to be identical. From the table, we can see that the block diagonal precon-
ditioner preforms slightly better with respect to the outer FCG iterations. We have
shown that the preconditioner with the exact augmented term (Q = ETU−1E) has
two distinct eigenvalues for the preconditioned matrix, whereas for the block triangular
preconditioner we have three distinct eigenvalues for the preconditioned matrix. This
may explain the slight difference in performance.

4.5.2 Divergence and Non-Divergence Free Right-Hand-Side

Let us now consider divergence and non-divergence free right-hand-sides. The results are
given in Table 4.4. We observe that there is almost no difference in the iteration results

78

MP MU ML

` DoFs Time it it1 it2 Time it it1 it2 Time it it1 it2
2 729 0.01 12 1.8 1.0 0.01 13 1.7 1.1 0.01 13 1.7 1.1
3 4,913 0.07 14 2.3 1.4 0.05 13 2.2 1.5 0.05 13 2.1 1.6
4 35,937 0.64 14 2.5 1.7 0.57 14 2.5 1.7 0.56 14 2.5 1.7
5 274,625 5.95 14 2.7 1.7 6.11 16 2.6 1.6 5.41 14 2.6 1.8
6 2,146,689 56.92 14 2.9 1.8 60.92 16 2.9 1.7 59.89 16 2.9 1.7
7 16,974,593 574.34 14 3.3 2.3 589.14 16 3.2 2.2 569.86 16 3.2 2.1

Table 4.3: Block preconditioner test: time and iteration results using the block diagonal
(MP), block upper triangular (MU) and block lower triangular (ML) preconditioners
with νm = 1e-2

between the divergence and non-divergence free right-hand-side solution. This shows
that even though our analysis requires a divergence-free right-hand side, in practice the
solver is robust with respect to right-hand side vectors that violate this condition. We
do not have a theoretical justification for this; if the right-hand-side is not divergence
free then term (4.7) does not vanish and the construction of the Krylov subspace is
significantly more involved. In that case, there is no easy way to discern algebraic
structure and proceed with deriving results such as (4.5) in Theorem 5. However,
in Section 4.3 we show that it is possible to decouple such saddle point systems into
two SPD linear systems without the divergence constraint being satisfied. Therefore,
Theorem 5 only provides sufficient conditions and we suspect that the divergence-free
condition can be relaxed in practice.

Divergence Free Non-divergence Free
l DoFs Time it it1 it2 Time it it1 it2
2 729 0.01 12 1.5 0.9 0.01 12 1.5 0.9
3 4,913 0.06 14 2.3 1.4 0.06 14 2.3 1.4
4 35,937 0.64 14 2.5 1.7 0.64 14 2.5 1.7
5 274,625 7.41 14 2.7 1.7 7.41 14 2.7 1.7
6 2,146,689 55.02 14 2.9 1.8 55.02 14 2.9 1.8
7 16,974,593 544.91 14 3.3 2.3 644.91 14 3.3 2.6

Table 4.4: Divergence-free vs. non-divergence-free right-hand-side: time and iteration
results using the block diagonal preconditioner,MP , for divergence and non-divergence
free right-hand-sides with νm =1e-2.

79

4.5.3 Variable Coefficients

We now let the magnetic viscosity be defined as:

νm =

1/a if x < 0.5 and y < 0.5 and z < 0.5,

1/2a if x > 0.5 and y < 0.5 and z < 0.5,

1/3a if x < 0.5 and y > 0.5 and z < 0.5,

1/4a if x > 0.5 and y > 0.5 and z < 0.5,

1/5a if x < 0.5 and y < 0.5 and z > 0.5,

1/6a if x > 0.5 and y < 0.5 and z > 0.5,

1/7a if x < 0.5 and y > 0.5 and z > 0.5,

1/8a otherwise,

where a is a constant. The results are shown in Table 4.5 and 4.6. The results in
Table 4.5 show iteration and timing results for the block diagonal preconditioner for
various values of a. We can see from the table that as a increases then the number of
outer FCG iterations increase but the inner Auxiliary Space iterations seem relatively
constant, with only a slight increase going through the levels. For a = 10 or 100 the outer
FCG iterations remain approximately constant but for a = 1000 the outer iterations
start to degrade slightly. Table 4.6 shows the iteration and timing comparisons between
the block diagonal and triangular preconditioners for a = 100. Again, we see that
the outer iteration FCG iterations appear to be slightly better for the block diagonal
preconditioner than the triangular versions. We also note that solve times for the
triangular versions are significantly higher, especially for the larger mesh levels. This is
due to the extra multiplications with E or ET for the block triangular preconditioners.
Thus, it is beneficial to use the block diagonal preconditioner.

