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A B S T R A C T

Cancers are characterized by somatic mutation arising from the interplay of

mutagen exposure and deficient DNA repair. Whole genome sequencing of tu-

mours reveals characteristic patterns of mutation, known as mutation signatures,

which often correspond with specific processes such as cigarette smoke expo-

sure or the loss of a DNA repair pathway. Quantifying DNA repair deficiency

can have clinical implications. Cancer chemotherapies which induce DNA dam-

age are known to be more effective against cancers with deficient DNA repair.

However, it is not yet known whether mutation signatures can serve as reliable

predictive biomarkers for response to these treatments. Furthermore, the current

understanding of mutation signatures stems largely from studies of primary, un-

treated tumours, whereas metastasis underpins as much as 90% of cancer-related

mortality. This thesis aims to (1) describe the association between mutation sig-

natures and clinical response to DNA damaging chemotherapy, (2) enable ac-

curate personalized assessment of mutation signatures and their evolution over

time, and (3) characterize the evolution of mutational processes in metastatic

cancers. To assess clinical actionability, we quantified signatures of single nu-

cleotide variants, structural variants, copy number variants, and small deletions

in 93 metastatic breast cancers, 33 of which received platinum-based chemother-

apy. We found that patients with signatures of homologous recombination defi-

ciency had improved responses and prolonged treatment durations on platinum-

based chemotherapy. Next, we formulated a Bayesian model called SignIT, which

improves the accuracy of individualized mutation signature analysis and infers
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signature evolution over tumour subpopulations. We demonstrated SignIT’s su-

perior accuracy on both simulated data and somatic mutations from The Can-

cer Genome Atlas, and validated temporal dissection using whole genomes from

24 multiply-sequenced cancers. We highlighted a potential clinical application of

mutation in a BRCA1-mutated pancreatic adenocarcinoma with low Homologous

Recombination Deficiency (HRD) signature but exceptional response to platinum-

containing chemotherapy. Finally, we deciphered mutation signatures from nearly

500 metastatic cancer whole genomes, revealing evolution of mutational processes

associated with late metastasis and exposure to cytotoxic chemotherapy. Taken

together, our findings demonstrate the complex interplay of factors shaping the

metastatic cancer genome. We highlight both clinical opportunities of studying ge-

nomic instability and the additional insights available from understanding their

temporal evolution.
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L AY S U M M A RY

Changes in DNA, known as mutations, happen for many reasons such as expo-

sure to cigarette smoke and ultraviolet rays. Healthy human cells have tools to fix

mutated DNA, but cancer cells often lose this ability. This might make tumours

vulnerable to chemotherapy designed to damage DNA, because healthy cells can

repair this damage but cancer cells cannot. Can we tailor treatments to exploit this

vulnerability? To answer this question, we detected all the mutations in about 500

late-stage cancers of different types. The patterns of DNA mutation can reveal if

a cancer is properly repairing DNA. Within breast cancers, we found that cancers

unable to repair broken DNA were more sensitive to chemotherapies called cis-

platin and carboplatin. This could help improve personalized treatment plans for

some cancer patients. We also found mutation patterns caused by chemotherapy,

showing that cancer treatments themselves can alter DNA.
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1
I N T R O D U C T I O N

1.1 research aims

The objective of this thesis is to precisely characterize the evolution and clinical

actionability of genomic instability in metastatic cancer. To address this objective,

we begin by demonstrating the clinical applicability of mutation signatures in

the treatment of metastatic breast cancers, using homologous recombination (HR)

as a model system. Next, we develop a statistical model capable of accurately

estimating the temporal evolution of mutational processes shaping individual tu-

mour genomes. Last, we catalog the mutational processes shaping 484 metastatic

cancers and relate them to potential clinical implications.

1.2 background

1.2.1 Cancer is an Evolving Genetic Disease

The first known work to probe the biological basis of heredity was published in

1866 by Gregor Mendel. In 1886, De Gouvea reported the first known case of inher-

ited retinoblastoma, providing evidence that cancer, like other traits, is heritable.

In the early 20th century, Boveri, Sutton, and Hunt demonstrated that genetic

material was organized into chromosomes, and postulated that cellular processes
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and chromosome damage triggered the onset of oncogenesis. Later, Wynder and

Graham (1950) showed that cigarette smoking was associated with lung cancer

in advance of the 1964 surgeon general report on the same topic (Surgeon Gen-

eral, 1964). However, it was only recently, with advances in genome sequencing,

that the scale of DNA damage and mutation from tobacco smoke and other mu-

tagenic sources was quantified across various types of cancer (Alexandrov et al.,

2013a). This section will overview the recent literature highlighting the role of

mutagenesis in tumour biology, and the opportunities and challenges it poses.

Somatic Mutations Arise from Exogenous and Endogenous Sources

Genome instability and mutagenesis are cancer hallmarks arising from a conflu-

ence of mutagenic exposures and deficient DNA repair (Hanahan and Weinberg,

2011). The total number of single nucleotide variants (SNVs) acquired by cancers

varies by orders of magnitude both between and within tumour types, from as

few as ten to as many as three million (Alexandrov et al., 2013a; Lawrence et al.,

2013). Large scale structural variants (SVs) also exhibit heterogeneous patterns

of occurrence, with substantial differences in mutation burden and distributions

even between tumour subtypes (Nik-Zainal et al., 2016; Waddell et al., 2015). This

reflects the tremendous diversity in the etiology of and genetic predispositions to

individual cancers.

Exogenous mutational processes typically involve exposure to environmental

carcinogens such as cigarette smoke or ultraviolet (UV) radiation. Mutations are

also known to occur iatrogenically, through exposure to radiation therapy (Beh-

jati et al., 2016) and chemotherapies. For example, the alkylating chemotherapy

agent, temozolomide, commonly used to treat brain cancers, causes a hypermu-

tating signature of cytosine-to-thymine (C→T) transitions in cancers with specific
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DNA repair deficiencies (Alexandrov et al., 2013a; Tomita-Mitchell et al., 2000;

Yip et al., 2009). When exogenous mutagenesis occurs, it is often responsible for

large numbers of mutations, accounting for the high mutation rates of melanomas,

lung cancers, and gastrointestinal tract cancers, which arise in tissues frequently

exposed to environmental stresses.

By contrast, endogenous mutational processes refer to the action of intracellu-

lar mechanisms which induce DNA damage or otherwise cause base changes. A

frequently observed example is deamination, which causes a pattern of C→G

and C→T mutations at TCN trinucleotide contexts. The deamination of 5-

methylcytosine at CpG loci is thought to cause aging-related mutations across

cell types (Alexandrov et al., 2015a). Another form of deamination, catalyzed by

the APOBEC gene family, displays a more specific mutagenic profile (Nik-Zainal

et al., 2012) and is often responsible for local hypermutation, known as “Kataegis”

(Alexandrov et al., 2013a). Like exogenous processes, endogenous processes often

accrue mutations in the context of DNA damage repair deficiencies. For example,

metabolic damage due to reactive oxygen species (ROS) can cause the formation

of DNA lesions, such as 8-oxoguanosine, which result in DNA mispairing. Exci-

sion of 8-oxoguanosine is performed by DNA glycosylase, encoded by the gene

MUTYH. Consequently, mutations that inactivate MUTYH result in the accumu-

lation of G→T/C→A mutations in the cancer genome (Pilati et al., 2017; Viel et

al., 2017; Zehir et al., 2017).

Mutational processes each generate characteristic patterns of mutation known

as mutation signatures (Alexandrov et al., 2013a). Others refer to them as “ge-

nomic scars” (Lord and Ashworth, 2012; Watkins et al., 2014), a term which em-

phasizes the lasting imprint that mutations leave on the cancer genome. Mutation

signature analysis leverages the genome itself as a functional assay to study mu-
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tagenesis and DNA repair. Many signatures have been associated with specific

cancer types (Alexandrov et al., 2013a), histopathological subtypes (Wang et al.,

2017), and response to chemotherapeutic agents (Rizvi et al., 2015; Telli et al.,

2016).

Somatic mutation provides a basis for tumourigenesis. The stepwise occurrence

of mutations in key oncogenes and tumour suppressors generates a diverse set of

phenotypes amongst the cells of a tumour, upon which selective pressures can act

(Nowell, 1976). This process is known to favour dedifferentiated cells with quali-

ties concisely summarised as The Hallmarks of Cancer (Hanahan and Weinberg,

2011), including replicative immortality, loss of growth suppression, and evasion

of immune detection among others.

The Role of Deficient DNA Repair

Cells are equipped with the molecular machinery to repair damage and errors in

the genome. Molecular pathways that repair DNA point mutations include base

excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR),

and direct catalytic removal of lesions (i.e. the removal of 6-O-methylguanosine

by the MGMT gene) (Weinberg, 2013). Mechanisms for repair of DNA strand

breakages and cross-links include HR and non-homologous end joining (NHEJ)

(Chang et al., 2017; Ranjha et al., 2018).

Like with mutagenic exposures, deficiencies in these DNA repair pathways

can give rise to specific patterns of mutation. For example, MMR corrects erro-

neous base pairing, and a germline predisposition to mismatch repair deficiency

(MMRD) gives rise to Lynch Syndrome, which carries a 50-80% lifetime risk of

colorectal cancer (Kohlmann and Gruber, 1993). MMRD is commonly associated

with large numbers of C→T mutations and microsatellite instability (MSI), the
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genome-wide shrinkage or expansion of short repetitive sequences known as mi-

crosatellites (Thibodeau et al., 1993).

While DNA damage repair deficiency can drive somatic mutation, it is also

hypothesized to produce vulnerability to DNA damaging chemotherapy. Over-

whelming the compromised repair mechanism using platinum-based chemother-

apy, alkylating agents, anthracyclines or other DNA damaging drugs is thought

to stall replication and induce apoptosis (Helleday et al., 2008). A successful

application of this strategy is the use of platinum-based chemotherapies in

BRCA1/BRCA2 mutated cancers (Farmer et al., 2005; Kennedy et al., 2004; Yang

et al., 2011). Alternatively, inducing synthetic lethal inhibition of the poly (ADP-

ribose) polymerase (PARP) gene family has recently been shown as a more tar-

geted strategy of treating tumours with mutations in BRCA1 or BRCA2 (Engert et

al., 2017; Helleday et al., 2008; Robson et al., 2017).

The Clinical Implications of Homologous Recombination Deficiency

Uncovering the role of homologous recombination deficiency (HRD) in cancer

susceptibility was a major scientific breakthrough of the 1990s. Hall et al. (1990)

and Narod et al. (1991) first reported that inheritance of chromosomal segment

17q12-23 was strongly associated with familial breast and ovarian cancers. A few

years later, Miki et al. (1994) and Albertsen et al. (1994) pinpointed the exact lo-

cus of the BRCA1 gene, and BRCA2 was identified the following year (Wooster

et al., 1995). Hereditary mutations in BRCA1 and BRCA2 confer an up to 85%

lifetime risk of breast cancer and drive 5-10% of total cases (Canadian Cancer So-

ciety, 2014; National Cancer Institute, 2014). However, the mechanism by which

BRCA1/BRCA2 mutations resulted in cancer risk was unclear. In 1997, phospho-

rylation of BRCA1 was found to occur in response to DNA damage, and BRCA1
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was also found to complex Rad51 at damaged sites (Scully et al., 1997a, 1997b).

Gradually, the complementary roles of BRCA1 and BRCA2 in HR mediated DNA

damage repair were uncovered (Roy et al., 2012; Yoshida and Miki, 2004).

HR refers to the exchange of similar or identical nucleotide sequences. It facili-

tates error-free repair of double strand breaks and inter-strand crosslinks, as well

as error-free replication support and telomere maintenance (Li and Heyer, 2008).

Additional studies have described cancer risk mutations in other genes of the HR

pathway, including ATM, MRN, MRE11, RAD50, NBS1, RAD51, XRCC2/3, and the

FANC family, as well as downregulation of ATR (Cerbinskaite et al., 2012).

Breast cancers with BRCA1/BRCA2 mutations also display characteristic pat-

terns of mutation. The first of these to be discovered were three large-scale copy

number variant (CNV) patterns detected by hybrid-capture panels (Birkbak et al.,

2012; Popova et al., 2012). This approach yielded three quantifiable scores (loss of

heterozygosity: HRD-LOH, telomeric allelic imbalance: HRD-TAI, and large scale

transition: HRD-LST) which correlated with BRCA1/2 mutation status (Timms et

al., 2014). More recently, the whole genome analysis of breast cancers has iden-

tified characteristic SNV and SV signatures associated with BRCA1/BRCA2 mu-

tations, as well as short homologous stretches of DNA at deletion breakpoints

known as microhomology (Alexandrov et al., 2013b; Davies et al., 2017; Nik-Zainal

et al., 2016; Stephens et al., 2012).

HRD is a promising target for the administration of poly-ADP ribose poly-

merase (PARP) inhibitors (Gelmon et al., 2011; Kaufman et al., 2013) and platinum-

based therapies such as cisplatin and carboplatin (Farmer et al., 2005; Kennedy et

al., 2004; Yang et al., 2011). This is motivated by the substantial evidence of a link

between germline BRCA1 and BRCA2 variants and sensitivity to platinum-based

chemotherapy (Arun et al., 2011; Byrski et al., 2010; Tutt et al., 2015; Von Minck-
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witz et al., 2014). Conversely, spontaneous reversion mutations which restore a

functional copy of BRCA1 or BRCA2 have been observed in breast and ovarian

cancers with acquired resistance to platinum-based chemotherapy (Afghahi et al.,

2017; Patch et al., 2015; Swisher et al., 2008).

Telli et al. (2016) showed that the aforementioned HRD score was predic-

tive of response to platinum-containing neoadjuvant chemotherapy in primary

breast cancers. However, a phase III trial could not reproduce this finding in

the advanced breast cancer setting (Tutt et al., 2015). What remains unclear

is whether more precise quantification of HRD-associated DNA damage using

whole genome sequencing (WGS) might predict response to platinum-based

chemotherapy in advanced breast cancers where the HRD score on its own could

not.

Tumour Heterogeneity and The Evolution of Mutational Processes

Nowell (1976) proposed a model of cancer clonal expansion, which asserts that

cancers evolve over time by natural selection. Just as cancers change, so too do

the processes which cause mutations in cancer. This surfaces a limitation of mu-

tation signatures: they condense the life history of a tumour into a single time

point. As Watkins et al. (2014) wrote, “[b]y chronicling the past but not document-

ing the present, genomic scar measures report whether or not a defect . . . has

been operative at some point in tumorigenesis and not whether it remains op-

erative at the point of treatment.” Mutations accumulated in the cancer genome

do not disappear when the processes that created them grind to a halt. Therefore,

observing a mutational pattern does not immediately reveal whether it arose long

ago in tumour initiation or whether it represents an active and clinically relevant

mutational process.
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The lost temporal axis of cancer mutation can be partially restored using ge-

nomic features known to vary with time. Consider the analogy of the geological

record. The fossilized remnants of past life have accumulated in the earth, but

it can be inferred that fossils found in deeper strata likely represent earlier life

forms than those found in shallow ones, even without the use of additional tech-

nology such as carbon dating. In the cancer genome, clonal heterogeneity and

large scale chromosomal duplications are analogous to geological strata. Muta-

tions occurring in a larger fraction of cancer cells likely occurred earlier than

mutations occurring in few. Additionally, mutations present on multiple chromo-

somes in duplicated regions most likely occurred prior to the duplication event,

and can also be inferred to be earlier-arising (Figure 1.1).

By inferring the relative timing of mutations, an analysis across publicly avail-

able cancer datasets in The Cancer Genome Atlas (TCGA) verified that mutational

processes do indeed change over time (McGranahan et al., 2015). Those associated

with aging, cigarette smoking, and UV radiation were prevalent among earlier-

occurring mutations, whereas the impacts of DNA repair deficiencies were more

likely to be split evenly between early and late mutations. While perhaps not as

precise as taking multiple time-separated samples of a tumour to track its evo-

lution, this approach enables the temporal dissection of mutations using a single

biopsy, obviating the inconvenience, medical risk, and expense of sequencing mul-

tiple biopsies of a tumour.

Just as chromosomal duplications can temporally dissect point mutations, so

too can point mutations provide a molecular clock for duplications. A late-arising

duplication can be expected to reveal a region spanning many prior (and there-

fore now duplicated) point mutations. Conversely, an early-arising duplication

will likely go on to acquire many late-arising (and therefore non-duplicated) point
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Figure 1.1: Mutational prevalence is related to time of mutation onset.
Mutational prevalence is defined as the arithmetic product of
cellular prevalence and mutational copy number, and has a di-
rect impact on variant allele fraction. (A) For a given locus, the
cellular prevalence is the fraction of cancer cells carrying a mu-
tation at the locus. Higher cellular prevalence is associated with
“trunk” mutations, which are more likely to be early arising
amongst cancer cells. (B) Increased mutation copy number is
associated with early arising mutations which occurred prior
to duplication events.

mutations. Importantly, this model refers to “molecular time,” which differs from

true time by a factor proportional to the mutation rate, which can vary over time.

Purdom et al. (2013) implemented a generative model which estimates the relative

timing of chromosomal duplications. An important limitation is that relative tim-

ing of events in regions with more complex chromosomal abnormalities can only

be inferred if the exact temporal ordering of events is known or can be deduced.

This limitation stems from the inability of sequencing techniques to distinguish

which homologous chromosome a DNA read originated from. The advent of long-

read and linked-read (Zheng et al., 2016) sequencing technology may eventually

help to address this limitation.
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1.2.2 Whole Genome Sequencing of Cancer

The application of WGS to derive a more complete understanding of cancer has

been a central goal of cancer researchers since before the human genome was

first decoded in 2003 (Lander et al., 2001). It would take a further 5 years and a

sea change in genome sequencing technology before the first application of next-

generation whole genome sequencing to a cancer sample was described. (Ley et

al., 2008) reported the analysis of a cytogenetically normal AML in 2008 only six

months after the first human whole genome sequence by next-generation tech-

nologies was published (Wheeler et al., 2008). At the time, the bioinformatics

tools and genomic resources to facilitate the in-depth analysis of whole genome

data could be considered in their infancy compared to today’s standards. Even so,

the insights gained into both the approach taken to sequencing the tumour and

the biology of the tumour itself were profound when compared to the targeted

sequencing approaches commonly applied to cancer research at the time.

Today, the resources required for WGS analysis have decreased substantially.

Alongside a steady reduction in the cost of WGS, there have been improvements

in the technologies for generating and processing quality raw data as well as the

tools and companion datasets that contextualize findings for biological and clini-

cal interpretation. However, a majority of cancer genomics efforts remain focused

around targeted deep sequencing and whole exome sequencing (WES) (Morris et

al., 2017; Raphael et al., 2017).

Large-scale efforts using genome sequencing to characterize a wide variety of

adult and paediatric cancers began in earnest as early as 2005. This included

projects such as TCGA, the International Cancer Genome Consortium (ICGC),

Catalogue of Somatic Mutations in Cancer (COSMIC), and Therapeutically Ap-
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plicable Research to Generate Effective Treatments (TARGET), to name but a few.

Not only have such efforts progressed our understanding of cancer as a genomic

disease, they also provide the data needed for developing tools and resources that

facilitate the rapid detection and analysis of potentially relevant genomic events

(Cerami et al., 2012; Gao et al., 2013; Gonzalez-Perez et al., 2013; Rubio-Perez et al.,

2015). However, since the bulk of the data produced is focused on coding regions

of the genome, the available data are underpowered to inform how untranslated,

intronic and intergenic regions might impact the molecular pathogenesis of dis-

ease. In many cases the data also lack comprehensive clinical annotation, which

is required for linking genomic events to specific cancer types, prognoses, and

treatment responses. Furthermore the majority of samples in these cohorts are

from primary untreated disease and do not offer insight into how tumours re-

spond to often complex and disparate treatment regimens (Robinson et al., 2017).

Additional cancer cohorts of samples from multiple time-points and biopsy sites

that include rich clinical information are therefore still required to better define

tumour biology and the relationship to treatment history and response.

The number of tumour whole genome sequences that have been published and

made publicly available has steadily increased over the past 10 years. These anal-

yses have led to surprising insights into cancer biology, particularly from the anal-

ysis of SVs in tumour genomes (Chong et al., 2017). They range in scope from

characterization of cancer cell lines (Pleasance et al., 2010b, 2010a) and n-of-one

case reports with rich clinical detail (Ellis et al., 2012), to ultra-deep sequencing of

a single tumour to uncover clonal heterogeneity (Griffith et al., 2015). Larger-scale

efforts are also emerging, focussed both at the characterization of somatic muta-

tions, including non-coding and SVs (Alexandrov et al., 2013b; Banerji et al., 2012;

Nik-Zainal et al., 2016; Wang et al., 2014) and germline-specific analysis for the
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discovery of predisposing factors (Foley et al., 2015). For example, Nik-Zainal et

al. (2016) sequenced the whole genomes of 560 breast cancers, 260 supplemented

with transcriptome sequencing. They demonstrated how such approaches fill gaps

in our understanding of the genome between the exons and expand the known

repertoire of biological mechanisms underlying tumorigenesis with potential clin-

ical utility (Alexandrov and Stratton, 2014; Alexandrov et al., 2013b; Davies et al.,

2017; Zolkind and Uppaluri, 2017).

WGS has many unique capabilities that together enable the complete cata-

loguing of somatic variation within a single experimental protocol (Figure 1.2).

Whereas targeted sequencing has the advantage of being efficient and affordable

while capturing much of the known actionable variation, WGS carries advantages

in the analysis of genomic instability and SVs. The research within this thesis

relies upon insights gleaned from recent advances in the analysis and interpreta-

tion of cancer WGS data. The following sections provide an overview of unique

capabilities of WGS which are leveraged in later chapters.

High Resolution Structural Variant Analysis

Few images are more deeply enscribed in the history of human genetics than the

karyotype, which emphasizes the functional importance of genomic organization.

Over the years, a plethora of technologies have enabled inspection of SVs and

CNVs in the genome. Some, such as fluorescence in-situ hybridization, are pre-

cisely targeted, while others, such as array-comparative genomic hybridization,

are comprehensive at varying resolutions. WGS promises to deliver precise and

comprehensive characterization of both SVs and CNVs. While many challenges

stand in the way of achieving a complete “digital karyotype” of cancer, WGS has

made dramatic advances towards this goal.
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The cancer genome frequently features complex and interlocking patterns of

somatic SVs, expanding the realm of possible cancer-driving alterations. Since the

discovery of the Philadelphia chromosome (Nowell P., 1960), the characterization

of oncogenic fusions has been central to cancer diagnosis and treatment. Aside

from fusions, SVs also modulate gene regulation by rearranging the non-coding

genome. Variants that impact the copy number or relative positioning of promot-

ers and other regulatory elements can alter gene expression (Alaei-Mahabadi et

al., 2017).

Paired-end WGS has become the standard for comprehensively and precisely

cataloguing SVs and CNVs. While targeted arrays and WES can provide compar-

ative read counts for CNV analysis, they lack the resolution to detect microampli-

fications and microdeletions and suffer from sequencing depth bias. These chal-

lenges, along with a need for computational methods to address them, limit the

accuracy of CNV calls and result in high false discovery rates (Zare et al., 2017).

While WES can detect gene fusions (Chmielecki et al., 2013), it misses fusions

affecting splice sites, promoters, and other functionally critical loci.

SV analysis methods fall broadly into four categories: read density, split reads,

paired end reads, and de novo assembly (Liu et al., 2015; Tattini et al., 2015). Recent

methods combine these strategies to captalize on the unique strengths of each. For

example, DELLY improves sensitivity by considering paired end reads while en-

abling base-pair breakpoint calling precision by examining split reads (Rausch et

al., 2012). A major challenge in digital karyotype construction is poor concordance

between SVs and CNV breakpoints (Alaei-Mahabadi et al., 2017), which suggests

mismatched detection thresholds between these two modalities. This mismatch

causes further difficulty in reconstructing complex rearrangements such as chro-

mothripsis (Stephens et al., 2011) and chromoplexy (Baca et al., 2013).
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SVs and CNVs play important roles in the somatic alteration of cancer genes,

and are best comprehensively characterized by WGS. Evolving methodologies

promise to move the field towards increasingly accurate reconstruction of the

digital karyotype of cancer.

