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Abstract

Discourse parsing is an important task in natural language processing as it supports

a wide range of downstream NLP tasks [2, 5, 14, 15, 21, 33]. While the overall

performance of discourse parsing has been recently improved considerably [32,

44], the performance on identifying relatively infrequent discourse relations is still

rather low (∼ 20 in terms of F1 score).

To resolve the gap between the performance of infrequent and frequent re-

lations, we propose a novel method for discourse relation identification that is

centered around “a paradigm for the programmatic creation of training datasets,”

called Data Programming (DP) [35]. The main idea in our approach is to overcome

the issue of limited labeled data for infrequent relations by leveraging unlabeled

data in addition to labeled data. Our experiments show that our method improves

the performance on most of the infrequent relations with minimal negative effect

on frequent relations.
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Lay Summary

Sentences appear in a coherent paragraph usually have some relations between

them. Some past research has been done on automatically identifying these re-

lations with a primary focus on improving the overall correctness. However, the

overall correctness hides a lot of detail. The reality is, there are several “types”

of relations. The past work has been having high correctness on some types only,

while for the rest of the types the correctness rate could be meager. It has been

shown that the type of relations that usually has low correctness rate are those that

have only a limited amount of training data. To solve this problem, we would like

to apply a framework called “Data Programming” that supports adding more train-

ing data. Our experiments show that our approach made some improvements to the

correctness rate on the relations that only have a limited amount of training data.
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Chapter 1

Introduction
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Figure 1.1: Example Discourse Tree from [8]

Discourse parsing is the task of parsing a span of text into its rhetorical struc-

ture. The rhetorical structure can be seen as consisting of two parts. The first part

is about how each portion of the text connects to each other. This would require us

parsing the whole text into a tree structure. The other part is about what the rhetoric

is concerning each connection in the previous part. This would require us knowing

what the actual relation on each node in the tree structure is. The latter part of

the task is also called discourse relation identification, which is the primary task

of our thesis. Figure 1.1 shows an example discourse structure for sentence “They

parcel out money so that their clients can find temporary living, buy food, replace

lost clothing, repair broken water heaters, and replaster walls”, extracted from [8].

Here, the links and arrows between every text span refer to the tree structure of the

text, where “purpose” and “list” are two discourse relations.

Discourse parsing provides a lot of understanding on the structure of the text.

Its sub-task, discourse relation identification, provides knowledge about the actual

relation between each part of the structure. Because of this, discourse parsing can

support a wide range of downstream NLP tasks. This includes sentiment analysis

[5, 21, 33], text understanding [2], summarization [14, 15], and vote prediction

[21]. There are multiple ways of bringing discourse parsing into NLP tasks. (Allen

et al., 2014)[2] utilized certain aspects of the result from a discourse parser as
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features to detect disagreement. (Gerani et al., 2014, 2016) [14, 15] combined a

pre-defined template with the hierarchy of entities created using the result from

a discourse parser for text generation. (Bhatia et al., 2015; Ji & Smith, 2017;

Nejat et al., 2017) [5, 21, 33] constructed a recursive neural network based on

the discourse structure as well as the relation generated by the parser to learn a

discourse informed representation for text spans.

The primary focus of our thesis is on discourse relation identification. Cur-

rently, most existing discourse parsers generally have good overall performance

on this problem (close to 60 in terms of F1 score). However, this “overall per-

formanc” hides a lot of detail. If we look at the performance of each individual

relation, the result is less exciting. While we have some relations that have excel-

lent performance (> 80 in terms of F1 score), there are a lot of relations that are

barely working (< 20 in terms of F1 score). The per-relation performance of the

state-of-the-art discourse parser from [44] is listed in Table 1.1 and a more detailed

definition of the per-relation performance metrics is described in Section 4.2.

(Jiang et al., 2016)[22] identified what might cause some of these relations

to be poorly performed. Not surprisingly, the per relation performance is highly

correlated with the size of the training data for that specific relation. Jiang’s work is

done using two discourse parsers from [23] and [20] as examples. This observation

is still the same for some newer models, including the state of the art. In Figure 1.2,

we plot the graph of per relation performance versus per relation training data size,

on the state of the art discourse parser [44], in together with the fitted regression

line. The fitted regression line does not directly match with all the data points. This

suggests us that for the state of the art model there are also other factors that are

also affecting each relation’s performance other than the size of the training data

for that specific relation. However, the fitted regression line still have a r = 0.4826

as the Pearson coefficient of correlation [37] and p = 0.043. This suggest us that

the per relation performance is still highly correlated with the size of the training

data for that specific relation.
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Relation F1 score
Attribution 86.5
Same-Unit 82.8
Condition 62.5
Enablement 56.4
Elaboration 51.9
Joint 48.9
Summary 45.7
Manner-Means 42.0
Textual-Organization 33.2
Contrast 30.4
Background 30.1
Explanation 24.8
Comparison 14.0
Temporal 10.7
Cause 9.7
Topic-Change 2.6
Topic-Comment 0.0
Evaluation 0.0

Table 1.1: The performance across all 18 relations for the state-of-the-art
discourse parser [44], ordered by their F1 score

1.1 Motivation
Following the observation that the per-relation performance is highly correlated

with the frequency, (Jiang et al., 2016) [22] divided these relations into two groups:

the top 10 most frequent relations and the 8 infrequent relations. Both are shown

in Table 1.2 with a more detailed analysis of this division described later in Sec-

tion 4.1. Then, Jiang et al. apply the co-training [6] technique on two discourse

parsers, and use the results from a weaker discourse parser [20] to help add more

training data for the stronger discourse parser [23]. Jiang’s approach shows some

improvements in the performance of infrequent relations. However, it suffers from

several issues. Firstly, Jiang’s approach has negative effects on the per-relation per-

formance of many frequent relations. Secondly, to conduct co-training effectively,

their approach requires two discourse parsers to be operated on two feature sets

4



Figure 1.2: F1 v.s. Size of Training Data, per Relation, for the state-of-the-art
discourse parser [44]

Relation Counts
Elaboration 7106
Attribution 2727
Joint 1775
Same-Unit 1277
Contrast 984
Explanation 876
Background 826
Cause 611
Enablement 522
Temporal 457
Total 17161

Relation Counts
Evaluation 519
Comparison 280
Condition 274
Topic-Change 199
Manner-Means 192
Summary 191
Textual-Organization 148
Topic-Comment 132
Total 1935

Table 1.2: Top 10 Frequent relations (left) and the 8 infrequent relations
(right), ordered by number of occurrences

that are different from each other. However, this is not necessarily achievable if

we would like to apply newer classes of discourse parsers. In fact, the state of the

art discourse parser [44] have features from both [23] and [20], making it virtually
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impossible to find an alternative classifier to operate on. Lastly, co-training is less

systematic because there are no explicit guidelines over how to deal with conflict

labels.

In order to tackle the problems in Jiang’s work, we are interested in applying a

framework called “Data Programming”, introduced by [35], into discourse relation

identification. Data Programming shares some similarity with the work of Jiang but

is more general beyond just co-training alone. It enables us to learn the accuracies

of each individual labeling source systematically. Good results have been shown

utilizing this framework on some classification tasks that only have limited labels

like relation extraction.

Ideally, we hope this framework would be a more systematical approach to re-

place co-training. It may also solve the issue of requiring two different feature sets

expected by co-training. This is because Data Programming only requires a more

relaxed assumption: outputs from all labeling sources should be conditionally inde-

pendent of each other given the true label. Moreover, in previous empirical study

[4], it has been shown that even if the independence assumption is not carefully

followed, good results can still be sometime achievable.

