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Abstract

Combinatorial vector compression is the task of expressing a set of vectors as

accurately as possible in terms of discrete entries in multiple bases. The prob-

lem is of interest in the context of large-scale similarity search, as it provides

a memory-efficient, yet ready-to-use compact representation of high-dimensional

data on which vector similarities such as Euclidean distances and dot products can

be efficiently approximated.

Combinatorial compression poses a series of challenging optimization prob-

lems that are often a barrier to its deployment on very large scale systems (e.g.,

of over a billion entries). In this thesis we explore algorithms and optimization

techniques that make combinatorial compression more accurate and efficient in

practice, and thus provide a practical alternative to current methods for large-scale

similarity search.
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Lay Summary

Imagine someone had a long list of every post office in the country and wanted to

figure out which one to use. If they know the location of their house they could

calculate the distance to each post office in the list, keep track of the minimum

distance, and easily find their nearest post office. This problem is known as “nearest

neighbour search”.

Many problems in computer science involve solving this problem many times

per second, in high dimensions, and on very large databases. This thesis introduces

a series of algorithmic improvements for systems that perform this task approxi-

mately on very large datasets, trading off accuracy, memory usage, and speed.
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Preface

The main work presented in this thesis is based on three publications.

• A version of Chapter 3 has been published in the Proceedings of the Euro-

pean Conference on Computer Vision (ECCV) (Martinez et al., 2016a):

J. Martinez, J. Clement, H. H. Hoos, and J. J. Little. Revisiting

additive quantization. In ECCV 2016.

and in (Martinez et al., 2016b)

J. Martinez, H. H. Hoos, and J. J. Little. Solving multi-codebook

quantization in the GPU. In 4th Workshop on Web-scale Vision

and Social Media (VSM), ECCV workshops, 2016.

The chapter and the CUDA code were both written by Martinez. Clement

helped run experiments and wrote Julia code for the software release related

to the above publications.

• A version of Chapter 4 has been published in the Proceedings of the Euro-

pean Conference on Computer Vision (ECCV) (Martinez et al., 2018):

J. Martinez, S. Zakhmi, H. H. Hoos, and J. J. Little, LSQ++:

Lower running time and higher recall in multi-codebook quan-

tization. In ECCV 2018.

The chapter was entirely written by Martinez. Zakhmi helped run experi-

ments and write Julia code for the new algorithms described in Chapter 4.
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• Chapter 6 was written by Martinez, and the work presented there was devel-

oped by Martinez and Melody Wong during her internship at the UBC vision

lab in the summer of 2017.

• Chapters 5-7 contain new material. Hoos, Little and Mark Schmidt have

edited and revised all the chapters in this thesis.
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Chapter 1

Introduction

A notable characteristic of the computational landscape at the turn of the 21st cen-

tury is an unprecedented growth in the use and collection of data. Scientific fields

such as genetics, bioinformatics, chemistry, astronomy, particle physics and cli-

mate science have all benefited from large-scale data collection mechanisms. At

the same time, large-scale data collection has inspired new research directions in

those areas.

In everyday life, a data-collection explosion has appeared in a more familiar

form. Consumer-grade cameras (which are often attached to smartphones), cou-

pled with the growth in popularity of social media platforms and increased inter-

connectivity, have made it very easy for the average consumer in developed nations

to record and store visual narratives at an unprecedented rate. From the perspec-

tive of a smartphone owner, taking a picture or recording a short video of a person,

event or object that they care about, and sharing this content with their social net-

work, is a now a common, easy, and low-overhead task.

At the same time, deep learning techniques have, over the past decade, dramat-

ically improved the state of the art on a variety of computational perceptual tasks

such as speech and object recognition. Such techniques typically consist of a multi-

layered function approximator that produces, as an end result, a high-dimensional

real-valued vector that is amenable to tasks such as multi-label classification. Sys-

tems that perform tasks such as object classification can now be used to extract, if

at a somewhat basic level, semantic information from large collections of images

1



and video.

A problem that occurs in practice is creating an effective tool to search for

objects or events of interest in a large collection of visual data. Imagine, for exam-

ple, building a search engine that can be queried with other images, and returns an

ordered list of semantically similar pictures to the user. While images can be pre-

processed by deep architectures, one still needs to build an indexing system that is

able to compute similarities in a high-dimensional space and scales graciously in

terms of memory (because data keeps growing), speed (because users expect fast

answers), and accuracy (because users expect correct answers).

The goal of this thesis is to explore algorithms and optimization techniques

that are useful to build systems for vector similarity search and scale well with data

growth. We focus on applications in computer vision, but the fundamental problem

addressed is large-scale similarity search, of which maximum inner product search

(MIPS) and approximate nearest neighbour search (ANNS) are special cases. These

two problems have multiple applications across computer science.

Chapter 2 includes more detail on the history and applications of the problems

in general, and here we include a small introduction in the context of computer

vision.

1.1 Multi-codebook quantization (MCQ) applications in
computer vision

Many computer vision applications involve computing the similarity of many high-

dimensional, real-valued image representations, in a process known as feature

matching. For example, in structure from motion (Snavely et al., 2006), it is

common to estimate the relative viewpoint of each image in large collections of

photographs by computing the pairwise similarity of several million scale invari-

ant feature transform (SIFT) (Lowe, 2004) descriptors. It is also now common for

retrieval and classification datasets to comprise millions of images (Deng et al.,

2009; Torralba et al., 2008), and for deep learning pipelines to directly learn rep-

resentations tailored for retrieval on millions of images (Gordo et al., 2017). In

a commercial application, the popular reverse image search engine TinEye (https:

//www.TinEye.com/) currently searches over 27.6 billion images indexed from all

2
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over the Internet. When such large databases of images are used, matching poses

significant computational bottlenecks.

In practice, the large-scale matching problem often translates into large-scale

ANN search, a problem that has traditionally been addressed with hashing (Gong

and Lazebnik, 2011; Weiss et al., 2009). However, a series of methods based on

vector quantization have recently demonstrated superior performance and scala-

bility, sparking interest from the machine learning, computer vision and multime-

dia retrieval communities (Babenko and Lempitsky, 2014a; Ge et al., 2014; Jégou

et al., 2011; Norouzi and Fleet, 2013; Zhang et al., 2014). These methods are all

based on multi-codebook quantization (MCQ), a generalization of k-means clus-

tering with cluster centres arising from the sum of entries in multiple codebooks.

Other applications of MCQ include large-scale MIPS (Guo et al., 2016; Shrivas-

tava and Li, 2014), and the compression of deep neural networks for mobile de-

vices (Wu et al., 2016).

1.2 Optimization challenges in MCQ

Like k-means clustering, MCQ is posed as the search for a set of codes and code-

books that best approximate a given dataset. Importantly, the error of this approxi-

mation provides a lower bound for Euclidean distance and dot-product approxima-

tions in ANNS and MIPS applications – and, by extension, in convolution approx-

imations, as used by Wu et al. (2016) to compress convolutional neural networks

(CNNs). Therefore, finding optimization methods that achieve low-error solutions

is crucial for improving the performance of MCQ applications.

Early approaches to MCQ were designed enforcing codebook orthogonality (Ge

et al., 2014; Jégou et al., 2011; Norouzi and Fleet, 2013), which greatly simpli-

fies the problem at the expense of accuracy. In contrast, more recent methods

use non-orthogonal, often full-dimensional codebooks (Babenko and Lempitsky,

2014a, 2015; Ozan et al., 2016a; Zhang et al., 2014), and tend to be more compu-

tationally expensive than their classical counterparts, which in practice limits their

applicability on very large-scale datasets. Thus, it is also important to find efficient

optimization methods that scale well with dataset size.
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1.3 Contributions to MCQ outlined in this thesis
In this thesis, we explore algorithms for MCQ and their applications in ANNS. We

make several contributions to this problem:

• Fixing the codebooks in an MCQ problem produces a distribution of small,

yet hard combinatorial optimization problems to find the optimal correspond-

ing codes. We have noticed that there is a large field of literature with cor-

responding well-established techniques for designing algorithms that target

distributions of NP-hard problems, such as the Boolean satisfiability prob-

lem (SAT) instances that arise in particular industrial applications. Inspired

by this area of research, in Chapter 3 we describe an algorithm based on it-

erated local search (ILS) for finding these codes in MCQ, and detail a graph-

ics processor unit (GPU) implementation that greatly accelerates this part of

MCQ optimization.

• If one fixes the codes in an MCQ problem, finding the optimal codebook

becomes a large-scale least squares problem. Previous work has proposed

using large-scale conjugate-gradient solvers for this step (Babenko and Lem-

pitsky, 2014a), or used decomposition-based direct methods that, nonethe-

less, require expensive matrix multiplications (Zhang et al., 2014). In Chap-

ter 4 we exploit the structure of the code matrix and propose a direct least-

squares method that can be efficiently computed via Cholesky decompo-

sition on a small, symmetric, positive definite matrix. Conveniently, this

matrix can be computed using the codes as indices, i.e., without an explicit

matrix multiplication routine. This results in a method for codebook update

that is orders of magnitude faster than previous work.

• We note that MCQ is much like k-means clustering, except that it is combi-

natorial. However, if one finds methods that improve k-means, one might be

able to adapt them to improve MCQ as well. In Chapter 4, we introduce

stochastic relaxations (SR), two methods inspired in simulated annealing

used in the 1990s to improve k-means clustering, and adapt them to MCQ,

which results in better distance approximations at a negligible increase in

computation.
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• Our novel encoding algorithm and our SR methods have a number of hyper-

parameters that influence the performance of our algorithms in practice. We

automatically search for good hyperparameters using an automatic algorithm

configuration procedure in Chapter 5.

We also attempted to use deep reinforcement learning to learn the parameters

of a (deep) encoding function for MCQ. However, our attempts did not result in an

algorithm with better computation-to-recall trade-offs than those we achieved with

ILS. Therefore, we consider these experiments to be a negative result. We report

our setup and experimental results in Chapter 6.

1.4 The Rayuela.jl library
Unfortunately, most of the work reviewed in this thesis, which includes baselines

for our work, has been published without giving access to public code that can

be used to reproduce its results. This, in practice, puts the burden of proof on

other researchers, because in order to show that they have made progress on a

problem, they also have to reproduce previous baselines. This is a daunting task

that consumed a large part of the time we spent working on this problem.

Together with this thesis we are releasing Rayuela.jl, a software package for

large-scale similarity search written in Julia (Bezanson et al., 2014). Rayuela.jl

is available under an MIT licence, and can be downloaded at https://github.com/

una-dinosauria/Rayuela.jl. Rayuela implements multiple baselines and algorithms

for MCQ, and is crucial in showing that our contributions result in Pareto improve-

ments with respect to previous work. We give further details about the development

of Rayuela.jl and future work in Chapter 7.

Rayuela.jl is our attempt to make this research reproducible and accessible, and

to make it easier for others, especially newcomers, to contribute to this field. We

also release it with the hope of alleviating the irreproducibility cycle that currently

plagues computer vision research.
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Chapter 2

Background

Used to be so wilfully obtuse
Or is the word abstruse?

Semantics like a noose
Get out your dictionaries!

—Andrew Bird

In this thesis we focus on techniques for approximate nearest neighbour search

(ANNS) that are based on vector quantization (VQ). First, we provide some con-

text on approaches for (exact) nearest neighbour search (NNS), and then discuss

methods for ANNS. Finally, we focus on VQ techniques for ANNS.

2.1 Nearest neighbour search (NNS)
Given a dataset X comprised of n entries X = {x1,x2, . . . ,xn},xi ∈ Rd , a query

q ∈ Rd , and a distance function dist : Rd ×Rd → R the nearest neighbour search

problem is the task of finding an element in NN(q,X) ∈ X such that

NN(q,X) ∈ argmin
x∈X

dist(q,x), (2.1)

usually, dist(x, x̂) = ‖x− x̂‖2 (i.e., Euclidean distance). For notational conve-

nience, we often represent X ∈ Rd×n as a matrix, where we simply stack all the

d-dimensional database vectors xi horizontally.
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Running time in nearest neighbour search (NNS)

There are two main phases in ANN algorithms where running time is important.

Offline time, also called training time, includes the time that is spent preprocessing

X . Online time, also called query time, includes the time that, given a query, it

takes to obtain k of its neighbours in a dataset.

While training time is less critical than query time, everything else being equal

it is clearly desirable to have higher approximation accuracy and shorter training

times. Because in practice we often deal with very large datasets, a difference of

minutes to hours in training time on a small dataset can mean a difference from

days to months on larger datasets.

Query time is more critical, because it is often the interface that the user ob-

serves. For example, if our ANNS system forms the backend of an image search

engine or a recommendation system, a difference of milliseconds in response time

could result in a vastly different experience to the end user.

2.1.1 Exact NNS algorithms

Exhaustive search

A trivial solution consists of exhaustively computing dist(q,xi) for all vectors xi

in X , and keeping track of the entry that produces the minimum distance. This

algorithm, although exact, is also potentially very inefficient for large n or large d.

The research challenge is thus to find ways to preprocess X , such that we can find

neighbours efficiently.

Very low dimensions (d = {1,2})

For the special case when d = 1, sorting X and performing binary search guarantees

finding the nearest neighbour in O(logn) query time. This technique is typically

used as a subroutine of sorting algorithms and data structures such as heaps and

ordered queues. For the special case when d = 2, it is possible to perform exact

search in O(d · logn) time using Voronoi diagrams (Aurenhammer, 1991).
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Higher dimensions (d ≥ 3)

Unfortunately, no exact NNS algorithms with O(d · logn) query time complexity

are known for dimensionality d ≥ 3.

Kd-trees (Bentley, 1975) recursively partition the space across dimensions and

return a correct solution every time, but only have an O(d · logn) expected, not

guaranteed, query time. Similarly, Ball trees (Omohundro, 1989) partition the

space in a series of potentially overlapping hyperspheres, and provide an expected

O(d · logn) query time. Finally, Norouzi et al. (2014) introduce a method for ex-

act search with expected sub-linear search time, but their results is only applicable

to Hamming space. These methods, however, do not work well for high dimen-

sions (Kibriya and Frank, 2007; Muja and Lowe, 2009). In this case, it is common

to resort to approximate algorithms.

2.2 Approximate nearest neighbour search (ANNS)
We now review ANNS algorithms, dividing them into memory-oblivious (i.e., ones

that do not reduce storage), and memory-conscious. The latter scale better with

data growth, and are the main focus of this thesis.

2.3 Memory-oblivious ANNS techniques
A modern commodity computer handles memory in a hierarchy, trading off capac-

ity for speed of access. In a desktop server, a hard-drive disk (HDD) or a solid-state

drive (SSD) is often the largest and slowest unit of memory, currently in the order

of a Terabyte. Next is the random access memory (RAM), several orders of magni-

tude faster than main storage, but also more scarce, currently in the order of 32-64

gigabytes per machine. Closer to the processor are several levels of cache memo-

ries, typically in the order of a few megabytes to hundreds of kilobytes, followed

by the fastest – and smallest – registers, with a few bytes of capacity each.

Typically, operating systems allow user programs to store their state and vari-

ables in RAM, as disk accesses are considered too slow for user interaction. Simi-

larly, most research in methods for ANNS consider datasets small enough in magni-

tude to be fully stored in RAM, and often build data structures that require additional
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memory on top of the dataset itself. These memory requirements clearly impose

practical limitations and the size of datasets that a user can handle. For this reason,

we refer to these methods as “memory-oblivious”.

Most research in ANNS falls under this category. In the computer vision com-

munity, the most popular methods are perhaps randomized kd-trees (Silpa-Anan

and Hartley, 2008), and hierarchical k-means clustering (Nister and Stewenius,

2006), both implemented in the very successful Fast Library for Approximate

Nearest Neighbours (FLANN) (Muja and Lowe, 2009). More recent data structures

and efficient implementations include the Hierarchical Navigable Small World

Graphs (Malkov and Yashunin, 2016), or the Fast Lookups of Cosine and Other

Nearest Neighbors (FALCONN) library based on an improved version of E2LSH (An-

doni et al., 2015). FALCONN, for example, provides theoretical guarantees as well,

but as Matthijs Douze points out1:

[Locality sensitive hashing] and its derivatives suffer from two draw-

backs: [(1)] They require a lot of hash functions ([number of] parti-

tions) to achieve acceptable results, leading to a lot of extra memory.

Memory is not cheap[, and (2) t]he hash function are [sic] not adapted

to the input data. This is good for proofs but leads to suboptimal choice

results [sic] in practice.

Indeed, for very large datasets, memory is usually the most constrained re-

source. Conversely, however, theory-driven methods such as Locallity-sentitive

hashing (LSH) often provide theoretical bounds on the worst performance of any

query.

Quantization-based methods, in general, do not provide such guarantees and

in practice assume that the queries come from the same distribution as the training

set. This reflects the workflow of applications such as image search or 3d recon-

struction, where this assumption is true. Moreover, vector quantization methods

are memory-conscious (compressing the data is at their core) and have great per-

formance in practice. We now review work in this area.

1https://github.com/facebookresearch/faiss/wiki/Faiss-indexes#relationship-with-lsh
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2.4 Multi-codebook quantization (MCQ) for approximate
nearest neighbour search

Historically, the first methods for ANNS using MCQ considered only orthogonal

codebooks (i.e., methods that encode different subspaces of the data indepen-

dently). These methods were introduced mainly before 2012, when Scale invariant

feature transform (SIFT) descriptors (Lowe, 2004) were the main features used in

computer vision tasks. Given a database of images, the object matching pipeline

proposed by Lowe consists of (i) offline computing interest points and SIFT de-

scriptors of each image, and (ii) matching features from an unseen image to those

in the database – hence the name of the task: feature matching.

To match SIFT features, Lowe suggests for each SIFT descriptor in the image,

finding the two nearest neighbours in the database, and keeping only the matches

whose ratio of the distances to the first and the second neighbours is below 0.8, to

ensure discriminability. This came to be known as Lowe’s distance criterion.

Given the success of SIFT, and since a high-resolution image can easily pro-

duce tens of thousands of descriptors, the computer vision community became

interested in finding fast and scalable methods for nearest neighbour search in high

dimensions. In this context, orthogonal VQ methods are particularly attractive, not

only because they are relatively easy to optimize, but also because they have the

advantage that one can compute approximate Euclidean distances using a number

of table lookups linear in the number of codebooks.

Orthogonal methods, however, are bound to have fewer parameters than meth-

ods with full-dimensional (i.e., non-orthogonal) codebooks. Non-orthogonal meth-

ods are conversely harder to optimize, have quadratic query times (a detail that can

and must be included for a fair comparison), and have overall better recall results

when properly optimized. With non-orthogonal methods one can also compute ap-

proximate dot products with a number of table lookups linear on the number of

codebooks, so they are generally better suited for ANNS under dot product similar-

ity.
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2.4.1 Orthogonal methods

Product quantization (PQ)

The first uses of vector compression for ANNS are due to both Jégou et al. (2009)

and Sandhawalia and Jégou (2010). These two papers noted that the approximation

quality (i.e., the quantization error) of a quantizer bounds the distance approxima-

tion of a query, and suggested using lookup tables to speed-up query response time.

Jégou et al. (2009) called their method product quantization (PQ). The empirical

evaluation compared PQ against spectral hashing (SH) (Weiss et al., 2009), and the

Hamming embedding method of Jégou et al. (2008), obtaining considerably higher

recall given the same memory usage.

Formally, the goal in PQ is to determine

min
C,B
‖X−CB‖2

F , (2.2)

where the set to quantize is X ∈Rd×n, having n data points with d dimensions each.

The latent variables are both the codebooks C = [C1,C2, . . . ,Cm], Ci ∈Rd×n, which

are constrained to be mutually orthogonal (i.e., C is block-diagonal):

C = [C1,C2, . . . ,Cm] =


Ĉ1 0 . . . 0

0 Ĉ2 0
...

. . .
...

