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Abstract 

Anthropogenic climate change is shifting species ranges and exerting high selection pressures on 

populations of all taxa, including trees. Temperate tree species of the northern hemisphere share 

a history of large-scale postglacial colonization during the Quaternary, providing a natural 

laboratory for the study of evolutionary responses to climate fluctuations. This dissertation aims 

at improving our understanding of the mutual influences of demography and evolutionary 

patterns during range expansions in trees using Picea sitchensis (Sitka spruce) as a focal species. 

I first focused on the most recent P. sitchensis expansion event in south-central Alaska to 

study the interplay between demography and population genetics by combining neutral genetic 

markers and tree ring data. This multidisciplinary approach allowed me to assess the pace of 

neutral evolution across five centuries of colonization. Allelic richness was efficiently recovered 

in the colonizing population by early, open-grown colonizers on the Kodiak Archipelago during 

a long phase of low population growth. However, heterozygosity remains low compared with the 

nearest mainland populations. These results highlight the long-term importance of early 

colonizing genotypes in genetics of populations and the influence of pollen dispersal in 

maintaining standing genetic variation during forest expansion. 

Local hybridization of P. sitchensis colonizers with foreign pollen from white spruce 

(Picea glauca) populations occurred repeatedly during the early colonization period. However, 

introgression was suppressed in subsequent generations growing under a closed canopy. As the 

two species occupy separate climatic niches, selection against hybrids, intensified by 

competition, might explain this pattern. Spring precipitation tended to affect hybrid growth more 

negatively than pure P. sitchensis genotypes, but this effect was nonsignificant.  

I finally assessed the extent to which demographic parameters of range expansion can be 

estimated from genomic data through simulations using the approximate Bayesian computation 

framework. Simple 3-parameter models could be successfully estimated with genetic markers 

developed from reduced-representation methods currently available for nonmodel species. 

Models of higher complexity presented challenges, especially when ongoing migration after 

expansion was considered, and the accuracy of results depended on the time of expansion. The 

demic expansion models examined here were inadequate to infer the colonization history of P. 

sitchensis. 
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Lay Summary 

Under anthropogenic climate change, tree populations need to adapt through genetic change or 

colonize newly suitable territories to survive. As tree species have migrated north in response to 

warming after the last glaciation, their history can inform us about their future responses to 

current climate change. My research explores methods to estimate the demography and 

evolutionary changes of populations in species that have expanded their range. I studied two 

approaches adapted to different timescales. I first used genetic and tree ring data covering five 

centuries to determine the recent changes in the genetic composition of Sitka spruce at its 

expanded northern limit. I found that the long time it takes for trees to mature may slow down 

the pace of colonization but allows the establishing forest to recover genetic variation. I then 

examined how patterns of DNA sequence variation in natural populations can help reconstruct 

their history over 500 generations. 
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Chapter 1: Introduction 

 

Species’ ranges are highly dynamic systems. All living species experience range shifts, the 

amplitude of which mainly depends on the type of disturbance affecting them and the timescale 

considered. Large climatic oscillations over geological timescales have shaped the global 

distribution of life during alternating glacial and interglacial eras (Davis & Shaw, 2001). On 

moderate timescales, range fluctuations can occur in response to events of long-distance 

dispersal into newly available habitats such as volcanic islands (Connor et al., 2012). Finally, the 

most recent worldwide factors causing range shifts are anthropogenic: they involve exotic 

introductions due to increasing global connectivity in anthropogenic activities and human-

induced climate change. This last category of factors provides countless examples of current 

changes in species’ distributions at various spatial scales. 

 

1.1 Evolutionary processes at range edges 

1.1.1 What determines range limits? 

In the absence of a hard geographic limit (such as a coastline or an ice sheet), one can wonder 

what prevents species from adapting to spatial changes in the environment and expanding 

beyond their current range limit. Model species have shown a large capacity for adaptation 

during experiments of artificial selection (Rice & Estert, 1993), and numerous transplant 

experiments beyond a species’ current range in the wild have resulted in successful growth and 

reproduction (Hargreaves et al., 2014). The common observation of low densities and low 

growth rates experienced at the edge of species distributions have led researchers to develop 

evolutionary models of stable range limits. Notably, Kirkpatrick and Barton (1997) created a 

model involving varying fitness and population densities along environmental gradients under 

the infinitesimal model of genetic variation, and showed that species’ range limits remain at a 

stable equilibrium through the swamping effects of directional gene flow. However, long-term 

equilibrium often does not occur in nature. An awareness of the transience of species range limits 
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has fostered empirical studies of factors limiting the pace and extent of range shifts. Adaptation 

and further expansion can temporarily fail in fragmented marginal populations at range edges 

because of low connectivity and high inbreeding, reducing the effective population size, fitness, 

and response to selection of marginal populations (Pujol & Pannell, 2008). Finally, constant 

climatic oscillations characteristic of our planet create an ever-renewed challenge, especially for 

species with low generation times and low dispersal abilities, which are likely to experience a lag 

in tracking their suitable climate envelope (Davis & Shaw, 2001). The crucial role of 

demographic processes at range edges is a common denominator of all hypotheses attempting to 

explain the evolution of range limits. It is therefore necessary to understand these demographic 

processes and their effects on the genetic composition of populations at range edges. 

1.1.2 The effect of demography on population genetics during range expansion 

Studies involving simulations of range expansion using different dispersal models illustrate how 

demography influences the neutral genetic composition of populations at all timescales. Models 

involving a regular wave of advance over continuous space have helped identify striking changes 

in the frequency of mutations occurring at the wave front, a phenomenon called allele surfing 

(Edmonds et al., 2004). This spatial case of genetic drift is most likely to occur in small, fast-

growing populations (Klopfstein et al., 2006) and creates landscape patterns that could mimic the 

effect of natural selection. In a bidimensional model, the same process leads to the creation of 

“sectors” of genetic differentiation, as evidenced by the work of Hallatscheck & Nelson (2008) 

on bacteria. In the context of a species invading the range of a reproductively compatible species, 

this phenomenon can also explain dramatic levels of introgression from the local population to 

the invading population at the wave front (Currat et al., 2008). Better suited to the study of 

organisms with low-to-medium dispersal distances, the linear serial stepping-stone colonization 

model with successive population bottlenecks is one of the most widely used demographic 

models of range expansion. With dispersal only to proximal demes, this model creates a 

geographic gradient of decreasing genetic diversity and increasing differentiation towards the 

edge of a species’ range (Austerlitz et al., 1997). This outcome has been widely observed in the 

wild and accepted as a signature of range expansion (Kitamura et al., 2015). The number of 

founders and time between colonization events can modulate the extent of diversity loss along 
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the expansion route (Le Corre & Kremer, 1998). The wave and stepping stone models described 

above are suitable for the study of organisms with low dispersal abilities. If dispersal from demes 

further behind the expansion front is possible, as is the case for species capable of frequent long-

distance dispersal (LDD), different genetic patterns arise that maintain genetic diversity 

(Bialozyt et al., 2006) and the level of differentiation between demes depends on the frequency 

of LDD. In general, recent models of expansion indicate that LDD events, even when rare, can 

dramatically alter the long-term genetic composition of populations in an expanding species 

(Austerlitz & Garnier-Géré, 2003) and disrupt patterns typically created by colonization waves 

(Amorim et al., 2017). 

 

1.2 Methods to study range expansions in plants 

Approaches to characterize past and current range expansions involve complementary ecological 

and genetic tools. They are described in sections 1.2.1 and 1.2.2, depending on the spatial and 

temporal scale they are best suited to, and summarized in Figure 1.1. 

1.2.1  Characterizing absolute and effective dispersal patterns locally 

As dispersal distance is a major determinant of the evolutionary fate of expanding populations, 

attempts to characterize the dispersal kernel of propagules in plants have been numerous, 

especially to determine levels of LDD (Nathan, 2006). Dispersal is, however, difficult to 

observe, either directly or indirectly. For animal-dispersed plants, direct characterization of 

dispersal distances relies on tedious experiments (Cramer et al., 2007; Jorge & Howe, 2009) or 

mechanistic models (Will & Tackenberg, 2008), whereas wind-dispersed species can be studied 

through mechanistic models of wind flow (Nathan et al., 2011). The limitations of such methods 

and the fact that demographic patterns of dispersal leave signatures in the genetic composition of 

populations justify the use of genetic methods to indirectly infer patterns of effective dispersal 

(Hamrick & Trapnell, 2011). At a small temporal and spatial scale, pedigree analyses and the 

neighbourhood model can help unravel immediate patterns of effective dispersal and characterize 

the shape of the dispersal kernel at a site (Bacles et al., 2006; Burczyk et al., 2002; Sezen et al., 
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2007). This method requires sufficient amounts of genetic data and 100% sampling of the 

studied site. Genetic relatedness among trees at a site can also be estimated from genetic data and 

correlated with pairwise distance dispersal kernels, although this method has limitations due to 

the effects of population density (Vekemans & Hardy, 2004). The association of geographic 

distance with genetic distance between individuals has given birth to the vast methodologies of 

landscape genetics (Manel et al., 2003). These approaches are commonly used at low and 

medium temporal and spatial scales to determine the recent history of effective dispersal in an 

area (Ibrahim et al., 1996). The use of uniparentally inherited markers such as mitochondrial 

DNA and chloroplast DNA in landscape genetics can provide precise information on the relative 

importance of pollen or seed dispersal in the genetic composition of expanding species (Smouse 

et al., 2001). At spatial scales higher than the landscape level, genetic methods applied to the 

study of range expansions do not address dispersal per se, but rather characterize patterns of gene 

flow resulting from underlying effective dispersal and population size fluctuations. Such 

methods are described in section 1.2.2. Non-genetic methods suitable for the study of range 

expansion at timescales of hundreds to thousands of years involve the use of fossil pollen found 

in lake sediments. Such record have successfully complemented genetic inference of range shifts 

associated with glacial cycles, although in many cases pollen can be classified only to genus (Hu 

et al., 2008). 

1.2.2 What can genetic data tell us about demographic history? 

Simple population genetic summaries and their associated statistical tests, such as Tajima’s D, a 

test based on the neutral theory model (Tajima, 1989), can detect past range expansion events. 

Some analytical tools developed more recently rely on specific population expansion models 

(Peter & Slatkin, 2013). Although such simple methods can help detect range expansion in 

populations, they do not have the power to link the observed genetic patterns to the combination 

of demographic parameters likely to have given rise to such patterns. An exception is the use of 

differentiation statistics (e.g., FST, GST) and their comparison among markers from genomes with 

different inheritance modes (mitochondrial, chloroplast and nuclear DNA). Used at a regional 

scale, these methods can provide information about the relative historic contribution of pollen 

versus seed dispersal during colonization (Petit et al., 2005). However, the power to 
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quantitatively infer parameters of species’ demographic history comes from statistical 

phylogeography, a set of methods involving the reconstruction of gene genealogies under an 

assumed demographic model (Knowles & Maddison, 2002). All common phylogeographic 

inference methods are based on the coalescent (Kingman, 1982), a statistical framework used to 

build gene genealogies. Phylogeographic methods are being constantly developed and refined 

and their diversity is matched by the variety of demographic models and type of genetic data 

they can handle (Bourgeois, 2016; Excoffier & Heckel, 2006). They have successfully provided 

evidence for glacial refugia (Anderson et al., 2006; Petit et al., 2004), defined the number of 

introduction events in the case of biological invasions (Benazzo et al., 2015) and informed 

humans about who we are and where we come from (Schraiber & Akey, 2015). As the 

availability of large genomic datasets has increased, phylogenetic studies have addressed 

increasingly ambitious demographic models. Although recent genomic advances allowed for the 

development of powerful sophisticated methods (Harris & Nielsen, 2013; Li & Durbin, 2011), 

the amount of power gained by existing methods from larger and better datasets is not always 

well established, and as a result, limitations of some demographic inference methods are ill-

defined. To resolve this uncertainty, analytical studies comparing methods with different dataset 

sizes (Terhorst et al., 2017) and simulation analyses of inference success targeting specific 

phylogeographic methods (Li & Jakobsson, 2012) have started to emerge. Similarly, methods 

that have proven useful in human demographic inference might not yet be suitable in nonmodel 

organisms, due to the unmatched quality of genomic datasets. The influence of genotyping 

uncertainty on genetic inference is also being explored (Fumagalli, 2013; Shafer et al., 2016). 

 

1.3 Range shifts in widely distributed tree species 

1.3.1 Tracking climate during glacial cycles 

Along with other terrestrial organisms, temperate and boreal tree species ranges have expanded 

and retracted following cycles of glacial and interglacial periods during the Quaternary era. In 

the northern hemisphere, species repeatedly expanded from and retracted to refugia that 

remained ice-free (Hewitt, 2000; Petit et al., 2008). In North America, the last ice age ended 
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around 18,000 years ago and was followed by a global warming period called the Holocene. Tree 

species of North America were first thought to have expanded from refugia south of the 

Cordilleran and Laurentide ice sheets (Hewitt, 2000) at a high average speed of 100 to 1000 

meters per year (Clark, 1998). It is now widely accepted that many taxa were also present in 

northern refugia during the last glaciation (Parducci et al., 2012; Shafer et al., 2010) and 

estimates of migration pace therefore dropped to 60-260 meters per year (Feurdean et al., 2013; 

McLachlan et al., 2005). Similar estimates of migration rates were found in Europe (Svenning & 

Skov, 2007) but higher values were estimated in Scots pine (Pinus sylvestris), likely due to 

favourable conditions and the lack of interspecific competition in this early colonizing species 

(Savolainen et al., 2011). Accounting for the positions of glacial refugia, Svenning and Skov 

(2007) determined that the distribution of most tree species in Europe was better explained by 

distance from refugia than by climate. It is therefore likely that many tree species were not able 

to track their optimal climate envelope during postglacial colonization, although their dispersal 

abilities have been found to match the scale of past changes in climate envelopes across 

landscapes (Kremer et al., 2012). These findings cannot be generalized to other continents: 

Hamann and Wang (2006) developed species distribution models for western North American 

trees and found that most species currently nearly fully occupy their climatic niche space, 

although some species, like Pinus contorta and Pinus albicaulis, showed unoccupied, suitable 

habitat north of their range. Differences between topographic features in Europe and North 

America (such as the orientation of mountain ranges) have previously been invoked to explain 

different postglacial migration outcomes in widespread tree species (Lumibao et al., 2017). 

1.3.2 Effects on genetic diversity in temperate tree species 

Nucleotide diversity of tree species is generally lower than in other plant taxa (Brown et al., 

2004; De la Torre et al., 2017; Heuertz et al., 2006). Although this can be partly explained by 

low substitution rates (De la Torre et al., 2017), population bottlenecks during previous glacial 

periods likely played a role in this pattern and have been detected using Tajima's D- and Fay and 

Wu's H- statistics (Heuertz et al., 2006). The lasting genomic imprint left by postglacial 

migrations allows identification of the location of glacial refugia during the Pleistocene (Hu et 

al., 2008). In Europe, many widespread tree species display patterns of high genetic diversity in 
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cpDNA at intermediate latitudes and high genetic differentiation among southern latitudes. This 

pattern is in agreement with the scenario of expansion of species from moderately rich, isolated 

populations on southern peninsulas and their subsequent genetic admixture at intermediate 

latitudes during postglacial colonization (Petit et al., 2004). Mid-latitude populations might also 

have benefited from admixture with glacial refugia at similar latitudes (Magri et al., 2006). 

Northernmost populations have often been found to be genetically depauperate due to the erosion 

of diversity associated with their recent expansion. Such patterns observed in European tree 

species have not been as consistently detected in North-American tree species (Lumibao et al., 

2017; Marsico et al., 2009), where genetic diversity is generally homogenous across species 

ranges. This can be explained by the lesser extent of ice during the last glaciation, allowing 

numerous refugial populations to survive at high latitudes (Shafer et al., 2010) and the absence of 

geographic barriers compared to Europe, where oceans separated peninsular refugia and East-

West mountain ranges hindered northward recolonization. However, some European tree species 

also fail to show a phylogeographic signal of postglacial expansion, especially when looking at 

nuclear markers and quantitative traits (Kremer et al., 2012). This lack of geographic variation in 

nuclear genetic diversity on both continents can be explained by the high levels of gene flow 

characteristic of widespread tree species as well as selection enhancing regional differentiation 

(Kremer et al., 2012; Savolainen et al., 2007). Signatures of range expansion in neutral nuclear 

markers might also not have appeared at all due to tree-specific characteristics, including a long 

juvenile phase and long-distance dispersal, which have been shown to prevent the erosion of 

diversity along expansion axes (Austerlitz & Garnier-Géré, 2003; Le Corre et al., 1997). 

1.3.3 Implications for adaptation 

Forests currently cover 27% of the surface of Earth, with single species sometimes occupying 

contemporary geographical ranges wider than 20 degrees of latitude. For a given species, being 

so widely distributed requires either being differentially adapted to the diverse climatic 

conditions that its range encompasses or having a high degree of phenotypic plasticity (Alberto 

et al., 2013). Abundant evidence that boreal and temperate tree species experience fine-tuned 

adaptation along environmental gradients for growth and phenology in spite of high gene flow 

illustrate this prediction (Aitken & Bemmels, 2016; Alberto et al., 2013; Howe et al., 2003; 
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MacLachlan, Wang, et al., 2017; MacLachlan, Yeaman, et al., 2017). High levels of gene flow 

can actually increase the genetic variance of a quantitative trait even under strong locally 

stabilizing selection, therefore enhancing the response to selection of the recipient population. 

This feedback loop has been proposed as an explanation of the high level of local adaptation in 

forest trees (Kremer et al. 2012) and is supported by some empirical evidence (Yeaman & Jarvis, 

2006). Theoretically, under the right combination of rate of environmental change, dispersal 

distance and migration rates, high gene flow should also enhance adaptation to a potential lag 

between a changing climate and population migration triggered by it (Polechová et al., 2009). 

Although this is a compelling explanation for the high level of local adaptation of forest trees 

despite recent dramatic range shifts, no empirical study has yet supported it (Kuparinen et al., 

2010). Empirical studies of expanding boreal tree populations have been conducted in several 

widespread species. Such work typically involves characterizing molecular genetic variation in 

northern expanding populations in comparison with core and trailing edge populations. As part 

of such effort, Pyhäjärvi et al. (2007) and Wachowiak et al. (2011) used nuclear markers and 

several population genetic statistics to infer that the relatively high current levels of genetic 

diversity in northern Pinus sylvestris populations might result from admixture among lineages 

from different colonization routes. The concomitant identification of of quantitative variation 

through common gardens and neutral genomic variation in northern populations is an effective 

way to assess the mutual influence of adaptation and colonization dynamics (Chen et al., 2012; 

Mimura & Aitken, 2007a; Savolainen et al., 2011). This approach has been applied in a northern 

Pinus sylvestris population, where a fast and recent northward colonization history did not impair 

fine-scale differentiation in budset timing, suggesting rapid adaptation in the face of gene flow at 

a recently expanded range limit (Savolainen et al., 2011). Data extracted from common garden 

experiments can be used in theoretical models of species tracking their environmental optimum 

in space (Kremer et al., 2012; Savolainen et al., 2011) and can therefore help predict the 

adaptation potential of species at range limits under climate change. Transplant experiments with 

manipulation of temperature and precipitation regimes can also been used to assess the viability 

of populations in future environments at northern range limits. For instance, Rousi et al. (2017) 

have found a high growth and acclimation potential but unpredictable mortality in northern Pinus 

sylvestris populations under artificially-induced future climates. 



9 

 

1.4 Picea sitchensis as a study system 

1.4.1 Local adaptation throughout a wide latitudinal range  

With its ability to withstand salt spray and thrive in hypermaritime environments, Sitka spruce 

(Picea sitchensis (Bong.) Carr.) partially dominates Pacific coastal temperate rainforests. Its 

imposing stature can be observed from Fort Bragg in California up to Kodiak Island in Alaska 

(Figure 1.2). The northern part of its range is parapatric with a closely related species, Picea 

glauca. The two sister species are known to hybridize at several secondary contact sites on the 

Kenai Peninsula in Alaska (Boucher & Mead, 2006), and in British Columbia, where hybrid 

zones are likely maintained by ecological selection (Hamilton et al., 2013b). As a wind-

pollinated, wind-dispersed tree species, P. sitchensis is an appealing subject for evolutionary 

questions such as range expansion, adaptation, and their mutual influence. Indeed, its narrow 

east-west range spanning 22 degrees of latitude leaves little doubt about the colonization route 

from its southern refugium during the last glacial period. Some northern glacial refugia have 

been suspected (Gapare & Aitken, 2005) but no clear evidence, genetic or otherwise, has been 

found. The wide array of climatic conditions that this species experiences currently allows in-

depth studies of the genetic bases of adaptation in terms of growth and timing of phenological 

events. Mimura and Aitken (2010) set up growth chamber experiments using provenances from 

the core and edges of the P. sitchensis range and found evidence for local adaptation, including 

at range edges. Through monitoring of gene expression levels and genotype-phenotype 

association analyses on the same provenances grown in a common garden, Holliday et al. (2010) 

identified genes involved in growth timing and cold hardiness. Adaptation throughout the core of 

the range for these traits is evidenced by strong genetic clines of allelic frequencies in associated 

markers (Holliday, Ritland, et al., 2010; Lobo, 2011) and high QST values (Mimura & Aitken, 

2007a). However, earlier studies focusing on the northernmost populations suggest that the 

degree of local adaptation decreases towards the edge of the species’ range. There is evidence for 

lower growth performances of peripheral populations. Farr & Harris (1979) showed that the 

growth rate based on estimates of site index of some of the northern Alaskan populations is 

significantly lower than predicted by latitude and growing degree days, providing potential 

evidence for low fitness in some of the most remote Alaskan populations. A common garden of 
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14 P. sitchensis provenances in Vancouver (BC) shows similar results from measurements on 8 

year-old trees (Figure 1.3). 

1.4.2 Current processes at range margins 

The range of P. sitchensis is still expanding at its northern limit. Historical human records report 

a fast advance of the monospecific P. sitchensis forest on the Kodiak Archipelago (Griggs, 1914; 

Vincent, 1964). The westernmost and largest island of the group, Kodiak Island, is thought to 

have been colonized no more than 500 years ago (Griggs, 1937). The trees are found in dense 

stands on Afognak Island and the forest density tapers south-westward towards small groves of 

young trees (Figure 1.4). The south-west of Kodiak Island is vegetated by tundra grasses and 

scattered shrubby forms of alders and cottonwoods. Adaptation limitations mentioned in section 

1.4.1 may have an influence on the current location of the species’ range edge. Holliday et al. 

(2012) identified asymmetric gene flow from core Alaskan populations to the Kodiak 

Archipelago. Together with  high inbreeding levels (Gapare & Aitken, 2005; Mimura & Aitken, 

2007b), this pattern could actively be hindering adaptation. In addition, Lobo (2011) suggested 

that the Kodiak Island population at the northern limit of the range might lack the necessary 

genetic variation to adapt to the local climate and grow optimally. The recent establishment of 

the Kodiak population could support the alternative hypothesis that the population needs more 

generations to adapt to local conditions. If this is the case, the current lack of local adaptation is 

transient and is not actively maintain by evolutionary processes. The most recent species 

distribution model for P. sitchensis based on its realized climate niche indicates that suitable 

habitat extends far beyond the current range limit along the coast all the way to the Aleutian 

Islands (Tongli Wang, pers. com.). The current limits might therefore reflect dispersal limitations 

rather than adaptation failure. Tae (1997) found that P. sitchensis groves at the expansion front 

on Kodiak Island during the 20th century grew dramatically in size and number during decades 

after ash fall from the 1912 Novarupta volcanic eruption, which killed a large proportion of low-

lying forms of plants on the island. The tephra deposited by the eruption likely reduced 

interspecific competition for P. sitchensis seedlings for about 7 years. Groves kept growing at a 

high pace until 1945, already established groves likely playing the role of nuclei in the 

establishment of new cohorts of seedlings. The ongoing range expansion on the Kodiak 
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Archipelago together with the current knowledge of neutral gene flow patterns and the genetics 

of adaptive processes makes the northern range limit of P. sitchensis a unique study system for 

examining the interplay between adaptation and range dynamics. In addition, the longevity of 

this species and the historical record laid down in tree rings provides opportunities for 

demographic and genetic studies that are not possible in herbaceous or short-lived plants. 

