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Abstract 

 

Clinical genome sequencing is becoming a tool for standard clinical practice. Many studies have 

presented sequencing as effective for both diagnosing and informing the management of genetic 

diseases. However, the task of finding the causal variant(s) of a rare genetic disease within an 

individual is often difficult due to the large number of identified variants and lack of direct 

evidence of causality. Current computational solutions harness existing genetic knowledge in 

order to infer the pathogenicity of the variant(s), as well as filter those unlikely to be pathogenic. 

Such methods can bring focus to a compact set (less than hundreds) of variants. However, they 

are not sufficient to interpret causality of variants for patient phenotypes; interpretation involves 

expert examination and synthesis of complex evidence, clinical knowledge, and experience. To 

accelerate interpretation and avoid diagnostic delay, computational methods are emerging for 

automated prioritization that capture, translate, and exploit clinical knowledge. While automation 

provides efficiency, it does not replace the expert-driven interpretation process. Moreover, 

knowledge and experience of human experts can be challenging to fully encode computationally. 

 

This thesis, therefore, explores an alternative space between expert-driven and computer-driven 

solutions, where human expertise is deeply embedded within computer-assisted analytic and 

diagnostic processes via facilitated human-computer interactions. First, clinical experts and their 

work environment were observed via collaborations in an interdisciplinary exome analysis 

project as well as in a clinical resource development project. From these observations, we 

identified two elements of human-computer interaction: characteristic cognitive processes 

underlying the diagnostic process and information visualization. Exploiting these findings, we 
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designed and evaluated an interactive variant interpretation strategy that augments cognitive 

processes of clinical experts. We found that this strategy could expedite variant interpretation. 

We then qualitatively assessed current information visualization practices during clinical exome 

and genome analyses. Based on the findings of this assessment, we formulated design 

requirements that can enhance visual interpretation of complex genetic evidence. In summary, 

this research highlights the synergistic utility of human-computer interaction in clinical exome 

and genome analyses for rare genetic diagnoses. Furthermore, it exemplifies the importance of 

empowering the skills of human experts in digital medicine. 
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Lay Summary 

 

Diagnosing rare genetic diseases is a race against time. For conditions that are amenable to 

treatment, early diagnosis and treatment prevent irreparable damages to the health of affected 

children. Recent advances in DNA sequencing technology are allowing healthcare experts an 

unprecedented opportunity to examine genomic mutations en masse in efforts to rapidly diagnose 

rare genetic diseases. Unfortunately, with the ability to examine all, comes the challenge of 

identifying causal mutations within a haystack of millions of DNA variations in any individual. 

Collaborative global efforts are being made to encode available knowledge into computers and to 

create computational methods that expedite DNA analyses. However, human expertise and 

knowledge are difficult to fully encode into computers. Thus, this thesis explores a hybrid 

approach, where experts and computers collaboratively analyze genomic data through facilitated 

human-computer interactions. The research findings will contribute to future genome analysis 

methods that empower experts to expedite critical diagnoses. 
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Chapter 1: Introduction 

 

Recent advances in DNA sequencing technology have revolutionized understanding of the 

connection between genes and human diseases. The ability to examine DNA variants en masse 

with a single test is offering researchers and clinicians an unprecedented opportunity to identify 

molecular causes of rare genetic diseases. Unfortunately, with the ability to examine all comes a 

challenge of identifying causal variants (or mutations) within a haystack of millions of DNA 

variations in any individual. Accurate and efficient analysis of DNA sequencing data is crucial 

for timely diagnosis. Current analytic approaches employ computational methods that help bring 

focus on a compact set of variants, which are subsequently examined by human experts for 

interpretation and diagnosis [1-3]. Recognizing an opportunity to bridge computational tools and 

human experts, this thesis explores approaches that embed human expertise within the 

computational process of analyzing genome sequence data for rare genetic disease diagnoses. 

 

1.1 Motivation 

Inspiration for this thesis originated from my contributions to the TIDEX gene discovery project 

at BC Children's Hospital [1, 4, 5]. TIDEX is a study within the Treatable Intellectual Disability 

Endeavor in British Columbia (TIDE-BC) [6], which aims to (a) raise awareness as well as (b) 

deliver early diagnoses and effective treatment of inborn errors of metabolism (IEMs). IEMs are 

rare genetic conditions that cause defective metabolism, resulting in clinical symptoms such as 

intellectual disability. TIDEX focuses on the discovery of novel genetic defects that underlie 

IEM patients by applying whole exome, and more recently whole genome, sequencing 

technology. Whole genome sequencing (WGS) is a process of mapping out the entire sequence 



 2 

of a person’s DNA, while whole exome sequencing (WES) applies the same approach to isolated 

DNA segments (usually targeting protein coding regions which comprises less than two percent 

of the genome). 

 

At the outset of my study, I joined the TIDEX bioinformatics team and have since been 

contributing to applied WES and WGS analyses. This engagement has encouraged me to 

immerse myself in the wave of clinical WES/WGS analyses during a time when tools of the 

trade have been transitioning from computer command lines to more user-friendly software [7-

12]. Despite this transition, the analyses are still largely bottlenecked by expert interpretation as 

they require complex evidence that affects clinical decisions [13]. Through the TIDEX project, I 

have been allowed a unique opportunity to experience both sides of the human-computer 

spectrum. This experience sparked my interest in pursuing an efficient and effective liaison 

between clinical experts and computers. How do experts use computational tools and why do 

they use them the way they do? What tasks can computers support to expedite expert work and 

how should they support the tasks? For what tasks do experts choose not to use computational 

tools and why? These questions led to development of this thesis, which explores a space in the 

human-computer spectrum where both parties interactively analyze genome sequence data. 

 

Upcoming sections of the introduction will lay out the background on clinical WES/WGS 

analyses in terms of (a) their application in rare genetic disease diagnoses and current challenges 

of data interpretation, as well as (b) elements of human-computer interaction which can 

potentially accelerate WES/WGS analyses. The final section will outline specific thesis 

objectives. 
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1.2 Clinical WES/WGS analyses for rare genetic disease diagnoses 

DNA sequencing technology has progressed rapidly in recent years, allowing WES and WGS to 

become more efficient and affordable [14, 15], and enabling both to be applied within clinical 

research studies more frequently [16]. Many studies have demonstrated WES and WGS as 

effective for timely diagnosis and informed management of rare genetic diseases1 [1, 17-19]. The 

following subsections will discuss why such sequencing technologies are useful for rare genetic 

disease investigations, how their data is used, and what makes the data challenging to interpret. 

 

1.2.1 Rare genetic diseases 

Rare genetic diseases are conditions caused by DNA variants that affect the function of a single 

gene or sometimes multiple genes. The word "rare" generally refers to its extremely low 

prevalence in a population. The European Commission Regulation on Orphan Medicinal 

Products specifically defines rare diseases as conditions that affect fewer than 1 in 2,000 people 

[21]. Although the prevalence is low for individual diseases [22], it is estimated that there are 

between 6,000 to 7,000 rare genetic diseases [23]. This set of disorders may collectively affect 

30 million people in Europe [24]. While these diseases have lifelong impacts, timely diagnoses 

lead to better clinical management and can improve patient conditions [25, 26]. 

 

A classic example of treatable rare diseases is phenylkenonuria (PKU). PKU is a genetic disorder 

that occurs in approximately 1 in 10,000 births [27, 28]. If untreated, it causes defective 

                                                

1 WES and WGS are also widely applied in cancer studies [20], but such work will not be addressed in this thesis. 



 4 

metabolism of phenylalanine, resulting in intellectual disability, seizure, and/or 

behavioural/psychiatric problems [28, 29]. Since the identification of PKU by Asbjørn Følling in 

1934 [30], decades of PKU research has elucidated molecular mechanisms of the disease, 

developed treatment, and implemented screening methods [31]. PKU has been incorporated into 

population newborn screening programs since the 1960s [31], which has enabled early detection, 

timely treatment, and therefore healthy development of the affected children. 

 

However, most rare genetic diseases have not been as well handled as PKU. Diagnoses of many 

rare diseases are challenging as they remain poorly characterized due to the limited number of 

studied patients, genetic/phenotypic heterogeneity, and/or difficulty with distinguishing a novel 

disease from existing diseases [23, 32]. As more cases are reported, the aforementioned 

challenges can be resolved by progressively broadened knowledge. This is where WES and 

WGS are invaluable for accelerating rare disease investigations because they allow for the 

interrogation of almost all genes, including ones yet to be deeply characterized. For instance, an 

application of WES identified mutations in the gene DHODH as the cause of Miller syndrome (a 

rare disease that has been reported in only 30 cases to date [22] and presents with undersized 

jaws, cleft lip/palate, and limb deformities [33]) [34]. The gene discovery and molecular basis 

was uncovered more than 30 years after the disease was first described by Geneé [35]. 

 

1.2.2 A typical clinical WES/WGS analysis pipeline 

WES or WGS is performed on genomic DNA that is isolated from a biological sample collected 

from a patient. For a rare disease investigation, sequencing may also be performed for members 

of the patient’s family when their DNA is available and sequencing is accessible, as this 
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information can be extremely helpful for interpretation of the patient’s genomic data [36]. The 

output of WES/WGS is then processed through a data analysis pipeline. Figure 1.1 summarizes 

common WES/WGS analysis pipeline steps. 

 

 

Figure 1.1 A typical clinical WES/WGS analysis pipeline. 

A patient’s (and family members’) DNA is revealed using whole exome or whole genome sequencing. The sequence 

data is processed by a computational analysis pipeline, which aligns raw sequencing reads to the human reference 

genome, identifies variants in the patient’s (and family members’) DNA, annotates variants with multiple 

information (e.g. minor allele frequency, predicted impact on protein function), and filters out the variants that are 

common and those that are not expected to affect protein function. The filtered variants are then interpreted with 

regards to their connection to patient phenotypes. 

 

A typical analysis pipeline begins by aligning WES/WGS sequencing reads to the human 

reference genome2 and subsequently detecting DNA variants [19, 38-40]. For WES data, the 

pipeline commonly focuses on calling small nucleotide variants (SNVs) and small insertions or 

deletions (indels) [39, 41, 42]. For WGS data, improved variant calling methods have continued 

                                                

2 While the human reference genome is commonly used in WES/WGS analyses, it is known in the field that the single 
representative genome sequence does not fully reflect common human DNA variation [37]. Solutions to this problem are 
emerging in the form of multiple reference sequences based on diverse cohorts of human genomes [37]. 
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to be developed to identify more types of variants such as copy number variants and structural 

variants (e.g. duplications and inversions) [43-45], with these methods included in the pipeline in 

addition to those that call SNVs and small indels [46-48]. Via this process, roughly 60 0003 

variants are identified from the WES data of an individual [49] while roughly 5 000 0003 are 

identified from the WGS data of an individual [51]. In order to successfully target rare, 

potentially deleterious variants, the variants are annotated and filtered by minor allele frequency 

(rare disease studies will commonly focus on variants that occur in less than 1% of a population), 

by occurrences within protein-coding regions4, and/or by predicted impact on protein function [3, 

41, 53]. After applying such filters, the number of rare, protein-affecting variants4 in an 

individual can be reduced to hundreds [46, 53]. In the case of a family-based analysis, further 

filtering is applied using sequence data of the family members based on different inheritance 

models [36, 54]. Additional filtering is also possible by comparing across sequence data of 

multiple unrelated individuals with similar phenotypes or by assessing sequence data of related 

individuals of known phenotype [55, 56]. 

 

Once a list of rare, potentially pathogenic variants is identified in a patient, the next step is to 

interpret those variants in the context of patient phenotypes in order to identify connections 

between a variant and a patient's disease. For this task, experts examine any available 

information on each variant, the gene that harbours the variant, and the phenotypes caused by 

                                                

3 The exact number of detected variants differ by the technology used (e.g. capture kits, alignment and variant calling software) 
[49]. Also, variant calling software can be tuned to include more or less noise [50]. 
4 As WGS is capable of capturing variants in non-coding (or non-protein coding) regions, its analyses may include non-coding 
variants [47, 52]. However, annotation of coding regions has historically outpaced annotation of non-coding regions, and most of 
the variants with established pathogenicity have been within protein-coding regions [32]. For these reasons, current WGS data 
analyses tend to prioritize coding variants over non-coding variants. With improved annotation of non-coding regions of the 
genome in the near future, such priority will likely be eliminated from common data analysis practices. 
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disruptions of the gene. Table 1.1 summarizes the types of information commonly considered 

during variant interpretation. When candidate variants are identified from interpretation, their 

presence and segregation with the disease is confirmed by Sanger sequencing [40, 42, 57]. 

Afterwards, diagnoses are made if pathogenicity and causality of the variants have been 

established by experimental validation and/or by published reports/identification of unrelated 

individuals with similar phenotypes caused by the same or other damaging variants in the same 

gene, with similar modes of inheritance [1, 54, 57, 58]. 
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Types of information 

Sequencing/variant quality 

Coverage of targeted regions/consensus coding sequence 

Functional annotation 
(e.g. synonymous/nonsynonymous, nonsense/missense, frameshift) 

Location of variant 
(e.g. overlap with disease-associated region, within exon/intron, exon-intron boundaries) 

Variant frequency in population databases 
(e.g. Genome Aggregation Database (gnomAD) [59]) 

Variant frequency in in-house databases 

in-silico functional prediction 
(e.g. Polymorphism Phenotyping (PolyPhen) 2 [60], Combined Annotation Dependent 
Depletion (CADD) [61]) 

Nucleotide conservation 
(e.g. PhyloP [62]) 
Splice-site prediction 
(e.g. Human Splicing Finder [63]) 
Inheritance model 
Known gene-disease association in disease databases 
(e.g. Online Mendelian Inheritance in Man (OMIM) [64]) 
Presence and designation in disease-focused variation databases 
(e.g. ClinVar [65]) 
Interaction with known disease-associated genes 

Table 1.1 Commonly considered information during variant prioritization/interpretation. 

 

1.2.3 Current data interpretation challenges 

As described in the previous section, variant interpretation requires an analysis of multi-

dimensional, heterogeneous data including the variant, the variant-harbouring gene, and the 

phenotypes associated with the gene disruption [66, 67]. An array of computational methods has 

been developed to facilitate the knowledge-heavy process known as "variant prioritization". 

Variant prioritization refers to a systematic process of focusing on variants that are more likely to 
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disrupt genes relevant to patient phenotypes [12]. A distinction is made from variant 

interpretation in that interpretation determines direct connections between a variant and a disease 

[12], whereas prioritization is part of the informatics process. 

 

Computational variant prioritization tools commonly rank a list of variants by predicted 

pathogenicity [60, 61, 68], conservation [62, 69], population allele frequency [2], and/or 

connections to patient phenotypes based on variant/gene/disease annotations [70-73]. While 

these computational tools have improved variant prioritization and interpretation, both processes 

still involve significant engagement of experts, with the most intense involvement in the final 

steps [41, 46, 74]. This expert-dependence in the end steps is because the processes require 

understanding of complex evidence and, most importantly, affect diagnoses and treatment of 

patients [12, 74]. As such, the reliance on experts creates a bottleneck within WES/WGS 

analyses [13] as time, speed, and energy of human experts are limited. To alleviate this problem, 

large-scale efforts have been made to encode clinical genetics knowledge into computers [64, 75-

78]. These efforts have enabled computational exploitation of expert knowledge and have 

improved expert variant interpretation workflow especially in the aspects of managing and 

leveraging phenotypic information. For example, the Human Phenotype Ontology (HPO) 

provides a standardized medical vocabulary for describing phenotypic abnormalities that are 

observed in known genetic diseases [75]. Its compilation has spawned development of 

computational tools that collect and analyze patient phenotypes [7, 79], as well as curate 

phenotypic information to assist diagnoses and accelerate collaboration for disease gene 

discovery [80, 81]. 
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However, the above approaches have yet to fully preempt expert involvement because 

identifying and quantifying human knowledge is a complex task, and diagnostic expertise 

involves cognitive processes that cannot be explicitly materialized [82, 83]. For instance, recent 

studies have demonstrated that incorporating clinical geneticists’ guidance and knowledge into 

the variant interpretation process can increase the diagnostic rate of clinical WES analyses, 

compared to those without explicit engagement of clinicians (e.g. laboratory interpretation or 

computational prioritization) [84, 85]. These studies suggested that clinicians' experience and 

abilities to incorporate additional diagnostic modalities as well as context (e.g. family/patient 

history, negative findings) likely contributed to the enhanced WES data interpretation [84, 85]. 

As such, this thesis sought an alternative approach, which aimed to augment the expert 

diagnostic workflow during computer-assisted variant interpretation by facilitating interaction 

between experts and computers. The next section will discuss the technical background for 

assisting expert-computer interactions in the context of WES/WGS analyses. 

 

1.3 Elements of human-computer interaction within WES/WGS data interpretation 

In variant interpretation, clinical experts and computational tools represent opposite extremes of 

the human-computer spectrum (Figure 1.2). Each side has its own advantage: experts promise 

satisfactory answers to complex clinical problems, while computers scale easily and are much 

faster than individual human efforts. Human-computer interaction (HCI) occupies the middle of 

the human-computer spectrum (Figure 1.2), offering methods that can harness the 

aforementioned advantages of both parties by facilitating a collaboration between the two [86, 

87]. In this thesis, I sought to devise collaborative solutions for variant interpretation without 

reinventing existing interpretation methods. To achieve this, I identified and explored two 
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potential elements of HCI, cognitive characteristics and information visualization, within current 

variant interpretation processes. The following subsections will discuss these two elements in 

terms of (a) how they can inform HCI designs, (b) how they relate to variant interpretation, and 

(c) how they can be exploited for interactive interpretation strategies. 
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Figure 1.2 Illustration of human-computer spectrum in variant interpretation. 

The horizontal axis represents the speed of interpretation performed by human experts or computers. The vertical 

axis represents the degree of which interpretation performed by human experts or computers is clinically 

satisfactory. Interpretation by computers are fast, but less clinically satisfactory than human experts. Interpretation 

by human experts are slow, but more clinically satisfactory than computers. Interaction between the two parties 

occupies the middle space where interpretation is faster than individual experts and more satisfactory than 

computers. 

 

1.3.1 Cognitive processes underlying variant interpretation 

Cognition is the mental process of "acquiring knowledge and understanding through thought, 

experience, and senses" [88]. It determines action and reaction; thus, it shapes the way we 

interact with external entities. For this reason, cognition has been one of core research topics in 

the field of HCI [89], with a specific focus on understanding and modeling the process to 
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enhance the efficiency and efficacy of HCI. Historically, cognition-based HCI research began in 

the 1980s when a traditional view of cognition from psychology and cognitive science was 

introduced to the field [89-91]. This view described cognition as being part of a linear 

information processing system (Figure 1.3A), acting as a module that manipulates information 

based on perception (input) before resulting in an action (output) [90]. This view enabled HCI to 

model cognitive processes that underlie user behaviours [92, 93]. A well-known modeling 

method from the era is GOMS (Goals, Operators, Methods, and Selection rules), which analyzes 

a routine HCI in terms of (a) goals that a user wants to achieve, (b) operations that the user 

performs on a computer (e.g. mouse-click), (c) methods (or a series of operations) to achieve a 

goal, and (d) user's selection among multiple methods that achieve the same goal [92, 93]. In the 

1990s, the view of cognition in cognitive science began to shift from an isolated process within a 

linear system to an interrelated process that is shaped by human perception and action in social 

context (Figure 1.3B) [91, 94, 95]. Following this evolution, the field of HCI adopted alternative 

views, such as embodied cognition (cognition as embodiment of sensorimotor capabilities of 

human body) [96] and distributed cognition (cognition as a holistic process that includes 

interaction with people and environment) [97]. This shift has since inspired a new school of HCI 

approaches that focus on holistic interactions in a specific context or culture [98-100]. Such 

approaches emphasize the analysis of interactions that occur within users' environments, such as 

ethnography, where researchers observe interactions from a user's perspective in naturalistic 

settings [98, 101]. 
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Figure 1.3 Different views of cognition. 

A illustrates cognition as a linear system where information is accepted by perception, processed by cognition, and 

outputted as an action. B illustrates cognition as an interrelated system where perception and action shape cognition 

and vice versa. 

 

Variant interpretation during clinical WES/WGS analyses involves cognitive processes that can 

be identified and exploited to improve efficiency of the interpretation process. Aspects of these 

processes have already been modelled in various ways: they have been translated into variant-

filtering logic within WES/WGS analysis pipelines, reported as a decision-making algorithm for 

reporting variants [3, 54, 102, 103], codified into a clinical guideline [67], or incorporated into 

features that are exploited by variant prioritization tools (e.g. phenotypic similarity) [70, 72, 
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104]. However, these aspects tend to focus on specific types of information and how they are 

processed during variant interpretation, leaving holistic and contextual aspects underexplored. 

For example, in which context do experts consider certain information a priority when 

interpreting variants? How do experts interact with each other when discussing WES/WGS 

results? When do experts seek additional computational tools to further dissect WES/WGS 

results and how do they use those tools? Such questions belong to the realm of HCI and their 

answers can inspire effective interactive strategies, which closely reflect cognitive processes that 

experts engage in during WES/WGS analyses within their natural work environment. Therefore, 

this thesis attempted to exploit contextual aspects of WES/WGS variant interpretation by (a) 

ethnographically examining clinical WES/WGS analyses through the TIDEX project, (b) 

modelling diagnostic processes of biochemical geneticists, and then (c) using the findings from 

(a) and (b) to design and evaluate interactive variant prioritization strategies. 

 

1.3.2 Information visualization during variant interpretation 

Visualization refers to a process of "transforming data, information, and knowledge into visual 

form" [105]. While visualization is a field of its own (referred to as information visualization), it 

is of high relevance to HCI as it serves as an interface between human minds and computers 

[105, 106]. From an HCI standpoint, information visualization helps reduce the cognitive burden 

of understanding complex data, thereby allowing users to efficiently interact with computers to 

extract the information they seek from the data in view [107]. 

 

In clinical WES/WGS analyses, information visualization has been actively employed for variant 

interpretation, either as dedicated visualization software or as a feature in analysis software [59, 
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70, 108-117]. These types of visualization support specialized interpretation tasks, such as (a) 

visualizing sequencing read alignments to inspect read/variant quality and read coverage, or 

identify structural variants [59, 108], (b) visualizing 3D protein structures to assess the impact of 

a mutation [110], (c) visualizing annotated genomic/protein features to identify features 

overlapping with candidate variants [109, 114-117], (d) visualizing metabolic pathways or 

protein-protein interaction networks to assess the impact of gene disruption [111, 112], (e) 

visualizing phenotypic patterns to evaluate phenotypic similarity between patients or against a 

known phenotypic profile of a disease [70, 113]. Table 1.2 provides a list of representative tools 

for the above tasks. 
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Types of information visualization (dedicated tools or features of analysis software) 

Integrative Genomics Viewer [108] 

UCSC Genome Browser [109] 

Protein structure visualization 
(e.g. Chimera [110]) 

Network visualization 
(e.g. Cytoscape [111], GeneMANIA [112]) 

Phenotype-driven visual prioritization tools 
(e.g. OMIM Explorer [70]) 

Phenotype comparison visualization 
(e.g. PhenoBlocks [113]) 

Custom R visualization 

Visualization features within population databases 
(e.g. read data browser in gnomAD [59], graphical sequence viewer in dbSNP [114]) 

Visualization features within sequence databases 
(e.g. graphical sequence viewer in NCBI Gene [115], Feature viewer in UniProt [116]) 

Visualization features within disease databases 
(e.g. protein browser or phenotype browser in Database of Chromosomal Imbalance and Phenotype in 
Humans Using Ensembl Resources (DECIPHER) [117]) 

Visualization features within commercial variant analysis tools 
(e.g. Alamut Visual [118]) 

Table 1.2 An overview of commonly used information visualization during WES/WGS analyses. 

