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Abstract

Biomedical researchers have the overwhelming task of keeping abreast of
the latest research. This is especially true in the field of personalized can-
cer medicine where knowledge from different areas such as clinical trials,
preclinical studies, and basic science research needs to be combined. We
propose that automated text mining methods should become a common-
place tool for researchers to help them locate relevant research, assimilate
it quickly and collate for hypothesis generation. To move towards this goal,
we focus on extracting relations from published abstracts and full-text pa-
pers. We first explore the use of co-occurrences in sentences and develop
a method for inferring new co-occurrences that can be used for hypothesis
generation. We next explore more advanced relation extraction methods
by developing a supervised learning method, VERSE, which won part of
the BioNLP 2016 Shared Task. Our classical method outperforms a deep
learning method showing its applicability to text mining problems with lim-
ited training data. We develop it further into the Kindred Python package
which integrates with other biomedical text mining resources and is easily
applied to other biomedical problems. Finally, we examine the applicability
of these methods in personalized cancer research. The specific role of genes
in different cancer types as drivers, oncogenes, and tumor suppressors is
essential information when interpreting an individual cancer genome. We
built CancerMine, a high-quality knowledgebase, using the Kindred classi-
fier and annotations from a team of annotators. This allows for quantifiable
comparisons of different cancer types based on the importance of different
genes. The clinical relevance of cancer mutations is generally locked in the
raw text of literature and was the focus of the CIViCmine project. As a col-
laboration with the Clinical Interpretation of Variants in Cancer (CIViC)
project team, we built methods to prioritise relevant papers for curation.
Through this work, we have focussed on different ways to extract struc-
tured knowledge from individual sentences in biomedical publications. The
methods, guidelines, and results developed will aid biomedical text mining
research and the personalized cancer treatment community.
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Lay Summary

There are too many publications for a single researcher to read. This is par-
ticularly true in cancer research where the knowledge can be spread across
many journals. We develop computational methods to automatically read
published papers and extract important sentences. We first look at co-
occurrences, where two terms appear in the same sentence, and build a
system for inferring new ones. We then build a system that, provided with
enough examples, can extract the meaning from a sentence. This competed
in and won a specific problem in the BioNLP Shared Task 2016 community
competition. Finally, we use these methods to extract knowledge relevant
for personalized cancer treatment, to understand the role of different genes
in cancer, and the relevance of different mutations to clinical decisions. Our
methods can be generalized to other problems in biology and our results will
be kept up-to-date to remain valuable to cancer researchers and clinicians.
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Chapter 1

Introduction

Who was the last person who fully understood all areas of biology and
medicine? As the fields have grown, it has become impossible for one re-
searcher or doctor to keep track of the latest research across such broad
fields. This question is a popular discussion amongst mathematicians as
there are several arguable candidates for the last mathematician who truly
understood all the branches of the field at their time. Famous minds, like
Euler or Gauss, are commonly cited. Some of the most remarkable work in
recent mathematics, such as Andrew Wile’s proof of Fermat’s Last Theo-
rem (Wiles, 1995), has required the use of multiple branches of mathematics.
Uniting knowledge from diverse areas biology will become essential to solv-
ing applied medical problems (Altman, 2018, Council and others (2014)).

Getting the right research to the right researchers is a major bottleneck. The
topics in the field go from the micro-scale of protein interactions and genetic
modifications to the macro-scale of clinical trials and healthcare systems. An
individual researcher needs to know more about different areas of biology in
order to plan out an experiment and interpret the results. This problem is
complicated by the increasing rate of publications in biomedicine (Lu, 2011).
These problems necessitate automated text mining methods to help digest
and disseminate research results.

The primary driving forces for text mining development are challenges in
research communication which are illustrated by three anecdotes. First,
Gregor Mendel’s seminal genetics work on pea plants was published in 1866
(Mendel and Tschermak, 1866). It lay dormant, acquiring a small number
of citations over the following thirty years until being rediscovered in the
early 20th century. This indicates the importance of the venue used for
publication and clarity of language. Could a cure for an important dis-
ease have already been published but not been recognized by appropriate
researchers? The second anecdote describes the fear that a huge problem
in one field is equivalent to a solved problem in another field. Temple F.
Smith and Michael S. Waterman having published the now famous Smith-
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Waterman algorithm for local sequence alignment (Smith and Waterman,
1981) discovered the similar problem of aligning stratigraphic sequences in
geology. This discovery came through serendipity as the two researchers
walked through a geology department and saw a research poster visualizing
the alignment problem (Smith, 2015) and not because either of them was
involved in geology research. They were quickly able to publish a paper us-
ing a similar algorithm for this problem (Smith and Waterman, 1980). The
third anecdote describes a case where valuable information is mentioned as
a small section of a paper. As it is not a key result of the paper, it is not
mentioned in the abstract and overlooked by most researchers. The discov-
ery and understanding of green fluorescent protein (GFP) is an example of
this phenomenon. The bioluminescent properties of a protein are discussed
only as a footnote in the paper describing the purification of the aequorin
protein from the Aequorea jellyfish (Shimomura et al., 1962). These three
anecdotes cannot be isolated incidents. There will be numerous further cases
of “undiscovered public knowledge” (a term popularised by Dr. Don Swan-
son (Swanson, 1986b)) where the solution to a research or clinical question
already exists within published literature.

Text mining research and the larger natural language processing (NLP) re-
search area use computers to understand human-written text and provide
new ways for humans to interact with digital media. Text mining processes
large corpora of text for particular types of knowledge that can both direct
users towards relevant knowledge and structure the knowledge for easy as-
similation. Researchers should use text mining methods in everyday use to
collate relevant knowledge and stay up-to-date. The goal of this work is to
understand the problems impeding this goal and solve several of them.

One area in which this need to combine knowledge from the macro to the
micro is the area of personalized cancer treatment, also known as precision
oncology. This approach aims to use genome sequencing data of individual
patient tumors to guide clinical decision making. By identifying the genetic
mistakes that are causing the uncontrolled cell growth of a tumor and inte-
grating knowledge from across biology, clinicians will be able to understand
the reasons behind a cancer’s development and hopefully find weaknesses
that can be targeted. The knowledge for this is contained within basic bio-
logical research studies of protein function and cell biology, larger sequenc-
ing studies and statistical analysis, clinical trial data, clinical guidelines and
pharmacological recommendations and many other sources of knowledge.
Most of this knowledge is contained within published academic literature
which is indexed in PubMed.
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1.1. Objective

This thesis develops and carefully evaluates approaches to applying text
mining technology for extracting and inferring biomedical knowledge from
published literature. We turn these methods to problems faced in personal-
ized cancer treatment research in order to create valuable knowledge bases
that condense tens of thousands of papers for easier survey. This combined
work moves us closer to a research world where scientists work with text
mining tools in order to keep up-to-date with distilled knowledge relevant
to their research.

1.1 Objective

The overall objective of this thesis is to develop generalizable methods for
extracting and inferring knowledge directly from published biomedical liter-
ature that will provide a lasting benefit to both the text mining and larger
bioinformatics community. This work will move us one step closer to a world
in which researchers use text mining tools and results in their everyday re-
search. The subgoals of the thesis are (1) to explore methods for identifying
relations between biomedical concepts (e.g. drugs, genes and diseases) and
(2) to apply these approaches to build knowledge bases relevant to precision
cancer medicine.

1.2 Background

The following sections will outline the current status of research into biomed-
ical text mining and the relevant problems faced in personalized cancer
medicine.

1.2.1 Biomedical text mining

Text mining is the application of informatics to process text documents to
retrieve or extract information (Ananiadou and Mcnaught, 2006). In the
biomedical field, this can focus on text from published literature, electronic
health records, clinical guidelines and any other text source that contains
knowledge about medicine or biology. The field broadly focuses on two
main applications, information retrieval (IR) for identifying relevant docu-
ments and information extraction (IE) for siphoning relevant knowledge in
a structured fashion.
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In order to extract and structure knowledge from published literature on
a large scale, computers must be able to process the raw text. However,
computers are designed to deal with numerical data. Text data does not
translate well into a form for easy computation. It is stored as a list of
characters, either ASCII, Unicode or another encoding. Computers cannot
glean any level of understanding from the raw bytes of a sentence. Various
steps need to happen in order to build structure from this raw data. These
approaches are common in all natural language processing (NLP) solutions
and are not specific to the biomedical domain.

The first challenge is generally to split the series of characters into sentences.
In most writing, a period is a good predictor of the end of a sentence and
rules can be used to catch exceptions. Exceptions include acronyms and ti-
tles (such as U.K. and Dr.). These sentences are then split into tokens, gener-
ally individual words, which can be treated as independent elements. These
tokens can be further processed to identify the part-of-speech (e.g. noun),
remove stems (e.g. -ing) and other lemmatization methods (e.g. plurals ->
singular). These further steps depend on the downstream analysis to be
performed on the data. Statistical systems have been built that integrate
knowledge to combine these steps together such as the Stanford CoreNLP
parser (Manning et al., 2014). These parsers can then identify substructures
within sentences such as noun or verb phrases. Furthermore, additional
structure such as dependency parses can build information about how dif-
ferent tokens within a sentence relate to each other (e.g. a noun may be a
subject of a verb).

1.2.2 Information Retrieval

Information retrieval (IR) is the task of finding and prioritizing relevant
documents for a particular search task. Researchers use these methods daily
by searching for academic papers using tools such as PubMed and Google
Scholar. Advances aim to improve relevance for search results. A single
researcher has a practical limit of the number of papers that they can read
in one year, so it is of paramount concern how they select those papers. IR
methods can be used to search other text corpora such as clinical guidelines,
but the largest research focus is on academic paper retrieval.

Biomedical IR work has benefitted from the approaches developed for web
search. Most methods require a set of keywords as input and then re-
turn a prioritized list of papers. Older web search tools, such as Altavista,
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used direct keyword matching and simple heuristics based on the frequency
(Lawrence and Giles, 2000). Search tools encouraged website developers
to add hidden metadata into the header information of a web page. Both
these methods placed significant trust in the content developers to provide
relevant information. Google’s Pagerank method dramatically changed how
search results were prioritized (Brin and Page, 1998). By treating the web
links as a graph, they could model the “importance” of certain websites by
the number of websites linking to it.

In the biomedical domain, similar challenges existed for search. Many jour-
nals required (and still require) authors to provide keywords for their paper.
This data could be used to help indexing and searching papers but were
not associated with a standardized ontology. This created inconsistency.
In order to solve this, the National Library of Medicine (NLM) developed
the Medical Subject Headings ontology (MeSH). This is used to manually
annotate all citations in NLM’s PubMed indexing service by highly skilled
annotators. With this information, PubMed’s search can return highly rel-
evant papers for a provided topic. Advanced search functionality allows
control of the journals to search, years, authors and many other factors.

For a long time, their search facility ordered results by reverse chronological
order. Recent advances have introduced a relevance ranking method that
uses different factors including publication type, year and data on how the
search term matches the document (Fiorini et al., 2017). A Pagerank-like
approach is more challenging in academic literature as the only links be-
tween papers are citations which are not truly analogous to links between
web pages. PubMed recently implemented a relevance rank system that
combined various data types to improve the relevance of the search results
(Fiorini et al., 2018).

A similar IR problem to search is the identification of similar documents.
In this case, the input is a current document (either published or free text)
and the output is a prioritized list of published works that are similar. This
document similarity metric is a feature of PubMed through their “Similar
articles” option. One solution to this problem uses ideas in document clus-
tering. The basic concept is to group documents that discuss similar topics.
The route to extract the topics discussed in a paper can be quite varied. For
biomedical abstracts, the associated MeSH terms provide a rich and high
quality manually curated resource to allow for document clustering. Simple
overlap metrics based on MeSH terms can provide good quality results for
similar document classification (Zhu et al., 2009). The textual content of
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the document can be interrogated directly. The simplest method groups
documents that share similar words. This data is often very sparse as the
English vocabulary is very large and similar ideas can be expressed using
very different words. Preprocessing methods that standardize case, turn
plurals in singulars and other steps can reduce the sparsity. Term normal-
ization can be used to group different synonyms together that describe the
same term. Each document is represented by a numeric vector. This is
either counts of associated metadata terms or counts of words within the
document. This numeric count data is known as a “bag-of-words”. To find
similar documents, these vectors are then compared often with Euclidean
distance or cosine distance.

A popular document clustering method designed for this problem is Latent
Semantic Analysis (LSA) (Deerwester et al., 1990) which treats document
clustering as an unsupervised learning problem, specifically as a learning by
compression problem. It transforms the text documents in a word frequency
matrix where documents are along one axis and each word in the vocabulary
is along the other axis. Every occurrence of a word i in a document j
increments the value of xij . Hence most of the matrix will be zero. It uses
low-rank singular value decomposition (SVD) to compress the sparse data
into a small dense space where similar topics will be represented by similar
latent variables. One other way to detect similarity between papers is by
looking at the similarity of their citations. Papers that cite similar papers,
or at least papers with similar topics themselves, likely have similar topics.
However, citation networks are challenging to build due to paper and author
ambiguity and duplicates (Carpenter and Thatcher, 2014).

Document classification can be invaluable for problems in information re-
trieval. It uses the content and potentially metadata of a document to
predict the specific topic of the document. Similar to document cluster-
ing methods it uses word frequencies within the document represented as
sparse count vectors. However, as a supervised method, it requires sample
documents that have been annotated with specific classes (e.g. the topic of
the paper, or whether the document is of interest to the researcher). A
traditional binary classifier then attempts to identify the words that make
the most accurate predictions. In the biomedical space, there is particular
interest in predicting the MeSH terms for a paper to assist in the labori-
ous task undertaken by the National Library of Medicine to annotate all
biomedical abstracts with terms from the MeSH ontology. Given the huge
number of existing annotated abstracts as training data, several methods
have been developed for this task as part of a regular competition, BioASQ
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(Tsatsaronis et al., 2015).

1.2.3 Information Extraction

Information extraction (IE) methods identify structured information from
a span of text, an entire document or even a large corpus of documents.
This allows text to be transformed into a standardized format that can be
easily searched, queried and processed by other algorithms. These methods
are valuable in the biomedical field for extracting knowledge from published
literature, automating the analysis of electronic medical records and many
other applications. There are three main problems that information extrac-
tion methods try to solve: coreference resolution, named entity recognition
and relation extraction.

Coreference resolution addresses the problem of anaphora. Pronouns and
non-specific terms are frequently used to refer back to entities named in
previous sentences (e.g. “he was first prescribed the drug in 2007”). Coref-
erence resolution attempts to link these terms to their original citation. This
can be challenging as there can be many candidate coreferences for a single
pronoun in a sentence. For example, the word “it” in a sentence could refer
to any of the previous objects mentioned in a document. A naive approach
would simply use the most recent noun but this is often wrong. Context
must be used to infer which coreferences are most likely (Soon et al., 2001).
Furthermore, by processing all coreference decisions at the same time, more
optimal solutions can be found that don’t create contradictions where the
same person is both the subject and object of an inconsistent action (e.g.
“she passed her the newspaper’) (Clark and Manning, 2015).

Named entity recognition (NER) identifies mentions of specific entities such
as genes and drugs. Basic approaches can use exact string matching with a
list of entity names (e.g. synonyms of genes provided by the UMLS metathe-
saurus (Bodenreider, 2004)). NER methods can make use of context within
a sentence to predict tokens that would likely be a certain entity type. For
instance, a token that comes before “expression” and is all capitals, e.g.
“EGFR expression” is likely a gene. NER methods often make use of ap-
proaches based on Hidden Markov Models (HMM) or Continuous Random
Fields (CRF). These are finite-state based methods that can assign labels to
tokens in a sequence provided a set of training data. Exact string matching
can provide very high recall but with lower precision due to high levels of
ambiguity for frequently used English words (e.g. “ICE” is a gene name, but
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is frequently “ice” in non-gene contexts). HMM/CRF methods will provide
better precision as they can take the context into account but requires a good
training set for the associated entity type. Entity normalization approaches
take a tagged entity in a sentence and connect it back to an ontology us-
ing the context and a set of synonyms associated with each ontology item.
Successful NER tools include BANNER (Leaman and Gonzalez, 2008) for
many entity types, DNorm (Leaman et al., 2013) for diseases and tmChem
(Leaman et al., 2015) for chemicals.

Relation extraction predicts whether a relation exists between two or more
entities provided with text in which these entities appear. These methods
may also try to differentiate the type of relationship between these terms
(e.g. whether a drug treats or causes a disease). The most basic approach
to identify whether a relationship exists between two entities is the use of
co-occurrences. At its most basic, this method states that a relation exists
between entities if they ever appear within a span of text. The text length
can vary depending on the application, but sentences and abstracts are
common. This binary decision will lead to very high recall of relations but
also likely a high false positive rate.

There are alternative metrics than the simple binary decision of whether a
co-occurrence ever appears. Intuitively two terms that appear together in
many sentences are more likely to be part of a relationship. When taken
across a large corpus of documents, e.g. all publications in a journal or even
all accessible biomedical literature, the frequency of co-occurrences can be
very high. However, for a single document, these methods may not be
applicable. A threshold can be used to cut off co-occurrences that appear
too infrequently. These infrequent co-occurrences may be false positives.
However, a small number may be valuable information that are simply not
commonly discussed.

Co-occurrences will be affected by the frequency of the individual terms.
Frequently mentioned terms, such as “breast cancer”, will have higher
co-occurrence numbers than rarely discussed terms such as “ghost cell
carcinoma”. Hence a normalization approach that takes into account
the background frequency of individual terms can help identify spurious
co-occurrences driven by the fact that one or the other term occurs a lot.
“Breast cancer” appears in many papers and so is more likely to cooccur
with terms. By taking the frequency of the words “breast cancer” into
account, we can reduce the false positives. At the same time, we can put
greater importance on the few co-occurrences of terms with “ghost cell
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carcinoma”. This concept is used in the term-frequency inverse-document-
frequency (TF-IDF) approach to normalization. Term frequency is the
count of terms and inverse document frequency is the normalizer for the
frequency of the term in general.

The power of co-occurrences really comes from aggregated information
across a large corpus. For individual documents, more advanced relation
extraction methods can be used. These can take for the form of supervised
approaches (which require substantial example text data), semi-supervised
approaches (which require less example data and is easier to acquire) or
unsupervised approaches (which use no prior knowledge).

Supervised learning approaches to relation extraction involve a training set
of text with annotated entities and relations. The general goal is to trans-
form the text and annotations into a form amenable to traditional classifi-
cation methods. A common method is to vectorize the candidate relation
within a sentence so that it is represented by a numerical (often sparse and
very large) vector that can be fed into a standard binary classifier (e.g. logis-
tic regression or support vector machine). These methods use bag-of-words
approaches similar to the document clustering discussed previously. This
transforms the sentence into a vector representation of word counts. Bi-
grams, tri-grams (or n-grams to generalize) capture neighboring two, three,
or more words. They can also transform subsections of the sentence, e.g. the
clause that contains the relation, or a window of words around each en-
tity. The entity types can also be represented with one-hot vectors (where
the vector is as long as the number of entity types with a value of one at
the location corresponding to the entity type and zeroes elsewhere). These
methods produce very sparse and large vectors and often p >> n, where p
is the number of features and n is the number of examples used for training.
These vectors can then be processed by classifiers such as logistic regression,
support vector machines or random forests.

Support vector machines offer an alternative method that avoiding vectoriz-
ing the relations. A support vector machine attempts to find the hyperplane
that separates the training examples. However, the power of SVMs really
comes down to the “kernel trick” which allows SVMs to be solved by us-
ing comparisons between training examples instead of vectorizing them and
placing them in N-dimensional space. A kernel is simply a similarity func-
tion that takes in two examples and returns a similarity value. Without a
complex kernel, an SVM is known as a linear SVM and behaves very simi-
larly to logistic regression. Popular kernels include polynomial functions and
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radial basis functions (RBF). These kernels implicitly transform the example
data into another space where a separating hyperplane is easier to find. For
text mining purposes, support vector machines are valuable for the ability
of kernel functions to accept example data which aren’t numerical vectors.
A string comparison kernel can accept two text strings as input and output
a similarity measure based on metrics such as Hamming distance or edit dis-
tance. This means that a classifier can be built using a similarity measure
and no vectorization is required. Furthermore, support vector machines do
not require each input example to be compared with every single training
example. The SVM identifies the training examples (known as the sup-
port vectors) that can be used to define the separating hyperplane. When
applied to test data, comparisons are only needed against these “support
vector” examples, which allows for a high-performance classifier.

Dependency parsing provides information about the basic relations between
words, such as the subjects and objects of a verb and the modifiers that apply
to a noun. When these parsers were developed, relation extraction methods
quickly began to make use of the information. Bunescu and Mooney specif-
ically argue that the main information about the relationship is contained
within the dependency path which is the shortest path between two entities
within the dependency parse tree (Bunescu and Mooney, 2005). Kernels
that used this information such as the dependency path kernel allows com-
parison of the dependency parse instead of the full sentence. These use
a simple similarity metric based on the number of shared words, parts of
speech, and entity types at each place within the two dependency paths
being compared.

Deep learning methods have made great headway into non-biomedical in-
formation extraction problems with the main computational linguistics re-
search venues being dominated by deep learning methods. These methods
exploit the concept of distributional semantics. This is the idea that indi-
vidual words can be represented as numerical vectors where similar words
will have similar vectors. The bag-of-words approach to word representation
does not fit this as each word is represented by a one-hot vector which is as
a wide as the vocabulary and only has a single one. Each word is therefore
orthogonal to all other words in the vocabulary. These techniques depend
on large amounts of annotated data as the model complexity of deep learn-
ing is very high and methods are liable to overfit. Due to lack of data, deep
learning has had a hard time gaining traction in biomedical text mining
research.
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Event extraction is a special type of relation extraction, sometimes denoted
as complex relation extraction. It extracts events described in a sentence
which may involve multiple relations. These relations have other relations as
arguments instead of entities. There are three relations in this example sen-
tence: “upregulation of one gene decreases phosphorylation of another pro-
tein”. The upregulation would be one relation, the phosphorylation would
be the second relation, and the decrease would be a compound relation
connecting the other two relations. Event extraction has been the focus
of several shared tasks such as GENIA (Kim et al., 2003). The standard
approach involves breaking the task down into a series of binary relation
extractions which can be built up into a full event (Björne and Salakoski,
2015).

When fully annotated training data is not available, there are two possible
options. Semi-supervised methods use partially annotated data or so-called
silver-annotated data. This silver-annotated data is generated using a pro-
cedure known as distant supervision (Mintz et al., 2009). When no annota-
tions exist, existing knowledge bases which contain some relevant relations
can be used to automatically annotate sentences. For instance, if erlotinib is
known to inhibit EGFR, then all sentences which contain both terms could
be annotated with this relation. This will produce a larger number of false
positive annotations. But if there are enough “seed facts” in the knowl-
edge base, a well-trained classifier may be able to identify the key patterns
that link all the sentences and reduce the false positive rate. A fully un-
supervised method based on clustering can also be used to group potential
relations that look similar. Percha et al grouped relations based on their
dependency path and then used a distant-supervision like approach to tag
different relation clusters (Percha et al., 2018).