0 0 . . . Ĉm

 , (2.3)

where, without loss of generality, Ĉ ∈Rbd/mc×h (if d is not divisible by m, the con-

vention is to assign the extra dimensions to the first few codebooks), and the codes

B = [b1,b2, . . . ,bn] ∈ {0,1}m·h×n, where bi = [b>i1,b>i2, . . . ,b>im]> ∈ {0,1}m·h, and

each subcode bi j ∈ {0,1}h is limited to having only one non-zero entry: ‖bi j‖0 = 1

and ‖bi j‖1 = 1. Figure 2.1 shows these constraints in a more graphical and intuitive

way.

Jégou et al. (2009) also introduced the idea of using an inverted file, similar

to that proposed by Sivic and Zisserman (2003), to shortlist candidate vectors and

further reduce query time, which allowed the system to scale up to one billion
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min
C,B

kX � CBk22 min
C,B

kX � CBk22

C 2 Rd⇥mh

X 2 Rd⇥n

B 2 {0, 1}mh⇥n

k2F

Figure 2.1: Illustration of the PQ optimization problem.

vectors.

On the other hand, Sandhawalia and Jégou did not use product codes, but quan-

tized each dimension independently, and compared only against Spectral hash-

ing (SH). In parallel work, Brandt (2010) proposed a similar method – that quan-

tizes dimensions independently – but also has data-driven bit allocation and non-

uniform minimum distortion quantization. Brandt simply calls the method trans-

form coding (TC).

A followup version of the tech report by Jégou et al. (2009) was later published

in a computer vision journal (Jégou et al., 2011), and further included a compari-

son against FLANN (Muja and Lowe, 2009), a library for ANNS that is extremely

popular in the computer vision community, obtaining slightly better recall at com-

parable query times. Since ANNS requires storing the entire database in RAM at

runtime, these results demonstrated that PQ with an inverted file would a better

option for large-scale ANNS.

Optimized product quantization (OPQ)

Jégou et al. noticed that using either a random permutation of the dimensions, or

using a random rotation (i.e., equalizing variance among subspaces) to preprocess

the data resulted in better recall rates. Followup work (Jégou et al., 2012) then

suggested PCA-rotating the data for dimensionality reduction, and then applying

a random orthogonal transformation to equalize variance among subspaces and

further improve accuracy. With these observations in mind, Ge et al. (2014) intro-

duced optimized product quantization (OPQ), a method that learns a rotation that

both maximizes independence and distributes the variance among the subspaces
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of PQ. Norouzi and Fleet (2013) independently discovered the same method, and

published it at the same conference, under the name of Cartesian k-means (CKM).

2.4.2 Semi-orthogonal methods

Some vector quantization methods in the ANNS literature use neither fully-independent,

nor fully-dimensional codebooks, and thus exist as a middle ground between both

ends of the spectrum.

Composite quantization (CQ)

Zhang et al. (2014) propose composite quantization (CQ), a method that opti-

mizes the codebooks such that they are fully-dimensional, but the dot product

of any vectors in two different codebooks is close to a constant – the so-called

“near-orthogonality” constraint. This results in a non-linear constraint optimiza-

tion problem that in CQ is solved with the limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) algorithm (Nocedal, 1980). Followup work has ex-

tended CQ to use sparse codebooks, in a method coined sparse composite quan-

tization (SCQ) (Zhang et al., 2015), and mixed CQ with collaborative filtering to

improve cross-modal search (Zhang and Wang, 2016).

Notably, CQ manages to keep query time linear in the number of codebooks,

without incurring additional memory cost. This is an impressive feat that no other

semi or non-orthogonal method can achieve without using a codebook from the

memory budget to store norm approximation. This detail, however, is often omitted

in the literature.

Zhang et al. released code to reproduce their results more than 3 years af-

ter publication (https://github.com/hellozting/CompositeQuantization/), at the same

time that an extended version with journal formatting appeared on arXiv (Wang and

Zhang, 2017). Inspecting this code, we have learned that the paper reported results

using a non-standard protocol, which follow-up work on non-orthogonal quanti-

zation is unaware of. We give more details about this finding in the experimental

evaluation of Chapters 3 and 4.
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Optimized tree quantization (OTQ)

Babenko and Lempitsky (2015) introduce optimized tree quantization (OTQ), a

method that limits the codebook non-orthogonality to either one or two interactions

per codebook, and constrains the topology of these interactions to form a tree.

While in fully non-orthogonal methods encoding is usually NP-hard, using a tree

structure means that one can find optimal encodings in polynomial time using the

min-sum (resp. max-product) algorithm. Updating the codebooks, however, results

in a binary integer linear program, which in OTQ is solved using the commercial

Gurobi solver. A major downside of OTQ is that it increases query time by a factor

of two, compared to PQ and OPQ; thus, the results reported in that work are not

strictly comparable to these baselines.

Optimized Cartesian k-means (OCKM)

Wang et al. (2014) proposed optimized Cartesian k-means (OCKM) a semi-orthogonal

method whose codebooks are non-orthgonal with only one other codebook. Topo-

logically, this results in a forest, rather than a chain or a tree. Like OTQ, this results

in increased query time, which was not accounted for during the experimental eval-

uation comparing against PQ and OPQ.

2.4.3 Non-orthogonal methods

Non-orthogonal MCQ methods use full-dimensional codebooks, thus have more

free parameters, and pose more challenging optimization problems. They also tend

to deliver lower quantization error, and thus better distance approximations and

higher recall. Formally, the goal of non-orthogonal MCQ is to determine

min
C,B
‖X−CB‖2

F , (2.4)

and the variables are defined just as in PQ, except that the codebooks C = [C1,C2, . . . ,Cm],

Ci ∈ Rd×h, are not constrained to be mutually orthogonal. Figure 2.2 shows this

formulation in a more graphical and intuitive way.
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min
C,B

kX � CBk22 min
C,B

kX � CBk22

C 2 Rd⇥mh

X 2 Rd⇥n

B 2 {0, 1}mh⇥n

!1

k2F
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Figure 2.2: Illustration of the non-orthogonal MCQ optimization problem.

Residual vector quantization (RVQ)

The first use of non-orthogonal codebooks for ANNS is due to Chen et al. (2010).

The proposed optimization approach simply optimizes the codebook sequentially

using k-means. Their study, however, does not address the issue of the extra mem-

ory incurred by the need to store the norms of the approximations, and simply sug-

gests storing them during the offline training stage, which makes the comparison

with PQ somewhat problematic.

Enhanced residual vector quantization (ERVQ), Stacked quantizers (SQ)

Ai et al. (2014, 2017) proposed an enhanced version of RVQ, borrowing ideas from

the vector quantization (VQ) literature of the 1990s (Chan et al., 1992). ERVQ

uses RVQ as initialization, and further iterates to refine the learned codebooks by

fixing the parameters of all but the ith codebook, updating its parameters by co-

ordinate descent until convergence. The authors further propose using the short-

listing approach of Hwang et al. (2012b) to speed up encoding. The same idea

was independently applied to ANNS by Martinez et al. (2014), who also evaluated

their approach on features obtained from deep neural networks, showing for the

first time that non-orthogonal approaches produce particularly better results than

orthogonal ones on such datasets.

Additive quantization (AQ)

Babenko and Lempitsky (2014a) introduced a method that has the same formu-

lation as RVQ and ERVQ, but were apparently not aware of such previous work.
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Babenko and Lempitsky put an emphasis on the combinatorial optimization prob-

lems that arise when one tries to optimize multiple codebooks jointly, and proposed

an efficient least-squares formulation and method for codebook update. They also

noted that finding the optimal codes after fixing the codebooks results in multiple

NP-hard combinatorial problems, and proposed to use beam search for this stage.

Moreover, they suggest simply quantizing the norm of the approximation and look-

ing it up during search, which results in a query time comparable to PQ and OPQ,

but achieves marginal improvements over those baselines.

Although Babenko and Lempitsky (2014a) appear to be unaware of previous

work on the subject, and did not report particularly good results over PQ and OPQ,

their emphasis on the computational challenges of the problem and its practical

solution to the query time overhead of non-orthogonal methods have proven influ-

ential within the computer vision community.

The authors released a Python implementation of their method 11 months after

publication at https://github.com/arbabenko/Quantizations.

Self-organizing binary encoding (SOBE)

Ozan et al. (2016c) proposed a method that encodes each vector greedily, similar to

RVQ but using a lookahead over the next two codebooks. Moreover, after each vec-

tor is encoded, the codewords that it indexes into are updated with gradient descent.

The paper presents a comparison against RVQ (Chen et al., 2010) and OCKM (Wang

et al., 2014), achieving slightly better results than these two baselines.

Joint k-means quantization (JKM)

Followup work by Ozan et al. (2016b) proposed a hierarchical beam search en-

coding method that keeps track of a shortlist of H candidates for each codebook,

and then explored the best H2 candidates for every subsequent codebook pair.

This is much faster than the beam search proposed by Babenko and Lempitsky,

and achieves slightly better results than AQ (Babenko and Lempitsky, 2014a) and

OTQ (Babenko and Lempitsky, 2015). Liu et al. (2016) have proposed the same

encoding strategy, and called it multi-path encoding.
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Competitive quantization (COMPQ)

The most recent work by Ozan et al. (2016a) uses the gradient-based codebook

update of SOBE (Ozan et al., 2016c) and the hierarchical beam search encoding of

JKM (Ozan et al., 2016b), and achieves better results than both methods combined,

albeit without mentioning runtime.

These three papers (Ozan et al., 2016a,b,c) did not take into consideration the

increased query time that comes with using full-dimensional codebooks, and were

benchmarked only on datasets of SIFT and Gist (Oliva and Torralba, 2006) features.

Improving the speed of AQ encoding

Muravev et al. (2017) follow the AQ formulation and use a pyramid structure to

prune beam search candidates, resulting in faster, but not always more accurate,

encoding. They simply call their approach pyramid encoding. Li et al. (2017)

propose finding an optimal codebook ordering for sequential encoding based on

the indexing frequency of codebook indexing. They show results similar to AQ

in accuracy, but with much improved runtimes. They call their approach fast AQ

encoding.

MCQ recap. Table 2.1 shows a summary of the methods reviewed so far.
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Reference Name Abbr. Code

Orthogonal methods

Brandt (2010) Transform coding TC

Sandhawalia and Jégou (2010) Expectation-based coding –
Jégou et al. (2009, 2011) Product quantization PQ Matlab, C2

Ge et al. (2014) Optimized product quantization OPQ Matlab
Norouzi and Fleet (2013) Cartesian k-means CKM Matlab, C++
Douze et al. (2016) Polysemous codes – C++

Semi-orthogonal methods

Zhang et al. (2014) Composite quantization CQ MSVC C++3

Babenko and Lempitsky (2015) Optimized tree quantization OTQ

Wang et al. (2014) Optimized Cartesian k-means OCKM

Non-orthogonal methods

Chen et al. (2010) Residual vector quantization RVQ

Ai et al. (2014, 2017) Enhanced residual vector quantization ERVQ

Babenko and Lempitsky (2014a) Additive quantization AQ Python4

Martinez et al. (2014) Stacked quantizers SQ Matlab, C++
Ozan et al. (2016c) Self-organizing binary encoding SOBE

Ozan et al. (2016b) Joint k-means quantization JKM

Ozan et al. (2016a) Competitive quantization COMPQ

Muravev et al. (2017) Pyramid additive quantization –
Li et al. (2017) Fast additive quantization –

Table 2.1: Summary of MCQ methods in the literature

2The Matlab version is free, and a “quite optimized” C version is available for purchase at http:

//people.rennes.inria.fr/Herve.Jegou/projects/ann.html. However, André et al. (2015) found that this
C version is, in fact, slower than a naı̈ve C implementation on a commodity Haswell processor.

3Not mentioned in the original paper. Released 37 months after publication at https://github.com/

hellozting/CompositeQuantization
4Not mentioned in the original paper. Released 11 months after publication at https://github.com/

arbabenko/Quantizations

http://people.rennes.inria.fr/Herve.Jegou/projects/ann.html
http://people.rennes.inria.fr/Herve.Jegou/projects/ann.html
https://github.com/hellozting/CompositeQuantization
https://github.com/hellozting/CompositeQuantization
https://github.com/arbabenko/Quantizations
https://github.com/arbabenko/Quantizations


2.4.4 Other MCQ improvements

Here we review other notable improvements to MCQ. These improvements can be

applied independently from the techniques described above, and we only review

them for completeness.

Quantized sparse representations

Jain et al. (2016) adapt sparse coding to the large-scale similarity search problem.

In sparse coding, there is a set of (dense) codebooks, and a set of sparse, real-valued

coefficients. Jain et al. further constrain the coefficients to belong to a small set.

These coefficients can be learned jointly with the codebooks, and quantized with

a small memory overhead. Search incurs an extra multiplication per lookup table,

compared to PQ. The authors demonstrate increased accuracy over PQ and RVQ at

the cost of increased query time.

Polysemous codes

Douze et al. (2016) propose polysemous codes, binary codes whose Hamming dis-

tance can be used to shortlist candidates, but whose indices are still used to index

into codebooks, and thus can also be used to compute more accurate distances with

lookup tables. The authors use simulated annealing to optimize their formulation,

and show improved query times over PQ at the cost of a small decrease in recall.

Distance lookup caching and vectorization

Other lines of work have focused on low-level software improvements to the lookup

process of MCQ.

André et al. (2015) quantize floating point lookup tables to 8 bits per value.

These smaller tables fit into single instruction multiple data (SIMD) registers and

accelerate the lookups necessary to compute distances in MCQ.

In parallel, Blalock and Guttag (2017) use smaller tables, and also quantize

the distance tables using 8 bits. Their experiments focus on demonstrating fast

encoding and the application to faster, yet approximate, matrix multiplications.
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MCQ for maximum inner product search

Guo et al. (2016) propose a modification of PQ tailored for maximum inner prod-

uct search (MIPS). They modify the usual k-means procedure to use the Maha-

lanobis distance, and demonstrate that the approximation yields an unbiased es-

timator. They also propose a further modification that adapts the codebooks to a

particular query distribution.

Finally, Wu et al. (2017) propose multi-scale quantization, a pipeline for non-

orthogonal MCQ that quantizes the norms of the database separately (similar to

gain-shape quantization), and that is trainable end-to-end with gradient descent.

The authors also demonstrate various theoretical guarantees on its performance,

and show better empirical results compared to PQ and SQ (Martinez et al., 2014).

2.4.5 Supervised quantization

In a supervised setting, one has access to both the data and its corresponding la-

bels. In this scenario, it is possible to use the labels to improve the accuracy of

systems that compute ANNs as part of a semantic retrieval or large-scale classifica-

tion pipelines. The main challenge in this area is that current deep learning systems

are usually trained with backpropagation, and are thus more efficiently trained with

differentiable operations. Since quantization is in general non-differentiable, work

mostly focuses on optimization techniques that approximate hard quantization as-

signments.

The work in this thesis does not make use of labels, and thus falls under the

unsupervised category. However, it is interesting to review the recent literature in

supervised quantization as it provides interesting avenues for future work.

Supervised composite quantization

Wang et al. (2016) introduce a method similar to composite quantization (Zhang

et al., 2014), but that has the additional constraint of maximizing the separability

of different classes during encoding.

Deep quantization network

Cao et al. (2016) jointly train a neural network with a product quantizer. However,
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only the network benefits from supervision, and the quantizer is updated once per-

epoch without label information. Cao et al. (2017) extend this work to optimize for

Maximum inner product search (MIPS).

Supervised structured binary codes (SUBIC)

More recently, Jain et al. (2017) introduced SUBIC, a neural network that both

learns feature representations and produces compact codes. SUBIC manages to

implicitly learn a set of codebooks by adding sparsity terms that ensure block-

wise one-hot encodings, and balancing the use of all codebooks across the dataset.

Klein and Wolf (2017) have further improved upon SUBIC with a network that

explicitly learns soft- and hard-quantized representations. Followup work by Jain

et al. (2018) introduces a differentiable large-scale indexing structure that can be

learned end-to-end together with SUBIC, resulting in the first complete image in-

dexing pipeline that can be learned end-to-end.

2.4.6 Software

While some of the papers mentioned above have released code that reproduces

their results, no public library for quantization-based ANNS existed until mid-2017,

when Johnson et al. (2017) released the Facebook AI Similarity Search (FAISS)

library: https://github.com/facebookresearch/faiss.

The implementations in FAISS are highly optimized, written in C++ and have

Python bindings readily available, which makes it easy to use and an invaluable

tool in practice. Furthermore, the authors have ported most of the methods to

CUDA, with additional code that automatically takes advantage of multiple GPUs

in a node transparently, using a computational model similar to Tensorflow (Abadi

et al., 2016). FAISS implements multiple indexing methods, such as an inverted

file (Jégou et al., 2011) and the inverted multi-index (Babenko and Lempitsky,

2012), the latter being a crucial part of state-of-the-art, quantization-based systems

for large-scale ANNS. However, the package only implements three vector quanti-

zation methods: PQ, OPQ and polysemous codes (Douze et al., 2016); all of them

orthogonal. We believe that FAISS can benefit from implementing state-of-the-art

non-orthogonal quantization methods as well.
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Chapter 3

Efficient encoding and sparse
codebooks

Colour my life with the chaos of trouble
—Belle and Sebastian

In multi-codebook quantization (MCQ), encoding amounts to finding, for each

vector in the database, the set of assignments into the codebooks that minimize

quantization error. For a given dataset and a fixed set of codebooks, the encoding

problem can be expressed as maximum-a-posteriori (MAP) inference in multiple

Markov random fields (MRFs) (Babenko and Lempitsky, 2014a). This process can

be a computational bottleneck when MCQ is applied to large-scale databases.

The combinatorial optimization community has been dealing with similar prob-

lems for many years, and competitions to solve distribution-specific instances of

NP-hard problems as efficiently as possible (e.g., the SAT competition series (Järvisalo

et al., 2012)) have driven research on fast combinatorial optimization methods

such as stochastic local search (SLS) (Hoos and Stützle, 2004) and portfolio-based

solvers (Xu et al., 2008). Inspired by the combinatorial optimization literature, our

main contribution in this chapter is the introduction of an SLS-based algorithm that

achieves low quantization error at a high encoding speed in MCQ. We also discuss a

series of implementation details that make our algorithm fast in practice, including

a graphics processor unit (GPU) implementation. Finally, we also demonstrate an
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application of our approach that incorporates sparsity constraints in the codebooks.

3.1 Background and related work
We use the same notation as introduced in Chapter 2. Formally, we denote the set

to quantize as X ∈Rd×n, having n data points with d dimensions each; MCQ is the

problem of finding m codebooks Ci ∈ Rd×h and the corresponding codes Bi that

minimize quantization error, i.e., to determine

min
Ci,Bi
‖X− [C1,C2, . . . ,Cm]


B1

B2
...

Bm

‖2
F , (3.1)

where Bi = [bi1,bi2, . . . ,bin] ∈ {0,1}h×n, and each subcode bi j is limited to having

only one non-zero entry: ‖bi j‖0 = 1, ‖bi j‖1 = 1. Letting C = [C1,C2, . . . ,Cm] and

B =
[
B>1 ,B

>
2 , . . . ,B

>
m
]>, we can rewrite expression 3.1 more succinctly as

min
C,B
‖X−CB‖2

F . (3.2)

Although Babenko and Lempitsky were not technically the first to use this

formulation (that credit goes to Chen et al. (2010)), their paper was the first to

propose a non-greedy optimization approach based on block coordinate descent

(“EM-like”), consisting of, first, initializing B randomly, and then

• updating C while maintaining B fixed, and

• updating B while maintaining C fixed,

until convergence. In this approach, updating the codebooks C amounts to solving

a large-scale least-squares problem, and updating B results in n hard combinatorial

optimization problems. In this chapter we focus on the latter problem.

3.1.1 The encoding problem in MCQ

Our work focuses on improving the encoding time and performance of block co-

ordinate approach approaches to MCQ – that is, given the data X and codebooks C,
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we search for a method to find the codes B that minimize Expression 3.2.

Formally, the encoding problem amounts to maximum-a-posteriori (MAP) in-

ference1 in n fully-connected MRFs (one for each item in X) with m nodes each

(one per subcode). These MRF nodes may take any value between 1 and h, so in

general they are not binary. In the general case, this problem is NP-hard.