 

Use of the above visualization tools occurs regularly in WES/WGS analyses [119-123]. 

However, the specific context of their use is infrequently documented [119-121]. Similar to 

cognitive processes, understanding how users perform tasks and use data within their specialized 

domain is the first step towards designing new information visualization [124]. User 

requirements and domain problems that are identified during this step guide subsequent design 

processes, which (1) translate users’ work into computational data types and operations, (2) 

design visual representation of the data and HCI, and (3) implement an efficient algorithm that 
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enables visualization on computer [124]. Furthermore, assessment of users and their work 

practices can also enhance the utility of existing visualization tools [125]. 

 

The above type of contextual evaluation can be conducted on a diverse scale in information 

visualization research. For example, it could be performed as part of a study involving a full 

design and validation process to create a novel visualization [126-128], or as a study 

investigating individual aspects of visualization (e.g. users, computational algorithm, visual 

encoding theory) [125, 129, 130] to inform future visualization development. This thesis pursued 

the latter type of study, qualitatively evaluating bioinformatics and healthcare experts as well as 

their routine WES/WGS analysis practices that involved the use of information visualization. 

The findings were analyzed to extract formal requirements for visually supported analyses of 

WES/WGS data. 

 

1.4 Thesis overview and objectives 

Clinical sequencing studies have presented WES/WGS as effective for diagnosing and informing 

the management of rare genetic diseases [17-19]. Common analytic methods for WES and WGS 

data hone in on a refined set of potentially pathogenic variants that are computationally 

prioritized among millions of DNA variants found in a patient, before the variant set is examined 

by experts for evidence of pathogenicity [3, 41, 42, 58]. Currently, reliance on expert 

interpretation causes a bottleneck during WES/WGS analyses [13]. To relieve this issue, 

automated methods that capture, curate, and exploit clinical genetic knowledge have been 

introduced into the field to accelerate interpretation [7, 73 75, 77, 78, 104]. However, human 

expertise and knowledge are difficult to fully encode computationally. Furthermore, recent 
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studies have suggested the role of clinical experts in enhancing WES/WGS data interpretation by 

deriving differential diagnoses based on their experience, additional diagnostic modalities, and/or 

contextual information such as case history [84, 85]. 

 

Recognizing an existing gap between expert-driven interpretation and computer-driven 

prioritization of rare disease-causing variants, the research described in this thesis focuses on 

how experts and computers effectively interact during the interpretation of WES/WGS data. The 

overarching idea explored herein is whether efficient facilitation of expert-computer interaction 

can accelerate WES/WGS analyses by augmenting experts' analytic and diagnostic workflows 

within a common computer-assisted data interpretation process. The central objective of this 

thesis is to, therefore, explore and evaluate expert-computer interactive approaches for 

WES/WGS analyses. As summarized in Figure 1.4, this thesis is structured to reflect a HCI 

research process, where examination of users and their work environment (Chapter 2 and my 

contributions to applied WES/WGS analyses within the TIDEX project) inspire design and 

evaluation of an HCI solution that supports expert cognitive processes (Chapter 3) and 

qualitative assessment of information visualizing HCI solutions for synthesis of novel or 

improved visual solutions (Chapter 4). 
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Figure 1.4 A visual summary of thesis structure. 

This thesis is structured to reflect a HCI research process where examinations of users and their work environment 

(Chapter 2 and contributions to applied WES/WGS analyses within the TIDEX project) inspire the work described 

in Chapter 3 and Chapter 4. In Chapter 3, an HCI approach that assists expert cognitive processes was designed and 

evaluated. In Chapter 4, current information visualization practices were qualitatively assessed to formulate design 

requirements for novel or improved visualization for WES/WGS data interpretation. 

 

Inception of this research is owed to my collaboration within the realm of IEMs. As explained in 

Section 1.1, this journey began with the TIDEX project, where I performed applied WES/WGS 

analyses for IEM patients and their families [1, 4, 5]. This collaboration helped me to learn the 

ins-and-outs of the analysis process, and to observe how WES/WGS data was processed and 
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analyzed by bioinformaticians, as well as how the analysis results were interpreted jointly by a 

multi-disciplinary team. While each case was unique and its interpretation required complex 

knowledge, I realized that there was potential to accelerate the process of seeking, sharing, and 

using this expert knowledge. This discovery led to consideration of the utility in augmenting 

experts' analytic workflow within computer-assisted diagnostic processes as a means of 

expediting the WES/WGS analyses. To explore this idea further, I collaborated on a project (as 

described in Chapter 2) that produced an online diagnostic aide for clinicians seeking to classify 

IEMs. While data resource development in bioinformatics is not a hypothesis driven activity, the 

central intention informing the research within Chapter 2 was how we could enable clinicians to 

efficiently and accurately diagnose inborn errors of metabolism based on the clinical and 

biochemical phenotypes of their patients. While implementing and validating this resource, it 

became more apparent that acceleration of WES/WGS analyses could be achieved by an expert-

assistive system that was capable of complementing experts' analytic and diagnostic workflows 

through an effective HCI. 

 

As such, two HCI elements, cognitive processes and information visualization, were identified to 

examine their potential to expedite WES/WGS analyses. Selection of these elements was based 

on the following observations of key stakeholders of WES/WGS analyses within the above 

collaborations. Cognitive processes were based on a pattern that was observed in verbal and 

written communications of clinicians, where they had a tendency to describe patients in reference 

to classic presentations of genetic diseases that were hypothesized as compatible diagnoses. 

Information visualization was based on common uses of visualization tools among 

bioinformatics experts and healthcare professionals (e.g. cytogeneticists) during WES/WGS data 
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interpretation. Each of these HCI elements were then explored in Chapter 3 and 4, respectively, 

as follows. 

 

In Chapter 3, I designed a gene prioritization workflow informed by reports in cognitive science 

and medical literature, which suggested that clinicians frequently employed prototypical thinking 

during WES/WGS investigations - a cognitive process where they recalled classic presentations 

of genetic diseases to inform their assessment of patients and interpretation of WES/WGS 

results. Such a "prototype"-based approach could be modelled computationally by querying 

clinicians to specify the disease they felt was most similar to the phenotype of the patient, instead 

of specifying individual phenotype terms (i.e. "symptom"-based approach) as commonly found 

in computational variant/gene prioritization tools. The central questions addressed by this work 

were whether and when there were advantages in a “prototype”-oriented software workflow. As 

such, through a web-based user study, the designed prototype-based workflow was evaluated 

against a symptom-based workflow. Clinicians interpreted genetic diagnoses faster using 

prototype-based workflows. Meanwhile, neither workflow was more accurate, more effective in 

collecting detailed phenotypic information, or showed higher user satisfaction. These findings 

suggested that clinicians employed prototypical thinking within gene prioritization and 

demonstrated potential utility of facilitating such processes within WES/WGS analyses. 

 

In Chapter 4, I qualitatively assessed information visualization practices during routine 

WES/WGS analyses for diagnoses of rare genetic diseases. As the preceding research studies 

made it anecdotally apparent that human-computer interactions for genome interpretation were 

dependent on a diverse range of visualization-based tools, the driving goal of this work was to 
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conceptualize the design of an ideal visual interface for clinical genome interpretation. For this 

goal, I needed to determine both common user practices and specific aspects of WES/WGS 

analyses which were missing or had insufficient information visualization. Therefore, contextual 

interviews and an online survey were conducted with bioinformatics and healthcare experts who 

regularly analyzed WES/WGS data. These evaluations produced a comprehensive overview of 

common WES/WGS analysis and visualization practices. The overview summarized (a) which 

types of data and visualization tools were frequently used, (b) in what context experts commonly 

employed visualizations, and (c) experts' suggestions for new visualization. Based on the above 

findings, design recommendations were formulated to inform for novel or improved information 

visualization in this domain, which could enhance experts' understanding of complex data during 

WES/WGS analyses. 

 

In sum, this thesis investigated human-computer interactive approaches for analyzing 

WES/WGS data for rare disease investigations. Through multi-disciplinary collaborations with 

IEM clinicians and researchers, key stakeholders in applied WES/WGS analyses were observed 

and domain knowledge was acquired. This experience led to the identification of HCI elements, 

cognitive processes and information visualization, which were (a) explored as a novel interactive 

strategy that could potentially accelerate expert variant interpretation, and (b) evaluated as an 

existing interactive strategy that could inform the development of enhanced information 

visualization for WES/WGS data interpretation. The findings of this thesis demonstrate the 

utility of these interactive strategies, as well as the power of synergy between healthcare experts 

and computers. For emerging innovators in digital medicine, the research presented herein may 
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provide a starting point for effectively integrating their technologies powered by big data and 

advanced artificial intelligence into clinical practice. 
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Chapter 2: Knowledge base and mini-expert platform for the diagnosis of 

inborn errors of metabolism 

 

2.1 Prelude for Thesis Readers 

This chapter describes a collaborative project with Dr. Nenad Blau, a renowned investigator in 

IEMs. The primary objective of this collaboration was to create an online, public resource that 

curates the clinical knowledge of IEM experts. At the outset of this project, we also identified a 

secondary objective, which was to explore efficient ways to assist an expert's diagnostic process. 

The project allowed us to pursue those both objectives throughout its development, from 

designing of a resource database to implementing a diagnosis supporting algorithm and testing 

with real clinical users/cases. This experience resulted in deeper understanding of experts' 

criteria for assistive technology and motivated exploration of two HCI elements, cognitive 

processes and information visualization, in Chapter 3 and 4, respectively. The remaining sections 

of this chapter detail the outcome and development of this project with respect to its primary 

objective. 

 

2.2 Synopsis 

Purpose: Recognizing individuals with inherited diseases can be difficult because signs and 

symptoms often overlap those of common medical conditions. Focusing on IEMs, we present a 

method that brings the knowledge of highly specialized experts to professionals involved in early 

diagnoses. We introduce IEMbase, an online expert-curated IEM knowledge base combined with 

a prototype diagnosis support (mini-expert) system. 
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Methods: Disease-characterizing profiles of specific biochemical markers and clinical symptoms 

were extracted from an expert-compiled IEM database. A mini-expert system algorithm was 

developed using cosine similarity and semantic similarity. The system was evaluated using 190 

retrospective cases with established diagnoses, collected from 15 different metabolic centers. 

 

Results: IEMbase provides 530 well-defined IEM profiles and matches a user-provided 

phenotypic profile to a list of candidate diagnoses/genes. The mini-expert system matched 62% 

of the retrospective cases to the exact diagnosis and 86% of the cases to a correct diagnosis 

within the top five candidates. The use of biochemical features in IEM annotations resulted in 

41% more exact phenotype matches than clinical features alone. 

 

Conclusion: IEMbase offers a central IEM knowledge repository for many genetic diagnostic 

centers and clinical communities seeking support in the diagnosis of IEMs. 

 

2.3 Introduction 

Identification of rare genetic disorders has been greatly improved by the advent of genome-wide 

sequencing. The new technology has expanded our knowledge of rare disease genetics and 

enhanced our ability to diagnose new patients [1, 32]. However, the diagnosis of rare genetic 

disorders remains a challenge. Misdiagnoses and delayed diagnoses are often [131] due to 

nonspecificity and heterogeneity of signs and symptoms, rarity of conditions, and also limited 

access to the knowledge of highly specialized experts [24, 32, 132]. IEMs exemplify these 

challenges: early signs and symptoms are nonspecific [133] and insufficiently recognized [134]. 

For example, in a survey of 34 junior pediatric doctors regarding their confidence and knowledge 
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in the acute management of three IEMs — glutaric aciduria type I (MIM 231670), medium-chain 

acyl Co-A dehydrogenase deficiency (MIM 201450), and maple syrup urine disease (MIM 

248600) — only five respondents were able to identify the correct treatment steps for the former 

two, while only two respondents identified the correct steps for the latter [134]. Moreover, more 

than 22 respondents indicated a low level of confidence in their knowledge [134]. 

 

The knowledge gap between IEM specialists and other clinicians involved in IEM diagnoses is 

concerning, given the amenability to targeted treatments for an increasing number of IEMs; a 

delayed diagnosis can lead to irreversible organ damage or even death. Moreover, this disparity 

is widening with the explosive amount of knowledge generated by multi-omics technology [32]. 

Such a divide stands in contrast to the historic efforts by the IEM clinical and research 

community toward early recognition through the creation and use of diagnostic tests, such as 

population newborn screening. Thus, a potential solution may be found in the rich disease 

knowledge base established by the IEM community, dating back to Archibald Garrod’s study on 

alkaptonuria in 1902 [135]. This compiled knowledge base has, however, lagged behind other 

fields in the transition to digital form, as much of the work occurred before modern data systems 

came into existence and therefore the information was stuck on paper. Aspects have been 

incorporated into large-scale rare-disease databases [136, 137]. However, these databases aim to 

provide an overview of many kinds of individual disorders, and are not designed to guide 

clinicians in the diagnostic process. Therefore, digital translation and standardization of the IEM 

community knowledge base are urgently needed to bridge the knowledge gap. 
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Thus, we created IEMbase, an online application that combines the IEM community knowledge 

base with a prototype mini-expert system. The expert-compiled knowledge base provides 

clinical, biochemical, and genetic profiles of 530 known IEMs. The mini-expert system accepts a 

list of biochemical and clinical phenotypes from users, compares the input phenotypic profile 

against IEMs in the knowledge base using cosine similarity and semantic similarity, and returns 

a list of matching IEM diagnoses. With the resulting list, users can generate differential diagnosis 

charts, biochemical test panels, and targeted gene panels in order to pursue concurrent 

biochemical and genetic/genomic investigations for a rapid diagnosis. IEMbase aims to renew 

the existing IEM community knowledge base for the modern age, creating a global resource to 

facilitate the collection and dissemination of high-quality clinical knowledge for advanced 

recognition of IEMs. 

 

2.4 Materials and methods 

2.4.1 Knowledge base compilation 

IEMbase was compiled by extracting 530 disease-characterizing profiles from a nascent disease 

database, which was previously compiled by more than 100 IEM experts to produce a textbook 

guide on IEM classification [138]. Table 2.1 shows an example of an extracted IEM profile. 

Each IEM profile consisted of known disorder names, disorder abbreviations, causal gene 

information, a MIM number, and a list of associated biochemical markers and clinical symptoms. 

Additionally, the list of biomarkers/symptoms was annotated with information regarding onset, 

severity/ pathological level, and whether the biomarker/symptom is characteristic of the 

associated IEM. The onset information was organized in five categories (neonatal: birth to 1 

month, infant: 1–18 months, childhood: 1.5–11 years, adolescence: 11–16 years, and adulthood: 
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>16 years). The pathological levels of biochemical markers were denoted by up/down/no arrows 

and the severities of clinical symptoms were denoted by plus/minus signs. The presence or 

absence of phenotypic characteristics was indicated by yes/no. 
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Disorder name Sepiapterin reductase deficiency 

Disorder 
abbreviation 

SRD 

Associated gene SPR 

Chromosomal 
localization 

2p14-p12 

Affected protein Sepiapterin reductase 

MIM number 182125 

Affected 
biochemical 
markers/clinical 
symptomsa 

Neonatal 
(birth - 
1month) 

Infancy 
(1-18 
months) 

Childhood 
(1.5-11 
years) 

Adolescence 
(11-16 
years) 

Adulthood 
(>16 
years) 

Is 
characteristic 
of disease? 

Axial hypotonia ++ ++ ++ + ? No 

Cerebral palsy ? ? ± ± ± Yes 

Eye movements, 
abnormal 

± ± ± ? ? No 

Hypokinesia + ++ ± ± ± Yes 

Muscle weakness + ± ± ± ? No 

5-Hyroxyindoleacetic 
acid, 5HIAA 
(cerebrospinal fluid) 

¯¯¯ ¯¯¯ ¯¯¯ ¯¯¯ ¯¯¯ Yes 

Biopterin 
(cerebrospinal fluid) 

↑ ↑ ↑ ↑ ↑ Yes 

Biopterin (urine) n n n n n No 

Dihydrobiopterin 
(cerebrospinal fluid) 

↑↑ ↑↑ ↑↑ ↑↑ ↑↑ Yes 

Homovanillic acid, 
HVA (cerebrospinal 
fluid) 

¯¯¯ ¯¯¯ ¯¯¯ ¯¯¯ ¯¯¯ Yes 

Neopterin 
(cerebrospinal fluid) 

n n n n n No 
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Neopterin (urine) n n n n n No 

Phenylalanine 
(plasma) 

n n n n n Yes 

Prolactin (plasma) ↑ ↑ ↑ ↑ ↑ Yes 

Sepiapterin 
(cerebrospinal fluid) 

↑↑ ↑↑ ↑↑ ↑↑ ↑↑ Yes 

Sepiapterin (urine) ? ↑↑ ↑↑ ↑↑ ? Yes 

Table 2.1 An example disorder profile extracted from the nascent database. 

For clinical symptoms, + denotes their presence and ± denotes occasional absence/presence. For biochemical 

markers, ↑ denotes elevated values, ↓ decreased values, and n denotes normal values. ? denotes uncertain/unreported 

presence of biomarkers/symptoms. 

a The affected biochemical markers and clinical symptoms are selected for brevity. 

 

The extracted profiles were manually reviewed for consistency and then were imported into 

IEMbase as three PostgreSQL tables, each representing the type of annotation used in the 

profiles: disorders, biochemical/clinical phenotypes, or disorder-phenotype associations (Figure 

A10, Appendix A). In total, the tables contained 530 disorders, 2,323 biochemical/clinical 

phenotypes, and 8,465 disorder-phenotype associations. 

 

Additional annotations were created within each IEM profile. One was the amenability of 

individual IEMs to treatment, which was manually annotated based on previous literature [139, 

140] and denoted by yes/no/unknown categories. 

 

Another was the prevalence of IEMs as reported in literature or clinical resources [136–138, 

140]. The last was a list of links to relevant entries in external databases, such as UniProt [116], 

NCBI Gene [141], GeneCards [142], Kyoto Encyclopedia of Genes and Genomes [77], National 
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Institutes of Health Genetic Testing Registry [143], and GeneReviews [76]. The links were 

created for interoperability with existing systems and were created using a BioMart ID 

conversion tool [144], as well as URL rules specified on the resource websites [76, 143]. 

 

The compiled knowledge base was assigned a version number of 1.0.0. This initial version was 

used for both the methods and the results described herein. Since the initial compilation, 

IEMbase has been regularly updated with new information. Thus, the version number has been 

incremented to indicate such updates. 

 

2.4.2 Mapping to structured vocabulary 

A known strategy for matching user-provided phenotypic profiles to diseases is to exploit 

semantic relationships between phenotypic features, which are defined by a structured 

vocabulary [145]. The phenotype vocabulary in IEMbase was not structured, but a structure 

could be imposed based on a compatible external vocabulary. Therefore, the following four 

standard medical vocabularies were assessed for their compatibility with IEMbase: Human 

Phenotype Ontology (HPO) [146], Medical Subject Headings (MeSH) [147], Systematized 

Nomenclature of Medicine–Clinical Terms (SNOMED CT) [148], and International 

Classification of Diseases, 10th revision (ICD10) [149]. 

 

During compatibility assessment, HPO OBO file (2016-04- 01 release), MeSH ASCII file (2016 

version), SNOMED CT RF2 files (2016 versions), and ICD10 XML file (2016 version) were 

used. The assessment proceeded in three steps. First, unique IDs and medical terms were 

extracted from IEMbase (version 1.0.0) and the four vocabularies. For SNOMED CT, extraction 
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was restricted to only the terms categorized under "Clinical finding" and "Substance", to 

minimize false mapping. The OntoCAT R package [150] was used to parse HPO terms. The 

standard string library and Nokogiri gem in Ruby programming language were used to parse all 

others. Second, all extracted terms were normalized using the Norm program included in the 

SPECIALIST Lexical Tools [151] String normalization removed the differences in alphabetic 

case, singular or plural variants, punctuations, stop words, and word order. Finally, all IEMbase 

terms were compared against all terms in each vocabulary. Only the exact matches were 

recorded as compatible mappings. 

 

The initial compatibility assessment revealed that no single vocabulary could completely cover 

both the biochemical and the clinical phenotypes in IEMbase (Table 2.2). It also revealed that the 

most compatible vocabulary was different for biochemical (SNOMED CT) and clinical 

phenotypes (HPO) (Table 2.2). Therefore, the assessment was adjusted to consider the two 

phenotype categories separately. Once adjusted, two additional biochemical vocabularies were 

added: Chemical Entities of Biological Interest (ChEBI; OBO file; 2016-04-01 release) [152] 

and Logical Observation Identifiers Names and Codes (LOINC; CSV file; version 2.56) [153]. 
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Biochemical 
(# phenotypes 

mapped) 

Clinical 
(# phenotypes 

mapped) 

Total 
(# phenotypes 

mapped) 

HPO 0 450 450 

ICD 10 6 92 98 

SNOMED CT 371 389 760 

MeSH 324 283 607 

ChEBI 301 3 304 

LOINC 367 61 428 

Table 2.2 Vocabulary compatibility assessment results. 

Total number of biochemical phenotypes in IEMbase is 1123. Total number of clinical phenotypes in IEMbase is 

1200. Total number of phenotypes in IEMbase is 2323. 

 

Based on the adjusted assessment (Table 2.2), clinical phenotypes were mapped to the most 

compatible vocabulary, HPO. A medical expert manually reviewed exact matches identified 

during the compatibility assessment and manually mapped unmatched clinical phenotypes to 

HPO terms. In total, 1,193 of 1,200 clinical phenotypes were mapped to HPO. The mapped HPO 

terms and their ancestor/descendant HPO terms were extracted using the OntoCAT R package 

and were then written into IEMbase as PostgreSQL tables. For biochemical phenotypes, we 

allowed matches to terms in any of four vocabularies: SNOMED CT, MeSH, LOINC, and 

ChEBI. However, manual review of unmatched phenotypes revealed that these terms were 

highly specialized and thus not present in the vocabularies. Therefore, we implemented an 

alternative strategy for assessing user-supplied biochemical phenotypes and abandoned the 

established biochemical vocabularies. 
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2.4.3 Phenotype-matching algorithm for mini-expert system 

The mini-expert system of IEMbase accepts a list of biochemical and clinical phenotypes as 

input. The system then employs a two-step algorithm that compares the input phenotypic profile 

against every IEM profile in IEMbase (Figure 2.1). 

 

 

Figure 2.1 Mini-expert algorithm flowchart. 

Users enter a list of biochemical/clinical phenotypes into IEMbase’s mini-expert system. The system’s phenotype-

matching algorithm first divides the input list into biochemical and clinical categories. The algorithm then ranks the 

disorders in IEMbase by comparing the biochemical profile of each disorder against the input biochemical profile, 

using cosine similarity. Subsequently, the algorithm breaks ties in the ranked list by comparing the clinical profiles, 

using semantic similarity. 