All of these relation extraction methods will annotate a span of text with the
location of the relationship and the entities associated with them. Depend-
ing on the application, these annotated documents could then be presented
to the user, or the relations could be aggregated to allow easier searching.
In order to drive research in relation extraction and other areas of biomedi-
cal information extraction, there are regular shared tasks organized by the
research community. These are competitions where one group releases an
annotated training set for other groups to build machine learning systems
for. A held-out test set is then used to evaluate the competing algorithms.
These competitions have included the BioNLP Shared Tasks (Kim et al.,
2011, Kim et al. (2009)), BioCreative tasks (Hirschman et al., 2005) and
many others. They provide a good metric of the latest algorithms in the
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field. They are especially valuable as biomedical information extraction is
hampered by the small annotation sets (compared to non-biomedical do-
mains). Biomedical annotation often requires expert level knowledge and
can be difficult to organize. These events encourage the development of
methods that can work with few examples.

The documents for these shared tasks are often based on PubMed abstracts
and full-text articles from PubMed Central. These resources, which are
often used for text mining, are the easiest to access which is a common
limiting factor in biomedical text mining. In contrast, it is very difficult
to get access to a large corpus of electronic health records which limits
the research opportunities in this area. In biomedicine, abstracts are eas-
ily accessible through PubMed and can be downloaded in bulk through the
NCBI’s FTP service. However full-text articles are often challenging to ac-
cess. The PubMed Open Access Subset provides full-text articles in XML
format for over a million full-text articles. This is, however, a fraction of
the publications in PubMed. Other researchers have tried mass download-
ing of the PDFs of published literature. Publishers often limited this in
their terms of use contracts and have been known to limit access to their
resources for entire universities to encourage individual researchers to desist
from mass downloading (Bohannon, 2016). Even with a large set of PDFs,
the conversion to processible text is incredibly challenging. PDF is a format
designed for standardized viewing and printing across platforms and is not
structured for easy extraction of text. Many tools have been developed to
try to make this task easier (Ramakrishnan et al., 2012). But with different
journal formats, even simple tasks such as linking paragraphs across pages
and removing page numbers are challenging.

1.2.4 Applications of Deep Learning

Deep learning methods have exploded in popularity in recent years and have
been broadly applied in many fields including computer vision and speech
recognition (LeCun et al., 2015). Deep learning involves multilayer and
often complex structured neural networks. The backpropagation method
which is used to solve the underlying parameters which controls when these
artificial neurons fire has been around for several decades (Rumelhart et al.,
1986). However the vast aggregation of data in the last decade has seen
their performance eclipse other classification methods. It is for this reason
that this thesis will not focus on deep learning methods. For high quality
results, a very large dataset of annotated data is required. Co-occurrence
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data provides very noisy data that can easily be overfit with very complex
models. Furthermore biomedical relation data sets are normally counted
in the hundreds, perhaps thousands, of annotations which are several or-
ders of magnitude lower than are needed to fully see the benefit of deep
learning. Finally, deep learning is also computationally costly which makes
it challenging to create a high-quality knowledge base that can be quickly
updated.

1.2.5 Knowledge Bases and Knowledge Graphs

Information extraction methods provide a means to extract relations be-
tween different entities. By applying these methods to a well-defined prob-
lem and using large biomedical text as the input corpus, a variety of knowl-
edge bases have been constructed. These include the STRING database
which use co-occurrence methods to identify likely protein-protein interac-
tions (Szklarczyk et al., 2014). The PubTator resource provides automati-
cally annotated PubMed abstracts which are valuable for advanced searching
and further text mining efforts (Wei et al., 2013b). An example of infor-
mation extraction for a very specific domain is the miRTex database which
collates information on microRNA targets (Li et al., 2015).

The relations within knowledge bases are often represented as triples. These
triples are two entities and the relation that connects them. The set of triples
can, therefore, be viewed as a directed graph where vertices are entities and
directed labeled edges are relations. Knowledge bases that contain triples
can then be queried using SPARQL (Prud’hommeaux and Seaborne, 2006).
This is a database query language based on the structured query language
(SQL) format used in normal relational databases. The key improvements
of SPARQL are the ease of ability to query multiple databases (known as
endpoints) and connect together diverse data sets (assuming they can be
linked by appropriate unique identifiers).

A growing area of research is inference on knowledge bases. This can in-
volve asking questions of the knowledge base by traversing the knowledge
base (Athenikos and Han, 2010). It can also involve making predictions of
additions to the knowledge base, particularly new edges to the knowledge
base. Most knowledge inference work has focussed on non-biomedical knowl-
edge graphs such as Freebase (Bollacker et al., 2008). The TransE (Bordes
et al., 2013) and RESCAL (Nickel et al., 2012) methods focussed on the
problem of knowledge base completion (KBC) where there are known to
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be edges missing. By using different latent-based approaches, they are able
to prioritize missing edges. Several knowledge graphs have been built for
biomedical knowledge either through manual curation or automated meth-
ods. The WikiData knowledge graph is the structured data backend for all
of Wikipedia (Vrandečić and Krötzsch, 2014). It contains a large amount of
biological data that is mostly manually curated (Burgstaller-Muehlbacher
et al., 2016) and provides a SPARQL endpoint for querying. Other knowl-
edge graphs include KnowLife (Ernst et al., 2014) and GNPR (Percha et al.,
2018) which are extracted from text.

1.2.6 Personalized Cancer Genomics

Cancer is a disease of uncontrolled cell growth caused by genomic abnor-
malities. These abnormalities include small point mutations, copy number
variation, structural rearrangements, and epigenetic changes. These affect
regulation of growth signaling, control of apoptosis, angiogenesis and many
other factors that together are known as the hallmarks of cancer (Hana-
han and Weinberg, 2000). These abnormalities can be caused by exogenous
mutagens such as smoking or UV radiation, or endogenous mutagens such
as oxidation and deamination. Certain chemotherapies can also be muta-
genic as damaging DNA can prove lethal to the fast-dividing tumor cells.
With the advances in sequencing technology, genomic interrogation of can-
cers has become commonplace. These investigations are confounded by the
driver/passenger mutation paradigm which states that only a small fraction
of genomic abnormalities are actually involved in the development of a can-
cer. These abnormalities (known as drivers) can inactivate key protective
genes, or overactivate other genes that normally required careful regulation.
The other abnormalities (known as passengers) do not have an oncogenic
effect and have “come along for the ride” (Haber and Settleman, 2007).

The goal of personalized (or precision) medicine is to provide a treatment
plan that is tailored to an individual patient. This idea holds great promise
in cancer treatment as every patient’s cancer is different. No two cancers
contain the exact same set of genomic abnormalities. By sequencing an in-
dividual tumor, researchers hope to identify which genomic aberrations are
driver events to understand which pathways are essential to the growth of
a cancer. Using this information, combined with knowledge of pharmacoge-
nomics, individualized treatments can be identified.

The Personalized Oncogenomics (POG) project, based at the BC Cancer
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Agency, began in 2008. Through whole genome sequencing (WGS) and
transcriptome sequencing (RNAseq), the genome and transcriptome are an-
alyzed. Over time, the costs of sequencing have reduced dramatically (Wey-
mann et al., 2017). However, the cost of informatics and genome inter-
pretation have remained stable. This is mostly due to the laborious and
manual steps involved in understanding the relevance of important genomic
abnormalities within the sequencing data.
There are limited databases that provide some context on whether a likely
mutation is a driver or passenger (Forbes et al., 2014) and how to clinically
interpret variants (Tamborero et al., 2018). Much of this data is derived
from the genomic survey provided by the Cancer Genome Atlas project
(Weinstein et al., 2013). This means that analysts must search the vast
biomedical literature to understand the latest research for many genes and
variants. This area would benefit greatly from the development of new text
mining approaches and resources to collate information on the relevance of
genes and variants to different cancer types.

1.3 Chapter Overviews

In Chapter 2, we begin by exploring the power of co-occurrences between
biomedical terms within sentences. We propose a method for building
knowledge graphs using co-occurrences and inferring new knowledge that
will likely appear in future publications. With the recent development of
recommendation systems, we were inspired to assess a matrix decomposi-
tion method against the leading methods in the field. By building a dataset
of biomedical co-occurrences from the PubMed and PubMed Central Open
Access datasets, we are able to construct a knowledge graph using publica-
tions up to the year 2010. A test set is then constructed using publications
after 2010 and different prediction methods are compared against it. A
comparison of our matrix decomposition method with the other leading so-
lutions to this knowledge inference problem shows that our approach gives
dramatically improved performance and provide a step towards automated
hypothesis generation for biologists.
Chapter 3 moves past co-occurrences as the method for extracting knowledge
and towards full relation extraction based on a supervised learning approach.
As part of the BioNLP 2016 Shared Task, we developed a generalizable
relation extraction method that builds features from the sentence containing
a candidate relation and uses support vector machines. We build upon the
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leading work that has shown the power of vectorized dependency-path-based
methods. This tool, known as VERSE, went on to win the Bacteria Biotope
subtask, came third in the Seed Development subtask and outperformed
deep learning based methods. The chapter includes our further development
of generalizable relation extraction tools with the Kindred Python package
that integrates with many other biomedical text mining platforms including
PubTator (Wei et al., 2013b) and PubAnnotation (Kim and Wang, 2012).

Chapter 4 begins to look at applying the information extraction methods to
problems faced in personalized cancer treatment. In order to automate the
analysis of individual patient tumors, a knowledge base of known drivers,
oncogenes, and tumor suppressors is absolutely essential. In order to under-
stand the purpose of a particular genomic aberration, the role of the associ-
ated gene must be known for the cancer. Unfortunately, this has previously
required manual searching of literature. In this chapter, we describe the de-
velopment of the CancerMine resource using a supervised learning approach.
We hypothesized that the necessary information for drivers, oncogenes and
tumor suppressors would be contained within single sentences and that our
previously developed methods could be used to extract this information en
masse from published literature. To this end, a team of annotators has
curated a set of sentences related to the roles of different genes in cancer.
By using the methods developed in Chapter 3, we build a machine learning
pipeline that can efficiently process the entire biomedical literature and ex-
tract cancer gene roles. This data is kept up-to-date and is available to the
precision cancer community for easy searching. This data can be integrated
into precision oncology pipelines to flag genomic aberrations that are within
relevant genes for that cancer type. The annotated set of sentences is also
available to the text mining community as a dataset on which to evaluate
future relation extraction methods.

Chapter 5 advances our knowledge of clinically relevant biomarkers in can-
cer. The Clinical Interpretation of Variants in Cancer (CIViC) database is
a community-curated knowledge base for diagnostic, prognostic, predispos-
ing and drug resistance biomarkers in cancer (Griffith et al., 2017). This
information is invaluable in automating a precision oncology analysis and
providing actionable information to clinicians. In order to identify gaps in
the CIViC knowledge and prioritize biomarkers that should be curated, we
identify published sentences that likely contain all the relevant information.
A team of eight curators worked to annotate sentences to link cancers, genes,
drugs, and variants as biomarkers. This complex dataset is used to develop
a multi-stage extraction system. We provide further advances with a ternary
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relation extraction system to integrate drug information. Through valida-
tion by the CIViC curation team, we illustrate the power of this methodology
for extracting high-quality complex biological knowledge in bulk. This ap-
proach is able to provide a vast dataset of very high quality and can easily
be applied to other problems in biology and medicine. Furthermore, the
dataset of cancer biomarkers is valuable to all groups curating knowledge in
precision medicine and also all analysts that are interrogating the genomes
of patient tumors.

Finally, Chapter 6 concludes the thesis and discusses the successes and lim-
itations of the research approaches taken. It explores interesting future
directions that could be taken with the generalized and high performing
methods developed in this thesis and with the valuable precision oncology
datasets extracted from the literature.
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Chapter 2

A collaborative
filtering-based approach to
biomedical knowledge
discovery

2.1 Introduction

A scientist relies on knowledge contained in many published articles when
developing a new hypothesis. Generating new hypotheses automatically
based on extracting knowledge from academic publications is the problem
faced by literature-based discovery (LBD) algorithms. These approaches are
becoming more important as knowledge is spread out across larger number
of publications. Text mining tools, including LBD methods, will likely be-
come an essential tool to biology researchers as they explore new research
ideas in their specific domains (Ananiadou and Mcnaught, 2006). Most ap-
proaches to LBD predict associations between two biomedical concepts that
are not frequently discussed in the literature but are predicted to be strongly
associated in the future.

Research in the LBD field was first prompted by Swanson’s discussions of
undiscovered knowledge and his associations of dietary fish oil and Ray-
naud’s disease (Swanson, 1986a). This early technique proposed the con-
cept of open discovery in which a starting term (A) is selected and novel
target terms (C) are predicted that are likely associated with A. Swanson’s
method proposed using intermediate terms (B) that are associated with A
and C. For instance, dietary fish oil is mentioned in articles with blood vis-
cosity and vascular reactivity. These two terms are also mentioned with
Raynaud’s disease. Swanson proposes that it is reasonable that dietary fish
oil and Raynaud’s disease may be associated, possibly as a treatment. This
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result has been validated experimentally (DiGiacomo et al., 1989). William
Hersh provides an excellent overview of the different steps involved in the
literature-based knowledge discovery problem (Hersh, 2008).

Various tools have been developed to pursue this idea of predicting asso-
ciations between previously unlinked biomedical terms. All these methods
generate a score for a potential association which allow potential associations
to be ranked. Swanson’s Arrowsmith tool used co-occurrence of biomedi-
cal terms in titles from MEDLINE abstracts to identify known associations
(Swanson and Smalheiser, 1997). The system required the user to input
a starting term, gave them choices on the appropriate intermediate terms
and ranked the predicted target terms based on the number of intermediate
terms. Co-occurrences have proven a valuable metric for gauging concept
associations and have been used in several systems including CoPub (Frijters
et al., 2008) and STRING (Szklarczyk et al., 2016). Many other systems
have been developed using this concept with different methods for ranking
the predictions and most systems generally use the text from the abstract,
not just the title. Notable systems include FACTA+ that uses the probabil-
ity of two terms appearing together in a publication given the frequency of
the individual terms (Tsuruoka et al., 2011). The BITOLA system uses the
number of intermediate terms as well as the number of papers that support
these intermediate links (Hristovski et al., 2013). The ANNI approach uses
a comparison of concept vectors to predict novel associations (Jelier et al.,
2008b). These concept vectors, based on the symmetric uncertainty coef-
ficient (William, 2007), give a summary of the known associations of each
concept with every other concept. The recent Implicitome project makes
use of the same methodology as ANNI and has been integrated into the
knowledge.bio project (Hettne et al., 2016; Bruskiewich et al., 2016). These
methods largely make use of local knowledge, which we define as knowledge
of the intermediate terms that cooccur with the starting term and the target
terms.

A thorough evaluation procedure has previously been proposed to evalu-
ate the different scoring methods (Yetisgen-Yildiz and Pratt, 2009). It uses
publications before a certain year as the input to each approach and evalu-
ates their scoring of novel associations in newer publications. The authors
also propose using precision-recall curves as a metric for success which is
supported by analysis of the similar link prediction problem (Lichtnwalter
and Chawla, 2012).

Recommendation systems are used in many commercial products such as
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Amazon and Netflix to suggest relevant products to a customer given their
previous purchasing or viewing history. These systems often rely on collabo-
rative filtering algorithms which use the combined history of many users and
products. The success of these approaches are largely down to their use of
global knowledge with which they can implicitly learn about types of users or
products based on this combined history and not any individual user, prod-
uct or user-product interactions. The Netflix Prize spurred development of
new recommendation algorithms and many of the most successful techniques
were based on matrix decomposition (Bennett et al., 2007). We propose
that similar techniques should be used for literature-based discovery. In-
stead of associations between users and products, these techniques could be
reformulated to predict associations between biomedical terms. They would
therefore be able to use global knowledge about the co-occurrence patterns
of all entities and be able to implicitly learn about different types of entities.
Latent semantic indexing (LSI), a matrix-based approach for finding term
similarity, has previously been examined for recapitulating Swanson’s fish
oil discovery but was limited by computational cost (Gordon and Dumais,
1998).

The literature-based discovery problem can be thought of as a implicit feed-
back problem (also known as one-class collaborative filtering (Pan et al.,
2008). Implicit feedback problems, such as user purchase history, have only
positive data points. Missing data may be negative or real missing data.
In LBD, we have known associations between biomedical concepts, as they
are discussed in the same publications. However the lack of a co-occurrence
between two terms can mean two different things: either this is an associa-
tion that has not yet been discovered, or the two concepts are definitely not
associated.

In this chapter, we present the singular value decomposition (SVD) method
as the best method for predicting associations between biomedical concepts.
We use a similar approach in creating a gold standard data set to the previ-
ous comprehensive comparison of knowledge discovery methods (Yetisgen-
Yildiz and Pratt, 2009). We build up a training set of co-occurrences ex-
tracted from PubMed abstracts and PubMed Central full-text articles up to
the year 2010. We then compare methods using their predictions on novel
co-occurrences that appear in literature after the year 2010. We also explore
the predictive power of this approach to discover associations that appear
in literature at various time-points after 2010. Finally, we delve into the
several specific associations to examine the strengths and limitations of our
SVD method compared to the commonly cited Arrowsmith method.
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2.2 Materials and Methods

In order to evaluate different knowledge discovery systems, we extracted a
set of co-occurrence relationships to use as training and test sets. These co-
occurrences are between different biomedical concepts extracted from the
Unified Medical Language System (UMLS) within the same sentence.

2.2.1 Word List

A list of controlled vocabulary terms with synonyms was generated using the
UMLS Metathesaurus (version 2016AB - Active Set). The terms selected
were filtered from the Semantic Medline groups Anatomy (ANAT), Chemi-
cals and Drugs (CHEM), Disorders and diseases (DISO), Genetics (GENE)
and Physiology (PHYS) (Kilicoglu et al., 2008). The Findings group (T033)
was removed due to a large number of vague terms. This generated a list of
1,345,346 terms which was filtered using a set of stop words combined from
the NLTK toolkit (Bird, 2006) and the most frequent 5,000 words based on
the Corpus of Contemporary American English (Davies, 2009). Notably,
only ~26% of the terms were found to appear within the downloaded article
and abstract text.

All terms in the UMLS Metathesaurus are associated with multiple syn-
onyms and contain alternative spellings and other wordings for the same
term. All synonyms were used and matched to a single term ID in the
generated word list. When a word (or multiple words) was found in a sen-
tence which was associated with multiple concepts, the co-occurrences were
counted for all possible concepts.

2.2.2 Positive Data

Co-occurrence relationships were extracted from biomedical literature to
identify potential associations between biomedical terms. Raw text was
extracted from titles and abstracts from MEDLINE citations and the titles,
abstracts and full texts from PMC Open Access Subset articles. Many
relationships may be mentioned in the full paper but not in the abstract (Van
Landeghem et al., 2013). Therefore, full articles where available, as well as
abstracts, were used to identify the largest possible number of relationships.
In total, 13,153,418 abstracts and 1,503,065 full articles were downloaded
from MEDLINE and PubMed Central (downloaded through FTP on 12th
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Feb 2017). In order to avoid duplication, articles that appear in PMC were
filtered out of the MEDLINE data set.

These texts were filtered to remove HTML tags and Unicode special char-
acters. They were split into sentences using LingPipe v4.1.0 (downloaded
from http://alias-i.com/lingpipe) and tokenized using the GENIA part-of-
speech tagger v3.0.1 (Tsuruoka et al., 2005). Exact string matching was
used to identify entities from the UMLS-based word list. Longer terms were
extracted first and removed from the sentence. This meant that a sentence
discussing “tumor necrosis factor” would be flagged for “tumor necrosis fac-
tor” and not for “tumor necrosis”. The tokenization was used to identify
word boundaries, such that “non-cancerous tumor” was not flagged as “can-
cerous tumor”. When multiple terms appear in a sentence, all pair-wise
co-occurrences were recorded.

2.2.3 Sampling and Negative Data

Ideally to evaluate a scoring method, we would calculate the scores for all
possible novel co-occurrences, which are defined as co-occurrences that do
not appear in the training set. We would then evaluate the difference in
scores for known novel co-occurrences in the test set compared with negative
co-occurrences, which are those that do not occur in the test set. It is
important to note that while all LBD methods discussed in this chapter use
only positive data (co-occurrences that do occur in literature) to calculate
scores, our evaluation methodology will require the generation of negative
data (co-occurrences that neither appear in training or test data).

The training set, from publications published up to and including the year
2010, contains 101,139,316 unique co-occurrences between 305,077 unique
biomedical concepts. The size of the set of co-occurrences that could be
predicted as novel is ~46.4 billion. The test set contains 65,680,905 novel
co-occurrences observed in publications published after the year 2010 and
therefore makes up only 0.14% of possible novel co-occurrences.

It is computationally infeasible to evaluate the full space of possible co-
occurrences so instead a large sampling approach is taken. 1,000,000 random
co-occurrences are selected from the test set that represent known novel
associations (also referenced as positive co-occurrences) and do not overlap
with the training set. To match the 1,000,000 positive co-occurrences, the
same number of “negative” co-occurrences are randomly generated. These
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are co-occurrences that don’t appear in the training or test data and are
very likely not real associations.

2.2.4 SVD Method

The SVD approach treats the co-occurrence data as a binary adjacency
matrix X where Xij is 1 if the terms i and j have appeared in a sentence
together and 0 if they have not. The matrix is square, symmetric, generally
very sparse and has the dimension of the number of terms in the vocabulary.
A complete SVD decomposes it into three matrices such that X = UΣV T

where X is the adjacency matrix, U and V contain the singular vectors and
Σ is a diagonal matrix containing the singular values.
We use a truncated form of SVD in which we only use a small number
of the singular values in order to create a low-rank approximation of the
matrix. In this case, we decompose X ≈ UkΣk(Vk)T in which we keep the
first k singular values and vectors. This means that each term i has a dense
representation as the ith truncated singular vectors in Uk and Vk.
By reducing the dimensionality, this approach is able to summarize the orig-
inal matrix (Eckart and Young, 1936). We used the Graphlab implementa-
tion v2.2 (Low et al., 2014) (built from Dato Powergraph Github repository
at https://github.com/dato-code/PowerGraph) which uses the Lanczos al-
gorithm. When the truncated SVD is used to reconstruct the matrix, every
possible co-occurrence is given a real-valued score which we designate the
SVD score. The SVD method gives co-occurrences that are predicted to not
appear in future literature a score close to zero, and those that will appear
a score closer to one.
There is only one parameter for the SVD method which is the number of
singular values k to use for reconstructing the matrix. In order to choose the
value for this, we take a cross-validation approach in which we use a further
time-split data set. Publications up to the year 2009 are used to gener-
ate a co-occurrence training set. And then 1,000,000 novel co-occurrences
are randomly sampled from publications in the year 2010. The same nega-
tive data generation and sampling approaches are used and precision-recall
curves are generated for each rank parameter. By selecting the parameter
that gave the largest area under the precision-recall curve, 132 was chosen
as the number of singular values.
The SVD method provides scores with a range of approximately zero to
one. By setting a different threshold on these scores in order to select the

23

https://github.com/dato-code/PowerGraph


2.2. Materials and Methods

Table 2.1: Summary of methods for comparison.

