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Abstract 

 

Recent advances in the technologies of sensing, robotics, and sensor networks have led to 

significant progress in environmental telemonitoring. Robotic systems have been widely 

developed and deployed in the field by using their capabilities of mobile sensing, 

autonomous navigation, and wireless communication. In particular, robotic monitoring and 

data sampling at locations of interest may be utilized to characterize and interpret the 

environmental phenomena of a study area. However, in real-world robotic sensing 

applications, the limitations of on-board resources will limit the coverage of the monitored 

area and the extent of acquired data, which will hinder the performance of field estimation 

and mapping. Meanwhile, the constraints of computational capability of the system 

components call for a computationally efficient framework to schedule and control the 

robotic sensing missions. 

This dissertation investigates and develops systematic sensor scheduling and path 

planning schemes for environmental field estimation through robotic sampling, and their 

application in aquatic monitoring. First, a hexagonal grid-based sampling frame is designed 

to distribute spatially balanced sampling locations over the monitored field. Two novel 

hexagonal grid-based survey planners are developed to generate energy-efficient sampling 

paths for the exploratory survey using mobile sensing robots, which can be executed in a 

computationally efficient manner. Second, an energy-constrained survey planner is 

developed, which achieves optimal coverage density for sampling, with a limit on the 

energy budget. The generated survey mission guides the robots to collect data samples for 

estimation and mapping of an unknown field under a Gaussian Process (GP) model. Third, 

a hierarchical planning framework with a built-in Gaussian Markov Random Field 

(GMRF) model is developed to provide informative path planning and adaptive sampling 

for efficient spatiotemporal monitoring. Fourth, the development of a cost-effective, 

rapidly deployable, and easily maintainable Wireless Mobile Sensor Network (WMSN) for 

on-line monitoring of surface water is presented. A novel On-Line Water Quality Indexing 

(OLWQI) scheme is developed and implemented to interpret the large volume of on-line 

measurements. 
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The experimental results in the present dissertation demonstrate the effectiveness and 

efficiency of the proposed planning schemes and their application in aquatic environmental 

monitoring. 
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Lay Summary 

 

Robotic systems provide efficiency and flexibility for the sensing process in remote 

environmental monitoring. This dissertation addresses the scheduling and planning issues 

when applying robotic sampling in environmental monitoring, particularly in aquatic 

monitoring.  

First, the problem of regular grid-based survey planning is studied, which will 

navigate the robots to measure the sampling locations for an environmental survey. Second, 

the survey planners are improved to tackle a real-world problem where the system 

operation is limited to the available power supply and energy budget. Third, an informative 

path planner is developed to improve the feasibility and efficiency of the mobile sensing 

process, which determines the more informative locations. Furthermore, a wireless mobile 

sensor network is designed and developed for on-line monitoring of surface water. A novel 

on-line water quality index is introduced to interpret the complex measurements as a simple 

quality indicator. 
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Chapter 1: Introduction 

 

This dissertation concerns robotic sampling and path planning for environmental field 

estimation and the practical issues in aquatic monitoring, particularly of surface water. 

Both quantitative and qualitative evaluations of the monitored environment are 

investigated in the present work. 

 

1.1 Motivation 

Monitoring programs of aquatic environments play a critical role in various uses of water 

such as the study of aquatic life, livestock water provision, human usage, agriculture and 

irrigation, and ecosystem conservation. Clean water sources are necessary not only for the 

aquatic ecosystem and natural habitats, but also for public health. In the past, water body 

evaluation has relied primarily on time-consuming and human-intensive field 

measurements for data collection. Technicians usually test water sources in the field 

utilizing hand-held devices, or transport water samples to laboratories for further analysis. 

The monitoring programs of this manner have been limited by their inadequate 

measurements on both spatial and temporal scales. 

Recent advances in the technologies of sensing, robotics, and wireless sensor 

networks have led to significant progress in environmental telemonitoring. Automated 

systems that can carry out on-line sensing, wireless communication, and autonomous 

decision-making have been widely implemented in real-world applications. When 

compared with the traditional measuring processes, automation techniques can provide in-

situ sampling, automatic processing, and on-line early warning, and can be deployed in 

remote and hazardous environments. 

In the field of aquatic monitoring, static stations or buoys with capabilities of 

automated measurement, data logging, and wireless transmission have been designed by 

research institutes [1], [2] or deployed by environmental agencies [3], [4]. Although 

automated systems with static sensing agents have been implemented to provide on-line 

measurements, their applications have been impeded by the inadequacy and inflexibility in 

spatial or spatiotemporal surveillance.  
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In contrast, robotic sensing systems can offer unprecedented flexibility, efficiency, 

and effectiveness in information gathering, which improve the performance of monitoring 

process, accommodate complex variations of environmental phenomena, and provide rapid 

response to unexpected events or anomalies. Consequently, robotic sensing systems have 

been developed and deployed to provide spatiotemporal measurements of water sources 

such as pools, lakes, reservoirs, rivers, and oceans. The main research focus in this area has 

been primarily on system design and development [5]–[8], sensor scheduling and path 

planning [9]–[13], environment modeling and field reconstruction [14]–[17], and data 

interpretation and evaluation [18]. 

 

1.2 Background and Challenges 

In a mobile sensing process, robots travel to different locations for carrying out automated 

sampling and data acquisition. Depending on the monitoring goals, the robot is equipped 

with appropriate sensors to measure the necessary variables/parameters (physical, 

chemical, biological, radiological, and so on) [19]. A specific type of sensor may be able 

to acquire data from multiple geographical locations simultaneously. For example, a 

thermal camera can capture the temperature distribution over a large spatial area. Many 

other types of sensors, however, may only acquire data from a single location at one time. 

For example, a conductivity sensor measures the electrical conductivity at just one site at 

a time. These sensors are termed “point sensors” in the present work. The measurements 

from them can provide the information pertaining to the corresponding sampling locations 

only. Then, to obtain spatial information, the robots with point sensors have navigate to 

many sampling locations over the study area to take the necessary measurements. 

Afterwards, the data collected by the point sensors are analyzed to interpret the 

environmental field or predict the physical quantity at the unobserved locations.  

Quantitative analysis of an environmental field with point sensors has been actively 

studied in the areas of geostatistics, robotics, wireless sensor networks, and environmental 

monitoring. To tackle a variety of analysis tasks such as exploration, estimation, prediction, 

and extremum seeking, it may be useful to integrate a spatial or spatiotemporal statistical 

model [20]. In the spatial statistics, the study area is generally modeled as a random field. 

Observations from the sampled locations are utilized to characterize the spatial profile, 
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estimate its underlying environmental model, predict the information at unobserved 

locations, or reconstruct the scalar field of the monitored area.  

Sampling sites are designed by following a specified frame, which affects the 

estimation performance of the environmental field. It is evident that sampling at a higher 

resolution that covers the overall study field will provide better estimation results that are 

close to the ground truth of the underlying environmental phenomenon. However, mobile 

sensing robots in the field have limited on-board resources, especially limited energy 

storage and power supply (battery, fuel, etc.), which restrict the number of data samples 

obtained by the robots as well as the associated area of coverage (spatial point of view). 

On the other hand, these constraints may lead to insufficient data  collection when the 

phenomena in the monitored field varies significantly (temporal point of view). The major 

challenge for robotic sensing applications resides on how to plan an effective and efficient 

sampling mission to guide resource-constrained robots to visit and measure more 

representative and bountiful sites over the monitored area. 

In aquatic monitoring programs, qualitative analysis of a water body is based on its 

physical, chemical, and biological parameters. With the objective of providing an overall 

representation of the water quality based on all measurements, effort has gone into 

developing Water Quality Indices (WQIs) [21]. A WQI provides a convenient way to 

represent various and complex aspects that determine the water quality by aggregating the 

measured data of water quality parameters into a numerical score, and then categorizing 

them into several quality classes, for the purpose of reporting to the public, agencies, policy 

makers, and other authorities.  

The implementation of mobile robotic sensing facilitates automated data acquisition 

from multiple robots by multiple sensors at high sampling rates in an effective manner. 

Large volumes of on-line data gathered in this manner can be rather complex and difficult 

for processing in evaluating the overall quality of water. This has led to the emergence of 

a formula that is expressed in the form of a WQI to encapsulate large quantities of water 

quality data into a simple score to categorize the water quality. However, in the traditional 

monitoring processes, the existing WQIs have been applied for long-term quality 

evaluation using data that are collected manually at low sampling rates. Indexing using on-
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line measurements has been rarely considered, and the particular types of WQI that are 

used have some shortcomings. 

 

1.3 Research Objectives and Contributions 

In recent years there have been increasingly stringent requirements in the combined use  of 

wireless sensor networks and mobile sensing robots for on-line environmental monitoring. 

In the present dissertation, the primary research goal is the investigation and development 

of novel methods to facilitate the automated monitoring process of aquatic environment by 

using a wireless robotic sensing system through on-line measurements, real-time planning, 

and automatic information processing. 

Specifically, rapid deployment is the first objective of implementing the robotic 

sensors. Therefore, on-line planning is required when generates sampling missions for 

sensor scheduling. Furthermore, adaptive sampling that can carry out a sensing process at 

more significant sites is expected to predict environment field properties. For quantitative 

estimation, the measurements at the sampling sites are utilized to construct an accurate 

field map over the entire study area. Meanwhile, a clear index that can interpret the quality 

of the monitored water source is needed for qualitative evaluation. 

Consider limited samples by discrete sensors, constrained power supply, and limited 

computational capabilities, to predict a large-scale field with varying properties is a 

challenging issue. In addition, a mannerism that can integrate large volumes of on-line 

measurements to a simple interpretation of water quality is another crucial issue. With the 

objectives and issues, the main contributions of the dissertation are listed as follows: 

 Regular grid-based exploratory survey: The first key contribution is the 

development of new robotic sampling and path planning schemes for a regular grid-

based exploratory survey of an environment. First, two novel hexagonal grid-based 

survey planners are proposed to generate a sampling design that provides spatially 

balanced coverage and an energy-efficient sampling path cycle that can visit the 

planned sampling locations. The proposed planners are computationally feasible in 

polynomial time. As the related second contribution, the proposed survey planners 

are further extended to an energy-constrained scenario where the optimal coverage 

density for exploratory sampling is determined by a limited power supply budget. 
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The proposed sampling planners are applied for both the quantitative field 

estimation in a Gaussian Process (GP) scheme and the qualitative evaluation in 

water quality indexing. 

 Informative path planning: A new Gaussian Markov Random Fields (GMRF) 

built-in hierarchical informative path planner is developed for robotic adaptive 

sampling. The main advantages of the proposed algorithm is the practical 

implementation of mobile sensing agents in spatiotemporal monitoring. First, the 

high-level planner designs the most informative sites in a global view over the 

entire spatial field, which is executed anytime for planning to navigate the robots 

continuously over time. Second, the low-level planner searches the informative 

locations locally while heading to the optimal sites that are assigned by the higher-

level planner. The proposed framework provides an effective tradeoff between the 

computationally intensive global optimization for optimal experimental design and 

fast local greedy search for on-line path planning.  

 On-line surface water monitoring: An on-line Wireless Mobile Sensor Network 

(WMSN) is designed and developed for on-line monitoring of surface water. 

Furthermore, a novel On-Line Water Quality Index (OLWQI) is developed to 

integrate and interpret the large volumes of on-line measurements acquired through 

automated sampling at high data resolutions.  

The primary emphasis of the present work is on the two-dimensional spatial field 

analysis and its application in the monitoring of surface water of aquatic environments 

using mobile sensing robots such as Unmanned Surface Vehicles (USV) and Unmanned 

Aerial Vehicles (UAV). However, the developments in the present research can be 

implemented in mobile sensing system in any other environmental monitoring scenarios 

such as urban, atmospheric, marine, and land processes. 

 

1.4 Organization of the Dissertation 

The rest of the dissertation is organized as follows: 

Chapter 2 surveys the literature and highlights the existing work related to the present 

work, including automated systems in environmental monitoring, sampling design and path 

planning, field estimation and mapping, and water quality evaluation. 



6 

 

Chapter 3 addresses the problem of survey planning for distributing the sampling 

locations over a study area and generating the paths for the robots to visit and collect data 

from those locations. Given a target sampling resolution, the sampling locations of interest 

for the prior survey are selected based on a cellular decomposition that is composed of 

uniform hexagonal cells. They are visited by the robots along a path cycle that is created 

by the two proposed algorithms for coverage path planning. One generates the coverage 

path by circumnavigating the Minimum Spanning Tree (MST) that is constructed based on 

the proposed Auxiliary Coarse Cell (ACC) decomposition. To improve the computational 

efficiency, the other algorithm generates the coverage path cycle directly by rules 

conditioned on the ACCs. In this chapter, the proposed algorithms are compared with the 

state-of-the-art approach through experimentation. 

Chapter 4 presents an energy-constrained survey planner for the exploration and 

mapping of an unknown environment. The proposed planning scheme generates the 

coverage paths for the robots subject to their energy constraints, targeting on environmental 

exploration and field mapping. The planned path results in an optimal sampling resolution, 

subject to the energy budget. The robot travels along the planned path cycle to collect data 

samples. Subsequently, the data is used to estimate a statistical model of the underlying 

environmental phenomenon as represented by a GP model. A robust Kriging method is 

utilized to estimate the GP structure and construct the scalar map of the monitored 

parameter. The experimental results are presented and compared with the state-of-the-art 

approaches while highlighting the superior performances of the proposed algorithm with 

regard to the estimation accuracy and the computational cost. 

Chapter 5 addresses the issue of informative path planning and adaptive sensing in 

environmental field estimation with a mobile sensor network. A hierarchical planning 

framework is developed, which operates local greedy planning at each mobile sensing 

agent while determining the near-optimal sites at a sink by exploiting the global 

information over the entire spatial field. Mutual information (MI), an information-theoretic 

criterion, is utilized to quantify the significance of the sites in terms of their 

“informativeness.” The proposed hierarchical framework provides a practical solution for 

on-line adaptive sampling and field mapping using a mobile sensor network. 
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Chapter 6 presents the design and development of a WMSN for on-line monitoring 

of surface water in the field. For quality evaluation, an On-line Water Quality Index 

(OLWQI) is developed and implemented in the system to interpret vast quantities of on-

line measurements. The index formulations are modified by the state-of-the-art index, 

CCME WQI, which has been developed by the Canadian Council of Ministers of 

Environment (CCME) for off-line indexing. Through experiments using a real-world 

dataset and a physical field test using the developed WMSN, it is shown that the proposed 

index is able to provide effective and reliable performance in online indexing of a large 

volume of measurements. In this chapter, the components of the developed WMSN are 

introduced in detail. The WMSN has been deployed in a real aquatic environment, and its 

performance is demonstrated. 

Chapter 7 provides the conclusions pertaining to the research of the dissertation. 

Suggestions for possible future work and research topics are also indicated in this chapter. 
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Chapter 2: Related Work 

 

2.1 Automated Environmental Monitoring 

In the past decade, many automated platforms have been developed and implemented for 

remote sensing and environmental monitoring. Depending on the number of sensing agents 

in a system, the platforms can be categorized into two major types: systems with a single 

monitoring station (e.g., [3]) and systems with multiple sensor nodes in a network (e.g., 

[1], [5], [8], [22]). A single monitoring station commonly has sufficient power, 

computation resources, and communication resources. The main shortcoming of deploying 

a single station is the lack of ability to provide spatiotemporal monitoring over a large 

geographical area. A monitoring network with multiple sensing agents, in contrast, is 

capable of both spatial and temporal monitoring simultaneously.  

Concerning the mobility of the agents, the sensor networks can be classified as static 

(e.g., [1], [4], [22]) and mobile (e.g., [5], [7], [8], [23], [24]). The static sensor networks 

have their sensing agents deployed at predetermined fixed locations, and provide 

continuous online measurements in the field. These systems have proven to be effective in 

supporting environmental monitoring in a timely manner due to their abilities of data 

requisition, information processing and wireless transmission [2]. However, they are 

hindered by their inadequacy and inflexibility in spatial sensing for area surveillance. In 

contrast, mobile sensor networks that consist of robotic sensing agents are able to carry out 

measurements by travelling over a large spatial area. These systems provide the capability 

of information gathering at variable locations of interest over the study area.  

In aquatic monitoring applications, scientists in the fields of environmental science, 

biology, chemistry, geography, and robotics have increasing interests in leveraging 

advanced robotic sensing technologies to gather useful information of water sources. Many 

systems have been implemented with mobile sensing robots. For example, the design and 

initial application of a sensor-actuated network that consisted of multiple stationary buoys 

and one mobile robot have been introduced in [5] for sensing microbial communities in 

aquatic ecosystems. In [7], a low-cost, self-sustained mobile surface vehicle has been 

designed for water quality monitoring, which has been utilized as a part of a community 

science system to help in the environmental recovery of polluted bodies by performing on-
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line operations. For autonomously sampling water columns, an energy-efficient and highly 

maneuverable gliding robotic fish has been developed in [23]. The hybrid system with 

underwater gliders and robotic fish has been used in field tests for sampling harmful algae 

concentration in a lake. A UAV-assisted water quality measurement system has been 

developed in [25] for in situ surface water quality measurement. The collected data was 

used to interpret the spatial distribution of temperature, conductivity, dissolved oxygen, 

and pH levels in a pond. With the support of robotic sensing, measurements of the objective 

parameters over both spatial and temporal scales can be obtained to estimate, interpret and 

reconstruct and environmental field of interest. 

 

2.2 Field Sampling 

In order to monitor natural resources, an environmental survey is required. In the survey, a 

systematic measurement process has to be carried out through a series of sampling missions 

at different sites, to observe variations of the environmental properties. 

A distribution of the sampling locations provides a pattern across the study area, 

which indicates the estimation performance of the underlying random field. The 

distribution of the surveyed locations requires a Sampling Design (SD) that allows for the 

generation of a reliable interpretation of attributes of interest in the study area. The SD 

method determines the quality of the resulting survey. Typically, a suitable SD helps reduce 

errors  in statistical inference [26]. 

 

2.2.1 Sampling Design 

Sampling design strategies can be categorized as two main types: design-based sampling 

and model-based sampling. The former type incorporates probability sampling and design-

based inference while the latter type conducts purposive sampling and spatial interpolation 

[27]. 

Various design-based techniques are available for selecting probabilistic samples. 

For instances, simple random sampling and systematic random sampling are 

straightforward probabilistic sampling techniques [28], which draw samples randomly and 

independently over the study area with equal probability. Stratified sampling divides the 

population into strata from which a sample is drawn by simple random sampling [29]. Latin 
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hypercube sampling is a maximally stratified random sampling method, which guarantees 

the full coverage of multi-variate distribution in the feature space [30]. Design-based 

approaches focus on probabilistic sampling and inference for estimating quantities of 

environmental properties in terms of their totals, means, quantiles, standard deviations, and 

so on [31]. Design-based inference primarily seeks an unbiased estimator of a population 

of an environmental variable. 

Purposive sampling selects representative sites for the model-based approaches to 

spatialize the surveyed field. Systematic sampling on a regular grid, also referred to as grid 

sampling, provides even geographical coverage by dividing the sensing domain into 

regular grids while selecting sampling sites at the grid nodes [32]. To fill the monitored 

space as uniformly as possible, spatial coverage sampling optimizes the distances between 

the nodes of an interpolation grid and the sampling sites. The distance measure, such as the 

Mean Squared Shortest Distance (MSSD), can be minimized by the k-means clustering 

algorithms [33] or the spatial simulated annealing algorithm [34]. In addition, geostatistical 

sampling optimizes the sample distribution by minimizing the (mean or maximum) 

variance of a model-based interpolation approach, such as Kriging [35], [36]. The optimal 

sampling pattern depends on the spatial correlation that can be depicted by a variogram, a 

correlation function, or a covariance function. The model-based approaches are particularly 

suitable for estimating an environmental model of an underlying field, predicting values at 

unobserved locations, and mapping spatial variation [37]. 

In a practical application, the choice between different sampling design techniques 

depends on the monitoring goal and the measuring system that is used to carry out the 

designed sampling process. 

 

2.2.2 Exploratory Survey 

To investigate an unknown environment, a preliminary sampling phase is required through 

a prior survey, which is called an exploratory survey phase [38]. Coverage sampling or 

robust sampling that is done to relax unrealistic prior assumptions is called an exploratory 

sampling design, which provides sufficient flexibility to explore an unknown process 

structure. Such designs have been adopted in spatial mapping without rigid prior 

assumptions, for initial deployment for prior knowledge collection, exploratory 
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implementation for long-term design improvement, or combination with optimum designs 

for improved estimation performance [39]. In most existing monitoring programs, an initial 

deployment using exploratory sampling is required to explore and learn the underlying 

field. 

Grid sampling accomplishes such requirements as exploratory designs [32], [40]. It 

distributes sampling locations by decomposing the sensing field into a grid of cells (e.g., 

squares, triangles, hexagons) where the sampling plots are taken in the grid tessellation. 