 

First, the algorithm ranks IEMs by assessing only biochemical phenotypes, using cosine 

similarity. Cosine similarity [154] is defined as the cosine of two vectors, TFIDFQ and TFIDFD, 

which represent the input profile Q and an IEM profile D from IEMbase. The vectors consist of 

term frequency–inverse document frequency (tfidf) scores [154] defined as follows: 

!"#$" $, & = 	!" $, & 	×	#$"($, &) 



 36 

tf(d, D) represents the occurrence of biochemical phenotype d in D, expressed as 0 or 1. idf(d, D) 

represents the specificity of d to D, defined as: 

#$" $, & = ,-.
/-!0,	123456	-"	789:	#1	78940:5
;23456	-"	789:	0::-<#0!5$	=#!ℎ	$ 

 

Using the above definitions, the algorithm computes tfidf scores for all d in D and all 

biochemical phenotypes q in Q. Individual tfidf scores are subsequently multiplied by a score for 

matching the pathological level (i.e., elevated/normal/decreased), which is -1 if the levels of d 

and q do not match or 1 if they match. The algorithm then computes the cosine of vector TFIDFQ 

and vector TFIDFD: 

<-:?#3 /@7&@A, /@7&@B = 	
/@7&@A ∙ /@7&@B
/@7&@A /@7&@B

 

The cosine similarity scores are further multiplied by decay factors defined based on 

severity/characteristics (sc) scores for disorder D: 

:<&5<0D & = 5E∗GHIJ 

λ is a decay constant defined between 0.0 and 1.0. dist is a Euclidean distance between a vector 

of sc scores for disorder D and a vector of maximum possible sc scores. The vector of sc scores 

for D consists of sc scores for individual phenotypes d in D that match an input phenotype q in 

Q. The sc score for individual d is defined as follows: 

:< $, & = 	: $, & 	×	<($, &) 

s(d, D) is the severity score of d ranging from 1 to 3, based on the severity annotation of d. c(d, 

D) is the characteristic score of d assigned either 1 or 2, based on whether d is characteristic of 

D. 
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After the initial ranking of IEMs by biochemical phenotypes, the algorithm breaks ties in this 

ranking by assessing clinical phenotypes using semantic similarity that is computed based on the 

work of Kohler et al [145]. The similarity between two clinical phenotypes, p and p′, is 

computed as the information content (IC) of their most informative common ancestor (MICAp,p′) 

in the HPO. IC is a measure of concreteness of a phenotype p in the HPO. It is defined as: 

7K(L) = −,-.
;23456	-"	789:	30LL5$	!-	L	01$	#!:	$5:<51$01!:

/-!0,	123456	-"	789:	#1	78940:5  

The similarity between input profile Q and an IEM profile D is computed by averaging the best 

match scores for clinical phenotypes q in Q: 

:53?#3 N,& =
45:!	30!<ℎ	:<-65	"-6	OH

PQ
HRS

1T
 

nq is the number of q in Q. The best match score for each q is defined as 7K(97KUT,GVWXY), where 

dbest is a clinical phenotype in D whose common ancestor with q has the highest IC and the 

highest severity score. The similarity score is then multiplied by a decay factor as in biochemical 

similarity. 

 

2.4.4 Software framework details 

IEMbase data is stored in a PostgreSQL database. The front-end user interface was developed 

using an Angular.js framework. The back-end system was developed in a Ruby on Rails 

framework. 
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2.4.5 Code availability 

IEMbase is freely available online (http://iembase.org/app) and upon request through an 

application programming interface. Computer code used for performance evaluation is available 

upon request. 

 

2.4.6 Mini-expert system case study 

To demonstrate a potential use case scenario of the mini-expert system, we used a case of a 

delayed diagnosis of hyperornithinemia–hyperammonemia–homocitrullinuria syndrome. Case 

details are described in the Results section. 

 

2.4.7 Performance evaluation of mini-expert system 

To evaluate the performance of IEMbase’s mini-expert system, 190 retrospective cases were 

collected from 15 different metabolic centers. For each case, the contributors provided the final 

diagnosis and biochemical/clinical information. These cases were collected using an online form, 

which restricted the contributors to providing the case information using only the disorder and 

phenotype vocabularies in IEMbase. 

 

Each evaluation case was matched to potential diagnoses using the mini-expert system. The 

system’s performance was compared against three phenotype-matching algorithms, each of 

which uses cosine similarity, with or without semantic similarity, and also with or without 

severity and characteristic scores. 
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In addition, the system performance was compared using only biochemical phenotypes, and only 

clinical phenotypes of retrospective cases. For each retrospective case, the phenotypes were 

separated into biochemical and clinical categories before each category was evaluated with the 

mini-expert system. Eighteen cases with phenotypes only in either category, were excluded from 

this paired comparison (n = 172). 

 

We also tested whether the number of phenotypes specified for each case correlated with the 

rank of correct diagnoses, in order to assess if some cases ranked better than others because more 

phenotypes were provided for them. 

 

The above evaluations were conducted using version 1.0.0 of IEMbase. Difference in 

performance was statistically tested using the Mann-Whitney-U test implemented by wilcox.test 

in R (version 3.3.1). The correlation test was performed using Spearman’s rank correlation test, 

implemented by cor.test in R. All plots were generated using the ggplot2 R package. 

 

2.5 Results 

2.5.1 Overview and walkthrough of IEMbase 

We developed IEMbase as an online application which combines a comprehensive IEM 

knowledge base with a diagnosis support (mini-expert) system. IEMbase curates expert-provided 

information on 530 IEMs, their treatability and genetics, as well as associated 

biochemical/clinical phenotypes with detailed annotations on the onset/severity/pathological 

level of the phenotypes. The application is freely available and can be accessed at 

http://www.iembase.org/app, or from a link on the project overview website 
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(http://www.iembase.org). IEMbase is also available through an application-programming 

interface for integration into other computational systems. Application-programming interface 

access is available upon request. A detailed walkthrough of the application is presented in 

Appendix A.1. 

 

2.5.2 Applying mini-expert system in clinical settings 

We demonstrate the utility of IEMbase’s mini-expert system using a case of a delayed 

hyperornithinemia–hyperammonemia–homocitrullinuria (HHH) syndrome diagnosis. A girl 2 

years and 8 months of age had shown inconspicuous psychomotor development. Following an 

upper respiratory tract infection, she developed recurrent vomiting, while refusing feeding but 

drinking occasionally. She was slightly lethargic. Over the following weeks she never fully 

recovered and continued to undergo episodes of postprandial vomiting, lethargy, and apparent 

seizures reminiscent of absences. Laboratory tests revealed hyperammonemia (260 µmol/L) 

together with the constellation of acute liver failure (ASAT 130 U/l, ALAT 233 U/l, ALP 267 

U/l, Quick 10%, INR 4.87, aPTT 52sec.). Plasma amino acids demonstrated high to normal 

glutamine, elevated ornithine, and low citrulline and arginine, all as abnormalities. Orotic acid 

was highly elevated in urine. Homocitrulline was specifically tested for but could not be 

identified in plasma or urine. With a presumptive diagnosis of ornithine transcarbamylase 

deficiency, the patient was referred to a metabolic center and treated, accordingly, with protein 

restriction and ammonia scavengers. Over the following months, there were several similar 

episodes, usually triggered by minor intercurrent infections. Molecular analysis of ornithine 

transcarbamylase was negative. 
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When the constellation of symptoms was entered into the IEMbase’s mini-expert system (Table 

A1, Appendix A), hyperornithinemia–hyperammonemia–homocitrullinuria syndrome was 

suggested as the most likely disease candidate, while ornithine transcarbamylase deficiency was 

listed as the second probable disease candidate. Indeed, molecular analysis of SLC25A15 

identified biallelic variants in the gene, confirming the diagnosis of hyperornithinemia–

hyperammonemia–homocitrullinuria syndrome and enabling targeted treatment. 

 

2.5.3 Mini-expert system performance evaluation 

IEMbase’s mini-expert system matched 62% of cases to exact diagnoses, 86% of cases within 

the top five candidate disorders, and 90% of cases within the top ten. The performance 

comparison between the mini-expert system algorithm (combined + weighted) and three other 

phenotype-matching algorithms (combined + unweighted, cosine + weighted, cosine + 

unweighted) is shown in Table 2.3 and Figure A11 (Appendix A). There was no significant 

difference in performance between the mini-expert algorithm and the alternative phenotype-

matching algorithms. Cases that were ranked out of the top 20 tended to have entries of 

unspecific biochemical markers, such as “Acylcarnitines, all” or “Amino acids, all.” Refer to 

Table A2 (Appendix A) for an overview of the cases and their ranks. Refer to Table A3 

(Appendix A) for more information about the cases that were ranked out of the top 20. 
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Combined + 
Weighted 

(Mini-expert 
system) 

Combined + 
Unweighted 

Cosine + 
Weighted 

Cosine + 
Unweighted 

MRR 0.72 0.70 0.72 0.68 

% success at 1 62 59 63 57 

% success at 5 86 85 85 83 

% success at 10 90 91 90 89 

% success at 20 93 92 92 91 

Table 2.3 Mini-expert system performance evaluation results. 

Mean reciprocal rank (MRR) measures how close the correct match is to the top rank on average. It ranges from 0 to 

1 and values close to 1 indicate that correct matches appear closer to the top on average. % success at N = % of 

cases with correct diagnoses within top N ranks. Combined = combined cosine and semantic similarity. Cosine = 

cosine similarity only. 

 

The system performance using only biochemical queries was significantly better than using only 

clinical queries (P < 0.001; Figure 2.2 and Table A4 (Appendix A)). Using only biochemical 

phenotypes, 60% of cases were matched to exact diagnoses, 83% of cases within the top five 

candidate disorders, and 89% of cases within the top ten. The success rate of biochemical 

phenotypes plateaued after 90%, as the number of assessed candidates increased, reflecting 13 

cases which failed to produce candidates owing to insufficient/unspecific biochemical 

information and/or the system’s inability to recognize similar biochemical phenotypes. As an 

example of the latter, the current implementation fails to recognize “Acylcarnitines, all” and 

“Long-chain acylcarnitine” as related phenotypes. Using only clinical phenotypes, only 19% of 

cases were matched to exact diagnoses, 38% of cases within the top five candidate disorders, and 

49% of cases within the top ten. 
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Figure 2.2 Mini-expert system performance using only biochemical/clinical information. 

The system performance when using only biochemical phenotypes was compared with that when using only clinical 

phenotypes of 172 retrospective cases. Percentage success N measures % of cases whose actual diagnoses ranked 

within the top N ranks. The system performance when using only biochemical phenotypes was significantly better 

than that when using only clinical phenotypes (P < 0.001; Mann-Whitney-U). 

 

There was no significant correlation between the rank of correct diagnoses and the number of 

provided phenotypes (P = 0.69; Figure A12, Appendix A). 
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2.6 Discussion 

Although disease databases for IEMs have been developed in the past [155–157], they were 

either based on individual case reports [155, 156] or more focused on specific symptoms, such as 

intellectual disability [157]. Large-scale rare disease databases currently available for a general 

clinical audience [136, 137] do cover a wide range of rare diseases, but by their nature do not 

provide the depth of information found in specialized expert knowledge bases. IEMbase is 

designed to fill this gap, by combining a central knowledge repository with a basic diagnostic 

support system. This design allows simultaneous collection of the current expert knowledge and 

its dissemination to the broader clinical community. In addition, it leads to further improvement 

of the mini-expert system as the depth of knowledge is compiled. Curated knowledge bases are 

intended to surpass the capacity of any single expert. IEMbase is therefore of utility for all those 

involved in IEM diagnoses: pediatricians, internists, neurologists, geneticists, and metabolic 

specialists. As our case study demonstrates, the utility of IEMbase can also be extended to 

established metabolic centers and biochemical genetics laboratories to help broaden the array of 

potential differential diagnoses—specifically to include lesser-known diseases when their 

constellations overlap with typical presentations of better-known diseases. 

 

The evaluation of the mini-expert system revealed that phenotype-matching performance is 

significantly higher with the use of biochemical phenotypes than that of clinical phenotypes. This 

probably reflects two influences: (i) many clinical features of IEMs are not specific, while 

biochemical alterations are frequently so [133, 158] and (ii) the IEM community has made 

intense efforts toward both disease-specific biomarker discovery and the annotation of 

biochemical phenotypes [138, 139, 158, 159]. The second point draws upon a hundred years of 
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IEM community efforts, leading to a depth and breadth of biochemical annotations that 

constitute a phenome space well suited to research of assisted diagnostic methods. Furthermore, 

the uniting of biochemical annotations with genetic and clinical annotations aligns with the 

imminent shift in investigative paradigm, where multi-omics technology allows holistic 

investigation into an individual’s genome, epigenome, transcriptome, proteome, metabolome, 

and phenome [158]. Extrapolating from our experience, the knowledge bases of other clinical 

communities may hold untapped high-quality offline information which could be renewed in a 

similar way to that held in IEMbase. 

 

Owing to a lack of compatible structured vocabulary for biochemical phenotypes in IEMbase, 

the current mini-expert system algorithm uses a nonsemantic information retrieval metric (tfidf-

cosine similarity) to compare biochemical phenotypes. We recognize that this approach is not 

robust when matching imprecise terms. For example, the use of tfidf-cosine similarity will not 

take into account the fact that neopterin and biopterin belong to the same group of pterins. The 

use of structured vocabulary and semantic similarity can mitigate this shortcoming. Therefore, 

we plan to contribute our biochemical vocabulary to existing ontologies as we make updates to 

our system. 

 

Biochemical test/gene panel suggestions that are provided with the output of the mini-expert 

system are currently restricted to basic information (e.g., gene names or chemical test panels), as 

detailed specification will require future contributions from the expert community. We anticipate 

that such improvements will be introduced over time as a result of community outreach efforts 

such as those described below. 
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For the long-term viability of IEMbase, continuous contribution from the expert community is 

crucial, especially with the large number of novel IEMs and phenotypes now being revealed with 

the use of multi-omics technologies. Therefore, we will periodically reach out to the IEM 

community for knowledge contribution, in addition to assembling an expert panel, which will 

regularly review and update the knowledge base. To encourage adoption among the new 

generation of clinicians, we plan to develop a mobile version of the application and a training 

module. 

 

In summary, IEMbase is a web application intended to provide the clinical community with a 

comprehensive IEM knowledge base and a tool to facilitate early and accurate diagnoses of 

IEMs. Its knowledge base features expert-curated clinical resources on 530 IEMs. Its mini-expert 

system empowers clinicians and complements their workflow with suggested diagnoses, 

differential diagnosis charts, biochemical test panels, and gene panels. The multitude of 

suggestions enables clinicians to initiate concurrent biochemical and genetic evaluations, where 

the former can help focus the latter for rapid diagnosis, especially in clinical exome/genome 

interpretations. We believe that the power of IEMbase comes from the community of experts 

who contribute their knowledge for the greater benefit of the broader clinical community and as 

such, the value of community science should be recognized as a key component of digital 

medicine in the 21st century. 
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Chapter 3: Development and user evaluation of a rare disease gene 

prioritization workflow based on cognitive ergonomics 

 

3.1 Synopsis 

Objective The clinical diagnosis of genetic disorders is undergoing a transformation, driven by 

whole exome sequencing and whole genome sequencing (WES/WGS). However, such 

nucleotide-level resolution across 3 billion base pairs creates an interpretive challenge. Prior 

literature suggests that clinicians may employ characteristic cognitive processes during 

WES/WGS investigations to identify disruptions in genes causal for the observed disease. Based 

on cognitive ergonomics, we designed and evaluated a gene prioritization workflow that 

supported these cognitive processes. 

 

Materials and Methods We designed a novel workflow, in which clinicians recalled known 

genetic diseases with similarity to patient phenotypes to inform the WES/WGS data 

interpretation. This prototype-based workflow was evaluated against the commonly used 

computational approach based on physician-specified sets of individual patient phenotypes. The 

evaluation was conducted as a web-based user study, where 18 clinicians analyzed two simulated 

patient scenarios using a randomly assigned workflow. Data analysis compared the two 

workflows with respect to accuracy and efficiency in diagnostic interpretation, efficacy in 

collecting detailed phenotypic information, and user satisfaction. 

 

Results Participants interpreted genetic diagnoses faster using prototype-based workflows. The 

two workflows did not differ in other evaluated aspects. 
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Discussion The user study findings indicate that prototype-based approaches, which reflect the 

cognitive processes of the experts, can expedite gene prioritization. However, further research is 

required to study the extent of this accelerated diagnosis across diverse genetic diseases. 

 

Conclusion The findings demonstrate potential for prototype-based phenotype description to 

accelerate computer-assisted variant/gene prioritization through complementation of skills, 

knowledge, and experience of clinical experts via human-computer interaction. 

 

3.2 Background and significance 

Whole exome sequencing (WES) and whole genome sequencing (WGS) are allowing clinicians 

an unprecedented opportunity to examine human genes en masse and to diagnose rare genetic 

diseases [1, 39, 46]. An accurate and efficient analysis of DNA sequence data has become crucial 

for a timely diagnosis of patients, many of which might otherwise suffer a long and costly 

diagnostic odyssey [32, 160, 161]. However, identifying causal variants among millions of DNA 

variations (within billions of nucleotides) in any individual is challenging [12]. For this reason, 

collaborative global efforts have focused on expediting WES/WGS analyses, by encoding 

available clinical genetic knowledge into computers [64, 65, 75, 78] and creating computational 

methods that exploit encoded information [7, 8, 70, 72, 80, 162-164]. Such solutions have 

improved efficiency in multiple aspects of WES/WGS analyses, from collecting comprehensive 

phenotype information [7], to prioritizing potentially pathogenic variants [8, 70, 72, 162-164], 

and to matching patients for collaborative investigation of rare, novel genetic diseases [80]. 
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While the above aspects have been improved with computational approaches, variant (or gene in 

a wider context) prioritization and interpretation during WES/WGS analyses have largely 

remained expert-driven tasks with computer assistance that connect variant-level, gene-level, 

phenotype-level, and population-level information to patients [12]. Human experts have been a 

vital part of prioritization and interpretation as these processes require cross-examination of 

complex evidence that affect treatment decisions [12, 165]. Recent economic analysis of cancer-

related genome diagnosis indicates that the overall cost is increasingly dominated by the 

informatics/interpretative activity [13]. Considering the importance of human experts, an 

alternative solution for accelerating WES/WGS analyses may lie in the creation of new 

computational methods that more efficiently collaborate with highly-trained experts (whose 

skills and knowledge are difficult to fully encode into computers). For instance, a recent study in 

this direction has demonstrated that variant prioritization based on a clinician-generated gene list 

outperformed purely computational methods in the analysis of singleton WES data [84]. The 

findings suggest the utility of harnessing clinical expertise, such as a clinician's experience, skills 

in recognizing clinical gestalt, and their ability to evaluate multifactorial information such as 

disease onset, family history, and negative findings [84, 85, 166]. 

 

In this study, we report the design and evaluation of a gene prioritization workflow based on 

cognitive ergonomics, the study of understanding human cognitive capabilities in interactive 

systems, and applying this understanding to support human cognition via human-system 

interaction for optimized system performance [167]. The word “workflow”, within the context of 

this study, refers to a sequence of interactions between clinical experts and computers during 

computer-assisted variant/gene prioritization. Using this definition, this study focused on 
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examining two different designs of interactions (workflows) and their effect on expert 

performance regardless of variant/gene prioritization algorithms. These two workflows are 

herein referred to as the prototype-based workflow and symptom-based workflow. 

 

First, we created the prototype-based workflow that aimed to complement the following 

characteristics of diagnostic reasoning and human cognition reported in literature: (a) clinicians 

form a "gestalt diagnosis" from perceived clinical information [82, 168, 169], (b) people tend to 

make categorizations using an ideal/core representation called the "prototype" [170], and (c) 

people tend to focus on deeper structural information when comparing two examples, whereas 

they focus on superficial information when considering an isolated example [171]. The 

“prototype” in this study refers to a representation that effectively describes patient 

characteristics, in the form of a specific genetic disease that closely resembles a patient. 

Therefore, in this prototype-based workflow, clinicians suggest a specific genetic disease with 

resemblance to patient phenotypes before initiating variant/gene prioritization. The computer 

then retrieves a set of characteristics described for the prototype disorder from an underlying 

database. 

 

Next, the prototype-based workflow was compared against the symptom-based workflow, which 

simulated a commonly applied workflow in which experts provide a set of individual 

characteristics observed in the patient before embarking on a computational variant/gene 

prioritization process. For workflow comparison, a user study was conducted with expert 

clinical/biochemical geneticists as subjects. The workflows were assessed with respect to 

accuracy and efficiency in diagnostic interpretation, efficacy in collecting detailed phenotypic 
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information, and user satisfaction. Finally, we created a proof-of-concept mobile application for 

phenotyping based on study findings. 

 

This study explores an alternative in computer-assisted variant/gene prioritization and 

interpretation where computational methods attempt to harness the intellectual power of clinical 

experts by aligning human-computer interaction with a natural reasoning process. We hope our 

findings catalyze further interest to explore human-computer interactive methods in this domain. 

 

3.3 Materials and methods 

3.3.1 Workflow definitions 

As explained in Background and Significance (Section 3.2), the “workflow” refers to a sequence 

of interactions between clinical experts and computers during computer-assisted variant/gene 

prioritization. The two workflows (prototype-based and symptom-based) that were designed for 

the study are illustrated in Figure 3.1. For clarification, this section briefly summarizes each 

workflow to help understanding of the remaining sections of Materials and Methods. For a 

detailed explanation of the workflow designs, please refer to the “Workflow designs” in Results 

(Section 3.4.1). 
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Figure 3.1 Sequence diagram for prototype-based and symptom-based workflows. 

(A) Illustration of the prototype-based workflow. (B) Illustration of the symptom-based workflow. In the prototype-

based workflow, clinicians provide a prototype in the form of suspected diagnosis, refines a list of phenotypes that 

are suggested based on the given prototype, and identifies a causal variant/gene from a list of variants/genes that is 

computationally prioritized by the relevance to given phenotypes. In the symptom-based workflow, clinicians 

provide a list of phenotypes and identifies a causal variant/gene from a list of variants/genes that is computationally 

prioritized by the relevance to given phenotypes. The prototype-based workflow is different from the symptom-

based workflow in that it explicitly asks clinicians to provide prototypes that they have in mind. 

 

The prototype-based workflow was designed to complement the cognitive properties concerning 

the use of prototypes - model presentations of genetic diseases - during patient assessment and 

variant interpretation during WES/WGS investigations. In this prototype-based workflow, prior 
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to initiating gene prioritization, clinicians are solicited to provide a prototype in the form of a 

disease with similarity to the observed patient phenotypes. The system then extracts a set of 

phenotypes described for the known disorder from an underlying database. 

 

To assess the impact of the prototype-based workflow, a symptom-based workflow was 

implemented for comparison. This symptom-based workflow simulated a common process 

employed by phenotype-driven variant/gene prioritization tools, where users enter patient 

phenotypes and variants/genes were assessed based on their relevance to input phenotypes [8, 

162-164]. The words “symptom” and “phenotype” refer to characteristics of patients, and will be 

used in an interchangeable manner in the upcoming sections. 

 

The difference between the two workflows was that the prototype-based workflow explicitly 

asked for a suspected diagnosis (to populate the set of phenotypes, which the user can refine by 

eliminating/adding terms) while the symptom-based workflow solicits the user to specify the 

observed patient phenotypes de novo. 

 

3.3.2 User study participants 

Between October 2017 and May 2018, 59 clinicians from specialized (tertiary) healthcare 

institutions within Canada, the Netherlands, Ireland, Germany, and Switzerland were invited to 

participate in the user study. Participant inclusion criteria were to (a) hold the title of medical 

geneticist/biochemical geneticist or specialize in rare genetic diseases, and (b) have prior 

experience working with WES/WGS data as part of their clinical practice. The invitees were 

identified by consulting hospital staff directories, a rare disease research network, and 



 54 

collaborators. The invitees were contacted by an email which provided researcher information, 

explanation on how the contact was obtained, purpose and a brief description of the study, as 

well as a web link to the user study website. Participation was completely voluntary and consent 

to participate was implied by submission of responses. Of the 59 invitees, 18 completed their 

participation in the study. 

 

The user study was reviewed and approved by the University of British Columbia Research 

Ethics Board (Certificate: H17-00872). 