Algorithm Equation for score(x, z)

Average Minimum
Weight (AMW)

1
|cx∪cz |

∑
y∈cx∪cz

min(|cx ∪ cy|, |cy ∪ cz|)

ANNI vx.vz

Arrowsmith (LTC) |cx ∪ cz|
BITOLA ∑

y∈cx∪cz

|cx ∪ cy| × |cy ∪ cz|

FACTA+
1 −

∏
y∈cx∪cz

1 − D(x, y)D(y, z)

D(i, j) = max(P (i|j), P (j|i))
P (i|j) = |ci ∪ cj |/|sj |

Jaccard |cx ∩ cz|/|cx ∪ cz|
Preferential Attachment |cx| + |cz|
SVD (Uk)xΣk((Vk)z)T

set of predictions, a trade-off of precision and recall can be made. With
k = 132, the associated precision-recall curve is examined to identify the
optimal trade-off which is equivalent to maximizing the F1-score. We find
the score threshold that gives the largest F1-score is 0.44.

2.2.5 Evaluation

Based on previous literature we selected 8 other knowledge discovery algo-
rithms for benchmarking. These methods are based on the number of co-
occurrences of terms and occurrences of individual terms. Table 2.1 gives an
overview of the equations implemented for the scoring methods. score(x, z)
is the score calculated between term x and z. ci is the set of terms that
cooccur with term i. vi is the concept profile vector as defined in (Jelier
et al., 2008a). FACTA+ requires knowledge of the set of sentences that con-
tain term i which is defined as si. The SVD method uses truncated versions
of the decomposed matrices U , Σ and V . Uk is the truncated U matrix
with only the first k columns kept. (Uk)x is the ith row of the Uk truncated
matrix from the SVD decomposition. The same terminology is used for the
Σ and V matrices.

The Arrowsmith algorithm counts the number of intermediate terms also
known as the linked term count (LTC). The average minimum weight
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(AMW) method calculates the path with minimum support between two
concepts. An amalgamation of LTC-AMW, in which LTC is used to rank
first and then AMW is used as a secondary ranking criterion, was identified
as the top performing methods in a previous comparison of literature-based
discovery (Yetisgen-Yildiz and Pratt, 2009). We implement LTC-AMW
by simply scaling the LTC score up so that the smallest LTC score is
larger than the largest AMW score and then add the AMW score and
order accordingly. We also compare two successful methods from the
link prediction literature, the Jaccard Index and Preferential Attachment
(Liben-Nowell and Kleinberg, 2007). Finally we compare three methods
from more recent literature-based discovery methods: ANNI, BITOLA and
the FACTA+ reliability measure.

A “time-split” approach was used to create a training and test set. This
approach has been used previously for literature-based knowledge discovery
(Yetisgen-Yildiz and Pratt, 2009) instead of a traditional cross-validation
for two reasons. Each data point is not unique as would normally be the
case in a classification problem. By randomly assigning each co-occurrence
in the training and test sets, the structure of the implicit knowledge graph
for training and test would be dramatically altered. The second reason to
use the “time-split” method is that it strongly reflects the intended use of
these methods, in order to predict future co-occurrences and the so-called
“undiscovered public knowledge”.

Precision-recall curves were chosen as the evaluation procedure due to the
large class imbalance. Previous analysis has shown that receiver operating
characteristic (ROC) curves are not appropriate for problems with large class
imbalance (Lichtnwalter and Chawla, 2012). When calculating the precision,
the prior known class balance , based on the training set, is taken into ac-
count. While our test data of positive and negative sampled co-occurrences
shows a 50% class balance, the real training data shows a class balance,
b, of approximately 0.14% positive co-occurrences within all possible co-
occurrences. This information is used to reweight the precision calculation
as below where TP is the count of true positives and FP is the counter of
false positives.

precision = b × TP

b × TP + (1 − b) × FP

Recall is calculated as normal and does not require any correction. The
F1-score is calculated using the normal recall and the corrected precision.
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Table 2.2: Summary of performance for the initial steps for the ANNI and
SVD algorithms.

Method Run-time (h:m:s) RAM usage (GB)
ANNI Vector Generation 2:31:06 5.8
SVD (with publications up to 2009) 6:21:10 14.8
SVD (with publications up to 2010) 6:09:27 15.6

Table 2.3: Summary of performance for the different algorithms.

Method Run-time (h:m:s) RAM usage (GB)
AMW 0:53:15 43.3
ANNI 9:52:13 347.0
Arrowsmith 0:12:58 14.8
BITOLA 0:51:49 43.3
FACTA+ 1:30:01 43.4
Jaccard 0:46:18 14.8
LTC-AMW 0:52:22 43.3
Preferential Attachment 0:06:45 14.8
SVD 0:07:32 7.8

2.3 Results

2.3.1 Methods comparison

The 9 methods were compared on the same data set of 2,000,000 randomly
sampled positive and negative co-occurrences. In order to visualize the dif-
ferent scoring methods more intuitively, we show violin plots of the various
scores for the positive and negative sets in Figure 2.1. The perfect knowl-
edge discovery algorithm would display two separable distributions for the
positive and negative sets. However, none of distribution pairs are easily
separable showing that none of the algorithms are capable of completely
differentiating positive and negative co-occurrences. The performance met-
rics for the runs of the algorithms are shown in Tables 2.2 and 2.3.

In order to quantitatively compare the different sets of scores, we used the
area under the precision-recall curves (AUPRC) which are shown in Fig-
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Figure 2.1: Violin plots of the different scores calculated using each method
for the positive and negative test co-occurrences shown separately.
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Figure 2.2: The methods evaluated using 1,000,000 co-occurrences extracted
from publications after the year 2010, and 1,000,000 co-occurrences ran-
domly generated as negative data.
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Figure 2.3: The corresponding precision-recall curves for each method shows
similar trade-offs for precision and recall for each method.
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ure 2.2. Notably, SVD outperforms all the other methods. This suggests
that the SVD approach, which is a form of dimensionality reduction, is able
to compress the knowledge into a reduced form and generalize the knowl-
edge of the matrix. The associated precision-recall curves, shown in Figure
2.3 highlight that SVD can gain surprisingly high precision if a low recall
is acceptable to the user. Arrowsmith gives the second best performance
showing that the simple count of intermediate terms gives a strong measure
of association between two terms.

While Figure 2.1 suggests that FACTA+ does have different distributions for
the positive and negative co-occurrences, the performance shown in Figure
2.2 is surprisingly low. Further analysis showed FACTA+ predicts associ-
ations between many extremely rare terms with high probability, a result
that disagrees with all other scoring methods. For example, the terms “dis-
corhabdin Y” and “aspernidine A” are predicted to be associated with a
probability of 1.0. However both of them only appear in a single sentence
each. Given the extreme rarity of these terms, this is a very weak association
and likely not helpful. They share a single intermediate term: “alkaloids”
that appears in 32,749 sentences, including the single sentences that contain
the rare terms. The high probability score is due to the max function used to
combine the conditional probabilities P (i|j) and P (j|i) to calculate D(i, j).
The conditional probability P (i|j) represents the probability of one term i
appearing in a sentence that also contains term j. Given a common term i
(e.g. “alkaloids”) that occurs in a high proportion of the sentences that a
rare term j (e.g. “discorhabdin Y”) appears, P (i|j) will be very large and
P (j|i) will be extremely small. The max value will always use P (i|j) and
these high values skew the results.

The previous comparison analysis (Yetisgen-Yildiz and Pratt, 2009) con-
cluded that the LTC-AMW was the best knowledge discovery method. Our
analysis shows the LTC-AMW performs similarly to the Arrowsmith which
is equivalent to the linked term count (LTC). This suggests that the im-
provement of LTC-AMW over AMW previously shown is based entirely on
the linked term count and that AMW doesn’t contribute at all.

2.3.2 Predictions over time

We also explored predictions for novel co-occurrences that appear in publica-
tions at different time points. We again used the data set of co-occurrences
from papers up to and including the year 2010. We then found all novel
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Figure 2.4: Evaluation of SVD predictions on test co-occurrences from pub-
lications further into the future using recall as the metric.
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discoveries after this period and grouped them by the year in which they
first appear. There were on average 10.9 million novel co-occurrences in each
year from 2011 to 2016 inclusive. Using the optimal parameters ( k = 132 )
for the SVD model, we then calculate the scores using 1 million randomly
sampled co-occurrences from each year (for computational reasons). Using
the previously selected threshold value of 0.44 on the scores to filter out pre-
dictions, we calculate the recall values for each year. These are presented in
Figure 2.4.

The model is best able to predict co-occurrences in the year immediately
after the data set ends (2011). The recall then decreases each year. This
means that novel co-occurrences that appear further in the future are harder
to predict. This result makes sense as a large proportion of next year’s dis-
coveries will be based closely on existing discoveries. This could be a new
drug tested on a similar disease to the current use of the drug or a different
member of a gene family being associated with the same disease. However,
co-occurrences further into the future are based on more complicated inter-
pretations of the current research or, more likely, new research that has yet
to be published.

Importantly, this model should not create too many predictions as to over-
whelm a researcher and artificially inflate recall values. The SVD approach
makes 12,242,242 co-occurrence predictions with a score above the required
threshold. This number of predictions seems reasonable as it is smaller in
magnitude to the known number of real novel co-occurrences (65,680,905)
in the same time period. One further comment is that a number of the
predictions that don’t match with a novel discovery in the years up to 2016
will likely appear in future years after 2016.

2.3.3 Comparison of predictions between SVD and
Arrowsmith methods

In order to explore the strengths and weaknesses of the SVD approach, we
examine four results from the SVD system with comparisons to the output
of the Arrowsmith system. The Arrowsmith system is used for comparison
as it is the second best performing system. The associated UMLS Concept
Unique Identifier (CUID) is noted for each term.

The first case examines the highest scoring prediction from the SVD from
our test set. This is an association between “Obstruction” (C0028778) and
“Structure of anulus fibrosus of intervertebral disc” (C0223087). SVD gives
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this association a score of 1.320. The Arrowsmith method also gives this
a high score with 1804 intermediate terms. This prediction turns out to
be correct and is found in 7 separate sentences in publications after 2010.
One of the papers (Kang et al., 2014) discusses using a block (synonym
of “Obstruction” term) to interfere with the “annulus fibrosus” as an ex-
perimental model. It is common to block or obstruct parts of the spine
to understand developmental biology, hence it is understandable that both
SVD and Arrowsmith would make this prediction.

The next case to examine is one in which the SVD method predicts an
association which is missed by the Arrowsmith method. Here we find all as-
sociations with SVD score above the previously defined threshold of 0.44 and
seek the association with lowest Arrowsmith score. This is the association
of “Proteins” (C0033684) and “hydantoin racemase” (C0168561). This as-
sociation has SVD score=0.464 and Arrowsmith score=55. The association
is also correct as it is found in a publication during the test period. Hydan-
toin racemase is an enzyme encoded by a gene in several strains of bacteria.
It is unsurprising that there would be discussion of the protein product of
this gene and that this association would occur. The SVD method likely
implicitly identifies that hydantoin racemase is an enzyme as the pattern of
co-occurrences between the enzyme and other terms is similar to other en-
zymes. Other enzymes are commonly discussed with the word “proteins” as
most enzymes are proteins. Arrowsmith likely fails to generate a high score
because this is an infrequently discussed enzyme (only appearing in 37 sen-
tences in our corpus and cooccurring with 57 other terms). This suggests
that the SVD method may be more successful for infrequently discussed
terms.

Next we examine a case where the SVD method failed to predict an asso-
ciation that Arrowsmith found. We look for a case where the Arrowsmith
score is above the thresholds defined in Table 2.4 but has the lowest SVD
score. This association is between “Surgical Flaps” (C0038925) and “MAP2
gene” (C1417006). Note that “Surgical Flaps” also has the synonym “Flap”
and “Flaps”. Arrowsmith gives this a high score of 2327, but SVD gives a
very low score of -0.175. This association is deemed correct as it appears as
a positive association in the test set. However the article in which it appears
(Chu et al., 2013) uses “FLAP” to refer to a particular protein and not the
expected context of surgical flaps. This shows the limitation of using exact
string matching to identify biomedical terms using the UMLS set of syn-
onyms. The question remains why Arrowsmith gives a high score, but the
SVD method provides a low score. One likely explanation is that the “Sur-
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Table 2.4: Thresholds used for different methods to select prediction set.

Method Threshold
AMW 5.530
ANNI 2.416e-05
Arrowsmith 2188
BITOLA 4355364
FACTA+ 0.029
Jaccard 0.192
LTC-AMW 2188.0
Preferential Attachment 34159
SVD 0.441

gical Flaps” term cooccurs with a large number of terms (15,374) of which
only 2,327 (~15%) cooccur with the “MAP2 gene” term. The Arrowsmith
method only takes those ~15% into account whereas SVD takes into account
the complete co-occurrence pattern when predicting associations. Most of
these co-occurrences will be related to “flaps” and “surgical flaps” and not
to gene/protein related terms.

Lastly we look at the association with the highest SVD score that was
deemed a negative association within our test set, that is one that did not
occur in any publications within our corpus. This association is between
“Kidney Failure, Acute” (C0022660) and “Thalassemia” (C0039730). The
SVD method gave this a score of 0.895 and the Arrowsmith also gave a very
high score of 2987. Thalassemia is a group of disorders associated with low
haemoglobin production. A publication in 2011 (Quinn et al., 2011) notes
that “[l]ittle is known about the effects of thalassaemia on the kidney” and
goes on to study the association of thalassemia with renal issues and finding
strong links. This suggests that this association is a valid prediction and ex-
emplifies the power of knowledge discovery methods to identify valid links
between biomedical terms.

These examples have highlighted several strengths and weaknesses of the
SVD and Arrowsmith approaches. Firstly Arrowsmith can be confused by
very frequently appearing terms (such as the “Flap” term). It can miss in-
frequently mentioned terms (such as “Hydantoin racemase”). SVD is able
to identify important characteristics of a term, even with infrequent men-
tions (as was the case for “Hydantoin racemase”). On the other hand, SVD
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can also be confused by terms that have a lot of synonyms. If one of the
synonyms is a frequently occurring and ambigious term, the SVD method
can put too much weight on co-occurrences from this synonym. This limita-
tion may be improved with the development of a named entity recognition
(NER) system that can distinguish the context for different UMLS terms. A
method built upon the NER systems evaluated in (Funk et al., 2014) would
be an interesting direction for a future LBD system.

2.4 Discussion

The success of singular value decomposition over the other current methods
for knowledge discovery suggests that the matrix deconstruction approach
may be the best avenue for further improvements in knowledge discovery.
By compressing the co-occurrence information down to a dense representa-
tion of each concept (the row Ui of the U matrix that corresponds to term
i), SVD is able to deal with the sparsity inherent in the co-occurrence data.
Furthermore it deals with two concepts that aren’t frequently discussed to-
gether but share the same pattern of co-occurrences with other biomedical
concepts. An example would be a drug with generic name and brand names
as separate terms in the wordlist (e.g. erlotinib and Tarceva). It would be
sensible to merge these entities, however, most knowledge discovery tech-
niques would not be able to do this automatically. Because the two concepts
share similar co-occurrence patterns, singular value decomposition will de-
compose them to similar dense representations and make use of both their
co-occurrence patterns to predict new associations. From the recommenda-
tion systems perspective, this can be viewed as two customers that watch
the same genres of movies but have never watched the exact same movie.
The matrix decomposition method is able to identify that these customers
share similar tastes and use each others’ viewing history to make recommen-
dations.

SVD does, however, have several drawbacks. The first is that it is still
computationally expensive. Our SVD runs required ~16GB of memory and
about 6 hours per run (on a machine with quad Intel E5-4640 processors).
This could be ameliorated through trimming very rare terms, thereby reduc-
ing the size of the matrix for decomposition. Furthermore, this will become
less of a problem as memory costs decrease. Another issue with singular
value decomposition is interpretability so that a user can understand why
a prediction is made. Classic methods, such as the Arrowsmith approach,
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allows the user to view the intermediate concepts that were used to generate
the prediction. As there are no intermediate concepts in the SVD model,
it is more challenging to display the rationale for prediction. One approach
would be to show the concepts with similar dense representations in order to
give context to the user of why these two concepts are predicted to cooccur
and presents an interesting future direction for research.

There are many general terms in the UMLS word lists, such as “Local Anes-
thetic”, which may not prove to be useful drug associations. One approach
would be to attempt to filter these terms out of the word lists entirely.
However, it could be argued that these terms are valuable in understanding
the context of other concepts, and in creating their implicit relationships.
Hence it would likely be more valuable to filter them out later in the process
so that they are not shown as predictions but are used during the singular
value decomposition.

The evaluation approach of making predictions using a training set and
comparing predictions to a test set (as previously used by (Yetisgen-Yildiz
and Pratt, 2009) does have several limitations. The most important for a
knowledge discovery algorithm is that many of the predictions deemed as
false positives may prove to be true positives as new research is published.
This limitation is hard to overcome. Knowledge base completion algorithms
make use of a ranking evaluation where the ranking of randomly sampled
known positive associations within the full set of predictions is calculated (as
used in (Lin et al., 2015). This is used to compare systems and avoids the
problem of false positives but is also very challenging to interpret correctly.
By using a training/test split approach, the associated metrics of recall and
precision give a lower limit to the performance of each system which is easier
to interpret. However a testing methodology that avoids the issue of negative
data really being positive data (that will appear in future publications) but
is also easy to interpret remains an open problem.

Each of the systems generates scores for each association and does not make
a binary decision. In order to create a finite set of “predictions”, a threshold
is chosen for each method and those associations with scores above the
threshold are selected. The threshold is chosen in the same manner as for the
SVD method. Each method is trained using co-occurrences in publications
up to 2009 and evaluated on the co-occurrences that appear for the first time
in publications during the year 2010. The threshold that gives the best F1-
score using this data split method is selected. Table 2.4 shows the thresholds
selected for each method. The predictions shown in Figure 2.5 are based on
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Figure 2.5: An Upset plot showing the overlap in predictions made by the
three most successful systems.
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the scores generated for the test set of 2,000,000 associations (half of which
are positive and half are negative cases). The scores are thresholded and
the associations collected for each method.

While the SVD method clearly outperforms the other methods, an obvious
question is whether the different systems make similar predictions. Figure
2.5 examines the overlap of top performing systems. LTC-AMW and Arrow-
smith give very similar predictions so only Arrowsmith is included. There
are a core set of predictions that are shared by each method. However a
large number of predictions are made by each system individually. This
points towards the development of a meta-method that combines the differ-
ent predictions of multiple systems and is an interesting direction for future
work.

Figure 2.6: The methods evaluated using 1,000,000 abstract-level co-
occurrences extracted from publications after the year 2010, and 1,000,000
abstract-level co-occurrences randomly generated as negative data.
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It is worthwhile to note that our decision to focus on sentence level co-
occurrence, as opposed to abstract level co-occurrence, was based on re-
ducing potential incorrect associations. These happen between terms that
cooccur but do not have any real biological relationship. By increasing the
amount of text within which a co-occurrence can happen (e.g. to a full ab-
stract), there are likely many more incorrect associations. However to check
that this decision didn’t bias out results, we reran the entire analysis pipeline
using abstract-level co-occurrences. In this case a co-occurrence occurs when
two terms appear in the same abstract. The results (shown in Figure 2.6)
show a similar pattern to the sentence-level results and that SVD is the best
performing system for this type of co-occurrence.

Figure 2.7: The class balance in the dataset can affect the resulting clas-
sifier metrics making interpretation of score distributions challenging. The
dataset has a class balance of 0.14% which is at the far left. Arrowsmith
overtakes SVD at a class balance of ~5% which is an implausibly high class
balance of a knowledge discovery dataset.

Finally, we examined the effect that the extreme class imbalance (0.14%
positive data) has on the classification metrics. An inspection of the violin
plots in Figure 2.1 seems to conflict with the results shown in Figure 2.2.
For instance, the AMW results seem to have bulbous positive distribution
that has scores clearly larger than the negative distribution. Meanwhile, the
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SVD method has an obvious difference between the positive and negative
distributions but is not as well defined. But Area under the Precision Recall
curve results in Figure 2.2 show that SVD outperforms AMW. We examined
the effect that the class balance had on the resulting AUPRC scores in Figure
2.7. This shows that the class balance, which is a property of the dataset,
does have an effect on the AUPRC score. This means that visual comparison
of score distributions (as in Figure 2.1) is much more challenging. With a
very low class balance, more emphasis is put on co-occurrences with high
scores. Any false positives with high scores will quickly drop the precision,
with a knock-on effect on the AUPRC. This drop increases with larger class
imbalance. The ~5% increase in class balance that would be needed to
cause Arrowsmith to be the better performing system is very unrealistic for a
knowledge discovery problem. Nevertheless, this is an important illustration
that the class balance plays an important role in the classification metrics
and also in interpreting the score distributions.

2.5 Conclusions

Our study has shown that the singular value decomposition technique pro-
vides the best scoring method for predicting future co-occurrences when
compared to the leading methods in the knowledge discovery problem. The
method is best able to predict co-occurrences that occur in publications in
the near future and slowly reduces in predictive power for the far future. We
hope this analysis will benefit the knowledge discovery research community
in developing tools that will be beneficial for molecular biology researchers.
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Chapter 3

Relation extraction with
VERSE and Kindred

3.1 Introduction

Extracting knowledge from biomedical literature is a huge challenge in the
natural language parsing field and has many applications including knowl-
edge base construction and question-answering systems. In this chapter, we
describe our competition winning event extraction system (VERSE) and its
followup highly interoperable relation extraction Python package (Kindred).

Event extraction systems focus on this problem by identifying specific events
and relations discussed in raw text. Events are described using three key
concepts, entities, relations and modifications. Entities are spans of text
that describe a specific concept (e.g. a gene). Relations describe a specific
association between two (or potentially more) entities. Together entities and
relations describe an event or set of events (such as complex gene regulation).
Modifications are changes made to events such as speculation.

The BioNLP Shared Tasks have encouraged research into new techniques for
a variety of important NLP challenges. Occurring in 2009, 2011 and 2013,
the competitions were split into several subtasks (Kim et al., 2009, 2011;
Nédellec et al., 2013). These subtasks provided annotated texts (commonly
abstracts from PubMed) of entities, relations and events in a particular
biomedical domain. Research groups were then challenged to generate new
tools to better predict new relations and events in test data.