Spatial coverage sampling that optimizes the distance metric can also be implemented in 

an exploratory survey [33], [41]. In the absence of prior knowledge, a regular grid or an 

optimized spatial coverage design ensures overall coverage of the surveillance area. In 

particular, it provides a spatially balanced data sample distribution across the study area. 

 

2.2.3 Coverage Path Planning for Sampling 

Given the sampling locations of interest, the sampling paths for the mobile sensing robots 

to visit them can be directly planned by connecting all the target points. To tackle this 

problem, the Travelling Salesman Problem (TSP) [42] has been widely applied. It finds the 

shortest path by visiting each point exactly once, which leads to an energy-efficient route 

for mobile sensing. Orienteering Problem, an extended problem of TSP, has been studied 

to cover as many target points as possible while ensuring that the energy cost is within the 

given budget [43]. The TSP and its variations including the OP are Nondeterministic 

Polynomial-time hard (NP-hard) [44] methods; thus the computational cost is extremely 

high when the objective points are distributed over a large scale. 

Rather than connecting the target points directly to form a sampling path, many 

planners generate a coverage path first and then obtain the sampling locations along the 

path. Coverage path planning (CPP) determines a path that covers the points in a target 

area as much as possible. It was originally utilized to fill the region with paths that are less 

overlapping and less repeating [45]. CPP has been extended to generate coverage paths for 

robotic sampling. In the literature, cellular decomposition methods such as Boustrophedon 

path [46], lawnmower path [18], and their variants [9], [47], have been used to generate 

the coverage path with a transect survey pattern consisting of a series of parallel linear 

transects to cover the decomposed cellular regions. Then data samples are taken while 
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traveling back and forth along the generated coverage path. The work in [45] reviews 

planning strategies that can create a coverage path. 

 

2.3 Environmental Field Estimation 

2.3.1 Random Fields 

Environmental phenomena are reflected by complex interactions of physical, chemical and 

biological processes. The variation of an environmental property appears to be random, 

which is commonly modeled as a random field (or stochastic field) in spatial statistics. 

Field estimation and reconstruction through mobile sensing is an active research topic in 

the field of robotics, wireless sensor networks, geostatistics, and so on. For spatial data 

analysis, although model-free sampling approaches have been proven to be effective in 

applications such as stochastic source seeking [48], a spatial statistical model has attracted 

attention of environmental scientists and robotics researchers. Model-based approaches can 

estimate the underlying structure of the data generating process and provide the spatial and 

temporal characteristics and global information of the environment. They have been widely 

studied in pattern modeling [16], environmental mapping [49], information exploitation 

[50], boundary detection [47], and so on. 

The sensed spatial field of interest is generally considered as a 2-dimensional plane 

2A . The continuous plane is discretized as a set of locations S  with the possible 

sampling locations. A random field { ( ), }n nZ Z S s s  is a set of random variables ( )nZ s  

indexed by its associated location ns , 1,2,...,n  . The spatial field { ( ), }Y Y S s s  

can be modelled as the combination of a deterministic term ( )X s  and a random term ( )Z s

, that is: 

( ) ( ) ( )Y X Z s s s . (2.1) 

The deterministic term ( )X s  is a regression function that captures the trend over 

space. The random term ( )Z s  is a random function that is specified by the finite-

dimensional joint distribution of the random variables as: 

1 1 1 1( ,..., ; ,..., ) ( ( ) ,..., ( ) )F z z p Z z Z z  s s s s . (2.2) 
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where nz  denotes the value of the random variable at the location ns , 1,2,...,n  . 

In the model-based statistical data analysis, characteristics of a random field are 

interpreted by its stochastic structure. Stochastic process techniques have been investigated 

to describe complex environmental fields in space and time. Measurements are utilized as 

the observations to learn the underlying environmental model, interpret the statistical 

characteristics, and map the scalar spatiotemporal field. The performance of field 

reconstruction can be quantified by the mapping error, which is designated as performance 

metric. 

 

2.3.2 Gaussian Processes 

Effective statistical techniques have been taken an important role in the environmental 

analysis. Gaussian process (GP), a nonparametric Bayesian scheme, has been actively 

studied as a random field to model the underlying environment and provide estimation, 

prediction, and mapping of the study area. By generalizing a Gaussian distribution in a 

finite vector space, to a Gaussian process in a function space of infinite dimension, the GP 

framework can be used to model various physical phenomena and estimate values at any 

location in the sensing domain [20], [51].  

In the context of the GP scheme, a Gaussian Random Field (GRF) is defined by any 

finite collection of random variables as: 

1 2( ( ), ( ),..., ( )) ~ ( ( ), ( , ))T

n i jY Y YY s s s μ s Σ s s . (2.3) 

where the process is specified by the mean function ( ) Exp( ( ))n nYμ s s , 1,2,...,n  , 

variance 2 , and the covariance function (or kernel function) ( , )i jΣ s s  with the entry for 

the element Cov( , )ij i j  s s , 1,2,...,i  , 1,2,...,j  , i j . The covariance function is 

symmetric positive-definite. For example, the Matérn class of covariance functions has 

been widely studied [52], which can be expressed as: 

2

1
( , ) ( ) ( ) ( )

( )2
i j h h K h




 

 
 


Σ s s Σ , (2.4) 

where 
i jh  s s  denotes the Euclidean distance,   denotes the spatial scale parameter, 

  denotes the Matérn smoothness, and K  denotes the modified Bessel function. 
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2.3.3 Gaussian Process Regression 

The Gaussian process regression (GPR), also known as Kriging, has been proposed as the 

best linear unbiased predictor (BLUP) for estimating and predicting the random scalar field 

under the Gaussian process scheme [53]. Under the GP scheme, the values and estimation 

uncertainties at unobserved points can be obtained conditioned on the historical 

observations by GPR. Consider the study area of interest 2A , given a set of sampling 

locations 1 2{ , ,..., }S A s s s  with the corresponding observations ( ) y s  

1 2[ ( ), ( ),..., ( )]Ty y ys s s , the distribution of ( )Y s  at the unobserved point \S Ss  is also 

Gaussian. The conditional mean and variance at the unobserved point s  can be obtained 

as: 

1( | ) ( ) ( ) [ ( ) ( )]T     μ s s μ s c s Σ y s μ s , 

2 2 1( | ) ( ) ( )T    Σ s s c s Σ c s , 

(2.5) 

(2.6) 

where T

1 2( ) [ ( , ), ( , ),..., ( , )]nc c c   c s s s s s s s  defines the covariances between the point s  

and the points in S. In this case, the mean, variance and covariance functions are known a 

priori. The prediction model is known as simple Kriging. When the mean function is 

unknown, models that are more complex should be applied, such as ordinary kriging (OK) 

and universal kriging (UK) [54]. Furthermore, when all these functions are unknown, 

geostatistical Kriging model has been used to make predictions for the unobserved points. 

More details regarding Kriging models can be found in [55]. 

 

2.3.4 Gaussian Markov Random Fields 

For factorizing the covariance functions and making predictions, the computation scale of 

the GPR is 
3( )  with respect to the covariance function 

Σ . To promote 

computational efficiency, the GMRF approach has been introduced to approximate the GP 

model, which describes the spatial field by designating the Markovian properties into the 

random field [56].  

For a GRF { ( ), }Y Y S s s , let iNE  denote the set of neighbors to a sampling 

location is . If the neighbors in iNE  to a sampling location is  satisfies that 
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( ( ) | ( \ )) ( ( ) | ( ))i i i ip Y S p Y NEs Y s s Y , the spatial field follows the Markovian property 

and can be modeled as a GMRF. The GMRF is specified as: 

1 2( ( ), ( ),..., ( )) ~ ( ( ), ( , ))T

n i jY Y YY s s s μ s Q s s , (2.7) 

where ( ) Exp( ( ))n nYμ s s  is the mean function; Q  is called the precision matrix and 

1 Q Σ .  The elements in Q  are non-zero only for neighbors and diagonal elements, that 

is, the precision matrix is sparse. The probability density function of Y  is:  

1/2/2 1
( ) (2 ) exp{ ( ) ( )}

2

Tp     Y Q Y μ Q Y μ . (2.8) 

The GMRF model is specified by the precision matrix that is sparse and can be 

handled by a Stochastic Partial Differential Equation (SPDE) approach, which 

substantially improves the computing efficiency [57]. A triangular mesh is generally 

constructed in the study field to define the vertices and their neighbors, which discretizes 

the continuous domain to an indexed GMRF. To calculate the precision matrix, the SPDE 

approach can provide the explicit solution of the elements of Q  by making use of the 

Matérn covariance functions. The precision matrix for two-dimensional domains can be 

obtained as: 

2 4 2 1( 2 )     Q C G GC G . (2.9) 

The elements of Q  are determined by the hyperparameter vector ( , ) θ . More details 

regarding the hyperparameters, matrix C , and matrix G  in Equation 2.9 are referred to 

[57]. 

 

2.4 Adaptive Sampling 

An exploratory survey with coverage sampling design distributes plots densely and evenly 

over the measured area. Such a survey process has been implemented as an initial 

deployment to explore an unknown environment. The parameters and hyperparameters of 

an environmental model can be learnt by utilizing the data collected from the prior survey. 

With accumulated knowledge from continues deployment, the sampling sites that are 

more crucial in making predictions can be determined based on the established 

environmental model or the data-driven rules. In statistics, the selection of objective 
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sampling sites is considered as an experimental design problem [58]. The experimental 

design techniques have been applied in many practical scenarios. For example, the problem 

of sensor selection addresses the activation of the most informative subset of sensors [59]. 

Similarly, the problem of sensor placement has been studied to find the most informative 

locations to place the sensors [60]. 

In the literature, experimental design theory has been studied for the development of 

optimality criteria. There are different evaluation approaches in which different criteria 

have been proposed, mainly focusing on optimizing an information matrix or a gain that is 

determined by the established spatial statistical model. “Alphabetical” optimality 

approaches have been proposed using the properties of the corresponding information 

matrices [61]. In an effort to determine the optimal design in terms of uncertainty, there is 

rich literature on information-theoretic criteria. Conditional entropy has been widely 

chosen as a metric to evaluate the most informative site, which represents the quantity of 

uncertainty that remains once the other locations are sampled. For the observed locations 

in S  and the unobserved locations in \S S , the conditional entropy is expressed as 

follows: 

( ( \ ) | ( )) ( ( \ ), ( )) log ( ( \ ) | ( )) ( \ ) ( )H Y S S Y S p y S S y S p y S S y S dy S S dy S  . (2.10) 

where ( )Y S  and ( \ )Y S S  represent the sets of random variables of the observed and 

unobserved locations, respectively; and ( )y S  and ( \ )y S S  represent the possible values 

of the random variables of the observed and unobserved locations, respectively. The 

associated optimal design of  locations can be obtained, which leads to the minimum 

conditional entropy as: 

* arg min ( ( \ ) | ( ))
S

S H Y S S Y S


 . (2.11) 

In addition, mutual information (MI) criterion was also developed as an information-

theoretic criteria to quantify the information gain of a sampled site [62]. In the context of 

the MI metric, the main goal is to find the optimal locations that can maximally reduce the 

entropy over the unobserved locations. The MI is expressed as follows: 

( ( ), ( \ )) ( ( \ )) ( ( \ ) | ( ))MI Y S Y S S H Y S S H Y S S Y S  . (2.12) 
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The associated optimal design of  locations can be obtained, which seeks the set that 

maximizes the MI as: 

* arg max ( ( ), ( \ ))
S

S MI Y S Y S S


 . (2.13) 

  

2.5 Quality Indexing 

Complex statistical summaries variable by variable and water body by water body have 

been used to describe water quality in traditional approaches, which hardly provide a clear 

picture of the overall quality of the water [63]. A WQI was first presented in [64]. Since 

then, the significance of using a WQI to indicate the quality of water in various sources has 

been recognized [65], and research has gone into further development of WQIs.  

The WQIs that are currently available differ according to their selection of the 

representative water quality parameters and the respective regulatory objectives 

(guidelines), the index formulation for data aggregation, and the category interpretation 

based on the index score. Among these considerations, the index formulation is perhaps 

the most significant one as it presents the mannerism of the statistical integration from 

complex data to a simple score. WQIs have been proposed according to different 

formulation models, such as additive model - National Sanitation Foundation WQI [66], 

multiplicative model [67], harmonic model - Oregon WQI [68], and so on. An entirely 

different formulation model has been adopted by the Canadian Council of Ministers of 

Environment (CCME) [69]–[71], which is knowns as the CCME WQI. The index 

formulation of the CCME WQI incorporates three statistical factors: Scope, Frequency and 

Amplitude, by comparing tests of water quality parameters and their objectives. With its 

strength as a parameter-extensible and objective-oriented index, CCME WQI has been 

applied by many agencies and institutes throughout the world [72]–[75]. 
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Chapter 3: Grid-based Survey Planning 

 

This chapter addresses the problem of grid-based exploratory survey planning that involves 

coverage sampling design and associated path planning for multiple mobile sensing robots. 

Two hexagonal grid-based planning algorithms are investigated, to generate the coverage 

path cycle for the robots to visit sampling locations of interest in a spatially balanced 

manner. The performance of the algorithms is evaluated and compared with the start-of-

the-art approach. The results demonstrate the reliability and efficiency of the proposed 

hexagonal grid-based survey planners in mobile sensor scheduling for environment 

surveillance. 

 

3.1 Overview 

For interpreting the qualitative or quantitative profile of a surveyed area in terms of 

environmental parameters, the selection of the sampling locations for data collection is a 

key consideration in carrying out the measurement process across the study area. To 

characterize the entire study area, especially for an unknown area without any prior 

knowledge, an exploratory survey is required as an initial deployment. 

Coverage sampling that can distribute data samples rather evenly over the space is 

implemented to carry out the prior survey. A sampling frame based on a regular grid has 

been widely used in the coverage sampling design for field estimation [31]. The grid-based 

sampling frame decomposes the sensing domain into a grid of cells, to distribute uniform 

plots across the area of interest. Sampling sites of interest can be easily positioned in the 

filed as regular grid nodes or centroids. The design procedure of the grid sampling is simple 

and efficient. More importantly, no prior knowledge is required to complete the design. It 

is noted that a design where the sites are chosen as the grid nodes of an equilateral triangular 

grid (i.e., the grid centroids of an equilateral hexagonal grid) is more efficient than other 

regular grid-based sampling frames [32]. This is because of the maximum distance between 

the observed locations and the observed sites is the shortest one. The literature on the grid 

sampling for an exploratory survey is rather rich. However, many research activities, 

especially in geostatistics and environmental sciences, only focused on the design of 
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coverage sampling frame, without considering the associated sampling path to visit and 

measure the generated sampling locations. 

For a mobile sensing process, after establishing the sampling targets, paths have to 

be determined for navigating the robots to visit them for data collection. The TSP-based 

planners have been applied for generating the paths to visit the objective locations [42]–

[44]. However, the NP-hard characteristics for solving a TSP-based planning algorithm 

have led to severe computational burden, which limits its application in real-world 

situations. How to generate an effective and efficient path to guide mobile sensors takes a 

crucial role in robotic sensing applications. 

In the present chapter, the problem of the hexagonal grid-based survey planning is 

investigated. The primary focus of the present chapter is to develop a mission planner for 

a hexagonal grid-based exploratory survey using mobile sensing robots. The survey 

planner should incorporate the selection of sites for coverage sampling and the generation 

of the corresponding sampling path to visit them. 

 

3.2 Coverage Sampling Design 

The monitored environmental field is generally treated as a continuous planar area. The 

estimation of the field characteristics is interpreted based on the distribution of the 

sampling locations across the study area. In the present work, the Sampling Locations of 

Interest (SLoIs) are generated by utilizing a hexagonal cell decomposition approach to 

distribute the plots evenly across the monitored area. This sampling framework introduces 

spatially balanced sampling locations where the distances between any neighboring SLoIs 

are equal. 

Let the set 
2A  represent the region of interest with its contour Â . Let the set 

1 2{ , ,..., }S A s s s  represent  SLoIs to be measured for data collection, where the 

element i Ss , 1,2,...,i  , is a 2-dimensional coordinate vector of the surveyed field, 

i.e., 1 2( , )i s ss . All sample locations are generated using a hexagonal grid-based 

decomposition of a continuous planar area. The cells that have their centroids within the 

study area are designated as the Sub-Regions of Interest (SRoIs). These cell centroids are 
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the SLoIs for collecting data samples. Let SL  represent the set of SLoIs, and SL  represent 

the number of SLoIs in the set. 

Specifically, the study area A  is first decomposed into a grid of cells by a hexagonal 

tessellation. The center of each hexagonal cell is chosen as a SLoI Ss  if it is located 

within the contour Â  of the study area. An example is shown in Figure 3.1, where the thick 

red line denotes the contour Â , the hexagons with solid black contours denote the 

generated SRoIs, and the blue star markers denote the generated SLoIs. Accordingly, the 

sampling locations are created uniformly across the study area, spaced at 3d l  , where 

d  is the distance between two neighboring SLoIs, indicating the sampling resolution of 

the survey, and l  is the edge length of a hexagonal cell. After obtaining the locations for 

sampling, a path is required to visit these targets. In the following section, path planning 

based on the hexagonal tessellation is studied to construct the sampling path for the robot 

to travel through the generated SLoIs. 

 

 

Figure 3.1: Hexagonal tessellation and design of coverage sampling with SLoIs. 

 

3.3 Hexagonal Grid-based Survey Planning 

In the designed coverage sampling frame, the sensing domain is decomposed into SRoIs 

with spatially-balanced SLoIs that are distributed over the entire study area. The present 

section investigates the hexagonal grid-based strategies for generating a coverage path that 

can visit the target locations. 
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3.3.1  Spanning Tree-based Coverage Survey Planner 

The SLoIs are generated by following the sampling frame introduced above. To measure 

these objective points, a novel spanning tree-based path planning approach is first 

presented under the hexagonal cellular decomposition. This approach has been originally 

implemented on a coverage path planning problem using square cellular decomposition 

[76]–[78]. The proposed planner implements the spanning tree-based coverage path 

planning strategies drawn from these work on a novel coverage sampling problem together 

with a different cellular tessellation. The basic idea is to construct a Minimum Spanning 

Tree (MST) and subsequently generate a path based on the obtained MST to visit the 

sampling locations. 

Let the set min { , }T TT V E  denote the MST, where TV  and TE  are the sets of vertices 

and edges of the tree, respectively. To determine the vertices T Tv V  for constructing the 

MST, an Auxiliary Coarse Cell (ACC) decomposition method is proposed. In this 

decomposition, each coarse cell contains four neighboring regular hexagonal polygons 

(fine cells). An example of the ACC decomposition is shown in Figure 3.2, where the 

polygons with thick black edges denote the coarse cells. The tree vertices are created by 

considering the number and the positions of the SLoIs within a coarse cell. The bottom left, 

bottom right, top left, and top right regular hexagonal cells (fine cells) within a coarse cell 

are labeled as fine-cells 1, 2, 3, and 4, respectively. The vertex creation strategies are 

summarized in Table 3.1. For a coarse cell with only one sampling location inside, no 

vertex is created. After creating the vertices T Tv V  by traversing all the coarse cells, an 

MST min { , }T TT V E  is constructed based on these vertices. Prime’s or Kruskal’s algorithm 

is generally used to span an MST. An example of the constructed MST using Kruskal’s 

spanning tree algorithm based on the created vertices is shown in Figure 3.2. The green 

solid circles denote the created MST vertices, and the green lines between the MST vertices 

are the constructed MST edges. 
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Table 3.1: MST Vertex Creation. 

Coarse Cell Condition & Strategy 

 

SLoIs exist in 1, 2, 3, 4 fine-cells. A vertex is created 

at the midpoint of the edge between 2 and 3 fine-cells. 

 

Left (Right) figure: SLoIs exist in 1, 3 (2, 4) fine-

cells. A vertex is created at the left (right) side of the 

coarse cell if its left (right) neighboring coarse cell 

has four SLoIs. 

 

Left (Right) figure: SLoIs exist in 1, 2 (3, 4) fine-

cells. A vertex is created at the bottom (top) side of 

the coarse cell if its bottom (top) neighboring coarse 

cell has four SLoIs. 

 

Left (Right) figure: SLoIs exist in 1, 2, 3 (2, 3, 4) fine-

cells. A vertex is created with the same strategies by 

considering this coarse cell as a 1, 2 and 1, 3 (2, 4 and 

3, 4) coarse cell. If two vertices are created, select a 

random one and remove the other one. 

 

Left (Right) figure: SLoIs exist in 1, 2, 4 (1, 3, 4) fine-

cells. A vertex is created with the same strategies by 

considering this coarse cell as a 1, 2 and 2, 4 (1, 3 and 

3, 4) coarse cell. If two vertices are created, select a 

random one and remove the other. 
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Figure 3.2: Coarse cell tessellation and relative constructed MST. 