 

3.3.3 Development of simulated clinical scenarios 

Five simulated clinical scenarios were developed for the user study (Table 3.1). One was 

dedicated to a tutorial exercise and four were for clinical scenario analysis exercises. The latter 

four scenarios were coupled as two disease-based pairs, with each pair consisting of a scenario 

that described a typical presentation and a scenario that described an atypical presentation of a 

genetic disease. The above arrangements were used for scenario assignment in the study so that 

each participant analyzed one typical scenario from one pair and one atypical scenario from the 

other pair, while the order of the scenarios was randomized. This ensured (a) elimination of 

exposure to the same genetic disease diagnosis during analysis exercises, (b) minimizing 

ordering bias, and (c) examination of the effect of different disease presentations on workflow 

performance. 
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Table 3.1 Simulated scenarios. 

* Clinical synopses are summarized from a paragraph format for brevity 

 

 Tutorial scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Diagnosis CHARGE syndrome 
(MIM 214800) 

Smith-Lemli-Opitz 
syndrome (MIM 270400) 

Smith-Lemli-Opitz 
syndrome (MIM 270400) 

Tuberous sclerosis 1 
(MIM 191100) 

Tuberous sclerosis 1 
(MIM 191100) 

Gene CHD7 DHCR7 DHCR7 TSC1 TSC1 

Typical/Atypical - Typical Atypical Typical Atypical 

Demographic 
information 5-month-old girl 18-month-old boy 18-month-old boy 6-year-old girl 6-year-old girl 

Family information 
Parents were 
nonconsanguineous and 
of European ancestry 

Parents were 
nonconsanguineous and 
of European ancestry 

Parents were 
nonconsanguineous and 
of European ancestry 

Parents were 
nonconsanguineous and 
of European ancestry 

Parents were 
nonconsanguineous and 
of European ancestry 

Clinical 
synopsis* 

Pregnancy 
and delivery 

Born at term following 
an uneventful pregnancy 
and delivery 

Born at term following an 
uneventful pregnancy and 
delivery 

Born at term following an 
uneventful pregnancy and 
delivery 

Born at term following an 
uneventful pregnancy and 
delivery 

Born at term following an 
uneventful pregnancy and 
delivery 

Phenotypic 
description 

- Asymmetric facial 
palsy 

- Bilateral coloboma 
of the iris 

- Choanal atresia and 
ventricular septal 
defect @ birth 

- Developmental 
delay 

- Missing ear lobes 
and short, wide ears 

- Swallowing 
difficulties 

- 2nd-3rd toe 
syndactyly 

- Anteverted nares 
- Broad nasal bridge 
- Developmental delay 
- Feeding difficulties 

and failure to thrive 
@ 3 months 

- Hypotonia 
- Irritable 
- Low-set ears 
- Microcephaly 
- Micrognathia 
- Postaxial polydactyly 
- Ptosis 

- Brain MRI and MRS: 
no structural 
abnormalities 

- Broad nasal bridge 
- Developmental delay 
- Feeding difficulties 

@ 3 months 
- Finger clinodactyly 
- Micrognathia 
- Mild hypotonia  
- Mild ptosis 
- Minimal cutaneous 

2nd-3rd toe 
syndactyly 

- Brain MRI: cortical 
sclerotic tubers 

- Epileptic seizure 
- Hypomelanotic 

macules on the chest 
- Hypsarrhythmia 
- Renal cysts 
- Skin papules on the 

side of nose 

- Brain MRI: normal 
- Epileptic seizure 
- Hypsarrhythmia 
- Intellectual disability 
- Renal cysts 
- Skin papules on the 

side of nose 
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Each scenario consisted of a diagnosis, a patient description, and a gene list, simulating a case 

involving WES data (equivalent to restricting analysis to exons within WGS data). Normally, 

WES analyses produce a list of variants at the resolution of nucleotides. In order to limit the time 

demands on participants, we simplified the results to provide a list of genes impacted by 

variation. In the user study, participants were explicitly notified that a variant list had been 

simplified to display only gene level information, and instructed participants to assume that each 

gene in the list harboured a variant/variants that was/were rare, potentially pathogenic, and 

aligned with inheritance models (e.g. dominant, recessive). 

 

Each simulated clinical scenario was developed in the following order: diagnosis, patient 

description, and gene list. Diagnosis selection used the following criteria: (1) the diagnosis was a 

rare genetic disease that had been described in at least ten peer-reviewed publications; (2) it was 

widely known so that participants could recognize its associated gene by name/symbol during 

gene list interpretation, thus minimizing time spent looking up gene information using online 

tools; and (3) the disease was well-characterized so that participants could formulate a prototype 

(or a model presentation of the disease) by reading a text description. After reviewing previously 

published rare genetic disease annotations [145], three diseases, CHARGE syndrome, Smith-

Lemli-Opitz syndrome, and tuberous sclerosis, that fulfilled the above criteria were assigned to 

each scenario as follows: CHARGE syndrome for the tutorial scenario, Smith-Lemli-Opitz 

syndrome for two analysis scenarios, and tuberous sclerosis for the remaining two analysis 

scenarios. 
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Based on the diagnosis assignment, patient descriptions were then generated by extracting 

typical/atypical characteristics from published case reports (Appendix B) as well as the disease 

annotations used during the previous step, which contained a list of phenotypes described using 

the Human Phenotype Ontology (HPO) [75] and their frequency [145]. 

 

After patient descriptions were generated, gene lists were compiled. The gene list for each 

scenario contained 17 genes, one associated with the scenario's diagnosis and the rest associated 

with diseases that had varying degrees of similarity to the diagnosis. The purpose of such an 

arrangement was to ensure that investment of thought and time was required before discerning 

the diagnosis. The following outlines the steps that determined gene lists. For each scenario, the 

patient description was converted into a list of HPO terms. These terms were then used to 

compute the scenario's similarity against 6946 diseases in Online Mendelian Inheritance in Man 

(OMIM) that were annotated by HPO [75] (phenotype_annotation.tab downloaded on June 27, 

2017). Similarity was computed using a previously published HPO-based disease similarity score 

[145] and normalized to a range between 0 and 1. OMIM diseases were then ordered and 

categorized by their similarity [highly similar (0.6-1.0), similar (0.5-0.6), somewhat similar (0.4-

0.5), and irrelevant (0-0.4)]. From each category, four diseases were randomly selected and their 

associated genes were added to the gene list. All components of the simulated clinical scenarios 

were reviewed by CDMvK. 

 

3.3.4 User study procedure 

The user study was formatted in an online survey. Participants were asked to complete the survey 

as outlined in Figure 3.2 and were randomly assigned to either prototype-based or symptom-
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based workflows. The survey consisted of four sections: introduction, clinical scenario analysis, 

debriefing, and user satisfaction questionnaire. The introduction section presented three 

questions regarding participants' demographic information/clinical expertise, an orientation video 

explaining the study purpose and procedure, and a tutorial exercise which walked through a 

sample clinical scenario to help participants become acquainted with the survey interface. 
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Figure 3.2 User study structure. 

The user study consisted of four main sections: introduction, clinical scenario analysis, debriefing, and user 

satisfaction questionnaire. During the introduction, participants answered questions regarding their demographic 

information and clinical expertise, watched an orientation video, and walked through a sample clinical scenario. 

Afterwards, participants analyzed two simulated clinical scenarios using their assigned workflow. At the end of each 

scenario, participants completed an After-Scenario Questionnaire (ASQ). Upon completion of clinical scenario 

analyses, participants were debriefed about the workflow that they were not assigned to and tried out the workflow 

using the same simulated scenarios. Participants also filled out an ASQ at the end of each scenario. Finally, 

participants filled out Post-Study System Usability Questionnaires, regarding the assigned workflow and the 

alternative (unassigned) workflow, respectively. 
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The clinical scenario analysis section invited participants to diagnose two simulated clinical 

scenarios using their assigned workflow. For each scenario, the analysis exercise proceeded as 

follows. Participants were presented with a simulated patient description and asked to input 

prototypes or patient phenotypes according to their assigned workflow (Figure 3.1). The order of 

the sentences within the description was randomized to minimize ordering bias. For prototype 

selection, participants were restricted to OMIM disease names (provided by OMIM API) [64]. 

For phenotype selection (symptom-based workflow) and phenotype refinement (prototype-based 

workflow), participants were restricted to HPO terms. Such restrictions were imposed to enable 

accurate comparison of input from different participants. Afterwards, participants were asked to 

identify a diagnosis within a simulated gene list, which was ordered by the number of 

phenotypes that overlapped between input and diseases that were associated with each gene. The 

ordering was performed to mimic the output of common computational variant/gene 

prioritization tools. Gene-phenotype-disease associations provided by HPO [75] were used to 

enable this functionality. Participants could freely modify input phenotypes and reorder the gene 

list until they identified a diagnosis. Following diagnosis selection, the actual diagnosis was 

revealed to participants, and they were invited to express their satisfaction with the assigned 

workflow by completing a modified After-Scenario Questionnaire (ASQ) [172]. 

 

During each analysis exercise, the following information was collected: prototype/phenotype 

selections, changes made to prototype/phenotype selections before making diagnoses, final 

diagnoses, time elapsed between initial display of the gene list and identification of diagnoses, 

and ASQ responses. 
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Upon completion of two clinical scenario analyses, participants were debriefed about the 

alternative (unassigned) workflow. During debriefing, they walked through the alternative 

workflow using the same scenarios and completed ASQ at the end of each scenario. Only ASQ 

responses were collected during the walkthrough. Finally, participants were invited to express 

their overall satisfaction with the workflows by completing two modified Post-Study System 

Usability Questionnaires (PSSUQ) [172], for the assigned workflow and for the alternative 

workflow, respectively. 

 

For the survey, a custom online interface was developed using Ruby on Rails and React.js in 

order to implement functionalities required by clinical scenario analysis exercises. 

 

3.3.5 Data analysis 

All data analyses were performed using R version 3.4.4. The two workflows were compared with 

respect to (a) diagnostic accuracy (measured as the number of correctly diagnosed scenarios), (b) 

efficiency in gene list interpretation (measured as the time elapsed between when the gene list 

was presented and when participants selected causal gene from the list), (c) efficacy in 

phenotype collection (measured as the number of participant-provided phenotypes), and (d) user 

satisfaction (measured as ASQ and PSSUQ scores). All comparisons except the PSSUQ score 

comparison were performed using a 2 x 2 analysis of variance (ANOVA) (afex package) with 

workflow assignments (prototype-based/symptom-based) as a between-subject variable, disease 

presentations (atypical/typical) as a within-subject variable, and each measurement as a response 

variable. The primary focus of ANOVA was on the main effect of workflow assignments. 

PSSUQ scores were compared using the Mann–Whitney U test (wilcox.test). To account for 
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multiple comparisons within (d), the Bonferroni correction (p.adjust) was applied to ASQ and 

PSSUQ comparisons. Participant-provided prototypes and phenotypes were qualitatively 

analyzed for common and workflow-specific information patterns. Optional written comments 

provided in ASQ and PSSUQ were reviewed to extract common participant opinions. 

 

3.4 Results 

3.4.1 Workflow designs 

We present the design of the two workflows investigated in this study as follows. The prototype-

based workflow (Figure 3.1A) was designed to augment the following properties of clinical 

reasoning and human cognition during WES/WGS investigations: (a) an ability to form gestalt 

diagnosis [82, 168, 169], (b) a tendency to categorize using an ideal/core representation called 

the "prototype" [170], and (c) a tendency to focus on deeper structural information when 

comparing two examples [171]. The specific steps of this prototype-based workflow follow: (1) 

the computer solicits the clinician to provide a prototype in the form of suspected diagnosis; (2) 

the computer presents a list of key phenotypes of the given prototype; (3) the clinician refines the 

presented list by adding or excluding phenotypes; (4) the computer prioritizes genes based on 

their overlap with the phenotypes; and (5) the clinician specifies a causal gene (diagnosis) from 

the prioritized list. 

 

The rationale behind this prototype-based workflow design was that clinicians employ 

prototypes as proxies to evaluate the characteristics of patients or to gauge the relevance of each 

candidate variant/gene during WES/WGS data interpretation. In terms of cognitive ergonomics, 

the prototype-based workflow was anticipated to reduce the cognitive burden of constantly 
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keeping track of prototypes by (a) explicitly asking for them and (b) guiding the expert-computer 

interaction based on how experts would employ them during phenotypic assessment and gene 

interpretation. 

 

The symptom-based workflow (Figure 3.1B) was designed for comparison with the prototype-

based workflow. This symptom-based workflow modelled common phenotype-driven 

variant/gene prioritization tools. Specific steps of the symptom-based workflow follow: (1) the 

computer solicits clinicians to provide a list of patient phenotypes; (2) computer prioritizes genes 

based on their overlap with the phenotypes; and (3) clinicians identified a causal gene (diagnosis) 

from the prioritized list. The difference from the prototype-based workflow was that the 

symptom-based workflow did not ask for prototypes and instead focused on serially collecting 

individual patient phenotypes. 

 

3.4.2 User study participant characteristics 

Characteristics of 18 participants are summarized in Figure 3.3. 94% of participants have 

practiced more than 5 years. All participants had experience with cases involving clinical 

WES/WGS data. 
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Figure 3.3 Participant characteristics. 

(A) Gender of participants; (B) Participants' level of clinical expertise, measured as years in clinical practice; (C) Participants' experience with exome or genome 

sequencing data, measured as the number of cases involving exome or genome analyses. 
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3.4.3 Workflow performance evaluation 

Figure 3.4 summarizes the performance of the prototype-based workflow and the symptom-

based workflow. There was no difference in diagnostic accuracy between the two workflows 

(F(1, 16) = 1.0, p = .33, !"# = .059). Almost all participants, except one, correctly diagnosed 

assigned scenarios. The participant who incorrectly diagnosed one scenario explained via 

optional comments that a general diagnosis (tuberous sclerosis) was correctly anticipated and the 

correct genetic diagnosis (TSC1) was considered during gene list interpretation. However, the 

participant determined that the presented scenario was more compatible with a different genetic 

diagnosis (TSC2) and thus did not select any diagnosis. 
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Figure 3.4 Summary of workflow performance evaluation. 

Evaluation results are shown in histograms or bar-plots for categorical variables. In (B), (C), and (D), the tables next 

to histograms summarize descriptive statistics for each corresponding histogram. SD = standard deviation. (A) 

Diagnostic accuracy, measured as the number of correctly diagnosed scenarios; (B) Interpretation time, measured as 

the time elapsed between when the gene list was presented and when participants selected causal gene from the list; 

(C) Number of participant-provided phenotypes. Values denoted by * represent mean or standard deviation 

including (within brackets) or excluding (without brackets) three outlier individuals assigned to the prototype-based 
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workflow; (D) User satisfaction, measured as After-Scenario Questionnaire (ASQ) and Post-Study System Usability 

Questionnaire (PSSUQ) scores. 

 

Participants who were assigned to prototype-based workflows identified diagnoses significantly 

faster than those assigned to symptom-based workflows (F(1, 16) = 6.04, p = .026, !"#= .27). In 

addition, participants identified diagnoses faster for scenarios with typical presentations than 

atypical presentations (F(1, 16) = 18.1, p = .0006, !"#= .53), while no significant interaction 

between workflow assignment and disease presentation was observed (F(1, 16) = 3.26, p = .090, 

!"#= .17). 

 

No difference was observed in the number of phenotypes collected by either workflow (F(1, 16) 

= 2.71, p = .12, !"#= .14). Three outliers were observed in the number of input phenotypes 

collected using prototype-based workflows. Examination of individual responses revealed that at 

least two participants who were assigned to prototype-based workflows selected almost all of the 

phenotypes that were suggested based on participant-specified prototypes, regardless of their 

presence/absence in simulated scenarios (i.e. they chose not to eliminate phenotypes that were 

not reported in the scenarios). Lastly, there was no difference in user satisfaction between the 

two workflows (ASQ: F(1, 16) = 1.50, p = .48 (uncorrected p = .24), !"#= .086; PSSUQ: W = 

37, p = 1.0 (uncorrected p = .79), r = 0.19). 
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 Actual scenario 
diagnosis Participant-specified prototype 

# of participants who 
selected the 
prototype** 

Scenario 1 
(n* = 5) 

Smith-Lemli-Opitz 
syndrome (MIM 
270400) 

Smith-Lemli-Opitz syndrome 
(MIM 270400) 5 

Scenario 2 
(n* = 4) 

Atypical Smith-Lemli-
Opitz syndrome (MIM 
270400) 

Smith-Lemli-Opitz syndrome 
(MIM 270400) 4 

Scenario 3 
(n* = 4) 

Tuberous sclerosis 1 
(MIM 191100) 

Tuberous sclerosis 1 (MIM 
191100) 2 

Tuberous sclerosis 2 (MIM 
613254) 2 

Scenario 4 
(n* = 5) 

Atypical tuberous 
sclerosis 1 (MIM 
191100) 

Tuberous sclerosis 1 (MIM 
191100) 3 

Tuberous sclerosis 2 (MIM 
613254) 3 

Table 3.2 Prototype selection summary. 

* n = number of participants assigned to scenario using the prototype-based workflow 

** Counts how many participants selected each prototype as a probable diagnosis. If participants changed prototypes 

multiple times, they were counted for all prototypes that they had specified. 

 

3.4.4 Qualitative analysis of input prototype and phenotypes 

Nine participants who were assigned to prototype-based workflows selected the actual or very 

close diagnoses as prototypes prior to interpreting gene lists (Table 3.2). Phenotypes that were 

collected by the two workflows are summarized in Figure 3.5. A detailed list of phenotypes is 

provided in Appendix B. Phenotypes provided by three individuals assigned to prototype-based 

workflows were excluded from this comparison, as two likely did not refine phenotype 

suggestions and one did refine the suggestions for one case but likely did not refine for the other 

case. Those phenotype lists likely did not involve a conscious assessment of patient phenotypes. 
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Participants who were assigned to symptom-based workflows had a tendency to input close 

synonyms of a phenotype. For example, hypotonia in the atypical Smith-Lemli-Opitz scenario 

was captured in three different terms, generalized hypotonia, central hypotonia, and muscular 

hypotonia. Meanwhile, synonyms were rarely present in phenotypes captured by prototype-based 

workflows because participants were offered to select/unselect suggested phenotypes that were 

associated with the prototype of their choice. Furthermore, the prototype-based suggestions seem 

to have encouraged participants to enter additional phenotypes that were not collected by 

symptom-based workflows. For example, terms such as vomiting, gastroesophageal reflux, and 

poor suck were provided for feeding difficulty in the atypical Smith-Lemli-Opitz scenario. 
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Figure 3.5 Qualitative summary of phenotype selection. 
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For each scenario, phenotype terms collected by the two workflows are summarized into word clouds. Red clouds represent phenotype terms collected by 

prototype-based workflows. Blue clouds represent phenotype terms collected by symptom-based workflows. Darker colors represent terms that were collected 

more frequently. The underlying data is available in Table B2 (Appendix B). 
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3.4.5 User-requested mobile application for phenotyping 

In the survey results, a participant expressed preference for availability of both workflows for 

use on mobile devices. As such, we created a proof-of-concept, open-source, mobile application, 

PhenoChat (https://github.com/jes8/phenochat), to demonstrate a potential implementation that 

combines both workflows. PhenoChat allows users to build phenotypic descriptions by 

specifying individual phenotypes or by specifying a prototype and subsequently refining 

phenotypes that are suggested based on known disease-phenotype associations. Users can send 

the descriptions via email or copy them into a clipboard and share via messaging services. The 

descriptions are restricted to HPO [75] and OMIM [64] terminologies, and they are generated in 

a machine-processable format to enable integration into existing framework for phenotyping. 

PhenoChat was developed using React Native. 
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3.5 Discussion 

Prior literature on diagnostic reasoning and cognitive properties [82, 168-171] suggests that 

clinicians employ prototypes (paragon disease presentations) to assess patients and identify 

relevant genetic diagnoses within WES/WGS results. We designed a novel gene prioritization 

workflow based upon a prototype-based approach and evaluated it against a workflow that 

simulated a common phenotype-driven variant/gene prioritization process. Finally, we 

demonstrated that gene interpretation could be accelerated using the prototype-based workflow 

by facilitating prototypical thinking. 

 

The workflow performance evaluation revealed that time spent on gene list interpretation was 

significantly shorter for the prototype-based workflow compared to the symptom-based 

workflow, with no differences observed in other performance measurements. The qualitative 

analysis of phenotypic information revealed noticeable differences between phenotype terms that 

were collected by both workflows. However, the above evaluation was limited in scope to focus 

on only two genetic diseases which were both well-characterized in the literature. More research 

is needed to generalize the observed workflow performances over different rare genetic diseases, 

which have not yet reached the same level of characterization or expert awareness. Furthermore, 

the prototype-based workflow should be assessed in terms of (a) performance with diseases that 

present with heterogeneous, overlapping, or novel phenotypes and (b) incorporation of 

information beyond gene-level. In addition to the scope of the evaluation, the study recruitment 

was also restricted to medical/biochemical geneticists in order to ensure that participants 

represented a focused group of users, who would exhibit similar areas of attention/interest when 

approaching WES/WGS data as well as shared desiderata towards WES/WGS analysis software 
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[173]. Further research should also consider inclusion of other healthcare professionals involved 

in clinical WES/WGS interpretation (e.g. genetic counsellors and bioinformaticians) to gain 

further insights into diverse groups of users and their interaction with different workflows. 

 

Within the scope of this study, the observed difference in time spent on gene interpretation 

suggested that participants likely engaged in prototypical thinking. The main difference in 

workflow designs was that the prototype-based workflow explicitly kept track of prototypes. 

Though tracking, the prototype-based workflow likely reminded participants of their diagnostic 

reasoning process and encouraged prototypical comparison of genetic diagnoses. This notion was 

also supported by a secondary finding, where time spent on gene interpretation was shorter for 

both workflows when analyzing typical scenarios compared to atypical scenarios. This difference 

agreed with reports in prototype theory research regarding faster recall and recognition of typical 

members of a category compared to atypical members [174-176]. In sum, it was likely that 

participants employed some level of prototypical thinking in both workflows while the reasoning 

process was more efficiently facilitated by the prototype-based workflow. 

 

While the two workflows resulted in equivalent phenotypic information amounts, differences in 

the content of phenotypic information suggested possible involvement of distinct cognitive 

processes during phenotype assessment. Phenotype terms collected from symptom-based 

workflows did not deviate greatly from simulated patient descriptions, whereas those collected 

from prototype-based workflows did. The deviating terms were relevant concepts but not exact 

synonyms: for example, cafe-au-lait spot was provided in relation to hypomelanotic macule, and 

renal angiomyolipoma was provided in relation to renal cysts. This observation could be 
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explained by a known cognitive tendency towards focusing on deeper structural details when 

comparing two examples as opposed to considering a single example [171]. However, a 

quantitative experiment is required to conclusively determine involvement of the aforementioned 

cognitive tendency during phenotype assessment within different workflows. 

 

Upon observing no difference in user satisfaction, optional comments provided in user 

satisfaction questionnaires were examined. Specific comments suggested that the study findings 

should be translated by implementing the best of both worlds. Symptom-based workflow 

participants pointed out that (1) having to enter each phenotype did not enhance productivity and 

thus opted to enter only those deemed highly discriminatory; and (2) it was occasionally difficult 

to code phenotypes impromptu. Meanwhile, prototype-based workflow participants highlighted 

that (1) a typical feature could not be found in phenotype suggestions (likely due to limitations of 

disease-phenotype annotations); and (2) some thought it was redundant to refine the phenotype 

list. The above comments suggested that perceived deficiencies of one workflow could be 

remedied by the other, and flexibility to use either workflow for phenotype specification seemed 

most desirable. As such, we translated these findings into PhenoChat, by allowing users to build 

phenotypic descriptions using either workflow. 