a = 10 a = 100 a = 1000

` DoFs Time it it1/it2 Time it it1/it2 Time it it1/it2
2 729 0.01 14 1.9/0.9 0.02 32 1.4/0.9 0.06 71 0.9/0.6
3 4,913 0.10 15 2.3/1.5 0.18 38 2.0/1.3 0.36 98 1.4/1.2
4 35,937 0.71 15 2.8/1.7 1.51 39 2.2/1.6 3.23 110 1.8/1.5
5 274,625 6.46 15 3.0/1.9 13.96 40 2.6/1.7 34.18 116 2.2/1.6
6 2,146,689 63.63 15 3.8/1.9 132.51 40 2.9/1.8 328.45 116 2.4/1.8
7 16,974,593 581.03 15 3.9/2.2 1306.93 40 3.3/2.3 3267.59 122 2.7/2.3

Table 4.5: Variable coefficients: time and iteration results using the block diagonal
preconditioner,M, for various different values of a.

80

M MU ML

` DoFs Time it it1/it2 Time it it1/it2 Time it it1/it2
2 729 0.02 32 1.4/0.9 0.01 32 1.3/0.8 0.02 34 1.3/0.9
3 4,913 0.18 38 2.0/1.3 0.15 38 1.9/1.3 0.14 38 1.8/1.3
4 35,937 1.51 39 2.2/1.6 1.43 39 2.3/1.6 1.43 40 2.1/1.6
5 274,625 13.96 40 2.6/1.7 14.62 41 2.6/1.7 14.64 41 2.4/1.7
6 2,146,689 132.51 40 2.9/1.8 147.63 41 3.0/1.8 150.59 43 2.9/1.8
7 16,974,593 1306.93 40 3.3/2.3 1557.95 42 3.4/2.4 1572.68 44 3.2/2.3

Table 4.6: Variable coefficients: time and iteration results using the block diagonal and
triangular preconditioners for a = 100.

4.5.4 Fichera Corner Problem

For our next numerical illustration, we consider the same exact solution in (4.16),
however the domain will be a cube missing a corner. That is, the domain is Ω =

(−1, 1)3/[0, 1)× [0, 1)× [0, 1) with local refinement in the corner. A visualization of this
domain is given in Figure 4.2. We investigate how the magnetic viscosity affects the

Figure 4.2: Fichera corner domain for mesh level, ` = 1

iterations on such a domain. Table 4.7 presents the results. The table shows that as
the magnetic viscosity decreases the number of outer FCG iterations increase. As with
the previous example, inner Auxiliary Space iterations appear to be scalable.

4.5.5 Gear Domain

For our final experiment, we consider the same exact solution in (4.16) however with
an quasi-uniform 3-dimensional gear as the domain. The domain is bounded in Ω =

81

νm =1e-1 νm =1e-2 νm =1e-3
` DoFs Time it it1 it2 Time it it1 it2 Time it it1 it2
1 14,636 0.41 13 3.8 2.0 0.73 31 3.7 2.3 1.69 80 3.9 2.6
2 111,315 3.84 13 4.4 2.5 7.23 31 4.2 3.0 17.01 81 4.5 3.4
3 869,397 45.74 13 5.9 2.7 85.37 32 5.2 3.3 181.89 72 5.0 3.6
4 6,874,601 614.06 15 8.1 3.4 1027.89 31 6.4 3.7 2248.88 69 6.4 4.2

Table 4.7: Fichera corner: time and iteration results using the block diagonal precon-
ditioner,MP , for various different values of νm.

[−1, 1]× [−1, 1]× [0,−0.2]. A visualization of this domain is given in Figure 4.3.

Figure 4.3: Gear domain for mesh level, ` = 5

Table 4.8 shows iteration and timing results for the constant coefficients. From the
table we can see that as we decrease νm the outer FCG iterations increase slightly but
appear to remain constant with respect to the mesh size. For this example, the inner
iterations are starting to increase slightly more every mesh level. However, the number
of iterations are relatively small and still give a fast solution procedure.

