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Abstract 
The rise of high-throughput biology has brought an increase in generation of large 

datasets such as genomics, transcriptomics, proteomics, and metabolomics: “omics” data. 

While many biological studies now assay multiple omics types to assess biological function, 

the analysis of these datasets is typically undertaken separately, contrary to our 

understanding of how biological systems function. While efforts have been undertaken to 

integrate these data types, intuitive methodologies that take advantage of modern curated 

biological databases are lacking.  

Here I present a methodology for network-based integrative analysis of multi-omic 

data. This method leverages the power of curated interactome databases and biological 

network analysis to produce multi-omic biological interaction networks for integrative 

analysis. The integration of metabolomics data with transcriptomics and proteomics data was 

enabled by identifying metabolite-protein interactions using MetaBridge, a novel tool that I 

developed, described here. Identification of these metabolite-protein interactions was shown 

to facilitate the leveraging of powerful curated protein-protein interaction (PPI) databases 

such as InnateDB to generate metabolome-centric PPI networks. Such PPI networks 

accurately encapsulate biological function and enable downstream analysis and 

dimensionality reduction using proven network analysis techniques. These metabolomics-

derived PPI networks could then be integrated with proteomics and transcriptomics data to 

create multi-omic networks, which provided insights into biological function and could be 

mined for novel biological insights that would not otherwise be captured by any single omics 

type.  

I demonstrated two applications of this methodology to multi-omic datasets. First, I 

showed how separate gene expression and metabolite signatures for predicting sepsis could 

be integrated to reveal novel targets for study, demonstrating the utility of this method for 

hypothesis generation. Second, I demonstrated tri-omic integration of metabolomics, 

proteomics, and transcriptomics data from neonates in the first week of life. This revealed 

that network-based multi-omic integration provided consensus on commonly dysregulated 

biological functions and facilitated novel insights into biological changes.  
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Lay Summary 
In recent years, biological experiments have been producing large amounts of data 

that assess the multifaceted aspects of biology. The technologies that produce this data are 

highly specialized and are built to examine one facet of biology in detail. To gain a broader 

picture of the mechanisms behind these datasets it is important to analyze the results of these 

specialized technologies in concert, joining the individual pieces of the puzzle back together 

to create a full biological picture. Here, a new method and tool is described for integrating the 

results of multiple modern biological assaying technologies, using preexisting biological 

databases to stitch together the puzzle pieces with specific examples provided as to how this 

can be used to gain insights into sepsis and early life. In contrast to current approaches for 

this type of analysis, my method was intuitive, transparent, and flexible. This makes it easily 

accessible to non-expert researchers, bringing them closer to understanding biology.  
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Glossary 
Edges – Connections between nodes of a network. In a PPI network, edges represent 

interactions between proteins (the nodes). 

First order network – A network whose nodes consist of seed nodes as well as curated 

interactors.  

High-throughput biology – The practice of using modern technologies such as RNA-Seq, 

which can assay an entire transcriptome—thousands of genes—in a highly parallel 

manner. 

Jaccard Index – A measure of overlap between two sets. Typically represented as a ratio, I 

have represented it as a percentage here for clarity. 

NP-hard – A problem for which the solution algorithm is computationally costly to achieve 

when solving for instances of the problem with large numbers of observations.  

Minimum-connected network – A first-order network which has been trimmed using an 

algorithm to include only specific nodes of interest. 

Network – A structure representing connections (edges) between items (nodes).  

Network Cohesion, Network Integrity – The ability for a network to remain intact without 

splintering into multiple subnetworks.  

Nodes – Items in a network which are connected by edges. In a PPI network, nodes represent 

proteins.  

Non-random node – A node which occurs in less than 5% of randomly generated networks. 

Ome, Omics – A set of biological molecules which share common properties. The genome, 

proteome, transcriptome, and metabolome are several notable examples.  

Peripheral interactor – Terminal nodes of a PPI network which are not seed nodes.  

Prize-Collecting Steiner Tree Problem – A mathematical problem arising from graph theory. 

The solution, simply put, attempts to generate a subnetwork which maximizes the 

number of nodes while minimizing the number of edges.  

Protein-Protein Interaction – An interaction between two proteins; direct interaction, 

association, or colocalization. 

Protein-Protein Interaction Network – A network built from proteins (nodes) and protein-
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protein interactions (edges). These networks represent a set of possible interactions 

between proteins in a cell and have been shown to accurately encapsulate biological 

function.  

Random occurrence rate – The rate at which a node appears in a network generated from 

randomly selected proteins. 

RNA-Seq – RNA Sequencing. See: high-throughput sequencing. 

Seed network – A network generated from a single omics type. 

Seed nodes – A list of proteins or protein-coding genes used to create a protein-protein 

interaction network.  

Terminal node – A node of a network which is has only one edge connecting it to the graph. 

Typical network diagrams will show these nodes at the periphery of the network. 

Zero-order network – A network consisting only of seed nodes. 
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Chapter 1: Introduction 
1.1 Integrative Analysis of Multi-Omic Data 

As high-throughput technologies become more popular, research groups increasingly 

assess, globally different categories of biological molecules in an attempt to better define the 

biological system under interrogation.1 These categories, such as the transcriptome, 

proteome, and metabolome, are often referred to as different “omics” types. Individually, 

each of these assay technologies has limitations and drawbacks. By performing multi-omic 

studies, biologists can supplement the individual weaknesses of a given platform.2 This 

reflects the reality of biology, in that living organisms do not operate in isolation. Biology 

progresses through highly interconnected processes and on multiple information levels, and 

by simultaneously surveying multiple omic outputs, biologists intend to better capture that 

interconnectivity.3  

Unfortunately, the current standard in the bioinformatics field is to analyze the results 

from each platform separately.4 Because each data type is captured in different ways, it is 

challenging to bring the results together for a unified analysis. As a result, the integration and 

analysis of data from a variety of different omics platforms is a major goal in the 

bioinformatics community.4,5   

Each of the major omics platforms has its own limitations. For example, 

transcriptomic strategies using RNA-Seq provide an extremely comprehensive picture of 

gene expression. However, it is known that the production of many proteins, which mediate 

most functions in cells, is also regulated post-transcriptionally and not all genes that are 

actively transcribed are also actively translated. Conversely, due to a lack of peptide 

amplification technologies, proteomics typically identifies only the most abundant proteins 

in the cell and is not as effective at identifying sequestered proteins (e.g. nuclear and 

transmembrane proteins). Metabolomics elucidates the chemical products of pathways but 

does not directly report on the events that gave rise to those products. Additionally, similarly 

to proteomics, it is not currently possible to amplify metabolites. Furthermore, metabolite 

identification is still a challenging problem in the field of metabolomics, and currently only 

15-30% metabolites can be identified in an assay.6 
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The unique challenges that metabolomics data analysis presents makes it one of the 

most difficult omics types to integrate. In particular, unlike transcripts and proteins (the 

targets of transcriptomic and proteomic assays, respectively), which can be mapped back to a 

source gene, metabolites are often the end result of multiple complex discrete biochemical 

pathways.7 Additionally, due to the current methods by which metabolites are identified, 

metabolomics data is often sparse and filled with missing values, leading to a secondary 

challenge for integration.8–12 Nevertheless, integration of metabolomics data may prove to be 

the most rewarding due to its relative proximity to phenotype, particularly when compared to 

genomics or transcriptomics.6,7 

There are many different tools available which attempt to solve this problem and 

integrate these multiple omics types in an effort to better capture how biological systems 

work. Integrative analysis of multi-omic data should provide a better picture of a biological 

system, allowing for greater enrichment of biological function.4  

1.2 Approaches for Integrative Analysis 
The challenge of integrative analysis has been tackled from many different angles.13 

Some approaches rely on biological annotation databases, while other approaches use purely 

statistical techniques. However, each approach suffers from unique drawbacks.  

Some approaches such as mixOmics and integrOmics use multivariate statistics 

methods to identify correlations between omics types.14–19 The strength of these methods lie 

in their ability to detect changes irrespective of knowledge of function, filling in the gaps 

where prior biological knowledge is lacking. However, many biologists do not have strong 

statistical knowledge, and lack the prerequisites to understand how these methodologies 

operate.20 This leads to either lack of use, or worse, misuse, by many scientists.  

Due to the explosion of multi-omic studies over the past decade, literature curation 

from omics experiments has been fruitful, leading to a large number of high-quality curated 

interaction databases.21–23 The ability to draw upon a wealth of biological knowledge from a 

programmatically-accessible database means that biology-based methods are now a viable 

option for integrative analysis approaches. Existing biological methods fall into two main 

categories: pathway-based and network/interaction-based. Pathway-based integration 

methods such as IMPaLA are often overly broad, lacking the granularity to report on effects 
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within predefined pathways.24,25 Other tools such as PaintOmics3 provide detailed insights 

into the enrichment results within a pathway, but both this approach and IMPaLA are 

confined to predefined pathways in biological databases, thus introducing bias.13,26,27 In 

contrast, network/interaction-based approaches leverage preexisting knowledge-bases 

without restricting results to predefined pathways.  

Network-based integrative analysis provides a useful framework for integration of 

multiple data types while simultaneously providing a framework for visualization of the 

results. By leveraging curated biological data to construct networks, the methods benefit from 

biological awareness, and have greater transparency than purely statistical methods. This is of 

key importance when developing tools for biological insight, as it improves the likelihood of 

correct interpretation of results and makes the methods accessible to a broader audience.  

Currently available methods for network-based integrative analysis vary in their 

accessibility. While tools like SAMNetWeb are provided via a web interface,28 other tools are 

implemented as downloadable software, or, like the tool MetScape, plug-ins to the popular 

network creation and visualization software Cytoscape.29,30 Unfortunately, many tools are 

implemented as programming libraries. This is true for both biologically-based and 

statistically-based methods such as pwOmics and mixOmics. Implementation of these 

methods requires knowledge of a programming language (typically R or Python).31 Finally, 

far too many tools suffer from poor documentation, implementation, or availability involving 

complex installation procedures, defunct web servers, or burdensome data preparation 

steps.32–34 

Compounding the problem, many network-based integrative analysis tools are 

inflexible, and can only operate in a set manner.17,29,35 For example, 3Omics allows the user to 

specify any 2-3 omics types: transcriptomics, proteomics, or metabolomics, but infers any 

missing types from literature searches; the user cannot opt out of this strategy.34 Other tools, 

like integrOmics, can only operate on two omics types at a time.18  

With all the caveats listed for the preexisting methodologies, it was apparent that 

there was a need for a transparent, intuitive, and flexible methodology for network-based 

integrative analysis of multi-omic data. Such a tool would be able to accept multiple types of 

omics data as inputs, and yield biologically-relevant, easily-interpretable results. Here I 
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present a method for network-based integrative analysis of multi-omic data that is 

transparent, intuitive, and flexible, and is executable with easy-to-use web-based tools.  

