Power Loss Estimation in LLC MOSFETs:
A Time Interval Analysis

by

Ettore Frederico Scabeni Glitz

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE
in
The Faculty of Graduate and Postdoctoral Studies
(Electrical & Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA
(Vancouver)
December 2018
© Ettore Frederico Scabeni Glitz 2018
The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Power Loss Estimation in LLC MOSFETs: A Time Interval Analysis

submitted by Ettore Frederico Scabeni Glitz in partial fulfillment of the requirements for the degree of Master of Applied Science in Electrical & Computer Engineering

Examining Committee:

Dr. Martin Ordonez, Electrical & Computer Engineering Supervisor

Dr. William Dunford, Electrical & Computer Engineering Supervisory Committee Member

Dr. Jose Marti, Electrical & Computer Engineering Supervisory Committee Member

Additional Examiner

Additional Supervisory Committee Members:

Supervisory Committee Member

Supervisory Committee Member
Abstract

LLC resonant converters have become a mainstream topology in DC/DC power conversion applications such as electric vehicle charging, renewable energy generation and low power energy conversion. This converter presents advantages such as the soft-switching of active devices, which reduces power losses in the energy conversion process, allowing for a more efficient operation when compared to hard-switched topologies.

Losses in the MOSFETs of the inverting and rectifying stages of this converter should be accurately determined so to allow for proper heat management design and thermal dissipation. However, determination of losses through simulation can be challenging due to the significant difference between time constants of electrical and thermal phenomena. Moreover, the information presented by the datasheet of power electronic devices is often limited to select operating points, which may compromise the accuracy of power loss estimation.

In order to overcome the limitations imposed by the datasheet, a detailed characterization of the main loss mechanisms in the operation of LLC MOSFETs is presented. To avoid the time-consuming and computationally-intensive process of simulation, steady-state time-domain expressions for the converter are developed, based on the electrical behavior of the topology. These equations, based on the Time Interval Analysis, are able to predict key electrical and thermal behaviours based on circuit design considerations and operating conditions, being easily implementable in software such as MATLAB or MS Excel.

As verified by simulation and experimental results, estimation of losses using the proposed method is considerably more precise than using the well-established yet oversimplified...
Abstract

First-Harmonic Approximation (FHA). In the inverting stage, the observed error in loss determination is reduced from an average of 19%, using FHA, to 2.8% using the proposed method. When it comes to the rectification portion of the circuit, the reduction in error observed is from 12% to 2%. Such improvement in power loss estimation before the converter is built is fundamental for the design of an agile and cost-effective thermal management approach which guarantees the integrity and reliability of the power electronics device.
Lay Summary

In order to power and operate electronic devices, such as laptops, cell phones and electric vehicles, different power conversion circuits are necessary. These rely on power electronic components, which, even though highly efficient, still produce heat due to power dissipation. One of the many circuits for these applications and also for renewable energy generation is the LLC Resonant Converter, which is popular because of its increased efficiency.

Nevertheless, the power electronic components in this circuit still produce heat, which, if not properly dissipated, may damage the converter. This work develops a tool which can be used in common programs such as MS Excel for determining the amount of heat generated by the different power electronic components in the LLC Resonant Converter before the physical setup is built. This saves development time and costs, while allowing for the optimal heat dissipation technique to be implemented, which results in a lighter and smaller product.
Preface

This work is based on research performed at the Electrical and Computer Engineering Department at the University of British Columbia by Ettore Frederico Scabeni Glitz, under the supervision of Dr. Martin Ordonez.

A version of Chapter 2 has been presented and published at the IEEE Applied Power Electronics Conference and Exposition (APEC) 2018 [1]. A version of Chapters 2 and 3 has been submitted as two different manuscripts for two different IEEE Transactions papers.

As first author of the above-mentioned publications and work, the author of this thesis developed the theoretical concepts and wrote the manuscripts, receiving advice and technical guidance from Dr. Martin Ordonez. The author developed simulations and experimental platforms, receiving contributions from Dr. Ordonez’s research team. In particular, the Ph.D. student Jhih-Da Hsu assisted the author in the development of some experimental validations presented in Chapter 3, lending his experimental platform for measurements.
Table of Contents

Abstract .. iii

Lay Summary .. 1

Preface ... vi

Table of Contents .. vii

List of Tables ... viii

List of Figures .. xi

List of Acronyms .. xiii

List of Symbols ... xiv

Acknowledgements .. xviii

1 Introduction ... 1
 1.1 Motivation .. 1
 1.2 Literature Review .. 3
 1.2.1 LLC Resonant Converter 3
 1.2.2 Power Losses in LLC MOSFETs 5
 1.2.3 Time-Domain Analysis of LLC Resonant Converter 6
Table of Contents

1.3 Contribution of the Work .. 7
1.4 Thesis Outline ... 9

2 Power Loss Characterization ... 10
 2.1 Physical Aspects of Power MOSFETs 12
 2.1.1 Structural Characteristics 12
 2.1.2 Origin of the On-State Resistance 14
 2.1.3 Body Diode Forward Voltage Drop 15
 2.1.4 Switching Characteristics in Power MOSFETs 15
 2.2 Detailed MOSFET Characterization 18
 2.2.1 Conduction Loss Characterization 19
 2.2.2 Diode Loss Characterization 21
 2.2.3 Switching Loss Characterization 22

3 Time Interval Analysis of LLC Resonant Converters 27
 3.1 Time Interval Equations of LLC Resonant Converters 28
 3.1.1 Operation Above the Resonant Frequency 30
 3.1.2 Operation Below the Resonant Frequency 41
 3.1.3 Operation at the Resonant Frequency 47
 3.1.4 Experimental Validation of the Obtained Waveforms 49
 3.2 Power Loss Estimation of LLC MOSFETs in the Inverting Stage 53
 3.2.1 Comparison with Simulation Results 56
 3.2.2 Comparison with Experimental Results 57
 3.3 Power Loss Estimation of LLC MOSFETs in the Rectifying Stage 64
 3.3.1 Rectifier Current Equations 64
 3.3.2 Accounting for Turn-on and Turn-off Delays 66
 3.3.3 Design and Control Considerations for SR Losses 71
Table of Contents

3.3.4 Experimental Validation of Power Loss Assessment 79

4 Conclusions .. 82
 4.1 Summary .. 82
 4.2 Future Work ... 83

Bibliography .. 85
List of Tables

3.1 LLC design parameters for P_{loss} analysis in inverter MOSFETs 50
3.2 Testing conditions for LLC inverting MOSFETs P_{loss} analysis 63
3.3 LLC design parameters for P_{loss} analysis in rectifier MOSFETs 66
List of Figures

1.1 Simplified power system structure .. 2
1.2 LLC resonant converter ... 5

2.1 Typical MOSFET turn-on, turn-off and conduction energy distribution ... 10
2.2 MOSFET $R_{DS(on)}$ physical characteristics 13
2.3 Switching characteristics of a MOSFET ... 16
2.4 Key waveforms for MOSFET turn-on .. 16
2.5 Equivalent circuit for switching transients 17
2.6 $R_{DS(on)}$ behaviour and characterization ... 19
2.7 The $R_{DS(on)}$ characterization surfaces ... 20
2.8 The $R_{DS(on)}$ characterization surface for $V_{GS} = 8\,\text{V}$ 21
2.9 Body diode characterization surface ... 22
2.10 E_{off} characterization circuit and waveforms 24
2.11 Relationship between P_{loss} and operating temperatures 25
2.12 Switching loss characterization surfaces 26

3.1 Equivalent circuit for the primary of the LLC resonant converter 29
3.2 Waveforms for operation of the LLC resonant converter 30
3.3 Circuits for TIA analysis when $f_{sw} > f_{res}$ 31
3.4 Circuits for TIA analysis when $f_{sw} < f_{res}$ 41
3.5 Circuit for TIA analysis when $f_{sw} = f_{res}$ 48
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>Experimental waveforms for $f_{sw} > f_{res}$</td>
<td>50</td>
</tr>
<tr>
<td>3.7</td>
<td>Experimental waveforms for $f_{sw} < f_{res}$</td>
<td>51</td>
</tr>
<tr>
<td>3.8</td>
<td>Experimental waveforms for $f_{sw} = f_{res}$</td>
<td>53</td>
</tr>
<tr>
<td>3.9</td>
<td>Waveforms for I_D which flows through the inverter MOSFETs</td>
<td>54</td>
</tr>
<tr>
<td>3.10</td>
<td>Contribution of P_{cond} and P_{sw} in inverting MOSFETs</td>
<td>55</td>
</tr>
<tr>
<td>3.11</td>
<td>P_{loss} in inverting MOSFETs using TIA and FHA</td>
<td>57</td>
</tr>
<tr>
<td>3.12</td>
<td>Measurement of P_{loss} using calorimetry</td>
<td>58</td>
</tr>
<tr>
<td>3.13</td>
<td>P_{loss} in inverting MOSFETs under the same $P_{\text{load}} = 0.7P_{\text{nom}}$</td>
<td>59</td>
</tr>
<tr>
<td>3.14</td>
<td>P_{loss} in inverting MOSFETs under the same $P_{\text{load}} = 0.76P_{\text{nom}}$</td>
<td>60</td>
</tr>
<tr>
<td>3.15</td>
<td>P_{loss} in inverting MOSFETs under the same $f_{sw} = f_{res}$</td>
<td>61</td>
</tr>
<tr>
<td>3.16</td>
<td>P_{loss} in inverting MOSFETs under the same $I_{\text{load}} = 0.5I_{\text{nom}}$</td>
<td>62</td>
</tr>
<tr>
<td>3.17</td>
<td>$P_{\text{loss}}/P_{\text{loss(measured)}}$ in inverting MOSFETs under different conditions</td>
<td>63</td>
</tr>
<tr>
<td>3.18</td>
<td>Theoretical waveforms for $i_{\text{SR}}(t)$</td>
<td>65</td>
</tr>
<tr>
<td>3.19</td>
<td>Experimental $i_{\text{SR}}(t)$ waveforms</td>
<td>67</td>
</tr>
<tr>
<td>3.20</td>
<td>P_{loss} and $I_{\text{on/off}}$ for different f_{sw} and t_d</td>
<td>69</td>
</tr>
<tr>
<td>3.21</td>
<td>Expected $i_{\text{SR}}(t)$ versus different FHA approaches</td>
<td>70</td>
</tr>
<tr>
<td>3.22</td>
<td>P_{loss} for different t_d considering RCE and FHA</td>
<td>70</td>
</tr>
<tr>
<td>3.23</td>
<td>P_{loss} estimation for different I_{load} and m</td>
<td>71</td>
</tr>
<tr>
<td>3.24</td>
<td>$P_{\text{loss}}/P_{\text{load}}$ estimation considering different I_{load} and m</td>
<td>72</td>
</tr>
<tr>
<td>3.25</td>
<td>t_{on} behaviour as testing conditions change</td>
<td>73</td>
</tr>
<tr>
<td>3.26</td>
<td>Experimental, simulated and calculated t_{on}</td>
<td>74</td>
</tr>
<tr>
<td>3.27</td>
<td>P_{loss} considering fixed t_{on}</td>
<td>75</td>
</tr>
<tr>
<td>3.28</td>
<td>P_{loss} considering variable t_{on}</td>
<td>77</td>
</tr>
<tr>
<td>3.29</td>
<td>Calculation of t_{on} as circuit conditions change</td>
<td>78</td>
</tr>
<tr>
<td>3.30</td>
<td>Calculation of normalized t_{on} as circuit conditions change</td>
<td>78</td>
</tr>
<tr>
<td>3.31</td>
<td>Measured P_{loss} in rectifying MOSFETs</td>
<td>80</td>
</tr>
</tbody>
</table>
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BJT</td>
<td>Bipolar Junction Transistor</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>FHA</td>
<td>First-Harmonic Approximation</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal-Oxide-Semiconductor Field-Effect Transistor</td>
</tr>
<tr>
<td>RCE</td>
<td>Rectifier Current Equations based on TIA</td>
</tr>
<tr>
<td>RFI</td>
<td>Radio-Frequency Interference</td>
</tr>
<tr>
<td>RTD</td>
<td>Resistance Temperature Detectors</td>
</tr>
<tr>
<td>SR</td>
<td>Synchronous Rectification</td>
</tr>
<tr>
<td>TIA</td>
<td>Time Interval Analysis</td>
</tr>
<tr>
<td>ZCS</td>
<td>Zero-Current Switching</td>
</tr>
<tr>
<td>ZVS</td>
<td>Zero-Voltage Switching</td>
</tr>
</tbody>
</table>
List of Symbols

ΔP_{loss} Difference Between Power Losses

A Parameter for calculating the TIA. $A = \frac{t_1}{\sqrt{L_r C_r}}$

B Parameter for calculating the TIA. $B = \frac{1}{4f_{\text{sw}} \sqrt{L_r C_r}}$

C_{DS} Drain-Source Capacitance

C_{GD} Gate-Drain Capacitance

C_{GS} Gate-Source Capacitance

C_{iss} Input Capacitance

C_{oss} Output Capacitance

C_r Series Resonant Capacitance

$C_{r\text{ss}}$ Reverse Transfer Capacitance

D Duty Cycle

E_{cond} Conduction Energy

E_{off} Turn-off Energy

E_{on} Turn-on Energy

f_{res} Resonant Frequency

f_{sw} Switching Frequency

I_0 Parameter for calculating the TIA. $I_0 = i_{\text{tank}}(0)$

I_{Lm0} Parameter for calculating the TIA. $I_{Lm0} = i_{Lm}(0)$

I_1 Parameter for calculating the TIA. $I_1 = i_{\text{tank}}(t_1)$

I_{Lm1} Parameter for calculating the TIA. $I_{Lm1} = i_{Lm}(t_1)$
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{gate}</td>
<td>Gate Resistance</td>
</tr>
<tr>
<td>I_{ch}</td>
<td>Channel Current</td>
</tr>
<tr>
<td>I_D</td>
<td>Drain Current</td>
</tr>
<tr>
<td>$I_{D(\text{on})}$</td>
<td>Drain Current when the MOSFET is on</td>
</tr>
<tr>
<td>$i_D(t)$</td>
<td>Drain Current as a function of Time</td>
</tr>
<tr>
<td>$i_{L_m}(t)$</td>
<td>LLC Magnetizing Inductance Current</td>
</tr>
<tr>
<td>I_{load}</td>
<td>Output Load Current</td>
</tr>
<tr>
<td>I_{nom}</td>
<td>Nominal Load Current</td>
</tr>
<tr>
<td>I_{off}</td>
<td>Turn-off Current</td>
</tr>
<tr>
<td>I_{on}</td>
<td>Turn-on Current</td>
</tr>
<tr>
<td>$i_{\text{SR}}(t)$</td>
<td>SR Current</td>
</tr>
<tr>
<td>I_{sw}</td>
<td>Current Source (Switching Characteristics)</td>
</tr>
<tr>
<td>$i_{\text{tank}}(t)$</td>
<td>LLC Resonant Tank Current</td>
</tr>
<tr>
<td>$i_{TR}(t)$</td>
<td>LLC Transformer Primary Current</td>
</tr>
<tr>
<td>K_n</td>
<td>Constant Parameters</td>
</tr>
<tr>
<td>L_m</td>
<td>Magnetizing Inductance</td>
</tr>
<tr>
<td>L_r</td>
<td>Series Resonant Inductance</td>
</tr>
<tr>
<td>m</td>
<td>Inductance Ratio</td>
</tr>
<tr>
<td>n</td>
<td>Transformer Turns Ratio</td>
</tr>
<tr>
<td>P_{cond}</td>
<td>Conduction Losses</td>
</tr>
<tr>
<td>P_{diode}</td>
<td>Body Diode Power Losses</td>
</tr>
<tr>
<td>P_{in}</td>
<td>Input Power</td>
</tr>
<tr>
<td>P_{load}</td>
<td>Output Load Power</td>
</tr>
<tr>
<td>P_{loss}</td>
<td>Power Losses</td>
</tr>
<tr>
<td>P_{nom}</td>
<td>Nominal Power</td>
</tr>
<tr>
<td>P_{sw}</td>
<td>Switching Losses</td>
</tr>
</tbody>
</table>
List of Symbols

\(R_{DS(on)} \) On-State Resistance
\(R_{eq} \) Equivalent Resistance
\(R_{load} \) Output Load Resistance
\(R_{th_{ca}} \) Thermal Resistance between Case and Ambient
\(t \) Time
\(T \) Parameter for calculating the TIA. \(T = \frac{1}{2T_{sw}} - t_1 \sqrt{(L_r + L_m)C_r} \)
\(t_\sigma \) Dead Time
\(t_0 \) Initial Time
\(t_1 \) Parameter for calculating the TIA. Represents the time at which \(v_{pr}(t) \) changes from its initial state.
\(T_{amb} \) Ambient Temperature
\(T_{case} \) Case Temperature
\(t_{d(off)} \) Turn-off delay due to SR Operation
\(t_{d(on)} \) Turn-on delay due to SR Operation
\(t_{delay(off)} \) Turn-off delay due to MOSFET physical characteristics
\(t_{delay(on)} \) Turn-on delay due to MOSFET physical characteristics
\(t_fi \) Current Fall Time
\(t_{fv} \) Voltage Fall Time
\(T_j \) Junction Temperature
\(t_{on} \) On-Time
\(t_{ri} \) Current Rise Time
\(t_{rv} \) Voltage Rise Time
\(V_0 \) Parameter for calculating the TIA. \(V_0 = v_C(0) \)
\(V_1 \) Parameter for calculating the TIA. \(V_1 = v_C(t_1) \)
\(v_C(t) \) LLC Series Resonant Capacitance Voltage
\(V_{diode} \) Body Diode Forward Voltage Drop
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{dr}</td>
<td>Driver Voltage Source</td>
</tr>
<tr>
<td>$V_{DS(\text{off})}$</td>
<td>Drain-Source Off-State Voltage</td>
</tr>
<tr>
<td>$V_{DS(\text{on})}$</td>
<td>Drain-Source On-State Voltage</td>
</tr>
<tr>
<td>V_{DS}</td>
<td>Drain-Source Voltage</td>
</tr>
<tr>
<td>V_{GG}</td>
<td>Nominal Driver Voltage Value</td>
</tr>
<tr>
<td>$V_{GS(mp)}$</td>
<td>Miller Plateau Voltage</td>
</tr>
<tr>
<td>$V_{GS(th)}$</td>
<td>Threshold Voltage</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>Gate-Source Voltage</td>
</tr>
<tr>
<td>V_{in}</td>
<td>Input Voltage</td>
</tr>
<tr>
<td>$v_{in}(t)$</td>
<td>Input Voltage Time-Dependant Source</td>
</tr>
<tr>
<td>V_{out}</td>
<td>Output Voltage</td>
</tr>
<tr>
<td>$v_{pr}(t)$</td>
<td>LLC Transformer Primary Voltage</td>
</tr>
<tr>
<td>V_{sw}</td>
<td>Voltage Source (Switching Characteristics)</td>
</tr>
</tbody>
</table>
Acknowledgements

I would like to offer my deepest gratitude to Dr. Martin Ordonez, who granted me the opportunity of joining his research team. His leadership and dedication have pushed me further than I would ever expect to go, achieving more than I thought I ever could. I would also like to thank my labmates, without whom this work would have been impossible. Thanks for all the help and for making our lab a home away from home.

