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Abstract 

 

The adaptive immune system is a complex network of cells working towards a common 

goal: detection and elimination of foreign cells that can harm the host. In cancer, 

malignant cells acquire mutations which can appear foreign to the adaptive immune 

system. The immune cells most directly involved in destruction of cancer cells are CD8+ 

T cells, using their T cell receptor (TCR) to recognize mutated peptides presented on 

cancer cells in the context of class I Major Histocompatibility Complex (MHC) molecules 

(pMHC). Immunogenomics methods offer ways to interrogate this TCR-pMHC 

interaction using genomics data. 

The aim of this thesis is to adapt and apply novel and existing immunoinformatic 

methods to cancer datasets to identify relationships between the immune system and 

cancer in a pan-cancer context. This involves prediction of cancer neoantigens derived 

from single nucleotide variants (SNVs) from tumours, and correlation of this neoantigen 

burden with outcomes and markers of immune inhibition. It involves extraction of TCR 

sequences from RNA-seq datasets to gain value-added information from these existing 

datasets, with demonstrated utility in solid tumours and lymphomas. Finally, it defines 

and explores the size of the self-immunopeptidome to classify individuals based on their 

ability to present peptides on class I MHC molecules.  

I show that T cell infiltration of solid tumours correlates with improved outcomes, 

neoantigen load, but also markers of T cell inhibition, suggesting that these individuals 

would benefit from checkpoint blockade therapy. In established tumours, the T cell 

repertoire is not clonal, and among the most abundant T cells in the tumour are viral-

specific T cells also found in the normal repertoire. This information is obtained directly 

from existing RNA-seq datasets of tumours. When applied to RNA-seq of sorted T cell 

populations, clonally expanded T cells are detectable by their TCR, and alpha-beta 

pairing can be inferred. The self-immunopeptidome can be used to predict neoantigen 

load and is used to infer signatures of neoantigen immunogenicity. This thesis 

contributes towards a better understanding of the interaction between T cells and 

cancer cells, which can inform future strategies to improve immunotherapies in cancer.  
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Lay Summary 

 

The human immune system is capable of detecting and responding to a wide variety of 

threats, recognizing when a cell does not belong to the body. Cancer cells gain 

mutations which can be recognized by the immune system as foreign. When this 

happens, the immune system will attack these cells, attempting to kill them. This 

interaction is directed by special receptors on the immune cells which can bind to 

mutated proteins on the cancer cells. In this thesis, I use computational methods to 

make predictions from DNA sequence datasets from thousands of cancer patients to 

learn about these immune cell receptors and the mutations they target. I predict which 

mutations will be targeted by an immune cell, and how this predicts survival. By better 

understanding how these immune cells interact with cancer cells, we can decide which 

cancer treatments will have the best chance of success for a specific individual. 
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Chapter 1: Introduction 

The human adaptive immune system is a complex network of cells working towards a 

common goal: detection and elimination of foreign cells that can harm the host. One of 

the hallmarks of cancer is genomic instability, allowing these cells to have unrestricted 

growth. A by-product of this genomic instability is that immune cells can recognize these 

cancerous cells as non-self and can eliminate them. However, a game of cat-and-

mouse takes place as selective pressures on the cancer cells allow them to evolve 

mechanisms to evade the immune system. Within this thesis, I adapt and apply novel 

and existing immunoinformatic methods to existing cancer datasets to identify general 

patterns and relationships between the class I immune system and cancer in a pan-

cancer context, not dependent on tumour type. These findings contribute towards a 

better understanding of the interaction between T cells and cancer cells, which can 

inform future strategies to improve immunotherapies in cancer. 

Within this introductory chapter, I review the existing literature and motivations for 

pursuing novel ways to interrogate the TCR-pMHC interaction computationally. Firstly, 

fundamentals of the adaptive immune system are reviewed, with emphasis on the class 

I MHC presentation pathways and T cell recognition of these presented antigens. Next, I 

review the interaction between cancer cells and immune cells in the context of this 

adaptive immunity, and how this interaction can be leveraged for cancer 

immunotherapies. I then review the existing immunoinformatic methods and strategies 

that can be applied to genomic data to uncover information regarding TCRs and 

pMHCs, and tools to predict immunogenicity of presented mutant peptides in cancer. 

Finally, the overall layout and goals of this thesis are overviewed. 

1.1 The adaptive immune system 

The adaptive immune system evolved to protect vertebrates from foreign pathogens or 

cells containing infectious agents, such as viruses. If this system identifies something on 

the surface of a cell as foreign, this presenting cell will be killed. These cell surface 

molecules can include membrane proteins which naturally exist on the surface of the 

cell, intracellular proteins which are degraded, processed, and presented on Major 

Histocompatibility Complex (MHC) class I molecules via antigen presentation pathway, 
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or extracellular proteins that are taken up by antigen presentation cells and shuttled into 

the antigen presentation pathway for display on MHC class II molecules. Proteins in 

their native form are recognized by B cells, whereas MHC-presented peptides derived 

from digested proteins are recognized by T cells (see 1.1.2 MHC antigen presentation). 

Of the two classes of MHC presentation, class I is present on all cell types and can 

result in direct cell death from interaction between the presenting target cell and an 

effector T cell. The work presented in this thesis focuses on this axis. 

Cytotoxic T lymphocytes (CTLs) are the immune cells most directly responsible for 

antigen recognition and cell killing, having a cell-surface T cell receptor (TCR) which 

binds the peptide-MHC (pMHC) complex of other cells [1,2], and cytolytic granules 

which release upon pMHC recognition. Once activated (see 1.1.6 T cell priming) CTLs 

circulate through the body, surveying the pMHCs presented on cells. If there is sufficient 

engagement between TCR and pMHC, an immunological synapse is formed between 

the two cells, and an as-of-yet undetermined mechanism occurs resulting in initiation of 

the T cell signalling cascade [3]. This cascade causes the release of granzyme and 

perforin by the T cell into the immunological synapse, which allows granzyme to enter 

the target cell and ultimately cause cell death in the target cell [4]. 

1.1.1 T cell receptor rearrangement 

The TCR determines the antigen specificity of the cell, and as such, there must exist a 

massive TCR sequence diversity within every individual for the immune system to be 

effective against a broad range of targets [5]. How is this TCR sequence diversity 

achieved? The TCR consists of a dimer of two subunits, or chains: alpha and beta (the 

most common), or gamma and delta [6]. Alpha and gamma chains are comprised of 

(V)ariable, (J)oining, and (C)onstant gene segments, whereas beta and delta chains 

have V, (D)iversity, J, and C gene segments. These gene segments are somatically 

recombined during T cell development in the thymus, resulting in a random combination 

of V, (D), J, and C genes (Figure 1.1) [7]. Additionally, at the gene junctions between 

the V-(D)-J genes there is random nucleotide deletion and non-templated nucleotide 

addition, further increasing the potential sequence diversity from what is encoded in the 

genome [8,9]. 
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Figure 1.1: VDJ gene recombination of genes at the TCR beta locus. First, one of two D genes is 

joined with one of 13 J genes, followed by joining of DJ to one of 54 V genes. Nucleotides are randomly 

deleted and inserted at the DJ and VD junctions (depicted by the colour gradient). Finally, the recombined 

VDJ is joined to one of two C genes. The CDR3 region encompasses the end of the V gene to the 

beginning of the J gene. Adapted from [10]. 

The region from the end of the V gene to the beginning of the J gene is known as 

the complementarity determining region 3 (CDR3), and is the segment of the TCR that 

is most frequently studied as it encodes the hypervariable protein loop that contacts the 

MHC-presented peptide (Figure 1.2A). The N- and C-terminal ends of the CDR3 have 

low variability as they are encoded by the germline V and J gene segments, rarely 

affected by the random nucleotide deletion [11]. Moving towards the middle of the 

CDR3 results in increased deviation from the germline sequence. These conserved 

boundaries of the CDR3 are useful informatically as they act as landmarks to delineate 

the edges of the CDR3 in sequence data (see 1.3.1 TCR annotation). 



4 

 

 

Figure 1.2: CDR loops of the T cell receptor. (A) Crystal structure of an alpha-beta TCR with coloured 

CDR loops. (B) HLA-A*02:01 (grey) presenting peptide (stick model), and coloured regions of interaction 

with TCR CDR loops. The CDR3 of the alpha and beta chain contact the peptide. Adapted by permission 

from Springer Nature: Nature Reviews Immunology "Why must T cells be cross-reactive", Andrew K. 

Sewell, Copyright 2012. [12] 

 Within the TCR dimer, the CDR3 of the alpha and beta chains work together to 

scan the MHC-presented peptide (Figure 1.2B). Historically, CDR3-beta is targeted to 

be studied for high-throughput sequencing experiments due to the increased potential 

diversity (due to having a D gene) and allelic exclusion at the beta locus typically 

resulting in only a single TCR-beta chain being expressed per cell [13,14], however, it is 

important to keep in mind that the TCR recognition is dependent on both alpha and beta 

chains, and knowledge of the beta chain alone is not sufficient to infer binding 

specificity. Recent advances in methods for TCR-seq sample preparation with the goal 

of determining paired TCR chains combined with appropriate data analysis [15], and in 

single cell sequencing technologies [16], provide paired information on both the alpha 

and beta chains in a given T cell. 
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1.1.2 MHC antigen presentation 

There are two classes of antigen presentation: class I and class II. Class I deals with 

presentation of intracellular proteins and occurs in almost all cells, whereas class II only 

occurs in professional antigen-presenting cells (APCs) such as dendritic cells, and 

presents extracellular proteins that have been endocytosed by these APCs. As class I 

presentation results in direct interaction between the presenting target cell with an 

effector CTL, the work in this thesis focuses on this TCR-pMHC axis. Within every cell 

of the body, proteins are continuously being degraded in the cytosol, and are replaced 

with newly synthesized ones. The degradation products of this process enter the class I 

antigen presentation pathway, resulting in the short peptide fragments being displayed 

on class I MHC molecules [17,18]. This degradation is primarily done by the 26S 

proteasome, however, upon stimulation with interferon gamma (as during an active 

immune response), subunits within the 26S proteasome are exchanged to form the 

immunoproteasome. This complex favours the creation of short peptide fragments with 

hydrophobic C-terminal ends, increasing the generation of peptides able to bind MHC 

[19]. The peptide fragments generated by these proteasomes are transported into the 

endoplasmic reticulum (ER) by the transporter associated with antigen presentation 

(TAP) [20]. Within the ER, these peptides are further digested from their N-terminal end 

by endoplasmic reticulum aminopeptidase associated with antigen processing (ERAAP) 

[21], and are loaded onto MHC molecules. These peptide-MHC complexes then migrate 

to the cell surface to be displayed for surveillance by T cells. 

 While the protein source for most of these peptides are mainly either old proteins 

marked for degradation via ubiquitination or defective ribosomal products (DRiPs), there 

are many cases where presented peptides do not originate from canonical coding 

sequence. These include so-called cryptic MHC I-associated peptides generated from 

translation of non-coding regions and translation of a non-canonical reading frames [22]. 

Additionally, it has been reported that peptide splicing can occur within the proteasome, 

generating peptides that do not derive from a continuous stretch of any coding 

sequence [23–25]. Due to the stochastic nature in the generation of these peptides, and 

our incomplete understanding of the rules governing their creation, their occurrence is 

not amenable to prediction by algorithms. 
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1.1.3 Peptide-MHC binding 

The binding of a short peptide to an MHC molecule is highly dependent on the MHC 

molecule – itself encoded by the Human Leukocyte Antigen (HLA) genes. The HLA 

locus is the most polymorphic region of the human genome [26], and each HLA allele 

yields an MHC with distinct binding characteristics [27], resulting in only a subset of 

peptides having the ability to bind any given MHC molecule. This subset is potentially 

immunogenic: it is presented on MHC and may generate a T cell response. 

 Peptides bind within the binding groove of the MHC. Most of the variability within 

HLA sequences cause changes within this binding groove, altering which peptides are 

able to bind [28]. For class I MHC molecules, the ends of the binding groove are closed, 

restricting the length of peptides that can be presented. The typical lengths of MHC I-

presented peptides are 8-11 amino acids, with the most common length (> 73 %) being 

9 amino acids [29,30]. Typically, there are two positions within the presented peptide 

that interact with pockets within the MHC binding groove. At the N-terminal end, the 

anchor residue is at position 2. The C-terminal anchor occurs right at the C-terminal end 

(for example, position 9 for a 9mer peptide) [31]. The peptide sequence between the 

two anchors may bulge out from the binding groove, depending on the length of the 

peptide [32] (Figure 1.3). This region of the presented peptide is readily available for 

surveying by the TCR. 

 

Figure 1.3: Short peptides in the MHC-I binding groove. Longer peptides exhibit greater bulging away 

from the MHC. Adapted by permission from Springer Nature: Nature Reviews Immunology "Why must T 

cells be cross-reactive", Andrew K. Sewell, Copyright 2012. [12] 
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1.1.4 Immunogenicity and immunodominance 

Non-self peptides which are processed and presented on MHC molecules may be 

immunogenic – able to produce an immune response. During a viral infection there may 

be many peptides which are potentially immunogenic, however, it has been observed 

that only a small subset of these will provoke an immune response [33–35]. These 

peptides are immunodominant. The difference between immunogenicity and 

immunodominance is subtle – immunogenicity refers to the potential to generate an 

immune response whereas immunodominance refers to the peptide which actually 

drives the response. Since immunodominance is dependent on there being a T cell 

present which can recognize and respond to the peptide, two individuals with the same 

infection and same MHC type may have different immunodominant peptides [36]. Some 

of the factors determining which peptides will be immunodominant, reviewed by Akram 

& Inman [37], include prior viral infections [38], frequency of naïve T cells and the rate of 

their clonal expansion [39], and TCR-pMHC affinity [40]. Since prediction of 

immunodominance would require omniscient knowledge of all T cells in a sample as 

well as prior infections that have generated immune memory, immunogenicity 

predictions are typically used in lieu of attempting to predict immunodominance. This is 

true within this thesis, where the term “immunogenic” is used to describe peptides which 

are predicted to have the potential to generate an immune response given the available 

data. 

1.1.5 T cell development 

The sequence diversity of the TCR repertoire (the set of all TCR sequences present in a 

sample) is limited during T cell development in the thymus to prevent T cell recognition 

of self-antigens. It was first postulated by Ehrlich that there exists a mechanism to avoid 

self-reactivity by lymphocytes [41]. It is now understood that within the thymic cortex 

and medulla, thymic epithelial cells (TECs) present self-peptides in the context of MHC. 

Due to the tissue-specificity of gene expression within the periphery, T cells which leave 

the thymus must not be self-reactive against any of the potential self-peptides they will 

encounter. To ensure this self-tolerance will exist, the presentation of self-antigens by 

TECs is promiscuous, deriving from genes throughout the entire genome and not solely 
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genes required to be expressed in thymic cells. This promiscuous expression is driven 

by the autoimmune regulator (AIRE) protein [42,43], resulting in non-tissue-specific 

clusters of genes within the genome being expressed. As developing T cells transit the 

thymus, only those that can bind to pMHC complexes (positive selection), yet do not 

strongly recognize self-peptides (negative selection), will survive. This ensures that all T 

cells exiting the thymus into the periphery are effective in surveying MHC-bound 

peptides, and do not contain any strong, self-reactive TCRs, as this could lead to auto-

immune disorders [44,45]. The resulting TCRs will have established central tolerance to 

the presented self-peptides present in that individual (the self-immunopeptidome). As 

TCR recombination is a stochastic event, and the set of self-peptides presented by 

TECs (the self-immunopeptidome) are dependent on a subject’s HLA alleles, the set of 

TCRs generated in two distinct individuals would not be expected to be the same. 

1.1.6 T cell priming 

Naïve T cells which have exited the thymus and circulate through the body need to be 

primed before they can mount a cytolytic response to antigen [46]. This priming is most 

commonly performed by professional APCs known as dendritic cells (DCs) [47–49]. 

DCs acquire proteins from sites of infection and return to lymph nodes to present 

antigens derived from these proteins to T cells [50,51]. These proteins may be the result 

of direct infection of the DC (by a virus) or endocytosed exogenous proteins from the 

environment. Exogenous proteins are canonically presented via the class II MHC 

presentation pathway, but DCs perform cross-presentation of these proteins, diverting 

some of them to the cytosol to be processed via the class I MHC presentation pathway 

for surveying by CD8+ T cells [52–54]. 

Naïve T cells require two signals to become effector cells. The first signal is 

recognition of pMHC on the surface of an APC, and typically takes place in the 

secondary lymphoid organs such as lymph nodes. The second signal is the binding of 

CD28 (on the T cell) by B7 molecules (CD80 or CD86, upregulated during infection) on 

the APC, resulting in massive clonal expansion of that T cell [55]. This expansion 

increases the ability of the immune system to detect that specific antigen at the time of 

infection. These activated cytotoxic T cells can then transit to the site of infection or 
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inflammation to attack the cells expressing these foreign antigens. Following clearance 

of the infection, most of these T cells die by apoptosis, but around 10 % remain as 

memory T cells, protecting against future infections by the same antigen [56]. At times 

when infection is not present, APCs will not express the B7 molecules. Naïve T cells 

which interact with self peptides presented on these APCs will become anergic, 

establishing peripheral tolerance to these self antigens [57,58]. 

1.1.7 T cell cross-reactivity 

Originally, it was theorized that a single TCR would only recognize a single target 

[59,60], though later theoretical calculations demonstrated that this was not feasible for 

sufficient protection from pathogens to exist [61]. After TCR rearrangement has 

occurred during development, the TCR of T cells is unchanged during the cell’s lifetime. 

Therefore, assuming a one-to-one relationship between TCR and antigen, upwards of 

1015 T cells would be required to recognize any of the possible foreign peptides, a 

number of T cells which would weigh over 500 kg [12]. This is clearly not the case, as 

the total number of T cells present in the human repertoire is closer to 1012, comfortably 

fitting inside the human body [62]. These observations led others to collect direct 

evidence of T cell cross-reactivity [63,64], generating an estimate that each T cell is 

capable of recognizing over one million distinct antigens [65,66]. These findings explain 

how the T cell repertoire present in an individual is able to offer protection against a vast 

space of possible foreign pathogens. 

1.1.8 T cell receptor repertoire 

T cells that have been primed by APCs due to an appropriate antigen being present will 

have undergone clonal expansion, greatly increasing the number of T cells with that 

specific TCR [55]. These clonal expansions alter the TCR repertoire present in the 

periphery, skewing the abundance of T cells with certain TCRs towards those that have 

recognized an antigen. By measuring the TCR repertoire, these clonally expanded T 

cells can be identified. Genomic approaches are used to provide a high-resolution view 

of the TCR repertoire. Specialized amplicon sequencing experiments (TCR-seq) are 

performed which first selectively amplify the CDR3 region of the TCR chain from RNA or 

DNA [11,67]. Subsequently, these amplicons are sequenced, and the resulting 
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sequence reads are annotated for the CDR3 region (see 1.3.1 TCR annotation). Studies 

interrogating the TCR repertoires of multiple individuals find minimal overlap between 

samples from different individuals [5]. Therefore, when clonally expanded TCRs are 

observed to be shared in multiple individuals, it is likely that they have been selected 

due to common antigens [68]. However, much like T cells being cross reactive against 

multiple antigens, it is also true that antigens can be recognized by multiple distinct T 

cells [69]. There is a many-to-many relationship between T cells and antigens, 

complicating the discovery of TCR-pMHC interactions via informatics-based approaches 

to analyze cancer datasets. The same antigen and TCR co-occurring in two distinct 

individuals, while possible, will occur at a low frequency. 

1.1.9 The self-immunopeptidome 

During T cell development, T cells are presented with self-peptides in the thymus. 

Depending on the six HLA class I alleles that a subject has, the set of self-peptides 

presented to T cells will vary. This set of self-peptides is known as the self-

immunopeptidome and is unique to each individual. The size of this set of self-peptides 

can vary considerably between different HLA alleles [70,71], therefore, the self-

immunopeptidome in one subject may be dramatically different than another subject 

with a different HLA genotype. The size and diversity of the self-immunopeptidome may 

influence the size and diversity of the TCR repertoire, and this may explain the ongoing 

hypothesis that there are “at-risk” HLA alleles. In theory, within the context of 

autoimmunity, a subject with a very large self-immunopeptidome will have a large 

number of self-pMHCs that need to be surveyed by T cells during development in the 

thymus, and there may be a higher risk of an auto-immune TCR escaping negative 

selection into the periphery simply due to this large number of self-pMHCs that need to 

be surveyed. In the context of cancer immunology, subjects with large self-

immunopeptidomes may have a greater chance of any given mutation being presented, 

leading to more effective elimination of these cells, resulting in any tumour that evades 

this selection being highly edited and non-immunogenic (having escaped the immune 

system). Conversely, it is also possible that a large self-immunopeptidome will result in 

a greatly restricted TCR repertoire during development, limiting the ability to recognize 
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foreign antigens in the periphery. It is likely that there is a balancing act for the optimal 

amount of peptide presentation; too few and the immune system will not be able to 

effectively detect foreign peptides, too many and the risk of autoimmune disease, risk of 

foreign peptides being lost in a sea of self-peptides, and risk of extreme selection on the 

TCR repertoire during negative selection will be too great [72,73]. The calculation of the 

self-immunopeptidome size, and its relation to cancer immunology, had not yet been 

explored (see Chapter 4: Neoantigen characteristics in the context of the complete 

predicted MHC class I self-immunopeptidome). 

1.2 Cancer immunology 

Cancer is the result of malignant cell transformation causing unrestricted growth [74]. 

Early independent studies by Ehrlich and Bashford were the first to demonstrate that the 

immune system may be involved in tumour cell growth, able to control growth when the 

burden of cancer cells is low, but being less effective on established tumours [75,76]. 

Later studies provided evidence that the adaptive immune response was involved, 

demonstrating that inoculation of tumour cells can be protective against future tumour 

development in chemically-induced tumours [77]. This suggested that the immune 

system was capable of surveying and creating memory of these cancer cells. The 

concept of immunosurveillance [78] was investigated in studies on immunodeficient 

mice (RAG2-/-), showing that these immunocompromised individuals had higher 

incidence of carcinogen-induced and spontaneous cancers than immunocompetent 

hosts, and these tumours were immunogenic when transplanted into immunocompetent 

hosts [79]. Further, tumours that exist in equilibrium with an immune system in an 

immunocompetent host will rapidly grow if that host becomes immunodeficient [80], 

demonstrating that the immune response is critical to prevent the development of these 

tumours. These studies highlighted the role the immune system has in shaping the 

tumour as it grows, selecting for cancer clones with reduced immunogenicity (see 1.2.4 

Cancer immunoediting and immune-evasion). 

Further evidence that the immune system plays an important role in cancer 

development can be seen in multiple case reports and studies looking at rates of cancer 

incidence in immunosuppressed transplant recipients [81–84], showing an increase in 
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the rate of non-infectious primary cancers in these individuals. Additionally, the 

incidence of infectious-based cancers is increased in individuals with 

immunodeficiencies due to HIV infection [85,86]. Finally, immunotherapies have been 

shown to regress tumours. The earliest recorded evidence of immunotherapies being 

used to treat cancers is from the Egyptian Ebers Papyrus (circa 1550 BC), which 

recommended treating tumours with a poultice followed by an incision [87], now 

understood to likely result in infection of the tumour generating an immune response 

and subsequent regression [88]. More modern evidence of immunotherapy having a 

beneficial effect on cancer was shown by Coley [89], creating a non-living bacterial 

vaccine for the treatment of sarcomas. Immunotherapies have since shown remarkable 

promise in the treatment of cancers (see 1.2.5 Immunotherapies). 

1.2.1 Cancer mutational profiles 

Most cancers are caused by somatic mutations (spontaneous changes to the genome 

that occur in a single cell). If a cell acquires one of these mutations in a key cancer-

related gene, it may allow this cell to grow without restriction, developing into a tumour 

[74]. Some mutations are recurrent, repeatedly occurring in a specific gene or position 

within a gene across many individuals. Others are sporadic, occurring more randomly 

throughout the genomes. Recurrent mutations in cancer are typically driver mutations, 

either resulting in loss of function of a tumour suppressor gene (such as TP53) or 

activating an oncogene (such as KRAS) [90,91]. These mutations drive the progression 

of the cancer, enabling further mutation and development. Passenger mutations do not 

necessarily confer any growth advantage to the cell, and in fact may result in reduced 

proliferative fitness [92]. The most common types of mutations are single nucleotide 

variants (SNVs) and small insertions or deletions (indels), though larger indels and gene 

fusions caused by structural variants are also prominent. The mutational load is variable 

both within and across different cancer types [93], as are the frequency of specific 

recurring mutations [94]. In predicting neoantigens, historically SNVs have been the 

focus. This is because the determination of the flanking protein sequence is trivial 

(unlike variants which cause frameshifts or larger structural changes), and a length-

matched wildtype peptide which differs only at the mutation site can be obtained. 
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1.2.2 T cell infiltration 

Tumour-infiltrating lymphocytes (TILs) are lymphocytes that have trafficked into the 

tumour tissue (Figure 1.4). These are mainly comprised of various subsets of CD3+ T 

cells [95]. These cells can help mount an immune response to the tumour (ie. CD8+ 

CTLs or CD4+ T helper cells [96]), or can be immunosuppressive (ie. FOXP3+ regulatory 

T cells [97]). Numerous studies have shown survival benefit in individuals harbouring 

“hot” tumours – those with large numbers of TILs, compared to those with “cold” 

tumours – having few TILs [98–100]. The mechanism underlying this survival benefit 

likely involves T cell recognition of cancer antigens – CTLs in the tumour can directly 

attack the cancer cells, responding to tumour-specific antigens (neoantigens) or tumour-

associated antigens (cancer-testis antigens).  

 

Figure 1.4: Immune infiltration within the tumour microenvironment. These infiltrating immune cells 

are mainly comprised of T cells (CTLs, memory T cells, helper T cells, and regulatory T cells), but can 

also include B cells and Natural Killer (NK) cells. Also present can be cells from the innate immune 

system. Adapted by permission from Springer Nature: Nature Reviews Genetics "Computational 

genomics tools for dissecting tumour–immune cell interactions", Hubert Hackl et al., Copyright 2016. [101] 
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1.2.3 Cancer neoantigens and cancer-testis antigens 

Cancer is a disease of genomic instability, yielding somatic changes to genomic 

sequence and aberrant expression of genes [74]. A non-synonymous mutation 

occurring in the coding region of a gene will result in an amino acid change in the 

protein encoded by that mutated gene. As with all proteins, this protein will be degraded 

through the class I antigen presentation pathway described above (see 1.1.2 MHC 

antigen presentation), and peptides containing the variant amino acids may be 

presented on the surface of the cell. There, it is potentially recognizable by T cells if it 

looks sufficiently different from the wild type “self” peptide, and will be a neoantigen. 

This type of antigen is said to be tumour-specific; an antigen that is unique to the 

tumour and does not occur in other tissues of the body. Alternatively, aberrant gene 

expression can cause genes that are typically only expressed in the human germline 

(and are thus immune-privileged) to be upregulated in cancer cells [102]. This cancer 

cell-specific aberrant expression means that MHC-presented peptides from these genes 

may form targets for CTLs (cancer-testis antigens) [103]. These antigens are said to be 

tumour-associated, resulting from aberrantly expressed unmutated self-peptides and 

not genomic changes specific to these cells. Thus, they are not as specific as cancer 

neoantigens and the possibility of off-target autoreactive CTL attack is higher. 

1.2.4 Cancer immunoediting and immune-evasion 

Tumour development is an evolutionary process, with tumours in constant interaction 

with the host immune system [78,104,105]. The cancer-immunity cycle describes the 

set of steps required for effective T cell recognition and attack of cancer cells [106]. 

First, cancer cell death results in the release of neoantigens, which are taken up by 

APCs (see 1.1.6 T cell priming) which transit via the efferent lymphatic vessels to the 

lymph nodes. There, these neoantigens are presented to naïve T cells, priming them for 

cancer cell recognition. Finally, these effector T cells, which have upregulated cell 

surface receptors allowing them to sense chemokines secreted by tumour cells, traffic 

into the tumour, specifically attacking the cancer cells expressing these neoantigens. 