1.3 Network-Based Integrative Analysis 
1.3.1 Curated Data 

The approach adopted here for network-based integrative analysis revolved around 

curated data from InnateDB, MetaCyc, and KEGG.36–38  InnateDB curates protein-protein 

interactions (PPIs) to internationally acceptable standards as part of the International 

Molecular Exchange Consortium (IMEx).36 The high-quality, curated PPIs report on 

potential functional interactions between proteins.  

Curated information from MetaCyc and KEGG provide a method for linking 

metabolites to source proteins. By identifying direct protein interactors of metabolites, 

namely synthetic and degradative enzymes, metabolomics data can be linked to 

transcriptomic and proteomic data by way of PPI networks. 

1.3.2 Biological Interaction Networks 
PPI networks have been demonstrated in multiple studies to represent specific 

biological conditions and uncover novel, relevant information.39 Any network consists of a 

set of nodes connected by lines termed edges, which are the connections between the nodes. 

In a PPI network, proteins represent the nodes of the network and PPIs represent the edges 

which are the interactions between proteins. Certain nodes of a network containing many 

connections are referred to as “hubs” and can represent proteins playing key biological roles 

in PPI networks (discussed further in Chapter 2.4). NetworkAnalyst, a browser-based tool, 

provides an efficient platform for generation, visualization, and analysis of PPI networks.40  

For multi-omic integration specifically, PPI networks are useful in filling in gaps in 

proteomics and metabolomics data that occur due to the inherent limitations of these 

platforms. Unlike genomics and transcriptomics, which allow for coverage of the entire 

genome and transcriptome, proteomics and metabolomics are not able to report on every 

protein or metabolite level in the cell. Even when using scattershot approaches for metabolite 

profiling, various technologies pick up different sets of metabolites due to their unique 

separation characteristics, leaving gaps in reporting.6 Curated metabolite-protein and 
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protein-protein interaction data can supplement these gaps in knowledge in a biologically 

relevant way, filling in the gaps in our reporting with biologically meaningful data. Here I 

have extended the capability of these PPI networks to model biological systems by 

incorporating further curated data in the form of metabolite-protein interactions from the 

MetaCyc and KEGG databases. 

1.3.3 Network Types 
When constructing PPI networks from a specific set of proteins, it is possible use the 

curated interaction data in two ways. The first way is to incorporate only information about 

the connections between supplied proteins, using the database only to draw the edges 

between the provided seed nodes. The result of this method is called a “zero-order” network. 

The second way is to use the PPIs to incorporate first-order interactors of the supplied 

proteins, resulting in a network consisting of not only the supplied proteins as nodes, but also 

proteins from the database as nodes. This type of network is termed a “first-order” network. 

The incorporation of these interactors is a double-edged sword. They can allow for edges to 

be drawn between two seed nodes through an intermediate interactor, and thus expand the 

possible network that can be drawn, but can introduce “noise” into the network, in the form 

of first-order interactors that are not situated between seed nodes (“peripheral interactors”). 

The minimum-connected network is one solution to reduce the downside of first-order 

interactor incorporation. A minimum-connected network is generated by trimming a first-

order network according to a specific algorithm. Usually, this results in removal of peripheral 

interactors added to the network but retains interactors where they connect seed proteins. 

While this reduces the noise introduced to the network, it reduces the potential for 

discovering novel biological insight in first-order interactors.  

NetworkAnalyst generates minimum-connected networks from first-order 

interaction networks by calculating the shortest path between seed nodes, approximating the 

NP-hard solution to the Prize-Collecting Steiner Tree problem.41 The minimum-connected 

network is particularly well-suited to multi-omic integration, allowing interactors to fill in 

gaps in missing data from metabolomics or proteomics experiments. This is crucial in 

expanding the PPI network to include as many of the seed nodes as possible, ensuring that 

each omics method contributes meaningfully to the overall integration. 
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1.3.4 Building Networks 
Building such biological networks enables the user to simultaneously gather evidence 

from multiple components of biochemical pathways. This method described here 

incorporates proteins derived from transcriptomic data, proteomic data, and metabolic data 

(catabolic and anabolic pathways and their reactions), including protein breakdown 

(metabolomics). With support from multiple sources, these networks are likely to more 

accurately reflect the biological state under investigation. 

Curated interactome databases record biological connectedness and serve as a map by 

which to connect different omics data types. Specifically, the methods described here for 

network-based integrative analysis uses the properties of biological networks to facilitate 

integration between metabolites and other omics datasets by connecting metabolites to genes 

or proteins in a biological network via their biochemical reactions. MetaBridge, the tool 

developed in this thesis, identifies the reactions, enzymes, and proteins that interact with a 

given metabolite (i.e. ones involved with both production and degradation of the metabolite), 

providing a link back to a source gene (namely these proteins/enzymes).42 Then, the 

identified proteins can be integrated with proteomics, transcriptomics, or genomics data 

through networks constructed from curated interaction data.24,43   

Unlike correlation-based methods that are blind to the underlying biology, or 

pathway-based integration methods that are limited in scope, network-based integrative 

analysis is an intuitive and powerful tool for capturing the interconnected nature of processes 

occurring simultaneously within a cell. Altogether, this method serves as a powerful 

hypothesis generation tool, integrating multi-omic data to identify key targets of interest for 

future studies. 

My working hypothesis was that this network-based approach would demonstrate 

that data derived from metabolomics profiling and gene expression profiling report on the 

same biological processes. Additionally, I proposed to demonstrate how the information 

captured from this integration also provides novel biological information about distinct 

processes. 
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Chapter 2: Network-Based Integrative Analysis of Multi-Omic 

Data with MetaBridge 
The key to my methodology is its ability to incorporate metabolomics data along with 

transcriptomics or proteomics data in an integrative analysis. However, unlike proteomics 

and transcriptomics, metabolites cannot be directly mapped to a source gene. Therefore, I 

developed MetaBridge (https://metabridge.org) to provide a link between the metabolite and 

a protein, transcript or gene, by leveraging metabolite-protein interaction data from the 

KEGG and MetaCyc databases.38,42,44,45 

2.1 Metabolomics Data Analysis 
MetaBridge was developed as a web application to remove the need to know a 

programming language to use it. MetaBridge was developed in R, using the “Shiny” 

framework developed by RStudio.46 

MetaBridge operates with lists of metabolites IDs. Therefore, metabolites must be 

preprocessed externally to identify metabolites of interest and their corresponding metabolite 

IDs. Use of MetaboAnalyst is recommended for this step, as depicted in Figure 1.24  

Metabolites must be provided as a tabular dataset, specifically, a text delimited file. This file is 

parsed and displayed by MetaBridge. The column containing the metabolite IDs is selected 

by the user; MetaBridge can accept KEGG, HMDB, PubChem, or CAS IDs (Figure 2, Figure 

3). Metabolites are then mapped against the KEGG database or the MetaCyc database (Figure 

4, Figure 5). Here the method was described by following the mapping of an example 

compound, Pyruvate (KEGG: C00022, HMDB: HMDB00243, PubChem: 107735, CAS: 127-

17-3). 
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Figure 1. MetaBridge provides a central step interconnecting metabolomics data and 
network generation in an integrative analysis pipeline. Metabolomics data is preprocessed 
using MetaboAnalyst, identifying metabolites of interest. Metabolite IDs are uploaded to 
MetaBridge, outputting gene IDs of directly interacting enzymes. This gene list is uploaded to 
NetworkAnalyst for network-based integration and analysis. PPI networks are generated 
from each data type. Novel nodes are nodes present in the integrated network not found in 
either network generated from each individual data type. 
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2.1.1 MetaCyc 
MetaBridge maps provided metabolite IDs to their MetaCyc Object IDs (Figure 2A). 

In the above example, the ID is simply ‘Pyruvate’. Then, using pathway-tools,47 MetaBridge 

identifies all of the reactions in which the metabolite participates (Figure 2B). In the case of 

pyruvate, there are 26 reactions identified. Next, MetaBridge identifies all of the genes which 

Figure 2. MetaBridge maps metabolites to direct protein interactors. Bolded keywords 
represent user actions. MetaBridge processes uploaded metabolites and offers the full results 
for download (A) and a summary for viewing (B). If metabolites were mapped via KEGG, the 
results can be visualized in the context of KEGG pathways (C). Here each grid represents 
tabular data either as a CSV or in-memory. 
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encode for enzymes in these reactions (Figure 2C). Finally, MetaBridge identifies the Official 

Gene Symbols and Ensembl Gene IDs for each of the MetaCyc Gene IDs (Figure 2D). Taking 

the PEP-dephosphorylation reaction as an example, it maps to 2 genes—MetaCyc Gene IDs 

HS00906 and HS07088, two forms of pyruvate kinase. Finally, MetaBridge identifies the 

Official Gene Symbols (PKLR, PKM2) and Ensembl Gene IDs (ENSG00000067225, 

ENSG00000143627).  The results are displayed to the user (Figure 2E, F). 

2.1.2 KEGG 
If the user did not upload KEGG IDs, MetaBridge converts the metabolite IDs to 

KEGG IDs (Figure 2A). Pyruvate’s ID is C00022. Then MetaBridge identifies the KEGG-

annotated interacting enzymes by EC number (Figure 2B). In the case of pyruvate, there are 

23. Next, MetaBridge identifies the set of human genes that encode these enzymes (Figure 

Figure 3. Example of how a CSV file containing a list of metabolites is uploaded. After a 
file is uploaded, the data is displayed to the user. The column containing the metabolite IDs 
and the ID type is selected. 
 