The BioNLP 2016 Shared Task contains three separate parts, the Bacteria
Biotope subtask (BB3), the Seed Development subtask (SeeDev) and the
Genia Event subtask (GE4). The BB3 and SeeDev subtasks have separate
parts that specialise in entity recognition and relation extraction. The GE4
subtask focuses on full event extraction of NFkB related gene events.
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Previous systems for relation and event extraction have taken two main ap-
proaches: rule-based and feature-based. Rule-based methods learn specific
patterns that fit different events, for instance, the word “expression” follow-
ing a gene name generally implies an expression event for that gene. The
pattern-based tool BioSem (Bui et al., 2013) in particular performed well
in the Genia Event subtask of the BioNLP’13 Shared Task. Feature-based
approaches translate the textual content into feature vectors that can be
analysed with a traditional classification algorithm. Support vector ma-
chines (SVMs) have been very popular with successful relation extraction
tools such as TEES (Björne and Salakoski, 2013).

3.1.1 VERSE

We will first present the Vancouver Event and Relation System for Extrac-
tion (VERSE) for the BB3 event subtask, the SeeDev binary subtask and
the Genia Event subtask. Utilising a feature-based approach, VERSE builds
on the ideas of the TEES system. It offers control over the exact semantic
features to use for classification, allows feature selection to reduce the size
of feature vectors and uses a stochastic optimisation strategy with k-fold
cross-validation to identify the best parameters. We examine the competi-
tive results for the various subtasks and also analyse VERSE’s capability to
predict relations across sentence boundaries.

The VERSE method came first in the BB3 event subtask and third in the
SeeDev binary subtask in the BioNLP Shared Task 2016. An analysis of
the two systems that outperformed VERSE in the SeeDev subtask points to
interesting directions for further development. The SeeDev subtask differs
greatly from the BB3 subtask as there are 24 relation types compared to only
1 in BB3 and the training set size for each relation is drastically smaller.
The LitWay approach, which came first, uses a hybrid approach of rule-
based and vector-based (Li et al., 2016). For “simpler” relations, defined
using a custom list, a rule-based approach uses a predefined set of patterns.
The UniMelb approach created individual classifiers for each relation type
and was able to predict multiple relations for a candidate relation (Panyam
et al., 2016). This approach of treating relation types differently suggests
that there may be large differences in how a relation should be treated
in terms of the linguistic cues used to identify it and the best algorithm
approach to identify it.
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3.1.2 Kindred

There are several shortcomings in the approaches to the BioNLP Shared
Tasks, the greatest of all is the poor number of participants that provide
code. It is also clear that the advantages of some of the most successful tools
are tailored specifically to these datasets and may not be able to generalize
easily to other relation extraction tasks. Some tools that do share code such
as TEES and VERSE have a large number of dependencies, though TEES
ameliorates this problem with an excellent installing tool that manages de-
pendencies. These tools can also be computationally costly, with both TEES
and VERSE taking a parameter optimization strategy that requires a cluster
for reasonable performance.

The biomedical text mining community is endeavoring to improve consis-
tency and ease-of-use for text mining tools. In 2012, the Biocreative BioC
Interoperability Initiative (Comeau et al., 2014) encouraged researchers to
develop biomedical text mining tools around the BioC file format (Comeau
et al., 2013). More recently, one of the Biocreative BeCalm tasks focuses
on “technical interoperability and performance of annotation servers” for a
named entity recognition systems. This initiative encourages an ecosystem
of tools and datasets that will make text mining a more common tool in bi-
ology research. PubAnnotation (Kim and Wang, 2012), which is part of this
approach, is a public resource for sharing annotated biomedical texts. The
hope of this resource is to provide data to improve biomedical text mining
tools and as a launching point for future shared tasks. The PubTator tool
(Wei et al., 2013b) provides PubMed abstracts with various biomedical enti-
ties annotated using several named entity recognition tools including tmVar
(Wei et al., 2013a) and DNorm (Leaman et al., 2013).

In order to overcome some of the challenges in the relation extraction com-
munity in terms of ease-of-use and integration, we present Kindred which
is a successor to VERSE. Kindred is an easy-to-install Python package for
relation extraction using a vector-based approach. It abstracts away much
of the underlying algorithms in order to allow a user to easily start extract-
ing biomedical knowledge from sentences. However, the user can easily use
individual components of Kindred in conjunction with other parsers or ma-
chine learning algorithms. It integrates seamlessly with PubAnnotation and
PubTator to allow easy access to training data and text to be applied to.
Furthermore, we show that it performs very well on the BioNLP Shared
Task 2016 relation subtasks.
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3.2 VERSE Methods

The VERSE system competed in the BioNLP Shared Task 2016 and the
methods are outlined here.

3.2.1 Pipeline

Figure 3.1: Overview of VERSE pipeline

VERSE breaks event extraction into five steps outlined in the pipeline shown
in Figure 3.1. Firstly the input data is passed through a text processing tool
that splits and tags text and associates the parsed results with the provided
annotations. This parsed data is then passed through three separate classi-
fications steps for entities, relations and modifications. Finally, the results
are filtered to make sure that all relations and modifications fit the expected
types for the given task.

3.2.2 Text processing

VERSE can accept input in the standard BioNLP-ST format or the Pub-
Annotation JSON format (Kim and Wang, 2012). The annotations describe
entities in the text as spans of text and relations and modifications of these
entities.

The input files for the shared subtasks are initially processed using the Stan-
ford CoreNLP toolset. The texts are split into sentences and tokenized.
Parts-of-speech and lemmas are identified and a dependency parse is gen-
erated for each sentence. CoreNLP also returns the exact positions of each
token. Using this data, an interval tree is created to identify intersections of
text with entities described in the associated annotation. The specific sen-
tence and locations of each associated word are then stored for each entity.
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Figure 3.2: Relation candidate generation for the example text which con-
tains a single Lives_In relation (between bacteria and habitat). The bacte-
ria entity is shown in bold and the habitat entities are underlined. Relation
example generation creates pairs of entities that will be vectorised for clas-
sification. (a) shows all pairs matching without filtering for specific entity
types (b) shows filtering for entity types of bacteria and habitat for a po-
tential Lives_In relation

Relations and modifications described in the associated annotations are also
loaded, retaining information on which entities are involved.

The entities in the BB3 and SeeDev subtasks are generally sets of full words
but can be non-contiguous. Entities are stored as a set of associated words
rather than a span of words. The GE4 task also contains entities that con-
tain only partial words, for example, “PTEN” is tagged as an entity within
“PTEN-deficient”. A list of common prefixes and suffixes from the GE4 task
is used to separate these words into two words so that the example would
become “PTEN deficient”. Furthermore, any annotation that divides a word
that contains a hyphen or forward slash causes the word to be separate into
two separate words.

For easier interoperability, the text parsing code was developed in Jython
(Developers, 2008) (a version of Python that can load Java libraries, specif-
ically the Stanford CoreNLP toolset). This Jython implementation is then
able to export easily processed Python data structures. Due to incompatibil-
ity between Jython and various numerical libraries, a separate Python-only
implementation loads the generated data structures for further processing
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and classification.

3.2.3 Candidate generation

For all three classifications steps (entities, relations and modifications), the
same machine learning framework is used. All possible candidates are gen-
erated for entities, relations or modifications. For relations, this means all
pairs of entities are found (within a certain sentence range). For the train-
ing step, the candidates are associated with a known class (i.e. the type
of relation), or the negative class if the candidate is not annotated in the
training set. For testing, the classes are unknown. Candidates can contain
one argument (for entity extraction and modification) or two arguments (for
relation extraction). These arguments are stored as references to sentences
and the indices of the associated words.

3.2.3.1 Entity extraction

Entity extraction aims to classify individual or sets of words as a certain type
of entity, given a set of training cases. Entities may contain non-contiguous
words. The set of all possible combinations of words that could compose
an entity is too large for the classification system. Hence VERSE filters for
only combinations of words that are identified as entities in the training set.
This means that if the term “Lake Como” is annotated as a Habitat entity in
the training set, any instance of “Lake Como” will be flagged as a candidate
Habitat entity. However if a term (e.g. “the River Thames”) never appears
as an entity in the training set, it will be ignored for all test data.

3.2.3.2 Relation extraction

VERSE can predict relations between two entities, also known as binary
relations. Candidates for each possible relation are generated for every pair
of entities that are within a fixed sentence range. Hence when using the
default sentence range of 0, only pairs of entities within the same sentence are
analysed. VERSE can optionally filter pairs of entities using the expected
types for a set of relations as shown in Figure 3.2.

Each candidate is linked with the locations of the two entities. If the two
entities are already annotated to be in a relation, then they are labelled
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Table 3.1: Overview of the various features that VERSE can use for classi-
fication

Feature Name Target
unigrams Entire Sentence
unigrams & parts-of-speech Entire Sentence
bigrams Entire Sentence
skipgrams Entire Sentence
path edges type Dependency Path
unigrams Dependency Path
bigrams Dependency Path
unigrams Each Entity
unigrams & parts-of-speech Each Entity
nearby path edge types Each Entity
lemmas Each Entity
entity types Each Entity
unigrams of windows Each Entity
is relation across sentences N/A

with the corresponding class. Otherwise, the binary relation candidate is
annotated with the negative class.

3.2.3.3 Modification extraction

VERSE supports modification of entities in the form of event modification
but currently does not support modification of individual relations. A mod-
ification candidate is created for all entities that form the base of an event.
These entities are often known as the triggers of the event. In the JSON
format, these entities traditionally have IDs that start with “E“. If a mod-
ification exists in the training set for that entity, the appropriate class is
associated with it. Individual binary classifiers are generated for each mod-
ification type. This allows an event to be classified with more than one
modification.
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3.2.4 Features

For each generated candidate, a variety of features (controllable through a
parameter) is calculated. The features focus on characteristics of the full
sentence, dependency path or individual entities. The full-set is shown in
Table 3.1. Each feature group, shown in the table, can be included or
excluded with a binary flag. It should also be noted that a term frequency-
inverse document frequency (TFIDF) transform is also an option for all
bag-of-words based features.

3.2.4.1 Full sentence features

N-grams features (unigrams and bigrams) use a bag-of-words approach to
count the word occurrences across the whole sentence. The words are trans-
formed to lowercase but notably are not filtered for stop words. A version
combining the individual words with part-of-speech information is also used.
A bag-of-words vector is also generated for lemmas of all words in the sen-
tence. Skip-gram-like features are generated using two words separated by
a fixed window of words are also used to generate features. Hence the terms
“regulation of EGFR” and “regulation with EGFR” would match the same
features of “regulation * EGFR”.

3.2.4.2 Dependency path features

The dependency path is the shortest path between the two entities in a
dependency parse graph and has been shown to be important for relation
extraction (Bunescu and Mooney, 2005). Features generated from the set of
edges and nodes of the dependency graph include a unigrams and bigrams
representation. The specific edge types in the dependency path are also
captured with a bag-of-words vector. In order to give specific information
about the location of the entity in the dependency path, the types of the
edges leaving the entity nodes are recorded separately for each entity.

Interestingly an entity may span multiple nodes in the dependency graph.
An example of a dependency path with the multi-word entities “coxiella
burnetii” and “freshwater lakes” is shown in Figure 3.3. In this case, the
minimal subgraph that connects all entity nodes in the graph is calculated.
This problem was transformed into a minimal spanning tree problem as
follows and solved using the NetworkX Python package (Hagberg et al.,
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Figure 3.3: Dependency parsing of the shown sentence provides (a) the de-
pendency graph of the full sentence which is then reduced to (b) the depen-
dency path between the two multi-word terms. This is achieved by finding
the subgraph which contains all entity nodes and the minimum number of
additional nodes.
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2008). The shortest paths through the graph were found for all pairs of entity
nodes (nodes associated with the multi-word entities). The path distance
between each pair was totalled and used to generate a new graph containing
only the entity nodes. The minimal spanning tree was calculated and the
associated edges recovered to generate the minimal subgraph. This approach
would allow for a dependency path-like approach for relations between more
than two entities.

3.2.4.3 Entity features

The individual entities are also used to generate specific features. Three
different vectorised versions use a unigrams approach, a unigrams approach
with parts-of-speech information and lemmas respectively. A one-hot vector
approach is used to represent the type of each entity. Unigrams of words
around each entity within a certain window size are also generated.

3.2.4.4 Multi-sentence and single entity features

VERSE is also capable of generating features for relations between two en-
tities that are in different sentences. In this case, all sentence features are
generated for both sentences together and no changes are made to the entity
features.

The dependency path features are treated differently. The dependency path
for each entity is created as the path from the entity to the root of the de-
pendency graph, generally the main verb of the sentence. This then creates
two separate paths, one per sentence and the features are generated in simi-
lar ways using these paths. Finally, a simple binary feature is generated for
relation candidates that span multiple sentences.

For relation and modifications, candidates contain only a single argument.
The dependency path is created in a similar manner to candidates of rela-
tions that span across sentences.

3.2.5 Classification

All candidates are vectorized using the same framework, whether for can-
didates with one or two arguments with minor changes. These vectorized
candidates are then used for training a traditional classifier. The vectors
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may be reduced using feature selection. Most importantly, the parame-
ters used for the feature generation and classifier can easily be varied to
find the optimal results. Classification uses the scikit-learn Python package
(Pedregosa et al., 2011b).

3.2.5.1 Feature selection

VERSE implements optional feature selection using a chi-squared test on in-
dividual parameters against the class variable. The highest ranking features
are then filtered based on the percentage of features desired.

3.2.5.2 Classifier parameters

Classification uses either a support vector machine (SVM) or logistic re-
gression. When using the SVM, the linear kernel is used due to lower time
complexity. The multi-class classification uses a one-vs-one approach. The
additional parameters of the SVM that are optimised are the penalty param-
eter C, class weighting approach and whether to use the shrinking heuristic.
The class weighting is important as the negative samples greatly outnumber
the positive samples for most problems.

3.2.5.3 Stochastic parameter optimisation

VERSE allows adjustment of the various parameters including the set of
features to generate, the classifier to use and the associated classification
parameters. The optimisation strategy involves initially seeding 100 random
parameter sets. After this initial set, the top 100 previous parameter sets are
identified each iteration and one is randomly selected. This parameter set is
then tweaked as follows. With a probability of 0.05, an individual parameter
is changed. In order to avoid local maxima, an entirely new parameter set
is generated with a probability of 0.1. For the subtasks, a 500 node cluster
using Intel X5650s was used for optimisation runs.

The optimal parameters are determined for the entity extraction, relation
extraction and each possible modification individually. In order to balance
precision and recall equally at each stage, the F1-score is used.
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3.2.6 Filtering

Final filtering is used to remove any predictions that do not fit into the
task specification. Firstly all relations are checked to see that the types of
the arguments are appropriate. Any entities that are not included in rela-
tions are removed. Finally, any modifications that do not have appropriate
arguments or were associated with removed entities are also trimmed.

3.2.7 Evaluation

An evaluation system was created that generates recall, precision, and asso-
ciated F1-scores for entities, relations and modifications. The system works
conservatively and requires exact matches. It should be noted that our in-
ternal evaluation system gave similar but not exactly matching results to
the online evaluation system for the BB3 and SeeDev subtasks.

K-fold cross-validation is used in association with this evaluation system to
assess the success of the system. The entity, relation and modification ex-
tractors are trained separately. For the BB3 and SeeDev subtasks, two-fold
cross-validation is used, using the provided split of training and develop-
ment sets as the training sets for the first and second fold respectively. For
the GE4 task, five-fold cross-validation is used. The average F1-score of the
multiple folds is used as the metric of success.

3.3 Kindred Methods

The Kindred package was built as a follow up to the VERSE system. It
is designed for generalizable relation extraction, is integrated with a wide
variety of biomedical text mining resources and is distributed as a self-
contained Python package for easy use.

Kindred is a Python package that builds upon the Stanford CoreNLP frame-
work (Manning et al., 2014) and the scikit-learn machine learning library
(Pedregosa et al., 2011a). The decision to build a package was based on the
understanding that each text mining problem is different. It seemed more
valuable to make the individual features of the relation extraction system
available to the community than a bespoke tool that was designed to solve
a fixed type of biomedical text mining problem. Python was selected due
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to the excellent support for machine learning and the easy distribution of
Python packages.
The ethos of the design is based on the scikit-learn API that allows complex
operations to occur in very few lines of code, but also gives detailed control
of the individual components. Individual computational units are encap-
sulated in separate classes to improve modularity and allow easier testing.
Nevertheless, the main goal was to allow the user to download annotated
data and build a relation extraction classifier in as few lines of code as pos-
sible.

3.3.1 Package development

The package has been developed for ease-of-use and reliability. The code
for the package is hosted on Github. It was also developed using the con-
tinuous integration system Travis CI in order to improve the robustness of
the tool. This allows regular tests to be run whenever code is committed to
the repository. This will enable further development of Kindred and ensure
that it continues to work with both Python 2 and Python 3. Coveralls and
the Python coverage tool are used to evaluate code coverage and assist in
test evaluation.
These approaches were in line with the recent recommendations on improv-
ing research software (Taschuk and Wilson, 2017). We hope these techniques
will allow for and encourage others to make use of and contribute to the Kin-
dred package.

3.3.2 Data Formats

As illustrated in Figure 3.4, Kindred accepts data in four different formats:
the standoff format used by BioNLP Shared Tasks, the JSON format used
by PubAnnotation, the BioC format (Comeau et al., 2013) and a simple tag
format. The standoff format uses three files, a TXT file that contains the
raw text, an A1 file that contains information on the tagged entities and
an A2 file that contains information on the relations between the entities.
The JSON, BioC and simple tag formats integrate this information into
single files. The input text in each of these formats must have already been
annotated for entities.
The simple tag format was implemented primarily for simple illustrations of
Kindred and for easier testing purposes. It is parsed using an XML parser
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Figure 3.4: An example of a relation between two entities in the same sen-
tence and the representations of the relation in four input/output formats
that Kindred supports.

54



3.3. Kindred Methods

to identify all tags. A relation tag should contain a “type” attribute that
denotes the relation type (e.g. causes). All other attributes are assumed to
be arguments for the relation and their values should be IDs for entities in
the same text. A non-relation tag is assumed to be describing an entity and
should have an ID attribute that is used for associating relations.

3.3.3 Parsing and Candidate Building

The text data is loaded, and where possible, the annotations are checked
for validity. In order to prepare the data for classification, the first step is
sentence splitting and tokenization. We use the Stanford CoreNLP toolkit
for this which is also used for dependency parsing for each sentence.
Once parsing has completed, the associated entity information must then
be matched with the corresponding sentences. An entity can contain non-
contiguous tokens as was the case for the BB3 event dataset in the BioNLP
2016 Shared Task. Therefore each token that overlaps with an annotation
for an entity is linked to that entity.
Any relations that occur entirely within a sentence are associated with
that sentence. The decision to focus on relations contained within sentence
boundaries is based on the poor performance of relation extraction systems
in the past. The VERSE tool explored predicting relations that spanned
sentence boundaries in the BioNLP Shared Task and found that the false
positive rate was too high. The sentence is also parsed to generate a depen-
dency graph which is stored as a set of triples (tokeni, tokenj , dependencyij)
where dependencyij is the type of edge in the dependency graph between to-
kens i and j. The edge types use the Universal Dependencies format (Nivre
et al., 2016).
Relation candidates are then created by finding every possible pair of entities
within each sentence. The candidates that are annotated relations are stored
with a class number for use in the multiclass classifier. The class zero denotes
no relation. All other classes denote relations of specific types. The types
of relations and therefore how many classes are required for the multiclass
classifier are based on the training data provided to Kindred.

3.3.4 Vectorization

Each candidate is then vectorized in order to transform the tokenized sen-
tence and set of entity information into a numerical vector that can be
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processed using the scikit-learn classifiers. In order to keep Kindred sim-
ple and improve performance, it only generates a small set of features as
outlined below.

• Entity types in the candidate relation
• Unigrams between entities
• Bigrams for the full sentence
• Edges in dependency path
• Edges in dependency path that are next to each entity.

For the entity type and edge relations, they are stored in a one-hot format.
Entity specific features are created for each entity. For instance, if there are
three relation types for relations between two arguments, then six binary
features would be required to capture the entity types.

The unigrams and bigrams use a bag-of-words approach. Term-frequency
inverse-document frequency (TF-IDF) is used for all bag-of-words based
features. The dependency path, using the same method as VERSE, is cal-
culated as the minimum spanning tree between the nodes in the dependency
graph that are associated with the entities in the candidate relation.

3.3.5 Classification

Kindred has in-built support for the support vector machine (SVM) and
logistic regression classifiers implemented in scikit-learn. By default, the
SVM classifier is used with the vectorized candidate relations. The linear
kernel has shown to give good performance and is substantially faster to train
than alternative SVM kernels such as radial basis function or exponential.

The success of the LitWay and UniMelb entries to the SeeDev shared task
suggested that individual classifiers for unique relation types may give im-
proved performance. This may be due to the significant differences in com-
plexity between different relation types. For instance, one relation type may
require information from across the sentence for good classification, whereas
another relation type may require only the neighboring word.

Using one classifier per relation type, instead of a single multiclass classifier,
means that a relation candidate may be predicted to be multiple relation
types. Depending on the dataset, this may be the appropriate decision as
relations may overlap. Kindred offers this functionality of one classifier per
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relation type. However, for the SeeDev dataset, we found that the best
performance was actually through a single multiclass classifier.

3.3.6 Filtering

The predicted set of relations is then filtered using the associated relation
type and types of the entities in the relation. Kindred uses the set of relations
in the training data to infer the possible argument types for each relation.

3.3.7 Precision-recall tradeoff

The importance of precision and recall depends on the specific text min-
ing problem. The BioNLP Shared Task has favored the F1-score, giving
an equal weighting to precision and recall. Other text mining projects may
prefer higher precision in order to avoid biocurators having to manually fil-
ter out spurious results. Alternatively, projects may require higher recall
in order to not miss any possibly important results. Kindred gives the user
the control of a threshold for making predictions. In this case, the logis-
tic regression classifier is used as it allows for easier thresholding. This is
because the underlying predicted values can be interpreted as probabilities.
We found that logistic regression achieved performance very close to the
SVM classifier. By selecting a higher threshold, the classifier will become
more conservative, decrease the number of false positives and therefore im-
prove precision at the cost of recall. By using cross-validation, the user can
get an idea of the precision-recall tradeoff. The tradeoffs for the BB3 and
SeeDev tasks are shown in Figure 3.5. This allows the user to select the
appropriate threshold for their task.

3.3.8 Parameter optimization

TEES took a grid-search approach to parameter optimization and focused
on the parameters of the SVM classifier. VERSE had a significantly larger
selection of parameters and grid search was not computationally feasible
so a stochastic approach was used. Both approaches are computationally
expensive and generally need a computer cluster.

Kindred takes a much simpler approach to parameter optimization and can
work out of the box with default values. To improve performance, the
user can choose to do minor parameter optimization. The only parameter
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Figure 3.5: The precision-recall tradeoff when trained on the training set for
the BB3 and SeeDev results and evaluating on the development set using
different thresholds. The numbers shown on the plot are the thresholds.
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optimized by Kindred is the exact set of features used for classification.
This decision was made with the hypothesis that some relations potentially
require words from across the sentence and other need only the information
from the dependency parse.