 

3.6 Conclusion 

In summary, we explored the utility of augmenting clinical reasoning and cognitive 

characteristics of experts within computer-assisted gene prioritization. We found that clinicians 

interpreted genes faster and described phenotypes in relevant, but not synonymous, 

terminologies using a prototype-based gene prioritization workflow. These findings demonstrate 
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the potential utility of augmenting experts’ analytic and diagnostic workflows during gene 

prioritization. However, further investigation is warranted to confirm the above findings across 

diverse rare genetic diseases. WES/WGS informatics methods that recognize how human experts 

approach gene prioritization and use computers as active partners in knowledge discovery offer 

promise for overcoming the informatics bottleneck in clinical genome analysis. 
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Chapter 4: Qualitative evaluation of information visualization practices 

during applied exome and genome sequence data analyses for rare disease 

diagnoses 

 

4.1 Synopsis 

Information visualization facilitates interpretation of complex data during rare disease 

exome/genome analyses. Its context of use has been infrequently documented, limiting insight 

into what types of tasks and data are supported by information visualization and for which tasks 

design of new visualization methods is needed. As such, we qualitatively evaluated contextual 

aspects of information visualization practices during applied exome/genome investigations. 

 

An online survey and contextual interviews were conducted with 23 bioinformatics/healthcare 

experts who conducted clinical exome or genome analyses on a regular basis. Data analysis 

focused on identifying common analysis/information visualization practices, context of using 

information visualization, participants' experience with current visualization tools, and 

participant-suggested requirements for new visualization methods. 

 

Information visualization was frequently employed for visual confirmation of data quality and 

variant interpretation tasks involving multiple layers of evidence. Participants performed 

prioritized analyses of phenotype and publicly curated variants. These findings and participant 

suggestions were translated into recommendations for visual support of common exome/genome 

analysis tasks. 
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This study provides an overview of and design recommendations for information visualization 

that assists rare disease exome/genome analyses. Our findings can inform the development of 

new visualization in this domain. 

 

4.2 Introduction 

Clinically applied exome and genome analyses are transforming the diagnosis of genetic 

disorders, revealing new disorders and accelerating the resolution of diagnostic odysseys [1, 19]. 

This disruptive technology requires expert users to consider multiple types and scales of data, 

including DNA sequence, genes, and patient phenotypes [12, 66]. Each layer of information 

contributes a critical component for revealing pathogenic DNA sequence variants that underlie 

patient phenotypes [66]. To better interpret each type of data, a multitude of solutions have been 

developed with respect to computational variant prioritization methods [12, 70], online 

interpretation resources [59, 64, 65, 75, 116, 117], and information visualization [108, 109, 113]. 

Use of these solutions have been frequently reported in research literature involving whole 

exome sequencing (WES) or whole genome sequencing (WGS) data (e.g. [119, 122]). In 

addition, much literature has documented the performance, utility, and context of use of 

computational variant prioritization methods and online interpretation resources (e.g. [104, 177]). 

However, such documentation has been less frequent for information visualization, likely 

because it has been implemented as a feature of computational tools and online resources that 

support data interpretation [59, 116, 117], rather than as an independent method. 

 

In this study, we report a qualitative evaluation of current information visualization practices 

during exome and genome analyses for rare disease diagnoses. The evaluation focused on 
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investigating contextual aspects of visualization uses, which can generate a deeper understanding 

of current analysis practices and inform the design of new visualization methods [124, 125]. We 

conducted contextual interviews and an online survey with bioinformatics experts who routinely 

performed clinically applied WES or WGS analyses. The following questions were addressed 

during the evaluation: (1) What types of information visualization are commonly used during 

routine WES/WGS analyses? (2) In what context is information visualization used during the 

analyses? (3) How does information visualization facilitate an analysis task? (4) What types of 

common analysis tasks should be supported by information visualization? 

 

Data collected from interviews and surveys were analyzed to (a) construct a holistic 

understanding of current visualization practices and common analysis tasks, and (b) extract user 

requirements for new visualization. Based on these findings, we formulated design 

recommendations for augmenting applied exome and genome analyses using information 

visualization. We anticipate that the findings of this study will provide a resource on visually 

supported WES/WGS data analyses and design considerations for emerging visualization in this 

domain. 

 

4.3 Materials and methods 

4.3.1 Participants 

Between March 2018 and June 2018, we recruited (by email) bioinformatics and healthcare 

experts who routinely performed WES/WGS data analyses for rare disease or cancer 

investigations. Prospective participants were identified by consulting university/hospital staff 

directories, rare disease research networks, and online search engines. 
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For contextual interviews, six participants from biomedical research and healthcare institutions 

in Vancouver, Canada were recruited. Four of these participants routinely analyzed patient cases 

involving a diverse array of rare diseases (e.g. neurogenetic/neurodevelopmental disorders, 

biochemical disorders). Two of these participants conducted WGS analyses primarily for cancer 

diagnoses. They were included in the study because they occasionally analyzed hereditary cancer 

cases, which could give insights into analyses involving germline data. Informed consent was 

obtained in person for all interview participants. 

 

For the online survey, an invitation email was distributed to (a) 11 prospective participants from 

academic institutions or healthcare institutions in Canada and (b) through a rare disease research 

consortium mailing list. In addition, the survey was advertised on social media websites, Twitter 

and Facebook. In total, 17 survey responses were received. Consent to participate in the survey 

was implied by submission of responses. 

 

The interview participants and survey invitees were mutually exclusive. Participation in either 

study component was voluntary. This study was reviewed and approved by the University of 

British Columbia Research Ethics Board (Certificate: H17-02809). 

 

4.3.2 Contextual interview 

Prior to conducting contextual interviews, an interview template was developed to guide the 

interview process. Questions were created based on (a) common WES/WGS analysis practices 

that were reported in literature (Appendix C) and (b) four further topics: characteristics of routine 
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WES/WGS analyses, context of using information visualization during routine analyses, 

perception of current visualization tools, and suggestions for new visualization. Appendix C 

provides the template and describes its development process in detail. 

 

The contextual interviews were conducted based on the methods described by Raven and 

Flanders [178]. All interviews were held during participants' regular work hours and within their 

work environment, which included their office, laboratory, or (if they worked remotely at a 

location of their convenience) a meeting room. 

 

The interviews consisted of three parts: introduction (10 - 20 minutes), observation (one - two 

hours), and follow-up discussion (30 minutes - one hour). During the introduction, participants 

learned about the interview process and answered a brief set of questions regarding their 

experience with WES/WGS analyses and the characteristics of their routine analyses. After the 

introduction, participants were observed as they performed routine exome or genome analyses on 

their computers. Half of the participants (n = 3) demonstrated analyses of new cases. The other 

half did not have new analyses to demonstrate, and therefore walked through a previous analysis. 

The observation focused on capturing participants' use of computational analysis/information 

visualization tools and the context in which such tools were employed. During case 

demonstration, participants were occasionally interrupted to clarify what task was being 

performed. The observation ended when (a) the analysis reached a conclusion, (b) participants 

declared that they had demonstrated all the steps of their routine analyses, or (c) two hours have 

passed since the beginning of the observation. 
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A follow-up discussion was conducted upon completion of observation. First, participants were 

invited to review and correct the interviewer's observations on their analysis and visualization 

practices. Next, participants were invited to talk about other data types or visualization tools that 

were regularly used but were not included in their demonstration. To aid the discussion, 

participants were presented with a catalogue of common data types and visualization used in 

WES/WGS analyses (Appendix C.3) and asked to check off applicable items in the catalogue. 

Finally, the interviews concluded once participants reviewed all observations and catalogue 

items. 

 

Only follow-up discussions were recorded on video or audio as most participants worked in an 

open-office environment, which risked recording of non-participating individuals. The 

participants’ work space (if the absence of all non-participating individuals was possible) or a 

vacant meeting room was used as a recording environment for follow-up discussions. 

 

4.3.3 Online survey 

The online survey questionnaire consisted of nine items adapted from the interview template, and 

covered the same four topics as the interview (characteristics of routine WES/WGS analyses, 

context of using information visualization during routine analyses, perception of current 

visualization tools, and suggestions for new visualization). Three items in the questionnaire 

contained follow-up questions that dynamically appeared based on the answers to the preceding 

question. The online survey interface was developed and hosted using Qualtrics software 

provided by the University of British Columbia (Vancouver, Canada). The complete 

questionnaire is provided in Appendix C.4. 
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4.3.4 Data analysis 

Transcripts were generated from audio/video recordings of the contextual interviews. The 

interview notes and transcripts were analyzed by constructing work flow diagrams [178] which 

summarized common analysis tasks, their goals, and types of data and visualization required by 

each task. 

 

The online survey responses were analyzed to identify frequently used common analysis tasks, 

types of data and information visualization required by each task, data/visualization’s context of 

use, participants’ shared experience with current visualization tools, and participants’ 

suggestions for new visualization. 

 

The interview and survey data were compared with respect to the types of data and visualization 

that were commonly captured by both evaluations. This comparison was used to construct an 

overview of common analysis and visualization practices. 

 

4.4 Results 

4.4.1 Participant and analysis characteristics 

Figure 4.1A-4.1C summarize the characteristics of 23 participants (n = 6 for contextual 

interview; n = 17 for online survey) and their routine WES/WGS analyses. A majority of 

participants (14 out of 23) had experience with more than 50 exome or genome analysis cases 

(Figure 4.1A). 17 participants routinely analyzed WES data and 15 analyzed WGS data (Figure 

4.1B). WGS analyses performed by three contextual interview participants (excluding 
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participants who analyzed cancer cases) were restricted to variants affecting coding regions of 

the genome. It was not known if the same restriction was applied to WGS analyses performed by 

online survey participants. Most routine analyses (19 out of 23) were performed in a research 

setting (Figure 4.1C). 
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Figure 4.1 Participant and routine WES/WGS analysis characteristics. 
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1A-C shows characteristics of 23 participants (n = 6 for contextual interview in blue; n = 17 for online survey in orange). D shows characteristics of contextual 

interview participants only. (A) Number of cases involving WES/WGS data that participants have analyzed to date. (B) Types of sequencing data used in routine 

analyses. (C) Setting in which routine analyses were performed. (D) Role of interview participants. Three interview participants reported that their analyses were 

performed by two different experts, each having a separate role: one was focused on checking data quality and filtering variants. The other was focused on 

interpretation and manual annotation for clinical expert review. N/A = Not Applicable. 
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Figure 4.1D outlines additional characteristics of interview participants (n = 6). Three interview 

participants indicated that their routine analyses were divided into two parts, and each part was 

performed by different experts. These participants were assigned to perform only one of the roles 

as follows: one role focused on checking data quality and filtering variants, while the other 

focused on interpretation and manual annotation for clinical expert review. 

 

4.4.2 Common analysis and information visualization practices 

Common analysis and information visualization practices were identified and are illustrated in 

Figure 4.2. Table 4.1 outlines a list of commonly used analysis tools, with information 

visualization tools highlighted, that were captured in this study. Screenshots of information 

visualization tools are provided in Appendix C.5. A common goal of participants’ analyses was 

to identify and manually annotate a filtered list of potentially pathogenic variants for clinical 

expert interpretation. Participants' routine analyses were performed generally in two tiers, with 

the first-tier focusing on known pathogenic variants or variants in known disease genes, and the 

second-tier focusing on the remaining variants that were detected exome-wide or genome-wide. 

For rare disease cases, routine WES/WGS analyses were restricted to coding variants. Regardless 

of tiers, almost all interview participants (n = 5) visually inspected sequencing read alignment 

before beginning the clinical interpretation of any variants. Unanimously agreed, the analysts 

indicated that the read visualization step was intended to detect poor quality variants or data 

abnormalities that passed through quality control (QC) filters of automated data processing 

pipelines. While visual inspection was not the only QC mechanism, these participants preferred a 

visual confirmation in addition to checking automatically derived QC-related annotations. One 

interview participant indicated that not every variant was visually inspected. This participant 
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explained that visual inspection was performed only when poor quality was noted by custom QC 

annotations. 
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Figure 4.2 A composite workflow diagram of routine WES/WGS analyses. 
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This figure summarizes common analysis/information visualization practice identified in this study. In addition, this 

figure outlines commonly used analysis tools and their context of use as captured by contextual interviews and 

survey responses. First, participants processed raw sequencing reads through automatic data processing pipelines. 

Next, semi-automated pipelines produced a list of filtered variants and participants analyzed each variant. For rare 

disease investigations, WES/WGS analyses were restricted to variants predicted to affect coding regions only. The 

analyses were generally two-tiered. The first-tier focused on variants within known phenotype-associated/disease-

associated genes or within previously investigated genes. The second-tier focused on variants that were detected 

exome-wide or genome-wide. 
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Types of analysis tools Specific analysis tools captured in this 
study 

Types of visualization (provided by 
specific analysis tools) captured in 
this study 

Tools for assessing 
disease / phenotype / 
gene / protein level 
information 

Disease databases 
 
(e.g. known gene-
disease association, 
overlapping/similar 
phenotypes) 

Online Mendelian Inheritance in Man 
(OMIM) [64] 

- 

Database of Chromosomal Imbalance 
and Phenotype in Humans using 
Ensembl Resources (DECIPHER) [117] 

Genome browser 
Phenotype browser 

Phenotype 
resources 

Human Phenotype Ontology (HPO) 
[75] 

- 

Mouse Genome Informatics (MGI) 
database [179] 

- 

Zebrafish Information Network (ZFIN) 
[180] 

- 

Gene / protein 
resources 

UniProt [116] Feature viewer 
National Center for Biotechnology 
Information (NCBI) Gene [115] 

Graphical sequence viewer 

GeneCards [181] mRNA/protein expression plot 
Protein-protein interaction diagram 

Literature search PubMed [182] - 
Biological 
pathway/network 
analysis 
 
(e.g. interaction 
with known 
disease-associated 
gene) 

GeneMANIA [112] Pathway visualization 
Protein-protein interaction 
visualization 
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Tools for assessing 
variant impact 

Disease-focused 
variation databases 

ClinVar [65] - 

Population 
variation databases 

Single Nucleotide Polymorphism 
database (dbSNP) [114] 

Graphical sequence viewer 

1000 Genomes [51] - 
Genome Aggregation Database 
(gnomAD) [59] 
Exome Aggregation Consortium 
(ExAC) [59] 

Illustrated gene summary 
Read data browser 

Database of Genomic Variants (DGV) 
[183] 

- 

in-silico functional 
prediction tools 

SIFT [68] - 
PolyPhen2 [60] - 
Combined Annotation Dependent 
Depletion (CADD) [61] 

- 

Loss-of-function 
tolerance 
prediction 

pLI/pRec/pNull [59] - 

Splice-site 
prediction 

Human Splicing Finder [63] - 

Nucleotide 
conservation 

PhyloP [62] - 

Commercial 
variant analysis 
tools 

Alamut [118] Arbitrary/custom annotation 
visualization 

Tools dedicated for 
information 
visualization 

Genomic data 
visualization 

Integrative Genomics Viewer (IGV) 
[108] 

Read alignment visualization 

Genome browser University of California Santa Cruz 
(UCSC) Genome Browser [109] 

Arbitrary/custom annotation 
visualization 
(e.g. conserved elements, disease-
associated regions, transcripts, 
ClinVar variants) 
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Protein structure 
visualization 

Chimera [110] 3D structure visualization  

Phenotype-driven 
visual prioritization 
tools 

OMIM Explorer [70] - 

Phenotype 
comparison 
visualization 

PhenoBlocks [113] - 

Custom R 
visualization 

R packages or scripts were not specified 
by participants 

Visualization of arbitrary data (e.g. 
relatedness, ancestry, data quality 
metrics) 

Table 4.1 A list of analysis/information visualization tools commonly used by participants. 
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After visual inspection of read alignment, visualization practices changed across the tiers of 

analyses. The first-tier analyses (Figure 4.2) were phenotype-driven and focused on (a) a panel of 

genes known to be associated with phenotypes of interest, (b) genes known to be associated with 

genetic diseases, or (c) an internal knowledgebase of previously reported/investigated genes. A 

common analysis task within this tier was the examination of minor allele frequencies (MAF) 

and the number of homozygotes/hemizygotes appearing in population variation databases (Table 

4.1). For this task, participants typically checked automatic annotations in customized variant 

lists. However, when a variant was on the edge of consideration (e.g. MAF was not very low but 

phenotype matched/one or two homozygotes/hemizygotes detected), participants consulted 

information visualization that was provided on the websites of population variation databases 

(Table 4.1). For example, a read browser on the gnomAD [59] or ExAC [59] website was used to 

check the exome/genome sequencing reads from homozygote/hemizygote individuals and 

confirm the quality of homozygous/hemizygous variant calls (Figure 4.2). Furthermore, an 

illustrated gene summary in gnomAD [59] or ExAC [59] was used to assess a region containing 

a variant of interest with respect to other nearby variants and determine if the variant of interest 

was located within a mutational hotspot or constrained region (Figure 4.2). 

 

In addition to the above, first-tier analyses involved protein domain visualization, biological 

pathway visualization (cancer-related analyses only), and visualized distribution of variants 

curated in disease-focused variation databases (Table 4.1). 

 

The second-tier analyses (Figure 4.2) were variant-driven. Participants first focused on gathering 

evidence to decide whether to invest time and interpretation on a variant. Such evidence included 
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extremely low MAF/absence in population databases, agreement of pathogenic prediction by 

multiple in-silico functional prediction tools, and abnormal expression level detected in 

transcriptomic data. When a variant was selected for deeper investigation, participants used 

diverse resources and visualization as outlined in Figure 4.2 to gather further evidence for 

biological relevance to patient cases. 

 

Overall, participants showed two commonalities in their analysis/visualization practices. First, 

they consulted genome browsers when assessing multiple layers of evidence. For example, 

participants used the genome browser within DECIPHER [117] when evaluating the same 

variant in a regional context, such as its overlap with known pathogenic/benign variants curated 

in ClinVar [65], distribution/location of variants curated in gnomAD [59], and known pathogenic 

structural variants affecting a single gene. 

 

Second, participants prioritized interpretation of information that had the highest perceived 

diagnostic value. For example, three participants preferred to begin their first-tier analyses by 

assessing phenotypic relevance. This task involved examining clinical synopses in OMIM [64], 

phenotype-disease associations in the HPO browser [75], or literature. To maximize efficiency, 

they employed specific decision-making rules, such as looking for at least one matching 

phenotype in disease descriptions or particular keywords in abstracts before deciding to pursue a 

variant. Of these participants, two noted that if multiple phenotypic features matched patients, 

they examined patient photographs published in literature. This was to compare clinician-

provided patient description with disease-defining phenotypes described in literature, and one 
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comment illustrated this process as follows: "if it (patient phenotype) was very obvious, they 

(clinicians) must have noted it." 

 

4.4.3 Experience with other information visualization 

Online survey participants (n = 17) were asked to indicate (a) if they had actively searched for 

visualization tools, (b) what tools they had tried but did not use in their routine analyses, and (c) 

why they did not use those tools. 12 participants reported their experience (Figure 4.3A) with 11 

types of visualization as outlined in Figure 4.3B. A common reason for not using the above 

visualization tools was lower diagnostic value gained compared to the effort spent, preference for 

alternative tools, or no available funding for subscription to commercial tools (Figure 4.3C). 

Three participants reported that they had never tested or searched for other visualization tools 

because they had never felt the need to do so (Figure 4.3A). 
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Figure 4.3 Participants' experience with currently available information visualization. 
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Only the responses from online survey participants (n = 17) were considered for A-C as contextual interview participants were not explicitly asked regarding 

their experience with currently available information visualization. (A) Number of survey participants who had/had not actively tried or looked for visualization 

tools other than those used during routine analyses. (B) Types of visualization that survey participants had tried in the past but not used during routine analyses. 

(C) Common reasons for not using the selected visualization during routine analyses. N/A = Not Applicable. 
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Interview participants (n = 6) were not explicitly asked the same questions (a-c) as the survey 

participants, but three participants shared their experience with protein structure visualizations 

and visualization features within commercial variant analysis tools. These participants indicated 

that they had tried these tools but no longer used them, expressing the same rationale as the 

survey participants. 

 

4.4.4 Suggestions for new information visualization 

Online survey participants (n = 17) were asked to indicate which commonly used types of data 

would be helpful or not helpful to visualize for their analyses. A strong consensus was expressed 

that visualization methods for sequencing quality (n = 12), variant quality (n = 13), and coverage 

analysis (n = 13) would be helpful (Figure 4.4A) for (a) reducing the effort spent on examining 

technical details, as well as for (b) interpreting the regional context, such as coverage at the gene 

level and regional coverage with respect to overall genome-wide coverage (Table C1, Appendix 

C). Slightly less than the majority of survey participants indicated that it would not be helpful to 

visualize functional annotation (n = 8), variant frequency in population databases (n = 7), and in-

silico functional prediction (n = 7) (Figure 4.4A). A common reason expressed for finding 

visualization unhelpful for the above data types was that textual/numeric information was 

sufficient for interpretation (Table C1, Appendix C). 
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Figure 4.4 Design suggestions for emerging information visualization. 



101  

(A) Opinion of online survey participants (n = 17) regarding whether the given data types would be helpful or not 

helpful to visualize. (B) An illustration of design recommendations for visually supporting WES/WGS analyses 

based on participant suggestions and observations. Participants desired information visualization which integrated 

the properties of a customizable genome browser, a read alignment viewer, a spreadsheet of filtered variants, an 

interactive dashboard with customizable variant filters (which generate color-based reports of variant properties), 

and a pop-up report about the variant/gene in focus. The pop-up report would include information such as phenotype 

associations and variant frequency across populations. Suggestions were made regarding visualization of sequencing 

data quality, visualization of read coverage in the proximal area, indicators of proximity of other variants/genomic 

elements, and functionality that allows attachment of notes on variant in view. 

 

Interview participants (n = 6) were not explicitly asked to provide suggestions for new 

information visualization. However, during the observation of common analysis/visualization 

practices, design recommendations were expressed for visually supporting WES/WGS analyses 

(Table C2, Appendix C). These recommendations were combined with the feedback from online 

survey participants to construct a representative model (Figure 4.4B) which outlines key 

visualization desiderata as follows. 

 

The participants focused primarily on visualization aspects related to candidate variant 

identification (with less priority given to the interpretive methods for prioritization of novel 

variants). As illustrated in Figure 4.4B, participants sought an integrated view combining the 

properties of a customizable genome browser (such as UCSC Genome Browser [109]), a local 

read alignment viewer (such as provided by IGV [108]), a spreadsheet of filtered variants, and an 

interactive dashboard with customizable variant filters that generate color-based reports of 

variant properties. There was a desire for visualization of data/variant quality and read coverage 

in the proximal area, as well as indicators of the proximity of other variants or genomic elements 
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of interest. The idealized view (Figure 4.4B) includes a pop-up report about the variant or gene 

under selection, which would provide information such as associated phenotypes and variant 

frequency across populations. As all interview participants maintained notes on the variants, a 

note taking function is also incorporated into the idealized view. 