11 

 

2C). Taking EC 1.2.4.1, pyruvate dehydrogenase, as an example, MetaBridge identifies 

PDHA1, PDHA2, and PDHB as the genes which encode the subunits of the enzyme pyruvate 

dehydrogenase. For each metabolite uploaded, MetaBridge also identifies the KEGG 

pathways in which each metabolite participates. The results are then displayed to the user 

(Figure 2E, F). 

2.2 Output 
For each uploaded metabolite, the user can see how many unique reactions in which 

each metabolite participates (MetaCyc, Figure 4), or many unique enzymes with which each 

metabolite interacts (KEGG, Figure 5), and how many unique genes encode the identified 

enzymes. The user can select any summarized metabolite to see its full mapping details. With 

the summary table and per-metabolite mapping table, users can explore their results for each 

metabolite separately. The table can be sorted by any column and contains hyperlinks to the 

Figure 4. Mapping metabolite IDs using e.g. the MetaCyc database provides results in a 
browser. After database selection and mapping, a table with each metabolite’s summary 
statistics is displayed. Each metabolite can then be clicked on to view further information.  
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relevant database for the entry. KEGG and MetaCyc are included, as is HMDB, Ensembl, and 

Entrez. The user can download the complete results of MetaBridge mapping as a CSV 

spreadsheet containing each metabolite, the reactions or enzymes for each metabolite, and 

the genes and gene IDs of each reactions or enzymes (Figure 2E).  If the user mapped via 

KEGG, they can choose a metabolite and visualize the reactions and enzymes enriched with 

Pathview (Figure 2G).48  Figure 6 shows direct interactors of pyruvate in KEGG’s “pyruvate 

metabolism” pathway. 

2.3 Network Integration 
PPI networks for each omics data type are then generated with NetworkAnalyst, as 

per Chapter 1.3. As an example, I generated a list of 11 (MetaCyc) or 23 (KEGG) genes that 

coded for proteins that interact with pyruvate. Additionally, the gene and/or protein list 

Figure 5. Mapping metabolites using e.g. the KEGG database enables results to be seen in 
a browser. After database selection and mapping, a table with each metabolite’s summary 
statistics is displayed. Each metabolite can then be clicked on to view further information. 
With the KEGG database, a metabolite can be selected for visualization using Pathview 
(Figure 6).  
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based on transcriptomic and/or proteomic investigations should be uploaded. For integrative 

analysis these lists would be combined to generate integrated networks (Figure 1). In the case 

of a bi-omic integration, three networks can be generated: 

1. Network seeded from metabolite interactors (metabolomics seed network) 

2. Network seeded from differentially expressed genes (transcriptomics seed 

network) 

3. Integrated network seeded from differentially expressed genes and metabolite 

interactors (metabolomics + transcriptomics) 

In the case of a tri-omic integration, combinations of integrated networks of interest would 

be constructed, with up to 7 possible combinations: 3 individual “seed” networks, 3 bi-omic 

networks, 1 tri-omic network.  

Figure 6. Mapping via KEGG allows for pathway visualization. Metabolites mapped against 
the KEGG database can be visualized in the context of KEGG pathways Pathview, a program 
which overlays pathway enrichment information onto KEGG pathways. Pathview color-
codes uploaded metabolites and directly interacting enzymes. Here pyruvate and its direct 
interactors of are displayed. 
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NetworkAnalyst builds PPI networks from these lists with a variety of parameters, as 

detailed by Xia et al., 2014, 2015.43,49 Zero-order networks are always preferred as they only 

incorporate seed proteins as nodes. First-order networks are sometimes necessary to 

integrate smaller datasets, but minimum-connected networks should be used in place 

wherever possible, as detailed in Chapter 1.3.  

2.4 Downstream Analysis 
An analysis technique often used to enrich biological networks is pathway-

enrichment analysis. Unfortunately, to assess the functional profile of the integrated network 

in comparison to the seed networks requires a complex comparison of ordered lists of 

pathway enrichment results. This problem has been the subject of intense study over the past 

decade.50,51   

I suggest that to best facilitate hypothesis generation, identification of individual 

nodes of interest is preferable. However, picking out particular nodes of interest from a 

network is challenging. To assist in reaching this goal it is possible to narrow down a search 

to two main groups of interest. The first group is those nodes or first level interactors that are 

present in all generated networks. These are proteins of interest that are represented across all 

omics types. These nodes represent biological consensus between the omics types integrated. 

This group may consist of proteins not previously considered of interest to the biological 

condition under investigation, based on any single omics analysis. The second group is nodes 

that are exclusive to the integrated network. These nodes represent novel biological insights 

that would not be revealed by study of any single omics type in isolation.  

Depending on the size of the inputs, the number of nodes common to all networks or 

unique to the integrated network may still be quite large and need to be narrowed-down to 

reach a reasonable list of novel targets for investigation. While many hubs of PPI networks 

play significant roles,52–54 relying on node degree as the sole proxy for importance in the 

condition under investigation has several notable pitfalls.55 Specifically, there are several 

confounding factors that may obfuscate the connection between connectivity and function. 

First, a protein can be highly connected due to nonspecific binding.56,57 These proteins are 

commonly referred to as “promiscuous”. Second, due to the nature of a manually-curated 

database, a high node degree can be representative of a well-studied protein. Finally, it should 
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be noted that a protein need not interact with many other proteins to perform a vital cellular 

function. There have been several efforts in recent years to develop metrics specific to biology 

that can estimate the importance of a node in a network.58–60 Chapter 3.1 describes one 

particular method for identifying nodes of interest while reducing noise. 
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Chapter 3: Applications of MetaBridge 
3.1 Sepsis Signature Integration 

The Hancock lab has previously shown that repeated exposure to LPS can induce an 

endotoxin-tolerant state in mononuclear cells.61 This endotoxin tolerant state has been shown 

to be a key factor that drives the high mortality rate of sepsis. A transcriptome signature 

derived in part from these endotoxin-tolerant cells can accurately differentiate between 

patients with and without sepsis. This 99-gene signature indicative of cellular 

reprogramming/endotoxin tolerance was derived from reprogrammed peripheral blood 

mononuclear cells (PBMCs).61 

Separately, a metabolite signature was shown by the Vogel lab to differentiate between 

patients in the ICU with confirmed cases of sepsis, and ICU controls. This 15-metabolite 

sepsis outcome differentiation signature, derived from NMR metabolite profiling of patients’ 

blood, was shown to differentiate between patients with and without sepsis in hospital 

intensive care units (ICUs).62 I integrated these two signatures to demonstrate network-based 

integration of multi-omic datasets with MetaBridge. 106 human genes were identified that 

encoded for proteins that directly interact with the 15 metabolites.  

3.1.1 Integration 
The two aforementioned sepsis signatures were integrated using the above strategy for 

network-based integrative analysis with MetaBridge and NetworkAnalyst, with one specific 

difference. To generate thousands of PPI networks at a time (for comparison to a null, as 

discussed in Chapter 3.1.3), it was necessary to generate PPI networks programmatically, 

rather than through NetworkAnalyst’s web interface. Therefore, I developed a method for 

local generation of PPI networks directly from the InnateDB database that replicates the 

method employed by NetworkAnalyst.40 Using a local copy of the InnateDB database (v5.5) 

downloaded via the EBI PSIQUIC registry,21 I generated minimum-connected PPI networks 

using the same seed node list that would otherwise be uploaded to NetworkAnalyst. 

Minimum-connected networks were generated using a shortest-path approximation of the 

solution to the Prize-Collecting Steiner Tree problem in the “SteinerNet” R package.63,64  

A handful of these networks generated with this method were selected at random and 
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compared to networks generated by NetworkAnalyst (data not shown). They were found to 

be over 90% similar. However, this comparison was conducted with interaction data from 

InnateDB v5.4, the version used by NetworkAnalyst. However, after the release of InnateDB 

v5.5, which included approximately 200,000 new curated interactions, the differences in 

locally-generated networks and networks generated on NetworkAnalyst increased. However, 

NetworkAnalyst is periodically updated with the latest copy of the InnateDB database, and 

these networks should reflect networks generated with future versions of NetworkAnalyst. 

Figure 7 shows a minimum-connected PPI network from the 99-gene endotoxin 

tolerance signature, the “transcriptomic network” (124 nodes). Using HMDB compound IDs 

from the 15-metabolite signature and mapping via MetaCyc with MetaBridge, I identified 42 

Figure 7. Minimum-connected 99-gene endotoxin tolerance signature PPI network. 
Minimum-connected PPI network of 99-genesepsis endotoxin tolerance signature. Nodes in 
the gene signature are highlighted in yellow. Nodes in the metabolites signature and gene 
signature are highlighted in red. Metabolite-protein mapping conducted with MetaCyc. 
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proteins that directly interacted with the 15 metabolites in the signature, Appendix A.62 

Figure 8 shows a minimum-connected PPI network from the directly interacting enzymes of 

the metabolite signature, the “metabolomic network” (45 nodes). Figure 9 presents a 

minimum-connected PPI network created by the union of the two gene lists, the “integrated 

network” (179 nodes). In each of Figures 7-9, the nodes were highlighted based on their 

source. Nodes that are found in the endotoxin tolerance gene expression signature are 

highlighted in yellow. Nodes that directly interact with compounds in the 15-metabolite 

signature are highlighted in green. Nodes that are found in both are highlighted in red. 

Figure 8. Minimum-connected 15-metabolite sepsis signature PPI network. Minimum-
connected PPI network of 15-metabolite sepsis outcome differentiation signature. Nodes in 
the metabolites signature and gene signature are highlighted in red. Metabolite-protein 
mapping conducted with MetaCyc. 
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3.1.2 Biological Conclusions 
In the combined network generated from both the endotoxin tolerance signature and 

enzymes derived from the metabolic profile (Figure 9), I was able to make three notable 

observations about sepsis signature integration. First, there was contribution to the network 

from both data types, with 42.5% of nodes directly from the endotoxin tolerance signature 

and 27.6% of nodes directly arising from metabolite interactors. Second, a number of hubs 

not present in either initial network were present in the integrated network, indicating the 

potential for novel biological insights. Finally, I observed that SLC7A11, a gene in the 

endotoxin tolerance signature, was present in all generated networks.  