Kudos to UBC staff, who keep the place running smoothly, and to all instructors I have ever had the pleasure of interacting with: your care for education and your passion for teaching has inspired me time and again.

Last but definitely not least, I am forever grateful for my friends and family. No matter where you are, you will always have a special place in my heart. I will never be able to thank you enough for all the support you gave me, the small victories we celebrated, and the times you told me it was going to be OK. Thanks for being part of my life, and know I will always love you.
Chapter 1

Introduction

1.1 Motivation

With the intent of achieving sustainable development, the United Nation lists different global goals which include access to clean and affordable energy, and collaborative work towards combating climate change and its impacts \[2\]. In order to achieve the proposed milestones, expansion of energy generation from renewable sources and technological development towards the improvement of energy conversion efficiency is a must.

Power electronics plays a fundamental role in energy conversion, required for applications such as renewable energy generation, energy storage systems and operation of loads such as electric vehicles and electronic appliances. In fact, a considerable portion of the loads and storage systems of the electrical network consists of DC components, as can be observed in Fig. 1.1. These devices often rely on DC/DC converters, which can be accomplished with many topologies, among which the LLC resonant converter. This particular circuit configuration presents favorable characteristics which allow for increased efficiency, and in turn reduce the size and weight of converters \[3, 4\].

In the design process of energy converters, including the aforementioned LLC resonant converter, power switches play a major role. These devices, while very efficient, still produce power losses \((P_{\text{loss}})\) when in operation, which in turn generates heat, as depicted in Fig. 1.1. As a result, the efficiency of the system is reduced, and concerns regarding the operation of these converters arise, since their temperature must be kept at reasonable levels so to avoid
1.1. Motivation

In order to allow for proper heat dissipation and thus reasonable operating temperatures, an adequate thermal management must be designed for the power switches of the converters. However, current information for estimating P_{loss} in such components is very limited, and prediction of losses in the design stage, before the converter is built, is compromised, which increases cost and development time [1]. While multiple design and control strategies for LLC converters can be found in the literature, there are opportunities for investigating and analyzing P_{loss} of this circuit with increased precision and in a timely fashion.

In this work, an improved characterization of the main power loss mechanisms in MOS-FETs of the LLC resonant converters is performed, which increases the accuracy with which P_{loss} are estimated. In addition, a time-domain method for determining P_{loss} is presented,
which replaces oversimplified and inaccurate methods, and comes as an alternative for time-
consuming and computationally expensive simulation approaches. Key parameters of the
converter are analyzed, including the behaviour of P_{loss}, and the developed method is veri-
fied through simulation and experimental results.

1.2 Literature Review

In the design process of a power electronics converter, the determination of operating con-
ditions, electrical component capabilities and thermal management of active components
requires the adequate prediction of the behaviour of the topology. The P_{loss} determination,
in particular, is fundamental for the design of a thermal management approach that will
ensure the durability of the equipment and safety of the operator [5, 6].

While resonant DC/DC converters present advantages that favor the efficiency of these
topologies due to the soft-switching of active components [7–9], thus generating smaller losses
and heat, these devices still require an appropriate thermal management design, which relies
on the adequate determination of P_{loss}.

The following paragraphs briefly introduce the LLC resonant converter, exploring its
advantages and applications. The modelling of different P_{loss} mechanisms in power MOSFETs
is also briefly discussed. This work presents an analysis of the main loss mechanisms for the
MOSFETs of the LLC converter, as well as a time-domain analysis of this topology with
applications in P_{loss} assessment.

1.2.1 LLC Resonant Converter

DC/DC power conversion has become a fundamental component in a variety of applications,
ranging from renewable energy generation [10, 11] and storage systems [12, 13] to electrical
loads [14–16], as shown in Fig. 1.1. In order to increase conversion efficiency and power
1.2. Literature Review

density, resonant DC/DC converters have become increasingly popular, since they allow for soft-switching of active components [7–9]. These techniques, known as zero-voltage switching (ZVS) and zero-current switching (ZCS), reduce switching losses and EMI, allowing for increased operating frequencies [17, 18].

LLC resonant converters, in particular, present advantages over other series and parallel resonant topologies, such as wider output regulation with both step-up and step-down operation [19]. Because of its operating characteristics, this topology is especially interesting for applications such as electric vehicle battery charging [20–24], renewable energy systems [25–27] and diverse low power applications [28–30]. Because of the high efficiency, reduced EMI, and improved regulation capabilities, this topology is of special interest among the various converters studied in power electronics.

Figure 1.2 shows the LLC resonant converter. As can be observed, this topology presents an inverting and a rectifying stage, separated by a resonant tank which often presents electrical decoupling through a transformer. Employing the transformer is desirable since it allows for changes in the magnitude of the concerned voltages and currents, as well as integration of magnetic components such as the magnetizing inductance (L_m) [9].

While the inverting stage is often implemented with MOSFETs, the rectification can be accomplished with either diodes, as shown in Fig. 1.2(a) or MOSFETs, shown in Fig. 1.2(b). In order to further improve the efficiency of the topology, synchronous rectification (SR) using active switches can be achieved with different control structures, ranging from complex control schemes which rely on measurements of circuit parameters such as MOSFET drain current (I_D) [31–36] or drain-source voltage (V_{DS}) [37, 38] to simple control algorithms with reduced sensing requirements [39–43].
1.2. Literature Review

Figure 1.2: Stages of the LLC resonant converter with a) Diode rectification and b) MOSFET rectification using Synchronous Rectification

1.2.2 Power Losses in LLC MOSFETs

In the operation of power MOSFETs, two main loss mechanisms arise: switching losses (P_{sw}), which occur during turn-on and turn-off of the device, and conduction losses (P_{cond}), which take place due to the resistive behaviour of the MOSFET when it is conducting [44]. Because the MOSFETs of both inverting and rectifying stages in the LLC resonant converter operate with soft-switching [45], P_{sw} in this topology are reduced [46]. As a result, P_{cond} are dominant in the active devices of this converter [9]. Thus, the proper modelling of the on-state resistance ($R_{\text{DS(on)}}$) which generates this loss mechanism is fundamental for an accurate estimation of P_{loss} in LLC MOSFETs [1].

Information about the $R_{\text{DS(on)}}$ of MOSFETs is often provided by their datasheet as a function of the junction temperature of the device (T_j) for a given fixed I_D and gate-source
1.2. Literature Review

While many design tools are available for LLC resonant converters, such as controllers [51–54], SR driving schemes [31–43] and design considerations for improved performance [55–58], there are still opportunities for exploring accurate P_{loss} estimation techniques in LLC MOSFETs. The P_{loss} in LLC MOSFETs generate heat, which has a much lower time scale when compared to electrical behaviour [59]. This means that thermal phenomena require a substantially larger time to reach steady-state when compared to electrical phenomena, even though both events take place simultaneously in the operation of high-frequency circuits such as the LLC resonant topology. Because of the substantial difference between time scales of electrical and thermal phenomena, and since power electronics circuits operate at high frequencies, simulation of P_{loss} in such converters can be a computationally expensive and time consuming process. As an alternative, steady-state time-domain equations can be employed for the determination of the electric behavior of the converter, and the P_{loss} can be estimated from the concerned I_D and rectified current I_{SR} expressions. While First-Harmonic Approximation (FHA) is the established method for estimating the time-domain behavior of LLC resonant converters, it does not provide accurate results under certain operating conditions.
1.3 Contribution of the Work

Steady-state analysis of different resonant converters such as series [61–63], parallel [64, 65] and others [66–69] have been presented in the literature, including LLC resonant converters [70–75]. However, the time-domain models for the LLC converter either do not consider the impact of different loading conditions [70–72] or they do not present time-domain expressions which can be easily applied to different operating conditions, loading configurations or design parameters [73–75]. As a result, determination of P_{loss} employing existing time-domain expressions can be a challenging process, which has not yet been investigated in the literature. Moreover, in-depth analysis of P_{loss} using SR as a function of design considerations and control strategies has not been thoroughly discussed yet.

1.3 Contribution of the Work

With the intent of providing engineers with a design tool for fast and accurate P_{loss} prediction in LLC MOSFETs which can be easily implemented, the following topics are explored:

- First, a method for performing a detailed characterization of P_{cond}, P_{sw} and P_{diode} in MOSFETs is presented. The resulting polynomial expressions which better represent the behaviour of the device under different values of T_j, V_{GS}, V_{DS} and I_D improve the determination of P_{loss} in LLC MOSFETs, since they capture the peculiarities observed in the device under different operating conditions.

- Second, time-domain expressions for the LLC resonant converter are derived based on the electrical behaviour of the topology when operating under different conditions and design parameters. While basic time-domain expressions are available in the literature, these either do not consider the impact of different loading conditions [70–72] or they do not present time-domain expressions which can be easily applied to different operating conditions, loading configurations or design parameters [73–75]. The developed
1.3. Contribution of the Work

equations based on the Time Interval Analysis allow for the determination of key electrical values and can be extended to the calculation of P_{loss} in LLC MOSFETs, both in the inverting and rectifying stages. This allows for a considerably faster alternative to simulation, and to more precise estimations when compared to the well-established but oversimplified FHA.

- Third, a simple calorimetric method for determining P_{loss} in an operating MOSFET is briefly investigated, which allows for the verification of the developed P_{loss} estimation method using TIA. Since electrical measurements introduce disturbances to the behaviour of the circuit and at high frequencies EMI/RFI pose challenges to the measurement of electrical quantities, P_{loss} estimation using electrical measurements is not adequate [76]. While measurements using a calorimeter have been discussed in the literature [76, 77], these do not allow for enough granularity so to enable the determination of P_{loss} in a single switch as the method discussed in this work.

- Finally, an analysis of the behaviour of the converter and the developed time-domain expressions is presented. The implication of variations in circuit design parameters in circuit behaviour are analyzed and discussed with the intent of improving design practices.

The integration of the detailed characterization performed with the time-domain expressions developed allows for the accurate and fast determination of P_{loss} in LLC MOSFETs of both inverting and rectifying stages. The calorimetric method investigated verifies the estimated P_{loss} from calculation with significant accuracy when compared with P_{loss} determined using FHA.
1.4 Thesis Outline

This work is organized and presented as follows:

- In Chapter 2, the main power loss mechanisms of LLC MOSFETs are discussed, and a detailed characterization of the device is presented. The resulting polynomial expressions for $R_{DS(on)}$, E_{off} and V_{diode} allow for a more detailed determination of P_{cond}, P_{sw} and P_{diode}, which greatly contributes to the determination of P_{loss} as circuit parameters are modified.

- In Chapter 3, time-domain equations for the LLC Resonant converter are developed based on the Time Interval Analysis. These equations offer greater insight on the behaviour of the topology when compared to the well-established yet oversimplified First-Harmonic Approximation. In addition, an analysis of P_{loss} in the inverting and rectifying MOSFETs of the converter is performed. Moreover, studies regarding the impact of design parameters and operating conditions on P_{loss} are presented, which offer insights on the expected behaviour of the topology as modifications are performed.

- Finally, in Chapter 4 a summary and conclusions of the work are presented, along with ideas for future research.
Power MOSFETs are fundamental components in any power electronics topology. These devices act as switches, working either as a short circuit when turned on, or as an open circuit when off. While very efficient, these components still produce heat when in operation. The two main power loss (P_{loss}) mechanisms for power MOSFETs are switching losses (P_{sw}) and conduction losses (P_{cond}).

The P_{sw} can be divided into two categories: turn-on and turn-off losses. Whenever the switch is turned on, current starts flowing through its drain (I_D), while the blocking voltage between drain and source (V_{DS}) starts to subside, as shown in the simplified diagram on Fig. 2.1. The turn-on energy (E_{on}) is the area below the V_{DS} and I_D curves, and can be determined as:

![Figure 2.1: Waveforms for MOSFET switching showing the turn-on and turn-off energy, as well as the energy dissipated during conduction](image-url)
Chapter 2. Power Loss Characterization

\[E_{on} = \frac{1}{2} V_{DS(off)} I_{D(on)} (t_{ri} + t_{fu}) \]

(2.1)

When the switch is turned off, \(V_{DS} \) starts to increase while \(I_D \) diminishes, as shown in Fig. 2.1. Once again, the area below \(V_{DS} \) and \(I_D \) represents the turn-off energy \(E_{off} \):

\[E_{off} = \frac{1}{2} V_{DS(off)} I_{D(on)} (t_{rv} + t_{fi}) \]

(2.2)

Every time the switch is turned on or off, energy is released in the form of heat. The \(P_{sw} \) can then be obtained as follows:

\[P_{sw} = f_{sw} (E_{on} + E_{off}) \]

(2.3)

where \(f_{sw} \) is the switching frequency of the device.

The \(P_{cond} \), on the other hand, arise due to the resistive behaviour of the MOSFET when it is on. When the device is fully on, it does not behave as a perfect short-circuit but instead as a variable resistor \(R_{DS(on)} \). This resistance depends on the junction temperature of the device \((T_j) \), \(I_D \) and the voltage magnitude that is applied to the gate with respect to the source of the device \((V_{GS}) \). The \(P_{cond} \) can then be determined by using the Joule-Lenz law:

\[P_{cond} = R_{DS(on)} I_{D(on)}^2 \]

(2.4)

Graphically, the area below \(V_{DS} \) and \(I_D \) while the MOSFET is on represents the conduction energy \((E_{cond}) \), as can be observed in Fig. 2.1.

One of the techniques that exist for reducing \(P_{sw} \) is the soft-switching of the MOSFETs. This condition can be achieved in some topologies such as resonant converters, including the LLC converter. It consists on turning the MOSFETs on when \(V_{DS} \) is near zero, which consists on zero-voltage switching (ZVS); or turning the devices off when \(I_D \) is near zero,
which consists on zero-current switching (ZCS). Under these conditions, the area under the
V_{DS} and I_D curves will be significantly reduced, which will diminish P_{sw} considerably. On
the other hand, there are limited ways of reducing P_{cond} in a topology. In addition, limited
studies have been conducted on P_{cond}, since most of the literature focuses on modeling P_{sw} of
the device. In the following pages, a thorough analysis of P_{loss} will be performed, focusing on
the behaviour of $R_{DS(on)}$. A method for more accurately determining P_{cond} will be studied,
which is verified by experimental results and produces improved results when compared to
information provided by the datasheet of the device. In addition, a detailed characterization
for turn-off losses and body diode conduction losses will be presented, since these loss
mechanisms are present in the inverting MOSFETs of the LLC Resonant Converter.

2.1 Physical Aspects of Power MOSFETs

In order to comprehend how P_{loss} behaves and changes as a function of different parameters,
it is important to look into the physical aspects of a power MOSFET. The following pages
briefly explain how this device is constructed and operates, and how changes in T_J, I_D, V_{GS}
and V_{DS} can affect P_{loss}. This portion of the thesis (Section 2.1) was based on select parts
of [44].

2.1.1 Structural Characteristics

Semiconductors used in power electronics are often constructed with doped silicon. If the
intrinsic semiconductor is doped with donor impurities such as phosphorus and arsenic, an
n-type semiconductor is formed, where electrons are the majority carriers and holes are the
minority carriers. If the semiconductor is doped with acceptor impurities instead, such as
boron or gallium, a p-type semiconductor is formed, where holes are the majority carriers
and electrons are the minority carriers. Differences in doping levels are often indicated with
2.1. Physical Aspects of Power MOSFETs

+ or - signs. For instance, an n+ layer is more heavily doped than a n− layer, yet they are still both n-type semiconductors.

Enhancement-mode n-channel MOSFETs are comprised by a n+pn−n+ structure, as shown in Fig. 2.2(a). The n+ layers connected to the drain and source are usually doped at around 10^{19} cm$^{-3}$. The p-layer is called the body of the MOSFET and is where the conducting channel is formed. This layer is often doped at around 10^{16} cm$^{-3}$. The n− layer is called the drift region, and determines the breakdown voltage of the device. It is usually doped at around 10^{14} cm$^{-3}$, which is substantially lower than the levels used for the n+ layers.

The gate of the MOSFET is isolated from the body by a layer of silicon dioxide (SiO$_2$), which is called gate oxide. When a positive voltage is applied to the gate with respect to the source, the silicon surface beneath the gate oxide is converted into an n-type channel, connecting drain with source and allowing for current to flow through the device. This ability to modify the conductivity type of semiconductors with an applied voltage is called “field effect”.

However, because of the physical characteristics of the device, a parasitic BJT is formed between the drain and source of the MOSFET. In order to prevent this parasitic device from ever turning on, the body is shorted to the source. As a result, a parasitic diode is formed between drain and source of the MOSFET, which is called body diode. Whenever a negative voltage

![Diagram](image_url)

Figure 2.2: a) Schematic for the enhancement-mode n-channel MOSFET, b) Components of $R_{DS(on)}$ through the channel, c) Bottleneck effect in the inversion layer due to I_D
2.1. Physical Aspects of Power MOSFETs

I_D is applied to the MOSFET, this parasitic diode conducts and produces a forward voltage drop (V_{diode}).

When a small V_{GS} is applied to the device, a depletion region is formed between the gate oxide and the silicon located right underneath it. The positive charges induced in the gate create an electric field which repels the holes of the body, which are the majority carriers. This exposes the negatively-charged acceptors present in the silicon. As V_{GS} is increased, the electric field generated increases as well, and the depletion layer formed grows in thickness, since free electrons are attracted and holes are repelled. Eventually, the density of free electrons is high enough to become highly conductive, and a layer is formed with the same properties of an n-type semiconductor. This conducting layer, called inversion layer, allows for the flow of current between drain and source of the device.

2.1.2 Origin of the On-State Resistance

The $R_{DS(on)}$ of a MOSFET has different components, as shown in Fig. 2.2(b). Since applying larger values of V_{GS} increases the thickness of the inversion layer, the resistive component of this portion reduces as larger voltages are applied. As a result, the overall $R_{DS(on)}$ is inversely proportional to the V_{GS} applied. When a current flows through the channel, a voltage drop is generated, which “strangles” the inversion layer, creating a bottleneck effect, as observed in Fig. 2.2(c). Therefore, increasing I_D results in increased values of $R_{DS(on)}$. Another factor that influences the behaviour of $R_{DS(on)}$ is the operating temperature of the switch, namely T_j. At higher values of T_j, the charge carriers collide more often with semiconductor lattices due to atomic vibrations. This phenomena reduces carrier mobility, which in turn is translated as an increase in $R_{DS(on)}$.

In summary, it is observed that $R_{DS(on)}$ increases as T_j or I_D increase, or when V_{GS} decreases. However, as pointed out previously in the literature review, in most of the cases only the dependance of $R_{DS(on)}$ with T_j is taken into account. Doing so may result in reduced
accuracy for P_{loss} determination, as will be seen in the following pages.

2.1.3 Body Diode Forward Voltage Drop

As mentioned previously, the constructive pattern of power MOSFETs leads to the formation of a parasitic diode between the drain and source of the device. Once current flows from source to drain, a forward voltage drop (V_{diode}) will be generated due to this body diode, which will in turn generate power losses (P_{diode}).