Killing of these cancer cells releases more neoantigens, continuing the cycle. Nascent 

cancer cells enter the elimination phase of immunoediting when this immune cell attack 
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is uninhibited. If the cancer cells acquire alterations (genomic mutations or epigenetic 

changes) that confer some sort of resistance to the immune cells, immune pressure will 

select for these cells, killing other cells without the resistance. This is the equilibrium 

phase of immunoediting, where the immune system is not quite able to clear all the 

cancer cells. Finally, the cancer cells can acquire further alterations to evade the 

immune system, leading to the escape phase of immunoediting. At this point, the 

immune system is no longer able to control the cancer cells, and the tumour can grow 

uncontrollably. Due to variation in the HLA genes, different mutations will be 

immunogenic in different individuals. Therefore, this process results in each individual’s 

tumour evolving its own unique set of mutations [91,107]. 

Even if a tumour bears mutations that make perfect T cell targets, there are ways 

it can evade the immune response. T cells have many co-stimulatory and inhibitory 

molecules on their surface, the latter of which are known as immune-checkpoint 

proteins, which act to modulate the T cell response to antigen [108]. These include two 

inhibitory receptors which are currently clinically relevant: cytotoxic T-lymphocyte-

associated antigen 4 (CTLA-4) [109] and programmed cell death protein 1 (PD-1) [110]. 

Upon T cell activation by TCR recognition of cognate antigen, CD28 (present on the cell 

membrane of T cells) amplifies TCR signalling by binding to CD80 on target cells. 

Shortly after, CTLA-4 is upregulated, and competitively binds CD80 to limit the T cell 

response. PD-1 is also upregulated on T cells post antigen-recognition, and binding by 

PD-L1 or PD-L2 inhibits the T cell’s response. Unlike CD80, PD-L1 and PD-L2 can be 

upregulated on tumours [111], allowing the tumours to evade the immune system by 

altering the tumour microenvironment. 

1.2.5 Immunotherapies 

Since the seminal work on cancer immunotherapies by Coley demonstrating that 

inoculation of a strain of bacteria could induce an immune response to fight tumours 

[89], the field has expanded to include natural and engineered cell therapies, 

neoantigen vaccines, and targeted immune checkpoint blockade [109,110,112–115]. 

Despite promising results, these therapies are not yet effective for most patients [116]. 

Some level of personalization will be required for each individual tumour; tailoring the 
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therapy to unique immunogenic mutations and each patient’s immune environment 

[117]. 

1.2.5.1 Checkpoint blockade 

Checkpoint blockade is an antibody-based immunotherapy which blocks inhibitory 

receptors on T cells, releasing the brakes on the T cell response. These inhibitory 

receptors can be taken advantage of by cancer cells, suppressing the immune response 

and protecting themselves from T cell attack. Within cohorts of individuals treated with 

checkpoint blockade, mutational load has been shown to predict response to therapy, 

with better clinical outcomes typically seen for individuals having tumours with higher 

mutational loads [118–120]. It would appear that subsets of these mutations are eliciting 

T cell responses during treatment, but it is not yet known if this is due to these tumours 

having a greater chance of generating immunogenic mutations or is due to some other 

phenomena of which mutational load is a marker. 

1.2.5.2 Neoantigen vaccines 

Immune responses to tumours can be driven by therapeutic vaccines targeting cancer 

neoantigens [121,122]. Typically, this involves sequencing of the tumour to identify 

cancer-specific neoantigens, and creating a vaccine based on those neoantigens. Due 

to the high heterogeneity across cancers and subjects, a personalized approach is 

required, creating a novel vaccine for every individual. Recently, there have been 

successes in their application in melanoma, both as RNA-based and peptide based 

vaccination strategies [115,123], with significantly reduced rates of recurrence in 

patients receiving the vaccine. Work is ongoing in other cancer types, as well as using a 

combination therapy of neoantigen vaccines paired with checkpoint blockade [124]. 

Creation of cancer neoantigen vaccines would be assisted by improved bioinformatic 

tools to predict which neoantigens would form the most potent targets for an immune 

response. 

1.2.6 Predicting response to immunotherapies 

While it has been known for some time that patients bearing tumours containing an 

abundant CTL infiltrate have improved overall survival compared to those with a sparse 
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infiltrate [99,100], in general, the peptide targets of these CTLs remain elusive [125]. 

Evidence continues to build demonstrating CTL responses to neoantigens derived from 

point mutations within the tumour genome [112,126–130], however, predicting which 

mutations from the tumour genome are likely to generate bona fide neoantigens 

remains challenging as only a small fraction of mutations in a tumour can generate a T 

cell response [122,129–131], and further only a subset of those will be immunodominant 

(see 1.1.4 Immunogenicity and immunodominance). The criteria for filtering the list of 

mutations in a tumour down to those that are truly immunogenic and immunodominant 

have yet to be fully elucidated. While peptide-MHC binding predictions offer valuable 

information regarding what will be presented, there are other factors that can be taken 

into consideration. 

Work has been done to characterize sequence motifs in sets of validated 

immunogenic peptides which may correlate with response to immunotherapy. Snyder et 

al. identified a substring signature which is shared with proteins derived from 

pathogens, and correlates with T cell response [119]. This is an intriguing idea that has 

not yet been replicated in other datasets. Conversely, there have been reports of T cell 

clones responding equally well to dissimilar peptides not having any shared motif [132], 

suggesting that, in the context of T cell recognition and activation, the primary sequence 

of the peptide is less important than its biophysical properties. Indeed, it seems 

plausible that due to the cross-reactivity of T cells, effective immune responses against 

tumour mutations may be at least partly the result of previous T cell activations in 

response to pathogenic peptides which, to the T cell receptor, appear biophysically 

similar. Recent studies showed that responses to checkpoint blockade depend on the 

presence of specific species of bacteria [133–136]. This result, when viewed in the 

context of cross-reactivity, suggests that the response seen may be at least partially 

due to cross-reactive priming of T cells to tumour antigens by bacterial antigens. 

Another factor which may affect response to immunotherapies is the HLA 

genotype of the individual. Since MHC will present mutant peptides on the surface of 

cancer cells, the repertoire of presented peptides is dependent on the specific MHC 

molecules that individual has. This may affect response to immunotherapy in two ways: 

(1) restricting the TCR repertoire during T cell development, or (2) affecting the 
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probability that mutations are presented as neoantigens. Firstly, as TCR recombination 

during development is dependent on MHC presentation of self-peptides [137], TCRs 

that are “taught” about a large and diverse set of self-peptides may be better able to 

distinguish between self and non-self once in the periphery, or may result in a more 

diverse TCR repertoire [138,139]. Secondly, having a set of MHC molecules that can 

present many self-peptides should improve the chance that any given mutation will be 

presented as a neoantigen, compared to MHC molecules that can only present a 

narrow and restricted set of self-peptides. There is evidence for this in advanced 

melanoma and advanced non-small cell lung cancer, where individuals who were 

heterozygous at all HLA class I loci (and thus are able to present more peptides) 

showed better response to immune checkpoint blockade compared to those 

homozygous in at least one loci due to genetic variation or somatic loss of 

heterozygosity, independent of mutational load [140]. 

1.3 Immunoinformatics 

Immunoinformatics exists at the nexus between computer science and immunology and 

is becoming an increasingly important tool for those working on cancer immunotherapy. 

What began as the development of tools predicting the binding ability of a peptide to 

MHC molecules [141,142] has grown into a field including, but not limited to, predicting 

HLA alleles from next-generation sequencing (NGS) data [143,144], presentation of 

mutated peptide sequences [145], peptide processing and transport prior to binding 

MHC [146], characterization of the T cell and B cell receptor repertoires [11,67], and 

analysis of immune-related gene expression [147,148]. As big data in immunology 

becomes even bigger and more abundant, there is a clear need for analyses that can 

pare down the overwhelming body of data into meaningful insights that can be applied 

to future studies. Additionally, one area of immunoinformatics that still has room for 

improvement is the prediction of peptides that elicit T cell reactivity, due to incomplete 

understanding of what makes a peptide immunogenic and immunodominant. 

Genomic datasets are typically used for immunoinformatics due to their ability to 

provide information on mutational variants, gene expression, TCR recombination, and 

HLA variation. In the context of cancer immunology, a tremendous data resource is The 
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Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov/). This international project 

worked to characterize over 10,000 individual tumours spanning 33 different tumour 

types, collecting tumour and matched normal tissue as well as limited clinical 

information. For each tumour, whole exome sequencing was performed on both normal 

and tumour tissue to detect somatic variants occurring in the tumour. Transcriptome 

sequencing (RNA-seq) was performed on most tumour samples to measure gene 

expression within the tumour. Despite one of the tumour specimen selection criterion 

being low immune infiltration, immunological insights can still be gained from these 

samples despite reduced immune cell content [149]. 

1.3.1 TCR annotation 

Random TCR recombination events lead to unique CDR3 sequences in T cells. The 

CDR3 sequence of rearranged TCRs is unique to each cell, and can therefore be used 

as a barcode to track each T cell. Surveying the CDR3 sequences in a quantifiable 

manner allows the measurement of clonal expansion of T cells. The random variation 

present in the CDR3 region does not make it amenable to classical alignment-based 

algorithms for annotation since these approaches require a reference sequence for 

alignment. Since each CDR3 sequence is flanked by one of a limited set of V and J 

genes, local alignments are performed for these regions, and the sequence between 

these regions is inferred to be the CDR3 sequence. MiTCR [150] is one such algorithm, 

relying on the conserved cysteine and phenylalanine/tryptophan codons which flank the 

CDR3 region. 

The ability to annotate TCR sequences is dependent on sequence read length. 

Due to highly variable CDR3 sequence, assembly of short reads (which do not 

completely span the CDR3 region) into larger contigs may introduce false chimeric 

receptor sequences due to overlapping sequence within the CDR3 region. Truly distinct 

CDR3 sequences may only differ by a single nucleotide, therefore, partial sequence of 

the CDR3 is not sufficient to uniquely identify a TCR. The most accurate algorithms rely 

on single reads to detect CDR3s, however, this requires that single reads can span the 

entire CDR3 region, creating a technical upper bound on the length of CDR3s that can 

be recovered. CDR3-beta is typically 45 nts long [11], so 50 bp reads (standard for 
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many existing datasets) have limited ability to detect this CDR3 length with sufficient V 

and J gene sequence left for alignment. Longer CDR3s are undetectable using 50 bp 

read datasets. Typically, TCR-seq experiments are designed to maximize the coverage 

of the CDR3 region to obtain the maximal amount of information regarding the TCR 

repertoire [11,67]. The utility of bulk sequencing datasets (RNA-seq) for TCR repertoire 

characterization was previously unknown (but was addressed by my work in Chapter 3: 

Exploring the TCR repertoire of solid and liquid tumours by bulk RNA-seq). 

1.3.2 HLA allele nomenclature 

The HLA locus is the most polymorphic region of the human genome, with over 10,000 

known class I HLA alleles in the human population [26]. As such, a standardized 

nomenclature was developed to name and distinguish HLA alleles [151]. First, the HLA 

gene is given (HLA-A), followed by two digits describing the allele family (HLA-A*02). 

Four-digit resolution describes protein coding changes to the allele (HLA-A*02:01). Six- 

and eight-digit resolution describe synonymous nucleotide changes within coding 

regions and intronic variants, respectively (HLA-A*02:01:01, HLA-A*02:01:01:01). Many 

of the allelic variants differ only in non-coding sequence, but for peptide-MHC 

predictions, only knowledge of protein coding variants (4-digit HLA allele resolution) is 

required. 

1.3.3 HLA genotype predictions 

Knowledge of which MHC molecules are present in an individual is a requirement to 

perform personalized peptide-MHC binding predictions. Motivated by this, numerous 

HLA calling algorithms have been developed to extract HLA allele information from NGS 

data. While most of the algorithms are quite accurate at determining 4-digit HLA alleles 

from NGS reads 75 bps or longer, they all suffer from ambiguity in discriminating alleles 

from shorter 50 bp reads due to insufficient alignment with reference sequences. The 

simplest solution to this problem is to sequence longer reads, however, many existing 

datasets only contain 50 bp reads. One solution for these existing datasets may be the 

integration of multiple data types (RNA-seq and exome-seq) to increase the amount of 

sequence that can be analyzed, or may include new methods which infer HLA alleles 

using observed population HLA haplotype frequencies to resolve ambiguous calls 
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[152,153]. Additionally, new algorithms utilizing a combination of alignment and 

expectation maximization methods, which select the genotype which explains the 

greatest number of observed sequence reads, have demonstrated improved 

performance on shorter read datasets [154]. 

1.3.4 Peptide-MHC binding predictions 

Peptide-MHC binding prediction algorithms, initially designed to find the optimal 

epitopes from viral genomes for vaccine development, have more recently begun to be 

applied to tumour genomes in the hopes of determining which mutant peptides are 

immunogenic [145,155–157]. These prediction algorithms require empirically 

determined training data of pMHC interactions to predict binding, with more training data 

leading to better predictions. Due to the highly polymorphic HLA locus in the human 

genome, it is not feasible to obtain in vitro training data for peptide binding to all alleles. 

Additionally, early attempts to construct basic peptide-MHC binding predictors quickly 

revealed that purely position-specific scoring matrices (PSSMs) or sequence motif-

based predictors were insufficient to explain the peptide-binding preferences of MHC 

[158]. To date, the most successful approach has been neural-network-based, using 

training data from known alleles and inferring predictions for new alleles. The 

NetMHCpan algorithm is one such algorithm to take this approach, and when tested 

against other algorithms on experimentally-derived data not included in the training data 

for any algorithm, has been shown to be the best pan-specific class I pMHC binding 

prediction algorithm [159]. 

Training data for peptide-MHC interactions generated by different labs is 

deposited at the Immune Epitope Database (IEDB) [30], and contains information on the 

binding affinity of these interactions. Typically, binding affinity is inferred from the half 

maximal inhibitory concentration (IC50), or the concentration of peptide required to 

competitively bind half of the available MHC. As such, the output of NetMHCpan 

provides a predicted IC50, as well as a percentile rank measurement comparing the 

strength of that peptide-MHC binding interaction compared to the binding strength for a 

set of random peptides to the same MHC. Classically, a predicted IC50 threshold of 

< 50 nM is used to classify strong binders, and < 500 nM is used to classify weak 
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binders [160]. More recently, it has been suggested that a percentile rank threshold may 

control for variable median IC50 thresholds for different MHC molecules [161], though 

this threshold assumes that all MHCs present peptide repertoires of equal size. 

Currently, there is insufficient evidence to support this assumption [70], and within the 

literature both thresholds have been used to gain meaningful information. In the context 

of creating peptide vaccines against infectious agents, where the goal is to determine 

the most immunogenic peptide(s) from an entire foreign proteome, the percentile rank 

threshold may be optimal [162,163]. Conversely, to predict which mutated self-peptides 

(if any) present in a tumour will yield cancer neoantigens, where T cell tolerance exists, 

the IC50 threshold may perform better [164]. Thus, the best choice for binding threshold 

metric is likely application-dependent, and the optimal threshold for predicting the 

subset of self-peptides presented in an individual is unknown. 

1.3.5 Methods for predicting immunogenicity of presented peptides 

While peptide-MHC binding is necessary for immunogenicity, it is not sufficient. To be 

truly immunogenic, the peptide must also interact with the TCR to elicit a T cell 

response. Traditional approaches for predicting protein-protein interactions, such as 

molecular dynamics simulations, are currently intractable for TCR-pMHC [165]. This is 

due to the limited number of experimentally derived crystal structures for pMHCs and 

TCRs, and the enormous level of complexity that occurs at their interface (a variable 

MHC molecule binds a variable peptide sequence, which contacts a variable T cell 

receptor). Therefore, a more inferential approach is to reduce the problem to co-

occurrence, identifying putative pMHCs and TCRs that are found together. The main 

assumptions to this approach are that TCRs and pMHCs that co-occur also interact, 

and that sequence-based information is sufficient to identify patterns in TCR and pMHC 

interactions. The former is only able to be confirmed by in vitro validation, as it may be 

that co-occurring TCR-pMHCs are simply due to both parts being common in the 

population. The latter can be relaxed by considering the similarity of biophysical 

properties of an amino acid sequence rather than exact sequence, looking for TCRs of 

a certain “category” co-occurring with pMHCs of a certain “category.” This could lead to 

a better understanding of the biophysical laws governing cross-reactivity, and would 
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allow for more complex comparisons between mutanomes and TCR repertoires in the 

context of T cell recognition. 

More direct ways of inferring the immunogenicity of presented peptides do not 

require knowledge of the TCR repertoire, and instead focus on specific characteristics 

of the presented peptides. This may involve incorporating binding predictions for the 

wildtype as well as the mutant peptides, and identifying mutant peptide sequence 

similarity to peptides derived from infectious agents, to determine how “non-self” the 

neoantigen will appear to the immune system [119,166]. Mutant peptides that have 

sequence similarity to known infectious agents may be better able to elicit a T cell 

response due to pre-existing priming of T cells towards these peptides, or due to as-of-

yet undiscovered sequence “motifs” present in pathogen-derived sequences. Likewise, 

mutant peptides where the corresponding wildtype peptide also binds may be less 

immunogenic due to existing tolerance to the wildtype peptide by the TCR repertoire, 

though there is evidence that existing tolerance does not preclude T cell reactivity 

towards mutated peptides [167]. Other methods of predicting immunogenicity of 

peptides involve determining the hydrophobicity of amino acids at the residues that 

typically contact the TCR. Immunogenic peptides have been observed to have 

increased hydrophobicity at these residues [168]. It is likely that future predictors will 

use a concert of these and other undiscovered metrics to predict immunogenicity of 

peptides, aided by increased availability of data for validated positive and negative 

TCR-pMHC interactions. 

1.4 Thesis overview 

The aim of this thesis is to adapt and apply novel and existing immunoinformatic 

methods to cancer datasets to identify general patterns and relationships between the 

immune system and cancer in a pan-cancer context, not dependent on the cancer type. 

This involves the creation of a strategy to predict cancer neoantigens derived from 

SNVs from tumours, and correlation of this neoantigen burden with survival and 

markers of immune inhibition, amenable to checkpoint blockade therapies. It involves 

extraction of TCR sequences from RNA-seq datasets to gain additional information from 

these existing datasets, beyond the scope of their original design, with demonstrated 
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utility in data from solid tumours and lymphomas. Finally, it develops a novel metric 

(self-immunopeptidome size) to classify individuals based on their ability to present 

peptides on class I MHC molecules. This thesis contributes towards a better 

understanding of the interaction between T cells and cancer cells, which can inform 

future strategies to improve immunotherapies in cancer. 

Chapter 2 details a novel approach to predicting neoantigens from SNV 

mutations in the TCGA dataset and associates the neoantigen load with clinical 

outcomes. Here, we surveyed all six tumour types which were available from TCGA at 

the time and found patterns that were not tumour-type specific. Neoantigen load was 

associated with increased patient survival. Moreover, the corresponding tumours had 

higher CTL content, inferred from CD8A gene expression, and elevated expression of 

the CTL exhaustion markers PDCD1 and CTLA4. Neoantigens were very scarce in 

tumours without evidence of CTL infiltration. These findings suggest that the abundance 

of predicted immunogenic mutations may be useful for identifying patients likely to 

benefit from checkpoint blockade and related immunotherapies.  

Chapter 3 describes the extraction of TCR sequence information directly from 

RNA-seq data derived from 6,738 tumour and 604 control tissues. This method 

circumvents the need for PCR amplification of TCR template, reducing cost by avoiding 

dedicated sequencing of just the TCR locus and allowing analysis of existing RNA-seq 

datasets. TCR information is provided in the context of global gene expression, allowing 

integrated analysis of extensive RNA-seq data resources. It provides evidence that 

abundant, shared TCR sequences found in multiple distinct tumours recognize common 

viral antigens. Further, this chapter describes the application of this method to RNA-seq 

from sorted cell subsets from peripheral T cell lymphomas, demonstrating increased 

sensitivity and diagnostic ability of RNA-seq over conventional flow cytometry. 

Chapter 4 uses comprehensive peptide-MHC binding predictions for the entire 

human proteome to the set of all class I MHC to generate the human 

immunopeptidome, a novel resource allowing individual HLA genotypes to be 

numerically quantified based on the number of self-peptides they are predicted to 

present (the self-immunopeptidome). Self-immunopeptidome sizes correlate with 

survival, with larger self-immunopeptidome sizes having improved survival outcomes in 
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a pan-cancer population. The size of the self-immunopeptidome can be used to predict 

neoantigen load in tumours from their mutational load, suggesting a potential clinical 

utility of HLA genotypes as a biomarker for predicting response to immunotherapy. 

Further, we identified evidence of immune editing in the TCGA data – containing fewer 

presented mutations than would be expected by chance (based on that tumour’s HLA 

genotype), and identified specific positions within presented peptides which, when 

mutated, are predicted to influence immunogenicity of the presented peptide. 

Finally, chapter 5 gives an overall analysis of the research and conclusions 

presented in this thesis within the context of current work being done in the field. This 

chapter also comments on strengths and limitations of the thesis research and presents 

possible future research directions in the field drawing on the work of this thesis. 

Contemporaneously to the work described in this thesis, I contributed towards 

the TCGA PanCancer Atlas [169] efforts to comprehensively characterize the immune 

landscape across the entire TCGA cohort [149]. I provided neoantigen predictions for 

SNV mutations built upon the work presented in chapter 2. I also built upon the TCR 

extraction work presented in chapter 3 and provided the analysis pipeline to complete 

these extractions on the entire cohort. As the PanCancer Atlas project was a 

collaborative consortium effort, the specific methods and results pertaining to those 

analyses are not included in this thesis, which instead focuses on my primary work only. 
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Chapter 2: Neoantigens predicted by tumour genome meta-analysis 

correlate with increased patient survival 

2.1 Introduction 

The accumulation of somatic mutations underlies the initiation and progression of most 

cancers, by conferring upon tumour cells unrestricted proliferative capacity [74]. The 

analysis of cancer genomes has revealed that tumour mutational landscapes [91] are 

extremely variable among patients, among different tumours from the same patient, and 

even among the different regions of a single tumour [107]. There is a need for 

personalized strategies for cancer therapy that are compatible with mutational 

heterogeneity, and in this regard immune interventions that aim to initiate or enhance 

anti-tumour immune responses hold much promise. Therapeutic antibodies and 

chimeric antigen receptor (CAR) technologies have shown anti-cancer efficacy [170], 

but such antibody-based approaches are limited to cell surface target antigens [171–

175]. By contrast, most tumour mutations are point mutations in genes encoding 

intracellular proteins. Short peptide fragments of these proteins, after intracellular 

processing and presentation at the cell surface as MHC ligands, can elicit T-cell 

immunoreactivity. Further, the presence of TIL, in particular CD8+ T cells, has been 

associated with increased survival [98–100,176–178] suggesting that the adaptive 

immune system can mount protective anti-tumour responses in many cancer patients 

[170,179]. The antigen specificities of tumour infiltrating T cells remain almost 

completely undefined [125] but there are numerous examples of cytotoxic T cells 

recognizing single amino acid coding changes originating from somatic tumour 

mutations [112,126–130,180]. Thus, the notion that tumour mutations are reservoirs of 

exploitable neoantigens remains compelling [180]. 

For a mutation to be recognized by CD8+ T cells, the mutant peptide must be 

presented by MHC I molecules on the surface of the tumour cell. The ability of a peptide 

to bind a given MHC I molecule with sufficient affinity for the peptide-MHC complex to 

be stabilized at the cell surface is the single most limiting step in antigen presentation 

and T cell activation [181]. Recently, several algorithms have been developed that can 
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predict which peptides will bind to given MHC molecules [30,158,182–184], thereby 

providing guidance into which mutations are immunogenic. 

TCGA (http://cancergenome.nih.gov/) is an initiative of the National Institutes of 

Health that has created a comprehensive catalogue of somatic tumour mutations 

identified using deep sequencing. As a member of The Cancer Genome Atlas Research 

Network our centre has generated extensive tumour RNA-seq data. Here, we have 

used public TCGA RNA-seq data to explore the T-cell immunoreactivity of somatic 

missense mutations across six tumour sites. This type of analysis is challenged not only 

by large numbers of mutations unique to individual patients, but also by the complexity 

of personalized antigen presentation by MHC arising from the extreme HLA allelic 

diversity in the outbred human population. Previous studies have explored the potential 

immunogenicity of tumour mutations [145,185,186], but these have been hampered by 

small sample size and the inability to specify autologous HLA restriction. Recently we 

described a method of HLA calling from RNA-seq data that shows high sensitivity and 

specificity [143]. Here, we have obtained matched tumour mutational profiles and HLA-

A genotypes from TCGA subjects and used these data to predict patient-specific 

mutational epitope profiles. The evaluation of these data together with RNA-seq derived 

markers of T-cell infiltration and overall patient survival provides the first comprehensive 

view of the landscape of potentially immunogenic mutations in solid tumours. 

2.2 Methods 

2.2.1 TCGA mutation annotation files 

Mutation Annotation Files (MAF) for unrestricted TCGA cancer sites were downloaded 

from https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumour/. 

We parsed every available MAF file regardless of level 

(https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+%28MAF%29+Spe

cification) however only listed variants predicted to yield non-synonymous missense 

coding mutations and associated with a predicted RefSeq identifier at the specified 

genomic location were ultimately tracked. The MAF format specification enabled the 

selection of putative whole-genome shotgun screen variants that had been verified by 

orthogonal methods. The screen identified a total of 74,535 verified missense SNVs 

https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/
https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+%28MAF%29+Specification
https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+%28MAF%29+Specification
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from 1,069 TCGA patients and seven cancer sites, including BRCA (breast invasive 

carcinoma), COAD (colon adenocarcinoma), READ (rectum adenocarcinoma), GBM 

(glioblastoma multiform), KIRC (kidney renal clear cell carcinoma), LUSC (lung 

squamous cell carcinoma), and OV (ovarian serous cystadenocarcinoma). Parsing 

scripts, written in Perl, tallied corresponding RNA-seq BAM filenames for each of the 

1,069 TCGA patients for use in conjunction with HLA prediction and gene expression 

profiling. 

2.2.2 HLA predictions 

RNA-seq BAM files for each of the 1,069 subjects were downloaded from CGhub and 

used directly as input for HLAminer [143]. HLAminer was run with default values, in 

parallel on a computer cluster. The two highest-scoring 4-digit HLA predictions for the 

HLA-A locus were retained (highest score at ranks 1 and 2). Patients with 4-digit HLA 

predictions that were ambiguous, that is, with two or more 4-digit HLA alleles scoring 

equally, were excluded from analysis. RNA-seq read length strongly influences the 

performance of HLA calling, and ambiguous HLA calls from tumour types where only 

short reads (50 nt) were available (lung, breast and kidney) represented that largest 

source of attrition of TCGA subjects from the meta-analysis. HLAminer predictions, 

including the genes, rank, group allele, coding allele, score, expect value, confidence 

and number of predictions were stored in a MySQL relational database. A custom script 

was developed to integrate the automated HLA predictions with SNV-specific 

information, and used as input for HLA epitope predictions. 

2.2.3 HLA ligand binding predictions 

A tab-separated file that listed all 74,535 filtered SNVs along with the predicted amino 

acid coding mutation and protein sequence was split by cancer type and each used as 

input for PERL scripts designed to query IEDB (http://www.iedb.org/) offline 

(http://tools.immuneepitope.org/analyze/html_mhcibinding20090901B/download_mhc_I

_binding.html) as previously described [145]. Briefly, entire protein sequences were 

submitted sequentially using default values in their unchanged wildtype and mutated 

form based on mutant position predictions. When supported, 8 - 11mer peptide 

prediction were selected, each with a specific HLA allele determined computationally 

http://www.iedb.org/
http://tools.immuneepitope.org/analyze/html_mhcibinding20090901B/download_mhc_I_binding.html
http://tools.immuneepitope.org/analyze/html_mhcibinding20090901B/download_mhc_I_binding.html
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from RNA-seq data for the patient under scrutiny. The output epitope prediction was 

captured, parsed and all peptides encompassing the amino acid of interest were 

tracked, including binding prediction rank and score when applicable. 

2.2.4 Gene expression from RNA-seq data 

Raw sequence reads were extracted from the 1,069 BAM files using bam2fastq v.1.1.0. 