However, Data Programming cannot be directly applied to our problem. There

are two reasons for this. First is because Data Programming requires using high

accuracy labeling functions. However, obtaining high accuracy labeling functions

for discourse relation identification is not a trivial task. Second is despite the fact

that the Data Programming framework is a general framework which supports both

binary classification and multi-class classification, most of the previous empirical

results are done towards binary classification problems and we have found it to be

non-trivial to apply it to a multi-class scenario.

1.2 Approach and Contributions
The primary objective of this thesis is to find a workflow that incorporates Data

Programming into the discourse relation identification problem, in order to boost

the performance of infrequent relations. In particular, we are aiming at two issues.

First, we are aiming at creating high-performance labeling functions that work well

with Data Programming. Second, we are looking for methods that can utilize the
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output of Data Programming for discourse relation identification.

In order to create labeling functions, we utilize ideas from Bootstrap Aggre-

gating method [7] to create labeling functions using sub-samples of training data.

However, doing this would not be enough since Data Programming requires label-

ing functions to have higher accuracies which are not achievable even if we use

all the training data. We consider two approaches to tackle this issue. One is to

use filtering based on labeling functions’ confidence scores. This is common in

semi-supervised learning [38] and is also used by [12, 22] for discourse parsing.

This would require us to filter out those that have lower confidence score before

passing the predictions to Data Programming framework. Besides filtering, we are

considering applying techniques from Few-Shot Learning [39] into labeling func-

tions. These models would ideally work better if there are only a few training

samples in presence, which is exactly the scenario we have when creating labeling

functions using Bootstrap Aggregating. After we create the labeling functions, we

invoke the Data Programming framework. After this process, Data Programming

would output a probabilistic distribution of labels for each unsupervised instance.

Then, we train another classifier as the final model utilizing both ground truth label

and output from Data Programming using a loss function designed by us. A more

detailed description of our approach is listed in Chapter 3.

Our experiments have shown some performance improvements on infrequent

relations on some scenarios when incorporating Data Programming framework into

discourse parsing. More specifically, we show that our way of creating labeling

functions is effective for providing labels for the Data Programming framework.

We also show an effective way of training neural network models with output from

Data Programming. However, we also find several issues in our approach. We find

the result of utilizing techniques from Few-Shot Learning to be not significantly

more effective in terms of providing better performance on infrequent relations.

We also find that Data Programming does not reach significant improvement on

the ablation test over majority voting. A more detailed description of our results is

listed in Chapter 4.

More specifically, the contributions we make in this thesis are:

• Present a workflow for applying Data Programming framework to the task

7



of discourse relation identification.

• Develop an ensemble method based mechanism for creating labeling func-

tions for Data Programming framework.

• Experiment with a new filtering mechanism that works well with the work-

flow we presented.

• Develop a loss function for utilizing the output of Data Programming for

training a final discourse relation identification model.

• Explore one Few-Shot learning technique on discourse relation identification

problem for both creating labeling functions for Data Programming and used

as the standalone prediction model.

The advantages of our approach are:

• It does not require any expert to label additional documents or provide hand-

written labeling functions.

• It is effective in boosting most of the infrequent relations.

• It is effective across a wide range of settings for neural networks.

• The negative effect on the performance of frequent relations is negligible.

The disadvantage of our approach are:

• It is unable to boost the performance of all infrequent relations.

• It is not effective on linear models.

• In our workflow Data Programming itself does not significantly outperform

majority voting.

• We did not evaluate if the techniques we proposed can be generalized to

other problems.
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Related Work
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2.1 Existing Discourse Parsers
A lot of the research has been done on creating discourse parsers. In this section,

we will introduce several of them, grouped by the machine learning model they

use.

Some of the earliest attempts to discourse parsing focus on graphical mod-

els, for their convenience in measuring dependencies. (Soricut et al., 2003) [40]

were among the first with their development of the SPADE system. In SPADE, a

simple graphical model is used. This graphical model only has one dependency

assumption: each prediction made on a text span should only be dependent on the

prediction previously made on some of its children. SPADE only works for pars-

ing a sentence and does not support document-level parsing, however. (Joty et al.,

2015) [23] introduced CODRA later on. CODRA has a more sophisticated Con-

ditional Random Field (CRF) based model. This model involves one linear chain

CRF for each of the possible configurations at all levels. The final predictions are

made based on a Cocke-Kasami-Younger (CKY) style optimal parsing algorithm

[10] using predictions gathered from all possible configurations at all levels. On

the other hand, (Feng et al., 2014) [11] introduced another model which is similar

to CODRA as both models utilize linear-chain CRF. However, Feng use a greedy

algorithm for parsing. The greedy algorithm enables it to have a linear time parsing

performance instead of the O(n3) runtime CODRA has.

Support Vector Machine (SVM) based models are also popular in discourse

parsing. This is partly because historically a majority part of the features used in

discourse parsing is Bag of Words. The use of Bag of Words features results in a

sparse feature space where a max-margin classifier like SVM can work very well.

(Hernault et al., 2010) [19] were among the first with their development of the

HILDA system. (Ji et al., 2014) [20] introduced DPLP later which is also an SVM

based approach. Different from HILDA, DPLP uses parameter tying on the SVM

side. Moreover, (Wang et al., 2017) [44] utilized the observation that discourse

parsing can be separated into the task of intra-sentential parsing, sentential parsing,

and paragraph parsing. The three tasks are very different from each other, both

from the distribution of labels and from the features they should use. Based on this

observation, they train one SVM for each of the components. Currently, Wang’s

10



approach is the state of the art result in discourse parsing.

In recent years, as neural networks and deep learning methods start to become

a major theme in natural language processing, more interests have been shifted to

using neural networks for discourse parsing. (Li et al., 2014) [27] were among

the first who introduced deep learning techniques in discourse parsing. They im-

plement one recursive neural network structure based on the binary representation

for each discourse tree. Every node in this recursive neural network represents a

node in the original discourse tree. If the node is a leaf, the representation of this

node will come from an LSTM running on the text span of this node only. If not,

the representation of this node would be based on the representation of its direct

child nodes. (Li et al., 2016) [28] further refined the idea of creating representation

based on child nodes. However, they replace the deep binary discourse tree with

sentence-level attention mechanism. The use of attention mechanism provides a

shallower structure compared to the previous work and are thus easier to train. As

both utilize CKY style parsing algorithm which has an O(n3) complexity, (Liu and

Lapata, 2017) [30] designed another neural network based model for discourse

parsing called CIDER. CIDER has a linear time performance by utilizing a CRF

similar to [11] for parsing, with features taken by the CRF coming from the deep

feature learned by the neural network. CIDER also includes contextual information

in prediction by running a LSTM over the whole document.

Nevertheless, all the models above face issues in predicting infrequent rela-

tions, which is the main issue we address in this thesis.

2.2 Learning with Limited Labeled Data
Infrequent discourse relation identification can be essentially seen as a type of

learning with limited labeled data problem. Recently there has been more inter-

ests in this problem. This phenomenon occurs because of the limitation of deep

learning. Deep learning methods have provided numerous performance improve-

ment on various problems in machine learning. However, most of their successes

rely on the abundance of labeled training data. Deep learning related methods usu-

ally do not work very well when there is only a limited amount of training data.

When the training data is small, they often can only perform no better than simple
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machine learning methods like Support Vector Machine. Learning with Limited

Labeled Data is still a much immature field with various different approaches from

different angles have been proposed. We will only focus on those that are more

related to our work.

2.2.1 Self-training and Co-training

Self-training and co-training are among the earliest attempts in semi-supervised

learning because of their simplicity.

Self-training [18] [38] is a simple heuristic based approach. In this approach, a

machine learning model is first trained in a supervised way on a possibly small set

of labeled data. Then this model is used to make predictions on the unlabeled data.