Figure 9. Minimum-connected integrated signature PPI network. Minimum-connected 
PPI network integrating 99-gene endotoxin tolerance signature and 15-metabolite sepsis 
outcome differentiation signature. Nodes in the gene signature are highlighted in yellow. 
Nodes in the metabolite signature are highlighted in green. Nodes in the metabolites 
signature and gene signature are highlighted in red. Metabolite-protein mapping conducted 
with MetaCyc. 
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To further examine both of these observations, I investigated the 40 nodes which were 

unique to the integrated network. 18 of these nodes occurred in randomly-integrated 

networks less than 5% of the time (methods detailed further in Chapter 3.1.3 and Appendix 

D). Of the 40 nodes, 8 were seed nodes; of the 18 nodes, 4 were seed nodes. A full literature 

review is included in Appendix B. Briefly, however, 14/18 (78%) nodes of potential interest 

had preexisting implications in sepsis in the literature. By identifying the random discovery 

rate of nodes in the PPI networks, it is possible to determine which nodes were less likely to 

occur by chance. This indicates unique biology represented within a given PPI network, and 

provides a method for identifying nodes of interest without relying on other network 

measurements, such as node degree. This helps filter out promiscuous proteins but does not 

exclude key proteins central to the biological condition under investigation, as seen by the 

inclusion of MYD88, a protein vital to innate immune signaling. As noted in Appendix B.2, 

Four of these fourteen hubs that have not yet been documented in connection with sepsis and 

may be novel targets for study.  

These results underscore the reinforcement of biological understanding that can be 

captured by integration of multi-omic data, with many significant nodes of interest being 

linked to sepsis in the literature. Simultaneously, these results offer novel targets for study, 

demonstrating the ability of this methodology to generate hypotheses. While some of the 

nodes of interest highlighted here are well studied, others demonstrate links that are not as 

well-documented, and could provide useful targets for further study. Additionally, several 

nodes of interest have not been shown to be involved in sepsis in any capacity and could 

provide entirely new targets for study. Here I have shown that network-based integrative 

analysis of multi-omic data with MetaBridge provides consensus on biological function as 

well as novel information on a given biological condition. This method of integrative analysis 

is function based (since PPI interactions reflect functional relationships) and offers real-

world benefits when identifying potential targets or biomarkers (key hubs) for further 

investigation. The intersection of these technologies reveals novel targets of interest that 

would not otherwise have been uncovered from either technology alone, namely those hubs 

exclusive to the integrated network. 
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3.1.3 Comparison to Integration of Random Networks 
In an attempt to demonstrate that integration of multi-omic data is meaningful when 

compared to random noise, the integration of the two sepsis signatures was compared against 

multiple integrations of random genes and metabolites (termed here “random” integrations). 

This was a preliminary analysis intended to investigate the potential issues surrounding 

multi-omic integration. The results are described in Appendix D. Briefly, I randomly selected 

99 genes and 15 metabolites, and integrated these pairs of lists to determine the occurrence of 

nodes in an integrated network generated from randomly selected genes and metabolites. I 

conducted this process 1000 times, and termed rate of occurrence of a node in an integrated 

network (out of the 1000 generated networks) as the “random occurrence rate” for that node. 

I then determined the random occurrence rate for each node of the integrated sepsis network 

and termed the nodes which occurred in less than 5% of the randomly integrated networks as 

“non-random nodes”.  

I found that most of the random integrated networks showed greater connectivity 

than the specific sepsis network (Appendix D). On the other hand, the integrated sepsis 

network had among the lowest mean node degree and one of the smallest numbers of nodes, 

indicating that it was likely more compact than the random networks (Figure 19). However, 

the integrated sepsis network had a high proportion of non-random nodes (Figure 23). This 

analysis remains incomplete but is included here for context.  

One issue that should be addressed in future studies is the ability of the metrics 

utilized here to accurately characterize the “success” of a network-based integration. As 

observed above, the integration of gene expression and metabolomics data is somewhat 

dominated by the gene expression data, since transcriptomics reports on entire pathways 

rather than discrete end points.  On the other hand, a single metabolite can bridge several 

discrete enzymes from different pathways. This might explain the high degree of variance 

amongst randomly integrated networks containing as many as 800 nodes, in contrast to the 

relatively compact integrated sepsis network. Since I observed integration of specific 

metabolite interactors with the gene expression network, it is likely that the integration 

process would still provide biological insights.  
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3.2 HIPC Project 
With the integration of the sepsis signatures, I demonstrated integration of multi-

omic data with respect to specific signatures developed to distill significant biology from 

concise sets of molecules. However, experimental datasets are often far richer, containing a 

significant level of noise along with the data points of interest.  

A collaboration with the international Expanded Program on Immunization 

Consortium (EPIC) group of the Human Immunology Project Consortium (HIPC) provided 

Figure 10. Changes increased across all omics datasets during the first week of life. 
Differential expression or abundance of the blood cell transcriptome, plasma proteome, and 
plasma metabolome as a function of day of life, when indexed to day 0 (as soon as possible 
after birth). Changes increased across all omics platforms during the first week of life, but at 
days 3 and 7 of life there were an order of magnitude more differentially expressed genes 
than differentially abundant proteins or metabolites—note the log-scaled Y-axis. 
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a further opportunity to test network-based integrative analysis of multi-omic data with 

MetaBridge. This project provided datasets on early life transcriptional, metabolomic and 

proteomic responses in Gambian neonates (day 0-7 of life). With this project I was able to 

attempt a three-way multi-omic integration with metabolomics, proteomics, and 

transcriptomics data. Importantly, this provided an opportunity to apply network-based 

analysis of multi-omic data with MetaBridge to experimental data, rather than the signatures 

previously used.  

The HIPC datasets provided the challenge of an overwhelming transcriptomic 

signature when compared to the metabolome and proteome. Figure 10 highlights these 

differences. Changes to the transcriptome, proteome, and metabolome increased during the 

first week of life. On days 3 and 7 of life there was more than an order of magnitude more 

differentially expressed genes than differentially abundant proteins or metabolites. The 

difference in magnitude of results from these omics types is largely due to the sensitivity of 

the methods employed for metabolomics and proteomics and the body compartment (blood 

plasma) assayed. However, the differences are exacerbated further by limitations in 

experimental design when investigating neonates—only a small amount of blood can be 

drawn. While this small volume is not as impactful for transcriptomics, where small amounts 

of RNA can be easily detected and analyzed using modern sequencing technology, it presents 

a significant challenge for proteomics and metabolomics, where identification is performed 

based on the concentrations that exist in samples. This underscores the difference in 

integration of complete experimental data versus integration of signatures. Whereas with 

signature integration, 99 genes and 15 metabolites represent a more balanced signal from 

each method, with experimental data this is often not the case as discussed in Chapter 1.1 and 

summarized above.  

3.2.1 Integration 
When comparing day 1 of life to day 0 of life, comparable numbers of genes, proteins, 

and metabolites warranted a straightforward approach. For this comparison I integrated all 

three data types within a first order PPI network, as shown in Figure 11. Here, we can see 

relatively equal support in the network from the transcriptome, proteome, and metabolome.   
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However, when comparing days 3 and 7 of life to day 0, the disproportionately large 

signal from the transcriptome presented a challenge. This is likely related to the fact that 

transcriptomic reports on all the genes in the cell while proteomics and metabolomics report 

on more abundant proteins and endpoints of metabolism. I tackled this challenge with two 

approaches. First, I integrated all three omics types directly, utilizing zero-order networks to 

limit the number of nodes in the network (Figures 11-13). This technique provided limited 

success, however, as the disproportionately large transcriptomic seed list dominated the 

Figure 11. Multi-Omic Changes on Day 1 of Life vs Day 0. Shown is the integrated first-
order PPI network of multi-omic changes on day 1 of life vs day 0 of life. With only modest 
changes in expression/abundance across all datasets, a relatively small and poorly connected 
PPI network was generated, even when first-order interactors were included.  
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signal of the network. Therefore, I also performed a three-way integration by integrating the 

proteome and metabolome, then looking for transcriptome hits within these networks 

(Figure 14).   

Despite the lack of transcriptome signal seeding the network, I observed a proportion 

of the network represented by the transcriptome signature. Pictured in blue, these nodes were 

present both as first-order interactors as well as connections between proteome and 

metabolome nodes, showing significant overlap with the transcriptome as well. This indicates 

that the data from these omics platforms report on the same biological phenomena. Figure 15 

provides a quantitative breakdown of the composition of each of these networks. By 

performing a three-way integration creating a zero-order network, I reduced the amount of 

noise in the network by eliminating incorporation of first-order interactors. However, this 

came at the expense of a transcriptome-dominated network, with less proportional support 

from each omics type. Additionally, this approach reduced the overlap between omics types, 

as demonstrated by the reduced number of nodes represented by multiple omics types (from 

15 down to 8). This illustrates one of the trade-offs of the different network types discussed in 

Chapter 1.3.3.  
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Figure 12. By day 3 of life, transcriptional changes overwhelmed a multi-omic network. 
Shown is an integrated zero-order PPI network of multi-omic changes on day 3 of life vs. day 
0 of life. Even without first-order interactors, a large network was generated, dominated by 
the signal from the transcriptome. 
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Figure 13. On day 7 of life, transcriptional changes overwhelmed a multi-omic network. 
Shown is an integrated zero-order PPI network of multi-omic changes on day 7 of life vs day 
0 of life. Even without first-order interactors, a large network was generated, dominated by 
the signal from the transcriptome. 
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Figure 14. A bi-omic integrated network can be useful when there is a disproportionately 
large transcriptome signal. Shown is a first-order PPI network generated from integrated 
metabolome and proteome data comparing day 7 of life to day 0 of life. 
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However, the bi-omic integration strategy is not without issues, as the number of interactors 

incorporated was large, increasing the amount of noise (nodes with only a single interaction) 

in the network.  

3.2.2 Biological Conclusions  
The integrated networks shown here provided corroboration of other observations 

within the EPIC study, and also provided novel biological insights. From each day of life, the 

integrated networks were compared to each omics type in isolation. Additionally, 

collaborators applied data-driven statistical methods for integrative analysis such as those 

discussed in Chapter 1.2 involving multivariate (“data integration analysis for biomarker 

Figure 15. Bi-omic integration improved the proportions of omic representation but 
incorporated large numbers of first order-interactors. Shown is a comparison of the node 
composition from the two types of networks generated to integrate multiple omics types 
when comparing day 7 to day 0 of life. Notable, the number of seeds from multiple omics 
types was increased in the bi-omic integration, compared to the tri-omic integration (from 8 
to 15). 
 