In these MRFs, the minimum energy is achieved by finding the subcodes bi that

minimize the squared distance between the vector to encode x, and its approxima-

tion x̂:

‖x− x̂‖2
2 = ‖x−

m

∑
i

Cibi‖2
2 = ‖x‖2

2−2 ·
m

∑
i
〈x,Cibi〉+‖

m

∑
i

Cibi‖2
2 (3.3)

where the norm of the approximation ‖x̂‖2
2 = ‖∑m

i Cibi‖2
2 can be expanded as

‖
m

∑
i

Cibi‖2
2 =

m

∑
i
‖Cibi‖2

2 +
m

∑
i

m

∑
j 6=i
〈Cibi,C jb j〉. (3.4)

Posed as an MRF with m nodes, the ‖x‖2
2 term in (3.3) can be discarded because

it is a constant with respect to bi; the −2 ·∑m
i 〈x,Cibi〉 and ∑

m
i ‖Cibi‖2

2 terms are

summed up and become the unary terms, and ∑
m
i ∑

m
j 6=i〈Cibi,C jb j〉 yields the pair-

wise terms. Since each code bi may take any value between 1 and h, there are hm

possible configurations for each MRF (typically, m = {8,16}, and h = 256), which

renders the problem inherently combinatorial and, in general, NP-hard (Cooper,

1990).

On the empirical challenges of AQ-encoding

Solving the MRFs that arise in AQ encoding is known to be challenging; in fact,

Babenko and Lempitsky (2014a) noted:

The optimization problem can be solved approximately by any of the

existing algorithms like loopy belief propagation (LBP), iterated con-

ditional modes (ICM), etc. However, because of full connectivity and

the general form of the pairwise potentials, we observed that LBP and

1Unfortunately enough, Maximum-a-posteriori (MAP) inference is often called “decoding”, due
to its historical use in the receiving end of error-correcting codes (Gersho and Gray, 1992).
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ICM, and, in fact other algorithms from the MRF optimization library

[Kappes et al. (2013)] perform poorly.

Babenko and Lempitsky (2014a) proposed resorting to beam search, a compu-

tationally expensive construction search method. This method, however, achieved

only marginal improvements over the baselines PQ an OPQ. Moreover, the authors

also note:

Interestingly, we tried to formulate the MRF optimization [...] as an

integer quadratic program and submit it to a general purpose branch-

and-cut optimizer [(Gurobi)]. For small codebooks [h] = 64 and [m] =

8 and given very large amount of time, the solver could find a global

minimum with much smaller energy (coding error) then [sic] those

found by [b]eam [s]earch or other non-exhasutive [sic] algorithms.

While such “smart bruteforce” approach is infeasible for large datasets

and meaningful codebook sizes, this result suggests the AQ-coding

problems as interesting instances for the [sic] research into new MRF-

optimization algorithms.

We build on this observation, and look for an encoding algorithm with im-

proved computation vs accuracy trade-offs for this problem.

3.1.2 Reducing query time in AQ

AQ (as well as most other non-orthogonal MCQ techniques) involves major compu-

tational overhead during query time. The overhead occurs when a new query q is

received, and we estimate the distance to the encoded vectors x̂i. This amounts to

evaluating

‖q− x̂‖2
2 = ‖q−

m

∑
i

Cibi‖2
2 = ‖q‖2

2−2 ·
m

∑
i
〈q,Cibi〉+‖

m

∑
i

Cibi‖2
2 (3.5)

which requires O(m2) table lookups for evaluating the norm of the encoded vector

‖x̂‖2
2.

Babenko and Lempitsky (2014a) proposed a simple solution to this problem:

use m− 1 codebooks to quantize x, and use an extra byte to quantize the norm of
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the approximation ‖x̂‖2
2. This approximation is likely to be very good, as we are

then using h = 256 centroids to quantize a scalar. Using this extra table is crucial to

make sure that the query time of non-orthogonal MCQ methods is comparable with

PQ and OPQ. Unfortunately, with this constraint in mind, the improvement in recall

of AQ over PQ and OPQ became rather marginal (see AQ-7 in Figure 5 of Babenko

and Lempitsky (2014a)).

We use m− 1 codebooks in all our experiments, which makes sure that our

query time is comparable with previous work.

3.1.3 MAP estimation of MRFs using GPUs

Our broader goal is to come up with algorithms that scale well on large datasets, so

we want our algorithm to be fast in practice. Since the encoding problem decom-

poses into n independent MRFs, we also investigate the use of parallel architectures

– in particular GPUs – for accelerating MAP estimation in MRFs.

MRFs are a widely-used tool in computer vision, frequently leveraged to model

visual smoothness in problems such as stereo, semantic segmentation, optical flow

and visual localization. The first connection between these statistical models and

images is due to Geman and Geman (1984). In this context, Boykov et al. (2001)

propose graph cuts, an iterative algorithm that makes large moves in labelling over

multiple nodes at once, achieving fast convergence. Krähenbühl and Koltun (2011)

use filtering to perform MAP inference on MRFs with binary terms coming from

Gaussian kernels, and apply their optimization method to semantically segment

natural images.

Given the widespread use of MRFs as a modelling tool in computer vision,

we have found previous work that performs MAP estimation in the GPU. Vineet

and Narayanan (2008) introduce CUDACuts, a CUDA-based implementation of

the graph cuts algorithm by Boykov et al., which achieves exact Markov ran-

dom field (MRF) optimization on submodular MRFs. The implementation exploits

shared memory in the push-relabel step of graph cuts, and is demonstrated on a

Nvidia GTX 280 GPU. Zach et al. (2008) introduce a data-parallel approach to

MRF optimization based on plane sweeping, which is applicable when the pairwise

terms follow a Potts prior. The work dates back to 2008, when CUDA was a more
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difficult language to program in than it is today, so the authors used the OpenGL

application programming interface (API) to program their solution. The authors

demonstrate an implementation on an Nvidia Geforce 8800 Ultra GPU.

Most previous work focuses on MRFs applied to image-related tasks, such as

scene segmentation. In these applications, the MRFs typically have a large num-

ber of nodes (1 per pixel), a low number of labels (e.g., 3 (Zach et al., 2008)),

are sparsely connected, and have special constraints on their pairwise terms (e.g.

Potts in the work of Zach et al. (2008) and submodular in the work of Vineet and

Narayanan (2008)). Thus, it is unlikely that those implementations will fit our

problem, which has a low number of nodes m = {8,16}, a relatively large num-

ber of labels (h = 256), is densely connected, and whose pairwise terms are not

constrained to follow any particular formulation.

3.1.4 Stochastic local search (SLS) algorithms

Top-performing methods for solving many NP-hard problems have been, at several

points in time, variations of stochastic local search (SLS), and continue to define

the state of the art for solving prominent NP-hard problems, such as the travelling

salesperson problem (TSP) (Nagata and Kobayashi, 2013). Given a candidate so-

lution to a given problem instance, SLS methods iteratively examine neighbouring

candidates, and replace the candidate solution with one of its neighbours until a

stop criterion is met. A formal treatment of the subject involves defining neigh-

bourhood functions, characterizing problem instances and formally defining local

search procedures; while this is beyond the scope of this work, we direct interested

readers to the book by Hoos and Stützle (2004).

Iterated local search (ILS)

Iterated local search (ILS) algorithms (Lourenço et al., 2003), which form the basis

for the algorithm we propose in this work, alternate between perturbing the current

solution s (with the goal of escaping local minima) and performing local search

starting from the perturbed solution, leading to a new candidate solution, s′. At the

end of each local search phase, a so-called acceptance criterion is used to decide

whether to continue the search process from s or s′. In many applications of ILS,
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including ours described in the following, the acceptance criterion simply selects

the better of s and s′.

Theoretical bounds of SLS algorithms

A downside of SLS algorithms (and many other heuristic methods that perform

well in practice) is that their theoretical performance has historically proven hard

to analyze. Similar to prominent deep learning techniques, SLS methods often

perform far better than theory predicts, and thus, research in the area is heavily

based on empirical analysis. An attempt to achieve a theoretical breakthrough for

our method would be out of the scope of this work, so instead, we focus on the

thorough empirical evaluation of its performance on a number of benchmarks with

varying sizes, protocols and descriptor types to show the strength of our approach.

3.2 Iterated local search for MCQ encoding
We now introduce our ILS algorithm to optimize B in Expression 3.2. Our algo-

rithm is defined by

1. an initialization procedure (to create the first solution)

2. a perturbation procedure (to escape local minima)

3. a local search algorithm, and

4. an acceptance criterion (stated above).

We now explain our design choices for these four components.

3.2.1 Local search procedure

As our local search procedure we choose cyclic iterated conditional modes ICM.

Iterated conditional modes ICM offers two key advantages over other local search

algorithms: (i) on the theoretical side, it exhibits very good speed, and, (ii) in prac-

tice, it can be implemented in a way that is amenable to caching and vectorization.

Although ICM by itself does not tend to perform well on large MRF models ap-

plied to full images, our problem is different enough that we consider it a suitable

candidate. We discuss both advantages in more detail below.
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Complexity analysis of ICM

Iterated conditional modes ICM iterates over all the nodes in the given MRF, con-

ditioning the current node on the assignments of other nodes, and minimizing

(finding the mode of) the resulting univariate distribution. In a fully-connected

MRF, such as the one in our problem, each node represents a subcode bi. Thus,

ICM cycles through m subcodes, and conditions its value on the other m− 1 sub-

codes, adding h terms for each conditioning. This results in a complexity of

O(m2 ·h). Comparing to the beam search procedure of AQ, which has a complexity

of O(m · h2(m+ logm · h)) (Babenko and Lempitsky, 2015), we can see that for

typical values of m ∈ {8,16} and h = 256, a single ICM cycle is much faster than

beam search. This suggests that we can afford to run several rounds of ICM, which

is necessary for ILS, while keeping the overall encoding time low. In practice, our

implementation is 30-50 times faster than the beam search implementation due to

Babenko: https://github.com/arbabenko/Quantizations.

Cache hits and vectorization of ICM

While this is not true in general, in our special case of interest ICM has a second

crucial advantage: it can be programmed in a way that is cache-friendly and easy

to vectorize.

In practice, the computational bottleneck of ICM arises in the conditioning step,

when the algorithm looks at all the neighbours of the ith node and adds the assign-

ments in those nodes to the current one. A naı̈ve implementation, such as that

available from off-the-shelf MRF libraries (Kappes et al., 2013), encodes each data

point sequentially, looking up the pairwise terms from O(m2) different tables of

size h× h. This results in a large number of cache-misses, as different tables are

loaded into cache for each conditioning.

Our observation from Equation 3.3 is that only the unary term −2∑
m
i 〈x,Cibi〉

depends on the vector to encode x. We also note that the pairwise terms ∑
m
i ∑

m
j 6=i〈Cibi,C jb j〉

are the same for all the MRFs that arise in the encoding problem. This means that,

during the conditioning step, we can condition all the ith subcodes in the database

w.r.t. the jth subcode, loading only one h×h pairwise lookup table into cache at a

time. This results in better caching performance, is easily vectorized, and dramati-
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cally speeds up ICM in our case. In practice, this is accomplished by switching the

order of the for loops in ICM over the entire (or a large portion of the) database.

We refer to this implementation as “batched Iterated conditional modes (ICM)”.

Other variants of ICM

Other local search procedures may be used instead of cyclic ICM. For example,

one may explore all the combinations of multiple codes at a time and update them

jointly (block ICM), or update only the code that offers the best improvement

(greedy ICM). These algorithms are all implemented in the UGM toolbox due

toSchmidt (2007). Greedy ICM may be implemented efficiently using a heap (Nu-

tini et al., 2015, Appendix. A). Exploring the cost and empirical performance of

this implementation is an interesting area of future work.

3.2.2 ILS Perturbation

In each incumbent solution s, we choose k codes to perturb by sampling without

replacement from the discrete uniform distribution from 1 to m: ik ∼ U {1,m}.
We then perturb each selected code uniformly at random by setting it to a value

between 1 and h: bik ∼ U {1,h}. This perturbed solution s′ is then used as the

starting point for the subsequent local search phase, i.e., invocation of ICM. While

simple, this perturbation method is commonly used in the SLS literature (Hoos and

Stützle, 2004). We note that our approach generalizes previous work where ICM

was used but no perturbations were applied (Zhang et al., 2014), which corresponds

to setting k = 0. This method is both effective and very fast in practice: compared

to ICM, the time spent in this step is negligible.

3.2.3 ILS Initialization

We use a simple initialization method, setting all the codes to values between 1 and

h uniformly at random: bi ∼ U {1,h} ∀i ∈ {1,2, . . . ,m}. We also experimented

with other initialization approaches, such as using FLANN (Muja and Lowe, 2009)

to copy the codes of the nearest neighbour in the training dataset, or using the

code that minimizes the binary terms (which are expected to dominate the unary

terms for large m). However, we did not observe significant improvements over
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our random initialization after a few rounds of ILS optimization.

Overall initialization

Like AQ and composite quantization (CQ), we use an auxiliary quantization method

to initialize B and C in our optimization procedure. We run OPQ, followed by

a method similar to optimized tree quantization (OTQ) (Babenko and Lempitsky,

2015), but simplified to assume that the dimension assignments are given by a

natural partition of adjacent dimensions.

3.2.4 Pseudocode

We now provide the pseudocode for our algorihtm.

3.3 Graphics processor unit (GPU) implementation
GPUs are computing devices originally conceived for graphics applications, capa-

ble of performing the same operation over many data points in a single clock cycle,

achieving higher throughput than CPUs. Thus, they are a good fit for problems that

are amenable to parallelization. Next, we describe the details of our GPU imple-

mentation.

Our implementation consists of three main CUDA kernels: (a) a setup kernel,

which initializes the solutions, computes unary lookup tables and creates a series

of random number generators; (b) a perturbation kernel, which alters random codes

in the solution, and (c) a local search kernel, which implements ICM.

Initialization kernel

Our initialization kernel creates a CUDA random (curand) state for each data

point in the database and, during the first iteration, uses the samples to create a

random initial solution. The implementation takes less than 1/1000 of the total

running time.
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Algorithm 1 Our SLS algorithm for encoding in MCQ

1: function ENCODE(
x ∈ Rd , . Vector to encode
b ∈ {0,1}m×h = [bi,b2, . . . ,bm];bi ∈ {0,1}h, . Initial codes
k ∈ {0,1, . . . ,m}, . Number of codes to perturb
m ∈ Z, h ∈ Z, . Number of codebooks and entries in each codebook
I ∈ Z, J ∈ Z) . Number of ILS and ICM iterations

2: for i← 1,2, . . . ,m do
3: bi ∼ onehot(U {1,h}) . Initialize each code to a random value.
4: end for
5: s← [bi,b2, . . . ,bm] . Save the current solution
6: for i← 1,2, . . . , I do . Loop over ILS iterations.
7: b← PERTURB(b,k,m) . Perturb k codes
8: for j← 1,2, . . . ,J do . Loop for the number of ICM iterations
9: for k← 1,2, . . . ,m do . Update each code, keeping the rest fixed

10: unary←−2〈x,Ck ·bk〉+‖Ck ·bk‖2
2

11: binary← ∑
m
i6=k〈Ck ·bk,Ci ·bi〉

12: bk ∈ argminbk
(unary+binary)

13: end for
14: end for
15: s′← [bi,b2, . . . ,bm]
16: if cost(s′)< cost(s) then
17: s← s′ . If the new solution is better, keep it
18: end if
19: end for
20: return s
21: end function

Perturbation kernel

In this kernel, we have one thread per data point, with the goal of maximizing the

work/thread ratio. The task of each thread is to choose k entries in the current

solution, and perturb them to random values between 1 and h.

The main challenge in this kernel is that the choice of k entries to perturb

amounts to sampling without replacement from the uniform distribution between 1

and m. Since there are no off-the-shelf functions for sampling without replacement
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in the curand library, we implemented our own version of reservoir sampling2.

The pseudocode for this kernel is shown as Algorithm 2. Here we show our per-

turbation algorithm in pseudocode.

Algorithm 2 Our perturbation method using reservoir sampling
1: function PERTURB(

b ∈ {0,1}m×h = [bi,b2, . . . ,bm];bi ∈ {0,1}h, . Initial codes

k ∈ {0,1, . . . ,m}, . Number of codes to perturb

m ∈ Z, h ∈ Z) . Number of codebooks and entries in each codebook

2: need← k . The number of codes that we still have to perturb

3: le f t← m . The number of codes that we can still visit

4: for i← 1,2, . . . ,m do
5: r ∼U (0,1) . Sample a value between 0 and 1

6: if r < need/le f t then . With probability (need/le f t)...

7: bi ∼U {1,h} . Alter the ith code

8: need← need−1 . Decrease the codes we have left to perturb

9: if need ≤ 0 then
10: return b . If we have perturbed enough codes, we are done

11: end if
12: end if
13: le f t← le f t−1 . Decrease the codes we can still perturb

14: end for
15: return b . Return the perturbed code

16: end function

It is easy to show by induction that each code has an equal probability k/m of

being perturbed, and the algorithm finishes when k samples have been perturbed –

which is most likely achieved before visiting every code. Although elegant, reser-

voir sampling leads to large thread divergence, which is likely suboptimal for the

GPU architecture. Fortunately, the time spent in this perturbation step is negligible

compared to the ICM kernel that we discuss next.

2https://en.wikipedia.org/wiki/Reservoir sampling
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ICM kernel

The task of the ICM kernel is to perform local search after the solution has been

perturbed; this corresponds to lines 8-14 in Algorithm 1. This is, by far, the most

expensive part of our pipeline, so we discuss the implementation in more detail.

In short, we have three main tasks: (a) copying the pre-computed unary terms

to shared memory, (b) adding the corresponding pairwise terms to the unary terms

for each possible value of each code, and (c) finding the minimum of all h possi-

bilities in each code.

Task (a) is only done once and its implementation is straightforward. Task (b)

is memory-limited – the pairwise tables are too big to fit in shared memory, so they

have to be read from global memory. Task (c) amounts to a reduce operation, and

is compute-limited.

ICM conditioning. The main challenge in ICM conditioning is to access the pair-

wise terms in a coalesced manner.

We simply store each table of pairwise terms

Ti, j =−2 ·C>i ·C j, Ti, j ∈ Rh×h. (3.6)

Since Ti, j = T>j,i , this incurs extra memory usage, but allows for a simple imple-

mentation where the i, j represent the code being minimized over (i), and the code

whose terms are being accumulated ( j). Once the corresponding table is loaded

into cache, we can simply use the current codes to add the corresponding pairwise

terms, thus preserving coalesced memory access.

Reduce operation. Once all the pairwise terms have been added, we run task (c)

as a reduce findmin operation on the sum of unary and pairwise terms. This

is a reduction over the h values that we computed in task (b). Note, however,

that the output is not the minimum value itself, but its index (a number from 1 to

h), so we use an extra array of indices during reduction. We implemented all the

optimizations available in the CUDA reduce guide (https://docs.nvidia.com/cuda/

samples/6 Advanced/reduction/doc/reduction.pdf) for this step.
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3.4 The advantages of a simple formulation:
easy sparse codebooks

Our approach, building on top of AQ, benefits from using a simple formulation

with no extra constraints (Expression 2.4). The advantages of a simple formulation

are not merely aesthetic; in practice, they result in a straightforward optimization

procedure and less overhead for the programmer. Furthermore, a more standard

formulation might render other variants of the problem easier to solve as well. We

now demonstrate one such use case, by implementing a recent MCQ formulation

that enforces sparsity on the codebooks (Zhang et al., 2015).