 

To generate a path that covers the points in the sampling design, an ordered sequence 

that indicates the sequential SLoIs to be visited is generated. Thus a path is created to visit 

each SLoI in the order of the sequence. This task is carried out by finding the effective 

edges (path segments) between the neighboring SLoI pairs to form the final path cycle. A 

sequence of 1 2( , ,..., )p  s s s  is planned to visit sampling locations Ss  based on the 

constructed spanning tree. Here p  denotes the total length of the path, 1 2{ , ,..., }SP  s s s  

represents the set of SLoIs to be visited along the path, and SP  denotes the number of 

sampling locations in the set. A robot travels through the SLoIs by following the sequence 

order 1 2( , ,..., )p  s s s . 

The path starts at a predetermined starting location 1s , then visits the SLoIs by 

circumnavigating the constructed MST clockwise or counter-clockwise, and finally returns 

to the starting location 1s , forming a path ring. Specifically, starting from 1s , the planner 

iteratively finds the next target location (the next neighboring location to visit) according 

to the current location, and generates a path segment between the current location and the 

target location until it reaches 1s  again. In each iteration, the fine-cell position of the 

current location inside its coarse cell is first identified. One of the four possible positions 

(fine-cell 1, 2, 3, or 4 in its coarse cell, see the star markers in Figure 3.3) can be identified 

for a given current location. The rules to find the next target location are based on the 

conditions of its surrounding MST vertices or edges. In Figure 3.3, the green solid circles 

and lines denote the possible MST vertices and tree edges surrounding the central coarse 
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cell with respect to the four possible fine-cell positions. The proposed path planner with a 

counter-clockwise circumnavigation is given in Algorithm 3.1 with pseudo code. 

 

 

 

Figure 3.3: Possible MST vertices and edges surrounding a coarse cell. 

 

 

 

 

Algorithm 3.1: circumnavigationPathGeneration. 

Input: S, min { , }T TT V E , 1 Ss  

Output: 1 2( , ,..., )p  s s s , i Ss , 1,2,...,i  . 

1  1currentv  s  

2  do 

3      Cv getCoarseCellLocation ( )currentv ; 

4      switch getCellPosition ( )currentv  do 
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5          case 1 do 

6              if 
1 ,B BLv v Te E  then nextv moveTo (‘Left’); 

7               else if 
1 2 1 2, , ,|| ||

C B C B B Bv v T v v T v v Te E e E e E    then nextv moveTo (‘Bottom Right’); 

8                  else if C Tv V  then nextv moveTo (‘Right’); 

9                      else nextv moveTo (‘Top Right’); 

10         case 2 do 

11             if 
1 ,R BRv v Te E  then nextv moveTo (‘Bottom Right’); 

12             else if 
1 2 1 2, , ,|| ||

C R C R R Rv v T v v T v v Te E e E e E    then nextv moveTo (‘Right’); 

13                 else if C Tv V  then nextv moveTo (‘Top Right’); 

14                     else nextv moveTo (‘Left’); 

15         case 3 do 
1 2 1 2, , ,|| ||

C L C L L Lv v T v v T v v Te E e E e E    

16             if 
1 ,L TLv v Te E  then nextv moveTo (‘Top Left’); 

17             else if 
1 2 1 2, , ,|| ||

C L C L L Lv v T v v T v v Te E e E e E    then nextv moveTo (‘Left’); 

18                 else if C Tv V  then nextv moveTo (‘Bottom Left’); 

19                     else nextv moveTo (‘Right’); 

20          case 4 do 

21              if 
1 ,T TRv v Te E  then nextv moveTo (‘Right’); 

22              else if 
1 2 1 2, , ,|| ||

C T C T T Tv v T v v T v v Te E e E e E    then nextv moveTo (‘Top Left’); 

23                  else if C Tv V  then nextv moveTo (‘Left’); 

24                      else nextv moveTo (‘Bottom Left’); 

25     current nextv v ; 

26 while 1currentv  s ; 

 



26 

 

An execution example of the Algorithm 3.1 is shown in Figure 3.4. A path ring (the 

thick blue lines between SLoIs) is generated to circumnavigate the MST and visit the SLoIs 

inside the fine-cells. 

 

 

Figure 3.4: Generation of the circumnavigation path based on the MST. 

 

In this figure, some SLoIs are not visited by the generated circumnavigation path. 

Let SN  represent the set of the unvisited SLoIs. To cover these remaining SLoIs, several 

simple strategies are applied. For an unvisited SLoI, if there is a pair of neighboring SLoIs 

with a constructed edge between them, first add two new path segments connecting the 

current SLoI to the two neighbors, and then remove the path segment between those two 

neighbors (see Figure 3.5(a)). In addition, if there are four neighboring SLoIs with a “Z” 

shaped pattern of three constructed edges between them (see Figure 3.5(b)), then add and 

remove rules of path segment update are shown in the figure. These two strategies have 

been defined as the V- and Z- modification in the work of [9]. More details are found in the 

cited reference. Update the coverage path by iteratively checking and implementing these 

strategies on all unvisited SLoIs. 

By applying these strategies of path segment update, the planned coverage path cycle 

of the example in Figure 3.4 is modified as shown in Figure 3.6. Finally, the overall 

coverage path by the proposed algorithm is shown in Figure 3.7. The proposed hexagonal 

grid-based spanning tree coverage (HGSTC) survey planner is summarized in Algorithm 

3.2 with pseudo code. 
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(a)         

      

 (b) 

Figure 3.5: Strategies of path segment generation. 

(a) V-modification; (b) Z-modification. 

 

 

Figure 3.6: Overall path cycle after path update. 

 

 

Figure 3.7: Final planned path for coverage sampling. 
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Algorithm 3.2: hexagonalGridbasedSpanningTreeCoverageSurveyPlanner. 

Input: Â , d , 1 Ss . 

Output: 1 2( , ,..., )p  s s s . 

1  SLoIs hexagonalBasedSamplingDesign ( ˆ,A r ); 

2  TV MSTVertexCreation ( SLoIs );  

3  TE MSTConstruction ( TV , ‘Kruskal’s’);  % Construct the MST 

4  ,p SP counterClockwiseCircumnavigationPathGeneration ( 1, , ,T TS V E Ss ) 

5  \SN SLoIs SP  % Unvisited locations 

6  do 

7      updateCells   

8      foreach i SN  do 

9         ,cells pattern findNearCellsInPatterns ( i ); 

10        if isEmpty ( cells ) then 

11            updateCells updateCells i ; 

12            p pathSegmentGeneration ( p , cells , pattern ); 

13            SP SP i ; 

14            \SN SN i ; 

15  while isEmpty (updateCells ); 

 

 

3.3.2 Hexagonal Grid-based Coverage Survey Planner 

The spanning tree-based path planner generates a path cycle that can guide a robot to visit 

the SLoIs. However, it traverses the cells twice to generate the coverage path, covering all 

coarse cells to construct the MST first, revisiting all fine cells to circumnavigate the MST. 

To improve the efficiency of path forming, the strategies of the hexagonal grid-based path 

planning is further investigated now.  
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Note that the edge candidates between the adjacent SLoIs compose a triangular grid 

pattern (see Figure 3.8). In the Figure, the dashed lines between the neighboring SLoIs 

denote the edge candidates. The planning goal is to determine the effective edges among 

the candidates to form a path cycle that visits each location only once and returns to its 

starting position. This problem is similar to the formulation of a Hamiltonian cycle on a 

specified triangular grid graph [79]. 

 

 

Figure 3.8: Edge candidates of neighboring SLoI pairs. 

 

The effective edges are determined by utilizing the proposed ACC decomposition 

method. Specifically, the proposed planner traverses the ACCs one by one to generate the 

path segments depending on the conditions (number and position) of the SLoIs in the 

current ACC and its surrounding ACCs. In a coarse cell, the bottom left, bottom right, top 

left, and top right hexagonal polygons are designated as the fine-cells 1, 2, 3, and 4, 

respectively. The current coarse cell is considered as a full cell if it contains four fine cells. 

The neighboring four fine cells in its right and bottom neighboring coarse cells are defined 

as the cells 5, 6 and cells 7, 8, respectively. The related SLoIs of an ACC for the path 

segment generation is shown in Figure 3.9. In the figure, the current coarse cell is 

highlighted by a solid bold contour. The SLoIs of the current and its neighboring coarse 

cells are labeled by their numbers. The dashed blue lines show the possible path segments 

to be generated. When traversing ACCs, for a selected coarse cell that is full, the segment 

paths are constructed by the following rules: 
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 If the left neighboring ACC is full, generate the edge 3,4e ; otherwise, generate the 

edges 1,3e  and 3,4e . 

 If the right neighboring ACC is full, generate the edges 2,5e  and 4,6e ; otherwise, 

generate the edge 2,4e . 

 If the bottom ACC is full and the current ACC row has not been connected to the 

bottom ACC row, generate the edges 1,7e  and 2,8e , and remove the existing edge 

7,8e ; otherwise, generate the edge 1,2e . 

 

 

Figure 3.9: Rules of path segment generation in an ACC. 

 

After executing these procedures, a path cycle is generated to visit all the ACCs that 

are full. An example of an execution result is shown in Figure 3.10. There are still unvisited 

SLoIs within the area contour whose ACCs are not full. To visit them, the path segment 

update strategies presented in section 3.3.1 are applied. In addition, it is noted that the 

planned results may form more than one path cycle. Then, any two neighboring cycles can 

be combined to form one cycle by a simple edge adjustment (see Figure 3.11). The planned 

coverage path ring after incorporating unvisited locations is shown Figure 3.12. 
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Figure 3.10: Generated path segments to visit full ACCs. 

 

 

Figure 3.11: Combination of neighboring cycles. 

 

 

Figure 3.12: Generated coverage path after incorporating all unvisited SLoIs. 

 

In the proposed scheme, by spatial partitioning of the sensing domain in a hexagonal 

tessellation, the generated coverage path forms a Hamiltonian cycle that can guide the robot 

to measure plots that are distributed across the monitored area in a spatially balanced 

manner. When compared with the work in [80], the proposed path generation scheme is 

more robust for dealing with a triangular grid graph. More specifically, the compared work 

gets the Hamiltonian cycle starting from the boundary cycles of a 2-connected and 
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polygonal triangular grid (from outside to inside). In contrast, the proposed method deals 

with the path cycle from inside to outside by using the proposed ACC decomposition and 

the path segment generation strategies. Consequently, there are no requirements on the 

characteristics of the input triangular grid graph. 

The data samples are acquired by following the generated coverage path with equally 

spaced distribution. An execution example of the final planned coverage path for sampling 

is shown in Figure 3.13. The proposed hexagonal grid-based coverage (HGC) survey 

planner is summarized by the pseudo code in Algorithm 3.3. The code from line 1 through 

21 generates the coverage path to visit all full ACCs. The code from line 22 to 32 deals 

with the unvisited ACCs. In this manner, the planning algorithm generates a coverage path 

cycle to travel among the expected sampling locations for sensing. 

 

 

Figure 3.13: Final planned path for coverage sampling. 
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Algorithm 3.3: hexagonalGridbasedCoverageSurveyPlanner. 

Input: Â , d , 1 Ss . 

Output: 1 2( , ,..., )p  s s s . 

1    ,colACC rowACC getACCHexagonalGrid ( Â , d ); 

2    for i = 1: colACC  do 

3        for j = 1: rowACC  do 

4            SLoIs getCurCellLocation ( ,i j ) 

5            if isCurrentACCFull ( SLoIs ) then 

6                if isNeighbourACCFull (‘Left’) then 

7                    p genPath ( 1,3e ); 

8                    1flag  ; 

9                if isNeighbourACCFull (‘Right’) then 

10                  p genPath ( 2,5e , 4,6e , 3,4e ); 

11              else 

12                  p genPath ( 2,4e , 3,4e ); 

13              if isNeighbourACCFull (‘Bottom’) && 1flag   then 

14                  p genPath ( 1,7e , 2,8e ); 

15                  p removePath ( 7,8e ); 

16                  0flag  ; 

17              else 

18                  p genPath ( 1,2e ); 

19              SP setFineCellVisited ( SLoIs ); 

20          else 

21              SN setFineCellNotVisited ( SLoIs ); 



34 

 

22  if getPathCycleNumber ( p ) > 1 then 

23      p pathCycleCombination ( p ); 

24  do 

25      updateCells   

26      foreach i SN  do 

27         ,cells pattern findNearCellsInPatterns ( i ); 

28        if isEmpty ( cells ) then 

29            updateCells updateCells i ; 

30            p pathSegmentGeneration ( p , cells , pattern ); 

31            SP SP i ; 

32            \SN SN i ; 

33  while isEmpty (updateCells ); 

 

 

3.3.3 Sub-paths for Multiple Mobile Sensors 

In a dynamic environment under natural phenomena, physical quantities of monitored 

parameters at a location may vary over time. Accordingly, the measurement at a sampling 

location should be done within a certain time interval. It may record the temporal 

characteristics of parameters under an objective sampling frequency or detect events within 

a required delay bound.  

To satisfy the sampling frequency requirement for measuring at each sampling 

location, sub-paths along the generated path ring are assigned to multiple robots. Let the 

set 1 2{ , ,..., }U u u u  represent 
  robots that are deployed in the monitored field. 

Notice that the data is collected at different locations along the planned path one by one in 

a time series. Let ,i j
ts s represent the time consumption when traveling from sampling 

location is  to js . In order to avoid the water current disturbances induced by movement, 



35 

 

a robot stops and stays at an SLoI while carrying out the measurement process. Let Mt  

represent the time taken by the measuring process for staying at an SLoI. The period that 

all SLoIs are visited once is called a survey cycle or a sampling cycle.  

If a single robot is deployed to follow the generated path ring 1 2( , ,..., )p  s s s  

periodically, the resulting time consumption is 
1

1

,1 i ip M i
t SP t t






   s s  for each sampling 

cycle. This means each SLoI is visited at every time interval pt . To ensure that the 

sampling rate at each SLoI satisfies a given time interval (time budget) udtt , if p udtt t , the 

path ring p is divided into  sub-paths, such that 

| | | |M
udt

SP t p
t

u u v


 


, (3.1) 

where v is the average speed of the robot. To find the minimum number of robots to be 

deployed, ( ) / | | /( )M udt udtSP t t p v t       is obtained. The coverage path cycle p is 

uniformly divided into u sub-paths 1 2, ,...,p p p . They are assigned to a set of  robots.  

The generated path ring p starts and ends at the same location, forming a cycle route. 

Then sub-paths extracted from the path cycle are assigned to multiple robots to satisfy the 

time interval requirement for measurement at an SLoI. Thus, the mobile sensors take 

different sub-paths by moving along the path ring clockwise or counter-clockwise in 

different sensing cycles. In this scheme, each SLoI can be visited and sensed within the 

objective time interval udtt . 
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3.4 Experimental Results 

An exploratory survey using a regular grid is attractive in practical applications because of 

its simplicity and efficiency. The present work extends the sampling design by 

incorporating its path planning, which can benefit a rapidly deployable and on-line mobile 

sensing system. 

The proposed planners have been tested in a USV-assisted sensing platform that was 

designed and developed in the Industrial Automation Lab of the University of British 

Columbia (UBC). The objective of the platform is to provide on-line monitoring of surface 

water. The platform has been deployed at the Yosef Wosk Reflecting Pool of the University 

of British Columbia, Canada. The aerial photograph of the study area is shown in Figure 

3.14. The in situ deployment of a USV is shown in Figure 3.15. More details of the design 

and development of the system are provided in Chapter 6.  

 

 

Figure 3.14: Aerial view of the Yosef Wosk Reflecting Pool. 

 

 

Figure 3.15: Field deployment of a USV. 
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Before the system deployment, two presented survey planners were evaluated to 

generate the survey missions for the USVs. In order to evaluate the performance of the 

proposed algorithms, they were operated with respect to different sampling resolutions. 

Meanwhile the results were compared with the state-of-the-art TSP-based survey planner 

on hexagonal grid (HGTSP), which was solved using integer linear programming. The 

experiments were executed using Matlab R2017a in a desk-top computer (PC) with a 4.00 

GHz Intel Core i7-6700K CPU, 32 GB RAM. The experimental results are given in Table 

3.2. Due to the limited space, some of the paths planned by the algorithms are shown in 

Figure 3.16. 

 

Table 3.2: Algorithm performance of survey planning. 

d 

(m) 

l 

(m) 

SL  

 

Visited SLoIs SP  

 

Total Path Length |p| 

(m) 

   HGTSP HGSTC HGC HGTSP HGSTC HGC 

4.6 2.7 74 74 74 74 340.4 340.4 340.4 

4.4 2.5 81 81 81 81 356.4 356.4 356.4 

4.2 2.4 86 86 86 86 361.2 361.2 361.2 

4.0 2.3 96 96 95 95 384.0 380.0 380.0 

3.8 2.2 107 107 107 107 406.6 406.6 406.6 

3.6 2.1 122 122 122 122 439.2 439.2 439.2 

3.4 2.0 134 134 134 134 455.60 455.60 455.60 

3.2 1.9 150 150 149 149 480.0 476.8 476.8 

3.0 1.7 170 170 170 170 510.0 510.0 510.0 

2.8 1.6 198 198 198 198 554.4 554.4 554.4 

2.6 1.5 226 226 226 226 587.6 587.6 587.6 

2.4 1.4 266 266 266 266 638.4 638.4 638.4 

2.2 1.3 316 316 316 316 695.2 695.2 695.2 

2.0 1.2 383 383 383 383 766 766 766 
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Note that the solution of the TSP approach leads to the minimum path length for 

traversing all points of interest, which provides optimal performance on energy and time 

efficiency. In Table 3.2, the two proposed HGSTC and HGC algorithms and the HGTSP 

algorithm guaranteed optimal path length when all SLoIs were visited. For some cases 

where unvisited SLoIs existed, the total path length was still optimal for covering all the 

visited SLoIs. The low number of unvisited SLoIs was because they had only one 

neighboring SLoI, and hence no path segments could be generated for them (see top left 

unvisited SLoI in Figure 3.16(b)). 

The corresponding processing time of the compared approaches is given in Figure 

3.17. The proposed hexagonal grid-based sampling design checks each fine cell to examine 

if it is in the irregular-shaped study area, which can be obtained in polynomial time as 

( )  [81], where  denotes the number of hexagonal grid centroids. The computational 

complexity of each approach determines its performance in terms of the algorithm 

processing time. As mentioned, the TSP-based solver is NP hard and the computational 

cost is extremely high when the number of sampling sites is large. In comparison, the 

HGSTC algorithm first traverses the coarse cells according to the ACC decomposition with 

the computational complexity of ( )SL , construct the MST with ( log )T TE E , 

circumnavigates the MST with ( )SL , and finally updates the possible unvisited samples 

with the worst-case complexity of ( log )SN SN . The HGC survey planner first 

constructs the path segments while traversing the coarse cells with the computational 

complexity of ( )SL , and then updates the possible unvisited samples to get the final path 

with the worst-case complexity of ( log )SN SN . The performance with respect to the 

algorithm processing time was significantly decreased by using the proposed approaches. 

Specifically, the proposed HGC algorithm shows superior performance in computational 

efficiency. 
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(a) 

 

  
(b) 

 

  
(c) 

Figure 3.16: Generated survey plans with respect to different sampling resolutions. 

 (a) d = 4.2 m, l = 2.4;  (b) d = 4.0 m, l = 2.3 m; (c) d = 3.0 m, l = 1.7 m. 
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Figure 3.17: Algorithm performance of processing time. 

N/A: Computation did not complete within the time limit of 100 minutes. The time cost is the average 

time consumption for 10 executions. 

 

In the field experiment, the USVs were deployed in a distributed manner throughout 

the monitored field. The HGC algorithm was chosen to generate the survey mission for the 

USVs. It was executed at the remote server and sent to the USVs via the base station. The 

USVs followed the received survey missions to collect the measurements at the scheduled 

sampling locations and transmitted them to the base station and then to the server through 

wireless communication. 

The fully charged battery enabled the USVs to move continuously for about 80 

minutes at the average speed v of 0.4 m/s. The total travel distance of a fully charged USV 

is about 1920 m. In the field test, the sampling resolution was set as 4.2 m. The time cost 

Mt  for the measurement process at each sampling location was set to 10 seconds. The 

updating time interval udtt  was set to 15 min. Given these specifications, the results of the 

survey mission were obtained by SL  = 86, SP  = 86, p  = 361.2 m,  = 2, where 86 

sampling locations were covered by the generated paths for USVs. Accordingly, two USVs 

were required in the field to carry out the survey mission and meet the time interval 

requirement udtt  = 15 min. The theoretical time interval for data collection at each sampling 
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location is estimated as 10 (86 / 2)pt      (4.2 / 0.4) ( (86 / 2) ) 881.5      seconds udtt . 