30 

 

discovery using latent components”) and multifactorial (“multi-scale, multifactorial response 

network”) approaches (data not shown).14,19,65  

The integrated networks were enriched for interferon and complement pathways 

across the first week of life, confirming data obtained from individual omics types. 

Additionally, the integrated networks were enriched for cellular replication and creatine 

metabolism on day three of life, as well as fibrin clotting, adaptive immunity, and phagosome 

activity on day seven of life. These pathways were not significantly enriched in any omics type 

alone (data not shown). 

Importantly, when the results from the network-based integration were compared to 

other aforementioned integrative analysis methods, there was significant overlap in their 

results. Specifically, 249 pathways were enriched across all methods, with 34 pathways 

enriched in all three methods (p < 0.001). Among these consensus-enriched pathways were 

the previously mentioned interferon and complement pathways. This indicates significant 

biological consensus from all integrative analysis approaches.  

This demonstrates that network-based integrative analysis is a valuable tool for 

informing biological consensus and uncovering novel biological insights. Crucially, I have 

shown that the methodology presented here is effective when applied to complex 

experimental datasets, and not just when applied to signatures.   
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Chapter 4: Conclusion 
In this thesis I have presented a novel integrative analysis method for multi-omic 

data, with a focus on integration of metabolomics data. Network-based integrative analysis 

with MetaBridge offers meaningful biological integration of multiple data types due to its 

emphasis on interaction-based mapping via PPIs, an accurate proxy for biological function. 

Furthermore, I have shown that integrative analysis of multi-omic data with 

MetaBridge is applicable to integration of multi-omic datasets from multiple sources. 

Network-based integrative analysis is powerful when leveraging curated PPIs, but the 

flexibility of this methodology allows researchers to use other interactome and metabolome 

sources to expand the scope of their investigation. One can even do so directly in 

NetworkAnalyst by choosing a different interactome source.  

4.1 Applications 
Here I have shown how network-based integrative analysis of multi-omic data with 

MetaBridge and NetworkAnalyst can be used as a powerful, intuitive, and flexible web-based 

tool for hypothesis generation. I have shown how the methodology can integrate multi-omic 

datasets—in particular, metabolomics data—with curated metabolite-protein and PPI data. 

Additionally, I have demonstrated how the method can be adapted for use with two and 

three, and potentially even more omics types.  

 Despite the preliminary findings that networks integrated from biologically-similar 

multi-omic signatures did not differ qualitatively from randomly integrated networks in key 

network statistics, I showed that the biology represented in such networks remained unique. 

Furthermore, investigation of these nodes of interest showed a striking enrichment in genes 

coding for proteins pertinent to sepsis, as well as several which could serve as novel targets 

for investigation. 

Finally, I illustrated how data of varying orders of magnitude can be meaningfully 

integrated to provide relevant biological insight, albeit involving certain tradeoffs. I 

demonstrated how results from the multi-omic integration can be filtered for relevance and 

promiscuity, ensuring results to not simply consist of the most high-connected proteins in a 

given interactome.   
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4.2 Limitations 
Network-based integrative analysis of multi-omic data with MetaBridge and 

NetworkAnalyst is not without its limitations.  

4.2.1 Reliance on Annotations 
The first limitation of the methodology described here is its reliance on curated 

metabolite-protein interactions and PPIs. MetaBridge can use MetaCyc or KEGG to identify 

proteins which interact with a given set of metabolites and my results show that even using 

these two databases for metabolite interactor identification causes differences in output. 

Additionally, the methodology relies on InnateDB for curated PPIs to construct its PPI 

networks. Therefore, this integrative analysis technique de-emphasizes poorly-studied 

proteins, and is unable to identify uncharacterized targets, a common limitation in all 

bioinformatics analyses of omics datasets. However, I believe the strength of the method lies 

in its ability to identify novel functions of known targets (pathways and perhaps ontologies) 

based on these annotations. Furthermore, the use of random discovery rate as a filtration 

mechanism should eventually allow for less-studied proteins surface as potential targets of 

interest.  

4.2.2 Promiscuous Proteins 
Another limitation of network-based integrative analysis is the propensity for 

“promiscuous” proteins to be overrepresented. Promiscuous proteins are those that by their 

nature interact with numerous other proteins in cells and thus serve as a type of glue that can 

interconnect proteins with disparate functions. The method presented here integrates PPI 

networks, which can feature highly-interconnected proteins as network hubs.  

These proteins may be key players in the biological condition under investigation, or 

they may interact with many things in the cell in a manner irrelevant to the biological 

question under investigation. One example of this is the protein ubiquitin, which occurs, as 

its name suggests, ubiquitously. Ubiquitin tags proteins for degradation, and thus curation 

has shown it, and the enzymes mediating its addition and removal, to interact with many 

proteins in the cell.   
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Unfortunately, aside from well-known promiscuous proteins (e.g. UBC, HNF4A) it 

can be difficult to determine what edges of a PPI network are driven by nonspecific binding, 

and thus determine which hubs represent promiscuous proteins.66 Therefore, aside from 

these well-characterized promiscuous proteins, highly-connected proteins cannot be 

unilaterally removed from a given PPI network, as the edges could represent significant, 

specific binding. However, strategies can be employed to downplay their significance of 

suspected promiscuous proteins in the results generated from such PPI networks.  

Methodologies such as the calculation of random discovery rate described here can be 

employed to prevent presentation of these promiscuous proteins as potential targets of 

interest. In this regard, it might be very useful to generate a reference list of these proteins. 

Additionally, other network analysis techniques could be implemented to reduce the effects 

of these promiscuous proteins on the users’ hypotheses. For example, the use of pathway 

enrichment analysis, as described in Chapter 4.4.2.  

4.3 Recent Developments 
Since the inception of this project, more multi-omic integration methods targeted to 

individuals with little technical experience have come onto the market. In particular, 

OmicsNet was recently released, employing many of the methods discussed in this thesis.67 

Currently, OmicsNet is principally a tool for visualization of multi-omic datasets, rather than 

analysis. However, in contrast to the methods detailed in this thesis, OmicsNet provides a 

single web interface for integration of multiple data types in a network-based manner, also 

accepting transcription factor binding data and microRNA data.  

OmicsNet is further limited in is to metabolite-protein mapping, using only the the 

KEGG and Recon2 databases, not incorporating data from the richly-curated BioCyc 

platform, one of the strengths of MetaBridge. Furthermore, OmicsNet does not describe 

methods for meaningful extraction of targets of interest from the resultant networks, as 

described here. Currently, OmicsNet is principally a tool for visualization of multi-omic 

datasets, rather than analysis.  
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4.4 Future Directions 
4.4.1 Promiscuous Protein Removal 

One undertaking of particular interest would be to examine the role of promiscuous 

proteins in integrated networks. Certain promiscuous proteins recur in PPI networks without 

pertinence to the biological state under investigation. Therefore, it would be interesting to 

examine how networks change when these proteins are removed, and what qualities of a 

network predict how it will change. Would the network structure remain mostly intact, 

indicating these proteins were not integral to the network? Or would the network splinter 

into multiple subnetworks, indicating the protein was integral to the network’s structure, and 

thus, might impact the biological conclusions? Would networks generated randomly splinter 

more or less often than networks generated from real biological data? If the former, a 

network surviving promiscuous protein removal could be a good indication of network 

cohesion.  

In pursuing this question, it would be very important to define a list of promiscuous 

proteins as those proteins which are the most highly connected in the interactome database 

InnateDB. If such a list was curated, it would also be possible to control for these 

promiscuous proteins in future analyses, rather than remove them from networks. 

4.4.2 Pathway Enrichment Comparisons 
Another undertaking that could prove fruitful would be expanding the analysis 

methods of the resulting integrated networks. One such method of analysis would be 

pathway enrichment. As mentioned in Chapter 2.4, meaningful comparison of pathway 

enrichment analyses is currently a major goal in the field. It would be interesting to apply 

some of the more recent concepts and pathway analysis tools developed in order to facilitate a 

deeper understanding of the biology represented by these integrated networks, particularly 

when comparing two similar networks. Specifically, how does the pathway enrichment of a 

PPI network alter when metabolomics data is incorporated? Which pathways become more 

significantly enriched, and what new pathways appear? 
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4.4.3 Random Discovery Rate 
One key to the success of this strategy will be filtering out nodes with a high 

likelihood to occur at random to identify nodes of interest. Preliminary exploration of this 

issue was performed in Appendix D. Unfortunately, this rate likely needs to be calculated 

separately for every different set of inputs using computationally-demanding network 

simulations. Therefore, it would be a useful addition to such an integrative analysis tool to 

provide pre-calculated metrics for random discovery rates with various parameters. This 

could aid researchers in deciding which nodes of their networks are unique, and not likely to 

have shown up at random.  

4.4.4 Further Integrations 
Another direction would be further applications of network-based integrative analysis 

with MetaBridge to provide further biological comparisons to appropriate nulls. Here I 

applied the methodology to two datasets—one signature integration and one experimental 

data integration. However, it would be useful to apply the methodology to more, varied, 

datasets to further examine its advantages and drawbacks.  