 

4.5 Discussion 

In this report, we identified information visualization practices during routine clinical exome and 

genome investigations, by conducting contextual interviews and an online survey with 

bioinformatics and healthcare experts. A comprehensive overview of information visualization 

practices showed that routine analyses were generally two-tiered: first-tier analyses focused on 

the assessment of phenotypic similarity and variant frequency/impact in the context of a protein 

or a population; and second-tier analyses focused on the assessment of diverse evidence (e.g. 

variant, gene, model organism phenotypes) for biological relevance. Overall, the overview also 

revealed participants' tendencies to: (a) visually confirm sequencing read alignment, (b) use a 

genome browser when assessing multiple levels of evidence, and (c) prioritize assessment of 

information with a high perceived diagnostic value. Next, we evaluated participants' experience 

with currently available visualization tools and discovered that use of visualization depended on 

the tradeoff between time/cost and perceived value of evidence that could be added to the 

analyses. Finally, we extracted participants' suggestions and generated our own idealized 

representation of their suggestions to inform the creation of new information visualization in this 

domain. 
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Currently, variant interpretation is an expert-driven process assisted by computational tools and 

resources [1, 12, 19, 66], creating a bottleneck within clinical WES/WGS analyses [13], which 

will likely persist as the process is complex and has a direct impact on patients [12]. Considering 

this, an acceleration of the interpretation process is beneficial and can be achieved by methods 

that facilitate experts' understanding of complex data, such as information visualization. Our 

evaluation demonstrates that information visualization is currently a vital part of WES/WGS 

analyses, supporting core data interpretation tasks. For example, visual inspections of read 

alignment data assist in the elimination of poor quality variants as well as identification of 

structural variants. In addition, genome browsers enable visual integration of heterogeneous 

evidence (e.g. protein domain location, distribution of known pathogenic variants) allowing for 

efficient interpretation of variant impact. 

 

Furthermore, our findings also suggest that there are diverse aspects within WES/WGS analyses 

that can be supported visually. Participant suggestions revealed potential areas of improvement 

such as visualization of sequencing quality, variant quality, and coverage analysis (Figure 4.4A). 

The recommendations (Figure 4.4B) highlighted potential visual features that can augment 

common analysis practices. For instance, initial expert assessment regarding whether or not to 

pursue further variant interpretation can be expedited by color-coding variant annotations based 

on custom decision rules (Figure 4.4B). Based on user workflows, we suggest simultaneous 

display of information in tabular format and in a genome browser format to ease the transition 

between variant-level and gene-level interpretation (Figure 4.4B). 
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While this study attempted to capture current visualization practices within rare disease 

WES/WGS analyses, we acknowledge that this is a quickly evolving domain. New analysis tools 

emerge constantly, and the transition from WES to WGS has created demand for new types of 

visualization methods for analysis of non-coding genomic regions [184] as well as for variants 

beyond the levels of single nucleotide, indels, or splice sites [185]. We believe that a continuous 

rare disease community-wide effort to evaluate visualization practices is necessary to ensure 

dissemination of the latest practices and fulfillment of user requirements by new visualization. In 

addition to the difficulties in capturing current expert practices, this study was also limited in 

scope due to its small sample size. In order to address the recruitment/logistic limitations of 

conducting in-person interviews and to improve the rigour of qualitative research by capturing 

more comprehensive expert opinions [186], two data collection methods (contextual interview 

and online survey) were performed within this study. However, the online survey participation 

was limited, and thus, more research with a larger sample is needed to generalize the study 

findings to common WES/WGS analyses that are performed in clinical genetics. Therefore, the 

online user-survey will remain open for 1 year following publication 

(https://ubc.ca1.qualtrics.com/jfe/form/SV_b9kI2jmaAowP2C1), with summary data presented 

in a report that is available at 

https://ubc.ca1.qualtrics.com/reports/public/dWJjLTViMzY5ZTllNjhiNzZkMDAwZDAxMjkxN

y1VUl9lZmRKYkhPVnJqUWd3UEg=. 

 

In summary, information visualization facilitates understanding of complex data during rare 

disease exome and genome analyses. The findings presented herein provide an overview of 

current information visualization practices and recommendations for emerging visualization 
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tools. More data and annotations are expected to be incorporated into applied WES/WGS 

analyses, creating an increasing need for information visualization. Efforts to address this need 

can benefit from not only the type of evaluation demonstrated in this study, but also other types 

of evaluations in diverse scopes and scales, such as assessment of visualization design and 

assessment of tasks that visualizations aim to support [124, 125]. We hope our study catalyzes 

further interest in the evaluation of information visualization that assists WES/WGS 

investigations, guiding the development of new visual analysis tools that can accelerate expert 

interpretation. 
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Chapter 5: Conclusion 

 

"The $1,000 genome, the $100,000 analysis" [187] has been a popular musing about the current 

state of clinical genome sequence data analyses. The cost of genome sequencing has reduced 

significantly during recent years [188, 189], but the cost of analysis has not [190, 191]. 

According to a recent study [13], the analysis cost is predicted to remain over $5,000 during the 

next ten years. This suggests that clinical exome/genome analyses will remain an expert-driven 

process coupled with computer assistance for the near future. Recognizing the current status, this 

thesis explored augmentation of an expert's ability through HCI as a method for expedited exome 

and genome analyses. 

 

The exploration began with close observations of two main stakeholders in clinical genomics, 

bioinformatics experts and clinical geneticists, within my collaboration with the TIDEX project. 

During this collaboration, I performed applied WES/WGS analyses for patients with biochemical 

diseases [1, 4, 5], acquiring practical knowledge of this domain. This experience led me to 

discover the potential to accelerate analyses by complementing experts' abilities within a 

computer-assisted diagnostic process. This idea became more apparent during the collaboration 

described in Chapter 2, where I developed an online resource that provides an expert 

knowledgebase and a diagnosis supporting system for IEMs. Implementation and validation of 

this resource demonstrated how an assistive system could complement an expert's workflow and 

what experts required of such a system. Motivated by these observations, I decided to explore 

two HCI elements which could potentially expedite variant interpretation: cognitive process and 

information visualization. 
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Chapter 3 presented the design and evaluation of a gene prioritization workflow that aimed to 

augment clinicians' prototypical thinking process, where they use classic representation of 

genetic diseases to assess patients and to interpret WES/WGS results. The evaluation 

demonstrated that clinicians could identify genetic diagnoses faster using the novel workflow 

compared to a common computer-assisted variant prioritization workflow, suggesting utility in 

aligning the prioritization workflow with experts' cognitive process. 

 

In Chapter 4, current information visualization practices during WES/WGS analyses for rare 

genetic disease diagnoses were assessed through contextual interviews and an online survey. 

Based on this assessment, a comprehensive overview of common WES/WGS analysis and 

visualization practices was constructed, summarizing frequently used data types, visualization 

tools, common context in which experts employed visualizations, and user suggestions for new 

visualization. These findings were then translated into design recommendations to inform 

subsequent development of visualization in this domain. 

 

Taking these chapters together, this thesis narrates a journey of designing and evaluating novel 

HCI-based approaches for accelerating WES/WGS analyses. Its findings highlight the utility of 

empowering healthcare experts through efficient HCI to rapidly diagnose patients using genome 

sequence data. In the following sections, I will discuss emerging areas within clinical genomics 

and healthcare in which this thesis work will continue. Figure 5.1 also visually summarizes the 

future directions of this thesis. 
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Figure 5.1 A visual summary of future directions. 

The figure illustrates how main stakeholders of healthcare will be affected by emerging health innovations, and how 

this thesis work will continue within these innovations. In the short term, this thesis will likely support (a) 

exploration of personal genomic data by non-experts as current developments in digital health lead to ownership of 

electronic health records and personal genome data by patients; as well as (b) collaboration of diverse healthcare 

experts in an integrative analysis of multiple -omics data. In ten years, the aforementioned developments will 

transform into a paradigm shift towards incorporation of robotics, artificial intelligence, and P4 (predictive, 

preventive, personalized, participatory) medicine. 
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5.1 Future directions 

 

5.1.1 HCI for non-expert stakeholders in clinical genomics 

This thesis explored interactions between (a) clinical experts and computers (Chapter 3) and (b) 

bioinformatics/healthcare experts (e.g. cytogeneticists) (Chapter 4) within the domain of clinical 

genomics. These interactions represent traditional clinical settings where genomic investigations 

are initiated by experts. Another driving force in genomics is non-experts who access genome 

sequencing technology via direct-to-consumer personal genomics services (e.g. 23andMe [192], 

AncestryDNA [193], MyHeritageDNA [194], Helix [195], Color Genomics [196]). With 

increasing popularity of these services, HCI research has recently been established in this 

domain, focusing on effective facilitation of non-expert exploration of personal genomic data 

through online interactive reports [197, 198]. Currently, the scope of these reports is diverse, 

spanning from genealogy to general health information [199, 200]. This may change in the near 

future as non-experts desire more health-focused exploration of their genomic data, motivated by 

advances in digital medicine that (a) enable access to electronic health records (EHR) for patients 

and (b) harness patient-provided health data [201, 202]. For example, Apple has recently 

announced a feature that allows browsing of an EHR within their Health application for their 

mobile devices [203]. This application collects and exploits user-generated health data from 

digital health devices such as activity trackers which can connect to mobile devices [204]. 

Another example towards this direction is a recent initiative to incorporate layperson medical 

vocabulary into HPO, which will facilitate understanding of genomic investigations and 

encourage active participation in research by rare disease patient communities [205]. 
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Expected outcomes of the above advances are an active ownership of complete EHR by patients 

and an ability to share this data with digital health technologies both from the patient and from 

their healthcare providers [201, 206]. As clinical genomics become the standard of care, personal 

genomic data will eventually be incorporated into EHR [207, 208]. Following this shift, health 

technologies that assist with non-expert exploration of their genomic data will be increasingly 

sought after. This thesis work can inform the design of such technologies and continue within the 

non-expert domain by trickling down the knowledge of expert-level genomic analysis to the non-

expert audience.  

 

5.1.2 HCI in systems medicine 

Another imminent shift in clinical genetics is systems medicine, which focuses on holistic 

investigations involving integration of multi-omics data, such as transcriptomics, metabolomics, 

lipidomics, and glycomics [158]. The ability to examine multiple levels of biology promises not 

only improved interpretation of genomic data, but also comprehensive understanding of disease 

mechanisms, more efficient diagnoses, as well as identification of treatment strategies [209]. A 

body of literature focusing on approaches to integrate different -omics technologies has been 

growing in recent years [210-214]. As -omics analyses consider more data, each integrative 

analysis will require collaboration between multi-disciplinary experts and clinicians to interpret 

heterogeneous biological information [215]. In this setting, computational assistance will be vital 

not only for the analysis of big data, but also for translating outcomes of the analysis in a manner 

understood by all collaborating experts [216], and most importantly, clinicians who oversee 

patient care [217]. Development of such supportive tools may benefit from adoption of HCI-

focused methodologies, whose potential to accelerate tasks that require expert engagement has 
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been demonstrated by this thesis. The methods presented herein can provide a starting point for 

collaborative tools that require channeling of guidance from multiple experts into -omics 

analyses or visually communicate analysis results to diverse experts. 

 

5.1.3 Healthcare in the next ten years 

With the aforementioned developments in digital health and integrative -omics, what will future 

healthcare look like? 

 

Recent media coverages have focused on a possible (or partial) replacement of doctors by 

machines, powered by artificial intelligence (AI) and robotics [218-220]. Adoption of these 

technologies is a possibility, as they have the potential to alleviate existing problems (e.g. low 

doctor-to-patient ratio in developing countries) [221] and impending problems (e.g. increasing 

demand for healthcare by rapidly aging population) [222, 223]. However, incorporation of AI 

and robotics into healthcare requires a thorough discussion of ethics and regulating policies [224] 

due to its impact on trust among all stakeholders [225]. As such, while a radical conversion to 

these automating technologies may be less likely [226], the next ten years will involve (a) an 

active public discourse on ethical utilization of these technologies [227], and (b) their steady 

implementation in a manner that garners the trust of patients and healthcare experts [228]. 

 

Another major change in healthcare will likely arise from P4 medicine: a paradigm for predicting 

the emergence of a disease and preventing it via personalized care and active participation of 

patients [229]. This paradigm can enable proactive management and timely treatment of genetic 

conditions such as IEMs [217], as well as common or chronic conditions (e.g. cardiovascular 
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diseases [230]). Furthermore, it can empower those predisposed to diseases, such as cancer or 

diabetes, with individualized advice on their lifestyle choices [231, 232]. In recent years, the 

concept of P4 medicine has been increasingly advocated within healthcare as advances in digital 

health and -omics technologies have enabled rapid generation of health data for the masses 

[232]. This trend will likely lead to gradual materialization of P4 medicine during the next ten 

years and beyond, with its success hinging on (a) continuous efforts to raise awareness among all 

healthcare stakeholders regarding principles and impact of P4 medicine, (b) establishment of 

ethical standards, regulating policies, and technical infrastructures for managing and utilizing 

personal health data, and (c) societal agreement on access to and payment of healthcare services 

based on P4 medicine [233, 234]. 

 

5.2 Final remarks 

Life has become digital. As of 2017, 54% of the world population has access to the internet 

[235]. Recent advances in smart mobile devices, internet of things, and AI have transformed the 

computer into an essential medium for daily activities. Healthcare is now embracing these digital 

innovations [236]. Simultaneously, clinical genomics is being incorporated into diagnostic 

approaches and treatment selection across medical disciplines [234]. Together, digital 

technologies and genomics are driving a rapid shift towards personalized medicine. Innovators of 

these technologies, however, should remember that healthcare is one area where one cannot 

simply "move fast and break things" according to the mantra of the start-up age. Inventions in 

this area not only impact matters of life and death, but also affect the interpersonal trust that has 

been established throughout the history of modern medicine [237]. 
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This thesis describes the development of HCI-based methodologies that empower healthcare 

experts to rapidly diagnose patients using genomic data, demonstrating a case study of 

technology that accelerates healthcare practice with minimal disruption to the trust that binds 

patients and healthcare experts. As emerging innovators attempt to actualize their visions for 

healthcare, this work will provide food-for-thought or a starting point for their trailblazing 

technology. 
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Appendices 

 

Appendix A   

 

A.1 Walkthrough of IEMbase 

When users open the application interface, the starting page presents a disclaimer. Upon agreeing 

to the disclaimer, users are directed to the main page, which presents a search form and the 

following three buttons: Browse, Search, and Mini-Expert (Figure A1). In the search form - 

which is also accessible by the Search button - users can type in disorder, gene, biomarker, or 

symptom names to look up information on a particular disorder. 

 

 

Figure A1 Screenshot of main page. 
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The Browse button directs to a page with a full catalog of IEMs that are currently curated on 

IEMbase (Figure A2). The catalog is represented as a tree, where each branch represents a 

disease classification used by the IEM community. Users can hide or expand the branches of the 

tree as they browse, and they can look up detailed information on each disorder by clicking on 

the disorder name (Figure A3). In addition, users can search for a particular disorder by its name 

using the search form located above the catalog. 

 

 

Figure A2 Screenshot of Browse page. 
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Figure A3 Screenshot of Disorder Information page. 

 

Upon selecting the Mini-Expert option, users are directed to a page with the Input Profile form 

(Figure A4). In this form, users are asked to enter a list of biochemical and clinical phenotypes 

using a search bar. For biochemical entries, the system asks to specify relative levels as low, 

normal, or high. As the phenotypes are added, they will appear in the list below the search bar.  
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Figure A4 Screenshot of Mini-Expert Query page. 

 

Upon submitting the phenotype list, the system returns a list of matching IEMs in the Results 

section, which is located below the Mini-Expert Query section (Figure A5). In the Results 

section, users can look up the details of each disorder in the list, build a differential diagnosis 

chart, or build a gene panel.  
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Figure A5 Screenshot of Mini-Expert Results page. 

 

The DDx button in the Results section leads to a page where users can select multiple candidate 

disorders (Figure A6) and generate a differential diagnosis chart based on their selection (Figure 

A7). Similarly, the Gene Panel button and Biochemical Test button in the Results section direct 
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to respective pages where users can select multiple disorders and generate a gene panel or a 

biochemical test panel based on their selection (Figure A8, A9). 

 

 

Figure A6 Screenshot of Mini-Expert DDx (Differential Diagnosis) selection page. 
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Figure A7 Screenshot of Mini-Expert DDx (Differential Diagnosis) result page. 
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Figure A8 Screenshot of Mini-Expert Biochemical Tests page. 
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Figure A9 Screenshot of Mini-Expert Gene Panel page. 
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Figure A10 Knowledgebase schema. 

The knowledgebase consisted of three tables which were extracted from the nascent disease database. Each table 

represented different data types: disorders, biochemical/clinical phenotypes, and associations between disorders and 

phenotypes. 
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Figure A11 Mini-expert system performance evaluation results. 

The performance of IEMbase’s mini-expert algorithm (Combined + Weighted) was compared to three other 

algorithms: combined cosine similarity and semantic similarity without weights (Combined + Unweighted), cosine 

similarity only with weights (Cosine + Weighted), and cosine similarity only without weights (Cosine + 

Unweighted). There was no significant performance difference between the mini-expert system and other algorithms 

(p = 0.66 in Mini-expert vs Combined + Unweighted, p = 1.0 in Mini-expert vs Cosine + Weighted, p = 0.30 in 
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Mini-expert vs Cosine + Unweighted; Mann-Whitney-U). Black dotted boxes show a section of the plot between the 

top one candidate disorder and the top 80 candidate disorders. 
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Figure A12 Scatterplot of rank of correct diagnosis against number of phenotypes specified. 

Rank of correct diagnosis did not correlate with number of phenotypes specified for each case (p = 0.69; Spearman’s 

rank correlation test). 

  



140  

 

Biochemical markers 

1.  Ammonia (blood) 

2. Normal Glutamine (plasma) 

3.  Ornithine (plasma) 

4.  Orotic acid (urine) 

5. ¯ Citrulline (plasma) 

Clinical symptoms 

1. Vomiting 

2. Lethargy crisis 

3. Liver failure, acute recurrent 
 

Table A1 Case study query. 
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Diagnosis 
Number of 
cases with 
diagnosis 

Rank of 
actual 
diagnosis* 

Glutaric aciduria type I 6 1, 2, 3 
HHH syndrome 4 1 
Tyrosinaemia type I 4 1, 2, 29 
Succinic semialdehyde dehydrogenase deficiency 4 1 
Fructose-1,6-bisphosphatase deficiency 4 1, 5, 15 
Molybdenum cofactor deficiency A 4 1, 2, 3 
Guanidinoacetate methyltransferase deficiency 3 1 
Smith-Lemli-Opitz syndrome 3 1 
S-adenosylhomocysteine hydrolase deficiency 3 1 
Cystathionine beta-synthase deficiency 3 1, 7, 9 
Suphite oxidase deficiency 3 1, 6 
Nonketotic hyperglycinaemia 3 1 
6-Pyruvoyl-tetrahydropterin synthase deficiency 3 1 
Prolidase deficiency 3 1, 5, 7 
Ornithine aminotransferase deficiency 3 1 
Propionic acidemia 3 1, 3, 5 
Methylenetetrahydrofolate reductase deficiency 3 1 
Carnitine palmitoyltransferase 1 deficiency 3 1, 2, ** 
Glycerol kinase deficiency, isolated 3 2, 3 
Aromatic L-amino acid decarboxylase deficiency 2 1 
Ornithine transcarbamylase deficiency 2 1 
Citrullinemia type I 2 1 
Argininemia 2 1 
Canavan disease 2 1 
Fumarase deficiency 2 1 
Citrullinemia type II 2 1, 289 
Tyrosinaemia type II 2 1 
Alkaptonuria 2 1 
Hurler, Scheie disease 2 1 
Refsum disease (classic, adult) 2 1, 47 
Hyperprolinaemia type II 2 1 
Galactosaemia 2 1, 41 
Glycogen storage disease type III 2 1, 52 
Lysinuric protein intolerance 2 1, 3 
Maple syrup urine disease 2 1 
Congenital hypophosphatasia 2 1 
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Methylmalonic acidemia 2 1 
Alpha-amino adipic semialdehyde (AASA) dehydrogenase deficiency 2 1 
Sepiapterin reductase deficiency 2 1 
Biotinidase deficiency 2 1, 43 
Arginine:glycine amidinotransferase deficiency 2 2 
Metachromatic leukodystrophy-like disorder due to saposin B 
deficiency 2 2, 3 
Galactokinase deficiency 2 2, 4 
Multiple acyl-CoA dehydrogenase deficiency 2 3, 17 
Adenosylcobalamin and methylcobalamin synthesis defect - cblC 2 5, 11 
Niemann-Pick disease type C1 2 6, 16 
Maternally Inherited Mitochondrial Dystonia 1 ** 
2-Methylbutyrylglycinuria 1 ** 
Adenylosuccinate lyase deficiency 1 1 
Hypoxanthine guanine phosphoribosyltransferase deficiency 1 1 
Argininosuccinic aciduria 1 1 
3-Hydroxy-3-methylglutaryl-CoA synthase deficiency 1 1 
Isolated deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase 1 1 
Sterol 27-hydroxylase deficiency 1 1 
Transaldolase deficiency 1 1 
Ribose-5-phosphate isomerase deficiency 1 1 
Acrodermatitis enteropathica 1 1 
Trimethylaminuria 1 1 
Gamma-glutamylcysteine synthetase deficiency 1 1 
Hawkinsinuria 1 1 
Pyruvate dehydrogenase complex deficiency E3 1 1 
Hunter disease 1 1 
Morquio A disease 1 1 
Fucosidosis 1 1 
Salla disease 1 1 
Dihydropyrimidinase deficiency 1 1 
3-Hydroxy-3-methylglutaryl-CoA lyase deficiency 1 1 
Tay-Sachs disease 1 1 
Farber disease 1 1 
GTP cyclohydrolase I deficiency 1 1 
Lysosomal acid lipase deficiency 1 1 
Phosphoglycerate dehydrogenase deficiency 1 1 
Hydroxyprolinemia 1 1 
Glutamate formimino transferase deficiency 1 1 
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Hereditary fructose intolerance 1 1 
Cystinuria 1 1 
Glucose transporter-1 deficiency 1 1 
Glycogen storage disease type I a 1 1 
Glycogen storage disease type I non-a 1 1 
Hartnup disorder 1 1 
Isovaleric acidemia 1 1 
Folate receptor alpha deficiency 1 1 
Carnitine transporter deficiency 1 1 
Thiamine-responsive megaloblastic anemia syndrome (SLC19A2) 1 1 
Primary hyperoxaluria type I 1 1 
Tyrosine hydroxylase deficiency 1 1 
L-2-hydroxyglutaric aciduria 1 2 
D-2-hydroxyglutaric aciduria type I 1 2 
Pyruvate dehydrogenase complex deficiency E3 X 1 2 
Mitochondrial trifunctional protein deficiency 1 2 
Phosphoribosyl pyrophosphate synthetase 1 superactivity 1 2 
Xanthine dehydrogenase deficiency 1 2 
Hyperprolinemia type I 1 2 
3-Hydroxy-3-methyl glutaric aciduria 1 2 
2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency 1 2 
Zellweger spectrum disorders 1 3 
Multiple sulfatase deficiency 1 3 
Adenosine kinase deficiency 1 3 
Hyperinsulinism of infancy 1 3 
Pyruvate dehydrogenase complex deficiency E1a 1 4 
Medium - chain acyl CoA dehydrogenase deficiency 1 4 
Methylacetoacetyl-CoA thiolase deficiency 1 4 
Transcobalamin deficiency 1 4 
GM1-gangliosidosis 1 5 
Krabbe disease 1 5 
Adenosylcobalamin and methylcobalamin synthesis defect - cblD-
MMA/HC 1 5 
ATP synthase deficiency 1 5 
Methylglutaconic aciduria type IV 1 5 
3-Methylcrotonylglycinuria 1 6 
MEGDEL Syndrome 1 7 
Carnitine palmitoyltransferase 2 deficiency 1 8 
Dopa-responsive dystonia 1 16 
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Methylcobalamin synthesis defect - cblD-HC 1 26 
X-linked adrenoleukodystrophy and adrenomyeloneuropathy 1 33 
Tangier disease (ABCA1) 1 37 
Mitochondrial Depletion Syndrome 4A 1 67 
Carbamoyl phosphate synthetase I deficiency 1 156 

 

Table A2 Overview of disorders (n=117) investigated within the validation of 190 cases. 

Cases have been selected to validate the mini-expert system using a diverse range of disorders. The selected cases 

cover approximately 22% of the 530 disorders in IEMbase. In the “Rank of actual diagnosis” column, multiple ranks 

are recorded as some cases ranked differently than one another. 