In real-world applications, the travel time between two sampling locations may vary 

depending on the hydrodynamics of the environment. The worst-case time cost can be used 

if the robots do not follow the planned path properly. 

In the field test, two USVs followed the planned sampling path for four times (i.e., 

four sensing cycles) while each sampling location was measured eight times over 2 hours 

during the test. The measurements were utilized to demonstrate the quality of the monitored 

water by indexing. The planned sampling path and the operated sampling mission are 

illustrated in the Figure 3.18. In Figure 3.18(a), the solid circle and the hollow circle on the 

path denote the division points of the sub-paths for the two robots. Figure 3.18(b) shows 

an operated sampling mission of a sensing cycle that is carried out by the two robots. The 

blue stars denote the sampled sites. The dash line and the solid line denote the travelled 

paths of the two robots, respectively. More details of the quality index problem are 

presented in Chapter 6. 

 
(a) 

 
(b)       

Figure 3.18: Evaluation results of the survey mission. 

(a) Planned sampling mission; (b) Operated sampling mission by the two USVs in the field. 
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3.5 Summary 

This chapter studied the problem of exploratory survey using robotic sensing, involving 

coverage sampling design, coverage path planning, and mobile sensor scheduling. The 

coverage sampling frame was designed under a hexagonal grid-based framework such that 

the sampling distribution could be balanced over the spatial field. The proposed survey 

planning algorithms generated energy-efficient coverage paths for robots to visit the 

sampling locations of interest, which were derived in a computationally feasible manner of 

polynomial time. Multiple robots were scheduled to travel along the planned path such that 

each objective sampling location could be visited within the required time interval. The 

experimental results on path planning demonstrated the effective and efficient performance 

of the proposed survey planers in comparison to the state-of-the-art TSP-based algorithm 

for generating the coverage path for sampling. 

The proposed hexagonal grid-based survey planning algorithms were designed for 

the application scenario in automated aquatic environmental monitoring. However, they 

can benefit in various other applications with the goal of short-term but high-resolution 

monitoring, such as initial deployment in any unknown spatial field, on-line tracking of 

complex spatial anomalies, analysis of micro-ecosystem variations, and so on.  
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Chapter 4: Energy-constrained Exploratory Sampling 

 

This chapter presents a survey planner for energy-constrained mobile robots to effectively 

explore and map an unknown environment that is modeled as a random filed. The proposed 

planner generates an energy-efficient coverage path for robotic sampling with an optimal 

density of coverage sampling and the associated cost subjected to a power supply 

constraint. It reduces the computational complexity and the processing time when 

compared with the existing state-of-the-art algorithms. A spatial statistical model is used 

to represent the underlying environment as a random field. The model is established by a 

Gaussian Process (GP) with a spatial trend, which is estimated by the data that is collected 

by following the proposed survey planner. The performance of the developed approach is 

evaluated by numerical experiments using a real-world experimental dataset that is 

obtained from an aquatic environmental monitoring program. The experimental results 

illustrate the reliability and efficiency of the present work in exploring and mapping an 

unknown environmental field using energy-constrained mobile robotic sensors. 

 

4.1 Overview 

When interpreting quantitative environmental phenomena over a field of interest, a 

statistical model is established to represent its spatial or spatiotemporal variation. For an 

unknown environment, the underlying environmental model is learnt by utilizing 

observations that are taken across the study area. The approximation of the environmental 

field includes the components of the model structure, such as model order, basis function, 

and hyperparameters. Deviations of the approximations from the real values will lead to 

model misspecification and unacceptable estimation performance. In other words, the field 

estimation results will not be robust against misspecification of the established model. For 

instance, the assumption of a known and constant mean of the environmental model (e.g., 

[15]) may cause inferior estimation performance in a practical situation where spatial 

trends exist and are unknown. 

It is evident that sampling at a higher resolution that covers the overall survey field 

will provide better estimation results that are close to the ground truth of the underlying 

environmental phenomenon. However, mobile sensing robots in the field have limited on-
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board resources, especially restricted energy/power capacity, which limit the number of 

data samples that can be obtained by the robots and the associated area of coverage. Given 

the limited resources, planning a mission for mobile robots with sensor-enabled sampling 

to visit and measure more sites over the study area according to a more effective schedule 

is an important problem in the field of environmental exploration and mapping. 

TSP-based approaches have been implemented to generate a sampling path. 

However, the TSP and its variations are NP-hard methods; hence the computational cost is 

extremely high when the objective sampling locations are extensive. Most critically, these 

methods do no provide freedom to iteratively adjust the sampling pattern for better 

estimation performance while ensuring that the cost of the resultant path does not exceed 

the available power. Some planners generate the path by directly connecting the preplanned 

targets, while others guide robots to take data samples during navigation along the 

preplanned coverage path. For instance, the Boustrophedon path [46], lawnmower path 

[18], and their variants [9], [47] have been applied to generate the coverage path for tasks 

of sampling planning. Although these planners can generate coverage paths, most of them 

mainly focus on the problem of sweeping over the study area without analyzing the effect 

of the resulting sampling frame on spatial field mapping. Additionally, a constrained total 

travel length has not been addressed or emphasized in these existing path planners. 

To the best of our knowledge, scheduling of a robotic sensor under its energy 

constraint in random field exploration and mapping has not been adequately investigated. 

The present work introduces a scheduling framework that integrates both optimal coverage 

sampling design and coverage path planning, which guides the mobile agent to take 

measurements for estimating and mapping an unknown environment. The proposed 

method can plan an energy-efficient coverage path with an optimal sampling density of 

coverage under a power supply budget. It can provide more representative data samples to 

estimate a GP structure and construct a scalar map of a monitored parameter. Compared to 

the existing methods, it can provide more effective and efficient sampling path planning 

for field estimation and mapping with respect to energy consumption, reconstruction error, 

and computational complexity. 
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4.2 Random Field and Environmental Model 

In the present work, the physical process of the underlying environmental phenomenon is 

treated as a random field and modeled as a Gaussian process. The associated nomenclature 

of the environmental data model is given below.  

The region of interest is denoted by the set A  with its contour Â . Let 

2

1 2( , )s s A  s  denote a 2-dimensional coordinate vector of the surveyed field. Any 

set of  sampling locations is denoted as 1 2{ , ,..., }S  s s s . In the random field, a physical 

quantity is observed from a random variable ( )nY s , which is related to its sampled location, 

n Ss ， 1,2,...,n  . To study the infinite collections of random variables in the random 

field, it is required to take finite realizations of the random variables and make inferences 

on the basis of these data samples and the spatial statistic model. In the present work, the 

random variable is represented by the model:

( ) ( ) ( )n n nY X Z s s s , (4.1) 

where, ( )nX s  is a regression function that defines the mean value of the process (spatial 

trend over space); and ( )nZ s  is a stochastic function that defines the random variation. The 

basic idea here is that the regression function represents the largest variance in the spatial 

data (i.e., the general spatial trend) while the stochastic term interpolates the residuals for 

random effects. 

Consider the finite random variables at the locations s  in the set S . The model in 

Equation (4.1) is vectorized as: 

( ) ( ) ( ) Y s X s Z s , (4.2) 

where  1 2( ) ( ), ( ),..., ( )
T

Y Y YY s s s s ,  1 2( ) ( ), ( ),..., ( )
T

X X XX s s s s , and ) Z(s   

 1 2( ), ( ),..., ( )
T

Z Z Zs s s  are random vectors. In the context of GP, the random vector )Z(s  

is designated as a spatial stochastic, Gaussian process with zero mean, variance 2  and 

covariance function ( , )C s s . As a result, the random vector ( )Y s  is also a GP, of mean 

defined by ( )X s  and stochastic residual defined by )Z(s .  



46 

 

In the present work, Equation (4.2) represents the model of the underlying 

environmental field. In this model, the random vector ( )Y s  represents the random 

variables at the sampled locations in S, with their corresponding realizations, 

1 2( ) [ ( ), ( ),..., ( )]T

ny y yy s s s s , which denotes the set of observations at these locations. 

 

4.3 Energy-Constrained Exploratory Sampling 

Statistical characteristics of a random field are interpreted according to the distribution of 

sampling locations over the field. To determine the locations of interest for data acquisition, 

in Chapter 3, the hexagonal grid-based survey planner is used to generate the coverage 

sampling design and plan the associated coverage path for robotic sampling. Afterwards, 

the coverage path can be assigned to the robots to perform the sampling mission. The robots 

travel along the paths by following the sequential SLoIs and sensing at each location.  

This chapter focuses on more specialized path planning issues, addressing the 

problem of energy-constrained mobile sensing in practice. To this end, the survey planners 

in the previous chapter are extended and constructed under the energy constraint. An 

execution example of the grid-based design for coverage sampling in a hexagonal 

tessellation is shown in Figure 4.1. The solid red line denotes the contour Â  of the study 

area A . The hexagons with black solid contours denote the SRoIs. The black dots in the 

SRoIs denote the cell centroids, which are SLoIs. 

  

Figure 4.1: Edge candidates of neighboring SLoI pairs for path planning. 
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In the coverage sampling design, l  denotes the edge length of a hexagon in the 

hexagonal grid; and SL  and SL  denote the point set and the total number of the generated 

SLoIs, respectively. In the context of mobile sensing, let the sequence 1 2{ , ,..., }p  s s s  

represent a planned path that is assigned to a sensing robot, where n SLs , 1,2,...,n   

denotes a sampling location that is visited within the path p . Here p  denotes the total 

path length. The robot visits and operates the measuring process at the locations by 

following the order in the sequence. Let the set SP  and SP  represent the set and the 

number of sampling locations that are visited along this path, respectively. Let ,i j
ds s  and 

,( )
i j

e ds s
represent the distance and energy cost when traveling from location is  to js , 

respectively. In the measuring process, the robot stops at each sampling location to carry 

out the measurement. Let Me  represent the energy consumption of the entire measurement 

process at a sampling location. The total energy cost of traveling along the path p  is 

expressed as: 

1

1

,

1

( ) ( ) | |
i i M

i

e p e d e SP






   s s , n SP SL s . (4.3) 

It should be ensured that the energy cost of the total path ( )e p  is within the given energy 

budge bdte . 

The objective of the present planner is the generation of a sampling mission  

1 2{ , ,..., }p  s s s  for scheduling a mobile sensor to collect data samples y  at the target 

locations SL  with the densest sampling resolution under the power supply constraint bdte

of the robot, which can be utilized to estimate the underlying environmental data model 

( )Y s  and map the scalar field A  in a performance-oriented manner. This objective is 

formulated as 

* arg max
p

p SP , SP SL , 

                                           s.t. ( ) bdte p e . 

(4.4) 
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4.3.1 Optimal Density of Coverage Sampling 

The distances between any neighboring SLoI pairs are equal. Given an edge length l  of the 

fine cells in the hexagonal grid, the distance is given by 3d l  . With the introduced 

coverage sampling design, given the area contour Â , the total number of SLoIs to be 

surveyed, SL , can be determined as a dependent variable of l  as well as d . In view of the 

equal distances between SLoI pairs, the total path length p  of the generated coverage path 

p  can be determined as p d SP  , SP SL . Given an energy budget bdte , finding the 

maximum point set SP , SP SL , that the coverage path can achieve provides the most 

dense coverage and further improves the exploration performance of field estimation and 

mapping. The optimal sampling density 
*d  is determined by the optimal edge length 

*l  as: 

* arg max | |
l

l SP , SP SL , 

                                          s.t. SP SL , 

                            ( ) ( 3 ) | | | |M bdte p e l SP e SP e      . 

(4.5) 

A decreasing grid spacing d  may increase the resultant number of SLoIs, SL , 

inside the study area. However, there is no analytical expression for determining SL  given 

l ,  since the shape of the study area is generally irregular and complex. The dependent 

variable SL  has to be determined by executing the sampling design procedure for a given 

l . A brute-force search can be utilized to find the 
*l  that satisfies Equation (4.5) given a 

range of min max[ : : ]l l l l  . The optimal 
* *3d l   is chosen as the optimal coverage 

density to generate the final coverage path. The efficiency of finding the optimal 
*l  is 

improved by using the binary search method to determine 
*l  such that 0 ( )bdte e p    . 

The ACC decomposition and the coverage path planning strategies guarantee that 

the total length of the generated path is bounded and indicative of the cell size. In view of 

this significant characteristic, there is no need to execute the path generation algorithm 

before determining the target edge length l . It considerably reduces the computational 

complexity and the corresponding processing time when finding the optimal coverage 
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density. After determining the optimum, the optimal sampling path can be obtained by 

applying the planning algorithms proposed in Chapter 3. The survey planner with optimal 

coverage density is summarized by the pseudo code in Algorithm 4.1. 

 

Algorithm 4.1: optHexagonalGridBasedSurveyPlanner. 

Input: 
1

ˆ, ,bdtA e Ss . 

Output: 1 2( , ,..., )p  s s s . 

1   
*l getOptimalCoverageDensity ( Â , bdte , searchMode );  

% searchMode  = ‘Binary’ or ‘Brute force’ 

2   SLoIs genCoverageSamplingDesign ( Â , 
*l );  

3   p hexagonalGridBasedSurveyPlanner ( Â , SLoIs , 1s , plannerMode  );   

% plannerMode  = ‘HGSTC’ or ‘HGC’ 

 

 

4.3.2 Model Estimation and Field Mapping 

The data samples taken along the path are used to estimate the underlying environmental 

model and build the field map. In the present work, the Universal Kriging (UK) method 

[55] is implemented to estimate the unknown field. The regression function ( )X s  of the 

environmental data model in Equation (4.2) is treated as a multivariate polynomial; that is: 

1

( ) ( ) ( )T

i i

i

a f


 X s s f s a , (4.6) 

here 1 2( ) [ ( ), ( ),..., ( )]Tf f ff s s s s  represents the basis function (e.g., the power base for a 

polynomial) and 1 2[ , ,..., ]Ta a aa  represents the coefficients of the regression function.  

In the context of GP, the random vector ( )Z s  in Equation (4.2) can be designated as 

a spatial stochastic GP with zero mean, variance 
2  and covariance function ( , )Σ s s . The 

covariance function ( , ) ( )i j Σ s s Σ θ , also known as a kernel function, describes the spatial 

dependence between locations is  and js , 1,2,...,i j  , where θ  denotes the 
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hyperparameters. As a result, the random vector ( )Y s  can also be expressed as a GP, 

( ) ~ ( ( ), ( , ))i jY s X s Σ s s , of mean defined by ( )X s  and stochastic residual defined by 

( )Z s . 

Given a set of samples 1 2{ , ,..., }S  s s s  with the corresponding observations 

1 2[ ( ), ( ),..., ( )]Ty y yy s s s , the prediction mean and variance are derived by utilizing the 

UK framework at locations \S Ss  as follows: 

1ˆ( ) ( ) ( ) ( ) ( )T TY        s s X s c s Σ y Fa ,  

2 2 1 1 1( ) ( ) ( ) ( )T T T        s c s Σ c s M F Σ F M , 

(4.7) 

(4.8) 

where 1 2[ ( ) , ( ) ,..., ( ) ]T T T TF f s f s f s is the model matrix of attributes for the locations in 

S, 
1 1 1( )T T  a F Σ F F Σ y  is derived through Generalized Least Squares (GLS), ( ) c s

1 2[ ( , ), ( , ),..., ( , )]T

nc c c  s s s s s s  defines the correlations between the point s  and the 

locations in S, and 
1( ) ( )T   M f s F Σ c s . The Kriging model is the Best Linear Unbiased 

Predictor (BLUP) for estimating and predicting the random scalar field under the Gaussian 

process scheme [55]. 

In the present work, with limited prior knowledge of the underlying field, the Blind 

Kriging (BK) approach [82] is adopted to identify its environmental model. The goal of 

BK is to efficiently designate the unknown basis functions by a Bayesian feature selection 

method in the regression analysis. In particular, it approximates the process ( )Y s  by 

extending the general Kriging model with additional candidate functions (features) in a 

linear model as: 

1 1

( ) ( ) ( ) ( ) ( )T T

i i j j

i j

a f b g
 

    X s s s f s a g s b , (4.9) 

Here 1 2( ) [ ( ), ( ),..., ( )]Tg g gg s s s s  denotes the set of candidate functions and b

1 2[ , ,..., ]Tb b b  denotes the corresponding scores of the candidate functions. Given the 

Gaussian process ( )Y s , the corresponding scores b are considered Gaussian, 

2( , ( ))b 0 R Σ , where ( )R Σ  is defined as the variance-covariance matrix. The 

posterior estimation of b  can be derived by the BK estimation using the data samples y . 
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More details of the BK method are found in [83]. In the present work, the Matérn 5/2 

kernel, a member of the Matérn class in Equation (2.4), is selected as the covariance 

function, which is expressed as: 

2
2

2

5 5 5
( , ) ( ) (1 )exp( )

3
i j

h h h
h 

  

  
    


Σ s s Σ . (4.10) 

The hyperparameters ( , ) θ  are identified through the Maximum Likelihood 

Estimation (MLE) [84] in the blind Kriging method. 

It is noted that the random vector ( )Y s  is represented as 1-dimensional for the ease 

of notation. However, the generalized format for multi-dimensional outputs ( )Y s  is clear. 

In the next section, the performance of the proposed scheme is demonstrated through 

numerical experiments based on a real-world dataset. 

 

4.4 Experiments and Discussion 

The performance of the proposed HGC algorithm is evaluated using a real-world dataset. 

The simulation results are presented and discussed in this section. The proposed energy-

constrained HGSTC and HGC algorithms are compared with the existing methods that 

focused on coverage path planning and sampling design, including Square Grid-based 

Spanning Tree Coverage (SGSTC) survey planner [85], Discrete Monotone Polygonal 

Partitioning-based (DMPP) survey planner [47], and Hexagonal Grid-based TSP (HGTSP) 

survey planner. The SGSTC approach was originally designed for sweep coverage 

planning. In the present work, it is adapted to deal with the coverage sampling problem in 

order to compare with the proposed sampling scheme. The DMPP approach, a variant of 

the traditional Boustrophedon method was designed to generate efficient coverage path for 

exploratory sampling. The HGTSP approach utilizes the same hexagonal grid-based 

sampling design in the present work but it plans the coverage path by a TSP solver. 

All these planners can generate coverage paths at different resolutions to cover the 

surveyed field. To fairly compare the estimation performance on mapping, they are tuned 

to find the optimal spacing density that they can achieve for a specific mission power 

supply. Note that in these methods different parameters are used to adjust the coverage 

density of the sampling paths. In the SGSTC approach, the edge length of a fine square cell 
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is set to control the spacing. In the DMPP approach, the distance between the spaced 

transects determine the spacing density. The edge length l  of a hexagonal grid defines the 

coverage density in the HGTSP, the HGSTC, and the HGC approaches. These parameters 

are defined as the Sampling Density Regulator (SDR) in the present simulation. 

Consequently, the Optimal SDR (OSDR) is the corresponding parameter for obtaining an 

optimal sampling density of coverage (i.e., 
*l  in Equation (4.5)). 

 

4.4.1 Dataset Setup 

This section presents the numerical simulation results of field estimation and mapping by 

implementing the proposed method and comparing with the state-of-the-art methods. In 

the simulation, a ground truth map over a surveillance area is chosen from a real-world 

dataset provided by the NOAA Operational Model Archive and Distribution System 

(NOMADS) [86]. The dataset records area measurements of surface salinity of the 

Caribbean Sea using a radiometer. In the dataset, an estuary area (latitude: 29.2410N to 

30.2140N, longitude: 88.0933W to 89.1329W) with apparent spatial variation is chosen as 

the study area to evaluate the performance of the algorithm. A ground truth map is shown 

in Figure 4.2, where the colors indicate the surface salinity concentrations in units of psu. 

The GPS coordinates are translated into metric coordinates in units of km, as 1 2( , )s ss , 

1 [0,51]s  , 2 [0,56]s  . 

 

Figure 4.2: Ground truth map of the study area. 



53 

 

4.4.2 Estimation Performance 

Given a power constraint, the coverage paths are planned with sampling points distributed 

on it. Data samples are acquired at the observed locations and then utilized to estimate the 

underlying field model and map the overall scalar field. The estimation performance is 

evaluated by comparing the prediction values with the ground truth values at the 

unobserved locations. The Root Mean Square Error (RMSE) is utilized as a measure to 

determine the mapping performance, which is defined as:  

21 ˆ( ) | ( )
| | I

RMSE Y y
I 

  
 

i

i y i . (4.11) 

where I  denotes the set of the grid nodes for spatial interpolation, I A i ; I  denotes 

the element number of the set; ( )y i  denotes the ground truth value at a location Ii . A 

smaller RMSE indicates a better reconstruction result at the unobserved locations of the 

field. The Average Kriging Variance (AKV) is used as a measure to indicate the 

performance of estimation uncertainty, which is defined as: 

21
( ) |

| | I

AKV
I 

 
i

i y . (4.12) 

The power supply budget determines the total distance a mobile robot can travel. For 

simplicity, the budget is designated in units of length rather than energy, in the simulation. 