Motivation for sparse codebooks

Zhang et al. (2015) motivate the use of sparse codebooks in the context of very

large-scale applications, which deal with billions of data-points and are better

suited for search with an inverted-index (Babenko and Lempitsky, 2012, 2014b;

Xia et al., 2013). In this case, the time spent computing the lookup tables becomes

non-negligible, which is specially true for methods that use full-dimensional code-

books, such as CQ (Zhang et al., 2014), AQ (Babenko and Lempitsky, 2014a) and,

by extension, ours. For example, Zhang et al. (2015) have demonstrated that en-

forcing sparsity in the codebooks can lead up to 30% speedups with an inverted in-

dex (Babenko and Lempitsky, 2014b) on the SIFT1B dataset (see Table 2 in (Zhang

et al., 2015)). This method is called sparse composite quantization (SCQ).

There is a second use case for sparse codebooks. Recently, André et al (André

et al., 2015) have demonstrated that PQ scan and other lookup-based sums, such

as those in our approach, can take advantage of vectorization. The authors have

demonstrated speedups of up to a factor of 6 on distance computation, thus empha-

sizing further the time spent computing distance tables even for datasets with a few

million data points, where linear scanning is the preferred search procedure.
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The sparsity constraint

Formally, the sparsity constraint on the codebooks modifies the typical MCQ for-

mulation such that, in this case, we want to determine

min
C,B
‖X−CB‖2

F s.t. ‖C‖0 ≤ S. (3.7)

Unfortunately, minimizing a quadratic function with an `0 constraint is non-convex

and, in general, hard to solve directly. Thus, the problem is often relaxed the

minimize the convex `1 norm. Our objective then becomes to determine

min
C,B
‖X−CB‖2

F s.t. ‖C‖1,1 ≤ λ . (3.8)

In SCQ (Zhang et al., 2015), the problem becomes even harder, because on top

of sparsity, the codebook elements are forced to have constant products. For

this reason, Sparse composite quantization (SCQ) uses an ad-hoc iterative soft-

thresholding algorithm to find C. Our problem is simpler, because we do not have

to satisfy the inter-codebook constraint and can be posed as an `1-regularized least-

squares problem. To achieve this, we rewrite Expression 3.8 as

min
C,B
‖B>C>−X>‖2

F s.t. ‖C‖1,1 ≤ λ , (3.9)

and it becomes apparent that the approximation of the ith column of X> depends

only on product of B> and the ith column of C>. Thus, we can rewrite Expres-

sion 3.9 as

min
ĉ,B
‖B̂ĉ− x̂‖2

2 s.t. ‖ĉ‖1 ≤ λ , (3.10)

where

B̂ =


B>(1) 0 . . . 0

0 B>(2) . . . 0
...

. . .
...

0 0 . . . B>(d)

 , ĉ =


c>1
c>2
...

c>d

 , and x̂ =


x>1
x>2
...

x>d

 . (3.11)

Here, B>(i) is the ith copy of B>, ci is the ith row of C, and xi is the ith row of X .
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To update B̂ we use our previously introduced ILS procedure. Updating ĉ, as-

suming B̂ and x̂ are fixed, corresponds to the well-known lasso (Tibshirani, 1996).

Nearly two decades of research on the lasso have produced many robust and scal-

able off-the-shelf optimization routines for this problem.

Our approach, as opposed to previous work (Zhang et al., 2015), lacks ex-

tra constraints and thus can directly take advantage of lasso optimizers with little

overhead to the programmer. For example, it took us only a few hours to integrate

the Spectral projected gradient (SPGL1) solver by van den Berg and Friedlander

(2008) into our pipeline. This solver has the additional advantage of not requiring

an explicit representation of B̂, but can instead be given a function that evaluates to

B̂ĉ – this can be implemented as a for loop, so we only need to store one copy of

the codes B> in memory.

SPGL1 thresholding

Expression 3.9 requires setting the value of λ . We follow a block coordinate de-

scent procedure, and alternate between optimizing C (using SPGL1) and B (using

ILS), and set λ = α · τ , where τ is the `1 norm of the solution given by PQ, which

we also use for initialization.

For a given set of λ = α · τ , SPGL1 may not return a solution with the level of

sparsity desired; thus, at the end of each SPGL1 iteration we keep only the entries

in C with the largest S absolute values, and set everything else in C to zero. We

perform a grid search for the best value of α ∈ {0.1,0.2, . . . ,0.9}, and choose the

value that gives the lowest quantization error on the training set.

3.5 Experiments
We now describe the experimental setup that empirically validates the impact of

our contributions.

3.5.1 Evaluation protocol

We follow previous work and evaluate the performance of our system with re-

call@N (Babenko and Lempitsky, 2014a, 2015; Ge et al., 2014; Jégou et al., 2011;

Zhang et al., 2014). Recall@N is a monotonically increasing curve from 1 to N
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representing the empirical probability, computed over the query set, that the N es-

timated nearest neighbours include the actual nearest neighbour in the database.

The goal is to obtain the highest possible recall for given N. In information re-

trieval, recall@1 is considered the most important number on this curve. Also in

line with previous work (Babenko and Lempitsky, 2014a, 2015; Ge et al., 2014;

Jégou et al., 2011; Zhang et al., 2014, 2015), in all our experiments, the codebooks

have h = 256 elements, so we use 8 bits of memory per code. We show results

using 64 and 128 bits for code length.

We compute approximate squared Euclidean distances applying the expansion

of Equation 3.3, and we use only 7 and 15 codebooks to store codebook indices,

while the last 8 bits are dedicated to quantize the (scalar) squared norm of each

database entry. In all our experiments, we run our method for 100 iterations and

use asymmetric distance (Jégou et al., 2011), i.e., the distance tables are computed

for each query, as in all our baselines.

3.5.2 Baselines

We compare our approach to previous work, controlling for two critical factors

in large-scale retrieval: code length and query time. To control for code length,

we use subcodebooks with h = 256 entries and produce final codes of 64 and 128

bits. To control for query time, we restrict our comparison to methods that require

m = {8,16} table lookups to compute approximate distances. Thus, we compare

against PQ (Jégou et al., 2011), OPQ (Ge et al., 2014), RVQ (Chen et al., 2010),

ERVQ/SQ (Ai et al., 2014; Martinez et al., 2014) and CQ (Zhang et al., 2014), as

well as the AQ-7 method introduced by Babenko and Lempitsky (2014a) (i.e., the

original formulation of AQ that we are building on).

We use our own implementations of all these methods, except for CQ. We use

the public CQ implementation due to Zhang,3 with minor modifications to run on

a Linux system, since the original implementation contains C++ constructs exclu-

sive to Windows systems. We also take the results reported in the original paper

introducing AQ (Babenko and Lempitsky, 2014a). We compare our sparse exten-

sion against the values reported for SCQ by Zhang et al. (2015). To the best of our

3https://github.com/hellozting/CompositeQuantization
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knowledge, the paper by Zhang et al. is the only one on the subject, and the authors

have not released code to reproduce their results.

3.5.3 Datasets

We test our approach on 6 datasets. Three of these, SIFT1M, SIFT10M and

SIFT1B (Jégou et al., 2011), consist of 128-dimensional gradient-based, hand-

crafted SIFT features. We also collected a dataset of 128-dimensional deep features

using the CNN-M-128 network provided by Chatfield et al. (2014), computing the

features from a central 224×224 crop of the 1.2M images of the ImageNet Large-

Scale Visual Recognition Challenge (ILSRVC) 2012 dataset, and then subsampling

uniformly at random from all classes. It is known that deep features can be effec-

tively used as descriptors for image retrieval (Babenko et al., 2014; Razavian et al.,

2014), and Chatfield et al. have shown that this intra-net compression results in a

minimal loss of retrieval performance.

SIFT1M and Convnet1M both have 100 000 training vectors, 10 000 query vec-

tors and 1 million database vectors. SIFT1B has 100 million vectors for training,

and 1 billion vectors for base, as well as 10 000 queries. On SIFT1B, we follow

previous work (Ge et al., 2014; Zhang et al., 2014) and used only the first 1 million

vectors for training. Better results on SIFT1B can be obtained using an inverted

index, but we did not implement this data structure as we focus on improving en-

coding performance. This also has the added benefit of making our results directly

comparable to those shown in CQ (Zhang et al., 2014) and CKM (Norouzi and Fleet,

2013). With SIFT10M, we followed the same protocol, but use only the 10 million

first vectors of SIFT1B as base.

We also use 2 datasets where CQ was benchmarked: MNIST (LeCun et al.,

1998) and LabelMe22K (Norouzi and Fleet, 2011). MNIST is 784-dimensional,

and has 10 000 vectors for query and 60 000 vectors for base. LabelMe22K is

512-dimensional and has 2 000 vectors for query and 20 019 vectors for base.

Protocols

Different datasets have different partitions, and this leads to important differences

in the way learning and encoding are performed. The classical datasets SIFT1M,
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SIFT10M and SIFT1B (Jégou et al., 2011), as well as our Convnet1M dataset have

three partitions: train, query and database. In this case, the standard protocol is to

first learn the codebooks using only the train set, then use the learned codebooks to

encode the database, and finally evaluate recall@N of the queries with respect to

the database (Babenko and Lempitsky, 2014a, 2015; Ge et al., 2014; Jégou et al.,

2011; Ozan et al., 2016a; Zhang et al., 2015). Zhang et al. (2014), however, used

a different protocol for the results reported on their paper. In our experiments,

we run their code using the standard protocol. We refer to this partition as train/-

query/base.

Some datasets, however, have only two partitions of the data: query and database.

In this case, the iterative codebook learning procedure is run directly on the database,

and recall@N is evaluated on the queries with respect to the database thereafter.

For example, Locally Optimized PQ (Kalantidis and Avrithis, 2014) was evalu-

ated using this partition on SIFT1B by simply ignoring the training set, and CQ

was evaluated on MNIST and LabelMe22K using the train/test partitions that the

datasets provide for classification (Zhang et al., 2014). It has also been argued

that this partition is better suited for learning inverted indices on very large-scale

datasets (see the last paragraph of (Babenko and Lempitsky, 2014b)). We refer to

this partition as query/base.

3.5.4 Parameter settings

Our approach needs to set the number of ILS iterations (i.e., the number of times a

solution is perturbed and local search is done). At the same time, ICM may cycle

through the nodes a number of times, which we call ICM iterations. Finally k, the

number of elements to perturb, also needs to be defined.

We chose our parameters using a subset of the training set of SIFT1M, keeping

the values that minimize quantization error. Figure 3.1 shows the results of our pa-

rameter search on 10 000 SIFT descriptors. We note that, given the same number

of ICM cycles, using 4 ICM iterations and perturbing k = 4 code elements results

in good performance. We observed similar results on other descriptor types, so we

used these values in all our experiments. As shown in Figure 3.1, the performance

of our system depends on the number of ILS iterations used, trading-off compu-
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Figure 3.1: Quantization error as a function of ILS iterations, ICM iterations
and number of codes perturbed k on 10 000 vectors of the SIFT1M train
dataset after random initialization. Using 4 perturbations and 4 ICM

iterations gives good results in all cases, so we use those parameters in
all our experiments. Using no perturbations (k = 0), as done in previous
work (Babenko and Lempitsky, 2014a; Zhang et al., 2014), leads to
values that are above all the plots that we are showing, and stagnates
after about 3 ICM iterations.

tation for recall. We evaluated our method using 16 and 32 ILS iterations on the

base set of train/query/base datasets, and refer to these methods as Local search

quantization LSQ-{16, 32}. During training, we used only 8 ILS iterations.
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3.6 Results
Since our method relies heavily on randomness for encoding, it is natural to think

that the final performance of the system could exhibit large variance. To quantify

this effect, we ran our method 10 times on each dataset, and report the mean and

standard deviation in recall@N achieved by our method. To see how this compares

to previous work, we ran all the baselines 10 times and report their mean and

standard deviation in recall@N as well. We observe that Local search quantization

(LSQ), despite relying heavily on randomness for encoding, exhibits a variability

in recall similar to that of PQ and OPQ (and presumably that of other baselines as

well).

This is consistent with the fact that LSQ solves a large number of independent

instances of combinatorial optimization problems of similar difficulty; in situations

like this, the solution qualities achieved within a fixed running time are typically

normal-distributed (Hoos and Stützle, 2004, Chapter 4). In other words, despite

being heavily randomized, the performance of our system turns out to be very

stable in practice, because it is averaged over a large number of data points.

3.6.1 Small training/query/base datasets
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Figure 3.2: Recall@N curves for (left) the SIFT1M, and (right) Convnet1M
datasets.

First, we report the recall@N results for SIFT1M and Convnet1M in Figure 3.2,
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SIFT1M – 64 bits SIFT1M – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

PQ 22.59±0.43 59.90±0.28 91.98±0.17 44.53±0.40 60.49±0.40 78.94±0.28
OPQ 24.43±0.41 63.73±0.27 94.20±0.16 46.14±0.50 62.27±0.36 80.97±0.27

ERVQ 22.37±0.34 60.48±0.43 92.58±0.17 42.31±0.80 57.91±0.98 76.77±0.96
ERVQ 23.63±0.37 63.25±0.46 93.92±0.24 45.43±0.40 61.64±0.51 80.11±0.43
CQ 16.29 49.95 85.59 33.73 48.03 66.25
AQ 26 70 95 − − −
LSQ-32 29.54±0.33 72.65±0.51 97.34±0.14 55.10±0.38 72.09±0.43 88.78±0.25

Table 3.1: Detailed recall@N values for our method on the SIFT1M dataset.

where it is immediately clear that LSQ outperforms the classical baselines, PQ and

OPQ, in recall@N for all values of N. Similarly, our method outperforms CQ when

using 16 ILS iterations, and the gap is widened when using 32 iterations. As we will

see, analogous effects are observed throughout our results. In Table 3.1 we show

our results in more detail, providing mean recall@N values and standard deviations

for the SIFT1M dataset.

We also observe that CQ performs much worse than reported in the original

publication, and in fact its recall is lower than the classical baselines PQ and OPQ.

This is due to the difference in the size of the training set used in the publication

(the entire base set), versus what is normally used in the literature (10× smaller

training set). This suggests that CQ is not very sample efficient, as it needs more

data than the rest of the baselines to generalize.

On Convnet1M, the advantage of LSQ over PQ, OPQ and other baselines is more

pronounced. When using 64 bits, our method achieves a recall of 18.64, more than

double that of PQ at 7.13, and with an 81% improvement over OPQ at 10.28. These

results show an increased advantage of our method over orthogonal approaches in

deep-learned features, which currently dominate computer vision applications.

3.6.2 Query/base datasets

In Figure 3.3 and Table 3.2, we report results on datasets with query/base partitions:

MNIST and LabelMe22K. Our method also outperforms the state of the art on

both datasets. We also note that CQ again performs 2 to 5 points below the results

reported in the original publication, and in this case, this discrepancy cannot be
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Figure 3.3: Recall@N curves for (left) the MNIST, and (right) LabelMe22K
datasets.

MNIST – 64 bits LabelMe22K – 64 bits

R@1 R@2 R@5 R@1 R@2 R@5

PQ 29.76±0.37 45.24±0.33 67.88±0.63 16.63±0.46 24.43±0.73 38.61±0.74
OPQ 35.13±0.65 51.89±0.64 74.95±0.47 32.43±0.78 46.17±0.92 66.70±1.08

RVQ 32.85±0.70 48.98±0.82 71.83±0.83 28.56±0.97 41.47±1.22 60.57±1.68
ERVQ 34.70±0.45 51.25±0.62 73.95±0.58 30.28±0.91 43.25±1.05 62.36±1.45
CQ 40.94 58.80 81.16 31.40 45.45 65.50
LSQ-8 42.38±0.49 60.78±0.38 83.42±0.28 35.32±1.13 50.39±1.54 71.25±0.70

Table 3.2: Detailed recall@N on the MNIST and LabelMe22K datasets.

attributed to a difference in training protocol. Unfortunately, this means that the

results reported by Zhang et al. (2014) cannot be reproduced even when using the

code provided by the original authors.

3.6.3 Very large-scale training/query/base datasets

Finally, we report results on two very large-scale datasets: SIFT10M and SIFT1B

in Figure 3.4, with detailed results in Table 3.3. On SIFT1B with 64 bits, LSQ-32

shows a relative improvement of 13% in recall@1 over CQ, our closest competitor,

and consistently obtains between 2 and 3 points of advantage in recall over CQ in

other cases. These are, to the best of our knowledge, the best results reported on

SIFT1B using exhaustive search so far.
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Figure 3.4: Recall@N curves for very large-scale datasets: (left) the
SIFT10M, and (right) SIFT1B.

SIFT10M – 64 bits SIFT10M – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

PQ 15.79 50.86 86.57 39.31 54.74 74.89
OPQ 17.49 54.92 89.41 40.80 56.73 77.15

CQ 21 63 93 47 64 84
LSQ-16 22.51 64.62 94.67 49.26 66.75 85.36
LSQ-32 22.94 65.20 94.85 49.50 67.31 86.33

SIFT1B – 64 bits SIFT1B – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

PQ 06.34 24.41 56.92 26.38 38.57 56.45
OPQ 07.02 27.34 61.89 28.43 40.80 59.53

CQ 09 33 70 34 48 68
LSQ-16 09.73 35.82 73.84 35.32 50.84 70.66
LSQ-32 10.18 36.96 75.31 36.35 51.99 72.13

Table 3.3: Detailed recall@N values for our method on large-scale datasets:
SIFT10M and SIFT1B.

3.6.4 Sparse extension

Following Zhang et al. (2015), we evaluated the sparse version of our method using

2 different levels of sparsity: SLSQ1, with ‖C‖0≤ S = h ·d, which has a query time

comparable to PQ, and SLSQ2, with ‖C‖0 ≤ S = h ·d+d2, which has a query time

comparable to OPQ. We compare against SCQ1 and SCQ2 by Zhang et al. (2015),

which have the same levels of sparsity. A detailed study of the relationship between

sparsity and query times for very-large-scale datasets has already been presented

in Zhang et al. (2015), and it is clear that our improved encoding method has no

effect on query time, so we do not repeat those experiments. Instead, we focus on

a smaller dataset, SIFT1M. As noted in Section 3.4, substantial speedups can also

be obtained on small datasets by using sparse codebooks.

Again, in this scenario we observed improved performance compared to our
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Figure 3.5: Recall@N curves for
our sparse methods SLSQ1
and SLSQ2 on SIFT1M.

SIFT1M – 64 bits

R@1 R@10 R@100

PQ 22.59±0.43 59.90±0.28 91.98
SCQ 25 67 95
SLSQ1-16 25.89±0.25 66.49±0.37 95.25±0.18
SLSQ1-32 26.49±0.31 67.39±0.30 95.59±0.22

OPQ 24.43±0.41 63.73±0.27 94.20±0.16
SCQ2 27 68 96
SLSQ2-16 27.87±0.23 69.85±0.28 96.47±0.15
SLSQ2-32 28.40±0.17 70.59±0.29 96.76±0.22

Table 3.4: Recall@N values for the
sparse extension of our method on
SIFT1M using 64 bits.

baselines. Our improvement is of 1.49 and 1.40 over SCQ. This is close to the 1.84

gain that OPQ achieves over PQ in the same dataset.

3.6.5 Encoding speed

Method Sequential Batched

codebooks (m) 7 15 7 15

LSQ-16 (ms.) 1.52 7.02 0.53 2.01
LSQ-32 (ms.) 3.01 13.93 1.05 4.03

Method GPU (batched)

codebooks (m) 7 15

LSQ-16 (µs) 17.9 67.2
LSQ-32 (µs) 35.7 134.3

Method Exhaustive NN

codebooks (m) 8 16

PQ (µs) 42.6 77.9
OPQ (µs) 49.2 90.3

Table 3.5: Time spent per vector during encoding in our approach. “Sequen-
tial” refers to an LSQ implementation where ICM encodes each point se-
quentially (i.e., does not take advantage of the shared pairwise terms).
“Batched” is our LSQ implementation, which performs conditioning of
shared pairwise terms among several data points.

In Table 3.5 we show the speed advantage that sharing the pairwise terms gives

to LSQ over a naı̈ve implementation that encodes each point sequentially. The table

shows that our method, implemented in Julia (Bezanson et al., 2014) with some

C++ bindings, remains fast when using up to 32 ILS iterations, handily achiev-

ing speeds faster than real-time (we believe that even better performance could be

achieved with a C implementation). With our GPU implementation, it is possible
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to encode SIFT1B using 128 bits and 32 ILS iterations in around 1.5 days.