 

1.5 Research outline 

By studying the past movements of tree species in response to climatic fluctuations, we may be 

able to understand and predict future population movements in response to contemporary large-

scale disturbances. Empirical and theoretical studies of postglacial migration speed as well as 

dispersal patterns are necessary to assess the potential of tree species to track their current 

climate niche. In turn, establishing the link between dispersal patterns and the resulting genetic 

diversity and structure in expanding populations at range edges enhances our understanding of 

the factors influencing the success and pace of adaptation in constantly changing environments. 

The work presented here tests and applies tools to understand tree population movements and 

their evolutionary outcome at various temporal and spatial scales through empirical analyses of 

population expansion in P. sitchensis.  

Chapters 2 focuses on the northern range margin of P. sitchensis. In this chapter, I ask 

whether demographic patterns at the colonization front foster or hinder genetic diversity and 

population differentiation. To answer this, I reconstructed the recent colonization of the Kodiak 

Archipelago by P. sitchensis in space and time over the past 500 years, using a combination of 

dendrochronology and genetic analyses. 

Chapter 3 examines the mutual effects of colonization and introgression at range margins 

by asking whether the colonization of the Kodiak Archipelago by P. sitchensis was accompanied 

by a change in admixture with the closely related parapatric species Picea glauca. To answer 

this, I characterized the spatial and temporal distribution of genetic admixture between the two 
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species in the studied region. In this chapter, I also attempt to determine whether the observed 

patterns are caused by neutral or selective mechanisms using tree ring and climatic data. 

Chapter 4 explores the interplay between genetic and demographic change at larger time 

and spatial scales by taking a phylogeographic approach, focusing on a commonly used method, 

approximate Bayesian computation (ABC). In this chapter I explore the power and limitations of 

ABC in the inference of a recent spatial expansion using extensive simulations of a variety of 

scenarios. I test the effects of model complexity, sequence length, time of expansion event, and 

sequencing depth on the precision and accuracy of model parameter estimates. I also test the 

suitability of models developed in this chapter to estimate postglacial migration rates in 

widespread tree species through an empirical application of the method to the expansion history 

of P. sitchensis in the northern part of its range. 

Finally, I conclude in Chapter 5 by summarizing findings from chapters 2 to 4, discussing 

how they relate to current concerns about climate-related range shifts in tree species, and 

addressing potential areas for research. 
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1.6 Figures 

 

 

Figure 1.1 Empirical research methods contributing to the study of range expansions, modified and extended 

from Hampe (2011). Methods involving genetic data are displayed in blue. 
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Figure 1.2 Natural geographic range of Picea sitchensis and its sister species Picea glauca in western North 

America. 
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Figure 1.3 Growth in relation to mean annual temperature in two P. sitchensis common gardens. a. Site index, 

data from Farr and Harris (1979). b. average height from a UBC common garden (Joane Elleouet, 

unpublished). c. Photograph illustrating results from Figure 1.3b, modified from Aitken and Bemmels (2016). 

For each provenance, the tree with height closest to the provenance mean was selected for this photograph 

from the UBC common garden to illustrate growth clines across regions and climates conditions. The red 

arrow points to the tree representing the Kodiak provenance.  
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Figure 1.4 Pictures of two forest sites at different distances of the expansion front. a. Site A5 on Afognak 

Island (see Figure 2.1 for exact location). b. Site K5 on Kodiak Island (southernmost site, see Figure 2.1 for 

exact location). 
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Chapter 2: Demographic and genetic reconstruction of the recent postglacial 

expansion of Picea sitchensis 

 

2.1 Introduction 

With an enhanced understanding of plant species migrations during past postglacial cycles and 

numerous observations of current climate change effects on species distributions, we are 

recognizing more than ever before the ubiquitous nature of range shifts. This awareness comes 

with a substantial literature including simulation studies of genetic changes during range 

expansion (Bialozyt et al., 2006; Hallatschek & Nelson, 2010; Peischl et al., 2013), empirical 

studies of expanding species and associated evolutionary patterns (e.g. Darling et al., 2008; Pujol 

& Pannell, 2008), and metaanalyses and reviews highlighting the general patterns common to — 

or variable among — phylogenetic and functional biological groups (Excoffier et al., 2009). 

Successive founder effects along colonization routes are a well-studied phenomenon causing an 

erosion of diversity and enhancing genetic differentiation (Excoffier et al., 2009; Hewitt, 2000; 

Slatkin & Excoffier, 2012). However, mechanisms related to species’ dispersal and life history 

traits have been shown to influence the genetic outcome of range expansions and give rise to 

fundamentally different spatial patterns of genetic structure (Bialozyt et al., 2006; Waters et al., 

2013). It is therefore not surprising that among organisms with different life history and dispersal 

traits, genetic effects of range expansions are not consistent (Eckert et al., 2008). 

This heterogeneity is present across studies of tree species. Empirical studies at the scale 

of species ranges have found both higher genetic diversity (Born et al., 2008; Pluess, 2011; Shi 

& Chen, 2012) and lower genetic diversity (Johnson et al., 2017; Kitamura et al., 2015; Marsico 

et al., 2009; Mimura & Aitken, 2007b) in leading edge populations of tree species after range 

expansion. Temperate forest tree species are generally associated with high gene flow via wind-

borne pollen across large geographic distances (Kremer et al., 2012), as well as a long lifespan 

and juvenile phase. These characteristics can have a strong influence on the interplay between 

genetic and demographic processes during range expansion. Founder effects may be buffered by 

high levels of gene flow (Austerlitz et al., 1997). The longevity of trees allows for founders to 
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persist until other propagules colonize, and their long juvenile phase forces the reliance on gene 

flow via foreign pollen, providing genetic diversity to the establishing population (Austerlitz et 

al., 2000). In addition, long-distance dispersal can prevent the erosion of genetic diversity along 

expansion routes (Le Corre & Kremer, 1998), promote genetic differentiation between demes 

(Austerlitz & Garnier-Géré, 2003) or suppress local introgression (Amorim et al., 2017). 

Recent empirical studies involving exhaustive sampling and pedigree reconstruction in 

isolated forest stands at range edges have greatly enhanced our understanding of demographic 

mechanisms shaping the genetic composition of expanding populations at the local scale. 

Founding individuals, often arriving via long distance dispersal of seeds, play a major role at the 

start of establishment. Troupin et al. (2006) found that spatial genetic structure of a population 

shortly after range expansion strongly reflected the genetics of founding trees in a Pinus 

halepensis population. Lesser et al. (2013) identified Allee effects in an establishing Pinus 

ponderosa stand, highlighting the importance of a certain level of long-distance dispersal of 

founders in the establishment success of the population. A general finding in these studies is the 

predominance of high levels of pollen flow shortly after founding, leading to a quick recovery of 

genetic diversity during recruitment (Hampe et al., 2013; Lesser et al., 2013; Pluess, 2011; Sezen 

et al., 2007).  

Here, I take a multi-scale approach to the study of expanding tree populations, combining 

observations of spatial and temporal patterns at the regional and local scale. In particular, I ask 

how demographic and spatial patterns of colonization affect genetic structure along an expansion 

route in space and time, and interact with potential geographic barriers to gene flow. To do so, I 

combine nearly five centuries worth of demographic and genetic data from several forested sites 

along the recent colonization route of Picea sitchensis. Although it is rarely the most abundant 

species in the southern and central part of its range, P. sitchensis dominates the forest cover 

together with mountain hemlock on the Kenai Peninsula and is the only forest tree species on the 

Kodiak Archipelago. Historical human records report a rapid advance of the monospecific P. 

sitchensis forest on the Kodiak Archipelago (Griggs, 1914; Vincent, 1964). The westernmost and 

largest island of the group, Kodiak Island, is thought to have been colonized no more than 500 

years ago (Griggs, 1937). P. sitchensis is found in dense stands on Afognak Island and the forest 

density tapers south-westward towards small groves of young trees (Tae, 1997). The absence of 
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spruce pollen in paleoecological records on Kodiak Island (Bowman, 1934) strongly suggest that 

this is the first occurrence of the P. sitchensis forest at this site since the last glacial period. This 

range expansion therefore seems to be part of the long-term post-glacial colonization process of 

the species, with the most recent front advance having likely been facilitated by a nearby 

volcanic eruption in 1912, which reduced interspecific competition between P. sitchensis 

seedlings and herbaceous species (Tae, 1997). Southwestern Kodiak Island features tundra 

grasses and scattered shrubby forms of Alnus viridis, Populus trichocarpa, and Betula nana. 

Earlier studies focusing on P. sitchensis detected asymmetric gene flow from core Alaskan 

populations to the Kodiak Archipelago (Holliday et al., 2012), as well as a high self-fertilization 

rates (Gapare & Aitken, 2005; Mimura & Aitken, 2007b) and a lack of adaptive potential (Lobo, 

2011) on Kodiak Island. Based on this knowledge, this chapter aims to characterize gene flow 

from populations on the Kenai Peninsula to the Kodiak Archipelago and identify demographic or 

genetic mechanisms responsible for reduced levels of genetic diversity at the expansion front. 

  I first conduct a demographic analysis over island and continental regions using 

dendrochronological methods to infer the timing and spatial structure of dispersal patterns during 

range expansion on the Kodiak Archipelago. To assess the current and past extent of 

differentiation and genetic diversity at the regional level, I then quantify genetic population 

structure between regions and genetic diversity within regions for different age classes at the 

northern range of P. sitchensis. This direct monitoring of genetic diversity and structure allows 

for the quantification of the extent and duration of potential founder effects, as well as the 

relative importance of early colonizers and subsequent gene flow in the accumulation of genetic 

diversity of the growing population. Finally, I take a closer look at sites at the expansion front, to 

determine the short-term genetic consequences of fine-scale dispersal patterns and demography. 

 

2.2 Materials and Methods 

2.2.1 Sampling design 

I focused on the northern range of P. sitchensis in south-central Alaska. In 2013 and 2015, 

fifteen sampling sites in healthy forests with old-growth characteristics and with no evidence of 
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past outbreaks of spruce beetle (Dendroctonus rufipennis) were sampled on Kodiak Island, 

Afognak Island, and on the Kenai Peninsula near Seward (Figure 2.1). On the Kodiak 

Archipelago, sites were specifically chosen for their suitability to document initial site 

colonization, not post-disturbance regeneration. We therefore avoided any site with numerous 

canopy dominant snags or coarse woody material that would be legacies of a forest damaged by 

a stand replacing disturbance. Sample sizes within sites varied between 12 and 86 trees, 

depending on the size of the sampled site and its accessibility (Table 2.1). I classified trees into 

four canopy structure levels (large canopy tree, medium-sized canopy tree, sub-canopy tree, and 

immature sapling) and sampled sites to maximize the range of tree ages and to obtain even 

sample sizes from each canopy structure level. Large canopy trees were typically >70cm in 

diameter, and showed growth forms consistent with earlier growth in an open environment 

(numerous large dead branches low on the trunk and strongly tapered stems), especially on the 

Kodiak Archipelago. Medium-sized canopy trees were generally <70cm in diameter and showed 

no signs of open growth. Sub-canopy trees were mature trees that had not reached the main 

canopy, and immature saplings were generally no more than 2m tall. All sampled trees were 

separated by at least 150 meters to avoid high relatedness between individual samples. For DNA 

extraction, young needles were sampled whenever possible; when foliage was out of the reach of 

a pole pruner two 1 cm-diameter cambium disks were collected with a leather punch. Sampled 

materials were stored in paper envelopes in silica gel until DNA extraction. To estimate the age 

of individuals sampled, an increment borer was used to core each tree up to 5 times as low as 

possible on the trunk to obtain a wood sample that included the pith or signature thereof. A 

detailed description of dendrochronological methods is available in Appendix B. The age of 

saplings was approximated by counting major branch clusters on the stem. I used available 

samples of needles from 15 canopy trees in two additional sites on Shuyak Island and Port 

Chatham for inclusion in population genetics analyses but did not have tree ring data for these 

populations (Figure 2.1). 

2.2.2 Dating population establishment 

I used two metrics to estimate timing of population establishment at the site level: the age of 

canopy trees and the date of canopy closure. The age of canopy trees was obtained by averaging 
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age estimates of all medium and large canopy trees. This estimate has the advantage of being 

accurate for representing the age of live canopy trees, but does not necessarily reflect initial 

forest establishment if survivorship of initial colonizers was low, if tree longevity is shorter than 

the time since site colonization, or if trees established after a major stand-replacing disturbance 

(although sites were chosen on the basis of absence of cues of past disturbance). Estimating the 

date of canopy closure is an attempt to overcome this limitation and relies on the identification of 

patterns of radial growth during early life stages, based on the hypothesis that individuals 

growing in an open environment will experience faster growth in early stages of life compared to 

individuals competing under a closed canopy. Therefore I expect three scenarios: (1) that most 

trees establishing on forested sites with an existing closed canopy will have relatively narrow 

growth rings at the juvenile stage; (2) that most trees on sites in the process of initial forest 

colonization will have wide growth rings at the juvenile stage; (3) that formerly forest-free sites 

will show a temporal shift from trees with wide juvenile growth rings to trees with narrow 

juvenile growth rings as trees grow and compete under a increasingly closed canopy. 

For each tree core, annual growth increments between years 11 and 20 were averaged to 

represent juvenile growth; years 1-10 were not included to avoid the effects of competition with 

small-statured herbaceous plants and shrubs. For individual trees, I modeled the relationship 

between estimated establishment date (x) and average annual juvenile growth (y) at the site level 

using two different regression models: a linear model 𝑦~𝑎𝑥 + 𝑏 and a logistic model of the type 

𝑦~𝑎 (1 + 𝑒−𝑏(𝑥−ℎ))⁄ . Sites following scenarios (1) and (2) above are expected to show a better 

fit with a linear model with nonsignificant or weak slope, and sites following scenario (3) are 

expected to show a better fit with the logistic model. I retained the model with the lowest AIC. 

When sites were best fitted by a logistic model, I checked that the relationship between year of 

establishment and growth increment was negative (b<0) and recorded h as the estimated date of 

canopy closure. When the linear model was the best fit, I tested the significance of the slope (p-

value for coefficient b). Site K4 was removed from this analysis due to sub-canopy trees at the 

site being under-represented in the sample. 
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2.2.3 Genotyping 

To obtain putatively neutral markers for 639 trees, genotyping-by-sequencing (GBS) was used 

with a sbf1-msp1 double-digest protocol (Elshire et al., 2011). Libraries were sequenced with the 

HiSeq 2000 system, producing 100-bp single reads. I aligned the filtered reads to the P. glauca 

reference genome WS77111_V1 (Warren et al., 2015) using the bwa mem alignment algorithm. 

Alignment files were then input into a variant calling pipeline using functions from the program 

GATK (McKenna et al., 2010). A more detailed description of the bioinformatics processing 

steps is provided in 0, section A.2. After SNP calling, I removed all singletons across the 639 

genotyped diploid individuals. Finally, when several SNPs were present less than 100bp apart, I 

retained only one of them, resulting in a final dataset with genotypes for 3244 biallelic SNPs. 

Unless otherwise stated, all population genetics analyses described in the following sections use 

a missing value cutoff of 60%. Based on preliminary tests on heterozygosity calculations, this 

cutoff value appears to be the best compromise between the number of usable SNPs and the 

completeness of the dataset. Although the GBS approach outputs datasets with considerable 

missing data (see Appendix A), it also provides a cost-effective genome-wide picture of genetic 

diversity and structure. 

2.2.4 Visualizing population structure 

I visualized population structure among all regions sampled using 2 methods: principal 

component analysis (PCA) and Structure clustering (Falush et al., 2003; Pritchard et al., 2000). 

For the PCA, I retained all genotype calls and filtered sites for missing data with a 40% cut-off 

value. The resulting dataset included 639 P. sitchensis individuals genotyped for 220 SNPs. I 

replaced all missing data by their mean over all individuals prior to PCA. The R packages 

adegenet (Jombart, 2008) and ade4 (Thioulouse et al., 1997) were used to convert data files and 

perform a centered PCA. To characterize further population structure within the dataset, I used 

the program Structure, which detects clusters of individuals based on Hardy-Weinberg 

equilibrium within clusters. I first performed exploratory runs with run lengths from 10k to 100k 

after a 10k burn-in and 3 replicate runs for each run length. For K ≤ 4, a run length of 50k was 

sufficient, whereas for K>4, a run length of 100k was necessary. I used the independent allelic 
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frequency model and the admixture ancestry model for all runs, and performed 3 runs for each 

value of K between 2 and 6. 

2.2.5 Temporal patterns of diversity and structure 

To infer the role of founder individuals and subsequent migration in the development of genetic 

diversity of the Kodiak-Afognak population, I selected all sites with less than 20% missing 

genotypic data for trees with age estimates. This dataset (120 SNPs, 412 trees) was used to 

estimate the year of first observation of each allele in the growing population. Using such a 

stringent cutoff value for missing data was necessary to adequately describe the date of 

appearance of each new allele in the population. A 1000-replicate randomization was applied to 

model the random distribution of allele accumulation curves against which to test significance of 

the observed results. To reconstruct the changes in gene flow patterns between continental and 

island populations, I assessed pairwise population differentiation between regions by computing 

the Weir and Cockerham (WC) FST estimator with R functions modified from the adegenet and 

hierfstat packages. Loci with less than 30% missing data over the whole sample were used. This 

cutoff value was chosen based on a preliminary exploration of FST calculations performed using 

different programs and subsets of the data. As the WC estimator is sensitive to unbalanced 

sample sizes (Bhatia et al., 2013), I randomly subsampled the larger population sample to the 

size of the smallest population sample. Confidence intervals around FST estimates were assessed 

with 1000 bootstraps. 

2.2.6 Site-level summary statistics 

Using SNPs that were well represented in each region (< 60% missing data across the sample), I 

calculated expected heterozygosity, FST and allelic richness at the site level using the R packages 

adegenet, hierfstat and PopGenReport, respectively. The latter uses the methods of El Mousadik 

and Petit (1996), which corrects for variable sample sizes through rarefaction. Changes in 

dissimilarity between sites over time on the Kodiak Archipelago were estimated using the 

dissimilarity calculations of Petkova et al. (2016). Estimates at the individual tree level rather 

than allele frequencies (such as FST) better suited the temporal analysis at the local scale due to 

low within-site sample sizes for each cohort. Briefly, I computed a matrix of genetic distance 
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between pairs of individuals using the average squared genetic difference across all well-

represented SNPs (<50% missing data). I then calculated D, the mean genetic distance over all 

possible pairs of individuals from 2 distinct sites, as a measure of pairwise dissimilarity between 

sites. To avoid confounding effects of within-site differences and better represent genetic 

differences resulting from gene flow variations, I calculated between-site dissimilarity (Db) by 

subtracting the average within-site dissimilarity from D. 

 

2.3 Results 

2.3.1 Demographic patterns from tree rings 

Tree ages were successfully estimated for a total of 607 samples (N=412 on the Kodiak 

Archipelago, N=195 in the Seward region on the Kenai Peninsula), evenly distributed among 

four canopy levels. Estimated tree ages ranged from 5 to 552 years. Medium and large canopy 

trees were generally younger on Kodiak Island (145 years on average) than on Afognak Island 

and Seward (>200 years). Ages of large canopy trees differed considerably among regions with 

younger large canopy trees in regions closer to the range limit (Figure 2.1b). To obtain a finer 

resolution of the spatial demographic patterns, I calculated the age of canopy trees at sites within 

regions (Figure B.1). The age of canopy trees at all Seward sites was 250 to 300 years, with 

overlapping standard errors. Independent data indicates that Seward sites were colonized more 

than 1000 years ago (Jones, 2008; Mann & Hamilton, 1995). As the age of canopy trees is 

relatively similar across sites in Seward, I deduce that intrinsic tree mortality rather than extrinsic 

disturbances prevents higher ages to be reached. Therefore, assuming identical intrinsic mortality 

rates on the Kodiak Archipelago, the age of canopy trees will become uninformative in regard to 

population establishment date when reaching these values. Within Kodiak Island, two of the 

southernmost sites (K3 and K5) had no trees older than 200 and 135 years and a mean age of 

canopy trees of 140 and 67 years, respectively. At K5, the southernmost P. sitchensis forest 

located on the Southeast coast of Kodiak Island, tree ages within canopy strata were 

homogenous, with all medium and large canopy trees between 40 and 60 years, and large canopy 

trees between 55 and 135 years. At this site, trees are short and there are no suppressed trees 



25 

 

growing in the understory, suggesting that this site was recently colonized. In general, medium 

and large canopy trees are older on Afognak Island than on Kodiak Island; however, this pattern 

of decreasing age of canopy trees towards the species range expansion front breaks down at the 

local scale. Some sites in the south have an older canopy than northern sites, especially on 

Afognak Island (i.e., A1 and A5, Figure B.1). The large variability in mean age of canopy trees 

among areas at a similar latitude (i.e., K3 and K4, Figure B.1) suggests that colonization on the 

Kodiak Archipelago occurred via patchy dispersal rather than a linear advancing wave. 

A signal of canopy closure was detected in juvenile growth patterns at the site level 

(Figure 2.2). As expected, none of the five sites on the Kenai Peninsula (S1 to S5) showed a 

significant relationship between growth increment and time for either the linear or the logistic 

model. Narrow juvenile growth rings were around 1-mm-wide, which is consistent with growth 

under a well-formed canopy and no evidence of stand-level disturbances over the time 

represented by the tree ages. Contrasting with this pattern, large canopy trees at the four 

considered sites on Kodiak Island (sites K1, K2, K3, and K5) show very large juvenile growth 

rings (3-7 mm). Large canopy trees at all five sites on Afognak Island (sites A1 to A5) show 

moderately large juvenile growth rings (2-4 mm). Another strikingly different pattern is that 

juvenile growth patterns at all eight of these nine sites was best represented by a logistic curve or 

a linear model with significant negative slope, suggesting that over time juvenile growth 

gradually decreased at all sites, with only the latest values approaching the juvenile ring width 

values observed in the Seward population (sites S1 to S5). K5 is the only site where juvenile ring 

width does not decrease, with current values sustained above 2mm. The pattern of sustained wide 

juvenile rings in mature trees at K5 is consistent with a relatively young stand where all trees 

reaching the canopy have grown in absence of intraspecific competition. For sites where a 

logistic curve was the best fit, estimated dates of canopy closure (h) varied little among sites. As 

juvenile growth rings are narrower in old trees on Afognak Island than on Kodiak Island but 

juvenile ring width still decreases over time, I suggest that the current mature trees on Afognak 

Island established under a developing canopy. The detected decrease in juvenile growth through 

time would correspond to a slow increase in canopy closure. An overlap between ages of 

medium canopy trees and suppressed sub-canopy trees at the site level supports this hypothesis. 
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Finally, I computed the cumulative distribution of establishment dates of canopy trees in 

both the Kodiak Archipelago and Seward populations (Figure 2.3a). There was a sharp increase 

in the cumulative number of established canopy trees on the Kodiak Archipelago around 1700. 

The cumulative distribution of the Seward sample suggests that this shift is not due to intrinsic 

mortality in trees established before 1700. Indeed, such old trees are present in the Seward 

population (although few trees established before 1550 were sampled). Instead, the observed 

shift in age distribution on the Kodiak archipelago compared to Seward might either indicate a 

genuine increase in establishment rate around 1700 or an elevated extrinsic mortality of trees 

established before that time. However, there is no known catastrophic climatic or geological 

event in the region from this time, nor is there any signal of it in annual rings of trees established 

before 1700 on the archipelago. 

2.3.2 Genetic structure and diversity in space and time 

Both PCA plots (Figure B.2) and Structure analyses (Figure B.3) suggest that population 

differentiation is moderate and mainly separates Seward from the other populations. In 

particular, the mixed ancestry of Shuyak and Port Chatham displayed in the K=2 and K=3 

Structure bar plots as well as their position on the PCA plot suggest that the strait separating the 

archipelago from the mainland does not produce any marked differentiation pattern, at least not 

compared to similar overland distance. 

To determine how the present regional pattern of population structure evolved, I analyzed 

the evolution of FST over 400 years between the Kodiak Archipelago and the Seward region 

(Figure 2.3b). Despite large confidence intervals around estimates, there is a decrease in FST 

from 0.15 in 1610 to 0.12 in the mid-1700s, followed by a weak, statistically nonsignificant 

increase to about 0.15, the current estimate. The early decrease in differentiation could indicate 

relatively high gene flow from the mainland to the Kodiak Archipelago during early population 

establishment. A shift to local recruitment likely happened in the 1700s, putting an end to the 

decreasing trend in genetic differentiation. This shift is coincident with the upward shift in the 

distribution of establishment time of canopy trees on the Kodiak Archipelago (Figure 2.3a). 