To investigate the estimation performance with respect to the power constraint, different 

energy budgets are assigned to the proposed method and to the compared methods when 

planning the sampling paths. The results of the estimation performance are shown in Figure 

4.3. Specifically, Figure 4.3(a) and (c) show the estimation results from a brute-force search 

to obtain the OSDR with the settings 1 2[2,min( , ) / 4]l s s , 0.1l  . For comparison (see 

Figure 4.3(b) and (d)), the binary search approach is executed on these methods to obtain 

the OSDR with the settings 1 2[2,min( , ) / 4]l s s . For brevity, some OSDR and mapping 

performance results with respect to the assigned energy budgets are presented in Table 4.1. 
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(a)      (b) 

   

(c)      (d) 

Figure 4.3: Algorithm performance in field estimation and mapping for different power 

supply settings. 

(a) RMSE results using the brute-force search; (b) RMSE results using the binary search; 

(c) Results of AKV using the brute-force search; (d) Results of AKV using the binary 

search. 
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Table 4.1: Algorithm Performance of Field Estimation and Mapping. 

Energy 

Budget 
Measure SGSTC DMPP HGTSP HGSTC HGC 

bdte   
Brute-

force 
Binary 

Brute-

force 
Binary 

Brute-

force 
Binary 

Brute-

force 
Binary 

Brute-

force 
Binary 

400 

OSDR 4.7 5.36 5.5 5.52 N/A 4.74 4.6 4.58 4.6 4.58 

RMSE 2.8199 2.8272 2.3387 2.2149 N/A 1.7870 1.7576 1.7960 1.7576 1.7960 

AKV 1.1616 1.2134 1.4076 1.3072 N/A 1.3704 0.6920 0.7662 0.6920 0.7662 

500 

OSDR 4.5 4.51 4.8 4.84 N/A 3.78 3.7 3.68 3.7 3.68 

RMSE 2.5179 2.5179 1.8252 1.9065 N/A 2.1930 1.7120 1.5013 1.6752 1.4064 

AKV 1.2907 1.2907 1.4950 1.6925 N/A 1.9507 2.8755 1.4825 1.4622 0.9302 

600 

OSDR 3.8 4.05 4.2 4.16 N/A 3.10 3.1 3.10 3.1 3.10 

RMSE 1.5275 1.9496 1.7115 1.4642 N/A 1.1765 1.1909 1.1909 1.1765 1.1765 

AKV 2.8710 2.3832 1.2401 1.2136 N/A 0.5967 0.7232 0.7232 0.5967 0.5967 

700 

OSDR 3.6 3.76 3.7 3.68 N/A N/A 2.9 2.91 2.9 2.91 

RMSE 1.4218 1.6517 1.7839 1.4064 N/A N/A 1.1545 1.1473 1.1405 1.1358 

AKV 0.6660 0.8850 1.4368 1.0521 N/A N/A 0.4000 0.3897 0.3012 0.2921 

800 

OSDR 3.3 3.25 3.4 3.35 N/A N/A 2.5 2.51 2.5 2.51 

RMSE 1.6646 1.7153 1.5235 1.6199 N/A N/A 0.9824 1.0384 0.9824 0.9214 

AKV 1.5737 0.7389 0.7997 0.6521 N/A N/A 0.4704 0.5808 0.4704 0.4666 

N/A: denotes that the execution did not complete within the process time limit of 15 min. 
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As clear from Figure 4.3 and Table 4.1, the proposed HGC method provides more 

accurate results of field estimation and mapping when compared with the other approaches, 

as expressed by the RMSE and the AKV with different power supply constraints for both 

search tools. The HGTSP approach may provide the lowest RMSE in the limited number 

of experimental results but it is NP hard to solve. As a result, for the brute-force search or 

the binary search with a larger sampling density, the HGTSP approach is unable to find a 

plan within the limited time requirement, i.e., 15 minutes (see Figure 4.3 and Table 4.1). 

For the proposed two hexagonal grid-based methods, they generate similar estimation 

results by considering the RMSE results. The HGC method outperforms the HGSTC 

method in the AKV results. The difference between them is mainly on the computational 

complexity and is demonstrated in Section 4.4.3. 

The results of sampling distributions, planned path, and their predicted scalar field 

of the proposed and compared methods with a budget of 500 are shown in Figures 4.4. The 

figures display information of the generated survey missions, the observed sampling 

locations, and the mapping results by making use of the observations at the sampled sites. 

The solid black dots and lines denote the planned SLoIs and the sampling paths, 

respectively. The colors indicate the corresponding predicted values at the unobserved 

locations in the study area. In the figures, it is shown that all the planners generated 

coverage paths for sampling across the study area. Meanwhile, the SGSTC, the HGTSP, 

and the proposed survey planners generated a coverage path cycle. 

The results of the estimation uncertainty of the proposed and compared methods with 

a budget of 500 are shown in Figure 4.5. The colors in the figures display the corresponding 

estimated Kriging variances at the unobserved locations, which indicate estimation 

uncertainty in the monitored filed by making use of the observations at the sampled sites. 

As shown in the figures, the HGC method outperforms the other sampling planners by 

generating the lowest Kriging variance quantities in the study area. 
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(a) SGSTC (brute-force search) (b) DMPP (brute-force search) (c) HGSTC (brute-force search) 

 

 
  

(d) HGC (brute-force search) (e) SGSTC (binary search) (f) DMPP (binary search) 

 

 
  

(h) HGTSP (binary search) (j) HGSTC (binary search) (i) HGC (binary search) 

 

Figure 4.4: Results of sampling locations, sampling paths, and mapping results using 

different survey planners. 
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(a) SGSTC (brute-force search) (b) DMPP (brute-force search) (c) HGSTC (brute-force search) 

 

   

(d) HGC (brute-force search) (e) SGSTC (binary search) (f) DMPP (binary search) 

 

   

(h) HGTSP (binary search) (j) HGSTC (binary search) (i) HGC (binary search) 

 

Figure 4.5: Results of sampling locations, sampling paths, and results of estimation 

uncertainty using different survey planners. 
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4.4.3 Computational Cost 

The computational efficiency is investigated as well in the simulation. The proposed 

method and the compared methods schedule their sampling missions depending on the 

determination of the SDR. The computational costs for all these planners are addressed 

from two main sources: 1) searching: searching of the OSDR such that the corresponding 

total path length is within the travel cost constraint; 2) planning: generation of the coverage 

path for sampling using the determined OSDR. 

To achieve the densest sampling of coverage with its total travel cost not exceeding 

the power supply limit, the target SDR can be determined by the brute-force search. In the 

proposed method, the planner is driven by the hexagonal cell size that specifies the total 

number of SLoIs and further indicates the total path length. However, in view of the 

irregular contour of the study area, there is no analytical expression relating the cell size 

and the number of SLoIs. For illustrating the relationship between them, a brute-force 

search is conducted, and the result is shown in Figure 4.6. As shown, although they are not 

monotonous, the general trend is that the smaller cell size leads to a larger number of SLoIs 

as well as a longer path length. A binary search can be utilized to make this searching 

process approximate the OSDR. The search efficiency can be significantly improved but 

only a near-optimal SDR might be found since it may reach a local optimum as the total 

travel length is not strictly monotonous as a function of the cell size. 

 

 

Figure 4.6: Relationships between cell size and number of SLoIs, and total length. 
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The processing times of these planners are shown in Figure 4.7, according to the 

power supply settings given in Table 4.1. The simulation was executed in Matlab R2016a 

on a desktop computer with an Intel(R) Core(TM) i7-6700K (4.00 GHz) processor and 32 

GB of RAM. In the proposed hexagonal grid-based survey planners, the generation of a 

complete scheduling is not required when searching for the OSDR. As presented in Section 

4.3.1, the search to find the optimal cell size depends on the resulting number of SLoIs as 

a function of a cell size using the ACC decomposition, which is solvable in polynomial 

time. Similarly, the grid-based methods including the SGSTC also have this advantage of 

speeding up the search process for the target SDR. In comparison, the HGTSP and the 

DMPP methods have to finish a complete planning process for each SDR to check if the 

resulting coverage path satisfies the constraint. The entire process considerably increases 

the computational complexity and the processing time for finding the OSDR using the 

brute-force search or even the binary search (see Figure 4.7 (a) and (b)). 

After obtaining the OSDR, the proposed HGC survey planner generates the sampling 

path in polynomial time. It goes over all coarse cells and then covers the unvisited fine 

cells. In comparison, the SGSTC and the HGSTC approaches need to traverse all coarse 

cells to generate an MST first and revisit all fine cells to circumnavigate the MST. The 

DMPP approach generates the parallel transects in each decomposed cell in polynomial 

time and derives the proper sequence by connecting cells using a TSP solver, which is 

computationally intensive when the planning scale is high. In the simulation, the HGTSP 

approach was solved by linear integer programming (LIP). Figure 4.7 (c) and (d) show that 

the proposed HGC survey planner outperforms the other compared approaches in planning 

a sampling mission. 

As clear from Figure 4.7 (e) and (f), the proposed planners show their computational 

efficiency over the existing methods. The experimental results verify that the proposed 

HGC method provides superior performance among the others in effective and efficient 

planning for unknown field estimation and environmental mapping, supporting its practical 

applicability in scheduling mobile sampling for environmental monitoring.  
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(a) Searching Time (brute-force search) 

 

(b) Searching Time (binary search) 

 

  

(c) Planning Time (brute-force search) 

 

(d) Planning Time (binary search) 

 

  

(e) Total Processing Time (brute-force search) 

 

(f) Total Processing Time (binary search) 

 

Figure 4.7: Algorithm performance related to computational efficiency. 
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4.5 Field Test 

The proposed planners and the planners with which they are compared have been evaluated 

by real-world field tests. They were implemented on the developed USV-based sensing 

platform (refer to Chapter 6.3) and evaluated at the Yosef Wosk Reflecting Pool of the 

University of British Columbia (refer to Chapter 3.4). 

In the experiment, one mobile robot was implemented by applying one of the 

planners to carry out the corresponding sampling mission. Meanwhile, another robot was 

deployed to collect data in a denser distribution that was used as a validation dataset to 

evaluate the prediction performance. The fully charged 14.8 V, 10 Ah Lithium Polymer 

(LiPo) battery enabled a USV to run continuously for about 80 min (depending on the 

hydrodynamics of the monitored environment) at an average speed of 0.4 m/s. With this 

power condition, the total distance that a robot can travel is about 1920 m. The fully 

charged batteries were provided to both robots for each field test. 25% battery capacity was 

assigned to complete the sampling mission for the first robot, which indicates that the total 

travel distance is approximately 320 m. 40% battery capacity was assigned to the second 

mobile robot to collect validation data samples, which indicates that the total travel distance 

is approximately 768 m. The time cost Mt  for the measurement process at each sampling 

location was set to 10 seconds. The updating time interval udtt  was set to 15 min. 

Temperature and electrical conductivity are selected as the monitored parameters of 

interest. In the field tests, the underlying environmental models of the parameters were 

learned by observations from the first robot. The measurements taken by the second robot 

were utilized to validate the resulting prediction. Table 4.2 shows the performance of the 

RMSE by implementing the different survey planners. The monitored parameters, 

temperature and conductivity, are in units of Celsius and µS/cm, respectively. 

 

 

 

 

 

 



63 

 

 

Table 4.2: RMSE performance of different survey planners in the field tests. 

 SGSTC DMPP HGTSP HGSTC HGC 

OSDR 2.68 2.39 4.46 4.18 4.18 

Temperature RMSE 0.0517 0.0476 0.0334 0.0337 0.0331 

Conductivity RMSE 0.1545 0.1429 0.1288 0.1282 0.1277 

 

As shown in the table, all the RMSE results are relatively small. It is because the 

monitored pool has a limited spatial scale and displays unapparent spatial variation during 

experiments. The proposed approaches provide better prediction performance at the 

validation sites. Figure 4.8 provides the mapping results of the Yosef Wosk Reflecting Pool 

by making use of the observations from the generated HGC survey mission. The 

experimental results of the field tests further validate the conclusion in the numerical 

simulation that the proposed hexagonal grid-based survey planners outperform the state-

of-the-art methods on field estimation and mapping. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 4.8: Results of the proposed HGC survey planner. 

(a) Generated coverage path for sampling; (b) Temperature mapping result; (c) The result 

of electrical conductivity mapping. 
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4.6 Summary 

In the present chapter, the problem of energy-constrained survey planning was addressed. 

The presented planning strategies provided a reliable and efficient sampling path for 

mobile robot scheduling to survey an unknown environment of interest in a performance-

oriented manner under a power constraint. The proposed planner guaranteed that the 

generated coverage path was length-bounded and energy-efficient, and could distribute 

coverage sampling densely and evenly across the overall surveillance area. The 

experimental results based on a real-world dataset validated the algorithm performance on 

mapping accuracy and computational efficiency. In practical applications, the proposed 

schemes can be implemented for spatial exploration, random field estimation, and 

environmental mapping. 
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Chapter 5: Informative Path Planning 

 

This chapter addresses the problem of informative path planning for predicting an 

environmental field. The term “informative” is used in this context to mean “high content 

of useful information.” Mobile sensing robots are scheduled to take data samples at the 

sites that are more informative among all possible sampling locations. A built-in GMRF is 

implemented to model the random field. A hierarchical planning framework is proposed, 

consisting of a global planner and a local planner. The global planner is operated at the 

sink to guide the robots to the most informative sites as well as the local planner is carried 

out on board each robot. The proposed framework provides a practical solution for a 

WMSN to achieve information-driven adaptive sampling for spatiotemporal field 

monitoring. 

 

5.1 Overview 

When implementing a robotic sensing system, owing to the limited number and mobility 

of the sensing robots, the sites that will be sampled within any time period is bounded. 

Furthermore, the resource constraints of the system (e.g., power supply) impede its 

operation life on both spatial and temporal scales. To capture the underlying environmental 

variation more effectively, mobile sensing robots are required to take samples at locations 

that are more representative and informative. With the prior knowledge that is gathered 

from an initial deployment, the underlying environmental model can be estimated with less 

uncertainty. In addition, redundant collections may not contribute to information gain but 

will use up the associated energy. Therefore, informative sampling design is important to 

sample and interpret the surveyed area more efficiently and effectively. 

Information-theoretic sensing techniques have been derived by exploiting a 

statistical model of the monitored field. For instance, GP has been widely studied to 

interpret environmental phenomena and design optimal sensor placements [87] since it can 

make predictions over a spatial area by making use of finite observations, and also estimate 

the uncertainty at the predicted sites. Many information-theoretic criteria have been 

proposed for a GP model to measure the quality of an experimental design. Studies on 

information-theoretic quantities have indicated their power to exploit useful information 
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based on the GP model. For all these criteria, the optimization processes have been proven 

combinatorial NP-hard. The main disadvantage of the GP approaches is that factorizing the 

dense covariance functions and predicting the underlying field with growing number of 

measurements leads to high computational complexity [62]. 

Approaches of approximation have been studied to obtain a near-optimal solution 

while improving computational efficiency. For example, the near-optimal sensor 

placements in the GP model based on the MI metric was studied in the work of [62]. In 

addition, GMRF has been introduced to approximate the GP model [88]. Xu et al. [89] 

proposed a Bayesian spatial prediction method under the GMRF model to predict a large 

scale spatial field using mobile sensing agents. In their paper, adaptive sampling based on 

an entropy criterion was applied to improve the quality of prediction and reduce the 

estimation uncertainty of hyperparameters. The GMRF-based MI maximization problem 

was resolved to select the best spatial sensors in the work of [90]. Computation complexity 

of the MI-based GMRF approach is achieved mainly subject to the size of the precision 

matrix. 

Many efforts in the field of optimal experimental design considered off-line 

optimization at a sink or a central server before the sensor deployment. They were mostly 

implemented in the WSNs with static sensors that were installed at fixed locations. In real-

world applications, it is crucial for mobile sensing systems to provide the capabilities of 

online sampling, autonomous navigation, and real-time decision-making. The execution 

process of sampling design and path planning is required in real-time or at least near real-

time. Although approximation model with a precision matrix of a GMRF model can 

facilitate computational efficiency, it is impractical to optimize the sampling planning 

problem using robotic sensors [91]. 

This chapter proposes a hierarchical informative path planner for a WMSN to gather 

information adaptively and efficiently for environmental field mapping. The proposed 

planner seeks the feasible scheme for bridging the gap between the intractable global 

informative optimization and the shortsighted local greedy planning. The GMRF model is 

built in the proposed scheme to represent the environmental scalar field and determine the 

MI-based most significant sites for adaptive sampling and spatiotemporal mapping. 
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5.2 Problem Statement 

In the context of GMRF, the physical quantity of the random field is discretized and 

specified as: 

( ) ( ) ( ) ( )  Y s X s Z s ε s , (5.1) 

where ( )X s  is a regression function that defines the mean value of the random process 

( )Y s , ( )Z s  is a GMRF with a zero mean and a precision matrix Q , i.e., 

( ) ~ ( , )Z s 0 Q , and ( )ε s  is an independent and identically distributed (i.i.d.) noise 

process denoted as 
2( ) ~ ( , )N  ε s 0 I . 

In the present work, a hierarchical informative path planner is proposed for a WMSN 

that consists of multiple mobile sensing robots and a sink (i.e., a base station). Let the set  

1 2{ , ,..., }U u u u represent 
  robots that are indexed by 1,2,...,m  . Each robot 

follows its planned sampling path ,0 ,1 ,2 ,( , , ,..., )
mm m m m mp  s s s s  with a sequence of 

sampling sites ,m k Ss , 0,1,2,..., mk  . Following a sampling path mp , the robot takes a 

data sample at its current location ,m ks  where a physical quantity is observed from a 

random variable that is expressed as: 

, , , ,( ) ( ) ( ) ( )m k m k m k m kY X Z   s s s s . (5.2) 

Let ,m ky  denote an observation of the random variable. Let tS  and ty  denote the set of 

locations of the  robots at time t  and the corresponding measurements at time t , 

respectively. Let 1:tS  and 1:ty  denote the locations of robots and the corresponding 

measurements from time 1 to time t , respectively. In the context of GMRF/SPDE method 

that is defined on a triangular mesh, the conditional mean (prediction) and the conditional 

precision matrix at the query locations 1:\ tS S  can be obtained as: 

1: 1:

1

1: 1: 1: 1: 1: 1: 1:\ |
ˆ ( \ | ) ( \ | ) ( \ ) [ ( )]

t t

T

t t t t t t tS S S
S S S S S S S S S

   Y μ μ Q A Q y Aμ , 

1: 1: 1:\ | \t t t

T

S S S S S  Q Q A Q A . 

(5.3) 

(5.4) 

where A  is the projector matrix that maps the mesh vertices to the selected locations. More 

details are referred to [57], [92]. 
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To sample data adaptively, sites that are more informative should be visited. The MI, 

an information-theoretic quantity, is implemented as a metric to evaluate the 

“informativeness” of a sampling site. In the proposed planner, the target destinations to be 

visited are the most significantly informative sites conditioned on the statistical spatial field 

model, which are measured by the MI criterion (see Equation (2.12)). In the context of 

GMRF, the entropy and the conditional entropy in the MI can be obtained by the precision 

matrix [90], which are expressed as:  

( ( ), ( \ ))MI Y S Y S S  ( ( \ )) ( ( \ ) | ( ))H Y S S H Y S S Y S   

\ |

1 1
log (det( )) log (det( ))

2 2 S S S
  Q Q  

(5.5) 

In a mobile robotic sensing process, each robot moves toward a target location that 

is planned based on the global information, and measures the sites that are locally more 

informative along the sampling trajectory over the travel duration. The target destination 

of the sampling path is generated at the sink by exploiting the global information over the 

study area. An anytime algorithm is an algorithm that can determine better and better 

solutions as the processing time increases. The optimal sampling sites are designed by an 

anytime algorithm at the sink over the entire GMRF spatial scale, which can guide the 

robots to collect data from the most informative sites. Concurrently, while heading for the 

optimal sites, the robots in the field measure from the informative locations along the path 

through local information greedy planning. In this manner, the hierarchical framework 

helps informative path planning and adaptive sampling in consideration of computational 

efficiency and prediction performance. The planning strategies are presented in the next 

section. 

 

5.3 Hierarchical Informative Path Planner 

To properly carry out the on-line sampling process, a mobile sensing agent is required to 

make fast decisions in planning. However, a robotic sensor in the field generally has limited 

on-board computational capability, which hinders the implementation of the MI-based 

optimization on it. A sink in a WMSN generally has a superior computational capability 

compared to the sensor nodes in the network. In the proposed hierarchical planner, the 
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target sites are generated over time by the sink and assigned to the robots as they move 

toward the goal location. 