This V_{diode} originates because of the pn junction of diodes, where a potential barrier is originated from the electric field generated by the diffusion of majority carriers from one side of the junction to the other. Once the device is forward biased, the height of the potential barrier is reduced, since the positive charge applied to the p layer repels the holes and the negative charge which is applied to the n layer repels the electrons. Eventually, the electric field generated from the diffusion of the majority carriers cannot counteract the charge carrier motion and a net flow of current can be established [78]. Because at high temperatures the mobility of major carriers is decreased, the contact potential is reduced and V_{diode} becomes smaller.

2.1.4 Switching Characteristics in Power MOSFETs

When turning a MOSFET on or off, it is necessary to move the charges to or from the stray capacitances of the device, shown in Fig. 2.3(a). These capacitor values change significantly with the applied voltage, as can be observed in Fig. 2.3(c), where C_{iss} is the input capacitance, defined as $C_{\text{iss}} = C_{\text{GD}} + C_{\text{GS}}$, C_{oss} is the output capacitance, defined as $C_{\text{oss}} = C_{\text{GD}} + C_{\text{DS}}$ and C_{rss} is the reverse transfer capacitance, defined as $C_{\text{rss}} = C_{\text{GD}}$ [80]. In order to study the switching transient of a MOSFET, it is possible to perform an analysis using the test circuit depicted in Fig. 2.3(b), where the free-wheeling diode is assumed to be ideal, as well
2.1. Physical Aspects of Power MOSFETs

![Figure 2.3](image1.png)

Figure 2.3: a) Stray capacitances in a MOSFET; b) Circuit used for studying switching transients; c) Input, output and reverse transfer capacitances of a MOSFET.

As the current source I_{sw} and the voltage sources V_{dr} and V_{sw}.

When turning a MOSFET on, there are four distinct stages, as shown in Fig. 2.4. Each one of these stages has a different equivalent circuit, as shown in Fig. 2.5. When $t = 0$, the ideal voltage source V_{dr} is changed from zero to V_{GG}. Current flows through the gate of the MOSFET, and the voltage between gate and source starts to rise. There is no current flowing between drain and source, so the current being applied by I_{sw} flows through the free-wheeling

![Figure 2.4](image2.png)

Figure 2.4: Key waveforms for MOSFET turn-on
2.1. Physical Aspects of Power MOSFETs

Figure 2.5: Circuit used for studying switching transients a) During t_{delay}, b) During t_{ri}, c) During t_{fV} and d) During t_{on}

diode, which is assumed to be ideal. As a result, the voltage being applied to the drain of the MOSFET remains constant at V_{sw}. This period lasts for an amount of time called $t_{\text{delay(on)}}$, until V_{GS} reaches the threshold voltage of the device ($V_{GS(\text{th})}$). The equivalent circuit during this time period can be observed in Fig. 2.5(a).

Once V_{GS} reaches $V_{GS(\text{th})}$, current starts to flow from drain to source of the device. However, the transfer of current from the free-wheeling diode to the channel of the device is not instantaneous, and part of the current still flows through the free-wheeling diode during this period of time. As a result, the voltage applied to the drain of the MOSFET is still V_{sw}. During this period of time, which lasts for an amount of time called t_{ri}, the voltage V_{GS}
2.2. Detailed MOSFET Characterization

continues to rise. The period ends when \(I_{ch} = I_{sw} \), and is presented by the equivalent circuit shown in Fig. 2.5(b).

Once the channel is conducting \(I_{sw} \), the free-wheeling diode is no longer playing a role in the equivalent circuit of this period, which is shown in Fig. 2.5(c). During this period, which lasts for an amount of time called \(t_{fv} \), the voltage between drain and source starts to drop, since the diode is no longer conducting and clamping the voltage of the drain to \(V_{sw} \). During this period of time, \(V_{GS} \) remains relatively constant at a certain value \(V_{GS(mp)} \), under a phenomenon commonly referred to the Miller Plateau region [81]. This period lasts until \(V_{DS} \) reaches its final on-state value \((V_{DS(on)}) \), which will depend on \(R_{DS(on)} \).

The last period which occurs when a MOSFET is turned on is the on-time \(t_{on} \). During this period, the device is conducting all of \(I_{sw} \), and \(V_{DS} \) can be obtained by multiplying \(R_{DS(on)} \) and \(I_{sw} \). During this time period \(V_{GS} \) rises until it reaches \(V_{GG} \), and it lasts until the driver turns off. The equivalent circuit of this time period can be observed in Fig. 2.5(d).

During turn-off, the inverse sequence of events that occurred during turn-on takes place, with \(V_{DS} \) rising to \(V_{sw} \) before \(I_{ch} \) starts to cease conducting. Instantaneous power losses occur during both turn-on and turn-off, whenever the multiplication of \(V_{DS} \) and \(I_{ch} \) is different from zero.

2.2 Detailed MOSFET Characterization

In order to better understand how different phenomena related to \(P_{loss} \) in a MOSFET behave as key parameters of the device change, it is possible to perform a detailed characterization of the switch, and analyze how \(P_{cond} \), \(P_{sw} \) and \(P_{diode} \) are affected by parameters such as \(T_j \), \(I_D \), \(V_{DS} \) and \(V_{GS} \). This detailed characterization has the potential of improving the determination of \(P_{loss} \) when the switch is employed in different topologies, such as the LLC resonant converter.
2.2. Detailed MOSFET Characterization

2.2.1 Conduction Loss Characterization

In order to study the behaviour of P_{cond} as operating conditions of a circuit change, it is necessary to comprehend how $R_{DS(on)}$ is affected by changes in T_j, I_D and V_{GS}. The information available from datasheets for $R_{DS(on)}$ is often provided for a constant predetermined I_D and V_{GS}, as shown in Fig. 2.6(a). This limited information may not be adequate for all applications, since there are topologies where I_D changes substantially during operation, such as in the case of the LLC resonant converter. In addition, different gate driver voltages must be accounted for.

Therefore, it is necessary to obtain a characterization of $R_{DS(on)}$ which accounts not only for different values of T_j but also takes into account different magnitudes of V_{GS} and different values and polarities of I_D. In order to do so, a detailed characterization can be performed, as shown in Fig. 2.6(b). The device is turned on with a constant and known voltage V_{GS}. Afterwards, a constant and known DC current is applied to it, and precision instruments are used to record V_{DS}. In addition, thermocouples are employed to monitor the case temperature of the component. The power losses of the device can be obtained by multiplying I_D and V_{DS}, and T_j can be determined by using the simplified thermal model of a MOSFET, shown in Fig. 2.6(c). Subsequent changes in I_D, V_{GS} and on the operating

![Diagram](a) $R_{DS(on)} = f(T_j)$

![Diagram](b) Test circuit for the detailed characterization of $R_{DS(on)}$

![Diagram](c) Simplified thermal model of a MOSFET.

Figure 2.6: a) Datasheet $R_{DS(on)} = f(T_j)$ for a constant I_D and V_{GS} [79], b) Test circuit for the detailed characterization of $R_{DS(on)}$, c) Simplified thermal model of a MOSFET.
2.2. Detailed MOSFET Characterization

temperature with the assistance of a thermal chamber allow for the determination of $R_{DS(on)}$ under different operating conditions.

With the measurements obtained, it is possible to determine a polynomial expression that represents the observed behaviour of $R_{DS(on)}$ as a function of the concerned variables. In order to verify the proposed method, a characterization of a sample MOSFET was carried out. The MOSFET IPZ60R040C7 was considered, since it is employed in industrial applications for power conversion. Measurements under different operating conditions were performed, and a 3rd order polynomial expression for $R_{DS(on)}$ as a function of T_j, I_D and V_{GS} was obtained. The equation shows a good least-squares fit for the considered points, while keeping a reasonably low order. This equation can be translated into a family of surfaces, and is shown in Fig. 2.7.

From the plots, it is possible to observe that changes in V_{GS} were not as impactful in $R_{DS(on)}$ as the other parameters for the considered range of values. As expected, lower values of T_j resulted in smaller $R_{DS(on)}$. Interestingly, the behaviour of I_D becomes rather peculiar when a negative I_D is applied to the device. This is due to the fact that the body diode of

![Figure 2.7](image-url)

Figure 2.7: a) Family of surfaces of $R_{DS(on)}$ as a function of V_{GS} and I_D for different values of T_j. b) Family of surfaces of $R_{DS(on)}$ as a function of V_{GS} and T_j for different values of I_D. Both figures show that $R_{DS(on)}$ changes significantly with T_j and I_D.

2.2. Detailed MOSFET Characterization

the MOSFET starts conducting in parallel with the channel of the device, so the resulting equivalent channel resistance is smaller than what would be originally expected. This becomes clear in Fig. 2.7(b) when comparing the obtained values for $R_{DS(on)}$ for -20 A with the other scenarios. Since changes in V_{GS} are not as impactful as variations in the other considered parameters, it is possible to obtain a single surface that represents the behaviour of the $R_{DS(on)}$ as a function of T_j and I_D for a constant value of V_{GS}, as shown in Fig. 2.8.

2.2.2 Diode Loss Characterization

In LLC resonant converters, in order to obtain the soft-switching of the inverter MOSFETs, it is necessary for the body diode to conduct during the dead time. As a result, losses arise due to the V_{diode} of the device. This parameter can be characterized in a similar fashion to that employed for $R_{DS(on)}$, with the difference that the device is kept off with zero voltage applied between gate and source. In addition, the polarity of the current of the test circuit shown in Fig. 2.7(b) is inverted. Because V_{GS} is set to zero, the only parameters that influence V_{diode} are I_D and T_j.

Figure 2.8: Surface of $R_{DS(on)}$ for $V_{GS} = 8$ V
2.2. Detailed MOSFET Characterization

After the required measurements are performed in V_{diode} of the body diode of the MOSFET IPZ60R040C7, it is possible to obtain a 3rd order polynomial expression for this parameter as a function of I_D and T_j. This equation can be translated into an operating surface, shown in Fig. 2.9. From the figure, it is possible to observe that lower values of T_j and higher I_D result in higher V_{diode}, which is in accordance with the expected behaviour of this component.

While reverse recovery losses are another source of heat dissipation that results from the operation of diodes, including the body diode, this loss mechanism does not occur during regular operation of the LLC resonant converter. As long as the operation of the converter is stable, proper dead times are considered, and the converter operates outside of the capacitive region, reverse recovery losses are not a concern \[82, 83\]. This is because the body diode will stop conducting as the channel is formed, and I_D will instead circulate through the channel of the device.

2.2.3 Switching Loss Characterization

As mentioned in the Introduction, one of the advantages of LLC resonant converters is the soft-switching of the inverter MOSFETs during turn-on. As a result, only turn-off losses
2.2. Detailed MOSFET Characterization

play a role during regular operation of the converter. In order to properly determine P_{loss} of this topology, this loss mechanism must be appropriately characterized. To obtain a detailed characterization of P_{sw}, it is possible to employ a simple test circuit with the device under test (DUT). Under different testing conditions, different values of P_{loss} are observed, and a model of losses can be extracted.

However, the measurement of losses considering the difference between input and output power is not possible, since other elements in the circuit will be producing losses, such as the inductor and the capacitor. Measurement of current and voltage waveforms right across the switch is also not recommended due to the high-frequency switching of the device, since EMI/RFI pose challenges to the measurement of electrical quantities. In addition, electrical measurements introduce disturbances to the electrical behavior of the circuit, which compromise the quality of the power loss measurement, and the skewing of signals must be accounted for. Measurement of temperature using RTDs or thermocouples is also not possible since these rely on the measurement of electrical parameters for determining temperature. As an alternative, calorimetric methods can be employed to measure the rise in temperature which results from power dissipation.

The test circuit used for the determination of P_{sw} in the MOSFETs which were later on employed in the LLC resonant converter (IPZ60R040C7) can be visualized in Fig. 2.10(a). It consists of a topology in which the input voltage and loading condition can be easily changed. This allows for easy variations of V_{DS} and I_D, which are two parameters which substantially influence P_{sw} of the converter. In addition to these, the T_j was also considered in the analysis as one of the components which could affect this loss mechanism. While other parameters such as V_{GS} and gate resistance (R_{gate}) are known to alter P_{sw}, these were kept constant and at the same values which were subsequently used for operation of the LLC resonant converter.

To isolate turn-off losses, the device under test, represented by the switch S1, is placed
2.2. Detailed MOSFET Characterization

in parallel with the switch S2. The gating signal used for both MOSFETs is shown in Fig. 2.10(b), along with key waveforms of the test circuit. By turning S2 on a couple nanoseconds before S1, the voltage across S1 is brought down before the device turns on, which eliminates turn-on losses. After S1 is turned completely on, S2 is turned off, and S1 conducts the entirety of the current during the majority of the on-time. After the on time is over, S1 is turned off, and the diode D1 starts conducting. As a result, all the loss mechanisms which are present in the switching process of S1 are accounted for, including ringing and the effect of stray elements. In Fig. 2.10(b), it is possible to observe that the gate of S2 is activated at the time instant α. This causes V_{DS} to fall until it reaches the on-state value which is close to zero, at the time instant β. After this has happened, S1 is turned on (γ) and the switch S2 is turned off (δ). When turning off S1 (ϵ), the switch is subjected to turn-off losses, since both V_{DS} and I_D are present until the switching action is over (ζ).

The operation of the converter with different values of ambient temperature (T_{amb}), input voltage (V_{in}) and output load (I_{load}) allows for the determination of different operating temperatures of the MOSFET S1. The case temperature (T_{case}) is measured using a thermal camera, and compared with the ambient temperature which surrounds the converter, as

Figure 2.10: a) Test circuit employed for characterizing E_{off} and b) Waveforms of the test circuit.
shown in Fig. 2.11(a). Changes in the aforementioned parameters allow for measurements of the device under different values of T_j, I_D and V_{DS}.

The relationship between T_{case} and P_{loss} is given by $T_{case} = P_{loss} R_{th_{ca}} + T_{amb}$, derived from the thermal equivalent circuit of the device shown in Fig. 2.6(c). The thermal resistance $R_{th_{ca}}$ can be obtained by applying a constant known value of current through the device under test, and measuring P_{loss} with precision instruments, as well as T_{case} and T_{amb} with a thermal camera, as shown in Fig. 2.11(b). By changing the applied current, it is possible to obtain different temperature and power levels, and a linear relationship between $T_{case} - T_{amb}$ and P_{loss} is obtained, as Fig. 2.11(c) shows. This allows for the determination of P_{loss} of a device based on its operating temperature, regardless of the frequency it operates, in a minimally invasive fashion. It is important to note that the operating conditions such as air flow and measurement positions must be maintained the same for the relationship to remain valid. Since the duty cycle (D) of the switch is known, P_{cond} can be extracted from P_{loss}, and P_{sw} can be divided by the switching frequency f_{sw} so the turn-off energy E_{off} can be obtained for each testing point.

As a result, a 3rd order expression for $E_{off} = f(T_j, I_D, V_{DS})$ is obtained, which translates into different families of operating surfaces, shown in Fig. 2.12. It is possible to observe

![Figure 2.11: a) Thermal view of the MOSFETs under different operating temperatures; b) Circuit employed for the determination of the relationship between operating temperatures and P_{loss}; c) Linear relationship between $T_{case} - T_{amb}$ and P_{loss}.](image-url)
2.2. Detailed MOSFET Characterization

Figure 2.12: a) Family of surfaces of E_{off} as a function of T_j and I_D for different values of V_{DS}. b) Family of surfaces of E_{off} as a function of V_{DS} and T_j for different values of I_D.

From the surfaces that T_j does not significantly impact on the observed E_{off}, unlike what is observed in the case of the characterization of $R_{DS(on)}$. As expected, an increase in I_D or V_{DS} represent higher E_{off} values, and increased P_{sw}.
Chapter 3

Time Interval Analysis of LLC Resonant Converters

As discussed in the Introduction, DC/DC power conversion has become a fundamental component in a variety of applications ranging from high to low power applications. One of the most popular topologies for DC/DC conversion is the LLC resonant converter, since it presents wide output voltage regulation with step-up and step-down capabilities. In addition, EMI/RFI is reduced in this topology because of the soft-switching of the MOSFETs, which also reduce switching losses (P_{sw}) in the devices.

However, the behaviour of this converter is highly non-linear, which renders its analysis and control a challenging task. Because of the complexity of the topology, a technique called First-Harmonic Approximation (FHA) has been developed for this converter, which aims to predict the concerned waveforms of the topology by modifying the inverting and rectifying stages shown in Fig. 1.2. The inverting stage is replaced by a sinusoidal voltage source with peak-to-peak amplitude of $\frac{4V_{in}}{\pi}$ and frequency equal to the switching frequency (f_{sw}). The rectifying stage is replaced by an equivalent resistance $R_{eq} = \frac{8R_{load}}{\pi^2}$, where R_{load} is the load resistance of the LLC resonant converter. The equivalent resistor is then scaled accordingly by the transformer’s turns ratio, and connected in parallel with the magnetizing inductance (L_m). While this equivalent circuit gives insights about the operation of the converter, the obtained results are not precise, which may compromise the determination of important aspects such as power loss (P_{loss}) estimation in the switches of the topology.
3.1 Time Interval Equations of LLC Resonant Converters

As an alternative, time-domain equations for the topology have been developed in the literature, but these either do not consider the impact of different loading conditions, or they do not present time-domain expressions which can be easily applied to different operating conditions, loading configurations or design parameters. In this work, a more detailed analysis of the waveforms of the converter was performed, and a time-domain methodology was developed based on the behaviour of the topology, accounting for different operating conditions and design parameters. It produces results which are closer to those observed in experimental measurements, replacing the established yet oversimplified FHA. In addition, the developed method allows for the determination of P_{loss} in the MOSFETs of this topology with increased precision, and in a timely fashion when compared to simulation results.

3.1 Time Interval Equations of LLC Resonant Converters

Steady-state time-domain equations for power converters allow for the behaviour of topologies to be studied under different operating conditions and design parameters without the need of using simulation software. This becomes especially interesting when phenomena with substantially different timescales are being investigated, such as the case of thermal and electrical behaviours. In such cases, simulation with significantly small timesteps must be carried on for a considerable amount of time, which can be computationally expensive. Employing time-domain expressions eliminates this problem, since the electrical behaviour is already determined at steady-state, and thermal characteristics can be assessed within a couple iterations.

In order to determine P_{loss} in the inverting and rectifying stages of LLC resonant converters, precise time-domain expressions are necessary so to avoid time-consuming simulation. While FHA is the established tool for investigating the behaviour of this converter,
it oversimplifies the obtained waveforms to a degree that they are not useful for power loss
determination. This is because the current waveforms will be approximated by sinusoidal
signals, which result in inaccurate calculations for conduction losses (P_{cond}). In addition,
P_{sw} in the MOSFETs of the inverting stage cannot be estimated properly since the turn-on
current (I_{on}) and turn-off current (I_{off}) are not properly calculated using FHA.