 Genetic diversity decreased towards the expansion front for both allelic richness and 

expected heterozygosity calculated over polymorphic loci (Figure 2.4). The Seward population 
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had the highest allelic richness, and Kodiak Island, Afognak Island, and Port Chatham had the 

lowest. Interestingly, Shuyak Island has a higher allelic richness than Port Chatham suggesting 

connectivity of the Shuyak population with other populations, possibly from P. sitchensis forests 

outside of those sampled, or from P. glauca populations north of the archipelago. Heterozygosity 

is high everywhere but on Kodiak and Afognak Islands, suggesting a local deficit of some alleles 

common elsewhere at the northern range edge of the species. 

To determine how quickly the Kodiak-Afognak populations acquired their current allelic 

diversity, I built an allele-accumulation curve (Figure 2.3c) and compared it to a null model of 

comparable sample sizes. I found that most alleles present in the data were acquired between 

1620 and the mid-1700s, a trend confirmed not to be an artefact of sampling effects. 

2.3.3 Patterns of genetic structure and diversity at the colonization front 

Expected heterozygosity calculated for each sampled site using all SNPs that are polymorphic 

ranged from 0.11 to 0.28 across the Kodiak Archipelago (Table 2.1). There is no evidence for a 

latitudinal decrease within the archipelago towards the edge of the range: I calculated a 

correlation coefficient of 0.04 between latitude and He (Pearson’s correlation test, p = 0.9004). I 

calculated a similar correlation coefficient value between He and age of medium and large 

canopy trees (r=0.08, Pearson’s correlation test, p =0.8101), and again failed to detect any 

erosion of genetic diversity during successive colonization of demes at the expansion front. 

To test the hypothesis that colonization leads to genetic sectors on the landscape, I 

computed pairwise FST among sites (Figure 2.5). Larger FST values among areas on the Kodiak 

Archipelago than among areas on Seward would suggest the presence of such colonization-

specific mechanisms at the front. However, pairwise FST values between sites on the archipelago 

are very low (<0.1), similar to those observed among Seward sites. This could be due to high 

gene flow among sites after long-distance dispersal founding events, making genetic sectors too 

transient to be observable in current datasets. Alternatively, it could be due to a homogeneous 

pool of founding individuals across the archipelago, which could occur if all propagules came 

from one, already depauperate source population. To test these alternative hypotheses, I took a 

landscape genetics approach and calculated genetic dissimilarity among sites at different 

distances within the Kodiak Archipelago and at four different times, and studied the change in 
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dissimilarity between sites over time (Figure 2.6). Dissimilarity between sites in 1710 was 

significantly higher than during subsequent centuries: average dissimilarity values are an order of 

magnitude lower in 1810, 1910 and 2010 than in 1710. This result brings support to the 

hypothesis that post-founding gene flow prevented initial genetic sectors from persisting. 

 

2.4 Discussion 

2.4.1 Demographic and genetic patterns of colonization 

Studying the evolution of long-lived organisms such as temperate tree species is challenging 

because of their typically long generation time. This study shows that the concomitant use of tree 

ring and genetic data can turn the inconvenience of these life history characteristics into an 

opportunity to accurately reconstruct the demographic and genetic history of colonization over 

five centuries. By applying this combination of methods to several regions and sites within 

regions at the expansion front of P. sitchensis, I was able to describe demographic and neutral 

genetic patterns of forest establishment at the regional and local scale. I established a link 

between genetic diversity and spatial colonization patterns by showing that both trends of 

decreasing diversity and decreasing time since forest establishment towards the expansion front 

break down at the local scale. This provides insights into the effects of dispersal patterns on 

neutral evolution during range expansion. It also highlights the importance of relating the 

geographic scale of study to the dispersal abilities of the studied organism when testing for 

evolutionary trends commonly observed during range expansions. I established a second link 

between temporal trends in demography and genetic structure of P. sitchensis populations over 

the last five centuries at the expanding range limit: a shift from decreasing to stagnating 

differentiation between the establishing Kodiak population and the Seward population on the 

Kenai Peninsula coincides with a marked increase in successful establishment rate on the Kodiak 

Archipelago in the 1700s. This suggests that gene flow from continental populations was 

predominant in early stages of establishment, until local recruitment became the major 

mechanism of population growth. Most of the allelic richness on the Kodiak Archipelago was 

acquired during initial stages of population establishment, and the high levels of local gene flow 
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in later stages homogenized the genetic structure of the Kodiak population, buffering founder 

effects at the local scale and maintaining them at the regional scale. 

2.4.2 Founder and Allee effects 

Trees established as early as 1516 were sampled on the archipelago and local recruitment only 

appears to have become significant in the 1700s, highlighting the existence of a lag of several 

centuries in local recruitment. Although these results do not provide direct evidence of density-

dependent population success, they echo findings of Lesser et al. (2013), who identified Allee 

effects in early stages of forest establishment in a Pinus ponderosa stand through reliance on 

long-distance seed and pollen dispersal for the first few centuries of population growth. 

Alternatively, a long period of unfavourable climate could also reduce population growth for 

several decades, especially in species reproducing through masting: a consistently poor climatic 

environment could reduce the frequency of masting years. The Little Ice Age, a general period of 

colder northern hemisphere climate between 1300 and 1850, is known to have been particularly 

pronounced at high latitudes and could therefore have forced a slow population growth and even 

a more pronounced founder effect than expected on the Kodiak Archipelago.  

In P. sitchensis, wind-borne pollen is likely to be the main vector of genetic material 

from distant sources, although the abilities of seeds to travel by air and ocean surface currents are 

not well understood. The shift in differentiation trends in the mid-1700s coincides with the start 

of a plateau in the allele accumulation curve for the Kodiak-Afognak region. This result can also 

be related to Roques et al. (2012), who found through models of colonization waves that Allee 

effects prevent the erosion of genetic diversity along colonization routes: populations at the front 

accumulate genetic diversity during establishment through reliance on populations behind the 

expansion front. If a lag in local recruitment through Allee effects is common in populations at 

the edge of forest tree species, mechanisms described in Roques et al. (2012) could partly 

explain why many studied forest expansions do not show a classic decrease in diversity at the 

expansion front. In the case of P. sitchensis, when populations had a low density of mature trees 

they produced a relatively small pollen cloud compared to external sources, until large mature 

trees became the main producers of pollen locally present. However, it is worth noting that 

expected heterozygosity over polymorphic sites remained low on Kodiak and Afognak Islands, 
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although the expansion process on the Kodiak Archipelago did not result in local erosion of 

allelic richness. This suggests that although allelic diversity was recovered largely during 

colonization, many alleles remain at low frequencies in the newly established population. The 

genotype of early colonizers might therefore have a long-lasting influence in the establishing 

population. 

2.4.3 Genetic structure at the expansion front 

P. sitchensis started establishing at most sites on the Kodiak Archipelago before 1700. Evidence 

for continental sources dominating gene flow prior to the mid-1700s indicates that long-distance 

dispersal from the mainland played an important role in initial recruitment. Models of 

colonization through patches from long-distance dispersal show that genetic sectors are expected 

to arise (Hallatschek & Nelson, 2010). However, I found no evidence for spatial genetic sectors 

in the current sample. I propose two explanations for this lack of spatial genetic structure. First, it 

seems that most founders colonized Kodiak and Afognak Islands from just a few source 

populations that were already somewhat depleted in alleles. Indeed, it seems that the low allelic 

richness observed on a regional scale on the Kodiak Archipelago could be due to the low levels 

of allelic richness of source populations at the tip of the Kenai Peninsula: levels of allelic 

richness on Kodiak and Afognak Islands are similar to those in Port Chatham, the closest 

continental population sampled. Low levels of allelic richness in Port Chatham may be explained 

by lower population sizes due to a fragmented landscape, as the region is highly mountainous 

and suitable habitat is restricted to narrow valleys between ice-capped mountains and numerous 

sinuous fjords. Also, as allelic richness is higher on Shuyak Island than in Port Chatham, 

multiple source populations might contribute to the maintenance of genetic diversity in regions at 

the expansion front. The second factor likely to explain the absence of genetic sectors is high 

gene flow within the Kodiak Archipelago during the last 250 years. I found a decrease in mean 

pairwise dissimilarity among sites at the expansion front between 1700 and subsequent centuries, 

suggesting that initial spatial patterns of genetic structure from founding individuals did not 

persist or develop further due to high levels of subsequent gene flow across the archipelago. 
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2.4.4 Demographic estimates of establishment times: power and limitations 

Estimates of establishment time, age of canopy trees and time of canopy closure all showed a 

clear demographic signal of population establishment on Kodiak Island, and a less clear signal 

for Afognak Island. As these estimates were also calculated for the Seward population, known to 

have established several thousand years ago, the power and limitations of these estimates are 

delineated. The age of canopy trees is only informative for about 300 years, and the estimated 

time of canopy closure confirmed the recent nature of forests on Kodiak Island and — to a lesser 

extent — Afognak Island. The complementarity of these two estimates is best illustrated with the 

Afognak Island site A5: this site is similar to Seward sites in age of canopy trees (Figure B.1) but 

juvenile growth rings show a signal of increasing canopy density throughout the 19th century, a 

pattern not observed in Seward (Figure 2.2). Although time of canopy closure is useful for 

inferring the absence of a closed canopy when the first trees established, the temporal change in 

juvenile radial growth couldn’t be modeled by a logistic curve, or was better fitted by a linear 

model. This can be due to the initiation of intraspecific competition suppressing growth being 

too recent, or to spatial heterogeneity within stands. In addition, I found little variability between 

sites in estimates of time of canopy closure. The parameter h from the logistic curve modelling 

may not be the most informative measure of establishment time. Visually inspecting juvenile 

ring width profiles over time (Figure 2.2) might provide more information about stand 

establishment than extracting a single value from these profiles. 

2.4.5 Implications for long-lived wind-pollinated species 

Results suggest that the evolutionary potential of wind-pollinated tree species is more likely to be 

limited by slow demographic growth than by slow accumulation of genetic diversity. In spite of a 

slow initial population growth, allelic richness recovered during this period up to levels 

comparable to nearby source populations. In addition, geographic barriers to gene flow are weak 

despite the studied population being isolated from the continent by a 70 km-wide ocean strait. 

The demographic lag observed in this and other studies of tree populations suggests an Allee 

effect, whereby the reproductive ability of establishing trees is limited firstly by a long phase of 

juvenile growth, and secondly by a higher dependence on foreign pollen fertilizing local mature 

trees when population densities are low. This potential Allee effect could keep a colonizing tree 
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population in a vulnerable state and contribute to the migration lag of tree species tracking their 

suitable niche space, especially in the context of rapid anthropogenic climate change. However, 

such a lag is also likely to be at the origin of an efficient recovery of genetic diversity after a 

founding event, as several studies have shown a predominance of pollen of foreign origin during 

early population establishment (Hampe et al., 2013; Lesser et al., 2013; Pluess, 2011). In both 

cases, management through planting trees from diverse, carefully selected provenances could 

accelerate successful establishment and adaptation in populations of conservation concern 

(Aitken & Whitlock, 2013). In general, understanding demographic processes during range shifts 

and their effect on evolutionary potential is necessary as climate change is shifting species’ 

suitable niches nearly everywhere on the planet. This chapter illustrates that dispersal potential 

and temporal patterns of population growth are important factors influencing population 

expansion and adaptation. The effects of other mechanisms such as hybridization, competition, 

and natural selection also need to be assessed in order to predict or help species movements in 

response to a rapidly changing world. 
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2.5 Tables and Figures 

Table 2.1 Nomenclature, description, and diversity estimates of sampled sites. Size=sample size; 

He=population-level heterozygosity averaged across loci; mean canopy age=average tree age across large 

canopy and medium canopy trees, in years. 

 

site region latitude longitude size He 
mean 

canopy age 

S1 Seward 60.253 -149.357 37 0.283 294 

S2 Seward 60.213 -149.369 36 0.29 288 

S3 Seward 60.19 -149.558 48 0.268 285 

S4 Seward 60.107 -149.354 48 0.251 319 

S5 Seward 60.06 -149.444 26 0.202 266 

PC Afognak 59.224 -151.703 15 0.123 NA 

Sh Afognak 58.563 -152.555 15 0.183 NA 

A1 Afognak 58.298 -152.329 24 0.119 206 

A2 Afognak 58.231 -152.475 37 0.155 223 

A3 Afognak 58.209 -152.585 12 0.12 315 

A4 Afognak 58.145 -152.433 25 0.121 239 

A5 Afognak 58.118 -152.541 86 0.15 310 

K1 Kodiak 57.845 -152.422 52 0.134 203 

K2 Kodiak 57.638 -152.437 49 0.134 147 

K3 Kodiak 57.619 -152.334 50 0.123 207 

K4 Kodiak 57.617 -152.219 31 0.136 201 

K5 Kodiak 57.428 -152.344 48 0.13 66 
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Figure 2.1 Sampled sites and tree ages in south-central Alaska. a. Map of sites with the whole range of P. 

sitchensis (green area) in inset. b. Violin plots of individual tree ages for each canopy structure level within 

each region sampled, with mean and standard deviation displayed in black. juv.=juvenile tree; suppr.=sub-

canopy tree; canopy=medium canopy tree; lg.can.=large canopy tree 
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Figure 2.2 Individual annual radial growth between years 10 and 20 vs. date of establishment. The best model among linear and logistic models is 

displayed in blue with the p-value of the slope (linear model) or in green (logistic model). In the latter case the estimated time of canopy closure (h) is 

represented by a dashed line.
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Figure 2.3 Demographic and genetic 

changes over time on the Kodiak 

Archipelago in relation to the Kenai 

Peninsula. a. Cumulative distribution of 

establishment dates for canopy trees for 

the Kodiak Archipelago and the Seward 

region. b. Temporal change in FST between 

the Kodiak Archipelago and Seward. FST 

values are calculated for the cumulative 

sample (each sample associated with a date 

is made of all individuals alive at this date). 

Error bars represent confidence intervals 

from 1000 bootstraps. The number of 

individuals per population is indicated 

below error bars. c. Allele accumulation 

curve for the Kodiak Archipelago with 

95% interval band from 1000 random 

permutations (grey). Numbers under data 

points correspond to cumulative sample 

sizes. Data points with values outside the 

95% confidence band are represented with 

filled circles. The top dotted line 

correspond to the maximum number of 

alleles in the whole sample of 639 

individuals. 
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Figure 2.4 Regional expected heterozygosity over variable SNPs (black) and estimated allelic richness (grey) 

vs. latitude or regions. Error bars on He are standard errors of the mean. Kod.=Kodiak Island, 

Afo.=Afognak Island, Shu.=Shuyak Island, PC=Port Chatham, Sew.=Seward. 



38 

 

 

Figure 2.5 Heat map of pairwise FST values between sampled sites. 

 

 

Figure 2.6 Temporal change in mean pairwise dissimilarity between sites on the Kodiak Archipelago. Error 

bars represent standard error of the mean. 
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Chapter 3: Patterns and effects of Picea sitchensis admixture with a closely 

related species during range expansion 

 

3.1 Introduction 

Chapter 2 linked dispersal and demographic patterns to evolutionary outcomes in a spatially 

expanding tree population. Extrinsic forces can also play a major role in the demographic and 

evolutionary trajectory of an expanding species at its range limit. Different climatic conditions as 

well as biotic interactions (competition, parasitism, and predation) shape the spatial distribution 

of a colonizing population and its persistence in the new environment. If hybridization is 

possible between a local species and the invading species, it can fundamentally alter the genetic 

makeup of the colonizing population and its adaptive capacity. Examples of enhanced 

hybridization during range expansion are numerous (reviewed in Currat et al., 2008), with 

evidence for adaptive introgression and speciation during colonization (Rieseberg et al., 2007). 

Although natural selection is often put forward as an obvious explanation to why hybridization 

during range expansion is so common, Currat et al. (2008) have also shown that neutral 

processes can be sufficient to explain introgression of a local species into the genome of an 

invading population. Indeed, demographic mechanisms of colonization can drive introgression of 

the local species’ genes into the genome of the introduced species, at rates up to 100% if the 

interbreeding rate exceeds 10%. Although this dramatic result can be observed under a variety of 

demographic conditions including a wide range of interbreeding rates and population densities 

(Currat & Excoffier, 2011), Amorim et al. (2017) have shown that frequent long-distance 

dispersal events can limit introgression and even completely prevent it if the expansion wave 

front is targeted. As introgression between Picea glauca and Picea sitchensis is common in the 

central and northern range of P. sitchensis, the expanding P. sitchensis population on the Kodiak 

Archipelago provides an opportunity to develop empirical knowledge about the interplay 

between range expansion and introgression. Although no species able to interbreed with P. 

sitchensis was present on the archipelago during its colonization, the expanding range edge is 

within the reach of pollen dispersal from nearby P. glauca and hybrid populations north and east 
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of it (Figure 3.1). The goals of this chapter are to characterize the spatial and temporal patterns of 

introgression between an expanding P. sitchensis population and neighbouring P. glauca 

populations, to determine whether it originates from recent hybridization events, and to assess 

the potential role of natural selection in the formation of the observed patterns. 

There is a rich history of introgression studies in the context of range expansion in tree 

species, especially conifers (Du Fang et al., 2009). There are several reasons for this. First, 

members of the Pinaceae are organisms of choice to study the interplay between gene flow levels 

and introgression within the genome. This is because different genetic material can be inherited 

either biparentally via nuclear DNA, or from one parent (maternally for mitochondrial DNA, 

paternally for chloroplast DNA). These different modes of inheritance and their associated levels 

of gene flow are informative to understand determinants of introgression and the demographic 

history and phylogeny of species complexes (Bouillé et al., 2010; Du Fang et al., 2009). Second, 

postglacial colonization often involves secondary contact between sister species re-expanding 

towards the pole after a glacial period, resulting in repeated introgression events and the 

maintenance of weak reproductive barriers (Jaramillo-Correa et al., 2009). At its northern 

expanding range edge, P. sitchensis coexists and hybridizes with its sister species P. glauca at 

multiple contact zones on the Kenai Peninsula (Boucher & Mead, 2006) and in Iniskin Bay area. 

Although there is no known intrinsic reproductive barrier between the two species, they occupy 

distinctive environmental niches. This explains the relative stability of hybrid zones and the 

preservation of species on either side of them in the hybrid zones of British Columbia (Hamilton 

& Aitken, 2013). Climatic niche differences are most strongly associated with differences in the 

annual amount of precipitation as rain and low winter temperatures (Hamilton et al., 2013a; 

Hamilton & Aitken, 2013). The fact that P. glauca individuals and P. glauca - P. sitchensis 

hybrids can be found outside of their usual climatic niche due to demographic mechanisms 

specific to range expansion prompts questions about their viability in the new environment. 

Therefore, after identifying patterns and causes of introgression at the expansion front of P. 

sitchensis, this chapter addresses the effect of climate on individuals with different levels of 

ancestry in the recently established P. sitchensis population, in comparison to populations further 

from the migration front. 
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Chapter 2 illustrated how past forest density and canopy closure could be tracked using 

changes in individual ring-width patterns over time. Variations in annual tree ring width are also 

a powerful tool in determining the effect of climate on tree growth. When paired with temporal 

series of annual variation in climatic variables, time series of tree ring widths can help identify 

the set of conditions that limit radial growth for a particular tree species in a forest stand. The 

main determinants of climate sensitivity for a forest tree population are usually measured with 

dendroclimatic methods and mostly depend on species and geographic location (Babst et al., 

2013; Büntgen et al., 2007; Martin-Benito & Pederson, 2015). However, a recent study of an 

Abies alba population showed that Carpathian populations originating from different glacial 

refugia responded to different climatic drivers of radial growth, suggesting that radial growth 

patterns could differ among more subtle phylogenetic resolutions than the species level (Bosela 

et al., 2016). As studies coupling dendrochronological and genetic information have started to 

appear in recent years, it still remains unclear how genetic characteristics of trees can influence 

their radial growth responses to climate. Here, I assess the influence of interspecific admixture 

on radial growth patterns and their relationship with seasonal climatic variables. 

Most of the tree ring and genetic data analysed in this chapter comes from the same 

material as in Chapter 2. I first complemented the P. sitchensis genetic data obtain by GBS with 

genotypes from a P. glauca outgroup to quantify the extent of genetic admixture of P. sitchensis 

populations with P. glauca at the northern range limit of the species. I especially ask whether 

introgression was enhanced or suppressed during colonization of the Kodiak Archipelago. I then 

develop hypotheses to explain the observed patterns of admixture. I attempt to determine 

whether admixed genotypes originated from distinct hybridization events on the Kodiak 

Archipelago or from more ancient mechanisms (introgression from past secondary contact in the 

continental P. sitchensis source populations or incomplete lineage sorting). Finally, I use annual 

variations in radial tree growth to test whether admixed and pure P. sitchensis trees in the 

establishing population show different growth patterns that translate into different responses to 

climate. 
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3.2 Materials and methods 

3.2.1 Geographic location, sampling and genotyping 

I used the same P. sitchensis samples as in Chapter 2, including 639 individuals sampled across 

the northern species’ range on the Kodiak Archipelago and the Kenai Peninsula. In addition to 

these P. sitchensis samples, needles from 30 mature P. glauca mature trees were collected at 

Denali Park Village, Alaska (63.719136 N ; 148.812888 W) for genotyping. This sample was 

selected to serve as an outgroup to identify P. glauca genetic ancestry in the P. sitchensis 

sample, and is believed to be far enough from the P. sitchensis range to be devoid of hybrids. It 

is also part of the same Alaskan phylogenetic group as P. glauca populations parapatric with my 

P. sitchensis sample from the Kenai Peninsula (Anderson et al., 2006). The 669 collected 

individuals were genotyped using genotyping-by-sequencing (GBS). The procedure is described 

in Chapter 2 and Appendix A. The 6,644 high-quality SNPs obtained after sequencing, genotype 

calling and quality filtering were further filtered to remove singletons. I also removed loci that 

had less than 40% representation in any of the three main populations in the sample (Kodiak 

Archipelago, Seward, and Denali). When several SNPs were present on the same read (i.e., less 

than 100bp apart), I retained only the first one. The resulting 338 polymorphic SNPs were used 

in subsequent genetic structure analyses. 

3.2.2 Defining a hybrid index and reference groups 

I performed Bayesian clustering using Structure (Falush et al., 2003) with the number of clusters 

K varying from 2 to 6. Run lengths were set to 105, with an initial 103-burnin period. I 

implemented 3 replicate runs for each value of K to ensure the consistency of results. I used the 

independent allelic frequency model and the admixture ancestry model for all runs. These 

analyses were set to run unsupervised, i.e., without prior population information. The dominant 

cluster in the Denali sample was identified and hybrid index (HI) was defined as the proportion 

of this cluster in any given individual tree. HI therefore represents the proportion of P. glauca 

ancestry in a given individual. I then defined species reference groups by selecting all individuals 

with HI<0.01 (P. sitchensis reference) and HI>0.99 (P. glauca reference). These groups were 

used to identify diagnostic markers and calculate interspecific heterozygosity. 
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3.2.3 Interspecific heterozygosity and hybridization patterns 

To infer hybridization patterns that gave rise to the currently observed admixture levels on the 

Kodiak Archipelago, I examined the relationship between interspecific heterozygosity (int.h) and 

hybrid index (HI) for each individual. For an individual, interspecific heterozygosity is defined 

as the heterozygosity over diagnostic sites (sites with one different, fixed allele in each parental 

species). When represented jointly with HI values, int.h values are useful to assess the genetic 

structure of hybrid populations (Fitzpatrick, 2012). With a large enough set of ancestry 

informative markers, interspecific heterozygosity makes it possible to assess whether hybrids 

with intermediate HI values originate from a recent hybridization event (relatively high int.h) or 

are the result of more ancient introgression or ancestral polymorphism at the genetic loci 

considered (low int.h). Indeed, linkage between ancestry-informative alleles in the first 

generation of hybridization would translate into high int.h values in first- and second-generation 

hybrids. This linkage would be broken down by recombination in subsequent generations. 

Shared polymorphisms inherited from ancient secondary contact would therefore be 

characterized by much lower int.h values. Similarly, if alleles predominant in one species have 

been kept at low frequencies in the other species through incomplete lineage sorting, it is 

unlikely that a set of individuals would be heterozygous for all or most of them; the average int.h 

should therefore also be low if polymorphisms originate from incomplete lineage sorting. 

Here, as there are no fully diagnostic SNPs in the sample, I selected all SNPs with 

FST>0.7 between the two reference groups (see section 3.2.3) as ancestry informative markers. 