The feature choice optimization uses a greedy algorithm. It calculates the
F1-score using cross validation for each feature type. It then selects the best
one and tries adding the remaining feature types to it. It continues growing
the feature set until the cross-validated F1 score does not improve.

Figure 3.6 illustrates the process for the BB3 subtask using the training
set and evaluating on the development set. At the first stage, the entity
types feature is selected. This is understandable as the types of entity are
highly predictive of whether a candidate relation is reasonable for a par-
ticular candidate type, e.g. two gene entities are unlikely to be associated
in a ‘IS_TREATMENT_FOR’ relation. At the next stage, the unigrams
between entities feature is selected. And on the third stage, no improvement
is made. Hence for this dataset, two features are selected. We use this ap-
proach for the BB3 dataset but found that the default feature set performed
best for the SeeDev dataset.

3.3.9 Dependencies

The main dependencies of Kindred are the scikit-learn machine learning li-
brary and the Stanford CoreNLP toolkit. Kindred will check for a locally
running CoreNLP server and connect if possible. If none is found, then
the CoreNLP archive file will be downloaded. After checking the SHA256
checksum to confirm the file integrity, it is extracted. It will then launch
CoreNLP as a background process and wait until the toolkit is ready be-
fore proceeding to send parse requests to it. It also makes sure to kill the
CoreNLP process when the Kindred package exits. Kindred also depends
on the wget package for easy downloading of files, the IntervalTree Python
package for identifying entity spans in text and NetworkX for generating
the dependency path (Schult and Swart, 2008).

3.3.10 PubAnnotation integration

In order to make use of existing resources in the biomedical text mining
community, Kindred integrates with PubAnnotation. This allows annotated
text to be downloaded from PubAnnotation and used to train classifiers.
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Figure 3.6: An illustration of the greedy approach to selecting feature types
for the BB3 dataset.
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The PubAnnotation platform provides a RESTful API that allows easy
download of annotations from a given project. Kindred will initially down-
load the listing of all available text sources with annotation for a given
project. The listing is provided as a JSON data file. It will then download
the complete set of texts with annotations.

3.3.11 PubTator integration

Kindred can also download a set of annotated PubMed abstracts that have
already been annotated with named entities through the PubTator frame-
work using the RESTful API. This requires the user to provide a set of
PubMed IDs which are then requested from the PubTator server using the
JSON data format. The same loader used for PubAnnotation data is then
used for the PubTator data.

3.3.12 BioNLP Shared Task integration

Kindred gives easy access to the data from the most recent BioNLP Shared
Task. By providing the name of the test and specific data set (e.g. training,
development or testing), Kindred manages the download of the appropriate
archive, unzipping and loading of the data. As with the CoreNLP depen-
dency, the SHA256 checksum of the downloaded archive is checked before
unzipping occurs.

3.3.13 API

One of the main goals of Kindred is to open up the internal functionality
of a relation extraction system to other developers. The API is designed
to give easy access to the different modules of Kindred that may be used
independently. For instance, the candidate builder or vectorizer could easily
be integrated with functionality from other Python packages, which would
allow for other machine learning algorithms or deep learning techniques to be
tested. Other parsers could easily be integrated and tested with the other
parts of the Kindred in order to understand how the parser performance
affects the overall performance of the system. We hope that this ease-of-use
will encourage others to use Kindred as a baseline method for comparison
in future research.
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3.4 Results and discussion

The VERSE tool as described was applied to three subtasks: the BB3 event
subtask, the SeeDev binary subtask and the GE4 subtask. The Kindred
tool, which only focuses on relation extraction, is also compared to the top
performing tools for the BB3 and SeeDev tasks.

3.4.1 Datasets

The BB3 event dataset provided by the BioNLP-ST 16 organizers contains
a total of 146 documents (with 61, 34 and 51 documents in the training,
development and test sets respectively). These documents are annotated
with entities of the following types and associated total counts: bacteria
(932), habitat (1,861) and geographical (110). Only a single relation type
(Lives_In) is annotated which must be between a bacteria and habitat or a
bacteria and a geographical entity.

The dataset for the SeeDev binary subtask contains 20 documents with a
total of 7,082 annotated entities and 3,575 relations. There are 16 entity
types and 22 relation types.

The GE4 dataset focuses on NFkB gene regulation and contains 20 docu-
ments. After filtering for duplicates and cleanup, it contains 13,012 anno-
tated entities of 15 types. These entities are in 7,232 relations of 5 different
types. It also contains 81 negation and 121 speculation modifications for
events. Coreference data is also provided but was not used.

3.4.2 Cross-validated results

Both BB3 event and SeeDev binary subtasks required only relation extrac-
tion. VERSE was trained through cross-validation using the parameter
optimising strategy and the optimal parameters are outlined in Table 3.2.
Both tasks were split into training and development sets by the competition
organisers. The training set contained roughly twice as many annotations
as the development set. We used this existing split for the two-fold cross-
validation. A linear kernel SVM was found to perform the best in both
tasks. For both subtasks, relation candidates were generated ignoring the
argument types as shown in Figure 3.2.
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Table 3.2: Parameters used for BB3 and SeeDev subtasks

Parameter BB3 event SeeDev binary

Features

unigrams
unigrams POS
bigrams of dependency path
unigrams of dependency path
path edges types
entity types
entity lemmas
entity unigrams POS
path edges types near entities

unigrams
unigrams POS
path edges types
path edges types near entities
entity types

Feature Selection No Top 5%
Use TFIDF Yes Yes
Sentence Range 0 0
SVM Kernel linear linear
SVM C Parameter 0.3575 1.0 (default)
SVM Class Weights Auto 5 for positive and 1 for negative
SVM Shrinking No No
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Table 3.3: Cross-validated results of BB3 event subtask using optimal pa-
rameters

Metric Fold 1 Fold 2 Average
Recall 0.552 0.610 0.581
Precision 0.469 0.582 0.526
F1-score 0.507 0.596 0.552

Table 3.4: Cross-validated results of SeeDev event subtask using optimal
parameters

Metric Fold 1 Fold 2 Average
Recall 0.363 0.386 0.375
Precision 0.261 0.246 0.254
F1-score 0.303 0.301 0.302

The classifiers for the two tasks use two very different sizes of feature vec-
tors. The BB3 parameter set has a significant amount of repeated unigrams
data, with unigrams for the dependency path and whole sentence with and
without parts of speech. This parameter set also does not use feature se-
lection, meaning that the feature vectors are very large (14,862 features).
Meanwhile, the SeeDev parameters use feature selection to select the top
5% of features which reduces the feature vector from 7,140 features down
to only 357. This size difference is very interesting and warrants further
exploration of feature selection for other tasks.

Unfortunately, both classifiers performed best with a sentence range of zero,
meaning that only relations within sentences could be detected. Tables 3.3
and 3.4 show the optimal cross-validated results that were found with these
parameters. Notably, the F1-scores for the two folds of the SeeDev dataset
are very similar, which is surprising given that the datasets are different
sizes.

For the GE4 subtask, the cross-validation based optimisation strategy was
used to find parameters for the entity, relation and modification extractions
independently. Due to the larger dataset, filtering was applied to the argu-
ment types of relation candidates as shown in Figure 3.2. Table 3.5 outlines
the resulting F1-scores from the five-fold cross-validations. As these extrac-
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Table 3.5: Averaged cross-validated F1-score results of GE4 event subtask
with entities, relations and modifications trained separately

Metric Entities Relations Mods
Recall 0.703 0.695 0.374
Precision 0.897 0.736 0.212
F1-score 0.786 0.715 0.266

tors are trained separately, their performance in the full pipeline would be
expected to be worse. This is explained as any errors during entity extrac-
tion are passed onto relation and modification extraction.

3.4.3 Competition results

The official results for the BB3 and SeeDev tasks are shown in Tables 3.6 and
3.7. Only VERSE competed in the competition as Kindred was developed
at a later date. VERSE performed well in both tasks and was ranked first
for the BB3 event subtask and third for the SeeDev binary subtask. The
worse performance for the SeeDev dataset may be explained by the added
complexity of many additional relation and entity types.

Table 3.8 shows the final results for the test set for the Genia Event subtask
using the online evaluation tool. As expected, the F1-scores of the relation
and modification extraction are lower for the full pipeline compared to the
cross-validated results. Nevertheless, the performance is very reasonable
given the more challenging dataset.

3.4.4 Multi-sentence analysis

29% of relations span sentence boundaries in the BB3 event dataset and 4%
in the SeeDev dataset. Most relation extraction systems do not attempt
to predict these multi-sentence relations. Given the higher proportion in
the BB3 set, we use this dataset for further analysis of VERSE’s ability
to predict relations that span sentence boundaries. It should be noted that
some of these relations may be artifacts due to false identification of sentence
boundaries by the CoreNLP pipeline.
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Table 3.6: Cross-validated results (Fold1/Fold2) and final test set results for
VERSE and Kindred predictions in Bacteria Biotope (BB3) event subtask
with test set results for the top three performing tools: VERSE, TurkuNLP
and LIMSI.

Data Precision Recall F1 Score
Fold 1 0.319 0.715 0.441
Fold 2 0.460 0.684 0.550
Kindred 0.579 0.443 0.502
VERSE 0.510 0.615 0.558
TurkuNLP 0.623 0.448 0.521
LIMSI 0.388 0.646 0.485

Table 3.7: Cross-validated results (Fold1/Fold2) and final test set results
for Kindred predictions in Seed Development (SeeDev) binary subtask with
test set results for the top three performing tools: LitWay, UniMelb and
VERSE.

Data Precision Recall F1 Score
Fold 1 0.333 0.411 0.368
Fold 2 0.255 0.393 0.309
Kindred 0.344 0.479 0.400
LitWay 0.417 0.448 0.432
UniMelb 0.345 0.386 0.364
VERSE 0.273 0.458 0.342

Table 3.8: Final reported results for GE4 subtask split into entity, relations
and modifications results

Metric Entities Relations Mods
Recall 0.71 0.23 0.11
Precision 0.94 0.60 0.38
F1-score 0.81 0.33 0.17
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Using the optimal parameters for the BB3 problem, we analysed predic-
tion results using different values for the sentence range parameter. The
performance, shown in Figure 3.7, is similar for relations within the same
sentence using different sentence range parameters. However, as the dis-
tance of the relation embiggens, the classifier predicts larger ratios of false
positives to true positives. With sentence range = 3, the overall F1-score for
the development set has dropped to 0.326 from 0.438 when sentence range
= 1.

The classifier is limited by the small numbers of multi-sentence relations to
use as a training set. With a suitable amount of data, it would be worthwhile
exploring the use of separate classifiers for relations that are within sentences
and those that span sentences as they likely depend on different features.

3.4.5 Error propagation in events pipeline

It should be noted that at each stage of the event extraction pipeline (Figure
3.1), additional errors can be introduced. If entities are not identified, then
relations cannot be built upon them. And if entities or relations are missed,
modifications cannot be predicted for them. At each stage, we targetted
optimal F1-score with equal balance of precision and recall. An interesting
future direction would be an exploration of different methods to reduce this,
either targeting high recall (with lower precision) at each stage with a final
cleanup method, or a unified approach that solves all three steps together.

3.4.6 Kindred

In order to show the efficacy of Kindred, we evaluate the performance on the
BioNLP 2016 Shared Task data for the BB3 event extraction subtask and the
SeeDev binary relation subtask. Parameter optimization was used for BB3
subtask but not for the SeeDev subtask which used the default set of feature
types. Both tasks used a single multiclass classifier. Tables 3.6 and 3.7 shows
both the cross-validated results using the provided training/development
split as well as the final results for the test set.

The results are in line with the best performing tools in the shared task.
It is to be expected that it does not achieve the best score in either task.
VERSE, which achieved the best score in the BB3 subtask, utilized a com-
putational cluster to test out different parameter settings for vectorization
as well as classification. LitWay, the winner of the SeeDev subtask, used
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Figure 3.7: Analysis of performance on binary relations that cross sentence
boundaries. The classifier was trained on the BB3 event training set and
evaluated using the corresponding development set.

68



3.5. Conclusion

hand-crafted rules for a number of the relation types. Given the computa-
tional speed and simplicity of the system, Kindred is a valuable contribution
to the community.

These results suggest several possible extensions of Kindred. Firstly, a hy-
brid system that mixes a vector-based classifier with some hand-crafted rules
may improve system performance. This would need to be implemented to
allow customization in order to support different biomedical tasks. Kindred
is also geared towards PubMed abstract text, especially given the integra-
tion with PubTator. Using PubTator’s API to annotate other text would
allow Kindred to easily integrate other text sources, including full-text arti-
cles where possible. Given the open nature of the API, we hope that these
improvements, if desired by the community, could be easily developed and
tested.

Kindred has several weaknesses that we hope to improve. It does not prop-
erly handle entities that lie within tokens. For example, a token “HER2+”,
with “HER” annotated as a gene name, denotes a breast cancer subtype
that is positive for the HER2 receptor. Kindred will currently associate the
full token as a gene entity and will not properly deal the “+”. This is not a
concern for the BioNLP Shared Task problem but may become important
in other text mining tasks.

3.5 Conclusion

We have presented VERSE, a full event extraction system that performed
very well in the BioNLP 2016 Shared Task and its successor the Kindred
Python package.

The VERSE system builds upon the success of previous systems, particularly
TEES, in several important ways. It gives full control of the specific semantic
features used to build the classifier. In combination with the stochastic
optimisation strategy, this control has been shown to be important given
the differing parameter sets found to be optimal for the different subtasks.
Secondly, VERSE allows for feature selection which is important in reducing
the size of the large sparse feature vectors and avoid overfitting. Lastly,
VERSE can predict relations that span sentence boundaries, which is certain
to be an important avenue of research for future relation extraction tasks.
We hope that this tool will become a valuable asset in the biomedical text-
mining community.
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Kindred is designed for ease-of-use to encourage more researchers to test out
relation extraction in their research. By integrating a selection of file formats
and connecting to a set of existing resources including PubAnnotation and
PubTator, Kindred will make the first steps for a researcher less cumber-
some. We also hope that the codebase will allow researchers to build upon
the methods to make further improvements in relation extraction research.
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Chapter 4

A literature-mined resource
for drivers, oncogenes and
tumor suppressors in cancer

4.1 Introduction

As sequencing technology becomes more widely integrated into clinical prac-
tice, genomic data from cancer samples is increasingly being used to support
clinical decision making as part of precision medicine efforts. Many initia-
tives use targeted panels that focus on well understood cancer genes, however
more comprehensive approaches such as exome or whole genome sequenc-
ing that often uncover variants in genes of uncertain relevance to cancer
are increasingly being employed. Interpreting individual cancer samples re-
quires knowledge of which mutations are significant in cancer development.
The importance of a particular mutation depends on the role of the associ-
ated gene and the specific cancer type. The terms “oncogene” and “tumor
suppressor” are commonly used to denote genes (or aberrated forms) that
respectively promote or inhibit the development of cancer. Genes of special
significance to a particular cancer type or subtype are often described as
“drivers”. A deletion or loss-of-function mutation in a tumor suppressor gene
associated with the cancer type of the sample is potentially an important
event for this cancer. Furthermore, amplifications and gain-of function mu-
tations in oncogenes, and any somatic activity in known driver genes may be
valuable information in understanding the mutational landscape of a given
cancer sample. This knowledge can then help select therapeutic options and
improve our understanding of markers of resistance in the particular cancer
type.

A variety of methods exist to identify a gene as a driver, oncogene or tu-
mor suppressor given a large set of genomic data. Many methods use the
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background mutation rate and gene lengths to calculate a p-value for the
observed number of somatic events in a particular gene (Kristensen et al.,
2014). Other studies use the presence of recurrent somatic deletions or low
expression to deduce that a gene is a tumor suppressor (Cheng et al., 2017).
In-vitro studies that examine the effect of gene knockdowns on the cancer’s
development are also used (Zender et al., 2008).

Structured databases with information about the role of different genes in
cancer, specifically as drivers, oncogenes and tumor suppressors, are neces-
sary for automated analysis of patient cancer genomes. The Cancer Genome
Atlas (TCGA) project has provided a wealth of information on the genomic
landscape of over 30 types of primary cancers (Weinstein et al., 2013). Data
from TCGA (and other resources) are presented in the IntOGen resource
to provide easy access to lists of driver genes (Gonzalez-Perez et al., 2013).
The Cancer Gene Census has been curated using data from COSMIC to
provide known oncogenes and tumor suppressors (Futreal et al., 2004) but
faces the huge cost of manual curation. The Network of Cancer Genes (Cic-
carelli et al., 2018) builds on top of the Cancer Gene Census and integrates
a wide variety of additional contextual data including cancer types in which
the genes are frequently mutated. Other resources that provide curated
information about cancer genes include TSGene (Zhao et al., 2015) and On-
Gene (Liu et al., 2017) but do not match them with specific cancer types.
There are also two other resources that are no longer accessible for unknown
reasons (NCI Cancer Gene Index and MSKCC Cancer Genes database).

Text mining approaches can be used to automatically curate the role of genes
in cancer, by identifying mentions of genes and cancer types, and extracting
their relations from abstracts and full-text articles. Machine learning meth-
ods have shown great success in building protein protein interaction (PPI)
networks using such data (Szklarczyk et al., 2016). We present CancerMine,
a robust and regularly updated resource that describes drivers, oncogenes
and tumor suppressors in all cancer types using the latest ontologies. By
weighting gene roles by the number of supporting papers and using a high-
precision classifier, we mitigate the noisy biomedical corpora and extract
highly relevant structured knowledge.
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4.2 Methods

4.2.1 Corpora Processing

PubMed abstracts and full-text articles from PubMed Central Open Ac-
cess (PMCOA) subset and Author Manuscript Collection (PMCAMC) were
downloaded from the NCBI FTP website using the PubRunner framework
(paper in preparation - https://github.com/jakelever/pubrunner). They
were then converted to BioC format using PubRunner’s convert function-
ality. This strips out formatting tags and other metadata and retains the
Unicode text of the title, abstract and for PMCOA, the full article. The
source of the text (title, abstract, article) is also encoded.

4.2.2 Entity recognition

Lists of cancer types and gene names were built using a subset of the Disease
Ontology (DO) and NCBI gene lists. These were complemented by matching
to the Unified Medical Language System (UMLS). For cancer types, this was
achieved using the associated ID in DO or through exact string matching on
the DO item title. For gene names, the Entrez ID was used to match with
UMLS IDs. The cancer type was then associated with a DO ID, and the
gene names were associated with their HUGO gene name. These cancer and
gene lists were then pruned with a manual list of stop-words with several
custom additions for alternate spellings/acronyms of cancers. All cancer
terms with less than four letters were removed except for a selected set of
abbreviations, e.g. GBM for glioblastoma multiforme.

The corpus text was loaded in BioC format and processed using the Kindred
Python package which, as of v2.0, uses the Spacy IO parser (described in
Chapter 3). Using the tokenization, entities were identified through exact
string matching against tokens. Longer entity names with more tokens were
prioritised and removed from the sentence as entities were identified. Fusion
terms (e.g. BCR-ABL1) were identified by finding gene names separated by
a hyphen or slash. Non-fusions, which are mentions with multiple genes
symbols that actually refer to a single gene (e.g.l HER2/neu), were then
identified when two genes with matching HUGO IDs were attached and
combined to be a single non-fusion gene entity. Genes mentioned in the
context of pathways were also removed (e.g. MTOR pathway) using a list
of pathway related keywords.
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4.2.3 Sentence selection

After Kindred parsing, the sentences with tagged entities were searched for
those containing at least one cancer type and at least one gene name. These
sentences were then filtered using the terms “tumor suppress”, “oncogen”
and “driv” to enrich for sentences that were likely discussing these gene
roles.

4.2.4 Annotation

From the complete set, 1,600 of the sentences were then randomly selected
and output into the BioNLP Shared Task format for ingestion into an online
annotation platform. This platform was then used by three expert annota-
tors who are all PhD students actively engaged in precision cancer projects.
The platform presents each possible pair of a gene and cancer and the user
must annotate this as driving, oncogene and tumor suppressor. The first 100
sentences were used to help the users understand the system, evaluate initial
inter-annotator agreement, and adjust the annotation guidelines (available
at the Github repository). The results were then discarded and the com-
plete 1,500 sentences were annotated by the first two annotators. The third
annotator then annotated the sentences that the first two disagreed on. The
inter-annotator agreement was calculated using the F1-score. A gold cor-
pus was created using the majority vote of the annotations of the three
annotators.

4.2.5 Relation extraction

To create a training and test split, 75% of the 1500 sentences were used as a
training set and a Kindred relation classifier was trained with an underlying
logistic regression model for all three gene roles (Driver, Oncogene and Tu-
mor_Suppressor). The threshold was varied to generate the precision-recall
curves with evaluation on the remaining 25% of sentences. With the selec-
tion of the optimal thresholds, a complete model was trained using all 1,500
sentences. This model was then applied to all sentences found in PubMed,
PMCOA and PMCAMC that fit the sentence requirements. The associated
gene and cancer type IDs were extracted, entity names were normalized and
the specific sentence was extracted.
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4.2.6 Web portal

The resulting cancer gene roles data were aggregated by the triples (gene,
cancer, role) in order to count the number of citations supporting each cancer
gene role. This information was then presented through tabular and chart
form using a Shiny web application.

4.2.7 Resource comparisons

The data from the Cancer Gene Census (CGC), IntOGen, TS and ONGene
resources were downloaded for comparison. HUGO gene IDs in CancerMine
were mapped to Entrez gene IDs. CGC data was mapped to Disease On-
tology cancer types using a combination of the cancer synonym list created
for CancerMine and manual curation. Oncogenes and tumor suppressors
were extracted using the presence of “oncogene” or “TSG” in the “Role in
Cancer” column. The mapped CGC data was then compared against the set
of oncogenes and tumor suppressors in CancerMine. IntOGen cancer types
were manually mapped to corresponding Disease Ontology cancer types and
compared against all of CancerMine. The TSGene and ONGene gene sets
were compared against the CancerMine gene sets without an associated can-
cer type.

4.2.8 CancerMine profiles and TCGA analysis

For each cancer type, the citation counts for each gene role that were in the
top 30 cancer genes were then log10-transformed and rescaled so that the
most important gene had the value of 1 for each cancer type. Gene roles
with values lower than 0.2 for all cancer types were trimmed. The top 30
cancer types and genes were then hierarchical clustered for the associated
heatmap.

The open-access VarScan somatic mutation calls for the seven TCGA
projects (BRCA,COAD,LIHC,PRAD,LGG,LUAD,STAD) were down-
loaded from the GDC Data Portal (https://portal.gdc.cancer.gov). They
were filtered for mutations that contained a stop gain or were classified as
probably damaging or deleterious by PolyPhen. Tumor suppressor specific
CancerMine profiles were generated that used all tumor suppressors for each
cancer type. The citation counts were again log10-transformed and rescaled
to produce the CancerMine tumor suppressor profile. Each TCGA sample
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was represented as a binary vector matching the filtered mutations. The
dot-product of a sample vector and a CancerMine profile vector produced
the sum of citation weightings and gave the score. For each sample, the
score was calculated for all seven cancer types and the highest score was
used to label the sample. A sample that did not contain tumor suppressor
mutations associated with any of the seven profiles or could not be labelled
unambigously was labelled as ‘none’.