Extracted reads were subsequently aligned to the human reference genome and 

transcriptome (hg19, Ensembl v70) using the ultra-fast aligner STAR v.2.3.0e [187] with 

the following parameters: minimum / maximum intron size set to 30 and 500000 

respectively, non-canonical, unannotated junctions were removed, maximum tolerated 

mismatches was set to 10, and the outSAMstrandField intronMotif option was enabled. 

The Cuffdiff command included with Cufflinks v.2.0.2 [188] was used to calculate the 

Fragments Per Kilobase of exon per Million fragments mapped [188] (FPKM) with upper 

quartile normalization, fragment bias correction, and multi read correction enabled. All 

other options were set to default. 

2.2.5 Clinical data sets 

TCGA clinical datasets were downloaded from https://tcga-

data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumour/DISEASE_CODE/

bcr/biotab/clin/. For each cancer site, we obtained clinical_drug_XXX.txt, 

clinical_follow_up_vX.X_XXX.txt, clinical_patient_XXX.txt and 

clinical_radiation_XXX.txt. The files were parsed, and pertinent clinical information 

extracted and saved into a MySQL relational database. 

2.2.6 Data analysis 

Pertinent data was extracted from the MySQL database using custom queries, and the 

results were saved to tab delimited text files. These files were read into R v3.0.1 [189] 

for further statistical analysis. Colon and rectum cancers were combined for all analyses 

as colorectal cancer. A single colorectal patient with a total mutation count 20.3 

standard deviations away from the mean mutation count of all patients was removed 

from all analysis. 

https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/DISEASE_CODE/bcr/biotab/clin/
https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/DISEASE_CODE/bcr/biotab/clin/
https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/DISEASE_CODE/bcr/biotab/clin/
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To count the overall number of putatively immunogenic mutations for each 

patient, we summed the total number of point mutations that contained a peptide 

predicted to be presented by the MHC molecules encoded by the HLA-A alleles 

identified, unambiguously, for that patient. The requirement of unambiguous HLA-A 

prediction resulted in a sample size of 515. To count the number of putatively 

immunogenic mutations, we first took the “best” peptide for each point mutation which 

were those with the highest predicted binding affinity (lowest IC50) to its respective 

autologous MHC variant. We filtered these peptides by keeping those that had an IC50 

value below 500 nM. We then filtered these peptides to those that were expressed at a 

level higher than the median expression for their given gene. We further filtered these 

peptides to those where the HLA-A gene expression was higher than the median of all 

HLA-A gene expression values. These cut offs were selected to maximize the 

probability that a given peptide was able to be seen by a T cell receptor, in which case it 

should be highly expressed and bind to an MHC variant that is also highly expressed. 

The number of peptides which passed these criteria was used as the number of 

predicted immunogenic mutations for each patient. 

2.2.7 Statistical analysis 

We modified a random re-assignment method, described previously [190], to test the 

significance of associations with TIL gene expression markers. First, the percent of 

mutations that belonged to tumours with above median CD8A expression was 

calculated. Next, counts of mutations were randomly re-assigned to tumours 1,000,000 

times using the boot package [191] in R. The percent of total mutations belonging to 

tumours with above median CD8A expression was calculated after each random re-

assignment, and the bootstrap P value was equal to the proportion of randomizations 

where the number of mutations belonging to tumours with above median CD8A 

expression was equal to or greater than the number of mutations belonging to tumours 

with above median CD8A expression in the original, non-randomized data. This same 

method was used to test the significance of associations between the presence of 

predicted immunogenic mutations and elevated expression of all three genes, PDCD1, 

CTLA4 and CD8A. 
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Survival times were calculated as the number of days from initial pathological 

diagnosis to death or the number of days from initial pathological diagnosis to the last 

time the patient was known to be alive was recorded. These times were used in the 

construction of the Kaplan-Meier survival curves and Cox proportional hazard models. 

Potential confounders age, gender, cancer and tumour stage were examined. The R 

survival package [192] was used to construct Kaplan-Meier curves and fit the univariate 

and multivariate Cox proportional hazard models. 512 patients were used in the survival 

analysis investigating CD8A and HLA-A after removing 3 patients without survival 

information. The 16 brain tumour patients were excluded from the analysis as they were 

missing tumour stage information. The 24 breast patients were also excluded from 

analysis as the low mortality rate (1/24) was not informative. Additionally, 7 patients 

were not used in the survival analysis as their prognostic information was incomplete. 

This resulted in a sample size of 468 for the multivariate survival analysis. 

2.2.8 Hive plots 

An R script was designed to create hive plot input files from the original data, converting 

from a table format to the graph format, DOT. These input files were imported into jhive 

v0.0.18 (http://hiveplot.com/distro/jhive-0.0.18.zip) to create the hive plots [193]. 

2.3 Results 

2.3.1 Summary of available data 

Raw TCGA RNA-seq data plus clinical metadata and complete profiles of sequence 

verified missense mutations were obtained with permission from the Cancer Genomics 

Hub (https://cghub.ucsc.edu). Our analysis covers six tumour sites, including colon and 

rectum (combined as colorectal), ovary, breast, brain, kidney and lung. These were the 

only tumour sites with complete and non-embargoed data at the time of this study. The 

RNA-seq data were first processed using HLAminer [143] to predict, at 4-digit 

resolution, the two HLA-A alleles carried by each subject. Data from 515 patients with 

unambiguous HLA-A calls were processed further. The distribution of missense 

mutation counts across patients with different tumour types is shown in Figure 2.1. For 

each of the 22,758 total missense mutations, we evaluated binding of all possible 8-
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11mer mutant and wild-type peptide variants to autologous HLA-A encoded MHC 

proteins using the IEDB T cell epitope-MHC Binding Prediction Tool [30] 

(http://www.iedb.org/). We focused our analysis on HLA-A alleles because (1) MHC I 

proteins (encoded by HLA-A, -B and -C genes) present antigens to CD8+ cytotoxic T 

cells, which are the subset of T cells most strongly linked to patient survival, and (2) 

HLA-A alleles of MHC I yield the most accurate peptide binding affinity predictions by 

IEDB and most other algorithms due to the abundance of HLA-A specific training data 

[194]. All mutational data, RNA-seq derived HLA-A calls, IEDB epitope predictions, 

RNA-seq derived gene expression values, and clinical metadata were compiled in a 

MySQL database for analysis. 

 

Figure 2.1: Boxplots for the number of mutations per patient for each cancer type. The Y-axis is cut 

off at 250 mutations for better visualization of the majority of the data. The dark horizontal bar shows the 

median, whereas the box encompasses the interquartile range (middle 50 % of the data). Whiskers reach 

the farthest data point that is within 1.5x the interquartile range from the nearest box edge (quartile). Box 

width is proportional to the sample size (Lung: 34, ovary: 218, breast: 24, colorectal: 170, brain: 16, 

kidney: 53).  
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2.3.2 CD8A expression is associated with survival 

We first asked if we could reproduce the known association between increased 

numbers of tumour-infiltrating CD8+ T cells and increased overall survival [98–100,176–

178]. CD8+ TIL levels are usually measured by immunohistological staining. To 

interrogate RNA-seq data, we used the expression of CD8A (one component of the 

CD8 dimer), as a surrogate for CD8+ TIL levels. We observed significantly higher overall 

survival for patients with high CD8A expression than for those patients with low CD8A 

expression (HR = 0.71, 95 % CI = 0.53 to 0.94, P = 1.7 x 10-2) (Figure 2.2A). Likewise, 

the data recapitulated the known association between high HLA-A expression and 

improved overall survival [195–199] (HR = 0.59, 95 % CI = 0.44 to 0.81, P = 8.6 x 10-4) 

(Figure 2.2B). Based on these positive findings with established T cell and MHC 

markers, we proceeded to evaluate candidate peptide epitopes, which represent the 

third molecular component required for T cell recognition and destruction of target cells. 

 

Figure 2.2: Overall survival for patients based on CD8A or HLA-A expression. Kaplan-Meier curves 

were constructed to look at the difference in survival of patients (n = 512) with low and high expression 

levels of (A) CD8A or (B) HLA-A. Patients were split into two groups based on the median expression 

value. Patients with high expression showed increased survival compared to those with low expression of 

either (A) CD8A (HR = 0.71, 95 % CI = 0.53 to 0.94, P = 1.7 x 10-2) or (B) HLA-A (HR = 0.59, 95 % CI = 

0.44 to 0.81, P = 8.6 x 10-4). Tick marks on the graph denote the last time when survival status was 

known for living patients. 
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2.3.3 Tumours with high numbers of missense mutations have more tumour 

infiltrating lymphocytes 

Initially, we asked if there is a relationship between overall mutation count and CD8+ 

TIL. Ranking patients by decreasing CD8A expression and displaying the mutation 

count for each patient’s tumour revealed a skewed distribution whereby tumours with 

low CD8A expression had sparse mutations and tumours with high mutation counts 

were among those with elevated CD8A expression (Figure 2.3A). Tumours with above 

median CD8A expression contained 73.6 % of the total mutations (P = 2.0 x 10-6 by 

iterative randomization and resampling as described in Methods). However, there was 

no association between total mutation count and overall survival (Figure 2.3B) (HR = 

0.91, 95 % CI = 0.68 to 1.23, P = 5.5 x 10-1). 

2.3.4 Tumour missense mutations that have predicted immunoreactivity are 

associated with increased survival 

We reasoned that missense mutations yielding peptides with poor MHC I binding would 

be immunologically silent and hence likely to obscure any association between 

missense mutations, anti-tumour immunoreactivity, and survival. To address this, we 

repeated the above analysis focusing on those mutations that were most likely to be 

immunogenic by several criteria, including (1) the expression of the gene in the tumour 

bearing the mutation was above the median expression level of that same gene in all 

tumours, (2) HLA-A expression was above the median expression in all tumours, and 

(3) the predicted autologous HLA-A binding affinity of the best scoring peptide 

containing a given mutation had an IC50 value of 500 nM or less. This value has been 

estimated, experimentally, to be the affinity necessary for an epitope to elicit an immune 

response [160]. Applying these filters, the predicted immunogenic mutation count was 

zero in 334 patients. The remaining 181 patients had predicted immunogenic mutation 

counts ranging from 1 to 147, with a median of 3. The predicted immunogenic mutation 

count showed a strong relationship with tumour CD8A expression, where tumours with 

higher numbers of such mutations had higher CD8A expression (Figure 2.3C). Of all 

predicted immunogenic mutations, 84.7 % were in tumours with above median CD8A 

expression (P = 1.0 x 10-6). We did not see any relationship between predicted 
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immunogenic mutation count and CD4 expression by tumours (P = 6.9 x 10-1) (Figure 

A.1), consistent with the fact that we had assessed epitopes presented by MHC class I, 

which is recognized exclusively by CD8+ T cells. Interestingly, patients with tumours 

containing at least one predicted immunogenic mutation showed markedly increased 

overall survival compared to those without predicted immunogenic mutations (HR = 

0.53, 95 % CI = 0.36 to 0.80, P = 2.1 x 10-3) (Figure 2.3D). 

 

Figure 2.3: The total number of mutations in tumours is not associated with survival, while the 

number of predicted immunogenic mutations is associated with survival. A “skew plot” was made 

for all patients (n = 515), ordering patients along the x-axis according to their CD8A expression. Each 

patient’s CD8A expression was plotted above the x-axis, and (A) total mutation count or (C) predicted 



36 

 

immunogenic mutation count was plotted below the x-axis. 73. 6% of the total mutation count belonged to 

patients with above median CD8A expression (P = 2.0 x 10-6), and 84.7 % of the total predicted 

immunogenic mutation count belonged to patients with above median CD8A expression (P = 1.0 x 10-6).  

Kaplan-Meier curves were constructed to look at the difference in survival between patients with low 

versus high numbers of mutations. Patients (n = 468) were split into two groups based on the median 

mutation count. There was no difference in survival between the two groups when stratifying on total 

mutation count (B) (HR = 0.91, 95 % CI = 0.68 to 1.23, P = 5.5 x 10-1), but there was a statistically 

significant difference between the two groups when stratifying on predicted immunogenic mutation count 

(D) (HR = 0.53, 95 % CI = 0.36 to 0.80, P = 2.1 x 10-3). Tick marks on the Kaplan-Meier graphs denote 

the last time when survival status was known for living patients. 

To further examine this association, we fit a model including all available 

prognostic factors (age, gender, cancer type, and tumour stage), as well as predicted 

immunogenic mutations. This model also showed significantly improved overall survival 

for patients with predicted immunogenic mutations relative to those without (HR = 0.50, 

95 % CI = 0.31 to 0.80, P = 3.9 x 10-3), indicating that the effect of predicted 

immunogenic mutations was independent of the other prognostic factors. Fitting a 

model which contained an interaction between cancer type and predicted immunogenic 

mutations did not yield a significant result (P = 9.2 x 10-1), indicating that the prognostic 

effect is not limited to a specific cancer diagnosis. Given that tumour HLA-A expression 

alone is a known indicator of favourable patient survival (Figure 2.2B), we asked if the 

number of predicted immunogenic mutations provides additional predictive value 

independent of HLA-A expression. After removing the HLA-A expression requirement 

from the definition of a predicted immunogenic mutation, we fit a model including all 

prognostic factors to the subset of patients with high (above median) tumour HLA-A 

expression. Within this subset of patients, we observed that patients with at least one 

predicted immunogenic mutation had a significantly lower relative risk of death than 

those without (HR = 0.44, 95 % CI = 0.22 to 0.88, P = 2.0 x 10-2). Evaluating the 

reciprocal group of patients with low (below median) HLA-A expression, where the 

potential of immunogenic mutations to elicit bona fide anti-tumour responses is 

expected to be curtailed, there was no significant association between the presence of 

predicted immunogenic mutations and survival (HR = 1.30, 95 % CI = 0.83 to 2.04, P = 

2.6 x 10-1). The results from all survival analyses are summarized in Table 2.1. 
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Table 2.1: Summary of survival analysis. 

Predictor HR 95 % CI P-value  

CD8A expression 0.71 0.53 – 0.94 1.7 x 10-2 * 

HLA-A expression 0.59 0.44 – 0.81 8.6 x 10-4 ** 

Total mutations 0.91 0.68 – 1.23 5.5 x 10-1  

&Predicted immunogenic mutations 0.50 0.31 – 0.80 3.9 x 10-3 ** 

&Predicted immunogenic mutations, Low HLA-A 1.30 0.83 – 2.04 2.6 x 10-1  

&Predicted immunogenic, High HLA-A 0.44 0.22 – 0.88 2.0 x 10-2 * 

(*) denotes P-values < 0.05. (**) denotes P-values < 0.005. (&) denotes analysis that accounted for 

variation from known prognostic factors. 

2.3.5 Predicted immunogenic mutation counts correlate with the expression of T 

cell exhaustion markers 

PDCD1 and CTLA4 are T cell surface molecules that can inhibit anti-tumour T cell 

responses [200,201]. Blockade of these inhibitory receptors by targeted monoclonal 

antibodies can disinhibit anti-tumour immunity and improve clinical outcomes 

[109,110,202–206]. Given that many patients in the current study had clinically 

significant cancer despite having predicted immunogenic mutations and CD8+ TIL, we 

asked if there was an association between immunogenic mutation load and expression 

of PDCD1 or CTLA4. We found that patients with higher numbers of predicted 

immunogenic mutations had increased expression of not only CD8A but also PDCD1 

and CTLA4. Displaying these values in a 3-way hive plot [193] highlights the association 

between these T cell markers and immunogenic mutation load (Figure 2.4). Significance 

was assessed by iterative randomization and resampling (as described in Methods). Of 

all tumours with predicted immunogenic mutations, 45.9 % had above median 

expression of all three of PDCD1, CTLA4, and CD8A (P = 1.0 x 10-6). 
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Figure 2.4: Hive plot showing tumours with high immunogenic mutation counts have higher 

expression of CD8A, PDCD1, and CTLA4. On each axis is the log expression value (log(FPKM)) for 

CD8A (top), PDCD1 (left), and CTLA4 (right). Values go from small to large moving towards the center of 

the plot. Each ring represents one patient, and the intersection with the axis represents that patient’s 

value for that axis. Patients with 0 predicted immunogenic mutations are coloured orange, and patients 

with at least 1 predicted immunogenic mutation are coloured blue. Blue rings tend to cluster around the 

center of the plot indicating concordance between increased predicted immunogenic mutation count and 

elevated CD8A, PDCD1, and CTLA4 expression (P = 1.0 x 10-6). 

2.4 Discussion 

The adaptive immune system opposes tumour development, and the elicitation of 

immunogenic cell death is a key component of both targeted immunotherapies and 

conventional treatment modalities including radiation and chemotherapy [207]. There is 

a robust association between T cell infiltration of solid tumours and favourable patient 

outcomes. Missense variants are the most frequent type of oncogenic mutation, which 

raises the question of whether missense mutations also underlie tumour 
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immunoreactivity. Exome analysis in mice has revealed specific missense mutations 

that encode MHC class I presented mutational epitopes that are capable of eliciting T 

cell mediated tumour rejection [122,127]. Moreover, human tumour exome sequencing 

studies have identified mutational epitopes recognized by autologous CD8+ TIL 

[112,129,130,180]. However, from these investigations it appears that missense 

mutations with demonstrable endogenous immunoreactivity are relatively rare. They are 

a small minority of total missense mutations. It is likely the case that only one or a few 

mutations per tumour are immunodominant, and tumours with a higher mutational 

burden simply have an increased likelihood of bearing a highly immunogenic mutation. 

This is consistent with our results, where total mutations (Figure 2.3A) greatly 

outnumber mutations that are predicted to be immunogenic (Figure 2.3C), but the 

distributions are similar. Looking at cancers individually (Figure A.2) it is interesting that 

colorectal tumours, many of which had very high mutational loads, showed the 

strongest association between predicted immunogenic mutation counts and CD8A 

expression. Unfortunately, however, in the current meta-analysis the number of subjects 

varied widely among cancer types. A comprehensive evaluation of immunogenic 

mutations specific to individual cancer types remains an important topic for future study.  

Our meta-analysis focussed exclusively on missense mutations because in 

addition to these being most abundant, they were sequence verified and therefore of 

high confidence. Moreover, they were amenable to evaluation using existing 

computational epitope prediction tools. We observed that nearly all patient tumours with 

high missense mutation counts also had elevated CD8+ TIL inferred by CD8A 

expression, and elevated counts of predicted immunogenic mutations. However, the 

association was directional, with many tumours having high CD8+ TIL but few or no 

predicted immunogenic mutations. This suggests that while the expression of 

immunogenic missense mutations may induce CD8+ TIL responses in some tumours, in 

other tumours CD8+ TIL may be attracted by other classes of mutation or other factors 

altogether. In patients with hereditary nonpolyposis colorectal cancer, microsatellite 

instability is the major determinant of dense tumour infiltration by activated CD8+ T cells 

[208], thus, a mutator tumour phenotype may in general enhance immunoreactivity. 

Other classes of potentially immunogenic mutations require exploration, such as gene 
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fusions resulting from genomic rearrangements. Instances of tumours with high CD8+ 

TIL but few immunogenic mutations may also be due to immune editing [127,209]. 

Specifically, tumour cells bearing highly immunogenic mutations may have been 

selectively eliminated by T cells, resulting in accumulation of CD8+ TIL but fewer 

immunogenic mutations remaining to be detected.  

The results of the present study have clinical implications. We have shown that 

patients with tumours bearing missense mutations predicted to be immunogenic have a 

survival advantage (Figure 2.3D). These tumours also show evidence of higher CD8+ 

TIL, which suggests that a number of these mutations might be immunoreactive. The 

existence of these mutations is encouraging because in principle they could be 

leveraged by personalized therapeutic vaccination strategies or adoptive transfer 

protocols to enhance anti-tumour immunoreactivity. Likewise, patients with tumours 

showing naturally immunogenic mutations and associated TIL are potential candidates 

for treatment with immune modulators such as CTLA4 or PDCD1 targeted antibodies. 

There is evidence that such therapies are most effective against tumours infiltrated by T 

cells [210,211]. Our results indicate that tumours bearing predicted immunogenic 

mutations have not only elevated CD8A expression (Figure 2.3C) but also elevated 

expression of CTLA4 and PDCD1 (Figure 2.4), reinforcing the notion that these patients 

may be optimal candidates for immune modulation. Importantly, we observed that 

tumours with low levels of CD8+ TIL invariably have far fewer immunogenic mutations. 

Such patients would be better suited to conventional therapy, or to immunotherapies 

such as chimeric antigen receptor modified T cells that target non-mutated antigens. 
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Chapter 3: Exploring the TCR repertoire of solid and liquid tumours 

by bulk RNA-seq 

Primary sequence analysis of the highly variable CDR3 of rearranged TCR genes 

provides insight into the adaptive immune response. T cells recognize peptide epitopes 

presented on the surface of cells on MHC (major histocompatibility complex) molecules. 

CDR3 is the TCR motif that directly binds MHC-presented peptide epitopes and this 

binding interaction is the main factor conferring T cell antigen specificity. Typically, 

CDR3 sequence information is acquired by performing TCR-seq experiments on 

peripheral T cells isolated from blood [10,11]; amplifying the CDR3 region with a 

conserved C gene primer followed by 5’RACE [11], or a multiplexed set of V and J gene 

primers [67]. TCR-seq applied to tissue specimens can provide insight into tumour-

infiltrating lymphocytes [177,212], T cells associated with autoimmune pathology [213–

215] and infection [216], and the properties of normal primary and secondary lymphatic 

tissues [217,218]. Further, TCR-seq applied to lymphoblastic leukemias and lymphomas 

can identify the malignant clonally expanded cell and track minimal residual disease 

[219]. 

Conventional TCR-seq methods provide a detailed view of TCR diversity 

[5,11,67]. However, because they rely on targeted amplicon sequencing, they do not 

evaluate TCR variation in the context of the overall genetic diversity of the specimen 

from which the data are derived. NGS technology has made whole genome and 

transcriptome sequencing routine, and provided opportunities for extraction of 

immunological data, such as HLA types, using specialized software tools [143,144]. 

Here, we describe an optimized approach for T cell receptor CDR3 extraction from 

RNA-seq datasets from solid tumours, for the purpose of characterizing T cell 

populations present in the tumour environment (3.1 Profiling tissue-resident T cell 

repertoires by RNA sequencing). We then apply this approach to RNA-seq of sorted cell 

subsets from peripheral T cell lymphoma specimens and identify aberrant cells with 

increased sensitivity compared to conventional methods (3.2 Defining the clonality of 

peripheral T cell lymphomas using RNA-seq). 
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3.1 Profiling tissue-resident T cell repertoires by RNA sequencing 

3.1.1 Introduction 

Compared to TCR-seq, the main challenge in CDR3 extraction from tumour RNA-seq 

data is the disproportionally large number of non-TCR transcripts (Figure 3.1). For a 

pure lymphocyte population, only one in approximately 2,000 transcripts are TCR 

transcripts (see 3.1.2.4 Approximation of TCR transcript abundance from percent T cell 

infiltration) and in tissues T cells represent a minor cell type, further decreasing TCR 

transcript representation. This necessitates an analytical approach that is both fast and 

accurate for TCR extraction from tissue-derived RNA-seq datasets. Here, we describe 

the application and optimization of existing TCR clonotype annotation tools designed for 

TCR-seq datasets to RNA-seq datasets from solid tumours, and describe the extracted 

TCR repertoires from these samples. 

 

Figure 3.1: Schematic representation of TCR-seq versus RNA-seq. Horizontal lines represent mRNA 

transcripts with grey poly-A tails. Each colour represents a unique gene sequence. (A) A pool of all 

mRNA in a sample is depicted, which contains irrelevant transcripts (blue, brown, and red) as well as 

recombined TCR transcripts (multi-coloured). (B) TCR-seq involves selective amplification of the CDR3 

region of TCR transcripts (displayed as a colour gradient) by RT-PCR, shown using a conserved C-gene 

primer (purple with black sequencing adapter tails) for the initial reverse transcription step and resulting, 

after PCR (not shown), in an enriched set of recombined TCR sequences. (C) RNA-seq employs shotgun 

sequencing, generating fragments from all transcripts present in the sample, which then have sequencing 

adapters ligated (black). The resulting sequencing library will contain fragments which, by chance, contain 
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CDR3 encoding sequence. Additionally, these libraries may contain fragments which share sequence 

similarity to recombined TCR sequences (ex. the red transcript), potentially leading to false-positives. 

3.1.2 Methods 

3.1.2.1 Ethics 

The research described herein conformed to the Helsinki Declaration. All clinical 

specimens not part of The Cancer Genome Atlas were obtained previously [190] with 

informed consent by the BC Cancer Agency Tumour Tissue Repository (BCCA-TTR), 

which operates as a dedicated biobank with approval from the University of British 

Columbia-British Columbia Cancer Agency Research Ethics Board (BCCA REB; 

certificate #H09-01268). 

3.1.2.2 Extraction of T cell receptor CDR3 sequences from RNA-seq data 

We deployed MiTCR [150] v1.0.3, which is well suited for annotation of CDR3 

sequences from sequencing reads. However, upon initial application of MiTCR to 

tumour RNA-seq data using the default parameters we identified hundreds of non-

specific and out-of-frame CDR3 sequences per sample, which prompted us to explore 

alternative parameters. Closer inspection of the bogus CDR3s identified low similarity 

between these sequences and the putative flanking TCR V and J gene segments, 

suggesting that the false positives were spurious, non-TCR hits to TCR-like sequences 

elsewhere in the transcriptome. Therefore, we optimized settings using positive and 

negative control RNA-seq data. The positive control data set was comprised of TCR 

sequences generated in silico, as follows. V, (D), J, and C gene reference sequences 

for human T cell receptor alpha and beta chains were downloaded from the 

ImMunoGeneTics information system [220]. To generate each transcript, V, (D), J, and 

C genes were chosen randomly. Non-templated nucleotide addition and deletion 

frequencies at the V-(D)-J gene junctions were modelled from observed frequencies in 

normal TCR beta repertoires [11]. Due to the absence of D genes in the alpha chain, 

the number of bases added between the V and J genes was selected by averaging the 

number to add to both the V-D and D-J junctions in a beta chain. Out of frame 

transcripts and those that contained stop codons were removed. Full length recombined 

TCR transcript sequences were run through MiTCR using stringent alignment 
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parameters (minimum V and J alignment length both set to 20 in the XML parameter 

file; default value is 12) to annotate the CDR3 region in the transcript, and to ensure the 

in silico recombination created a CDR3 sequence able to be detected by MiTCR. 

10,000 transcripts each of alpha and beta were generated, with 8,573 alpha and 8,804 

beta sequences successfully being identified by MiTCR and being used as the source 

for the positive control dataset. The distribution of CDR3 lengths for the in silico 

generated alpha and beta chains are displayed in Figure B.1. 

For negative control RNA-seq data, we used paired-end 101 nt RNA-seq data 

from seven TCR-negative cell lines, downloaded from ENCODE [221] and pooled for 

use as a negative control (Table B.1). To create negative datasets for shorter read 

lengths, reads from the 101 nt datasets were truncated to 76 nt and 50 nt reads. For 

positive control data sets error-free reads (101, 76, and 50 nts) were created for each in 

silico generated CDR3, with the center of the CDR3 region positioned at the center of 

the read. 

An unbiased parameter space exploration was performed across all pairwise 

combinations of V gene minimum alignments and J gene minimum alignments (values 8 

to 26 explored, all other parameters set as default) to determine optimal parameters. 