Next, it adds some of the predictions, filtered based on certain pre-defined rules,

to the training set. Another new classifier is trained on the new training set. This

process can be repeated several times.

Co-training [6] [38] is an extension of self-training. It relies on two “views” of

data which are usually implemented on the same dataset but leverage two different

feature sets. Ideally, the two feature sets should have the following two properties.

Firstly, they should be independent of each other if the label is known. Secondly,

each one of them should be sufficient enough to infer the true label. Under the two

settings listed above, two classifiers are trained on each of the feature sets. Then,

for each of the classifier, new data are added to the training set for the current

classifier using information from the other classifier. This method suffers less from

the problem of the inherent bias of only using one classifier, a problem of self-

training.

These approaches have been applied to Discourse Parsing problem, with some

successful result. (Fisher and Simmons, 2015) [12] explored self-training tech-

nique to shallow discourse parsing. They adopt an HMM-like model which is

common for shallow discourse parsing. Then, they use this model to predict the

relation label of the unlabeled instances. It is also used to calculate the density es-

timation of each unlabeled instance. The density estimation, when weighted with

the entropy of the currently predicted relation, is being used to decide if the current

prediction should be filtered or not. Their approach shows a 9% improvement on
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the total performance across all relations.

(Jiang et al., 2016) [22] applied the co-training technique to discourse parsing.

They use two discourse parsers: one is CODRA [23] and another is a simplified

version of DPLP [20]. The two parsers are very different from each other. CODRA

uses various features from structure information, lexical chains, text organization

and dominance set, and uses a CKY style parsing algorithm to construct the label

probability for each possible tree structure. On the other hand, the simplified ver-

sion of DPLP uses Bag of Words as features, and uses a shift-reduce style parsing

algorithm to construct the discourse tree greedily. Jiang’s approach shows im-

provement in the performance of infrequent relations. However, there are some

negative effects on some frequent relations like Elaboration, Attribution, Joint, and

Explanation.

2.2.2 Heterogeneous Supervision

Heterogeneous supervision refers to the scenario where multiple sources of weak

supervision are applied for unlabeled data. In this type of situation, for each un-

labeled instance, different sources of weak supervision may provide conflicting

supervision labels. A trivial way to deal with the conflict is taking majority voting

or randomly selecting one. But recently more systematical approaches have been

suggested where we could use machine learning method to model the dynamics of

supervision from different sources.

(Ratner et al., 2016) [35] introduced a way that employs “a paradigm for the

programmatic creation of training datasets” which they called “Data Program-

ming”. In this framework, heterogeneous sources of automatic labeling functions

and unlabeled data are required as inputs. The labeling functions are required to

have high precisions (> 80% is recommended), but are not expected to be always

correct. Moreover, these labeling functions are not required to always output a

label when seeing an unlabeled data instance. After receiving all the inputs, the

framework learns the accuracies for each of the labeling functions by looking at

how well the labeling functions would label the unlabeled data by comparing them

against each other. These accuracies are then being used to generate a distribution

over all possible labels for each unsupervised data point.
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Figure 2.1: The generative model structure of Data Programming.

More specifically, in the following part we will use these notations:

• F : number of labeling functions

• N: number of unsupervised data instances

• Yi: the true label on instance i which without the loss of generality we will

force it to be non zero

• α j: the probability of labeling function j gives the correct label across all

possible instances

• β j: the probability of labeling function j successfully gives a label

• Li j: the label given by labeling function j on instance i where Li j = 0 means

that it fails to infer a label

• Oi: output of the final classification model on instance i

• S: any standard loss function, including but not limited to hinge loss, softmax

cross entropy loss, and least square errors.

Data Programming aims at learning a generative model shown in Figure 2.1,

with the following distribution:
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∀i∈ {1, ...,N},P(Yi,Li) =
F

∏
j=1

(β j(α j×1[Yi=Li j]+(1−α j)1[Yi 6=Li j])+(1−β j)1Li j=0)

In order to learn the optimal α,β , we maximize the probability given by our

observations, aggregating over all possible hidden values:

α,β = argmaxα,β

N

∑
i=1

log(∑
Yi

P(Yi,Li))

This optimization can be done easily using Stochastic Gradient Descent.

After we successfully gather the value of α,β , for each data point, given by the

observation of the labels coming out from the labeling functions, we have:

P(Yi|Li j) =
P(Yi,Li j)

P(Li j)
∝ P(Yi,Li j)

After that, we train a final machine learning model that utilize a noise-aware

empirical loss function:

loss =
N

∑
i=1

EYi∼P(Yi|Li)[S(Yi,Oi)]

The Data Programming approach has been applied to NLP tasks, with success

in relation extraction task and sentiment analysis task [3].

The Data Programming approach is similar to the work of (Liu et al., 2017)

[29]. However, Liu use a more sophisticated model. One of the weaknesses in Data

Programming is that for each labeling function, the accuracy is the same across all

possible data instances. However, this assumption usually does not hold. In reality,

for all the instances that a specific weak supervision approach fails to provide a

correct label, they may have a similar representation. This is because intuitively

each weak supervision approach would make similar mistakes for similar cases.

Because of this, they use a logistic regression from the representation of the data to

model how accurately can a labeling function generate a correct label for a specific

instance. Besides, instead of separating the accuracy training of labeling functions

and the final machine learning model training, they combine these two as well as
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representation learning together into one model, and train it from end to end.

2.2.3 Few Shot Learning

Few shot learning refers to the classification task on a training set where there

are only a few training samples per class. This type of task is usually required to

be done without using any external data source for transfer learning. Despite the

hardness of this type of problem, there have been numerous recent works on this

problem on multiple computer vision datasets like omniglot [26] or mini-imagenet

[43] with successful results. In most of the recent works, “few” usually refer to 5

[39] or even 1 [25] samples per class. However, in our case, the number of samples

for each infrequent relation can usually reach more than 100. While this number is

much larger, since Natural Language Processing is still a much different problem

from Computer Vision, and we may create labeling functions using less than 100

samples for some labels, our task is still related to Few Shot learning.

Most of these works focus on learning an algorithm that map the input, usually

can be seen as in Rn, into a task-specific metric space in Rm, with m << n. In the

final metrics space where the dimension is small, the classification can be done in

a more efficient way [13, 25, 39, 43].

For instance, in Prototypical Network [39], for each class, one learns a “pro-

totype” vector for each class, and the prediction is made base on closeness to the

prototype.

More specifically, in the following part we will use these notations:

• f : Rn→ Rm: a learnable transformation function which is usually a neural

network

• k: the id of the class

• Sk: the set of all the input training data that are of class k, which by itself is

a subset of Rn

Then the prototype vector pk is given as:

pk =
1
|Sk| ∑

x∈Sk

f (x)

where this is learned iteratively whenever f (x) is updated.

16



The class prediction is given as:

p(y = k|x) = exp(−d(pk, f (x)))
∑k′ exp(−d(pk′ , f (x)))

where d could be any distance metrics function. In the original work for Pro-

totypical Network [39], they choose squared Euclidean distance.

2.2.4 Summary

In this section, we list some previous approaches to the generic learning with lim-

ited labeled data problem. Self-training and co-training have been applied to dis-

course parsing problem before, with some successful results but are also limited in

certain aspects. On the other hand, Heterogeneous supervision approaches, most

notably Data Programming, have not been applied to discourse parsing yet. This

is the main goal of our thesis. However, applying Data Programming to discourse

relation identification is not trivial. One issue we need to tackle is to provide the

sources of supervision. In order to build these sources, standard machine learning

methods can be used but we are also curious to see if Few-Shot learning techniques

may be also helpful. Our workflow is described in detail in the next Chapter.
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Chapter 3

Our Approach
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Our approach is centered around Data Programming. However, just as we

previously mentioned, the approaches in Data Programming cannot be directly ap-

plied to our problem. There are two reasons for this. First is because of how the

labeling functions are constructed in Data Programming’s original work. Second

is because Data Programming’s original way of training a final model is not ideal

for our problem.