4.3 Results

4.3.1 Role of 3,775 unique genes catalogued in 426 cancer
types

The entire PubMed, PubMed Central Open Access subset (PMCOA) and
PubMed Central Author Manuscript Collection (PMCAMC) corpora were
processed to identify sentences that discuss a gene and cancer types within
titles, abstracts and where accessible full text articles. By filtering for a
customized set of keywords, these sentences were enriched for those likely
discussing the genes’ role and 1,500 randomly selected sentences were man-
ually annotated by three expert annotators. Using a custom web interface
and a well-defined annotation manual, the annotators tagged sentences that
discussed one of three gene roles (driver, oncogene and tumor suppresser)
with a mentioned type of cancer (Fig 4.1A). An example of a simple relation
that was annotated as “Tumor Suppressor” annotation is: “DBC2 is a tu-
mor suppressor gene linked to breast and lung cancers” (PMID: 17023000).
A more complex example illustrates a negative relation: “KRAS mutations
are frequent drivers of acquired resistance to cetuximab in colorectal can-
cers” (PMID:24065096). In this case, the KRAS mutations are drivers of
drug resistance, and not of cancer development as required for annotation
of driver relations.
With high inter-annotator agreement (Fig 4.1B), the data were split into
75%/25% training and test sets. A machine learning model was built for
each of the three roles and precision-recall curves were generated (Fig 4.1C)
using the test set. Receiver operating characteristic (ROC) curves were not
used as the class balance for each relation was below 20%. A high threshold
was selected for each gene role in order to provide high-precision prediction
with the accepted trade-off of low recall (Fig 4.1D).
The trade-off of higher precision with lower recall was made based on the
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Figure 4.1: The supervised learning approach of CancerMine involves man-
ual annotation by experts of sentences discussing cancer gene roles. Machine
learning models are then trained and evaluated using this data set. (a) Man-
ual text annotation of 1,500 randomly selected sentences containing genes
and cancer types show a similar number of Oncogene and Tumor Suppressor
annotations. (b) The inter-annotator agreement (measured using F1-score)
was high between three expert annotators. (c) The precision recall curves
show the trade-off of false positives versus false negatives. (d) Plotting the
precision-recall data in relation to the threshold applied to the classifier’s
decision function provides a way to select a high-precision threshold.

77



4.3. Results

hypothesis that there exists a large amount of redundancy within the pub-
lished literature. The same idea is often stated multiple times in different
papers in slightly different ways. Therefore, for frequently stated ideas, a
method with lower recall would likely identify at least one occurrence. Nev-
ertheless, we also distribute a version with thresholds of 0.5 for researchers
who are willing to accept to a higher level of noise.

We apply the models to all sentences selected from PubMed abstracts and
PMCOA/PMCAMC full-text articles, identifying 35,951 sentences from
26,767 unique papers that mention gene roles in cancer. We extract the
unique gene/cancer pairs for each role (Fig 4.2A) and find that 3,775 genes
and 426 cancer types are covered. These capture the commonly discussed
cancer genes and types (Fig 4.2B/C) from a large variety of journals (Fig
4.2D). We provide a coverage of 21% (426/2,044) of the cancer types
described in the Disease Ontology (Schriml et al., 2011) having at least one
gene association. These results are made accessible through a web portal
which can be explored through a gene or cancer-centric view. The resulting
data are stored with Zenodo for versioning and download. This storage
will provide the results in perpetuity. The results are licensed under the
Creative Commons Public Domain (CC0) license to allow this data to be
easily integrated with precision cancer workflows.

Our hypothesis of high levels of redundancy within the literature is sup-
ported by the frequent extraction of commonly-known gene roles such as
ERBB2 as an oncogene in breast cancer (421 citations) and APC as a tumor
suppressor in colorectal cancers (107 citations). On the other hand, a long
tail exists of gene roles with only a single citation – 10,903 of 14,820 (73.6%)
of extracted cancer gene roles (Fig 4.2E). For researchers that are accept-
ing of a higher false positive rate, we provide an additional less stringent
dataset using a lower prediction threshold and estimated average precision
and recall of 0.5 and 0.6 respectively. The individual prediction score, akin
to probabilities, are included so that users can further refine the results if
needed.

4.3.2 60 novel putative tumor suppressors are published in
literature each month

By examining the publication dates of the articles containing the mined
cancer gene roles, we can see that the rate of published cancer gene roles is
increasing over time (Fig 4.3A). In 2017, there were 6,851 mentions of cancer
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Figure 4.2: Overview of the cancer gene roles extracted from the complete
corpora. (a) The counts of the three gene roles extracted. (b) and (c) show
the most frequently extracted genes and cancer types in cancer gene roles.
(d) The most frequent journal sources for cancer gene roles with the section
of the paper highlighted by color. (e) illustrates a large number of cancer
gene roles have only a single citation supporting it but that a large number
(3917) have multiple citations.
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Figure 4.3: Examination of the sources of the extracted cancer gene roles
with publication date. (a) More cancer gene roles are extracted each year but
the relative proportion of novel roles remains roughly the same. (b) Roles
extracted from older papers tend to focus on oncogenes, but mentions of
driver genes have become more frequent since 2010. (c) The full text article
is becoming a more important source of text mined data. (d) Different
sections of the paper, particularly the Introduction and Discussion parts,
are key sources of mentions of cancer gene roles (d).
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gene roles in publications, translating to over ~571 each month. Approxi-
mately 69% of these are gene roles that have been published previously, but
more importantly, the remaining 31% are novel. A breakdown by the role
shows that oncogene and tumor suppressor gene mentions greatly outnum-
ber driver genes. In 2017, 1,358, 3,632 and 1,861 genes were mentioned as
drivers, oncogenes and tumor suppressors (Fig 4.3B). Combining this data,
we find that there were, on average, 22 novel drivers, 96 novel oncogenes
and 60 novel tumor suppressors described in literature each month. This
emphasizes the need to keep these text mining results up-to-date at a fre-
quency of less than a year. To this end, we have integrated the CancerMine
resource with the PubRunner framework to execute intelligent updates once
a month (paper forthcoming - https://github.com/jakelever/pubrunner).

Unhindered access to the full-text of articles for text mining purposes re-
mains a key challenge. A larger number of cancer gene role mentions are
extracted from the full text (25,641) than from the abstract alone (15,291),
with a smaller number extracted from the titles (4,150). As can be seen in
Fig 4.3C, the number extracted from full text articles is increasingly dramat-
ically over time. This is likely linked to the increasing number of publications
included in the PubMed Central Open Access subset and Author Manuscript
Collection. This strengthens the need for publishers to provide open access
and for funding agencies to require publications in platforms that allow text
mining. From the full text articles, we extract, where possible, the in-text
location of the relationship captured within the paper (Fig 4.3D). Interest-
ingly, a substantial number of the mentions are found in the Introduction
section, suggesting that the cancer gene’s role is usually discussed as back-
ground information and not a result of the paper. Knowing the subsection
that a relationship is captured from can be valuable information for Cancer-
Mine users, since a user can then quickly ascertain if the discussed cancer
role is prior knowledge or a likely result from the publication. This also
highlights the important point that the scientific quality of a paper cannot
be verified automatically by text mining technologies, since these methods
rely on the statements made by the original author. Hence, any use of text-
mined resources will always require users to access the original papers to
evaluate the assertion of a gene’s role in a particular cancer.

Cancer gene roles that are first mentioned at earlier timepoints have more
time to accrue additional citations (Fig 4.4A). Thus, it is no surprise that
while most cancer gene roles have less than 10 associated citations, those
with very large citation counts tend to be published over 10 years ago. For
instance, ERBB2’s role as an oncogene in breast cancer is first extracted
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Figure 4.4: (a) Cancer gene roles first discussed many years ago have a
longer time to accrue further mentions. (b) Some cancer gene roles grow
substantially in discussion while others fade away. (c) CancerMine can fur-
ther validate the dual roles that some genes play as oncogenes and tumor
suppressive. Citation counts are shown in parentheses.
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from a publication in 1988 and has accumulated 421 citations that fit our
extraction criteria in literature since then. However, there are some cancer
gene roles that were first extracted from publications within the last decade
but have already accrued a great number of additional mentions. For in-
stance, KRAS driving non-small cell lung carcinoma is first extracted from
a paper published in 2010, and already has 92 other papers mentioning this
role since. Lastly, there are 691 cancer gene roles that are mentioned in
literature before 2000, but are not extracted in papers after that period.
The most frequently mentioned cancer gene role that reflects this pattern
is MYC as a oncogene in cervix carcinoma, with 10 papers mentioning it
before 2000 but no further citations afterwards.

With the knowledge of date of publication, we have gleaned a historical per-
spective on the gene relations captured in literature. Fig 4.4B summarizes
three trends of citations that we observe, as exemplified by three gene as-
sociations with breast cancer. ERBB2 is an example of the small number
of well established oncogenes that are more frequently discussed year upon
year. NRAS in breast cancer exemplifies a gene that continues to be dis-
cussed in a single paper every few years, but has never gained importance
in this cancer. RUNX3 has been discussed as a tumor suppressor in breast
cancer in many papers in just the last few years. Its mechanism of action was
elucidated after aggregated data from cell-line sequencing projects revealed
its likely role as a tumor suppressor (Huang et al., 2012).

The cancer type is important when trying to understand the context of
somatic mutations. This is underscored by examples such as NOTCH1.
NOTCH1 is a commonly-cited gene that behaves as an oncogene in one
cancer (acute T cell leukemia) and as a tumor suppressor in another (head
and neck squamous cell carcinoma) (Radtke and Raj, 2003). We further
validate CancerMine by querying the resource for the set of genes that are
(i) strongly identified as a oncogene in at least one cancer type (>90% of
>=4 citations) and (ii) strongly identified as a tumor suppressor in at least
one other cancer type. This method successfully identifies NOTCH1 along
with several other genes that are reported to play dual roles in different
cancer types (Fig 4.4C).
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Figure 4.5: A comparison of CancerMine against resources that provide con-
text for cancer genes. (a) The CancerMine resource contains substantially
more cancer gene associations than the Cancer Gene Census resource. (b)
Surprisingly few of the cancer gene associations are overlapping between
the IntOGen resource and CancerMine . CancerMine overlaps substantially
with the genes listed in the (c) TSGen and (d) ONGene resources.
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4.3.3 Text mining provides voluminous complementary
data to Cancer Gene Census

The Cancer Gene Census (CGC) (Futreal et al., 2004) provides manually
curated information about cancer genes with mutation types and their roles
in cancer. CancerMine contains information on 3,775 genes (compared to
554 in CGC) and 426 cancer types (compared to 201 in CGC). CancerMine
overlaps with roughly a quarter of the oncogenes and tumor suppressors in
the CGC when comparing specific cancer types (Fig 4.5A). When the CGC
is compared to the less stringent CancerMine dataset, a further 202 cancer
gene roles were found to match. This indicates that CGC contains curated
information not easily captured using the sentence extraction method and
that CancerMine represents an excellent complementary resource to work
with CGC. Our resource also provides the sentence in which the gene role is
discussed, and citations that link to the corresponding published literature
are made available to help the user easily evaluate the evidence supporting
the gene’s role. CancerMine would be an excellent resource for prioritizing
future curation of literature for resources such as CGC.

The IntOGen resource leverages a number of cancer sequencing projects,
including the Cancer Genome Atlas (TCGA) to index genes inferred to
contain driver mutations. A comparison of the genes with their cancer types
in CancerMine shows surprising differences (Fig 4.5B). CancerMine includes
a much larger set of genes but has little overlap with the IntOGen resource.
This suggests that many of the genes identified through the projects included
in IntOGen are not yet frequently discussed in the literature with respect
to the specific cancer types in the IntOGen resource.

ONGene and TSGene2 provide lists of oncogenes and tumor suppressors.
Unfortunately these gene names are not associated with specific cancer types
which is an important aspect for precision oncology. When trying to dif-
ferentiate between driving and passenger mutations, the lack of cancer type
context would likely cause a high false positive rate. CancerMine contains
~67% of the genes in ONGene and ~61% of TSGene2, and contains sub-
stantially more genes than both resources (Fig 4.5C/D). These results lend
more weight to the use of automated text mining approaches for the popu-
lation of knowledge bases, since no curation is required to keep the resource
up-to-date.
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Figure 4.6: CancerMine data allows the creation of profiles for different
cancer types using the number of citations as a weighting for each gene
role. (a) The similarities between the top 30 cancer types in CancerMine
are shown through hierarchical clustering of cancers types and genes using
weights from the top 30 cancer gene roles. (b) All samples in seven TCGA
projects are analysed for likely loss-of-function mutations compared with the
CancerMine tumor suppressor profiles and matched with the closest profile.
Percentages shown in each cell are the proportion of samples labelled with
each CancerMine profile that are from the different TCGA projects. Sam-
ples that match no tumor suppressor in these profiles or are ambigious are
assigned to none. The TCGA projects are breast cancer (BRCA), colorectal
adenocarcinoma (COAD), liver hepatocellular carcinoma (LIHC), prostate
adenocarcinoma (PRAD), low grade glioma (LGG), lung adenocarcinoma
(LUAD) and stomach adenocarcinoma (STAD).

86



4.3. Results

4.3.4 CancerMine provides insights into cancer similarities

Oncology often takes an organ-centric view of cancer types which is re-
flected by the numerous disease ontologies that exist for the categorization
and nomenclature of cancer including the Disease Ontology used in this
project. However, modern medicine is beginning to consider some cancers
based purely on the genetic underpinnings, developing basket trials and ap-
proving treatment regimens based on genetic indications only (as shown
with the successful approval of Pembrolizumab for PD-1 positive cancer pa-
tients). The CancerMine resource allows for the creation of a gene-centric
view of cancers, by clustering cancers based on the role of different genes. A
gene-centric view has the potential to reveal treatment regimes that could
be transferred to other genetically similar cancer types. To allow for visual-
isation, we selected the top 30 cancers (based on citation count in Cancer-
Mine) and extracted the number of citations mentioning the role of the top
30 genes. This produces a profile for each cancer type showing the impor-
tance of each gene and its associated role. A heatmap that illustrates this
for the top 30 cancer types and genes is shown in Figure 4.6A.

The clustering puts biologically similar or equivalent cancers together that
are separate entities in the Disease Ontology. For example it groups colorec-
tal with colon cancer and malignant glioma with glioblastoma multiforme.
Some of these clusters also highlight known gene-cancer associations, for ex-
ample, lung cancer, non-small cell lung carcinoma and lung adenocarinoma
all cluster together, and are heavily associated with the KRAS and EGFR
oncogenes. In fact, the strong cluster of genes on the left side separates
cancers that are strongly associated with KRAS, EGFR, and TP53 (such
as lung cancer) from those that are less so (such as thyroid medullary car-
cinoma). Put together, this approach is able to explain biological similarity
of cancer types using shared gene associations. As an example, leukemia
clusters closely with the more specific subtype, acute myeloid leukemia, and
it is evident that this is driven by extracted associations of these cancers
with MYC, ABL1 and many other genes. Several gene associations are no-
ticeably low frequency compared to overall patterns, for instance KRAS in
glioblastoma multiforme (GBM). While there are a small number of papers
discussing KRAS in GBM, it is an infrequently discussed gene compared
to EGFR and PTEN. Overall this visualisation presents an easy method to
explore the similarities and differences between cancer types.

In order to validate the cancer genes identified in CancerMine, we compare
results to somatic mutation data from the Cancer Genome Atlas (TCGA)
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project. We hypothesis that the genes denoted to be tumor suppressors
would likely be affected by loss-of-function mutations. Oncogenes may be
affected by gain-of-function mutations which are harder to identify, hence
our focus on tumor suppressors. Using CancerMine profiles based on tu-
mor suppressor genes, we compare somatic calls for all samples with mu-
tation data within seven TCGA projects. For each sample, we match the
somatic calls against the set of CancerMine tumor profiles and sum the im-
portance of the tumor suppressors found to be mutated. Figure 4.6B shows
the percentages of top matches to each CancerMine profile. Six of the seven
CancerMine profiles have their highest proportion matches with the corre-
sponding TCGA project. Interestingly a large number of breast cancer and
prostate cancer samples cannot be unambigiously labelled with one of the
CancerMine profiles. For prostate cancer, roughly one third of the samples
do not have any LoF mutations that match against any tumor suppressors
for any of the seven types, suggesting that prostate cancer tumor suppres-
sors are disabled through other mechanisms or that there are more tumor
suppressors involved which have not been captured by CancerMine.

The glioma (LGG) result is the most prominent with 70.5% of TCGA LGG
samples being most closely identified with the CancerMine malignant glioma
profile. This is largely due to the high prevalence of IDH1 (390/503) muta-
tions identified in the LGG cohort. While this data would not be enough
for a tumor type classifier on its own, this results shows there is substantial
signal that can be leveraged for interpreting the genomic data and could
be combined further with other mutational data. This is underscored when
examining breast cancer tumor suppressors with only a single citation, genes
that are hypothetically not well known to be tumor suppressors in breast
cancer. Seven of these genes (ARID1B, FGFR2, KDM5B, SPEN, TBX3,
PRKDC and KMT2C) are mutated in at least 10 TCGA BRCA samples
providing extra strength for the importance of these genes in breast cancer.
In fact, the mechanism through which KMT2C inactivation drives tumor-
genesis was recently elaborated in ER-positive breast cancer (Gala et al.,
2018).

4.4 Discussion

This work contributes a much needed resource of known drivers, oncogenes
and tumor suppressors in a wide variety of cancer types. The text mining
approach taken is able to discern complicated descriptions of cancer gene

88



4.4. Discussion

roles with a high level of precision. This provides for a continually updated
resource with little need for human intervention. This generalizable method
could extract other types of biological knowledge with only minor changes.
However, there are several limitations to this approach that present inter-
esting but challenging alleys for further investigation. Firstly, this method
focuses on single sentence extraction due to the challenge of anaphora and
coreference resolution across sentences. In Chapter 3, we showed that a
high false positive rate occurs when identifying knowledge across multiple
sentences. Our approach requires that authors discuss the gene name, role
and cancer name all within the same sentence. This is a problem of writ-
ing style and probabilities that gets greatly diluted with the large number
of publications processed. Furthermore our approach focuses on individual
genes in isolation and is unable to capture complex interactions between
cancer genes discussed in papers, e.g. mutual exclusivity. More of these
complex relationships will likely be identified in future research and play a
part in interpreting the somatic events in an individual cancer patient. Text
mining approaches face growing challenges with extracting complex events
like these, which may span multiple sentences or even paragraphs.

One important concept when interpreting CancerMine data is that our
methodology does not force a definition of a driver, oncogene or tumor
suppressor and relies on the assertion of individual authors. A decision
was made to not extract discussion of genes frequently mutated in cancer.
This was due to the acknowledged problem of huge genes (e.g. TTN) that
frequently accrue many somatic mutations but likely don’t play a part in
cancer. Instead we rely on the authors’ assertions of the role a gene plays in
cancer. The level of evidence differs greatly as some assertions are based on
intervential studies (e.g. knockdowns) while others use observational studies
(e.g mutation frequency or expression experiments).

As has been noted, many attempts have been made to create a knowledge
bases of this topic. Hosting the data through Zenodo and the code through
Github provides a level of continuity that will guarantee that the project
code and data stay accessible for the foreseeable future. Furthermore the
PubRunner integration makes it easier to keep the results up-to-date. All
data and analysis for this chapter is open source and documented. We hope
others will explore this data in order to infer new knowledge of cancer types
and their associated genes.
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Chapter 5

Text-mining clinically
relevant cancer biomarkers
for curation into the CIViC
database

5.1 Introduction

The ability to stratify patients into groups that are clinically related is an im-
portant step towards a personalized approach to cancer. Over time, a grow-
ing number of biomarkers have been developed in order to select patients
who are more likely to respond to certain treatments. These biomarkers
have also been valuable for prognostic purposes and for understanding the
underlying disease biology by defining different molecular subtypes of can-
cers that should be treated in different ways (e.g. ERBB2/ER/PR testing
in breast cancer (Onitilo et al., 2009)). Immunohistochemistry techniques
are the primary approach for testing samples for diagnostic markers. (e.g.
CD15 and CD30 for Hodgkin’s disease (Rüdiger et al., 1998)). Recently,
the lower cost and increasing speed of sequencing has allowed the DNA
and RNA of individual patient samples to be characterized for clinical ap-
plications (Prasad et al., 2016). Throughout the world, this technology is
beginning to inform clinician decisions on which treatments to use (Shrager
and Tenenbaum, 2014). Such efforts are dependent on comprehensive and
current understanding of the clinical relevance of variants. For example, the
Personalized Oncogenomics project at the BC Cancer Agency identifies so-
matic events in the genome such as point mutations, copy number variations
and large structural changes and, in conjunction with gene expression data,
generates a clinical report to provide an ‘omic picture of a patient’s tumor
(Jones et al., 2010).
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The huge genomic variability in cancers means that each patient sample
includes a huge number of new mutations, many of which have never been
documented before (Chang et al., 2016). The phenotypic impact of most of
these mutations is difficult to discern. This problem is exacerbated by the
driver/passenger mutation paradigm where only a fraction of mutations are
essential to the cancer (drivers) while many others have occurred through
mutational processes that are irrelevant to the cancer and are deemed to have
simply come along for the ride (passengers). An analyst trying to understand
a new patient sample typically performs a literature review for each gene
and specific variant. This is needed to understand its relevance in a cancer
type, characterize the driver/passenger role of its observed mutations, and
gauge the relevance for clinical decision making.

Several groups have built their own in-house knowledge bases which are
developed as analysts examine increasing numbers of cancer patient sam-
ples. This tedious and largely redundant effort represents a substantial in-
terpretation bottleneck impeding the progress of precision medicine (Good
et al., 2014). To encourage a collaborative effort, the CIViC database
(https://civicdb.org) was launched to provide a wiki-like editable online re-
source where edits and additions are moderated by experts in order to main-
tain high quality (Griffith et al., 2017). The resource provides information
about clinically-relevant variants in cancer. Variants include protein-coding
point mutations, copy number variations, epigenetic marks, gene fusions,
aberrant expression levels and other ‘omic events. It supports four types of
biomarkers (also known as evidence types).