For each of the 361 parameter pairs, MiTCR was run on the negative and positive 

control datasets. For negative control datasets, the number of detected bogus CDR3s 

was tracked, and for positive control datasets, the number of correctly annotated 

CDR3s was tracked. Optimal parameters were assessed for each TCR chain - read 

length combination. Sensitivity was calculated for each parameter pair by dividing the 

number of recovered CDR3s by the maximum number of recovered CDR3s for all 

parameter pairs of that TCR chain – read length combination, giving a relative sensitivity 

value. We used a binary categorization to bin the false discovery rates as acceptable or 

not. For a set of false discovery rates, we selected the best parameter pair which had 

an acceptable false discovery rate and highest sensitivity. In the case of multiple 

parameter pairs being equally acceptable, the pair which minimized the V and J 

alignment parameters was selected. These optimal parameters are summarized in 

Table B.2. 
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3.1.2.3 Benchmarking CDR3 extraction efficiency using simulated data 

The Flux Simulator [222] v1.2.1 is a computational tool which generates RNA-seq 

datasets by simulating a transcriptome expression profile, library construction, and 

sequencing errors. We simulated a range of sequencing depths (104 – 108 reads) and 

read lengths (50, 76, and 101 nt) to determine the importance of different factors on 

characterizing the ability to detect a given CDR3 sequence. Full-length in silico 

recombined TCR sequences were annotated as single exon genes in a reference 

synthetic chromosome sequence file, which we added to the human genome (GRCh38) 

to be used as the reference genome for Flux Simulator. Flux Simulator was run with the 

following command line flags: –t simulator, –x (to simulate expression), –l (to simulate 

library construction), –s (to simulate sequencing), and –p parameterFile.par. The 

parameter file contained the following parameters: REF_FILE_NAME: path to .gtf file; 

GEN_DIR: directory with genome reference files; FASTA: true; ERR_FILE: 76; 

READ_LENGTH: one of 50, 76, 101; PAIRED_END: true, UNIQUE_IDS: true; 

READ_NUMBER: one of 10000, 50000, 100000, 500000, 1000000, 5000000, 

10000000, 50000000, 100000000; and TMP_DIR: path to temporary directory. 

Ten RNA-seq datasets were simulated for each read length and sequencing 

depth combination to minimize the risk of any stochastic effects on transcript abundance 

in any one simulation confounding the variables which explain CDR3 recovery. Each 

simulated dataset was run through MiTCR using the optimized parameter sets for a 

theoretical 0 % false discovery rate, and results from all 270 simulations were pooled for 

analysis (Figure B.2). There are two requirements for detection of a CDR3: (1) the TCR 

transcript must be expressed, and (2) the sequence read length must be longer than the 

CDR3 length (Figure B.3). Before modelling, we filtered the data to cases that met these 

two criteria (n = 362,233). A multivariate logistic regression model was fit using half of 

the data (n = 181,116), leaving half the data for a validation set (n = 181,117). The fit of 

the logit function is shown in Equation 3.1. The performance of the model is 

summarized in Table 3.1, and resulted in 63.8 % sensitivity and 93.1 % specificity. 
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Equation 3.1: 

𝒍𝒐𝒈𝒊𝒕(𝑪𝑫𝑹𝟑 𝒅𝒆𝒕𝒆𝒄𝒕𝒆𝒅)

= −𝟓. 𝟑𝟖

+ 𝟏. 𝟗𝟖(𝐥𝐨𝐠𝟏𝟎(𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝒔 𝒑𝒆𝒓 𝒎𝒊𝒍𝒍𝒊𝒐𝒏)) + 𝟎. 𝟓𝟏 (
𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒊𝒏𝒈 𝒅𝒆𝒑𝒕𝒉

𝟏𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟎
)

+ 𝟎. 𝟎𝟒(𝒓𝒆𝒂𝒅 𝒍𝒆𝒏𝒈𝒕𝒉) − 𝟎. 𝟎𝟒(𝑪𝑫𝑹𝟑 𝒍𝒆𝒏𝒈𝒕𝒉) 

Table 3.1: Observed and predicted detection of CDR3s in the validation set by logistic regression 

with cut-off of 0.50. 

 Predicted  

Observed Detected Not Detected % Correct 

Detected 31163 17698 63.8 

Not Detected 9162 123094 93.1 

Overall   85.2 

 

3.1.2.4 Approximation of TCR transcript abundance from percent T cell 

infiltration 

We queried Illumina BodyMap (http://www.ebi.ac.uk/gxa/experiments/E-MTAB-513) and 

GTEx (http://www.gtexportal.org/home/) to find the expression of TRAC and TRBC1/2 in 

healthy whole blood. An average expression of approximately 150 FPKM was observed 

for these genes. As these genes are roughly 1 kb in length, this level of expression 

translates to a transcript fraction on the order of 1.5 × 10-4. As lymphocytes are 

generally between 20 – 40 % of white blood cells, a pure lymphocyte population would 

have a TCR transcript fraction of approximately 5 × 10-4. Assuming a similar cellular 

composition between peripheral blood lymphocytes and TIL, a tumour with 2 % TIL (the 

median value for TCGA tumours, parsed from TCGA biospecimen slide data) would 

have a TCR transcript fraction of 1 × 10-5. This value can be inserted into the logistic 

regression model in order to predict the minimum sequence depth required to have a 

50 % chance of detecting a CDR3 sequence with this abundance and other known 

properties. 
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3.1.2.5 TCGA RNA-seq data analysis 

All available RNA-seq fastq files for solid tumours and matched normal tissues were 

downloaded with permission from Cancer Genomics Hub (https://cghub.ucsc.edu/). This 

includes 8,655 samples from 24 tumour sites. The majority (79 %) of this TCGA RNA-

seq data are 50 nt reads, while 21 % are 76 nt, with sequencing depths ranging from 

5.27 × 106 to 4.51 × 108 reads. To be able to directly compare the extracted CDR3s 

across all samples, we performed a pre-normalization step by truncating all reads to 

50 nt, and randomly sub-sampling 1.00 × 108 reads from every sample. This resulted in 

removal of 41.5 % of all sequence data (5.20 × 1011 reads) and 15.2 % of samples 

(1,313) due to insufficient depth, leaving 7,342 (6,738 tumour and 604 normal) samples 

and 7.34 × 1011 total reads for analysis. Prior to running MiTCR, the fastq files were 

cleaned by only retaining reads longer than 40 nt and reads containing standard 

(ACTGN) bases. For every sample, MiTCR was run with the optimized V and J 

alignment parameters for a theoretical 0 % false discovery rate with 50 nt reads for both 

alpha and beta chains, keeping all other parameters default. Extracted CDR3 

sequences that contained stop codons or frame shifts were removed prior to all further 

analysis. 

3.1.2.6 TCGA gene expression datasets 

In order to correlate extracted TCR diversity with expression of immune-related genes, 

all available RNASeqV2 data from the TCGA Data Portal was downloaded. This data 

provides gene expression information generated using MapSplice [223] for alignment 

and RSEM [224] to quantify gene expression. The reported scaled_estimate value was 

multiplied by 106 to obtain transcripts per million (TPM). To obtain consensus gene 

expression values, we summed the TPM values within each of the following groups: 

HLA class I (HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G), Class II (HLA-DMA, HLA-

DMB, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-

DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, HLA-DRB5), CD8 (CD8A, CD8B) or CD3 

(CD3D, CD3E, CD3G). Pearson correlations were calculated between these genes and 

the number of distinct CDR3 sequences in each subject (Figure B.5, Figure B.6). 

https://cghub.ucsc.edu/
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3.1.2.7 Inferred pairing of TCR alpha and beta subunits 

For each tumour sample, all possible pairwise combinations of TCR alpha and beta 

subunit CDR3 sequences derived from that sample were specified (n = 1,286,810). We 

then looked for recurrent alpha-beta pairs among all TCGA tumour samples, and 

identified 188 distinct alpha-beta pairs that were found in at least two subjects. To test if 

this was a stronger alpha-beta co-occurrence than would be expected by chance, we 

randomized the relationship between sample identifiers and their corresponding TCR 

alpha-beta subunit pairs. We then determined the frequency of recurrent alpha-beta 

pairs in this randomized dataset. Randomization was repeated for 100 iterations, and 

the proportion of trials which had a degree of sharing greater than or equal to the 

original, non-randomized data was taken as the P value. 

3.1.2.8 Shared peptide-MHC and CDR3 sequences 

We predicted HLA Class I alleles and MHC-presented point mutations for 1,361 TCGA 

subjects as previously described [156], with an IC50 value of 500 nM for MHC predicted 

binding affinity taken as the maximum threshold for potential immunogenicity. We 

counted the frequency of each pMHC (n = 305,438), and found 393 to be recurrent. In 

order to determine if any of the subjects sharing a pMHC also shared a similar CDR3 

sequence, we took all CDR3 sequences from all 1,361 subjects, and clustered them to 

allow for inexact CDR3 sequence matches. We clustered at 95 % identity using CD-HIT 

[225,226] v4.6 with the following parameters: -c 0.95; -n 5; -l 5. We then checked each 

cluster to see if it contained sequences from at least two subjects, and if those subjects 

shared a pMHC. We found one cluster of two subjects that met this criteria. To test how 

frequently this would be expected to happen by chance, we randomly selected two 

subjects from the set, and checked if they shared a pMHC. We measured the fraction of 

successes from 1,000,000 trials, then multiplied by the number of clusters that contain 

two subjects (n = 1,457) to correct for multiple testing to give the adjusted P value. 

3.1.2.9 Data analysis 

All data analysis was performed in R [189] v3.1.2 or Python (http://www.python.org) 

v2.4.3 and v3.2.2. 

http://www.python.org/
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3.1.2.10 Code availability 

Custom code is available at https://github.com/scottdbrown/TCR-from-RNAseq2015. 

3.1.3 Results 

3.1.3.1 Somatically rearranged T cell receptor sequences can be effectively 

recovered from RNA-seq data. 

We optimized the extraction of TCR alpha and beta chain sequences from RNA-seq 

datasets by evaluating negative and positive control datasets and adjusting search 

parameters. We identified optimal V and J alignment parameters that yielded an 

average of 94 % sensitivity for 100 % specificity using the shortest (50 nt) reads (Table 

B.2, see 3.1.2 Methods). Sensitivity is limited, ultimately, by the inability to detect the 

small proportion of CDR3s that are longer than a sequencing read (Figure B.3). 

To estimate the yield of TCR transcripts that could be expected from typical 

RNA-seq experiments, we used Flux Simulator [222] to generate simulated RNA-seq 

data spiked with in silico recombined TCR transcripts, and processed these data as 

described in Methods, above. As expected, the most abundant TCR transcripts are the 

most readily detected and the sensitivity of the method increases with increasing 

sequencing depths and read lengths (Figure B.2). We fit a multivariate logistic 

regression model to explain the odds of detecting a CDR3 sequence from the RNA-seq 

data using the explanatory variables log10(transcripts per million) (OR = 7.242, 95 % CI 

= 7.079-7.411, P < 2 × 10-16), sequencing depth in tens of millions of reads (OR = 1.667, 

95 % CI = 1.658-1.677, P < 2 × 10-16), sequence read length (OR = 1.0358, 95 % CI = 

1.035-1.037, P < 2 × 10-16), and CDR3 nucleotide sequence length (OR = 0.958, 95 % 

CI = 0.956-0.960, P < 2 × 10-16), and observe that initial TCR transcript abundance is 

the most important factor in predicting whether a CDR3 would be detected. 

For tumour tissue, where the degree of T cell infiltration is typically about 2 % 

(see 3.1.2.4 Approximation of TCR transcript abundance from percent T cell infiltration), 

we would expect 0.001 % of the total transcripts to be recombined TCR transcripts. 

Assuming a monoclonal infiltrate, an RNA-seq depth of 70 million 50 nt reads is 

required to have a greater than 50 % chance of detecting a 45 nt long CDR3 (the most 

frequent CDR3-beta length [11]). Additional probabilities are presented in Table B.3. To 

https://github.com/scottdbrown/TCR-from-RNAseq2015
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further evaluate the yield of TCR sequences from RNA-seq data, we generated TCR-

seq for TCR-beta (1,411,056 reads; 2,823 unique CDR3-beta sequences) and RNA-seq 

for total cDNA (56,067,687 reads; 9 unique CDR3-beta sequences) data from the same 

colorectal tumour tissue sample, using previously described methods [5,227] and 

observed that all high confidence CDR3-betas identified by RNA-seq (n = 9) fall within 

the top 2.1 % (n = 60) of CDR3-betas detected by TCR-seq, ranked by abundance 

(Figure B.4), confirming that at a modest depth of sequencing, RNA-seq can identify the 

most abundant CDR3 encoding transcripts. 

3.1.3.2 TCR sequence diversity in tumour-associated T cell repertoires. 

We extracted TCR alpha and beta chain CDR3 sequences from all available RNA-seq 

datasets from the TCGA project. This included 7,342 total data sets derived from 6,738 

solid tumour and 604 matched normal tissues, from 24 different tumour sites. In 

tumours, the yield per subject ranged from 0 – 702 (median of 9) reads containing a full 

CDR3 sequence (Figure 3.2), and this translated to a range of 0 – 538 (median of 7) 

distinct CDR3 amino acid sequences per subject. Kidney renal clear cell carcinoma 

(KIRC) produced the greatest yield of CDR3s, whereas brain lower grade glioma (LGG) 

produced the least. As expected, there is a strong correlation between number of 

distinct CDR3 amino acid sequences and CD3 expression (Figure B.5). Comparing the 

gene expression of HLA class I and class II genes with the number of distinct CDR3 

amino acid sequences per subject, we observed a positive correlation, with markedly 

stronger correlations seen for class II genes (Figure B.6; P = 9.3 × 10-10, paired t test). 

This is consistent with recent reports highlighting the immunoreactivity of T cells with 

specificity for MHC class II presented tumour antigens [114,228,229]. 

Next, we evaluated the differential abundance of CDR3s between tumours and 

matched normal control tissues for all subjects where the RNA-seq data was available 

for both (n = 462, Figure 3.3, Table B.4). Of 6,611 total alpha chains in this set, 3,560 

(53.8 %) were unique to tumour samples and 2,826 (42.7 %) were unique to matched 

control samples. Likewise, of the 7,664 beta chains, 4,279 (55.8 %) were unique to 

tumour and 3,277 (42.8 %) were unique to matched control samples. A total of 225 

unique CDR3-alpha and 108 unique CDR3-beta sequences were present in both 
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tumour and control tissues. Notably, almost all CDR3s that are unique to tumour or 

normal tissues had only a single supporting read (Figure 3.3), and do not show 

evidence of clonal expansion. Thus, while there is evidence for a larger and more 

diverse T cell infiltrate in tumour compared to control tissues (P < 2.2 × 10-16, chi-

squared test), these results suggest that a large proportion of tumour associated T cells 

are bystanders, not readily distinguishable from the normal population of tissue resident 

T cells. A single KIRC subject was a notable outlier in this analysis. The tumour sample 

from this subject yielded the three most abundant tumour specific CDR3-alphas and the 

two most abundant tumour specific CDR3-betas in the entire cohort, suggesting the 

possibility of an acute anti-tumour T cell response in this individual. 

 

Figure 3.2: The number of reads containing CDR3 sequences varies across tumour sites. LGG: 

brain lower grade glioma; GBM: glioblastoma multiforme; PCPG: pheochromocytoma and paraganglioma; 

KICH: kidney chromophobe; ACC: adrenocortical carcinoma; UCS: uterine carcinosarcoma; LIHC: liver 

hepatocellular carcinoma; OV: ovarian serous cystadenocarcinoma; PRAD: prostate adenocarcinoma; 

UCEC: uterine corpus endometrial carcinoma; ESCA: esophageal carcinoma; CRAD: colon and rectum 

adenocarcinoma (combination of COAD and READ); THCA: thyroid carcinoma; BLCA: bladder urothelial 

carcinoma; KIRP: kidney renal papillary cell carcinoma; CESC: cervical squamous cell carcinoma and 

endocervical adenocarcinoma; HNSC: head and neck squamous cell carcinoma; LUSC: lung squamous 

cell carcinoma; PAAD: pancreatic adenocarcinoma; STAD: stomach adenocarcinoma; LUAD: lung 

adenocarcinoma; BRCA: breast invasive carcinoma; SKCM: skin cutaneous melanoma; KIRC: kidney 

renal clear cell carcinoma.  
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Figure 3.3: The majority of CDR3s recovered from tumour/normal control tissue pairs are unique 

to tumour or normal. For every CDR3, the number of reads in the set of tumours is plotted on the y-axis, 

with the number of reads in the set of normal samples on the x-axis. Points are coloured by the number of 

subjects in which that CDR3 sequence is detected. 

3.1.3.3 Public T cells are common in the tumour environment 

To explore the recurrence of TCRs mined from the tumour environment, we compared 

the CDR3-beta sequences extracted from the complete set of analyzed TCGA samples 

to the approximately 1.1 million distinct CDR3-beta sequences we previously identified 

by deep TCR-seq analysis of peripheral blood from a healthy subject [5]. Of all 49,672 

distinct TCGA CDR3-beta sequences we observed, 22.8 % were found in the peripheral 

repertoire of the healthy subject (Figure B.7). We found the level of overlap with this 

healthy individual for those CDR3-betas that are seen in multiple TCGA subjects (public 

TCRs; 76.5 % of 2,197 shared TCGA CDR3-betas found in the healthy repertoire) was 

substantially greater than for those that are unique to a single TCGA subject (private 

TCRs; 20.3 % of 47,475 unique TCGA CDR3-betas found in the healthy repertoire), 

suggesting these shared, tumour associated CDR3-betas are derived, predominantly, 

from public T cells. Indeed, when we queried tumour-associated CDR3-beta sequences 

for matches to CDR3-beta sequences in the literature with defined antigen specificity, 

we found numerous matches to known viral-specific TCRs [230] (Figure 3.4). TCGA 
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CDR3-betas with viral specificity were much more common within the set of shared 

TCGA CDR3-betas than within the set of unique TCGA CDR3-betas. Specifically, nine 

of 2,197 CDR3-betas (0.41 %) that were shared among TCGA subjects were 

identifiable as being viral-specific, whereas only three of the 47,475 CDR3-betas 

(0.0063 %) that were unique to a single TCGA subject were similarly identifiable. 

 

Figure 3.4: Sharing of CDR3-beta sequences. All 49,672 CDR3-beta sequences derived from tumours 

are plotted along the x-axis according to the number of tumours they are found in. Colour defines the 

number of nucleotide sequences that were found to generate the same CDR3-beta amino acid sequence. 

Violin plot overlay shows that most recovered CDR3-beta sequences are unique to an individual, though 

there is notable sharing (4.4 %) between subjects. Known, public, viral-specific CDR3-beta sequences 

[230] are labelled with their antigen specificity. 

Given the observation of substantial sharing of CDR3 sequences among 

subjects, we asked if some of the shared alpha and beta CDR3 sequences may 

represent shared dimeric TCRs. To test this, we generated all possible alpha-beta pairs 

within each subject’s alpha and beta repertoires and looked for sharing of any pairs 

between two or more subjects. We observed 188 distinct alpha-beta pairs that were 

found in at least 2 subjects, which was not significantly more than would be expected by 

chance (P = 0.42, random resampling, see 3.1.2.7 Inferred pairing of TCR alpha and 

beta subunits). We also asked if subjects with shared mutations and shared HLA alleles 

may also share TCR sequences. Previously, for a subset of TCGA subjects, we 

identified tumour point mutations predicted to yield class I pMHCs [156]. We clustered 
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the CDR3 amino acid sequences from all subjects with predicted mutant pMHCs at 

95 % amino acid sequence identity. Of the 17,092 total CDR3 sequence clusters 

(including singletons), only one cluster contained sequences from two subjects with 

matching mutant pMHCs (Table 3.2). Although this is not statistically significant (P = 

0.35, random resampling, see 3.1.2.8 Shared peptide-MHC and CDR3 sequences), with 

deeper sequencing data from large numbers of subjects, this approach may prove 

useful for matching TCR sequences to the neoantigens they recognize. 

Table 3.2: Summary of a CDR3-beta sequence cluster that shares pMHC. 

Cluster 

Number 
Subjects Sequences 

Mutant 

Gene 
Peptide HLA 

6473 TCGA-HU-A4G8 CASSRDSSYEQYF PGM5 GRLIIGQNGV B*27:05P 

6473 TCGA-BR-8081 CASSLRDSSYEQYF PGM5 GRLIIGQNGV B*27:05P 

6473 TCGA-HU-A4G8 CASSRDSSYEQYF PGM5 GRLIIGQNGVL B*27:05P 

6473 TCGA-BR-8081 CASSLRDSSYEQYF PGM5 GRLIIGQNGVL B*27:05P 

3.1.4 Discussion 

In future, as sequence costs continue to decline, there will be increasing opportunities to 

derive immune signatures from unbiased data types. Here, we have optimized an 

analytical strategy for extracting T cell repertoire information from RNA-seq datasets, 

and used it to characterize tumour associated T cell repertoires. We have provided 

optimal parameters for mining RNA-seq datasets of varying read lengths, and provided 

a range of parameters for varying levels of acceptable false positive rates. This 

procedure was validated on simulated RNA-seq datasets with known recombined T cell 

receptor transcripts and was also compared to classical TCR-seq data, showing that the 

subset of TCRs we detect using RNA-seq are the most abundant T cells in the sample. 

The most abundant T cells may or may not be the most biologically relevant T cells. In 

solid tumours, the relationship between clonal abundance of T cells and anti-tumour 

immunity is not yet clear as it is obscured by the presence of bystander T cells in the 

tumour environment. Likewise, in cases such as acute infection, the most abundant T 

cells are likely those that are most biologically relevant. TCR transcripts from rare T 
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cells will become more accessible in future because continually declining sequencing 

costs will allow deeper and deeper transcriptome sampling by RNA-seq. 

The expected yield of TCR reads from RNA-seq data is ultimately dependent on 

the level of T cell infiltration in the sample and the clonality of the infiltrate. Assuming a 

similar cellular composition to TCGA tumours, one can expect on the order of 1 TCR 

reads from 10 million sequence reads. Our analysis has highlighted a strong and novel 

correlation between tumour TCR diversity and tumour MHC class II expression and high 

prevalence of public T cells in the tumour environment. Further, within the limitations of 

the available data, we have explored the association between alpha-beta TCR pairs, 

and linked TCR sequences to specific pMHC complexes. Analyses of this nature may 

inform future cancer immunotherapy strategies, and we expect that this same approach 

will have value in exploring other immune related pathologies, where large RNA-seq 

datasets already exist or can be obtained. In cases such as T cell lymphoma, where the 

T cell is the cancerous cell and is highly expanded, the most abundant CDR3 

sequences found by RNA-seq should generally be adequate to identify the tumour clone 

and monitor disease progression [219]. We next test this by applying our analysis to 

RNA-seq datasets from peripheral T cell lymphomas (PTCLs). 

3.2 Defining the clonality of peripheral T cell lymphomas using RNA-seq 

3.2.1 Introduction 

Peripheral T cell lymphomas (PTCLs) represent 10-15 % of non-Hodgkin lymphomas 

[231]. PTCL not otherwise specified (PTCL-NOS) and angioimmunoblastic T cell 

lymphoma (AITL) are the most common PTCL subtypes [231,232]. Both are aggressive 

lymphomas with cure rates of 20-30 % by chemotherapy [233]. 

Lymphoid cancers are believed to arise from a single lymphocyte that acquires 

somatic mutations sufficient for malignant transformation. Progeny tumour cells obtain 

an increasingly diverse mutational landscape through tumour evolution, but all progeny 

share identical (clonal) rearrangements in TCR or, in the case of B cell lymphomas, 

immunoglobulin (Ig) genes. Clonal TCR and Ig rearrangements are useful for 

distinguishing malignant cells from the polyclonal background of normal lymphocytes. 

The use of flow cytometry to identify aberrance in cell surface markers is an important 
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diagnostic tool in PTCLs [234]; however, it is not directly informative regarding T cell 

clonality. Multiplex PCR methodologies are the current standard for inferring clonal TCR 

rearrangements in clinical practice. The PCR products of TCR genes can be analysed 

for putative clonality using either heteroduplex analysis [235] or GeneScanning [236], 

but only TCR sequence analysis can identify T cell clones unequivocally. 

Deep sequencing of TCR amplicons (TCR-seq) is a powerful and sensitive 

method for characterizing the T cell repertoire [10,11,67,219,237]. However, 

transcriptome sequencing (RNA-seq) is more informative, providing data from all 

transcribed genes present in the sample, and has proven utility in personalized 

oncology [238,239]. Obtaining TCR sequences directly from RNA-seq data can, in some 

settings, provide sufficient information on T cell clonal abundance to obviate the need 

for dedicated TCR-seq assays [240] which are associated with considerable added time 

and cost. 

Here, we used flow cytometry/fluorescence-activated cell sorting (FACS) to 

identify and purify malignant T cell populations from non-malignant cells. We aimed to 

determine the utility of RNA-seq in establishing TCR clonality in samples with either an 

aberrant or normal (non-aberrant) T cell immunophenotype without the need for 

amplicon-based TCR-seq. 

3.2.2 Methods 

3.2.2.1 Clinical specimens and cell sorting 

This study was approved by the University of British Columbia/British Columbia Cancer 

Agency (BCCA) Research Ethics Board (H14-01235). Sixty diagnostic lymph node cell 

suspensions were obtained from the BCCA Lymphoid Cancer Tumour Bank (32 PTCL-

NOS, 28 AITL), collected from 1990 to 2014. Excess aliquots from each diagnostic 

specimen were placed in DMSO and stored at -80°C. One additional lymph node cell 

suspension from a pre-diagnostic time point was included for one subject (PTCL-NOS), 

as were five tonsil biopsies from healthy subjects to be used as controls. 

All specimens were stained with an 11-antibody panel to identify aberrant T and 

T follicular helper (TFH) cells. The panel (Table B.5) consisted of CD45 (common 

leukocyte marker), lineage-specific T cell antibodies (CD3, CD4, CD8), pan-T cell 
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antibodies (CD2, CD5, CD7), TFH cell antibodies (CXCR5, PD1), CD10 (for the 

detection of aberrant T cells in AITL), and CD19 (for the detection of B cells). Data was 

acquired on a Becton Dickinson FACSAria3 instrument as part of a sorting experiment 

to isolate tumour cell subpopulations. Data was analysed by conventional gating and 

bivariate plot display using FlowJo software (version 10.0.8). 

FACS was used to identify and purify specimens with an aberrant 

immunophenotype (Figure 3.5A). T cell surface marker aberrance was defined as the 

loss of one or more lineage-specific (CD3, CD4 or CD8) or pan-T cell marker (CD2, 

CD5 or CD7) or the gain of CD10. Skewing of the CD4:CD8 ratio (e.g., > 10 or < 0.5) 

was not a criterion for aberrancy; however, we acknowledge that marked skewing is 

suggestive of clonal dominance. A population was defined as ≥ 1 % of viable 

lymphocytes. For specimens without an aberrant immunophenotype, and for tonsil 

biopsies from healthy controls, TH, TFH, and CTL populations were sorted (Figure 3.5C). 

3.2.2.2 Sequencing 

RNA was extracted from FACS-sorted cells using Qiagen Allprep DNA/RNA column-

based extraction kits as per the manufacturer’s instructions. RNA-seq was performed on 

DNase-treated samples using an RNA-seq lite plate-based protocol with SMART cDNA 

amplification. Non-aberrant cell subsets with the highest RNA quality for each subject 

were selected for RNA-seq library construction and sequencing (> 10 ng RNA and RNA 

quality score ≥ 6.4), as these were most likely to produce informative sequencing data 

to identify a dominant clone among immunophenotypically normal T cells. All samples 

were initially subjected to shallow sequencing (average 4.1 million total reads per 

sample, range 2.4 – 6.0 million) to facilitate the identification of the malignant T-cell 

clone in the sorted populations. To evaluate the importance of sequence depth for this 

application, all samples were re-sequenced deeply (average 92 million total reads per 

sample, range 63 – 156 million). All sequencing was performed using 125 nucleotide 

paired-end reads on an Illumina HiSeq 2500 instrument at the Genome Sciences 

Centre in Vancouver, Canada. 
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3.2.2.3 Analysis of clonality 

MiTCR software [150] with modified settings (TRAV minAlignmentMatches: 12, TRAJ 

minAlignmentMatches: 19, TRBV minAlignmentMatched: 14, TRBJ 

minAlignmentMatches: 16) [240] was used to identify TCR alpha and beta CDR3-

containing reads present in the sequencing data, generating a list of CDR3s 

(clonotypes) and their relative abundances. Non-productive CDR3 sequences 

(containing a frame-shift or stop codon) were removed from the analysis as they are 

most likely the result of incomplete allelic exclusion [241]. CDR3 sequences initially 

classified, inappropriately, as both alpha and beta were subsequently resolved by 

assigning the chain that had greater read support. Low-abundance CDR3s that had 

equal numbers of supporting reads for both chains were marked as ambiguous. TCR 

gamma or delta chain sequences were not interrogated because extensive optimization 

and validation of TCR extraction from transcriptome data is required [240] and this has 

only been done for alpha-beta TCR analysis. A dominance metric D for each recovered 

clonotype c in sample s was calculated as shown in Equation 3.2, where Rsc denotes 

the number of reads in sample s supporting clonotype c, RsHc denotes the number of 

reads in sample s supporting clonotypes of chain H that matches the chain of clonotype 

c, and Rs denotes the total number of reads in sample s. This metric is the product of 

two proportions: the proportion of chain-specific TCR reads and the proportion of total 

sequence reads. Together, these provide a measure of the clonotype abundance 

relative to all clonotypes identified, as well as relative to the size of the sequence 

dataset. 