Figure 3.1: Example of hand-written labeling function from [35]

In Data Programming’s original work, the labeling functions are usually heuris-

tic based and are hand-written by experts. This allows them to have a precision

close to 80% while having a reasonable coverage across multiple cases. Figure 3.1

shows an example of what some of the labeling functions look like for the Genomes

Extraction task in Data Programming’s original work [35]. However, this is unfea-

sible in discourse relation identification since there are too many variations that are

too hard to capture by simple hand-written functions [31].

Besides labeling functions, we can not directly follow Data Programming’s ap-

proach in training a final model. We will have both data with ground truth label

and data with noisy label provided by Data Programming during the final training.

Ideally, we need to take both into account when training a final model. Besides,

Data Programming’s final loss function is optimized for binary classification prob-

lems. In a multi-class scenario, while one could directly borrow the loss function

from the binary case, we find it to be not ideal.

In the following of this Chapter, we describe our ways to tackle the problems

listed above. In Section 3.1.1 we introduce an alternative method of creating la-

beling functions without the involvement of human experts. In Section 3.1.2 we

describe how we conduct the final multi-class training using both outputs from Data
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Programming and ground truth labels. In Section 3.2 we list the classifiers we use

for the previous two sections, including those that are based on Few-Shot Learning

techniques, which are introduced with the hope that Few-Shot Learning techniques

could create better labeling functions compared to traditional classifiers.

3.1 Our workflow

3.1.1 Training Labeling Functions

Our aim is to create labeling functions for discourse relation identification. We

need these labeling functions to have high precisions, ideally close to the 80% rec-

ommendation set up by Data Programming [35]. We also hope the classifier we

created would have reasonable coverage across different cases. In our work, we

focus on creating labeling functions from some ensemble machine learning meth-

ods. Our idea is similar to the Bootstrap Aggregating method [7]. We randomly

sampled half of the labeled training data four times. This creates four different

but possibly overlapping dataset. Then, on each of the dataset, we create a single

classifier on top of it. The schematic graph of this process is shown in Figure 3.2.

Figure 3.2: Schematic graph of the creation of labeling functions.

However, these classifiers do not meet the precision requirement of Data Pro-

gramming yet. Theoretically, Data Programming only work well if each labeling

function has an precision of more than 80% [35]. In order to tackle this issue, we
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applied an idea that is commonly used in most self-training methods [38]. The

idea is to utilize the internal confidence scores of classifiers for filtering. Ideally, if

we filter out predictions that have relatively low confidence scores according to the

classifier, then we would boost the precision of our labeling functions. Moreover,

for the instances where the confidence score is too low, it can be just treated as

unknown, which is an acceptable type of input to Data Programming framework.

The schematic graph of this process is shown in Figure 3.3.

Figure 3.3: Schematic graph of how the filtering is done

We suggest two ways of filtering. One way is to set up a uniform boundary

for all labels. This is a somewhat naive approach that had previously been used

by [22]. In this method, as long as the confidence score is higher than a fixed pre-

defined boundary, regardless of what the prediction is, it is kept as input to Data

Programming. Otherwise, it is removed. Another way of filtering is we allow each

of the possible classes predicted by labeling functions to have different pre-defined

boundaries, and dynamically adjust the boundaries such that the distribution of

labels selected is the same as the distribution of labels in the training set. This idea

of having different boundaries for each label is inspired by (Jiang et al., 2016) [22]

and ideologically similar to the filtering techniques used by (Fisher and Simmons,
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2015) [12]. Ideally, having different boundaries may tackle one issue in uniformed

boundary: classifiers are very likely to fit more towards commonly appeared labels,

so for a specific confidence score, there might be much more frequent labels than

infrequent labels, which cause the final model to be even more likely to fit more

towards common labels instead of infrequent labels.

After we conduct filtering and only keep the predictions that have higher confi-

dence scores, we could invoke Data Programming in the standard way as previously

described in Section 2.2.2. In this process, the precisions of each of the labeling

functions are learned.

3.1.2 Final Training

In this section, we describe how to create a final model for discourse relation iden-

tification. After learning the precision for each labeling function, for each unsu-

pervised instance, we could use the output of labeling functions on that instance to

give rise to a probabilistic distribution across all possible labels. Then, we could

train another classifier that utilizes these probabilistic distributions. This classifier

is being used as the final classification model.

Here, we again conduct slightly different approaches from the standard Data

Programming. In standard Data Programming, data with ground truth label is usu-

ally not present so the loss function should only take into account the weakly la-

beled data [35]. However, in our case, we have both data with ground truth label

from the training set and the weakly labeled data. So our loss function could take

both into account.

Besides, we are not facing a binary task here, and the original noise-aware loss

function is optimized for binary tasks. So we slightly alter the loss function for the

weakly labeled part. In our work, for each unsupervised instance, we only keep the

probability estimations of labels that show up in the results of the labeling functions

operating on that instance. For the probability estimations of labels not shown up in

the labeling functions on that instance, we remove them. This is because in a binary

classification problem, if we assume that one labeling function is giving the wrong

label on an instance, we could directly conclude that the true label for that instance

is precisely the opposite of the one offered by the labeling function. However, in
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a multi-class scenario, if we assume that one labeling function is giving the wrong

label on an instance, we only know that the true label is among one of the rest

possible labels while not knowing which one actually is. So we have to average the

probabilities to all other labels. This would be way too noisy for a final classifier

to learn.

More specifically, in the following part we will use these notations:

• Oi: output of our final model

• Lwl,i: the output of all labeling functions on unlabeled instance i

• Ywl,i: the label from Data Programming on unlabeled instance i

• Ygt,i: the ground truth label on labeled instance i

• S: any loss function.

Then the loss function takes the following form:

loss from ground truth =
Ngt

∑
i=1

(S(Ygt,i,Ogt,i))

loss from weakly labeled =
Nwl

∑
i=1

∑
Ywl,i

1Ywl,i∈Lwl,iP(Ywl,i|Lwl,i)S(Ywl,i,Owl,i)

final loss = loss from ground truth+ loss from weakly labeled

(3.1)

3.2 Classifiers Used in Our Approach
In our approach, we need classifiers both as labeling functions and as the final

method. We mostly focus on two types of models: simple neural network based

classifiers and Few-Shot Learning based classifiers. The use of simple neural net-

work based classifiers is because usually they benefit more from adding more data

compared to most other machine learning methods while they are still capable of

learning an acceptable labeling function when only half of the training data are in

presence. The use of Few-Shot Learning based classifiers is because usually they

are even better in terms of providing higher accuracies for infrequent relations dur-

ing the training of labeling functions where we only have half of the data. We also
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incorporate some linear methods for comparison.

More specifically, we combined the following models in our approach:

NN0: A simple feed-forward neural network with one hidden layer and soft-

max layer for prediction.

NN1: Same as NN0, except the learning rate is not fine-tuned. This is to

simulate the scenarios where in some neural networks the learning rate is very

hard to tune right.

NN2: Same as NN1, except added dropout [41] to the first hidden layer. Dropout

is a common approach in neural networks, and we would like to see if adding

dropout may bring any differences.

NN3: This is a neural network where we design a Prototypical Network [39]

for discourse relation identification. We hope this technique from Few Shot Learn-

ing could further reduce the issues in creating labeling functions. It has the same

hidden layer as NN1 has, but the final softmax layer is replaced by calculating

the distance to the prototype and make predictions based on the distance metric.