82

νm =1e-1 νm =1e-2 νm =1e-3
` DoFs Time it it1 it2 Time it it1 it2 Time it it1 it2
6 16,680 0.23 8 2.2 1.4 0.41 19 2.6 1.5 0.83 42 2.3 1.4
7 106,940 2.62 10 4.0 2.0 4.70 21 4.2 2.5 9.08 44 3.0 2.3
8 774,871 69.85 10 8.8 2.5 77.25 17 5.2 3.2 173.12 46 4.4 3.7
9 5,950,932 1387.91 10 17.2 4.5 1554.78 18 10.2 5.1 3227.96 48 7.8 6.0

Table 4.8: Gear domain: time and iteration results using the block diagonal precondi-
tioner,MP , for various different values of νm.

83

Chapter 5

Conclusions and future work

5.1 Conclusions

We have derived two block preconditioning approaches for the MHD model (1.1)–(1.2).
We have also shown that for a specific class of symmetric saddle-point problems, it is
possible to use preconditioned CG as the Krylov subspace solver.

The block triangular preconditioner we derived in Chapter 2 demonstrates good
eigenvalue clustering, as shown in the spectral analysis Section 2.3. We show numerical
scalability for 2D problems. However for 3D problems, we observe a small increase in
iterations per mesh level.

Our second block preconditioning approach is the block approximate inverse precon-
ditioner given in Chapter 3. Using the results in [36], we derive a new inverse formula
for the MHD model (1.1)–(1.2). Considering the orders of the discrete operators in the
exact inverse, we form an effective sparse approximation. We show that for an ideal
case the eigenvalues are very strongly clustered around 1. Developing robust solvers
for this problem is a highly challenging task, and we believe that our approach shows
promise in terms of its ability to strongly scale and tackle large-scale 3D problems with
high Hartman numbers.

The final piece of work considered is the use of preconditioned CG for nonsingular
saddle-point problems with a maximally rank deficient leading block. We show that
it is possible to use the symmetric block diagonal or nonsymmetric upper/lower block
triangular preconditioners given they satisfy two algebraic conditions. Thus, for the
mixed Maxwell problem in (1.5) we show that for the well-known preconditioners in
[51, 72] it is possible to use preconditioned CG for this indefinite saddle-point system.

5.2 Future work

1. Throughout this thesis we have considered Taylor-Hood elements [101] for veloc-
ity/pressure variables and the lowest order Nédélec [81] pair for magnetic/multi-
plier variables. This is by no means the only choice of finite element discretization
for this model. For example, the authors in [49] use the formulation in [95] which

84

leads to divergence-free Brezzi–Douglas–Marini (BDM) elements [19, 26] for the
velocity elements. We leave the exploration of other finite element discretizations
for the MHD model as a topic of future work.

2. The numerical examples focus solely on Dirichlet boundary conditions for the
MHD model. To incorporate alternative more complex boundary conditioners
(Neumann or Robin boundary conditions), it may be necessary to alter the Schur
complement approximations in a similar fashion to [15] and [35, Chapter 9] to
correctly capture these settings.

3. Unlike block triangular preconditioners, it is possible to solve for each block of the
approximate inverse preconditioner independently of the others. In particular, we
note that each block column of the approximate inverse preconditioner in (3.12)
has some repetition for the sequence of systems which are solved. Therefore,
one could solve each block column of (3.12) in parallel. This may greatly reduce
the computational cost for the application of the inverse preconditioner to 1 or
2 vector solves per block column, which is comparable to the block triangular
preconditioners.

4. During the “sparsification” of the inverse formula for the MHD model in Chap-
ter 3, we drop block matrices based on the mesh order. However, depending on
the magnitude of the non-dimensional parameters (ν, νm or κ) different “spar-
sification” may be used. Thus, it would be possible to design a preconditioning
approach based on non-dimensional parameters setup for a specific problem in
addition to a “black-box” approach.

5. For the Maxwell example in Chapter 4, we solve the preconditioner to a tolerance.
It may be possible to reduce the overall computational time by loosening the linear
solver’s tolerance and applying an inexact solution procedure.

85

Bibliography

[1] D. J. Acheson. Elementary fluid dynamics. Oxford Applied Mathematics and
Computing Science Series. The Clarendon Press, Oxford University Press, New
York, 1990.

[2] J. H. Adler, T. R. Benson, E. C. Cyr, S. P. MacLachlan, and R. S. Tuminaro.
Monolithic multigrid methods for two-dimensional resistive magnetohydrodynam-
ics. SIAM Journal on Scientific Computing, 38(1):B1–B24, 2016.

[3] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov,
R. Gassmoeller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-
P. Pelteret, B. Turcksin, and D. Wells. The deal.II library, version 9.0. Journal
of Numerical Mathematics, 2018, accepted.