Methods for Analyzing Mutation Signatures

A mutation signature can be defined as a set of somatic mutation types which

occur at specific relative frequencies. For example, a simple mutation signature

could describe the relative frequencies of each base change amongst SNVs. To

avoid redundancy, it is typical to collapse complementary bases, resulting in six

mutation classes: C→A, C→G, C→T, T→A, T→C, T→G. A widely-used exten-

sion of this classification includes the 3’ and 5’ trinucleotide context. For example,

a C→T mutation in an ApCpG context would be considered one mutation class.

Because there are four possible 3’ and four possible 5’ bases, this parameterization

yields a total of 96 SNV classes (Alexandrov et al., 2013b).

This approach accounts for bias in the frequencies of mutations observed in

specific trinucleotide contexts. For example, deamination of methyl-cytosine is

a common cause of C→T mutations, and often occurs at CpG sites, which are

frequently methylated. As a result, signatures of deamination often feature high

rates of C→T mutations in NCG trinucleotide contexts (Nik-Zainal et al., 2012).

The analysis of mutation signatures involves two steps: (1) generating mutation

count vectors, and (2) inferring signatures and exposures. Using the chosen pa-

rameterization, the number of mutations of each class is determined to yield a

mutation count vector, also known as a mutation catalog. The inference of signa-

tures and exposures was first performed using non-negative matrix factorization

(NMF), which determines a dimensionally reduced set of mutation signatures and
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Figure 1.3: The analysis of mutation signatures by non-negative matrix
factorization. Mutational occurrence probabilities are modeled
as a linear combination of signatures. This defines a generative
process whereby the genomes of individual cancers differ in
the relative contributions of each mutation signature. In reality,
the mutation count matrix (M) is known, and the signatures
(P) and exposures (E) are unknown. Non-negative matrix fac-
torization is an unsupervised learning method which infers a
stable factorization of the mutation count matrix, which is often
referred to as “deciphering mutation signatures de novo.”

their relative contributions to each sample’s genome (Alexandrov et al., 2013b).

Thus, the mutation counts of a given genome are modeled as a linear combina-

tion of the signatures, which is consistent with the notion of multiple overlapping

mutational processes each exerting additive effects (Figure 1.3). While this method

can be used to derive mutation signatures both from genomes and exomes, the

number of mutations sampled by WES often insufficient to detect all but the most

hypermutating signatures, unless many hundreds of cancers are sequenced.

There are many variations on the analysis of mutation signatures which involve

modifying (1) the parameterization of mutation types, or (2) the dimensionality

reduction algorithm. An example of varying mutation types is the inference of SV

mutation signatures in breast cancer (Nik-Zainal et al., 2016), wherein mutations

were classified by size, type (deletions, duplications, inversions, and transloca-

tions), and whether or not their breakpoints are clustered. Alternative dimension-
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ality reduction algorithms include principal components analysis (Gehring et al.,

2015), expectation-maximization (Fischer et al., 2013), empirical Bayes (Rosales et

al., 2017), and Bayesian NMF (Kim et al., 2016). Additionally, mutation signatures

can be determined in subsets of the total mutation set to address specific biologi-

cal hypotheses. For example, Supek and Lehner (2017) partitioned mutations into

clustered and non-clustered sets to determine which mutational processes gener-

ate local hypermutation, and McGranahan et al. (2015) partitioned mutations into

inferred early and late sets to examine mutation signature evolution.

The first integrative analysis of mutation signatures across cancer types aggre-

gated 21 mutation signatures across 7,042 cancers, mostly from publicly available

sequencing data (Alexandrov et al., 2013a). Later, this set of “consensus” muta-

tion signatures was expanded to 30 to incorporate the continued discovery of

novel signatures (for example Poon et al. (2015)). The 30-signature reference set is

described in detail at http://cancer.sanger.ac.uk/cosmic/signatures.

Lastly, methods for determining the contributions of known mutation signa-

tures to individual cancer genomes have also emerged (Huang et al., 2017; Rosen-

thal et al., 2016). The previously described mutation signature analysis methods

can be considered de novo signature analysis, because they simultaneously infer

mutation signatures and their contributions to individual cancers from scratch. By

contrast, n-of-1 mutation signature analysis requires determining the best fit of an

individual mutation profile against a set of known signatures. In the personalized

cancer genomics paradigm, it is important to be able to reproducibly analyze the

signatures of individual genomes to identify patterns of mutation with potential

therapeutic implications.
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Methods for Analyzing Tumour Heterogeneity

The analysis of intratumour heterogeneity in cancer is an area of active research.

Significant advances in single-cell genome sequencing are enabling the directly

sampling of genomic heterogeneity across tumour cells. While single-cell sequenc-

ing technologies are rapidly improving, resource limitations make them pro-

hibitive at this time for use in clinical research, where large cancer cohorts are

often required to distinguish significant effects. Another strategy for understand-

ing tumour evolution involves the statistical inference of cancer cell subclones

via the analysis of digital next-generation sequencing (NGS) read counts. This

approach can be made more computationally feasible with the collection and

comparison of multiple cancer sequencing timepoints.

NGS by Illumina-based protocols involves the capture, sequencing, and align-

ment of fragmented DNA reads. This process yields digital read depth counts at

each locus, which, at sufficient sequencing depth, enables genome-wide statisti-

cal inference of DNA copy number. Additionally, somatic mutation loci can be

queried for the fraction of total reads supporting the variant allele, also known as

the variant allele fraction (VAF). The number of variant reads is related to (1) the

tumour content or purity of the sample, (2) the tumour and normal cell copy num-

ber at the mutated locus, (3) the number of DNA copies carrying the mutation,

also known as the mutation copy number (MCN), and (4) the fraction of cancer

cells carrying the mutation, also known as cancer cell fraction (CCF).

If the tumour content and copy number are known, the MCN and CCF of a

given mutation can be estimated from the VAF. The random sampling of frag-

mented reads from the bulk tumour sample also introduces noise. With suf-

ficiently deep sequencing, discrete clusters representing mutations of varying

MCN, and sometimes different CCF, can be observed. At lower sequencing depths,
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it may be challenging to deconvolute MCN and CCF. A common goal for tu-

mour heterogeneity inference methods is to infer the number of tumour subclones

present as well as their relative CCF (Miller et al., 2014; Roth et al., 2014). These

techniques are often designed to work on deep sequencing data, wherein sites of

known somatic mutation are sequenced to a depth of hundreds or thousands of

reads.

A simplified approach to CCF estimation has been applied to the temporal

analysis of mutation signatures from WES or WGS data. This involves partitioning

cancer somatic mutations according to their MCN and CCF (McGranahan et al.,

2015) and has yielded promising findings regarding mutation signature evolution

in lung cancer (Bruin et al., 2014), breast cancer (Yates et al., 2017), and liver cancer

(Letouzé et al., 2017).

Complementarity with the Transcriptome

Alongside advancements in WGS, RNA sequencing technologies including whole

transcriptome sequencing (WTS) can provide complementary insights in a per-

sonalized medicine setting. WTS enables genome-wide quantification of gene ex-

pression, which substantially expands the capture of potentially actionable molec-

ular aberrations. Substantial efforts exist aiming to use tumour expression profiles

to refine cancer diagnoses and subtyping. Translation of these efforts into inter-

pretable and clinically actionable parameters such as the widely used PAM50 gene

set for subtyping, stratification, and prognostication of breast cancers (Chia et al.,

2012) can further advance these aims. The integration of gene expression data

into functional clusters or pathways using statistical methods or visualizations

can help identify dysregulated cancer pathways, including DNA repair pathways

(Mulligan et al., 2014). This can provide rationale for guiding targeted cancer
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treatment, including the use of experimental therapeutics (Tomasetti et al., 2017).

When treatments fail, gene expression analysis can also elucidate resistance mech-

anisms and potentially suggest follow-up targets (Jones et al., 2010).

The existence and functional impacts of many events observed in the genome

can be further analyzed by WTS. Amplified and deleted genes can be assessed

for differential expression. The presence of oncogenic or deleterious mutations

on the expressed transcript can be confirmed. Exon skipping and intron reten-

tion can be identified and potentially linked to splice site variants. Transcriptome

assembly can facilitate detection of potentially oncogenic alternative transcripts.

The presence of oncogenic gene fusions can be confirmed, and their expression

verified. The effects of promoter and enhancer mutations on gene expression can

be quantified. Tumour suppressors such as BRCA1 and MLH1 can be assessed for

potential epigenetic silencing.

1.2.3 From Cancer Genome to Personalized Oncogenomics

The scope of sequencing and its applications has also broadened into the clinic.

For specific cancer types, the use of targeted genomic panels for both germline

susceptibility and known ‘actionable’ somatic mutations is becoming routine in

many cancer centres (Bosdet et al., 2013; De Leeneer et al., 2011). The develop-

ment and application of larger-scale gene panels is also seeing routine use on a

large number of patient samples (Zehir et al., 2017). These high-throughput ap-

proaches drive discovery in the clinical context and quantify the frequency and

prevalence of both well-characterized and novel variants in cancer-related genes.

However, they capture a tiny fraction of the genomic complexity that can exist in

an individual tumour.
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Jones et al. (2010) published the first attempt to characterise a whole cancer

genome for a clinical application. This analysis involved sequencing an adeno-

carcinoma of the tongue and identifying genomic amplification and concurrent

abundant expression of the RET oncogene as a potential driver of the disease.

This discovery led to a personalised treatment approach using kinase inhibitors

to target the RET protein. Subsequent analysis of a post-treatment sample after

disease progression provided comprehensive insight into how the tumour evolved

to circumvent the treatment regimen in a way that a targeted approach could not

have achieved. The success of this study led to a pilot for the Personalized Oncoge-

nomics Project (POG) study at the BC Cancer Agency, now in its 5th year, which

aims to leverage whole genome analysis with the intent to treat based on the ge-

nomic information. Sequencing of the initial 100 patients on this trial required

development of pipelines and comprehensive interpretation tools (Laskin et al.,

2015) and promised to restratify cancers by molecular features rather than by site

of origin.

The inherent genomic complexity of cancers gives rise to a range of genomic

events and signatures that are becoming increasingly relevant in patient treat-

ment stratification. However, it is far from certain that an individual’s tumour

will harbour previously described and functionally characterized genomic events.

The successful clinical application of personalized genomic medicine therefore

must rely on broad screening approaches, a conclusion that was also reached in

a study comparing WES and WGS in gastric cancer (Wang et al., 2014). A whole

genome approach is currently the most efficient way to build a comprehensive

picture of the genomic variation in a tumour without resorting to multiple tech-

nical platforms. That being said, there are still significant challenges that must be

overcome before approaches such as whole genome and transcriptome analysis

21



(WGTA) can be universally adopted. However, on the assumption that sequencing

costs will follow the historical downward trend, a more gradual uptake of WGTA

for more refined stratification and subtyping of rare tumours may be achievable

in the short term. Furthermore, as unanticipated clinical successes from WGTA

continue to permeate the field and the infrastructure to support such approaches

mature, a transition towards ever more comprehensive sequencing in the clinical

setting is expected.

Outstanding Challenges in the Clinical Translation of Mutation Signatures

The study of mutational processes in cancer is yielding promising predictive

biomarkers (Davies et al., 2017; Rizvi et al., 2015). However, many challenges

stand in the way of clinical translation. While HRD mutation signatures have

been proposed as targets for DNA damaging chemotherapy (Alexandrov et al.,

2015b), their association with therapeutic outcomes has not yet been established.

Additional technical challenges limit biomarker studies of mutation signatures.

The individualized analysis of SNV mutation signatures is possible, but existing

approaches are susceptible to bleed of signal between like signatures, which can

lead to false positive signature identification. Moreover, methods for individual-

ized temporal dissection of mutation signatures provide point estimates without

confidence intervals which are challenging to interpret in the clinical setting. Ad-

ditionally, while SNV mutation signatures can be captured by WES, the accuracy

of assessing processes with low to medium mutagenicity, such as HRD, is poor.

WGS not only addresses this, but also simultaneously enables the detection of SV

signatures (Nik-Zainal et al., 2016). However, unlike with SNV signatures, there

is not yet a consensus set of SV signatures applicable across cancer types.
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Lastly, the understanding of how mutation signatures evolve in the metastatic

setting is limited, as nearly all studies of mutation signatures have taken place in

primary, untreated cancers. Metastasis underlies as much as 90% of cancer-related

mortality, (Chaffer and Weinberg, 2011), and the clinical features of metastatic dis-

semination and overall survival can be highly variable, even amongst subtypes of

a cancer (Kennecke et al., 2010). Only recently have genomic studies investigated

actionable cancer genes (Robinson et al., 2017) and the tumour evolution (Yates et

al., 2017) of metastatic cancers. Understanding the factors which shape mutagen-

esis in metastatic cancers will help to guide the clinical application of mutation

signatures.

1.3 thesis objectives and chapter overview

The overarching goal of this this thesis is to elucidate the clinical actionability

of mutation signatures and their temporal evolution. The HR pathway was an

ideal model system to study clinical actionability of mutation signatures, as it

relates to the commonly mutated genes BRCA1 and BRCA2 and to readily avail-

able platinum-based chemotherapy. I hypothesized that mutation signatures of

HRD are independently associated with response and resistance to platinum-

based chemotherapy, even in cancers lacking BRCA1/BRCA2 mutations. I further

hypothesized that in cancers with low or moderate HRD mutation signatures, ob-

serving the continued activity of HRD mutagenesis could be similarly associated

with response to platinum-based chemotherapy. The corollary to this hypothesis

is that past exposure to platinum-based chemotherapy would be associated with

the suppression of HRD mutation signatures in late mutations.
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The aim of chapter 2 is to assess the predictive value of mutation signatures aris-

ing from HRD. In this chapter, I describe an observational study of 93 advanced-

stage breast cancers, 33 of which were treated with platinum-based chemotherapy.

We made use of the recently-developed HRDetect metric, which combines six dis-

tinct signatures of HRD to form a more robust model that has been shown to

predict mutations in BRCA1/BRCA2 with high accuracy (Davies et al., 2017). We

found that patients with increased HRDetect scores had improved outcomes on

platinum-based chemotherapy, and that HRDetect was a superior predictor than

any of the six signatures alone. This work was published in Clinical Cancer Re-

search (Zhao et al., 2017).

Examining temporal shifts in mutation signatures required the development

of novel mutation analysis software. In chapter 3, I present SignIT: mutation sig-

nature inference in individual tumours. SignIT is a Bayesian hierarchical model

which provides improved accuracy and clinical interpretability of individualized

signature analysis. A natural extension of the SignIT model enabled the inference

of mutation signatures across tumour subpopulations with inferred relative tim-

ing.

Having formulated SignIT, I demonstrated two applications of mutation sig-

nature timing. In chapter 4, I analyzed the evolution of HRD in a pancreatic

adenocarcinoma to address the hypothesis that ongoing HRD activity is associ-

ated with treatment outcome. In chapter 5, I report mutation signatures and their

temporal evolution across 484 metastatic cancers. This analysis revealed an associ-

ation between prior platinum-based chemotherapy exposure and the suppression

of HRD in late mutations. I also uncovered signatures arising from chemotherapy-

associated mutagenesis.
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2
T H E C L I N I C A L A C T I O N A B I L I T Y O F H O M O L O G O U S

R E C O M B I N AT I O N D E F I C I E N C Y I N A D VA N C E D B R E A S T

C A N C E R

2.1 introduction

Genomic instability and mutagenesis are hallmarks of human cancers that can

arise from deficient DNA repair processes. One such process, HR, involves strand

invasion by homologous sequences to facilitate error-free repair of double strand

breaks and inter-strand crosslinks (Li and Heyer, 2008). Mutations in genes respon-

sible for HR are prevalent among human cancers. The BRCA1 and BRCA2 genes

are centrally involved in HR, DNA damage repair, end resection, and checkpoint

signaling (Joosse, 2012). Inherited mutations in BRCA1 and BRCA2 account for 5-

10% of all breast cancers, conferring an up to 85% lifetime risk (Canadian Cancer

Society, 2014; National Cancer Institute, 2014). There is also emerging evidence

suggesting that germline BRCA1 and BRCA2 mutated cancers are associated with

sensitivity to platinum-based chemotherapy (Arun et al., 2011; Byrski et al., 2010;

Tutt et al., 2015; Von Minckwitz et al., 2014) and PARP inhibitors (Robson et al.,

2017). This is further supported by resistance to platinum-based agents arising

from secondary mutations that cause somatic reversion of germline BRCA1/2 vari-

ants (Norquist et al., 2011).
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HRD is complex, and its myriad causes are not fully understood. However,

examining characteristic patterns of mutation, collectively known as mutation sig-

natures or genomic scars, can provide an aggregate functional metric of pathway

function. For example, BRCA1 and BRCA2 are associated with characteristic CNV

patterns (Timms et al., 2014), which have been suggested to independently pre-

dict platinum sensitivity in primary breast cancer (Telli et al., 2016). However, a

clinical trial in advanced stage triple negative breast cancer did not verify this

association (Tutt et al., 2015). Meanwhile, new genomic correlates have refined

the detection of HRD. Large-scale genome profiling across thousands of cancers

has revealed characteristic patterns of mutation giving rise to millions of somatic

SNVs (Alexandrov et al., 2013a) and SVs (Nik-Zainal et al., 2016). Recent efforts

aggregated six HRD-associated signatures into a single score called HRDetect to

accurately classify breast cancers by their BRCA1 and BRCA2 status (Davies et al.,

2017).

With this improved capability to quantify “BRCA-ness,” there is substantial in-

terest in its therapeutic implications in breast cancer (Alexandrov et al., 2013a;

Davies et al., 2017; Jacot et al., 2015; Lips et al., 2013; Stecklein and Sharma, 2014).

Importantly, these measures may be able to identify BRCA1- and BRCA2-intact

but HR-deficient tumours to guide eligibility for HRD-targeted clinical trials and

treatment decision-making. However, there is not yet direct evidence that ag-

gregated genomic scar metrics predict platinum sensitivity. In this observational

biomarker study, we perform WGS to identify HRD mutation signatures in a co-

hort of 93 patients with advanced stage breast cancers and associate them with

molecular, pathologic, and clinical features. Using HRDetect, we aggregate HRD

signatures and demonstrate their association with clinical benefit on platinum-

based chemotherapy.
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2.2 results

2.2.1 Somatic Mutation Signatures

Using a published framework (Alexandrov et al., 2013b), we deciphered the muta-

tion signatures of 1,182,840 somatic SNVs and 11,393 SVs from the whole genomes

of 93 advanced-stage breast cancers.

Of the nine resulting SNV signatures, numbered V1-V9 (Fig. 2.1A), six closely

matched previously described mutation signatures available from COSMIC. V9

(Signature 3) and V6 (Signature 8) are associated with HRD (Alexandrov et al.,

2013a; Davies et al., 2017; Nik-Zainal et al., 2016). V4 (Signature 1) is associated

with aging (Alexandrov et al., 2015a). V1 (Signature 2) and V2 (Signature 13) are

associated with APOBEC deaminase activity. V3 (Signature 17) has been observed

across many cancer types, but its etiology is unclear.

The three remaining signatures, V5, V7, and V8, represent novel breast can-

cer mutational signatures. V5 predominantly displays C→T mutations in CpCpY

contexts (see Table A.1 for nomenclature) and was present in only three can-

cers. V7 is characterized by high pyrimidine transition rate with enrichment in

NpYpG contexts and was observed across many tumours spanning histological

and molecular subtypes. V8 demonstrated moderate enrichment of all base substi-

tution types when flanked by T and A bases, and was present at low levels across

many tumours. These novel signatures may reflect the advanced, recurrent, and

drug-treated nature of our cohort, whereas previous mutation signatures have

been derived from primary untreated cancers. Further study is necessary to ver-

ify etiology. Potential etiologies of signatures V3 and V5 will be discussed in more

depth in chapter 5.
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Figure 2.1: Nine signatures of single nucleotide variation deciphered
from 93 breast cancer whole genomes. (A) Signatures are visu-
alized according to relative frequencies of mutations grouped
by base change and 3’/5’ context. Six of nine signatures match
previously published mutation signatures (cosine similarity >
0.9), five of which are associated with hypothetical etiologies.
(B) Fractional exposures and mutation burdens across the pa-
tient cohort, ordered by hierarchical clustering, reveals groups
defined by aging (top cluster with dominant V4), homologous
recombination deficiency (middle cluster with dominant V9),
and APOBEC deamination (lower cluster with dominant V1

and V2).
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Hierarchical clustering revealed that most cases of high SNV burden were

driven by APOBEC or HRD associated processes (Fig. 2.1B), which together were

dominant in 46 (49%) of the 93 sequenced breast cancers. The aging mutation

signature was ubiquitous across cancers, and was the dominant signature in 31

(33%) cases, all of which had low mutation burden (< 5 SNVs per Mb).

92 samples were classified into intrinsic subtypes based on expression profiles

of PAM50 (Chia et al., 2012) genes. Non-parametric analysis demonstrated signifi-

cant differences in signatures V2, V3, V8, and V9 across subtypes (Appendix Table

A.2). Post-hoc pairwise Dunn tests revealed elevated V3, V8, and V9 within basal-

like cancers (Figure 2.2), suggesting that diverse mutagenic etiologies, including

HRD, underlie this subtype. Elevated signature V9 was also most common among

triple-negative tumours.

The six deciphered SV signatures (Figure 2.3), numbered R1-R6, closely resem-

bled the six previously described breast cancer signatures reported by Nik-Zainal

et al. (2016). R1-R4 and R6 uniquely matched previously described signatures.

By visual inspection, R5 matches previously described rearrangement signature 5

albeit with more non-clustered translocations.

2.2.2 Genomic Findings Associated with HRD

Alongside these four SNV and SV mutation signatures, we measured two addi-

tional HRD-associated patterns of somatic mutation, the HRD index, and microho-

mology at deletion breakpoints. The HRD index measures the frequency of large

scale loss of heterozygosity (LOH), telomeric allelic inbalance (TAI), and large-

scale transition (LST) events (Timms et al., 2014), and was computed using allelic

copy number ratios inferred from read alignment frequencies. The proportion of
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Figure 2.2: Breast cancer signatures across subtypes. Comparison of SNV
mutation signatures across (A) histological and (B) molecular
subtypes shows more frequent signature V9 (homologous re-
combination deficiency) exposure in triple-negative and basal-
like breast cancers. (C) Four signatures (V2, V3, V8, V9) ex-
hibited statistically significant differences across molecular sub-
types (Kruskal-Wallis test with adjusted p-values). Subtype-
specific signature exposures are shown here, with pairwise
statistical significance testing performed by the Dunn non-
parametric test of multiple comparisons.
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small deletions associated with microhomology was determined by comparing

sequences flanking deletion breakpoints. As per a published method (Davies et

al., 2017), all six scores were log transformed, normalized, and combined into a

single HRDetect predictor. This was performed using a logistic function with the

same coefficients as those reported by Davies et al. (2017) to ensure consistency

with the previously model.

19 breast cancers had high HRDetect scores (> 0.7), 37 had moderate scores

(0.005-0.7), and 37 had low scores (< 0.005). All cancers underwent genome-wide

characterization of germline and somatic point mutations, insertions and dele-

tions, and copy loss in gene regions and splice sites.

Across the 93 breast cancers, HRDetect predicted pathogenic germline and so-

matic variants in BRCA1 and BRCA2 with high accuracy and an optimal dif-

ferentiating threshold of 0.74 (Fig. 2.4B). These findings closely agree with the

previously established threshold of 0.70 (Davies et al., 2017). Because variants of

uncertain significance (VUS) have previously not been associated with increased

HRDetect (Davies et al., 2017), we classified VUS as non-pathogenic mutations for

the purposes of this analysis. Elevated HRDetect scores were observed in all tu-

mours with observed BRCA1/BRCA2 frame shifts, nonsense mutations, homozy-

gous deletions, or splice variants identified as likely pathogenic in ClinVar (Fig.

2.5). There were 11 cases with germline missense VUS. The most common of these

was BRCA2 T1915M, which had a global minor allele frequency of 1.14% and has

conflicting reports of both reducing (Serrano-Fernández et al., 2009) and increas-

ing (Johnson et al., 2007) breast cancer risk. In our study, seven breast cancers

(BR004, BR027, BR032, BR036, BR064, BR074, BR086) harboured germline BRCA2

T1915M, of which three (BR004, BR036, BR086) were homozygous in the tumour

and displayed a wide range of HRDetect scores (0, 0.04, and 0.62 respectively).
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However, BR086 exhibited coincident homozygous deletion of RAD51 which may

account for the elevated score. These data therefore do not provide clear evidence

for pathogenicity of BRCA2 T1915M.