Interspecific heterozygosity was calculated as the average heterozygosity over these selected 

SNPs, for each individual with a HI value between 0.01 and 0.99. The joint distribution of int.h 

and HI was then represented in a triplot (Fitzpatrick, 2012). As the markers used here are not 

fully diagnostic, it is not easy to discriminate between the two sets of hypotheses of recent 

hybridization (within the last 2 generations) and ancestral polymorphism/ancient introgression. 

Therefore, to help interpret the observed genetic structure of hybrids, I simulated F1, F2 and F1 

backcrosses with each parental group (N=200 for each progeny) using the adegenet R package 

(Jombart, 2008), and selecting the two reference groups as parental genotypes. I represented the 

joint distribution of int.h and HI for these simulated progenies on the triplot together with results 
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from observed hybrids. HI for simulated data was calculated in a similar fashion to HI for the 

observed data: for each simulated cross, the 200 simulated genotypes and the 2 reference groups 

were input in Structure with the same run parameters as for the observed data (see section 3.2.3), 

but with prior population information for the two reference groups. Interspecific heterozygosity 

was calculated for both observed and simulated data using the R package introgress (Gompert & 

Buerkle, 2010).  

To characterize temporal changes in hybrid genotypes I also assessed interspecific 

heterozygosity in relation to individual dates of establishment (inferred in Chapter 2). 

3.2.4 Dendroclimatic analysis 

To assess the climatic determinants of radial growth in pure Sitka and admixed genotypes, 

correlations between tree ring chronologies and local climate variables need to be established. To 

create chronologies, I used the dplr R package (Bunn, 2008). Tree ring processing methods prior 

to detrending are described in Appendix B. I individually detrended crossdated ring-width series 

from all medium and large canopy trees by fitting a cubic smoothing spline with a 50% 

frequency response cut-off and a smoothing wavelength of 50 years. This process removes long-

term growth trends. This step is necessary to filter out age-related and stand dynamics effects on 

radial growth. I then applied an autoregressive time series model to remove all but the high-

frequency signal. The output can be correlated with interannual climatic variations (Cook & 

Kairiukstis, 1990). Four standard chronologies were created by averaging detrended ring-width 

series for trees stratified by region (Seward and the Kenai Peninsula) and genetic ancestry (Sitka 

parental group and hybrids with int.h ≥ 0.5), using the dplr R package (Bunn, 2008).  I obtained 

annual seasonal values of temperature and precipitation for the Kenai Peninsula and the Seward 

region using ClimateWNA (Wang et al., 2012). The chronologies and climate records were 

trimmed to a period between 1940 (earliest records from local weather stations) and 2010 (last 

date of high precision measurement for tree rings). Correlation analyses were performed using 

custom functions modified from the dcc function in the R package bootRes (Zang & Biondi, 

2013). This function calculates correlation coefficients between chronologies and climate 

variables with associated confidence intervals calculated from a built-in bootstrap method 

involving resampling among years. To establish statistical significance among admixture levels 
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within regions, I developed an alternative bootstrap procedure involving the creation of 1000 

chronologies by randomly selecting subsamples of tree ring series of each admixture class with 

replacement. 

3.2.5 Non-parametric growth patterns analysis 

I complemented the dendroclimatic analysis with a cluster analysis of individual ring-width 

series following single detrending. As the level of P. glauca - P. sitchensis admixture of an 

individual tree might influence aspects of radial growth that are independent of climatic 

influences, I studied differences in tree ring sequence patterns without prior assumptions on the 

factors driving growth variation. To do this, I performed a single detrending of individual ring-

width series using a cubic smoothing spline with a 50% frequency response cut-off and a 

smoothing wavelength of 70 years. Although this detrending process dampens some medium- 

and long-term growth trends potentially affected by the level of admixture, it is a more 

conservative representation of individual radial growth variations than double detrending using 

the 50-year smoothing spline and autocorrelative method described in section 3.2.4. Applying 

this standardization is especially important in the case of the Kodiak Archipelago sample, where 

substantial tree density and canopy changes have occurred at different sites and times during the 

studied period (Figure 2.2). I computed a dissimilarity matrix of all detrended ring-width series 

truncated to the period 1950-2010 using a dissimilarity index developed by Chouakria and 

Nagabhushan (2007). This index takes into account both absolute values and direction of change 

in values from one year to the next by combining a conventional distance measure (here the 

Euclidean distance D) with a temporal correlation index CORT. If S1={u1,u2,…up} and 

S2={v1,v2,…vp} are two tree ring index series, then 

𝐶𝑂𝑅𝑇(𝑆1, 𝑆2) =
∑ (𝑢𝑖+1 − 𝑢𝑖)(𝑣𝑖+1 − 𝑣𝑖)
𝑝−1
𝑖=1

√∑ (𝑢𝑖+1 − 𝑢𝑖)2
𝑝−1
𝑖=1

√∑ (𝑣𝑖+1 − 𝑣𝑖)2
𝑝−1
𝑖=1

 

In the calculation of the dissimilarity index D, the relative importance of CORT over the 

Euclidean distance de is modulated by an inverse exponential function with a single tuning 

parameter, s.  
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𝐷(𝑆1, 𝑆2) = 𝑑𝑒 .
2

1 + 𝑒𝑠.𝐶𝑂𝑅𝑇
 

After a few exploratory analyses, I set s=2, which results in CORT contributing 76.2% of the 

final dissimilarity index D. Hierarchical clustering was performed on the resulting dissimilarity 

matrix using the Ward agglomeration method in the hclust R package. 

 

3.3 Results 

3.3.1 Population structure and hybrid index 

Posterior probability values of Structure models with different numbers of clusters form a 

plateau starting at K=3 (Figure C.1). The three clusters generally correspond to Denali, Seward, 

and the Kodiak Archipelago (Figure C.3). This is consistent with Structure analyses results in 

Chapter 2, which used the same sample excluding the Denali population and supported two 

clusters that primarily separated Seward and the Kodiak Archipelago. Runs with K=4 generally 

showed the same results as K=3 runs, with a low-frequency fourth cluster that is absent in most 

individuals (Figure C.4). Using the percentage of the major cluster in Denali in each individual 

as a measure of their P. glauca ancestry seems like a legitimate choice. However, a striking 

result is the apparent mixed ancestry of the Denali sample: half of its individuals harboured P. 

sitchensis ancestry, up to 50%, for all values of K tested in sampled regions (Figure 3.2, top 

panel) and sites (Figure 3.2, bottom panel). This could be due to incomplete lineage sorting 

and/or introgression after secondary contact. The latter process is most likely involved, as 

individuals with 50% of P. sitchensis alleles would be unlikely to exist solely under the 

incomplete lineage sorting hypothesis. 

Focusing on the major cluster in the Denali population, K=2 runs generally show the 

same structure as K=3 runs for the Kodiak Archipelago: on Afognak and Kodiak Islands, a 

minority of individuals (7.5% and 1.8% respectively) harbour more than 10% of P. glauca 

genetic ancestry, with wide-ranging proportions in both regions (up to 67%). Conversely, K=2 

and K=3 analyses showed completely different results for the Seward population. K=2 analyses 
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characterize the Seward sample as a group of individuals that nearly uniformly display about 

30% P. glauca ancestry (Figure C.2), whereas K=3 analyses result in Seward being represented 

by its own cluster with a slightly higher proportion of trees with P. glauca ancestry than on the 

Kodiak Archipelago (Figure C.3). From here on, individual hybrid index is defined as the 

percentage of ancestry from the major cluster in Denali in the K=3 Structure analysis. Figure 3.2 

displays the geographic distribution of hybrid index and suggests a spatial decrease in number of 

admixed individuals towards the P. sitchensis expansion front. 

3.3.2 Hybridization patterns 

The P. glauca ancestry observed in P. sitchensis trees on the Kodiak Archipelago could have 

originated from several non-exclusive mechanisms: hybridization events with pollen from nearby 

P. glauca sources during colonization, more ancient hybridization involving ancestors on the 

Kenai Peninsula, or incomplete lineage sorting. None of the 338 SNPs in the datasets were truly 

diagnostic between the two species groups, with most loci showing low FST values (Figure 3.3a). 

This likely indicates the preservation of ancestral polymorphism between the two species, either 

through incomplete lineage sorting or extensive secondary contact. To determine whether recent 

hybridization occurred, I examined the relationship between hybrid index and interspecific 

heterozygosity in a triplot. All hybrids with high hybrid index on the Kodiak Archipelago 

showed high interspecific heterozygosity values (>0.5), illustrating very little to no 

recombination between ancestry informative loci since hybridization occurred (Figure 3.3b). The 

position of simulated hybrids is informative to interpret the distribution of observed hybrid 

genotypes in the bidimensional space of the triplot. Five of the hybrids sampled on the Kodiak 

Archipelago overlap with the distribution of simulated F1 and one overlaps with the distribution 

of simulated F1 backcrossed to P. sitchensis. Six hybrids are situated between the F1 and F1 

backcrossed to P. sitchensis distributions. One hybrid is situated between the F1 and F1 

backcrossed to P. glauca distributions. None overlaps with simulated F2s or would overlap with 

more advanced generation hybrids, as such groups would be distributed in the lower part of the 

triplot (Fitzpatrick, 2012). All hybrids are located close to the “legs” of the triangle, which 

correspond to the theoretical maximum interspecific heterozygosity for the corresponding hybrid 

index value, assuming diagnostic genetic markers. This suggests that high-level hybrids on the 
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archipelago originated from interbreeding between two nearly pure parental genotypes or 

between a F1 hybrid genotype and a pure or nearly pure parental genotype. A symmetric pattern 

is observed in the Denali sample, for which hybrids are also close to the maximal interspecific 

heterozygosity given their hybrid index value. This confirms that the high hybrid index values 

observed in the Denali sample are mostly due to hybridization in the last few generations. The 

fact that loci used for the calculation of interspecific heterozygosity are not fully diagnostic did 

not allow for complete differentiation between different hybrid-class equivalents and explains 

the presence of data points outside of the triplot. However, as the vast majority of trees on the 

Kodiak Archipelago have no P. glauca ancestry and as pollen disperses typically much further 

than seeds, the most likely scenario leading to the observed patterns is that hybridization 

occurred between local mother trees (of hybrid or pure P. sitchensis genotype) and pollen from a 

nearby P. glauca population. 

3.3.3 Distribution of hybrid index in time and forest structure 

To determine the temporal evolution of admixture during colonization of the Kodiak 

Archipelago, I examined the distribution of hybrid index and interspecific heterozygosity in time 

over the last four centuries of colonization history captured by the data (Figure 3.4). None of the 

trees established on Afognak Island before 1670 harbour any P. glauca ancestry. Hybridization 

with P. glauca pollen on the archipelago occurred exclusively between the late 1600s and early 

1800s. All trees established later had hybrid index estimates below 0.06. On Kodiak Island, 

hybrids that are amongst the earliest samples in the early 1700s are mostly P. sitchensis. 

Hybridization events during the 1800s and early 1900s resulted in a few individuals with high 

hybrid indices. For both areas, one would expect to observe intermediate-level recombinant 

hybrids in cohorts subsequent to hybridization events. However, such individuals are mostly 

absent from the sample. This result is striking when considering the distribution of hybrids 

across canopy levels on the archipelago compared to the mainland. At all sites, four canopy 

levels (large canopy tree, medium canopy tree, understory mature tree, juvenile tree) were 

sampled as evenly as possible (Chapter 2). Whereas hybrids with 0.1 < HI < 0.9 are 

homogenously distributed among canopy levels in the Seward population, they are only present 

as canopy trees on the Kodiak Archipelago, and are absent from sub-canopy trees and saplings 
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(Figure 3.5). This observation is unlikely to be due to low sample size limitations according to a 

Chi-squared test performed on the distribution of hybrids among cohorts on the archipelago 

(Figure 3.5b, χ2 = 19.4, df = 3, p = 2.2×10-4). It might alternatively be due to selection 

disfavouring hybrids under a closed canopy with high levels of competition among trees. 

3.3.4 Growth sensitivity to seasonal climate variables 

Climatic conditions within the P. sitchensis range differ slightly between the Kodiak 

Archipelago and the Kenai Peninsula (Figure 3.6); however, within the Kenai Peninsula they 

differ dramatically between P. sitchensis areas (e.g., Seward) and P. glauca areas (e.g., Nikiski). 

(Figure 3.1b). Nikiski receives 2 to 4 times less rain in all seasons than Seward, with much 

weaker fluctuations in precipitation between seasons and between years. Continentality 

(difference between mean warmest month and mean coldest month temperatures) is also slightly 

higher in Nikiski. These differences correspond to expected climate niche differences between P. 

glauca and P. sitchensis. As hybrids on the Kodiak Archipelago are most likely first- or second-

generation hybrids, it is possible that these individuals are maladapted to conditions found on the 

Kodiak Archipelago, making them somewhat less fit and altering their growth patterns. To test 

the hypothesis that hybrids and pure Sitka genotypes have different radial growth responses to 

local climate variables, I correlated standard chronologies of each group to seasonal values of 

temperature and precipitation over a period of 70 years, which corresponds to the longest period 

of availability of high-quality monthly climate data (Figure 3.7). In general, both regions showed 

similar climate-growth responses, with a major, positive influence of summer temperature on 

radial growth. However, trees on the archipelago showed a negative correlation with spring and 

summer precipitation that was not as strong in the Seward population. There was no significant 

difference in correlation coefficients with temperature or precipitation between hybrids and pure 

P. sitchensis genotypes in each of the two regions. Although confidence intervals overlap, there 

were consistent differences between hybrids and pure P. sitchensis across regions: growth 

consistently correlated more negatively with the amount of spring precipitation in hybrid than in 

pure P. sitchensis trees. Another noticeable difference is the lack of sensitivity to spring 

temperature in hybrids on the Kodiak Archipelago, contrasting with the positive correlation with 

this variable observed in pure P. sitchensis growth. 
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3.3.5 General differences in growth patterns 

To test whether differences could be observed in general growth patterns between hybrids and 

pure genotypes, I performed hierarchical clustering on a pairwise tree-ring index dissimilarity 

matrix. While all trees within regions clustered together, hybrids did not, even within regions 

(Figure 3.8). I further explored the clustering results by setting the number of clusters to 5 based 

on visual assessment of the dendrogram and by mapping the distribution of clusters within sites 

(Figure 3.9). Cluster 1 was exclusively present in the Seward population. The Kodiak 

Archipelago was composed of clusters 2 and 3. In this region, we found that younger trees were 

most often assigned to cluster 3 whereas older trees were assigned to cluster 2 (Figure 3.10). 

Clusters 4 and 5 were only represented by 3 and 4 individuals, respectively. Chronologies of 

ring-width indices grouped by clusters are represented on Figure 3.9c for the three most common 

clusters. Clusters 2 and 3 seem to differentiate from cluster 1 through wider fluctuations of radial 

growth. This might be due to the lack of buffering of disturbances and climatic fluctuations in a 

forest with a younger canopy. 

 

3.4 Discussion 

3.4.1 Main results 

All sampled populations including the P. glauca population from Denali were admixed, and no 

diagnostic marker could be found in the dataset of 336 polymorphic, genome-wide SNPs used 

for this analysis. Together with a relatively low interspecific differentiation level (FST = 0.2), this 

confirms that introgression has been extensive between P. glauca and P. sitchensis, probably due 

to secondary contacts along the borders of the species’ range (Boucher & Mead, 2006; Hamilton 

& Aitken, 2013; Jones, 2008). However, geographic patterns of admixture could still be 

identified: I observed a general decline in P. glauca ancestry levels from Seward to regions 

closer to the P. sitchensis expansion front. The large majority of trees sampled on the Kodiak 

Archipelago harboured pure Sitka genotypes, and P. glauca ancestry was carried by individuals 

with high hybrid indices. Although rare, admixed individuals on the Kodiak Archipelago 
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harboured high-heterozygosity levels characteristics of first- or second-generation hybrids (F1, 

or P. glauca-backcrossed F1), suggesting that hybridization was most likely occurring during 

colonization between establishing P. sitchensis or hybrid trees and P. glauca pollen. The hybrids 

established on Afognak Island mostly between 1700 and 1800, and somewhat later on Kodiak 

Island, in the 1800s and as recently as 1930 in the southernmost and most recently colonized P. 

sitchensis site (K5 in Chapter 2). This suggests repeated pollen flow from P. glauca populations 

to the archipelago. 

Surprisingly, recombinant hybrid genotypes seem to be absent from the samples. In 

addition, all hybrids were canopy trees, and no P. glauca ancestry was detected in lower canopy 

levels or in juvenile trees. This raises questions about the viability of hybrids in the colonizing 

environment. The observed patterns could result from a reduced fitness of first or second-

generation hybrids. This could occur if the reproductive success of hybrids was reduced through 

lower seed production or asynchronous cone phenology relative to pure Sitka genotypes. It could 

also be due to lower fitness at early life stages leading to weaker competitive abilities. In this 

case, the lack of interspecific competition during early stages of colonization may have allowed 

hybrids to establish and contribute to the developing canopy, while interspecific competition 

under the canopy after canopy closure could have prevented hybrids from establishing. Lower 

fitness of hybrid juvenile trees could originate from susceptibility to insects, disease or climatic 

events, or to less efficient growth, although no evidence for the latter has been found (Hamilton 

et al., 2013b). An alternative hypothesis is the temporary superiority of P. glauca or hybrid 

genotypes over pure P. sitchensis during the Little Ice Age, as the observed high proportion of 

hybrid establishment coincides with the last Little Ice Age maximum, in the first half of the 18th 

century. 

As fitness is most often approximated by growth measurements in wild tree populations, I 

compared annual radial growth patterns of non-recombinant hybrid and pure P. sitchensis 

genotypes. If hybrids were less competitive than pure P. sitchensis trees through different growth 

responses to environmental conditions, such differences should be evident in radial growth 

patterns of mature canopy trees, especially if the underlying cause is climatic maladaptation. 

Hamilton et al. (2013b) found that the geographic occurrence of P. sitchensis vs. P. glauca 
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correlates with the amount of annual precipitation, with P. glauca habitat being drier. Although I 

found that radial growth of hybrids tended to be more negatively affected by high amounts of 

precipitation than radial growth of pure P. sitchensis trees, the difference was not significant. 

One would also expect to P. glauca phenotypes to be more cold-hardy in the winter and adapted 

to avoid spring frost injury through later bud break timing. A reduced response to winter and 

spring temperatures from hybrids compared to pure P. sitchensis on the Kodiak Archipelago was 

noticeable, but not significant. In general, if growth response differences are real, they are too 

weak to be significant with the sample size available in this analysis. Although probably 

influential, genotypic effects might be overshadowed by other factors affecting radial growth: 

based on hierarchical structuring analyses, ring width was primarily affected by geographic 

location and tree age. 

3.4.2 Limitations of radial growth analyses 

Several factors limit the power of the tree ring analyses presented here. First, the low proportion 

of hybrid genotypes found in P. sitchensis populations prevented the subdivision of hybrids into 

more precisely defined hybrid classes and limited the statistical power to identify phenotypic 

differences between genotype classes. Obtaining a sufficient sample of hybrid genotypes would 

require a larger sampling and genotyping effort. The second phenotypic analysis, involving 

hierarchical clustering of ring-width index series, had the advantage of organizing individual 

time series of radial growth by similarity without making assumptions about pre-defined factors 

such as regional or genetic groups. However, this analysis presented some limitations too. 

Detrending ring-width series prior to calculations is necessary to account for variation due to tree 

age, tree core origin (compression or tension wood) and microsite or stand-level variations. As 

only high-frequency residual variation is retained after detrending, potential effects of low 

frequency events are dampened. Periods of reduced growth during a particular life stage or 

climatic period as well as differential long-term responses to an episodic climatic event (such as 

drought) would produce such undetectable trends. Detrending methods that only remove age-

related trends such as the negative exponential model or the linear model with a negative slope 

are usually preferable, but this is most suitable for trees that established in open conditions and 

are not affected by subsequent stand-level disturbances. Sites on the Kodiak Archipelago 
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underwent large and independent canopy changes due to colonization (Figure 2.2) and therefore 

required the removal of low and medium-frequency variation in individual tree ring series to 

allow for the comparison of growth trends between genotypes across sites. The use of tree ring 

data in association with genetic data has recently appeared in the literature, addressing diverse 

applications such as genome-wide association studies (Heer et al., 2018; Housset et al., 2016) 

and low-resolution phylogeography (Bosela et al., 2016). This chapter, together with these few 

examples, illustrate the potential for further studies coupling genetic and tree ring data to foster 

our understanding of forest adaptation to changing environments. 

3.4.3 Conclusions 

Through genetic analyses of interspecific hybridization between an expanding species (P. 

sitchensis) and nearby populations of a sister species (P. glauca), this chapter investigates the 

extent of hybridization during colonization. Using tree ring data, I reconstructed the succession 

of observed patterns in the last 400 years and showed that pollen flow from P. glauca 

populations has occurred but has only led to successful genetic admixture in very early stages of 

colonization at any given site. Genetic processes such as population expansion with a growing 

proportion of local-to-foreign pollen could explain the population-wide reduction in P. glauca 

ancestry over time and space along the range expansion axis. This chapter indirectly addressed 

the potential role of selection against first-generation hybrids or backcrossed genotypes by 

studying their radial growth patterns. Although weak but predictable differences in sensitivity to 

precipitation were detected between hybrids and pure Sitka genotypes, further analyses would be 

needed to understand the phenotypic traits and life stages involved in potential selective forces 

preventing further introgression at the expansion front. As many theoretical studies have allowed 

accurate and fascinating predictions about short- and long-term evolutionary outcomes of 

interspecific gene flow at range margins, additional empirical studies are needed to determine 

how common such outcomes are in the wild. 
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3.5 Figures 

 

 

Figure 3.1 Geographic range of Picea sitchensis and Picea glauca. a. In western North-America b. In the 

studied region. 
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Figure 3.2 Geographic distribution of hybrid index in sampled regions (top panel) and sites (bottom panel). A 

slight horizontal jitter (factor 0.1) was added to the bottom panel for visibility purposes.  
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Figure 3.3 Locus-specific FST and interspecific heterozygosity a. Distribution (bars) and average (dotted line) 

of locus-specific FST between reference groups. b. Triangle plot of interspecific heterozygosity vs. hybrid 

index for Kodiak Archipelago and Denali hybrids, in comparison with hybrid class simulations. Observed 

data: only individuals with hybrid index between 0.01 and 0.99 are represented. Hybrid class simulations: 

N=200 for each cross. BC.gla = F1 backcross to P. glauca; BC.sit = F1 backcross to P. sitchensis. 
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Figure 3.4 Temporal change in hybrid index and interspecific heterozygosity on Afognak and Kodiak Islands. 

Grey points correspond to the parental P. sitchensis genotype group. 

 

 

Figure 3.5 Distribution of hybrids among forest canopy structure levels. 
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Figure 3.6 Mean seasonal temperature and precipitation at three locations in the studied regions and Nikiski 

(northern Kenai Peninsula, see Figure 3.1b). Error bars represent standard deviation (N=70 years). 
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Figure 3.7 Correlation between tree ring index and average temperature (Tave) and total amount of 

precipitation (PPT) by season (su=previous summer, au=previous autumn, Wi=winter, Sp=spring, 

Su=current summer) for pure Sitka and for hybrid genotypes. Results for the period between previous 

summer (su) and current summer (Su) are displayed for the Kenai Peninsula (top graph) and the Kodiak 

Archipelago (bottom graph). 
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Figure 3.8 Dendrogram of hierarchical clustering of tree ring index series. Colours represent regions (blue=Seward, red=Afognak, green=Kodiak). 

Hybrids with int.h ≥ 0.5 are represented with the *H symbol. 
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Figure 3.9 Geographic distribution of hierarchical clusters and representation of the average time series 

profile for the three common clusters. a. Distribution on the Kodiak Archipelago, b. Distribution in the 

Seward population, c. Average tree ring index profiles for clusters 1, 2 and 3. 
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Figure 3.10 Establishment dates of trees belonging to tree ring index clusters 2 and 3 (from Figure 3.8) within 

areas where both clusters are represented on the Kodiak Archipelago.  
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Chapter 4: Power and limitations of approximate Bayesian computation in 

demographic inference of spatial expansion 

 

4.1 Introduction 

Chapters 2 and 3 used genetic data to evaluate evolutionary and demographic processes of range 

expansion over only the few most recent generations of population establishment. Patterns of 

DNA variation among individuals can however be used to unravel more ancient events in the 

history of populations. The aim of this chapter is to assess a method for detecting historical 

demographic events using genetic data from a few individuals sampled in contemporary 

populations. I use a population simulation approach and subsequently apply the assessed 

methods to the postglacial migration of Picea sitchensis in British Columbia and Alaska. Rapid 

progress in sequencing technologies at the start of the 21st century has allowed the inference of 

increasingly complex demographic models, by using increasingly complete genomic datasets. 