As an alternative, the Time Interval Analysis (TIA) developed allows for the determination
of time-domain equations which reflect the actual behaviour of the topology under different
operating conditions and design considerations, accounting for the non-sinusoidal characteristics presented by the waveforms of the converter. The equations are developed as function
of circuit parameters, such as transformer turns ratio (n), series resonant inductance (L_r)
and capacitance (C_r), magnetizing inductance (L_m) and inductance ratio ($m = \frac{L_m}{L_r}$), and
operating conditions such as switching frequency (f_{sw}). In addition, equations are provided
for parameters such as input voltage (V_{in}), output voltage (V_{out}) and load power (P_{load}), since
different combinations of these parameters can be considered for different applications. It is
important to notice that P_{load} can also be expressed as a function of the load current (I_{load}),
since $P_{\text{load}} = V_{\text{out}}I_{\text{load}}$.

Consider the LLC resonant converter shown in Fig. 3.1(a). The circuit connected to the
primary of the transformer can be represented by that shown in Fig. 3.1(b). Based on this

![Figure 3.1: a) LLC Resonant Converter and b) Equivalent circuit for the primary of the LLC resonant converter](image-url)
3.1. Time Interval Equations of LLC Resonant Converters

circuit, analysis of inductor currents and capacitor voltages allows for the determination of accurate time-domain equations for LLC resonant converters, which are fundamental for the adequate calculation of MOSFET power losses.

3.1.1 Operation Above the Resonant Frequency

It is possible to observe from Fig. 3.2 that the operation of the converter can be divided into two main portions. The first one occurs between the moment \(v_{in}(t) \) goes from zero to \(V_{in} \) until the instant \(v_{pr}(t) \) goes from \(-nV_{out}\) to \(nV_{out} \). This instant when the polarity of \(v_{pr}(t) \) changes from \(-nV_{out}\) to \(nV_{out} \) has been named \(t_1 \), and is an unknown parameter which needs to be determined from the circuit parameters and operating conditions. The moment when \(v_{in}(t) \) goes from zero to \(V_{in} \) has been named \(t_0 = 0 \). The second period starts at \(t = t_1 \), and lasts until \(v_{in}(t) \) goes from \(V_{in} \) to zero. As a result, there are two main time intervals that need to be analyzed in the circuit: the first one is when \(t_0 < t < t_1 \) and the second one is

![Figure 3.2: Key waveforms for operation of the LLC resonant converter a) Above the resonant frequency, b) Below the resonant frequency and c) At the resonant frequency](image)
3.1. Time Interval Equations of LLC Resonant Converters

when \(t_1 < t < \frac{1}{2f_{sw}} \). As a result, two equivalent circuits can be analyzed for each of the time intervals, as shown in Fig. 3.3.

During the first time interval, it is possible to perform mesh analysis of the resulting circuit shown in Fig. 3.3(a):

\[
-V_{\text{in}} + L_r \frac{di_{\text{tank}}(t)}{dt} + v_C(t) - nV_{\text{out}} = 0 \tag{3.1}
\]

In addition, the relationship between the capacitor current and voltage is known in this situation:

\[
i_{\text{tank}}(t) = C_r \frac{dv_C(t)}{dt} \tag{3.2}
\]

Moreover, a constant voltage is being applied to the magnetizing inductance \(L_m \), so:

\[
-nV_{\text{out}} = L_m \frac{di_{\text{m}}(t)}{dt} \tag{3.3}
\]

By rearranging the terms of (3.1), (3.2) and (3.3) it is possible to obtain the system of equations that represents the behaviour of the converter when operating above \(f_{res} \) during the first time interval \(0 < t < t_1 \):

\[
t_0 < t < t_1 \quad \quad t_1 < t < \frac{1}{2f_{sw}}
\]

Figure 3.3: a) Equivalent circuit for operation of the converter for \(f_{sw} > f_{res} \) and \(t_0 < t < t_1 \). b) Equivalent circuit for \(f_{sw} > f_{res} \) and \(t_1 < t < \frac{1}{2f_{sw}} \).
3.1. Time Interval Equations of LLC Resonant Converters

\[
\begin{aligned}
\left\{
&v_C(t) = V_{in} + nV_{out} - L_r \frac{di_{tank}(t)}{dt}, \\
&i_{tank}(t) = C_r \frac{dv_C(t)}{dt}, \\
&-nV_{out} = L_m \frac{dL_m(t)}{dt}
\end{aligned}
\] (3.4)

Taking the derivative of (3.1) with respect to time results in:

\[
\frac{dv_C(t)}{dt} = -L_r \frac{d^2i_{tank}(t)}{dt^2}
\] (3.5)

Replacing (3.5) into (3.2) gives:

\[
i_{tank}(t) = -C_r L_r \frac{d^2i_{tank}(t)}{dt^2}
\] (3.6)

Now, (3.6) is given only as a function of \(i_{tank}(t)\), and can be solved using ODE:

\[
i_{tank}(t) = K_1 \sin\left(\frac{t}{\sqrt{C_r L_r}} \right) + K_2 \cos\left(\frac{t}{\sqrt{C_r L_r}} \right)
\] (3.7)

where \(K_1\) and \(K_2\) are constant values. Taking the derivative of (3.2) with respect to time results in:

\[
\frac{di_{tank}(t)}{dt} = C_r \frac{d^2v_C(t)}{dt^2}
\] (3.8)

Replacing (3.8) into (3.1) gives:

\[-V_{in} + L_r C_r \frac{d^2v_C(t)}{dt^2} + v_C(t) - nV_{out} = 0
\] (3.9)

Now, (3.9) is given only as a function of \(v_C(t)\), and can be solved using ODE:

\[
v_C(t) = K_3 \sin\left(\frac{t}{\sqrt{C_r L_r}} \right) + K_4 \cos\left(\frac{t}{\sqrt{C_r L_r}} \right) + V_{in} + nV_{out}
\] (3.10)

where \(K_3\) and \(K_4\) are constant values.
The next step is to determine the values of K_1, K_2, K_3 and K_4 from (3.7) and (3.10). At $t_0 = 0$, the current $i_{\text{tank}}(t)$ assumes the value I_0, and $v_C(t)$ assumes the value V_0, as shown in Fig. 3.2. When $t = 0$, (3.7) becomes:

$$K_2 = I_0$$

(3.11)

As a result, (3.7) becomes:

$$i_{\text{tank}}(t) = K_1 \sin\left(\frac{t}{\sqrt{C_r L_r}}\right) + I_0 \cos\left(\frac{t}{\sqrt{C_r L_r}}\right)$$

(3.12)

When $t = 0$, (3.10) becomes:

$$K_4 = V_0 - V_{\text{in}} - nV_{\text{out}}$$

(3.13)

As a result, (3.10) becomes:

$$v_C(t) = K_3 \sin\left(\frac{t}{\sqrt{C_r L_r}}\right) + (V_0 - V_{\text{in}} - nV_{\text{out}}) \cos\left(\frac{t}{\sqrt{C_r L_r}}\right) + V_{\text{in}} + nV_{\text{out}}$$

(3.14)

In order to determine K_1, it is possible to take the derivative of (3.12) with respect to time, and replace it into (3.1):

$$- V_{\text{in}} + L_r \left(\frac{K_1}{\sqrt{C_r L_r}} \cos\left(\frac{t}{\sqrt{C_r L_r}}\right) - \frac{I_0}{\sqrt{C_r L_r}} \sin\left(\frac{t}{\sqrt{C_r L_r}}\right) \right) + v_C(t) - nV_{\text{out}} = 0$$

(3.15)

When $t = 0$, (3.15) becomes:

$$- V_{\text{in}} + L_r \frac{K_1}{\sqrt{C_r L_r}} + V_0 - nV_{\text{out}} = 0$$

(3.16)

This allows for K_1 to be determined:
3.1. Time Interval Equations of LLC Resonant Converters

\[K_1 = \sqrt{\frac{C_r}{L_r}}(V_{in} + nV_{out} - V_0) \]

(3.17)

Similarly, in order to determine \(K_3 \), it is possible to take the derivative of (3.14) with respect to time, and replace it into (3.2):

\[i_{tank}(t) = C_r \left(\frac{K_3}{\sqrt{C_r L_r}} \cos\left(\frac{t}{\sqrt{C_r L_r}} \right) - \frac{V_0 - V_{in} - nV_{out}}{\sqrt{C_r L_r}} \sin\left(\frac{t}{\sqrt{C_r L_r}} \right) \right) \]

(3.18)

When \(t = 0 \), (3.18) becomes:

\[I_0 = C_r \frac{K_3}{\sqrt{C_r L_r}} \]

(3.19)

This allows for \(K_3 \) to be determined:

\[K_3 = I_0 \sqrt{\frac{L_r}{C_r}} \]

(3.20)

Now that \(K_1, K_2, K_3 \) and \(K_4 \) have been determined, it is possible to obtain expressions for \(i_{tank}(t) \) and \(v_C(t) \) as a function of circuit parameters and operating conditions and the variables \(I_0 \) and \(V_0 \):

\[i_{tank}(t) = \sqrt{\frac{C_r}{L_r}}(V_{in} + nV_{out} - V_0) \sin\left(\frac{t}{\sqrt{C_r L_r}} \right) + I_0 \cos\left(\frac{t}{\sqrt{C_r L_r}} \right) \]

(3.21)

\[v_C(t) = I_0 \sqrt{\frac{L_r}{C_r}} \sin\left(\frac{t}{\sqrt{C_r L_r}} \right) + (V_0 - V_{in} - nV_{out}) \cos\left(\frac{t}{\sqrt{C_r L_r}} \right) + V_{in} + nV_{out} \]

(3.22)

It is also possible to solve (3.3) to obtain an expression for \(i_{Lm}(t) \)

\[i_{Lm}(t) = -\frac{nV_{out}}{L_m} + K_5 \]

(3.23)

The constant \(K_5 \) can be determined by considering that when \(t = 0 \), \(i_{Lm}(0) = I_{Lm0} \), so \(K_5 = I_{Lm0} \). As a result, the system of equations that regulate the behaviour of the converter
3.1. Time Interval Equations of LLC Resonant Converters

when it operates above \(f_{\text{res}} \) and during the first time interval can be obtained with (3.21), (3.22) and (3.23):

\[
\begin{align*}
 v_C^a(t) &= V_{\text{in}} + nV_{\text{out}} + I_0 \sqrt{\frac{L_r}{C_r}} \sin \left(\frac{t}{\sqrt{L_r C_r}} \right) + (V_0 - V_{\text{in}} - nV_{\text{out}}) \cos \left(\frac{t}{\sqrt{L_r C_r}} \right) \\
 i_{\text{tank}}^a(t) &= I_0 \cos \left(\frac{t}{\sqrt{L_r C_r}} \right) - (V_0 - V_{\text{in}} - nV_{\text{out}}) \sqrt{\frac{C_r}{L_r}} \sin \left(\frac{t}{\sqrt{L_r C_r}} \right) \\
 i_{L_m}^a(t) &= -\frac{nV_{\text{out}}}{L_m} + I_{L_m0}
\end{align*}
\]

where the superscript \(a \) indicates that these waveforms represent the behavior during the first interval, \(t_0 = 0 < t < t_1 \).

During the second time interval, which is comprised when \(t_1 < t < \frac{1}{2f_{\text{sw}}} \), the analysis follows a similar procedure as the one described previously. Considering Fig. 3.2, it is possible to observe that the only change that occurred in the circuit is that \(v_{pr}(t) \) is now \(V_{pr} \) instead of \(-V_{pr}\). As a result, the following expressions that describe the behavior of the circuit shown in Fig. 3.3(b) can be found:

\[
\begin{align*}
 v_C(t) &= V_{\text{in}} - nV_{\text{out}} - L_r \frac{d_i_{\text{tank}}(t - t_1)}{dt} \\
 i_{\text{tank}}(t) &= C_r \frac{dv_C(t - t_1)}{dt} \\
 nV_{\text{out}} &= L_m \frac{d_i_{L_m}(t - t_1)}{dt}
\end{align*}
\]

Because of the time reference considered, it is necessary to displace the waveforms in time by \(t_1 \). If \(v_C(t_1) = V_1 \), \(i_{\text{tank}}(t_1) = I_1 \) and \(i_{L_m}(t_1) = I_{L_m1} \), then the time-domain equations that describe the behavior of the converter can be obtained by following a similar procedure as to that described for the first time interval:
3.1 Time Interval Equations of LLC Resonant Converters

\[
\begin{align*}
 v_C^b(t) &= V_{in} - nV_{out} + I_1 \sqrt{\frac{L_r}{C_r}} \sin \left(\frac{t - t_1}{\sqrt{L_rC_r}} \right) + (V_1 - V_{in} + nV_{out}) \cos \left(\frac{t - t_1}{\sqrt{L_rC_r}} \right) \\
 i_{tank}^b(t) &= I_1 \cos \left(\frac{t - t_1}{\sqrt{L_rC_r}} \right) - (V_1 - V_{in} + nV_{out}) \sqrt{\frac{C_r}{L_r}} \sin \left(\frac{t - t_1}{\sqrt{L_rC_r}} \right) \\
 i_{Lm}^b(t) &= \frac{nV_{out}(t - t_1)}{L_m} + I_{Lm1}
\end{align*}
\]

(3.26)

where the superscript \(b \) indicates that these waveforms represent the behavior during the second interval, \(t_1 < t < \frac{1}{2f_{sw}} \).

Now, the equations that represent the behavior of the circuit are known for operation above the resonant frequency, and are shown in (3.24) and (3.26). The superscript \(a \) indicates that that set of waveforms is valid during the first time interval, \(0 < t < t_1 \), while the superscript \(b \) indicates that those waveforms are valid during the second time interval, \(t_1 < t < \frac{1}{2f_{sw}} \).

While these equations are represented as a function of design parameters such as \(L_r, C_r, L_m \) and \(n \), there are also parameters which are unknown, such as \(I_0, I_1, V_0, V_1, I_{Lm0}, I_{Lm1} \) and \(t_1 \). In addition, the value of \(V_{in} \) or \(V_{out} \) may not be known for a certain operating condition. In order to determine the value of the unknown parameters, certain electrical properties of the circuit must be considered.

First, it is known that at \(t = t_1 \) there is no current flowing to the transformer connected to the primary of the circuit, so \(i_{tank}(t_1) = i_{Lm}(t_1) = I_1 = I_{Lm1} \). This implies that at \(t = t_1 \), \(i_{Lm}^a(t) \) from (3.24) becomes:

\[
I_{Lm0} = I_1 + \frac{nV_{out}t_1}{L_m}
\]

(3.27)

In addition, as can be observed in Fig. 3.2, the average value of \(i_{Lm}(t) \) is zero over a switching period. As a result, \(i_{Lm}(0) = -i_{Lm}(\frac{1}{2f_{sw}}) \), since the switching cycles are symmetric and a duty cycle of \(D = 0.5 \) is assumed. This implies that \(i_{Lm}(\frac{1}{2f_{sw}}) = -I_{Lm0} \). Thus, at
3.1. Time Interval Equations of LLC Resonant Converters

\[t = \frac{1}{2f_{sw}}, \quad i_{L_m}^b(t) \] from (3.26) becomes:

\[I_{L_m0} = \frac{nV_{out} \left(t_1 - \frac{1}{2f_{sw}} \right)}{L_m} - I_1 \] (3.28)

Equating (3.27) and (3.28) allows for the determination of \(I_1 \) as a function of circuit parameters, operating conditions and \(V_{out} \):

\[I_1 = -\frac{nV_{out}}{4L_m f_{sw}} \] (3.29)

Replacing (3.29) into (3.27) allows for the determination of \(I_{L_m0} \):

\[I_{L_m0} = \frac{nV_{out}}{4L_m f_{sw}} (4f_{sw} t_1 - 1) \] (3.30)

Assuming that \(A = \frac{t_1}{\sqrt{L_r C_r}} \) and \(B = \frac{1}{4f_{sw} \sqrt{L_r C_r}} \), (3.30) becomes:

\[I_{L_m0} = \frac{nV_{out}}{4L_m f_{sw}} \left(\frac{A}{B} - 1 \right) \] (3.31)

Replacing \(I_1 \) from (3.29) in \(v_C^b(t) \) from (3.26) gives:

\[v_C^b(t) = V_{in} - nV_{out} - \frac{nV_{out}}{4L_m f_{sw}} \sqrt{\frac{L_r}{C_r}} \sin \left(\frac{t - t_1}{\sqrt{L_r C_r}} \right) + (V_1 - V_{in} + nV_{out}) \cos \left(\frac{t - t_1}{\sqrt{L_r C_r}} \right) \] (3.32)

Replacing \(I_1 \) (3.29) in \(i_{tank}^b(t) \) from (3.26) gives:

\[i_{tank}^b(t) = -\frac{nV_{out}}{4L_m f_{sw}} \cos \left(\frac{t - t_1}{\sqrt{L_r C_r}} \right) - (V_1 - V_{in} + nV_{out}) \sqrt{\frac{C_r}{L_r}} \sin \left(\frac{t - t_1}{\sqrt{L_r C_r}} \right) \] (3.33)

Because the voltage in the series resonant capacitor cannot change instantaneously, \(v_C^a(t_1) \) from (3.24) must be equal to \(v_C^b(t_1) \) from (3.32). That is:

\[V_1 = V_{in} + nV_{out} + I_0 \sqrt{\frac{L_r}{C_r}} \sin(A) + (V_0 - V_{in} - nV_{out}) \cos(A) \] (3.34)
where \(A = \frac{t_1}{\sqrt{L_rC_r}} \). Similarly, the tank current cannot change suddenly because of the resonant inductance, so \(i_{\text{tank}}^a(t_1) \) from (3.24) must be equal to \(i_{\text{tank}}^b(t_1) \) from (3.33). That is:

\[
- \frac{nV_{\text{out}}}{4L_mf_{\text{sw}}} = I_0 \cos(A) - (V_0 - V_{\text{in}} - nV_{\text{out}}) \sqrt{\frac{C_r}{L_r}} \sin(A) \tag{3.35}
\]

Isolating \(I_0 \) in (3.35) gives:

\[
I_0 = (V_0 - V_{\text{in}} - nV_{\text{out}}) \sqrt{\frac{C_r}{L_r}} \tan(A) - \frac{nV_{\text{out}}}{4L_mf_{\text{sw}} \sec(A)} \tag{3.36}
\]

Replacing \(I_0 \) in (3.34) gives:

\[
V_1 = V_{\text{in}} + nV_{\text{out}} - \frac{nV_{\text{out}} \sin(2A)}{8L_mf_{\text{sw}}} \sqrt{\frac{L_r}{C_r}} + (V_0 - V_{\text{in}} - nV_{\text{out}}) \sec(A) \tag{3.37}
\]

Another property that can be explored is related to \(v_C(t) \). Because the topology being considered consists of the half-bridge inverter, and since a duty cycle \(D = 0.5 \) is assumed, \(v_C^b(\frac{1}{2f_{\text{sw}}}) = -V_0 + V_{\text{in}} \). This property can be visualized in Fig. 3.2 and through simulation of the circuit. Equating \(v_C^b(\frac{1}{2f_{\text{sw}}}) \) from (3.26) to \(-V_0 + V_{\text{in}} \) gives:

\[
-V_0 + V_{\text{in}} = V_{\text{in}} - nV_{\text{out}} + I_1 \sqrt{\frac{L_r}{C_r}} \sin \left(\frac{\frac{1}{2f_{\text{sw}}} - t_1}{\sqrt{L_rC_r}} \right) + (V_1 - V_{\text{in}} + nV_{\text{out}}) \cos \left(\frac{\frac{1}{2f_{\text{sw}}} - t_1}{\sqrt{L_rC_r}} \right) \tag{3.38}
\]