A number of other genes involved in HR demonstrated tentative associations

with HRDetect scores. Elevated HRDetect was observed in three cases with ho-

mozygous deletion of PTEN as well as one case with two coincident PTEN mis-

sense mutations (F278L and P38S). However, one case with homozygous PTEN

A126D somatic mutation was associated with a low HRDetect score. Homozy-

gous deletions in RAD50, RAD51, and MCPH1 were observed in some tumours

with moderate or high HRDetect scores. MCPH1 is a potential cancer susceptibil-

ity gene (Mantere et al., 2016) whose deletion may be a poor prognostic marker

(Tsuneizumi et al., 2002). Although recurrently deleted in our cohort, its link to

HRD signatures was inconsistent.

High HRDetect scores were also associated with triple negative and basal-like

breast cancers (Table 2.1). Of 19 samples with high HRDetect, 11 (58%) were

classified as basal-like. Among low HRDetect samples, only 2 (5%) were basal

like. Luminal B and normal-like tumours were more likely to have low HRDe-

tect scores, whereas most (7/9) HER2-like tumours displayed moderate HRDe-

tect. Receptor status was assessed by immunohistochemistry and retrieved from

pathology records, which were available for 79 tumours at primary and 76 at re-

lapse (Figure 2.2). High HRDetect was inversely associated with positive receptor

status in all three receptors. 50% of high HRDetect tumours were triple negative,

compared to only 6% of primary and 15% of metastatic low HRDetect tumours.
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is significantly associated with clinical improvement (CI) on
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BRCA1/2 status and treatment timing, p = 0.006). There was
also a trend between low HRDetect and progressive disease
(PD; p = 0.112). Moreover, of 8 BRCA1/2-intact cases with el-
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based chemotherapy. Receiver-operator characteristic for (B)
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based chemotherapy (C: CI; D: stable disease, SD). These sug-
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Table 2.1: Summary of patient molecular and clinical characteristics by
HRDetect status.

HRDetect status Low (<0.005) Moderate High (>0.7) Total

Sample counts
Total Count 37 37 19 93

Treated Count 9 13 11 33

Treated and Imaged 8 7 11 26

Pathogenic BRCA1/2 Variant 0 0 7 7

Response to Platinum
CI 0 2 8 10

SD 2 4 2 8

PD 6 1 1 8

Median TDT (days) 56 (n=9) 71 (n=13) 143 (n=11)
Median OS (days) 122 (n=6) 160 (n=8) 384 (n=5)

Intrinsic Subtype
Basal 2 12 11 24

HER2 1 7 1 9

Amplified
Luminal A 6 5 2 13

Luminal B 22 12 4 38

Normal-like 6 0 1 7

Primary receptor status
ER (positive/negative) 31 / 3 20 / 9 7 / 8 58 / 20

PR (positive/negative) 18 / 4 11 / 10 4 / 12 33 / 26

HER2 (positive/negative) 4 / 23 4 / 22 0 / 14 8 / 59

Triple negative 2 (6%) 8 (28%) 8 (50%) 18

Metastatic receptor status
ER (positive/negative) 27 / 6 17 / 10 5 / 10 49 / 26

PR (positive/negative) 15 / 15 9 / 13 2 / 10 26 / 38

HER2 (positive/negative) 6 / 28 4 / 22 1 / 13 11 / 63

Triple negative 5 (15%) 6 (21%) 8 (50%) 19
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2.2.3 HRD Mutation Signatures are Associated with Platinum Outcomes

High HRDetect scores were significantly associated with clinical improvement

on platinum-based chemotherapy, even after adjusting for BRCA1/BRCA2 status

and treatment timing (p = 0.006, n = 26; Table 2.4). HRDetect demonstrated areas

under the ROC curve of 0.89 for clinical improvement (CI) and 0.86 for stable

disease (SD), which exceeded those of its component signatures (Fig. 2.4B, C;

Table 2.3). Optimal thresholds of 0.005 for predicting SD and 0.7 for predicting CI

were chosen (Fig. 2.4B, C). Sensitivity, specificity, positive predictive value, and

negative predictive value were computed for both thresholds and are reported in

Table 2.2.

Biallelic loss of BRCA1 or BRCA2 was also associated with clinical improvement

on platinum-based chemotherapy (Fig. 2.4A) but was observed in only three of 26

treated patients with available imaging. By comparison, 11 patients demonstrated

HRDetect scores above 0.7, of whom 8 experienced CI, 2 experienced SD, and

1 had disease progression. Therefore, HRDetect scores correctly identified five

additional patients without biallelic loss of BRCA1 or BRCA2 who benefited from

platinum-based therapy. In a joint logistic model, BRCA1 and BRCA2 status did

not contribute significantly to the predictive value of HRDetect (Table 2.4).
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Table 2.2: Test metrics of HRDetect predictions computed using specified
thresholds. Elevated HRDetect scores computed from whole
genome sequencing of a breast cancer cohort were associ-
ated with improve response to platinum-based chemotherapy.
Receiver-operator characteristic (ROC) curves suggested thresh-
olds of 0.005 for stable disease (SD) and 0.7 for clinical improve-
ment (CI). Sensitivity, specificity, positive predictive value (PPV)
and negative predictive value (NPV) were computed based on
true/false positive/negative rates for both thresholds.

Response threshold accuracy sensitivity specificity PPV NPV

SD or CI 0.005 0.85 0.89 0.75 0.89 0.75

CI 0.7 0.81 0.8 0.82 0.73 0.88

Table 2.3: Area under the curve of homologous recombination deficiency
(HRD) signatures in platinum response prediction. Six dis-
tinct HRD-associated mutation signatures were computed using
whole genome sequencing data from 93 advanced-stage breast
cancers. The six signatures were normalized and aggregated us-
ing a logistic regression model with coefficients trained in a pre-
vious study (Davies et al., 2017). Retrospective clinical review
was performed to classify best reported radiographic response
to platinum-based chemotherapy into three categories: clinical
improvement (CI), stable disease (SD), and progressive disease
(PD). Receiver-operator characteristics (ROC) were computed
for the aggregated metric, called HRDetect, as well as the six
original signatures. Treatment success groups were defined as
either CI or the union of CI and SD response groups. For both
success metrics, the area under the curve of each ROC curve is
reported here.

Predictor BRCA1/2 status AUC CI AUC CI & SD AUC

snv 3 0.897 0.756 0.836

snv 8 0.777 0.826 0.743

SV 3 0.832 0.838 0.845

SV 5 0.769 0.821 0.822

HRD Index 0.743 0.741 0.812

Microhomology 0.899 0.75 0.605

HRDetect 0.94 0.891 0.855
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Table 2.4: Logistic regression model odds ratios of clinical improvement
(CI) on platinum-based chemotherapy. HRDetect scores were
computed using six mutation signatures derived from whole
genome sequencing of a breast cancer cohort. Germline and so-
matic assessment of mutation status, deletions, and loss of het-
erozygosity of BRCA1 and BRCA2 were assessed to determine
mono-allelic and bi-allelic loss of function. Retrospective clini-
cal review classified responses to platinum-based chemotherapy,
which was modelled using logistic regression with HRDetect
scores, BRCA1 & BRCA2 status, and treatment timing as pre-
dictors. HRDetect was significantly associated with platinum re-
sponse with a log odds ratio of 3.2 (odds ratio = 16, p = 0.006).

z p Log Odds Ratio Lower CI Upper CI

Intercept -1.9 0.061 -2.1 -4.6 -0.12

HRDetect 2.8 0.0057 3.2 1.1 5.7
BRCA+/- -0.22 0.83 -0.46 -4.8 3.9
BRCA-/- 0.54 0.59 0.73 -2.1 3.7

Tx During Biopsy -0.12 0.9 -0.21 -4.1 3.1
Tx After Biopsy -0.023 0.98 -0.028 -2.5 2.5

2.2.4 Effects of HRDetect on Overall Survival and Treatment Duration

Of patients treated post-biopsy with platinum-based chemotherapy, there was a

statistically significant difference in overall survival (OS) depending upon HRDe-

tect (p = 0.04, n = 33). 5 patients with predicted CI (HRDetect > 0.7) demonstrated

a median survival of 384 days, 8 with predicted SD (0.7 > HRDetect > 0.005) had

a median survival of 160 days, and 6 patients with predicted progressive dis-

ease (PD) (HRDetect < 0.005) had a median survival of 122 days. This difference

should be interpreted with caution due to small sample size and other treatments

received besides platinum, but represents a promising trend which warrants fur-

ther study.
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In addition to OS, total duration on platinum-based therapy (TDT) was used

as a surrogate for clinical response. In practice, platinum-based chemotherapy is

typically continued in responding patients until disease progression or significant

toxicity. Figure 2.8 verifies that, in 26 patients with available imaging, patients

with reported radiographic response were more likely to undergo a longer du-

ration of treatment. HRDetect scores were significantly associated with extended

TDT with a hazard ratio of 0.24 (0.081 - 0.95; p = 0.01, n = 33), after adjusting

for BRCA1 and BRCA2 mutation status, timing of treatment, and patient age (Fig.

2.6B). Tumours were classified based on HRDetect scores into predicted treatment

response categories. There was a significant difference in TDT (p < 0.001, n = 33;

Fig. 2.6A) between patients with predicted CI (median 143 days), SD (median

71 days), and PD (median 56 days). This amounts to an estimated three-month

difference in median TDT between high HRD and low HRD cases.

2.2.5 Feasibility of HRD Analysis in Personalized Medicine

The development of precision oncology initiatives (Laskin et al., 2015; Meric-

Bernstam et al., 2013; Mestan et al., 2011; Zehir et al., 2017) has necessitated

genome analysis pipelines compatible with “N of 1” cases. One challenge of mu-

tation signature analysis by NMF is the reliance upon large cohorts of sequenced

tumours. This has led to techniques to determine the most likely composition of

signatures for a single isolated sample (Rosenthal et al., 2016). HRD analysis pro-

vides a promising target for personalized treatment decision-making. Thus, in ad-

dition to cohort-based de novo signature discovery, we also computed individual-

tumour best fit signature exposure profiles for HRD-associated SNV signatures

3 (V9) and 8 (V6) and SV signatures 3 (R1) and 5 (R5) using non-negative least
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squares (NNLS) - details in Methods. We then recomputed HRDetect scores using

these individualized NNLS signature exposures to assess accuracy.

HRDetect scores and all four HRD-associated SNV and SV signatures demon-

strated high concordance between NMF and NNLS approaches based on Pearson

linear regression (r > 0.9; Fig. 2.7). Employing the selected thresholds of 0.005 for

SD and 0.7 for CI, 86 out of 93 cancers were concordantly classified by NNLS and

NMF, including all cases predicted to experience CI. NNLS reclassified 4 cancers

from PD to SD, and 3 from SD to PD.

These findings demonstrate that NNLS-based N of 1 computation of mutation

signature exposures provides robust HRD estimates concordant with a cohort-

based NMF approach. This is promising for the application of HRD biomarkers

in sequencing-driven treatment guidance. However, this approach may not trans-

late to WES data or similarly targeted sequencing approaches due to the lower

numbers of sampled mutations.

2.3 discussion

In this retrospective study, HRD mutation signatures were associated with clinical

benefit on platinum based chemotherapy in advanced stage breast cancer. Specif-

ically, we demonstrated that HRDetect, the same model independently trained to

predict BRCA1 and BRCA2 status with high sensitivity and specificity (Davies

et al., 2017), was also significantly associated with favorable response to plat-

inum chemotherapy response and longer TDT. Moreover, we identified an optimal

HRDetect threshold of 0.7, which agrees with the previously established cut-off

for BRCA1/BRCA2 status (Davies et al., 2017). Therefore, our findings both inde-
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Figure 2.7: N of 1 signatures by non-negative matrix factorization
(NNLS) accurately reproduce HRDetect scores. (A) HRDetect
scores were computed using component signatures derived
from both NNLS and non-negative matrix factorization (NMF).
Scores obtained by the two approaches were strongly correlated
(Pearson’s R squared = 0.99) and demonstrated high classifica-
tion concordance based on selected thresholds. (B) Individual
HRD-associated mutation signatures were concordant between
the two approaches (Pearson’s R squared > 0.82 for all signa-
tures).
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pendently validate the HRDetect model and provide promising evidence for its

clinical relevance.

A key limitation of this study is the ability to establish causation. As this was

an observational cohort of advanced-stage breast cancers undergoing standard

chemotherapy treatments, some patients were sequenced during or after courses

of platinum-based chemotherapy. To mitigate the impacts of tumour evolution,

we limited analyses to patients sequenced within two years of treatment. Another

significant challenge when studying treated tumours is that platinum-associated

mutagenesis may impact the mutation signature profile, especially in cancers biop-

sied after treatment. A few factors help to mitigate this challenge, but cannot en-

tirely rule out platinum-induced mutagenesis. First, we adjusted for the treatment

timing in statistical analyses of the association between HRDetect and clinical

outcomes. Second, there has been reproducible evidence of HRD-associated sig-

natures in cohorts of predominantly primary tumours (Alexandrov et al., 2013a;

Davies et al., 2017; Nik-Zainal et al., 2012, 2016; Timms et al., 2014), which are

a close match to the signatures we found. Lastly, the aggregation of six distinct

signatures into a more robust metric should help mitigate the impact of platinum-

induced mutagenesis affecting any one signature in particular. Notably, the inves-

tigation of advanced stage breast cancers is an important feature of this study.

Whereas a previous trial did not find that the HRD index alone was predictive

in advanced breast cancer (Tutt et al., 2015), our findings renew promise for ag-

gregated metrics such as HRDetect. However, studying advanced stage tumours

inevitably introduces potential confounders such as variable treatment histories.

Therefore, well-designed prospective clinical trials are needed to further validate

HRDetect as a predictive biomarker.
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Another caveat is the threshold selection for predicting CI. A threshold of 0.7

was chosen because it both agrees with the model trained by Davies et al. (2017)

and optimally separated responders from non-responders in our cohort. However,

there was a sharp decline in HRDetect scores below 0.7, with no cases falling

between 0.25 and 0.5, and no cases with treatment response data between 0.5 and

0.7. This suggests that a superior threshold may exist between 0.25 and 0.7, and a

study with greater sample size may be require to pinpoint it.

HRD is common among breast cancers. Based on our HRDetect predictive

thresholds, 19 cases (20%) showed potentially targetable high HRD status (HRDe-

tect > 0.70). An additional 37 cancers (40%) showed moderate HRD status consis-

tent with stable disease on platinum-based chemotherapy (HRDetect > 0.005). By

comparison, biallelic germline and somatic mutations were detected in only 11

cases, and known pathogenic variants in only 7. Similarly, a previous analysis of

560 breast cancer genomes, which additionally examined promoter hypermethy-

lation, estimated the frequency of BRCA-null breast cancers at 14% (Nik-Zainal et

al., 2016). The analysis of HRD signatures may identify patients who could ben-

efit from platinum-based therapy otherwise undetected on BRCA1/2 screening.

These signatures may also have implications for sensitivity to PARP inhibitors,

which exploit a synthetic lethal interaction between PARP-1 and the HR pathway.

Germline mutations in BRCA1 and BRCA2 are associated with improved response

to PARP inhibitors (Robson et al., 2017). Additional translational research incorpo-

rating WGS is necessary to reveal whether HRD mutation signatures are similarly

associated with PARP inhibitor response independently of BRCA1/2 status.

Clinical translation of HRD mutation signatures requires sufficient capture of

somatic SNVs and SVs to infer the processes underlying mutagenesis. While

HRDetect improves upon the accuracy of the clinically employed LOH, TAI, and
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LST metrics, it requires WGS, which currently poses technical and financial chal-

lenges for clinical use. Further research to develop predictive models that exclude

SV signatures may enable application on cancer exomes or other targeted sequenc-

ing methods, which can capture sufficient somatic mutations for SNV signature

but not SV signature analysis. Additionally, orthogonal HRD assays, for example

employing gene set expression profiling (Mulligan et al., 2014), may also serve as

lower cost parameters for treatment prediction. Nevertheless, as sequencing costs

fall, WGS provides unique opportunities to integrate diverse markers of genomic

instability and mutagenesis within a single protocol. Moreover, we demonstrated

that NNLS mutation signature analysis enables accurate N of 1 HRD signature

investigation for genome-driven personalized medicine initiatives.

Quantifying HRD signatures supplements existing knowledge and paradigms

of cancer detection and stratification. HRDetect scores were associated not only

with BRCA1 and BRCA2, but also potentially with other genes such as PTEN. This

approach provides a functional indicator for mutations whose impact on gene

function is uncertain, potentially expanding the repertoire of known causative

variants which comprise hereditary cancer screening (Polak et al., 2017). Addi-

tionally, we observed that HRD signatures were more common in, but not exclu-

sive to, triple-negative and basal-like breast cancers. This agrees with previous

work (Nik-Zainal et al., 2016) and helps to situate HRD in the context of other

widely-used breast cancer markers. A topic for future investigation is the value of

screening basal-like and triple negative breast cancers for signatures of HRD.

Breast cancer remains the most common cancer diagnosis in women world-

wide. It is evident that a substantial proportion are driven in some part by HRD.

Here, we have quantified the relationship between aggregated HRD signatures

and measures of sensitivity to platinum-based chemotherapy, providing the basis
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for further investigation of this putative predictive biomarker in prospective tri-

als. In doing so, this study demonstrates the potential for mutation signatures to

guide clinical therapy in a precision oncology setting.

2.4 methods

2.4.1 Patient Samples, Ethics, and Data Policy

93 study participants with advanced stage breast cancer underwent tumour biop-

sies at the BC Cancer Agency and collaborating hospitals as part of the POG

project, the first 100 cases of which were described in an earlier publication

(Laskin et al., 2015). This study includes data from the first 93 verified breast

cancer cases which underwent whole genome characterization and met quality

assurance standards.

2.4.2 Sample Collection, Preparation, and Sequencing

Biopsy samples were embedded in optimal cutting temperature (OCT) compound

and sectioned. Pathology review was completed for each specimen, including as-

sessment of tumour content. Genome libraries from tumor and peripheral blood

(normal control) as well as transcriptome libraries from tumour were constructed

using Illumina protocols. Whole genome and transcriptome sequencing was per-

formed on an Illumina HiSeq2000 or HiSeq2500 sequencer. The details of library

construction and sequencing have been previously described (Bose et al., 2015;

Sheffield et al., 2015).
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2.4.3 Bioinformatic Analysis

Sequencing reads were aligned to the human reference genome (GSCh37) by the

BWA aligner (v0.5.7) (Li and Durbin, 2009, 2010). Somatic SNVs and small in-

sertions/deletions were processed using samtools (Li et al., 2009) and Strelka

(v0.4.6.2) (Saunders et al., 2012). CNVs were called using CNASeq (v0.0.6) as

described in (Jones et al., 2010) and LOH by APOLLOH (v0.1.1) (Ha et al., 2012).

The matched normal genome was used to subtract germline variants and to report

cancer risk variants in 98 select actionable genes, pre-approved by an ethics com-

mittee. Germline variant pathogenicity was estimated according to established

ACMG guidelines (Richards et al., 2015) using a local curated variant database

and custom-built risk calculator established by the BC Cancer Agency Cancer

Genetics Laboratory. Transcriptomes were repositioned using JAGuaR (version

2.0.3) (Butterfield et al., 2014). Differential expression analysis was performed by

comparing RPKM expression levels against a compendium of 16 normal tissues

from the Illumina BodyMap 2.0 project (available from ArrayExpress, queryID: E-

MTAB-513) as described in (Jones et al., 2010). Intrinsic subtypes were determined

by performing Spearman rank-order correlations on the expression of genes in

the PAM50 gene set (Chia et al., 2012) for each breast cancer subtype between se-

quenced samples and 823 breast cancers derived from The Cancer Genome Atlas

(The Cancer Genome Atlas, 2012). For each sample, the subtype with the greatest

correlation coefficient was taken as the intrinsic subtype (Figure 2.2). One tumour

sample did not pass quality control for RNA-seq and was excluded from analyses

involving intrinsic subtypes.
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2.4.4 Determining HRDetect Scores

HRDetect scores were computed by aggregating six mutation signatures associ-

ated with HRD: (1) SNV signature 3/V9, (2) SNV signature 8/V6, (3) SV signature

3/R1, (4) SV signature 5/R5, (5) the HRD index, and (6) the fraction of deletions

with microhomology. All signatures were normalized and log transformed as pre-

viously described (Davies et al., 2017), and HRDetect scores were computed using

a logistic model with the same intercept and coefficients as those reported in the

previously trained model, without any retraining or adjustment (Davies et al.,

2017). The intercept was -3.364 and the coefficients were 1.611, 0.091, 1.153, 0.847,

0.667, and 2.398 respectively for the six HRD signatures. The sections that follow

detail the computation of the six component signatures. A complete pipeline for

computing HRDetect scores is available at github.com/eyzhao/hrdetect-pipeline.

2.4.5 Single Nucleotide Variant Mutation Signatures

Somatic SNVs called by Strelka were used for mutation signature calculation.

SNVs were categorized based on 6 variant types and 16 trinucleotide context sub-

types to yield a total of 96 mutation classes. Mutation signatures were deciphered

using a published framework (Alexandrov et al., 2013b), which employs NMF to

infer both the operative signatures prevalent across the 93-genome cohort and the

relative exposure of each signature to each genome. Exposures are modeled as the

number of mutations contributed by a mutation signature. Fractional exposure

was defined as the proportion of a genome’s total mutation burden contributed

by a particular signature. Signature stability estimates were obtained by bootstrap

re-sampling with 1 008 iterations (84 iterations over 12 cores). The similarity of
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signatures to thirty previously described mutational signatures (available from

cancer.sanger.ac.uk/cosmic/signatures) was quantified using the cosine similar-

ity metric. Solutions with a 7 to 10 signature model were found to best maximize

signature stability and minimize Frobenius reconstruction error. Among these, a

9-signature model was selected as it yielded one signature with maximal cosine

similarity to the previously described HRD-associated Signature 3.

2.4.6 Structural Variant Mutation Signatures

Large scale somatic SVs were reconstructed by de novo assembly of tumor and nor-

mal reads using ABySS and Trans-ABySS (Robertson et al., 2010). Candidate SVs

were re-aligned to the reference genome to resolve breakpoints. Additionally, we

used DELLY (v0.6.1) to obtain an independent SV set by reference-based analysis

of split and paired end reads (Rausch et al., 2012). Germline events were filtered

out by subtracting SVs found in the matched normal genome. SVs detected by

the two methods were merged to yield a high quality consensus set, containing

an intersection of variants called by both methods where matching breakpoint

loci were separated by no more than 20 base pairs.

32-parameter SV mutation catalog vectors were computed by binning variants

based on breakpoint clustering, SV type, and SV length (Nik-Zainal et al., 2016),

yielding a 32 by 93 catalogue matrix. This matrix was decomposed by NMF (like

with SNV signatures) using a 6-signature model, which was chosen to maximize

signature stability and minimize Frobenius reconstruction error. Pairwise com-

parisons of newly deciphered mutation signatures to six previously described

signatures was performed by cosine similarity metric.
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2.4.7 Calculation of the HRD Index

For each cancer genome, the HRD index was computed as the arithmetic sum of

LOH, TAI, and LST scores. CNV and LOH analysis pipelines yielded coordinates

segmenting whole genomes by allele-specific copy number ratios. We created an

R package called HRDtools which computes LOH, TAI, and LST scores based

on the genome-wide CNV profile (available from github.com/eyzhao/hrdtools).

Because the HRD index relies upon large-scale events, HRDtools first filters out

small events occurring within contiguous events at least 100 times larger. The

three scores are then determined based on published guidelines (Timms et al.,

2014)

2.4.8 Analysis of Deletion Microhomology

Somatic deletions were detected based on sequence alignment using Strelka. Se-

quences flanking deletion breakpoints were obtained. The microhomology frac-

tion was determined as the proportion of deletions which were larger than three

base pairs and demonstrated overlapping microhomology at the breakpoints.