Equation 3.2: 

𝐷𝑐𝑠 =
𝑅𝑠𝑐

2

𝑅𝑠𝐻𝑐 × 𝑅𝑠
 

 

To determine which CDR3 sequences were dominant (above background), 

chain-specific thresholds were set as the maximum Dcs derived from control samples for 

each chain; clonotypes above the threshold are dominant (5.38 × 10-7 for shallow alpha, 

2.28 × 10-7 for shallow beta, 2.27 × 10-8 for deep alpha, 9.85 × 10-8 for deep beta). 
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These thresholds are experiment-specific, and controls containing the expected normal 

polyclonal background of T cells for each future experiment would be required. 

TCR gamma gene rearrangements are observed in most alpha-beta T cells, and 

thus is used as the target for heteroduplex TCR analysis [235]. This assay was 

performed on 54 of the 60 PTCL samples at the time of diagnosis (from 1990 to 2014). 

GeneScanning was not available at our cancer center during the period of sample 

collection. The results from the heteroduplex analysis were compared to the MiTCR 

analysis to determine if there was improved sensitivity from the sequence-based 

approach. 

3.2.2.4 Estimating tumour content 

As all samples are comprised of sorted T cell populations, the tumour content of a 

sample can be estimated using the relative abundance of the dominant T cell. This 

approach is valid assuming all cells sequenced are alpha-beta T cells, all cells are 

expressing the TCR at a roughly equal level, and all TCR transcripts have an equal 

probability of being captured and sequenced. Due to allelic exclusion, each T cell clone 

should only express one beta chain [13], therefore the most abundant beta clonotype (if 

present, otherwise alpha) was used to define each clonal T cell and estimate tumour 

content. As an additional metric for assessing tumour content, the Shannon Entropy 

[242] was calculated for each sample using the entropy package [243] for R (v3.1.1). 

The Shannon Entropy quantifies the information content of a set of entities with 

associated abundances by measuring the uncertainty associated with predicting the 

identity of a randomly chosen entity. A high value corresponds to high uncertainty, and 

thus high diversity, whereas a low value corresponds to a set with low diversity. 

3.2.2.5 Gene expression 

RNA-seq files were aligned to the hg38 reference transcriptome using Bowtie2 [244] 

(v2.0.2) and gene expression was quantified using RSEM [224] (v1.2.29). TPM 

(transcripts per million) values for TCR constant genes were centered and scaled, and 

used to determine if samples showed evidence of alpha-beta or gamma-delta TCR 

expression. 
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3.2.2.6 Code availability 

Custom code is available at https://www.github.com/scottdbrown/RNAseq-

TcellClonality. 

3.2.3 Results 

3.2.3.1 Identification of dominant TCRs 

For 60 cases, diagnostic lymph node cell suspensions from T cell lymphomas were 

sorted by FACS into either aberrant (loss of one or more lineage-specific (CD3, CD4 or 

CD8) or pan-T cell marker (CD2, CD5 or CD7) or the gain of CD10) or non-aberrant 

populations (no evidence of aberrance; they are immunophenotypically normal). In 45 of 

the 60 total cases, at least one aberrant population (Figure 3.5A) of varying abundance 

(median 27.1 % of lymphocytes; Figure 3.5B) was isolated by FACS. The remaining 15 

cases and 5 controls had no observable aberrant population, and were sorted into at 

least one of CTL, TH, and TFH populations (Figure 3.5C). Two cases had two distinct 

aberrant populations each, which were sorted. In total, 82 sorted cell populations 

(samples) were isolated from the 65 specimens (60 cases and 5 controls). These were 

subjected to RNA-seq and bioinformatic extraction of TCR alpha- and beta-chain 

sequences. 

The threshold for determining the dominance of a TCR clonotype was computed 

by setting the background as the highest dominance metric observed from the 15 

control samples (Figure B.8). Using this threshold, evidence of a dominant TCR 

clonotype was obtained in 96 % of samples (45/47) that were aberrant by flow 

cytometry (Figure B.9), but also in 80 % of samples (16/20) that had appeared non-

aberrant by flow cytometry (Figure B.10). The samples that were aberrant by flow 

cytometry and also appeared aberrant by TCR sequence analysis typically showed a 

highly abundant dominant clonotype with a minimal background of low-abundance 

clonotypes (Figure 3.6). Samples that were non-aberrant by flow cytometry, but 

aberrant by TCR sequence analysis, generally had a dominant clone, but also a larger 

background repertoire, similar to the diverse repertoire of normal T cells seen in healthy 

controls (Figure 3.6). Thus, although the specimens that were non-aberrant by flow 

cytometry appeared to be immunophenotypically normal, they clearly contained an 

https://www.github.com/scottdbrown/RNAseq-TcellClonality
https://www.github.com/scottdbrown/RNAseq-TcellClonality
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expanded malignant clone. This suggests that malignant lymphocytes can retain a 

normal immunophenotype despite underlying clonality, and demonstrates the increased 

sensitivity and diagnostic ability of RNA-seq over FACS. In general, deeper sequencing 

results did not provide additional utility, as results were consistent with those obtained 

by shallow sequencing (Figure B.11). 

 

Figure 3.5: Specimen processing and cell sorting. (A) After gating on CD45+ cells, normal (CD3+, 

24.3 %) and aberrant (CD3-, 24.6 %) T cell populations are identified. The normal population is composed 

of a mixture of CD4+ and CD8+ cells, and has no aberrant loss of CD7. The aberrant population is 

composed exclusively of CD4+ cells, and demonstrates aberrant loss of CD3 and CD7. (B) Aberrant T cell 

populations were present at a range of frequencies (2.7 - 88.5 %) in lymph node cell suspensions 

(horizontal bar marks median). (C) Overview of the FACS sorting strategy. All specimens were stained 

identically as described in Methods. If an aberrant population was identified, it was sorted to purity. Non-

aberrant and control cases were sorted into CTL, TH, and TFH subpopulations. 



62 

 

 

Figure 3.6: Identification of dominant clonotypes. Clonotypes from one representative sample for 

each category are displayed. The relative abundance of each clonotype is shown on the y-axis, 

calculated as the abundance of each clonotype relative to the total abundance of all clonotypes of the 

same chain in that sample. Clonotypes are plotted along the x-axis in lexicographical order. Clonotypes 

determined to be dominant are coloured orange. The read abundance of each clonotype is represented 

by its size. Mean relative abundance of dominant or background clonotypes for all samples of each 

category are shown as dashed horizontal lines. 

3.2.3.2 Comparison to existing clinical assay 

Of the 45 diagnostic specimens which were immunophenotypically aberrant, 39 had 

clinical heteroduplex testing performed [235]. This test is based on PCR of the TCR 

locus using a multiplexed set of V and C gene primers, followed by denaturation and 

cooling of the amplicons to induce duplex formation. Samples which contain monoclonal 

cells will re-anneal with their complementary DNA strand, resulting in homoduplexes. 

Duplex formation from polyclonal samples will mainly result in heteroduplexes 

(sequences from two different TCRs annealing), These heteroduplexes are larger due 

to imperfect base pairing. Duplexes are loaded onto a non-denaturing polyacrylamide 
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gel and run to visualize differences in sizes of the duplexes. Samples with smaller 

bands are positive by this test, demonstrating evidence of a monoclonal cell population. 

Of the 39 specimens that had this testing done, 31 tested positive, and all 31 also 

showed evidence of a dominant clone by RNA-seq analysis. Of the eight that tested 

negative, seven had a dominant clone by RNA-seq analysis. Of the 20 diagnostic 

specimens that were immunophenotypically normal, 15 had clinical heteroduplex testing 

performed. Of these, 13 tested positive, and 11 of these showed a dominant clone by 

RNA-seq analysis. The two heteroduplex-positive and RNA-seq-negative specimens 

likely reflect missing sequence data; these specimens had non-sequenced sorted cell 

populations due to poor RNA quality, and one of these non-sequenced cell populations 

may contain the malignant clone. Of the two that tested negative by clinical 

heteroduplex testing, one was positive by RNA-seq analysis. 

3.2.3.3 Using diversity to identify malignant clones that do not express alpha-

beta TCR 

Shannon entropy [242] was calculated as a measure of TCR diversity for each sample. 

The relative abundance of the dominant T cell clone was used as a surrogate for tumour 

content, and showed an expected negative correlation with Shannon entropy (Pearson r 

= -0.90; Figure 3.7). There were two aberrant outliers with low entropy and no dominant 

clonotype identified, suggesting these aberrant cells do not express TCR alpha or beta. 

These samples had low expression of TCR alpha and beta constant genes (TRAC, 

TRBC1/2) and high expression of TCR gamma and delta constant genes (TRGC1/2, 

TRDC; P ≤ 0.032, Mann-Whitney U tests), suggesting these may be gamma-delta 

expressing PTCLs. 
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Figure 3.7: Characterization of sample diversity. Relationship between dominant clone relative 

abundance and Shannon entropy. Increasing dominant clone abundance shows decreasing Shannon 

entropies. The two aberrant samples with low Shannon entropy and absence of a dominant clone 

(circled) may represent cases where the malignant clone did not express an alpha-beta TCR. 

3.2.3.4 Recurrent TCR sequences 

There was no dominant TCR shared across subjects. There were four examples of 

dominant TCR sharing between different samples from the same subject: two of these 

occurred in subjects with two immunophenotypically distinct aberrant populations, 

possibly due to cell surface marker diversification post-malignant transformation; and 

two occurred in separate non-aberrant subsets, likely reflecting impurity in the sorting 

from FACS as the dominant clone showed unequal abundance between samples. 

3.2.4 Discussion 

These data demonstrate the utility of mining TCR sequences from RNA-seq data 

obtained from diagnostic lymph nodes to define malignant T cells. This is feasible using 

only light-coverage RNA-seq data. Deeper sequencing, while producing more robust 

data, was largely unnecessary as it did not improve the ability to detect dominant 

clonotypes in almost all cases, highlighting the usefulness and cost-effectiveness of 

shallow RNA-seq (4 million reads per sample) to detect clonality in PTCLs. For the 

current analysis, data was generated using sorted cell populations, but we expect that 
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malignant clones would be similarly recognizable from their dominant TCRs in unsorted 

samples or from whole blood. Thus, in the future, analysis of TCR profiles extracted 

from RNA-seq data from unsorted PTCL populations should be feasible and could serve 

as a useful assay in the diagnosis of T cell lymphoproliferative disorders. Further, this 

method yields a unique sequence identifier in clinical samples that could find utility as a 

personalized marker to monitor response to treatment, assess minimal residual disease, 

identify the onset of recurrence, and track tumour evolution. 
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Chapter 4: Neoantigen characteristics in the context of the complete 

predicted MHC class I self-immunopeptidome 

4.1 Introduction 

Tumour neoantigens are mutated self-peptides presented by tumour cell MHC 

molecules, and are capable of eliciting anti-cancer T cell responses [112,126–130,180]. 

The self-immunopeptidome is the collection of all self-peptides presented by the MHC 

molecules present in an individual. In principle, individuals with large self-

immunopeptidomes should be more able to present a diversity of neoantigens (due to a 

general increased ability to present peptides) and these individuals may, therefore, be 

better able to mount natural immune responses to control malignant cell growth. Indeed, 

there is evidence for improved response to cancer immunotherapies for individuals 

having higher diversity of their class I HLA loci [140]. It is possible that individuals with 

smaller self-immunopeptidomes would be more vulnerable to immune threats such as 

cancer and/or infectious disease. In the context of immune surveillance of cancer, it has 

been observed that in individuals with cancer, mutations that are poorly presented 

across a range of MHC occur at higher frequencies than mutations that are readily 

presented by many MHC [245], suggesting that tumour cells can exploit gaps in the self-

immunopeptidome, and that individuals with smaller self-immunopeptidomes will have 

greater cancer risk. 

Here, we measured the range of self-immunopeptidome sizes present in human 

cohorts by predicting, computationally, the fraction of the human proteome able to be 

presented by each class I MHC molecule. By performing this exhaustive computation 

up-front, we were then able to query the results for any given individual with a known 

HLA class I genotype to predict the overall size of their self-immunopeptidome. Our 

analysis of TCGA data revealed a small but significant decrease in size of self-

immunopeptidomes for cancer subjects compared to non-cancer subjects. We also 

explored the phenomenon of immune-editing [246] by predicting the immunogenicity of 

mutations. Here, immunogenicity of a mutation is defined by the number of mutant 

peptide-MHC pairs (neoantigens) containing the mutation that are predicted to bind 

MHC-I with IC50 < 500 nM. We compared the immunogenicity of mutations found in 
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cancer subjects to sets of matched in silico generated mutations. By this approach we 

identified the amino acid positions in peptide epitopes that have the strongest influence 

on immunogenicity. 

4.2 Methods 

4.2.1 Reference proteome 

The human reference proteome was downloaded from EMBL-EBI 

(http://ftp.ebi.ac.uk/pub/databases/reference_proteomes/QfO/Eukaryota/UP000005640_

9606.fasta.gz and 

http://ftp.ebi.ac.uk/pub/databases/reference_proteomes/QfO/Eukaryota/UP000005640_

9606_additional.fasta.gz), using the April 2016 Qf0 release. This contained references 

for 21,006 protein sequences from the canonical set of proteins, plus 71,173 additional 

isoform sequences. These were combined for the complete analysis to ensure all 

unique peptides that exist in the human reference proteome were captured. 

4.2.2 Condensing the proteome 

Within the reference proteome, a specific 8-11mer peptide sequence may occur multiple 

times (non-unique peptides). To reduce the amount of computation required, we will 

only compute peptide-MHC binding for the set of unique 8-11mer peptides. All unique 8-

11mer peptides were extracted from the complete proteome and written to a file. 

However, we determined that the compute time per peptide using NetMHCpan 3.0 [161] 

is significantly sped up by providing NetMHCpan with longer protein sequences and 

having it automatically extract all n-mers by sliding window rather than providing each n-

mer individually (two orders of magnitude, data not shown). To take advantage of this, 

we desired a set of amino acid sequences which, when parsed with a sliding window, 

only contain peptides from these unique sets, and only contain each peptide exactly 

once. To achieve this, we re-assembled all unique n-mers into sets of artificial protein 

sequences using the following greedy algorithm (in pseudocode): 
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for n in [8,9,10,11]: 

start a set of artificial proteins Sn for peptides of length n; 

for each unique peptide of length n: 

if the first or last n-1 amino acids of the peptide matches the 

last or first n-1 amino acids of any artificial protein in Sn: 

extend that artificial protein with the additional N- or C-

terminal amino acid; 

else: 

start a new artificial protein in Sn with the peptide 

sequence; 

end for; 

end for; 

This resulted in four sets of artificial protein sequences (one for each peptide 

length) containing each unique 8-11mer peptide exactly once when parsing with a 

sliding window. This shrunk the amino acid space required to be explored from the 

36,688,307 amino acids of the reference × 4 peptide lengths = 146,753,228 total amino 

acids to 12,600,566 (for 8mers) + 12,635,023 (for 9mers) + 12,734,064 (for 10mers) + 

12,835,955 (for 11mers) = 50,805,608 total amino acids (34 % of the reference). 

4.2.3 Selecting the most suitable binding prediction threshold 

Within the literature, multiple thresholds are used to classify pMHC binders using 

NetMHCpan algorithms [70,160,161,247]. The two most common thresholds to classify 

binders are a binding affinity threshold (IC50 < 500 nM), and a rank-based threshold 

(Percentile Rank < 2 %). While the most correct threshold is as-of-yet undiscovered, 

and likely will depend on the source of the data being used (self vs. mutated vs. 

infectious agent peptides), these two thresholds have been demonstrated to provide 

useful and informative results [155,156,245]. To determine which of these two 

thresholds would perform best for our purposes of estimating the size of the set of self-

peptides presented by each class I MHC, we used publicly available mass-spectrometry 

(MS) data from SysteMHC Atlas [248]. All datasets containing Human peptide data in 

the context of MHC class I molecules were downloaded from systemhcatlas.org on 
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February 7, 2018 (n = 194). These data comprised 66 MHC molecules (15 HLA-A, 34 

HLA-B, 17 HLA-C) and 135,092 total pMHC interactions. 

We performed binding predictions using NetMHCpan 3.0 [161] for all unique 8-

11mer peptides obtained from a 10 % random subsample of the human proteome 

(proteins were randomly selected from the human proteome until 10 % of the total 

human proteome length was achieved, results from this depth correlate strongly with 

those from the full dataset, data not shown) to all class I MHC molecules available for 

prediction. For each MHC, we tallied the number of pMHC by either the IC50 < 500 nM, 

or the Rank < 2 % threshold. For 66 MHC alleles with Human peptide data available 

from SysteMHC, we compared the number of unique peptides predicted to bind using 

the two thresholds to the number of peptides observed to bind these MHC using MS 

data. 

By Spearman’s rank correlation, thresholding by IC50 yields a better correlation to 

the observed peptide data than thresholding by rank (IC50 ρ = 0.558, p = 1.1 × 10-6
, 

Figure C.1, and Rank ρ = 0.314, p = 0.010). To control for any effect that sample size 

might have in the SysteMHC data, we generated a linear model using either IC50- or 

Rank-based threshold counts to explain the observed peptide counts, with the number 

of samples in SysteMHC data for each MHC as a covariate. Using this model, we found 

the counts using the IC50-based threshold to be a better predictor of the number of in 

vivo presented peptides (IC50 adjusted R2 = 0.686; Rank adjusted R2 = 0.591). 

Therefore, we used the IC50 < 500 nM threshold to predict pMHC binding. 

4.2.4 Running peptide-MHC binding predictions 

Calls to NetMHCpan were batched into sets of approximately 1,000 artificial proteins 

and a single HLA and split into 1,676,125 separate jobs to run on a compute cluster. As 

the size of each artificial protein varied, proteins were sorted by length and then 

distributed across all jobs to ensure that on average each job had a similar number of 

total peptides to be predicted (and thus took a similar length of time to complete). On 

average, each job took 35 minutes, totaling over 110 CPU years to complete all 

predictions. 
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4.2.5 Classifying TCGA tumours as hot or cold 

Within the TCGA The Immune Landscape of Cancer project [149], DNA methylation 

information was acquired. The top differentially methylated probes between pure 

leukocyte cells and normal tissue were identified and used to predict the leukocyte 

fraction (LF) in the TCGA tumour samples. For this analysis, the TCGA tumours in the 

top third of LF values were classified as “hot”, whereas the bottom third was classified 

as “cold”. The number of tumours of each type for each cancer site are shown in Figure 

C.2. 

4.2.6 Comparing distributions of self-immunopeptidome sizes 

For a cancer dataset, we used HLA data from TCGA [149]. Class I HLA calling was 

performed using OptiType [154] for 9,957 samples. For a non-cancer dataset, we 

obtained HLA genotypes from the National Marrow Donor Program (NMDP) [249]. 

Class I HLA typing was performed using a mix of DNA and sequence-based techniques 

for 13,996 participants. For each individual, we calculated their self-immunopeptidome 

size as the number of distinct peptides predicted to bind to their set of class I MHCs. To 

control for any effect from differing ethnicities skewing the frequencies of certain HLA 

alleles between the two datasets, we first restricted our data to the individuals with 

Caucasian ethnicity (TCGA n = 6,415, NMDP n = 7,867). We then tested if the two 

distributions were statistically different from each other by performing a T test. 

4.2.7 Tallying mutations and neoantigens in TCGA 

TCGA mutation information was tallied by Ellrott et al. [93] and downloaded from the 

Genomic Data Commons (GDC) (https://gdc.cancer.gov/about-data/publications/mc3-

2017; id: 8b851024-2915-4d66-8a84-d03199b616fd; filename: 

mc3.v0.2.8.CONTROLLED.maf.gz). Class I HLA genotypes were performed by 

Thorsson et al. [149] and downloaded from the GDC (https://gdc.cancer.gov/about-

data/publications/panimmune; id: cf05dd5-9653-497a-8c7e-45ba0d1d237a; filename: 

OptiTypeCallsHLA_20171207.tsv). pMHC predictions were performed as described in 

Thorsson et al. [149]. 

https://gdc.cancer.gov/about-data/publications/mc3-2017
https://gdc.cancer.gov/about-data/publications/mc3-2017
https://gdc.cancer.gov/about-data/publications/panimmune
https://gdc.cancer.gov/about-data/publications/panimmune
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4.2.8 Survival analysis in TCGA 

TCGA clinical data was obtained from Liu et al. [250] Supplemental Table S1. Cox 

proportional hazard models were built using the survival package in R, using the 

progression free interval variable “PFI.1” from Liu et al. [250]. Covariates in survival 

models were “age at initial pathologic diagnosis”, “gender”, “race”, and “cancer type”. 

Tumour stage was only available for a subset of cancer sites, so was excluded as a 

covariate from these pan-cancer survival models. 

4.2.9 Comparing presentation of TCGA mutations (in vivo) to simulated 

mutations (in silico) 

All non-synonymous SNVs from the TCGA mutation file were used, and the frequency 

of every possible amino acid change was tallied (Figure C.3). These amino acid change 

frequencies were then used to generate a pool of 50,000 random amino acid changes 

across the reference human proteome. First, 50,000 positions were randomly selected 

across the proteome. For each position, the reference amino acid was randomly 

mutated to a different amino acid using the measured amino acid change frequencies 

from the TCGA data. All peptides containing these mutations had pMHC predictions 

generated for all available HLA alleles (5,456,375,705 unique combinations), and 

results were stored in a database for querying. 

For each TCGA subject, a random sample of the above simulated mutations was 

selected to match the size of the number of non-synonymous SNVs from that subject. 

Of these selected mutations, all pMHCs corresponding to this subset of random 

mutations and that TCGA subject’s specific HLA genotype were selected and tallied, 

acting as a matched, simulated pMHC repertoire. 

4.2.10 Identification of expressed SNVs in TCGA 

To determine if a TCGA SNV is expressed, we used the Samtools [251] v0.1.8 mpileup 

command to obtain all bases seen at the genomic coordinate of the SNV from the RNA-

seq bam file of that subject. An SNV was classified as expressed if the mutated base 

was observed at least three times. 



72 

 

4.2.11 Measuring differences in variant position usage from TCGA pMHCs 

compared to in silico pMHCs 

This analysis was performed for each peptide length separately. For each subject, we 

first enumerate the variant position usage within the peptides from TCGA pMHCs, and 

repeat this for the in silico pMHCs. For each subject, we then filter the data to retain 

positions that have at least one pMHC with the variant at that position from both the 

TCGA and in silico sets. We then calculate the frequency that each position is used by 

dividing the count of each position by the number of peptides of that length in the 

subject. We then calculate delta, the difference in these frequency values for the TCGA 

pMHCs compared to the in silico pMHCs. For each position, we perform a T test on 

these delta values to see if there is evidence that they are significantly different from 

zero. For visualization, we plot the mean of these delta values for each position, with 

bars showing the 95 % confidence interval on the mean as reported by the T test. We 

use the Bonferroni correction to adjust the p-values for multiple testing. 

4.2.12 Code and data availability 

All custom code relating to the prediction of the self-immunopeptidome is available at 

https://github.com/scottdbrown/self-immunopeptidome_cancer/. The human 

immunopeptidome dataset is available at http://doi.org/10.5281/zenodo.1453418. 

4.3 Results 

4.3.1 Exhaustive binding prediction of all self-peptides to MHC-I 

The complete human reference proteome was downloaded from EMBL-EBI, containing 

21,006 protein and 71,173 additional isoform sequences. Typically, class I MHC 

peptides are restricted to 8-11mer peptides due to the closed ends of the MHC binding 

groove [252]. As such, all possible 8-11mer peptides were extracted from this reference 

sequence using a sliding window, yielding over 146,000,000 peptides, of which 

46,029,730 were unique. For each of the 46,029,730 unique 8-11mer peptides we 

predicted binding to each of 2,915 HLA class I alleles available in NetMHCpan v3.0. 

Executing these 134,176,662,950 binding predictions required over 110 CPU years of 

compute (see 4.2 Methods) and provides a new human immunopeptidome resource. 

https://github.com/scottdbrown/self-immunopeptidome_cancer/
http://doi.org/10.5281/zenodo.1453418
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We tested whether an IC50- or Rank-based threshold would better represent the 

number of observed MHC-eluted peptides (see 4.2.3 Selecting the most suitable 

binding prediction threshold). For 66 MHC alleles with Human peptide data available 

from SysteMHC Atlas [248], we compared the number of unique peptides predicted to 

bind using the two thresholds to the number of peptides observed to bind these MHC 

using MS data. By Spearman’s rank correlation, thresholding by IC50 yielded a better 

correlation to the observed peptide data than thresholding by rank (IC50 ρ = 0.558, p = 

1.1 × 10-6, Figure C.1, and Rank ρ = 0.314, p = 0.010). Importantly, this demonstrates 

that the number of predicted self-peptides as defined by IC50 < 500 nM correlates with 

observed experimental data. We filtered the output to include the 987,968,036 pMHCs 

(0.7 % of all combinations tested) that had predicted IC50 < 500 nM and this set was 

used to calculate self-immunopeptidome sizes. The results of this compute are now 

made available for researchers, obviating the need for these computational predictions 

to be repeated (http://doi.org/10.5281/zenodo.1453418). 

4.3.2 MHC frequency in NetMHCpan training data correlates weakly with peptide 

presentation properties 

As HLA alleles with greater representation in the NetMHCpan training data likely have 

more reliable binding predictions, we computed the correlation between the fraction of 

all unique human peptides presented by an MHC, and the number of datapoints for the 

HLA allele encoding that MHC variant in the NetMHCpan training data 

(http://tools.immuneepitope.org/static/main/binding_data_2013.zip). We observed a 

weak correlation between the fraction of all unique human peptides predicted to be 

presented by an MHC and number of datapoints in the training data (Spearman ρ = 

0.388, p = 5.5 × 10-5). We saw no difference in fraction of all unique human peptides 

presented by an MHC for MHC included in the training data vs. those with no training 

data (p = 0.1185, T test). As a separate test, we checked for any effect that HLA 

population frequency may have on the size of predicted self-immunopeptidomes. This 

was done using the 330 HLA alleles with non-zero population frequencies in the USA 

NMDP Caucasian dataset from http://www.allelefrequencies.net [253], selected as most 

ethnicities within the TCGA dataset are Caucasian. We observed no significant 

http://doi.org/10.5281/zenodo.1345742
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correlation between population frequency and fraction of unique peptides presented 

(Spearman ρ = -0.096, p = 0.082). For single MHC molecules, fractions of unique 

peptides ranged from 0.0 % (HLA-B*15:137) to 4.5 % (HLA-A*02:229) of all 8-11mer 

self-peptides (Figure 4.1A). Within the set of all peptides comprising the human 

immunopeptidome, most peptides are able to be presented by relatively few (< 250) 

MHC, while some can be presented by upwards of 1,500 different MHC (Figure 4.1B). 

Taking all 2,915 MHC together, 29.7 % of all 8-11mer self-peptides are predicted to be 

presented, showing that there is significant overlap between the repertoire of peptides 

presented by different MHC. Additionally, this suggests that over 70 % of the human 

peptidome is unable to be presented by MHC and is not surveyed (nor naturally 

tolerized) by T cells. 

 

Figure 4.1: Characterization of the self-immunopeptidome. (A) Fraction of the human peptidome 

presented by each of 2,915 class I MHC. MHC are plotted along the x-axis in increasing fraction (y-axis). 

Gray points are all MHC combined, and the overlaid blue points identify those from the specific gene 

(HLA-A, -B, or -C) in each panel. Black circles show the population frequency, when available, of that 

allele in the USA NMDP Caucasian dataset. (B) Number of MHC able to present each presented peptide. 