Replacing \(I_1 \) from (3.29), \(V_1 \) from (3.37), considering that \(A = \frac{t_1}{\sqrt{L_rC_r}} \) and \(B = \frac{1}{4f_{\text{sw}} \sqrt{L_rC_r}} \), and simplifying the resulting equation gives:

\[
V_0 = V_{\text{in}} + nV_{\text{out}} (1 - 2 \cos(A)) + \frac{B}{m} nV_{\text{out}} \sin(2B) + \cos(A)(2nV_{\text{out}} \cos(A) - V_{\text{in}}) \frac{2 \cos(B) \cos(A - B)}{2 \cos(B) \cos(A - B)} \tag{3.39}
\]

Replacing \(V_0 \) from (3.39) into (3.36) gives:
3.1. Time Interval Equations of LLC Resonant Converters

\[I_0 = -\sqrt{\frac{C_r}{L_r}} \frac{2B}{m} nV_{out} \cos^2(B) + \sin(A)(2nV_{out} \cos(A - 2B) + V_{in})}{2 \cos(B) \cos(A - B)} \] (3.40)

Replacing \(V_0 \) from (3.39) into (3.37) gives:

\[V_1 = V_{in} - nV_{out} - \frac{V_{in} - 2nV_{out} \cos(A)}{2 \cos(B) \cos(A - B)} - \frac{B}{m} nV_{out} \tan(A - B) \] (3.41)

In order to obtain the relationship between input and output voltage, it is possible to explore a characteristic of the current that flows through the resonant tank \(i_{tank}(t) \): when \(t = \frac{1}{2f_{sw}} \), \(i_{tank}(\frac{1}{2f_{sw}}) = -I_0 \), since the average current of the inductor is zero within a switching cycle. Therefore:

\[-I_0 = I_1 \cos \left(\frac{1}{2f_{sw}} - t_1 \right) - (V_1 - V_{in} + nV_{out}) \sqrt{\frac{C_r}{L_r}} \sin \left(\frac{1}{2f_{sw}} - t_1 \right) \] (3.42)

Replacing \(I_0 \) from (3.40), \(I_1 \) from (3.29), \(V_1 \) from (3.41), considering that \(A = \frac{t_1}{\sqrt{L_r C_r}} \) and \(B = \frac{1}{4f_{sw} \sqrt{L_r C_r}} \), and simplifying the resulting equation gives:

\[\frac{V_{out}}{V_{in}} = -\frac{1}{2n} \frac{B}{m} \frac{\sin(A - B)}{\cos(B) + \sin(B)} \] (3.43)

Together, the equations for \(I_1 \) and \(I_{L_m1} \) from (3.29), \(V_1 \) from (3.41), \(I_{L_m0} \) from (3.31), \(I_0 \) from (3.40), \(V_0 \) from (3.39) and the relationship between \(V_{in} \) and \(V_{out} \) from (3.43) result in the system of equations presented in (3.44):
3.1. Time Interval Equations of LLC Resonant Converters

\[
\begin{aligned}
I_{L,m1} &= I_1 = -\frac{nV_{out}}{4L_{m}f_{sw}} \\
V_1 &= V_{in} - nV_{out} - \frac{V_{in} - 2nV_{out} \cos(A)}{2 \cos(B) \cos(A - B)} - \frac{B}{m} nV_{out} \tan(A - B) \\
I_{L,m0} &= \frac{nV_{out}}{4L_{m}f_{sw}} \left(\frac{A}{B} - 1 \right) \\
I_0 &= -\sqrt{\frac{C_r}{L_r} \frac{2B}{m} nV_{out} \cos^2(B) + \sin(A) (2nV_{out} \cos(A - 2B) + V_{in})}{2 \cos(B) \cos(A - B)} \\
V_0 &= V_{in} + nV_{out} (1 - 2 \cos(A)) + \frac{B}{m} nV_{out} \sin(2B) + \cos(A) (2nV_{out} \cos(A) - V_{in})}{2 \cos(B) \cos(A - B)} \\
V_{out} &= \frac{1}{2n} \frac{B}{m} \sin(A - B) \\
V_{in} &= -\frac{1}{2n} \frac{B}{m} \cos(B) + \sin(B)
\end{aligned}
\]

where \(A = \frac{t_1}{\sqrt{L_rC_r}} \) and \(B = \frac{1}{4f_{sw}\sqrt{L_rC_r}} \). If both \(V_{in} \) and \(V_{out} \) are known, \(t_1 \) can be calculated from the equations presented. Otherwise, conservation of energy can be used to determine this last unknown parameter: the input energy, found using the time-domain equations developed, is equal to the output power being delivered to the load, which is a required parameter to determine the unknown variables. This last equation can be determined as follows:

\[
P_{in} = V_{in} f_{sw} \left(\int_0^{t_1} i_{tank}^a(t) dt + \int_{t_1}^{\frac{1}{f_{sw}}} i_{tank}^b(t) dt \right) = P_{load}
\]

(3.45)

It is important to notice that \(P_{load} \) can be expressed in terms of \(I_{out}V_{out} \), which grants greater flexibility in the calculation of the time-domain expressions. Solving (3.45) and replacing the unknown variables from (3.44) results in (3.46):

\[
P_{in} = 4C_r f_{sw} V_{in}^2 \sin(A - B) \sin(\frac{A}{2} - B) \sin(\frac{A}{2}) = P_{load}
\]

(3.46)

where \(A = \frac{t_1}{\sqrt{L_rC_r}} \) and \(B = \frac{1}{4f_{sw}\sqrt{L_rC_r}} \).
3.1. Time Interval Equations of LLC Resonant Converters

3.1.2 Operation Below the Resonant Frequency

From Fig. 3.2 it is possible to observe once again that the operation of the converter can be divided into two main portions. The first one occurs between the moment $v_{in}(t)$ goes from zero to V_{in} until the instant $v_{pr}(t)$ is no longer clamped to nV_{out}. This instant, which occurs when the primary of the circuit is disconnected from the secondary, and current stops flowing to the transformer, has been named t_1, and is an unknown parameter which needs to be determined from the circuit parameters and operating conditions. The moment when $v_{in}(t)$ goes from zero to V_{in} has been named $t_0 = 0$. The second period starts at $t = t_1$, and lasts until $v_{in}(t)$ goes from V_{in} to zero. As a result, there are two main time intervals that need to be analyzed in the circuit: the first one is when $t_0 < t < t_1$ and the second one is when $t_1 < t < \frac{1}{2f_{sw}}$. Two equivalent circuits can be analyzed for each of the time intervals, as shown in Fig. 3.4.

During the first time interval, it is possible to perform mesh analysis of the resulting circuit shown in Fig. 3.4(a), and the process for obtaining the equations is fairly similar to that developed previously for operation above the resonant frequency. The resulting time-domain expressions for this first time interval are:

$$t_0 < t < t_1$$

$$t_1 < t < \frac{1}{2f_{sw}}$$

Figure 3.4: a) Equivalent circuit for operation of the converter for $f_{sw} < f_{res}$ and $t_0 < t < t_1$. b) Equivalent circuit for $f_{sw} < f_{res}$ and $t_1 < t < \frac{1}{2f_{sw}}$.
3.1. Time Interval Equations of LLC Resonant Converters

\[
\begin{align*}
\left\{ \begin{array}{l}
 v_C^a(t) = V_{in} - nV_{out} + I_0 \sqrt{\frac{L_r}{C_r}} \sin \left(\frac{t}{\sqrt{L_rC_r}} \right) + (V_0 - V_{in}) \cos \left(\frac{t}{\sqrt{L_rC_r}} \right) \\
 i_{tank}^a(t) = I_0 \cos \left(\frac{t}{\sqrt{L_rC_r}} \right) - (V_0 - V_{in}) \sqrt{\frac{C_r}{L_r}} \sin \left(\frac{t}{\sqrt{L_rC_r}} \right) \\
 i_{Lm}^a(t) = \frac{nV_{out} t}{L_m} + I_{Lm0}
\end{array} \right.
\end{align*}
\] (3.47)

where the superscript \(a \) indicates that these equations are valid during the first operating interval. During the second time interval, there is no current flowing to the secondary of the circuit, so \(i_{tank}(t) = i_{Lm}(t) \), as shown in Fig. 3.4(b). As a result, since the same current flows through both inductors, the voltage drop across them is \((L_r + L_m) \frac{di_{tank}(t)}{dt} \). By following a similar process as that described previously, it is possible to obtain the time-domain expressions that regulate the behavior of the converter during the second time interval:

\[
\begin{align*}
\left\{ \begin{array}{l}
 v_C^b(t) = V_{in} + I_1 \sqrt{\frac{L_r + L_m}{C_r}} \sin \left(\frac{t - t_1}{\sqrt{(L_r + L_m)C_r}} \right) + (V_1 - V_{in}) \cos \left(\frac{t - t_1}{\sqrt{(L_r + L_m)C_r}} \right) \\
 i_{tank}^b(t) = I_1 \cos \left(\frac{t - t_1}{\sqrt{(L_r + L_m)C_r}} \right) - (V_1 - V_{in}) \sqrt{\frac{C_r}{(L_r + L_m)}} \sin \left(\frac{t - t_1}{\sqrt{(L_r + L_m)C_r}} \right) \\
 i_{Lm}^b(t) = i_{tank}^b(t)
\end{array} \right.
\end{align*}
\] (3.48)

where the superscript \(b \) indicates that these equations are valid for the second time interval.

While these equations are represented as a function of design parameters such as \(L_r, C_r, L_m \) and \(n \), there are also parameters which are unknown, such as \(I_0, I_1, V_0, V_1, I_{Lm0}, I_{Lm1} \) and \(t_1 \). In addition, the value of \(V_{in} \) or \(V_{out} \) may not be known for a certain operating condition. In order to determine the value of the unknown parameters, certain electrical properties of the circuit must be considered.

First, it is known that at \(t = t_1 \) there is no current flowing to the transformer connected to the primary of the circuit, so \(i_{tank}(t_1) = i_{Lm}(t_1) = I_1 = I_{Lm1} \). In addition, unlike the scenario...
for operation above the \(f_{\text{res}} \), there is no current flowing to the secondary of the circuit at \(t = 0 \). As a result, \(i_{\text{tank}}(0) = i_{\text{Lm}}(0) = I_0 = I_{\text{Lm}0} \). This implies that at \(t = t_1 \), \(i_{\text{Lm}}^2(t) \) from (3.47) becomes:

\[
I_0 = I_1 - \frac{nV_{\text{out}}t_1}{L_m} \tag{3.49}
\]

Because the voltage in the series resonant capacitor cannot change instantaneously, \(v_C^a(t_1) \) from (3.47) must be equal to \(v_C^b(t_1) \) from (3.48). That is:

\[
V_1 = V_{\text{in}} - nV_{\text{out}} + I_0 \sqrt{\frac{L_r}{C_r}} \sin \left(\frac{t_1}{\sqrt{L_r C_r}} \right) + (V_0 - V_{\text{in}} + nV_{\text{out}}) \cos \left(\frac{t_1}{\sqrt{L_r C_r}} \right) \tag{3.50}
\]

Replacing \(I_0 \) from (3.49) into (3.50), and assuming that \(A = \frac{t_1}{\sqrt{L_r C_r}} \) gives:

\[
V_1 = V_{\text{in}} - nV_{\text{out}} + \left(I_1 - \frac{nV_{\text{out}}t_1}{L_m} \right) \sqrt{\frac{L_r}{C_r}} \sin(A) + (V_0 - V_{\text{in}} + nV_{\text{out}}) \cos(A) \tag{3.51}
\]

Similarly, the tank current cannot change suddenly because of the resonant inductance, so \(i_{\text{tank}}^a(t_1) \) from (3.47) must be equal to \(i_{\text{tank}}^b(t_1) \) from (3.48). That is:

\[
I_1 = I_0 \cos \left(\frac{t_1}{\sqrt{L_r C_r}} \right) - (V_0 - V_{\text{in}} + nV_{\text{out}}) \sqrt{\frac{C_r}{L_r}} \sin \left(\frac{t_1}{\sqrt{L_r C_r}} \right) \tag{3.52}
\]

Replacing \(I_0 \) from (3.49) into (3.52), and assuming that \(A = \frac{t_1}{\sqrt{L_r C_r}} \) gives:

\[
I_1 = -\frac{nV_{\text{out}}t_1 \cos(A)}{L_m(1 - \cos(A))} - (V_0 - V_{\text{in}} + nV_{\text{out}}) \sqrt{\frac{C_r}{L_r}} \cot \left(\frac{A}{2} \right) \tag{3.53}
\]

Replacing \(I_1 \) from (3.53) into (3.49) gives:

\[
I_0 = -\frac{nV_{\text{out}}t_1}{L_m(1 - \cos(A))} - (V_0 - V_{\text{in}} + nV_{\text{out}}) \sqrt{\frac{C_r}{L_r}} \cot \left(\frac{A}{2} \right) \tag{3.54}
\]

Replacing \(I_1 \) from (3.53) into (3.51) gives:
3.1. Time Interval Equations of LLC Resonant Converters

\[V_1 = 2V_{in} - 2nV_{out} - V_0 - \sqrt{\frac{L_r}{C_r}} \frac{nV_{out}t_1 \cot \left(\frac{A}{2} \right)}{L_m} \] (3.55)

Another property that can be explored is related to \(v_C(t) \). Because the topology being considered consists of the half-bridge inverter, and since a duty cycle \(D = 0.5 \) is assumed, \(v_C^b(\frac{1}{2f_{sw}}) = -V_0 + V_{in} \). This property can be visualized in Fig. 3.2 and through simulation of the circuit. Equating \(v_C^b(\frac{1}{2f_{sw}}) \) from (3.48) to \(-V_0 + V_{in} \) gives:

\[-V_0 = I_1 \sqrt{\frac{L_r + L_m}{C_r}} \sin \left(\frac{\frac{1}{2f_{sw}} - t_1}{\sqrt{(L_r + L_m)C_r}} \right) + (V_1 - V_{in}) \cos \left(\frac{\frac{1}{2f_{sw}} - t_1}{\sqrt{(L_r + L_m)C_r}} \right) \] (3.56)

Replacing \(I_1 \) from (3.53), \(V_1 \) from (3.55), considering that \(A = \frac{t_1}{\sqrt{L_rC_r}} \) and \(T = \frac{\frac{1}{2f_{sw}} - t_1}{\sqrt{(L_r + L_m)C_r}} \), and simplifying the resulting equation gives:

\[V_0 = V_{in} - nV_{out} + \frac{\frac{A}{m} nV_{out}(\cos(T) \sin(A) - \sqrt{m + \frac{1}{4}} \sin(T) \cos(A))}{(\cos(A) - 1)(\cos(T) - 1) - \sqrt{m + \frac{1}{4}} \sin(A) \sin(T)} \]

\[+ \frac{(V_{in} - nV_{out}(\cos(T) + 1))(\cos(A) - 1)}{(\cos(A) - 1)(\cos(T) - 1) - \sqrt{m + \frac{1}{4}} \sin(A) \sin(T)} \] (3.57)

Replacing \(V_0 \) from (3.57) into (3.53) gives:

\[I_1 = \sqrt{\frac{C_r}{L_r}} \frac{\frac{A}{m} nV_{out}(\cos(T) + \cos(A)) + \sin(A)(nV_{out}(1 + \cos(T)) - V_{in})}{\sqrt{m + \frac{1}{4}} \sin(T) \sin(A) - (\cos(T) - 1)(\cos(A) - 1)} \] (3.58)

Replacing \(V_0 \) from (3.57) into (3.54) gives:

\[I_0 = \sqrt{\frac{C_r}{L_r}} \frac{\frac{A}{m} nV_{out}(\cos(T) \cos(A) - \sqrt{m + \frac{1}{4}} \sin(T) \sin(A) + 1) + \sin(A)(nV_{out}(1 + \cos(T)) - V_{in})}{\sqrt{m + \frac{1}{4}} \sin(T) \sin(A) - (\cos(T) - 1)(\cos(A) - 1)} \] (3.59)

Replacing \(V_0 \) from (3.57) into (3.55) gives:
3.1. Time Interval Equations of LLC Resonant Converters

\[V_1 = V_{in} - nV_{out} + \frac{A}{m} nV_{out}(\sin(A) - \sqrt{m + 1}\sin(T)) + (V_{in} - nV_{out}(\cos(T) + 1))(\cos(A) - 1) \]
\[\frac{\sqrt{m + 1}\sin(A)}{\sqrt{m + 1}\sin(A) - (\cos(T) - 1)(\cos(A) - 1)} \]

(3.60)

In order to obtain the relationship between input and output voltage, it is possible to explore a characteristic of the current that flows through the resonant tank \(i_{tank}(t)\): when \(t = \frac{1}{2f_{sw}}\), \(i_{tank}^b(\frac{1}{2f_{sw}}) = -I_0\), since the average current of the inductor is zero within a switching cycle. Therefore:

\[-I_0 = I_1 \cos \left(\frac{1}{2f_{sw}} - t_1 \sqrt{L_r + L_m} \right) - (V_1 - V_{in}) \sqrt{\frac{C_r}{L_r + L_m}} \sin \left(\frac{1}{2f_{sw}} - t_1 \sqrt{L_r + L_m} \right) \]

(3.61)

Replacing \(I_0\) from (3.59), \(I_1\) from (3.58), \(V_1\) from (3.60), considering that \(A = \frac{t_1}{\sqrt{L_r C_r}}\) and \(T = \frac{1}{2f_{sw}} - t_1 \sqrt{L_r + L_m} C_r\), and simplifying the resulting equation gives:

\[\frac{V_{out}}{V_{in}} = \frac{2m}{n} + \cot \left(\frac{A}{2} \right) - \sqrt{m + 1} \tan \left(\frac{T}{2} \right) \]

(3.62)

Together, the equations for \(I_1\) and \(I_{Lm1}\) from (3.58), \(V_1\) from (3.60), \(I_0\) and \(I_{Lm0}\) from (3.59), \(V_0\) from (3.57) and the relationship between \(V_{in}\) and \(V_{out}\) from (3.62) result in a system of equations which define the unknown parameters for operation of the converter below \(f_{res}\):
3.1. Time Interval Equations of LLC Resonant Converters

\[
\begin{align*}
I_{L_{m1}} &= I_1 \\
I_{L_{m0}} &= I_0 \\
I_1 &= \sqrt{\frac{C_r}{L_r}} \frac{\Delta n V_{out} \cos(T) + \cos(A)}{\sqrt{m + 1} \sin(T) \sin(A) - (\cos(T) - 1)(\cos(A) - 1)} \\
V_1 &= V_{in} - n V_{out} + \frac{\Delta n V_{out} \sin(A) - \sqrt{m + 1} \sin(T)}{\sqrt{m + 1} \sin(T) \sin(A) - (\cos(T) - 1)(\cos(A) - 1)} \\
I_0 &= \sqrt{\frac{C_r}{L_r}} \frac{\Delta n V_{out} \cos(T) \cos(A) - \sqrt{m + 1} \sin(T) \sin(A) + 1 + \sin(A)(n V_{out} (1 + \cos(T)) - V_{in})}{\sqrt{m + 1} \sin(T) \sin(A) - (\cos(T) - 1)(\cos(A) - 1)} \\
V_0 &= V_{in} - n V_{out} + \frac{\Delta n V_{out} \cos(T) \sin(A) + \sqrt{m + 1} \sin(T) \cos(A)}{(\cos(A) - 1)(\cos(T) - 1) - \sqrt{m + 1} \sin(A) \sin(T)} \\
V_{out} &= V_{in} + \frac{m}{A} + \cot\left(\frac{A}{2}\right) - \sqrt{m + 1} \tan\left(\frac{T}{2}\right)
\end{align*}
\]