4.5 Concluding Remarks 
The research described in this thesis provides novel approaches for the integrative 

analysis of multi-omic data. I detailed the landscape of tools currently available for integrative 

analysis of multi-omic data and described how this methodology can be utilized to obtain 

biological insights. Finally, I established the effectiveness of this methodology in multiple use 

cases and specified how the methodology could be improved in the future.  
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Appendices 
Appendix A  - 15-Metabolite Signature Mapping to Enzymes and Genes 
Table 1. 15-metabolite sepsis signature maps to human enzymes and genes via the 
MetaCyc database. Shown here is the 15-metabolite sepsis signature represented in HMDB 
IDs. It has been mapped to its directly interacting enzymes, and those enzymes human genes 
via the MetaCyc database.  
HMDB MetaCyc 

Compound 
ID 

MetaCyc Reaction ID MetaCyc 
Gene ID 

Gene 
Symbol 

Ensembl ID 

HMDB00159 PHE RXN66-445 HS09679 SLC3A2 ENSG00000168003 

HMDB00159 PHE RXN66-445 HS02481 SLC7A5 ENSG00000103257 

HMDB00357 CPD-335 3-HYDROXYBUTYRATE-
DEHYDROGENASE-RXN 

HS08579 BDH1 ENSG00000161267 

HMDB00357 CPD-335 3-HYDROXYBUTYRATE-
DEHYDROGENASE-RXN 

HS08987 BDH2 ENSG00000164039 

HMDB00294 UREA AGMATIN-RXN HS04051 AGMAT ENSG00000116771 
HMDB00294 UREA ARGINASE-RXN HS04231 ARG1 ENSG00000118520 

HMDB00294 UREA ARGINASE-RXN HS01388 ARG2 ENSG00000081181 

HMDB00201 O-
ACETYLCA
RNITINE 

CARNITINE-O-
ACETYLTRANSFERASE-RXN 

HS01816 CRAT ENSG00000095321 

HMDB00516 GLC 3.2.1.106-RXN HS03863 MOGS ENSG00000115275 

HMDB01875 METOH RXN-13425 HS11616 CES1 ENSG00000159398 

HMDB01875 METOH RXN-13424 HS11616 CES1 ENSG00000159398 
HMDB00148 GLT RXN-2901 HS02477 ABAT ENSG00000183044 

HMDB00148 GLT PSERTRANSAMPYR-RXN HS05946 PSAT1 ENSG00000135069 

HMDB00148 GLT RXN-11430 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-11430 HS01949 GGT5 ENSG00000099998 
HMDB00148 GLT RXN-11433 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-11433 HS01949 GGT5 ENSG00000099998 

HMDB00148 GLT RXN-11432 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-11432 HS01949 GGT5 ENSG00000099998 
HMDB00148 GLT RXN-11435 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-11435 HS01949 GGT5 ENSG00000099998 

HMDB00148 GLT RXN-11434 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-11434 HS01949 GGT5 ENSG00000099998 
HMDB00148 GLT RXN-11431 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-11431 HS01949 GGT5 ENSG00000099998 

HMDB00148 GLT RXN-11429 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-11429 HS01949 GGT5 ENSG00000099998 
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HMDB MetaCyc 
Compound 
ID 

MetaCyc Reaction ID MetaCyc 
Gene ID 

Gene 
Symbol 

Ensembl ID 

HMDB00148 GLT RXN-18759 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-18759 HS01949 GGT5 ENSG00000099998 

HMDB00148 GLT RXN-11428 HS01957 GGT1 ENSG00000100031 
HMDB00148 GLT RXN-11428 HS01949 GGT5 ENSG00000099998 

HMDB00148 GLT RXN-11664 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-11664 HS01949 GGT5 ENSG00000099998 

HMDB00148 GLT RXN-13675 HS01957 GGT1 ENSG00000100031 
HMDB00148 GLT RXN-13675 HS01949 GGT5 ENSG00000099998 

HMDB00148 GLT RXN-19572 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-19572 HS01949 GGT5 ENSG00000099998 

HMDB00148 GLT FORMYLTHFGLUSYNTH-RXN HS06237 FPGS ENSG00000136877 
HMDB00148 GLT 2.6.1.22-RXN HS02477 ABAT ENSG00000183044 

HMDB00148 GLT 4-HYDROXYGLUTAMATE-
AMINOTRANSFERASE-RXN 

HS04858 GOT2 ENSG00000125166 

HMDB00148 GLT ALANINE-AMINOTRANSFERASE-
RXN 

HS09610 GPT ENSG00000167701 

HMDB00148 GLT ALANINE-AMINOTRANSFERASE-
RXN 

HS09332 GPT2 ENSG00000166123 

HMDB00148 GLT RXN-19604 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-19604 HS01949 GGT5 ENSG00000099998 

HMDB00148 GLT RXN-19627 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-19627 HS01949 GGT5 ENSG00000099998 
HMDB00148 GLT RXN-10721 HS03239 AADAT ENSG00000109576 

HMDB00148 GLT RXN-10721 HS06422 CCBL2 ENSG00000137944 

HMDB00148 GLT PSERTRANSAM-RXN HS05946 PSAT1 ENSG00000135069 

HMDB00148 GLT GABATRANSAM-RXN HS02477 ABAT ENSG00000183044 
HMDB00148 GLT 5-OXOPROLINASE-ATP-

HYDROLYSING-RXN 
HS11319 OPLAH ENSG00000178814 

HMDB00148 GLT PRPPAMIDOTRANS-RXN HS05157 PPAT ENSG00000128059 
HMDB00148 GLT RXN-19607 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-19607 HS01949 GGT5 ENSG00000099998 

HMDB00148 GLT RXN-19608 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-19608 HS01949 GGT5 ENSG00000099998 
HMDB00148 GLT RXN-6641 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-6641 HS01949 GGT5 ENSG00000099998 

HMDB00148 GLT RXN-18176 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-18176 HS01949 GGT5 ENSG00000099998 
HMDB00148 GLT FGAMSYN-RXN HS11329 PFAS ENSG00000178921 
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HMDB MetaCyc 
Compound 
ID 

MetaCyc Reaction ID MetaCyc 
Gene ID 

Gene 
Symbol 

Ensembl ID 

HMDB00148 GLT NAD-SYNTH-GLN-RXN HS10587 NADSY
N1 

ENSG00000172890 

HMDB00148 GLT RXN-12618 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-12618 HS01949 GGT5 ENSG00000099998 

HMDB00148 GLT RXN-19578 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-19578 HS01949 GGT5 ENSG00000099998 
HMDB00148 GLT 2-AMINOADIPATE-

AMINOTRANSFERASE-RXN 
HS03239 AADAT ENSG00000109576 

HMDB00148 GLT RXN-13697 HS04858 GOT2 ENSG00000125166 

HMDB00148 GLT DIHYDROFOLATESYNTH-RXN HS06237 FPGS ENSG00000136877 

HMDB00148 GLT GLUTKIN-RXN HS00730 ALDH18
A1 

ENSG00000059573 

HMDB00148 GLT GLUTDECARBOX-RXN HS05215 GAD1 ENSG00000128683 

HMDB00148 GLT GLUTDECARBOX-RXN HS06208 GAD2 ENSG00000136750 
HMDB00148 GLT GLUTCYSLIG-RXN HS00071 GCLC ENSG00000001084 

HMDB00148 GLT GLUTCYSLIG-RXN HS00434 GCLM ENSG00000023909 

HMDB00148 GLT GLUTAMATE-DEHYDROGENASE-
NADP+-RXN 

HS07548 GLUD1 ENSG00000148672 

HMDB00148 GLT GLUTAMATE-DEHYDROGENASE-
RXN 

HS07548 GLUD1 ENSG00000148672 

HMDB00148 GLT GLUTDEHYD-RXN HS07548 GLUD1 ENSG00000148672 

HMDB00148 GLT RXN-14116 HS14757 ALDH4A
1 

ENSG00000159423 

HMDB00148 GLT TRANS-RXN-211 HS09679 SLC3A2 ENSG00000168003 

HMDB00148 GLT TRANS-RXN-211 HS07701 SLC7A11 ENSG00000151012 
HMDB00148 GLT 3.4.13.7-RXN HS00367 DPEP1 ENSG00000015413 

HMDB00148 GLT 3.4.13.7-RXN HS09532 DPEP2 ENSG00000167261 

HMDB00148 GLT 2.6.1.7-RXN HS03239 AADAT ENSG00000109576 

HMDB00148 GLT 2.6.1.7-RXN HS06422 CCBL2 ENSG00000137944 
HMDB00148 GLT 2.6.1.7-RXN HS04858 GOT2 ENSG00000125166 

HMDB00148 GLT ORNITHINE-GLU-
AMINOTRANSFERASE-RXN 

HS00832 OAT ENSG00000065154 

HMDB00148 GLT 1.5.1.9-RXN HS00244 AASS ENSG00000008311 

HMDB00148 GLT RXN-12825 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-12825 HS01949 GGT5 ENSG00000099998 
HMDB00148 GLT RXN-19602 HS01957 GGT1 ENSG00000100031 

HMDB00148 GLT RXN-19602 HS01949 GGT5 ENSG00000099998 
HMDB00148 GLT FOLYLPOLYGLUTAMATESYNTH-

RXN 
HS06237 FPGS ENSG00000136877 

HMDB00517 ARG GLYCINE-AMIDINOTRANSFERASE-
RXN 

HS10376 GATM ENSG00000171766 
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HMDB MetaCyc 
Compound 
ID 

MetaCyc Reaction ID MetaCyc 
Gene ID 

Gene 
Symbol 

Ensembl ID 

HMDB00517 ARG ARGINASE-RXN HS04231 ARG1 ENSG00000118520 

HMDB00517 ARG ARGINASE-RXN HS01388 ARG2 ENSG00000081181 

HMDB00517 ARG ARGDECARBOX-RXN HS06971 ADC ENSG00000142920 
HMDB00517 ARG RXN66-448 HS09679 SLC3A2 ENSG00000168003 

HMDB00517 ARG RXN66-448 HS02481 SLC7A5 ENSG00000103257 

HMDB00517 ARG RXN66-448 HS02450 SLC7A6 ENSG00000103064 

HMDB00517 ARG ARGSUCCINLYA-RXN HS10034 ASL ENSG00000169910 
HMDB00517 ARG TRANS-RXN66-1231 HS09679 SLC3A2 ENSG00000168003 

HMDB00517 ARG TRANS-RXN66-1231 HS02450 SLC7A6 ENSG00000103064 

HMDB00167 THR RXN-15122 HS05952 SDS ENSG00000135094 

HMDB00167 THR RXN-15122 HS06616 SDSL ENSG00000139410 
HMDB00167 THR THREDEHYD-RXN HS05952 SDS ENSG00000135094 

HMDB00167 THR THREDEHYD-RXN HS06616 SDSL ENSG00000139410 
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Appendix B  -  Literature Review of Nodes of Interest 
* Potential involvement in sepsis. 
** Confirmed involvement in sepsis. 

B.1 Nodes Common to All Networks 
SLC7A11* – Solute Carrier Family 7 Member 11 

• Present in the endotoxin tolerance signature.61 

B.2 Nodes Unique to Integrated Network 
AVP** – (Arginine) Vasopressin 

• Blood pressure is a key factor in sepsis survival. Therefore, it should not be a surprise 

that vasopressin plays a key role in sepsis and is a key treatment option for septic 

patients. 