For a robot mu , the measurement process starts at its initial location ,0ms  at time 

0t  . For the following time steps, the robots heads to the first target optimal site that is 

designated as 
(opt )

,1ms . Meanwhile, the local path is planned on-board at the robot by 

exploiting the local information greedily, which leads to a sequence of local sampling 

locations starting from ,0ms  and ending at 
(opt )

,1ms , i.e., 
(opt )

,1 ,0 ,1 ,2 ,1( , , ,..., )m m m m mp  s s s s . 

Subsequently, it heads to the next target site 
(opt )

,2ms  from 
(opt )

,1ms  with its corresponding 

sequence of local sampling locations ,2mp . Continuing on in this manner, the informative 

sampling path of the robot can be expressed as ,1 ,2 ,( , ,..., ,...)m m m m jp p p p , where ,2mp 

(opt ) (opt )

, , 1 , 1 , ,( , ,..., )m k m j m k m k n m j   s s s s s , j  , 
(opt )

,0 ,0m ms s . For notational simplicity, the 

subscript m is omitted in the remaining subsections. 

 

5.3.1 Local Greedy Planner 

The local greedy strategies to generate the sampling path from 
(opt )

1js  to 
(opt )

js  are introduced 

now. The global planner to obtain the target site 
(opt )

js  is presented in Section 5.3.2. 

Given the starting location 
(opt )

1js  and the next target location 
(opt )

js , j  , a local 

sampling path is planned on-board at the robot. The path is defined by a sequence as 

1( , ,..., )j k k k np   s s s , where 
(opt )

1k js s , 
(opt )

k n j s s , n  . Given a current location s , 

the next sampling location 1s  on the local  sampling path is illustrated in Figure 5.1 (the 

dot in the subscript denotes any location index in the path sequence). 
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Figure 5.1: Generation of the next sampling location on the local path. 

 

In the figure, the sampling locations are denoted by red stars, including the starting 

point 
(opt )

1k js s , the target location 
(opt )

k n j s s , the current location s , and the next 

location 1s  that is planned to visit. To determine the location of 1s  given s , an arc  is 

first constructed with the point s  as the circle’s center and a radius of r . The radius is 

determined by the product of the robot speed and the time interval of a data update. The 

constructed arc (the green arc in the figure) is symmetric with respect to the intersection 

point c  (the black dot) between the arc and the line that connects ks  and k ns . The arc 

angle is set as  . The arc is discretized to a set of points S . Then the next sampling location 

1s  is generated by selecting the point with the maximum MI among the discretized points 

on the arc, which can be expressed as: 

 1 arg max ( ( ), ( \ ))
A

S

MI Y Y S



s

s s s , (5.6) 

where A  defines the surrounding space that is involved by making this observation; 
A

S

denotes the possible sampling locations within the area A . The surrounding space A  for 

1s  is indicated in Figure 5.1 by the red dash line.  

 

 

 



71 

 

An execution example of the local planner is shown in Figure 5.2. In the figure, the 

blue stars indicate the discretized potential locations on the arcs. The red stars indicate the 

selected local optimal locations to be sampled. The blue line shows the local path that is 

planned from the starting point 
(opt )

1k js s  to the next target point 
(opt )

k n j s s .  

 

 

Figure 5.2: Execution example of local path planning. 

 

Starting at the site 
(opt )

1js  and heading to the next target site 
(opt )

js , the actions of a 

robot are listed below: 

Step 1: Start at the current location s , take a measurement and transmit it to the 

BS. 

Step 2: Check the next target site 
(opt )

js ; If it is located within the radius r , i.e., 

(opt )( , )jdis rs s , set the site 
(opt )

js  as the next sampling location 1s ; 

otherwise, go to Step 3. 

Step 3: Create the arc that the robot can visit at the next time step, discretize the arc 

to points, calculate their corresponding MI values, set the point with the 

maximum value as the next sampling location 1s . 

Step 4: Move to the next sampling location; repeat Step 1. 

 

5.3.2 Global Planner of Near-Optimal Design 

As introduced in the previous subsection, a robot operates the sampling mission by visiting 

the target sites according to the order 
(opt ) (opt ) (opt ) (opt )

0 1 1( , ,..., , ,...)m j jp  s s s s . For the optimal 

design of these target sites, a global planner is proposed by integrating the overall 
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information at the sink. With the data collected by robots in the field, the sink updates the 

environmental model and determines the optimal sites to be measured, and then guides the 

sampling planning of the robotic sensors. 

The initial environmental model can be estimated by the measurements of a prior 

survey. With prior knowledge of the environmental model, the optimal design in terms of 

the most informative sites over the entire space can be obtained. These sites are selected as 

the targets, which are added into the sampling missions of the robots in the field. In the 

GMRF model, the optimal sites can be derived by finding the locations across the entire 

space that have the maximum MI values. Although the GMRF approximation of finding 

the near-optimal solution can promote the algorithm efficiency, the computation is still 

intractable when designing a large number of optimal sites for mobile sensing even using 

the GMRF approach. Instead of obtaining a group of optimal sites at once, the proposed 

approach addresses the anytime property of the planning strategies at the sink.  

A greedy algorithm is implemented to calculate the MI values of all the potential 

locations and find the optimal site conditioned on the historical sampled locations as well 

as the designed target sites. The generation of the next target site 
(opt )

js , starting at time 

t  , can be expressed as: 

(opt )
1: 1: 1

(opt) (opt)

1: 1: 1
\( )

arg max ( ( ), ( \ ( )))
j

j j
S S S

MI Y Y S S S



 

  
s

s s s , (5.7) 

where 1:S  denotes the set of sampled locations from the beginning to time t  ; and 

(opt )

1: 1jS   denotes the set of previous optimal designs, with 
(opt )

1: 1 :jS   (opt ) (opt ) (opt )

1 2 1{ , ,..., }js s s . 

When executing to find the next target site 
(opt )

js  at the sink, the robots take more data 

samples concurrently. For example, while the sink starts to calculate the next target site 

(opt )

js  at time t  , the robots continuously make measurements at time 1, 2,t   

3,... . Consequently, the outcome of 
(opt )

js  that is derived at time t n    by 

Equation (5.7) does not indicate the optimal design conditioned on the real sampled 

locations up to the current time, i.e., 1: nS  .  To solve this problem, a sub-area removal 
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strategy is proposed to consider the on-going measuring process when the sink is 

determining the next target site 
(opt )

js . 

It is noted that the sampling locations that are scheduled by the local planner in the 

Section 5.3.1 are located around the line segment 
(opt ) (opt )

1j js s . The following proposition can 

be established. 

Proposition 5.1: The maximum distance from a sampling location s  to the line 

segment 
(opt ) (opt )

1j js s  is max 2 sin
2

d r


   . 

Proof: According to the design of the local planner in the Section 5.3.1, the first 

sampling location is placed at the site 
(opt )

1js , i.e., 
(opt )

1k js s . The next sampling location 

1s  can be derived iteratively, given the current location s . The auxiliary notations are 

shown in Figure 5.3, where  is the angle between 
(opt ) (opt )

1j js s  and s c ; and d  and 1d   

denote the distance from s  and 1s  to the line segment 
(opt ) (opt )

1j js s , respectively. 

Considering 0  , the next local sampling location is expressed as: 

1

sin( ) , [0, ]

sin( ) , [ ,0]

r d
d

r d

   

   


   
 

    
, 

sind r   . 

 

(5.8) 

 

Figure 5.3: Next sampling location scheduled by the local planner. 

 

For [0, ]  , 1 [sin( ) sin ]d r        . It is obtained that when   , 
2


  , 

the maximum distance is max | [0, ] 2 sin
2

d r


     . For [ ,0]   , 1d  
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[sin( ) sin ]r      . It is obtained that when    , 0  , the maximum distance is 

max | [ ,0] sind r      . Since max | [ ,0] sind r      2 sin cos
2 2

r
 

  
max |d 

[0, ] , the maximum distance is obtained by max 2 sin
2

d r


   . Figure 5.4 shows the 

scenario that 1 maxd d  , where the red dash line in the figure indicates the farthest distance 

to the central line that a local sampling location can achieve. 

 

 

Figure 5.4: Bounded area of possible sampling locations. 

 

Considering 0  , the sampling location s  locates beneath the line segment 

(opt ) (opt )

1j js s . In this case, the results are symmetric to the above derivations with respect to 

the line segment. The maximum distance is the same, given by max 2 sin
2

d r


   . ■ 

Then the following lemma can be stated. 

Lemma 5.2: For a local sampling path from 
(opt )

1js  to 
(opt )

js , the sampling locations that 

are scheduled by the local planner are located within a bounded sub-area. 

Proof: The result comes directly from Proposition 5.1. Any sampling location s  is 

located at one of the two sides of the line segment 
(opt ) (opt )

1j js s  within the area, where the 

maximum distance of the area contour to the line segment is max 2 sin
2

d r


   . ■ 

Due to the submodularity property of the sampling process [62], for a sampled 

location, the information in its surrounding area is reduced. Since the measuring process is 

operated along the sampling path, the possible information gain at the area near the local 
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sampling path is reduced. As a result, there is no need to resample this area again in the 

same sensing cycle. In the proposed global planner, the sub-area near the local sampling 

path is removed when generating the next target site. Assume that the radius r indicates the 

range that designates the reduced informative region if the circle center is sensed. The 

following proposition can be stated. 

Proposition 5.3: The minimum reduced informative area that is covered by any two 

consecutive sampling locations is bounded, with a minimum distance mind 

maxsin( )
3

r


   
maxsinr   , from the area boundary to the line segment 

(opt ) (opt )

1j js s . 

Proof: Figure 5.5 shows the scenario of any two consecutive sampling locations, i.e., 

s  and 1s . In the figure,   denotes the angle between the line segments s c  and 1s s . 

The red and the blue circles denote the reduced informative area conditioned on both s  

and 1s , respectively; and 1v  and 2v  denote the two transect points of the two circles. 

 

Figure 5.5: Two consecutive sampling locations. 

 

Considering  0  , the distances from the two transect points to the line segment 

(opt ) (opt )

1j js s  can be derived as follows. 

1
sin( ) sin

3
d r r


       

v , 

2
sin( ) sin

3
d r r


       

v . 

(5.9) 
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Then the minimal condition of the distance 
1

dv  can be obtained by simple calculus as 

follows (the derivation is given in the Appendix A.1): 

1
arg min d



  v , 

1 maxarg min arcsin(2sin )
2

d



   

v , 

1 max maxmin sin( ) sin
3

d r r


       
v . 

(5.10) 

The minimal condition of the distance 
2

dv  can be obtained by simple calculus as follows 

(the derivation is given in the Appendix A.1): 

2
arg min d



   v , 

2

1

2 max

0 or
arg min  d






 


  


v , 

2

1 1

2 2

sin( ) sin  or
3

min

sin( ) sin
3

r r

d

r r


  


  


    

 
     


v . 

(5.11) 

Since 
1 maxmin |{ , }d   v  2 1min |{ , 0}vd       and 

1
min |{ ,d  v max}


2 2 maxmin |{ , }d      v  (the derivation is given in the Appendix A.1), the minimum 

distance is obtained by 
1min mind d v . 

Considering 0  , the sampling location s  locates beneath the line segment 

(opt ) (opt )

1j js s . In this case, the results are symmetric to the above derivations with respect to 

the line segment. In summary, by sampling at the two consecutive locations, two circles 

indicate the reduced informative area that they covered, which has a minimum occupied 

area. The minimum distance from the area boundary to the line segment 
(opt ) (opt )

1j js s  is mind

maxsin( )
3

r


    
maxsinr   , where max arcsin(2 sin )

2
r


    . ■ 
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There is a minimum reduced informative area that is occupied by any two 

consecutive sampling locations. Accordingly, there is a region between these two locations, 

which is less informative after these points are sampled, no matter where these two points 

are located away from the line segment 
(opt ) (opt )

1j js s . 

Theorem 5.4: Any local sampling path from 
(opt )

1js  to 
(opt )

js  covers a dumbbell-shape 

area 
(opt )

1,j jA   where the corresponding region has less information, if the sampling mission 

along the local path is completed. 

Proof: The result comes directly from Proposition 5.3. The minimum reduced 

informative area that is covered by any local sampling path is bounded in a dumbbell shape 

with three main regions, as shown in Figure 5.6. Two circles respond to the sampled 

locations 
(opt )

1js  and 
(opt )

js . The middle rectangular region responds to the sampled locations 

along the local path, which has the minimum distance mind  maxsin( )
3

r


   

maxsinr    from the boundary to the line segment 
(opt ) (opt )

1j js s . ■ 

 

Figure 5.6: Dumbbell-shaped area. 

 

When generating the next target site 
(opt )

js , the reduced informative region 
(opt )

1,j jA   

defined by the previous sampling paths should be removed from the entire space of interest, 

which is defined as the Sub-Area Removal (SAR) strategy. By implementing SAR, the 

generation of the next target site 
(opt )

js , starting at time t  , can be expressed as: 
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(opt)

\

arg max ( ( ), ( \ ( )))j
S S

MI Y Y S S


 
s

s s s , (5.12) 

where 
(opt )

1: 1jS A   denotes the potential sampling locations within the removal area 
(opt )

1: 1jA  . 

After obtaining the target site 
(opt )

js , it is assigned to the robot 
*u  for which the last target 

site of its sampling mission has the shortest distance to the generated site 
(opt )

js . 

The actions of the global planner at the sink are listed as follows: 

Step 1: Set the current timer t  , Get the historical sampling mission with the 

sampled locations 1:S  and the designed sites 
(opt )

1: 1jS  . 

Step 2: Determine the next target site 
(opt )

js  with maximum MI value conditioned on 

the historical sampling mission. 

Step 3: Add the target site 
(opt )

js  into the sampling mission of the robot 
*u , update 

the sampling mission. 

Step 4: Send the new sampling mission to the robot, repeat Step 1. 

 

By following the proposed hierarchical scheme, the global planner in the sink obtains 

a near optimal design while the robots in the field carry out local planning and measuring 

simultaneously. Notice that the global planner is executed to make sure that the target sites 

can be implemented to navigate the robots in the field. In addition, with the continuous 

running of the global planning, the area of interest that is left to determine the optimal sites 

becomes smaller, which leads to faster execution of the optimal design over time. 

The environmental phenomena may vary in two ways: 1) the concentrations of the 

parameters may change over time, but the model of the spatial correlation remains; 2) the 

physical quantities of the parameters change and the spatial correlations change as well. 

The former case indicates that the environmental model remains the same, which refers to 

the same optimal sampling design in each sensing cycle. In this case, the robots should 

complete a sensing cycle within a time interval utdt  while following the previously 

designed sampling paths after the previous cycle. The latter case indicates that the 

environmental model changes and a model updating process is required. With on-line 

measurements, the environmental model can be changed to interpret the variance of the 
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spatiotemporal correlation over the random field. By using the historical measurements at 

the sampled sites, the hyperparameters can be re-estimated on-line to update the 

environmental model and re-design the optimal sampling sites. The model updating and 

adaptive sampling design are operated on-line and iteratively to interpret the 

spatiotemporal variance of the environment. 

The flow chart of the overall hierarchical planner is shown in the Figure 5.7. Two 

treads are operated at the sink: anytime planning and model updating. In anytime planning, 

the global planner continuously generates the next target site and updates the new sampling 

mission until it is interrupted by the timer. The timer is reset at the initial time, or when the 

environmental model is updated. The remote server gathers the collections from the sink 

and reconstructs the environmental map at each time step. 

 

 

Figure 5.7: Flow chart of the hierarchical informative path planner. 
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5.4 Numerical Experiments and Discussion 

In this section, the proposed hierarchical planner is studied through a numerical experiment 

to evaluate its computational efficiency, prediction accuracy, and algorithm reliability. 

The numerically generated spatial field is used in the simulation. The physical 

quantity of the spatial field is designated on a grid with 80 × 80. The mean function is set 

at 20X  . The hyperparameters of the precision matrix are chosen to be ( , ) θ (1,0.1).

The noise level is set at 
2 0.2  . In real-world applications, the mean function, 

parameters, hyperparameters, and the noise condition can be learnt by implementing the 

prior survey, as presented in Chapter 4. The generated spatial field is shown in Figure 5.8, 

which is used as the ground truth in the simulation. 

 

 

Figure 5.8: Numerically generated spatial field. 

 

The spatial field is discretized by a triangle mesh using the INLA package in R [92]. 

An example of the constructed mesh is shown in Figure 5.9. In the simulation, to design 

the most informative target sites in the global planner, the spatial field is discretized on the 

triangular mesh by approximately 350 vertices of triangles.  In the local planner, the most 

informative sampling location is determined in each local planning out of 10 discretized 

locations on the arc. In the simulation, three mobile sensor agents ( 3 ) are assigned to 
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make observations, starting from the initial locations that are randomly selected as 1,0s

(39,11) , 2,0s (45,75) , 3,0s (6,70) ). The travel distance of the agent between two 

consecutive samples is set at 3r  . The robot speed is set at v = 0.4 m/s. The measurement 

at a sampling location is set at 10Mt   s. The simulation is executed in R on a desktop 

computer with an Intel(R) Core(TM) i7-6700K (4.00 GHz) processor and 32 GB of RAM.  

 

Figure 5.9: Triangle mesh of the discretized spatial field. 

 

The developed hierarchical path planner that incorporates the proposed sub-area 

removal strategy (HPP-SAR) is evaluated on the numerically generated scalar field. It 

provides an on-line solution for combining global sampling selection optimization and 

local greedy search for adaptive sampling and field mapping. In the experiment, a 

distributed path planner using a local greedy search strategy (DPP-LGS) and a central 

sampling planner through global optimization (CSP-GO) are compared to the HPP-SAR 

approach concerning the algorithm performance of the field prediction and the 

computational time cost. 

In the DPP-LGS algorithm, each robot generates the next sampling site by finding 

the location that has the maximum MI or entropy quantity among the other sites around the 

current location. This strategy has been studied in past work (e.g., [15], [51], [89]) to 

achieve on-line planning for adaptive sampling and field mapping. Specifically, a circular 

arc (with the current robot location as the circle center) is discretized to multiple points that 
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are designated as possible locations to be sampled, i.e., sampling candidates, for the next 

step. The circle radius is determined by the mobility of the robot. The mesh points in a 

local area around the current location are considered to evaluate the MI gains of the 

sampling candidates. In the experiment, for the DPP-LGS algorithm, the circle radius is set 

to r  = 3; the number of discretized points is set to 22; and the local area is defined as a 

circular area with a radius of 2 r . 

Data is collected at the generated sampling locations and then utilized to predict the 

scalar field by utilizing the regression model of GMRF. RMSE is implemented as the 

measure to evaluate the prediction results, which is defined as: 

2

1:

1 ˆ( ) ( ) | ( )
| |

t

I

RMSE t Y y
I 

  
 

i

i y i . (5.8) 

where I  denotes the set of the grid nodes for spatial interpolation; ( )y i  denotes the ground 

truth value at a location Ii . 

Figure 5.10 shows the prediction performance by considering the variation of RMSE 

with time. As can be seen, the RMSE reduces gradually with the increased observations 

over time. 

               

Figure 5.10: RMSE performance of resulting predictions. 

 

Prediction outcomes are updated with time. The resulting predictions of the spatial 

field by implementing the HPP-SAR and the DPP-LGS algorithms at time t = 300 s, 600 
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s, and 900 s are shown in Figure 5.11 and Figure 5.12, respectively. In the figures, the 

randomly selected initial locations, planned target sites, and the sampled locations along 

the path are shown in hollow circles, valid circles, and star markers, respectively. The 

colors illustrate the physical quantities over the scalar field. As shown, the resulting 

predictions become closer to the ground truth as the time increases. 

 

   

(a) t = 100 s     (b) t = 300 s 

  

(c) t = 600 s     (d) t = 900 s 

Figure 5.11: Mapping results of the proposed planner at different time (second). 

 

As shown in Figures 5.10, 5.11, and 5.12, the proposed HPP-SAR planner can 

provide superior mapping results in a spatial field when compared with the DPP-LGS. In 

particular, the DPP-LGS approach can provide better performance at the initial stage of the 

sampling process (see Figure 5.10, t = 100 s, 200 s). It is because the distributed local 

planner is able to rapidly issue the sampling sites and start to guide the robots for data 
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collection. In comparison, the proposed HPP-SAR approach has to calculate the first target 

site before the robots start to take data samples. However, as time goes, the proposed 

algorithm achieves better prediction results since it can guide the robots to visit the globally 

optimized target sites by considering the historical measurements. The local greedy policy 

of the DPP-LGS method may remain trapped in a small region for some period of the 

sampling mission. 

 

  

(a) t = 100 s    (b) t = 300 s 

  

(c) t = 600 s    (d) t = 900 s 

Figure 5.12: Mapping results of the DPP-LGS approach at different time (second). 