[4] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A Fully Asynchronous
Multifrontal Solver Using Distributed Dynamic Scheduling. SIAM Journal on
Matrix Analysis and Applications, 23(1):15–41, 2001.

[5] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid schedul-
ing for the parallel solution of linear systems. Parallel Computing, 32(2):136–156,
2006.

[6] F. Armero and J. C. Simo. Long-term dissipativity of time-stepping algorithms
for an abstract evolution equation with applications to the incompressible MHD
and Navier-Stokes equations. Computer Methods in Applied Mechanics and En-
gineering, 131(1):41–90, 1996.

[7] S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D.
Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and
H. Zhang. PETSc User’s Manual. Technical Report ANL-95/11 - Revision 3.4,
Argonne National Laboratory, 2013.

[8] S. Balay, W. D. Gropp, L. Cu. McInnes, and B. F. Smith. Efficient management
of parallelism in object oriented numerical software libraries. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, "Modern Software Tools in Scientific
Computing", pages 163–202. Birkhäuser Press, 1997.

[9] S. M. Balay, S. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D.
Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and
H. Zhang. PETSc Web page. http://www.mcs.anl.gov/petsc, 2014.

86

[10] M. Benzi, G. Golub, and J. Liesen. Numerical solution of saddle point problems.
Acta Numerica, 14:1–137, 2005.

[11] L. Bergamaschi, M. Ferronato, and G. Gambolati. Mixed Constraint Precondi-
tioners for the iterative solution of FE coupled consolidation equations. Journal
of Computational Physics, 227(23):9885 – 9897, 2008.

[12] L. Bergamaschi, J. Gondzio, M. Venturin, and G. Zilli. Inexact constraint pre-
conditioners for linear systems arising in interior point methods. Computational
Optimization and Applications, 36:137–147, 2007.

[13] M. Blatt, A. Burchardt, A. Dedner, C. Engwer, J. Fahlke, B. Flemisch, C. Gers-
bacher, C. Gräser, F. Gruber, C. Grüninger, D. Kempf, R. Klöfkorn, T. Malkmus,
S. Müthing, M. Nolte, M. Piatkowski, and O. Sander. The Distributed and Unified
Numerics Environment, Version 2.4. Archive of Numerical Software, 4(100):13–29,
2016.

[14] P. B. Bochev, C. J. Garasi, J. J. Hu, A. C. Robinson, and R. S. Tuminaro.
An improved algebraic multigrid method for solving Maxwell’s equations. SIAM
Journal on Scientific Computing, 25(2):623–642, 2003.

[15] N. Bootland, A. Bentley, C. Kees, and A. Wathen. Preconditioners for Two-Phase
Incompressible Navier-Stokes Flow. arXiv preprint arXiv:1710.08779, 2017.

[16] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

[17] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid
Mechanics. Cambridge University Press, third edition, 2007.

[18] J. H. Bramble and J. E. Pasciak. A Preconditioning Technique for Indefinite
Systems Resulting from Mixed Approximations of Elliptic Problems. Mathematics
of Computation, 50(181):1–17, 1988.

[19] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-
Verlag New York, Inc., New York, NY, USA, 1991.

[20] L. Chacón. An optimal, parallel, fully implicit newton–krylov solver for
three-dimensional viscoresistive magnetohydrodynamics. Physics of Plasmas,
15(5):056103, 2008.

[21] L. Chacón. Scalable parallel implicit solvers for 3D magnetohydrodynamics. Jour-
nal of Physics: Conference Series, 125(1):012041, 2008.

[22] L. Chacón, D. A. Knoll, and J. M. Finn. An Implicit, Nonlinear Reduced Resistive
MHD Solver. Journal of Computational Physics, 178(1):15 – 36, 2002.

[23] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887:
CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate.
ACM Transactions on Mathematical Software, 35(3):22:1–22:14, October 2008.

87

[24] Z. Chen, Q. Du, and J. Zou. Finite element methods with matching and non-
matching meshes for Maxwell equations with discontinuous coefficients. SIAM
Journal on Numerical Analysis, 37(5):1542–1570, 2000.

[25] Clawpack Development Team. Clawpack software, 2018. Version 5.5.0.

[26] B. Cockburn, G. Kanschat, and D. Schötzau. A note on discontinuous Galerkin
divergence-free solutions of the Navier-Stokes equations. Journal of Scientific
Computing, 31(1-2):61–73, 2007.