Besides, different from [39], instead of training in an iterative way where the pro-

totype is fixed in the training iteration, since the number of samples we have is

much more than what they had in [39], we conduct a slightly different way of

learning the class prototype. Our model essentially treats prototype as a variable

that we need to update in Stochastic Gradient Descent, and train the whole model

from end to end using Stochastic Gradient Descent.

NN4: Same as NN3 except we add dropout [41] to the first hidden layer.

Dropout is a common approach in neural networks, and we would like to see if

adding dropout may bring any differences.

SVM: This is a standard Linear SVM model. It is the same as the one used in

the state of the art from [44]. It is being used for two purposes. First, we would

like to see if our approach can help linear methods. Second is we would like to

know if we could improve over the state of the art.

LR: This is a standard Logistic Regression model. It is also being used to see

if our approach can help linear methods.
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3.3 Summary
In this chapter, we describe various design choices we proposed to incorporate Data

Programming into discourse relation identification. We first describe our way of

creating labeling functions using an ensemble method. We next describe two differ-

ent filtering mechanisms used to filtering out the output from each of the individual

classifier created through the ensemble method. We then describe our alternative

loss function for training a final model. Lastly, we show various different classifiers

in different configurations we would like to incorporate in the previous two steps.

In the next chapter, we are going to empirically evaluate these design choices.
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Chapter 4

Experiments
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Relation Counts
Elaboration 7106
Attribution 2727
Joint 1775
Same-Unit 1277
Contrast 984
Explanation 876
Background 826
Cause 611
Enablement 522
Temporal 457
Total 17161

Relation Counts
Evaluation 519
Comparison 280
Condition 274
Topic-Change 199
Manner-Means 192
Summary 191
Textual-Organization 148
Topic-Comment 132
Total 1935

Table 4.1: Top 10 Frequent relations (left) and the 8 infrequent relations
(right), ordered by number of occurrences. The switch between Tem-
poral and Evaluation is explained in the text.

In this chapter, we describe the experiments we conducted to evaluate our ap-

proach. We first describe the setups of our experiments, in Section 4.1, 4.2, 4.3.

We then describe the first series of experiments we conducted for evaluating the

performance of all our models over all aggregated metrics in Section 4.4. A se-

lected amount of our models were also being evaluated with the per-relation per-

formances. This per-relation analysis is shown in Section 4.5. At last, in order to

find how did Data Programming actually help improve the performance of infre-

quent relation, we conducted an error analysis, which we describe in Section 4.6.

4.1 Datasets
We conducted our experiments on the Rhetorical Structure Theory Discourse Tree-

bank (RST-DT) [9]. In this dataset, there are 18 coarse-grained discourse relations,

as listed in Table 4.1. With respect to frequencies, (Jiang et al., 2016) [22] divided

these relations into two groups. The top 10 most frequent relations, shown on the

left side of Table 4.1, in total take up 90% of the training data. While the rest 8 in-

frequent relations, shown on the right side of Table 4.1, take up 10% of the training

data. For consistency, we will follow their definition. One might note that Tem-
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poral, a frequent relation, has a lower number of occurrences than an infrequent

relation, Evaluation. This is because compared to [22] we use a slightly different

definition of the number of occurrences. Our number of occurrences is generated

based on the count on a right-heavy binarized version of the RST-DT tree with la-

bel attachment [32]. This makes more sense for our purpose since this number is

exactly equal to the number of training samples used by all of the machine learning

methods utilized in our approach. Although whether it is a good measure or not is

subject to debate [32].

For the unsupervised dataset leveraged in training data expansion, we used the

New York Times Annotated Corpus (NYT) [36], consisting of news documents,

which is the same genre as RST-DT is.

Our task is to label discourse relations given discourse trees. Whereas RST-DT

already has human annotated discourse trees for the documents, NYT does not. On

NYT, therefore, we used the state of the art rhetorical structure classifier from [44]

to create discourse trees. We used each node in a discourse tree as an unlabeled

data instance for prediction. Note that we used only part of the NYT (the first

60,000 rhetorical tree nodes) for shorter computing time. However, adding more

data made no significant difference to performance when we investigated this issue

re-running our experiments with 90,000 tree nodes.

4.2 Evaluation Metrics
(Morey et al., 2017) [32] have recently shown that there are inconsistencies across

the research community on how discourse parsing performance was evaluated on

the RST-DT dataset. The main discrepancy comes with if the evaluation should be

done using the micro-averaged F1 or the macro-averaged F1. Since the discourse

parsing community has not reached an agreement on how evaluation should be

done, and all metrics listed by Morey are not sensitive to poorly performed infre-

quent relations, we list the detail of the evaluation metrics we applied to our model

below.

We define our notations first:

• i ∈ D: the index of a document in the testing dataset D

• r ∈ {0,1, ...,17}: the index of a specific relation
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• hir: the number of correct predictions the discourse parser made on docu-

ment i and relation r, and for “correct”, we only require the discourse relation

label but not the nuclearity prediction to be correct (this would be equivalent

of the “R” metrics used by [32])

• pir: the number of predictions made by an discourse parser on document i

and relation r

• gir: the number of gold relations in the evaluation set on document i and

relation r.

Then, we define micro-averaged F1 score (Micro) as:

2× ∑i ∑r hir
∑i ∑r gir

× ∑i ∑r hir
∑i ∑r pir

∑i ∑r hir
∑i ∑r gir

+ ∑i ∑r hir
∑i ∑r pir

We also define document macro-averaged F1 score (Doc Macro) as:

averagei∈D(
2× ∑r hir

∑r gir
× ∑r hir

∑r pir

∑r hir
∑r gir

+ ∑r hir
∑r pir

)

The first definition, micro-averaged F1 score, is the most standard and com-

monly used evaluation metrics in the past literature. The second definition, doc-

ument macro-averaged F1, which appeared in more recent publications [32], aims

at measuring the average performance of the discourse parser on each document.

Both of the two metrics, however, do not suffer if only the infrequent relations

may perform extremely badly. In order to be more sensitive to the performance of

infrequent relations, we need to evaluate the per-relation F1 score for each of the

relation, defined as:

2× ∑i hir
∑i gir
× ∑i hir

∑i pir

∑i hir
∑i gir

+ ∑i hir
∑i pir

Based on the above, we further define another metrics, the relation macro-
averaged F1 score (Rel Macro), as:

averager∈{0,1,...,17}(
2× ∑i hir

∑i gir
× ∑i hir

∑i pir

∑i hir
∑i gir

+ ∑i hir
∑i pir

)
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These two scores are more sensitive to potentially extremely poorly performed

relations.

To separately see the effects of our model on frequent relations and infrequent

relations, we also define two variants of the relation macro-averaged F1 score. The

first variant only takes the average of the per-relation performance on the Top 10

frequent relations (Freq Macro). The second variant only takes the average of per-

relation performance on the 8 infrequent relations (Inf Macro).

4.3 Extra Experimental Details
For features used by our models, we mostly based on features compiled by the

state-of-the-art in discourse relation identification [44]. For neural network based

models, the most common 600 features were extracted and combined with the

word2vec representation of the first two words and the last two words on each dis-

course unit. For linear models, all features were used. We also adopt the state-of-

the-art’s approach of training one classifier for each of the 3 level 0(intra-sentential,

sentential, paragraph) [44].

Data Programming was trained using the Snorkel implementation [3] which

internally uses Stochastic Gradient Descent. All neural network based models were

implemented using Tensorflow [1] and trained using Adam [24]. All linear models

were implemented using Scikit-learn [34]. All hyperparameters were tuned on an

eight fold cross-validation set before applied on to the test set unless otherwise

specified.