(3.63)

where \(A = \frac{t_1}{L_r C_r} \) and \(T = \frac{1}{L_r C_r (L_r + L_m C_r)} \). If both \(V_{in} \) and \(V_{out} \) are known, \(t_1 \) can be calculated from the equations presented. Otherwise, conservation of energy can be used to determine this last unknown parameter: the input energy, found using the time-domain equations developed, is equal to the output power being delivered to the load, which is a required parameter to determine the unknown variables. This last equation can be determined as follows:

\[
P_{in} = V_{in} f_{sw} \left(\int_0^{t_1} i_{tank}^a(t) dt + \int_{t_1}^{1/f_{sw}} i_{tank}^b(t) dt \right) = P_{load}
\]

(3.64)

It is important to notice that \(P_{load} \) can be expressed in terms of \(I_{out} V_{out} \), which grants greater flexibility in the calculation of the time-domain expressions. Solving (3.64) and replacing the unknown variables from (3.63) results in the following expression:
3.1. Time Interval Equations of LLC Resonant Converters

\[P_{in} = C_r f_{sw} V_{in}^2 \left(\sqrt{m + 1} - \tan \left(\frac{T}{2} \right) \tan \left(\frac{A}{2} \right) \right) \left(\frac{A}{2} \cot \left(\frac{A}{2} \right) - 1 \right) \]

\[
\left(\frac{A}{m} \frac{\cos(A) + \cos(T) - 2 \cos(A) \cos(T) - 2}{\sin(T)(\cos(A) - 1)} - \sqrt{m + 1} \frac{\cos(A) + \cos(T) + 2 \cos(A) \cos(T) + 2}{\sin(A)(\cos(T) + 1)} \right) \\
+ \frac{1 + \frac{A}{2} \cot \left(\frac{A}{2} \right) + m}{\tan \left(\frac{A}{2} \right) \tan \left(\frac{A}{2m + 1} \right)} + \tan \left(\frac{T}{2} \right) \left(\tan \left(\frac{A}{2} \right) + A \right) - \sqrt{m + 1} \left(2 \frac{A}{2} \cot \left(\frac{A}{2} \right) \right) \right)^{-1} = P_{load}
\]

(3.65)

where \(A = \frac{t_1}{\sqrt{L_r C_r}} \) and \(T = \frac{\frac{1}{2f_{sw}} - t_1}{\sqrt{(L_r + L_m)C_r}} \). Since the equation presented in (3.65) is rather bulky and difficult to read in its present form, it can be split into different parts, as follows:

\[P_{in} = C_r f_{sw} V_{in}^2 \frac{\alpha}{\gamma + \beta} = P_{load} \]

(3.66)

where:

\[
\begin{align*}
\alpha &= \left(\sqrt{m + 1} - \tan \left(\frac{T}{2} \right) \tan \left(\frac{A}{2} \right) \right) \left(\frac{A}{2} \cot \left(\frac{A}{2} \right) - 1 \right) \\
\beta &= \frac{A}{m} \frac{\cos(A) + \cos(T) - 2 \cos(A) \cos(T) - 2}{\sin(T)(\cos(A) - 1)} - \sqrt{m + 1} \frac{\cos(A) + \cos(T) + 2 \cos(A) \cos(T) + 2}{\sin(A)(\cos(T) + 1)} \\
\gamma &= \frac{1 + \frac{A}{2} \cot \left(\frac{A}{2} \right) + m}{\tan \left(\frac{A}{2} \right) \tan \left(\frac{A}{2m + 1} \right)} + \tan \left(\frac{T}{2} \right) \left(\tan \left(\frac{A}{2} \right) + A \right) - \sqrt{m + 1} \left(2 \frac{A}{2} \cot \left(\frac{A}{2} \right) \right)
\end{align*}
\]

(3.67)

where \(A = \frac{t_1}{\sqrt{L_r C_r}} \) and \(T = \frac{\frac{1}{2f_{sw}} - t_1}{\sqrt{(L_r + L_m)C_r}} \).

3.1.3 Operation at the Resonant Frequency

It is possible to observe from Fig. 3.2 that the operation of the converter at resonance is comprised of a single period of time. This period goes from the moment \(v_{in}(t) \) goes from zero to \(V_{in} \) until the instant \(v_{in}(t) \) goes from \(V_{in} \) to zero. As a result, there is a single period to be analyzed in the circuit: \(t_0 < t < \frac{1}{2f_{sw}} \), and one single equivalent circuit, shown in Fig. 3.5.

Under this specific operating condition, \(f_{sw} = f_{res} = \frac{1}{2\pi\sqrt{L_r C_r}} \), so the time interval to be considered is \(t_0 < t < \pi\sqrt{L_r C_r} \).
3.1. Time Interval Equations of LLC Resonant Converters

\[t_0 < t < \frac{1}{2f_{sw}} \]

Figure 3.5: Equivalent circuit for operation of the converter at the resonant frequency for \(t_0 < t < \frac{1}{2f_{sw}} \).

Similarly to the previous scenarios, the time-domain expressions that govern the behavior of the topology are presented in (3.68). The derivation process for these equations is similar to that presented previously, and when \(t = 0 \), \(v_C(0) = V_0 \), \(i_{tank}(0) = I_0 \) and \(i_{Lm}(0) = I_{Lm0} \).

\[
\begin{align*}
\left\{
&v_C(t) = V_{in} - nV_{out} + I_0 \sqrt{\frac{L_r}{C_r}} \sin \left(\frac{t}{\sqrt{L_r C_r}} \right) + (V_0 - V_{in} + nV_{out}) \cos \left(\frac{t}{\sqrt{L_r C_r}} \right) \\
&i_{tank}(t) = I_0 \cos \left(\frac{t}{\sqrt{L_r C_r}} \right) - (V_0 - V_{in} + nV_{out}) \sqrt{\frac{C_r}{L_r}} \sin \left(\frac{t}{\sqrt{L_r C_r}} \right) \\
&i_{Lm}(t) = \frac{nV_{out} t}{L_m} + I_{Lm0}
\end{align*}
\] (3.68)

Under this specific operating condition, there is no current flowing to the secondary of the circuit when \(t = 0 \), so \(i_{tank}(0) = i_{Lm}(0) = I_0 = I_{Lm0} \). In addition, it is known that the same happens when \(t = \pi \sqrt{L_r C_r} \), and as this instant \(i_{Lm}(\pi \sqrt{L_r C_r}) = -I_{Lm0} \), since \(i_{Lm}(t) \) is symmetrical with an average value of zero. As a result:

\[
I_0 = -\frac{nV_{out} \pi \sqrt{L_r C_r}}{2L_m}
\] (3.69)

Similarly to the previous cases, the topology being considered consists of the half-bridge inverter, and since a duty cycle \(D = 0.5 \) is assumed, \(v_C(\pi \sqrt{L_r C_r}) = -V_0 + V_{in} \). Thus, equating \(v_C(\pi \sqrt{L_r C_r}) \) from (3.68) to \(-V_0 + V_{in} \) gives:
\[\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{1}{2n} \] \hspace{1cm} (3.70)

In order to determine \(V_0 \), conservation of energy needs to be considered. That is:

\[P_{\text{in}} = V_{\text{in}} f_{sw}\int_{0}^{1/f_{sw}} i_{\text{tank}}(t) = P_{\text{load}} \] \hspace{1cm} (3.71)

Developing (3.71), and knowing that \(f_{sw} = f_{\text{res}} = \frac{1}{2\pi\sqrt{L_r C_r}} \) gives:

\[V_0 = \frac{V_{\text{in}}}{2} - \pi \sqrt{\frac{L_r P_{\text{load}}}{C_r V_{\text{in}}}} \] \hspace{1cm} (3.72)

As a result, (3.69), (3.70) and (3.72) define the unknown parameters of the circuit when operating at \(f_{\text{res}} \):

\[
\begin{align*}
I_{L_{\text{m0}}} & = I_0 = -\frac{n V_{\text{out}} \pi \sqrt{L_r C_r}}{2L_m} \\
V_0 & = \frac{V_{\text{in}}}{2} - \pi \sqrt{\frac{L_r P_{\text{load}}}{C_r V_{\text{in}}}} \\
\frac{V_{\text{out}}}{V_{\text{in}}} & = \frac{1}{2n}
\end{align*}
\] \hspace{1cm} (3.73)

3.1.4 Experimental Validation of the Obtained Waveforms

In order to verify that the developed equations represent the actual behaviour observed by the circuit, especially when it comes to the current waveforms that generate \(P_{\text{loss}} \), it is possible to operate an LLC converter under the three different scenarios considered: below, at and above the resonant frequency. The topology was built considering the parameters shown in Table 3.1.

Operation Above the Resonant Frequency

Selected experimental waveforms for this operating condition are shown in Fig. 3.6, as well as the calculated waveforms using TIA and FHA. When operating above \(f_{\text{res}} \), the \(v_{pr}(t) \) is
3.1. Time Interval Equations of LLC Resonant Converters

Table 3.1: LLC design parameters for P_{loss} analysis in inverter MOSFETs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input Voltage V_{in}</th>
<th>Nominal Power P_{nom}</th>
<th>Nominal Load Current I_{nom}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>100 V</td>
<td>500 W</td>
<td>10 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Magnetizing Inductance L_m</th>
<th>Resonant Inductance L_r</th>
<th>Resonant Capacitance C_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>19.7 μH</td>
<td>15.2 μH</td>
<td>192 nF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Resonant Frequency f_{res}</th>
<th>Switching Frequency f_{sw}</th>
<th>Transformer Turns Ratio n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>93 kHz</td>
<td>80-120 kHz</td>
<td>1</td>
</tr>
</tbody>
</table>

The resulting current $i_{tank}(t)$ is also negative at this instant, so the MOSFET is turned on under ZVS conditions. While the circulating current is seemingly sinusoidal, it is possible to observe that this approximation does not truly represent the behaviour of the circuit. More importantly, it is possible to note that the turn-on and turn-off currents shown in $i_{D_1}(t)$ are not appropriately determined if a

Figure 3.6: Experimental waveforms for operation of the LLC resonant converter above the f_{res} show good correlation with calculated TIA waveforms.
3.1. Time Interval Equations of LLC Resonant Converters

A sinusoidal waveform is considered, which will underestimate P_{sw} of the topology. In addition, P_{cond} determination using FHA is likely to be underestimated due to the simplifications imposed by the method.

Comparing the obtained experimental waveforms with the calculated ones, it is clear that not only the shape but also the presented magnitudes are closely related to those obtained using TIA. FHA, on the other hand, fails to capture the peculiarities of the waveforms, especially for the case of $i_{D1}(t)$, which is fundamental for the determination of P_{loss} of the inverting MOSFETs.

Operation Below the Resonant Frequency

The experimental waveforms for operation of the converter below f_{res} are shown in Fig. 3.7, as well as the calculated waveforms using TIA and FHA. When operating below f_{res}, the primary of the circuit becomes disconnected from the secondary during part of the switching cycle, as can be observed in the waveforms of $v_{pr}(t)$. This effect is not observed when using

Figure 3.7: Experimental waveforms for operation of the LLC resonant converter below the f_{res} show good correlation with calculated TIA waveforms.
3.1. Time Interval Equations of LLC Resonant Converters

FHA, which results in inaccurate waveforms for the topology. Similarly to what is observed for operation above f_{res}, during turn-on the $i_{D1}(t)$ is negative, so the MOSFET is turned on under ZVS conditions.

Under this operating condition, the $i_{tank}(t)$ does not closely resemble a sinusoidal waveform, thus FHA cannot adequately trace the expected waveform. As a result, the tracing using a sinusoidal approximation results in underestimated currents, which will result in reduced P_{cond} and P_{sw} estimations.

When comparing the obtained experimental waveforms with the calculated ones, it is possible to observe that both shape and magnitudes are closely correlated to those calculated using TIA. As expected, using FHA does not represent adequately the behaviour of the circuit, and P_{loss} estimation using this method should be compromised.

Operation At the Resonant Frequency

Experimental and calculated waveforms for operation of the converter when $f_{sw} = f_{res}$ can be observed in Fig. 3.8. Under this specific operating condition, the shapes of the waveforms for $v_{in}(t)$ and $v_{pr}(t)$ are aligned, and the current waveforms more closely correlate to a sinusoidal waveform. Once again, at turn-on the $i_{D1}(t)$ is negative, which results in soft-switching of the inverter MOSFET. As observed in Fig. 3.8, while the shape of the waveform is similar for TIA and FHA, the magnitude of the waveform as determined by FHA does not correspond to the experimental measurements as closely as that calculated using TIA. As a result, the calculation of P_{loss} is compromised.
3.2 Power Loss Estimation of LLC MOSFETs in the Inverting Stage

Using the equations developed in Section 3.1, it is possible to calculate P_{loss} in the inverter MOSFETs of LLC resonant converters. These equations account for the peculiarities observed in the waveforms shown in Fig. 3.2, and do not result on purely sinusoidal waveforms as would be obtained from FHA. As a result, P_{loss} assessment using TIA provides increased precision with measurement and simulation results when compared to the oversimplified FHA.

The MOSFETs in the inverting stage of the LLC resonant converter are driven in complementary mode. While certain control and regulation techniques employ varying D, often operation of this converter is realized with $D = 0.5$. The current that flows through these MOSFETs is derived from $i_{tank}(t)$, as can be observed in Fig. 3.9.
3.2. Power Loss Estimation of LLC MOSFETs in the Inverting Stage

Figure 3.9: Waveforms for I_D which flows through the inverter MOSFETs for operation a) Above the resonant frequency, b) Below the resonant frequency and c) At the resonant frequency.

For operation above and below f_{res}, $i_{D1}(t)$ is determined as:

$$
i_{D1}(t) = \begin{cases} i^a_{tank}(t), & \text{for } 0 < t < t_1 \\ i^b_{tank}(t), & \text{for } t_1 < t < \frac{1}{2f_{sw}} \\ 0, & \text{for } \frac{1}{2f_{sw}} < t < \frac{1}{f_{sw}} \end{cases}$$ (3.74)

where $i^a_{tank}(t)$ and $i^b_{tank}(t)$ are defined in (3.24) and in (3.26) for operation above f_{res}, and in (3.47) and (3.48) for operation below f_{res}. For operation at the resonant frequency, $i_{D1}(t)$ is determined as:

$$
i_{D}(t) = \begin{cases} i^a_{tank}(t), & \text{for } 0 < t < \frac{1}{2f_{sw}} \\ 0, & \text{for } \frac{1}{2f_{sw}} < t < \frac{1}{f_{sw}} \end{cases}$$ (3.75)

where $i^a_{tank}(t)$ is defined in (3.68). Once the equations for $i_{D1}(t)$ have been determined, it is possible to calculate the P_{cond} of the device through integration:

$$P_{cond} = f_{sw} \int_{0}^{\frac{1}{2f_{sw}}} i^2_{D}(t)R_{DS(on)}dt$$ (3.76)

where $R_{DS(on)}$ can be determined from a detailed characterization, such as that presented in Chapter 2, or with information from the datasheet of the device. Because of the dependency
of this parameter with T_j, calculation of P_{loss} and subsequent update of T_j must be performed, and an iterative process must be employed until the T_j value converges.

In this topology, P_{sw} are minimized due to the soft-switching of the devices as long as the converter operates outside of the capacitive region. This grants soft-switching of the inverter MOSFETs during turn-on, as can be seen in Fig. 3.9. In addition, during turn-off the current value is reduced, especially when operating close to f_{res}. Nevertheless, P_{sw} should not be neglected, since it can have a considerable contribution in P_{loss}, especially when the converter operates away from f_{res} and under light-loading conditions, as Fig. 3.10 shows.

In order to calculate P_{sw}, it is necessary to determine the value of I_{D_1} when the turn-off action occurs. This can be done with ease using (3.74) and (3.75), since $I_{\text{off}} = i_D \left(\frac{1}{2f_{\text{sw}}} \right)$. Because $V_{DS} = V_{\text{in}}$ in LLC resonant converters, it is possible to determine the turn-off energy by using information either from a detailed characterization, such as the one performed in Chapter 2, or by considering approaches which rely on the datasheet of the device, such as [84], which is based on gate charging. While this loss mechanism does not vary considerably with changes in T_j, it is still necessary to determine this parameter through an iterative process.

The P_{diode} which occurs due to the conduction losses of the body diode during dead time

![Figure 3.10: Power loss assessment for the LLC inverting MOSFETs under different operating conditions showing greater contribution of P_{cond} to total P_{loss}.](image)
3.2. Power Loss Estimation of LLC MOSFETs in the Inverting Stage

can also be determined, based on the modeling of V_{diode} which may come either from a detailed characterization such as the one presented in Chapter 2, or from datasheet information:

$$P_{\text{diode}} = f_{sw} \int_{\frac{1}{2}f_{sw}-t_{\sigma}}^{\frac{1}{2}f_{sw}} i_{D1}(t) V_{\text{diode}} dt \quad (3.77)$$

where t_{σ} is the dead time being considered for operation of the topology. Once again, since V_{diode} varies with T_j, an iteration process must be considered. By accounting all the loss mechanisms presented, it is possible to determine the total P_{loss} of the switching device:

$$P_{\text{loss}} = P_{\text{cond}} + P_{\text{sw}} + P_{\text{diode}} \quad (3.78)$$

3.2.1 Comparison with Simulation Results

In order to verify the accuracy of the developed method, the calculated P_{loss} can be compared with simulation results. In addition, calculation of P_{loss} can be obtained by using waveforms from FHA, and also compared with simulation results. PLECS by Plexim was employed as the simulation software due to its ability to integrate electrical and thermal behaviours with ease. The calculation using Time Interval Analysis was implemented in MS Excel using VBA, and allowed for calculation 50 times faster than the implementation using simulation software. Figure 3.11 shows the obtained P_{loss} estimations using TIA and FHA, as well as the error observed between calculation and simulation results.