[27] R. Cockett, S. Kang, L. J. Heagy, A. Pidlisecky, and D. W. Oldenburg. Simpeg:
An open source framework for simulation and gradient based parameter estima-
tion in geophysical applications. Computers & Geosciences, 85:142–154, 2015.

[28] M. Costabel and M. Dauge. Singularities of electromagnetic fields in polyhedral
domains. Archive for Rational Mechanics and Analysis, 151(3):221–276, 2000.

[29] E. C. Cyr, J. N. Shadid, R. S. Tuminaro, R. P. Pawlowski, and L. Chacón.
A new approximate block factorization preconditioner for two-dimensional in-
compressible (reduced) resistive MHD. SIAM Journal on Scientific Computing,
35(3):B701–B730, 2013.

[30] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo. Parallel distributed comput-
ing using python. Advances in Water Resources, 34(9):1124 – 1139, 2011. New
Computational Methods and Software Tools.

[31] T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern mul-
tifrontal method. ACM Transactions on Mathematical Software, 30(2):165–195,
June 2004.

[32] T. A. Davis and E. Palamadai Natarajan. Algorithm 907: KLU, A Direct Sparse
Solver for Circuit Simulation Problems. ACM Transactions on Mathematical Soft-
ware, 37(3):36:1–36:17, September 2010.

[33] L. Demkowicz and L. Vardapetyan. Modelling of electromagnetic absorption/scat-
tering problems using hp-adaptive finite elements. Computer Methods in Applied
Mechanics and Engineering, 152(1):103–124, 1998.

[34] C. Durazzi and V. Ruggiero. Indefinitely preconditioned conjugate gradient
method for large sparse equality and inequality constrained quadratic problems.
Numerical Linear Algebra with Applications, 10(8):673–688, 2003.

[35] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and Fast Iterative
Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University
Press, second edition, 2014.

[36] R. Estrin and C. Greif. On Nonsingular Saddle-point Systems with a Maximally
Rank Deficient Leading Block. SIAM Journal on Matrix Analysis and Applica-
tions, 36(2):367–384, 2015.

88

[37] R. Falgout, A. Barker, H. Gahvari, T. Kolev, R. Li, D. Osei-Kuffuor, J. Schroder,
P. Vassilevski, L. Wang, and U. M. Yang. hypre: High Performance Precondi-
tioners. Lawrence Livermore National Laboratory. http://www.llnl.gov/CASC/
hypre/.

[38] R. D. Falgout and U. Yang. hypre: A library of high performance precondition-
ers. In Computational Science — ICCS 2002, volume 2331 of Lecture Notes in
Computer Science, pages 632–641. Springer Berlin Heidelberg, 2002.

[39] R. Fletcher. Conjugate gradient methods for indefinite systems. In G.Alistair
Watson, editor, Numerical Analysis, volume 506 of Lecture Notes in Mathematics,
pages 73–89. Springer Berlin Heidelberg, 1976.

[40] J. D. Foley. Constructive Solid Geometry. Computer Graphics: Principles and
Practice, Addison-Wesley Professional, pages 557–558, 1996.

[41] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for
non-Hermitian linear systems. Numerische Mathematik, 60(3):315–339, 1991.

[42] R. Eymardand T. Gallouët and R. Herbin. Finite volume methods. Handbook of
numerical analysis, 7:713–1018, 2000.

[43] M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G. Sala. Ml 5.0
smoothed aggregation user’s guide. Technical Report SAND2006-2649, Sandia
National Laboratories, 2006.

[44] J.-F. Gerbeau. A stabilized finite element method for the incompressible magne-
tohydrodynamic equations. Numerische Mathematik, 87(1):83–111, 2000.

[45] J.-F. Gerbeau, C. Le. Bris, and T. Lelièvre. Mathematical Methods for the Mag-
netohydrodynamics of Liquid Metals. Oxford University Press, 2006.

[46] N. Gould, M. Hribar, and J. Nocedal. On the solution of equality constrained
quadratic programming problems arising in optimization. SIAM Journal on Sci-
entific Computing, 23(4):1376–1395, 2001.

[47] N. Gould, D. Orban, and T. Rees. Projected Krylov methods for saddle-point
systems. SIAM Journal on Matrix Analysis and Applications, 35(4):1329–1343,
2014.

[48] A. Greenbaum. Iterative methods for solving linear systems, volume 17 of Frontiers
in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1997.

[49] C. Greif, D. Li, D. Schötzau, and X. Wei. A mixed finite element method
with exactly divergence-free velocities for incompressible magnetohydrodynamics.
Computer Methods in Applied Mechanics and Engineering, 199(45-48):2840–2855,
2010.