For all our experiments, we forced the labeling function and final method to

be the same type of model with the same hyperparameter. In this way, it is eas-

ier to claim if Data Programming actually brings improvement to performance.

Otherwise one may argue that the performance improvement is gained by using a

labeling function that works better than the final method.

All result below are reported as the average of 10 different runs with different

random initialization points on the official test set of RST-DT using standard RST-

Parseval method [31] [32].
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Model Micro Doc Macro Rel Macro Freq Macro Inf Macro
MV 58.1 61.6 34.9 41.0 27.4
DP 58.2 62.0 35.1 41.2 27.5
Increase
with DP

0.17% 0.65% 0.57% 0.48% 0.36%

Table 4.2: Majority Voting v.s. Data Programming. All results are based on
NN0 model

4.4 Overall Results
In this section we describe the overall results on all aggregated metrics defined in

Section 4.2 across various configurations previously described in Chapter 3.

We first conducted two ablation tests on Data Programming. The first ablation

test aims at evaluating if the Data Programming process actually helps over Ma-

jority Voting. The second ablation test aim at evaluating if the loss function we

defined in Section 3.1.2 is better than the original loss function in Data Program-

ming previously described in Section 2.2.2. The results are shown in Section 4.4.1.

Then, we experimented with using two different filtering mechanism previ-

ously described in Section 3.1.1. The results are shown in Section 4.4.2.

Next, we experimented with combining Data Programming and Prototypical

Network, which was listed as NN3 and NN4 in Section 3.2. The results are shown

in Section 4.4.3.

In the end, we experimented with combining Data Programming with linear

models, which were listed as SVM and LR in Section 3.2. The results are shown

in Section 4.4.4.

4.4.1 Ablation Test on Design Choice related to Data Programming

Our first task is to show if the design choice we made over using Data Program-

ming actually brings us benefit. This involves determining if using the probabilistic

distribution from Data Programming actually helps over just using a simple ensem-

ble using majority vote. It also involves experimenting whether we should add the

probabilistic distribution of labels that never shows up in our labeling functions in

a multi-class environment.
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Model Micro Doc Macro Rel Macro Freq Macro Inf Macro
All 58.4 62.5 33.0 40.0 24.3
LF Only 58.2 62.0 35.1 41.2 27.5
Increase
with
LF only

-0.34% -0.80% 6.36% 3.00% 13.17%

Table 4.3: Using all probability in Data Programming v.s. Only keep those
that show up in Labeling Functions. All results are based on NN0 model

In Table 4.2 we show the performance of using the probabilistic distribution

from Data Programming over using the Majority Voting mechanism. Unfortu-

nately, using Data Programming is not significantly better than doing Majority

Voting. However, it does appear that there is a small positive trend when Data

Programming is applied.

In Table 4.3 we show the performance of using the probabilistic distribution

from Data Programming in two different way. As described previously in Chap-

ter 3, the original Data Programming approach would keep a probability over all

possible labels. This is reasonable in their original binary task since the alterna-

tive of a wrong positive prediction is precisely negative. However in our task, as

we are in a multi-class environment, the alternative of an incorrect prediction on

Evaluation does not directly give us any information about which label it would be

other than Evaluation. So using the probabilistic distribution here would involve

too much noise. The adverse effect of the extra noise is also reflected in the result

we have. While the version of NN2 with all the probabilities have higher perfor-

mance on the metrics of both Micro F1 score and Document Macro F1 score, the

Relation Macro F1 score is consistently lower. This means that this extra amount

of noise cause the infrequent relations to perform less well in the version of NN0

with all the probabilities. Since our primary task is to improve the infrequent rela-

tions, we prefer the variant that only keep the probabilities that show up in labeling

functions.
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Model Micro Doc Macro Rel Macro Freq Macro Inf Macro
NN0 58.0 61.8 34.3 40.9 26.1
NN0 + DP 58.1 62.1 35.1 40.7 27.1
Increase
with DP

0.17% 0.49% 2.33% -0.49% 3.83%

NN1 56.9 60.6 31.4 39.1 21.8
NN1 + DP 57.5 61.2 32.6 40.0 23.4
Increase
with DP

1.5% 0.99% 3.82% 2.30% 7.34%

NN2 58.5 62.4 31.4 39.3 21.5
NN2 + DP 57.9 61.7 27.3 37.3 15.2
Increase
with DP

-1.03% -1.12% -13.06% -5.09% -29.30%

Table 4.4: Filtering using Uniform Boundary

4.4.2 Effects of Data Programming with Different Filtering
Techniques

We then show the result of our model under scenarios using different types of fil-

tering techniques, previously described in Section 3.1.1. This was done on several

simple neural network models we proposed for discourse relation identification.

Table 4.4 shows the performance of using the uniform boundary technique. We

can see here that we have performance improvement on both of NN0 and NN1 in

terms of infrequent relations. Moreover, we are able to show a significant leap

in Micro-averaged performance on NN1, a not well tuned neural network. This

indicates that the Data Programming techniques with simple boundary would work

exceptionally well if the neural network was too hard to tune right, and even if it is

tuned right it may still provide some performance improvements. However, this is

not the case for NN2, the model with dropout. Under a uniform boundary filtering,

the performance was actually decreasing after Data Programming.

Table 4.5 shows the performance of using the dynamic boundary technique.

Here, we get a somewhat different result. We are able to improve the performance

of NN2 for infrequent relations with Data Programming by 4.19%. This is impor-

tant because dropout is a standard technique in neural networks now, as dropout-
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Model Micro Doc Macro Rel Macro Freq Macro Inf Macro
NN0 58.0 61.8 34.3 40.9 26.1
NN0 + DP 58.2 62.0 35.1 41.2 27.5
Increase
with DP

0.34% 0.32% 2.33% 0.73% 5.36%

NN1 56.9 60.6 31.4 39.1 21.8
NN1 + DP 57.5 61.2 32.5 40.0 23.1
Increase
with DP

1.05% 0.99% 3.50% 2.30% 5.96%

NN2 58.5 62.4 31.4 39.3 21.5
NN2 + DP 58.4 62.3 32.1 39.9 22.4
Increase
with DP

-0.17% -0.16% 2.23% 1.53% 4.19%

Table 4.5: Filtering using Variable Boundary

enabled models usually have a higher performance. Indeed, given by the results

we present, dropout itself does improve the Micro-average performance compared

to the one without dropout. So ideally we hope our approach could boost a model

that is generically more powerful. However, our Micro-averaged performance on

the NN2 with Data Programming was still not as good as the one without Data

Programming. Also, we observed that when dropout is enabled, the baseline per-

formance of NN2 on infrequent relations is already much worse than NN0.

The results on a dropout enabled model partially coincide with the phenomenon

discovered in [16], where they reported that when dropout is enabled, the proba-

bility output from the softmax layer started to drift from the true distribution of

accuracy. This could be the reason why switching filtering techniques only have a

substantial effect on the model with dropout.

4.4.3 Effects of Data Programming on Prototypical Networks

We also experimented with Prototypical Network on the problem of discourse re-

lation identification. As previously described in Chapter 2, this model has been

working well on some other tasks with only limited labeled data. We are hoping

that this model could be a better labeling function compared to the standard neural
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Model Micro Doc Macro Rel Macro Freq Macro Inf Macro
NN0 58.0 61.8 34.3 40.9 26.1
NN0 + DP 58.2 62.0 35.1 41.2 27.5
Increase
with DP

0.34% 0.32% 2.33% 0.73% 5.36%

NN3 58.6 62.3 34.8 41.3 26.6
NN3 + DP 58.5 62.3 35.4 41.6 27.6
Increase
with DP

-0.17% 0.00% 1.72% 0.73% 3.76%

Table 4.6: Effects of Data Programming on Prototypical Networks without
Dropout (NN3), NN0 is listed here as baseline

network model. The experiments were done for both the variant with or without

Data Programming, following the conventions described in Section 4.3. Starting

from here we are only experimenting with filtering using variable boundary, which

is the most effective filtering method we found according to the previous section.