For the considered operating conditions shown in Fig. 3.11, an average error of 0.22% for P_{loss} estimation was obtained when using TIA, with more than 97% of the calculations presenting an error smaller than 2%. The well-established yet oversimplified FHA, on the other hand, presented an average error of 10.7%, with errors of up to 60% for P_{loss} estimation.
3.2. Power Loss Estimation of LLC MOSFETs in the Inverting Stage

3.2.2 Comparison with Experimental Results

In order to validate the simulated and calculated P_{loss} obtained for the inverting MOSFETs, it is necessary to determine this parameter experimentally. However, as mentioned in Chapter 2, electrical measurements introduce disturbances to the behaviour of electrical circuits, and at high frequencies EMI/RFI pose challenges to the measurement of electrical quantities. As a result, the determination of P_{loss} using electrical probes is not adequate.

As an alternative, the temperature rise due to the heat dissipated caused by P_{loss} can be measured directly using a thermal camera, in a process that can be easily implemented and does not affect the electrical behaviour of the topology. This process, which is illustrated in Fig. 3.12, consists of two stages: calibration and measurement, and is identical to that employed for the characterization of P_{sw} presented in Chapter 2.

The first step consists on determining the relationship between measured temperatures and P_{loss}. Based on Fig. 2.6(c), the relationship between $T_{\text{case}} - T_{\text{amb}}$ and P_{loss} is a constant value $R_{\text{th,ca}}$. In order to determine this magnitude, a constant DC current can be applied to the MOSFET, which is kept turned on with $D = 1$. By using precision instruments, P_{loss} can be calculated by multiplying V_{DS} and I_D. The temperature difference can then be
3.2. Power Loss Estimation of LLC MOSFETs in the Inverting Stage

Calibration Stage

![Diagram of calibration stage]

Measurement Stage

![Diagram of measurement stage]

Figure 3.12: Measurement of P_{loss} using calorimetry: first, a relationship between P_{loss} and operating temperatures is obtained, which allows for the subsequent determination of P_{loss} based on temperature readings.

determined by using the readings from the thermal camera. Subsequent changes in the value of the applied I_D allow for the tracing of the linear relationship, as shown in Fig. 3.12.

Once this relationship is obtained, the LLC MOSFET can be operated as intended, with high f_{sw} and $D = 0.5$. By reading the $T_{\text{case}} - T_{\text{amb}}$ using the thermal camera, it is then possible to assess the value of P_{loss} which corresponds to the observed temperature rise. This allows for the determination of P_{loss} without the need of interfering with the operating topology at high switching frequencies. In addition, it provides information regarding P_{loss} of a single device instead of the whole circuit, as would be obtained by comparing input and output power.

Select measurements of P_{loss} are shown in Fig. 3.13 when the LLC resonant converter op-
3.2. Power Loss Estimation of LLC MOSFETs in the Inverting Stage

Figure 3.13: Measured Power Losses in LLC inverting MOSFETs for a constant $P_{\text{load}} = 0.7P_{\text{nom}}$ for operation a) Below and at the resonant frequency and b) Above the resonant frequency.

erates under different f_{sw} and at constant P_{load}. In addition, P_{loss} estimations using different methods are provided. Both green and orange bars represent calculations using TIA, while red bars show estimated losses using FHA. The detailed characterization of $R_{DS(on)}$, E_{off}, and V_{diode} developed in Chapter 2 for the calculation of P_{cond}, P_{sw} and P_{diode} are employed for the estimations represented by the green bars. On the other hand, the modelling provided by the datasheet for $R_{DS(on)}$ is used in both scenarios represented by the orange and red bars. Moreover, the contribution of P_{cond}, P_{sw} and P_{diode} is indicated by different colour tones.

In these measurements, it is possible to observe that employing TIA for the determination of P_{loss} yields in results which are closely related to the measured values, with an error of no more than 7%. In addition, for this presented scenario, it is possible to notice that the maximum error is reduced from 7% to 5% when the detailed characterization of the device is employed. On the other hand, using FHA results in increased error for P_{loss} estimation,
3.2. Power Loss Estimation of LLC MOSFETs in the Inverting Stage

resulting in an accuracy of up to 35%. Thus, TIA is presented as a useful tool for inverting MOSFETs loss estimation, either using a detailed characterization or datasheet modelling of MOSFET parameters for P_{loss} calculation.

Figure 3.14 shows additional measurements obtained at different f_{sw} for slightly higher values of P_{load} when compared with those presented in Fig. 3.13. In this case, operation of the converter at $f_{\text{sw}} = 1.1f_{\text{res}}$ was not considered since the resulting P_{loss} was substantial for the thermal management employed during the measurements. It is interesting to observe that the results obtained in Fig. 3.13 and Fig. 3.14 are highly consistent, with similar errors being observed by using the different modelling approaches.

Measurements considering different I_{load} under a constant f_{sw} are represented in Fig. 3.15. Similarly to the scenarios reported previously, TIA provides a better estimation of P_{loss} than FHA, especially when the detailed characterization of the switching device is employed. The error observed using FHA is reduced in this scenario since these measurements were taken...
3.2. Power Loss Estimation of LLC MOSFETs in the Inverting Stage

Figure 3.15: Measured Power Losses in LLC inverting MOSFETs for a constant f_{sw} under different I_{load} considering a) Lighter loading conditions and b) Heavier loading conditions when the circuit operated at f_{res}, which is when the current waveforms more closely resemble a sinusoidal signal, as can be observed in Fig. 3.8. It is interesting to observe that in this situation that the detailed characterization developed in Chapter 2 significantly contributes to improving the accuracy with which P_{loss} is assessed.

Measurements considering the same I_{load} under different extremes of f_{sw} are represented in Fig. 3.16. In these measurements, it is possible to observe that FHA provides a considerably less accurate estimation of P_{loss} especially when the converter operates at low f_{sw}. This is due to the poor estimation of $I_{D1}(t)$ using this method, which can be clearly observed in Fig. 3.7. For operation at high f_{sw}, similar levels of accuracy are observed between the methods that employ the datasheet characterization of the device, while the detailed characterization performed yields greater accuracy for P_{loss} estimation.

In all considered scenarios, it is possible to observe that the P_{loss} using FHA is under-
3.2. Power Loss Estimation of LLC MOSFETs in the Inverting Stage

Estimated when compared with the experimental measurements. This becomes clear when a comparison between the obtained P_{loss} using the different methods is normalized with respect to the measured P_{loss}, as shown in Fig. 3.17, where the testing conditions for each case are available in Table 3.2. The underestimation of P_{loss} using FHA is in accordance with what was observed in the waveforms presented in Fig. 3.6, Fig. 3.7 and Fig. 3.8, and can be especially challenging for the design of a thermal management approach for the device, since underestimation of losses may result in overheating of the switches. In addition, it is possible to observe that P_{cond} are dominant over P_{sw} and P_{diode} due to the soft-switching of the MOSFETs. In fact, considering the presented measurements, P_{cond} accounts for 86.8% of the total P_{loss}, while P_{sw} and P_{diode} are responsible for 8.5 and 4.7% of the total P_{loss}, respectively.

Figure 3.16: Measured Power Losses in LLC inverting MOSFETs under the same I_{load} for different values of f_{sw}
3.2. Power Loss Estimation of LLC MOSFETs in the Inverting Stage

![Figure 3.17](image_url): $P_{\text{loss}}/P_{\text{loss(measured)}}$ in inverting MOSFETs under different conditions

Table 3.2: Testing conditions for LLC inverting MOSFETs P_{loss} analysis

<table>
<thead>
<tr>
<th>Testing condition</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{sw}</td>
<td>$0.9f_{\text{res}}$</td>
<td>$0.95f_{\text{res}}$</td>
<td>f_{res}</td>
<td>$1.05f_{\text{res}}$</td>
</tr>
<tr>
<td>Load</td>
<td>$0.7P_{\text{nom}}$</td>
<td>$0.7P_{\text{nom}}$</td>
<td>$0.7P_{\text{nom}}$</td>
<td>$0.7P_{\text{nom}}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Testing condition</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{sw}</td>
<td>$1.1f_{\text{res}}$</td>
<td>$0.9f_{\text{res}}$</td>
<td>$0.95f_{\text{res}}$</td>
<td>f_{res}</td>
</tr>
<tr>
<td>Load</td>
<td>$0.7P_{\text{nom}}$</td>
<td>$0.76P_{\text{nom}}$</td>
<td>$0.76P_{\text{nom}}$</td>
<td>$0.76P_{\text{nom}}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Testing condition</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{sw}</td>
<td>$1.05f_{\text{res}}$</td>
<td>$0.9f_{\text{res}}$</td>
<td>$1.2f_{\text{res}}$</td>
<td>f_{res}</td>
</tr>
<tr>
<td>Load</td>
<td>$0.76P_{\text{nom}}$</td>
<td>$0.5I_{\text{nom}}$</td>
<td>$0.5I_{\text{nom}}$</td>
<td>$0.6I_{\text{nom}}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Testing condition</th>
<th>m</th>
<th>n</th>
<th>o</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{sw}</td>
<td>f_{res}</td>
<td>f_{res}</td>
<td>f_{res}</td>
<td>f_{res}</td>
</tr>
<tr>
<td>Load</td>
<td>$0.7I_{\text{nom}}$</td>
<td>$0.8I_{\text{nom}}$</td>
<td>$0.9I_{\text{nom}}$</td>
<td>I_{nom}</td>
</tr>
</tbody>
</table>
3.3 Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

In order to improve the efficiency of LLC resonant converters, the rectifying stage of the topology can be implemented with active switches instead of diodes through a process called synchronous rectification (SR). The SR current \(i_{SR}(t) \) which generates \(P_{loss} \) in SR MOSFETs consists on the rectified current that flows through the secondary of the transformer of the topology during half of the switching period. Similarly to \(i_D(t) \) in the case of the inverter MOSFETs, the \(i_{SR}(t) \) equations can be determined based on the relationship between \(f_{sw} \) and \(f_{res} \).

3.3.1 Rectifier Current Equations

In order to estimate \(P_{loss} \) of the SR MOSFETs, it is necessary to determine \(i_{SR}(t) \). This can be performed by using the equations developed in Section 3.1, which then allows for the Rectifier Current Equations (RCE) to be calculated. For operation above \(f_{res} \), \(i_{SR}(t) \) is determined as:

\[
\begin{align*}
 i_{SR}(t) &= n \left(i^b_{tank}(t + t_\phi) - i^b_{Lm}(t + t_\phi) \right), & \text{for } 0 < t < t_\phi \\
 i_{SR}(t) &= n \left(-i^a_{tank}(t - t_\phi) + i^a_{Lm}(t - t_\phi) \right), & \text{for } t_\phi < t < \frac{1}{2f_{sw}} \\
 i_{SR}(t) &= 0, & \text{for } \frac{1}{2f_{sw}} < t < \frac{1}{f_{sw}}
\end{align*}
\]

(3.79)

where \(i^a_{tank}(t) \) and \(i^a_{Lm}(t) \) are defined in (3.24), \(i^b_{tank}(t) \) and \(i^b_{Lm}(t) \) are defined in (3.26), and \(t_\phi = \frac{1}{2f_{sw}} - t_1 \). The graphical representation of the \(i_{SR}(t) \) waveforms can be observed in Fig. 3.18. For operation below \(f_{res} \), \(i_{SR}(t) \) is determined as:
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

Figure 3.18: Theoretical waveforms for $i_{SR}(t)$ for operation a) Above the resonant frequency, b) Below the resonant frequency and c) At the resonant frequency.

\[
\begin{align*}
& i_{SR}(t) = n \left(i^a_{tank}(t) - i^a_{L_m}(t) \right), \quad \text{for } 0 < t < t_1 \\
& i_{SR}(t) = 0, \quad \text{for } t_1 < t < \frac{1}{f_{sw}}
\end{align*}
\] (3.80)

where $i^a_{tank}(t)$ and $i^a_{L_m}(t)$ are defined in (3.47). For operation at the resonant frequency, $i_{SR}(t)$ is determined as:

\[
\begin{align*}
& i_{SR}(t) = n \left(i^a_{tank}(t) - i^a_{L_m}(t) \right), \quad \text{for } 0 < t < \frac{1}{2f_{sw}} \\
& i_{SR}(t) = 0, \quad \text{for } \frac{1}{2f_{sw}} < t < \frac{1}{f_{sw}}
\end{align*}
\] (3.81)

where $i^a_{tank}(t)$ and $i^a_{L_m}(t)$ are defined in (3.68).

In order to validate the developed equations, it is possible to operate a converter under different f_{sw} and loading conditions, and compare the experimental waveforms with those obtained using simulation and RCE. The topology was built considering the parameters shown in Table 3.3.

Selected operating conditions are shown in Fig. 3.19. It is possible to observe from
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

Table 3.3: LLC design parameters for P_{loss} analysis in rectifier MOSFETs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input Voltage V_{in}</th>
<th>Nominal Power P_{nom}</th>
<th>Nominal Load Current I_{nom}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>400 V</td>
<td>650 W</td>
<td>27 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Magnetizing Inductance L_m</th>
<th>Resonant Inductance L_r</th>
<th>Resonant Capacitance C_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>103.4 μH</td>
<td>37.7 μH</td>
<td>18.8 nF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Resonant Frequency f_{res}</th>
<th>Switching Frequency f_{sw}</th>
<th>Transformer Turns Ratio n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>190 kHz</td>
<td>150-250 kHz</td>
<td>8.1</td>
</tr>
</tbody>
</table>

the figure a close correlation between the obtained experimental, simulated and calculated results, with the peak of $i_{SR}(t)$ presenting a maximum difference of no more than 1% between simulated and calculated waveforms, and of less than 2.5% between calculated waveforms using RCE and experimental measurements. From the figure it is also possible to observe that the waveforms are not symmetrical with respect to their peak value: in all presented scenarios, the rising slope of the first half of the waveform is considerably less steep than that of the falling slope of the second half of the waveform. Another interesting observation is that when the converter operates below f_{res}, the current is zero for longer than half of the switching period. This is in accordance with (3.80), and is a result of the fact that during part of the switching period the secondary of the circuit is disconnected from the primary. As a result, no current flows through the SR MOSFETs, and I_{load} is maintained by the load capacitor in the output of the circuit.

3.3.2 Accounting for Turn-on and Turn-off Delays

Once the RCE equations have been determined, it is possible to calculate the P_{loss} of the device through integration. However, unlike the inverting MOSFETs, the driving signal of the synchronous rectification must be determined with a control algorithm, in order to avoid
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

Figure 3.19: Experimental $i_{SR}(t)$ waveforms for different f_{sw} and I_{load}

shoot-through or reverse power transfer. In addition, the conduction period of the MOSFET is not necessarily half of the switching period, and the turn-on and turn-off times are not synchronized with those of the inverting MOSFETs. As a result, the device is turned on with a time delay ($t_{d(on)}$) and turned off prematurely by another amount of time ($t_{d(off)}$).
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

During these periods, the body diode of the MOSFET conducts instead of the channel of the device, generating a voltage drop (V_{diode}) which results in increased P_{loss}. For operation of the converter above and at f_{res}, the P_{loss} can be determined as:

$$P_{\text{loss}} = f_{\text{sw}} \left(\int_0^{t_d(\text{on})} i_{\text{SR}} V_{\text{diode}} dt + \int_{t_d(\text{on})}^{t_{\frac{1}{2}f_{\text{sw}}}-t_d(\text{off})} i_{\text{SR}}^2 R_{DS(\text{on})} dt + \int_{t_{\frac{1}{2}f_{\text{sw}}}-t_d(\text{off})}^{\frac{1}{2}f_{\text{sw}}} i_{\text{SR}} V_{\text{diode}} dt \right)$$

(3.82)

where $i_{\text{SR}}(t)$ is obtained from (3.79) for $f_{\text{sw}} > f_{\text{res}}$ and from (3.81) for $f_{\text{sw}} = f_{\text{res}}$. The expression for P_{loss} for the converter operating below f_{res} can be determined as follows:

$$P_{\text{loss}} = f_{\text{sw}} \left(\int_0^{t_d(\text{on})} i_{\text{SR}} V_{\text{diode}} dt + \int_{t_d(\text{on})}^{t_{\frac{1}{2}f_{\text{sw}}}-t_d(\text{off})} i_{\text{SR}}^2 R_{DS(\text{on})} dt + \int_{t_{\frac{1}{2}f_{\text{sw}}}-t_d(\text{off})}^{\frac{1}{2}f_{\text{sw}}} i_{\text{SR}} V_{\text{diode}} dt \right)$$

(3.83)

where the expression for $i_{\text{SR}}(t)$ is determined by (3.80).

As can be observed in Fig. 3.19, the RCE waveforms are not symmetric, presenting a steeper slope during their second half. As a result, the contribution of $t_d(\text{on})$ and $t_d(\text{off})$ in P_{loss} is not the same, since losses are proportional to the circulating current. In order to visualize this effect, it is possible to calculate P_{loss} under different operating frequencies for a constant I_{load}, considering the effects of different values of $t_d(\text{on})$ and $t_d(\text{off})$ separately. The graphical representation of this analysis is shown in Fig. 3.20(a). As expected, large t_d result in increased P_{loss}, since the body diode of the MOSFET conducts for longer periods of time. It can also be observed that, for the same operating condition, presenting a certain $t_d(\text{off})$ results in more P_{loss} than presenting the same amount of $t_d(\text{on})$. In reality, both t_d will be present, but from this analysis it becomes clear that increased effort must be made to reduce $t_d(\text{off})$ as much as possible. This can be obtained with improved and more sophisticated SR control strategies. Another interesting conclusion that can be drawn from Fig. 3.20(a) is that
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

![Figure 3.20: a) P_{loss} for different f_{sw} and t_{d} b) I_{on/off} for different f_{sw} and t_{d}](image)

operation above \(f_{res} \) is more prone to increased \(P_{loss} \) as \(t_{d(\text{off})} \) increases. This can be justified by the steep slope observed in the waveform shapes observed in Fig. 3.19 for operation above the resonant frequency.

Because of the asymmetry of the RCE waveforms, the turn-on currents (\(I_{on} \)) and turn-off currents (\(I_{off} \)) will present different values for the same \(t_{d} \) under the same operating condition. This effect can be observed in Fig. 3.20(b). As expected, \(I_{off} \) presents larger values due to the steeper slope of the second half of the waveforms. This effect is in accordance with the observations presented previously, and once again indicates the importance of an effective SR control strategy that reduces \(t_{d(\text{off})} \).

These effects cannot be observed if FHA is used to trace the expected waveforms of the circuit, since it produces sinusoidal waveforms which are symmetric by nature. In addition, complications arise for operation of the converter below \(f_{res} \), since the actual signal is larger than zero for less than half of the switching period. In order to overcome this last complication, a method has been developed to improve the accuracy of the waveforms produced by FHA for \(f_{sw} < f_{res} \). It consists on considering the on-time \(t_{on} \) during which the SR MOSFET is conducting to have a fixed value of \(t_{on} = \pi \sqrt{L_{r}/C_{r}} \). This produces a waveform that is closer in magnitude and shape to that presented by the circuit, as shown in Fig. 3.21.
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

Nevertheless, the waveform produced with the modified FHA is still symmetrical $0 < t < \pi \sqrt{L_r C_r}$, so it cannot replicate the effect that is observed in Fig. 3.20. Considering the case study shown in Fig. 3.22, the maximum error observed when only $t_{d(on)}$ is considered is reduced from 41.1% to 28.8% when employing the modified FHA versus conventional FHA, and from 56.4% to 29.3% when only $t_{d(off)}$ is accounted for.