89

http://www.llnl.gov/CASC/hypre/
http://www.llnl.gov/CASC/hypre/

[50] C. Greif and D. Schötzau. Preconditioners for saddle point linear systems with
highly singular (1, 1) blocks. Electronic Transactions on Numerical Analysis,
Special Volume on Saddle Point Problems, 22:114–121, 2006.

[51] C. Greif and D. Schötzau. Preconditioners for the discretized time-harmonic
Maxwell equations in mixed form. Numerical Linear Algebra with Applications,
14(4):281–297, 2007.

[52] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[53] M. D. Gunzburger, A. J. Meir, and J. S. Peterson. On the existence, uniqueness,
and finite element approximation of solutions of the equations of stationary, in-
compressible magnetohydrodynamics. Mathematics of Computation, 56(194):523–
563, 1991.

[54] F. Hecht. New development in FreeFem++. Journal of Numerical Mathematics,
20(3-4):251–265, 2012.

[55] P. Hénon, P. Ramet, and J. Roman. PaStiX: A Parallel Sparse Direct Solver Based
on a Static Scheduling for Mixed 1D/2D Block Distributions. In Proceedings of
the 15 IPDPS 2000 Workshops on Parallel and Distributed Processing, IPDPS
’00, pages 519–527, London, UK, 2000. Springer-Verlag.

[56] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq,
K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro,
J. Willenbring, and A. Williams. An Overview of Trilinos. Technical Report
SAND2003-2927, Sandia National Laboratories, 2003.

[57] M. A. Heroux and J. M. Willenbring. Trilinos Users Guide. Technical Report
SAND2003-2952, Sandia National Laboratories, 2003.

[58] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 49:409–436,
1952.

[59] R. Hiptmair. Multigrid method for Maxwell’s equations. SIAM Journal on Nu-
merical Analysis, 36(1):204–225, 1999.

[60] R. Hiptmair. Finite elements in computational electromagnetism. Acta Numerica,
11:237–339, 2002.

[61] R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in H(curl) and
H(div) spaces. SIAM Journal on Numerical Analysis, 45(6):2483–2509, 2007.

[62] I. Ipsen. A note on preconditioning nonsymmetric matrices. SIAM Journal on
Scientific Computing, 23(3):1050–1051, 2001.

[63] J. Jones and B. Lee. A multigrid method for variable coefficient Maxwell’s equa-
tions. SIAM Journal on Scientific Computing, 27(5):1689–1708, 2006.

90

[64] G. Karypis and K. Kumar. A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs. SIAM Journal of Scientific Computing, 20(1):359–
392, December 1998.

[65] B. Kehlet. Mshr - Mesh Generation in FEniCS. Talk at FEniCS’14 workshop in
Paris, June 2014.

[66] R. Keppens, G. Tóth, M. A. Botchev, and A. van der Ploeg. Implicit and semi-
implicit schemes: algorithms. International Journal for Numerical Methods in
Fluids, 30(3):335–352, 1999.

[67] T. V. Kolev and P. Vassilevski. Parallel auxiliary space AMG for H(curl) prob-
lems. Journal of Computational Mathematics, 27(5):604–623, 2009.

[68] J. Korzak. Eigenvalue relations and conditions of matrices arising in linear pro-
gramming. Computing. Archives for Scientific Computing, 62(1):45–54, 1999.

[69] P. Krzyzanowski. On block preconditioners for saddle point problems with sin-
gular or indefinite (1, 1) block. Numerical Linear Algebra with Applications,
18:123–140, 2011.

[70] R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts
in Applied Mathematics. Cambridge University Press, Cambridge, 2002.

[71] D. Li. Numerical Solution of the Time-Harmonic Maxwell equations and In-
compressible Magnetohydrodynamics Problems. PhD thesis, University of British
Columbia, 2010.

[72] D. Li, C. Greif, and D. Schötzau. Parallel numerical solution of the time-harmonic
Maxwell equations in mixed form. Numerical Linear Algebra with Applications,
19(3):525–539, 2012.

[73] X. S. Li. An overview of SuperLU: Algorithms, implementation, and user interface.
ACM Transactions on Mathematical Software, 31(3):302–325, 2005.

[74] X.S. Li, J. W. Demmel, J. R. Gilbert, L. Grigori, M. Shao, and I. Yamazaki. Su-
perLU Users’ Guide. Technical Report LBNL-44289, Lawrence Berkeley National
Laboratory, 1999.