Peptides are plotted along the x-axis in increasing numbers of MHC (y-axis), with each peptide length in 

separate panels (8mer: n = 1,522,052, 9mer: n = 4,667,489, 10mer: n = 4,704,530, 11mer: n = 

2,790,531). 
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4.3.3 The distribution of self-immunopeptidome sizes are similar between 

cancer and non-cancer datasets 

The self-immunopeptidome presented by any individual is dependent on the up to six 

different class I HLA alleles encoded by their genome. We define the self-

immunopeptidome size for an individual to be the size of the (possibly) overlapping sets 

of distinct 8-11mer peptides predicted to be presented by each of their MHC-I. To 

compare the distribution of self-immunopeptidome sizes for individuals with cancer 

compared to those without, we used data from TCGA [149] and NMDP [249]. 

We obtained class I HLA types for the TCGA dataset, predicted using OptiType 

[154] as part of “The Immune Landscape of Cancer” [149], and for the NMDP dataset 

[249] where typing was done by PCR- and amplicon sequencing-based techniques. As 

most ethnicities in the TCGA dataset are Caucasian, and to control for potential 

confounding effects of varying allele usage in different ethnicities, we filtered the TCGA 

and NMDP data to exclude non-Caucasian subjects for this analysis only. The resulting 

distributions of self-immunopeptidome sizes for both TCGA and NMDP datasets are 

shown in Figure 4.2 (TCGA 1,767,986 ± 561,474 (mean ± SD), n = 6,415; NMDP 

1,797,092 ± 553,010 (mean ± SD), n = 7,867). Self-immunopeptidome sizes for TCGA 

are slightly smaller than the NMDP distribution (p = 1.9 × 10-3, two sample T test), 

though the distributions are not distinct enough to have any practical utility in predicting 

if an unknown subject would belong to either group. 

 

Figure 4.2: Self-immunopeptidome sizes for TCGA and NMDP subjects. Density plot showing the 

relative frequency (y-axis) of self-immunopeptidomes of varying sizes (x-axis). TCGA (orange) subjects, 

on average, have smaller self-immunopeptidomes than NMDP (gray) donors. 
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We tested whether tumours that have a large immune infiltrate (hot) had different 

self-immunopeptidome sizes than tumours with low levels of immune infiltrate (cold). 

We classified each tumour as being hot or cold based on the computed leukocyte 

fraction [149]. We did not see any difference in self-immunopeptidome size distributions 

when stratifying TCGA tumours by immune infiltration levels (Figure 4.3; ANOVA p = 

0.506). 

 

Figure 4.3: Self-immunopeptidome sizes for hot and cold TCGA tumours. Density plot showing the 

relative frequency (y-axis) of self-immunopeptidomes of varying sizes (x-axis). Hot (red; n = 2,144), cold 

(blue; n = 1,994), and mid-level (gray; n = 2,115) tumours have overlapping self-immunopeptidome sizes. 

4.3.4 In cancer, self-immunopeptidome size correlates with predicted 

neoantigen load and progression free interval 

Despite there being only a small difference in self-immunopeptidome size between 

cancer and non-cancer datasets, self-immunopeptidome size may have a clinically 

relevant effect within the cancer dataset. We hypothesized that in TCGA, individuals 

with larger self-immunopeptidomes would have improved outcomes due to there being 

a higher probability of mutations in these tumours generating neoantigens. 

As SNV neoantigen data from TCGA was calculated as the number of pMHC 

containing a mutated amino acid [149], we can combine the coding SNV mutational load 

and self-immunopeptidome size in these subjects to approximate their SNV neoantigen 

load. If we express the self-immunopeptidome size as a fraction of all unique peptides 

that are presented by that genotype, and multiply this by the coding SNV mutational 

load to get an approximated SNV neoantigen load, we observe a strong positive 

correlation between approximated SNV neoantigen load and TCGA SNV neoantigen 
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load (Pearson r = 0.987, p < 2.2 × 10-16). This result suggests that using a combination 

of coding mutational load and self-immunopeptidome size together, as approximated 

SNV neoantigen load, could be very useful as an indicator of tumour immunogenicity 

because it does not require exhaustive neoantigen predictions to be performed. 

To test the utility of self-immunopeptidome size as a measure of tumour 

immunogenicity in a pan-cancer context, we performed Cox proportional hazard survival 

analysis on the TCGA data using progression free intervals as the endpoint [250]. In a 

multivariate Cox-PH model containing race, age, gender, cancer type, and HLA diversity 

as covariates, increases in self-immunopeptidome size alone did not significantly 

decrease the hazard rate, (HR = 0.921 for an increase in self-immunopeptidome size of 

1 million peptides, p = 0.054, 95 % CI: 0.847 – 1.002; details of full model in Table C.1). 

Creating an interaction term between self-immunopeptidome size and cancer type did 

not show statistical significance in any cancer type, likely due to decreased sample size 

within each cancer type and demonstrating any survival effect is not restricted to any 

one cancer type. Further, an ANOVA test comparing the two models with and without 

the interaction term showed that the model with the interaction does not explain any 

more of the observed variance (p = 0.2325), and one model does not fit the data better 

than the other (AIC = 25,373.41 for the model with the interaction term vs. 25,359.40 

without). When switching the predictor in the model without the interaction term from 

self-immunopeptidome size to the approximated SNV neoantigen load described above, 

a significant protective effect is observed (HR = 0.995, p = 0.003, 95 % CI: 0.991 – 

0.998; details of full model in Table C.2). We obtain comparable results when using the 

comprehensive TCGA SNV neoantigen load (Table C.3) and observe that the two 

models fit the data equally well (AIC = 25,350.55 using comprehensive TCGA SNV 

neoantigen load vs. 25,348.77 using approximated SNV neoantigen load), 

demonstrating that in the context of outcomes, self-immunopeptidome size and 

mutational load combine to provide the same clinical information obtained by 

comprehensive neoantigen predictions. 
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4.3.5 Differential patterns of peptide presentation derived from in vivo and in 

silico mutations are consistent with immunoediting 

We hypothesized that evidence of immune surveillance and immune evasion would be 

detectable by comparing pMHCs derived from TCGA SNVs to pMHCs originating from 

in silico generated random mutations which have not undergone immunoediting. For 

every TCGA subject, we used the predicted SNV neoantigens from above [149]. Then, 

we generated a matched set of in silico coding SNVs from random positions throughout 

the proteome (with amino acid change frequencies modelled after those observed in the 

TCGA SNVs (Figure C.3)) and we predicted pMHCs from these in silico SNVs. As 

expected, there is a high correlation between the number of TCGA and in silico mutant 

pMHCs per subject (Pearson r = 0.999, p < 2.2 × 10-16), as these were derived from the 

same number of starting mutations and the same set of HLA alleles. We further 

stratified the TCGA predicted pMHCs by the expression of the source mutation. For 

each of 5,748 TCGA subjects that we have RNA-seq data for, we classified each of the 

1,181,367 coding SNVs as expressed if there were at least 3 sequence reads 

containing the variant base. We identified evidence of expression for 417,335 (35 %) of 

these coding SNVs. 

To investigate the effect of immune editing in the TCGA subjects, we compared 

the predicted immunogenicity of expressed SNVs, non-expressed SNVs, and random in 

silico generated SNVs. Predicted immunogenicity was calculated as the number of 

neoantigens per SNV. Within each subject, potential neoantigens are defined as the 

subset of the up to 38 peptides (all 8-11mers containing the variant) × up to 6 HLA 

alleles = up to 228 peptide-MHC pairs that are predicted to bind. Importantly, every SNV 

may generate zero or a few neoantigens. We hypothesized that there would be fewer 

neoantigens per expressed TCGA SNV (lower predicted immunogenicity) because cells 

carrying SNVs generating many neoantigens would have been depleted by neoantigen-

reactive T cells. Indeed, we observed fewer neoantigens per expressed SNV compared 

to both in silico and non-expressed SNVs (Figure 4.4; p < 2.2 × 10-16, paired T tests). 

Interestingly, we see more neoantigens per non-expressed SNV than per random SNV 

(Figure 4.4; p = 1.9 × 10-14, paired T test), suggesting that the cancer cells that 

downregulate mutated genes can avoid detection by T cells, resulting in the 
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accumulation of inconsequential, non-expressed potentially neoantigenic mutations in 

these non-expressed alleles. When looking at each cancer site individually, the trend of 

more neoantigens per non-expressed SNV and fewer neoantigens per expressed SNV 

was maintained for all cancer sites except LIHC, CESC, BLCA, and SKCM (Figure C.4). 

It should be noted that unlike other TCGA cancer sites, the majority of SKCM samples 

are from lymph node metastasis [250], and as such they represent tumours at a 

different stage of development and with biased immune cell content compared to the 

rest of the dataset. 

 

Figure 4.4: Evidence of immunosurveillance. Boxplots for the average immunogenicity (neoantigens 

per SNV; y-axis) per subject for non-expressed, in silico, and expressed SNVs (x-axis). Coloured lines 

showing the average number of neoantigens per SNV for each cancer type are overlaid. Outliers above a 

threshold of 5 neoantigens per SNV are omitted from plot to simplify the display. 

Directly comparing numbers of neoantigens per SNV from expressed and non-

expressed SNVs in each TCGA subject, we observe that the general trend of more 

neoantigens per non-expressed SNV (as shown in Figure 4.4) appears to reverse for 

samples that have greater than two neoantigens per expressed SNV (Figure 4.5A). One 

interpretation of this observation is that tumours with higher numbers of neoantigens per 

expressed SNV have been able to retain more expressed neoantigens because they 
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have suppressed the immune response by mechanisms such as an 

immunosuppressive microenvironment or downregulation of MHC. To explore this 

further, we classified samples as having a suppressed immune response if they met the 

following criteria: (1) they have more neoantigens per expressed SNV than neoantigens 

per non-expressed SNV, and (2) they have greater than two neoantigens per expressed 

SNV. Survival analysis comparing these two groups supports this notion (Figure 4.5B), 

with the samples having a putatively suppressed immune response showing decreased 

Progression Free Intervals (PFI) (HR = 1.138, p = 0.027, 95 % CI = 1.015 – 1.275; 

multivariate Cox-PH model with cancer type, age, race, and gender as covariates). 

 

Figure 4.5: Evidence of immune-evasion. (A) Scatterplot showing direct comparison of the number of 

neoantigens per expressed (x-axis) or non-expressed (y-axis) SNVs. Coloured lines show the locally 

weighted average neoantigens per non-expressed SNV (LOESS) for each cancer type across x-axis 

values. Orange dashed line separates subjects predicted to have suppressed immune response (right of 

line, pink shade, n = 956) from those with normal immune response (left of line, n = 4,792). Plot zoomed 

in to show bulk of the data – 55 outliers of 5,748 points fall outside of this window. (B) Survival curves 

showing the effect of evidence of normal immune response (blue) compared to suppressed immune 

response (red), adjusted for the effect of covariates from the Cox proportional hazards multivariate model. 
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4.3.6 Relative depletion of variants in MHC-binding anchor positions of peptide 

epitopes identify potentially immunogenic positions 

We were interested in whether different amino acid positions within neoantigens show 

different signatures of immunogenicity. Within the set of samples with evidence of a 

normal immune response (Figure 4.5), expressed mutations from TCGA exist within 

established tumours and coexist with the host immune system. Therefore, neoantigens 

originating from these mutations were not immunogenic enough to result in tumour 

eradication within these subjects. One factor that may influence immunogenicity is the 

position within the presented peptide that the variant resides [254]. We investigated 

whether there was a bias in the usage of positions within the peptide for the variant 

amino acid in neoantigens from expressed TCGA variants compared to random, in silico 

generated mutations. We noted that an important factor to consider is whether, for each 

neoantigenic peptide, the corresponding wildtype peptide is also predicted to bind to the 

same MHC. If the wildtype peptide is also presented, this would be expected to result in 

T cell tolerance to the wildtype peptide and may highlight certain amino acid positions 

as being relevant to breaking or taking advantage of this pre-existing tolerance when 

mutated. To investigate this, we looked up wildtype pMHC binding scores for all 

expressed TCGA and in silico mutations in our human immunopeptidome dataset. All 

analysis was performed on the set of neoantigens where both the mutant and matched 

wildtype peptide was also predicted to bind with an IC50 < 500 nM. 

We limited our analysis to 9mers, which are the most common peptide length 

and have the most well-defined MHC-binding interactions [161]. Looking at neoantigens 

derived from random, in silico generated mutations, we observe a depletion of variants 

at positions 2 and 9 of these neoantigens compared to the other positions when the 

corresponding wildtype peptide also binds the MHC (Figure 4.6A; top panel). This is 

expected, as these positions are the most influential on peptide-MHC binding and most 

likely to confer loss of MHC binding when mutated [255]; these are the two canonical 

MHC-binding anchor positions. This trend was recapitulated in the neoantigens derived 

from expressed TCGA mutations (Figure 4.6A; bottom panel), confirming that this effect 

is intrinsic to peptide-MHC binding and not an artefact of in silico mutagenesis. Ignoring 
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wildtype binding status yielded a uniform distribution across the possible variant 

positions (Figure C.5). 

To control for this non-uniform distribution of variant position usage, we directly 

compared the frequency that each position was used in the TCGA and in silico 

datasets. Positions which are relatively depleted of mutations in the expressed TCGA 

dataset relative to the random in silico dataset may be the result of immune editing 

during tumour development, deleting cells which carry mutations at these positions. 

Similarly, positions that are relatively enriched in the TCGA dataset may be non-

immunogenic, being able to persist while co-existing with the host immune system. To 

identify positions that have an enrichment or depletion of mutations in the TCGA dataset 

relative to the random in silico mutation dataset, we first converted the raw count of 

neoantigens with variants at each position into the frequency that each variant position 

is used within each subject’s neoantigen repertoire. For each subject, we then 

calculated the difference in frequencies at each position between the TCGA and 

random in silico derived mutations, and tested, over the entire dataset, whether these 

differences were statistically significant. 

We observed a significant depletion of position 2, 3, and 9 variants in TCGA 

neoantigen data compared to the in silico-derived neoantigens (Figure 4.6B). Note that 

positions 2 and 9 held the lowest number of mutations in both datasets because we 

limited the data to cases where the wildtype and mutant versions are both predicted to 

bind, and mutations at these positions will typically impair peptide-MHC binding. 

However, mutations at positions 2 and 9 do not always result in loss of binding, and in 

some cases can even increase binding affinity [256]. Further, while these positions 

would be expected to remain buried in the MHC groove and thus hidden from the 

immune system, they may enhance the immunogenicity through conformational 

changes elsewhere in the peptide. Therefore, the relative depletion of TCGA position 2, 

3 and 9 variants relative to in silico variants may be due to enhancement of 

immunogenicity conferred by these mutations as a result of improved peptide-MHC 

binding stability [257,258], or from changes to the peptide conformation within the MHC 

binding groove. It is well established that subtle changes to peptide conformation can 

have large effects on T cell reactivity [259,260], exposing regions of the peptide to the 
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TCR that were previously concealed. Conversely, we observed a relative enrichment of 

TCGA position 8 (so called anchor-adjacent) variants, suggesting changes here are 

tolerated because they do not increase immunogenicity (Figure 4.6B). This general 

trend of depletion at the anchors and enrichment just interior to the anchors is seen 

across all peptide lengths (Figure C.6). In the context of overcoming existing T cell 

tolerance to wildtype peptides, these data suggest that, counterintuitively, variants at 

anchor positions are the most immunogenic and are selected against during tumour 

development. 



84 

 

 

Figure 4.6: Usage of positions for variants within presented peptides.  (A) Counts of neoantigens 

containing the variant at each position within the peptide. Variants occur in positions 2 and 9 at the lowest 

frequency. This trend is consistent for both random in silico derived mutations (top panels) and TCGA-

derived mutations (bottom panels). (B) Differences in frequency (y-axis) of the variant amino acid being in 

each position (x-axis) of a presented peptide for TCGA mutations compared to random mutations. Mean 

values are shown (points), with lines showing 95 % confidence intervals of the means. Positions with 

significant enrichment or depletion (padj < 0.05, T test) are displayed larger and coloured orange. Only 

data for 9mers shown; 165,248 TCGA neoantigens and 179,002 in silico neoantigens for 4,533 subjects. 
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4.4 Discussion 

We performed exhaustive binding predictions between every unique 8-11mer peptide 

that exists in the reference human proteome to nearly 3,000 MHC molecules available 

for prediction, generating, to our knowledge, the largest set of peptide-MHC binding 

predictions to date, and which can now serve as a community resource. This resource 

supported the fast and efficient characterization of thousands of individuals from TCGA 

and NMDP for their predicted ability to present self-peptides. It is important to note that 

these predictions ignore protein expression and abundance in different cell types, 

antigen processing requirements, epitope destruction, and issues such as proteasome-

generated spliced peptides that might represent a substantial component of the self-

immunopeptidome [261,262]. Currently, it is not possible to perform our predicted self-

immunopeptidome analysis for these spliced peptides as there are no algorithms to 

predict their occurrence nor are there well annotated databases of those that exist. 

Individuals with cancer from TCGA have marginally smaller self-

immunopeptidomes compared to non-cancer NMDP individuals. More importantly, 

within the TCGA dataset having larger self-immunopeptidomes correlates with better 

outcomes, independent of HLA diversity. This supports previous findings of an HLA-

effect on survival [140,195,263]. We did not see any correlation between hot or cold 

tumours and self-immunopeptidome size. This is not entirely unexpected, as self-

immunopeptidome size is a measure at the level of the subject, whereas each subject 

can have both hot and cold tumours [264]. Additionally, self-immunopeptidome size and 

mutational load combine to approximate the neoantigen load, and this strongly 

correlates with the actual predicted neoantigen load (based on personalized binding 

predictions of all mutant peptides to MHC), supporting the potential utility of 

approximated neoantigen load as a clinical metric in assessing the immunogenicity of 

tumours without the need to perform more exhaustive neoantigen predictions. This 

approach may also facilitate the calculation of approximated neoantigen loads in 

subjects from all mutation types, not limited to SNVs, without the additional neoantigen 

prediction processing required for more complex mutation types. 

Immunoediting is a well accepted phenomenon that occurs during cancer 

development [105]. By comparing observed mutations from immune-exposed TCGA 
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tumours to in silico generated mutations, we were able to detect signals of immune-

evasion within the TCGA data. It is important to note that our in silico mutations are 

random and do not necessarily confer the same cancer growth advantage, or in fact any 

biological relevance, that is likely found in the set of TCGA mutations and thus are used 

as a measure of baseline pMHC generation. Compared to in silico mutations, we 

observed a general trend of decreased immunogenicity for expressed TCGA mutations, 

and an increase for non-expressed mutations. This supports the view that the majority 

of TCGA tumours are immune-edited, as we see higher immunogenicity from non-

expressed SNVs than would be expected by chance. This is likely the result of immune-

editing over time shaping the mutational profile of these cancer cells and resulting in the 

relative accumulation of immunogenic mutations in non-expressed genes in contrast to 

the deletion of cancer cell clones containing immunogenic mutations in expressed 

genes. Under this framework, we also identified samples that showed evidence of a 

suppressed immune response, permitting relatively more immunogenic mutations in 

expressed genes. These subjects demonstrate decreased progression free survival, 

supporting the concept that these individuals harbour tumours which have suppressed 

the natural immune response to the tumour. 

Given that highly immunogenic mutations could be rapidly recognized by the 

immune system and cancer cells containing these mutations would not survive, we 

assume that the mutations we see have decreased immunogenicity. By comparing the 

variant positions within the presented peptides to the positions containing the in silico 

mutations, we were able to identify positions that were depleted (more immunogenic) 

and enriched (less immunogenic). Immunogenic positions were canonical MHC binding 

positions, likely resulting in significant changes to the topography of the presented 

peptide and a greater likelihood of breaking T cell tolerance, or increasing the stability of 

the peptide-MHC complex [254]. Non-immunogenic positions were anchor-adjacent. 

Changes in anchor-adjacent positions may represent an optimization between effects 

on MHC-binding and visibility of the variant to the T cell receptor. This is supported by 

work describing positions important for MHC binding and T cell interaction [254,265–

267], summarized in Figure 4.7. These observations on the relative importance of 
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certain positions in influencing the immunogenicity of peptides may help refine epitope 

immunogenicity prediction algorithms. 

 

Figure 4.7: Theoretical importance of positions in presented peptides. Interactions with MHC (gray) 

and TCR (green) based on existing knowledge of immunogenicity in the literature. Two positions 

representing the minimization of effects on interactions with both MHC and TCR are denoted with arrows. 

Our findings were generalizable across cancer types, with the identification of 

immune-edited tumours not being restricted to any one cancer type. Similar efforts to 

characterize different immune subtypes within TCGA have recently been undertaken 

[149]. Based on gene expression data, six immune subtypes were identified in TCGA 

tumours, described according to different immune pathways that are most active in each 

subtype. Across these TCGA immune subtypes, our measure of average mutation 

immunogenicity (neoantigens per expressed SNV) was smaller for subjects in the 

immunologically quiet (C5) cluster, though this may be due to a higher number of zero 

counts in this cluster due to a relative dearth of mutations. 

Given the TCGA tumour samples were obtained pre-treatment, our measure of 

immunogenicity is relevant within the context of the natural immune response. These 

predictions and trends may not extend to cases where immunotherapies are used to 

modulate the immune response – pMHCs present in these immune-exposed samples 

which are assumed to be not naturally immunogenic may still form potent immune 

targets for immunotherapies. Future studies applying similar comparative approaches to 

the mutational landscapes of tumours before and after immunotherapy would be useful 

in identifying predictive measures of immunogenicity in these contexts. 



88 

 

This immunopeptidome analysis can readily be extended to proteomes from 

different sources and may yield novel insights into MHC-presentation of peptides from 

infectious agents. Human MHC variability has been shaped by hundreds of thousands 

of years of evolution in the presence of pathogens, exerting selective pressure on the 

human genome to maintain a high level of MHC variability. Preliminary data exploring 

this phenomenon using the techniques in this chapter to create immunopeptidomes for 

a variety of species is presented in Appendix D  (Evolutionary analysis of 

immunopeptidomes). 
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Chapter 5: Discussion, conclusions, and future directions 

Cancer immunotherapies have shown tremendous potential for treatment of a variety of 

cancers [110,113,205,206,229], leveraging the existing immune capabilities of the 

individual to recognize and respond to the cancer. Further, we now understand that the 

natural immune response is capable of recognizing and suppressing tumour 

development, effectively targeting and killing cells that have acquired mutations 

[268,269]. However, we still do not fully understand the specifics defining the 

immunogenicity of mutations, the relevance of the T cell receptor repertoire, or if genetic 

markers exist that can inform the effectiveness of class I MHC-presentation of antigens 

in an individual. 

This thesis summarizes my work on these open research questions relating to 

the TCR-pMHC axis of immune cell recognition, focussing on immune recognition of 

cancer cells. I apply novel computational methods to existing genomics datasets to 

obtain a pan-cancer view of tumour-immune cell interactions. My analysis takes 

advantage of the diverse TCGA dataset to obtain a pan-cancer view of these 

interactions, highlighting general trends of the interaction between T cells and tumours 

that are not specific to certain tumour types. 

In chapter 2, I performed the first meta-analysis of solid tumour neoantigen 

landscapes, identifying the neoantigen burden in each subject by performing exhaustive 

pMHC binding predictions and strict filtering to identify those most likely to be 

immunogenic. This advance was enabled by the development of methods to perform 

HLA typing from NGS data [143]. Using this data, I correlated neoantigen load with 

levels of T cell infiltration, survival, and markers of immune inhibition. It was known that 

T cell infiltration conveyed a survival advantage, and my work provided evidence that it 

was neoantigens which were driving the T cell infiltration. Further, it demonstrated that 

while there were tumours containing a dense T cell infiltrate and numerous neoantigen 

targets for these T cells, the T cells showed evidence of being inhibited. This suggested 

that these tumours may be prime candidates for checkpoint blockade therapies, 

supporting the use of neoantigen load as a marker for checkpoint blockade success. An 

important implication of these results was that personalized computational predictions of 

neoantigens could be used to yield clinically relevant information, able to filter the set of 
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all mutant peptide-MHC combinations down to a set likely to be immunogenic, which 

correlates with T cell infiltration and overall survival. 

Having assessed the personalized neoantigen burden in the TCGA tumours from 

genome sequencing data, in chapter 3 I assessed the utility of the same bulk 

sequencing datasets for TCR repertoire characterization. I performed extensive testing 

and optimization of tools for TCR sequence annotation, ensuring sensitivity was 

maintained while specificity was maximized when applying these tools to bulk RNA-seq 

from solid tumours or sorted T cell populations. This demonstrated that RNA-seq data 

contains detectable TCR information, the utility of which is dependent on the immune 

cell content of the sample (ie. solid tumours with infiltrating T cells vs. sorted pure T 

cells). Within solid tumours, where the number of T cells is low, I showed that the TCRs 

detected via RNA-seq are from most abundant T cells in the sample and are not just a 

random sampling from all T cells present, highlighting the utility of this approach. 

Importantly, there was significant overlap between the tumour and matched normal TCR 

repertoires, indicating that most TIL are bystanders and are not necessarily enriched in 

tumour-specific T cells, a result which is gaining acceptance [270]. Within sorted T cell 

populations, the extracted TCRs can readily identify clonally expanded T cells and can 

identify the presence of malignant clones with greater sensitivity than flow cytometry 

using cell surface markers. 

In chapter 4, I performed exhaustive computational predictions to generate the 

human immunopeptidome and used this to calculate the self-immunopeptidome size for 

thousands of individuals with or without cancer. This showed that HLA genotype defines 

the diversity of peptides able to be presented, but does not offer any predictive 

information on the risk of developing cancer. Self-immunopeptidome size taken together 

with coding mutational load was able to approximate the classically predicted 

neoantigen load, and correlated with progression free survival. By assessing the 

neoantigen landscape from TCGA mutations as well as in silico-generated mutations, I 

was able to gain information on the immunogenicity of neoantigens, identifying certain 

positions that have a greater influence on immunogenicity of presented mutant 

peptides. 
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Due to the heavy use of TCGA data in this thesis, it is important to note that 

characterizing the immune composition in tumours was not a goal of TCGA, and as 

such, tumour specimens used for sequencing were selected to maximize tumour cell 

content, consequently limiting the immune cell content. Despite this, immune cell 

information is present in TCGA data, and broad trends can be uncovered with this 

limited information, as demonstrated by the TCGA PanCancer Atlas “Immune 

Landscape of Cancer” project [149]. In this paper, TCGA expression data was used to 

identify six immune subtypes which spanned cancer tissue types. These subtypes had 

varying immune cell composition, mutational loads, and outcomes, and recapitulated 

known immune trends which may be responsible for these differing outcomes. 

Another limitation of this data is the restricted nature of TCGA sample access; 

results generated from this data are hypothesis generating, unable to be directly 

validated. I have undertaken orthogonal validation measures, correlating results with 

observed clinical measures, generating simulated datasets, and utilizing separate 

distinct datasets, where applicable. 

In the remainder of this chapter I address some of the limitations of this work, 

relevant recent advances, outstanding problems, and future directions for the field. 

5.1 Predicting cancer neoantigens from tumour genome data 

It has become well recognized that T cells can respond to tumour neoantigens, and 

these neoantigens can predict response to immunotherapies [269,271,272]. 

Identification of these neoantigens, however, is still a challenging endeavour. For my 

analysis, I focused on class I MHC-presented neoantigens for two reasons. Biologically, 

these are responsible for the direct cytolytic attack by CD8+ T cells, and 

computationally, the peptide-MHC prediction algorithms and HLA prediction algorithms 

are more accurate for class I than class II. It has been demonstrated that class II MHC-

presented neoantigens also play an important role in cancer [114,228,229,273], so as 

prediction algorithms improve it will be beneficial to perform comprehensive neoantigen 

predictions for class II antigens in addition to class I. 

The general framework developed in chapter 2 for using mutation data to 

generate mutant peptide sequences from the reference proteome, and predicting 
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binding of these mutant peptides to MHC, has been incorporated into multiple modern 

neoantigen prediction tools [164,274–277]. However, this framework does not consider 

(1) phasing of proximal mutations, (2) germline variation, or (3) silencing of the gene. 

Firstly, under the framework used in chapter 2, every mutation is processed individually. 