• However, its exact role, and use as a treatment option has been highly controversial.68 

CRAT* – Carnitine O-Acetyltransferase 

• Related to fatty-acid oxidation and ketogenesis in the liver, which may play a role in 

sepsis.69–71 

DMWD – DM1 Locus, WD Repeat Containing 

• No documented link to sepsis. 

ERG28 – Ergosterol Biosynthesis 28 Homolog 

• No documented link to sepsis. 

GATM* – Glycine Amidinotransferase 

• May be related to arginine, homoarginine availability, which is key to nitric oxide 

production during septic immune response.72,73 

o Has been shown to play a role in stroke outcomes.74 

HBB** – Hemoglobin Subunit Beta 

• Sepsis affects red blood cells dramatically—low hemoglobin concentration is an 

indicator of sepsis.75  

• HBB has been used for early diagnosis of sepsis.76 
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ILK* – Integrin Linked Kinase 

• Mitogen-activated protein kinases regulate vascular reactivity after hemorrhagic 

shock through myosin light chain phosphorylation pathway77 

o “It has been reported that integrin-linked kinase (ILK) … can regulate the 

calcium sensitivity of smooth muscle…” 

o “The protein expression and activity of ILK of [superior mesenteric arteries] 

were significantly reduced after the 2-hour shock…” 

ITGB8** – Integrin Subunit Beta 8 

• Present in the endotoxin tolerance signature.61 

• Upregulated in monocytes after LPS treatment.78,79 

LAMP2* – Lysosomal Associated Membrane Protein 2 

• Associated with heart disease and key in autophagy. 

• “Lysosomal membrane-associated protein-2 (LAMP2), which is essential to the 

maintenance of lysosomal functions in the heart, is depleted transiently but restored 

rapidly during LPS administration in the rat.”80 

• Present in elevated amounts in the blood of septic patients.81–83 

MMP2* – Matrix Metallopeptidase 2 

• Matrix metalloproteinases and their inhibitors have been implicated in sepsis.84,85  

MYD88** – Myeloid Differentiation Primary Response 88 

• Integral in the activation of NF-κB, MYD88 is used my almost all TLRs.  

NT5C3A* – 5'-Nucleotidase, Cytosolic IIIA 

• While not directly implicated in sepsis, NT5C3A was “…induced by type I interferons 

(IFNs) in multiple cell types and that NT5C3A suppressed cytokine production through 

inhibition of the nuclear factor κB (NF-κB)”86 

PAPLN* – Papilin 

• Present in the endotoxin tolerance signature.61 

• An ADAMTS-like protein. Shares homology with metalloproteinases (see MMP2). 
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PKM* – Pyruvate Kinase M1/2 

• “…responsible for the final and rate-limiting reaction step of the glycolytic pathway.”87 

• Required for expression of PD-L188 

• The role of PKM in sepsis has been both directly and indirectly implicated in multiple 

studies.87–91 

RGS3* – Regulator of G Protein Signaling 3 

• “RGS1 and RGS16 are induced in response to bacterial lipopolysaccharide and 

stimulate c-fos promoter expression.” However, RGS3 was not examined in this 

study.92  

• RGS3 has been characterized in human septic sera.93 

SRSF11 – Serine and Arginine Rich Splicing Factor 11 

• No documented link to sepsis. 

SVIL* – Supervillin 

• May play a role in Chlamydia and E. coli pathogenesis.94,95 

• Was found to be induced by exposure to LPS.96 

YES1 – YES Proto-Oncogene 1, Src Family Tyrosine Kinase 

• No documented link to sepsis. 
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Appendix C  - Integrated Networks Generated with KEGG Mapping 
MetaBridge allows for mapping metabolites to protein interactors via KEGG and MetaCyc. 

Although the use of MetaCyc was demonstrated in this thesis, the use of KEGG has been 

included here for thoroughness.  

 

Figure 16. 99-gene Endotoxin Tolerance Signature PPI Network (KEGG). Shown is a 
minimum-connected PPI network of the 99-gene sepsis/endotoxin tolerance signature. 
Nodes in the gene signature are highlighted in yellow. Nodes common to both the metabolite 
signature and gene signature are highlighted in red. Metabolite-protein mapping was 
conducted with KEGG. 
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Figure 17. 15-metabolite Sepsis Signature PPI Network (KEGG). Shown is a minimum -
connected PPI network of the 15-metabolite sepsis outcome differentiation signature. Nodes 
in the metabolite signature are highlighted in green. Nodes common to both the metabolite 
signature and gene signature are highlighted in red. Metabolite-protein mapping was 
conducted with KEGG. 
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Figure 18. Integrated Signature PPI Network (KEGG). Shown is a minimum-connected 
PPI network integrating the 99-gene endotoxin tolerance signature and the 15-metabolite 
sepsis outcome differentiation signature. Nodes in the gene signature are highlighted in 
yellow. Nodes in the metabolite signature are highlighted in green. Nodes common to the 
metabolite signature and gene signature are highlighted in red. Metabolite-protein mapping 
was conducted with KEGG. 
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Appendix D   - Comparison to Null 
To demonstrate that the integration of multi-omic data generated meaningful 

biological insights, the integration of the two sepsis signatures was compared against 

randomly generated combined lists of 99 genes and proteins interacting with 15 metabolites. 

Ninety-nine random genes were selected from the InnateDB database (v5.5) and fifteen 

random metabolites were selected from the MetaCyc database, then mapped via MetaCyc to 

their directly interacting proteins.97 This random selection was repeated 1000 times, and PPI 

networks were generated from the resulting sets. Seed-initialized pseudorandom number 

generation was used to ensure reproducible randomness. These random networks were 

integrated, and various parameters of the resultant networks were compared. Certain biases 

that this selection process and caveats to this preliminary analysis are discussed in Appendix 

D.5. 

D.1 Hypothesis 
I hypothesized that the integration of the sepsis signatures would result in a more 

highly connected network, with the two seed networks overlapping more substantially than 

would random networks. The two signatures would have reported on the same biological 

phenomena, while randomly selected genes and metabolites would not. Furthermore, I 

hypothesized that these integrated sepsis networks would represent distinct biological 

phenomena, rather than random noise.  

To test my first hypothesis, I examined the connectivity and overlap of the integrated 

networks. To test my second hypothesis, I calculated the random discovery rate of each node 

of the sepsis-integrated networks to determine which nodes would appear at random, and 

which represented significant biological phenomena.  

D.2 Connectivity 
To begin, I compared the connectivity of the integrated sepsis network with all of the 

randomly integrated networks. I found significantly less connectivity in the sepsis integrated 

networks than the random networks, as measured by both degree and betweenness scores, 

two widely-used network centrality scores (Table 2). It was not expected that randomly 

integrated genes would show high connectivity.  
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As mentioned in Chapter 2.3, there are two primary groups of interest in a bi-omic 

integration. The first is the nodes that are exclusive to the integrated network and are not 

present in either of the two seed networks. These nodes represent potential novel biology 

revealed by the integration. The second group is the nodes that are present in all networks, 

including the seed and integrated networks. These nodes represent potential consensus 

biology.  

Table 2. Randomly integrated networks were significantly more connected than the sepsis 
integrated network. Welch Two Sample t-test Comparing Network Connectivity of Null and 
Sepsis Integrated Networks. Comparison in network connectivity between 1000 randomly 
integrated PPI networks and the integrated sepsis PPI network. 

Centrality 
Score 

Diff μ1 null μ2 
sepsis 

t SE df CI95% p Cohen's 
d 

Power 

Degree 18.3 42.3 24.1 7.2 2.5 180.9 (13.3 - 23.3) <0.001 0.17 0.63 
Betweenness 30121 71751 41630 7.0 4327 180.9 (21584 - 38658) <0.001 0.16 0.59 

Table 3. Nodes common to all networks were more connected than the network as a whole 
in randomly generated networks. Welch two sample t-test comparing Network Connectivity 
of common nodes to whole network. Comparison between mean node degree of nodes 
common to all generated (seed and integrated) networks to mean node degree of all nodes in 
the integrated network. 

Integration Diff μ1 common μ2 whole t SE df CI95% p Cohen's d Powe
r 

Sepsis -3.7 20.3 24.1 -0.19 19.6 180 (-42.3 - 34.9) 0.85 -0.11 0.05 
Null 32.4 74.7 42.3 7.2 4.5 3729 (23.6 - 41.3) <0.001 0.29 1 

 Interestingly, in the case of the sepsis integrated network, this did not hold true. The 

mean node degree of nodes common to all networks was lower than the mean node degree of 

the entire integrated network. This may reflect the fact that sepsis concerns the immune 

response which reflects some of the most common elements represented within the gene 

expression networks.61  According to some estimates, more than 5000 genes are involved in 

immunity.21,98  

However, nodes unique to the integrated network in each of both the random 

networks and sepsis networks had a lower mean connectivity (Table 4), as expected. These 

findings are summarized in Figure 19 which reveals that the sepsis network had one of the 

lowest mean node degrees of all studied networks. One possible explanation for this would be 

that the spesis network was more compact.  
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Table 4. Nodes unique to the integrated network were less connected than the network as 
a whole. Welch two sample t-test comparing network connectivity of unique nodes to whole 
network. Comparison between mean node degree of nodes unique to the integrated network 
to mean node degree of all nodes in the integrated network 

Integration Diff μ1 

common 
μ2 whole t SE df CI95% p Cohen's d Power 

Sepsis -19.2 4.8 24.1 -7.4 2.6 195.9 (-24.4 - -14.1) <0.001 -0.63 0.95 

Null -34.3 8.1 42.3 -143 0.24 256998 (-34.7 - -33.8) <0.001 -0.35 1 

These findings, subject to certain caveats, did not support the hypothesis that 

integrated PPI networks from similar biological sources will have greater connectivity than 

Figure 19. The sepsis integrated network was not more connected than randomly 
integrated networks. Each blue dot represents an integrated network generated from 99 
random genes and 15 random metabolites. The red dot represents the integrated 
network generated from the 99-gene endotoxin tolerance signature and 15-metabolite 
sepsis signature. 
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randomly-integrated PPI networks with the same number of seeds.  