2.4.9 Review of Clinical Case Data

Retrospective chart review was performed to obtain treatment history and clin-

ical response to chemotherapy regimens. We queried a province-wide registry

of oncology therapeutic records (Wu et al., 2013) to obtain dates of (1) birth, (2)

death if applicable, (3) most recent cancer diagnosis, and (4) start and end dates of

all platinum-based chemotherapy regimens administered to treat the most recent
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cancer diagnosis along with therapies used in combination. Treatment timelines

and clinical response are presented in Figure 2.8. All patients were treated as part

of standard cancer care either prior to, during, or after the sequencing biopsy.

Platinum-treated patients were given standard doses of cisplatin (30 mg/m2 on

days 1 and 8 of a 21 day cycle) or carboplatin (calculated in milligrams as glomeru-

lar filtration rate + 25, multiplied by 6 for monotherapy or 5 in combination regi-

mens).

To assess therapeutic benefit, three outcomes were chosen: OS, TDT, and clini-

cal response based on imaging. OS was assessed in patients treated after sequenc-

ing (n = 19) and was computed as the duration from first post-biopsy dose of

platinum-based chemotherapy to death. TDT was examined as a surrogate for

therapy effectiveness. To improve relevance to the present diagnosis, TDT in-

cluded only treatment regimens occurring within 2 years of sequencing biopsy

(n = 33; Figure 2.8).

Clinical imaging reports were reviewed to evaluate platinum response includ-

ing fludeoxyglucose positron emission tomography and computed tomography

obtained during or within two months after the period of platinum-based therapy,

compared to pre-treatment scans. Treatment response was classified as follows: (1)

CI, any tumor shrinkage of one or more lesions with no evidence of growth or

new lesions; (2) SD, either no change in lesions or decreased size of some lesions

with growth of others; or (3) PD, disease progression with no associated tumor

shrinkage. The best observed response per regimen was recorded.
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Figure 2.8: Treatment timelines and radiographic outcomes on platinum-
based chemotherapy arranged by total duration on platinum-
based chemotherapy. The time axis is aligned to the biopsy
date, which is centred at time zero. Treatment timelines were
obtained from the Outcomes and Surveillance Integration Sys-
tem (OaSIS) of the BC Cancer Agency, which aggregates can-
cer therapy data across provincial registries. Radiographic out-
comes were obtained from a retrospective review of radiologist
reports specific to periods of platinum-based treatment.
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3
S I G N I T: I N F E R R I N G M U TAT I O N S I G N AT U R E S A N D T H E I R

T E M P O R A L E V O L U T I O N I N I N D I V I D U A L T U M O U R S

3.1 introduction

Mutagenic processes in cancer leave characteristic patterns of somatic SNVs

(Alexandrov et al., 2013a) and SVs (Nik-Zainal et al., 2016). These mutation sig-

natures reveal exposures such as tobacco smoke (Alexandrov et al., 2016) and

ultraviolet radiation, as well as DNA repair deficiencies (Polak et al., 2017). They

have also been shown to correlate with the etiology, biology, and pathology of tu-

mours (Schulze et al., 2015; Wang et al., 2017). Recent studies have also revealed

therapeutic implications of mutation signatures, suggesting opportunities for pre-

dictive biomarker clinical trials (Alexandrov et al., 2015b; Le et al., 2015; Rizvi

et al., 2015; Zhao et al., 2017). Increasingly, high throughput sequencing is being

investigated for its potential to guide cancer precision therapy (Kumar-Sinha and

Chinnaiyan, 2018; Zehir et al., 2017). The use of mutation signatures as biomarkers

for personalized medicine will require accurate, robust, and interpretable muta-

tion signature analysis in individual tumours.

Most mutation signature methods focus on detecting signatures de novo, which

requires large cancer genome cohorts (Alexandrov et al., 2013b; Baez-Ortega and

Gori, 2017; Fischer et al., 2013; Shiraishi et al., 2015). Currently, two methods

exist for n-of-1 mutation signature decomposition by fitting to consensus refer-
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ence signatures: deconstructSigs (Rosenthal et al., 2016) and SignatureEstimation

(Huang et al., 2017). deconstructSigs performs signature selection and point es-

timation of signature exposures, while SignatureEstimation additionally reports

credible intervals. However, a significant challenge when fitting samples to ref-

erence signatures is multicollinearity: correlated features between signatures can

cause bleed of signal between them. This can cause overfitting, resulting in over-

or underestimation of clinically relevant mutation signatures.

The temporal evolution of mutation signatures is also crucial to their biolog-

ical and clinical interpretation. Temporal dissection of cancer mutation sets has

shown that exogenous and aging-related mutagenic processes act earlier than en-

dogenous mutagens and DNA repair deficiencies (Bruin et al., 2014; McGranahan

et al., 2015; Rosenthal et al., 2016). Temporal shifts in mutagenesis may also reveal

shifts in therapeutic targets.

One approach for tracking changing mutation signatures is serial sequencing.

However, this strategy is costly and impractical in the clinical setting as it requires

rebiopsy. An alternative strategy is to use digital NGS read counts to infer the cel-

lular prevalence (also known as cancer cell fraction) and number of chromosomal

copies carrying each mutation. Both are directly related to mutation timing: so-

matic mutations present on multiple copies likely occurred before duplication, and

mutations with high cellular prevalence likely occurred before subclone develop-

ment (Figure 1.1). Previous approaches have partitioned mutations a priori into

“early” and “late” categories (Bruin et al., 2014; McGranahan et al., 2015). Hence-

forth, we will refer to this approach as binary temporal partitioning (BTP). This

method is limited because it makes hard assumptions about the underlying tu-

mour clonal architecture, uses arbitrary thresholds to define “clonal” mutations,
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and treats each variant independently rather than inferring shared parameters

from the complete data.

In recent years, Bayesian probabilistic models have generated substantial ad-

vances in the inference of heterogeneous tumour subpopulations from both so-

matic SNVs and read depth data (Fischer et al., 2014; Ha et al., 2014; Miller et

al., 2014; Roth et al., 2014). These methods define a hierarchical data-generating

probabilistic model, then infer model parameters (such as population prevalences

and signature exposures) to best reflect the data. Bayesian inference is often more

robust to noise and provides full posterior distributions over parameter estimates.

Here, we present SignIT, an R package featuring a Bayesian hierarchical model

for accurate and robust mutation signature analysis of individual tumours. Full

posterior estimates of signature exposures juxtaposed with comprehensive mu-

tation signature bleed mapping can significantly enhance interpretability. SignIT

also includes an extended model which enables joint inference of mutation sig-

natures and temporally distinct tumour subpopulations, exposing signature evo-

lution. We assess SignIT’s n-of-1 signature accuracy against deconstructSigs and

SignatureEstimation using both simulated mutation count vector and somatic mu-

tation data from TCGA. We validated SignIT’s temporal analysis using WGS data

from 24 serially sequenced primary-metastasis tumour pairs. Lastly, we apply

SignIT to the analysis of 543 metastatic whole genomes, the first ever temporal

analysis of mutation signatures in metastatic cancer.
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3.2 results

3.2.1 SignIT Reports Credible Intervals and Signature Bleed

We begin with an example to illustrate SignIT’s output. P10 is a patient who

underwent whole genome sequencing of her metastatic breast cancer, revealing

10,068 somatic SNVs. Mutation signature analysis by SignIT revealed elevated sig-

natures 3 and 8, both associated with HRD (Davies et al., 2017), as well as slight

involvement of signatures 2, 9, and 17 (Figure 3.1A). SignIT reports full poste-

rior probability distributions which reflect the stochasticity of somatic mutation

as well as uncertainties due to signature bleed. Moreover, 2D projections of the

posterior distribution provide a pairwise map of signature bleed (Figure 3.1B),

which is visualized below signature exposures as a non-directed graph. Signature

bleed presents as anti-correlation in the posterior samples because the existence

of reference signatures with similar profiles will produce mutually exclusive so-

lutions. Signatures 3 and 8, for example, have correlated mutation spectra, with a

cosine similarity of 0.76.

SV signatures can also be analyzed. P10 possessed 146 somatic SVs, which were

fitted against six SV signatures previously identified in breast cancer (Nik-Zainal

et al., 2016). This revealed involvement of rearrangement signatures 2 and 5, with

signature bleed between them (Figure 3.1C).

3.2.2 Resilience to Complexity and Noise

To assess the accuracy of signature exposures, we created a mutation signa-

ture simulation R package called msimR (github.com/eyzhao/msimR). Mutation
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Figure 3.1: SignIT reports complete posterior distributions along with
signal bleed between signatures. (A) Complete Bayesian infer-
ence over mutation counts determines posterior parameter es-
timates for each mutation signature exposure. Signature bleed,
quantified as the negative Spearman correlation coefficient per
2D slice of the posterior distribution, is quantified pairwise be-
tween signatures and plotted as a graph below posteriors. (B)
An example of anticorrelated exposure posteriors between Sig-
nature 3 and Signature 8 is shown as a 2D density plot. (C)
Mutation signature exposures can also be computed for struc-
tural variant mutation signatures, using a 6-signature reference
set.
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Figure 3.2: SignIT improves signature estimation for complex models
with noisy data. (A) Mutation count vectors were simulated by
varying the mutation burden, number of active signatures, and
amount of noise introduced into the reference signature matrix.
Exposures were estimated using three signature decomposition
methods and compared against true exposures. (B) 500 count
vectors were simulated at each condition and the similarity of
estimated to true exposures was computed using the cosine dis-
tance (lower values indicate better accuracy). The mean cosine
similarity per condition is shown.

count vectors were generated from known simulated signature exposures with

varying mutation burden and model complexity (number of active signatures).

Additionally, there can be uncertainty in the mutational profile of processes which

generated somatic mutation, as no reference set can be expected to capture all the

possible biological variability of mutagenesis. To emulate this biological variabil-

ity, random Gaussian perturbation of reference signatures was introduced (Figure

3.2A). It is expected that performance improves with increasing mutation burden

(sample size) and declines with increasing model complexity (the number of sig-

natures, or dimensionality) and reference signature noise.

Simulated genomes with higher mutation burden yielded more accurate signa-

ture exposures across all conditions and methods, as demonstrated by decreased
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cosine distance (Figure 3.2B), which is defined as 1− cosinesimilarity. However,

accuracy declined in more complex genomes with larger numbers of active signa-

tures. SignIT was either equally accurate or more accurate than other methods in

all settings with the exception of low-complexity, low-mutation genomes. SignIT

was superior in genomes with many active processes and was also substantially

more robust to perturbation of the underlying reference signatures.

Error rates were quantified per signature to identify over- and underestimated

signature exposures. Both deconstructSigs and SignatureEstimation frequently un-

derestimated signatures, which may result in the loss of actionable information

(Appendix Figure A.1). Particularly difficult to resolve were signatures most sim-

ilar to other signatures and are therefore most likely to exhibit signature bleed,

especially signature 5. Conversely, absent signatures are frequently overestimated

by all methods (Appendix Figure A.2). However, where SignIT inflated exposures,

it did so with a lower relative error. This robustness against dramatic over- or un-

derestimation of signature exposures is necessary for confident clinical interpre-

tation.

In most settings, SignIT takes longer to run than other methods, but scales to

realistic mutation burdens with practical runtimes (Figure 3.3). Using default set-

tings (8 chains in parallel with 200 burn-in iterations and 200 sampling iterations

each), SignIT ran in 20 seconds on tumours with 100 mutations and 154 seconds

on tumours with 1,000,000 mutations.

3.2.3 SignIT Better Reproduces Signatures in Cancer Data

To evaluate SignIT on real cancer genome mutation data, we analyzed whole

exomes from nine cohorts of TCGA. Mutation signatures in each cohort were
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Figure 3.3: Runtimes of n-of-1 mutation signature decomposition tools.
Simulated mutation catalogs were generated under various con-
ditions and their exposures were re-estimated using decon-
structSigs, SignatureEstimation, and SignIT. The number of mu-
tations varied from 10 to 1,000,000, the number of active signa-
tures varied from 1 to 20, and random perturbation of reference
signatures varied from 0 to 80 percent. Runtimes were captured
across 500 trials under each set of conditions. Mean runtimes
are presented here in seconds.

62



deciphered by NMF (Alexandrov et al., 2013b), as well as by SignIT, deconstruct-

Sigs, and SignatureEstimation. NMF signatures were compared against the full

COSMIC 30-signature reference set to determine the best match for each de novo

signature. To best emulate a clinical sequencing scenario, n-of-1 signature analysis

was rendered entirely blind to NMF results. Exposures were computed against the

entire COSMIC 30-signature reference set. For each COSMIC signature matched

by NMF, exposures were compared to those of each n-of-1 method by Spearman

correlation, which was chosen because of its robustness to outlier (hypermutating)

signatures.

SignIT exposures demonstrated greater concordance with de novo NMF meth-

ods across all signatures and cohorts than deconstructSigs or SignatureEstimation

(Figure 3.4A). While the methods were comparable for hypermutating signatures

such as Signatures 2, 4, 7, and 13, SignIT substantially improved concordance with

NMF for lower-exposure signatures (Figure 3.4B).

3.2.4 SignIT Infers the Temporal Evolution of Signatures

Returning to patient P10, we next undertake the temporal dissection of signatures

across tumour subpopulations (Figure 3.5A). SignIT identified two mutational

subpopulations with prevalences of 1.0 and 0.31 accounting for 80.5% and 19.5%

of total mutation burden respectively. The two populations display different mu-

tational profiles, with the more prevalent (earlier) population being enriched for

Signature 3 and the less prevalent (later) population for Signatures 16, 17, and 30.

Dividing mutations into early and late sets using BTP (McGranahan et al., 2015)

agreed closely with results from SignIT (Figure 3.5B).
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Figure 3.4: Comparison of NMF and n-of-1 methods across nine can-
cer exome cohorts. (A) Mutation signatures were deciphered
de novo in 9 cohorts from The Cancer Genome Atlas (TCGA)
and matched to the most similar corresponding reference sig-
nature. N of 1 mutation signature exposures were estimated
using three methods and compared against de novo signature
exposures using the Spearman correlation coefficient. (B) Sig-
nIT demonstrated improved accuracy, providing significant im-
provement in resolving signal from less mutagenic signatures.
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Early-arising, population 1 signatures were concordant with both primary (co-

sine similarity = 0.988; Figure 3.5C) and metastatic (cosine similarity = 0.976; Fig-

ure 3.1A) exposure profiles, both of which showed elevated signatures 3 and 8.

Population 2 therefore may provide insights into mutational processes later in

metastasis.

3.2.5 Metastatic Tumours Demonstrate Divergence of Mutational Processes

To assess the temporal dissection of mutation signatures, we performed WGS of

24 metastatic tumours with paired sequencing of primaries. 20 of those primaries

were sequenced from formalin-fixed and paraffin embedded (FFPE) tissue, and 4

from OCT tissue. The intersection of primary and metastatic SNVs was used to

derive signatures of the primary tumour. The rationale for using the intersection

is to focus on mutations present in the primary which persisted in the metasta-

sis and to filter out false positives introduced by FFPE. Subpopulation-specific

signature exposures computed by SignIT were compared to primary tumour sig-

natures. The divergence away from the primary was quantified for the signatures

of each subpopulation in the metastatic sample using the cosine distance.

As expected, all cases demonstrated mutation signature divergence from the

primary tumour in the least prevalent (latest) subpopulation (Figure 3.6). In most

cases, prevalent early subpopulations were similar to the primary tumour (cosine

distance < 0.2), even when signatures from the bulk metastatic tumour differed

from the primary. This suggests that signature timing can reveal the early muta-

tional processes of tumorigenesis using a later metastatic sample.

Early mutations derived from the BTP method similarly matched primary tu-

mour signatures except in three cases (P07, P08, and P15). All three were charac-
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Figure 3.5: Subpopulation-specific mutation signatures in a somatic can-
cer whole genome. (A) SignIT was used to infer subpopulation-
specific mutation signatures in a breast cancer. This revealed
two temporally distinct subpopulations with mutational preva-
lences of 1.0 and 0.31 giving rise to 80.5% and 19.5% of mu-
tations respectively. (B) Temporally dissected mutation signa-
tures were similar to those deciphered by binary temporal parti-
tioning. (C) Signatures deciphered from mutations shared with
the sequenced primary tumour also agreed with early subpop-
ulation mutation signatures.
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Figure 3.6: Mutation signatures in serially sequenced metastatic tumours
demonstrate time-dependent divergence from the primary. To
validate SignIT and explore signature evolution in metastatic
tumours, SignIT was used to decipher population-specific sig-
natures in metastatic tumours with whole genome sequencing
of paired primaries. Cosine distance was used to determine the
similarity of mutation signature exposures in each subpopu-
lation to those of mutations shared with the primary tumour.
More prevalent populations typically demonstrated similarity
with the primary, even when bulk metastasis signatures dif-
fered greatly. Signatures in lower-prevalence populations di-
verged over time.
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terized by highly mutagenic late (lower-prevalence) subpopulations (Figure 3.6).

Examining P07 as an example (Figure 3.7), SignIT early (population 1) muta-

tion signatures were a closer prediction of primary tumour signatures than the

early mutations from BTP, which overestimated APOBEC-related signatures 2

and 13. Whereas SignIT found that 91% of mutations originated from the lower-

prevalence, late subpopulation, BTP identified 80% of mutations as late-arising.

This suggests that BTP may have suffered from contamination of the early muta-

tion pool with late-arising APOBEC-associated mutations.

SignIT also improves temporal dissection when tumours harbour subpopula-

tions with prevalence values near 1.0. For example, P05 had a subpopulation with

a relatively high prevalence of 0.73. This population demonstrated a dramatic

drop in signature 1 and rise in signature 8, which was not resolved as clearly by

BTP (Figure 3.8). SignIT mitigates these limitations of BTP by fitting the cancer’s

subpopulation structure.

3.3 discussion

Mutation signatures and genomic instability are an emerging part of the ever-

growing scientific literature focussed on clinically actionable cancer biomarkers.

SignIT constitutes a substantial advance in mutation signature analysis and inter-

pretation in individual tumours. Along with providing novel insights into muta-

tion signature bleed and tumour subpopulation structure, our findings demon-

strate SignIT’s accuracy and its robustness against model complexity and noise.

SignIT’s inference of subpopulation-specific signatures improves upon previous

approaches because it directly models the underlying clonal structure. Analysis

of tumours sequenced at multiple time points revealed frequent divergence of
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Figure 3.7: SignIT improves upon binary temporal partitioning (BTP) by
modeling the tumour subpopulation structure. When the tu-
mour subpopulation structure disagrees with the strict assump-
tions of BTP, temporally dissected mutation signatures can be
inaccurate. (A) In this temporal analysis of a lung adenocar-
cinoma, the lower prevalence population 2 was highly muta-
genic. (B) This feature may have resulted in contamination of
the smaller “early” mutation pool, resulting in poor temporal
separation. (C) SignIT’s early signatures better match those of
the archival sample.
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Figure 3.8: A colorectal cancer demonstrates errors in binary partition-
ing resulting from unusually high mutational prevalence of
population 2. (B) This resulted in erroneous estimates of signa-
tures 1 and 8. (A) By contrast, SignIT jointly models the popu-
lation structure and signatures, enabling clearer delineation of
signatures between subpopulations. (C) SignIT’s results more
accurately reproduce mutation signatures from the matched
archival sample.
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mutation signatures, highlighting the need to track the evolution of mutagenic

processes in metastasis.

SignIT offers the ability to resolve the mutational history of individual tumours

at greater resolution than previously possible. The temporal dissection of muta-

tion signatures can inform many questions of biological interest. For example, un-

derstanding the earliest mutational processes in cancer may help inform tumour

prevention and early detection. Temporally resolving mutation signatures could

also improve the understanding of mechanisms underlying known and novel sig-

natures. Lastly, signature timing can isolate mutagenic processes characteristic of

key disease phases such as metastasis.

Successful mutation signature analysis necessitates some technical trade-offs.

For instance, SignIT infers mutational prevalence as a surrogate for mutation

timing without deconvolving the influences of variant copy number and cellular

prevalence. It is technically challenging to determine both these factors indepen-

dently without targeted deep sequencing, which is frequently used to estimate

clonal composition (Roth et al., 2014). However, the analysis of mutation signa-

tures requires the broad capture of large numbers of variants, which is most eco-

nomical by lower-depth WGS or WES. A potential compromise, which SignIT

supports, involves using targeted deep sequencing to predetermine fixed preva-

lence parameters in SignIT inference.

Fulfilling the promise of cancer precision medicine will require rapid integra-

tion of orthogonal genomic biomarkers into research and clinical practice. SignIT

provides a novel, easy to use, and methodologically rigorous approach to muta-

tion signature analysis to improve interpretation of n-of-1 signature analysis. It

also enables temporal dissection of mutation signatures, which is applicable to

emerging biological and clinical questions in cancer genomics.
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3.4 methods

SignIT is available from github.com/eyzhao/SignIT. Version v1.0.1 was used for

all analyses described in this thesis.

3.4.1 The SignIT Generative Model

Bayesian inference involves the definition of a generative model, then learning the

parameters of that model which provide the best fit to data. Upon convergence,

Hamiltonial Monte Carlo (HMC) enables probabilistically proportionate sampling

from the complete posterior distribution over the parameters. Here, we describe

the generative model used in SignIT to perform Bayesian inference over signature

exposures.

Mathematics of De Novo Mutation Signature Analysis

The early work on mutation signatures aimed to identify recurrent patterns of

somatic mutation which could explain the mutational processes frequently ob-

served in cancer. These approaches utilize NMF or similar dimensionality reduc-

tion methods to reduce a mutation count vector denoting the frequencies of a set

of mutation types into a smaller set of signatures. We refer to these approaches,

in aggregate, as de novo mutation signature analysis, because they identify novel

mutation signatures using unsupervised learning methods.

First, let V be a set of mutation classes parametrized for N mutations arising

from K mutation signatures in G genomes. Let M be a V × G mutation counts

matrix, S a V × K mutation signature matrix, and E a K× G exposures matrix. In
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the mutation signature model, M = SE. Determining an optimal solution for S

and E given a mutation count matrix M can be performed by NMF.

N of 1 Mutation Signature Analysis

In the n-of-1 case, let G = 1, yielding c = Se, where c ∈ NV is a V-dimensional

non-negative integer mutation count vector and e ∈ R+K is a K-dimensional non-

negative exposures vector. In the common parametrization of SNVs based on base

change and 3’/5’ context, V = 96. Let S;
(
0 < Sij < 1∀i = 1 . . . V, j = 1 . . . K

)
be

a V × K matrix of known signatures, where K is the number of known reference

signatures.

At the time of writing, the most commonly used reference signature

set for SNVs is a 30-signature matrix available from COSMIC at can-

cer.sanger.ac.uk/cosmic/signatures. However, any set of reference mutation sig-

natures may be used. The mutational spectrum of a tumour is modeled as a linear

combination of contributing signatures, with coefficients e; e1, e2, . . . , eK > 0.

Given known values for m and S, the goal is to determine the best fit value of

e. The most common cost function is the sum of squared errors (SSE), such that e

is chosen to minimize |Se−m|2. Given that e must be non-negative in all dimen-

sions (there cannot be a negative number of mutations), this problem is known as

non-negative least squares. NNLS is well-studied and readily implemented using

quadratic programming (QP), which rapidly converges to an optimal solution.

Limitations of NNLS

There are three sources of error in the QP solution to NNLS which limit its ac-

curacy and utility to clinical cancer sequencing. The first is sampling error in

mutagenesis. The accrual of mutations can be viewed as a random process where,
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for the ith mutation, the responsible mutational process zi is drawn from the cat-

egorical distribution, zi ∼ Categorical (e), and the mutational class xi is subse-

quently drawn from xi ∼ Categorical (S:,zi). This results in a categorical noise

profile, which QP is likely to overfit to, especially for small mutation counts. On

the other hand, SignIT models the data-generating process underlying mutation

counts (known as a categorical mixture model) and can therefore account for

noise rather than overfitting to it. This allows SignIT to yield estimates of solution

uncertainty, rather than point estimates.

The second source of error arises due to multicollinearity of the reference sig-

nature matrix. Signatures in the reference set often exhibit correlation with each

other, due to similarities in their mutation profiles. This can result in spurious

mutation signature elevation when similar signatures are present, a phenomenon

known as “signature bleed”. Multicollinearity poses an inherent mathematical

limitation on the ability to call mutation signatures with certainty. SignIT ad-

dresses signature bleed by mapping mutual exclusivities in signature activation.