If there are two proximal mutations that occur on the same allele, and are within 8 – 11 

amino acids from each other, the mutated peptides generated, computationally, would 

not contain both of these mutations, and thus would not be an accurate representation 

of the mutant peptides truly present in the sample. Secondly, since the flanking peptide 

sequence around each mutation is obtained from the reference proteome, germline 

variation present in the sample, such as SNPs, were ignored. Both of these differences 

in peptide sequence between what is generated computationally and what is truly 

present in the sample can have a significant impact on the peptide-MHC binding 

predictions, resulting in incorrect neoantigen predictions. Thirdly, while the work 

presented in chapter 2 required expression of the parent gene, it did not require allele-

specific expression of the mutation. It is possible that expression of a single copy of a 

gene is sufficient for cell survival, and a cancer cell containing an immunogenic 

mutation in such a gene may silence the mutant copy of the gene, effectively negating 

the immunogenicity of the mutation [127]. Recent work by Rubinsteyn and colleagues 

describes a computational tool (Isovar) which offers an elegant solution to these three 

problems by using RNA-seq reads instead of the reference proteome to generate 

mutant peptide sequences, ensuring that all generated peptide sequences are derived 

from nucleotide sequences observed to be present in the tumour [278]. 

An additional benefit of Isovar is its ability to generate mutant peptide sequences 

for indel variants, whereas my work in chapter 2 is limited to SNVs. Indels, as well as 

gene fusion variants, represent a greater change from normal sequence compared to 

SNVs, and thus should offer greater potential for immunogenicity. Indeed, analyses 

predicting neoantigens from indel mutations found that there were a greater number of 

predicted neoantigens per indel variant than per SNV variant [149,279]. Importantly 

though, predictions of immunogenicity on indel-derived pMHCs is made difficult as the 

definition of the corresponding wildtype peptide for these variants is unclear. My work in 

chapter 4 offers insights into the immunogenicity of variants at specific positions within 
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the presented peptide that is dependent on the corresponding wildtype peptide also 

being presented. Additionally, many state-of-the-art methods in immunogenicity 

prediction require a matched wildtype peptide-MHC binding prediction for their 

measures of immunogenicity [280–282]. This is an open issue that will have to be 

solved in order to facilitate improved neoantigen predictions from a variety of mutation 

types, integrating peptide-MHC binding as well as other measures to predict the 

immunogenicity of a variant [168,254,281,283]. 

The neoantigen predictions performed in chapter 2 are primarily based on 

binding affinity predictions between peptide and MHC. While peptide-MHC binding is 

required for antigen presentation, it alone is not sufficient. Much of the training data for 

NetMHCpan (≤ v3.0) is derived from low-throughput measures of peptide-MHC affinity 

via in vitro peptide-binding assays. As such, these predictions do not encompass all 

aspects of the antigen presentation pathway. Data derived from tandem MS of acid-

eluted MHC-peptides provides a more direct view of the immunopeptidome present on a 

cell [284,285]. Peptides identified using MS can be assigned to specific MHC molecules 

either by performing peptide-MHC binding predictions [286], or by using cells modified 

to express a single HLA allele [287]. Recent work to create a central repository for MS 

data from MHC-eluted peptides hopes to improve these peptide-MHC predictions 

[248,288]. Indeed, the creators of various peptide-MHC prediction algorithms have 

begun to improve their algorithms by incorporating this MS-derived MHC-eluted peptide 

information to generate predictions on whether a peptide will be found presented by an 

MHC, rather than predicting binding affinity [289–292]. These predictions indirectly 

encompass the upstream processing of peptides that end up on the cell surface, 

offering improved predictions. 

Other methods of prediction are also being developed. There is renewed interest 

in PSSM-based peptide-MHC binding predictors, with new tools showing improved 

performance [293]. Structure-based approaches and molecular docking methods are 

also being actively pursued [294,295], and as more structure-based training data is 

created and computational power increases, these approaches will have the potential to 

surpass sequence-based prediction algorithms. 
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It is important to note limitations of the TCGA tumour data used for the analyses 

presented in this thesis. The genomic datasets represent a single view of the tumour, 

ignoring both spatial and temporal heterogeneity. Within a single tumour biopsy, 

multiple cancer cell clones may exist with different mutational profiles [104,296,297]. 

Perhaps unsurprisingly, there is evidence that neoantigens derived from clonal 

mutations (those shared among all cancer cells in the tumour) are better targets, and 

predict response to immunotherapy better than sub-clonal mutations (those found in a 

subset of cancer clones) [166,272]. Targeting these clonal neoantigens will ensure that 

all cancer cells are attacked, whereas targeting sub-clonal neoantigens will only delete 

those mutation-carrying cells, selecting for cells not carrying that mutation and leading 

to resistance to the therapy. Computational methods exist that can utilize the variant 

allele frequencies to infer the underlying population structure of cancer cells [298–301], 

however, this still does not give information on spatially distinct tumours nor the 

temporal dynamics that occur as immune cells interact with cancer cells. This type of 

information is only attainable by performing multiple biopsies, unavailable in the TCGA 

data. In other cohorts, this strategy has yielded high resolution views of the dynamics of 

tumour heterogeneity over time [264,271,302–305], and as this type of data becomes 

more available, the spatiotemporal dynamics of the interactions between immune cells 

and cancer cells will become attainable. 

The work presented in chapter 2 was performed on a subset of TCGA data that 

was available at the time, and was further strictly filtered to samples for which I was able 

to obtain unambiguous HLA-A calls (n = 515). Subsequent to this analysis, the general 

approach and findings were replicated by Rooney et al., performing an analogous 

analysis on an expanded set of TCGA data (n = 4,486) [155]. There, they used an 

alternative measure of CTL infiltration which is an expression marker of cytolytic activity 

rather than bulk CD8 expression, and did not include expression filtering on the 

neoantigen predictions. Their results also demonstrate the association between 

neoantigen load and cytolytic activity of CD8+ T cells, and show that the presence of 

viruses correlates with this cytolytic activity marker. Recently, I contributed the 

neoantigen prediction pipeline from chapter 2, modified to only require IC50 < 500 nM, to 

the TCGA PanCancer Atlas Immune Landscape of Cancer project [149]. These 
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neoantigen predictions were performed on the entire solid tumour dataset (n = 8,546). 

Here, when tested within each cancer type, the correlation between neoantigen load 

and survival was limited to a small subset of cancer types. The difference between this 

result and those reported above may be because neoantigen predictions were 

performed for all HLA genes (HLA-A, -B, and -C) instead of HLA-A only, a more 

accurate HLA caller was used, and more up-to-date survival data was used. Neoantigen 

load was predictive of survival in five of six immune subtypes, suggesting that the 

prognostic effect of neoantigen load is dependent on the overall immune signalling 

present in the tumour rather than the anatomical tumour type. 

While immune checkpoint blockade has shown excellent responses in a variety 

of cancers, it is not effective in 100 % of patients (Table 5.1). Therefore, there is a need 

for biomarkers that can predict response. Studies have investigated the clinical utility of 

a variety of markers including T cell infiltration [304,306], T cell clonality [307], and PD-

L1 expression [308]. Intuitively, for this kind of immunotherapy to be effective, there 

must exist sufficient T cell targets for the T cells to respond to. For this reason, 

mutational load and neoantigen load have also been investigated for their use as 

markers of response [118–120,129,272,309,310]. In chapter 4 I describe the self-

immunopeptidome as defined by an individual’s HLA genotype. I show that a metric 

based on combining the mutational load of coding mutations with the relative self-

immunopeptidome size (the approximated neoantigen load) can yield comparable 

information to comprehensive neoantigen predictions. Thus, I propose that this 

approximated neoantigen load could be used as a metric to predict response to 

immunotherapies in the clinic, negating the need for more computationally intensive 

neoantigen predictions. It is likely that a combination of this metric and other biomarkers 

would be required to effectively stratify patients by probability of response. As more data 

becomes available on immunotherapy response, more accurate biomarkers will become 

attainable by interrogating how these markers differ between responders and non-

responders. 
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Table 5.1: Summary of approved indications and their Observed Response Rates (ORR) for 

checkpoint blockade. 

Drug Target Approved Indication ORR 

Pembrolizumab (KEYTRUDA) [311] PD-1 Melanoma 33 % 

Non-small cell lung cancer 45 % 

Head and neck 16 % 

Classical Hodgkin lymphoma 69 % 

Urothelial carcinoma 29 % 

Nivolumab (OPDIVO) [312] PD-1 Melanoma 32 % 

Non-small cell lung cancer 20 % 

Head and neck 13.3 % 

Classical Hodgkin lymphoma 65 % 

Urothelial carcinoma 23.4 % 

Renal cell carcinoma 21.5 % 

Avelumab (BAVENCIO) [313] PD-L1 Urothelial carcinoma 13.3 % 

Metastatic Merkel cell carcinoma 33 % 

Durvalumab (IMFINZI) [314] PD-L1 Urothelial carcinoma 17 % 

Atezolizumab (TECENTRIQ) [315] PD-L1 Urothelial carcinoma 14.8 % 

Ipilimumab (YERVOY) [316] CTLA-4 Melanoma 5.7 % 

Renal cell carcinoma * 41.6 % 

Colorectal carcinoma * 49 % 

*Ipilimumab administered in combination with nivolumab. 

5.2 Extracting TCR repertoire information from RNA-seq 

While I have demonstrated that TCR repertoire information can be obtained from 

RNA-seq datasets, the information obtained can be quite limited. As discussed earlier, 

TCGA tumour sample accrual standards were set to maximize the tumour cell content, 

disqualifying tumour samples with a strong immune infiltrate, limiting the number of T 

cells present to be surveyed. Additionally, the majority of the TCGA RNA-seq datasets 

contain reads 50 bp in length, which restricts the length of CDR3s that can be detected 

(the median length for beta chains is 45 bp; Figure B.3). Finally, due to variability in 

sequencing read length and depth across the TCGA dataset, I subsampled all of the 

data to the lowest common denominator (100,000,000 × 50 bp sequence reads). This 

acted as an upfront normalization method, ensuring that observed changes in diversity 

were not due to technical differences in the samples due to read length or sequencing 

depth. In this regard, it was successful, however, at the cost of reduced yield. Indeed, in 

my analysis, the yield of TCRs was very low for TCGA tumours, with approximately 1 in 

10,000,000 reads being annotated as a TCR CDR3. In an analysis where the goal is 
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discovery of TCR CDR3 sequences, this upfront normalization would not be the optimal 

strategy. For the TCGA PanCancer Atlas Immune Landscape of Cancer project [149], I 

contributed my TCR extraction pipeline without this upfront normalization. In the entire 

TCGA dataset, the findings were comparable to my results presented in chapter 3. 

Additionally, it was observed that TCR diversity varied by immune subtype, irrespective 

of tumour type. This larger dataset yielded greater statistical power, with nearly 3,000 

TCR alpha-beta pairs and 400 TCR-pMHC pairs observed to co-occur at a statistically 

significant level in at least two subjects. The most highly reoccurring of these could be 

targets for follow up in vivo studies to determine if these represent true interactions. 

Despite low yields in the TCGA data, I was able to identify shared TCR 

sequences found in tumours from multiple individuals. Given the enormous potential 

diversity of TCRs, identifying shared, abundant TCRs in multiple individuals suggests a 

common antigen is present in these individuals. In my attempts to determine what the 

shared antigen in these cases may be, I discovered that there was not a central 

repository for TCRs and their antigens, nor were there standardized ways of report TCR 

sequences in the literature. Recently there has been a push from the community to 

standardize adaptive immune receptor reporting [317], and databases have begun to 

emerge which aim to collect all known TCR-pMHC interactions [318,319]. These 

databases will offer enormous potential, both for identifying the antigen targets of T cells 

that have been previously observed, and in generating training datasets for TCR-pMHC 

interaction prediction algorithms. Ultimately, these types of algorithms may be able to 

predict targets of TCRs de novo. In addition to these interaction databases, TCR 

structure databases are being developed which will provide more useful information in 

the development of new prediction algorithms [320]. 

With this goal, two methods were recently published which attempt to identify 

recognition motifs in TCRs that recognize a shared antigen [321,322]. These 

approaches rely on co-occurrence of TCR and pMHC, conceptually similar to the 

approach I took in chapter 3, however they begin with enriched T cell populations 

resulting from either vaccination or pMHC-tetramer sorting. By analyzing large sets of 

TCR sequences that all share a common antigen, they were able to identify conserved 

motifs that direct antigen recognition and extend these results to predict if novel TCRs 
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would recognize the same antigens. A similar method was described which strives to 

identify TCRs that recognize public antigens among distinct repertoires, without the 

need for artificially enriching the dataset for reactive T cells by vaccination or tetramer-

sorting [323]. As the TCR-pMHC databases mentioned above acquire more data, these 

methods can be further developed to learn more about the specific motifs that are 

important for antigen recognition [324]. 

Subsequent to my work presented in chapter 3, the creators of MiTCR released 

an updated version of their tool called MiXCR [325] which is able to identify both TCRs 

and B cell receptors (BCRs). Further, an update to MiXCR introduced a parameter to 

allow it to extract TCR information directly from RNA-seq data [326]. This updated tool 

can assemble multiple non-ambiguous partial CDR3 reads into longer contigs, 

improving sensitivity. Others in the field have also seen the benefit of extracting TCR 

information from RNA-seq datasets, and more tools have been created to perform the 

extraction and annotations [327,328]. Additionally, with single cell genomics increasing 

in prevalence, tools designed specifically to extract TCR information from RNA-seq of 

single cells have been developed [329,330]. 

In the context of RNA-seq from PTCL samples, the utility of direct TCR extraction 

is clear. Aberrant samples that are expected to have a clonally expanded T cell show 

clear evidence of clonal expansion, typically with one CDR3 alpha and beta having far 

greater abundance than other T cells in the sample. In this way, the paired alpha-beta 

chains of the TCR can be inferred. Subsequent to the analysis presented in chapter 3, 

Gong and colleagues published their work which replicates my findings [331], using the 

initial release of MiXCR followed by filtering of false-positives. It is unclear if their RNA-

seq data is derived from sorted T cell populations or bulk lymphocytes, so it is difficult to 

compare the sensitivity between the two methods. Based on my findings directly 

comparing MiTCR to MiXCR, the sensitivity is comparable. The ability of MiXCR to 

annotate BCRs should allow for the natural extension of this analysis to identify the 

malignant clones in B cell malignancies. 
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5.3 Utility of the predicted self-immunopeptidome 

The human immunopeptidome dataset generated in chapter 4 is the result of exhaustive 

peptide-MHC binding predictions for all unique peptides in the human proteome to all 

class I MHC molecules. Class I was selected for this initial proof of concept for a 

number of reasons: class I presented peptides are more restricted in length (8-11mers) 

compared to class II (13-25mers with a 9aa core [332,333]), the class I MHC binding 

groove is encoded by a single gene whereas class II MHC binding grooves are the 

product of an alpha and beta subunit coming together in a combinatorial manner, and 

peptide binding predictions for class I are much more accurate than for class II [334]. 

Given recent work demonstrating the importance of class II epitopes in cancer 

immunology [114,228,229,273], and the results I present in chapter 4, it would be of 

value to predict the class II human immunopeptidome using analogous methods as 

improvements to the prediction algorithms are made. 

The class I human immunopeptidome dataset, while useful in ranking MHC 

molecules according to their ability to present a repertoire of human peptides, does not 

necessarily accurately represent the set of self-peptides presented by each MHC 

molecule. The fundamental basis for this dataset is the predicted binding affinity as 

measured by IC50 by NetMHCpan v3.0. I demonstrated that classifying peptide-MHC 

combinations as binders using this metric correlated best with the limited observed 

MHC-bound peptide data. While this metric performed better than a percentile rank 

threshold, it still did not explain all the variability in observed self-immunopeptidome 

size. For my purposes, I am less concerned with the exact set of peptides predicted to 

be presented, and more concerned with ordering the MHC molecules by how diverse a 

set of peptides they can present. The calculation of self-immunopeptidome size takes 

the overlapping set of peptides presented by all the MHC in the individual, so peptide 

identity does play a role, however it is likely that any bias due to errors in pMHC 

predictions will be systematic and thus have a minimal effect on self-immunopeptidome 

size prediction. NetMHCpan uses the sequence of the MHC binding pocket to make 

predictions, so similar MHC molecules should have similar repertoires of peptides 

predicted to be bound, and the overlap will not be significantly affected by a small 

number of erroneous predictions. 



100 

 

Another factor to consider is that binding predictions by NetMHCpan are most 

accurate for MHC that have the most training data available [247]. I checked for any 

effect from this by comparing HLA frequency in the NetMHCpan v3.0 training data to the 

number of presented peptides and saw a weak positive correlation. This likely 

represents a source of noise in the dataset, however, it is also feasible that some HLAs 

have less data in the training set due to decreased numbers of peptides being 

presented. 

HLA alleles have different population frequencies in different ethnic groups. As 

such, the self-immunopeptidome size for different ethnic populations can vary due to 

biases in HLA allele usage. I controlled for this in chapter 4 by filtering out the non-

Caucasian subjects from the datasets when comparing the distributions of self-

immunopeptidome sizes, leaving the majority of the data for analysis. Ethnicity 

information in these samples is self-reported and is therefore subject to errors. Principal 

component analysis can be applied to SNP data to reveal genetic ancestry groups, 

which would provide a genetically determined ethnicity [335], removing the reliance on 

self-reported data. This technique would be possible for the TCGA data [149], but no 

SNP information was available for the NMDP data. 

In my work investigating immunoediting and immunosurveillance in tumours, 

there are two key assumptions. Firstly, the set of mutations found in the TCGA data 

were not strongly immunogenic and have been depleted of immunodominant epitopes. 

The rationale for this assumption is that the cancer cells have been able to co-exist with 

the host immune system and develop into a clinically relevant tumour. Based on the 

theory of immunoediting [105], cells containing immunogenic mutations would be 

deleted by the immune system. My analysis supports this, showing decreased 

immunogenicity of expressed mutations compared to non-expressed mutations for over 

80 % of the samples. However, for the remaining samples, some immunogenic 

mutations likely remain due to immune evasion. This may take the form of 

downregulation of the antigen-presentation machinery by the tumour [336], inhibition of 

the T cells [337], or other immune suppression by the tumour microenvironment [338]. 

Despite this, in general the majority of mutations that are able to co-exist with a host 

immune system are not expected to be immunogenic, and “holes” in variant position 
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usage for presented peptides (when compared to a set of mutations that have not 

experienced immune pressure) can be informative. 

Secondly, the set simulated mutations generated in silico represents mutations 

that have not experienced immune pressure. The mutations were generated at random 

positions throughout the proteome, but followed the same amino acid transition 

frequencies that were observed in the TCGA data. This is a very simplistic model for 

generating amino acid changes, and the resulting mutations may or may not affect the 

biological activity of the source protein. Because of this, these mutations do not 

necessarily accurately reflect the natural set of cancer mutations that would be acquired 

in a tumour free from immune pressure. They do, however, provide a baseline 

immunogenicity measure for random amino acid changes. Mutation datasets from 

tumours allowed to grow without immune pressure, for example in a RAG-1 deficient 

mouse, would be useful as comparators, though the mutations in such a dataset may 

contain biases due to development in a non-human host. 

5.4 Future directions 

The ultimate goal of immunoinformatics applied to cancer immunology is to accurately 

predict the biological activity of the immune system given tumour genomic data. 

Relevant to this thesis, the main areas of prediction that have the greatest opportunities 

for improvement are neoantigen immunogenicity and response to immunotherapy. 

Currently, neoantigen predictions depend on the contextual placement of somatic 

mutations within flanking reference protein sequence, without regard for germline 

variation or proximal mutations. They also typically focus only on SNVs. Above, I 

described a recent tool which uses RNA-seq reads to generate the mutant peptides, 

which is a step in the right direction, however, I believe this can be further improved. 

Rather than calling somatic mutations and fishing for RNA-seq reads that support these 

mutations, tumour RNA-seq reads could be directly aligned (or assembled and aligned) 

to the matched normal exome or genome data, and all cases of sequence that does not 

match the normal genome could be identified. These sequences would represent 

expressed non-self sequence that are the result of mutations within the tumour, not 

limited to SNVs. This would result in a mutation-type-agnostic view of the mutant 
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peptide repertoire, outputting all peptides that would not be expected to be present in 

that individual’s healthy cells. This approach would require guidance by the reference 

transcriptome to infer the reading frame of the sequences, so would not be a completely 

de novo approach, but would better reflect the peptides present in the tumour. 

Once we are able to accurately capture the repertoire of mutant peptides present 

in a tumour, we need to better predict the immunogenicity and immunodominance of 

these peptides. Immunogenicity predictions are mainly based on peptide-MHC binding 

and amino acid composition, but these still suffer from poor sensitivity and specificity 

when the predictions are validated. Immunogenicity trends can be found in existing 

data, but purpose-built datasets will be more informative. Genomics from tumours 

paired with MS on the MHC-eluted peptides would greatly improve the ability to 

determine the correlation between predictable features and absence or presence of the 

peptide on the surface of the cell. These types of datasets would also be informative for 

improving immunogenicity predictions for class II MHC-presented peptides, providing 

orthogonal information to peptide-MHC binding data. Following these studies up with 

new methods that can determine the targets of T cells [339,340], it will be possible to 

then determine which of these presented peptides are immunogenic and 

immunodominant. As TCR-pMHC databases continue to grow, new insights on the 

interaction network between TCR and pMHC will aid in predicting which features can 

influence recognition by the TCR. 

While improved immunogenicity predictions will result in a highly detailed view of 

the neoantigens displayed on a tumour and will aid in the development of cancer 

vaccines or target selection for engineered T cell therapies, predicting response to 

checkpoint blockade immunotherapies will likely benefit from integration of a broader 

range of data. Predictions for immunotherapy success will likely be derived from 

comprehensive genomic profiling and deep learning, taking into consideration metrics 

such as the self-immunopeptidome size, mutational load, characteristics of the 

neoantigens present, TIL stratification, gene expression, tumour heterogeneity, and 

TCR diversity. Historically this type of comprehensive data has been limited by the 

resources available, but as more all-inclusive data is being collected and generated as 

part of new clinical cancer genomics programs [239,341,342], the clinical utility of these 
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datasets will grow. Additionally, as the number of studies tracking response to 

immunotherapy increases, the combined results will be able to train future algorithms to 

enable accurate predictions on the optimal immunotherapy strategy for individual cases 

of cancer. 

Looking farther into the future, it seems plausible that nearly perfect predictions 

of TCR-pMHC interactions will become possible. After characterization of the 

neoantigen and TCR repertoire present in a tumour, this, along with the advancements 

in predicting response to immunotherapies suggested above, would allow for the 

optimal therapy to be selected for that individual. If one or more TCRs able to respond 

to clonal neoantigens present on the tumour are found, and these TCRs appear to be 

inhibited, some combination of checkpoint blockade may be desired. If no appropriate 

TCRs are found, then an engineering approach would be possible, creating an 

engineered T cell with a TCR capable of recognizing the appropriate antigen [343]. This 

would also allow for a combination approach if there is no appropriate clonal 

neoantigen, designing a set of T cells to be able to effectively target sub-clonal 

neoantigens and attack all the cancer clones present. 
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Appendices 

Appendix A  Chapter 2: Supplementary Material 

A.1 Supplementary Figures 

 

Figure A.1: Skew plot of CD4 expression and predicted immunogenic mutations. Patients were 

ordered along the x-axis according to their CD4 expression. Each patient’s CD4 expression was plotted 

above the x-axis, and count of predicted immunogenic mutations below. No significant skew was 

observed (P = 6.9 × 10-1). 
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Figure A.2: Skew plots for each cancer type individually. Patients were ordered along the x-axis 

according to their CD8A expression. Each patient’s CD8A expression was plotted along the x-axis, and 

count of predicted immunogenic mutations below for (A) lung (LUSC), (B) ovary (OV), (C) breast (BRCA), 

(D) colorectal (COAD/READ), (E) brain (GBM) and (F) kidney (KIRC).  
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Appendix B  Chapter 3: Supplementary Material 

B.1 Supplementary Figures 

 

Figure B.1: Length distributions of in silico generated CDR3 sequences. CDR3-alpha and CDR3-

beta sequence lengths plotted separately. CDR3-alpha has mean 40.35 (standard deviation 6.54), and 

CDR3-beta has mean 48.29 (standard deviation 7.41). 
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Figure B.2: TCR transcript abundance vs. sequencing depth. For the in silico data, the simulated 

TCR transcript abundance was tracked. Simulated RNA libraries that were sequenced deeper allowed 

lower abundance TCR transcripts to be detected. 

 

Figure B.3: Detection probability of CDR3-betas with varying lengths using error-free 50 nt reads 

centered on the CDR3 region. Orange density plot shows the distribution of CDR3-beta lengths in the 

normal population [11]. CDR3s that are longer than the read length (50 nts, green line) are not detected. 
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Figure B.4: Comparison of TCRs detected by conventional TCR-seq and RNA-seq. All TCRs 

detected by TCR-seq are displayed in lexicographical order along the x-axis, with the number of 

sequence reads assigned to each clonotype on the y-axis. TCRs which were also found in the RNA-seq 

dataset are coloured orange.
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Figure B.5: Relationship between number of CDR3 amino acid sequences extracted and CD4, CD8, and CD3 expression in tumour 

samples. Pearson correlation coefficients are displayed. 

 

Figure B.6: Relationship between number of CDR3 amino acid sequences extracted and HLA class I and class II expression in tumour 

samples. Pearson correlation coefficients are displayed. 
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Figure B.7: Overlap between CDR3-beta extracted from TCGA tumours and one individual’s 

deeply sequenced healthy blood sample. CDR3s that are found in multiple TCGA subjects are more 

likely to be found in the healthy individual’s TCR repertoire
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Figure B.8: Relative abundance of clonotypes in control samples. Deep and shallow sequencing for each subject shown. Y-axis showing the 

abundance of each clonotype relative to the total abundance of all clonotypes of the same chain in that sample. Clonotypes are plotted along the 

x-axis in lexicographical order. The read abundance of each clonotype is represented by its size. 
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Figure B.9: Relative abundance of clonotypes in samples that were aberrant by flow cytometry. Deep and shallow sequencing for each 

subject shown. Y-axis showing the abundance of each clonotype relative to the total abundance of all clonotypes of the same chain in that sample. 

Clonotypes are plotted along the x-axis in lexicographical order. Clonotypes determined to be dominant are coloured orange. The read abundance 

of each clonotype is represented by its size. 
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Figure B.10: Relative abundance of clonotypes in samples that were not aberrant by flow cytometry. Deep and shallow sequencing for 

each subject shown. Y-axis showing the abundance of each clonotype relative to the total abundance of all clonotypes of the same chain in that 

sample. Clonotypes are plotted along the x-axis in lexicographical order. Clonotypes determined to be dominant are coloured orange. The read 

abundance of each clonotype is represented by its size. 
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Figure B.11: Comparison of clonotype relative abundance in shallow versus deep sequencing for all 82 samples. X-axis shows the relative 

abundance of each clonotype in the shallow sequence data, and y-axis shows the relative abundance of each clonotype in the deep sequence 

data. Clonotypes falling along the diagonal have equal abundances in both shallow and deep datasets. Clonotypes determined to be dominant are 

coloured orange. The read abundance of each clonotype is represented by its size. Dominance and read abundance are based on deep sequence 

data unless only found in shallow data.
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B.2  Supplementary Tables 

Table B.1: Table of ENCODE datasets merged for use as a negative control. 