3.7 Conclusion
We have introduced a new method for solving the encoding problem in Additive

quantization (AQ) based on Stochastic local search (SLS). The high encoding per-

formance of our method demonstrates that the elegant formulation introduced by

AQ can be leveraged to achieve an improvement over the current state of the art

in Multi-codebook quantization (MCQ). We have also shown that our method can

be easily extended to accommodate sparsity constraints in the codebooks, which

results in another conceptually simple method that outperforms its competitors.
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Chapter 4

Stochastic relaxations and fast
codebook updates

Evils coming ’round at five
To get twice as much done in half the time

—Street Chant

A wide range of optimization methods for multi-codebook quantization (MCQ)

alternatively update the codebooks and codes until convergence. A common prob-

lem with such iterative methods is their tendency to stagnate in local minima; for

example, in the single-codebook case, equivalent to k-means, it is known that these

local minima may be arbitrarily bad (Arthur and Vassilvitskii).

In this chapter, we introduce two inexpensive approximations of simulated an-

nealing (a well-established method for escaping local minima) that are directly

applicable to MCQ. Our methods are inspired by a family of techniques used to

improve k-means clustering that date back to the work of Linde et al. (1980), and

were formalized by Zeger et al. (1992). This first contribution leads to improved

(i.e., lower-error) MCQ solutions, with a negligible increase in computational cost.

We also focus on tackling the computational cost of training in local search

qunatization (LSQ), which is a major barrier to its applicability to very large-scale

datasets. To this end, we introduce a codebook update method that is 1 to 2 orders

of magnitude faster than previous work. This novel method is based on two key
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observations:

1. It is possible to use a direct regularized least-squares method based on Cholesky

decomposition to update the codebooks (rather than the iterative conjugate

gradient (CG) methods used in previous work), and

2. The computational bottleneck of this process consists of a transposition and

multiplication of a very large binary matrix, and both of these operations can

be accelerated without the need to explicitly build large sparse matrices.

Overall, our second contribution results in reduced training times.

Our improvements directly improve LSQ, which we introduced in Chapter 3.

4.1 Background and related work
The first of our improvements deals with the codebook update step of MCQ. The

second is a technique inspired in simulated annealing which, in the past, has been

used to improve k-means clustering. We review both areas next.

4.1.1 Codebook update in MCQ

Updating one codebook at a time

Greedy MCQ optimization approaches such as RVQ (Chen et al., 2010) and ERVQ/

SQ (Ai et al., 2014; Martinez et al., 2014) update one codebook at a time. Updating

a single codebook in MCQ is equivalent to the codebook update step in k-means,

which means that this step is not particularly computationally expensive. More-

over, the best performing MCQ methods use Expectation-maximization (EM)-like

optimization. In this case, the codebook update step amounts to solving a large-

scale least-squares problem. In this chapter we focus on improving the codebook

update step commonly used in EM-like MCQ optimization.

Updating all codebooks at once

Formally, updating all the codebooks in MCQ in an EM-like approach amounts to

determining

min
C
‖X−CB‖2

F . (4.1)
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When introducing AQ, Babenko and Lempitsky (2014a) noted that this problem

can be solved independently across each dimension:

While the least-squares optimization [...] may seem large (given large

n and [d]), one can observe that it decomposes over each of the d di-

mensions. Thus, instead of solving a single large-scale least squares

problem with [mhd] variables, it is sufficient to solve [d] least-squares

problems with [mh] variables, which can be formulated as an overcon-

strained system of linear equations. [...] As a result, the complexity of

codebook learning is dominated by the encoding step.

The authors further proposed to use a large-scale conjugate-gradient solver (Fong

and Saunders, 2011), and in practice built a sparse representation of B which was

passed to the solver, and reused for all d problems.

Codebook update in CQ. Zhang et al. (2014) also used the AQ formulation to

initialize their main method (CQ). The authors derive a closed-form solution for

the problem: C = XB>(BB>)−1, but give no further details about the exact opti-

mization procedure. Three years later, looking at the CQ code release due to Zhang

et al. (https://github.com/hellozting/CompositeQuantization), we have realized that

the matrix inversion is done with the help of a singular value decomposition, ignor-

ing solution components associated with small eigenvalues (because the solution

may not be numerically stable). Moreover, the authors build a dense matrix to rep-

resent B. Thus, this method is in practice slower than using a conjugate gradient

solver, and can also benefit from the contributions that we introduce here.

Advantages of reducing running time of the codebook update step in MCQ

In MCQ, updating the codebooks and updating the codes are the two main opti-

mization steps. In the original AQ paper, Babenko and Lempitsky noted that the

running time is dominated by the encoding step. However, after introducing LSQ

and its GPU encoding implementation, we noticed that on the SIFT1M dataset at

64 bits:

• updating B takes around 1.2 seconds, while
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• updating C takes around 5.6 seconds.

Thus, we clearly have a practical motivation to decrease the running time of the

codebook update step.

4.1.2 Improving k-means

To put stochastic relaxations in context, we review them next to several other tech-

niques that improve the standard k-means algorithm; such improvements can be

broadly grouped in four categories.

1. Encoding speed. In k-means encoding amounts to finding, for each vector in

the database, its nearest neighbour in a given codebook. For large datasets,

large codebooks or high vector dimensionality, this can become a major com-

putational bottleneck. Approaches to speed up encoding take advantage of

the triangle inequality (Elkan, 2003) or convergent low-dimensional bounds

on metric spaces (Hwang et al., 2012a) to reduce the number of codebook

vectors to which exact distance has to be computed. In the computer vision

community, Philbin et al. (2007) popularized the use of randomized kd-trees

for approximate encoding to build bag-of-visual-words representations.

2. Initialization. A typical way to initialize the k-means algorithm is to produce

an initial codebook by sampling points from the dataset uniformly at ran-

dom. Multiple alternatives for initialization have been proposed (for a recent

survey, see the work by Celebi et al. (2013)), and perhaps the most popular

initialization algorithm is currently k-means++ (Arthur and Vassilvitskii),

which also offers theoretical guarantees on the quality of the initialization.

3. Soft assignments. It is also possible to assign each database vector to multi-

ple entries in a codebook using multiple, weighted assignments (Dunn, 1973;

Jain, 2010). According to Jain (2010), the idea can be attributed to Dunn

(1973). Martinetz et al. (1993) used a ‘neural gas’ network with a softmax

layer for soft cluster assignments, which allowed for batched optimization

using backpropagation.
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4. Stochastic relaxations (SR). Several methods have exploited the idea of in-

jecting randomness into the optimization process of k-means in order to im-

prove the quality of the solution1 (Flanagan et al., 1989; Linde et al., 1980;

Vaisey and Gersho, 1988); we follow Zeger et al. (1992) and refer collec-

tively to these methods as Stochastic eelaxation (SR). The idea is to exploit

Simulated annealing (SA), which is guaranteed to eventually find a globally

optimal solution but in practice requires extremely slow temperature decay

schedules, leading to impractical (exponential) running times. Therefore, the

research challenge is to find SA approximations that produce good solutions

at reasonable computational costs.

The first three approaches (improving encoding speed, improving initialization

or using soft assignments) are not trivially adaptable to MCQ. For example, it is not

immediately clear how the triangle inequality or kd-trees could be used on the com-

binatorial number of centroids created by MCQ. On the other hand, initialization

approaches typically add one codebook entry at a time (Arthur and Vassilvitskii);

this is problematic in our case, as in MCQ, adding one entry in a codebook creates

exponentially many new centroids. Finally, there is no straightforward way of list-

ing multiple assignments on a combinatorial space in a computationally efficient

way.

Fortunately, some SR methods can be formalized by adopting a functional view

of k-means (Zeger et al., 1992), in which it is assumed that the optimization state

is fully observable given one of the two latent variables in the problem. In Sec-

tion 4.2.2, we define a functional view of MCQ, which allows us to successfully

extend SR to MCQ.
1Notably, in their seminal work on vector quantization, Linde et al. (1980) mention an example

where adding gradually decreasing amounts of Gaussian noise to the training examples results in
better solutions. The authors “[. . . ] conjecture that this technique will work more generally [. . . ] but
[. . . ] have been unable to prove this theoretically”. See (Linde et al., 1980, p. 93), for more details.
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4.2 Solution methodology
Our first contribution deals with the codebook update step, which amounts to de-

termining

min
C
‖X−CB‖2

F . (4.2)

The current state-of-the-art method for this step was originally proposed by

Babenko and Lempitsky (2014a), who noticed that finding C corresponds to a least-

squares problem where C can be found independently in each dimension. The

authors further use an iterative conjugate gradient method (Fong and Saunders,

2011) in this step, which has the additional advantage that B can be reused for the

d problems that finding C decomposes into. We have identified two problems with

this approach:

1. Explicit sparse matrix construction is inefficient. Using conjugate gradient

methods requires that B be converted into an explicit sparse matrix. Although

efficient data structures for sparse matrices exist (e.g., the compressed sparse

row of numpy), in practice, B is stored as an m× n uint8 matrix. Ideally,

we would like to use B directly and avoid using an additional data structure.

2. Failure to exploit the binary nature of B. Matrix B is composed exclusively

of ones and zeros (i.e., it is binary). Data structures used for sparse matrices

are commonly designed for the general case when the non-zero entries are

arbitrary real numbers, which leaves room for additional optimization.

4.2.1 Direct codebook update

We now introduce our method for fast codebook update, which takes advantage of

these two observations. First, we note that it is possible to use a numerically-stable

direct method by rewriting Expression 4.2 as a regularized least-squares problem:

min
C
‖X−CB‖2

F +λ‖C‖2
F , (4.3)

53



In this case, the optimal solution can be obtained by taking the derivative with

respect to C and setting it to zero, as is commonly done in ridge regression

C = XB>(BB>+λ I)−1. (4.4)

While we are not interested in a regularized solution, we can still benefit from

this formulation by setting λ to a very small value (λ = 10−4 in our experiments),

which simply renders the solution numerically stable.

We further note that the matrix BB> + λ I ∈ Rmh×mh is square, symmetric,

positive-definite and fairly compact; notably, its size is independent of n. Thus, ma-

trix inversion can be performed directly via Cholesky decomposition in O(m3h3)

time. Since matrix inversion is efficient, the bottleneck of our method lies in com-

puting BB> ∈ Nmh×mh, as well as XB> ∈ Rd×mh. We exploit the structure in B to

accelerate both operations.

Computing BB>. By indexing B across each codebook, B = [B1, · · · ,Bm]
>, BB>

can be written as a block-symmetric matrix composed of m2 blocks of size h× h

each:

BB> =


B1B>1 B1B>2 . . . B1B>m
B2B>1 B2B>2 . . . B2B>m

...
...

. . .
...

BmB>1 BmB>2 . . . BmB>m

 , (4.5)

here, the diagonal blocks BNB>N are diagonal matrices themselves, and since B is

binary, their entries are a histogram of the codes in BN . Moreover, the off-diagonal

blocks are the transpose of their symmetric counterparts: BNB>M = (BMB>N )
>, and

can be computed as bivariate histograms of the codes in BM and BN . Using these

two observations, this method takes O(m2n) time, while computing BB> naı̈vely

would take O(m2h2n).

Computing XB>. We again take advantage of the structure of B to accelerate this

step. XB> can be written as a matrix of m blocks of size d×h each,
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XB> = [XB>1 ,XB>2 , . . . ,XB>m ]. (4.6)

Each block XB>i can be computed by treating the B>i columns as binary vectors that

select the columns of X to sum. This method takes O(mnd) time, while computing

XB> naively would take O(mhnd).

4.2.2 Stochastic relaxations (SR)

Broadly defined, simulated annealing (SA) is a classical stochastic local search

(SLS) technique (Hoos and Stützle, 2004) that requires 4 major components:

1. Intitialization: A function that creates the initial candidate solution s.

2. Neighbourhood: The space of candidate solutions s′ that may be explored

from a starting solution s.

3. Temperature schedule: A function that controls the probability to accept

or reject a new (worse) solution. (Better solutions are typically always ac-

cepted). The temperature is normally decreased as the optimization pro-

gresses. Various temperature schedules have been proposed and used in the

many applications of simulated annealing.

4. Termination criterion: A condition that must be satisfied for the search to

end.

A stochastic relaxation (Zeger et al., 1992) relaxes some of the typical SA steps

in order to make them more computationally efficient. For component (1), we

initialize our solutions uniformally at random, and for component (4) we simply

limit the number of search iterations to a constant.

We now formally define our optimization state s, perturbation procedure π(·)
and acceptance criterion, for our method, which form the remaining components

of our SA approximation.

Defining a SA state: a functional view of MCQ

We formally define an optimization state in MCQ. Since Expression 2.4 is defined

over two latent variables, C and B, a naı̈ve approach is to define the state at time
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step i as a 2-tuple si = (Ci,Bi). However, it is not clear how one could use this

definition to perturb the state: for example, adding random noise to B would alter

its discrete nature, taking it out of the space of feasible solutions.

Moreover, SLS methods are often designed to balance two main factors: (a)

the amount of perturbation that allows them to escape from local minima, and

(b) the ability of a local search method to recover from such perturbations and,

potentially, find new and improved solutions. Globally, EM-like MCQ methods

already rely on powerful local search techniques, namely the codebook-update and

encoding methods. This suggests that these functions can be used as a subroutines

in a global method that improves the quality of the solution. Following this idea,

the first step in SR is to make the assumption that the optimization state is fully

observable given a single variable, either C or B, which fully specifies the other via

a function. We thus define two functions:

• an “encoder” function C (X ,B)→C, and

• a “decoder” function D(X ,C)→ B.

Notice that, in k-means, C updates the centroids by taking the means of its assign-

ments, and D assigns each training point to its nearest neighbour in the codebook.

In MCQ, C amounts to the codebook-update step, for which we adopt the fast ridge

regression method described in Section 4.2.1. Similarly, D amounts to updating

the codes B; in this case, we adopt the encoding method introduced in Chapter 3,

based on Iterated local search (ILS) with ICM and random perturbations.

We can now formally define the optimization state of MCQ in two ways, which

will eventually give rise to two different SR methods. The first method, called

SR-C, uses the encoder function C , and the second method, called SR-D, uses the

decoder function D .

Perturbing the SA state

The next step is to define a way to perturb the SA state at time-step i. We similarly

define 2 perturbation methods, one for SR-C and one for SR-D. Since we have

defined the state as fully-observable given either variable via a proxy function,

we can perturb the state by simply perturbing the function used in SR-C or SR-D.

Formally, we define the functions
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• C ∗ := C (πC(X , i),B)→C for SR-C, and

• D∗ := D(X ,πD(C, i))→ B for SR-D,

where the function πC(X , i)→ X +T (i) ·ε amounts to adding noise ε to X , accord-

ing to a predefined temperature schedule T . In our case, we have chosen our noise

to be sampled from a zero-mean Gaussian with a diagonal covariance proportional

to X ; in other words, ε ∼ N(0,Σ), where Σ = diag(cov(X)).

The main difference between k-means and MCQ is that, in MCQ, we use multi-

ple codebooks. This difference is particularly important in SR-D, where the noise

affects C, which represents m different codebooks. Since the centroids are ob-

tained by summing one entry from each codebook, perturbing C amounts to per-

turbing the centroids m times. We found that this perturbation is too extreme and

results in poorer solutions. Thus, in SR-D we instead use the average covariance

of each codebook – this amounts to multiplying the noise by a factor of 1/m

in SR-D. We thus define the perturbation function for SR-D slightly differently:

πD(C, i)→ C +(T (i)/m) · ε . In other words, we multiply the noise by factor of

1/m in SR-D.

Notice that, in these functional formulations, the discrete variable B is never

perturbed. Thus, our approximations remain anytime algorithms and do not require

additional rounding steps.

Temperature schedule. In SA, it is common to gradually reduce the amount of

noise that controls the probability of accepting of a new state (the so-called Metropolis-

Hastings criterion). In SR, following Zeger et al. (1992), we instead use the tem-

perature to control the amount of noise added in each time-step and consider three

temperature schedules:

T (i)→ (1− (i/I))p , (4.7)

T (i)→ 1/(i+1)p , and (4.8)

T (i)→ pi, (4.9)

where I is the total number of iterations, i represents the current iteration, and

p ∈ (0,1] is a tunable hyper-parameter. We experimented with values of p =
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{0.1,0.5,1} and found that the first temperature schedule (Eq. 4.7) and a value of

p = 0.5 produce the best results. We use these parameters in all our experiments.

Acceptance criterion

The final building block of SA is an acceptance criterion, which decides whether the

new (perturbed) state will be accepted or rejected. Following Zeger et al. (1992),

we decide to always accept the new state. As we will show, this criterion gives

excellent results in practice, and makes it very easy to control for running time, as

each iteration is practically identical to LSQ.

4.2.3 Recap: SR-C and SR-D

To summarize, we have now introduced two algorithms that define crude (but, as

we will see, very effective) approximations to simulated annealing: SR-C and SR-D.

These approximations are also very simple to implement, and are in fact not very

different in practice from LSQ. To highlight this simplicity, we have outlined the

LSQ optimization pipeline in Algorithm 3:

Algorithm 3 Block coordinate descent approaches to MCQ

1: function LSQ(X , I)
2: B← initialization()
3: i← 1 . Iteration counter
4: while i < I do
5: C← argminC ‖X−CB‖2

F . Codebook update
6: B← argminB ‖X−CB‖2

F . Encoding step
7: i← i+1
8: end while
9: return C,B

10: end function

Notice that

• SR-C follows Algorithm 3 exactly, except that line 5 is replaced by

C← argminC‖πC(X , i)−CB‖2
F ;

• SR-D follows Algorithm 3 exactly, except that line 6 is replaced by

B← argminB‖X−πD(C, i)B‖2
F .
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In other words, SR-C and SR-D amount to adding noise in different parts of

the typical MCQ optimization pipeline, but the workhorse functions that perform

the codebook-update and the encoding encoding step remain unchanged. As a

result, if in the future better codebook-update or encoding functions are developed,

they can be seamlessly integrated into our pipelines. Finally, we note that our

methods involve only minimal computational overhead, as they only require the

computation of the covariance of either X (which can be computed once and re-

used many times in (SR-C)), or C, which is a compact variable independent of n. In

practice, this overhead is negligible: < 0.1 seconds for SR-C, and < 0.01 seconds

for SR-D.

4.3 Experiments
We now describe the evaluation protocol that we use to empirically validate our

contributions.

Datasets and protocols

We evaluate our approach on five datasets. The first three are SIFT1M (Jégou

et al., 2011), LabelMe22K (Russell et al., 2008) and MNIST (LeCun et al., 1998).

These correspond to handcrafted features (SIFT and GIST), and small raw images

(MNIST). The next two datasets are based on features extracted from deep con-

volutional neural networks. The VGG dataset is extracted from the last layer of

the CNN-M-128 network provided by Chatfield et al. (2014); this network inter-

nally compresses the features by limiting the dimensionality of the output to 128

units. Finally, we put together the Deep1M dataset, by sampling from the 10 mil-

lion example set provided with the recently introduced Deep1B dataset (Babenko

and Lempitsky, 2016). These features come from the last convolutional layer of

a network similar to GoogLeNet v3 (Szegedy et al., 2014), and have been PCA-

projected to 96 dimensions. Table 4.1 summarizes the datasets used in our ANN

experiments.

We follow the same protocol as in the previous chapter, and use the training set

to learn the codebooks C; we then use those codebooks to encode the base set (i.e.,

obtain B), and finally use the query set to find approximate nearest neighbours in
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Dataset d # training # query # base

SIFT1M 128 100 000 10 000 1 000 000
LabelMe22K 512 – 2 000 20 019
MNIST 784 – 10 000 60 000

Deep1M 96 100 000 10 000 1 000 000
VGG 128 100 000 10 000 1 000 000

Table 4.1: Statistics of the datasets used in our ANN experiments.

the compressed base set. MNIST and LabelMe22K, however, do not have a train

set, so we use the base set to learn both C and B. This protocol is in line with

previous work (Gong and Lazebnik, 2011; Zhang et al., 2014).