The performance is shown in Table 4.6 and Table 4.7.

The regular Prototypical Network, denotes here the NN3, does show some

benefit of predicting infrequent relations over NN0. However, if we apply Data

Programming on NN3, while we are still able to get improvement on infrequent

relations over the vanilla NN3, the performance we get is mostly the same as ap-

plying Data Programming on NN0. We also get a decrease in Micro-averaged

performance, which is not seen in NN0.

On the other hand, when comparing the variants with dropout, which are de-

noted as NN4 and NN2, the Prototypical Network get much higher performance on

infrequent relations. One may also observe that the performance gap between NN4

and NN3 are lower than the ones between NN2 and NN0. We are not sure why a

Prototypical Network type of loss would reduce the problem of dropout on fitting

over infrequent relations. The performance on infrequent relations was lower than

NN3, nevertheless. When combining with Data Programming, we get some im-

provements, but the magnitude of improvements are smaller than the ones seen on

NN2 and NN3.

In summary, we find the results of combining Prototypical Network with Data
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Model Micro Doc Macro Rel Macro Freq Macro Inf Macro
NN2 58.5 62.4 31.4 39.3 21.5
NN2 + DP 58.4 62.3 32.1 39.9 22.4
Increase
with DP

-0.17% -0.16% 2.23% 1.53% 4.19%

NN4 58.8 62.6 34.3 40.9 26.0
NN4 + DP 58.7 62.8 34.5 41.0 26.4
Increase
with DP

-0.17% 0.32% 0.58% -0.24% 1.54%

Table 4.7: Effects of Data Programming on Prototypical Networks with
Dropout (NN4), NN2 is listed here as baseline

Programming to be less effective compared to the ones previously seen in Sec-

tion 4.4.2. Although considering that Prototypical Network based models have a

better performance than the regular neural network based models during the scenar-

ios where Data Programming is not enabled, we can still conclude that we reached

our original goal of creating better labeling functions using Few-Shot Learning

techniques. They might not scale well when more data is added, however.

4.4.4 Effects of Data Programming on Linear Models

We also experimented with combining Linear models with Data Programming.

Historically these models, especially SVM, have been providing excellent results

in the field of discourse parsing.

The performance is shown in Table 4.8. We realize linear model hardly had any

benefit from Data Programming, regardless of using a maximum margin loss like

in SVM or using a probabilistic loss like in Logistic Regression. This is probably

caused by the internal limitation of linear models.

4.5 Per Relation Performance Analysis
In order to show that our approach actually helps infrequent relations without hin-

dering too much the performance of frequent relations, we conduct a detailed per-

relation performance analysis. This is done for two types of models. One is NN2 +
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Model Micro Doc Macro Rel Macro Freq Macro Inf Macro
LR 57.8 62.0 30.6 38.1 21.2
LR + DP 57.6 61.8 29.5 37.9 19.0
Increase
with DP

-0.35% -0.32% -3.59% -0.52% -10.38%

SVM 59.5 63.6 35.1 43.2 25.1
SVM + DP 59.5 63.6 35.1 43.4 24.9
Increase
with DP

0.00% 0.00% 0.00% 0.46% -0.80%

Table 4.8: Effects of Data Programming on Linear Models

DP using variable boundary filtering; another is NN4 + DP using variable bound-

ary filtering. They are selected because they have the best Micro-averaged perfor-

mance.

Table 4.9 shows the per-relation performance analysis for NN2, using the ver-

sion with Data Programming against the one without Data Programming. We can

see that most relation indeed have a positive increase in performance. And for those

whose performance is lower after Data Programming, the decrease is mostly small

except for Comparison. Based on this observation, we mostly reached the goal of

improving infrequent relations without harming the performance of frequent rela-

tions.

Table 4.10 shows the per-relation performance analysis for NN4, using the

version with Data Programming against the one without Data Programming. The

improvement over using Data Programming we have here is much worse than the

one we previously described in Table 4.9. Here, in fact, we have more infrequent

relations that have their pre-relation performance decreased after Data Program-

ming. Nevertheless, the decrease in the performance of the frequent ones is still

limited.

We compare our performance results with the ones from (Jiang et al., 2016)[22],

which is a previous work on improving infrequent relation using co-training (more

detail described in Chapter 2). We can see that for both of the models we have, we

are able to make sure that at least most of the frequent relations’ performances are

not being hindered too much, which is something that is not achievable from their
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Relation Count F1, before F1, + DP Changes in %
Elaboration 7106 50.30 50.73 0.86
Attribution 2727 86.60 86.17 -0.50
Joint 1775 45.88 46.42 1.20
Same-Unit 1277 79.65 79.78 0.16
Contrast 984 30.87 30.66 -0.69
Explanation 876 16.03 16.58 3.45
Background 826 23.47 24.10 2.68
Cause 611 5.14 6.07 17.95
Enablement 522 52.56 52.83 0.52
Temporal 457 2.55 5.74 125.44
Evaluation 519 1.05 2.38 126.94
Comparison 280 11.83 8.44 -28.63
Condition 274 55.59 57.07 2.66
Topic-Change 199 1.64 2.51 52.57
Manner-Means 192 37.93 39.58 4.37
Summary 191 45.05 45.85 1.7
Textual-Organization 148 18.53 23.63 27.56
Topic-Comment 132 0.00 0.00 0.00

Table 4.9: Per-Relation Performance Analysis for NN2, before and after
Data Programming. Relations that benefit from Data Programming are
colored in green, those that are not are colored in Gold

result. However, Jiang use a different baseline method based on CODRA [23], so

the result may be different if it was done with neural networks.

4.6 Error Analysis
In order to see how exactly does our approach affect the performance of infrequent

relations, we did an error analysis on our model to see what actually causes our

model to perform differently on infrequent relations. The results are shown with

NN2 using variable boundary, which is the most successful model we have when

Data Programming is applied. The confusion matrix for the one without Data

Programming is shown in Table 4.11, and the one with Data Programming is shown

in Table 4.12. In both tables, each row represents the actual label, and each column
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Relation Count F1, before F1, + DP Changes in %
Elaboration 7106 51.71 51.71 0.00
Attribution 2727 86.52 86.55 0.03
Joint 1775 47.37 47.59 0.46
Same-Unit 1277 80.89 80.29 -0.74
Contrast 984 30.21 30.78 1.89
Explanation 876 15.58 16.87 8.28
Background 826 26.08 25.34 -2.84
Cause 611 7.56 8.40 11.11
Enablement 522 54.01 52.59 -2.63
Temporal 457 9.16 9.58 4.59
Evaluation 519 2.29 2.60 13.54
Comparison 280 17.44 15.94 -8.60
Condition 274 61.25 58.86 -3.90
Topic-Change 199 2.79 2.48 -11.11
Manner-Means 192 38.54 39.47 2.41
Summary 191 47.98 47.54 -0.92
Textual-Organization 148 35.89 35.71 -0.50
Topic-Comment 132 1.82 8.76 381.32

Table 4.10: Per-Relation Performance Analysis for NN4, before and after
Data Programming. Relations that benefit from Data Programming are
colored in green, those that are not are colored in Gold

represents the predicted label.

The two tables explain why the performance on infrequent relations is still low.