However, this increase in amount of data and complexity of demographic scenarios necessitates 

updated statistical methods for analysis and inference. Tackling large genetic datasets with 

inherent errors and uncertainties requires sophisticated techniques for marker development. In 

parallel, inferring complex historic demographic scenarios with several populations and 

numerous demographic parameters necessitates efficient algorithms to provide accurate 

parameter estimates and model validation measures. Reviews and improvements of methods 

have recently emerged (Schraiber & Akey, 2015), illustrating the fast pace of change in the field 

of statistical genetics. However, the efficiency of inference methods for different types of 

demographic models as well as effects of completeness of genomic datasets need to be 

understood to ensure quality and accuracy of inferences. 

4.1.1 Demographic inference in natural populations of nonmodel organisms 

In less than 30 years, human demographic inference has taken a leap, evolving from the evidence 

for a single African origin of all humans using a few non-recombining mitochondrial markers 

(Cann et al., 1987), to  the inference of highly complex demographic scenarios using whole 
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genomes (Harris & Nielsen, 2013). Although there is still room for improvement in demographic 

inference of human populations (Schraiber & Akey, 2015), human genomics is at the leading 

edge of inference from DNA data. Unfortunately, the state-of-the-art statistical inference 

techniques applied to human data are currently out of reach for studies of natural populations of 

nonmodel organisms. Knowledge from demographic inference of these species is, however, 

crucial: it is often the most efficient way to determine how to manage invasive species (Benazzo 

et al., 2015; Guillemaud et al., 2010), to conserve endangered species or ecosystems (Chan et al., 

2014; Dussex et al., 2014; Lopez et al., 2006; Quéméré et al., 2012), and to predict the future 

distribution and abundance of widespread species that are of economical or ecological 

importance (Holliday, Yuen, et al., 2010; Zinck & Rajora, 2016). The good news is the genomic 

revolution has reached nonmodel organisms, creating a spectrum of levels of genetic knowledge 

across a broad range of taxa. Using a few microsatellites or moderate-sized panels of 

resequenced SNPs is still common practice (Li et al., 2010; Zinck & Rajora, 2016), but most 

current studies of nonmodel species now use genomic methods to extract markers for inference. 

In recent years, sequencing whole genomes of nonmodel species has become feasible in some 

organisms with small genomes (Boitard et al., 2016; Liu et al., 2014) and has allowed the 

inference of detailed demographic models using Approximate Bayesian Computation (ABC) or 

Pairwise Sequential Markovian Coalescent (PSMC) (Nadachowska-Brzyska et al., 2013). For 

organisms with larger genomes or for studies with lower data requirements, reduced-

representation library (RRL) sequencing, through either targeted capture or restriction enzymes, 

is widely applied (Davey et al., 2011). RRL techniques involving restriction enzymes 

(commonly referred to as restriction site-associated DNA sequencing (RADseq) or genotyping-

by-sequencing (GBS)) output a large number of short sequences (100bp, or longer with paired-

end sequencing) from across the genome and have proven useful in population genetics studies 

and inference involving maximum likelihood methods based on the site frequency spectrum 

(SFS) or ABC methods (Narum et al., 2013). Most recently, the number of published drafts of 

whole genomes for nonmodel species has increased dramatically, granting access to longer 

sequences through the second category of genomic markers: targeted enrichment. This approach 

allows the use of linkage information for population genetics inference (Li & Jakobsson, 2012). 
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4.1.2 Approximate Bayesian Computation and other approaches 

In this chapter, my aim is to explore ABC for datasets obtained from reduced-representation 

library sequencing in nonmodel organisms, especially tree species, and to compare the results 

obtained with those from a SFS approach based on approximation of the composite likelihood 

(Excoffier & Foll, 2011). I also apply the ABC procedure examined in this chapter to the 

northward postglacial expansion of Picea sitchensis (Appendix E).  I chose to explore ABC 

because of its versatility: It accommodates a wide spectrum of demographic models and dataset 

types. ABC has been reviewed in a number of publications and its algorithms and techniques are 

being refined constantly (Bertorelle et al., 2010; Csilléry et al., 2010; Lintusaari et al., 2016; 

Marin et al., 2012; Sunnaker et al., 2013). For applications in demographic inference using 

genetic data, the general ABC method involves the following steps. First, a large number of 

datasets are simulated under a specific demographic model using the coalescent (Kingman, 

1982). Parameters used for simulations are drawn from prior distributions that are pre-defined by 

the user. The simulated datasets are then compared to the observed dataset through calculation of 

summary statistics. Finally, simulated datasets with the closest vector of statistics to the vector of 

observed summary statistics are selected. A regression adjustment based on the local relationship 

between statistics and parameters is then usually performed to approximate the posterior 

distribution of each model parameter from the parameter values of selected simulations. ABC is 

suitable when inferring models for which the likelihood function is intractable, as it relies on 

approximating the likelihood function using a large number of simulations. However, each one 

of the numerous steps in the implementation of ABC requires users to make empirical decisions. 

There is particularly a need to improve our understanding of the relationship between the type of 

markers obtained to build genetic datasets and the way genetic data is subsequently summarized 

and its power to tease apart demographic models and produce accurate parameter estimates. 

4.1.3 Previous work exploring ABC 

The need to test the inference power of datasets for demographic models of interest has been 

recognized in recent years, both in terms of model selection and parameter estimation. Robert et 

al. (2011) warned against the use of insufficient summary statistics in ABC model choice, 

opening the door to improved methods for model testing and the associated choice of summary 
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statistics  (Marin et al., 2014; Prangle et al., 2013). Among theoretical results and general 

guidelines, Marin et al. (2014) suggested the use of different sets of summary statistics for 

estimation and model selection. Several studies show the use of preliminary simulations testing 

parameter estimation and model choice with different number and length of markers and number 

of individuals (Sousa et al., 2012; Stocks et al., 2014), type of molecular markers (Cabrera & 

Palsbøll, 2017), and choice of summary statistics and models considered (Benazzo et al., 2015; 

Guillemaud et al., 2010; Li & Jakobsson, 2012; Sousa et al., 2012; Stocks et al., 2014). As most 

scientists have switched to using genome-wide data, there is a need to expand this set of 

simulation studies to test and understand the power of different types of genomic data. As part of 

such an effort, Li and Jakobsson (2012) simulated large, phased genomic datasets comparable to 

human genomic datasets at the time. Under 2-population split models, they found that ABC 

produces accurate estimates for most but not all parameters and concluded ABC is well suited to 

large genomic datasets summarized with LD-based statistics. Robinson et al. (2014) tested the 

effect of the number and length of unphased genomic sequences and compared them to the effect 

of the number of individuals sequenced for the inference of three-population admixture models. 

They found that increasing the number and length of sequences was more beneficial than 

increasing sample size. Shafer et al. (2015) investigated the power of ABC on short diploid 

sequences obtained by GBS. They focused on a wide range of simple 1-population and 2-

population models with bottleneck, growth, migration and a combination of these parameters. 

They found that population size changes such as ancient temporary bottlenecks would not be 

inferred correctly regardless of the number of markers available. This set of studies provides 

valuable information about the use of genomic data in ABC. Our aim is to extend this knowledge 

by directly comparing ABC results from molecular markers obtained with different types of RRL 

sequencing techniques, different sequencing effort allocations, and different levels of genomic 

knowledge. This will hopefully help future ABC users who do not have access to complete 

genomic data to select methods and develop genomic datasets that are best suited to answer the 

demographic questions they are addressing. 
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4.1.4 General model and datasets 

I focused on estimating parameters for a set of 2-population models of demic expansion that are 

applicable to studies of species invasion, reintroduction, or natural colonization. I tested the 

power of ABC on these models using a range of marker sets obtainable by RRL methods: 

datasets with a large number of short genomic reads would correspond to single-end GBS 

sequencing, whereas fewer but longer diploid sequences correspond to a targeted enrichment 

approach. For each type of dataset, I quantified the potential benefits of knowing the gametic 

phase of sequence markers by including or excluding linkage-related statistics at the data-

summarizing step. I expect to observe an improvement in the inference for datasets with long 

sequences. For each model assessed, I also tested the effect of time since colonization. I 

hypothesize that recent events might be inferred more accurately with datasets containing linkage 

information, due to the generally higher rate of recombination compared to mutation, and to the 

potential information contained in long haplotypes. This part of the analysis is also motivated by 

the fact that overestimates of divergence times are a common result of demographic inference in 

empirical studies (Holliday, Yuen, et al., 2010) and this upward bias has been found for some 

demographic scenarios in simulation studies (Benazzo et al., 2015). I therefore aim to explore 

this potential bias by testing increasingly old events within the same models. As NGS techniques 

require a trade-off between sample size and individual sequencing depth and are characterized by 

high genotyping errors, I explore the effect of different trade-offs at different sequencing error 

rates. Fumagalli (2013) found that increasing sample size at the cost of decreasing depth was 

beneficial in the inference of diversity measures and population structure. Here, I extend this 

hypothesis to ABC inference. I also compare ABC results with those obtained from an 

approximate likelihood method using the site frequency spectrum from simulated reduced-

representation libraries. As they provide millions of genome-wide SNPs without ascertainment 

bias, restriction enzyme-based genomic sequencing techniques seem to be particularly well 

suited to SFS-based inference methods. Comparing SFS results with ABC results on a range of 

models and datasets will inform future work on demographic inference in nonmodel organisms. 

Finally, I apply ABC to populations in northern range of P. sitchensis, using one of the 

demographic models assessed in this chapter and genetic markers obtained by sequence capture 

(Appendix E). 
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4.2  Methods 

4.2.1 Demographic models 

I focused on a basic 2-population model of demic expansion (Figure 4.1). A pre-existing 

population, population 1, is of constant size N1. At time TEXP before present, the spatial 

population expansion begins: population 2 is created by 2 migrants from population 1. 

Population 2 then grows exponentially between times t=TEXP and t=0 (the present) to size N2 at 

t=0. The rate of population growth r is defined by the other parameter values through the formula 

r=𝑙𝑜𝑔(
𝑁02

𝑁2
)/TEXP. Model 1 therefore has just 3 independent unknown parameters: N1, N2, and 

TEXP. I created additional models of increasing complexity by adding parameters. In models 2 

and 4, the number of founders of population 2, N02, is unknown (Figure 4.1a and Figure 4.1d).. 

In models 3 and 4, migration is allowed from population 1 to population 2, with the parameter 

m21 describing a per-generation migration rate (Figure 4.1c and Figure 4.1d). Model 3 is used in 

Appendix E to infer population history in P. sitchensis. In all four models described above, the 

mutation rate and the recombination rate are fixed. I chose wide and uniform parameter priors for 

population sizes to accommodate a wide range of types of organisms, and a log-uniform prior for 

the timing of the expansion event, as this study intends to focus on recent rather than ancient 

expansion events (Table 4.1). 

4.2.2 Generating sets of coalescent simulations 

For each of the four models, I created a set of 1 million simulations with each of the five types of 

datasets described below, with a fixed number of 10 diploid individuals sampled per population. 

For datasets corresponding to single-end RADseq sequencing techniques, I simulated 10,000 

independent DNA sequences of 100bp each. For datasets corresponding to sequence capture 

methods, I created 100 independent DNA sequences of 10kb each. Additionally, I explored a 

range of possible configurations between these two types of datasets (Table 4.2). With 4 models 

and 5 types of datasets, I obtained a total of 20 combinations of models and datasets, each with a 

million simulations. I used the program scrm (Staab et al., 2015), which simulates datasets by 

creating the ancestral recombination graph following the Wiuf and Hein method (1999). I used 
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custom R scripts (R Core Team, 2016) inspired by scripts from Shafer et al. (2015) to compute 

the simulations. 

4.2.3  Summary statistics 

For each simulation I computed all summary statistics available in the program msABC (Pavlidis 

et al., 2010). The available statistics include diversity statistics (number of segregating sites and 

θ estimates) and summaries of the SFS (Tajima’s D and Fay and Wu’s H). These statistics were 

calculated on each sequence marker for each population and for the whole sample. The available 

statistics also include summaries of the 2d-SFS: differentiation measures such as the pairwise 

FST and the number of private and shared polymorphisms. Finally the Thomson estimator of 

TMRCA and its variance were calculated for each population and for the whole sample. To test 

the effect that knowing haplotype information has on inference, the ABC analysis was performed 

twice on each combination of model and dataset type. The first time, I summarized data using 

only the statistics mentioned above, which are calculated at the SNP level and therefore are 

available when the gametic phase of the diploid sequences is unknown. The second inference 

was performed on the same dataset, but additional statistics based on linkage information were 

added to the previously described set of statistics to summarize the data: Zns for populations 1, 2, 

and the whole sample was calculated (Kelly, 1997), as well as dvk and dvh (Depaulis & Veuille, 

1998). These additional statistics are calculated at the haplotype level and so are only available in 

cases where the gametic phase of the diploid sequences is known. For each set of simulations, I 

computed the mean and variance of every statistic over all polymorphic sequence markers in the 

dataset. As a result, 60 statistics were computed for datasets with known gametic phases 

(hereafter referred to as “phased”), and 50 statistics were computed for datasets with unknown 

gametic phases (hereafter referred to as “unphased”). As the haplotype phase and ancestral allelic 

states are unknown in the P. sitchensis datasets, only the statistics that do not rely on such 

information are used in the empirical analysis (Appendix E). 

Using a high number of statistics to summarize genetic data has harmful effects on the 

quality of the ABC inference, a problem commonly referred to as the “curse of dimensionality” 

(Blum et al., 2013). I used the partial least squares (PLS) method implemented in ABCtoolbox to 

reduce the number of statistics to 5-7 PLS components (see Appendix A1 for details). 
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4.2.4 Pseudo-observed datasets 

For each set of 1M simulations, I created a corresponding set of 100 pseudo observed datasets 

(PODs), with parameters randomly chosen from the same priors as for the set of 1M simulations. 

By doing so I assumed that priors are reliable and reflect the true, unknown distribution of the 

PODs. These were then summarized with the same summary statistics as their corresponding set 

of 1M simulations. 

4.2.5 ABC estimation 

I performed the ABC estimation using each POD as the observed dataset to obtain parameter 

estimates. The standard Estimate algorithm from the program ABCtoolbox was used for all ABC 

computations to create posterior probabilities from the corresponding set of 1M simulations, with 

a post-sampling regression adjustment through ABC-GLM (Leuenberger & Wegmann, 2010). I 

fixed the tolerance parameter to 10-3, a compromise between having a tolerance threshold value 

as low as possible (Li & Jakobsson, 2012) and keeping an appropriate number of simulations for 

posterior estimation. 

4.2.6 Validation 

For each combination of model and type of dataset, I computed a measure of precision and 

accuracy called the relative prediction error (RPE), the ratio of the mean squared error over the 

variance of the prior, which follows equation (2): 

(2) 𝜀 =
∑ (𝜃�̂�−𝜃𝑗

∗)2
𝑗=𝑖
𝑗=1

𝑉𝑎𝑟(𝜃)
×

1

𝑖
  

where 𝑉𝑎𝑟(𝜃) is the variance of the prior distribution and i is the number of observations. The 

RPE was computed on 1,000 PODs. The advantage of using the RPE as a validation statistic is 

that it directly indicates the contribution of the genetic dataset to the estimation of the posterior. 

Another attractive feature of the RPE is that it allows comparisons between parameters, as it 

scales from 0 (precise estimate) to 1 and beyond (in the case of a consistent bias in estimation). 
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As an additional measure of precision, the 95% highest posterior density interval (HDI) 

was calculated on a set of 100 PODs for each combination of model and dataset type. This 

measure is defined as the shortest continuous interval with an integrated posterior density of a 

certain value (Wegmann et al., 2010).  For each combination of model and dataset type I 

reported the 95% HDI coverage, i.e. the number of times (out of 100) the true parameter value 

fell within the 95% HDI, expecting values close to 95. 

4.2.7 Testing the effect of TEXP on parameter estimation 

To test the effect of the time of expansion on the precision of the ABC estimation, I created 100 

PODs for each set of 1M simulations and 12 fixed values of logTEXP spanning the prior range. 

RPE and 95%HDI were calculated from the results of each set of 100 PODs. 

4.2.8 Effect of sequencing effort allocation and sequencing error 

The main challenge when developing genomic markers is managing sequencing and variant 

calling errors. Sequencing a large number of individuals might increase the precision of 

population genetics inference, but with a fixed sequencing budget, this comes at the cost of 

reduced individual sequencing depth, which in turn can affect variant calling and estimation of 

allelic frequencies (Fumagalli, 2013). I explored this challenge focusing on model 2 (4 

parameters with number of founders and no migration) and dataset type 2 (5,000 sequences of 

200bp). I chose a realistic fixed sequencing effort and derived 3 fixed sampling strategies from 

it: 250 sampled individuals at a mean individual depth of 4, 100 individuals with depth 10, and 

20 individuals with depth 50. I then incorporated three per-nucleotide sequencing error rates (0, 

10-2, 10-3), and applied them to each category described above. The resulting 9 categories of 

PODs, as well as “perfect” datasets (no depth sampling and no error) were all simulated using 

the same 10 parameter combinations. Further details about the creation of “imperfect” PODs can 

be found in Appendix A1. Once these imperfect PODs were created and summarized, ABC was 

performed to estimate their true parameter values. Two additional sets of 1M simulations needed 

to be created to match the number of individuals sampled per population: one with 100 diploids 

per population, and the second with 250. It the latter case, I only created 610,000 simulations 
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because of computation time limitations. The same tolerance (10-3) as all other runs was used for 

the estimation. 

4.2.9 Comparing ABC and SFS estimation 

I simulated 10,000 independent DNA sequences of 100bp each for the 4 demographic models 10 

times. The resulting 40 datasets were input into both ABCtoolbox and fastsimcoal2, which uses 

the SFS to approximate a composite likelihood from a large number of simulations through a 

conditional maximization algorithm (Appendix A1). I compared the results from the two 

methods using RPE, 95% credible intervals and 95% confidence intervals. 

 

4.3 Results 

The 20 combinations of models and datasets used as input for ABC simulations (Table 4.1, Table 

4.2) resulted in a total of 2×107 simulated datasets available for analysis, 2×105 training 

simulation sets and 2×103 PODs. Each set of 1M simulations was used in two runs of estimation: 

one including all summary statistics available in msABC, the other one excluding statistics based 

on linkage information, for a total of 40 ABC estimations. 

4.3.1 Effect of model complexity on the precision of parameter estimates 

In general, the ability to infer demographic history declined rapidly as model complexity 

increased. The simplest model (1), estimating only population sizes N1 and N2 and the log-

transformed time of expansion TEXP, allowed the expansion event to be dated accurately. Models 

2 and 3 each had 4 parameters: model 2 included the number of founders N02 and model 3 

allowed migration from population 1 to population 2 (m21). For both model 2 and 3, logTEXP was 

inferred with slightly lower precision than for model 1. Finally, scenarios corresponding to 

model 4, which had all 5 parameters, failed to be correctly inferred. 

Not all parameter estimates were sensitive to the addition of parameters in the models: 

the precision of contemporary population size estimates N1 and N2 were independent of model 

complexity. RPE values for N1, which was constant over generations, were mostly below 0.05 
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for the four models assessed (Figure 4.2). The widths of 95% highest posterior density intervals 

varied between 3,000 and 60,000. For N2, the contemporary population 2 size after exponential 

growth, 95% HDI intervals were about as wide as the prior range, indicating a failure to estimate 

this parameter in all four models (Figure 4.3). 

The expansion time TEXP was generally well estimated in model 1, which is the simplest 

3-parameter model (Figure 4.2) with no migration between demes and the number of founders 

set to 2. For this model, the RPE was mostly below 0.1. The precision of logTEXP estimation was 

almost as high for the two 4-parameter models, where the number of founders N02 (model 2) is 

unknown and needs to be estimated, or where migration from population 1 to population 2 is 

likely (model 3). For these two models, the RPE is below 0.2. The ABC analysis of the 5-

parameter model (model 4) was unable to recover the true TEXP value. 

Estimates of the number of founders of population 2 (N02) and migration rate from 

population 1 to 2 (m21) were surprisingly imprecise in models of low complexity (model 2 and 3) 

and could not be recovered at all in model 4 (Figures 4.2 and 4.3). 

Models 1 to 4 all rely on population 2 growing exponentially from TEXP to the present 

time. I tested whether demographic parameters could be estimated more successfully in a model 

where population 2 goes through a single sudden population change instead of exponential 

growth. I created a new set of 1M simulations based on model 2 (where N02 is a varying 

parameter) and dataset type 1 (many short sequences) and a smaller prior range for TEXP (2-500 

generations).  In the new model the size of population 2 changes from N02 to N2 at TEXP/10 and 

remains constant before and after TEXP/10. These modifications brought no improvements to any 

of the parameter estimates (Table D.1). 

4.3.2 Do sequence length and linkage-related statistics improve the estimation? 

The addition of linkage statistics available in msABC brought no notable improvement in the 

RPE and 95% HDI of parameter estimates for all models (Figures 4.2 and 4.3). It even seems to 

make the estimation of N1 less precise in some cases for model 1, 2 and 4, although this pattern 

is inconsistent across dataset types. ABC performance on models 3 and 4 seemed to be slightly 
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more dependent on sequence length, with the inference on large sequences marginally benefiting 

from haplotype information. 

4.3.3 Quality of parameter estimates across prior ranges 

For each parameter, I visualized estimated values and 95% HDI of ABC results in relation to true 

parameter values to assess performance over the prior range. Results for the 3-parameter model 

(model 1) and dataset types 1 and 5 are shown in Figure 4.4. Consistently across models, 

estimates of N2, N02, and m21 are largely inaccurate regardless of the true value, with HDI ranges 

as wide as the prior range. Conversely, N1 estimates are accurate in all models regardless of the 

true N1 value. Unlike N1, the values of TEXP have an impact on the precision of their respective 

estimates. Accuracy and precision of TEXP estimates for models 1 and 3 decrease with increasing 

true value. Interestingly, the opposite pattern is observed for model 2: more recent events are less 

precisely inferred than ancient ones. Results for model 4 show a “cross” pattern where most 

PODs’ logTEXP values are correctly estimated but some PODs with extreme logTEXP values show 

estimates at the opposite extreme. This pattern suggests a complex multivariate relationship 

between model parameters and statistics. 

4.3.4 Effect of the time of the expansion event on the estimation 

I tested whether older expansion events are generally more difficult to characterize than recent 

ones within the time range specified by the prior. To do this, I studied the effect of the true TEXP 

value on the precision of parameter estimates. I find different trends among the 4 models 

(Figures 4.5 and D.4-D.8). The precision of inference on model 1 is higher at low TEXP values 

and decreases at logTEXP>4. Conversely, for model 2, older events are generally better inferred: 

estimates of TEXP and N02 increase in precision as TEXP increases, as shown by the RPE (Figure 

D.2) and the 95% HDI (Figures D.6-D.8). Model 3 shows the best results for moderately recent 

expansion events (3 < logTEXP < 4), as shown by RPE and 95% HDI of TEXP and m21 (Figures 

D.3 and D.7). However, this was not verified by the empirical application, where supposedly 

more recent expansion events in P. sitchensis were not more successfully infered than ancient 

ones (Appendix E). Finally, results for model 4 show high values of RPE and 95% HDI for all 

parameters, with RPE values mostly above 0.5 (Figures D.4-D.8). 
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4.3.5 Effect of sequencing effort allocation and sequencing error 

Focusing on model 2 and datasets of 5,000 × 200bp sequences, I simulated sequencing and 

variant calling for three different sample size and depth combinations. The RPE of parameter 

estimates for 13 tested PODs is represented in Figure 4.6. Depth of sequencing (dp) has very 

little effect on the precision of estimates: only N1 and logTEXP have a marginally higher RPE 

when sequencing depth is simulated. Error rates affect N02 estimates at low depth (N=250, 

dp=250), as well as logTEXP estimates at low sample size (N=20, dp=50). The estimation is 

otherwise robust to introduced errors. For a given set of PODs (e.g. N=250, dp=4), the precision 

lost in a parameter estimate because of an error rate of 0.01 (N02) is gained on another parameter 

(N1), reflecting the limitations of the model estimation process rather than the effect of 

sequencing error. However, the results suggest that choosing a larger sample size with a 

shallower individual sequencing depth improves estimation over other strategies, especially for 

the estimation of logTEXP. 