Figure 3.22: a) P_{loss} considering different values of $t_{d(on)}$ and $t_{d(off)} = 0$. b) P_{loss} considering different values of $t_{d(off)}$ and $t_{d(on)} = 0$
3.3.3 Design and Control Considerations for SR Losses

As discussed previously, while FHA provides interesting insights regarding the operation of LLC resonant converters, it lacks the level of refinement which is necessary for the accurate determination of P_{loss} when compared to RCE. Incorporating different values for t_d may result in even further discrepancies between the calculated values using both methods. In addition, the inductance ratio m, one of the fundamental design considerations of this topology, is not accounted for in the FHA calculations for SR current determination. As a result, while RCE is able to determine $i_{\text{SR}}(t)$ with accuracy, considering the dependency of m for P_{loss} calculation, FHA only provides a single P_{loss} estimation for different m, as shown in Fig. 3.23.

As can be observed in Fig. 3.23, P_{loss} assessment using FHA always results in underestimated values, which can be detrimental for the design of an appropriate thermal management solution for the switches of the rectifier. When the converter operates below f_{res}, it is possible to see that larger values of m such as $m = 6$ result in smaller levels of P_{loss}, which approximate to those estimated with FHA. When the converter operates above f_{res}, similar values of P_{loss} are obtained using RCE considering the different m. Nevertheless, larger

![Figure 3.23: P_{loss} estimation considering different I_{load} and m](image-url)
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

values of m still yield slightly lower P_{loss} estimation. FHA, on the other hand, substantially underestimates P_{loss} for operation under these conditions.

Even though lower values of m result in larger P_{loss} for a considered f_{sw}, P_{load} differs from case to case, since the relationship between V_{out} and f_{sw} depends on m. As a result, a more sensible comparison can be performed in which the the ratio of power being dissipated in an SR MOSFET versus the total power being transferred to the load, namely $P_{\text{loss}}/P_{\text{load}}$, is analyzed. Because the determination of P_{loss} using FHA does depend on m, different values of $P_{\text{loss}}/P_{\text{load}}$ can be obtained for various m using both methods: RCE and modified FHA.

Figure 3.24 displays different levels of $P_{\text{loss}}/P_{\text{load}}$ considering various loading conditions and values of m, using as estimation both RCE and FHA. The first conclusion that can be drawn from the RCE calculations is that the relationship $P_{\text{loss}}/P_{\text{load}}$ increases as I_{load} becomes higher. This implies that P_{loss} increases more significantly than P_{load} does. When looking at the results obtained for operation below f_{res}, lower values of m result in a better performance, even though this condition results in larger P_{loss}, as observed in Fig. 3.23. When the converter operates above f_{res}, lower values of m result in a better performance, which is in accordance with the behaviour observed in Fig. 3.23. The $P_{\text{loss}}/P_{\text{load}}$ behaviour

![Figure 3.24: $P_{\text{loss}}/P_{\text{load}}$ estimation considering different I_{load} and m](image)

72
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

is of especial interest when a converter is designed to perform predominantly as a step-up or step-down topology, since SR losses can be reduced independently of the control strategy employed. Even though the same conclusion can be obtained with either FHA or RCE, the calculated ratio with FHA can be inaccurate, especially for operation under heavy loading conditions and with high values of m. Therefore, FHA is not the best approach to determine P_{loss} accurately, especially for lower values of m, and it cannot determine $P_{\text{loss}}/P_{\text{load}}$ with precision for higher values of m.

Another limitation of employing FHA is that the determination of t_{on} during which each MOSFET should conduct is fixed at $t_{\text{on}} = \pi \sqrt{L_r/C_r}$ for operation below f_{res}. However, this parameter can change significantly based on operating conditions, such as I_{load} and f_{sw}, and on design parameters, such as m, for operation below f_{res}, as can be observed in Fig. 3.25. Because of that, RCE can be used to analyze the impact of different control techniques in P_{loss}, since it is able to predict with accuracy the value of t_{on} as a function of different operating conditions and circuit parameters, as shown in Fig. 3.26. From the figure, it is possible to observe that the maximum error observed between calculated and measured t_{on} is of 4%.

![Figure 3.25: t_{on} as a function of f_{sw} and I_{load} for different values of m](image)

<table>
<thead>
<tr>
<th>m = 2</th>
<th>m = 3</th>
<th>m = 4</th>
<th>m = 5</th>
<th>m = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>0.9</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>0.8</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>0.7</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>0.6</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>0.5</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>0.4</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>0.3</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>0.2</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>0.1</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Figure 3.25: t_{on} as a function of f_{sw} and I_{load} for different values of m
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

Different control techniques can be employed to operate the SR, which will result in various combinations of $t_{d(on)}$ and $t_{d(off)}$ and in different levels of P_{loss}. In general, a simpler and low-cost control method, such as assuming a fixed on-time t_{on}, will result in more elevated levels of P_{loss}; employing a more sophisticated control technique with sensing elements may reduce P_{loss}, at the expense of a bulkier, heavier, and costlier converter.

From Fig. 3.25, it is possible to observe that higher values of m result in smaller variations in t_{on} with f_{sw} and I_{load}, which is convenient for the implementation of simpler control techniques, such as constant t_{on}. In cases where m is smaller, more complex control algorithms may be recommended so to avoid excessive P_{loss}, since an approach such as a constant fixed t_{on} may result in excessively long t_d.

Fixed t_{on}

One of the simplest control algorithms for operating the SR of an LLC resonant converter consists of determining a constant and fixed t_{on} for operation below f_{res} which ensures no shoot through during any operating condition. Even though this approach can be easily implemented, it may result in increased P_{loss}.

In order to assess the impact of employing this control method, it is possible to calculate

![Figure 3.26: Experimental, simulated an calculated t_{on} for different values of f_{sw} and I_{load}](image)
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

P_{loss} using the developed RCE. First, the smallest t_{on} which occurs under heavy loading conditions at the lowest f_{sw} is determined using TIA. In order to ensure no shoot through, a minimum $t_{\text{d(on)}}$ and $t_{\text{d(off)}}$ of 200 ns is considered. Finally, a $t_{\text{d(on)}}$ of 200 ns is considered for all operating conditions, with a variable $t_{\text{delay(\text{off})}}$ which depends on the constant t_{on} calculated. The P_{loss} obtained using this method is shown in Fig. 3.27, as well as P_{loss} for $t_{\text{delay(on)}} = t_{\text{delay(\text{off})}} = 200$ ns for comparison, taken as a benchmark.

It is possible to observe from Fig. 3.27 that this simple control algorithm can be effective for high values of m if t_{on} is appropriately determined, which cannot be done using FHA. In cases where m is small, such as $m = 2$, because t_{on} varies considerably with operating conditions, as shown in Fig. 3.25, determining an effective fixed value for t_{on} may not be possible since P_{loss} are considerably high. In the considered scenario, using a fixed t_{on} more than doubles the P_{loss} when compared to the benchmark for $m = 2$, but only increases losses by up to 19% for $m = 6$. Thus, a fixed t_{on} can be suitable for cases where m is large.

![Figure 3.27: Comparison between P_{loss} with constant t_{on} and $t_{\text{d(on)}} = t_{\text{d(\text{off})}} = 200$ ns, taken as benchmark](image)
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

Variable \(t_{on} \) using sensing elements

Another technique that is commonly used for operating the SR is to determine a variable \(t_{on} \) that is adjusted by sensing either \(I_D \) or \(V_{DS} \) across the SR MOSFET. This control algorithm turns the MOSFET on by comparing the measured signal with a threshold level. When the MOSFET is turned off, the control algorithm determines if the device was turned off prematurely or belatedly based on the sensing signals at the moment of turn-off, and \(t_{on} \) is updated accordingly at a frequency lower than \(f_{sw} \). As a result, \(t_d(\text{on}) \) is approximately constant while \(t_d(\text{off}) \) varies over time, “sweeping” between larger and smaller values. While this control technique is more advanced since it relies on measurements from a sensing element, thus being able to adapt to circuit changes, it still can yield poor \(P_{loss} \) levels, especially due to \(t_d(\text{off}) \).

Supposing that \(t_{delay(\text{on})} \) is fixed at 200 ns and \(t_d(\text{off}) \) varies between 100 and 400 ns, which would be a result of the “sweeping” technique, \(P_{loss} \) can be calculated using RCE, and then compared to the benchmark with \(P_{loss} \) for \(t_{delay(\text{on})} = t_{delay(\text{off})} = 200\text{ns} \). In order to obtain the \(P_{loss} \) using the “sweeping” control algorithm, the average value of \(P_{loss} \) can be obtained from different calculations using the various values of \(t_d(\text{off}) \) that the converter assumes during operation. Figure 3.28 shows the \(P_{loss} \) obtained using this technique versus the benchmarked value for different operating conditions. It is possible to observe that this control technique results in a \(P_{loss} \) that can be up to 18% higher than that of the benchmark, which is considerably smaller than that observed for the constant \(t_{on} \) control technique, but still not optimal considering that the benchmark \(P_{loss} \) presented already includes losses originated from a \(t_d \) of 200 ns for turn-on and turn-off.

If the \(t_d(\text{off}) \) varied between 100 and 300 ns instead, the obtained \(P_{loss} \) would be similar to that obtained for \(t_d(\text{off}) = 200\text{ns} \), which is taken as benchmark. This shows that an increase of 100 ns in the tolerance for \(t_d(\text{off}) \) from 300 ns to 400 ns results in a substantial increase
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

Figure 3.28: Comparison between P_{loss} with variable t_{on} using the “sweeping” technique and $t_{d(\text{on})} = t_{d(\text{off})} = 200$ns, taken as benchmark

of P_{loss}. Therefore, in order for this control algorithm to produce sensible results, the upper limit of $t_{d(\text{off})}$ must be kept as reduced as possible, since P_{loss} can increase quickly with changes in $t_{d(\text{off})}$.

Variable t_{on} using a sensing-less approach

In order to implement a variable t_{on} using a sensing-less approach, it is possible to employ the TIA equations developed to determine the behaviour of t_{on} as different circuit parameters are changed. Considering the circuit parameters from Table 3.3, it is possible to obtain different values of t_{on} as certain circuit design properties change. Fig. 3.29 shows the behaviour of t_{on} as f_{sw} changes, where Fig. 3.29(a) depicts the behaviour when L_m is modified and L_r and C_r are kept constant; Fig. 3.29(b) considers a fixed value of L_m and f_{res}, with L_r and C_r being adjusted accordingly; and Fig. 3.29(c) considers a constant L_m and C_r, with different values of L_r and thus f_{res}. It is possible to observe from the considered cases that t_{on} can vary substantially with changes in loading condition and f_{sw}, and this parameter can present different behaviours as circuit design properties change.

However, when the x-axis of the plots from Fig. 3.29 are normalized with respect to f_{res},
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

Figure 3.29: Determination of t_{on} considering different I_{load}, f_{sw} and m, for a) constant L_r and C_r, b) constant L_m and f_{res} and c) constant L_m and C_r after normalization with respect to $t_{sw} = \frac{1}{f_{sw}}$. It is possible to observe that all considered scenarios behave similarly, as can be observed in Fig. 3.30. Additionally, in all considered cases the relationship between t_{on}/t_{sw} and f_{sw}/f_{res} is close to linear, and the smallest value of t_{on}/t_{sw} is obtained at the lowest f_{sw}/f_{res} and highest I_{load}. Therefore, it is possible to suppose a linear relationship between $f_{sw}/f_{res} = 1$ and $t_{on}/t_{sw} = 0.5$ with

Figure 3.30: Determination of t_{on} considering different I_{load}, f_{sw} and m, for a) constant L_r and C_r, b) constant L_m and f_{res} and c) constant L_m and C_r after normalization.
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

the lowest \(f_{sw}/f_{res} \) that will be considered for the circuit and \(t_{on}/t_{sw} \) for the highest \(I_{load} \) and smallest \(f_{sw} \), where \(t_{on} = t_1 \) from (3.63), (3.66) and (3.67). The obtained relationship between \(t_{on} \) and \(f_{sw} \) is:

\[
t_{on} = \frac{t_{on(low)} f_{sw(low)} f_{sw} - f_{sw(low)}}{f_{res} - f_{sw(low)}} + \frac{t_{on(low)} f_{sw(low)}}{f_{sw}}
\]

where \(f_{sw(low)} \) represents the lowest \(f_{sw} \) being considered and and \(t_{on(low)} \) is the value of \(t_{on} \) calculated for \(f_{sw(low)} \) and the highest \(I_{load} \). Considering the scenarios presented with different combinations of circuit parameters, simulation results indicate that it is possible to obtain an improvement of at least 80% in \(P_{loss} \) when using the linear \(t_{on} \) relationship versus using diode rectification, and up to 50% of improvement when comparing the sensing-less linear \(t_{on} \) relationship versus a constant \(t_{on} \) approach.

3.3.4 Experimental Validation of Power Loss Assessment

While the validation of the RCE waveforms has already been observed in Fig. 3.19, it is also necessary to compare expected values of \(P_{loss} \) with measured ones for operation of the SR MOSFETs. In order to explore the impact of different \(f_{sw} \), \(I_{load} \) and combinations of \(t_{d(on)} \) and \(t_{d(off)} \), the circuit with parameters listed in Table 3.3 was operated under different conditions. In order to investigate the impact of different \(t_{d(on)} \) and \(t_{d(off)} \), the \(t_{on} \) was controlled manually, so no specific control algorithm was employed.

Because the measurement of \(P_{loss} \) directly using electrical parameters is not recommended, as discussed previously, a different approach was employed in this case: using a high-precision power analyzer, the difference of \(P_{loss} \) observed when the SR was turned on or off manually was studied. This \(\Delta P_{loss} \) can be obtained by comparing \(P_{in} \) with \(P_{load} \) when the SR is turned off and the body diodes of the MOSFETs conduct with \(P_{in} \) and \(P_{load} \) when the SR is turned on and \(t_{d(on)} \) and \(t_{d(off)} \) are determined manually. From Fig. 3.31, is possible to observe
3.3. Power Loss Estimation of LLC MOSFETs in the Rectifying Stage

Figure 3.31: Measured Power Losses in LLC rectifying MOSFETs under different f_{sw} and I_{load}
that FHA overestimates $i_{SR}(t)$ during the first half of the waveform, while providing an underestimation of the current value for the second half of the waveform. As a result, FHA will overestimate P_{loss} if $t_{d(\text{on})}$ is large, and underestimate it when $t_{d(\text{off})}$ is elevated. This situation can be observed from the error bars presented in Fig. 3.31: in Scenario 2, a large $t_{d(\text{off})}$ causes ΔP_{loss} to be high using FHA, and in Scenario 3, a large $t_{d(\text{on})}$ causes ΔP_{loss} to be too low when FHA is employed. In addition, an increased discrepancy is observed as the t_d is increased, which can be seen when comparing Scenarios 1 and 2. The RCE using TIA, on the other hand, provide very good estimation of losses independently of the combination of $t_{d(\text{on})}$ and $t_{d(\text{off})}$.

Moreover, it is possible to observe that the measured ΔP_{loss} from Scenario 1 is comparable to that of Scenario 3. This reflects the fact that $t_{d(\text{on})}$ is not as impactful in P_{loss} as $t_{d(\text{off})}$ is. In addition, a small change in $t_{d(\text{off})}$ from Scenario 1 to Scenario 2 significantly reduces ΔP_{loss}. This leads to the conclusion that a good control algorithm for SR is required in order to reduce $t_{d(\text{off})}$ and achieve higher efficiencies for operation of the converter.

Considering all measurements performed, the maximum error observed between measured ΔP_{loss} and the calculation using RCE was of 5%, while FHA resulted in errors as large as 37%. The average error was reduced from 12% to 2% by using RCE instead of FHA for P_{loss} estimation. As observed previously, the inaccuracy of FHA to determine P_{loss} becomes critical for operation at high f_{sw}. Considering the measurements performed for operation at $f_{\text{sw}} = 250$kHz, the average error presented by FHA was of 18%, while RCE presented an average error of 3%. This is in accordance with the findings from the waveforms presented in Fig. 3.19 and in Fig. 3.31, since FHA cannot trace the expected waveforms as well as RCE for this operating condition.
Chapter 4

Conclusions

4.1 Summary

This thesis introduced and analyzed a method for developing a detailed characterization in MOSFET power loss (P_{loss}) key parameters, such as the on-state resistance ($R_{DS(on)}$), turn-off energy (E_{off}) and diode forward voltage drop (V_{diode}). This detailed characterization allows for the determination of the behaviour of these parameters in a more detailed fashion which goes beyond the information provided by datasheets. The impact of different operating conditions and parameters such as gate-source voltage (V_{GS}), drain-source voltage (V_{DS}), junction temperature (T_j) and drain current (I_D) are considered in the analysis, which allows for the determination of different loss mechanisms such as conduction (P_{cond}), switching (P_{sw}) and body diode losses (P_{diode}) with increased accuracy.

In addition, time-domain equations for the LLC converter are developed based on operating conditions and design parameters, which lead to an improved approximation of the power loss behaviour of the topology when compared with alternatives such as the well-established yet oversimplified First-Harmonic Approximation (FHA). The developed equations are especially useful for the calculation of P_{loss} in both inverting and rectifying MOSFETs of this topology, since they provide steady-state information about the operation of the converter. This comes as an alternative to the simulation of losses using specialized software, which requires substantial computational resources. The P_{loss} in both inverting and rectifying stages is determined using the developed equations based on the Time Interval Analysis (TIA),
and an analysis on the impact of different design parameters and operating conditions is performed. In addition, the limitations of FHA are presented and compared with the results obtained using TIA.

The developed models and equations are verified versus simulation and experimental results, and provide considerable improvement when compared with the traditional approach using FHA. In the inverting stage, the observed error in loss determination is reduced from an average of 19%, using FHA, to 2.8% using the proposed method. When it comes to the rectification portion of the circuit, the reduction in error observed is from 12% to 2%.

The contribution to the scientific community is proven by the presentation and subsequent publication of a conference paper at the IEEE Applied Power Electronics Conference and Exposition (APEC) 2018 [1], and by the submission of two papers to two IEEE Transactions journals, which are currently under review by the editorial board of the journals.

4.2 Future Work

The main advantage of the developed detailed characterization is that it is performed at the device level, which allows for the accurate determination of P_{loss} in any topology. Other popular circuits used in power electronics such as the power factor correction topology (PFC) would definitely benefit from the accurate determination of different loss mechanisms in a similar fashion to that performed and presented in Chapter 2.

While the developed TIA equations are exclusively related to the LLC resonant converter, a similar approach which consists on dividing switching cycles into time intervals could be developed for other topologies in power electronics. This would facilitate the analysis on the impact of different design parameters and operating conditions, contributing to developing better design practices for various topologies.

Furthermore, an in-depth analysis of the viability of the variable on-time (t_{on}) control
4.2. Future Work

An approach using a sensing-less mechanism briefly introduced in Chapter 3 would be required for the full validation of said approach.
Bibliography

for power supply on chip (pwrsoc),” *IEEE Transactions on Power Electronics*, vol. 27, no. 11, pp. 4799–4816, Nov 2012.