Library Biosample File Accessions Total number 

of reads 

ENCLB113QPT ENCBS780PCJ - 

smooth muscle cell 

ENCFF548JWS 

ENCFF004IRQ 

208,920,126 

ENCLB615ALX ENCBS077RUJ – 

hepatocyte 

ENCFF245VTB 

ENCFF369QXD 

200,577,302 

ENCLB160QNF ENCBS018TPT - neural 

progenitor cell 

ENCFF939FVE 

ENCFF201WLO 

202,290,896 

ENCLB714MUL ENCBS514GVM - SK-

N-DZ 

ENCFF482SFO 

ENCFF691TRA 

156,710,634 

ENCLB534MTC ENCBS234AAA - 

LHCN-M2 

ENCFF119TIN 

ENCFF494PBN 

173,859,996 

ENCLB011AUM ENCBS367AAA - 

fibroblast of arm 

ENCFF002DMN 

ENCFF002DMO 

182,860,148 

ENCLB059TNM ENCBS518AAA - SK-

MEL-5 

ENCFF002DLD 

ENCFF002DLF 

196,017,866 

All Combined   1,317,236,968 

 



153 

 

Table B.2: Table of optimized parameters for a range of false discovery rates. 

    
minAlignmentMatches 

Parameter 

Allowed false positives per 

100M reads 

Sensitivity 

(%)a 

TCR 

Chain 

Read 

length 
V J 

0 98.15 Alpha 50 10 20 

0 90.76 Beta 50 12 16 

0 100.00 Alpha 76 18 11 

0 99.98 Beta 76 12 18 

0 100.00 Alpha 101 12 19 

0 100.00 Beta 101 14 16 

1 98.55 Alpha 50 10 17 

1 94.73 Beta 50 13 14 

1 100.00 Alpha 76 17 11 

1 99.99 Beta 76 8 18 

1 100.00 Alpha 101 19 9 

1 100.00 Beta 101 14 14 

5 98.70 Alpha 50 8 17 

5 97.00 Beta 50 12 13 

5 100.00 Alpha 76 12 15 

5 99.99 Beta 76 12 14 

5 100.00 Alpha 101 14 14 

5 100.00 Beta 101 8 17 

10 98.89 Alpha 50 10 15 

10 97.85 Beta 50 12 12 

10 100.00 Alpha 76 10 16 

10 99.99 Beta 76 11 14 

10 100.00 Alpha 101 12 15 

10 100.00 Beta 101 9 16 

a Calculated as the count of CDR3s recovered with that parameter pair divided by the 

maximum count of CDR3s recovered in all parameter pairs tested. 
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Table B.3: Table of predictions from model for some relevant explanatory variable values.  Bold 

underlined values vary within each group. 

Transcript 

Fraction 

Sequencing 

Depth 

Read 

Length 

CDR3 

Length 

Probability of detection 

(95 % CI) 

1 × 10-5 70,000,000 50 45 0.503 (0.495 – 0.512) 

1 × 10-6 50,000,000 76 48 0.100 (0.097 – 0.102) 

5 × 10-6 50,000,000 76 48 0.306 (0.302 – 0.311) 

1 × 10-5 50,000,000 76 48 0.445 (0.440 – 0.450) 

2.5 × 10-5 50,000,000 76 48 0.638 (0.633 – 0.643) 

1 × 10-5 10,000,000 76 48 0.094 (0.092 – 0.096) 

1 × 10-5 25,000,000 76 48 0.183 (0.180 – 0.186) 

1 × 10-5 50,000,000 76 48 0.445 (0.440 – 0.450) 

1 × 10-5 100,000,000 76 48 0.912 (0.908 – 0.915) 

1 × 10-5 50,000,000 50 48 0.243 (0.237 – 0.249) 

1 × 10-5 50,000,000 76 48 0.445 (0.440 – 0.450) 

1 × 10-5 50,000,000 101 48 0.659 (0.653 – 0.665) 

1 × 10-5 50,000,000 50 41 0.302 (0.296 – 0.308) 

1 × 10-5 50,000,000 50 45 0.267 (0.261 – 0.273) 

1 × 10-5 50,000,000 50 48 0.243 (0.237 – 0.249) 

1 × 10-5 50,000,000 76 39 0.541 (0.535 – 0.546) 

1 × 10-5 50,000,000 76 45 0.477 (0.472 – 0.482) 

1 × 10-5 50,000,000 76 51 0.414 (0.408 – 0.420) 
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Table B.4: Sample numbers for tumour-normal pairs in each tumour site. 

Tumour 

Site 

Number of 

Samples 

BRCA 96 

KIRC 56 

THCA 47 

LUSC 42 

PRAD 40 

HNSC 34 

STAD 30 

LIHC 27 

CRAD 21 

KIRP 15 

KICH 14 

LUAD 13 

ESCA 10 

BLCA 9 

CESC 3 

UCEC 3 

PCPG 2 

Total 462 

 

Table B.5: Primary antibodies used for flow cytometry/FACS experiments. 

Antibody Fluorochrome Clone Supplier 

CD2 PE-Cy7 S5.2 Becton Dickinson 

CD3 BV510 UCHT1 Becton Dickinson 

CD4 PE RPA-T4 Becton Dickinson 

CD5 BV711 UCHT2 Becton Dickinson 

CD7 PE-CF594 M-T701 Becton Dickinson 

CD8 APC-H7 SK1 Becton Dickinson 

CD10 BV605 HI10a Becton Dickinson 

CD19 PE-Cy5 HIB19 Becton Dickinson 

CD45 Alexa-700 HI30 Becton Dickinson 

CD279 APC MIH4 Becton Dickinson 

CXCR5 BV421 RF8B2 Becton Dickinson 
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Appendix C  Chapter 4: Supplementary Material 

C.1 Supplementary Figures 

 

Figure C.1: Comparison of number of distinct peptides bound to 66 MHC. The fraction of self-

peptides predicted to bind to each MHC is displayed on the x-axis, with the number of distinct peptides 

observed to bind in the SysteMHC MS data on the y-axis. The linear regression is displayed by the 

orange line with grey region showing the standard error. 

 

Figure C.2: Distribution of hot and cold tumours across TCGA. Within each tumour type, the number 

of tumours classified as hot (red), cold (blue), or neither (gray) are displayed. 
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Figure C.3: Heatmap showing the observed frequencies of amino acid changes within the set of 

TCGA coding SNV mutations. The most common change is glutamic acid (E; reference amino acids on 

x-axis) to lysine (K, alternate amino acids on y-axis). 

 

 

Figure C.4: Average immunogenicity of mutations for each tumour type. Average immunogenicity 

(pMHC per SNV; y-axis) per subject for non-expressed, random, and expressed SNVs (x-axis), split by 

cancer type. Points denote mean values and lines show ± one standard deviation. 
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Figure C.5: Count of 9mer neoantigens containing the variant at each position, ignoring 

corresponding wildtype peptide binding status. 
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Figure C.6: Summary of variant position usage in presented peptides. Differences in frequency (y-

axis) of the variant amino acid being in each position (x-axis) of a presented peptide for TCGA mutations 

compared to random mutations, for 8-, 9-, 10-, and 11-mers (panels from top to bottom). Mean values are 

shown (dots), with lines showing 95 % confidence intervals of the means. Positions with significant 

enrichment or depletion (padj < 0.05, T test) are coloured orange.  
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C.2 Supplementary Tables 

Table C.1: Details of multivariate Cox-PH model predicting progression free intervals. Variable of 

interest: Self-immunopeptidome size. Bolded p-values < 0.05. 

Variable Units Missing Hazard Ratio 95 % CI p-value 

Race  22    

 White  1.00 (reference)   

 None  0.93 [0.76;1.14] 0.5083 

 Black or African 

America 

 1.31 [1.10;1.56] 0.00204 

 Asian  1.15 [0.90;1.47] 0.25138 

 Native Hawaiian or 

other Pacific Islander 

 1.29 [0.41;4.07] 0.66446 

Age at Dx Year (continuous) 32 1.01 [1.00;1.01] < 0.001 

HLA Diversity  0    

 Heterozygous (6 

distinct alleles) 

 1.00 (reference)   

 Homozygous  0.93 [0.82;1.04] 0.21412 

Gender  0    

 Female  1.00 (reference)   

 Male  1.05 [0.93;1.18] 0.45971 

Cancer type  0    

 BLCA  1.00 (reference)   

 BRCA  0.2 [0.15;0.27] < 0.001 

 CESC  0.36 [0.23;0.55] < 0.001 

 COAD  0.56 [0.41;0.77] < 0.001 

 GBM  4.86 [3.69;6.40] < 0.001 

 HNSC  0.76 [0.59;0.98] 0.03706 

 KIRC  0.4 [0.30;0.54] < 0.001 

 KIRP  0.28 [0.18;0.43] < 0.001 

 LGG  0.95 [0.72;1.26] 0.71812 

 LIHC  1.53 [1.14;2.05] 0.00451 

 LUAD  0.86 [0.67;1.11] 0.2532 

 LUSC  0.5 [0.37;0.67] < 0.001 

 OV  1.76 [1.33;2.33] < 0.001 

 PRAD  0.24 [0.17;0.36] < 0.001 

 READ  0.36 [0.21;0.62] < 0.001 

 SKCM  1.35 [0.92;2.00] 0.12881 

 STAD  0.93 [0.48;1.78] 0.81954 

 THCA  0.16 [0.11;0.23] < 0.001 

 UCEC  0.34 [0.26;0.46] < 0.001 

Self-

immunopeptido

me size 

1,000,000 peptides 

(continuous) 

0 0.92 [0.85;1.00] 0.05415 
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Table C.2: Details of multivariate Cox-PH model predicting progression free intervals. Variable of 

interest: Approximated SNV neoantigen load. Bolded p-values < 0.05. 

Variable Units Missing Hazard Ratio 95 % CI p-value 

Race  22    

 White  1.00 (reference)   

 None  0.94 [0.77;1.14] 0.51534 

 Black or African 

America 

 1.28 [1.08;1.53] 0.00442 

 Asian  1.16 [0.91;1.47] 0.23829 

 Native Hawaiian or 

other Pacific Islander 

 1.37 [0.43;4.33] 0.59 

Age at Dx Year (continuous) 32 1.01 [1.00;1.01] < 0.001 

HLA Diversity  0    

 Heterozygous (6 

distinct alleles) 

 1.00 (reference)   

 Homozygous  0.95 [0.84;1.06] 0.34986 

Gender  0    

 Female  1.00 (reference)   

 Male  1.05 [0.93;1.18] 0.43945 

Cancer type  0    

 BLCA  1.00 (reference)   

 BRCA  0.19 [0.14;0.25] < 0.001 

 CESC  0.35 [0.23;0.54] < 0.001 

 COAD  0.57 [0.42;0.79] < 0.001 

 GBM  4.63 [3.52;6.11] < 0.001 

 HNSC  0.74 [0.58;0.96] 0.02234 

 KIRC  0.38 [0.28;0.52] < 0.001 

 KIRP  0.27 [0.18;0.41] < 0.001 

 LGG  0.91 [0.68;1.20] 0.48525 

 LIHC  1.46 [1.09;1.96] 0.01101 

 LUAD  0.85 [0.66;1.10] 0.22715 

 LUSC  0.5 [0.37;0.66] < 0.001 

 OV  1.71 [1.29;2.26] < 0.001 

 PRAD  0.23 [0.16;0.34] < 0.001 

 READ  0.36 [0.21;0.62] < 0.001 

 SKCM  1.38 [0.93;2.04] 0.10784 

 STAD  0.91 [0.47;1.74] 0.76608 

 THCA  0.15 [0.10;0.22] < 0.001 

 UCEC  0.37 [0.28;0.50] < 0.001 

Approximated 

SNV neoantigen 

load 

(SNV count × self-

immunopeptidome 

size) / total unique 

peptides 

(continuous) 

0 0.99 [0.99;1.00] 0.00318 
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Table C.3: Details of multivariate Cox-PH model predicting progression free intervals. Variable of 

interest: SNV neoantigen load. Bolded p-values < 0.05. 

Variable Units Missing Hazard Ratio 95 % CI p-value 

Race  22    

 White  1.00 (reference)   

 None  0.94 [0.77;1.14] 0.51291 

 Black or African 

America 

 1.29 [1.08;1.53] 0.00426 

 Asian  1.16 [0.91;1.48] 0.23209 

 Native Hawaiian or 

other Pacific Islander 

 1.37 [0.43;4.32] 0.59223 

Age at Dx Year (continuous) 32 1.01 [1.00;1.01] < 0.001 

HLA Diversity  0    

 Heterozygous (6 

distinct alleles) 

 1.00 (reference)   

 Homozygous  0.94 [0.84;1.06] 0.34054 

Gender  0    

 Female  1.00 (reference)   

 Male  1.05 [0.93;1.18] 0.43756 

Cancer type  0    

 BLCA  1.00 (reference)   

 BRCA  0.19 [0.14;0.26] < 0.001 

 CESC  0.35 [0.23;0.54] < 0.001 

 COAD  0.57 [0.42;0.79] < 0.001 

 GBM  4.67 [3.54;6.15] < 0.001 

 HNSC  0.75 [0.58;0.96] 0.02458 

 KIRC  0.39 [0.29;0.52] < 0.001 

 KIRP  0.27 [0.18;0.42] < 0.001 

 LGG  0.91 [0.69;1.21] 0.52127 

 LIHC  1.47 [1.10;1.97] 0.00971 

 LUAD  0.86 [0.66;1.11] 0.23952 

 LUSC  0.5 [0.37;0.67] < 0.001 

 OV  1.72 [1.30;2.28] < 0.001 

 PRAD  0.23 [0.16;0.35] < 0.001 

 READ  0.36 [0.21;0.62] < 0.001 

 SKCM  1.38 [0.94;2.04] 0.10383 

 STAD  0.91 [0.47;1.75] 0.77538 

 THCA  0.15 [0.10;0.22] < 0.001 

 UCEC  0.37 [0.28;0.50] < 0.001 

TCGA SNV 

neoantigen load 

Count of mutant 

pMHC (continuous) 

0 1 [1.00;1.00] 0.0052 
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Appendix D  Evolutionary analysis of immunopeptidomes 

Class I antigen presentation evolved to enable detection of intracellular pathogenic 

organisms. Within humans, there exists a selective pressure for MHC variants that can 

present pathogenic peptides [344], maintaining the high level of variability of MHC 

genes. At the same time, pathogens are under selective pressure to evade MHC-

presentation, typically through dysregulation of the antigen presentation pathway 

[345,346]. I tested if evidence of this co-evolution could be detected by performing 

human MHC immunopeptidome predictions for different proteomes from a variety of 

sources. 

D.1 Subsampling proteomes 

Based on the computational and time resources required for the full human 

immunopeptidome predictive analysis (Chapter 4: Neoantigen characteristics in the 

context of the complete predicted MHC class I self-immunopeptidome), I determined 

that performing predictions for the complete proteomes of a set of different species 

would not be feasible, so tested if randomly subsampling the proteins in the proteome 

would yield sufficient information. I randomly selected proteins from the human 

reference proteome until 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 5, 10, 25 and 50 % of the total 

amino acid count was reached. Five replicate subsamples were created at each depth, 

and the fraction of peptides presented by each allele was compared to the data from the 

non-subsampled dataset. 

The fraction of input peptides predicted to be presented was calculated for each 

dataset, with each MHC having a measurement for the fraction of peptides presented in 

each dataset. For each subsampled dataset, the slope and correlation for fraction of 

peptides presented in the full dataset compared to the fraction of peptides presented in 

the subsampled dataset was calculated (Figure D.1). Based on this data, subsampling 

the proteome to 10 % of the total amino acid length was determined to be sufficient to 

reproduce the relationships between the number of peptides presented by different 

MHC molecules (mean slope of 1.00075, Pearson r = 0.9997), while significantly 

reducing the amount of computational time required to perform the predictions 

(approximately 1/10th). This subsampling depth was independent of proteome size 
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(subsampling tests were repeated on Mycobacterium tuberculosis, proteome size 

approximately 10 % that of human, slope = 1.00543 and r = 0.9997). 

 

Figure D.1: Effect of subsampling the proteome on the fraction of peptides presented by each 

MHC. (A) The slope between the fraction of peptides presented for the full dataset and subsampled 

dataset was plotted for each of five replicates (orange circles) for each subsampling depth (x-axis). The 

black dotted line traces the average for each subsampling depth, with the grey shaded region marking ± 1 

standard error on the mean. (B) Same as in (A) but showing the Pearson correlation coefficient instead of 

the slope. 

D.2 Synthetic proteomes 

As an initial comparison point, I wanted to determine how the fraction of peptides 

presented changed as the peptide sequences diverged from those found in the human 

proteome. To test this, I generated three synthetic proteomes: (1) reversed, (2) 

weighted, and (3) random. These were based on a 10 % subsample of the human 

proteome. For each protein in this human subsample (the source protein), (1) a protein 

was created by reversing the source protein (reversed), (2) a protein comprised of 

random amino acids selected based on their observed frequencies in the total canonical 
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human reference proteome was created to be the same length as the source protein 

(weighted), and (3) a protein comprised of random amino acids selected from a uniform 

distribution was created to be the same length as the source protein (random). These 

three datasets provided increasing divergence from human sequence. Binding of all 

peptides from these datasets to all class I MHC was predicted as in chapter 4. 

I quantified the difference in the ability of two proteomes to be presented by 

comparing the fraction of all peptides presented by each MHC molecule for the two 

proteomes. By calculating the log10(ratio) between the fraction of a proteome’s peptides 

that are presented by an MHC molecule to the fraction of the human proteome’s 

peptides, we get a measure of how much better or worse the proteome is presented, 

with a log10(ratio) of zero having equal presentation, and a positive log10(ratio) meaning 

peptides from the proteome are, in general, presented better than the human proteome. 

When I performed this analysis to compare the human proteome with the reversed 

human proteome, I see a mean log10(ratio) of 0.00715 ± 0.037 (Figure D.2). Compared 

to the weighted proteome, the mean log10(ratio) is 0.0117 ± 0.058 (Figure D.2). 

Compared to the completely random proteome, the mean log10(ratio) is 0.161 ± 0.18 

(Figure D.2). For these three synthetic proteomes, as the sequence becomes more and 

more diverged from the natural human proteome sequence, there is increasing levels of 

presentation by MHC molecules. This suggests that human MHC preferentially presents 

non-human peptide sequence – a useful property to be able to present non-self 

peptides from a nearly infinite space of possibilities. 
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Figure D.2: Distribution of the log10(ratio) for synthetic human-like proteomes. For each MHC, the 

ratio between the fraction of peptides which are predicted to be presented from the indicated proteome 

compared to the fraction of peptides which are predicted to be presented from the human proteome was 

calculated, and the distribution of the log10(ratio) (x-axis) for all MHC molecules was plotted in density 

plots, with the y-axis density values set so the area under the curve is equal to one. A vertical orange line 

was drawn at the mean for each proteome. With increasing divergence from human sequence, the mean 

log10(ratio) becomes more positive. 

D.3 Immunopeptidomes from vertebrate species evolutionarily diverged from 

humans 

With the observation that protein sequences artificially diverged from humans had 

increased presentation, I next performed immunopeptidome predictions for a set of 

vertebrate species across the tree of life (Table D.1). The reference proteomes were 

downloaded from EMBL (ftp.ebi.ac.uk/pub/databases/reference_proteomes/QfO/), using 

the April 2016 Qf0 release. In general, presentation of proteomes from non-human 

vertebrate species was increased relative to human (Figure D.3), though there was no 

significant correlation between increase in presentation and evolutionary distance from 

humans (correlation between average log10(ratio) and millions of years to most recent 

common ancestor, Spearman’s ρ = 0.165, p = 0.557). This provided evidence that 

ftp://ftp.ebi.ac.uk/pub/databases/reference_proteomes/QfO/
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human MHC has a preference to present non-human peptides, consistent with the role 

of MHC in presenting foreign peptides to the immune system. 

Table D.1: Vertebrate species used for testing evolutionary effect on immunopeptidome size. 

OSCODE Species Name Millions of Years 
Diverged† from 
Humans 

HUMAN Homo sapiens Human 0 

PANTR Pan troglodytes Chimpanzee 6.65 

MACMU Macaca mulatta Rhesus macaque 29.44 

RAT Rattus norvegicus Rat 90 

MOUSE Mus musculus Mouse 90 

CANLF Canis lupus Dog 96 

BOVIN Bos taurus Bovine 96 

MONDO Monodelphis domestica Gray short-tailed opossum 159 

ORNAN Ornithorhynchus anatinus Duckbill platypus 177 

CHICK Gallus gallus Chicken 312 

XENTR Xenopus tropicalis Western clawed frog 352 

TAKRU Takifugu rubripes Japanese pufferfish 435 

DANRE Danio rerio Zebrafish 435 

CIOIN Ciona intestinalis Transparent sea squirt 676 

BRAFL Branchiostoma floridae Florida lancelet 684 

† Divergence time estimates from http://www.timetree.org/ 
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Figure D.3: Distribution of the log10(ratio) for different vertebrate proteomes. For each MHC, the 

ratio between the fraction of peptides which are predicted to be presented from the indicated proteome 

compared to the fraction of peptides which are predicted to be presented from the human proteome was 

calculated, and the distribution of the log10(ratio) (x-axis) for all MHC molecules was plotted in density 

plots, with the y-axis density values set so the area under the curve was equal to one. A vertical orange 

line was drawn at the mean for each proteome. With increasing divergence from human sequence, the 

mean log10(ratio) becomes more positive. Vertebrate species are ordered by increasing values of millions 

of years diverged from humans moving down the figure. 
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D.4 Immunopeptidomes from intra- and extra-cellular pathogens 

Given that human MHC showed increased presentation of peptides for non-human 

vertebrate species, I next wanted to test if there was a difference in presentation of 

peptides derived from intra- or extra-cellular pathogens. Intra-cellular pathogens would 

exert a strong selective pressure on MHC to have strong presentation, whereas extra-

cellular pathogens should not be exerting any such selective pressure. 

Proteomes for eight pathogenic species were used from EMBL, four intra-cellular 

(Leishmania major (LEIMA), Plasmodium falciparum (PLAF7), Chlamydia trachomatis 

(CHLTR), and Fusobacterium nucleatum (FUSNN)), and four extra-cellular (Giardia 

intestinalis (GIAIC), Leptospira interrogans (LEPIN), Escherichia coli (ECOLI), and 

Pseudomonas aeruginosa (PSEAE)). In general, there was increased presentation of 

these pathogenic peptides compared to human (Figure D.4). Exceptions were for 

PLASM (intra-cellular; reduced presentation relative to human), and ECOLI (extra-

cellular, no change relative to human). The three other extra-cellular pathogens, which 

are not expected to be under selective pressure, show increased presentation of 

peptides compared to human. The other three intra-cellular pathogens also show 

increased presentation of peptides compared to human, but don’t appear to be 

presented stronger than the extra-cellular pathogens. CHLTR has been reported to 

downregulate HLA expression during infection [345], which is a potential mechanism for 

it to evade immune detection despite having increased presentation of peptides. It is 

possible that similar mechanisms exist in LEIMA and FUSNN. 
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Figure D.4: Distribution of the log10(ratio) for intra- and extra-cellular pathogens. For each MHC, the 

ratio between the fraction of peptides which are predicted to be presented from the indicated proteome 

compared to the fraction of peptides which are predicted to be presented from the human proteome was 

calculated, and the distribution of the log10(ratio) (x-axis) for all MHC molecules was plotted in density 

plots, with the y-axis density values set so the area under the curve was equal to one. A vertical black line 

was drawn at the mean for each proteome. Intra-cellular pathogens are coloured blue (top four panels), 

while extra-cellular pathogens are coloured orange (bottom four panels). LEIMA; Leishmania major, 

PLAF7; Plasmodium falciparum, CHLTR; Chlamydia trachomatis, FUSNN; Fusobacterium nucleatum, 

GIAIC; Giardia intestinalis, LEPIN; Leptospira interrogans, ECOLI; Escherichia coli, PSEAE; 

Pseudomonas aeruginosa. 

D.5 Immunopeptidomes from different species of Plasmodium 

The comparison between intra- and extra-cellular pathogens may have limited ability to 

detect changes in presentation of peptides due to the heterogeneity of the different 

species. An alternative approach to identify signatures of co-evolution between 

pathogen and host is to compare different species of the same genus, where some 
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species infect humans and others do not. I performed this test on different species of 

Plasmodium, as there are numerous reference sequences, and information regarding 

the targets of each species. The first stage of the Plasmodium lifecycle which occurs in 

the vertebrate host, sporozoite invasion of hepatocytes in the liver, is the only time it is 

susceptible to T cell attack [347,348]. Once the Plasmodium merozites have infected 

the erythrocytes, which lack MHC, they are no longer visible to T cells [349]. 

Consequently, there is a limited window for the host immune system to clear 

Plasmodium infection, potentially resulting in selection of MHC which are able to 

efficiently present Plasmodium peptides. Plasmodium reference proteomes were 

downloaded from UniProt (https://www.uniprot.org/proteomes/?query=plasmodium). 

In general, there is decreased presentation of Plasmodium peptides relative to 

human (Figure D.5), a trend which was not observed in any of the other species 

analysed. It is possible that this phenomenon is due to a long history of Plasmodium 

needing to evade immune-detection, sculpting the proteome to avoid peptides which 

can readily be presented. Of all the Plasmodium species analyzed, P. falciparum had 

the highest relative presentation of peptides by human MHC. As this is the deadliest 

species of Plasmodium in humans [350], this may be an effect of strong selection on 

human MHC for variants that are able to present peptides from this species. 
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Figure D.5: Distribution of the log10(ratio) for species of Plasmodium. For each MHC, the ratio 

between the fraction of peptides which are predicted to be presented from the indicated proteome 

compared to the fraction of peptides which are predicted to be presented from the human proteome was 

calculated, and the distribution of the log10(ratio) (x-axis) for all MHC molecules is plotted in density plots, 

with the y-axis density values set so the area under the curve was equal to one. A vertical dotted red line 

was drawn at the mean for each proteome. Distributions are coloured according to their host organism. 

Panels are labelled with the species of Plasmodium. Species are ordered from lowest to highest relative 

presentation moving down the columns from left to right. 

D.6 Discussion 

In addition to the human immunopeptidome data presented in chapter 4, I have created 

immunopeptidomes for three human-like synthetic proteomes, fourteen vertebrate 

species, eight pathogens, and fifteen species of Plasmodium. This was made 

computationally tractable by determining that subsampling the proteome to 10 % of the 

total amino acid length is sufficient to measure the trends in MHC presentation. 
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Using the human immunopeptidome as the reference point, I showed that all 

three non-human synthetic proteomes have larger fractions of their peptides presented 

by human MHC than the human peptides. The reversed human proteome was the 

closest in sequence to the human proteome, consisting of the same amino acids in the 

opposite order. The weighted human proteome was the next closest, having amino 

acids randomly selected based on the observed frequency within the human reference 

proteome. Both of these synthetic proteomes had slightly better presentation compared 

to human. The random proteome was the most different in amino acid composition, and 

had the highest presentation. This suggests that human MHC are evolved to favour 

presentation of non-human peptides, consistent with their role in adaptive immunity. 

Computing the presentation of proteomes from different vertebrate species, they 

all show increased presentation compared to human. The increase is not dependent on 

millions of years of divergence from humans. Since there would be no evolutionary 

selection for human MHC to present peptides from other vertebrates, this increase in 

presentation provides more evidence that human MHC has evolved to present non-

human peptides. 

There is no clear trend in the presentation of intra-cellular pathogens compared 

to extra-cellular pathogens. Given the strong selective pressure that pathogens exert on 

MHC variability, it would be expected that intra-cellular pathogens would have increased 

presentation compared to extra-cellular pathogens, where no such selective pressure 

exists. I do not see any evidence of that in this data, and in fact, the only organism to 

have decreased presentation relative to human, Plasmodium, is an intra-cellular 

pathogen. There are a couple of possible explanations for this. First, the intra- and 

extra-cellular pathogens selected for this test were pathogens with proteomes available 

from EMBL. A more careful selection of pathogens based on whether or not they are 

obligate intracellular pathogens may be informative. The lifecycle of obligate intracellular 

pathogens, like Plasmodium, are dependent on surviving within the host organism, and 

thus they will have a stronger selective pressure to co-exist with the host immune 

system. Second, stratifying pathogens based on the severity of the disease they cause 

may also provide a clearer distinction on presentation of pathogen-derived peptides. 
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Upon analyzing a variety of species of Plasmodium with different hosts, I show 

that generally, Plasmodium is not well presented by human MHC. For different species 

that infect the same host, presentation is similar. There are some clear outliers to this 

trend: species infecting humans range from the highest presentation observed for all 

Plasmodium species, to the lowest. Still, within this data, we see evidence of the 

pathogen-derived pressure on humans to increased presentation by MHC. The two 

most lethal forms of Plasmodium, P. falciparum and P. vivax [351], have relatively good 

presentation, whereas the less dangerous P. malariae (so-called “benign malaria”) and 

P. ovale [351] have lower presentation. 