* Disorders ranked over 20 are described in detail in Table A3. 

** Disorder was ranked out. 
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Rank Diagnosis Comment User specified biomarkers User specified clinical 
symptoms 

Ranked 
out 

2-
Methylbutyrylglycinur
ia 

"C5 2-Methylbutyrylcarnitin" 
should be high, not "C4 
Butyrylcarnitine", in 2-
Methylbutyrylglycinuria. 

↑ C4 Butyrylcarnitine (blood)  No entry 

Ranked 
out 

Carnitine 
palmitoyltransferase 1 
deficiency 

"C18:2-Acylcarnitine (dried blood 
spot)" should be low in carnitine 
palmitoyltransferase 1 deficiency. 

↑ C18:2-acylcarnitine (dried 
blood spot) 
↑ Carnitine, free (dried blood 
spot) 

No entry 

Ranked 
out 

Maternally Inherited 
Mitochondrial 
Dystonia 

There are no biomarkers specified 
in the database or in the literature 
for this disease. 

↑ C16 Hexadecanoylcarnitine 
↑ Carnitine, free (dried blood 
spot) 
↑ C2 Acetylcarnitine 

No entry 

26 
Methylcobalamin 
synthesis defect - 
cblD-HC 

"Methylmalonic acid (plasma)" 
should be normal in cblD-HC. 
Megaloblastic anemia is one of 
the characteristic features. 
Different cobalamin defects 
within top 5. 

↑ Homocysteine, total 
(plasma) 
↑ Methylmalonic acid (urine) 

Nystagmus 
Intellectual disability 
Diminished visual activity 
Heart Failure 

29 Tyrosinaemia type I The validator did not provide any 
essential biomarkers for this case. No entry 

Hepatosplenomegaly 
Growth retardation 
Renal Fanconi Syndrome 
Osteopenia 

33 

X-linked 
adrenoleukodystrophy 
and  
adrenomyeloneuropat
hy 

Duplicate entries in the system 
caused incorrect matching of 
"Very long-chain fatty acids (0)", 
which was entered by the user. In 
the latest database, duplicate 
entries are merged to "Very-long-
chain fatty acids (plasma)"  

↑ Very long-chain fatty acids 
(O) 
normal Phytanic acid 
(plasma) 
normal Pristanic acid 
(plasma) 
↑ C26:0 fatty acid (plasma) 

Developmental regression 
Adrenal insufficiency 
White matter abnormalities 
(MRI) 
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37 Tangier disease 
(ABCA1) 

"LDL cholesterol" was missing 
from the description of Tangier 
disease in the database. The latest 
database includes the biomarker 
and the system ranks Tangier 
disease at rank #5 after the 
correction. 

↓ LDL cholesterol (plasma) Splenomegaly 

41 Galactosaemia 
The validator may have entered in 
"↑ Prothrombin time" to indicate 
"↓ Coagulation factors (plasma)". 

↓ Hemoglobin (blood) 
↑ Transaminase (plasma) 
↑ Bilirubin, total/direct 
(plasma) 
↑ Prothrombin time 
 
 
 

Fontanel enlarged 
Brain edema (MRI) 
Cataract 
Ascites 
Anemia, hemolytic 
Hepatomegaly 
Liver failure 
Hyperbilirubinemia,  
prolonged conjugated 

43 Biotinidase deficiency 

"↑ 3-Hydroxyisovaleric acid 
(urine)" was missing from the 
description of biotinidase 
deficiency in the database. The 
latest database includes the 
biomarker in the description, and 
biotinidase deficiency ranks at #1 
for this case after the correction. 

↑ Lactate (plasma) 
↑ 3-Hydroxyisovaleric acid 
(urine) 

Loss of hair 
Epilepsy 
Developmental delay 
Blindness 

47 Refsum disease 
(classic, adult) 

"↑ Pipecolic acid (serum)" was 
missing from the description of 
Refsum disease in the database. 
The latest version includes the 
biomarker, and Refsum disease 
ranks at #5 for this case after the 
correction. 

↑ Pipecolic acid (serum) 

Deafness, sensorineural 
Developmental delay 
Retinopathy 
Facial dysmorphism 
Hypotonia 
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52 Glycogen storage 
disease type III 

The system does not recognize the 
relationship between 
"Transaminase (plasma)" and 
other enzymes specified in the 
description of this disease. In a 
future development cycle, the 
system will be able to make the 
recognition using a synonyms 
table. 

↑ Transaminase (plasma) 
↑ Creatine kinase (plasma) 

Hepatomegaly 
Hypoglycemia, episodic 
Motor developmental delay 

67 
Mitochondrial 
Depletion Syndrome 
4A 

Only "↑ Lactate (plasma)" is 
associated with Mitochondrial 
Depletion Syndrome 4A in the 
database. The listed biomarkers 
may not be specific enough for 
the system to make a match. 

↑ Protein (CSF) 
↓ 5-Methyl-THF (CSF) 
↑ Neopterin (CSF) 
↑ Lactate (MRS) 

Epilepsy +/- encephalopathy 
Developmental delay 
Regression, psychomotor 
Developmental regression 
Seizures, Intractable 
Seizures, myoclonic 
MR Spectroscopy brain 
Cerebral atrophy (MRI) 

156 
Carbamoyl phosphate 
synthetase I 
deficiency 

The validator likely entered 
carbamoyl phosphate synthase I 
instead of carnitine 
palmitoyltransferase 1 deficiency 
as the final diagnosis - which 
would therefore rank at #1. 

↑ Carnitine, free 
normal Dicarboxylic acids 
(urine) 
↓ Long-chain acylcarnitine 
(DBS) 

Hepatopathy 
Renal tubular acidosis 

289 Citrullinemia type II 

Biomarkers and clinical 
presentation are not specific 
enough for the system to match to 
a disorder 

↑ Ketone, during 
hypoglycemia 
normal Lactate (plasma) 
normal Acylcarnitine, all 
(plasma) 
↑ Beta-hydroxybutyrate 
(urine) 
↑ Acetoacetate (urine) 
↓ Amino acids (urine) 

Hypoglycemia, episodic 
Abdominal pain 
Short stature 

Table A3 Overview of cases whose diagnoses ranked out of the top 20. 
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 Biochemical only Clinical only 

MRR 0.70 0.29 

% success at 1 60 19 

% success at 5 83 38 

% success at 10 89 49 

% success at 20 91 55 

 

Table A4 Mini-expert system performance using only biochemical/clinical queries. 

Mean reciprocal rank (MRR) measures how close the correct match is to the top rank on average. It 

ranges from 0 to 1 and values close to 1 indicate that correct matches appear closer to the top on average. 

% success at N = % of cases with correct diagnoses within top N ranks. Cases with only biochemical 

phenotypes or only clinical phenotypes were removed from the set (n=172). 
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Appendix B   

 

CHARGE syndrome Smith-Lemli-Opitz syndrome Tuberous sclerosis 

1. Tellier AL, Cormier-Daire V, Abadie V, 
et al. CHARGE syndrome: report of 47 
cases and review. Am J Med Genet 
1998;76:402–9. 
 
2. Lalani SR, Hefner MA, Belmont JW, et 
al. CHARGE Syndrome. 2006 Oct 2 
[Updated 2012 Feb 2]. In: Adam MP, 
Ardinger HH, Pagon RA, et al., editors. 
GeneReviews® [Internet]. Seattle (WA): 
University of Washington, Seattle; 1993-
2018. Available from: 
https://www.ncbi.nlm.nih.gov/books/NBK
1117/ 
 
3. Hsu P, Ma A, Wilson M, et al. 
CHARGE syndrome: a review. J Paediatr 
Child Health 2014;50:504–11. 

1. Ryan AK, Bartlett K, Clayton P, et al. 
Smith-Lemli-Opitz syndrome: a variable 
clinical and biochemical phenotype. J Med 
Genet 1998;35:558–65. 
2. Kelley RI, Hennekam RC. The Smith-
Lemli-Opitz syndrome. J Med Genet 
2000;37:321–35. 
3. Greene C, Pitts W, Rosenfeld R, et al. 
Smith-Lemli-Opitz syndrome in two 
46,XY infants with female external 
genitalia. Clin Genet 1984;25:366–72. 
4. Lachman MF, Wright Y, Whiteman DA, 
et al. Brief clinical report: a 46,XY 
phenotypic female with Smith-Lemli-Opitz 
syndrome. Clin Genet 1991;39:136–41. 
5. Haas D, Armbrust S, Haas J-P, et al. 
Smith-Lemli-Opitz syndrome with a 
classical phenotype, oesophageal achalasia 
and borderline plasma sterol 
concentrations. J Inherit Metab Dis 
2005;28:1191–6. 
6. Mueller C, Patel S, Irons M, et al. 
Normal cognition and behavior in a Smith-
Lemli-Opitz syndrome patient who 
presented with Hirschsprung disease. Am J 
Med Genet A 2003;123A:100–6. 

1. Roach ES, Sparagana SP. Diagnosis of 
tuberous sclerosis complex. J Child Neurol 
2004;19:643–9. 
doi:10.1177/08830738040190090301 
2. Northrup H, Koenig MK, Pearson DA, 
et al. Tuberous Sclerosis Complex. 1999 
Jul 13 [Updated 2015 Sep 3]. In: Adam 
MP, Ardinger HH, Pagon RA, et al., 
editors. GeneReviews® [Internet]. Seattle 
(WA): University of Washington, Seattle; 
1993-2018. Available from: 
https://www.ncbi.nlm.nih.gov/books/NBK
1220/ 
3. Northrup H, Krueger DA, International 
Tuberous Sclerosis Complex Consensus 
Group. Tuberous sclerosis complex 
diagnostic criteria update: 
recommendations of the 2012 
Iinternational Tuberous Sclerosis Complex 
Consensus Conference. Pediatr Neurol 
2013;49:243–54. 
doi:10.1016/j.pediatrneurol.2013.08.001 
4. Teplick JG. Tuberous Sclerosis: 
Extensive Roentgen Findings Without the 
Usual Clinical Picture: A Case Report 1. 
Radiology 1969;93:53–5. 
doi:10.1148/23.1.53 
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7. Nowaczyk MJ, Whelan DT, Hill RE. 
Smith-Lemli-Opitz syndrome: phenotypic 
extreme with minimal clinical findings. 
Am J Med Genet 1998;78:419–23. 
8. Langius FAA, Waterham HR, Romeijn 
GJ, et al. Identification of three patients 
with a very mild form of Smith-Lemli-
Opitz syndrome. Am J Med Genet A 
2003;122A:24–9. 

5. Rott H-D, Lemcke B, Zenker M, et al. 
Cyst-like cerebral lesions in tuberous 
sclerosis. Am J Med Genet 2002;111:435–
9. doi:10.1002/ajmg.10637 
6. Kaufmann R, Kornreich L, Goldberg-
Stern H. Unusual clinical presentation of 
tuberless tuberous sclerosis complex. J 
Child Neurol 2009;24:361–4. 
doi:10.1177/0883073808325659 
7. Han X, Zheng L, Zheng T. 
Onychogryphosis in tuberous sclerosis 
complex: an unusual feature. Anais 
Brasileiros de Dermatologia 2016;91:116–
8. doi:10.1590/abd1806-4841.20164720 
8. Fox J, Ben-Shachar S, Uliel S, et al. 
Rare familial TSC2 gene mutation 
associated with atypical phenotype 
presentation of Tuberous Sclerosis 
Complex. Am J Med Genet A 
2017;173:744–8. 
doi:10.1002/ajmg.a.38027 
9. McGrae JD, Hashimoto K. Unilateral 
facial angiofibromas--a segmental form of 
tuberous sclerosis. Br J Dermatol 
1996;134:727–30. 

 

Table B1 List of publications and clinical resources reviewed for simulated clinical scenario development. 

  



151  

 

Scenarios Scenario-
described 
phenotype 

Symptom-based workflow 
participant-specified 
phenotype 

# of times 
phenotype 
was 
selected*** 

Prototype-based workflow 
participant-specified phenotype 

# of times 
phenotype 
was 
selected*** 

Scenario 1 
Smith-
Lemli-Opitz 
syndrome 
(MIM 
270400) 
 
Symptom 
n** = 4 
 
Prototype 
n** 
= 4 

2nd-3rd toe 
syndactyly 

2-3 toe syndactyly 3 2-3 toe syndactyly 4 
Syndactyly 1 

Anteverted nares Anteverted nares 4 Anteverted nares 4 
Broad nasal 
bridge  

Narrow nasal bridge 1 Wide nasal bridge 3 
Wide nasal bridge 3 Depressed nasal bridge 1 

Developmental 
delay 

Global developmental delay 3 Global developmental delay 1 
Neurodevelopmental delay 1 

Feeding 
difficulties and 
failure to thrive 
@ 3 months 

Feeding difficulties 2 Feeding difficulties 1 
Feeding difficulties in infancy 1 
Failure to thrive 1 Failure to thrive 2 
Failure to thrive in infancy 1 

Hypotonia  Generalized hypotonia 3 Generalized hypotonia 2 
Muscular hypotonia 1 

Irritable Irritability 1 - - 
Low-set ears Low-set ears 3 Low-set ears 3 

Posteriorly rotated ears 1 
Microcephaly Microcephaly 4 Microcephaly 3 
Micrognathia Micrognathia 4 Micrognathia 2 
Postaxial 
polydactyly 

Postaxial polydactyly 4 Postaxial hand polydactyly 2 
Postaxial polydactyly 1 
Postaxial foot polydactyly 1 

Ptosis Ptosis 3 Ptosis 3 
Extra* - - Autosomal recessive inheritance 1 

Ambiguous genitalia  1 
Hypospadias 1 
Elevated 7-dehydrocholesterol 1 
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Scenarios Scenario-
described 
phenotype 

Symptom-based workflow 
participant-specified 
phenotype 

# of times 
phenotype 
was 
selected*** 

Prototype-based workflow 
participant-specified phenotype 

# of times 
phenotype 
was 
selected*** 

Hypocholesterolemia 1 
Intellectual disability 2 

Scenario 2 
Smith-
Lemli-Opitz 
syndrome 
(MIM 
270400) 
 
Symptom 
n** = 5 
 
Prototype 
n** 
= 2 

Feeding 
difficulties @ 3 
months 

Feeding difficulties 2 Gastroesophageal reflux 1 
Feeding difficulties in infancy 1 Poor suck 1 

Vomiting 1 
Broad nasal 
bridge 

Wide nasal bridge 2 Wide nasal bridge 1 
Wide nasal ridge 1 

Developmental 
delay 

Global developmental delay 2 - - 

Finger 
clinodactyly 

Finger clinodactyly  4 Finger clinodactyly 1 

Micrognathia Micrognathia 4 Micrognathia 1 
Mild hypotonia  Generalized hypotonia  3 Generalized hypotonia 2 

Muscular hypotonia 1 
Central hypotonia 1 

Mild ptosis Ptosis 3 Ptosis 2 
Minimal 
cutaneous 2nd-
3rd toe 
syndactyly 

2-3 toe syndactyly 5 2-3 toe syndactyly 2 

Extra* Weak voice 1 Autosomal recessive inheritance 1 
Hypertonia 1 Intellectual disability 1 

Scenario 3 
Tuberous 
sclerosis 1 
(MIM 
191100) 
 

Brain MRI: 
cortical sclerotic 
tubers 

Cortical tubers 5 Cortical tubers 1 

Epileptic seizure Seizures 4 Infantile spasms 2 
Hypomelanotic 
macules on the 
chest 

Hypomelanotic macule 5 Cafe-au-lait spot 1 
Hypomelanotic macule 1 
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Scenarios Scenario-
described 
phenotype 

Symptom-based workflow 
participant-specified 
phenotype 

# of times 
phenotype 
was 
selected*** 

Prototype-based workflow 
participant-specified phenotype 

# of times 
phenotype 
was 
selected*** 

Symptom 
n** = 4 
 
Prototype 
n** 
= 4 

Hypsarrhythmia Hypsarrhythmia 4 - - 
Renal cysts Renal cyst 4 Renal cyst 2 

Multiple renal cysts 1 
Skin papules on 
the side of nose 

Skin-colored papule 1 Adenoma sebaceum 2 
Papule 1 Subcutaneous nodule 1 
Facial papilloma 1 

Extra* Hypermelanotic macule 1 Subependymal nodules 1 
Scenario 4 
Tuberous 
sclerosis 1 
(MIM 
191100) 
 
Symptom 
n** = 5 
 
Prototype 
n** 
= 2 

Epileptic seizure Seizures 1 Seizures 1 
Status epilepticus 1 Infantile spasms 1 

Hypsarrhythmia Hypsarrhythmia 4 Hypsarrhythmia  1 
Cardiac rhabdomyoma 1 
Wolff-Parkinson-White syndrome 1 

Intellectual 
disability 

Intellectual disability 4 Intellectual disability 4 

Renal cysts Renal cyst 3 Renal cyst 3 
Multiple renal cysts 1 Renal angiomyolipoma 1 

Skin papules on 
the side of nose 

Papule 1 Adenoma sebaceum 3 
Skin-colored papule 1 Subcutaneous nodule 1 

Papule 1 
Extra* - - Autosomal dominant inheritance 1 

Table B2 Qualitative summary of phenotypes with counts. 

*Extra refers to phenotypes that were not described in scenarios 

** n = number of participants assigned to scenario 

*** Counts how many times the phenotype was selected by participants. If a participant changed phenotypes multiple times, each selected phenotype was 

counted 
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Appendix C   

 

C.1 Development of contextual interview template 

An interview template was developed by (a) reviewing common WES/WGS analysis practices 

that were reported in literature and (b) brainstorming interview focuses. 

 

For (a), a small-scale literature review was conducted on papers relevant to clinical 

exome/genome sequencing. The review focused on rare disease literature because most of our 

prospective participants were expected to be from that domain at the time. It was also restricted 

to papers published since 2015 to consider only recent bioinformatics practices. Papers were 

searched on PubMed (accessed on Jan 12, 2018) using the following terms: (((genome 

sequencing OR exome sequencing) AND human AND (rare OR genetic) AND (disease OR 

disorder) NOT cancer NOT bacteria NOT virus)) AND ("2015/01/01"[Date - Publication] : 

"2018/01/31"[Date - Publication]). Among the search result, 270 papers were randomly selected. 

Their titles and abstracts were screened for relevance. 102 relevant papers were identified and 

their full texts were reviewed to extract the names of computational analysis/information 

visualization tools used as well as the context of using such tools. The extracted information was 

categorized by the context of use, and these categories were incorporated into questions on the 

characteristics of routine WES/WGS analyses. The list of reviewed papers is provided in 

Appendix C.2. 
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(b) was conducted by following a contextual inquiry procedure described by Raven and 

Flanders.5 JJYL brainstormed open-ended questions on sticky notes. The questions were then 

grouped by similar themes and a generalized heading was created for each group. Duplicate 

questions were discarded. After the exercise, four groups (or topics) were identified: 

characteristics of routine WES/WGS analyses, context of using information visualization during 

routine analyses, perception of current visualization tools, and suggestions for new visualization. 

The questions and their topics were added to the interview template. CDMvK and WWW 

reviewed the template for flow and quality. 

  

                                                

5 Raven ME, Flanders A. Using contextual inquiry to learn about your audiences. ACM SIGDOC Asterisk Journal of Computer 
Documentation. 1996;20(1):1-13. 
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C.2 List of papers reviewed for contextual interview template development 

1. Aggarwal A, Rodriguez-Buritica DF, Northrup H. Wiedemann-Steiner syndrome: Novel 
pathogenic variant and review of literature. Eur J Med Genet. 2017;60(6):285-288. 

2. Alkelai A, Olender T, Haffner-Krausz R, et al. A role for TENM1 mutations in congenital 
general anosmia. Clin Genet. 2016;90(3):211-219. 

3. Al-Maawali A, Dupuis L, Blaser S, et al. Prenatal growth restriction, retinal dystrophy, 
diabetes insipidus and white matter disease: expanding the spectrum of PRPS1-related 
disorders. Eur J Hum Genet. 2015;23(3):310-316. 

4. Al-Mubarak B, Abouelhoda M, Omar A, et al. Whole exome sequencing reveals inherited 
and de novo variants in autism spectrum disorder: a trio study from Saudi families. Sci 
Rep. 2017;7(1):5679. 

5. Astuti GDN, van den Born LI, Khan MI, et al. Identification of Inherited Retinal Disease-
Associated Genetic Variants in 11 Candidate Genes. Genes (Basel). 2018;9(1). 

6. Bashamboo A, Bignon-Topalovic J, Moussi N, McElreavey K, Brauner R. Mutations in the 
Human ROBO1 Gene in Pituitary Stalk Interruption Syndrome. J Clin Endocrinol Metab. 
2017;102(7):2401-2406. 

7. Bayram Y, White JJ, Elcioglu N, et al. REST Final-Exon-Truncating Mutations Cause 
Hereditary Gingival Fibromatosis. Am J Hum Genet. 2017;101(1):149-156. 

8. Brady PD, Van Esch H, Fieremans N, et al. Expanding the phenotypic spectrum of 
PORCN variants in two males with syndromic microphthalmia. Eur J Hum Genet. 
2015;23(4):551-554. 

9. Bravo-Gil N, Méndez-Vidal C, Romero-Pérez L, et al. Improving the management of 
Inherited Retinal Dystrophies by targeted sequencing of a population-specific gene panel. 
Sci Rep. 2016;6:23910. 

10. Butcher NJ, Merico D, Zarrei M, et al. Whole-genome sequencing suggests mechanisms 
for 22q11.2 deletion-associated Parkinson’s disease. PLoS ONE. 2017;12(4):e0173944. 

11. Cabezas OR, Flanagan SE, Stanescu H, et al. Polycystic Kidney Disease with 
Hyperinsulinemic Hypoglycemia Caused by a Promoter Mutation in Phosphomannomutase 
2. J Am Soc Nephrol. 2017;28(8):2529-2539. 

12. Cai N, Bigdeli TB, Kretzschmar WW, et al. 11,670 whole-genome sequences 
representative of the Han Chinese population from the CONVERGE project. Sci Data. 
2017;4:170011. 

13. Casey JP, McGettigan PA, Healy F, et al. Unexpected genetic heterogeneity for primary 
ciliary dyskinesia in the Irish Traveller population. Eur J Hum Genet. 2015;23(2):210-217. 

14. Castro-Sánchez S, Álvarez-Satta M, Tohamy MA, Beltran S, Derdak S, Valverde D. 
Whole exome sequencing as a diagnostic tool for patients with ciliopathy-like phenotypes. 
PLoS ONE. 2017;12(8):e0183081. 

15. Chatzispyrou IA, Alders M, Guerrero-Castillo S, et al. A homozygous missense mutation 
in ERAL1, encoding a mitochondrial rRNA chaperone, causes Perrault syndrome. Hum 
Mol Genet. 2017;26(13):2541-2550. 

16. Chelban V, Patel N, Vandrovcova J, et al. Mutations in NKX6-2 Cause Progressive Spastic 
Ataxia and Hypomyelination. Am J Hum Genet. 2017;100(6):969-977. 

17. Chiu C-Y, Su S-C, Fan W-L, et al. Whole-Genome Sequencing of a Family with 
Hereditary Pulmonary Alveolar Proteinosis Identifies a Rare Structural Variant Involving 
CSF2RA/CRLF2/IL3RA Gene Disruption. Sci Rep. 2017;7:43469. 
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18. Choi B-O, Nakhro K, Park HJ, et al. A cohort study of MFN2 mutations and phenotypic 
spectrums in Charcot-Marie-Tooth disease 2A patients. Clin Genet. 2015;87(6):594-598. 