Evaluation

To evaluate our first contribution (i.e., fast codebook update), we measure code-

book update times. We also use our improved codebook update method while

reproducing the results of LSQ (introduced in Chapter 3). Obtaining the same re-

call@N values as in previous work while using our fast codebook update method

validates that our contribution does not affect the quality of the solution.

To evaluate SR, we report recall@N on all our datasets. Recall@N represents

the empirical probability over the query set that the actual nearest neighbour of

the query is found within the first N retrieved entries. In the retrieval literature,

recall@1 is often considered the most important value in this curve. We also run

all the methods ten times on each dataset and report the mean of the five trials to

control for the inherent randomness in recall@N.

Baselines

Our baselines are the orthogonal MCQ methods PQ (Jégou et al., 2011) and OPQ (Ge

et al., 2014; Norouzi and Fleet, 2013), as well as the non-orthogonal RVQ (Chen

et al., 2010), ERVQ/SQ (Ai et al., 2014; Martinez et al., 2014) and CQ (Zhang et al.,

2014), as well as LSQ, i.e., the method that we introduced in Chapter 3. We control

for memory usage by making our baselines and our method produce final codes of
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64 and 128 bits. This means that PQ, OPQ and CQ use 8 and 16 codebooks, while

the rest of the methods use 7 and 15 codebooks, plus an extra codebook to encode

the norm of the approximation. This has the side effect of controlling for query

time as well, because all the methods use 8 (resp. 16) table lookups to compute

approximate distances.

4.4 Results
In this section we present the results of our experiments.

4.4.1 Fast codebook update

64 bits 128 bits

SIFT1M CG Chol CG Chol

Julia, C++ 14.2s 5.6s 38.5s 22.5s
Julia, CUDA 6.8s 1.2s 20.3s 4.3s

64 bits 128 bits

Deep1M CG Chol CG Chol

Julia, C++ 9.5s 7.2s 30.7s 24.2s
Julia, CUDA 3.3s 1.0s 10.6s 4.1s

Table 4.2: Total time per LSQ/LSQ++ iteration, depending on how we update
C (CG or Cholesky), and how we update B (using a C++ or a CUDA
implementation).

We show the total elapsed time for training once we incorporate our codebook

update method on Table 4.2. Our method saves anywhere from 2.3 (Deep1M, 64

bits) to 16 seconds (SIFT1M, 128 bits) of training time per iteration. Alternatively,

when encoding is GPU-accelerated, it results in 2.2−5.6× speedups in practice.

Large-scale experiments

On Figure 4.1, we show a “stress-test” comparison between our method for fast

codebook update and Conjugate gradient (CG), using dataset sizes of n= {104,105,106,107}.
We take the first n training vectors from the SIFT1B (Jégou et al., 2011) and

Deep1B (Babenko and Lempitsky, 2016) datasets, and generate a random B. This

is a specially easy case for CG, and it takes only 2-3 iterations to converge. Even in

this case, our method is orders of magnitude faster than previous work, and stays

under 10 seconds in all cases, while CQ takes up to 700 seconds for n = 107. Our
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Figure 4.1: Time for codebook update as a function of dataset size with up to
ten million vectors.

method is only slower on small training sets, perhaps due to the complexity of

matrix inversion, which is independent of n.

4.4.2 SR-C and SR-D

SR requires the setting of several hyperparameters. First, we have to choose the

perturbation method to use (either SR-C, or SR-D), and second, we have to choose

the temperature schedule with its corresponding decay parameter. We report re-

sults using both methods, Eq. 4.7 for temperature decay, and p = 0.5. All results

reported in this work have been obtained using the same hyperparameters, which

makes our two contributions usable as out-of-the-box improvements on top of LSQ

without hyperparameter tuning.

Experimentally, we have found that SR-D (which perturbs the codebooks) per-

forms better on handcrafted features and on MNIST, and SR-C performs better on

deep features, which may be used as simple rule of thumb for practitioners. How-

ever, SR-C also tends to be more unstable.

Query/base datasets

In Figure 4.2, we show results on the small query/base datasets MNIST and La-

belMe22K, after training for 100 iterations. We also present results in detail in

Table 4.3.
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Figure 4.2: Running time vs recall@1 on the MNIST and LabelMe datasets.

MNIST – 64 bits LabelMe22K – 64 bits

R@1 R@2 R@5 R@1 R@2 R@5

PQ 29.76±0.37 45.24±0.33 67.88±0.63 16.63±0.46 24.43±0.73 38.61±0.74
OPQ 35.13±0.65 51.89±0.64 74.95±0.47 32.43±0.78 46.17±0.92 66.70±1.08

RVQ 32.85±0.70 48.98±0.82 71.83±0.83 28.56±0.97 41.47±1.22 60.57±1.68
ERVQ 34.70±0.45 51.25±0.62 73.95±0.58 30.28±0.91 43.25±1.05 62.36±1.45
CQ 40.94 58.80 81.16 31.40 45.45 65.50
LSQ-8 42.38±0.49 60.78±0.38 83.42±0.28 35.32±1.13 50.39±1.54 71.25±0.70

SR-D-8 42.90±0.34 61.25±0.29 83.29±0.26 37.61±1.00 52.54±0.94 73.45±0.91
SR-C-8 42.26±0.26 60.79±0.41 82.75±0.29 32.51±0.86 46.34±0.78 66.33±1.03

Table 4.3: Detailed recall@N on the MNIST and LabelMe22K datasets.
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We can observe that SR-D always outperforms LSQ, and using the fast code-

book update means that the method is also more efficient in practice. We also

observe that CQ (Zhang et al., 2014) is an outlier in terms of computation – the

most expensive method by far – , but is not competitive in terms of recall. Finally

we also observe that, in these two datasets, SR-C often yields lower recall than LSQ.

SR-D method achieves the best improvement in LabelMe22K at 64 bits, where

with 100 iterations, it obtains 0.023 (absolute) better recall@1, or a relative 6.4%

improvement over the state of the art. In other cases, the gain ranges from 0.005 to

0.015 in recall@1 over the state of the art, requiring less computation than previous

work.

Train/query/base datasets

In Figure 4.3, we show the recall@1 achieved by our methods on train/query/base

datasets as a function of the total time they used for learning. In this Figure, we ran

training for 100 iterations and base encoding for 128 iterations.

We observe a pattern similar to the previous experiment: SR-D obtains higher

recall than LSQ in all cases. However, we also observe that SR-C largely outper-

forms both LSQ and SR-D on the VGG dataset, which has internally been com-

pressed by the network down to 128 dimensions. This suggests that SR-C might

be better suited for applications that use deep features, which currently dominate

computer vision applications.

SIFT1M – 64 bits SIFT1M – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

PQ 22.59±0.43 59.90±0.28 91.98±0.17 44.53±0.40 60.49±0.40 78.94±0.28
OPQ 24.43±0.41 63.73±0.27 94.20±0.16 46.14±0.50 62.27±0.36 80.97±0.27

ERVQ 22.37±0.34 60.48±0.43 92.58±0.17 42.31±0.80 57.91±0.98 76.77±0.96
ERVQ 23.63±0.37 63.25±0.46 93.92±0.24 45.43±0.40 61.64±0.51 80.11±0.43
CQ 16.29 49.95 85.59 33.73 48.03 66.25
AQ 26 70 95 − − −
LSQ-128 29.85±0.23 73.10±0.58 97.46±0.13 55.62±0.38 72.85±0.19 89.46±0.21

SRD-128 30.72±0.29 74.25±0.36 97.65±0.10 56.09±0.35 73.02±0.27 89.66±0.33
SRC-128 30.60±0.32 73.80±0.34 97.50±0.13 52.16±0.37 69.07±0.37 86.40±0.35

Table 4.4: Detailed recall@N values on the SIFT1M dataset.

Finally, Tables 4.4, 4.5 and 4.6 show the detailed performance of our methods
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Figure 4.3: Running time vs recall@1 on the SIFT1M, Deep1M and VGG
datasets.
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Deep1M – 64 bits Deep1M – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

PQ 09.13±0.41 33.54±0.24 73.14±0.54 27.98±0.28 41.16±0.45 60.10±0.47
OPQ 15.90±0.43 52.82±0.47 89.61±0.29 35.47±0.59 50.75±0.57 71.15±0.31

RVQ 15.90±0.53 52.64±0.49 89.80±0.38 35.38±0.73 50.70±0.91 71.45±0.68
ERVQ 17.87±0.37 56.73±0.39 91.95±0.17 38.76±0.48 55.05±0.54 75.76±0.61
LSQ-128 21.95±0.42 64.83±0.61 95.30±0.25 41.15±0.44 57.90±0.53 78.18±0.37

SRD-128 22.60±0.55 66.64±0.49 95.75±0.15 42.28±0.62 58.95±0.57 79.23±0.45
SRC-128 22.56±0.33 66.30±0.36 95.75±0.16 42.83±0.29 59.77±0.42 80.01±0.30

Table 4.5: Detailed recall@N values on the Deep1M dataset.

VGG – 64 bits VGG – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

PQ 07.32±0.30 29.91±0.45 73.39±0.44 25.25±0.44 37.82±0.55 57.12±0.32
OPQ 09.84±0.18 37.68±0.51 81.26±0.39 26.84±0.22 39.48±0.25 58.89±0.36

RVQ 14.23±0.20 51.62±0.53 93.02±0.15 32.34±0.81 47.72±0.82 69.19±0.90
ERVQ 14.67±0.42 52.67±0.38 93.89±0.25 35.60±0.31 51.36±0.59 72.98±0.40
LSQ-128 18.44±0.26 61.13±0.39 96.49±0.16 39.60±0.64 56.12±0.52 77.38±0.37

SRD-128 19.36±0.43 63.59±0.41 97.48±0.14 41.17±0.31 58.15±0.57 79.11±0.22
SRC-128 19.60±0.29 63.87±0.32 97.43±0.13 44.67±0.45 62.62±0.37 83.60±0.23

Table 4.6: Detailed recall@N values on the VGG dataset.

and a comparison with previous work. We can again observe that the SR variants

consistently obtain state-of-the-art performance when the computational budget is

identical to previous work. SR-C works specially well on the VGG dataset; for ex-

ample, when using 64 bits, SR-C gains 0.016 (relative 6.2%) in Recall@1 and 0.05

points (relative 12.8%) when using 128 bits with respect to LSQ. In this challeng-

ing dataset, OPQ obtains a much smaller improvement of 0.015 (resp 0.016) over

PQ. Finally, we observe a modest improvement of SR on SIFT1M, consistent with

previous work (Babenko and Lempitsky, 2016) which has shown that hand-crafted

features show small improvements with non-orthogonal codebooks.

4.4.3 Comparison against Competitive quantization (COMPQ)

Competitive quantization (COMPQ) (Ozan et al., 2016a) is an MCQ method based

on Stochatic gradient descent (SGD) with a batch size of one. To bypass the non-

diffenrentiability of the encoding step, the authors consider the chosen codes as the
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single sample of a function that produces soft assignments into the codebooks. This

approximation can be seen as a single-sample estimate of a policy gradient (Sutton

et al., 2000).

So far, in our evaluation we have omitted a direct comparison with COMPQ.

This might strike the reader as odd, since COMPQ reports the best result to date on

SIFT1M (recall@1 of 0.352). Part of the reason is that the experiments reported

by Ozan et al. (2016a) consider a quadratic query time, while in our experiments

we have set one codebook aside to keep query time linear – and thus comparable

with our baselines.

Since there is no publicly available implementation of COMPQ, we have tried to

reproduce the reported results ourselves, with moderate success. We have not, for

example, been able to reproduce the transform coding initialization reported in the

paper, but have instead used RVQ (Chen et al., 2010), which Ozan et al. reported to

achieve slightly worse results. We obtained a recall@1 of 0.346 using 250 epochs

(the parameter used in the best reported result). The small difference in recall may

be attributed to our different initialization.

However, the largest barrier to experimentation on our side is that our COMPQ

implementation, written in Julia, takes roughly 40 minutes per epoch to run. This

means that our experiment on SIFT1M with 64 bits took almost one week to finish.

We contacted the COMPQ authors, and they mentioned using a multithreaded C++

implementation with pinned memory, an ad-hoc sort implementation, and special

handling of threads. Their implementation takes 551 seconds per epoch, or about

38 hours (∼ 1.5 days) in total for 250 epochs on a desktop with a 10-core Xeon

E5 2650 v3 @2.3 GHz CPU. This is over three orders of magnitude more compu-

tationally expensive than Product quantization (PQ) (Jégou et al., 2011), a baseline

considered in the same publication.

We compare COMPQ to LSQ and SR-D using a multithreaded C++ encoding

implementation, as well as our GPU implementation, and show our results on Ta-

ble 4.7. We use m = 8 codebooks in total, which controls for query time and

memory use with respect to COMPQ. With only 25 training iterations and 32 ILS

iterations, SR-D narrows the difference between COMPQ and LSQ by 50%, from

0.012 to 0.006, and is also overall faster due to the faster codebook update.

We iteratively double the computational budget of SR-D (trading off compu-
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Iters Init Training Base encoding Total R@1

COMPQ (C++) 250 – – – 38 h 0.352
LSQ (Julia, C++) 25 2.6 m 6.34 m 5.8 m (32 iters) 15.2 m 0.340
LSQ (Julia, CUDA) 25 1.1 m 2.8 m 29 s (32 iters) 4.4 m 0.340

SR-D (Julia, CUDA) 25 1.1 m 33 s 29 s (32 iters) 2.1 m 0.346
SR-D (Julia, CUDA) 50 2.2 m 1.1 m 58 s (64 iters) 4.3 m 0.348
SR-D (Julia, CUDA) 100 4.4 m 2.2 m 1.9 m (128 iters) 8.5 m 0.351
SR-D (Julia, CUDA) 100 4.4 m 2.2 m 3.9 m (256 iters) 10.5 m 0.353

Table 4.7: Comparison between CompQ, LSQ and LSQ++ on SIFT1M using
64 bits.

tation for accuracy), and bring the difference in recall to 0.001 with 100 training

iterations and 128 Base encoding ILS iterations. Doubling the budget of this final

step puts our method above CompQ by 0.001 in recall@1. Even under these cir-

cumstances, SR-D is 200× faster than COMPQ. Finally, we note that, since COMPQ

is based on SGD with a batch size of one, it is unlikely to benefit from the parallel

architectures found in modern GPUs, so the gap in speed with our method is not

easy to close.

4.5 Conclusions and future work
We have introduced two stochastic relaxation methods for MCQ that provide inex-

pensive approximations to simulated annealing. The methods consistently improve

upon the state of the art, without requiring extra computation. We have also intro-

duced a method for fast codebook update that results in faster training in MCQ.

Both our improvements can be used as out-of-the-box improvements on top of

LSQ, and define a new state of the art in Multi-codebook quantization (MCQ).

It is intuitively appealing to think of Stochastic eelaxation (SR) as an approx-

imation to Simulated annealing, and it would be interesting to further investigate

this theoretically. In particular, we have noticed that the noise introduced in SR re-

sults in a perturbation of the parameters that define the encoding Markov Random

Fields, which suggests a connection between our method and the perturb-and-MAP

framework of Papandreou and Yuille (2011). Exploring this theoretical connection
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is an interesting area of future work.

Finally, we note that while the bottleneck of our method now lies in updating

the codes, for Composite quantization (CQ) (Zhang et al., 2014), the computational

burden is in the codebook update step. Future improvements to CQ may focus on

using recent efficient optimizers for large-scale continuous problems, such as the

stochastic average gradient (Schmidt et al., 2017).
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Chapter 5

Automatic hyperparameter
optimization of MCQ algorithms

I think my spaceship knows which way to go
—David Bowie

The most computationally challenging part of multi-codebook quantization

(MCQ) optimization is the encoding step, which amounts to maximum-a-posteriori

(MAP) estimation of multiple fully-connected Markov random fields (MRFs). In

Chapter 3, we introduced a method based on iterated local search (ILS) for this

problem. We have also introduced a graphics processor unit (GPU) implementation

of our encoding algorithm, which reduces the encoding time in practice.

In Chapter 4, we also introduced a method for codebook update which is orders

of magnitude more efficient than conjugate gradient methods. Together with our

GPU encoding implementation, these contributions greatly reduce training time in

MCQ. We further introduced a simple modification to our algorithm that adds noise

to either the data or the codebooks, according to a pre-defined schedule, resulting

in improved results.

The algorithms introduced in Chapters 3 and 4 have a number of hyperparam-

eters that control their behaviour and affect the quality of the optimization. Exam-

ples of these hyperparameters include the number of iterations in ILS, the number

of iterated conditional modes (ICM) iterations, and the formula of the temperature
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decay, which is itself parameterized by a scalar that controls the decay speed. So

far, we have set all the hyperparameters to the same values in all our experiments,

tunning their values from exhaustive search in a small search range. Thus, the per-

formance attained by our algorithms demonstrates their robustness across a range

of different input distributions including raw images, handcrafted image features

and features learned by deep convolutional neural networks. This robustness is

important to make our algorithms available to a large user base, and gives em-

pirical evidence on the performance of the algorithm as out-of-the-box tools for

large-scale MCQ.

However, one of our main use cases of interest is the preprocessing of very

large-scale datasets (with n ≥ 109 vectors) for fast approximate nearest neigh-

bour search (ANNS). In this case, it is reasonable for a practitioner to spend

time finding a set of hyperparameters that work best on the distribution of interest.

This dataset-specific hyperparameter tuning is already commonplace in algorithms

that perform short-listing on very large datasets such as the Inverted File (Jégou

et al., 2011) and the inverted multi-index (Babenko and Lempitsky, 2012). Im-

portantly, Matsui et al. (2015) found that the hyperparameters of these large-scale

indices have a large influence in their performance, which motivated them to de-

velop the PQTable (Matsui et al., 2015), a hyperparameter-free data structure for

large-scale indexing.

Similarly, previous MCQ algorithms such as composite quantization (CQ) and

sparse composite quantization (SCQ) (Zhang et al., 2014, 2015), require the setting

of several hyperparameters, and we have learned, after inspecting the experimental

source code, that the performance reported in their respective publications was

attained after setting these hyperparameters to different values for each dataset –

a detail that is unfortunately missing in the publications. Therefore, performing

dataset-specific hyperparameter optimization of our algorithms also amounts to

benchmarking on equal grounds with previous work.

In this chapter, we explore the use of meta-algorithms for automatic hyperpa-

rameter tuning, and apply them to MCQ. Our goal is to discover the performance

potential of our algorithms when they are adapted to specific input domains.
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5.1 Background and related work
Machine learning algorithms typically have both parameters and hyperparameters.

The parameters of the model are the set of values that are found by an optimization

algorithm, while the hyperparameters are values that control either the space and

size of the model, or the behaviour of said optimization algorithm.

For example, in a deep neural network, the parameters include the weights

of each layer, such as the convolutional filters or linear transformations, which

are typically learned via Stochatic gradient descent (SGD). The hyperparameters

include the architecture of the network itself, the learning rate of SGD and the

method for weight initialization.

Automatic hyperparameter optimization

Since hyperparameters are not typically optimized by an automated algorithm, it is

common for researchers to set the hyperparameters of an algorithm “by hand”; that

is, by trial and error on a small set of values, or by grid search (exhaustive com-

binatorial enumeration over a predefined range). Prominent deep learning tech-

niques (Krizhevsky et al., 2012; Sutskever et al., 2014) owe their success, at least

partially, to the finding of a set of hyperparameters that are stable enough such that

manual hyperparameter tuning does not constitute a barrier to achieve state-of-the-

art results on a number of benchmarks.

In contrast, automatic hyperparameter optimization techniques (Bergstra et al.,

2011; Hutter et al., 2007, 2011; Snoek et al., 2012) aim to replace the hand tuning of

hyperparameters with more principled algorithms that, given a fixed computational

budget, trade-off exploitation and exploration to find the best hyperpameters for the

task at hand.