It is mostly caused by the recall rates of infrequent relations. They are proportional

to the number of predicted infrequent relations which are highlighted in green in

Table 4.11 and Table 4.12. The recall rates of infrequent relations, in general, are

much lower than the recall rates of frequent relations. The precisions of infrequent

relations, while also not good, are still usually much higher than the recall rate and

might be sometimes acceptable. Moreover, one would observe that most of the

actual infrequent relations are being predicted as Elaboration, the most common

relation in RST-DT. All predictions that are made to Elaboration are highlighted

in pink in Table 4.11 and Table 4.12. This happens because the machine learning

model could easily learn the Elaboration is the most common label and have a
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AT BA CA CMP CND CO EL EN EV EX JO M-M S-U SR TE T-O T-C T-CM
AT 308 1 0 0 0 0 8 0 0 0 0 0 1 0 0 0 0 0
BA 7 21 1 0 2 3 20 0 0 1 7 1 5 0 1 0 0 0
CA 0 1 2 0 0 3 29 2 0 6 16 1 1 0 0 0 0 0

CMP 0 2 0 2 0 4 17 0 0 1 0 0 0 0 0 0 0 0
CND 3 5 0 0 22 2 4 0 0 0 2 0 1 0 0 0 0 0
CO 2 2 0 0 2 51 24 0 0 0 12 0 3 0 0 0 0 0
EL 7 2 1 0 0 2 511 14 0 4 31 0 4 0 1 0 4 0
EN 2 0 0 0 0 0 11 25 0 0 0 0 1 0 0 0 0 0
EV 2 1 0 0 0 2 31 0 0 1 8 0 0 0 0 0 1 0
EX 0 0 2 0 0 2 41 1 0 13 6 0 0 0 0 0 1 0
JO 1 1 2 0 0 5 77 0 0 4 203 0 8 0 0 0 0 0

M-M 1 2 0 0 0 1 11 0 0 0 0 7 0 0 0 0 0 0
S-U 4 0 0 0 0 1 4 0 0 0 7 0 205 0 0 0 0 0
SR 0 0 0 0 0 0 13 0 0 0 1 0 0 9 0 0 0 0
TE 0 19 0 0 1 2 20 1 0 0 28 0 4 0 2 0 0 0
T-O 0 0 0 0 0 0 4 0 0 0 3 0 0 0 0 2 0 0
T-C 0 0 0 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0

T-CM 0 0 0 0 0 0 10 0 0 0 9 0 0 0 0 0 0 0

Table 4.11: Error Analysis, NN2 without Data Programming. Each row
represents the actual label and each column represents the predicted
label. The abbreviations of the relations are Topic-Change (T-C),
Topic-Comment (T-CM), TextualOrganization (T-O), Manner-Means
(M-M), Comparison (CMP), Evaluation (EV), Summary (SR), Con-
dition (CND), Enablement (EN), Cause (CA), Temporal (TE), Expla-
nation (EX), Background (BA), Contrast (CO), Joint (JO), SameUnit
(S-U), Attribution (AT), and Elaboration (EL), followed from the con-
ventions used by [23]

stronger bias towards predicting everything it does not know as Elaboration.

The Data Programming essentially helps in tackling the issue above. As we

could see, most of the improvements come from a higher recall rate, where the

values from the green boxes in Table 4.12 are consistently either higher or stay

the same compared to the green boxes in Table 4.11. The number of infrequent

relations that are being predicted as Elaboration is also reduced, where the values

in the pink column of Table 4.12 are usually lower than the ones in table 4.11. This

does provide an adverse effect on Elaboration’s recall. However, the improvement

in its precision has a larger effect. This contributes to the slight improvement in

the F1 score of Elaboration we saw in the previous section.
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AT BA CA CMP CND CO EL EN EV EX JO M-M S-U SR TE T-O T-C T-CM
AT 308 1 0 0 0 0 8 0 0 0 0 0 1 0 0 0 0 0
BA 7 22 1 0 2 3 18 0 0 1 7 0 6 0 1 0 0 0
CA 0 1 4 0 0 3 25 2 0 7 16 1 1 0 0 0 0 0

CMP 0 4 0 2 0 3 16 0 0 1 0 0 0 0 1 0 0 0
CND 3 4 0 0 23 2 3 0 0 0 2 0 1 0 0 0 0 0
CO 2 2 0 0 2 53 24 0 0 0 11 0 2 0 0 0 0 0
EL 7 3 2 0 0 2 502 17 2 8 29 0 4 0 1 0 5 0
EN 2 0 0 0 0 0 10 26 0 0 0 0 1 0 0 0 0 0
EV 3 0 0 0 0 1 28 0 1 3 8 0 0 0 0 0 1 0
EX 0 1 6 0 0 2 35 1 1 15 6 0 0 0 0 0 1 0
JO 2 2 3 0 0 6 71 0 0 8 203 0 7 0 0 0 0 0

M-M 1 2 0 0 0 1 10 0 0 1 0 7 0 0 0 0 0 0
S-U 4 0 1 0 0 1 4 0 0 0 7 0 203 0 0 0 0 0
SR 0 0 0 0 0 0 13 0 0 0 1 0 0 10 0 0 0 0
TE 0 19 1 0 0 1 19 1 0 0 29 0 4 0 4 0 0 0
T-O 0 0 0 0 0 0 4 0 0 0 2 0 0 0 0 3 1 0
T-C 0 0 0 0 0 0 3 0 0 0 2 0 0 0 0 0 0 0

T-CM 0 0 0 0 0 0 9 0 0 0 9 0 0 0 0 0 0 0

Table 4.12: Error Analysis, NN2 with Data Programming. Each row rep-
resents the actual label and each column represents the predicted
label. The abbreviations of the relations are Topic-Change (T-C),
Topic-Comment (T-CM), TextualOrganization (T-O), Manner-Means
(M-M), Comparison (CMP), Evaluation (EV), Summary (SR), Con-
dition (CND), Enablement (EN), Cause (CA), Temporal (TE), Expla-
nation (EX), Background (BA), Contrast (CO), Joint (JO), SameUnit
(S-U), Attribution (AT), and Elaboration (EL), followed from the con-
ventions used by [23]
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Chapter 5

Conclusion and Future Directions
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In our thesis, we show an alternative approach to improve the performance of

discourse parser on infrequent discourse relations. We present a workflow for ap-

plying Data Programming framework to discourse relation identification task, and

use this workflow to add more training data for a discourse relation identification

model. When applying a new variable boundary filtering mechanism proposed by

us, our empirical results show improvement on the performance of infrequent rela-

tions across different configurations of neural networks, with only limited negative

effect on the performance of frequent relations.

There is still plenty of room for improvement in our approach. First, since the

variable boundary strategy had a strong effect on the performance, meta-learning

strategies that can learn boundaries automatically might bring higher performance

improvement on our task. Such strategies may especially provide a better path to

integrate Data Programming with few-shot learning mechanism as meta-learning

has been shown to be helpful for Prototypical Network in semi-supervised learning

settings [42]. Additionally, we are also considering using a deep learning model as

the final model. This is because the benefit of more data would be more evident in a

deep learning model, compared to the simple feed-forward neural network we used.

Besides, in our current approach, the performance improvement between Data Pro-

gramming and Majority Voting is negligible. We think that might be caused by the

fact that all our labeling functions are created using the same method, whereas

Data Programming’s strength really comes from tacking scenarios in which label-

ing functions are entirely different. Under this assumption, alternative ideas from

ensemble methods like Adaboost [17] where each classifier is created for differ-

ent purposes are worth experimenting. Moreover, we only incorporated one type

of few-shot learning mechanism into our approach. Since there are some other

few-shot learning models available, they might bring a better result.
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