19. Choi HJ, Lee JS, Yu S, et al. Whole-exome sequencing identified a missense mutation in 
WFS1 causing low-frequency hearing loss: a case report. BMC Med Genet. 
2017;18(1):151. 

20. Chong JX, Caputo V, Phelps IG, et al. Recessive Inactivating Mutations in TBCK, 
Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic 
Encephalopathy. Am J Hum Genet. 2016;98(4):772-781. 

21. Choudhury A, Ramsay M, Hazelhurst S, et al. Whole-genome sequencing for an enhanced 
understanding of genetic variation among South Africans. Nat Commun. 2017;8(1):2062. 

22. Chow Y-P, Abdul Murad NA, Mohd Rani Z, et al. Exome sequencing identifies SLC26A4, 
GJB2, SCARB2 and DUOX2 mutations in 2 siblings with Pendred syndrome in a 
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C.3 Contextual interview template 

Interview rule: do not have to ask all the questions on the interview template. 

 

Introduction (max. 20 min) 
• Brief on interview process + videotaping 
• Explain about the consent form 
• Answer questions re: interview + consent 
• Instruct participants to not disclose/display patient information (name, age etc) 
• Ask about routine analysis 
• What is the goal of your analysis? 
• Could you describe your routine analysis in steps?  

o Alt: how you conduct your analysis? 
o Alt: could you describe your analysis pipeline? 

• How many exome/genome cases have you analyzed to date? 
• What types of analysis do you conduct? 

o e.g. trio, singleton, cohort 
• What type of data do you use in your analysis? 

o e.g. sequencing quality, variant quality, coverage analysis, functional annotation 
(synonymous/nonsynonymous), variant frequency in population db 

o Alt: what kind of tools or programs do you use for your analyses? 
o Follow-up: do you have any particular order in looking at this data? 

• Which task takes the most time during analyses? 
• Do you prefer to work with any particular format of data?  

o e.g. Excel spreadsheet, SQL 
 
Observation (est. 1 – 2 hrs; 2 hrs max) 

• Ask for clarification 
o Why do you use tool X? 
o What does the tool X do? 
o What data are you looking at? 

 
Follow-up interview (est. 40 min – 1.5 hrs) 

• Go over observation 
o Uses visualization 

§ I saw that you use X in Y context. Am I correct? 
• Follow-up: how useful do you find X? 
• Follow-up: How easy was it for you to learn how to use X? 
• Follow-up: How did you hear about X? 
• Follow-up: What are some challenges or usage barriers that you 

encountered while using X? 
• Follow-up: Where else do you use X for? (i.e. do you use X in a 

different context?) 
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• Are there any visualization tools that you regularly use but you 
didn’t use during today’s analysis? 

o Does not use visualization 
§ I saw that you don’t use visualizations. Could you tell me why? 

• Alt: why do you prefer tabular data? 
§ If you don’t use visualizations, how useful do you find the current set of 

tools that you use? 
§ Are there any tools that you regularly use but didn’t use during today’s 

analysis? 
• Other visualizations/tools: show a catalogue of commonly used data types. Ask if there 

are any additional data types that are used. 
o Sequencing quality 
o Variant quality 
o Coverage analysis (e.g. coverage of targeted regions/consensus coding sequence) 
o Relatedness assessment (e.g. KING) 
o Functional annotation (e.g. synonymous/nonsynonymous, nonsense/missense, 

frameshift) 
o Location of variant (e.g. overlap with disease-associated region, within 

exon/intron, exon-intron boundaries) 
o Variant frequency in population databases (e.g. dbSNP, 1000 Genomes, 

gnomAD) 
o Variant frequency in in-house databases 
o in-silico functional prediction (e.g. SIFT, PolyPhen2, CADD) 
o Nucleotide conservation (e.g. GERP, PhyloP) 
o Splice-site prediction (e.g. NNSPLICE, MaxEntScan) 
o Inheritance model 
o Known gene-disease association 
o Human Phenotype Ontology-based phenotype/gene similarity 
o Overlapping or similar phenotypes in disease databases (e.g. OMIM, DECIPHER) 
o Presence and designation in disease-focused variation databases (e.g. ClinVar, 

LOVD) 
o Interaction with known disease-associated gene 
o Other 

• Ask additional questions 
o Re: previous search 

§ Have you looked for data visualizations for your analysis in the past? If so 
what are they? If not, why? 

o Show a catalogue of visualization tools 
§ Integrative Genomics Viewer (IGV) 
§ UCSC Genome Browser 
§ Protein structure visualizations (e.g. Chimera) 
§ Network visualizations (e.g. Cytoscape, GeneMANIA) 
§ Phenotype-driven visual prioritization tools (e.g. OMIM Explorer) 
§ Phenotype comparison visualizations (e.g. PhenoBlocks) 
§ Custom R visualizations 
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§ Visualization features within population databases (e.g. read data browser 
in GnomAD/ExAC, graphical sequence viewer in dbSNP) 

§ Visualization features within sequence databases (e.g. graphical sequence 
viewer in NCBI Gene, Feature viewer in UniProt) 

§ Visualization features within disease databases (e.g. protein browser or 
phenotype browser in DECIPHER) 

§ Visualization features within commercial variant analysis tools (e.g. 
Alamut Visual, SnapGene) 

• Ask the following 
o Have you tried or heard about X? 

§ Did try or hear about X 
• How useful did you find it to be? 
• How easy was for you to learn? 
• If you tried or heard about it but don’t use it in your analysis, could 

you tell me why? 
§ Never heard of X 

• Explain what X does 
• How useful do you think X would be? 

• Suggestions for future visualization 
o You said that you use data X, Y, Z for your analysis. Is there any tasks or data 

types that you think a visualization would be helpful for your analysis?  
§ Follow-up: how would it be helpful? 
§ Follow-up: is there any tasks or data types that you don’t think a 

visualization would be helpful or necessary for your analysis? 
§ Follow-up: why would it not be helpful? 

o Can you think of any analysis tools that you would find more useful if it 
incorporated a visualization? 
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C.4 Online survey questionnaire 

Routine exome/genome analysis 
In the following section, we would like to ask basic questions about your exome/genome 
analyses for rare disease diagnosis. 
 
1. How many rare disease cases with exome/genome sequencing data have you analyzed to date? 

1. Less than or equal to 50 cases 
2. 51 – 100 cases 
3. 101 – 200 cases 
4. More than 200 cases 
5. Other 
6. N/A 

 
2. What types of analysis do you conduct? Please select all that apply. 

1. Singleton 
2. Trio 
3. Cohort 
4. Other 
5. N/A 

 
3. What types of sequencing data do you work with? Please select all that apply. 

1. Whole exome sequencing 
2. Whole genome sequencing 
3. Other 
4. N/A 

 
4. In which setting are the analyses conducted? Please select all that apply. 

1. Clinical 
2. Research 
3. Other 
4. N/A 

 
5. Below are types of data that are commonly used in exome/genome analyses. Please select all 
types of data that you use in your analyses. 

1. Sequencing quality 
2. Variant quality 
3. Coverage analysis (e.g. coverage of targeted regions/consensus coding sequence) 
4. Relatedness assessment (e.g. KING) 
5. Functional annotation (e.g. synonymous/nonsynonymous, nonsense/missense, frameshift) 
6. Location of variant (e.g. overlap with disease-associated region, within exon/intron, 

exon-intron boundaries) 
7. Variant frequency in population databases (e.g. dbSNP, 1000 Genomes, gnomAD) 
8. Variant frequency in in-house databases 
9. in-silico functional prediction (e.g. SIFT, PolyPhen2, CADD) 
10. Nucleotide conservation (e.g. GERP, PhyloP) 
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11. Splice-site prediction (e.g. NNSPLICE, MaxEntScan) 
12. Inheritance model 
13. Known gene-disease association 
14. Human Phenotype Ontology-based phenotype/gene similarity 
15. Overlapping or similar phenotypes in disease databases (e.g. OMIM, DECIPHER) 
16. Presence and designation in disease-focused variation databases (e.g. ClinVar, LOVD) 
17. Interaction with known disease-associated gene 
18. Other: tell us any data that you routinely use but are not listed above 
19. N/A 

 
Data visualizations that are currently used during routine analyses 
In the following section, we would like to ask about data visualization tools or analysis tools 
with data visualization features that you currently use for your routine analyses. 
 
6a. Below are data visualization tools or types of data visualizations that are commonly used in 
exome/genome analyses. 
 
Please select all tools or visualizations that you currently use for your routine analyses. If 
applicable, please provide the name of the tool in the textbox provided underneath the 
appropriate category. 

1. Integrative Genomics Viewer (IGV) 
2. UCSC Genome Browser 
3. Protein structure visualizations (e.g. Chimera) 
4. Network visualizations (e.g. Cytoscape, GeneMANIA) 
5. Phenotype-driven visual prioritization tools (e.g. OMIM Explorer) 
6. Phenotype comparison visualizations (e.g. PhenoBlocks) 
7. Custom R visualizations 
8. Visualization features within population databases (e.g. read data browser in 

gnomAD/ExAC, graphical sequence viewer in dbSNP) 
9. Visualization features within sequence databases (e.g. graphical sequence viewer in 

NCBI Gene, Feature viewer in UniProt) 
10. Visualization features within disease databases (e.g. protein browser or phenotype 

browser in DECIPHER) 
11. Visualization features within commercial variant analysis tools (e.g. Alamut Visual, 

SnapGene) 
12. Other: tell us about any tools or data visualizations that you use but are not listed above 
13. I do not use any data visualization tools or data visualizations for my routine analyses 
14. N/A 

 
6b. (Show if participant answered that they currently use some visualizations; show only the 
tools they selected in Q6a) Below are the data visualizations that you have selected in the 
previous question. For each tool or visualization, in what context do you use it?  (e.g. I use IGV 
for manual inspection of mapped reads) 

1. Integrative Genomics Viewer (IGV) 
2. UCSC Genome Browser 
3. Protein structure visualizations (e.g. Chimera) 
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4. Network visualizations (e.g. Cytoscape, GeneMANIA) 
5. Phenotype-driven visual prioritization tools (e.g. OMIM Explorer) 
6. Phenotype comparison visualizations (e.g. PhenoBlocks) 
7. Custom R visualizations 
8. Visualization features within population databases (e.g. read data browser in 

gnomAD/ExAC, graphical sequence viewer in dbSNP) 
9. Visualization features within sequence databases (e.g. graphical sequence viewer in 

NCBI Gene, Feature viewer in UniProt) 
10. Visualization features within disease databases (e.g. protein browser or phenotype 

browser in DECIPHER) 
11. Visualization features within commercial variant analysis tools (e.g. Alamut Visual, 

SnapGene) 
12. Other 

 
6c. (Show if participant answered that they do not use any visualizations) If you don’t use any 
visualizations, could you describe why? 
 
 
Data visualizations that are available but are not currently used during routine analyses 
In the following section, we would like to ask about data visualization tools or analysis tools 
with data visualization features that you have tried or may know about, but do not use for 
your routine analyses. 
 
7a. Have you ever tried or looked for data visualizations to use for your routine analyses? 

1. Yes 
2. No 
3. Other 
4. N/A 

 
7b. (Show if participant answered yes to Q7a; eliminate answers that participant selected in Q6a) 
Below are data visualization tools or types of data visualizations that are commonly used in 
exome/genome analyses, aside from the ones which you indicated that you currently use for your 
analyses. 
 
Please select all tools or visualizations that you have tried or know about but do not currently 
use for your routine analyses. If applicable, please provide the name of the tool in the textbox 
provided underneath the appropriate category. 

1. Integrative Genomics Viewer (IGV) 
2. UCSC Genome Browser 
3. Protein structure visualizations (e.g. Chimera) 
4. Network visualizations (e.g. Cytoscape, GeneMANIA) 
5. Phenotype-driven visual prioritization tools (e.g. OMIM Explorer) 
6. Phenotype comparison visualizations (e.g. PhenoBlocks) 
7. Custom R visualizations 
8. Visualization features within population databases (e.g. read data browser in 

gnomAD/ExAC, graphical sequence viewer in dbSNP) 
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9. Visualization features within sequence databases (e.g. graphical sequence viewer in 
NCBI Gene, Feature viewer in UniProt) 

10. Visualization features within disease databases (e.g. protein browser or phenotype 
browser in DECIPHER) 

11. Visualization features within commercial variant analysis tools (e.g. Alamut Visual, 
SnapGene) 

12. Other: tell us about any tools or visualizations that you have encountered but are not 
listed above 

13. N/A 
 
7c. (Show if participant answered no to Q7a) If you have never tried or looked for data 
visualizations, could you describe why? 
 
 
7d. (Show if participants selected any options in Q7b; show only the tools selected in Q7b) 
Below are the data visualizations that you have selected in the previous question. For each tool 
or visualization, could you describe why they are not used? 

1. Integrative Genomics Viewer (IGV) 
2. UCSC Genome Browser 
3. Protein structure visualizations (e.g. Chimera) 
4. Network visualizations (e.g. Cytoscape, GeneMANIA) 
5. Phenotype-driven visual prioritization tools (e.g. OMIM Explorer) 
6. Phenotype comparison visualizations (e.g. PhenoBlocks) 
7. Custom R visualizations 
8. Visualization features within population databases (e.g. read data browser in 

gnomAD/ExAC, graphical sequence viewer in dbSNP) 
9. Visualization features within sequence databases (e.g. graphical sequence viewer in 

NCBI Gene, Feature viewer in UniProt) 
10. Visualization features within disease databases (e.g. protein browser or phenotype 

browser in DECIPHER) 
11. Visualization features within commercial variant analysis tools (e.g. Alamut Visual, 

SnapGene) 
12. Other: tell us about any visualizations that you have encountered but are not provided 

above 
 

 
Suggestions for future data visualizations 
In the following section, we would like to ask about improvement ideas or feature suggestions 
for data visualization tools for exome/genome analyses. 
 
8a. (Show based on participants answer to Q5) Below are the types of data which you indicated 
that you commonly use for your routine analyses. 
 
For each data type, please indicate whether you think a visualization would be helpful or not 
helpful for your analyses. (Display options as table) 
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1. Sequencing quality 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

2. Variant quality 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

3. Coverage analysis (e.g. coverage of targeted regions/consensus coding sequence) 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

4. Relatedness assessment (e.g. KING) 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

5. Functional annotation (e.g. synonymous/nonsynonymous, nonsense/missense, frameshift) 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

6. Location of variant (e.g. overlap with disease-associated region, within exon/intron, 
exon-intron boundaries) 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

7. Variant frequency in population databases (e.g. dbSNP, 1000 Genomes, gnomAD) 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

8. Variant frequency in in-house databases 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

9. in-silico functional prediction (e.g. SIFT, PolyPhen2, CADD) 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

10. Nucleotide conservation (e.g. GERP, PhyloP) 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

11. Splice-site prediction (e.g. NNSPLICE, MaxEntScan) 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 
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12. Inheritance model 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

13. Known gene-disease association 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

14. Human Phenotype Ontology-based phenotype/gene similarity 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

15. Overlapping or similar phenotypes in disease databases (e.g. OMIM, DECIPHER) 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

16. Presence and designation in variation databases (e.g. ClinVar, LOVD) 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

17. Interaction with known disease-associated gene 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

18. Other: <show what participant wrote in Q5> 
i. Visualization would be helpful 
ii. Visualization would not be helpful 
iii. N/A 

 
8b. (Show if participants indicated as helpful in Q8a; Show only the options selected for Q8a) 
For each of the data types which you indicated that a visualization would be helpful for your 
analyses, could you describe why? Also, what kind of visualization would make it helpful? 
Sequencing quality 

1. Variant quality 
2. Coverage analysis (e.g. coverage of targeted regions/consensus coding sequence) 
3. Relatedness assessment (e.g. KING) 
4. Functional annotation (e.g. synonymous/nonsynonymous, nonsense/missense, frameshift) 
5. Location of variant (e.g. overlap with disease-associated region, within exon/intron, 

exon-intron boundaries) 
6. Variant frequency in population databases (e.g. dbSNP, 1000 Genomes, gnomAD) 
7. Variant frequency in in-house databases 
8. in-silico functional prediction (e.g. SIFT, PolyPhen2, CADD) 
9. Nucleotide conservation (e.g. GERP, PhyloP) 
10. Splice-site prediction (e.g. NNSPLICE, MaxEntScan) 
11. Inheritance model 
12. Known gene-disease association 
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13. Human Phenotype Ontology-based phenotype/gene similarity 
14. Overlapping or similar phenotypes in disease databases (e.g. OMIM, DECIPHER) 
15. Presence and designation in variation databases (e.g. ClinVar, LOVD) 
16. Interaction with known disease-associated gene 
17. Other: <show what participant wrote in Q5> 

 
8c. (Show if participants indicated as not helpful in Q8a; Show only the options selected for 
Q8a) For each of the data types which you indicated that a visualization would be not helpful 
for your analyses, could you describe why? 

1. Sequencing quality 
2. Variant quality 
3. Coverage analysis (e.g. coverage of targeted regions/consensus coding sequence) 
4. Relatedness assessment (e.g. KING) 
5. Functional annotation (e.g. synonymous/nonsynonymous, nonsense/missense, frameshift) 
6. Location of variant (e.g. overlap with disease-associated region, within exon/intron, 

exon-intron boundaries) 
7. Variant frequency in population databases (e.g. dbSNP, 1000 Genomes, gnomAD) 
8. Variant frequency in in-house databases 
9. in-silico functional prediction (e.g. SIFT, PolyPhen2, CADD) 
10. Nucleotide conservation (e.g. GERP, PhyloP) 
11. Splice-site prediction (e.g. NNSPLICE, MaxEntScan) 
12. Inheritance model 
13. Known gene-disease association 
14. Human Phenotype Ontology-based phenotype/gene similarity 
15. Overlapping or similar phenotypes in disease databases (e.g. OMIM, DECIPHER) 
16. Presence and designation in variation databases (e.g. ClinVar, LOVD) 
17. Interaction with known disease-associated gene 
18. Other: <show what participant wrote in Q5> 

 
9. Please share new visualization ideas if you are willing. 
 
 
C.5 Screenshots of information visualization tools captured in this study (excluding non-

open-access/offline tools) 

1a. Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources 

(DECIPHER): genome browser 
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1b. Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources 

(DECIPHER): phenotype browser 
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2. UniProt: feature viewer 
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3. National Center for Biotechnology Information (NCBI) Gene: graphical sequence viewer 
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4. GeneCards: mRNA expression plot 
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5. GeneMANIA: pathway/protein-protein interaction visualization 
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6. Single Nucleotide Polymorphism database (dbSNP): Graphical sequence viewer 
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7a. Genome Aggregation Database (gnomAD): illustrated gene summary 
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7b. Genome Aggregation Database (gnomAD): read data browser 
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8. Integrative Genomics Viewer (IGV): read alignment visualization 
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9. University of California Santa Cruz (UCSC) Genome Browser: arbitrary/custom annotation 

visualization 
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Commonly used data types Reasons for considering visualization would be helpful Reasons for considering visualization would be not 
helpful 

Sequencing quality 
 
Variant quality 

“Seeing the number of mismatches in a read with a variant 
is helpful” 
 
“I like context/adjacency when assessing things” 
 
“Easier to understand using visualization than going 
through values/technical details” 

“One should have this before variant interpretation and if 
passing then doesn't need to be looked at further.” 

Coverage analysis “Seeing how coverage in the regions compared to overall is 
helpful” 
 
“Probably would be the most useful to have this (coverage 
information) visualized and searchable for genes in 
general.” 

- 

Functional annotation “We currently use Alamut for this; however, it would be 
helpful to have visualizations of protein structure changes.” 

“A number or yes/ no is ok” 
 
“Statement of annotation works just fine no need to 
complicate it with colors or charts” 
 
“Easy to look up within data. Visualization would not add 
more to already present data.” 

Location of variant “You can, to some extent, see this in UCSC. It would be nice 
to see if specific variants still overlap with disease 
associated regions.” 
 
“Good way to visualize what is present in the region” 

- 

Variant frequency in 
population databases 
 
Variant frequency in in-
house databases 

- 

“All I need to see are numbers” 
 
“% or statement of AF is sufficient” 
 
“Easy to look up within data. Visualization would not add 
more to already present data.” 

in-silico functional prediction 

- 

“A visualization is not necessary - setting thresholds with 
the numbers given from these predictors is all I need to use” 
 
“Statement of prediction is sufficient” 
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“Easy to look up within data. Visualization would not add 
more to already present data.” 

Nucleotide conservation “We have this visualization in Alamut and can be helpful for 
interpreting novel variants.” 

“Easy to look up within data. Visualization would not add 
more to already present data.” 

Splice-site prediction “We have this visualization in Alamut and can be helpful for 
interpreting splicing since you can see the 5 splice 
predictors at the same time.” 

- 

Inheritance model 

- 

“Statement is sufficient” 
 
“This is something that you need to look up - not sure how a 
visualization will help.” 

Known gene-disease 
association 

“This could be useful to determine if there are multiple 
diseases associated with the same gene, or multiple 
phenotypes described for the same gene.” 

“Statement is sufficient” 
 
“This is something that you need to look up - not sure how a 
visualization will help.” 

Human Phenotype Ontology-
based phenotype/gene 
similarity - 

“Numbers are useful for this. Could a gene similarity 
correlation be done?” 
 
“This is something that you need to look up - not sure how a 
visualization will help.” 

Overlapping or similar 
phenotypes in disease 
databases 

“It would be nice to have both OMIM and DECIPHER data 
together in one platform to visualize the data.” 
 
“Usually phenotypes/diseases are listed - it'd be easier to 
see diseases (sorted by similarity e.g. neuro, 
musculoskeletal, cardio) in a visualization instead.” 

- 

Presence and designation in 
disease-focused variation 
databases 

- 

“This doesn't need to be visualized. What would be nice is if 
all ClinVar entries for a specific variant were contained in 
one link/page.” 
 
“Statement is sufficient” 
 
“Easy to look up within data. Visualization would not add 
more to already present data.” 

 

Table C1 Explanations provided by online survey participants (n = 17) regarding why the commonly used data types would be helpful or not helpful to 

visualize. 
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Observation Recommendation Applies to Benefit 

After variant filtering, participants 
used custom rules for quickly 
deciding if a filtered variant should be 
further assessed 

Support creation of custom decision 
rules and color-code variant 
annotations accordingly (similar to 
conditional formatting function in 
spreadsheet software) 

Tools that support browsing of 
filtered variants 
 
Tools/resources that support browsing 
of a table of genomic features 

Reduce the cognitive burden of 
assessing multiple numeric/textual 
values 

Participants used variant annotations 
in two ways: 
(a) They examined numeric/textual 
values 
(b) They assessed the information in 
combination with other layers of 
information in a genome browser 

Support simultaneous presentation of 
a genome browser and a table of 
values 

Tools that support browsing of 
filtered variants 
 
Tools/resources that present a 
summary of variants/genomic features 
within a regional context (e.g. list of 
known pathogenic variants within a 
gene) 

Ease the cognitive transition between 
consideration of single evidence and 
multi-layered evidence 

Participants’ analyses were two-
tiered: 
(a) first-tier: disease-associated 
variants 
(b) second-tier: all other variants 

Present each tier in a separate view or 
panel, (similar to a worksheet in 
spreadsheet software). Within each 
view, support custom curation of 
analysis tools/features that are 
frequently used during the respective 
tier of analysis 

Tools that support browsing of 
filtered variants 
 
Tools/resources that curate multiple 
sources of information 

Enhances utility of curated 
information and software features as 
visual presentation aligns with the 
context of analysis 

Participants take notes on each variant 
examined 

Support creation of notes on each 
variant/gene 

Tools that support browsing of 
filtered variants 

Helps keeping track of the analyses 

 

Table C2 Information visualization design recommendations extracted from observation of interview participants (n = 6). 