Most methods for hyperparameter optimization are based on black-box opti-

mization; i.e., they have no access to the details of the function (or algorithm) that

they are trying to optimize, other than the function output for a given set of (hyper)

parameters. Some methods thus internally model the optimization landscape using

different underlying assumptions, or use simple heuristics to probe the hyperpa-

rameter space.
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ParamILS

Hutter et al. (2007) treat the hyperpameters of an algorithm as parameters to opti-

mize in an iterated local search (ILS) framework. Given an initial hyperparameter

configuration, ParamILS iteratively changes a single parameter (i.e., considers the

one-exchange neighbourhood), and uses iterative first improvement as a surrogate

local search procedure. The new solution (set of hyperparameters) is accepted if it

yields better or equally good results. After each iteration, the search is randomly

restarted from scratch with a small probability. Hutter et al. demonstrate good

results optimizing Boolean satisfiability (SAT) solvers and randomly generated bi-

nary Bayesian networks.

SMAC

Hutter et al. (2011) introduce Sequential model-based optimization for algorithm

configuration (SMAC), which uses a random forest to predict expected hyperparam-

eter performance. Sequentail model-based optimization, often known as “Bayesian

optimization” in the machine learning literature (Brochu et al., 2010), often uses

Gaussian processes to model the optimization landscape. Using random forests

instead of Gaussian processes allows a more elegant approach to deal with integer

and categorical parameters, and provides a natural way to quantify uncertainty in

the estimation. The authors demonstrate performance on par with or superior to

ParamILS on multi-instance algorithm configuration as applied to distributions of

Boolean satisfiability (SAT) problems, and to configure a commercial mixed integer

programming solver.

Hyperopt

Bergstra et al. (2011) introduce Hyperopt, a software package that instead of mod-

elling the performance of an algorithm given its hyperparameters, models the prob-

ability that the performance lies between a fixed quantile of the losses observed so

far. These quantiles are in turn modeled with a Tree Parzen estimator, which also

allows for efficient closed-form interpolation of expected hyperparameter perfor-

mance.
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Spearmint

Snoek et al. (2012) implement Bayesian optimization to sequentially train machine

learning models under different hyperparameters. Spearmint assumes that the out-

puts of the unknown function (the performance of the machine learning model)

correspond to samples from a Gaussian process. Thus, it is possible to estimate

a posterior of the parameter distribution and, thanks to the Gaussian assumption,

finding the maximum of the surrogate function is tractable.

5.1.1 Choosing a hyperparameter optimizer

Eggensperger et al. (2013) perform a head-to-head empirical comparison between

SMAC, Hyperopt, and Spearmint on a series of benchmarks including MNIST clas-

sification (LeCun et al., 1998), online latent Dirichlet allocation (Blei et al., 2003)

for Wikipedia articles, neural networks, and the Auto-Weka framework (Thornton

et al., 2013). For a fixed running time or number of function evaluations, SMAC

found better results than its competitors in 12 out of 15 scenarios. Based on this

empirical evidence, we have decided to use SMAC for our experiments.

5.2 Experimental setup
We automatically optimize the hyperparameters of our algorithms using a Python

implementation of SMAC, which calls our own routines implemented in Julia. After

multiple iterations, SMAC returns the best hyperparameter configuration it found

(also called the “incumbent” configuration), and the mean value that its internal

model predicts for the best configuration.

We list the parameters that we expose to SMAC in Table 5.1. We also enforce a

similar running time across different hyperparameter configurations by setting the

number of ICM iterations to b32/Number of ILS iterationsc (since in the default

configuration b32/8c = 4 ICM iterations). We let SMAC test 200 hyperparameter

configurations in total, and we add the constraints that the Temperature schedule

and the Temperature decay should only be set when either SR-C or SR-D are cho-

sen as the Stochastic eelaxation (SR) method. We initialize the codes B and the

codebooks C with Optimized product quantization (OPQ) followed by Optimized

tree quantization (OTQ). Finally, we perform 25 alternating updates of the codes B
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Hyperparameter Type Domain Default

Number of ILS iterations Integer {1,2,3, . . . 16} 8
Number of codebooks to perturb Integer {0,1,2, . . . m} 4
Randomize the ICM codebook order Boolean [true, false] true
SR method Categorical {LSQ, SR-D, SR-C} SR-D

Temperature schedule (Eq. 4.7-4.9) Categorical {1st, 2nd, 3rd} 1st
Temperature decay Continuous [0,1] 0.5

Table 5.1: MCQ hyperparameters optimized by SMAC; m corresponds to the
number of codebooks (7 or 15, depending on the memory budget). The
default values correspond to the configuration that we have used in all
our experiments so far.

and the codebooks C.

For datasets with train/query/base partitions, we encode the base set with the

same number of ILS iterations as given by SMAC, and set the total number of ICM

iterations to b128/Number of ILS iterationsc. This computational budget is similar

to that used for the results reported in Chapter 3.

5.3 Results
For each dataset, we report the best configuration found by SMAC. We then run

this configuration 10 times, and report the obtained recall@1. If under this sce-

nario the new configuration is consistently better than the default configuration,

we also increase the computational budget to 100 updates of B and C, and, for

train/query/base datasets, encode the base set for b128/Number of ILS iterationsc
ICM iterations, which roughly corresponds to computational budget of the results

reported in Chapter 4.

Configurations found by SMAC

We show the configurations obtained by SMAC in Table 5.2.

We note that SMAC always chooses to perturb at least one code, which is in

line with our finding from Chapter 3 that adding perturbations to the local search

routine is necessary to escape local minima. SMAC also always prefers SR-D or
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LabelMe MNIST
Hyperparameter 64 bits 128 bits 64 bits 128 bits

Number of ILS iterations 9 8 9 8
Number of codebooks to perturb 1 4 5 4
Randomize the ICM codebook order true true false false
SR method SR-D SR-D SR-D SR-D

Temperature schedule (Eq. 4.7-4.9) 1st 1st 1st 1st
Temperature decay 0.43 0.5 0.19 0.83

SIFT1M Deep1M VGG
Hyperparameter 64 bits 128 bits 64 bits 128 bits 64 bits 128 bits

Number of ILS iterations 8 7 8 15 8 10
Number of codebooks to perturb 4 2 4 2 4 5
Randomize the ICM codebook order true true true true true false
SR method SR-D SR-D SR-D SR-C SR-C SR-C

Temperature schedule (Eq. 4.7-4.9) 1st 1st 1st 1st 1st 1st
Temperature decay 0.65 0.19 0.5 0.95 0.71 0.94

Table 5.2: MCQ hyperparameters obtained by SMAC on query/base datasets
(top) and train/query/base datasets (bottom).

SR-C over LSQ, which confirms our intuition from Chapter 4 that SR is always

better than plain LSQ. Finally, SMAC also suggests the use of Schedule 1 (Eq 4.7)

over the other temperature decay options; this is in line with our own findings, and

those of Zeger et al. (1992).

Other parameter settings are more surprising. For example, SMAC has dropped

the randomization of ICM on MNIST, both for 64 and 128 bits, and for VGG with

128 bits. The temperature decay is also more pronounced (p> 0.9) on the Deep1M

and VGG datasets. Finally, there is ample variety in the number of ILS iterations

including {7,8,9,10,15}, as well as in the number of codes to perturb: {1,2,4,5}.

Testing the new configurations

We show the results obtained by the SMAC configurations and LSQ, SR-D and SR-C

in Tables 5.3, 5.4, 5.5, 5.6, and 5.7. We omit values for SMAC when it did not

suggest a different configuration from the default one.

On MNIST (Table 5.3) at 64 bits, the configuration found by SMAC obtains

a 1% absolute improvement over the previous best results obtained by SR-D. We
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MNIST – 64 bits MNIST – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

25
up

da
te

s LSQ-8 41.88±0.28 93.60±0.20 99.99±0.01 63.26±0.41 82.12±0.50 96.28±0.20
SR-D-8 42.30±0.33 93.74±0.15 99.99±0.01 63.65±0.28 82.41±0.32 96.41±0.20
SR-C-8 41.80±0.36 93.55±0.27 99.99±0.01 61.36±0.27 80.43±0.24 95.48±0.21

SMAC 43.62±0.41 94.36±0.14 100.00±0.01 64.09±0.29 82.81±0.23 96.61±0.20

10
0

up
da

te
s LSQ-8 42.38±0.49 93.82±0.17 99.99±0.01 64.93±0.40 83.60±0.35 96.91±0.13

SR-D-8 42.90±0.34 93.83±0.27 99.99±0.01 65.67±0.31 84.33±0.21 97.15±0.09
SR-C-8 42.26±0.26 93.53±0.28 99.99±0.01 61.18±0.38 80.26±0.32 95.33±0.20

SMAC 45.28±0.53 95.31±0.22 100.00±0.01 65.81±0.39 84.49±0.17 97.21±0.13

Table 5.3: Detailed recall@N values on the MNIST dataset.

further investigate this result by running the configuration for 100 iterations – the

computational budget of the results presented in Chapter 4. This leads to a total

improvement of 2.38% (absolute) on this dataset, which defines a new state of the

art. At 128 bits, the improvements are smaller – between 0 and 1% – yet consistent.

On the remaining datasets, the configurations obtained by SMAC do not consis-

tently improve upon the default baseline. This suggests that the internal model of

SMAC may have modelled noise in recall@N as an improvement.

LabelMe – 64 bits LabelMe – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

25
up

da
te

s LSQ-8 35.66±0.71 84.32±0.76 99.76±0.09 53.73±0.64 72.05±0.49 89.81±0.38
SR-D-8 36.64±0.69 85.23±0.56 99.78±0.09 54.51±0.86 72.78±0.92 90.70±0.67
SR-C-8 34.04±1.67 82.15±0.86 99.54±0.12 44.54±0.90 60.91±1.23 81.38±1.17

SMAC 36.40±0.94 85.16±0.49 99.80±0.11 – – –

Table 5.4: Detailed recall@N values on the LabelMe dataset.

SIFT1M – 64 bits SIFT1M – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

25
up

da
te

s LSQ-32 29.42±0.34 72.43±0.43 97.36±0.17 55.15±0.34 72.14±0.43 88.86±0.29
SR-D-32 29.98±0.36 72.87±0.33 97.47±0.15 54.96±0.64 72.05±0.49 88.98±0.17
SR-C-32 29.55±0.45 72.89±0.41 97.40±0.18 52.24±0.47 69.15±0.28 86.56±0.21

SMAC 29.73±0.19 72.96±0.31 97.43±0.12 55.11±0.30 72.30±0.34 88.94±0.24

Table 5.5: Detailed recall@N values on the SIFT1M dataset.
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Deep1M – 64 bits Deep1M – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

25
up

da
te

s LSQ-32 21.11±0.17 63.56±0.49 94.81±0.16 39.24±0.49 55.48±0.49 76.04±0.34
SR-D-32 21.33±0.43 63.94±0.30 95.02±0.21 39.88±0.48 56.33±0.44 76.76±0.45
SR-C-32 21.43±0.22 64.31±0.48 95.15±0.21 40.07±0.33 56.41±0.37 77.02±0.39

SMAC – – – 40.02±0.43 56.65±0.46 76.80±0.30

Table 5.6: Detailed recall@N values on the Deep1M dataset.

VGG – 64 bits VGG – 128 bits

R@1 R@10 R@100 R@1 R@2 R@5

25
up

da
te

s LSQ-32 17.63±0.33 59.22±0.48 95.85±0.14 38.43±0.55 54.91±0.37 76.26±0.44
SRD-32 18.52±0.38 60.86±0.45 96.60±0.26 39.19±0.38 55.95±0.34 76.84±0.36
SRC-32 18.56±0.43 61.16±0.48 96.63±0.25 42.13±0.32 59.47±0.34 80.81±0.46

SMAC 18.33±0.24 60.82±0.45 96.65±0.18 41.42±0.38 58.48±0.59 79.75±0.46

Table 5.7: Detailed recall@N values on the VGG dataset.

5.4 Conclusions and future work
We have experimented with an automatic approach to algorithm configuration for MCQ.

Using this method, we have found a new state-of-the-art configuration on MNIST,

a dataset of raw images, but otherwise have obtained no improvement over the

algorithm configuration that we had found by hand.

Our experiments were rather small-scale, as we were able to run them in less

than a week on a standalone desktop with a single GPU. Future work may explore

broader configurations (for example, including the OPQ initialization), or may let

the optimization run for more iterative updates in each function probe.
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Chapter 6

Deep stochastic local search:
learning SLS perturbations with
deep reinforcement learning

I stopped my dreaming
I won’t do too much scheming these days

—Nico

In Chapter 3, we introduced a method based on iterated local search (ILS) for

the encoding step of multi-codebook quantization (MCQ). Our encoding method is

based on principles from stochastic local search (SLS) (Hoos and Stützle, 2004), a

family of techniques based on random perturbations and iterative search known to

work well for various NP-hard problems.

Drawing inspiration from general principles and designing new algorithms for

specific problems is a typical approach to algorithm design. Doing so allows us to

transfer knowledge across research fields, and gives us intuitive guiding principles

to rely on during the design process.

An appealing alternative, however, is to avoid designing the encoding algo-

rithm altogether, and instead learn a function that maps vectors to their assignments

in a series of codebooks. Since the encoding problem is equivalent to maximum-

a-posteriori (MAP) estimation in fully-connected Markov random fields (MRFs),
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finding the optimal solution – even in a small set of vectors – is likely to be com-

putationally demanding. In other words, acquiring labels (or “ground truth”) to

supervise the learning of an encoding function is inherently hard. Reinforcement

learning (RL) (Sutton and Barto, 1998) provides a framework to learn functions

without supervision, as long as we can provide a “reward” function.

However, learning an encoding function from scratch may prove too difficult

with limited computation – MAP estimation is, after all, an NP-hard problem to

which the research community has devoted many years of research. The same

community has, at the same time, developed useful guiding algorithmic principles

such as SLS. In this chapter, we ask: is there a way in which we can combine the

power of SLS algorithms and reinforcement learning? We explore answers to this

question in the context of learning algorithms for MCQ encoding.

6.1 Related work
Reinforcement learning (RL) is a classical subfield of artificial intelligence, distinct

from the more common supervised learning in that RL can be used when no labels

are available. The most prominent reference in the subject is the book by Sutton

and Barto (1998).

In the most common setup, we have both an environment and an agent. For-

mally, the environment is modelled as a set of states s ∈ S, and the agent may

perform a set of actions a ∈ A. The environment evolves stochastically, depend-

ing on both the current state and the action that the agent takes, which under a

Markovian assumption can be fully described with a transition probability matrix

P(s′ | s,a). Associated with each state-action pair, there is a (potentially latent)

reward R : S×A→R that the agent obtains after each action. The goal is to learn a

distribution over actions given the state (a.k.a. a “policy”) π(a | s) that maximizes

reward over a series of actions.

6.1.1 Stochastic local search (SLS)

Stochastic local search (SLS) (Hoos and Stützle, 2004) defines a family of meth-

ods that alternate between searching the neighbourhood of a solution and stochas-

tically perturbing the solution to escape local minima. Prominent examples of
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SLS algorithms include Markov Chain Monte Carlo (MCMC), Simulated Anneal-

ing (which we used in Chapter 4) and Iterated local search (ILS) (Lourenço et al.,

2003), (which we used in Chapter 3).

A commonality of SLS algorithms is that they all, at some point in the search

process, sample from a distribution to perturb the current solution. In many cases,

this distribution is either uniform, or otherwise amenable to parameterization and

manipulation, such as a conjugate prior. We note that this distribution could instead

be learned using, for example, a neural network. Furthermore, in a deep RL setting,

this distribution could be seen as a “policy”, and a pre-designed SLS algorithm

could be seen as the “environment”. This effectively allows us to leverage prior

knowledge from SLS algorithms, incorporating an automatic learning component.

6.1.2 Deep reinforcement learning

RL provides a very general formulation that can in principle be applied to a wide

range of problems. Classically, the agent would perceive the world via a set of

handcrafted features. These features, however, have recently been replaced by deep

neural networks that can be trained end-to-end for the task at hand. The intersection

between deep learning and RL is often called “deep reinforcement learning” (or

deep RL), and is our main subject of study in this chapter. Prominent breakthroughs

of deep RL include attaining human-level performance in Atari games (Mnih et al.,

2015), and superhuman performance in chess and the game of Go (Silver et al.,

2017).

Since deep neural networks are typically trained with stochastic gradient de-

scent (SGD) and the agent often makes a discrete action in the environment, a large

body of work in deep RL focuses on methods to approximate gradients to train neu-

ral networks in discrete settings (Bengio et al., 2013; Sutton et al., 2000; Williams,

1992).

Visual attention

In modern convolutional neural networks (CNNs), the computational cost of pro-

cessing an image is proportional to the image resolution. However, in tasks such

as classification, the object of interest is often located in a relatively small part of
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the image. Moreover, in tasks such as image captioning, where the model predicts

one word at a time, it is common for different words to refer to different objects

in the image. Xu et al. (2015) model the visual processing in image captioning

as a convolutional network, and predict words using an Long Short-Term Memory

unit (LSTM) (Hochreiter and Schmidhuber, 1997). To model visual attention, the

LSTM selects a square region in the image at each prediction timestep. Since se-

lecting a single region of an image is a non-differentiable operation, the authors use

the REINFORCE algorithm (Williams, 1992) with multiple samples to estimate the

gradient for backpropagation.

Optimizing language metrics

Rennie et al. (2017) notice that most metrics of language prediction, often bor-

rowed for image captioning, are non-differentiable, and thus models are often

trained on surrogate losses such as cross entropy. To bridge this gap between ob-

jectives, the authors use self-critical learning, a variant of the REINFORCE algo-

rithm where the magnitude of the gradient is normalized with respect to the current

prediction of the model, instead of a randomly sampled baseline. Crucially, the au-

thors pre-train their models with a cross-entropy loss, and after supervised training

plateaus they switch to RL training.

Superoptimizing programs

Bunel et al. (2017) apply deep RL to learn high-performance assembly programs

for problems from the “hacker’s delight” microbenchmarks (Warren, 2013). The

authors define the reward function as a linear combination of speed and correctness

over a large collection of unit tests. The neural network takes as input a bag-of-

words representation of the output of the GCC compiler, and as output predicts a

change to a candidate program. After multiple iterations and proposals, the final

program obtained by the network is the output of the algorithm. This is very similar

to a Monte-Carlo search, where the proposals are guided by the policy that the

network learns. In RL terms, the space of programs is the set of states S, the actions

A are changes to the current program, and the policy is the distribution over changes

that the network proposes.
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6.2 Problem formulation
Although the MCQ formulation contains two latent variables (the codebooks C and

the codes B), we remind the reader that updating C is fairly easy; as in Chapter 4,

we demonstrated that this can be done in less than a second for up to one million

vectors. The main challenge lies in updating the codes B. For this reason, we

assume that the codebooks are given in our formulation, and focus on learning a

function

f ∗ = min f
1
n

n

∑
i=1

L ( f (xi,θ),C) , (6.1)

where L is a loss function, and f has two main components:

1. A neural network with learnable parameters θ that predicts a series of distri-

butions over codes f (x,θ)→ p(b̂|x,θ). Since these are probability distribu-

tions, their components sum to one: ∑
h
k=1 b̂ j,k = 1 for all j.

2. An SLS-based method that uses these distributions in the perturbation step,

and produces a final set of codes [b1,b2, . . . ,bm]. The intuition is that these

distributions should be learned such that they accelerate the finding of good

solutions by SLS algorithms. For this reason, we refer to our approach as

deep stochastic local search.

In our case, we experiment with several architectures for the first part of the

function, and for the SLS method we use the encoding algorithm based on ILS with

ICM encoding that we introduced in Chapter 3. The loss function – its negative

being the reward – is simply the quantization error obtained by stochatic local

search after using the proposed distributions and running for a number of iterations:

L ( f (xi,θ),C) = ‖x−∑
m
j C j ·b j‖2

2.