In MCMC, posterior sampling density eventually converges on the true posterior

distribution; any two signatures which bleed with one another will have anticor-

related MCMC samples. This reflects the fact that a fixed portion of mutations can

be explained by various linear combinations of the two similar signatures.

The last source of error arises from the reference signature matrix, S. The “true”

signatures giving rise to a cancer genome may differ slightly from those cata-

logued in S, resulting in the mis-estimation of exposures. This signature bias is

more difficult to account for without prior knowledge of uncertainties in the ref-

erence signature matrix. However, N of 1 signature decomposition methods can

be tested for robustness against reference signature bias by observing the accu-
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racy and stability of results when the reference signatures are perturbed with a

pre-determined noise profile.

Bayesian N of 1 Signature Analysis

SignIT models the acquisition of mutations as a categorical mixture of K muta-

tional processes, where K is the number of reference mutation signatures. The

reference mutation matrix, S, has dimensions V × K, where V is the number of

mutation classes (most commonly V = 96) and variant classes are defined by the

base change and 3’/5’ mutation context (Alexandrov et al., 2013b). Every column

of S is a probabilistic simplex denoting the probability distribution of mutation

classes associated with a single reference signature. Let e be a K-dimensional

simplex denoting signature proportions, also known as exposures. A signature’s

exposure is the probability of a random mutation occurring as a result of that

signature. Note the analogy to a topic model, where signatures represent top-

ics, mutation classes constitute the vocabulary, and mutations serve as words. To

generate a dataset of N mutations, first select each mutation’s signature, ui, by

drawing from a categorical distribution ui ∼ Categorical(e). Next, determine the

mutation class, vi ∼ Categorical(S:,i). Repeating this process for i = 1, 2 . . . , N

yields a set of N mutations, each belonging to a specific class. SignIT vectorizes

this by encoding mutation count vectors rather than individual mutations, which

provides significantly better performance.

Vectorization

For efficiency, SignIT’s implementation vectorizes the categorical mixture model

presented in the main text, yielding an equivalent but simpler generative model.

We begin by recognizing that the product Se yields an V-dimensional probability
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simplex denoting the probability of observing each mutation class. We next de-

fine the V-dimensional mutation count vector c, where ci indicates the number of

mutations belonging to the ith mutation class. In this scheme, the previously pre-

sented categorical model can be equivalently presented as c ∼ Multinomial(n =

N, p = Se). This vectorized parametrization yields significantly faster gradient

calculation, sampling, and likelihood calculation.

The Temporal Subpopulation Model

SignIT includes a mathematically consistent extension of the aforementioned mix-

ture model to jointly infer signature exposures and temporally separated tumour

subpopulations. The complete hierarchical model (Figure 3.9) generates both the

VAF and mutation class of each variant using coinciding beta-binomial and cate-

gorical finite mixtures respectively. The categorical mixture component is identical

to the previously described model, except that exposures are replaced by mixing

components with K · L elements, where L is the number of subpopulations be-

ing modelled. Subpopulations are distinguished based on prevalence, µ′ = Fm,

defined as the product of clonal cellular prevalence, F, and the number of allelic

copies carrying the mutation m. Higher prevalence subpopulations are associated

with earlier-arising mutations.

We assume the presence of L latent temporally distinct subpopulations which

give rise to varying mutant allele counts. To account for overdispersion, which is

commonly observed amongst NGS reads, we model variant allele counts using

a beta-binomial finite mixture model. Note that the beta-binomial distribution is

parameterized with mean (µ) and concentration (κ), which relate to the shape

parameters α and β by the relations µ =
α

α + β
and κ = α + β.
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Figure 3.9: Complete SignIT joint population-signature model. For each
mutation, mutation type (vn) and variant read depth (zn) are
jointly drawn based on the selected signature (un) and popula-
tion (yn) respectively. These responsibility terms are determinis-
tically mapped from xn, which is chosen from the mixing prob-
abilities φ. The signature probabilities (sk) are user-determined.
The beta-binomial population prevalences (µl) and shared con-
centration term (κ) determine read depths. The correction fac-
tor (an) is computed from total read depth (dn), tumour copy
number (C(T)), normal copy number (C(N)), and tumour con-
tent (T).
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The SignIT population model assumes that the probability of sampling a variant

allele at a mutated locus is

µT

(C(T)
n T) + (C(N)

n (1− T))
,

where C(T) is the positive integer tumour copy number, C(N) is the normal

copy number, and T is the tumour content (0 < T < 1). We define µ as a joint

“mutational prevalence,” which is the arithmetic product of cellular prevalence

(the fraction of cancer cells possessing a mutation at the locus) and mutation copy

number (the number of copies per cell which carry the mutant allele).

Let ψ be a probability simplex with L elements. For the nth mutation, draw the

subpopulation index zn ∼ Categorical(φ). This index selects the subpopulation

prevalence µyn . Letting κ be the concentration parameter which determines the

degree of beta-binomial overdispersion, we draw the variant allele depth

zn ∼ BetaBinom(n = dn, α = κanµyn , β = κ(1− anµyn)),

where an =
T

(C(T)
n T) + (C(N)

n (1− T))
.

This model makes a few assumptions. First, the “infinite sites” assumption that

no locus undergoes multiple independent somatic mutations. Second, tumour

copy number states are assumed to be clonal across the genome. Third, genomic

read counts are overdispersed for all sites with a common concentration coeffi-

cient, κ.

The Complete Subpopulation Signature Model

The complete SignIT model unites the signature and population models 3.9. To

facilitate this, each population-signature combination requires its own model coef-
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ficient. To replace ψ from the population model, let φ be a simplex of length K× L.

The mixing index drawn from φ is xn ∼ Categorical(φ), and simultaneously en-

codes a population index yn and a signature index un. The uth signature and yth

population correspond to position x = K(y− 1) + u in φ, where K is the number

of populations. The deterministic inverse mappings are un = ((xn − 1) % K) + 1

and yn = dxn

K
e, where % is the modulo (remainder) operator and d...e is the

ceiling (upwards rounding) operator.

Upon assignment of un and yn, the remainder of the generative model proceeds

as previously described. un selects the mutation signature, which determines the

probability vector, sun , across mutation types. The mutation type is drawn from

vn ∼ Categorical(sun). yn selects the population mean µl, and the variant allele

depth is drawn from a beta-binomial distribution.

This combination of signature and population models defines a joint categorical-

beta-binomial mixture model, which allows likelihoods to be computed simulta-

neously across both mutation types and variant allele counts. In other words, this

generative model simultaneously samples variant allele depth and mutation type

at each mutated locus. Using Bayesian inference methods, we can then estimate

posterior distributions over the parameters φ, µ, and κ based on the provided

genomic data.

Avoiding Degeneracies in the Beta-Binomial Mixture Model

Finite mixture models with degenerate components often give rise to multimodal

posterior distributions. This is due to non-identifiability of the mixture compo-

nents (Betancourt, 2017). To remedy this, we enforced ordering over the subpopu-

lation prevalences µ. Moreover, in order to sample µ from Beta(1, 1) while impos-
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ing natural limitations on its allowable interval, we sampled µ′l ∼ Logistic(0, 1)

and applied the inverse logit transform µl =
exp(µ′l)

1 + exp(µ′l)
.

Implementing Bayesian Inference

The SignIT hierarchical models are encoded using the Stan (2.17.0) probabilis-

tic programming language (Carpenter et al., 2017). Stan is cross-platform and

provides robust Bayesian samplers with a unified modeling language, as well

as visual diagnostics for chain convergence via ShinyStan (Stan Development

Team, 2017). Posteriors can be sampled by HMC for basic mutation signatures

and by either HMC or automatic differentiation variational inference (ADVI) for

population-specific signatures. SignIT was implemented and tested in R (version

3.4.1) using the RStan package. Analyses included in this manuscript were run on

an x86_64 CentOS6 Linux cluster.

The SignIT signature model posteriors are sampled by Markov-chain Monte

Carlo (MCMC), by default employing four chains each traversing 200 burn-in

iterations and 200 sampling iterations with no thinning. The complete SignIT

population-signature model by default employs ten chains with 200 burn-in itera-

tions and 300 sampling iterations each. These parameters can be tuned, however,

during testing these values have yielded consistent convergence with sufficient

sampling density and effective sample sizes over the posterior with acceptable

autocorrelation. The output contains summary statistics along with an attached

Stan model output, which can be easily run through diagnostics in ShinyStan

(Stan Development Team, 2017).

Because the SignIT population-signature model can be slow to sample by

MCMC, especially in hypermutated cases, we also enable estimation of posteri-

ors by variational inference. SignIT leverages Stan’s ADVI module, which auto-

80



maticaly selects a variational family and performs optimization to minimize the

Kullback-Liebler divergence. Upon convergence, 1000 iterations are drawn from

the posterior distribution via importance sampling. SignIT treats these 1000 itera-

tions equivalently to MCMC iterations in subsequent analyses.

The relevant version of all dependencies installed for this analysis are part of

an Anaconda virtual environment which can be installed and executed on a Unix-

based terminal using the following commands.

git clone https://github.com/eyzhao/bio-pipeline-dependencies.git

git checkout tags/SignIT-paper-dependencies

make

source miniconda3/bin/activate dependencies

Selecting the Number of Subpopulations

To select the number of subpopulations, we recommend performing inference

over models ranging from 1 to at least 5 subpopulations and computing the

Watanabe-Akaike information criterion (WAIC) on each. SignIT provides a func-

tion for automatically computing the WAIC on sampler output. The model which

minimizes WAIC should be preferred.

If there is insufficient time or computational resources to attempt a range of

models, SignIT can also provide a rough estimate of the optimal population

count. Maximum a posteriori parameter estimates are obtained using the popula-

tion model 3.9, excluding the portion for inferring signatures, for models ranging

from 1 to 5 subpopulations. Bayesian information criteria (BIC) are computed for

each model’s parameter estimates and the model with minimum BIC is chosen.
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3.4.2 Simulated Genomes

To evaluate mutation signature decomposition accuracy against known “true” ex-

posures, we devised a mutation signature simulation package called msimR, avail-

able at github.com/eyzhao/msimR. Somatic mutation count vectors were simu-

lated by drawing mutations of 96 distinct SNV classes from a multinomial dis-

tribution, vi ∼ Multinomial(N, Ŝε), where ε represents a theoretical set of “true”

exposures (Figure 3.2A). Active mutation signatures were randomly selected and

all non-contributing signatures had their exposures set to zero. For each simulated

mutation set, contributing signatures were selected at random from a uniform dis-

tribution Uniform(0, 1) and the resulting ε vector was normalized to sum to 1.

Aside from varying signature exposures, an additional source of variability

may arise from differences between the reference signatures and the “true” bi-

ological mutational processes driving a tumour. It is unlikely that any static set

of reference signatures can accurately reflect all possible mutational processes.

Therefore, to simulate inaccuracies in the underlying reference signature set, a

reference signature perturbation was performed by introducing Gaussian noise

into S. Given a perturbation factor p between 0 and 100 and “true” reference sig-

nature matrix S, a perturbed signature matrix Ŝ was randomly computed where

Ŝij ∼ Normal(µ = Sij, σ =
p

100
∗ Sij); i = 1, 2, . . . V; j = 1, 2, . . . K, with the restric-

tion that Ŝij >= 0.

In addition to SignIT, we implemented deconstructSigs v1.8.0 (Rosenthal et al.,

2016) and SignatureEstimation v1.0.0 (Huang et al., 2017). All mutation signatures

were deciphered “blindly,” using only the mutation count vector v and the com-

plete consensus (non-perturbed) matrix of reference signatures S (not Ŝ). This
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scenario best reflects the real-world problem where only the observed mutations

and reference signature matrix are known (see Figure 3.2A).

Simulated count vectors were generated with combinations of three parame-

ters. (1) The number of mutations, N, was varied from 10 to 106; (2) The number

of contributing signatures was varied from 1 to 20; and (3) the amount of reference

signature perturbation was varied from 0% to 80%. For each combination of pa-

rameters, 500 random mutation count vectors were generated for a total of 90,000.

Each count vector was decomposed into exposures using each of the three meth-

ods. Deviation between calculated exposures and true exposures was reported

using the cosine distance (1− ε · e
|ε||e| , Figure 3.2B).

3.4.3 Publicly Available Cancer Mutation Data

2,748,760 cancer somatic SNVs from 4,563 exomes called by four mutation callers

(MuSE, MuTect2, VarScan2, and SomaticSniper) via a harmonized pipeline were

obtained as mutation annotation format (MAF) files from TCGA using the Ge-

nomic Data Commons (GDC) portal (gdc.cancer.gov). This study included data

from 9 TCGA cancer cohorts; BLCA, BRCA, CESC, COAD, LUAD, LUSC, SKCM,

STAD, and UCEC were chosen because they have the most cumulative somatic

mutations and are thus more likely to yield reproducible, high quality mutation

signatures by NMF. 459,552 SNVs called by only one of four callers were filtered

out, leaving a total of 2,289,208 somatic SNVs (Table 3.1). Mutation signatures

we deciphered de novo using NMF from each cohort using the WTSI framework

(Alexandrov et al., 2013b), then the best-matching reference signature was chosen

based on cosine similarity for comparison with n-of-1 methods. Where multiple de

novo signatures best matched one reference signature, only the top match was cho-
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sen for comparison. N of 1 mutation signatures were fitted using SignIT, decon-

structSigs, and SignatureEstimation using the complete set of 30 SNV mutation

signatures as a reference matrix, and blinded to the NMF analysis. Comparison

between NMF and each n-of-1 method was performed by Spearman correlation

of sample exposures between matching signatures (Figure 3.4).

Table 3.1: The numbers of samples and variants in each TCGA cohort ana-
lyzed.

Cohort Sample Count Total SNVs Excluded SNVs SNVs for NMF

BLCA 411 145,980 22,681 123,299

BRCA 983 130,254 34,701 95,553

CESC 289 112,735 18,573 94,162

COAD 399 287,035 66,401 220,634

LUAD 562 224,075 39,886 184,189

LUSC 491 195,436 28,051 167,385

SKCM 466 431,179 35,731 395,448

STAD 433 225,913 57,429 168,484

UCEC 529 996,153 156,099 840,054

3.4.4 De Novo Signature Analysis

SNVs were categorized based on 6 variant types and 16 trinucleotide context

subtypes to yield a total of 96 mutation classes. Within each cohort, mutation sig-

natures were deciphered using a published framework (Alexandrov et al., 2013b),

which employs NMF to infer both the operative signatures prevalent across sam-

ples and the relative exposure of each signature to each sample. Signature stability

estimates were obtained by Monte Carlo simulation with 1000 iterations (10 itera-

tions over 100 cores). In each cohort, signature models involving 2 to 8 signatures

were attempted and the solution which maximized signature stability and min-
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imized reconstruction error was selected (Appendix Figure A.3). The similarity

of signatures to thirty previously described mutational signatures (available from

cancer.sanger.ac.uk/cosmic/signatures) was quantified using the cosine similarity

metric and the most similar corresponding signature was selected in each case.

3.4.5 Structural Variant Mutation Signatures

For the SV signatures in Figure 3.1C, SVs were categorized as per Nik-Zainal et

al. (2016) based on the mutation type (deletion, duplication, inversion, or translo-

cation), the length of SV (except for translocations), and whether the SV break-

points were clustered. Clustered breakpoints were in segments with breakpoint

density at least 10 times greater than average, and segments were determined us-

ing a piecewise linear fitting with smoothness parameter γ = 25 and minimum

breakpoints per segment kmin = 10, implemented using the copynumber package

(v1.18.0) in R. This yielded a 32-class parameterization. SignIT analysis was per-

formed on the resulting mutation count vector using six previously published SV

signatures (Nik-Zainal et al., 2016) as the reference matrix.

3.4.6 Whole Genome Sequencing of Metastatic Cancers

Study participants with advanced stage cancers underwent tumour biopsies as

part of the POG Project (Laskin et al., 2015). The study was approved by the

University of British Columbia Research Ethics Board (REB# H12-00137 and

H14-00681). Written informed consent, including potential publication of find-

ings, was obtained from patients prior to genomic profiling. Patient information

was anonymized, and each was assigned an alphanumeric identification code.
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Figure 3.10: The time of sample collection for multiply sequenced tu-
mours. Whole genome analysis of multiply sequenced tu-
mours was performed in 24 patients. Timing of primary
tumour sample collection relative to the metastatic biopsy
ranged from -15 to +1 years.

24 patients underwent whole genome sequencing of multiple temporally and/or

spatially distinct tumours (Appendix Table A.3). Of these, the primary tumour

was biopsied before the metastatic tumour in all except one case (Figure 3.10).

Whole-genome sequencing data (.bam files) have been submitted to the European

Genome-Phenome Archive (EGA) (www.ebi.ac.uk/ega/home) under the study

accession number EGAS00001001159.
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The details of library construction, sequencing, and bioinformatics of metastatic

samples have been previously described (Jones et al., 2010). Briefly, biopsy sam-

ples were embedded in OCT compound and sectioned. Pathology review was

performed to select sections for sequencing. Genome libraries were constructed

from tumor and peripheral blood (normal control) and sequenced using Illumina

protocols and on a HiSeq sequencer. Reads were aligned to hg19 by the BWA

aligner (v0.5.7) (Li and Durbin, 2009, 2010). Somatic SNVs and small insertion-

s/deletions were processed using samtools (Li et al., 2009) and Strelka (v0.4.6.2)

(Saunders et al., 2012). CNVs were called using CNASeq (v0.0.6). LOH was called

by APOLLOH (v0.1.1) (Ha et al., 2012). SVs called both from ABySS de novo as-

sembly (Jackman et al., 2017) and by DELLY (Rausch et al., 2012) were intersected

based on events with breakpoints less than 20 base pairs apart.

3.4.7 Ploidy-correction of Copy Number Variants

SignIT relies upon accurate calling of CNVs in order to correct for variant al-

lele probabilities. For every metastatic cancer which underwent whole genome

sequencing, a most likely ploidy model was determined by manual review us-

ing CNV and LOH calls and informed by tumour content estimates both from

pathology assessment and bioinformatic analysis. In order to correct for ploidy,

the absolute copy numbers of segments called by the CNASeq hidden Markov

model (HMM) were adjusted. The tumour-normal depth ratios, R, used as input

for segmentation are computed as

R =
C(T)T + C(N)(1− T)

TP + C(N)(1− T)
,
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where R is the mean tumour-to-normal read depth ratio across the segment, T

is the tumour content, and P is the ploidy. C(T) is the estimated absolute tumour

copy number of the segment, and C(N) is the normal copy number, assumed to

be 2. The ploidy model is chosen manually by inspection of allele-specific read

depths. The numerator is proportional the relative abundance of reads from the

tumour sample, which is a mixture of tumour and normal cells. The denominator

is the relative abundance for a region with no copy number abberation. Rearrang-

ing yields

C(T) =
(R)(TP + C(N)(1− T))− C(N)(1− T)

T
.

3.4.8 Whole Genome Sequencing of Primary Tumours

4 primary samples were sequenced as frozen or OCT samples as described in the

previous section. 20 primary samples were sequenced from FFPE material.

Whole genome libraries from primary tumour were constructed as previously

described (Chong et al., 2016) with modifications. The input amount of FFPE DNA

samples varied from 100 ng to 2 µg depending on availability. To improve library

quality, the sheared genomic DNA was either size-selected by polyacrylamide gel

electrophoresis or by solid phase reversible immobilization bead-based size selec-

tion to remove smaller DNA fragments from highly degraded strands. Libraries

were sequenced on the Illumina HiSeq2500 sequencer using paired-end sequenc-

ing with read lengths of 100 or 125 bp.

88



4
C L I N I C A L A P P L I C AT I O N O F M U TAT I O N T I M I N G I N A

B R C A 1 - M U TAT E D PA N C R E AT I C A D E N O C A R C I N O M A

4.1 introduction

HR facilitates error-free repair of double-strand DNA breaks and interstrand

crosslinks (Li and Heyer, 2008). Mutations in BRCA1, BRCA2, and other genes

responsible for HR are prevalent among human cancers, causing HRD and ge-

nomic instability (Scully and Livingston, 2000).

WGS efforts have identified mutational and structural rearrangement signa-

tures linked to BRCA1 and BRCA2 mutations in breast and other cancers (Lord

and Ashworth, 2016), which may predict response to platinum-based chemother-

apy and PARP inhibitors. However, the role of signature timing on treatment re-

sponse has not been elucidated, but could help distinguish currently active, action-

able mutational processes from historically active ones. In chapter 2, we demon-

strated an association between signatures of HRD and response to platinum-based

chemotherapy. In chapter 3, we developed a method to perform n-of-1 analysis of

mutation signatures and their temporal evolution.

Here, we present the first clinical application of HRD dynamics across spatially

and temporally distinct biopsies of a pancreatic ductal adenocarcinoma (PDAC).

This approach helped to reconcile paradoxical findings: genomic stability and low

HRD mutation signature despite a germline BRCA1 mutation and exceptional re-
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sponse to FOLFIRINOX. Our findings highlight the potential value of considering

timing in the clinical interpretation of mutation signatures.

4.2 case report

As part of an ongoing study exploring the use of comprehensive molecular anal-

ysis to inform treatment decision-making (NCT 02155621) (Laskin et al., 2015),

a 67-year-old male with metastatic PDAC and the germline founder mutation

BRCA1 c.68_69delAG (185delAG) consented to undergo biopsy of a liver metas-

tasis for molecular analysis. The primary tumor had been resected previously,

followed by 6 months of adjuvant cisplatin/gemcitabine chemotherapy, before de-

tection of liver metastases 12 months after surgery and 6 months after discontinu-

ing cisplatin/gemcitabine. Liver biopsy was performed before commencement of

palliative FOLFIRINOX chemotherapy (5-fluorouracil, oxaliplatin and irinotecan).

He had an excellent response to treatment, with CA19-9 halving in 2 months and

complete PET response within 4 months (Figure 4.1A). Oxaliplatin was held after

16 cycles due to peripheral neuropathy and the patient continued to have disease

control on first-line chemotherapy at last follow up, 18 months later. This repre-

sents an exceptional response, as median overall survival for metastatic pancreatic

cancer is less than 6 months, or 11 months with FOLFIRINOX treatment (Conroy

et al., 2011).
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Figure 4.1: Evolution of single nucleotide variant (SNV) mutation sig-
natures in a pancreatic adenocarcinoma with exceptional
response to FOLFIRINOX. (A) At 20 weeks of treatment
with FOLFIRINOX, the patient exhibited a complete response,
which was maintained for over 18 months. (B) Mutation sig-
nature exposures in the primary tumor and metastasis reveal
a substantial rise in the homologous recombination deficiency
(HRD) signature. (C) The complete catalogue of new somatic
SNVs (present in metastasis but absent in primary tumor), with
SNVs categorized into 96 classes based on variant type and
3’/5’ context was matched against 30 pre-defined mutation sig-
natures. This revealed dominant involvement of the HRD sig-
natures (Signature 3 and 8). (D) Temporal dissection by SignIT
revealed two tumour subpopulations, which revealed a drop in
signature 1 and rise in signatures 3 and 8.
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4.3 results

4.3.1 BRCA1 Loss in the Primary and Metastasis

Both the primary tumor and metastasis demonstrated genomically stable struc-

tural variant profiles based on previous characterization of the pancreatic cancer

genome landscape (Waddell et al., 2015). The BRCA1 c.68_69delAG frameshift

variant, heterozygous in the germline, was homozygous in both tumors as demon-

strated by copy-neutral loss of heterozygosity (CNLOH) spanning most of chro-

mosome 17 and detailed analysis of aligned reads (Figure 4.2). Analysis of the

BRCA1 transcripts showed the presence of the mutation in all expressed tran-

scripts.