 

The CSP-GO optimizes the design of sampling locations globally by the GMRF 

model, which ranks all the possible sites based on their MI quantities and then selects the 

best ones as the sites of interest. This strategy has been studied in past work [90]. However, 
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even without considering the path planning issue, the experimental design process is 

computationally intensive and practically infeasible due to the intractable computation of 

an approximated optimal solution. The number of selected sites, the corresponding 

processing time, and the corresponding predication performance are shown in Figure 5.13. 

 

             

 (a)      (b) 

           

(c)       (d) 

Figure 5.13: Algorithm performance of the CSP-GO approach. 

(a) Computational time with respect to the number of selected sites. (b) RMSE with respect 

to the number of selected sites. (c) An execution example of the mapping result of 10 

optimized sampling sites. (d) An execution example of the mapping result of 30 optimized 

sampling sites. 

 



86 

 

Remark 5.6: The proposed algorithm generates the global near-optimal sites in an 

anytime planning manner. For the computational procedure of each target site, the 

processing time decreases as the number of measurements increases. 

The remark can be examined through the experimental results. As expected, the 

planner determines the most informative site one by one, and the size of the potential sites 

on the mesh decreases over time. Figure 5.14 illustrates, at time t = 900s, the order in which 

the target sites were generated and their assignment conditions for the three agents. In the 

figure, the star markers and the line segments indicate the sampled locations and the 

traveled path, respectively. The black dots indicate the generated target sites, which are 

labeled in the order of their generation time. Table 5.1 summarizes the processing time for 

generating the target sites. Notice that the sites have obtained persistently, which could also 

be interrupted at any time, providing the associated solutions up to that time. Also, they 

were derived increasingly faster from 48.89s for the first site to the 34.13s for the last one. 

The experimental results support the concluding statement in Remark 5.6. 

 

 

Figure 5.14: Generated target sites and sampling paths at time t = 900s.  
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Table 5.1: Target sites and their corresponding assignments. 

Target 

Site  

 

Starting 

Time 

(second) 

Ending 

Time 

(second) 

Duration 

 

(second) 

Assigned 

Robot 

 

Previous 

Site 

 

Visited 

Time 

(second) 

(opt )

1s  0 48.89 48.89 2u  2,0s  243.78 

(opt )

2s  48.89 96.65 47.76 1u  1,0s  212.70 

(opt )

3s  96.65 143.63 46.98 3u  3,0s  318.81 

(opt )

4s  148.63 192.74 44.11 2u  (opt )

1s  379.54 

(opt )

5s  192.74 236.38 43.64 1u  (opt )

2s  387.88 

(opt )

6s  236.38 279.24 42.86 2u  (opt )

4s  436.46 

(opt )

7s  279.24 321.41 42.17 3u  (opt )

3s  378.33 

(opt )

8s  321.41 363.35 41.94 1u  (opt )

5s  444.80 

(opt )

9s  363.35 404.44 41.09 3u  (opt )

7s  454.96 

(opt )

10s  404.44 444.58 40.14 1u  (opt )

8s  639.69 

(opt )

11s  444.58 484.18 39.60 2u  (opt )

6s  552.51 

(opt )

12s  484.18 523.39 39.21 2u  (opt )

11s  826.24 

(opt )

13s  523.39 561.20 37.81 3u  
(opt )

9s  896.08 

(opt )

14s  561.20 596.61 35.41 1u  
(opt )

10s  N/A 

(opt )

15s  596.61 630.74 34.13 2u  
(opt )

12s  N/A 

N/A: The target sites have not been visited within the time t = 900s. 
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5.5 Summary 

This chapter proposed a new framework to plan informative paths, which was implemented 

in a WMSN to carry out adaptive sampling for spatiotemporal field mapping. The proposed 

framework provided a hierarchical scheme that consisted of a local greedy planner and a 

global near-optimal planner. The local planner operated on-board planning to plot the more 

informative locations along the local sampling path. Concurrently, the global planner at the 

sink, with its beneficial characteristics as an anytime algorithm, determined the subsequent 

destinations that were the most informative sites conditioned on the sampled locations and 

the previous targets. A new sub-area removal strategy was introduced in the present chapter 

to solve the growing set of the sampled locations during the global optimization at the sink. 
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Chapter 6: On-line Monitoring of Surface Water 

 

This chapter presents the design and development of a rapidly deployable USV-based 

sensing platform for on-line monitoring of surface water. First, an on-line water quality 

index is developed, which is applicable in the quality indexing of data that are collected 

through automated sampling. Next, the details of the platform components are presented. 

The proposed survey planner and the on-line water quality index are integrated into the 

developed platform. To validate its performance, the platform is deployed in a real-world 

environment of water quality monitoring. The experimental results and the system 

performance are presented and discussed.  

 

6.1 Overview 

 

Recent advances in sensing, processing, and communication, and their integration into 

practical devices have resulted in significant progress in remote environmental monitoring 

through automated sampling and continuous on-line data collection. In-situ monitoring 

platforms with multiple sensors have been designed and deployed [1], [7] for field data 

collection at relatively high speeds (in the scale of minute or hour). The implementation of 

these devices has made possible the acquisition of adequate, accurate, and current data of 

water quality parameters for fast evaluation of water quality. However, the on-line data as 

generated through automated sampling present new requirements and challenges in 

applying the quality index method for data aggregation.  

Practically all the existing WQIs, including the CCME, have been applied for long-

term quality evaluation using data from human-intensive filed measurements at low 

sampling rates (in the scale of month to quarter). In this backdrop, a practical, realistic, 

reliable, and effective WQI is needed to handle on-line data, primarily for short-term water 

quality evaluation. An Online Water Quality Index (OLWQI) is developed in the present 

chapter to represent a large amount of online data for water quality indexing. It is modified 

by the index formulation of the state-of-the-art index, the CCME WQI, which is a widely 

used index and developed by the Canadian Council of Ministers of Environment (CCME) 

[71] for off-line indexing. 
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This chapter also presents the development of a rapidly deployable and easily 

maintainable WMSN platform for surface water monitoring. The rapid deployment 

framework has to be fast and easy to deploy and maintain [93]. It may be deployed in the 

field only for relatively short time periods (in the scale of a day to a week), but can achieve 

high-resolution spatiotemporal sampling. The objective of the developed platform is to 

provide effective and efficient quality evaluation of surface water at a high resolution in 

spatiotemporal manner. Compared to the state-of-the-art systems, the developed platform 

has superior performance on several aspects. First, the low cost of the components in the 

platform provide a cost effective solution for automated water quality evaluation. In 

addition, the developed platform is characterized by fast deployment and easy 

maintenance, which simplifies the initial deployment and follow-up maintenance 

procedures. Second, multiple MSNs facilitate area surveillance on the spatiotemporal scale 

unlike the static sensing stations. More importantly, the implemented planning algorithm 

provides an efficient path planner by incorporating energy and time constraints. Third, 

online quality indexing is implemented in the platform by integrating online data of 

multiple parameters to give a comprehensive, quite representative, and unbiased quality 

evaluation of a study area. 

 

6.2 On-line Water Quality Index 

A WQI provides an intuitively clear and adequately representative way to interpret the 

water quality by aggregating all the measured data of water quality parameters into a 

numerical score. Then, the score is classed into a clear quality category for reporting to the 

technicians, managers, policy-makers, general public, and other users. The CCME WQI 

has been widely used in water quality monitoring programs by many agencies and institutes 

throughout the world [72], [73], [75], [94]. It is generally applied off-line, by using data 

that are collected at low sampling rates (in the scale of month to quarter). Although CCME 

WQI has been used as a possible indexing approach for data collected through automated 

sampling [95], according to our experiments, disadvantages exist when directly 

implementing it for online quality indexing. 

The OLWQI, which is developed in the present work, provides effective indexing 

results with a reliable sensitivity factor for large quantities of online data collected through 



91 

 

automated sampling. The index formulations of the OLWQI are expressed in analytical 

form to facilitate the automatic execution on implemented platforms.  

The proposed OLWQI has been implemented on a real mobile sensing platform, 

which consists of a group of mobile sensor nodes, a base station located on shore, and a 

remote server. Spatiotemporal measurements and the on-line quality index are provided as 

the monitoring results, which will be utilized for further decision-making, policy-making, 

and water management.  

The CCME WQI focuses on off-line evaluations, and utilizes data collected at a low 

sampling rate (typically at monthly or quarterly intervals) and at a limited number of 

sampling locations. The index formulation of the CCME WQI incorporates three statistical 

factors by comparing the measurements of water quality parameters and their guidelines (a 

range of acceptable values). The index formulation is based on the following three 

assessment factors [71]: 

 Scope assesses the percentage of water quality parameters that do not meet their 

guidelines over the time period of interest: 

1  (Scope) 100
Number of  failed parameters

F
Total number of  parameters

  , (6.1) 

 Frequency represents the percentage of individual tests that failed the acceptable 

ranges over the time period of interest: 

2  (Frequency) 100
Number of  failed tests

F
Total number of  tests

  , (6.2) 

 Amplitude measures the degree by which the failed tests deviated from the 

acceptable levels. It is calculated in three steps as follows: 

1) The fractional deviation of a failed test value from its acceptable limit is termed 

an “Excursion”. When the failed test value is greater than the acceptable upper 

limit of its relative guideline: 

1i
i

i

Failed test value
Excursion

Guideline
  , (6.3) 

When the failed test value is less than the allowable lower limit of its relative 

guideline: 
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1i
i

i

Guideline
Excursion

Failed test value
  , (6.4) 

2) The Normalized Sum of Excursions (NSE) is defined as the average value of 

excursions: 

1

n

i

i

Excursion

NSE
Total number of  tests




, 
(6.5) 

3) Amplitude Factor scales the NSE to a value in the range 0-100 by an 

asymptotic function: 

3  (Amplitude) 100
1

NSE
F

NSE
 


, (6.6) 

 The final index, ranging from 0 to 100 with a higher score representing a better 

quality, is calculated as the root mean square of these three factors as follows: 

2 2 2

1 2 3100
3

F F F
CCME WQI

 
  , (6.7) 

In this section, the original index formulation of the CCME WQI is first expressed 

in an analytical form. Using that, it may be applied (with possible modification) to 

automated online data measurement at a relative high sampling rate (at minute or hour 

intervals). Furthermore, the derivation of the analytical form facilitates its further 

implementation on the wireless mobile sensor network for online water quality indexing. 

In the data acquisition process of the present work, the data records are measured and 

logged one by one. Each data record contains the sampling locations, sampling time, and 

the measurements of multiple water quality parameters. Each measurement is called a data 

sample or a test. The measurements involved in the indexing are expressed as:  

11 12 1

21 22 2

1 2

y y y

y y y

y y y


 
 
 
 
 
  

y

f f f
f

, (6.8) 

where a row vector represents the measurements of  parameters of a data record, and f 

presents the number of samples involved in the index calculation. A guideline matrix is 

defined as: 
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11 12 1

21 22 2 2

g g g

g g g


 
  
 

G , (6.9) 

where 1,g  and 2,g , respectively represent the lower and upper acceptable values of the ℓ 

parameters, according to their guidelines. For example, pH value, a common water quality 

parameter, is specified as 1,pH 6.5g   and 2,pH 9g   for the protection of aquatic life in 

freshwater, according to the Canadian Environmental Quality Guidelines (CEQG) [96].  

To describe whether a data sample in y  has failed compared to its guideline, a 

Boolean variable ijb  corresponding to a Boolean function ( )ijB m , 1,...,i  f , 1,...,j  , 

is defined as: 

1 2

1 2

0 [ , ]
( )

1 [ , ]

ij j j

ij ij

ij j j

m g g
b B m

m g g


  



. (6.10) 

According to this formulation, the number of failed parameters is given by 

1
1

min( )ij
i

j

b
 




f

; and the number of failed tests is given by 
1 1

ij

i j

b
 


f

. Then, the three 

assessment factors in the CCME WQI can be analytically expressed as: 
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(6.11) 

The impact of a failed test, 1 2[ , ]ij j jm g g  on the three factors will be different since a 

failed test causes different score changes in the three factors. In this work, the increment 

∆F in a factor score caused by a failed test is defined as the factor sensitivity . The 

sensitivities of the three assessment factors are given in Table 6.1. 

 

Table 6.1: Factor sensitivity of the CCME WQI. 

Factor Factor Sensitivity 

Scope 1

1
100   

Frequency 2

1
100 

f
 

Amplitude 1 
3 2

100
( )

ij

Excursion
Excursion

Excursion


 

 
  




f

f
f

 

1 The derivation of the sensitivity is given in the appendix. 
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According to the sensitivity expressions in Table 6.1, biased factor sensitivity may 

exist when it is applied to handle large amounts of online measurements ( f ). On one 

hand, the Scope Factor may dominate the index score with only a few failed tests. For 

example, a failed test among the total of f  tests produces the change 
1

1
100F    in 

the first factor, which is f  times larger than the change in the second factor 

2

1
100F  

f
, for the same cause. On the other hand, the parameter with a wide data 

range may lead to a score bias in the third factor, according to the expressions of the terms 

ijExcursion  and 3 . For example, failed electrical conductivity tests (data ranging from 0 

to over 
410  μS/cm ) may easily dominate the Amplitude Factor compared to failed pH 

value tests (data ranging from 0 to 14) in a large number of data records. 

To avoid the score bias in the Scope Factor, the average of all measurements of a 

parameter, jy , is used for comparison with its guideline. Specifically, the Scope Factor is 

modified as: 

1

1

( )

 (Scope) 100

j

j

B y

F
  


, 

(6.12) 

To avoid the score bias in the Scope Factor, the average of all measurements of a 

parameter, jy , is used for comparison with its guideline. Specifically, the Scope Factor is 

modified as: 

1

1 1

1 2

2 2

2

0

j ij

j j ij j

ij j ij j

ij j ij j

j j

g y

g MIN y g

Excursion g y g

y g y g

MAX g




 


   
  




, (6.13) 

where MAX and MIN represent the maximum and the minimum values, respectively, that 

a certain parameter can reach. In the original formulation, 
2

[0, 1]
j

ij

j

MAX
Excursion

g
   or 
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1
[0, 1]

j

j

g

MIN
 . In the modified formulation, [0,1]ijExcursion   for all parameters. Thus, 

parameters with different variation ranges will result in an unbiased index score within the 

modified Amplitude Factor. The modified Amplitude Factor is derived using the modified 

term ijExcursion  given by: 

1 1

3

1 1

 (Amplitude) 100

ij

i j

ij

i j

Excursion

F

Excursion

 

 



  

 





f

f , (6.14) 

Note that the f  term in the original formulation (6.11) is replaced by  in the 

modified formulation. The aim is to reduce the high weighting of this term, as introduced 

by a large volume of online measurements. The Frequency Factor remains in its original 

form, as it represents the frequency of failed tests with a reasonable factor of sensitivity. 

The sensitivities of the modified factors are given in Table 6.2. This modified index is the 

Online Water Quality Index (OLWQI): 

2 2 2

1 2 3100
3

F F F
OLWQI

   
  , (6.15) 

 

Table 6.2: Factor sensitivity of the Online Water Quality Index (OLWQI). 

Factor Factor Sensitivity 

Scope 1

1
100  

f
 

Frequency 2

1
100  

f
 

Amplitude 

3 2
100

( )

ij

Excursion
Excursion

Excursion

  
 

  





 

[0,1]ijExcursion   
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6.3 Development of a WMSN for On-line Monitoring of Surface Water 

In this section, the developed WMSN is presented in detail. The system consists of multiple 

USVs that are incorporated as the Mobile Sensor Nodes (MSN) in the network, a Base 

Station (BS) on the bank that works as a sink of the local wireless network, and a Remote 

Server (RS). 

In the implementation, the USVs are deployed in a distributed way in the monitored 

field. The survey missions (sampling locations and moving paths) for the USVs are 

generated at the RS and transmitted to the USVs via the BS. Then, the USVs follow the 

received missions to collect data at the scheduled sampling locations. Each USV consists 

of a set of heterogeneous sensors to measure different water quality parameters. The 

collected data is then transmitted to the BS through a local wireless network.  

The monitoring results are presented at the BS via a Local Assessment Unit (LAU) 

in two forms: (1) the field map in terms of the water quality parameters at the sampling 

locations; and (2) the online water quality index. The former form presents the quantitative 

measurements in the field. The latter form presents the qualitative evaluation of the surface 

water. The results are also transmitted to the RS which contains a Central Assessment Unit 

(CAU). Thus, the monitoring results can be accessed locally at the BS by the technicians 

in the field or accessed remotely by the users via the Internet. The architecture of the 

proposed WMSN is illustrated in Figure 6.1. 

 

 

Figure 6.1: The proposed wireless mobile sensor network. 
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6.3.1 Mobile Sensor Nodes 

Various water parameters can be monitored through automated sensing [97]. These 

parameters include flow rate, temperature, air pressure, pH value, dissolved oxygen, 

electrical conductivity, oxidation-reduction potential, nitrogen, phosphate, organic matter, 

microorganisms, and so on. Selection of the water quality parameters is based on the 

specific end use and the monitoring objective. In the developed platform, five sensors are 

implemented in each MSN to measure five representative parameters. They are listed 

below. 

 Temperature sensor (T) senses water temperature through a thermoresistive probe 

whose resistance increases with the heat transferred from the aquatic source. Many 

parameters are affected by temperature. Thus, temperature compensation is 

required during the sensor calibration for those parameters. 

 pH Value sensor (pH) measures the output voltage of an electrode due to the 

hydrogen ion activity in the water, which can then be translated into the pH value 

according to the hydrogen ion concentration. 

 Dissolved Oxygen (DO) sensor measures the output voltage of the sensor with an 

anode and a cathode, which is proportional to the concentration of the dissolved 

oxygen in the water. 

 Electrical Conductivity (EC) sensor measures the resistance of a two-pole cell of 

the sensor. Water conductivity is proportional to the conductance (the inverse of 

the resistance) of the sensor. 

 Oxidation-Reduction Potential (ORP) sensor measures the output voltage 

between a measuring electrode and a reference electrode, which indicates the ability 

of a water body to acquire electrons, thereby to be reduced. 

 

The WMSN consists of a group of USVs. The designed framework and the 

developed USV are shown in Figure 6.2 and Figure 6.3, respectively. Each node consists 

of five sensors, a control unit, a data processing unit, and two power supply modules. To 

avoid the inaccurate measurements caused by surrounding objects (the magnetic field 

between the electrodes may be affected by the surroundings), the five sensors are held 

separately through a Polyvinyl Chloride (PVC) structure. All electronic components are 
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deployed inside a waterproof floating buoy. The conversion of the sensor output signals 

(e.g., voltages) to the sensor readings, which indicate the real concentrations, is carried out 

by a mote, Waspmote with microcontroller ATmega1281, which is an advanced mote 

manufactured by Libelium Communicaciones Distribuidas S.L. Data is processed at the 

on-board processor, Raspberry Pi 3, and then transmitted to the BS through a Wi-Fi or 

Zigbee radio transmitter. To enable mobility, a BlueRobotics ROV external structure with 

two T200 propellers are integrated. A 3DR Pixhawk mini with a GPS module is equipped 

as the autopilot of the MSN. To avoid data missing due to package loss or communication 

failure during data transmission, recently collected data is stored at the local data logger. 

A 3.7 V, 6600 mA∙h LiPo battery is used to provide power for sensing and wireless 

transmission. It also stores the harvested energy from a 23∙16∙20 mm solar panel. In 

addition, a 14.8 V, 10 A∙h LiPo battery is used to supply power for the autopilot, the 

Electronic Speed Controllers (ESCs) and the propellers. 

 

 

Figure 6.2: The design framework of the MSN. 
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Figure 6.3: The developed MSN in the wireless mobile sensor network. 

 

6.3.2 Base Station and Remote Server 

The design framework and the developed BS are shown in Figure 6.4 and Figure 6.5, 

respectively. It consists of a gateway, an LAU, and a power supply module. The gateway, 

the Meshlium Xtreme manufactured by Libelium, is deployed in the BS. It is a Linux-based 

router, which works as the gateway for the local wireless network. The radio receiver of 

the gateway receives the data transmitted from the distributed MSNs. The data received 

from the MSNs is stored in a MySQL database embedded in the gateway. The quality 

indexing algorithm is operated at the LAU. The monitoring results can be accessed at the 

BS by a laptop (i.e., an LAU) through a local Graphic User Interface (GUI), mainly for 

local examination by technicians in the field. The data is then transmitted to the RS as well. 

The gateway accesses the cellular network to communicate with the RS via the Internet. 

The solar energy is collected by a 48∙43∙30 mm solar panel and stored into a 12 V DC 

battery through a solar energy charge controller. Then 110 V AC power is supplied to the 

gateway through a DC/AC power inverter, which is connected to the charge controller. 