D.3 Network Overlap 
As shown in Figure 20, the average randomly generated networks shared very few 

nodes between the two seed networks, with a Jaccard index of 1.68%. The sepsis seed 

networks shared just three nodes, with a Jaccard index of 1.81%. However, the proportion of 

novel nodes in the integrated network (compared to both seed networks) was higher. On 

average, the integrated networks from randomly generated seed networks contained 18.4% 

novel nodes. The integrated network generated from the two sepsis signatures contained 

22.3% novel nodes.  

Figure 20. Integrated networks tended to be composed of more gene seeds than 
metabolite seeds. The representation of each omics type in the integrated, shown as the 
proportion of the integrated network that the seed nodes represent. Networks were skewed 
towards representation by gene seeds. 
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As shown in Figure 21, the integrated networks were skewed towards representation 

by the gene seeds. Despite the advantages of minimum-connected networks discussed in 

Chapter 1, the signal from transcriptomics still tended to be overrepresented, with an average 

of 45.2% of nodes in the network coming directly from the gene seeds. However, this can 

change dramatically based on the proportion of network seeds, and networks generated 

directly from experimental data were investigated further in Chapter 3. While the average 

contribution from metabolite seeds was only 18.4%, some integrations had more than 60% 

Figure 21. The sepsis seed networks did not overlap more than the randomly generated 
networks. Shown are 1000 randomly integrated networks compared to the integration of the 
99-gene endotoxin tolerance signature with the 15-metabolite sepsis signature. The X-axis 
represents the overlap of the individual omics minimum-connected PPI networks. The Y-axis 
represents the proportion of novel nodes in the integrated network (versus both seed 
networks). 
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contribution from metabolite seeds consistent with the very large range of different 

interacting proteins from different metabolites. This large spread suggested that different 

experimental inputs would result in varying contributions. The sepsis signature had similar 

contributions to its integrated network as did the random networks with 42.5% contribution 

from the gene-seeds and just 27.6% from the metabolite seeds. 

As demonstrated by Figure 20, these findings were not consistent with the hypothesis 

that multi-omic integration networks generated from similar biological sources will overlap 

more than networks generated from randomly-chosen data, given similar numbers of seeds. 

Moving forward, it will be essential to perform this same analysis with both random gene 

expression and random metabolite networks, and likely to limit these to proteins with known 

interactors (i.e. 87 as per the gene expression networks). 

D.4 Random Discovery Rate 
To determine whether the integrated sepsis networks represented unique biology 

versus randomly integrated networks, I calculated the rate of occurrence of the nodes in the 

sepsis networks in the 1000 randomly integrated networks. I defined this as the “Random 

Discovery Rate”. 

I filtered the two groups of interest previously mentioned, namely nodes common to 

all integrated networks and nodes unique to the integrated network for random discovery 

rate less than 5%. As shown in Table 5, 18/40 (45%) of the nodes that were unique to the 

integrated network had a random discovery rate of less than 5%. Table 6 shows that of the 

nodes common to all networks, only 1/3 had a random discovery rate of less than 5%. These 

findings support the hypothesis that nodes common to all networks in an integration are 

more likely to appear at random due to their high connectivity. The context of these values in 

reference to the null networks is displayed in Figure 22. 
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Table 5. Eighteen non-random nodes were unique to the sepsis integrated network. 
Shown are the 18 nodes present in the integrated network, but not present in the seed 
networks with a random discovery rate less than 5%. 40 nodes were unique to the integrated 
network, irrespective of random discovery rate. Node degree and betweenness are shown for 
the integrated network. 

Gene Name Node Degree Betweenness Seed Node? Random Discovery Rate 
CRAT 7 8170.1 TRUE 4.90% 
ILK 4 7415.6 FALSE 4.80% 
PKM 2 19080 FALSE 4.70% 
GATM 2 2128 TRUE 4.10% 
YES1 3 9296.7 FALSE 3.60% 
LAMP2 2 4580.1 FALSE 3.40% 
HBB 2 45928 FALSE 2.50% 
MMP2 5 6391.9 FALSE 2.10% 
AVP 2 19080 FALSE 1.70% 
ITGB8 17 23489 TRUE 1.50% 
RGS3 2 3993.8 FALSE 1.50% 
DMWD 4 1628.1 FALSE 1.40% 
SRSF11 2 8263.9 FALSE 1.40% 
SVIL 2 28383 FALSE 1.40% 
ERG28 2 5240.1 FALSE 1.00% 
MYD88 2 3420.9 FALSE 0.50% 
PAPLN 9 16996 TRUE 0.30% 
NT5C3A 3 29510 FALSE 0.30% 

Table 6. Only one non-random node was common to all networks. Nodes common to both 
seed networks and the integrated network in the sepsis signature integration. All but one 
node have ≥ 5% random discovery rate. Node degree and betweenness are shown for the 
integrated network. 

Gene Name Node Degree Betweenness Seed Node? Random Discovery Rate 
APP 12 122144 FALSE 98.50% 
EGFR 34 230072 FALSE 82.60% 
SLC7A11 15 11637 TRUE 2.80% 

While these results do not show that the seed lists representing similar biology form 

networks significantly different in key statistics from randomly generated networks, they 

clearly indicate the presence of network nodes that represent unique biology. If we examine 

the proportion of network nodes that are non-random (Figure 23), we can make two 

important observations. First, we can see that the proportion of non-random nodes in the 

gene-seeded network is very tightly clustered around 75%. This is likely due to the network 
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properties of a minimum-connected PPI network seeded with 99 elements, in that is there are 

enough elements to form a cohesive network without incorporating many first-order 

interactors. Second, we see that the metabolite-seeded networks are both more highly 

variable and involve a greater proportion of random nodes than the gene-seeded network. 

The former is likely due to the variable number of direct protein interactors identified for any 

given metabolite. The latter may indicate a need to use a greater number of first-order 

interactors in a metabolite-seeded network to obtain network cohesion. Finally, we see mixed 

results in the integrated networks, likely due to variability introduced by the metabolite seeds. 

Interestingly, we see that the sepsis signature-seeded networks had a higher than average 

number of non-random nodes. This might indicate a more cohesive, interconnected PPI 

Figure 22. Nodes unique to the integrated network were less likely to occur at random 
than nodes common to all networks. The number of nodes present in each intersection of 
interest—nodes unique to the integrated network and nodes common to all generated (seed 
and integrated) networks—after filtering with a random discovery rate of 5%. Note that 
points are jittered along the y-axis to show the density of points at each integer value. 
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resulting from biologically cohesive metabolite signature as also indicated above. However, 

without statistical testing, it is not possible to draw a conclusion.  

  

Figure 23. The proportion of non-random nodes comprising a network varied least for 
the gene seeded networks. A) The proportion of nodes in the compound seed network that 
are non-random (RDR < 5%) versus the proportion of nodes in the gene seed network that 
are non-random (RDR <5%). B) The proportion of nodes in the compound seed network 
that are non-random (RDR < 5%) versus the proportion of nodes in the integrated seed 
network that are non-random (RDR <5%). 
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These results support the hypothesis that integration of multi-omic data will reveal 

novel insights into a biological condition. While there are a substantial number of nodes 

novel to the integrated network that do not show up at random, we did not observe 

substantial seed network overlap, indicating a lack of biological consensus between the omics 

types, as mentioned in Appendix D.3. While the integrated sepsis networks do not differ 

significantly from randomly generated networks by the network statistics examined, this 

simply outlines the properties of integrated multi-omic networks of a specific size and nature 

(99 genes and 15 metabolites). More notably, for given networks of this size, we see consistent 

distinct biology represented in the resulting integrated network (Figure 22).  

D.5 Future Considerations 

D.5.1    Gene Selection for Random Networks 
Ninety-nine random genes were selected from the InnateDB database (v5.5).21 By 

selecting genes from the interactome database being used, I guaranteed that genes selected 

would have interactors present in the database. This could bias the resultant networks to be 

more highly-connected, as discussed above. This is of particular note, as only 87 of the 99 

genes in the endotoxin tolerance signature were present in InnateDB as having interactors, 

whereas every random network generated would have 99/99 genes present in InnateDB. 

However, results were similar when genes were selected randomly from the HumanCyc 

database (data not shown).45 Still, choosing genes from the HumanCyc database is biased as 

well; HumanCyc catalogues only functional genes, as its focus is on metabolic pathways.  

Therefore, it would be of particular interest to reproduce this study with genes 

selected from a variety of sources. For instance, randomly selecting genes from an 

experimental source could more accurately represent a gene expression profile of a random 

cell. Using gene expression sequencing data from peripheral blood mononuclear cells would 

be a good candidate, as this subset of cells was used to identify the endotoxin tolerance 

signature. The genotype-tissue expression project could prove a useful source for future 

studies where gene expression profiles of specific tissue types could be used as a random gene  

source.99  
Finally, it could be of interest to control for the level of connectivity in future 

comparisons. If genes of a similar level of connectivity profile within the InnateDB database 
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were selected at random, how would the resultant networks compare? Would similarly-

connected random genes generate networks of similar properties as genes identified from a 

biological source? 

D.5.2    Metabolite Selection for Random Networks 
Fifteen random metabolites were selected from the MetaCyc database, then mapped 

via MetaCyc to their directly interacting proteins. This process of selection is perhaps less 

biased than the process of gene selection, as many metabolites in MetaCyc do not interact 

with human proteins. However, the process is still limited to the number of metabolites for 

which interactors are well known, and the large variability in the numbers of interactors for 

any given metabolite. While there are over 90,000 metabolites endogenous to humans now 

listed within the Human Metabolite Database, MetaCyc catalogues under 15,000, not all of 

which map to human protein interactors.97,100  

Nevertheless, it would be of interest to search out other sources for selection of 

random metabolites. The KEGG database could serve as another source of random 

metabolites. Finally, repositories of experimental metabolomics data such as Metabolomics 

Workbench and MetaboLights could be used as a source of human metabolome profiles for 

random metabolite selection.101,102 However, it should be noted that identifying an 

appropriate control might depend on the metabolomics assay technology used in addition to 

the tissue type assayed. 

D.5.3    Integration of Further Gene Signatures 
Integration of further gene signatures may also prove insightful. Integrating 

additional gene signatures and comparing such integration to randomly integrated networks 

could shed light on the differences between randomly integrated networks and biologically-

connected integrated networks. In particular, it could provide additional insights into 

whether randomly-connected networks tend to be more highly connected than networks 

representing specific biological conditions.  