4.3.2 Timing of the BRCA1 Loss

Based on analysis with cancerTiming (Purdom et al., 2013), the CNLOH event

on chromosome 17 resulting in homozygosity of BRCA1 was the 9
th earliest of 30

events (π0 = 0.15) in the metastasis and 17
th of 41 events (π0 = 0.40) in the primary,

suggesting that it was not among the earliest tumor-initiating events (Figures

4.4C, D). TP53 loss of function was also observed and was likely a simultaneous

occurrence due to the same CNLOH event. Cellular prevalence estimation using

TITAN (Ha et al., 2014) converged on a 4-subclone model but suggests that the

chr17 LOH event was clonal in the metastasis (Figure 4.3). The clonality of this

event minimizes the risk of platinum resistance by selection of a BRCA1 wild-type

subclone. Tumor content in the pancreatic primary was insufficient to estimate

clonality.
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Figure 4.2: Genomic analysis and clinical evolution of a germline
BRCA1 c.68_69delAG-associated pancreatic ductal adenocar-
cinoma (PDAC) primary tumor (left) and metastasis (right).
(A, B) Copy-neutral loss of heterozygosity (CNLOH) of chro-
mosome 17. The allelic ratio is shown in the top-left and top-
right plots. The copy number variant (CNV) ratios are shown
in the bottom-left and bottom-right plots. LOH regions were
called using APOLLOH. The position of BRCA1 is shown as
a red vertical line in all plots. (C, D) Structural variants, LOH
and CNV events are depicted from the centre outwards. The
green and red bars represent copy loss and copy gain respec-
tively. Estimated tumor content by sequencing was 25% in the
primary tumor and 49% in the metastasis. (E) Development
of liver metastases with rising CA19-9 that peaked at 45,000

kU/L. Within 4 weeks of commencing FOLFIRINOX, CA19-9
decreased by over 50%; positron emission tomography (PET)
complete response was seen at 20 weeks. At the time of writ-
ing, the patient has an ongoing PET complete response and
suppression of CA19-9, 79 weeks after commencing treatment.
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Figure 4.3: Joint calling of CNV, LOH, and clonal status performed
across the metastatic genome using TITAN. The 4-clone model
yielded an optimal fit to the data. Investigation of chromosome
17 revealed that the CNLOH event affecting the chr17 genes
TP53 and BRCA1 was clonal, with high cellular prevalence.
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Inferred timing of shared genomic events was significantly correlated (r = 0.7,

p = 4.8 × 10−6) between primary and metastasis samples (Figure 4.4A), with

events in the metastasis consistently inferred to be “earlier” (Figure 4.4B). This is

expected, and reflects the “aging” of shared genomic events during the approxi-

mately one-year gap between sequencing of the two samples. To our knowledge,

this is the first biological validation of a CNV timing inference model using mul-

tiple sequencing time points.

4.3.3 Evolution of Mutation Signatures from Primary to Metastasis

The relative contributions of 30 previously described mutation signatures (Alexan-

drov et al., 2013a) were determined from 5683 SNVs in the primary and 8315 in

the metastasis. Signature 3 and, to a lesser extent, Signature 8 have been associated

with HRD (Davies et al., 2017; Nik-Zainal et al., 2012). Mutations associated with

signature 3 rose by 1593 in the metastasis, and signature 8 rose by 1421, more than

any other signature (Figure 4.1A). Further, of new somatic mutations (present in

the metastasis but absent in the primary tumor), 26% were associated with the

HRD signature (Figure 4.1B), suggesting major involvement of HRD-associated

mutagenesis in the evolution of this PDAC. Strong signature bleed was observed

between signatures 3 and 8 (Figure 4.5), but there was little bleed between HRD

and other signatures.

4.3.4 Evolution of Orthogonal HRD-associated Mutational Signatures

The presence of recently described genomic signatures associated with HRD

(Davies et al., 2017) was investigated in the primary and metastasis. Rearrange-
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Figure 4.4: Comparison of inferred timing for events shared between
pancreatic primary tumor and metastasis. (A) Inferred tim-
ing of copy-change events in the primary tumor and metastasis
were strongly correlated, with a slope of 0.45, intercept of 0.02,
r = 0.7, and p = 4.8× 10−6. Only shared genomic events in over-
lapping regions are shown. (B) Events in the metastasis sample
were inferred to have arisen “earlier” in the course of tumori-
genesis, consistent with the timing of sample collection. (C, D)
Inferred timing with 95% confidence intervals in the primary
and metastasis. Event coordinates are labelled along the y-axis.
In case of two-copy gain, only the timing of the first copy gain
is shown. The loss of heterozygosity (LOH) event encompass-
ing both BRCA1 and TP53 has been highlighted, and is the 17

th

earliest of 41 inferred events in the primary and 9
th of 30 events

in the metastasis.
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Figure 4.5: Mutation signature bleed between signatures 3 and 8. Us-
ing SignIT, mutation signature posteriors were estimated from
a full Bayesian solution to a categorical mixture model using
Hamiltonial Monte Carlo. Signature bleed was collected based
on anticorrelation in 2D projections of the posterior probabil-
ity distribution. Mutation signature exposures from (A) the pri-
mary sample and (B) the metastatic sample demonstrate in-
creasing involvement of Signature 3, with bleed between Sig-
natures 3 and 8.
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Figure 4.6: Evolution of structural variation alterations between the pan-
creatic primary and metastasis. (A) Rearrangement signatures
3 and 5, associated with HRD, were low but rose between the
primary and metastasis. (B) The fraction of indels with micro-
homology rose from 8% to 12%. (C) The total HRD score rose
from 30 to 38, largely driven by a rise in loss of heterozygosity
(LOH) and large-scale transitions (LST). RS: Rearrangement sig-
nature; MH: microhomology; TAI: telomeric allelic imbalance.

ment signatures 3 and 5 (Figure 4.6A) and the fraction of indels with microho-

mology (Figure 4.6B) were low, but rose between the primary and the metastasis.

The HRD composite score, combining LOH, TAI, and LST, increased from 30 in

the primary to 38 in the metastasis (Figure 4.6C). A caveat is that the low tumour

content of the primary tumour may impact the accuracy of SV and CNV calling.

This was the highest observed HRD score among the first 25 PDAC cases in our

study cohort.
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4.3.5 Mutation Signature Timing

Analysis with SignIT revealed two temporally distinct tumour subpopulations

with mutational prevalences of 0.99 and 0.84. The higher-prevalence population

reflects signatures from clonal mutations (present in every tumour cell) or mu-

tations present on multiple copies. Both are associated with earlier-arising mu-

tations: clonal mutations occur before subclone branching, and multi-copy muta-

tions occur before replication of the associated segment 1.1. These early mutations

account for 36% of mutations, while later mutations make up 64%.

The early subpopulation was dominated by Signature 1, which accounted for

59% of mutations, whereas Signatures 3, 8, 9, and 16 were active in the later sub-

population. These findings agree with the observed increase in signatures 3, 8, and

9 from the primary to the metastatic sample. In particular, Signature 3 exposure

rose from 6% of mutations in population 1 to 27% in population 2. These findings

provide additional evidence that HRD remains an active mutation-causing pro-

cess in the metastatic tumour, despite the overall low SV burden and moderate

HRD signature exposure.

4.4 discussion

Previous studies have reported platinum sensitivity in PDACs with BRCA1/2 mu-

tations, rampant SVs, and strong mutation signature (Waddell et al., 2015). Here,

we explored the genomic evolution of a BRCA1 germline mutated PDAC with a

paradoxically low HRD mutation signature and genomic instability burden. Based

on observations involving the temporal dynamics of mutational signatures, we

postulate that HRD onset in this case may have occurred too recently to produce
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a heavy burden of genomic instability, thus resulting in the absence of an unstable

rearrangement signature. However, rising HRD signature exposure suggests that

HRD remains a “currently active” process, which may explain the patient’s excel-

lent and sustained response to FOLFIRINOX, a platinum-containing chemother-

apy.

This analysis has some limitations. The archival primary sample had low tu-

mour content (25%), which is known to limit the accuracy of mutation calling,

and thus required analytical validation of major findings. Mitigating factors in-

clude the findings that timing of CNV and LOH events was concordant between

primary and metastasis and temporal analysis of the metastasis corroborated mu-

tation signature evolution patterns. Moreover, SNVs were called by Strelka, which

is designed to operate under low cellularity (Saunders et al., 2012). Another im-

portant limitation is that FOLFIRINOX contains agents other than oxaliplatin,

namely fluorouracil, leucovorin, and irinotecan, which may have contributed to

the durable treatment response. Notably, the patient did not exhibit such a dra-

matic response to adjuvant cisplatin/gemcitabine therapy in the primary setting.

While this could be explained by low HRD mutagenic activity in the primary tu-

mor, the action of non-oxaliplatin agents cannot be neglected. Lastly, it is possible

that exposure to platinum-based therapy may have driven HRD-associated muta-

genesis in the metastatic tumour. However, other studies have discovered HRD-

associated signatures in treatment-naive primaries (Alexandrov et al., 2015b; Nik-

Zainal et al., 2016), and they differ from recently-discovered platinum-associated

signatures (Boot et al., 2017; Szikriszt et al., 2016). Despite these caveats, we believe

this case raises important educational questions on whether temporal evolution

of HRD signature activity may help refine prediction of therapy response.
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Although HRD is commonly considered an early tumor-initiating event, a re-

cent study suggests that the BRCA1 and BRCA2 mutation signature is also preva-

lent in late-arising mutations (McGranahan et al., 2015). The exploration of muta-

tion timing has not yet been widely adopted, and presents with numerous tech-

nical challenges (Purdom et al., 2013). This case was an opportune candidate for

timing analysis due to the availability of primary tissue and the large chr17 CN-

LOH event spanning BRCA1 and TP53. Consequently, these findings raise several

questions beyond the scope of this brief report. Do temporal dynamics vary across

pathogenic BRCA1, BRCA2, or other HRD-associated gene variants, and is “late-

onset” HRD a common phenomenon?

With a growing body of evidence supporting the role of HRD as a predictive

marker of response to platinum-based therapy and PARP inhibitors across various

tumor types, there is increasing interest in new approaches to identify genomic

scars associated with HRD. Although WGS techniques provide a cross-sectional

snapshot of the cancer genome at a fixed moment in time, they can also be used

to infer the relative timing of genomic events. We hope that ongoing compre-

hensive molecular analysis with high quality prospective treatment and outcome

information will facilitate a deeper understanding of the nuances in HRD-related

mutational processes, resulting in improved clinically predictive accuracy of HRD

assessment.
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4.5 methods

4.5.1 Tissue Collection, Processing, and Storage

Following informed consent, patients underwent image-guided metastatic biop-

sies as part of the Personalized OncoGenomics program of British Columbia (NCT

02155621, University of British Columbia Clinical Research Ethics Board approval

no. H12-00137). Up to 5 biopsy cores were obtained using 18-22G biopsy needles

and embedded in optimal cutting temperature (OCT) compound. Tumor sections

were reviewed by a pathologist to confirm the diagnosis, evaluate tumor content

and cellularity and to select areas most suitable for DNA and RNA extraction.

Peripheral venous blood samples were obtained at the time of biopsy and leuko-

cytes isolated for use as a germline DNA reference. DNA and RNA were extracted

for genomic and transcriptomic library construction, which have been previously

described in detail (Sheffield et al., 2015).

Tissue from the primary pancreatic tumor and liver metastasis were sequenced,

with leukocytes isolated from blood samples used as a germline DNA reference.

Tumour content was estimated at 49% for the metastatic sample and 25% for

the primary. The low tumour content of the primary sample necessitates careful

interpretation of variant calls along with orthogonal validation of key findings.

The primary pancreatic tumor sample was obtained from the previously re-

sected specimen that had been snap-frozen at the time of surgery and stored at

the BC Gastrointestinal Biobank at -80°C for approximately 18 months prior to

extraction and analysis. All samples were handled under sterile conditions and

transported in dry ice.
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4.5.2 Sequencing and Bioinformatics

Paired-end reads were generated on an Illumina HiSeq2500 sequencer and

aligned to the human reference genome GSCh37 by the BWA aligner (Li et al.,

2009) (v0.5.7). Somatic SNVs and small insertions/deletions were processed us-

ing SAMtools (Li and Durbin, 2010) and Strelka (Saunders et al., 2012) (v0.4.6.2).

Regions of CNV were determined using CNASeq (v0.0.6) and LOH by APOL-

LOH (Ha et al., 2012) (v0.1.1). Tumor content and ploidy models were estimated

from sequencing data through analysis of the CNA ratios and allelic frequencies

of each chromosome. This was then compared to theoretical models (Ha et al.,

2012) for diploid, triploid, tetraploid, and pentaploid genomes at various tumor

contents (10% intervals from initial lab estimate). The resulting analysis was a

diploid model at 25% tumor content in the PDAC primary and 49% tumor content

in the PDAC metastasis. Structural variation was detected by de novo assembly

of tumor reads using ABySS and Trans-ABySS (Robertson et al., 2010), followed

by variant discovery using DELLY (Rausch et al., 2012).

CNV and LOH Analysis with TITAN

Joint detection of CNV and LOH was performed on the metastatic sample us-

ing TITAN (Ha et al., 2014). The TitanCNA Bioconductor package (version 1.12.0)

and its dependencies were installed in R (version 3.3.2). The germline heterozy-

gous mutations required by TITAN were called using MutationSeq (version 4.3.8)

(Ding et al., 2012) installed in Python (version 2.7.13). The germline variants were

filtered for those present in dbSNP (release 138, common_all). For more infor-

mation, see https://github.com/MO-BCCRC/titan_workflow. The cellular preva-

lence of each event was estimated according to a 4-subclone model, which yielded
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the best Bayesian information criteria fit to the SNV read counts. TITAN provided

an estimated tumour content of 0.56, which is similar to the tumour content esti-

mate obtained by manual review (0.49). TITAN also provided an average tumour

ploidy of 2.05. These findings were used to assess the clonal status of the LOH

event on chromosome 17 spanning BRCA1 and TP53.

4.5.3 Mutation Timing Analysis

The relative temporal ordering of large scale genomic events can be performed by

leveraging SNV burden as a “molecular clock”. Note that this method can only

infer the timing of events for which the precise history is known with reasonable

confidence. As a result, only regions with CNLOH or allele-specific amplification

with 1-copy or 2-copy gain have inferrable timing. Thus, Figure 2 shows the in-

ferred timing for the subset of events which fit this criterion.

This analysis was performed using the cancerTiming module of the R program-

ming language (Purdom et al., 2013). Because larger genomic events yield more

accurate timing, small events which interrupt adjacent larger ones were automat-

ically filtered out 2. This filtering step dramatically improved the assocation in

timing between the primary and metastatic samples. For each segment, cancer-

Timing computes π0, the probability of a random SNV within the affected loci

occurring prior to the event. Greater π0 values suggest later occurrence of the

CNV and/or LOH. Bootstrap distributions were computed non-parametrically

using 1000 iterations 95% confidence intervals were determined by reporting the

25th and 975th ordered values from the resulting distribution.
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4.5.4 Mutation Signature and Signature Timing Analysis

Patterns of somatic SVs, SNVs, and CNVs were interrogated to determine the

contribution of HRD to mutagenesis. SNV and SV count vectors were com-

puted as previously described (Alexandrov et al., 2013b; Nik-Zainal et al.,

2016). Using the 30 consensus signatures from COSMIC as a reference set (can-

cer.sanger.ac.uk/cosmic/signatures), signature exposures were computed using

SignIT.

4.5.5 Additional HRD Metrics: Deletion Microhomology and HRD Score

The proportion of deletions exhibiting overlapping microhomology was deter-

mined by identifying matching sequences between deleted ends and flanking re-

gions. HRD scores were computed as the arithmetic sum of LOH, TAI, and LST

metrics, which in turn were determined using CNV and LOH patterns (Figure

4.7) based on previously described guidelines (Timms et al., 2014).
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Figure 4.7: Filtering of small segments for mutation timing and HRD
scores pre-processing. The purpose of filtering is to (1) fill in
gaps where no calls exist with a normal, heterozygous seg-
ment, and (2) remove tiny segments adjacent to two equiva-
lent larger segments, as these are likely to represent later or
spurious events. HRD scores are composed of telomeric allelic
imbalance (TAI), large loss of heterozygosity (LOH), and large-
scale transitions (LST). LST junctions are shown by the vertical
black lines in the lower figure.
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5
T H E E V O L U T I O N O F M U TAT I O N A L P R O C E S S E S I N

M E TA S TAT I C C A N C E R

5.1 introduction

Although metastasis underlies up to 90% of cancer-related mortality (Seyfried and

Huysentruyt, 2013), genomic instability and mutation signatures are mostly stud-

ied in primary tumours. Mutation signatures are recurrent patterns of somatic mu-

tation frequently associated with specific mutational mechanisms such as tobacco

and UV exposure (Alexandrov et al., 2016), endogenous mutagenic processes such

as deamination (Roberts et al., 2013), and DNA repair deficiencies (Nik-Zainal et

al., 2012; Polak et al., 2017). The analysis of mutation signatures in primary can-

cer sequencing data has catalogued over 30 known signatures (Alexandrov et al.,

2013b; Letouzé et al., 2017; Nik-Zainal et al., 2016). Analysis of digital NGS read

counts has also revealed that the activity of mutational processes changes over

time (McGranahan et al., 2015). This additional insight can help characterize the

ordering of mutagenic impacts throughout carcinogenesis and progression.

Recent studies suggest that certain mutation signatures may predict chemother-

apy response. Hypermutating tobacco, UV radiation, and MMR have been asso-

ciated with increased neoantigen burdens and sensitivity to immunotherapies in

lung, gastrointestinal, urothelial, and skin cancers (Iyer et al., 2017; Lauss et al.,

2017; Le et al., 2015; Rizvi et al., 2015). Signatures of HRD have been associated
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with distinct cancer subtypes (Wang et al., 2017) and sensitivity to platinum-based

chemotherapies (Telli et al., 2016; Zhao et al., 2017). Understanding mutational

processes in metastatic cancers could uncover actionable targets and refine mod-

els of progression and drug resistance.

Also of interest in metastatic cancers are mutational spectra manifest by

exposure to cytotoxic chemotherapies. For example, a specific hypermutation

signature of C→T transitions pervades the genomes of MGMT-methylated,

MMR-deficient glioblastomas treated with temozolomide alkylator chemotherapy

(Alexandrov et al., 2013a; Yip et al., 2009). Despite various efforts to catalogue the

mutations induced in model organisms by chemotherapy exposures (Meier et al.,

2014; Segovia et al., 2015; Szikriszt et al., 2016), few matching signatures have been

observed in sequenced patient samples. However, a signature recently discovered

in cisplatin treated human cell lines was also found in 8 hepatocellular and 2

esophageal cancers, all with histories of cisplatin exposure (Boot et al., 2017).

To catalogue the mutational signatures of metastatic cancer, whole genome and

transcriptome analysis of 571 advanced cancers was performed as part of the BC

Cancer Agency Personalized Oncogenomics Project. Additionally, we performed

temporal dissection of mutation signatures to map their evolutionary trajecto-

ries through cancer progression. This is the largest study to date of metastatic

cancer whole genomes, revealing novel mutation signatures and chemotherapy-

associated evolution of mutational processes. Our findings highlight the complex

interplay of factors shaping the somatic genomes of metastatic cancers.
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5.2 results

De novo inference of mutation signatures was successful in 12 cohorts out of 23,

containing a total of 484 patients with 9,646,146 somatic SNVs. Primary site of

origin varied (Table 5.1), with the largest cohorts being breast (n = 144), colorectal

(n = 87), and lung (n = 68). Hierarchical clustering over signatures deciphered

independently from each cohort yielded 20 independent mutation signatures. Sig-

natures were compared against the current 30-signature COSMIC reference set

using the cosine similarity metric. 11 signatures closely matched with at least one

previously observed signature from the COSMIC set (Appendix Figure A.4).

Table 5.1: The number of patients belonging to each cancer type specific
cohort.

Cohort Number of Participants Primary Site / Cancer Type

BRCA 144 Breast
COLO 87 Colorectal
LUNG 68 Lung
SARC 50 Sarcoma
MISC 45 Miscellaneous (i.e. unknown primary)
PAAD 42 Pancreatic

OV 28 Ovarian
CHOL 14 Cholangiocarcinoma
SECR 12 Secretory gland tumors
SKCM 12 Skin
LYMP 11 Lymphoma
STAD 11 Stomach
ESCA 10 Esophageal
HNSC 6 Head & neck
UVM 6 Uveal melanoma

KDNY 5 Kidney
ACC 4 Adenoid cystic

THCA 4 Thyroid
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Cohort Number of Participants Primary Site / Cancer Type

THYM 4 Thymoma
PRAD 3 Prostate
GBM 2 Glioblastoma
HCC 2 Hepatocellular
BLCA 1 Bladder

We inferred the temporal evolution of mutation signatures to map the progres-

sion trajectory of genomic instability. Signature evolution has only been previ-

ously investigated in primary, untreated cancers (Letouzé et al., 2017; McGrana-

han et al., 2015). The temporal dissection of novel metastatic signatures may help

distinguish markers of metastasis.

We have numbered novel metastatic signatures Signatures M1 to M9. Diagrams

of all novel signatures are provided in Figure 5.1. The mean timing of mutation

signatures across every cancer type is summarized in Figure 5.2. The similarity

of signatures to COSMIC reference signatures is shown in Figure 5.3. Signature

exposures for every cancer sample are provided in Appendix Fig. A.5.

5.2.1 Aging-related Mutation Signatures

Of the 9 novel signatures (Figure 5.1), some were variations on known signatures.

We identified signatures 1 and 5, known to be associated with aging (Alexandrov

et al., 2015a). Signature M1 was characterized by C→T mutations in CpG contexts,

and matched the aging-related signature 1B previously found in many primary

tumours (Alexandrov et al., 2013a) but left out of COSMIC. Aging-related sig-

natures were not observed in skin and lung cancer cohorts (SKCM and LUNG).

In skin cancers, this is likely due to the small sample size and strong presence

of the UV signature. In lung cancers, signatures 3, M4, and M6 were correlated

110



C>A

C
>

G

C>TT>A

T
>

C

T>G

Signature M1

C>A

C
>

G

C>TT>A

T
>

C

T>G

Signature M2

C>A
C

>
G

C>TT>A

T
>

C

T>G

Signature M3

C>A

C
>

G
C>TT>A

T
>

C

T>G

Signature M4

C>A
C

>
G

C>TT>A

T
>

C

T>G

Signature M5

C>A

C
>

G

C>TT>A

T
>

C

T>G

Signature M6

C>A
C

>
G

C>TT>A

T
>

C

T>G

Signature M7

C>A

C
>

G
C>TT>A

T
>

C

T>G

Signature M8

C>A

C
>

G

C>TT>A

T
>

C

T>G

Signature M9

A
C
G
T

A C G T
5' context

3'
 c

on
te

xt

Figure 5.1: Novel metastatic signatures not catalogued in COSMIC. The
analysis of recurrent mutation signatures across 12 metastatic
cancer cohorts identified 9 signatures not found in the COSMIC
signature catalog. These included signatures of aging (M1), cis-
platin exposure (M3), mismatch repair deficiency (M4), and
APOBEC deamination (M5). The etiology of the remaining sig-
natures remains unclear.
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Figure 5.2: Mutation signatures and their temporal dissection in
metastatic cancer. 20 de novo signatures deciphered from
metastatic cancer whole genomes were found recurrently
across tumours of 12 cancertype-specific cohorts. Temporal dis-
section revealed signatures biased towards early- or late-arising
mutations.

and their linear combination matched signature 1, suggesting that presence of

these the three signatures together obviated the need for a separate aging-related

signature. A similar previous analysis suggested that signature 1B may often be

composed of signature 1 together with signature 5 (Alexandrov et al., 2016).

Like in primary tumours, the aging-related signatures 1 and M1 were early-

arising mutational processes across cancer types. Aging signatures were particu-

larly elevated in cancers of rapidly proliferating epithelial cells, such as colorectal

cancer, which agrees with previous findings (Alexandrov et al., 2015a). Despite

previous evidence that signature 5 is also aging-related, we found that elevated

signature 5 occurred primarily in late-arising mutations.
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Figure 5.3: De novo mutation signatures deciphered from metastatic can-
cers. Of these, 11 matched known signatures from COSMIC
and 9 were novel. To compare de novo signatures against those
in COSMIC, The cosine similarity metric was computed pair-
wise between each metastatic signature and each COSMIC sig-
nature.
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5.2.2 Signatures of Exogenous Mutation

Signature 4, associated with tobacco exposure (Alexandrov et al., 2016), was a

specific indicator of smoking history as expected (Figure 5.4A). Signature 4 was

early-arising in all but one of the participants with a known smoking history.