4.3.6 Comparing ABC with SFS estimation using an approximate composite likelihood 

Figures 4.7 and 4.8 illustrate the performance of ABC and approximate composite likelihood 

from the SFS for all models performed with datasets of 103 100-kb sequences. Both methods 

gave similar results in terms of precision of parameter estimates. The SFS-based method 

performed slightly better than ABC in the model with migration (model 3), but the precision of 

ABC estimates was superior for model 2 (Figure 4.7). The approximate composite likelihood 

method generally provided narrower 95% confidence intervals (Figure 4.8). 

 

4.4 Discussion 

I explored the ability of approximate Bayesian computation to characterize a recent event of 

spatial expansion from one population of constant size to a new and growing population, a model 

which can be broadly applied to studies of species range expansion, invasion biology, or 

reintroduction of endangered species. I found that regardless of model complexity, estimates of 

the size of the growing, newly founded population (N2) are poor. However, this did not prevent 



76 

 

successful estimation of other parameters (N1, logTEXP, and in restricted cases N02). Failure to 

estimate N2 does not come as a surprise: estimates of past changes in effective population size 

from one punctual sampling event commonly rely on linkage information between markers, a 

calculation not readily available in ABC packages (Beaumont, 2003). My result that models of 

higher complexity are harder to estimate was expected, but in the case of the expansion models I 

considered, this trend leads surprisingly quickly to a complete failure to estimate any parameter, 

as soon as 5 parameters are involved. While expansion timing was precisely estimated in the 3- 

and 4-parameter models, it could not be recovered in the 5-parameter model. ABC on model 2 

(the 4-parameter model including the number of founders but no subsequent migration) 

successfully estimated all parameters (except N2) for old expansion events. In contrast, for model 

3, the 4-parameter model including migration between demes, estimations were more successful 

for recent events. These results highlight the potential importance of taking into account the 

timing of an expansion event when predicting estimation success for a given demographic 

model. The difficulty of estimating the time of a founding event with subsequent migration was 

also reported by Robinson et al. (2014); however, I show here that for a moderately recent event 

(10 to 100 generations), it is possible. An application of ABC to the colonization history of P. 

sitchensis using model 3 is described in Appendix E. 

4.4.1 Implications of including haplotype information 

Analyses based on unphased sequences exploring similar models to those used here have shown 

encouraging results (Robinson et al., 2014). However, no study to date has explicitly compared 

datasets of phased and unphased sequences using the same models and same amount of data. 

Here, I quantified the benefits of using phased haplotype sequences over single SNPs by 

including or leaving out LD-based and haplotype-level statistics at the data summarization step 

of the ABC inference. Surprisingly, haplotype information did not substantially improve the 

precision of parameter estimates, even when 10-kb sequences were used as markers. Li and 

Jakobsson (2012) explored ABC with similar 2-population split models and a similar fixed 

population-wise per-generation recombination rate as in our study. When they tested different 

combinations of summary statistics, their results did not demonstrate any obvious superiority of 

LD-based statistics over SNP-based statistics. They concluded that the selected summary 
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statistics should capture as many different aspects of the data as possible, with as little 

redundancy as possible. Potentially, phasing the data may not have improved inferences because 

the extent of linkage that the chosen statistics are sensitive to differs from the linkage actually 

present in the simulated data. Future work when dealing with phased data would require 

developing expectations of LD levels and creating or choosing statistics that cover the extent of 

LD likely to be present in the data. 

One needs to be aware of the difficulties associated with the use of LD information. 

Firstly, ABC on phased data requires reasonable knowledge of recombination rates and 

variability across the genome. The recombination rate needs to be included as a parameter along 

with demographic parameters, or as a nuisance parameter with a hyperprior. Secondly, 

simulating the coalescent with recombination is a complicated process and comes at high 

computational costs (McVean & Cardin, 2005). With high recombination rates or very long 

sequences, coalescent simulations might take so long to run that one would instead use a more 

efficient inference method than ABC. Moreover, translating genome-wide observed data into a 

set of summary statistic values that are readily useable by ABC programs and comparable to 

simulated datasets can be a challenge. File input formats in most programs are currently not 

compatible with sequence information, and many summary statistics programs do not offer 

haplotype-level calculations. Thirdly, when aligning reads to a fragmented and incomplete 

reference genome, as is often the case for nonmodel organisms, defining haplotypes can be 

tricky. One also needs to address problems of sequencing errors, paralogous sequences and 

imperfect mapping. Inevitable sequencing uncertainties will affect haplotype statistics more 

strongly than single-SNP diversity measures. Data processing errors and filters can severely bias 

inferences, to the extent of supporting the wrong demographic model, as revealed by Shafer et al. 

(2016). Finally, targeted sequence capture will result in thousands of markers of various lengths. 

Setting up simulations that correspond closely to an observed dataset requires approximating the 

distribution of sequence lengths, and this may also affect inferences, especially if variances of 

summary statistics are included at the data summarization step. Considering the difficulty of 

obtaining reliable haplotype information in nonmodel organisms, the potential difficulties of 

adapting the use of long sequences to currently available ABC programs, and computational 
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time, our results tend to suggest that using SNP-level information from GBS-type data is 

preferable over targeted sequence capture. 

4.4.2 Choosing summary statistics 

It is important to note that all the results presented here are only valid in the context of the choice 

of summary statistics. In the present study, I decided to use the first and second moment of all 

statistics available in msABC, and to reduce the dimensionality with a PLS transformation. 

Several previous publications have performed simulations either using the two first moments of 

summary statistics (Li & Jakobsson, 2012) or only using the mean (Shafer et al., 2015). To our 

knowledge, only Robinson et al. (2014) tested the use of 4 moments for summary statistics for 

models of divergence with admixture. They compared their results with those obtained using 

only the mean and found that the mean alone was sufficient. Although the two first moments 

may not be the most representative summaries for some statistics, adding higher-level moments 

will come at a computational cost. 

It is widely recognized that choosing a set of summary statistics is probably the most 

challenging step for ABC users. For instance, the optimal set of statistics for parameter 

estimation in a given model might differ from the optimal set of statistics to discriminate 

between demographic models. As insufficient summary statistics have detrimental effects on 

model selection (Robert et al., 2011), Fernhead and Prangle (2012) introduced “semi-automatic 

ABC”, which relies on an ABC pilot run and a subsequent linear regression to choose the most 

appropriate set of summary statistics. Similarly, ABCtoolbox 2.0 implements a statistical 

selection step based on the incremental assessment of inference power with the addition of 

summary statistics. However, documentation is lacking for this new feature of the program. 

These improvements constitute a promising step towards a more rigorous statistical framework 

for the automatic selection of ABC summary statistics. 

4.4.3 Sequencing effort: go large and shallow! 

I found that “imperfect” datasets created with a high number of individuals sequenced at a low 

individual depth seemed to perform consistently better for most parameters than datasets with 

fewer individuals and higher depth. This is consistent with Fumagalli (2013), who studied the 
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same trade-offs on diversity statistics under various demographic settings. This result seems to 

hold even with simulations with moderate or high sequencing error rates, although this is 

difficult to conclude with confidence considering the large bootstrapped confidence intervals 

(Figure 4.6). It is worth noting that if the error rate is not properly estimated during the genotype 

calling process, more errors will be present in the final dataset and it is likely that ABC results 

will be impacted for all sequencing strategies, especially those with low depth. As ABC 

summary statistics rely on the SFS and not on individual genotypes, I suggest that future ABC 

users sequence large sample sizes at low depth. In this case, estimating the SFS or derived 

statistics following methods such as described in Nielsen et al. (2012) and Fumagalli et al. 

(2014) has proven more successful than genotype calling in inferring the SFS. There is 

unfortunately no straightforward program or pipeline of compatible programs incorporating these 

methods into an ABC framework. One possibility is to summarize the SFS into quantiles and to 

use the latter as summary statistics in a classic ABC run. Such a process would need to be further 

tested. 

4.4.4 Comparing ABC to other methods 

I did not find large differences in the precision of parameter estimates between ABC and the 

SFS-based likelihood method implemented in fastsimcoal2. Shafer et al. (2015) found a similar 

result while comparing the performance of ABC with a SFS-based inference implemented in 

δaδi (Gutenkunst et al., 2009). They found that δaδi tends to overestimate the time of population 

split and bottleneck events, a trend not supported by my findings with fastsimcoal2. In addition 

to parameter estimation, Shafer et al. (2015) tested the performance of both methods for model 

selection and found ABC more accurate, especially in the case of bottleneck scenarios. The 

advantage of ABC lies in its versatility: the general statistical method poses no constraint on the 

type of demographic models and the nature of genetic datasets. However, the practical 

application of ABC to complex genomic datasets currently involves the development of custom 

bioinformatics pipelines to link together programs with different data formatting requirements 

(Appendix E). There is a need for user-friendly ABC programs adapted to the type of genomic 

datasets currently available. 
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ABC has proven moderately useful for demographic inference with long, genome-wide 

haplotypes but comparisons with alternative approaches are scarce. Notable examples include 

Nadachowska-Brzyska et al. (2013), who used ABC and PSMC in a complementary way. 

Robinson et al. (2014) compared their ABC results with an exact likelihood method developed 

by Lohse et al. (2011) and found that ABC resulted in more uncertainty, especially in model 

comparisons. As ABC performance with linkage information needs to be further explored, 

comparisons to emerging analytical methods based on whole genomes or long sequences such as 

MSMC (Schiffels & Durbin, 2014) or identity-by-descent haplotype sharing (Harris & Nielsen, 

2013) will greatly help refine methods for demographic inference using data at a genomic scale. 

Theoretical improvements of ABC methods are emerging rapidly. Although the results 

presented here do not show that ABC benefits greatly from the use of more complete genomic 

datasets, the versatility of ABC might be key to its useful applications in a wide variety of fields, 

even those progressing rapidly such as population genetics. Constant methodological 

improvement, however, requires regular updates to available ABC programs. 

 

4.5 Tables 

Table 4.1 Model parameters with their associated prior ranges. U=uniform distribution; logU=log-uniform 

distribution 

estimated 

in models Parameter Symbol Prior range Unit 

- Mutation rate µ 9×10-9  -  

- recombination rate R 10-8  -  

1,2,3,4 population size 1 N1 U(104:105) ind. 

1,2,3,4 population size 2 N2 U(104:105) ind. 

1,2,3,4 time of expansion TEXP logU(2:104) gen 

2,4 initial population size 2 N02 U(2:103) ind. 

3,4 migration rate from 1 to 2 m21 U(10-3:10-2)  -  
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Table 4.2 Description of the five types of simulated datasets 

  

number of 

sequences 

sequence 

length (bp) 

number of 

diploid 

individuals 

1 10,000 100 20 

2 5,000 200 20 

3 1,000 1,000 20 

4 500 2,000 20 

5 100 10,000 20 
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4.6 Figures 

 

Figure 4.1 Demographic models for ABC analysis. a. Model 1: A three-parameter model of expansion 

featuring colonization of new population 2 by 2 diploid individuals from population 1 at time TEXP. 

Population 1 is of constant size N1, whereas population 2 grows exponentially to size N2, its size at present. b. 

Model 2: the number of founders of population 2 is a variable parameter. c. Model 3: a per-generation 

migration rate from population 1 to population 2 is added as a parameter. d. Model 4 includes all 5 

parameters: N1, N2, TEXP, N02, and m21. 
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Figure 4.2 Relative prediction error (RPE) calculated from the results of ABC analyses of 20 different 

combinations of demographic models and sampling designs (x-axis). For each combination, ABC was 

performed on simulated datasets summarized with statistics including linkage-based measures (hap. phase 1) 

and on the same set of simulations summarized with only SNP-based statistics (hap. phase 0). RPE values 

were calculated from the ABC estimation results of 1000 datasets with parameter values randomly drawn 

from their prior distributions. 
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Figure 4.3 Width of the 95% highest posterior density intervals calculated from the results of ABC analyses 

of 20 different combinations of demographic models and sampling designs. Error bars represent standard 

errors (N=100 PODs). See caption of Figure 4.2 for more details. 
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Figure 4.4 Accuracy of parameter estimates for model 1. Each data point corresponds to the estimated value 

of the parameter vs. the true parameter value for one POD, for a total of 100 PODs. Error bars correspond to 

the 95% HDI around the estimate. a) Results with datasets of type 1. b) Results with datasets of type 5. Top 

panels shows results on unphased datasets, bottom panels shows results for phased datasets. 
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Figure 4.5 RPE of model parameters for different fixed values of TEXP. Results are shown for ABC runs with 

datasets of type 1 (10k sequences, 100-bp long). For a given parameter, results from different models are 

shown in the same plot window with different characters and colours. To see results for other model-dataset 

combinations as well as 95% HDI results, see Appendix D, Figures D1-D8. 
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Figure 4.6 RPE and bootstrapped confidence intervals of model 2 parameters under different sequencing 

strategies and per-nucleotide error rates. N corresponds to the number of diploid individuals sequenced, dp 

to the mean individual sequencing depth. “perf” corresponds to perfect datasets whereas “err0”, “err0.001” 

and “err0.01” correspond to datasets where the sequencing process was simulated, with depth sampling and 

errors introduced at rates 0, 0.001, and 0.01 substitutions per nucleotide respectively. 13 PODs were used for 

each treatment. 
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Figure 4.7 RPE calculated from 100 datasets for models 1 to 4 using two different inference methods: ABC, 

computed on SNP-level summary statistics, and approximate composite likelihood, computed from the SFS. 

In both cases, datasets had 10,000 sequences of 100bp genotyped in 20 diploid individuals. 
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Figure 4.8 Width of the 95% HDI from ABC results, compared to 95% CI from the SFS inference method. 

For each of the four demographic models, the same 10 simulated datasets were used as pseudo-observed 

datasets for both the ABC and the SFS runs. HDI and CI widths were calculated from 100 bootstraps. 

Numbers correspond to the coverage of 95% CI (out of 10 PODs). PODs had 10,000 sequences of 100bp 

genotyped in 20 diploid individuals. 
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Chapter 5: Conclusion 

 

5.1 The past: a natural laboratory to predict the future 

The current pace of anthropogenic climate change raises great concerns about the health and 

persistence of communities, species and populations all over the planet. As for many other taxa, 

persistence of tree populations will either necessitate adaptation in already colonized areas or 

migration into novel territory (Aitken et al., 2008). The history of temperate tree species on all 

continents of the northern hemisphere involved similar climate-induced changes during the 

Quaternary, with large-scale post-glacial northward migration into new habitat at the 

colonization front and continuous local adaptation in established populations behind the front 

(Davis & Shaw, 2001). Examining the effects of these past climatic changes such as population 

migration rates and current local adaptation is therefore the best way to predict the future of 

currently established tree populations (Petit et al., 2008). In particular, characterizing the 

potential pace of colonization and adaptation of tree populations is of paramount importance to 

determine whether tree species will be able to track their climatic niches or persist in the 

southernmost areas of their ranges. As the genetic composition of individuals and populations is 

one of the most persisting types of evidence of past demographic changes, many tools and 

methods involving population genetics have been developed to interpret population changes in 

time and space, each suited to a particular spatial and temporal scale (Figure 1.1). The research 

presented in this thesis aims at improving our understanding of the interplay between 

demographic and genetic patterns. It addresses several aspects of their mutual influences in 

natural populations using Sitka spruce (Picea sitchensis) as a study organism. As several 

approaches were used in this research, it is critical to consider their strengths and limitations at 

the spatial and temporal scales they can address. 
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5.2 Conservation genomics and phylogeography 

Next-generation sequencing (NGS) techniques have provided exciting new insights into 

management prospects for species of conservation or economic concern, through the 

identification of conservation units, assessments of connectivity among fragmented populations, 

and the detection of inbreeding or local adaptation (Garner et al., 2016). Phylogeographic 

methods are a strong component of the conservation genetics toolkit through their use in 

unravelling population history and therefore finding the cause of population decline, 

characterizing the effects of landscape fragmentation, and determining routes of introduction of 

invasive species. The field of phylogeography has been positively impacted by the shift from 

genetic to genomic datasets, as the complex demographic history of wild populations cannot be 

precisely estimated without a set of markers that are representative of the whole genome. Many 

algorithms and associated programs have been developed to perform demographic inference of 

population history (Bourgeois, 2016; Excoffier & Heckel, 2006; Schraiber & Akey, 2015). The 

need to test the power of such methods and assess their limitation has started being addressed 

recently (Li & Jakobsson, 2012; Robinson et al., 2014; Shafer, Gattepaille, et al., 2015). Chapter 

4 aims to contribute to this body of literature by extending our knowledge of the possibilities 

associated with one of the most popular and flexible methods, approximate Bayesian 

computation (ABC). By focusing on demographic inference using the types of genomic datasets 

obtained from the two most common reduced-representation sequencing methods, sequence 

capture and genotyping-by-sequencing (GBS), this research specifically addressed the 

application of ABC to nonmodel species, for which whole-genome sequencing methods are not 

yet fully available. GBS methods particularly hold great promise in term of trade-offs between 

cost and potential applications to conservation (Narum et al., 2013). Results from Chapter 4 

highlight the effect of model complexity on the success of demographic inference, focusing on a 

widely applicable 2-population spatial expansion model.  

Recommendations for the practical implementation of ABC on this type of models were 

also provided to help orient potential future ABC users in their choice of genomic technique for 

marker development and distribution of sequencing effort. In particular, the simulation study 

performed in Chapter 4 showed a discrepancy in inference success among datasets generated 
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from recent vs. more ancient expansion events. This highlights the limitations associated with 

large prior distributions for model parameters. Because different summary statistics might be 

sensitive to different parameter ranges, it is important to select summary statistics most sensitive 

to the expected order of magnitude of the expansion event, and choose prior distributions and 

prior ranges accordingly. By tailoring the ABC process to the specific demographic models and 

timing considered to have shaped the history of populations, it will theoretically be possible to 

infer events that occurred at different time scales, for instance, ancestral secondary contact and 

recent expansion. One could do so by performing ABC independently for each event using 

differentially optimized steps of ABC and feeding the result of one analysis into the other in a 

dynamic manner. 

Chapter 4 also discussed the lack of comprehensive user-friendly software for the 

application of demographic inference in nonmodel organisms with genomic data, a concern that 

has been raised in the past (Shafer, Wolf, et al., 2015). In my opinion, conservation biologists 

should not need advanced programming skills to perform demographic inference on species of 

conservation concern. Currently, many steps of the ABC procedure are still challenging to put in 

practice with genomic data. The extraction of useful data from raw sequencing reads without the 

loss of precious information about diversity characteristics requires extensive research into 

poorly-documented software features. In Appendix E, I developed elaborate scripts to be able to 

use P. sitchensis sequences, including monomorphic ones, as genetic markers in demographic 

inference of postglacial expansion. The specificity of summary statistic computation programs in 

terms of available calculations and input format also presented great challenges. The availability 

of user-friendly computational methods in phylogeography could make research more efficient 

and help reduce the gap between fundamental research in ecology and evolution and its 

applications to management and species conservation. 

 

5.3 Adaptation and genetic diversity: the case of temperate tree species 

Climate change is causing range shifts in nearly all terrestrial taxa (Parmesan, 2006). Temperate 

tree species are no exception to this, with evidence for upward and northward range shifts 
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observed in many northern hemisphere tree species (Iverson & McKenzie, 2013). For already 

established populations, a change in current climatic conditions may not only create a mismatch 

between local phenotypes and new conditions (Allen et al., 2010; Cleland et al., 2007), lowering 

overall population fitness, but also create an imbalance in biological interactions with 

commensals and parasites, leading to high mortality in affected populations (Bentz et al., 2010). 

The recovery of populations from climate change-induced disturbances relies on the existence 

locally of phenotypes allowing individuals to adapt to new conditions. Climatic adaptation in 

temperate and boreal tree species involves fine-tuned phenological responses to seasonal changes 

in climatic conditions (Howe et al., 2003). The genetic architecture of quantitative traits involved 

local adaptation is typically characterized by many genes of small effect (Alberto et al., 2013). 

The extent of adaptation of tree populations under climate change therefore relies on the genetic 

variance of quantitative traits, which in turn depends on genetic diversity in populations. In tree 

species and especially conifers, nucleotide diversity is low, but adaptive diversity among 

populations is high (Savolainen & Pyhäjärvi, 2007). This suggests that adaptive capacity and 

resilience of tree populations depends on the maintenance of standing genetic variation through 

gene flow. Understanding patterns of gene flow within and among tree populations and 

identifying the factors that influence them can helps predict the outcome of climate change. As 

populations at the front of expanding ranges are likely to experience new environmental 

conditions, I focused this research on populations at range margins. The research presented in 

Chapter 2 and 3 is part of such effort. The concomitant analysis of tree rings and genome-wide 

neutral markers provided an empirical illustration of the pace of recovery of genetic diversity and 

gene flow patterns in a recently established population at the range limit of a widespread conifer 

species, Picea sitchensis. 

 

5.4 Genetic patterns of spatial expansion: empirical evidence for theoretical predictions 

5.4.1 Intraspecific patterns 

Model- and simulation-based studies of the evolutionary fate of populations expanding at range 

limits have greatly helped creating a framework of potential outcomes of colonization in tree 
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species. We know from past theoretical work that successive colonization events create a 

gradient of decreasing heterozygosity that is stronger when the time between colonizing events is 

short and long-distance seed dispersal is rare (Austerlitz & Garnier-Géré, 2003; Le Corre & 

Kremer, 1998). Similarly, Allee effects at the expansion front allow the recovery of genetic 

diversity (Roques et al., 2012) and high levels of pollen dispersal attenuate the loss of genetic 

diversity in diffusion models of spatial expansion (Austerlitz & Garnier-Géré, 2003). The 

findings of Chapter 2 contribute to the emerging body of literature providing empirical support to 

the abundant theoretical work describing genetic processes at expanding range limits (Excoffier 

et al., 2009). The main results from Chapter 2 are in line with several previous empirical studies. 

First, low population growth dominated the Kodiak Archipelago for several hundred years before 

the 18th century, and in spite of low population growth, this is the period during which new 

alleles accumulated most rapidly in the population, suggesting that allelic richness is quickly 

recovered during early stages of population establishment before local recruitment becomes 

substantial. Similar findings are described in Lesser & Jackson (2013) and could probably be 

observed in most conifer species for which gene flow occurs predominantly via pollen dispersal. 

The following scenario provides an interpretation of this result. In the case of isolated habitat, 

such as the Kodiak Archipelago for P. sitchensis, occasional long-distance seed dispersal is 

indispensable to initiate colonization. If some seeds disperse and establish successfully, the 

founders originating from such events need to grow to maturity, produce female cones, and 

intercept pollen to finally produce offspring. It takes additional decades for offspring to, in turn, 

become reproductively mature. As seed dispersal events are rare and have a low chance to lead 

to successful establishment without facilitation from previously established trees, founders by 

long distance seed dispersal are likely sparse, and probably rely entirely on foreign pollen for 

reproduction, assuming self-pollination is not common. While limiting the pace of spatial 

expansion, this unusually long period of reliance on foreign pollen from diverse sites in nearby 

populations can allow for an efficient recovery of genetic diversity after the population 

bottleneck triggered by founding events. In Chapter 2 I also showed that a period of fast 

population growth on the Kodiak Archipelago after initial establishment was accompanied by a 

weakening of the initially higher genetic differentiation among different sites at the front, and an 

end to the erosion of differentiation between the archipelago and continental populations. These 



95 

 

patterns are consistent with the hypothesis of a local pollen cloud becoming dominant and 

homogenizing the population at the regional level. Indeed, after several generations have built up 

population density in an establishing population, local pollen should become much more 

abundant than foreign pollen. Evidence for these shifts in temporal patterns at multiple spatial 

scales is one of the strength of analyses in Chapter 2 bringing novelty to the empirical literature 

of range expansions studies in tree species. Finally, the findings that allelic frequencies in the 

population remained relatively stable during demographic growth and FST with continental 

population only insignificantly increased suggests that the genetic composition of the recently 

established P. sitchensis population largely reflects the genotypes of its oldest trees, stressing the 

fundamental role of early colonizers in the long-term genetic composition of establishing 

populations. This hypothesis is supported by Troupin et al. (2006) at a more limited spatial and 

temporal scale. 

5.4.2 Range expansion and species boundaries 

With the ongoing redistribution of climatic envelopes everywhere on earth, range shifts are likely 

to create contact between previously geographically separate species. Species boundaries are 

permeable between phylogenetically close lineages, and some range shifts will result in the 

creation of new hybrid zones. In addition, existing hybrid zones maintained by climatic gradients 

will also shift. The genomes of widespread, wind-dispersed tree species are especially 

permeable: examples of hybrid zones between closely related tree species are numerous (De la 

Torre, 2015), and this feature has been related to other characteristics such as long generation 

times, large pollen dispersal distances, and a predominantly outcrossing mating system. Spruce 

hybrid complexes have been intensively studied in North America, with no evidence for intrinsic 

reproductive barriers between sister species (De la Torre et al., 2013; Hamilton et al., 2013a). 