[75] J. Liesen and B. N. Parlett. On nonsymmetric saddle point matrices that allow
conjugate gradient iterations. Numerische Mathematik, 108(4):605–624, 2008.

[76] P. T. Lin, J. N. Shadid, R. S. Tuminaro, M. Sala, G. L. Hennigan, and R. P.
Pawlowski. A parallel fully coupled algebraic multilevel preconditioner applied to
multiphysics PDE applications: drift-diffusion, flow/transport/reaction, resistive
MHD. International Journal for Numerical Methods in Fluids, 64(10-12):1148–
1179, 2010.

[77] A. Logg, K. A. Mardal, and G. N. Wells, editors. Automated solution of dif-
ferential equations by the finite element method, volume 84 of Lecture Notes in
Computational Science and Engineering. Springer, Heidelberg, 2012.

91

[78] P. Monk. Finite Element Methods for Maxwell’s Equations. Oxford University
Press, 2003.

[79] K. W. Morton and D. F. Mayers. Numerical solution of partial differential equa-
tions. Cambridge University Press, Cambridge, second edition, 2005. An intro-
duction.

[80] M. F. Murphy, G. H. Golub, and A. J. Wathen. A note on preconditioning for
indefinite linear systems. SIAM Journal on Scientific Computing, 21(6):1969–
1972, 2000.

[81] J. C. Nédélec. Mixed finite elements in R3. Numerische Mathematik, 35(3):315–
341, 1980.

[82] Y. Notay. Flexible Conjugate Gradients. SIAM Journal on Scientific Computing,
22(4):1444–1460, 2000.

[83] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM Journal on Numerical Analysis, 12(4):617–629, 1975.

[84] I. Perugia, D. Schötzau, and P. Monk. Stabilized interior penalty methods for the
time-harmonic Maxwell equations. Computer Methods in Applied Mechanics and
Engineering, 191(41-42):4675–4697, 2002.

[85] E. G. Phillips, H. C. Elman, E. C. Cyr, J. N. Shadid, and R. P. Pawlowski. A
block preconditioner for an exact penalty formulation for stationary MHD. SIAM
Journal on Scientific Computing, 36(6):B930–B951, 2014.

[86] E. G. Phillips, H. C. Elman, E. C. Cyr, J. N. Shadid, and R. P. Pawlowski.
Block Preconditioners for Stable Mixed Nodal and Edge finite element Represen-
tations of Incompressible Resistive MHD. SIAM Journal on Scientific Computing,
38(6):B1009–B1031, 2016.

[87] C. E. Powell and D. Silvester. Optimal preconditioning for Raviart-Thomas mixed
formulation of second-order elliptic problems. SIAM Journal on Matrix Analysis
and Applications, 25(3):718–738, 2003.

[88] S. Reitzinger and J. Schöberl. An algebraic multigrid method for finite element
discretizations with edge elements. Numerical Linear Algebra with Applications,
9(3):223–238, 2002.

[89] M. Rivara. Mesh Refinement Processes Based on the Generalized Bisection of
Simplices. SIAM Journal on Numerical Analysis, 21(3):604–613, 1984.

[90] P. H. Roberts. An Introduction to Magnetohydrodynamics. Longmans, London,
1967.

[91] M. Rozlozník and V. Simoncini. Krylov Subspace Methods for Saddle Point
Problems with Indefinite Preconditioning. SIAM Journal on Matrix Analysis and
Applications, 24(2):368–391, 2002.

92

[92] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal
on Scientific Computing, 14(2):461–469, 1993.

[93] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA,
Second edition, 2003.

[94] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical
Computing, 7(3):856–869, 1986.

[95] D. Schötzau. Mixed finite element methods for stationary incompressible
magneto–hydrodynamics. Numerische Mathematik, 96(4):771–800, 2004.

[96] J. N. Shadid, R. P. Pawlowski, J. W. Banks, L. Chacón, P. T. Lin, and R. S. Tumi-
naro. Towards a scalable fully-implicit fully-coupled resistive MHD formulation
with stabilized FE methods. Journal of Computational Physics, 229(20):7649–
7671, 2010.

[97] J. N. Shadid, R. P. Pawlowski, E. C. Cyr, R. S. Tuminaro, L. Chacón, and P. D.
Weber. Scalable implicit incompressible resistive MHD with stabilized FE and
fully-coupled Newton-Krylov-AMG. Computer Methods in Applied Mechanics and
Engineering, 304:1–25, 2016.