Signature 7, associated with UV radiation, was found in skin cancers and head

and neck cancers as well as one hypermutated cancer of the lung. These cases had,

on average, approximately 100 times the mean mutation burden. 4 out of 12 UV

hypermutated cases displayed a bias towards early mutations, and 5 fit a single-

population model (Figure 5.4B). Subsequent review was conducted into the UV-

positive lung tumour. Clinical review showed that this patient had multiple prior

skin cancers, and assessment of pathology and gene expression profiles suggested

that this cancer was a sarcomatoid lung tumour which likely originated from a

spindle cell carcinoma of the scalp.

5.2.3 Signatures of Endogenous Mutation and DNA Repair Deficiency

Mutation signatures arising from APOBEC deamination, signatures 2 and 13

(Roberts et al., 2013), were common across cancers of various types. Additionally,

we identified a similar signature (M5) in stomach adenocarcinoma, which likely

shares a similar mutational mechanism. These three signatures were observed

across both early and late mutations. This disagrees with a previous finding that

signature 2 was late-arising in bladder, head & neck, and lung cancers and signa-

ture 13 was early-arising in bladder cancers (McGranahan et al., 2015).

Signatures 3 and 8, associated with HRD (Davies et al., 2017; Nik-Zainal et al.,

2012), were observed in both early and late mutations. Higher signature expo-
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Figure 5.4: The hypermutating signatures of tobacco smoking and ultra-
violet radiation. (A) Mutation signature 4, associated with to-
bacco exposure, was early-arising and elevated in patients with
a known history of cigarette smoking. The signature was absent
from never-smokers, as well as one patient who reported fre-
quent exposure to second-hand smoke. (B) Mutation signature
7, associated with ultraviolet radiation was prevalent among
skin cancers and one head & neck cancer, resulting over 10-100

times the mutation burden in exposed cases.
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Figure 5.5: Platinum-exposure is associated with temporal evolution of
homologous recombination deficiency (HRD) associated mu-
tation signatures. (A) Mutation signatures 3 and 8, associated
with HRD, were found in many cancer types. They were early-
biased in high-exposure breast cancers and sarcomas. (B) In
breast cancer, prior exposure to platinum-based chemotherapy
was associated with a decrease in signature 3 from early to late
mutations compared to non-platinum exposed tumours (p =
0.033).

sures were associated with early-arising mutations in breast cancer and sarcoma.

Signature 3 was also observed in ovarian, pancreatic, and stomach cancers, as pre-

viously described (Alexandrov et al., 2015b). In breast cancer, prior exposure to

platinum-based chemotherapy was associated with a decrease in the late muta-

tion activity of signature 3 (p = 0.033, Figure 5.5). As discussed in the previous

section, the elevation of signature 3 in lung cancers is likely artifactual.

Signature 30 was observed in two highly mutated cases, an undifferentiated

round cell sarcoma and a pancreatic neuroendocrine tumour (PNET). Signature

30 was recently induced in cancer organoid models by the mutation of NTHL1
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(Drost et al., 2017), a DNA glycosylase which participates in BER. In our cohort,

both cases with elevated signature 30 carried deleterious mutations in the NTHL1

gene. The NTHL1 mutation in the PNET was a germline fusion event with the

nearby genes TRAF7 and TSC2 and was previously described in detail (Wong et

al., 2018).

Signature M4 was a driver of hypermutation in MMR-deficient tumours, and

was associated with elevated MSI scores (Figure 5.6A). The signature profile was

characterized by C→T and T→C transitions, and of the COSMIC signatures asso-

ciated with MMR, it was closest to signature 26 (Figure 5.3). Timing bias of MMR

hypermutation varied (Figure 5.6B).

Aside from hypermutated cases, MMR signatures demonstrated temporal vari-

ability across tumour types. In particular, colorectal cancers carried increased sig-

nature M4 exposure in early-biased or single-population tumours. Aside from

mutation of genes responsible for MMR, a common etiology of MMR deficiency

is hypermethylation of the MLH1 promoter (Kuismanen et al., 2000; Li et al., 2013)

which is associated with decreased MLH1 expression. Although we did not di-

rectly measure methylation, the expression of MLH1 was estimated from tran-

scriptome data. Excluding cases with MSI or carrying germline mutations in an

MMR gene, signature M4 exposure was negatively correlated with the expression

of MLH1 (p = 0.0029, Figure 5.6C,D).

Signature M7 was a signature of unknown etiology and accounted for 27,547

mutations (0.72% of mutation burden) in a single breast cancer sample. It has a

specific profile of GCG→GTG, GTC→GCC, TTC→TCC, and GTT→GCT muta-

tions.
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Figure 5.6: A novel signature of mismatch repair (MMR) deficiency is as-
sociated with microsatellite instability and underexpression
of MLH1. (A) Mutation signature M4 was the only signature
associated with microsatellite instability. (B) Temporal dissec-
tion of signature M4 revealed a distinct cluster of colorectal
cancers with elevated early-arising signature exposure. (C,D)
Cases with germline mutations in an MMR gene (MSH2, MSH3,
MSH6, PMS1, PMS2, and MLH1) are shown according to their
SNPeff-predicted mutation impact (low, moderate, or high). Ex-
cluding cases with germline MMR gene mutations, signature
M4 was significantly correlated with MLH1 expression.
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5.2.4 The Late-arising Signatures of Metastases and Chemotherapy Exposure

Two signatures of unknown etiology, signatures 17 and M2 were biased towards

late-arising mutations. This was observed across cancer types (Appendix Figure

A.7) and biopsy sites (Appendix Figure A.8), suggesting that these signatures

may relate to shared mutational processes occurring in progression or treatment.

Signature 17 has been previously found in a small number of cancers of the liver

(Letouzé et al., 2017) and breast (Nik-Zainal et al., 2016).

To explore exposures to common DNA-damaging chemotherapies as a poten-

tial etiology for mutation signatures, we examined drug-signature associations in

7 common chemotherapy agents with known DNA damaging properties. The sig-

natures included in this analysis were those of late-arising or unknown etiology:

signatures 5, 17, M2, M3, and M8.

Three drug-signature pairs displayed statistically significant differences in sig-

nature exposure between drug-exposed and non-exposed groups. Signature 17

was elevated in cancers exposed to oxaliplatin (p = 3.2e-07, median of 1685 vs.

228 mutations) and fluorouracil (p = 2.8e-06, median of 828 vs. 199 mutations),

which are commonly administered in combination as part of FOLFOX regimens

to treat gastrointestinal and pancreatic cancers (André et al., 2004; Conroy et al.,

2011). The trend was observed both in cancers fitting single-population models

and multi-population models, with the latter displaying a clear late signature bias

in oxaliplatin-treated cases (Figure 5.7C).
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Figure 5.7: Screening of drug-signature interactions reveals statistically
significant associations with cisplatin, oxaliplatin, and flu-
orouracil. (A) Mutation signatures associated with platinum-
based chemotherapies demonstrated features consistent with
intrastrand crosslink formation. Signature M3 strongly resem-
bled a signature induced by Boot et al. (2017) in cell lines by
treatment with cisplatin. Our findings provide independent
discovery of this mutation signature in clinical samples. (B)
Signature M3 was deciphered during de novo mutation signa-
ture analysis in five cancer types. Elevation of signature M3

was observed in association with 16 cancers of various types
previously treated with cisplatin, as well as many carboplatin-
treated ovarian cancers. (C) In addition, the elevation of sig-
nature exposure in association with oxaliplatin treatment was
biased towards late-arising mutations.
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5.2.5 Signature M3 Results from Exposure to Cisplatin

Signature M3 was elevated in patients exposed to cisplatin (p = 8e-07, median

of 232 vs. 653 mutations), which is commonly administered with gemcitabine to

treat cancers of the bladder, lung, breast, liver, and bile duct. Elevated signature

M3 was associated with platinum exposure in four out of five osteosarcomas, as

well as three other sarcomas, one breast cancer, three colangiocarcinomas, and

two salivary duct carcinomas (Figure 5.7B).

A recently posted pre-print article in the bioRxiv (Boot et al., 2017) indepen-

dently discovered a signature nearly identical to M3 (cosine similarity = 0.94) by

treating human cell lines with cisplatin. Both signatures M3 and 17 display high

rates of mutations consistent with intrastrand crosslink formation.

Whereas signature M3 was enriched for C→T mutations in CpCpY contexts,

signature M8 exhibited C→A mutations in the same context. Signature M8 was

found in only a single pancreatic adenocarcinoma, to which it contributed 13648

mutations, accounting for 90% of mutation burden. The only chemotherapy to

which the pancreatic cancer had been previously exposed was gemcitabine. How-

ever, definitive conclusions cannot be made from this single observation.

5.3 discussion

Mutation signatures represent an emerging tumour biomarker orthogonal to exist-

ing clinical modalities. Understanding the evolution of mutation signatures from

carcinogenesis to progression would undoubtedly inform research on their ef-

fective clinical translation. Here, we have performed the largest investigation of

mutation signatures across metastatic cancer whole genomes. In addition to dis-
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covering novel signatures in the metastatic setting, we inferred their temporal evo-

lution, which can help guide the association of signatures with potential etiologic

factors, such as exposure to DNA-damaging chemotherapies.

Our analysis also uncovered known and novel trends of temporal mutation sig-

nature bias. Signatures of aging were early arising, as previously observed; as

were signatures associated with cigarette smoke and UV radiation. Additionally,

temporal dissection revealed that non-hypermutating, early involvement of MMR-

deficient signatures correlated with underexpression of MLH1 specifically in col-

orectal cancers. Discrepancies in temporal bias compared with previous analyses

(McGranahan et al., 2015), such as observed with APOBEC signatures, may result

from numerous differences between the studies. McGranahan et al. (2015) ana-

lyzed WES data, which is less likely to yield stable signature solutions than WGS,

but allowed for a greater number of cases per cancer type. Additionally, the pre-

vious study employed binary temporal partitioning, which we demonstrated pre-

viously can result in lower integrity temporal dissection than SignIT depending

on the underlying clonal structure. Importantly, McGranahan et al. (2015) studied

primary cancers, which may lack certain mutational processes specific to metasta-

sis.

An example of signatures specific to advanced, chemotherapy-treated tumours

are those arising from genotoxic chemotherapy exposures. Signature M3 was as-

sociated with cisplatin exposure across diverse cancer types. Boot et al. (2017)

found an identical signature in vitro, as well as in 8 hepatocellular carcinomas

and 2 esophageal cancers, which together with our findings provides strong ev-

idence of a direct link to drug exposure. We further described signature M3 cis-

platin treated breast cancers, cholangiocarcinomas, sarcomas, and salivary gland

tumours.
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In addition to signature M3, we also found an association between signature

17 and treatment with oxaliplatin and fluorouracil. In this case, the signature was

late-biased, suggesting later onset of drug exposure during the course of the dis-

ease. Despite having been observed in other cancers, the etiology of signature

17 remains unknown, and no in vitro studies have definitively linked it to a muta-

genic agent. However, mutational spectra arising from oxaliplatin and fluorouracil

exposure have not yet been studied using in vitro methods. However, examination

of signatures M3 and 17 revealed shared enrichment of mutations consistent with

intrastrand crosslink formation. This form of DNA damage is typically repaired

by NER (Huang and Li, 2013). Deficiencies in NER or related pathways such as

translesion synthesis may explain why some platinum-treated tumours display

these signatures while others do not.

The temporal analysis of signatures in association with drug exposures also

enables the study of hypothetical drug resistance mechanisms. Tumours with

mutations in the HR-associated genes BRCA1 and BRCA2 are more sensitive to

platinum-based chemotherapies (Arun et al., 2011; Byrski et al., 2010; Tutt et al.,

2015; Von Minckwitz et al., 2014). We showed in chapter 2 that breast cancers with

signatures of HRD, including signature 3, are also associated with improved out-

comes on platinum-based chemotherapy, independent of BRCA1 and BRCA2 mu-

tations. We observed that prior exposure to platinum-based chemotherapy was

associated with depression of signature 3 exposure in late-arising mutations. A

hypothetical resistance mechanism to platinum-based chemotherapy is the rever-

sion (or back-mutation) of BRCA1 and BRCA2, restoring function to the mutant

gene (Dhillon et al., 2011; Norquist et al., 2011; Swisher et al., 2008). This finding

suggests that reversion of HRD, and therefore a drop in signature 3, may be asso-
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ciated with platinum resistance even in the absence of detected BRCA1 or BRCA2

reversion mutations.

The analysis of signature timing provides evidence to suggest signature evolu-

tion in response to chemotherapy exposures. However, inferring timing from a sin-

gle biopsy alone is limited in its ability to definitely attribute mutation signatures

to chemotherapy exposures. The availability of sequencing data from multiple

time points would be helpful in this regard, but can be costly and technically in-

feasible to obtain. A further limitation of this study is the lack of available clinical

data regarding prior radiotherapy at the time of analysis. As a result, we could not

investigate the association of radiation exposure with mutation signatures. How-

ever, a previous analysis of radiation-treated second malignancies predominantly

identified signatures of SVs, insertions, and deletions rather than SNVs (Behjati

et al., 2016).

This analysis also highlights continued technical challenges in the application

and interpretation of mutation signatures. There were many disagreements in sig-

nature evolution between our analysis and previous work (McGranahan et al.,

2015), such as discrepant timing of signatures 1B, 2, and 13. It is likely that mul-

ticollinearity between signatures, resulting in mutation signature bleed, plays a

significant role in these discrepancies. For example, in chapter 3 we demonstrated

that mutation signature 5 is similar to many other signatures, and thus may bleed

signal with them. Additionally, the aging signature 1B (or M1) can be formulated

from a linear combination of signatures 1 and 5 (Nik-Zainal and Morganella, 2017).

This may reconcile why signature 5 was correlated with age-of-onset in a previous

study (Alexandrov et al., 2015a) yet is biased towards late mutations in our study

and others (McGranahan et al., 2015). This suggests that signature 5 itself may in-
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dependently arise from both an aging-related process, and a different late-arising

mechanism.

Over the past decade, mutation signature analysis has emerged as a valuable

tool for the precise delineation of genomic instability and mutation in cancers. The

applicability of this approach across tumour types makes it an attractive option

for biomarker discovery in personalized cancer analysis and treatment. By investi-

gating the mutation signatures of advanced cancers, we have aimed to shed light

on the diverse mutagenic influences at play during invasion and metastasis.

5.4 methods

5.4.1 Whole Genome Sequencing of Metastatic Cancers

Study participants underwent tumour biopsies as part of the POG Project (Laskin

et al., 2015). The study was approved by the University of British Columbia Re-

search Ethics Board (REB# H12-00137 and H14-00681). Written informed consent,

including potential publication of findings, was obtained from patients prior to ge-

nomic profiling. Whole-genome sequencing data (.bam files) have been submitted

to the European Genome-Phenome Archive (EGA) (www.ebi.ac.uk/ega/home)

under the study accession number EGAS00001001159.

The details of library construction, sequencing, and bioinformatics of metastatic

samples have been previously described (Jones et al., 2010). Briefly, biopsy sam-

ples were embedded in OCT compound and sectioned. Pathology review was

performed to select sections for sequencing. Genome libraries were constructed

from tumor and peripheral blood (normal control) and sequenced using Illumina

protocols on a HiSeq sequencer.
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5.4.2 Mutation Calling

Reads were aligned to hg19 by the BWA aligner (v0.5.7) (Li and Durbin, 2009,

2010). Somatic SNVs and small insertions/deletions were processed using sam-

tools (Li et al., 2009) and Strelka (v0.4.6.2) (Saunders et al., 2012). CNVs were

called using CNASeq (v0.0.6).

5.4.3 Mutation Signature Analysis

Mutation signature analysis was performed on 571 cancer whole genomes from

23 cancer type cohorts. Somatic SNVs called by Strelka were categorized based

on 6 variant types and 16 trinucleotide context subtypes to yield a total of 96

mutation classes. Mutation signatures were deciphered using a published frame-

work (Alexandrov et al., 2013b) for non-negative matrix factorization (NMF) of

the mutation catalog matrix into de novo mutation signatures and the relative ex-

posure of each signature to each cancer genome. Fractional exposure was defined

as the proportion of a genome’s total mutation burden contributed by a particular

signature.

Signature stability estimates were obtained by bootstrap re-sampling with 1,000

iterations (10 iterations over 100 cores). The solution which best maximizes signa-

ture stability and minimizes Frobenius reconstruction error, nopt was chosen for

each cohort with the formula

nopt = argminn

(
Rn −min(R)

max(R)−min(R)
− Sn −min(S)

max(S)−min(S)

)
,
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where Sn and Rn are the signature stability and reconstruction error values for

the n-signature solution and S and R are vectors containing stability and recon-

struction error values for all values of n. The model selection in each cohort is

shown in Appendix Fig. A.6

Mutation signature analysis of a total of 23 cancer type cohorts was attempted

(Table 5.1). All but 12 cohorts failed mutation signature analysis because of (1)

too few samples, (2) too few SNVs, or (3) excessive heterogeneity in mutation

signatures (as was the case in the MISC cohort). An analysis was marked failed

if every sample had its own private mutation signature (meaning dimensionality

reduction did not take place) or if the stability and reconstruction error estimates

were poor across all attempted models.

5.4.4 Temporal Analysis of Mutation Signatures

Temporal analysis of mutation signatures based on mutation types and NGS vari-

ant allele counts was performed using SignIT. Cases which fit models described

by greater than one subpopulation can be subject to mutation signature timing

analysis. SignIT requires the annotation of SNV calls with tumour and normal

copy number. Prior to annotation, CNVs from CNAseq were first corrected for

ploidy using the following formula

C(T) =
(R + 1)(TP + C(N)(1− T))− C(N)(1− T)

T
.

Where R is the mean GC-corrected tumour-to-normal read depth ratio across

the segment, T is the tumour content, and P is the ploidy. C(T) is the estimated

absolute tumour copy number of the segment and was rounded to the nearest

whole number, and C(N) is the normal copy number, assumed to be 2. SNVs
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in regions with greater than 5 copies were filtered out, as precise copy number

estimation becomes difficult.

262 cases best fit a model with one subpopulation, while 215 fit multiple tem-

porally distinct subpopulations thus enabling signature timing. Mean early and

late mutation signature exposures were computed by fitting a weighted linear

model of exposure fraction versus subpopulation prevalence. The timing bias was

computed as the fraction of late-arising mutations,

late exposure
late exposure + early exposure

,

and could vary from 0 for early mutation signatures to 1 for late mutation

signatures. To generate Figure 5.2, results were grouped by cohort and signature,

and the total number of early- and late-arising mutations across all samples was

computed.

5.4.5 Microsatellite Instability Scores

Microsatellite instability was quantified from paired tumour-normal whole

genome sequencing using the previously described tool, MSIsensor (Niu et al.,

2014). Microsatellites and homopolymers were identified in the hg19 reference

genome using default parameters (homopolymers ≥ 5, microsatellites repeat unit

length ≤ 5) followed by subsampling to 50,000 sites randomly distributed across

the genome. Somatic status of sites with sufficient coverage (20 spanning reads in

both normal and tumour samples) was determined using default settings (median

1369 sites tested per sample). The percentage of tested sites that were unstable in

the tumour sample compared to the normal sample was used as a measure of MSI.

General classification of MSI status were as follows: microsatellite stable (< 10%),
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MSI-low (10-30%) and MSI-high (> 30% of somatic sites unstable). Four out of

six cases that had conventional immunohistochemical testing for MMR deficiency

and an MSI score of ≥ 10% (MSI-low or MSI-high) also tested positive for MMR

deficiency by immunohistochemistry, supporting the accuracy of MSIsensor anal-

ysis.

5.4.6 Quantifying Gene Expression from Transcriptomes

Transcriptomes were repositioned using JAGuaR (version 2.0.3) (Butterfield et al.,

2014). Differential expression analysis was performed by comparing reads per

kilobase of transcript per million mapped reads (RPKM) values against a com-

pendium of 16 normal tissues from the Illumina BodyMap 2.0 project (available

from ArrayExpress, queryID: E-MTAB-513) as previously described (Jones et al.,

2010). For every sample, the expression percentile of each gene was computed

against expression data for that gene across all samples from TCGA.

5.4.7 Retrospective Clinical Review

A retrospective review of chemotherapy exposures including treatment start and

end dates was performed, aided by a provincial clinical cancer database (Wu et

al., 2013). Additionally, relevant patient demographics such as age at diagnosis

and tobacco smoking history were obtained.
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5.4.8 Analysis of Drug-Signature Associations

Chemotherapy exposure data were available in 408 out of 484 patients, who alto-

gether had been exposed to 119 distinct chemotherapy drug types. Among the 20

most commonly used chemotherapy agents, 7 with known DNA damaging quali-

ties were chosen for investigation: cyclophosphamide, cisplatin, fluorouracil, dox-

orubicin, capecitabine, carboplatin, and oxaliplatin. Late-arising signatures and

those of unknown etiology (5, 17, M2, M3, M8) were each assessed for differences

in exposure between therapy-exposed and non-exposed patients by the Wilcoxon

signed-rank test. Resulting p-values were adjusted for multiple hypothesis testing

using the Bonferroni-Holm method.
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6
C O N C L U S I O N

6.1 summary of major findings

This thesis had three major aims. First, to assess the association between DNA

damage repair mutation signatures and response to DNA-damaging chemother-

apy. Second, to enable accurate individualized mutation signature decomposition

and temporal dissection. Last, to characterize the evolution of mutation signatures

in metastatic cancers.

To assess the clinical actionability of mutation signatures, we studied HR as

a model system. This allowed us to build upon knowledge that cancers with

BRCA1 and BRCA2 mutations are more sensitive to platinum-based chemotherapy.

Moreover, past efforts to quantify genomic scars as predictors of BRCA1/BRCA2

mutation (Timms et al., 2014) and platinum response (Telli et al., 2016) already

demonstrated promising findings in primary breast cancers, but did not replicate

in the metastatic setting (Tutt et al., 2015). In chapter 2, we used WGS of advanced

breast cancers to demonstrate that response to platinum-based chemotherapies

was associated with mutation signatures of HRD. The novel aspect of this work

was the integration of multiple independent signatures of various mutation types,

whereas previous studies had relied only upon signatures of CNV and LOH. Our

findings suggest that genome-scale analysis of mutational processes can more

accurately inform the clinical management of cancers with HRD.
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The use of mutation signatures in clinical guidance calls for accurate individ-

ualized decomposition of signature exposures. However, the majority of muta-

tion signature methods perform de novo inference of signatures from large cancer

datasets. As part of our breast cancer study, we found that signature inference

by NNLS using the 30 signature reference set from COSMIC yielded accurate

n-of-1 HRD predictions. We built upon this in chapter 3 by proposing SignIT, a

hierarchical Bayesian model which performs accurate, robust, and interpretable

individualized inference of mutation signatures. Using simulated data and WES

mutation calls from TCGA, we demonstrated SignIT’s superiority over alternative

approaches.

A challenge in the interpretation of mutation signatures or genomic scars is

that they represent the aggregate mutational history of a tumour rather than

the relevant mutational processes still active at the time of treatment. Serial se-

quencing at multiple timepoints could map out the mutational trajectory, but

would be inconvenient, costly, and impose additional medical procedures. In-

stead, we extended SignIT to integrate genomic read depth data in order to in-

fer the presence of temporally distinct mutational subpopulations. This enables

the tracking of mutation signatures from a single sequencing timepoint. Using

data from multiply sequenced metastatic tumours, we demonstrated that early

prevalent subpopulations demonstrated signatures similar to those of the primary,

whereas later-arising subpopulations diverged. By directly inferring tumour sub-

populations rather than partitioning mutations using hard assumptions, SignIT

improved upon previous attempts at reconstructing mutation signature timing.

In chapter 4, we demonstrated clinical implications of mutation signature tim-

ing in a pancreatic adenocarcinoma with a germline BRCA1 variant but paradox-

ically low SV burden and HRD signature exposure. We synthesized the timing
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of chr17 LOH and of the HRD signature using both computational techniques

and comparison to the primary. The findings suggested later than expected so-

matic LOH of BRCA1 and onset of HRD, which may reconcile the BRCA1 variant,

the low HRD signature, and the cancer’s exceptional response to FOLFIRINOX

therapy.