The RS is a PC with a 4.00 GHz Intel Core i7-6700K CPU and a 32 GB RAM. By 

implementing the proposed survey planner, the sensing missions including the sampling 

locations and the paths for USVs are generated by a CAU at the RS. The missions are then 

transmitted to the USVs via the BS. The RS also receives the data collected in the field and 

interprets the data online for users. 
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Figure 6.4: The design architecture of the BS. 

 

 

Figure 6.5: The developed BS in the sensing platform. 

 

 

6.4 Case Study 

To evaluate the proposed on-line index and the developed platform, experiments are 

conducted systematically using a real-world dataset and through physical field testing. The 

experiment using the dataset examines the proposed on-line indexing approach in relation 

to the statistical performance of the index factors. In the field tests, the overall tasks of the 

platform are evaluated, including sampling design, path planning, on-line indexing, and 

system implementation. 
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6.4.1 Real-World Dataset 

For validation of the performance of online indexing, both the CCME WQI and the 

OLWQI are applied to a realistic dataset with a large quantity of continuous online 

measurements that have been collected by the Chesapeake Bay Interpretive Buoy System 

(CBIBS) [4]. The data from 1 June, 2017 to 1 July, 2017 at 10 monitoring stations in the 

dataset are selected for the evaluation.  

The measurements of six parameters that are related to water quality (namely, 

Chlorophyll A, Dissolved Oxygen, Turbidity, Conductivity, Salinity, and Temperature) are 

used in the index calculation. The index is calculated hourly by aggregating the latest 24-

hour data for quality evaluation (24-hour sliding time window). Due to the limited space, 

Table 6.3 shows some of the indexing results by applying the CCME WQI and the 

proposed OLWQI on the dataset. 

 

Table 6.3: Indexing results using data collected at the First Landing Station in CBIBS. 

Date & Time 1F  
2F  

3F  CCME WQI 1F   2F   3F   OLWQI 

6/20/2017 13:00 16.67 6.94 0.92 90 0 6.94 7.46 94 

6/20/2017 14:00 16.67 6.94 0.92 90 0 6.94 7.46 94 

6/20/2017 15:00 16.67 6.94 0.92 90 0 6.94 7.46 94 

6/20/2017 16:00 16.67 7.64 0.99 89 0 7.64 8.01 94 

6/20/2017 17:00 16.67 8.33 1.20 89 16.67 8.33 9.59 88 

6/20/2017 18:00 16.67 9.03 1.50 89 16.67 9.03 11.75 87 

6/20/2017 19:00 16.67 9.03 1.52 89 16.67 9.03 11.89 87 

6/20/2017 20:00 16.67 9.03 1.52 89 16.67 9.03 11.89 87 

6/20/2017 21:00 16.67 9.03 1.52 89 16.67 9.03 11.86 87 

6/20/2017 22:00 16.67 9.03 1.53 89 16.67 9.03 11.95 87 

 

To demonstrate the resulting factor effects on the final index score, we have 

statistically summarized both indices by applying stepwise regression analysis. Two 

examples are given in Table 6.4 to present the statistical summary of the final index versus 

the three factors utilizing the one-month data from the single station (First Landing 

Station), and the data from the regional multiple stations (First Landing Station and York 

Spit Station). Both examples in the table demonstrate that the Scope Factor in the CCME 
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WQI dominates the whole index, as indicated by the adjusted R-squared value of step 1. 

Meanwhile, the Amplitude Factor in the CCME WQI has very limited influence on the 

final index score, as indicated by the adjusted R-squared value of step 3.  

In this example, the stepwise regression analysis has been executed 20 times on the 

selected dataset, including 10 times on the 10 single stations, and 20 times on the pairs of 

neighboring stations. The statistical results are summarized in Table 6.5. In the table, 

1
/

i

k

F ijj
f R K


 , where k = number of times that the factor iF  was obtained in the first 

step, 1, 2,3i  ; ijR  = corresponding adjusted R-squared value in the first step of the factor 

iF ; and K = total number of experimental runs. The results demonstrate that the proposed 

OLWQI provides indexing results with a more balanced factor sensitivity for large 

quantities of online data that are automatically collected, compared to the CCME WQI.  

 

Table 6.4: Stepwise regression analysis: final index versus three factors. 

 CCME WQI OLWQI 

Single 

Station 

Candidate  

Term 

Step 1  

(Coef) 

Step 2  

(Coef) 

Step 3  

(Coef) 

Candidate 

Term 

Step 1  

(Coef) 

Step 2  

(Coef) 

Step 3  

(Coef) 

1F  −0.5808 −0.5742 −0.5744 1F   −0.8511 −0.2145 −0.2378 

2F   −0.0690 −0.0611 2F    −0.9327 −0.4381 

3F    −0.0520 3F     −0.3588 

2R (adj)  98.00% 99.91% 99.92% 
2R (adj)  83.97% 98.75% 99.81% 

Multiple 

Stations 

Candidate 

Term 

Step 1  

(Coef) 

Step 2  

(Coef) 

Step 3  

(Coef) 
Candidate 

Step 1  

(Coef) 

Step 2  

(Coef) 

Step 3  

(Coef) 

1F  −0.5966 −0.5502 −0.5528 1F   −0.8347 −0.3192 −0.3002 

2F   −0.1821 −0.1536 2F    −1.4212 −0.3049 

3F    −0.0690 3F     −0.4066 

2R (adj)  98.47% 99.94% 99.95% 
2R (adj)  85.43% 97.95% 99.89% 
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Table 6.5: Statistical results of the factor effects on the final index. 

CCME WQI OLWQI 

1Ff  
2Ff  

3Ff  
1Ff 

 
2Ff 
 

3Ff 
 

79.89% 3.64% 7.57% 15.75% 36.98% 37.88% 

 

6.4.2 Field Test 

The developed sensing platform has been deployed at the Yosef Wosk Reflecting Pool of 

the University of British Columbia, Canada. The in situ deployment of the platform is 

shown in Figure 6.6. 

 

 

(a)       (b) 

Figure 6.6: Field deployment of the platform at the Yosef Wosk Reflecting Pool. 

(a) Deployment of the USV in the pool; (b) Deployment of the platform in the field. 

 

The platform core software has been developed in Java and executed on the RS to 

implement the proposed HGCSP algorithm and the OLWQI algorithm. The geometric map 

of the study area is embedded in the software. The survey mission is generated at the core 

and then sent to the USVs via the BS. The robotic operating system (ROS) is executed on 

the Raspberry Pi 3 in the USVs to control and navigate the MSN to move to the objective 

sampling locations that are included in the survey mission. The collected data are 

transmitted to the RS via the BS and stored in the MySQL database. The core software 

then processes the collected data to calculate the OLWQI.  
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Before the USVs are deployed in the water body, all the sensors in each robot are 

calibrated carefully in the field to assure good data sample quality in the initial stages. In 

addition, two MSNs are fully charged and launched at the predetermined location. In the 

field test, the coordinates of the SLoIs are translated from the meter scale to GPS 

coordinates at the RS, and uploaded as the waypoints to the USVs via the BS. The two 

USVs move along the target coverage path four times, while each sampling location is 

measured eight times over two hours. Figure 6.7 shows a GUI display of the experiment 

scenario. The path is planned based on the energy budget and the sampling frequency 

requirement, which are set using the “Generate Survey Plan” function in the GUI. The 

resulting planned path is displayed in the “Plan View.” The blue circles in the plan view 

denote the division points for the sub-paths, and the hollow one indicates the initial 

launching position of the MSNs. After successfully uploading the survey mission to the 

MSNs, the in situ data sampling locations of the MSNs can be checked during the 

surveying process through the “Survey Process View” in the GUI. 

 

 

Figure 6.7: Graphical User Interface (GUI). 
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In the experiment, data samples collected from the field test are used to demonstrate 

the performance of the OLWQI in comparison to the state-of-the-art CCME WQI. The 

proposed OLWQI is primarily intended for short-term water quality evaluation using data 

that are collected through automated sampling. The category interpretation based on the 

index score is given by, Excellent: 95–100; Good: 80–94; Fair: 65–79; Marginal: 45–64; 

Poor: 0–44 [71]. The algorithm for calculating the OLWQI is implemented in the LAU and 

CAU, where the temporal and spatial scales can be set in a flexible manner by the user. In 

the experiments, a one-hour window is used to calculate the OLWQI (four sampling cycles 

are involved) in a temporal point of view. Meanwhile, the quality index of each cell, the 

overall study area, and a selected objective area are provided and displayed in the GUI (see 

Figure 6.7). The quality indexing results at all the fine hexagonal cells are displayed in the 

“Quality Index View,” indicated by five different colors, which denote the five quality 

categories. The overall OLWQI are calculated by the integration of the data collected at all 

the SLoIs over the study area. By utilizing the “Select Objective Area” function in the GUI, 

the users are able to check the indexing results across any objective area that is selected in 

the view. 

To demonstrate the performance of the OLWQI in comparison with the CCME WQI, 

both indices have been implemented in the experiment. In Figure 6.8, data samples are 

selected from a one-hour time window to illustrate the indexing results of the overall study 

area (overall WQI) by using these two indices. In the time window, seven tests of pH value 

and five tests of EC have failed (readings do not meet their relative guidelines, pH: 6.5-9, 

EC: <2000 µS/cm) among the total 1760 tests. This means 0.68% tests failed in all tests. 

As shown in Figure 6.8(a), the overall index score of the CCME WQI is 77/100 (Fair). The 

Scope Factor has dominated the total index score of the CCME WQI. Particularly, in Figure 

6.8(b), the Scope Factor in the CCME WQI has degraded by 40 units due to these few 

failed tests, leading to the unreliable index score of the CCME WQI. In fact, in the worst-

case scenario, only two failed tests from these two parameters (pH value and EC) can cause 

such a 40-unit degradation. By contrast, the OLWQI indicates an online indexing result of 

98/100 (Excellent). It follows that the Scope Factor in the OLWQI has not been affected 

unreasonably by the small number of failed tests. 
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(a) 

 

 

(b) 

Figure 6.8: Comparison of the CCME WQI and the OLWQI. 

(a) Quality indexing results; (b) Factor scores due to the failed tests. 
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The influence of the Amplitude Factor can be ignored if the CCME WQI is 

implemented on a large volume of online sampled data. This issue is demonstrated in 

Figure 6.8. The modification in the OLWQI for the Amplitude Factor makes it effective 

for a large volume of data. In addition, the water quality parameters with different data 

ranges result in different excursion ranges for the Amplitude Factor when the CCME WQI 

is implemented. Notice that the parameter with a large value range (e.g., EC) results in a 

large excursion range. This may lead to a biased index score. For example, a test of EC = 

3200 μS/cm leads to the excursion of 0.6 in the Amplitude Factor of the CCME WQI. It 

even exceeds the upper limit of the pH excursion, since the maximum pH value is 14 

(maximum pH excursion: 14/9-1=0.56). Hence, a parameter may dominate the Amplitude 

Factor in the CCME WQI. In contrast, the OLWQI provides the same excursion range 

(from 0 to 1) for different parameters, regardless of their data range and guidelines. 

 

6.5 Summary 

This chapter presented an on-line sensing platform, which has been developed in the 

present work, for surface water monitoring. The developed platform provided a cost-

effective, fast, deployable, and easily maintainable solution for the high-resolution 

spatiotemporal mobile sensing. The developed sensing platform has been deployed in a 

real water source to demonstrate the implementation and performance of the overall 

system. 

A novel online water quality index, the OLWQI, was developed based on the state-

of-the-art water quality index, CCME WQI, to evaluate water quality by integrating a large 

volume of online data acquired through automated sampling. The OLWQI that was 

formulated in the analytical form facilitated online processing by automatic execution on 

automated devices. The performance of the OLWQI in compassion to the existing CCME 

WQI was demonstrated by using data from the CBIBS dataset and realistic data that was 

collected through field experiments using our developed platform. The experimental 

results show that the proposed OLWQI provided rather balanced factor sensitivities and 

more reliable evaluation results for online quality indexing compared to the CCME WQI.  
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Chapter 7: Conclusions and Future Work 

 

In this chapter, the primary research goals and contributions of the present dissertation are 

summarized. The promising directions and recommendations are given for possible future 

research. 

 

7.1 Conclusions 

In this dissertation, several research and development issues of applying mobile sensing 

for automated environmental field estimation were investigated. In particular, exploratory 

sampling, coverage path planning, environmental model estimation, spatial field mapping, 

informative path planning, adaptive sampling, and on-line quality indexing were 

addressed. This dissertation made direct contributions in these issues while developing a 

system framework and application platform with novel schemes and strategies. The present 

work particularly focused on the robotic sensing applications in automated aquatic 

environmental monitoring.  

In order to generate a coverage sampling frame and a coverage sampling path to carry 

out an initial exploratory survey, the problem of the regular grid-based survey planning 

was investigated. First, a hexagonal grid-based frame for coverage sampling was designed 

to plot spatially balanced sampling locations across the entire field for a sampling 

resolution of interest. Second, an energy-efficient coverage path cycle was planned to 

travel among the objective locations for automated data collection. A hexagonal grid-based 

spanning tree-assisted coverage (HGSTC) survey planner was developed to construct the 

coverage path by circumnavigating the constructed MST. A hexagonal grid-based 

coverage (HGC) survey planner was proposed to further improve the computational 

efficiency based on the proposed ACC decomposition method. The developed algorithms 

targeted the mission planning of mobile sensing robots for the prior exploratory survey 

phase in environmental monitoring. 

In real-world robotic sensing applications, power supply and energy budget are 

strictly constrained in the systems, which is a crucial limitation in applying mobile sensing 

robots. An energy-constrained survey planner was proposed to find the optimal coverage 

density for exploratory sampling, which guaranteed that the corresponding energy 
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consumption in carrying out the planned sampling path was within the given energy 

budget. The GP model and the Kriging approach were implemented to establish the 

underlying environmental model and map the spatial field. The performance of model 

estimation, field mapping, and computational expense determination were carried out by 

the proposed algorithm and results were compared with the state-of-the-art approaches. 

The proposed planner demonstrated its superior performance for automated and energy-

constrained survey planning in field estimation and mapping of an unknown environment. 

The proposed planners generated the shortest path to visit the SLoIs under the 

hexagonal tessellation for a given grid size. Note that the SLoIs were designed according 

to the corresponding grid size. For a certain region with regular or irregular boundary, the 

proposed planners determined the maximum sampling sites that an exploratory survey can 

achieve, given the number and energy budgets of the robots. It means the minimum size of 

the grid size is bounded and determined by the robot number and the power supply 

conditions of the robots. Furthermore, the planned survey path could be assigned to 

multiple robots based on the requirement of the time interval for measuring a sampling site. 

With accumulated knowledge from initial and historical deployments, adaptive 

sensing that focuses on measuring locations that are more significant is able to gather 

information more efficiently. To this end, the sites that are most informative among the 

overall potential positions should be chosen as the sampling targets. A hierarchical 

informative path planner was proposed for navigating the mobile sensing robots to the most 

informative sites, which were evaluated by the information-theoretic metric MI. The 

GMRF model was built in the planning framework to approximate the GP model for 

computational feasibility. Beneficial characteristics of the proposed hierarchical 

framework assured the balance between the intractable global optimization for optimal 

design and the fast local greedy search for on-line path planning. The proposed planner 

provided an effective and efficient solution for long-term spatiotemporal monitoring. 

In addition to the quantitative evaluation, qualitative evaluation of the monitored area 

was studied in the present work. A novel quality indexing approach, OLWQI, was 

developed to integrate and interpret the quality information from a large volume of on-line 

measurements. The OLWQI provided more balanced factor sensitivities compared to the 

popular and traditional indexing approach, CCME WQI. It was formulated in an analytical 
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form, which facilitated online processing in automated execution. The design and 

development of a WMSN for surface water monitoring was introduced. The sensing 

platform has been deployed in a real-world aquatic environment. The field experiments 

demonstrated the functionality and utility of the developed WMSN in on-line monitoring 

of surface water. The results of the numerical analysis of practical data and the field tests 

demonstrated the effectiveness and feasibility of the proposed planning and indexing 

schemes as well as the practical implementation of the automated system. 

 

7.2 Possible Future Work 

 

Future research may focus on several promising directions. In the present dissertation, a 

two-dimensional planar was considered as the environmental field of interest. The 

proposed algorithms were conducted on a two-dimensional spatial field. The future work 

may modify and extend them for a three-dimensional space while incorporating both 

spatial and temporal scales. In this manner, the planners developed in the present work can 

be implemented in more general and extensive robotic sensing scenarios such as marine 

monitoring with Autonomous Underwater Vehicles (AUV). Moreover, other 

environmental fields can also be monitored by applying the proposed planning approaches. 

For example, air quality of an atmospheric environment can be sensed with Unmanned 

Aerial Vehicles (UAV) by making use of the planners in the present work. Since the UAVs 

generally have limited on-board resources, the on-line planning issues that are addressed 

in the present work will benefit the UAV-based sensing applications in air monitoring. 

The GP and GMRF models that were integrated in the present dissertation have been 

developed in a solid mathematical framework to deal with stationary random field. 

However, a more complicated environmental model may be required to describe, estimate, 

and interpret some real-world natural phenomenon. They may need to be modeled by a 

non-stationary GP model or even a non-GP model. The planning schemes developed in the 

present work may be further investigated based on more complicated environmental 

models. 

Future research may also concentrate on the variation of the established statistical 

field model over the temporal scale. One direct way is to re-implement the proposed 
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exploratory sampling strategies to learn a new underlying environment. However, using 

accumulated knowledge from historical measurements, more efficient planning strategies 

can be incorporated. For example, proper balance between coverage sampling and adaptive 

sampling may be targeted to tackle the exploration-exploitation problem in a changing 

environment. This point may be undertaken as a desirable future research direction. 

Another possible research direction is the application of deep learning techniques to 

exploit underlying environmental models using the titanic amounts of historical data. The 

statistical model of some natural phenomenon may not be readily or even possibly 

represented in an analytical structure. With the fast development of a mathematical 

framework and hardware support, deep learning techniques such as convolutional neural 

networks (CNN) demonstrate their superior ability in representative learning and 

information exploitation. Accordingly, leaning a complicated environment model and 

selecting the essential sampling sites through deep learning techniques may be investigated 

to guide robotic path planning for environmental monitoring. 

In conclusion, the WMSN developed in the present work may be tested in a more 

complicated aquatic environment and for long-term implementation. Many factors may 

affect the effectiveness of the developed methods. For example, complex and high water 

turbulences make an influence on the mobile sensing robots to carry out their sampling 

missions. A local motion plan may be integrated to handle possible bad dynamic conditions 

of a water body. Furthermore, if the motion control is not able to guide the robots to visit 

the waypoints of the sampling missions. A more robust scheme may be proposed as a 

backup plan to complete the sampling missions. Also, location uncertainties of the mobile 

robots may be addressed.  The proposed sensing, planning, and indexing approaches can 

be further examined in the future field experiments. 
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A.1 Proof of Proposition 5.3. 
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The minimum 
2

dv  can be obtained when: 
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2

1 min

2 max

3

0

arcsin(2sin )
2

arg( 0)
6 2

d
d

d

 


  

 





  



  



   
v

. (A.4) 

Thus, the minimum 
2

dv  can be obtained as: 

2

2 2

2

(1)

1

(2)

max max 2 max

(3)

3

sin( ), 0
3

sin( ) sin ,
3

2 sin( ),
6 2 6 2

d r

d d r r

d r


 


    

   



   




       



     


v

v v

v

. (A.5) 

Notice that 
2

(1) sin( ) 2 sin( ) cos( )
3 6 2 6 2

d r r
    

        
v 2

(3)d
v and 

2

(2)d r v

max maxsin( ) sin
3

r


      max2 sin( ) cos( )
6 2 6 2

r
   

      
2

(3)d
v . However, the 

relationship between 
2

(1)d
v  and 

2

(2)dv  is all possible since maxcos( )
6 2

 
   can be bigger 

than, smaller than, or equal to cos( )
6 2

 
 . 

In summary, 
1 max maxmin sin( ) sin

3
d r r


       

v ; 
2

min d v  
2

(1)min{ ,d
v

2

(2)}d
v . Note that 

1 max maxmin sin( ) sin
3

d r r


       
v

2 sin( )
6 2

r
 

   cos(
6




max )
2


  , 

2

(1) sin( ) 2 sin( ) cos( )
3 6 2 6 2

d r r
    

      
v , and 

2

(2)dv  sin(
3

r


  

max max) sinr    max2 sin( ) cos( )
6 2 6 2

r
   

     . Therefore, it can be obtained that  

1 maxmin |{ , }d   v  2 1min |{ , 0}vd       and 
1

min |{ ,d  v max} 
2

min |dv

2 max{ , }      . 
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Appendix B   

 

B.1 Proof of the Factor Sensitivity 

 

Consider a failed test 1 2[ , ]ij j jm g g , and denote the sum of excursions of the other tests 

by, 
1 1

ijExcursion Excursion
 

 
f

, i , j . 

The sensitivity of the Amplitude Factor is derived as follows: 
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