Diagnostic evidence items describe variants that can help a clinician diagnose
or exclude a cancer. For instance, the JAK2 V617F mutation is a major di-
agnostic criterion for myeloproliferative neoplasms to identify polycythemia
vera, essential thrombocythemia and primary myelofibrosis. Predictive evi-
dence items describe variants that help predict drug sensitivity or response
and are valuable in deciding further treatments. Predictive evidence items
often explain mechanisms of resistance in patients who progressed on a drug
treatment. For example, the ABL1 T315I missense mutation in the BCR-
ABL fusion, predicts poor response to imatinib, a tyrosine kinase inhibitor
that would otherwise effectively target BCR-ABL, in patients with chronic
myeloid leukemia. Predisposing evidence items describe germline variants
that increase the likelihood of developing a particular cancer, such as BRCA1
mutations for breast/ovarian cancer or RB1 mutations for retinoblastoma.
Lastly, prognostic evidence items describe variants that predict survival out-
come. As an example, colorectal cancers that harbor a KRAS mutation are
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predicted to have worse survival.

CIViC presents this information in a human-readable text format consist-
ing of an ‘evidence statement’ such as the sentence describing the ABL1
T315I mutation above together with data in a structured, programmati-
cally accessible format. A CIViC ‘evidence item’ includes this statement,
ontology-associated disease name (Schriml et al., 2011), evidence type as
defined above, drug (if applicable), PubMed ID and other structured fields.
Evidence items are manually curated and associated in the database with a
specific gene (defined by Entrez Gene) and variant (defined by the curator).

Several other groups have created knowledge bases to aid clinical interpre-
tation of cancer genomes. Many of these projects have joined the Variant
Interpretation for Cancer Consortium (VICC, http://cancervariants.org/)
to coordinate these efforts and have created a federated search mechanism to
allow easier analysis across multiple knowledge bases (Wagner et al., 2018).
The CIViC project is co-leading this effort along with OncoKB (Chakravarty
et al., 2017), the Cancer Genome Interpreter (Tamborero et al., 2018), Pre-
cision Medicine Knowledge base (Huang et al., 2017), Molecular Match,
JAX-Clinical Knowledge base (Patterson et al., 2016) and others.

Most of these projects focus on clinically-relevant genomic events, partic-
ularly point mutations, and provide associated clinical information tiered
by different levels of evidence. Only CIViC includes RNA expression-based
biomarkers. These may be of particular value for childhood cancers which
are known to be ‘genomically quiet’, having accrued very few somatic mu-
tations. Consequently, their clinical interpretation may rely more heavily
on transcriptomic data (Adamson et al., 2014). Epigenomic biomarkers will
also become more relevant as several cancer types are increasingly under-
stood to be driven by epigenetic misregulation early in their development
(Baylin and Ohm, 2006). For example, methylation of the MGMT promoter
is a well known biomarker in brain tumors for sensitivity to the standard
treatment, temozolomide (Hegi et al., 2005).

The literature on clinically relevant cancer mutations is growing at an ex-
traordinary rate. For instance there were only 5 publications with BRAF
V600E in title or abstract in PubMed in 2004 compared to 454 citations in
2017. In order to maintain a high quality and up-to-date knowledge base,
a curation pipeline must be established. This typically involves a queue
for papers, triaging those that should be curated and then assignment to a
highly experienced curator. This prioritisation step is immensely important
given the limited time of curators and the potentially vast number of papers
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to be reviewed. Prioritisation must identify papers that contain knowledge
that is of current relevance to users of the knowledge base. For instance,
selecting papers for drugs that are no longer clinically approved would not
be valuable to the knowledge base.

Text mining methods have become a common approach to help prioritise
papers. These methods fall broadly into two main categories, information
retrieval (IR) and information extraction (IE). IR methods focus on paper-
level information and can take multiple forms. Complex search queries for
specific terms or paper metadata (helped by the MeSH term annotations
of papers in biomedicine) are common tools for curators. More advanced
document clustering and topic modelling systems can use semi-supervised
methods to predict whether a paper would be relevant for curation. Exam-
ples of this approach include the document clustering method used for the
ORegAnno project (Aerts et al., 2008).

IE methods extract structured knowledge directly from the papers. This
can take the form of entity recognition, by explicitly tagging mentions of
biomedical concepts such as genes, drugs and diseases. A further step can
involve relation extraction to understand the relationship discussed between
tagged biomedical entities. This structured information can then be used to
identify papers relevant for the knowledge base. IE methods are also used
for automated knowledge base population without a manual curation step.
For example, the mirTex knowledge base, which collates microRNA and
their targets, uses automated relation extraction methods to populate the
knowledge base (Li et al., 2015). Protein-protein interaction networks (such
as STRING (Szklarczyk et al., 2016)) are often built using automatically
generated knowledge bases.

The main objective of this project was to identify frequently discussed can-
cer biomarkers which fit the CIViC model but are not yet included in the
CIViC knowledge base. We developed an IE-based method to extract key
parts of the evidence item: cancer type, gene, drug (where applicable) and
the specific evidence type from published literature. This allows us to count
the number of mentions of specific evidence items in abstracts and full
text articles and compare against the CIViC knowledge base. This chap-
ter will present our methods to develop this resource, known as CIViCmine
(http://bionlp.bcgsc.ca/civicmine/). This main contributions of this work
are an approach for knowledge base construction that could be applied to
many areas of biology and medicine, a machine learning method for extract-
ing complicated relationships between four entity types, and extraction of
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relationships across the largest possible publically accessible set of abstracts
and full text articles. This resource, containing 70,655 biomarkers, is valu-
able to all cancer knowledge bases to aid their curation and also as a tool
for precision cancer analysts searching for biomarkers not yet included in
any other resource.

5.2 Methods

5.2.1 Corpora

The full PubMed and PubMed Central Open Access subset corpora was
downloaded from the NCBI FTP website using the PubRunner infrastruc-
ture (Anekalla et al., 2017). These documents were converted to the BioC
format for processing with the Kindred package (described in Chapter 3).
HTML tags were stripped out and HTML special characters converted to
Unicode. Metadata about the papers were retained including PubMed IDs,
titles, journal information and publication date. Subsections of the paper
were extracted using a customised set of acceptable section headers such as
“Introduction”, “Methods”, “Results” and many synonyms of these. The
corpora were downloaded in bulk in order to not overload the EUtils REST-
FUL service that is offered by the NCBI. In order to avoid duplications of
publications in PMCOA and PubMed, the PMIDs of all documents included
in PMCOA were used to filter out abstracts from the PubMed corpus. The
update files from PubMed were also processed to identify the latest version
of each abstract to process.

5.2.2 Term Lists

Term lists were curated for genes, diseases and drugs based on several re-
sources. The cancer list was curated from a section of the Disease Ontology
(Schriml et al., 2011). All terms under the “cancer” (DOID:162) parent term
were selected and filtered for unspecific names of cancer (e.g. “neoplasm” or
“carcinoma”). These cancer types were then matched with synonyms from
the Unified Medical Language System (UMLS) Metathesaurus (Bodenreider,
2004) (2017AB), either through existing external reference links in the Dis-
ease Ontology or through exact string-matching on the main entity names.
The additional synonyms in the UMLS were then added through this link.
The genes list was built from the Entrez gene list and complemented with
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UMLS terms. Terms that overlapped with common words found in scientific
literature (e.g. ice) were removed.

The drug list was curated from the WikiData resource (Vrandečić and
Krötzsch, 2014). All Wikidata entities that are drug instances (Wikidata
identifier: Q12140) were selected using a SPARQL query. The generic name,
brand name and synonyms were extracted where possible. This link was
complemented by a custom list of general drug categories (e.g. chemother-
apy, tyrosine kinase inhibitors, etc) and a list of inhibitors built using the
previously discussed gene list. This allowed for the extraction of terms such
as “EGFR inhibitors”. This was done because analysts are often interested
in biomarkers associated with drug classes that target a specific gene, in
addition to specific drugs.

All term lists were filtered with a stopwords list. This was based on the
stopword list from the Natural Language Toolkit (Bird, 2006) and the most
frequent 5,000 words found in the Corpus of Contempory American English
(Davies, 2009) as well as custom set of terms. It was then merged with
common words that occur as gene names (such as ICE).

A custom variant list was built that captured the main types of point muta-
tions (e.g. loss of function), copy number variation (e.g. deletion), epigenetic
marks (e.g. promoter methylation) and expression changes (e.g. low expres-
sion). These variants were complemented by a synonym list.

5.2.3 Entity extraction

The BioC corpora files were processed by the Kindred package. This NLP
package used Stanford CoreNLP (Manning et al., 2014) for processing in
the original published version (Lever and Jones, 2017). It was changed to
Spacy (Honnibal and Johnson, 2015) for the improved Python bindings in
version 2 for this project. This provided easier integration and execution on
a cluster without running a Java subprocess. Spacy was used for sentence
splitting, tokenization and dependency parsing of the corpora files.

Exact string matching was then used against the tokenized sentences to
extract mentions of cancer types, genes, drugs and variants. Longer terms
were prioritised during extraction so that “non small cell lung cancer” would
be extracted instead of just “lung cancer”. Variants were also extracted with
a regular expression system for extracting protein coding point mutations
(e.g. V600E).
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Table 5.1: The five groups of search terms used to identify sentences that
potentially discussed the four evidence types. Strings such as “sensitiv” are
used to capture multiple words including “sensitive” and “sensitivity”.

General Diagnostic Predictive Predisposing Prognostic
marker diagnostic sensitiv risk survival

resistance predispos prognos
efficacy DFS
predict

Gene fusions (such as BCR-ABL1) were detected by identifying mentions of
genes separated by a forward slash, hyphen or colon. If the two entities had
no overlapping HUGO IDs, then it was flagged as a possible gene fusion and
combined into a single entity. If there were overlapping IDs, it was deemed
likely to be referring to the same gene. An example is HER2/neu which is
frequently seen and refers to a single gene (ERBB2) and not a gene fusion.

Acronyms were also detected where possible by identifying terms in paren-
theses and checking the term before it, for instance “non-small cell lung
carcinoma (NSCLC)”. This was done to remove entity mistakes where pos-
sible. The acronym detection method takes the short form (the term in
brackets) and iterates backwards through the long form (the term before
brackets) looking for potential matches for each letter. If the long form and
short form has overlapping associated ontology IDs, they likely refer to the
same thing and can be combined, as in the example above. If only one of the
long form or short form has an associated ontology ID, they are combined
and assigned the associated ontology ID. If both long form and short form
have ontology IDs but there is no overlap, the short form is disregarded as
the long form has more likelihood of getting the specific term correct.

Gene mentions that are likely associated with signalling pathways and not
specific genes (e.g. “MTOR signalling”) are also removed using a simple
pattern based on the words after the gene mention. One final post-processing
step merges neighbouring terms with matching terms. So “HER2 neu” would
be combined into one entity as the two terms (HER2 and neu) refer to the
same gene.
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5.2.4 Sentence selection

With all biomedical documents parsed and entities tagged, all sentences
were selected that mention at least one gene, at least one cancer and at
least one variant. A drug was not required as only one (Predictive) of the
four evidence types involves a drug entity. These sentences were enriched
by filtering with certain keywords that are strongly associated with the dif-
ferent evidence items. The full list and groupings of keywords are shown in
Table 5.1. This grouping is done to make sure that each evidence type is
represented reasonably equally in the training data. The General category
with the keyword “marker” is included to catch additional sentences that
discuss markers, which may relate to any of the four evidence types. Several
of the keywords are stems in order to capture different forms of the word,
e.g. prognosis or prognostic The acronym “DFS” which means “disease free
survival” is also included as it was found in many sentences describing prog-
nosis.

5.2.5 Annotation Platform

A web platform for simple relation annotation was built using Bootstrap
(https://getbootstrap.com/). This allowed annotators to work using a vari-
ety of devices, including their smartphones. The annotation system could be
loaded with a set of sentences with entity annotations stored in a separate
file (also known as standoff annotations). When provided with a relation
pattern, for example “Gene/Cancer”, the system would search the input
sentences and find all pairs of the given entity types in the same sentence.
It would make sure that the two entities are not the same term, as in some
sentences a token (or set of tokens) could be annotated as both a gene and
a cancer, for instance “retinoblastoma”. For a sentence with 2 genes and 2
cancer types, it would find all four possible pairs of gene and cancer type.

Each sentence, with all the possible candidate relations matching the relation
pattern, would be presented to the user, one at a time (Fig 5.1). The user
can then select various toggle buttons for the type of relation that these
entities are part of. They can also use these to flag entity extraction errors
or mark contentious sentences for discussion with other annotators.
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Figure 5.1: A screenshot of the annotation platform that allowed expert
annotators to select the relation types for different candidate relations in
all of the sentences. The example sentence shown would be tagged using
“Predictve/Prognostic” as it describes a prognostic marker.

98



5.2. Methods

Figure 5.2: An overview of the annotation process. Sentences are identified
from the literature that describe cancers, genes, variants and optionally
drugs and then filtered using search terms. The first test phase tried complex
annotation of biomarker and variants together but was unsuccessful. The
annotation task was split into two separate tasks for biomarkers and variants
separately. Each task had a test phase and then the main phase on the 800
sentences that were used to create the gold set.
(#fig:annotationOverview, )

5.2.6 Annotation

For the annotation stage (outlined in Fig ??), an equal number of sentences
were selected from each of the groups outlined in Table 5.1. This guaran-
teed coverage of all four evidence types as the prognostic type dominated
the other groups. If this step was not done, 100 randomly selected sentences
would only contain 2 (on average) from the Diagnostic group. However, this
sampling provided poor coverage of sentences that describe specific point
mutations. Many precision oncology projects only focus on point mutations
and so a further requirement was that 50% of sentences for annotation in-
clude a specific point mutation. All together, this sampling provides better
coverage of the different omic events and evidence types that were of inter-
est. Special care is required when evaluating models built on this customized
training set as an unweighted evaluation would not be representative of the
real literature.

Sentences that contain many permutations of relationships (e.g. a sentence
with 5 genes and 5 cancer types mentioned) were removed. An upper limit
of 5 possible relations was enforced for each sentence. This was done with
the knowledge that the subsequent relation extraction step would have a
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greater false positive rate for sentences with very large number of possible
relations. It was also done to make the annotation task more manageable.
An annotation manual was constructed with examples of sentences that
would and would not match the four evidence types. This was built in
collaboration with CIViC curators. The annotation manual is available in
our Github repository.

The annotation began with a test phase of 100 sentences that had poor an-
notator agreement and required a refinement of the annotation task outlined
in this paragraph. The test phase allows the annotators to become accus-
tomed to the annotation platform and make adjustments to the annotation
manual to clarify misunderstandings. The first test phase (Biomarker +
Variant) involved annotating sentences for ternary (gene, cancer, variant)
or quaternary (gene, cancer, variant, drug) relationships. The ternary rela-
tionships included Diagnostic, Prognostic and Predisposing and the quater-
nary relationship was Predictive. A low F1-score inter-annotator agreement
(average of 0.52) forced us to reconsider the annotation approach. This poor
agreement was likely due to including variants within the annotations and
provided a large combinatorial problem of exactly which entity mentions to
include within a relationship. In order to simplify the problem, the task
was split into two separate annotation tasks, the biomarker annotation and
the variant annotation. The biomarker annotation involved binary (gene,
cancer) and ternary (gene, cancer, drug) relations that described one of the
evidence types. The Predictive and Prognostic evidence types were merged
(as shown in Figure 2), to further reduce the annotation complexity. The
Predictive/Prognostic annotations could be separated after tagging as rela-
tionships containing a drug would be Predictive and those without would
be Prognostic. Any Prognostic relationship for a gene and cancer type that
are in a Predictive relationship were removed. The variant annotation task
(gene, variant) focused on whether a variant (e.g. deletion) was associated
with a specific gene in the sentence.

With the redefined annotation task, six annotators were involved in
biomarker annotation, all with knowledge of the CIViC platform and have
experience interpreting patient cancer genome samples. Three annotators
were involved in variant annotation, all with experience in cancer genomics.
Both annotation tasks started with a new 100-sentence test phase to
evaluate the redefined annotation tasks and resolve any ambiguity within
the annotation manuals. Good inter-annotator agreement was achieved at
this stage for both the biomarker annotation (average F1-score = 0.68)
and variant annotation (average F1-score = 0.95). These 100 sentences
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were discarded as they exhibited a learning curve as annotators become
comfortable with the task.

Annotator 2

0.74Annotator 1

Annotator 3

NAAnnotator 2

0.73
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(a)
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0.96
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Figure 5.3: The inter-annotator agreement for the main phase for 800 sen-
tences, measured with F1-score, showed good agreement in the two sets of
annotations for biomarkers (a) and (b) and very high agreement in the vari-
ant annotation task (c). The sentences from the multiple test phases are
not included in these numbers and are discarded from the further analysis.

After a video-conference discussion, the annotation manuals were refined
further. The main phase of biomarker annotation involved three annotators
working on 400 sentences and the other three working on a different 400
sentences. Separately, three annotators worked on variant annotation with
the 800 sentence set. Figure 5.3 shows the inter-annotator agreement for
these tasks for the full 800 sentences. Each sentence is annotated by three
annotators and a majority vote system is used to solve conflicting annota-
tions. The biomarker and variant annotations are then merged to create the
gold corpus of 800 sentences used for machine learning system.

5.2.7 Relation extraction

The sentences annotated with relations were then processed using the Kin-
dred relation extraction Python package. Relation extraction models were
built for all five of the relation types: the four evidence types (Diagnostic,
Predictive, Predisposing and Prognostic) and one AssociatedVariant rela-
tion type. Three of the four evidence type relations are binary between a
Gene entity and a Cancer entity. The AssociatedVariant relation type is also
binary between a Gene entity and a Variant entity. The Predictive evidence
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item type was ternary between a Gene, a Cancer Type and a Drug.

Most relation extraction systems focus on binary relations (Björne and
Salakoski, 2013, Bui et al. (2013)) and use features based on the dependency
path between those two entities. The recent BioNLP Shared Task 2016 series
included a subtask for non-binary relations (i.e. relations between three or
more entities) but no entries were received (Chaix et al., 2016). Relations be-
tween 2 or more entities are known as n-ary relations where n ≥ 2. The Kin-
dred relation extraction package, based on the VERSE relation extraction
tool (described in Chapter 3) which won part of the BioNLP Shared Task
2016, was enhanced to allow prediction of n-ary relations. First, the candi-
date relation builder was adapted to search for relations of a fixed n which
may be larger than 2. This meant that sentences with 5 non-overlapping
tagged entities would generate 60 candidate relations with n = 3. These
candidate relations would then be pruned by entity types. Hence, for the
Predictive relation type (with n = 3), the first entity must be a Cancer
Type, the second a Drug and the third a Gene. Two of the features used are
based on the path through the dependency graph between the entities in
the candidate relation. For relations with more than two entities, Kindred
made use of a minimal spanning tree within the dependency graph.

The default Kindred features (outlined below) were then constructed for
this subgraph and the associated entities and sentences. All features were
represented with 1-hot vectors or bag-of-words representations.

• Entity types in the relation
• Unigrams between each pair of entities within the relation
• Bigrams of the entire sentence
• All edge types within the minimal spanning tree of the dependency

graph that links all entity nodes
• Edge types of edges that are attached to entity nodes within the de-

pendency graph

During training, candidate relations are generated with matching n-ary to
the training set. Those candidate relations that match a training example
are flagged as positive examples with all others as negative. These candidate
relations are vectorized and a logistic regression classifier is trained against
them. The logistic regression classifier outputs an interpretable score akin
to a probability for each relation, which was later used for filtering. Kindred
also supports a Support Vector Machine classifier (SVM) or can be extended
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Table 5.2: Number of annotations in the training and test sets

Annotation Train Test
AssociatedVariant 768 270
Diagnostic 156 62
Predictive 147 43
Predisposing 125 57
Prognostic 232 88

with any classifier from the scikit-learn package (Pedregosa et al., 2011a).
The logistic regression classifier was more amenable for adjustment of the
precision-recall tradeoff.

For generation of the knowledge base, the four evidence type relations were
predicted first which provided relations including a Gene. The Associated-
Variant relation was then predicted and attached to any existing evidence
type relation that included that gene.

5.2.8 Evaluation

With the understanding that the annotated sentences were selected ran-
domly from customised subsets and not randomly from the full population,
care was taken in the evaluation process.

First, the annotated set of 800 sentences was split 75%/25% into a training
and test set that had similar proportions of the four evidence types (Table
5.2). Each sentence was then tracked with the group it was selected from
(Table 5.1). Each group has an associated weight based on the proportion
of the entire population of possible sentences that it represents. Hence, the
Prognosis group, which dominates the others, has the largest weight. When
comparing predictions against the test set, the weighting associated with
each group was then used to adjust the confusion matrix values. The goal of
this weighting scheme was to provide performance metrics which would be
representative for randomly selected sentences from the literature and not
for the customised training set.
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Figure 5.4: (a) The precision-recall curves illustrate the performance of the
five relation extraction models built for the four evidence types and the
associated variant prediction. (b) This same data can be visualised in terms
of the threshold values on the logistic regression to select the appropriate
value for high precision with reasonable recall.
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Table 5.3: The selected thresholds for each relation type with the high
precision and lower recall trade-off.

Extracted Relation Threshold Precision Recall
AssociatedVariant 0.70 0.941 0.794
Diagnostic 0.63 0.957 0.400
Predictive 0.93 0.891 0.141
Predisposing 0.86 0.837 0.218
Prognostic 0.65 0.878 0.414

5.2.9 Precision-recall Tradeoff

Figure 5.4a shows precision recall curves for all five of the relation types.
The Diagnostic and Predisposing tasks are obviously the most challenging
for the classifier. This same data can be visualised using the threshold values
used against the output of the logistic regression for each metric (Fig 5.4b).

In order to provide a high quality resource, we decided on a trade off of
high precision with low recall. We hypothesised that the most commonly
discussed cancer biomarkers, which are the overall goal of this project, would
appear in many papers using different wording. These frequently mentioned
biomarkers would then be likely picked up even with lower recall. This also
reduces the burden on CIViC curators to sift through false positives. With
this, we selected thresholds that would give as close to 0.9 precision given
the precision-recall curves for the four evidence types. We require a higher
precision for the variant annotation (0.94). The thresholds and associated
precision recall tradeoffs are shown for all five extracted relations in Table
5.3.

5.2.10 Application to PubMed and PMCOA

With the thresholds selected, the final models were applied to all sentences
extracted from PubMed and PMCOA. This is a reasonably large compu-
tational problem and was tasked to the compute cluster at the Genome
Sciences Centre.

In order to manage this compute and provide infrastructure for easy up-
dating with new publications in PubMed and PMCOA, we made use of the
updated Pubrunner infrastructure (paper in preparation - https://github.
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com/jakelever/pubrunner). This allows for easy distribution of the work
across a compute cluster. The resulting data was then pushed to Zenodo
(https://zenodo.org/) for perpetual and public hosting. The data is released
with a Creative Commons Public Domain (CC0) license so that other groups
can easily make use of it.

5.2.11 CIViC Matching

In order to make comparisons with CIViC, we downloaded the nightly data
file from CIViC (https://civicdb.org/releases) and matched evidence items
against each other. The evidence type and IDs for genes and cancers were
used for matching. Direct string matching was used to compare drug names
for Predictive biomarkers. The exact variant was not used for comparison
in order to find a genes that contain any biomarkers that match between
the two resources.