The development of SignIT allowed us to address the final aim. To date, muta-

tional processes have been studied almost exclusively in primary, treatment-naive

cancers. Successful application of mutation signatures to the analysis of advanced

cancers will require an understanding of the unique forces shaping somatic mu-

tation in metastases. In chapter 5, we deciphered mutation signatures from the

whole genomes of nearly 500 metastatic, treated cancers. This uncovered novel

signatures, one of which (signature M3) has been shown to arise in vitro from cells

treated with cisplatin (Boot et al., 2017). Additionally, the HRD-associated signa-

ture 3 was suppressed in the late-arising mutations of cancers previously exposed

to platinum-based chemotherapy, which hints at potential resistance mechanisms.

These findings confirm that metastatic cancers are characterized by shifts in mu-

tagenesis borne of selective pressures and exposure to DNA damaging therapies.

6.2 the clinical implications of genomic instability

Mutation signatures blur the line between the genotype and phenotype. While

mutagenesis shapes the cancer’s genotype, it also reveals the integrity of its DNA

repair processes. By leveraging the whole genome as a functional assay, mutation

signatures permit biologists to directly view the effects of DNA repair deficiencies

whether or not their root cause is identifiable.
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DNA repair mechanisms, such as HR, are complex and not fully understood.

For example, not every HRD tumour is explained by mutation or hypermethyla-

tion of BRCA1/BRCA2. Whereas BRCA1/BRCA2 underlie 5-10% of breast cancer,

as many as 22% of primary breast cancers carry signatures of HRD (Davies et al.,

2017). Furthermore, of the observed mutations, many are VUS, without clear evi-

dence linking to breast cancer risk. Polak et al. (2017) recently demonstrated that

mutation signatures can help to delineate the functional relevance of mutations

in DNA repair genes. This has ramifications both for guidance of treatment and

for the screening of hereditary cancer risk. The mutation signature of a targetable

pathway can serve as an indicator of that pathway’s function. However, even in

objective responders to platinum-based chemotherapy, recurrence rates are high

(Dent et al., 2007; Nagourney et al., 2000; Sirohi et al., 2008). Follow-up analy-

sis by WGS offers the potential to probe the origins of acquired drug resistance

(Jones et al., 2010). For instance, HRD tumours have been observed to acquire

secondary mutations which restore the reading frame of BRCA1/BRCA2 (Patch

et al., 2015; Swisher et al., 2008). Here, the temporal dissection of mutation sig-

natures may come into play. We found that breast cancers with prior exposure to

platinum-based chemotherapy exhibited a decrease in HRD signature activity in

late mutations. Again, the analysis of mutational processes may obviate the need

to identify the specific somatic event giving rise to resistance, so long as a late

shift in the signature is observed.

In contrast to HRD suppression, the pancreatic case study in chapter 4 demon-

strated the principle of late-onset HRD. As a common source of cancer suscep-

tibility, HRD is thought to be an early cancer driver. However, the analysis of

mutation signature timing in primary cancers by McGranahan et al. (2015) and

our own temporal analysis in metastatic cancers (chapter 5) suggests that HRD
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may require time to accrue a notable mutation burden. In the clinical setting, this

could result in the discounting of a low but active HRD signature and the missed

opportunity for targeted treatment. Therefore, it is preferable to delineate cur-

rently active processes from historically active ones in order to appreciate the full

timeline of actionable mutagenesis.

6.3 the mutational processes of metastatic cancers

Studying the association of mutation signatures with drug exposures was made

possible by the availability of clinical treatment data. This infrastructure allowed

the screening and joint modeling of drug-signature interactions. The association

between signature M3 and cisplatin exposure emerged directly from this analysis.

Aside from the temozolomide signature, this is the first verified signature of a

chemotherapy exposure independently discovered in patient samples by NMF.

Signature M3 appears to be a specific, but not sensitive marker of platinum

exposure as many platinum-exposed samples do not display the signature. It is

not yet clear whether its accrual depends on the loss of specific DNA repair pro-

cesses as with signature 11 in temozolomide treatment. It is also unclear whether

signature M3 could be a marker of acquired drug sensitivity or resistance. The

signature’s unbiased temporal occurrence suggests that it may be a remnant of

DNA damage retained through the proliferation of a resistant clone. The lack of

late-bias also suggests that, in a small fraction of tumours, cisplatin treatment

may induce as many as 2 mutations per megabase and could shape early tumour

cells which seed to metastatic sites. This finding calls for further study the clinical

consequences of cisplatin-dependent mutagenesis, especially in metastatic cancer

types where signature M3 is frequently observed.
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The association of signature 17 with oxaliplatin and fluorouracil exposure

stands in contrast to signature M3 because of its bias towards late-arising muta-

tions. Therefore, we posit that signature 17 may result from direct drug exposure

of the metastatic cancer rather than the expansion of a resistant clone. However,

independent validation of this signature in fluorouracil/oxaliplatin treated cells

is necessary, as no studies have yet examined the mutagenic profile of oxaliplatin.

Prior to the successful induction of signature M3 in human cell lines by cisplatin

treatment (Boot et al., 2017), mutagenic profiles were also accumulated in vitro via

cisplatin treatment of chicken DT40 lymphoblast cells (Szikriszt et al., 2016) and

caenorhabditis elegans (Meier et al., 2014). However, these signatures have not sub-

sequently been identified in sequenced human samples. The distinction suggests

that signatures generated experimentally in model organisms may not be as ap-

plicable to human cancers as those generated in human cells. This further implies

that mutation signatures stem from a delicate interplay between mutagens and

repair pathways, and that subtle variation between species can dramatically alter

mutagenesis.

6.4 limitations

The study of platinum response in breast cancer was part of a larger study with

the goal to guide individual treatment decisions using WGTA. The population

studied was selected for inclusion, and may not reflect the full population of

metastatic breast cancers. Additionally, this project occurred in two phases, the

first of which included the first 100 cases (Laskin et al., 2015). Sequencing proto-

cols differed slightly between the two phases, which could introduce batch effects.
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However, bioinformatics pipelines are standardized across samples and earlier

cases are occasionally re-run with updated analysis tools.

The clinical data on treatment durations were derived from a provincial

database of pharmacy records at cancer centres (Wu et al., 2013). Some treatments

are missing from this data, especially those delivered in different jurisdictions or

health authorities, or which were part of certain clinical trials. However, data on

standard treatments such as the platinum-based chemotherapies discussed here,

were near complete. Additionally, for the breast cancers studied in chapter 2, miss-

ing treatment dates were reintroduced during retrospective clinical review.

Another major limitation is the lack of standard timelines for the assessment of

treatment response. This precluded the use of standard objective response criteria

such as RECIST (Eisenhauer et al., 2009) and necessitated the creation of a custom

response scale. Instead, treatment duration was available as a secondary measure

of patient outcome, and was found to correlate with rated treatment responses.

A limitation of SignIT is the assumption that CNVs are clonal, meaning they

are identical across all subclones of a tumour. Some methods such as TITAN (Ha

et al., 2014) can estimate the cellular prevalence of CNVs. Future iterations of

SignIT could provide an option to include such estimates within the model to

more precisely adjust the expected variant allele counts.

Lastly, in the temporal analysis of mutation signatures by SignIT, slightly more

than half of cancers fit a single-population model. This suggests that there was

insufficient clonal diversity and/or too few SNVs in regions of copy number vari-

ation to accurately estimate the timing of signatures. Deeper sequencing may be

necessary to uncover identifiable tumour subpopulations in these cases. It is not

certain, however, whether cancers which tend to fit a single-population model also

systematically differ in the timing of mutational processes. If so, then the removal
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of these cases from analysis could confound the findings in chapter 5 and harm

generalizability.

6.5 a role for mutation signatures in precision oncology

Since 2014, the POG project has incorporated mutation signatures in the

treatment-focused personalized analysis of cancer genomes. HRD scores were in-

troduced in late 2016. Within the first 139 breast cancers, over 25% of cases were

deemed to have an actionable target based on mutation signature, HRD score, or

mutation burden. A major limitation is that distinct actionable targets from mu-

tation signatures remain limited to HRD (for platinum/PARP inhibitors) and hy-

permutation (for immunotherapy). In addition to POG, other personalized cancer

sequencing initiatives have also incorporated some element of mutation signature

analysis (Tuxen et al., 2016; Zehir et al., 2017).

Cost remains a barrier to the integration of mutation signatures at scale into

clinical care. The accuracy of mutation signature decomposition improves with

increased sampling of mutations. For example, the signature 3 exposure of a typi-

cal metastatic breast cancer varied from 0 to 10,000 mutations, and total mutation

burdens from 0 to 60,000. WES yields approximately 100 times fewer mutations,

and targeted panels fewer still. When partitioning mutations across 96 classes, it

can thus be challenging to identify clinically relevant signatures with any confi-

dence. Using a large targeted panel, Zehir et al. (2017) could quantify signatures

only of hypermutating processes (POLE, MMR, tobacco, UV, and temozolomide),

even with 10,000 samples. Worse still, SV signatures are infeasible at the scale

of exomes. Low-depth sequencing, such as employed by Nik-Zainal et al. (2016),

is a potential cost-saving solution for mutation signature analysis. However, this
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would render temporal dissection of mutational processes challenging or impos-

sible without follow-up targeted sequencing of mutated loci.

The integration of mutation signatures into clinical practice will likely depend

on the feasibility of WGS itself. The value added by WGS rises with continued

characterization of the cancer genome and the proliferation of datasets supporting

the contextualization of clinically relevant findings. Meanwhile, sequencing costs

continue to fall, but the cost of genome analysis has not followed suit. Weymann

et al. (2017) showed that the cost of WGTA within POG was $34,886 per patient

from 2012 to 2015 with a downwards trajectory driven primarily by decreasing se-

quencing cost. The construction of automated analysis pipelines to surface known

and hypothetical actionable targets needs to be a continued focus to realize the

goal of scalable precision oncogenomics.

6.6 future research directions

In the meantime, there remain many opportunities for research into the actionabil-

ity of DNA repair deficiency. Within the field of HRD, a well-designed prospec-

tive trial leveraging HRDetect or a similar aggregate measure of HRD is neces-

sary. Such a trial could compare the response to cisplatin/gemcitabine treatment

between HRD and non-HRD breast cancers. Moreover, the recent approval of ola-

parib for use in germline BRCA1/BRCA2 mutated breast cancers (Center for Drug

Evaluation and Research, 2018) raises the possibility of a PARP inhibitor trial. Also

promising is the recent development of a DNA G-quadruplex stabilizer (Xu et al.,

2017), which is now in phase I clinical trial (Canadian trial NCT02719977). G-

quadruplex structures are sites of frequent DNA damage which requires repair
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by HR. Inducing or stabilizing G-quadruplex structures in the context of HRD

may facilitate tumour-targeted cell death.

Another priority is better characterization of HRD’s actionability in cancer types

other than breast cancer. HRD has also been observed in ovarian, pancreatic, and

gastric cancers (Alexandrov et al., 2015b; Davies et al., 2017), as well as osteosar-

coma (Kovac et al., 2015), wherein the PARP inhibitor talazoparib has been effec-

tive in vitro (Engert et al., 2017).

Regarding platinum resistance, we hypothesized in chapter 5 that HR restora-

tion could indicate acquired resistance to platinum-based chemotherapy. This

finding may eventually inform development of biomarkers to monitor for drug

resistance, similar to how HRD onset could be a marker of drug sensitivity.

However, there has not yet been evidence showing that BRCA1/BRCA2 rever-

sion mutations lead to a drop in HRD mutation signature activity. Unfortunately,

no BRCA1/BRCA2 reversions have been confirmed in our metastatic cancer co-

hort because paired primary cancers were sequenced in only select cases. How-

ever, a WGS study of 92 chemoresistant ovarian cancers confirmed five cases

of BRCA1/BRCA2 reversion. Data from this study are available via European

Genome-Phenome Archive (EGA), and could be used to assess the evolution of

HRD mutation signatures in association with BRCA1/BRCA2 reversion. Another

promising approach is the sequencing of circulating tumour DNA to monitor for

reversion mutations in BRCA1/BRCA2 (Christie et al., 2017; Mayor et al., 2017;

Weigelt et al., 2017). Exome-scale capture of circulating tumour DNA could even-

tually enable non-invasive monitoring of mutation signatures, which would dra-

matically improve feasibility of clinical application.

While this thesis has focused on the timing of SNV mutation signatures, the

timing of SV signatures remains a challenge. Graph-based approaches have been
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proposed to reconstruct genome-wide rearrangement histories (Greenman et al.,

2012), but outstanding challenges exist relating both to analytical difficulties and

the accuracy of CNV and SV callers (Maciejowski and Imielinski, 2016). Likewise,

the timing of CNV-based signatures such as the HRD score could be achieved by

methods such as those described by Purdom et al. (2013) and applied in chapter 4,

but these in turn depend upon knowledge of rearrangement history. Despite these

challenges, early attempts to chart the timing of common cancer driver events

have already been made (Gerstung et al., 2017).

6.7 looking forward : biomarker discovery in the era of genomic

data

If nothing else, I hope that this thesis has conveyed the importance and complex-

ity of relating a novel WGS biomarker, the mutation signature, to its therapeutic

potential. There are fundamental biological questions to consider, such as the con-

fluence of factors which shape and alter mutation signatures, and whether muta-

tional processes evolve over time. There are also technical details to unmask, such

as signature bleed. Most importantly, there is the feedback loop which enables the

hypothesis, discovery, and follow-up of relevant clinical associations.

For some forward-thinking jurisdictions, collating the complete genomic infor-

mation of tumours coupled with extensive clinical information will provide an

unprecedented research platform to understand the mechanisms underlying ther-

apeutic response, acquired resistance, and failure. Furthermore, the serial appli-

cation of WGTA, undertaken many times during the course of the disease could

provide a real-time view of cancer progression and treatment response. This feed-
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back loop will be invaluable for the study of cancers where the goal is to improve

disease stratification and therapeutic intervention.

I have been privileged to glimpse the earliest of genomics applications aimed

at guiding cancer treatment decision-making. I hope that, in the coming era of

genomic medicine, these efforts expand and continue to generate insights, sup-

ported by the clinical infrastructure necessary to render them actionable.
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A P P E N D I C E S

a1 note on nucleic acid nomenclature

Mutations are denoted by their base change. For example C>T denotes a base

change from cytosine to thymine. Additionally, the trinucleotide context of a base

change is described in one of two ways. The first is to provide the entire altered

trinucleotide, for example a TCT > TTT mutation. The other is too indicate the

context separately, for example a C>T mutation in a TpCpT context. Here, the p

between bases denotes a phosphodiester bond.

In addition, expanded nomenclature is occasionally used. For example, a

CpApY trinucleotide includes both CpApC or CpApT. A complete table of the

expanded nomenclature is provided in table A.1.

Table A.1: The expanded nomenclature for nucleic acid naming.

Letter Meaning Nucleotide(s)

A Adenine A
T Thymine T
G Guanine G
C Cytosine C
R Purine G or A
Y Pyrimidine T or C
M Amino A or C
K Keto G or T
S Strong G or C
W Weak A or T
H Not Guanine A or C or T

169



Letter Meaning Nucleotide(s)

B Not Adenine G or T or C
V Not Thymine G or C or A
D Not Cytosine G or T or A
N Any base G or T or A or C

a2 appendix tables
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Table A.2: Significance tests for differences in mutation signatures across
molecular subtypes. Multiple Kruskal-Wallis non-parametric
tests were performed to identify variation in NMF-derived de
novo mutation signatures across five breast cancer molecular
subtypes (Luminal A, Luminal B, Her2-Amplified, Basal, and
Normal-like). P-values were adjusted for false discovery rate,
and revealed statistically significant subtype variability in three
signatures: V3, V8, and V9.

Chi-squared Degrees of freedom p Adjusted p

V1 5.3 4 0.26 0.28

V2 10 4 0.035 0.075

V3 18 4 0.0015 0.0045

V4 9.9 4 0.042 0.075

V5 9.2 4 0.056 0.085

V6 7.3 4 0.12 0.16

V7 5 4 0.28 0.28

V8 18 4 0.0015 0.0045

V9 25 4 6.1e-05 0.00055

Table A.3: Sample details for whole genome sequencing of multiply-
sequenced tumours.

ID Occurrence Stage Sex Diagnosis Prep Depth Purity

P01 Primary Adult F Colorectal Cancer FFPE 41x 60

P01 Metastatic Adult F Colorectal Cancer OCT 92x 47

P02 Primary Adult F Breast Cancer FFPE 46x 80

P02 Metastatic Adult F Breast Cancer OCT 99x 80

P03 Primary Adult M Colorectal Cancer FFPE 49x 70

P03 Metastatic Adult M Colorectal Cancer OCT 46x 79

P04 Primary Adult F Appendix Cancer FFPE 42x 60

P04 Metastatic Adult F Appendix Cancer OCT 87x 81

P05 Primary Adult M Colorectal Cancer FFPE 50x 65

P05 Metastatic Adult M Colorectal Cancer OCT 92x 73

P06 Primary Adult F Ovarian granulosa FFPE 48x 80

P06 Metastatic Adult F Ovarian granulosa OCT 112x 90

P07 Primary Adult F Breast Cancer FFPE 37x 75

P07 Metastatic Adult F Breast Cancer OCT 105x 47
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ID Occurrence Stage Sex Diagnosis Prep Depth Purity

P08 Primary Adult F Breast Cancer FFPE 53x 80

P08 Metastatic Adult F Breast Cancer OCT 95x 35

P09 Primary Adult F Endometrial Cancer FFPE 44x 55

P09 Metastatic Adult F Endometrial Cancer OCT 96x 80

P10 Primary Adult F Breast Cancer FFPE 40x 70

P10 Metastatic Adult F Breast Cancer OCT 122x 63

P11 Primary Adult F Breast Cancer FFPE 43x 70

P11 Metastatic Adult F Breast Cancer OCT 91x 86

P12 Primary Adult F Breast Cancer FFPE 41x 65

P12 Metastatic Adult F Breast Cancer OCT 105x 70

P13 Primary Adult F Breast Cancer FFPE 54x 70

P13 Metastatic Adult F Breast Cancer OCT 97x 76

P14 Primary Adult F Lung Cancer FFPE 46x 60

P14 Metastatic Adult F Lung Cancer OCT 100x 64

P15 Primary Adult F Breast Cancer FFPE 39x 65

P15 Metastatic Adult F Breast Cancer OCT 97x 69

P16 Primary Adult F Breast Cancer FFPE 39x 60

P16 Metastatic Adult F Breast Cancer OCT 93x 63

P17 Primary Pediatric M Neuroblastoma FFPE 41x 90

P17 Metastatic Pediatric M Neuroblastoma FF 89x 69

P18 Primary Adult F Breast Cancer FFPE 31x 50

P18 Metastatic Adult F Breast Cancer OCT 96x 70

P19 Primary Pediatric M Sarcoma FFPE 54x 95

P19 Metastatic Pediatric M Sarcoma FF 102x 65

P20 Primary Adult F Breast Cancer FFPE 44x 70

P20 Metastatic Adult F Breast Cancer OCT 110x 90

P21 Primary Adult F Adenocarcinoma of the lung OCT 91x 20

P21 Metastatic Adult F Adenocarcinoma of the lung OCT 67x 51

P22 Primary Adult F Cholangiocarcinoma FF 86x 48

P22 Metastatic Adult F Cholangiocarcinoma OCT 79x 58

P23 Primary Adult M Pancreatic Adenocarcinoma FA 86x 25

P23 Metastatic Adult M Pancreatic Adenocarcinoma OCT 84x 49

P24 Primary Adult M Metastatic lung cancer OCT 100x 48

P24 Metastatic Adult M Metastatic lung cancer OCT 82x 35
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Figure A.1: Underestimated mutation signature exposures from simu-
lated data. Simulated mutation catalogs with known exposure
vectors were generated under various conditions and their ex-
posures were re-estimated using deconstructSigs, SignatureEs-
timation, and SignIT. For every signature with non-zero simu-

lated exposure, the error ratio was computed as
e− ε

ε
, where

e is the estimated exposure and ε is the true exposure. Mu-
tation signatures were ordered by their median similarity to
other reference signatures. We observed frequent underestima-
tion of mutation signatures by all methods, but errors were
greatest in deconstructSigs and smallest in SignIT exposures.
Signatures which are highly similar to other signatures were
most likely to be underestimated.
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Figure A.2: Overestimated mutation signature exposures from simulated
data. Simulated mutation catalogs with known exposure vec-
tors were generated under various conditions and their expo-
sures were re-estimated using deconstructSigs, SignatureEsti-
mation, and SignIT. For every signature with zero simulated
exposure, the overestimation error was computed as the esti-
mated exposure divided by the total mutation burden. While
all methods exhibited exposure errors, SignIT overestimated
exposures with lower magnitude.
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Figure A.3: Model selection for mutation signature analysis of nine co-
horts of The Cancer Genome Atlas. To select the number of
signatures, NMF was performed for models varying from 2

to 8 mutation signatures. To estimate signature stability, each
NMF algorithm was run with 1000 Monte Carlo resimulated
mutation catalog matrices. In each cohort, the model contain-
ing a number of signatures maximizing signature stability
while minimizing Frobenius reconstruction error was chosen.
Chosen models are indicated with a black box.
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Figure A.4: Matching de novo mutation signatures to previously identi-
fied known signatures. Mutation signatures were deciphered
de novo from cancertype-specific cohorts of metastatic cancer
whole genomes. Signatures were clustered across cohorts to
yield a set of independent signatures. Those closely resembling
primary signatures were mapped accordingly. Here, PS stands
for primary signature, and the numbers correspond to the 30

COSMIC mutation signatures.
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Figure A.5: Clustering of mutation signatures across multiple cancer co-
horts into a common consensus signature set. Exposures for
present signatures are shown per sample for all cohorts. Expo-
sures were normalized by dividing by total mutation burden
per sample such that the exposures of each sample (each row)
sum to 1. Total mutation burden for the corresponding sample
is also shown shown. Rows are ordered based on hierarchical
clustering of the fractional exposures.

178



2

3
4

5

6

78910111213

14

10

2
3456

7

8
9

1011
12

13
14

3

2

3

4

5
6
789

1011121314

7

2

3

4

5

6
7

8
9

10111213

14

5

2

3

45

678910111213
14 6

2

3

4

5
6789

1011
12

13
14

6

2

3

4

5678 910
11 12 13

14

5

2

3

4

5
6
7

8
91011

121314

9

2

3

4

5

6

7
89

10

11
12

13

14

2

2

3

4
5

678
9

10

11

12

13
14

5

23

4
5

6

789 1011121314 8

2

3

4

5
6

78
91011

12

1314

7

SARC SECR SKCM STAD

HNSC LUNG OV PAAD

BRCA CHOL COLO ESCA

0.6 0.7 0.8 0.9 1.0 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.25 0.50 0.75 1.00 0.7 0.8 0.9 1.0 0.4 0.6 0.8 1.0 0.6 0.7 0.8 0.9 1.0

0.6 0.7 0.8 0.9 1.0 0.2 0.4 0.6 0.8 1.0 0.900 0.925 0.950 0.975 1.000 0.25 0.50 0.75 1.00

1000

2000

3000

4000

2000

4000

6000

8000

500

1000

1500

2000

2500

20000

30000

40000

50000

60000

1000

1500

2000

20000

30000

40000

400

600

800

1000

1200

1400

10000

20000

30000

40000

200

400

600

4000

8000

12000

16000

2000

4000

6000

1000

1500

2000

2500

Signature Stability

R
ec

on
st

ru
ct

io
n 

E
rr

or

Figure A.6: Mutation signatures were successfully deciphered across 12
cancer cohorts. For each cohort, the number of signatures to
be inferred was selected by jointly minimizing reconstruction
error and maximizing signature stability. Chosen models are
indicated with a black box.
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Figure A.7: Late-arising mutation signatures across cancer types. Tempo-
ral dissection of mutation signatures deciphered de novo from
metastatic cancers revealed two late-arising mutation signa-
tures. Signatures 17 and M2 were observed in late-arising mu-
tational subpopulations across various cancer types.
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Figure A.8: Late-arising mutation signatures across biopsy sites. Tempo-
ral dissection of mutation signatures deciphered de novo from
metastatic cancers revealed two late-arising mutation signa-
tures. Signatures 17 and M2 were observed in late-arising mu-
tational subpopulations across various biopsy sites.
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