6.3 Experimental setup
In our setup, we assume that a set of codebooks fully determines the set of states

s ∈ S, as they define the unary and binary terms of the MRF. An action a is the

prediction of a distribution over the set of codes, which our SLS algorithm samples

from to compute quantization error – the negative of the “reward” R(s,a). The
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objective is to learn to predict a sampling distribution given the states – a “policy”

π(a | s) that the SLS algorithm can use to obtain good results faster than with a

uniform distribution, as is typically used in SLS.

Datasets

We experiment on the train/query/base datasets that we used in Chapters 3 and 4:

SIFT1M, VGG and Deep1M. We explicitly avoid query/base datasets such as La-

belMe and MNIST because they lack a separate training partition. We learn our

functions on the training sets, and test for generalization on the base set. Our goal

is to improve recall@N for a fixed computational encoding budget.

Network designs

We experimented with three main network architecture:

1. An early fusion network, which has a small set of shared parameters be-

fore branching off to predict each codebook independently. The network is

depicted in Figure 6.1 (a).

2. A late fusion network, which shares most of the parameters and branches off

late to predict each codebook. This network is depicted in Figure 6.1 (b).

3. A recurrent neural network, which predicts each code sequentially, depicted

in Figure 6.2.

Our feed-forward architectures are based on the bilinear block, a computation-

ally efficient building block that has recently achieved state-of-the-art performance

on 3d human pose estimation (Martinez et al., 2017b). Similarly, our recurrent ar-

chitecture is based on a residual block that has shown state of the art performance

on human motion prediction (Martinez et al., 2017a).

Training

We train our networks approximating the gradient with 32 runs of LSQ, and let

each episode run for 8 ILS iterations. We experimented with both self-critical

learning (Rennie et al., 2017) (i.e., using the current prediction of the model to
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Figure 6.1: (a) Architecture with early fusion. (b) Architecture with late fu-
sion.
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Figure 6.2: Recurrent architecture.
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normalize the reward) and a random sampling baseline (as is common in RL), and

found no difference in performance. We also experimented with the three archi-

tectures mentioned above, and obtained the best performance with the early fusion

model.

We implemented our networks on Tensorflow (Abadi et al., 2016), and trained

them for 4 epochs with Adam (Kingma and Ba, 2014), and a learning rate of 0.001

and a linear decay of 0.99 – this takes around one day of computation, and these

parameters have shown good results on similar setups (Martinez et al., 2017b).

6.4 Results
Since we are interested in accelerating the optimization speed of LSQ encoding,

we compare vanilla LSQ, SR-D and SR-C (that is, the methods sampling from uni-

form distributions), vs the same methods sampling from learned distributions. The

results for our main network are shown on Figure 6.3.

We observe that learning a sampling distribution barely makes a difference in

most cases. The only exception is on the VGG dataset at 128 bits, where SR-C with

a uniform distribution has a poor start, and catches up with other methods at 16 ILS

iterations to finally outperform the rest of the baselines by rougly 0.05 in recall. In

this case, learning a sampling distribution accelerates convergence during the first

16 iterations, but progress is roughly equal after 32 iterations.

6.5 Conclusions and future work
We have shown our attempts to learn encoding functions for MCQ combining

Stochastic local search (SLS) with deep reinforcement learning. We have described

the learning algorithms and network architectures that we used, an discussed the

limitations of our approach. In particular, the functions that our models learned did

not noticeably improve upon an SLS baseline with a uniform (not learned) distri-

bution in most cases, and never did so after 16 ILS iterations.

Multiple reasons could be to responsible for the shortcomings of our approach

in experimental performance. For once, MAP estimation might simply be a hard

problem for a neural network to solve, as we are not aware of deep RL outper-

forming classical algorithms in similar scenarios. Another explanation might be
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Figure 6.3: Recall@1 as a function of ILS iterations on the SIFT1M, VGG
and Deep1M datasets. The methods with “RL” are using learned sam-
pling distributions, while those without “RL” correspond to the methods
introduced in Chapters 3 and 4 (ie, using a uniform distribution for per-
turbation sampling).

that we simply need larger models and more computation to robustly learn sam-

pling distributions; after all, recent breakthroughs in deep RL (Mnih et al., 2015;

Silver et al., 2017) have used several orders of magnitude more computation than

is currently available to us. Revisiting these approaches in the future, with more

available compute cycles and more robust deep RL algorithms, is an interesting

area of future work.
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Chapter 7

Rayuela.jl: A package for
large-scale similarity search

The paramedic thinks I’m clever cause I play guitar
I think she’s clever cause she stops people dying

—Courtney Barnett

Together with this thesis we are releasing Rayuela.jl, a software package for

large-scale similarity search written in Julia (Bezanson et al., 2014). Rayuela.jl

is available under an MIT licence, and can be downloaded at https://github.com/

una-dinosauria/Rayuela.jl. Multiple motivations led us to develop our library:

• As an approximate nearest neighbour search (ANNS) tool. In practice,

approximate nearest neighbour search (ANNS) is rarely a problem of interest

by itself. In other words, ANNS typically arises as a subproblem of other task

such as large-scale retrieval or classification. We want to release a library that

developers can use to tackle large-scale ANNS problems that they run into,

therefore maximizing the impact of our research.

• As a free alternative to FAISS. Facebook AI Similarity Search (FAISS) (John-

son et al., 2017) is another library that implements multiple MCQ baselines.

Unfortunately, FAISS currently implements only orthogonal MCQ methods.

Furthermore, FAISS is distributed under a BSD + Patents licence, which
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includes strong patent retaliation terms. This licence has been explicitly

disavowed by the Apache Software Foundation1, which prompted multiple

open source software projects to stop using React.js, a popular javascript

library written by Facebook. In September 2017, Facebook changed the

licence of React.js and other of their projects to MIT, but to date has not

changed the licence of FAISS.

• For scientific reproducibility. We also want to provide a free codebase

where known MCQ baselines can be reproduced, and reference implementa-

tions can be freely consulted. This has the side effect of making our research

reproducible, which is unfortunately not common in this field (yet).

• To test Julia’s capabilities. Julia is a nascent programming language that

is emerging as an alternative to Python and Matlab in scientific computing.

Writing our implementations in Julia serves as a use-case from which we

derived insights into the advantages and limitations of this new language.

There are multiple benefits of reproducible research beyond ensuring the in-

tegrity of publicly funded research. We find the following note by Donoho (2010)

particularly eloquent:

In my own experience, error is ubiquitous in scientific computing, and

one needs to work very diligently and energetically to eliminate it.

One needs a very clear idea of what has been done in order to know

where to look for likely sources of error. I often cannot really be sure

what a student or colleague has done from [their] own presentation,

and in fact often [their] description does not agree with my own un-

derstanding of what has been done, once I look carefully at the scripts.

Actually, I find that researchers quite generally forget what they have

done and misrepresent their computations.

Computing results are now being presented in a very loose, breezy

way in journal articles, in conferences, and in books. All too often one

simply takes computations at face value. This is spectacularly against

1https://github.com/facebook/react/issues/10191

89

https://github.com/facebook/react/issues/10191


the evidence of my own experience. I would much rather that at talks

and in referee reports, the possibility of such error were seriously ex-

amined.

In the following, we describe the functionality implemented in Rayuela.jl. We

then describe some of the strengths and downsides of Julia as our programming

language of choice, and finally discuss future work that we would like to see im-

plemented in Rayuela.jl.

7.1 Functionality
The largest effort, parallel to ours, to reproduce MCQ baselines is currently the

Facebook AI Similarity Search (FAISS) library (Johnson et al., 2017). However,

FAISS currently does not implement any non-orthogonal MCQ methods – Rayuela.jl

fills this gap in reproducible research. In Table 7.1 we list a number of MCQ algo-

rithms, whether the authors released code with their paper, whether the algorithm

is implemented in FAISS, and whether it is implemented in Rayuela.jl. Overall,

Rayuela implements seven MCQ methods that FAISS does not currently provide.

Rayuela.jl, like FAISS, includes GPU-accelerated versions of the most computationally-

expensive algorithms that it implements. In our case, we provide CUDA imple-

mentations of LSQ and SR (both introduced in this thesis), and OTQ (Babenko and

Lempitsky, 2015).

7.2 Strengths
The main motivation behind developing Julia as a language for scientific com-

puting is that languages such as R, Python and Matlab are interpreted, not com-

piled. While interpreters are good for rapid prototyping, they are often not good

at generating efficient low-level instructions. In practice, this means that users

rely on libraries written in C (such as Numpy), and often have to write their own

performance-critical routines in lower-level languages to achieve satisfactory run-

ning times. This issue is commonly known as the “two language problem”. Julia

leverages the Low Level Virtual Machine (LLVM) compiler infrastructure with a

strong type system, which allows it to produce highly efficient machine code. This,
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Name (Reference) Abbr. Code FAISS (GPU) Rayuela (GPU)

Orthogonal methods

Transform coding (Brandt, 2010) TC

Expectation-based coding (Sandhawalia and Jégou, 2010) –
Product quantization (Jégou et al., 2009, 2011) PQ Matlab, C X(X) X
Optimized product quantization (Ge et al., 2014) OPQ Matlab X(X) X
Cartesian k-means (Norouzi and Fleet, 2013) CKM Matlab, C++ X(X) X
Polysemous codes (Douze et al., 2016) – C++ X

Semi-orthogonal methods

Composite quantization (Zhang et al., 2014) CQ MSVC C++
Optimized tree quantization (Babenko and Lempitsky, 2015) OTQ X(X)
Optimized Cartesian k-means (Wang et al., 2014) OCKM

Non-orthogonal methods

Residual vector quantization (Chen et al., 2010) RVQ X
Enhanced residual vector quantization (Ai et al., 2014, 2017) ERVQ X
Additive quantization (Babenko and Lempitsky, 2014a) AQ Python
Stacked quantizers (Martinez et al., 2014) SQ Matlab, C++ X
Self-organizing binary encoding (Ozan et al., 2016c) SOBE

Joint k-means quantization (Ozan et al., 2016b) JKM

Competitive quantization (Ozan et al., 2016a) COMPQ X
Pyramid additive quantization (Muravev et al., 2017) –
Fast additive quantization (Li et al., 2017) –
Local search quantization (This thesis) LSQ Julia, CUDA X(X)
Stochastic eelaxations (This thesis) SR Julia, CUDA X(X)

Table 7.1: Summary of MCQ methods and their implementations

in theory, allows users to write their entire codebases in Julia, without having to re-

sort to lower-level languages.

In our experience, Julia delivers on this promise. While we provide C++ im-

plementations of both LSQ and OTQ encoding, we note that the Julia version of LSQ

is only 1.5-2× slower than the C++ version, and the Julia version of OTQ encoding

is in fact faster and more memory-efficient than the C++ version.

7.3 Challenges and limitations
Most drawbacks of Julia as a language are performance issues. Before the Ju-

lia 1.0 release, language developers have been focused on implementing language

features, and some routines are lacking in speed with respect to their C/C++ coun-
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terparts. We explain some instances and consequences of these drawbacks in detail.

MCQ search code: slow sorting and (lack of) multithreading

The search code takes a query vector q and computes distance tables with respect

to the codebooks C. It then uses table lookups to compute approximate distances

to the compressed database vectors B and, at the end, partially sorts the distances

to produce a final ranking of the top k neighbours. Our search code is currently

written in C++. The two main reasons for this are (1) that sorting in Julia is slow,

and (2) that multithreading in Julia is not fully supported.

Slow sorting (issue #939) was first reported in 2012 and, to date, Julia’s perfor-

mance remains about 2× slower than its C++ counterpart.

Unfortunately, to this day multithreading is only supported as an experimen-

tal feature in Julia. Historically, this is due to LLVM (the compiler infrastruc-

ture that Julia uses) not originally supporting OpenMP. LLVM started supporting

OpenMP development in 2014, but by then Julia was a rather mature language,

conceived without parallelism at its core. Slow sorting and lack of multithreading

make our C++ implementation search code about 6× faster in C++ than in Julia,

so we choose to keep the C++ implementation in the code base for the time being.

ICM encoding: compiling Julia from source

Iterated conditional modes (ICM) with random perturbations is the core algorithm

inside Local search quantization (LSQ), introduced in Chapter 3. Since the algo-

rithm may run on up to billions of vectors, it was crucial for us to develop a fast

implementation. We have developed a CUDA implementation of this algorithm,

and we also provide a C++ implementation that is 1.5-2× faster than the Julia

baseline.

Unfortunately, running CUDA code in Julia currently requires the user to com-

pile Julia from source. This is sometimes non trivial and error-prone, and not ideal

from a usability perspective.
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7.4 Future work
Future work should address the limitation that we have described. Ideally, we

should be able to provide a package that is fully written in Julia, that offers multi-

threading support, and that has a speed comparable to a C implementation.

To the best of our knowledge, mulithreading will be officially supported in a

future version of Julia (1.x). When such support comes, we would like to use the

feature to eliminate the remaining the C++ code from our package.

Getting rid of sorting in search code

Since in ANNS the user often needs only a list of k nearest neighbours, we could

use a heap to keep track of the top k nearest neighbours at any given time, instead

of sorting them in the end. If the implementation of this data structure is efficient

enough, we may be able to bypass the slow sorting issue and eliminate the C++

search code.

Writing CUDA code in Julia

There is an interesting initiative to generate CUDA code from Julia called CUDA-

native.jl (Besard et al., 2017). CUDANative.jl implements currently only a subset

of CUDA functionality, but this might be enough to generate the LSQ and OTQ en-

coding routines that we currently provide in CUDA. The Julia 1.0 release should

drop the requirement for users to compile Julia from source.

More MCQ methods

We would like to implement other MCQ methods which, to this day, lack a pub-

lic implementation and are therefore hard to reproduce. The method by Guo

et al. (2016) runs k-means under the Mahalanobis distance to learn a compression

amenable to maximum inner product search (MIPS). Another interesting approach,

due to Wu et al. (2017), is based on Stochatic gradient descent and focuses on

distributions with large range of norms, such as those arising in inverted files. It

would be interesting to compare these two approaches with our current library to

empirically determine their performance against state-of-the-art MCQ approaches.
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7.5 Conclusion
We have introduced Rayuela.jl, a package for large-scale similarity search. Rayuela

fulfills our commitment to make our research accessible and reproducible, and fills

an important gap in reproducible research in the MCQ literature. We have also dis-

cussed the strengths and limitations of Julia as a programming language of choice,

and discussed future work that will make the package faster, more portable, and

easier to use.
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Chapter 8

Conclusion

Did I do okay?
Did I pave the way?

—Belle and Sebastian

In this thesis, we have introduced several improvements to algorithms that pro-

duce compact codes used in large-scale similarity search. In Chapter 3, we intro-

duced a method for fast encoding with better computation vs accuracy trade-offs

than its competitors. In Chapter 4, we added noise to either the codes or the code-

books with a decaying temperature schedule, resulting in improved solutions. We

also introduced a method for fast codebook update that exploits the structure of the

binary codes, resulting in shorter running times. These contributions make it more

appealing to use non-orthogonal codebooks in MCQ, as they drastically reduce the

computation-vs-accuracy trade-offs of current methods.

We have also used an automatic hyperparameter configuration tool (Hutter

et al., 2011) to adapt our algorithms to particular data distributions in Chapter 5.

This resulted in a new state of the art in a dataset of raw image digits (LeCun et al.,

1998). Finally, we also explored the use of deep reinforcement learning techniques

to learn sampling distributions for stochastic local search procedures in Chapter 6.

This, unfortunately, did not lead to noticeable improvements for most datasets.

The main limitation that we faced during the development of our work was,

largely, that it was very challenging for us to reproduce previous baselines. A sig-

nificant step towards reversing this trend, we are releasing an open source library
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that implements all our contributions and several MCQ baselines. Our implementa-

tion is detailed in Chapter 7.

Future work

We identify mainly three areas of future work in multi-codebook quatization (MCQ)

1. Improvements upon local-search quantization (LSQ), introduced in this work,

may focus on reducing the running time of the code update step, which is its

computational bottleneck. This means more research into algorithms for

large-scale combinatorial problems.

2. Improvements upon composite quantization (CQ) (Zhang et al., 2014) may

focus on reducing the running time of the codebook update step, which is

currently its bottleneck. Currently, the algorithm uses the L-BFGS (Nocedal,

1980) algorithm to solve a constrained optimization problem. Exploring the

use of recent algorithms for large-scale continuous optimization such as the

stochastic average gradient (Schmidt et al., 2017) may prove useful in this

case.

3. Finally, improvements upon competitive quantization (COMPQ) (Ozan et al.,

2016a) may focus on reducing the overall running time of this gradient-based

algorithm. With its gradient-based optimization, this algorithm is uniquely

situated to be incorporated in

An interesting direction of future research in MCQ lies in incorporating vector

compression into end-to-end trainable learning pipelines. The work by Jain et al.

(2018) is a first step in this direction that backpropagates quantization error to the

indexing structure. Their work, however, is technically based on hashing, as it

computes distances with Hamming codes and does not use codebooks. Klein and

Wolf (2017) explicitly learn codebooks and codes in a deep learning pipeline, thus

introducing the first fully-differentiable MCQ pipeline. Merging these two ideas

into a fully-differentiable, deeply-learned indexing structure is an interesting open

problem in the field.

96



Bibliography

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–283, 2016. → pages 21, 86

L. Ai, Y. Junqing, T. Guan, and Y. He. Efficient approximate nearest neighbor
search by optimized residual vector quantization. In Content-Based Multimedia
Indexing (CBMI), 12th International Workshop on, pages 1–4, 2014. → pages
15, 18, 38, 49, 60, 91

L. Ai, J. Yu, Z. Wu, Y. He, and T. Guan. Optimized residual vector quantization
for efficient approximate nearest neighbor search. Multimedia Systems, 23(2):
169–181, 2017. → pages 15, 18, 91

A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt. Practical and
optimal LSH for angular distance. In Advances in Neural Information
Processing Systems, pages 1225–1233, 2015. → pages 9
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H. Jain, J. Zepeda, P. Pérez, and R. Gribonval. Learning a complete image
indexing pipeline. Computer Vision and Pattern Recognition, pages
4933–4941, 2018. → pages 21, 96

101



M. Järvisalo, D. Le Berre, O. Roussel, and L. Simon. The international SAT
solver competitions. AI Magazine, 33(1):89–92, 2012. → pages 22

H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric
consistency for large scale image search. In European Conference on Computer
Vision, pages 304–317, 2008. → pages 11

H. Jégou, M. Douze, and C. Schmid. Searching with quantization: approximate
nearest neighbor search using short codes and distance estimators. Technical
Report RR-7020, INRIA, 2009. → pages 11, 12, 18, 91

H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. Transactions on Pattern Analysis and Machine Intelligence, 33(1):
117–128, 2011. → pages 3, 12, 18, 21, 37, 38, 39, 40, 59, 60, 61, 67, 71, 91

H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Perez, and C. Schmid.
Aggregating local image descriptors into compact codes. Transactions on
Pattern Analysis and Machine Intelligence, 34(9):1704–1716, 2012. → pages
12

J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with GPUs.
arXiv preprint arXiv:1702.08734, 2017. → pages 21, 88, 90

Y. Kalantidis and Y. Avrithis. Locally optimized product quantization for
approximate nearest neighbor search. In Computer Vision and Pattern
Recognition, pages 2321–2328, 2014. → pages 40

J. H. Kappes, B. Andres, F. Hamprecht, C. Schnorr, S. Nowozin, D. Batra,
S. Kim, B. X. Kausler, J. Lellmann, N. Komodakis, et al. A comparative study
of modern inference techniques for discrete energy minimization problems. In
Computer Vision and Pattern Recognition, pages 1328–1335, 2013. → pages
25, 29

A. M. Kibriya and E. Frank. An empirical comparison of exact nearest neighbour
algorithms. In European Conference on Principles of Data Mining and
Knowledge Discovery, pages 140–151, 2007. → pages 8

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. → pages 86

B. Klein and L. Wolf. In defense of product quantization. arXiv preprint
arXiv:1711.08589, 2017. → pages 21, 96

102
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