[98] H. Si. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Transactions on Mathematical Software, 41(2):11:1–11:36, February 2015.

[99] G. Strang and G. Fix. An analysis of the finite element method. Wellesley-
Cambridge Press, Wellesley, MA, second edition, 2008.

[100] J. C. Strikwerda. Finite difference schemes and partial differential equations.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second
edition, 2004.

[101] C. Taylor and P. Hood. A numerical solution of the Navier-Stokes equations using
the finite element technique. Computers and Fluids, 1(1):73–100, 1973.

[102] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,
4.12.1 edition, 2018.

[103] M. ur Rehman, C. Vuik, and G. Segal. SIMPLE-type preconditioners for the Oseen
problem. International Journal for Numerical Methods in Fluids, 61(4):432–452,
2009.

[104] H. A. Van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-
CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific
and Statistical Computing, 13(2):631–644, 1992.

[105] S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in prim-
itive variables. Journal of Computational Physics, 65(1):138–158, 1986.

93

[106] L. Vardapetyan and L. Demkowicz. hp-adaptive finite elements in electromagnet-
ics. Computer Methods in Applied Mechanics and Engineering, 169(3-4):331–344,
1999.

[107] A. J. Wathen. Realistic eigenvalue bounds for the Galerkin mass matrix. IMA
Journal of Numerical Analysis, 7(4):449–457, 1987.

[108] A. J. Wathen. Preconditioning. Acta Numerica, 24:329–376, 2015.

[109] M. Wathen. Iterative Solution of a Mixed Finite Element Discretisation of an
Incompressible Magnetohydrodynamics Problem. Master’s thesis, University of
British Columbia, 2014.

[110] M. Wathen, C. Greif, and D. Schötzau. Preconditioners for Mixed Finite Element
Discretizations of Incompressible MHD Equations. SIAM Journal on Scientific
Computing, 39(6):A2993–A3013, 2017.

[111] X. Wei. Mixed discontinuous Galerkin finite element methods for incompressible
magnetohydrodynamics. PhD thesis, University of British Columbia, 2011.

[112] S. L. Xiaoye and J. W. Demmel. SuperLU_DIST: A Scalable Distributed-Memory
Sparse Direct Solver for Unsymmetric Linear Systems. ACM Transactions on
Mathematical Software, 29(2):110–140, June 2003.

[113] J. Xu. The auxiliary space method and optimal multigrid preconditioning tech-
niques for unstructured grids. Computing, 56(3):215–235, 1996.

94

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Programs
	Acknowledgements
	Dedication
	Introduction
	Model problem
	Incompressible magnetohydrodynamics
	Navier-Stokes equations
	Maxwell's equations

	Finite element discretization of PDEs
	Laplacian example
	Mixed discretizations of the model problems

	Iterative solution of sparse linear systems
	Krylov subspace methods
	Preconditioning
	Review of preconditioners for saddle-point systems

	Numerical software
	PDE discretization: FEniCS
	Solution of the linear system: PETSc

	Outline and contributions
	Notation

	Preconditioners for Mixed Finite Element Discretizations of Incompressible MHD Equations
	Discretization
	Mixed finite element approximation
	Picard iteration
	Decoupling
	The linear systems

	Review of preconditioning techniques for the sub-problems
	Fluid flow preconditioner
	Maxwell preconditioner

	Preconditioners for the MHD system
	Reordering
	From an ideal to a practical preconditioner
	Implementation

	Numerical results
	2D smooth solution
	2D smooth solution parameter tests
	2D smooth solution on L-shaped domain
	2D singular solution on L-shaped domain
	2D Hartmann flow
	3D smooth solution

	An Approximate Inverse-Based Preconditioner for Incompressible Magnetohydrodynamics
	Newton's method discretization of the MHD model
	A new formula for the inverse of the MHD coefficient matrix
	A new approximate inverse-based preconditioner
	A sparse approximation of the Schur complement
	A practical preconditioner
	Spectral analysis

	A block triangular preconditioner
	Numerical experiments
	3D Cavity driven flow
	Fichera corner
	MHD generator

	Conjugate gradient for nonsingular saddle-point systems with a maximally rank-deficient leading block
	Problem statement
	Krylov Subspace
	Null-space decoupling
	Eigenvalue Analysis
	Numerical Experiments
	Krylov Subspace Solver Test
	Divergence and Non-Divergence Free Right-Hand-Side
	Variable Coefficients
	Fichera Corner Problem
	Gear Domain

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