Some mismatches occurred with drug names. For example, CIViCmine may
capture information about the drug family while CIViC contains informa-
tion on specific drugs, or a list of drugs. Another challenge with matching
with CIViCmine is related to the similarity of cancer types in the Disease
Ontology. There are several pairs of similar cancers types that are used
interchangably by some researchers and not by others, e.g. stomach cancer
and stomach carcinoma. CIViC may contain a biomarker for stomach cancer
and CIViCmine matches all the other details except it relates it to stomach
carcinoma.

5.2.12 User interface

In order to make the data easily explorable, we provide a Shiny based front-
end (Fig ??) (RStudio, Inc, 2013). This shows a list of biomarkers which can
be filtered by the Evidence Type, Gene, Cancer Type, Drug and Variant.
In order to help prioritize the biomarkers, we use the number of unique
papers that the variants are mentioned in as a metric. By default, the listed
biomarkers are shown with the highest citation count first. Whether the
biomarker is found in CIViC is also shown as a column and is an additional
filter. This allows CIViC curators to quickly navigate to biomarkers not
currently discussed in CIViC and triage them efficiently.

With filters selected, the user is presented with pie-charts that illustrate the
representation of different cancer types, genes and drugs. When the user
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Figure 5.5: A Shiny-based web interface allows for easy exploration of the
CIViCmine biomarkers with filters and overview piecharts. A main table
shows the list of biomarkers and links to a subsequent table showing the list
of supporting sentences.
(#fig:shiny, )
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clicks on a particular biomarker, an additional table is populated with the
citation information. This includes the journal, publication year, section of
the publication (e.g. title, abstract or main body), subsection (if cited from
the main body) and the actual text of the sentence. This table can further
be searched and sorted, for example to look for older citations or citations
from a particular journal. The PubMed ID is also provided with a link to
the citation on PubMed.

5.3 Results
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Figure 5.6: The entirety of PubMed and PubMed Central Open Access
subset were processed to extract the four different evidence types shown.

From the full PubMed and PMCOA corpus, we extracted 70,655 biomarkers
with a breakdown into the four types (Figure 5.6). As expected, there are
many more Prognostic evidence items than the other three types. Table
5.4 outlines examples of all four of these evidence types. 34.9% of sentences
(33,491/95,871) contain more than one evidence item, such as the Predictive
example which relates EGFR as a predictive marker in NSCLC to both
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Table 5.4: Four example sentences for the four evidence types extracted by
CIViCmine. The associated PubMed IDs are also shown for reference.

Type PMID Sentence

Diagnostic 29214759
JAK2 V617F is the most common mutation
in myeloproliferative neoplasms (MPNs)
and is a major diagnostic criterion.

Predictive 28456787

In non-small cell lung cancer (NSCLC)
driver mutations of EGFR are positive
predictive biomarkers for efficacy of
erlotinib and gefitinib.

Predisposing 28222693
Our study suggests that one BRCA1
variant may be associated with
increased risk of breast cancer.

Prognostic 28469333

Overexpression of Her2 in breast cancer
is a key feature of pathobiology of the
disease and is associated with poor
prognosis.

erlotinib and gefitinib. In total, we extracted 153,435 mentions of biomarkers
from 54,274 unique papers. These biomarkers relate to 6,591 genes, 510
cancer types and 334 drugs.

EGFR and TP53 stand out as the most frequently extracted genes in dif-
ferent evidence items (Fig 5.7a). Over 50% of the EGFR evidence items
are associated with lung cancer or non-small cell lung carcinoma (NSCLC).
CDKN2A has a larger proportion of diagnostic biomarkers associated with
it than most of the other genes in the top 20. CDKN2A expression is a
well-established marker for distinguishing HPV+ versus HPV- cervical can-
cers. Its expression or methylation are discussed as diagnostic biomarkers
in a variety of other cancer types including colorectal cancer and stomach
cancer.

Breast cancer is, by far, the most frequently discussed cancer type (Fig
5.7b). A number of the associated biomarkers focus on predisposition, as
breast cancer has one of the strongest hereditary components associated
with germline mutations in BRCA1 and BRCA2. NSCLC shows the largest
relative number of predictive biomarkers, consistent with the previous figure
showing the importance of EGFR.
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Figure 5.7: An overview of the top 20 (a) genes, (b) cancer types, (c) drugs
and (d) variants extracted as part of evidence items.
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For the predictive evidence type, we see a disproportionally large num-
ber associated with the general term chemotherapy and specific types of
chemotherapy including cisplatin, paclitaxel and doxorubicin (Fig 5.7c).
Many targeted therapies are also frequently discussed such as the EGFR
inhibitors, gefitinib, erlotinib and cetuximab. More general terms such as
“tyrosine kinase inhibitor” capture biomarkers related to drug families.

Lastly, we see that expression related biomarkers dominate the variant types
(Fig 5.7d). Markers based on expression are more likely to be prognostic
than those using non-expression data (81.3% versus 45.6%). The easiest
method to explore the importance of a gene in a cancer type is to correlate
expression levels with patient survival. With the accessibility of large tran-
scriptome sets and survival data (e.g. TCGA), such assertions have become
very common. The ‘mutation’ variant type has a more even split across the
four evidence types. The mutation term covers very general phrasing with-
out a specific mention of the actual mutation. The substitution variant type
does capture this information but there are far fewer. This reflects the chal-
lenge of extracting all the evidence item information from a single sentence.
It is more likely for an author to define a mutation in another sentence and
then use a general term (e.g. EGFR mutations) when discussing its clinical
relevance. There are also a substantial number of evidence items where the
variant cannot be identified and are flagged as ‘[unknown]’. These are still
valuable but may require more in-depth curation in order to tease out the
actual variant.

Of all the biomarkers extracted, 21.1% (14,931/ 70,655) are supported by
more than one citation. In fact, the most cited biomarker is BRCA1 mu-
tation as a predisposing marker in breast cancer with 545 different papers
discussing this. The initial priority for CIViC annotation is on highly cited
biomarkers that have not yet been curated into CIViC, in order to eliminate
obvious information gaps. However, the single citations may also repre-
sent valuable information for precision cancer analysts and CIViC curators
focused on specific genes or diseases.

We compared the 70,655 biomarkers extracted for CIViCmine with the 2,055
in the CIViC resource as of 05 June 2018. Figure 5.8a shows the overlap of
exact evidence items between the two resources. The overlap is quite small
and the number in CIViCmine not included in CIViC is very large. We
next compare the cited publications using PubMed ID. Despite not having
used CIViC publications in training CIViCmine, we find that a substantial
number of papers cited in CIViC (253/1,325) were identified automatically
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Figure 5.8: A comparison of the evidence items curated in CIViC and auto-
matically extracted by CIViCmine by (a) exact biomarker information and
by (b) paper.

by CIViCmine (Fig 5.8b). Altogether, CIViCmine includes 5,568 genes, 388
cancer types and 272 drugs or drug families not yet included in CIViC.

5.3.1 Use Cases

There are two use cases of this resource that are already been realised by
CIViC curators at the McDonnell Genome Institute and analysts at the BC
Cancer Agency.

Knowledge base curation use case: The main purpose of this tool is to as-
sist in curation of new biomarkers in CIViC. A CIViC curator, looking for
a frequently discussed biomarker, would access the CIViCmine Shiny app
through a web browser. This would present the table, pie charts and fil-
ter options on the left. They would initially filter the CIViCmine results
for those not already in CIViC. If they had a particular focus, they may
filter by Evidence Type. For example, some CIViC curators may be more
interested in Diagnostic, Predictive and Prognostic biomarkers than Predis-
posing. This is due to the focus on somatic events in many cancer types.
They would then look at the table of biomarkers, already sorted by cita-
tion count in descending order, and select the top one. This would then
populate a table further down the page. Assuming that this is a frequently
cited biomarker, there would be many sentences discussing it, which would
quickly give the curator a broad view of whether it is accepted in the com-
munity. They would then open multiple tabs on their web browser to start
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looking at several of the papers discussing it. They might select an older
paper, close to when it was first established as a biomarker, and a more
recent paper from a high-impact journal to gauge the current view of the
biomarker. Several of the sentences may obviously cite other papers as be-
ing important to establishing this biomarker. The curator would look at
these papers in particular, as they may be the most appropriate to curate.
Importantly, the curator may want the primary literature source(s), which
includes the experimental data supporting this biomarker.

Personalized cancer analyst use case: While interpreting an individual pa-
tient tumor sample, an analyst typically needs to interpret a long list of
somatic events. Instead of searching PubMed for each somatic event, they
can initially check CIViC and CIViCmine for existing structured knowledge
on the clinical relevance of each somatic event. First, they should check
CIViC given the high level of pre-existing curation there. This would in-
volve searching the CIViC database through their website or API. If the
variant does not appear there, they would then progress to CIViCmine. By
using the filters and search functionality, they could quickly narrow down
the biomarkers for their gene and cancer type of interest. If a match is found,
they can then move to the relevant papers that are listed below to under-
stand the experiments that were done to make this assertion. If they agree
with the biomarker, they could then suggest it as a curated biomarker for
the CIViC database. Both CIViC and CIViCmine reduce curation burden
by aggregating likely applicable data across multiple synonyms for the gene,
disease, variant or drug not as easily identified through PubMed searches.

5.4 Discussion

This work provides several significant contributions to the fields of biomed-
ical text mining and precision oncology. Firstly, the annotation method
is drastically different from previous approaches. Most annotation projects
(such as the BioNLP Shared Tasks (Kim et al., 2009, Kim et al. (2011)) and
the CRAFT corpus (Bada et al., 2012)) have focused on abstracts or entire
documents. The biomarkers of interest for this project appear sparsely in
papers so it would have been inappropriate to annotate full documents and
a focus on individual sentences was necessary. We identified sentences that
contained the appropriate entities and then filtered them further in order to
provide a rich set that contained similar numbers of relevant sentences as
irrelevant sentences that could then be annotated. This approach could be
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applied to many other biomedical topics.

We also made use of a simpler annotation system than the often used brat
(Stenetorp et al., 2012) which allowed for fast annotation by restricting the
possible annotation options. Specifically, annotators did not select the enti-
ties but were shown all appropriate permutations that matched the possible
relation types. Issues of incorrect entity annotation were reported through
the interface, collated and used to make improvements to the underlying
wordlists for gene, cancer types and drugs. We found that once a curator
became familiar with the task, they could curate sentences relatively quickly.
Expert annotation is key to providing high quality data to build and evalu-
ate a system. Therefore reducing the time required for expert annotators is
essential.

The supervised learning approach differs from methods that used co-
occurrence based (STRING) or rule-based (mirTex) methods. Firstly, the
method is able to extract complex meaning from the sentence providing
results that would be impossible with a co-occurrence method. A rule-based
method would require enumerating the possible ways of describing each of
the diverse evidence types. Our approach is able to capture a wide variety
of biomarker descriptions. Furthermore most relation extraction methods
aim for optimal F1-score (Chaix et al., 2016), placing an equal emphasis
on precision as recall. With the goal of minimizing false positives, our
approach of high precision and low recall would be an appropriate model for
other information extraction methods applied to the vast PubMed corpus.

Apart from the advantages outlined previously, several other factors lead
to the decision to use a supervised learning approach to build this knowl-
edge base. The CIViC knowledge base could have been used as training
data in some form. The papers already in CIViC could have been searched
for the sentences discussing the relevant biomarker, which could then have
been used to train a supervised relation extraction system. An alterna-
tive approach to this problem would have been to use a distant supervision
method using the CIViC knowledge base as seed data. This approach was
taken by Peng et al who also attempted to extract relations across sen-
tence boundaries (Peng et al., 2017). They chose to focus only on point
mutations and extracted 530 within sentence biomarkers and 1,461 cross-
sentence biomarkers. These numbers are drastically smaller than the 70,655
extracted in CIViCmine.

The reason to not use the CIViC knowledge base in the creation of the
training data was taken to avoid any curator-specific bias that may have
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formed in the selection of papers and biomarkers to curate. This was key
to providing a broad and unbiased view of the biomarkers discussed in the
literature. CIViC evidence items include additional information such as
directionality of a relationship (e.g. does a mutation cause drug sensitivity
or resistance), the level of support for it (from preclinical models up to
FDA guidelines) and several other factors. It is highly unlikely that all this
information will be included within a single sentence. Therefore, we did not
try to extract this information concurrently. Instead, it is an additional task
for the curator as they process the CIViCmine prioritised list.

A robust named entity recognition solution does not exist for a custom term
list of cancer types, drugs and variants. For instance, the DNorm tool does
not capture many cancer subtypes. A decision was made to go for high recall
for entity recognition, including genes, as the relation extraction step would
then filter out many incorrect matches based on context. This decision is
further supported by the constant evolution of cancer type ontologies as
demonstrated by workshops at recent Biocuration conferences.

Finally, this research provides a valuable addition to the precision oncol-
ogy informatics community. CIViCmine can be used to assist curation of
other precision cancer knowledge bases and can be used directly by preci-
sion cancer analysts to search for biomarkers of interest. As this resource
will be kept up-to-date with the latest research, it will likely constantly
change as new cancer types and drug names enter the lexicon. We hope
that the methods described can be used in other biomedical domains and
that the resources provided will be valuable to the biomedical text mining
and precision oncology fields.
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Chapter 6

Conclusions

At inception of this thesis work, we hoped that text mining could someday
become an everyday tool for the biomedical research community. We were
specifically interested in the use of text mining to collate knowledge for
the personalized oncology field. This final chapter will discuss how the work
undertaken has contributed to these goals and what hurdles remain. We will
broadly discuss the lessons learnt during this thesis and suggest interesting
future directions to pursue, particularly to overcome some of the limitations
acknowledged within this work.

6.1 Contributions

Many research areas are overwhelmed by potential hypotheses to test and
automated hypothesis generation methods are designed to provide priori-
tized lists to researchers. Several factors limit these methods being embraced
by the biology research community, including the predictive performance,
explainability, and poor awareness that these methods exist. Our work in
Chapter 2 pushed forward the predictive performance by developing and
evaluating a new approach using co-occurrence data. We showed that our
SVD-based method outperformed the previously best performing methods
and explored the explainability of some the successful and failed predictions.

Supervised relation extraction is an important step past co-occurrences in
information extraction. Our work with the VERSE and Kindred tools in
Chapter 3 illustrated that vectorized dependency path-based approaches are
the best method for biomedical relation extraction and that deep learning
does not yet achieve the same benefits in other fields with larger training
dataset sizes. The VERSE system won part of the BioNLP Shared Task
2016. Furthermore, the packaging of Kindred makes it easier for other re-
searchers to use our methods for their own problems.
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Our CancerMine resource, described in Chapter 4, will benefit all cancer
biology researchers as a valuable tool to understand the role of different genes
in cancer. The high-precision knowledge extraction pipeline proves that
single sentences do contain enough information for large-scale knowledge
base construction. By examining the frequently cited gene roles, we were
able to build profiles for each cancer type that can be used to find similarities
between cancers and were validated by comparison to data in the Cancer
Genome Atlas (TCGA) project.

Finally Chapter 5 describes the CIVICmine resource designed specifically
for curating information about the growing field of precision oncology and
the clinical relevance of mutations in cancer. This resource will prove in-
creasingly valuable in the coming years as more medical centres develop
precision oncology programs. The methods for annotating the training data
and building a classifier that can scale to PubMed provide valuable guide-
lines for other groups interested in building a high-precision knowledge base
in another area of biology.

6.2 Lessons Learnt

The stated goal of much biomedical text mining research is to help biologists
and medical researchers absorb research and identify potential hypotheses
for study. With the information overload present in published literature,
automated methods should be used to guide researchers to the knowledge
that they need. Throughout this thesis work, I have identified several key
problems that frequently occur in biomedical text mining. These problems
are fruitful areas for future research.

6.2.1 Inaccessible and out-of-date results

Firstly, and importantly, access to text mined results is key to adoption
by researchers. Many research papers develop text mining methods where
the code and/or data are not shared. These papers may benefit other text
mining researchers with algorithmic improvement ideas or approaches that
could be generalized to other text mining problem. But they do not help
biologists.

Text mining published literature has been a focus of research for several
decades. Advances in computational power within the last 15 years has
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made it possible to do large-scale processing of a large number of PubMed
abstracts and full-text papers. Hence there have been multiple analyses of
PubMed data, but very few are kept up-to-date as new publications are
added to the corpus.

The reason for this lack of updating is primarily that researchers move onto
other projects after publication and potentially move to other institutions
(especially graduate students). The additional engineering required to main-
tain text mining results can be too much for a research group. But if text
mining is to become a ubiquitous tool for biologists, this must be a problem
that is overcome and would be a valuable direction for future work.

6.2.2 User Interfaces

The way that a biologist can interact with the text-mined data is key. Even
if the data is public, most biologists do not understand the value of text
mining and would not go to the effort of downloading data and searching
it themselves. Hence a user interface is absolutely essential for this devel-
opment. To be more specific, a graphical user interface is required as few
biologists would be willing to use a command-line application.

There are three common paths for building applications with graphical user
interfaces. First, the tool can be implemented as a standalone desktop ap-
plication. These require installation and are often operating system specific
(e.g. only running on Windows). The second is as a Java application that
can be launched from a website. More web browsers are blocking Java ap-
plications by default due to the high-security risks involved in executing a
Java application (e.g. access to full file system).

This brings us to the third option which I would argue is the only real op-
tion these days. With advances in web technologies, specifically AJAX-like
libraries, that provide responsive websites for high-quality user experiences,
web apps are the best solution. These can be client-side only where all cal-
culations and analysis are done using Javascript code. Or more commonly,
with a server-side end with a database, text mining results can be queried
quickly. Several bioinformatics analysis tools have been frequently due to
their implementation as web applications. The DAVID tool for gene set
enrichment analysis (Dennis et al., 2003) is a classic example of a tool that
is frequently used when other more up-to-date tools exist but are hard to
use.
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These arguments lead us to build web apps for the CancerMine and
CIViCmine projects. We used the Shiny web technology for its ease of
implementation and visually attractive interfaces. Unfortunately Shiny
may not scale well to a larger number of users and these interfaces may be
revisited if the resources prove very popular. We would encourage other
text mining developers to consider providing a web interface to navigate
text-mined data.

There is a huge area of research in human-computer interaction (HCI). It
could easily be argued that there should be more integration between text
mining and HCI research in order to understand what features make a tool
easier to use. If a biologist finds a tool frustrating to use, or the results unre-
liable, they may never use the tool again. The CancerMine and CIViCmine
research, fortunately, took place in an environment close to potential users
of these resources which provided the opportunity to discuss their design.
Understanding the real needs of users and the challenges they face interpret-
ing text-mined data would enable text mining to become a more valuable
part of the research process.

6.3 Limitations and Future Directions

One of the main limitations of our work is the focus on the knowledge
contained within single sentences. For all of our projects, we only cap-
ture co-occurrences or relations that are discussed within a sentence and
do not capture knowledge that is spread across multiple sentences. This is
a common limitation of many text mining tools at the moment due to the
challenge presented by anaphora. Coreference resolution methods still pro-
vide noisy results when identifying which specific term a pronoun (or general
noun) refer to. We examined the ability to extract relations across sentence
boundaries but found (as others have) that the false positive rate skyrockets
as more sentences are included. This is largely due to the decrease in class
balance, as the positive examples become a small fraction of all possible
candidate relations. Overcoming this limitation with a high-quality corefer-
ence resolution method would provide the largest gain for relation extraction
methods used to populate knowledge bases (as in Chapters 4 and 5).

We are also limited by access to text corpora for information extraction. We
chose to focus on PubMed and PubMed Central Open Access subset (PM-
COA) as they contain the largest set of published abstracts and full-text
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articles while also being the easiest to access. Several publishers are begin-
ning to make other smaller corpora accessible through limited APIs (and
often requiring special permissions) (Westergaard et al., 2018). However,
these new corpora provide additional challenges with unique file formats
and rights permissions when sharing the results of text mining. This will
be the primary stumbling block of biomedical text mining in the coming
decades. Several universities have shown the desire to change their rela-
tionships with publishers to encourage easier access to literature, both for
text mining and for researchers in general. We hope these efforts progress
quickly.

In Chapters 4 and 5, we faced a common problem in biomedical text mining.
For supervised learning, annotated training data is needed to build a classi-
fier. The size of the training data is a limiting factor for the complexity of
the classifier that can be built. The recent successes of deep learning in other
fields, particularly computer vision, have been led by the development of vast
training sets (e.g. ImageNet (Deng et al., 2009)). In fact, Google acquired
reCAPTCHA in order to generate human annotated image data to improve
their computer vision algorithms for Google Streetview and Project Guten-
berg (Von Ahn et al., 2008). For the biomedical field, expert annotators
may be needed for specific tasks. Some researchers have tried crowdsourc-
ing (e.g. Mark2theCure (Tsueng et al., 2016)) either through volunteers or
Mechanical Turk paid workers (Buhrmester et al., 2011). These crowdsourc-
ing efforts have shown that many non-expert annotators must look at the
same sentence in order to get a good consensus. This increases the anno-
tation cost and drove our decision to use expert annotators for CancerMine
and CIViCmine. However, it created the limitation of a smaller training set
size. This smaller training set size meant that a deep learning based ap-
proach wasn’t a viable approach given the currently established issue with
overfitting small data set sizes (Mehryary et al., 2016). The BioNLP Shared
Tasks showed that more classical approaches, as taken in Chapter 3, were
still the most reliable approach for relation extraction given smaller training
set sizes.

An interesting angle that should be pursued is active learning in which the
data for annotation is continuously updated to identify the most confusing
sentences for the system. This approach is impeded by the need to use
multiple annotators and would likely require small batch active learning
instead of continually updated active learning.

The decision to focus on a limited set of relations between the biomedical
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entities of interest (e.g. genes and cancers) has advantages and disadvan-
tages. In Chapter 4, we were interested in only three relation types (Drivers,
Oncogenes and Tumor Suppressors). There are many other relations that
can exist between a gene and a cancer type, e.g. “frequently mutated in”. By
focussing on only three relation types, we could provide a tightly controlled
annotation process with a specific annotation manual. This meant that the
annotation task was feasible and could be completed by annotators within
an acceptable amount of time. However, we may be missing interesting re-
lations between these entities. Other approaches take an Open Information
Extraction (OpenIE) approach where no assumptions are made about the
types of relations that may exist (Percha et al., 2018). An approach that
could bridge the two methods would be a valuable addition to the biomedical
text mining field.

6.4 Final Words

Biomedical text mining should be an every-day tool used by researchers to
keep up-to-date with research and help guide their hypothesis generation.
To get to this stage, we have contributed several key ideas, methods, and
data-sets, including high precision relation extraction for knowledge base
construction. This is an exciting period for this field with the culmination
of affordable computational resources, web technologies and advances in
biomedical sciences. We must work closely with biomedical researchers to
understand the problems that matter to them and enable them to interrogate
the biomedical knowledge in a form suited to them.
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