These spruce hybrid zones are maintained by climatic gradients (Hamilton et al., 2015). In the 

light of this knowledge, it is not surprising that historical secondary contacts during the Holocene 

resulted in significant introgression between Picea species in North America. The recent 

colonization of P. sitchensis on the Kodiak Archipelago, surrounded by P. glauca and P. 

sitchensis populations, provided an unprecedented opportunity to examine extremely recent 

patterns of hybridization between the two species and reconstruct the evolution of these patterns 
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over several generations. Although hybridization can result in the formation of adaptive 

genotypes in novel environments, theoretical work also suggests that neutral introgression at 

range margins with closely related species can be enhanced in a context of spatial expansion 

(Currat & Excoffier, 2011). In Chapter 3 I took advantage of a unique natural research setup 

involving both an accurate description of range expansion (P. sitchensis colonization of the 

Kodiak Archipelago, Chapter 2) and potential hybridization with a parapatric species (P. 

glauca). The results of this chapter are both interesting and insufficient to draw firm conclusions. 

Indeed, they describe compelling evidence that continuous pollen flow from nearby P. glauca 

populations produced early-generation hybrids on the Kodiak Archipelago in early colonizers 

across sampled sites. They also suggest an unexpected absence of recombinant hybrids in 

subsequent generations, and a complete lack of P. glauca ancestry in the genetic composition of 

trees grown under a fully formed canopy. These patterns suggest that selection is acting against 

hybrids in late stages of colonization. The most obvious hypothesis explaining the nature of 

selection against hybrids is that pollen flow from P. glauca population is maladaptive, 

introducing to the mild, wet maritime archipelago genotypes that are adapted to more continental 

climates with higher continentality and lower amounts of precipitation. My analysis of radial 

growth on the Kodiak Archipelago suggested hybrids and pure P. sitchensis differ in their 

sensitivity to precipitation, but these differences were not significant. Although the results of 

Chapter 3 are not definitive, they spark questions related to topics of importance with respect to 

adaptation concerns, such as the influence of direction of gene flow. The typically high levels of 

gene flow in tree species has been invoked to explain the adaptive potential of populations, but if 

gene flow to a marginal population is dominated by populations adapted to different conditions, 

then they may prevent local adaptation. Although there is little empirical evidence supporting 

this gene-swamping hypothesis in tree species, this is likely to become common at southern 

range limits of northern hemisphere species. Indeed, the colonization of preadapted genotypes is 

likely at leading range limits, but trailing range limits will experience climatic conditions present 

nowhere else in the species range, with the only possible gene flow coming from core 

populations adapted to different climates. Studies examining conditions allowing adaptation to 

local climates under maladaptive gene flow would therefore be useful for predicting the future 

distribution of tree species. 
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5.4.3 Strengths and limitations of dendrogenetic approaches 

Pairing dendrochronology and genetics in the study of population history takes full advantage of 

the exceptional longevitiy of conifers and provides a great opportunity to understand fine-scale 

processes of tree population expansion. The longevity of temperate trees and their growth 

variability is captured in their annual rings, and can allow a detailed reconstruction of past 

demographic changes over several centuries. When associated with genetic data from individual 

trees, demographic changes observed in natural populations can be directly associated with their 

evolutionary effect, as shown in Chapter 2. Applying the monitoring of recent changes in allelic 

frequencies to the study of adaptive loci is one promising future application of the combination 

of tree ring and genetic methods, and would contribute to identifying recent adaptive responses 

to climate change in natural populations. The identification of age cohorts within a tree 

population sample can also help analyse the contribution of distinct populations or species to the 

population gene pool at different periods, as shown in Chapter 3. With adequate tree core 

sampling, it is even possible to compare absolute radial growth amounts between genetically 

distinct individuals in a population and identify more or less adaptive genotypes in regard to 

certain local conditions (Housset et al., 2016).  

However, dendrogenetic approaches come with intrinsic limitations, the most obvious 

one being the absence in the sample of trees that have died prior to sampling. Because the 

cumulative mortality of trees increases inherently as one goes back in time, the inference of 

evolutionary states and processes that happened further in the past will be less reliable. Indeed, 

establishment dates calculated from the tree ring data will be less likely to reflect population 

establishment in the more distant than in the more recent past. In addition to this bias due to tree 

mortality, the high sensitivity of tree rings to a myriad of different environmental and intrinsic 

factors challenges the interpretation of variation in tree ring width patterns. Statistical detrending 

of tree ring series is necessary to isolate the frequency of variation associated with the 

phenomenon of interest, but leads to an inherent loss of information. Averaging variation over 

individual trees is also necessary before performing correlation analyses with genotype classes or 

processes at the stand level. This leads to a loss in statistical power to detect the effect of 

genotypes or environmental factors on tree radial growth. 
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5.5 Implications for potential management practices 

Whether temperate tree species will be able to track their environmental niche and adapt to new 

conditions arising from rapid climate change is a concerning question, and active management 

solutions proposed recently, such as assisted migration for species of economic or conservation 

concern, are ready to be put to practice (Aitken & Bemmels, 2016). Research presented in this 

dissertation supports the long-standing idea that pollen flow across large geographic areas 

contributes to the maintenance of high levels of genetic diversity in tree species, and emphasizes 

its fundamental role during early stages of colonization. The main concern about populations in 

regions under adaptive pressure might therefore not be related to low effective population sizes 

and genetic isolation, even in newly established populations at range margins. Instead, the 

direction of gene flow connecting populations across regions might be of crucial importance: in 

this light, the southernmost populations of temperate and boreal tree species might struggle to 

adapt under gene flow from source populations further north. Chapter 2 also shows that the 

genetic composition of a newly established population will largely reflect the genotype of 

founding trees for several subsequent generations. This result echoes simulation work conducted 

by Kuparinen et al. (2010), which suggests that high mortality and periodic large-scale 

disturbances such as wildfires increase the speed of local adaptation to climate by removing old 

trees and boosting selection during the subsequent enhanced recruitment period. These results 

should be considered in the framework of assisted gene flow, especially in widespread species 

where large-scale harvesting and planting is common practice: anticipating the climatic 

conditions that trees selected for planting will be adapted to when they reach high fertility, 

decades or centuries later, will probably contribute to keep these partially managed forests 

adapted to a changing climate. 
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Appendices 

 

Appendix A  Methods and challenges applying GBS to P. sitchensis, a 

nonmodel organism with a large genome 

 

A.1 Introduction 

There is no widely accepted definition of a genomic dataset, nor is there a list of diagnostic 

features that differentiate it from a classic genetic dataset. These features would probably 

describe genome-wide polymorphisms, such as a dense sampling of markers across the genome 

with no ascertainment bias, as well as, maybe, genome-wide information about their linkage such 

as precise chromosomal position or the availability of long sequences. The number of available 

markers to represent genome-wide variation is in all cases one of the key distinctive features of 

genomic datasets for population genetics research. Since 2010, the median number of SNPs in 

datasets for phylogeographic studies published in Molecular Ecology has sharply increased from 

a few hundred to tens of thousands (Garrick et al., 2015). This shift reflects the period when 

genomic sequencing studies, mainly RADseq methods such as GBS, became widely available 

and applied to population genetics studies on nonmodel organisms. 

The success of RADseq methods in producing high-quality, large datasets, depends on 

each of the main steps of the procedure: the genome reduction method, the sequencing technique 

and sequencing effort, the availability of a closely related genome for alignment, and the 

availability of external genomic resources for quality control. The application of GBS to P. 

sitchensis for chapters 2 and 3 presented challenges. One of them is intrinsic: a large, highly 

repetitive genome of about 20 Gbp makes it difficult to obtain a representative sample of the 

genome-wide variation in populations of the species. In addition, the only reference genomes 

currently available to map sequenced reads are highly fragmented draft genomes (~ 3.35M 

contigs) of interior spruce (P. glauca x engelmanii) or white spruce (P. glauca). Other genetic 

resources from the species were developed prior to the work presented in this thesis (Holliday et 

al., 2010), and genomic resources have been under recent development (Coombe et al., 2016). 



118 

 

Here, I report the development of the genomic dataset used in analyses in chapters 2 and 3. After 

describing in details the followed procedure, I present the output with intermediate results from 

each main step of the process. I finally discuss the steps of the protocol that led to an unexpected 

loss of information, or that were not optimal and could be improved to better suit the genetic 

characteristics of P. sitchensis in relation to current technology. 

 

A.2 Methods 

DNA was extracted from needle samples and bark samples using a protocol modified from 

Macherey-Nagel Nucleospin Plant II extraction kit and custom CTAB protocols, respectively. 

Individual samples were sent to Laval University’s Institute for Integrative Systems Biology for 

library preparation. Each individual sample received a molecular barcode. Individuals were then 

pooled into 6 batches of 96 and 2 batches of 48. A double-digest method involving the restriction 

enzymes sbf1 (marker-anchoring enzyme) and msp1 (to reduce fragment size) was applied. The 

resulting libraries were sent to Génome Québec Innovation Centre (McGill University) for 

sequencing. Each library was duplicated and sequenced on two lanes using the HiSeq 2000 

system and producing 100-bp single reads. We demultiplexed the sequenced libraries and filtered 

for quality with the program Stacks. We applied a threshold of 10 for the raw PHRED quality 

score for a read to be kept. The fastx command fastq_quality_trimmer was then applied to the 

sequences to remove sequences shorter than 20 nucleotides. Then, the fastx command 

fastq_quality_filter was applied to the selected fastq sequences to remove sequences with less 

than 90% of nucleotides with a PHRED quality score higher than 10. After sequence filtering, 

we aligned the filtered reads to the reference genome WS77111_V1 (Warren et al., 2015) using 

the bwa mem alignment algorithm. The resulting bam files were sorted and indexed using the 

program samtools (Li et al., 2009). I then created a reduced genome only containing mapped 

contigs. Contigs were grouped into 1000 master-scaffolds for further data processing. I re-

aligned the fastq files to this reduced genome, and sorted and indexed resulting bam files using 

the same tools as previously stated. Bam files from the same individuals sequenced on different 

lanes were merged using the MergeSamFiles command from Picard 

(http://broadinstitute.github.io/picard/). Read groups were added to individual bam files using the 

http://www.mn-net.com/HPLCStart/SpecialHPLCphases/HPLCbiochemical/NUCLEOGENDEAE/tabid/6444/language/en-US/Default.aspx
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AddOrReplaceReadGroups command of the Picard program. The resulting alignment files were 

then input into a variant calling pipeline implemented using the program GATK (McKenna et al., 

2010). The first step uses the HaplotypeCaller function to output individual gvcf files with a 

minimum base quality score of 10 and a maximum of one alternate allele. Individual gvcf files 

were then combined into 6 batches using CombineGVCF, a necessary step when processing 

several hundred individuals. GenotypeGVCF was then run on the entire set of cohorts, with a 

minimum PHRED confidence threshold of 20 for calling a variant site. Finally, I applied hard 

filters on the resulting callset following GATK recommendations as of June 2017, using the 

SelectVariants and VariantFiltration functions on all SNPs. 

 

A.3 Results 

Sequencing 

Each lane of sequencing produced between 2.10-8 and 2.6.10-8 reads (Figure A.1a). 

Demultiplexing (1 lane=48 individuals) and filtering yielded between 1.10-6 and 4.10-6 reads per 

individual (Figure A.1b). To determine whether the sequencing effort was insufficient in respect 

to library complexity (i.e. mean number of restriction fragments from different cutsite positions), 

I selected the sequencing output from 2 libraries and cumulatively subsampled reads to mimic 

the accumulation of reads using the program seqtk (https://github.com/lh3/seqtk), and performed 

de novo alignments using Stacks. The results of this simulation show a plateau of tags (unique 

restriction fragments) with increasing number of reads (Figure A.2), suggesting that the 

sequencing effort was sufficient. I performed the same analysis on reads from 3 individual P. 

sitchensis samples from library P2_l1 and found the same result at the individual level (Figure 

A.3). However, an important result is the difference in number of tags typically identified in the 

P2_l1 library (~15M) versus its individuals (10k to 50k), a 30 to 150-fold difference. This 

suggests that individuals did, to a large extent, not contain the same tags. 

 

 

https://github.com/lh3/seqtk
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Alignment 

Albeit lower than for P. glauca, mapping of P. sitchensis reads to the P. glauca reference 

genome gave good results: most individuals had a mapping success above 60% (Figure A.4). 

This reflects findings from Suren et al. (2016), who applied sequence capture developed for P. 

glauca to other Picea and Pinus species and found a similar capture success of congeneric 

species to this of the focal species. 1,979,875 contigs from the P. glauca reference genome were 

mapped to. This represents 50% of the contigs, and a much higher number than I had expected. 

Indeed, both simulations using the R package simRAD and simple grep command tests 

performed on the reference genome estimated the number of cutsites for the sbf1 enzyme to 

110k. The number of mapped contigs should therefore have been lower than 110k. 

Genotype calling 

After filtering, a total of 630,777 polymorphic SNPs were identified. However, a vast majority of 

them were genotyped in too few individuals to be of any use in population genetics analyses 

(Figure A.5). Indeed, 98% of SNPs had a genotype count of less than 20 (out of 669 individuals).  

A total of 6344 SNPs polymorphic over 639 P. sitchensis and 30 P. glauca individuals and with 

less than 95% missing data were the basis of all population genetics analyses of chapters 2 and 3. 

 

A.4 Discussion 

Depending on the subset of individuals used for analysis and the chosen threshold for missing 

data, the number of SNPs typically used in analyses in chapters 2 and 3 was in the order of 

hundreds, a somewhat disappointing output for a next-generation sequencing procedure. 

Sequencing and alignment to the P. glauca genome were relatively successful and yielded 

expected results. Additional analyses showed that the number of de novo alignment tags is one to 

two orders of magnitude higher in libraries reads than in reads grouped by individual samples. 

Also, the number of reference contigs mapped to was much higher than expected. These two 

results suggest that unwanted issues occurred during library preparation. The double-digest 

procedure to cut DNA at sbf1 cutsites and reduce fragment lengths with msp1 seem to have 
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partly failed, leading to the amplification and sequencing of many unique sheared fragments 

probably not linked to any sbf1 cutsite. This would have decreased the amplification rate and 

sequencing rate of fragments linked to actual sbf1 cutsites and originating from all individual 

DNA samples. The fact that most reads amplified and sequenced were not specific to any cutsite 

can explain the output of hundreds of thousands of SNPs only present in one or a few 

individuals. Whether the partial failure of library preparation is due to the specific choice of 

enzyme combination or other technical issues such as deteriorated DNA or amplification 

problems is hard to determine. In all cases, the choice of restriction enzyme and shearing method 

are critical in organisms with large repetitive genomes like P. sitchensis. Especially, choosing 

protocols favoring a reduction of library complexity such as restriction enzymes with rare 

cutsites should increase the chance of obtaining good data. This is the case of sbf1. Being a 10-

base cutter, this enzyme cuts at a frequency 10 to 15 times lower than the popular Pst1 or Nsi1 

(both 6-base cutters). Another important consideration is the avoidance highly repetitive 

sequences. This can be achieved by selecting a methylation-sensitive enzyme, which sbf1 is not. 

In a useful attempt to improve techniques applying RADseq methods to conifers, Pan et al. 

(2015) tested the effect of several combinations of restriction enzymes, multiplexing levels and 

variant calling pipelines on the success of SNP dataset development for pine species. They 

obtained good results (7,000-14,000 SNPs) with pst1, and related the success of this method to 

the low complexity of obtained libraries thanks to the methylation sensitivity of the enzyme, and 

to a fragment size selection by polyacrylamide gel electrophoresis (PAGE). Although these and 

my results do not provide a gold standard for GBS techniques in conifer species, they provide 

complementary knowledge necessary to improve genomic techniques for marker development in 

a group of ecologically important species. 
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A.5 Figures 

 

 

Figure A.1 Number of GBS reads. a. Number of reads in each sequencing lane; b. Distribution of the number 

of GBS reads per lane per sampled tree. 

 

 

Figure A.2 Simulated accumulation of tags for 2 libraries from de novo alignments with increasing number of 

reads. 



123 

 

 

Figure A.3 Simulated accumulation of tags for 3 individuals from de novo alignments with increasing number 

of reads. 

 

 

Figure A.4 Distribution of alignment mapping success for 3 regions. 
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Figure A.5 distribution of genotype counts after genotype calling and filtering. The two first classes reach 

609,976 and 7757 respectively, and have been cut on the y axis for visibility purposes. 
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Appendix B  Supplemental materials and figures for Chapter 2 

 

B.1 Methods 

Extracting age and ring width information from tree cores 

Tree cores were kept in the freezer until processing. After drying and mounting, cores were 

sanded using a belt sander and grain from 120 up to 600. Each core was scanned with a 

resolution of 1200 dpi. Tree rings were counted and measured using the program Coorecorder 

(Cybis). To ensure there were no dating errors or false rings and to account for missing rings, 

ring-width series were crossdated visually using the program Cdendro (Cybis), and statistically 

using the program Cofecha (Holmes, 2000). Briefly, I first built site-specific collections with 

Cdendro by choosing a few cores that crossdated well as an initial collection, and crossdating 

new cores to the updated chronology from the growing collection; I then compared chronologies 

among site-specific collections to ensure consistent successful crossdating across the whole 

sample. I then submitted individual tree ring series to Cofecha and iteratively corrected tree ring 

measurements on Cdendro and Cofecha until no more problems were detected in the Cofecha 

output. To estimate germination dates from cores, two corrections were applied. For cores that 

did not intercept the pith, a geometric correction was applied to estimate the number of missing 

rings (Duncan 1989). To take into account the number of years for trees to grow to coring height, 

linear models were fitted to predict age from the height of sampled juvenile trees. I fitted linear 

models to explain the number of nodes (e.g. age) with two fixed effects: height and growth 

conditions (“open” or “closed”). I predicted the age at coring height for Kodiak and Afognak 

Island canopy trees that had wide rings closest to the pith, indicating initial growth with little 

competition in open conditions, using coefficients of the Kodiak-Afognak linear model for 

“open” conditions. Coefficients for the “closed” conditions were used to correct for coring height 

in sub-canopy trees with narrow initial rings. I predicted the age at coring height for all trees in 

the Seward region using coefficients of the Kodiak-Afognak linear model for “closed” 

conditions, given their narrow initial rings. 
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B.2 Results 

Population structure: PCA and Structure results 

I performed a PCA on all samples (Figure B.2). PC1 carries 14.72% of the variance and mostly 

represents a continuous isolation-by-distance pattern among the sampled P. sitchensis 

populations. PC2 and subsequent axes carry very little of the variance and do not show any clear 

geographic pattern. Structure results with K=2, K=3, and K=4 are presented in Figure B.2a-c, 

and posterior probabilities are shown in Figure B.2d. Analysis of posterior probability values for 

each set of runs supports the existence of two clusters, mainly partitioning the sample into a 

Kodiak-Afognak group and Seward group. Under this model, I observe a mixed (but Kodiak-

dominated) ancestry for Shuyak Island and Port Chatham between the two P. sitchensis clusters. 

K=3 further partitions the Kodiak-Afognak group in two equal-sized groups. 

 

 

Figure B.1 Mean age of canopy trees vs. latitude of sampled sites. Error bars represent the standard error of 

the mean. 

 



127 

 

 

Figure B.2 Representation of PC 1 to 6 (a-c) and distribution of eigenvalues (d) for PCA 

  



128 

 

a. 

 

 

b. 
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c. 

 

 

d. 

 

Figure B.3 Structure results exploring different K values. a-c: Structure barplots for K=2, K=3, K=4. d) 

Posterior probability of models with different K values and prior information. Error bars indicate standard 

error over three independent runs for each value of K. 
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Appendix C  Supplemental figures for Chapter 3 

 

 

Figure C.1 Posterior probability of Structure models with different K values. Error bars represent standard 

error of the mean over three iterations. 

 

 

Figure C.2 Structure barplot for K=2. 

 



131 

 

 

Figure C.3 Structure barplot for K=3. 

 

 

Figure C.4 Structure barplot for K=4. 
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Appendix D  Supplemental materials and figures for Chapter 4 

 

D.1 Reducing the number of summary statistics 

For each set of 1M simulations, I used a two-step process to reduce the number of summary 

statistics. I first used a “training set” of 10,000 independent simulations to calculate pairwise 

correlations between summary statistics. Then, for each pair of statistics, if the absolute correlation 

coefficient was higher than 0.8, I discarded one of the two statistics. To decide which of the two 

to discard, I used the same training set of simulations to perform a linear regression of one of the 

two statistics onto the each model parameter, then repeated this process for the second statistic. I 

kept the statistic with the strongest association with most model parameters. After obtaining a set 

of uncorrelated statistics, I transformed the summary statistics using a partial-least-squares (PLS) 

regression (Boulesteix & Strimmer, 2007) to the training set of 10,000 independent simulations 

using R scripts provided with ABCtoolbox (Wegmann et al., 2010). The principal components 

obtained from the PLS transformation were used as new summary statistics. There is a consensus 

that the appropriate number of summary statistics is close to the number of model parameters. As 

the models have between 3 and 5 parameters we chose to keep 5-7 PLS for each ABC analysis 

performed, i.e., two more than the number of parameters. 

 

D.2 Creating “imperfect” PODs 

I performed coalescent simulations using scrm and the same method as described for standard 

PODs to generate imperfect PODs. Instead of directly calculating summary statistics from the scrm 

output, I subjected the latter to a process mimicking sequencing and variant calling. For each POD, 

the scrm output was converted to a fasta file using a modified version of a python script called 

ms2fasta (https://github.com/svohr/ms_utils). I then used a custom R script to perform in-silico 

sequencing and SNP calling. The process is as follows: 

(i) sequences are fragmented in 100-bp reads;  

https://github.com/svohr/ms_utils
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(ii) reads are amplified following a negative exponential distribution with parameter lambda equal 

to 2/(chosen individual depth);  

(iii) sequencing errors are randomly introduced into amplified reads at the chosen rate;  

(iv) genotype likelihoods are calculated on all potentially polymorphic sites following the GATK 

method which uses the following equation: 

 

𝑃(𝐷|𝐺 = {𝐴1, 𝐴2})∏ 𝑃(𝑏𝑖|𝐺 = {𝐴1, 𝐴2}) = ∏ (
1

2
𝑃(𝑏𝑖|𝐴1) +

1

2
𝑃(𝑏𝑖|𝐴2))

𝑖=𝑀

𝑖=1

𝑖=𝑀

𝑖=1
 

with 

𝑃(𝑏|𝐴) = {

𝑒

3
𝑖𝑓𝑏 ≠ 𝐴

1 − 𝑒𝑖𝑓𝑏 = 𝐴
 

where M is the sequencing depth, bi is the observed base in read i, e is the per-nucleotide error rate. 

This method implies that the sequencing error rate is accurately known. In most variant calling 

platforms, it is estimated from the raw genomic data. 

(v) Genotypes are called by selecting individual genotypes with the highest likelihood; (vi) the 

fasta file with original reads is modified to incorporate inferred genotypes at potentially 

polymorphic sites; (vii) fragments are re-assembled into sequences of original marker length (here 

200bp). This step mimics the alignment process and reassembles sequences assuming perfect 

alignment (no mapping error); 

(viii) the fasta file of inferred markers is converted to the ms input format;  

(ix) Summary statistics are calculated from the inferred markers following the procedure described 

in the main methods.  
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D.3 Estimating model parameters using the SFS 

I used fastsimcoal2 (Excoffier et al., 2013; Excoffier & Foll, 2011) to simulate 100 pseudo-

observed datasets (PODs) of type 1 (10,000 sequences of 100bp). I repeated this for each of the 

four models depicted in Figure 4.1. The SFS from these 100 PODs was then input into 

fastsimcoal2, which approximates a composite likelihood from a number of simulations set by the 

user (here 10,000 simulations) and iteratively performs a conditional maximization algorithm 

(ECM) to estimate the parameter values corresponding to the maximum likelihood. I allowed 20 

to 40 ECM cycles with a stopping criterion (minimum relative difference in parameters between 

two iterations) of 10-3. For each POD, I performed 50 iterations of simulations and ECM and 

retained the parameter estimates with highest maximum likelihood. I used estimates from 100 

PODs to calculate the relative prediction error (RPE) of each parameter for each model. For 10 

PODs, I included a parametric bootstrap step to the SFS inference: for each of the 10 PODs, I 

simulated 100 SFS using the maximum likelihood values obtained from the estimation as true 

values. Then, I ran the estimation again in an identical manner for these 100 SFS. 95% confidence 

intervals were calculated for each of the 10 PODs from the quantiles of the parameter estimates 

from the 100 SFS bootstraps, using custom R scripts (R Core Team, 2016). 
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D.4 Supplemental tables and figures 

Table D.1 Comparison of performance of model 2 (4-parameter model including N02 as a parameter, with 

exponential growth of population 2) with a corresponding model where population 2 experiences a sudden 

size change at TEXP/10. The simulated datasets are 10k sequences of length 100bp. The value 1 for haplotype 

phase means that the LD-based statistics are included in the summarization step, 0 means that they are 

excluded. Prediction error based on 1000 random simulations is displayed. 95% HDI was averaged over 100 

random simulations and the corresponding standard error is shown in brackets. 95% HDI and standard 

error values are rounded to the nearest integer. 

haplotype 

phase 
parameter 

Prediction error mean 95% HDI [se] 

growth N change growth N change 

1 N1 0.018 0.013 13668 [411] 11547 [314] 

1 N2 1.509 1.393 81886 [63] 82763 [33] 

1 N02 0.682 0.635 704 [21]  668 [22] 

1 TEXP 0.604 0.697 343 [10] 325 [11] 

0 N1 0.001 0.002 3021 [94] 5541 [303] 

0 N2 1.57 1.474 81692 [151] 82688 [39] 

0 N02 0.577 0.623 628 [25] 685 [21] 

0 TEXP 0.327 0.579 275 [10] 294 [12] 
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Figure D.1 Relative prediction error of model parameters for different fixed values of TEXP: model 1. Note that the TEXP values are represented on a log 

scale for better visibility of recent demographic events. Different colors represent different types of simulated datasets.
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Figure D.2 Relative prediction error of model parameters for different fixed values of TEXP: model 2. Note that the TEXP values are represented on a log 

scale for better visibility of recent demographic events. Different colors represent different types of simulated datasets. 
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Figure D.3 Relative prediction error of model parameters for different fixed values of TEXP: model 3. Note that the TEXP values are represented on a log 

scale for better visibility of recent demographic events. Different colors represent different types of simulated datasets. 
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Figure D.4 Relative prediction error of model parameters for different fixed values of TEXP: model 4. Note that the TEXP values are represented on a log 

scale for better visibility of recent demographic events. Different colors represent different types of simulated datasets. 
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Figure D.5 Mean 95% highest posterior density intervals of model parameters for different fixed values of TEXP: model 1. Note that the TEXP values are 

represented on a log scale for better visibility of recent demographic events. Different colors represent different types of simulated datasets. Error bars 

represent standard errors of the estimates (N=100 PODs). 
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Figure D.6 Mean 95% highest posterior density intervals of model parameters for different fixed values of TEXP: model 2. Note that the TEXP values are 

represented on a log scale for better visibility of recent demographic events. Different colors represent different types of simulated datasets. Error bars 

represent standard errors of the estimates (N=100 PODs). 
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Figure D.7 Mean 95% highest posterior density intervals of model parameters for different fixed values of TEXP: model 3. Note that the TEXP values are 

represented on a log scale for better visibility of recent demographic events. Different colors represent different types of simulated datasets. Error bars 

represent standard errors of the estimates (N=100 PODs). 
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Figure D.8 Mean 95% highest posterior density intervals of model parameters for different fixed values of TEXP: model 4. Note that the TEXP values are 

represented on a log scale for better visibility of recent demographic events. Different colors represent different types of simulated datasets. Error bars 

represent standard errors of the estimates (N=100 PODs). 
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Appendix E  Applying approximate Bayesian computation to Picea sitchensis 

postglacial colonization 

 

E.1 Introduction 

Evolutionary and ecological responses of tree species to new environments is a topic of 

increasing concern in the current context of rapid human-induced climate change. Highly precise 

predictions about future climate envelopes are now available (Mahony et al., 2017), but whether 

trees will be able to track their climatic niche spatially or adapt to new biotic and abiotic 

conditions remains an open question (Aitken et al., 2008). Temperate and boreal tree species 

have expanded their ranges northward since the last ice age ended around 18,000 years ago. 

Studying the rates and patterns of postglacial colonization in the northern hemisphere can help 

guide predictions about species’ responses to current and future climates (Petit et al., 2008). The 

concomitant use of phylogeography, paleoecology and species distribution modelling has 

allowed for the inference of postglacial refugia and subsequent colonization routes for most 

widely distributed temperate and boreal tree species in America and Europe (Gavin et al., 2014). 

From this knowledge, average postglacial rates of migration from refugia were estimated using 

mechanistic modelling approaches (Feurdean et al., 2013). In this appendix, I attempt to estimate 

the pace of postglacial tree population migration using genomic data in a phylogeographic 

framework, as an empirical application of Chapter 4. 

 The use of phylogeography to address the question of tree species migration has 

traditionally involved single-locus approaches from organelle markers to geographically 

characterize distinct refugial genetic groups (Cottrell et al., 2005; Lauterjung et al., 2018), and 

population genetic tests of simple demographic hypotheses using nuclear or organelle markers 

(Heuertz et al., 2006; Lauterjung et al., 2018). As sequencing advances have increased the 

number of available nuclear markers for all types of organisms (Garrick et al., 2015), it has 

become possible to test complex historical demographic models and estimate parameters with 

statistical phylogenetic methods involving the coalescent (Carstens et al., 2013; Cornille et al., 

2013). This has allowed for a refinement of our knowledge of historical patterns of postglacial 
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migrations through testing alternative demographic models (Gao et al., 2012; Gugger et al., 

2010; Holliday, Yuen, et al., 2010), but more rarely addressed actual estimates of demographic 

parameters (Carstens et al., 2013; Holliday, Yuen, et al., 2010). The growing availability of 

large, genome-wide datasets for nonmodel organisms through reduced-representation libraries 

(RRL) might provide enough power to precisely estimate colonization rates with approximate 

Bayesian computation (ABC), provided the use of a correct demographic model. In particular, 

these techniques provide data that is more representative of genome-wide variation and free of 

ascertainment bias. They also provide actual nucleotide diversity estimates. The use of restriction 

site-associated DNA sequencing (RADseq) has been tested in combination with a variety of 

demographic inference methods for other clades of organisms (Nadachowska-Brzyska et al., 

2013; Shafer et al., 2015), but there is still a lot to discover about the potential of sequence 

capture methods in phylogeographic studies (Harvey et al., 2016). Here, I investigate the 

accuracy of migration rate estimates during the postglacial recolonization of P. sitchensis using 

sequence capture data and a popular inference method, ABC, and applying a demographic model 

investigated in Chapter 4. 

 P. sitchensis is an interesting system to perform this analysis, for several reasons. First, 

strong prior knowledge is already available about the general temporal and spatial pattern of 

postglacial colonization for this species. The historical northward colonization of P. sitchensis 

following the retreat of the Cordilleran ice sheet has been investigated in several paleofossil 

studies (reviewed in Tae, 1997). According to fossil records, the species closely followed the 

retreat of the ice sheet along the coast to Puget Sound 13,400 years BP, to Vancouver 12,350 

years BP, and reached the Alexander Archipelago in Alaska around 10,500 years ago (see Figure 

E.1 for the location of landmarks). The pace of advance of P. sitchensis forests then decreased 

considerably, likely due to the presence of glaciers and large glacial rivers hindering colonization 

along the coast, as well as frequent droughts (Peteet, 1986). Coastal areas close to Anchorage 

became forested 2,680 years BP. The forest on the Kodiak Archipelago possibly started on 

Shuyak Island and North-East Afognak Island (Tae, 1997; Stacy Studebaker 2014, pers.comm.) 

and expanded south-westward to reach Kodiak Island around 500 years ago (Griggs, 1937; Tae, 

1997). This appendix aims to provide an empirical application of Chapter 4, and therefore 

focuses on exploring the powers and limitations of ABC in parameter estimation rather than 



146 

 

model selection. The precise prior knowledge of P. sitchensis postglacial migration is therefore 

an asset, facilitating the choice of a single demographic model of expansion history. Holliday et 

al. (2010) conducted a reconstruction of the range-wide colonization history of P. sitchensis 

based on the allelic frequency spectrum of expressed sequence tag (EST) markers. This approach 

estimated a series of successive bottleneck times from Redwood (CA) to Kodiak Island (AK), 

but the limitations of the method and genetic data used resulted in absolute bottleneck times that 

were 4 to 10 times more ancient than expected for all sampled populations. These results show 

that there is a genetic signature of the northward recolonization of P. sitchensis in populations all 

along the expansion route. As larger genomic datasets are now available for the species, a new 

attempt at estimating colonization times could lead to more accurate results. This appendix asks 

whether using sequence capture data in an ABC framework can help resolve the issue of 

imprecise or biased parameter estimates. It provides an exploratory empirical demographic 

inference analysis, using a 2-population demic expansion model to approach successive 

postglacial migration events. 

 

E.2 Materials and methods 

Sampling, sequencing and alignments 

I selected 4 to 6 individuals from each of 5 provenances in the northern part of the range of P. 

sitchensis (Figure E.1). These sample sizes are slightly smaller than those implemented in 

Chapter 4 (N=10 per population). Population A was sampled during 2013 field collections. All 

other populations were sampled in a Vancouver common garden planted by Mimura and Aitken 

(2007a). DNA was extracted from needle samples using a modified CTAB protocol. Libraries 

were prepared using the exact same method as Suren et al. (2016), with 23k probes developed 

from the interior spruce genome (Birol et al., 2013). Libraries were sequenced using the Illumina 

HiSeq 2000 system with paired-end reads. The fastx command fastq_quality_trimmer 

(Blankenberg et al., 2010) was applied to the sequences to remove sequences shorter than 20 

nucleotides. Next, the fastx command fastq_quality_filter was applied to the selected fastq 

sequences to remove sequences with less than 90% of nucleotides with a PHRED quality score 
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higher than 10. Sequences were paired using custom R scripts developed by Kay Hodgins. 

Sequences were then mapped to the February 2013 version of the interior spruce genome (Birol 

et al., 2013) using the bwa mem alignment tool (Li & Durbin, 2009). Alignment files were sorted 

and indexed using samtools (Li et al., 2009). I used Picard MarkDuplicates 

(http://picard.sourceforge.net) to identify and remove PCR duplicate sequences. I identified 

indels and conducted local realignments around them using GATK RealignerTargetCreator and 

IndelRealigner (DePristo et al., 2011). 

Genotype calling 

The variant calling pipeline below was conducted using version 3.7 of the GATK program 

(McKenna et al., 2010). The HaplotypeCaller command was first invoked using the -ERC GVCF 

mode with a PHRED-scaled minimum confidence threshold of 20 for calling variants. Unfiltered 

vcf files including invariant sites were produced using GenotypeGVCFs with the --allSites 

option. Including invariant sites allowed keeping tracks of the number and lengths of sequences 

output. I created vcf files each containing a pair of populations to be tested. Hard filters were 

then applied using GATK VariantFiltration and SelectVariant. Following GATK’s 

recommendations as of June 2017, sites with QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum < -

12.5, ExcessHet > 10.0 or ReadPosRankSum < -8.0 were discarded, as well as non-SNP variants 

and variants of more than 2 alleles. The minimum individual depth was set to 5. Finally, I 

discarded sequence markers that were missing in one or more individuals. 

ABC procedure 

A single model of postglacial colonization involving all sampled populations would have to be 

defined by many parameters (at least 12). Chapter 4 tested the power of ABC on 2-population 

models of spatial expansion, using simulated datasets equivalent to the one developed here. One 

of the main findings of Chapter 4 was the rapid loss of estimation power as model complexity 

increased to as few as 5 demographic parameters. I therefore performed independent inference of 

demographic history for pairs of adjacent populations, using a classic 2-population demographic 

model of spatial expansion with four parameters: effective population sizes N1 and N2, time of 

spatial expansion from population 1 to 2 (TEXP), and subsequent per-generation migration rate 

from population 1 to 2 (m21). This model is identical to model 3 in Chapter 4 (Figure 4.1c). For 

http://picard.sourceforge.net/
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all pairs of populations, I used the same priors as for simulation analyses in Chapter 4 (Table 4.1) 

with a few exceptions: I set the nucleotide mutation rate to 2×10-8, which is the most recent 

estimate for P. sitchensis (Hanlon, 2018); I reduced the prior range for TEXP from [2 : 103] to 

[2:500], which is more adequate considering the timeframe of postglacial recolonization in 

relation to generation times in tree species; finally I increased the population size priors for N1 

and N2 from [103 : 104] to [103 : 3×104] to accommodate the generally high effective population 

sizes in conifers (Chen, 2012). To develop summary statistics, I selected all 28 summary 

statistics available in msABC that did not involve linkage information and knowledge of 

ancestral allelic states, as the datasets built for the analysis did not contain such information. 

After calculating summary statistics for each markers, the mean and variance of each summary 

statistic were calculated over polymorphic sequence markers. I reduced the number of obtained 

mean and variance statistics by using a PLS transformation (see section D.1 for details). The 6 

first PLS components were used as summary statistics. 

Building the datasets 

I defined a valid marker as a DNA sequence with at least 100 continuous basepairs, or with no 

more than 10-bp gaps, filling the latter with NAs. To convert vcf files into msABC input files, I 

developed custom scripts involving shell scripts, one perl script written by Jon Degner, custom R 

scripts, and the fastaconvtr command (Ramos-Onsins & Vera, unpublished). A preliminary 

analysis of population structure using the complete dataset of sampled individuals was performed 

with PCA using with a random subset of 20k polymorphic SNPs extracted from the filtered 

sequence capture data, and using the ade4 R package. Populations P, IB, V and RB clustered 

together on PCs 1, 2 and 3 but started to separate at higher dimensions (Figure E.2). A and K 

formed a separate, more variable group. IN formed a cluster on its own on PC1 and 2. The ABC 

analysis was performed on geographically adjacent population pairs, excluding IN and K 

because of uncertainties about the origin of IN and the very recent origin of K (see Chapter 2). 

As the model used here is a 2-population model, I created 4 pairs of populations following the 

expected colonization sequence: PR-IB, IB-V, V-RB, RB-A (Figure E.1). One dataset was 

created per pair of populations. Each dataset was highly complete (each marker was genotyped 

in all individuals) and contained >10k sequences of lengths ranging from 100 to 3350 bp (Figure 
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E.3). These observed datasets are slightly larger in the total number of nucleotides than simulated 

datasets tested in Chapter 4. 

 

E.3 Results 

The ABC inference results for the colonization history of pairwise P. sitchensis populations are 

displayed on Figure E.4. Theta for population 1 (source population) shows a narrow peak of 

posterior probability in all pairwise analyses. After conversion (Ni=thetai/4µ), I obtained 

effective population size estimates ranging from N1= 7.55×104 for V to N1=9.4×104 for P, the 

southernmost population. Estimation of N2 failed, which is not surprising as Chapter 4 shows 

that effective sizes of growing populations could not be estimated, even when inferring the 

simplest demographic models. However, estimation of m21 and TEXP also seems to have failed in 

most cases, showing the highest posterior probabilities at the edge of the prior range. This 

suggests that there is a mismatch between simulated and observed datasets. An obvious reason 

for this would be that the demographic model was not appropriately chosen. There is a 

discrepancy between estimated posterior distributions and the distribution of parameter values of 

associated retained simulations (Figure E.4). This is also diagnostic of the inadequacy of the 

model. As a linear regression between statistics and model parameters is performed in the 

retained simulations (simulations with sets of summary statistics closest to the observed values), 

the posterior distribution will be slightly different from the distribution of parameter values in 

retained simulations. A discrepancy between the two distributions indicates that the observed set 

of statistics lies outside of the hyperdimensional cloud of statistics of retained simulations, 

making the results from the linear regression adjustment (and from the whole ABC analysis) 

unreliable. For example, for the pair V-RB, most TEXP parameter values in the retained 

simulations lie below 50 generations, but the mode of the posterior is at the maximum possible 

value: 500 generations. Similarly, for P-IB, IB-V and RB-A analyses, the distribution of 

migration rates in retained simulations follows the prior distribution, suggesting that this 

parameter could not be estimated, but the posterior still shows an artefactual peak at the lower 

limit of the prior range. Figure E.5 confirms this issue clearly: it represents PLS-transformed 

summary statistics of the simulated and observed datasets in a pairwise manner. In the case of an 
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adequate demographic model and prior range, it is expected that the observed dataset falls into 

the hyperspace formed by the summary statistics of the simulations retained for the posterior 

estimation. Here, the observed data fall into the range of statistics of retained simulations up to 

PLS 3. Beyond the third dimension, the observed dataset has a completely different set of 

statistic values than the cloud of retained simulations. 

 

E.4 Discussion 

What is wrong with the model? 

The aim of this appendix was to test conventional and simple demographic models for inferring 

successive postglacial migrations in a tree species, using the ABC framework. The part of the 

range of P. sitchensis covered in this analysis is continuous at the regional level but fragmented 

at the landscape level, with many small islands as well as snow-capped mountains and wide bays 

separating habitat. I therefore assumed that model 3 from Chapter 4, with 2 demes and only 4 

model parameters, was an extreme simplification of the patterns of colonization that occurred 

between pairs of sites along the expansion route of P. sitchensis, and similar to many temperate 

tree species. However, as “all models are wrong but some are useful” (Box, 1979), it seemed 

necessary to test whether discrete demographic modelling could be of any use in inferring 

continuous, large-scale processes such as forest tree migration. The northernmost population pair 

sampled in the P. sitchensis range, RB-A, was the most likely to be accurately described by 

model 3, based on prior knowledge and geographic layout. Indeed, the two populations are not 

only adjacent but also separated by a 70km-wide ocean strait, giving biological meaning to the 2-

deme model and to model parameters such as N02 (number of founders in A) and m21 (subsequent 

migration from RB to A). Also, population A has been established recently enough (Griggs, 

1937; Tae, 1997) that its demographic growth to the present would be closely approximated by 

the growth rate parameter modelled as exponential and ongoing to the current population size 

(Figure 4.1c). As model 3 would depict demographic history less faithfully in pairs of 

populations more distant from the current northern range edge, the results of this multiple 

analysis would help draw the limits for the use of simple discrete models in more distant and 

older populations. 
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Results were unambiguous: the observed datasets, for all pairs of populations considered 

including RB-A, did not occur in the same multidimensional space as the one created by 

coalescent simulations of model 3, a pattern diagnostic of the use of an inadequate demographic 

model. This is not entirely surprising in the case of PR-IB, IB-V, and V-R. First, these pairs of 

populations feature two sites hundreds of kilometers apart with no obvious demic separation. The 

coalescent process following the discrete model is therefore likely to shape genetic data 

differently from the colonization process between the two sites. Also, population sizes probably 

became relatively stable many generations ago at distant sites to the south of the current 

expansion front, in contrast with the model, which characterizes continuous population growth to 

the present for one of the two populations of the pair.  

However, the failure of the analysis for the RB-A pair is more difficult to interpret.  

There are a few possible reasons for this result. First, many demographic processes specific to 

spatial expansion, such as allele surfing (Klopfstein et al., 2006) and occasional long-distance 

dispersal (Austerlitz & Garnier-Géré, 2003) would be unaccounted for in the demographic model 

and could have a long-lasting effect on the genetic composition of populations. Secondly, 

sampling a few individuals per populations might not allow an accurate representation of the 

complex genetic make-up of spatially expanding populations (Excoffier et al., 2009). Especially, 

P. sitchensis is known to hybridize with P. glauca at multiple sites in British Columbia and 

Alaska, including on the Kodiak Archipelago (see Chapter 3). The contribution of unsampled 

populations, potentially from different species, to the gene pool of sampled populations would 

also contribute to the differences between simulated and observed datasets. This illustrates how 

crucial it is to have a high level of confidence in the chosen demographic model, based on other 

solid lines of evidence. Otherwise, alternative demographic models need to be tested against the 

chosen model following appropriate procedures to statistically test model fit (Csilléry et al., 

2010; Fearnhead & Prangle, 2012). 

Future improvements 

Because long-distance dispersal (Kremer et al., 2012) and hybridization with sister species 

(Jaramillo-Correa et al., 2009) are common in tree species during postglacial colonization, 

knowing the source population(s) of any given forest site and sampling accordingly for 
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demographic inference presents great challenges. One direction of research could involve similar 

models as the one used in this appendix, tested on different combinations of potential source 

populations. Model selection techniques could then be applied to determine which populations 

were the most likely genetic sources for the site under study. This would necessitate an 

appropriate choice of summary statistics, following a different procedure from the one 

implemented in this appendix (Marin et al., 2014). However, this would not solve the issues 

associated with using a discrete population model for populations on a continuous landscape. A 

more effective solution, potentially applicable in ABC, would be to create a spatially explicit 

model with a large number of interconnected demes over a landscape, and focus the estimation 

on demes corresponding to the geographic location of sampled sites. Such an approach was 

developed by Hamilton et al. (2005), who implemented ABC in a bi-dimensional stepping stone 

model of range expansion with migration, and obtained relatively accurate estimates for 

colonization times (but not for inter-deme migration rates). Further development of inference 

techniques addressing demographic models of individuals distributed along a spatial continuum 

and that are applicable to genomic data is currently needed. 

Alternatively, demographic inferences of single-population models avoid having to select 

and sample potential source populations, and the validity of their results rely entirely on the 

accurate interpretation of estimated changes in population size, which can be challenging in the 

presence of continuous migration between populations. With many individuals and a large, 

informative genomic dataset, a study following similar ABC procedures as Holliday et al. (2010) 

could perhaps lead to accurate model parameter estimates, in addition to appropriate model 

selection. A set of seemingly powerful methods focusing on single-population models, including 

PSMC (Li & Durbin, 2011) and MSMC (Schiffels & Durbin, 2014), have recently been 

developed and rely on whole-genome sequences from a single (PSMC) or a few (MSMC) 

individuals. These methods have not been widely applied to inference in nonmodel organisms 

(Nadachowska-Brzyska et al., 2013), but could soon provide potential advances in demographic 

inference for tree population history, as whole-genome sequencing is becoming more available 

in tree species (Neale et al., 2013). 
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Conclusion 

The ABC analysis implemented in this appendix failed to estimate historic colonization times 

and their associated demographic patterns of subsequent migration along the postglacial 

expansion route of P. sitchensis. The main problem seems to be the use of a model that poorly 

describes the actual demographic history of the species. This result was expected in analyses of 

more distant pairs of populations but disappointing in the analysis involving the two 

northernmost populations, RB and A, where prior knowledge seemed to support the 2-deme 

demographic model that was implemented. Whether this failure is due to unsampled source 

populations or spatial expansion processes that were not accounted for, it is informative for 

future phylogeographic studies making demographic inferences in tree populations. High 

migration rates among populations, typical of widespread forest tree species, have always made 

the demographic inference of population history difficult (Hamilton et al., 2005; Robinson et al., 

2014). More appropriate methods for the inference of tree migration parameters would ideally 

involve an inference framework allowing continuous spatial diffusion models to be tested. As 

such methods are not fully developed in a user-friendly format yet, readily available solutions 

would be to increase sample sizes for each population considered, and to implement model 

selection. As ABC has its limitations when applied to spatial expansion models (see Chapter 4), 

testing and comparing different inference techniques should also be beneficial. Current and 

future advances in inference techniques and genomic datasets might overcome some of the 

current limitations of phylogeographic inference and make state-of-the-art methods more and 

more available in nonmodel species. 
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E.5 Figures 

 

Figure E.1 Map of populations selected for principal component analysis of genetic data and approximate 

Bayesian computation, with location of landmarks mentioned in the introduction. The range of P. sitchensis is 

depicted in green and the colour code for sampled population matches the one used for PCA data points in 

Figure E.2. 
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Figure E.2 PCA of genotypes sampled. PC 1 to 6 are represented, as well as the eigenvalue profile. 
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Figure E.3 Distribution of sequence lengths for different datasets used in empirical ABC analysis 
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Figure E.4 ABC parameter estimates for 4 pairs of populations. Grey lines represent parameter priors, red 

lines correspond to the estimated posterior, and blue lines are the distribution of parameter values of retained 

simulations used to estimate the posterior. thetai= 4Niµ, with µ=2.10-8, i being the population index (1 or 2). 
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Figure E.5 Pairwise representation of PLS-transformed summary statistics for observed and simulated 

datasets. Black points represent a random sample of 20k simulations from the complete set of 1M 

simulations. Blue points represent the set of 1000 retained simulation from the posterior estimation. The red 

point corresponds to the position of the observed dataset. 

 


