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Abstract

Plug flow can generate recirculating flow between interfaces of immiscible fluids. De-

pending on the phase used to segment flow, it can be gas-liquid plug flow or liquid-liquid

plug flow. The recirculating flow can enhance heat transfer as compared to the continuous

pipe flow, especially in the laminar regime such as the microchannel flow. The present work

focuses on the flow and heat transfer of liquid plugs with low Reynolds numbers.

The flow is modeled by applying Stokes simplification, and the solution is obtained by

solving fourth-order partial differential equation sets. Solutions of two types of plug flow

are obtained: 1) the gas-liquid plug flow in the concentric microchannel; 2) the liquid-liquid

plug flow in the circular microchannel. For the gas-liquid plug flow study, the flow patterns

inside the liquid phase including the volume ratio of the inner and outer vortexes, the ratio

of maximum-to-minimum stream functions, the averaged recirculation flux as well as the

skin friction coefficient are investigated in details. Correlations for predicting the maximum

and minimum of the stream function are developed. For the liquid-liquid plug flow study,

the influences of plug lengths and the viscosity ratio upon the cap vortexes and the overall

skin friction coefficient are studied in details.

The heat transfer of the gas-liquid plug flow in the concentric microchannel is simulated

numerically in MATLAB. Three types of thermal boundary conditions are investigated. The

developing process of the thermal field can be explained using a simple thermal network for

each boundary condition. The influences of parameters including the plug aspect ratio, the

channel inner-outer radius ratio and the Peclect number upon the thermal conductance and

heat transfer enhancement to the single-phase flow are investigated systematically. Then a

simplified model for the fully developed thermal field is extracted for the quick calculation

need in the design work. The results obtained from about 12,000 cases form a database

that can be used in the future design work of heat exchanger based upon this kind of flow.
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Lay Summary

Plug flows can enhance the heat transfer inside the microchannels by generating recir-

culating flow between interfaces of immiscible fluids. In this thesis, the analytical solutions

of the two kinds of plug flow are obtained, and the physics behind it is revealed. The flow

field results are used in heat transfer simulation under a wide range of working conditions.

The obtained database of both flow field and heat transfer results can help the design work

of heat exchanger based on this configuration in the future.
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Chapter 1

Introduction

1.1 Background

Driven by the fast development of applications including microelectronics,micro-reactors,

micro-electro-mechanical systems(MEMS), the study of microfluidics has drawn much atten-

tion in recent years [5]. The applications of microfluidics includes environmental detection

[6], chemical reaction [7–9], and drug delivery [10]. Despite the efficiency brought by MEMS

and microfluidics, one of the biggest challenges faced by engineers is the heat generation

in these devices. Traditional cooling methods have faced challenges owing to increasing

heat flux and thermal resistance caused by the complicated internal structure of micro-size

systems. Thus, the large heat flux removal methods for these devices have gained much

attention in recent years [11]. Many modifications of traditional heat transfer methods have

been done to suit the requirement of micro-sized systems. These modified methods include

spray cooling [12–14], jet impingement cooling [15], falling film cooling [16] and heat pipes

[17]. However, it has been pointed out that these methods are neither easily controllable

nor cost-friendly [11, 18]. Other alternatives are needed for low-cost cooling methods.

The heat exchanger using microchannels has the advantage of small volume and large

surface-volume ratio because of the small scale [19]. It also can be parallel configured and

packaged to cooling capacity. Tuckerman and Pease [20] introduced the concept of the

microchannel heat exchanger and they found out the heat removal limit for single phase

flow was 0.79 kW/cm2. However, this limit is relatively lower comparing to the heat flux

of current super-powered computing chips [21–23]. New efficient methods are needed for

thermal design need in the future.

The heat transfer limit in the work of Tuckerman and Pease [20] can be explained using

low Reynolds number (Re) (defined below) in microchannels. The Reynolds number (Re)
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is often used to determine the flow patterns in different situations, and it is defined using

the ratio of inertial force and viscous force. In the case of internal flow, it can be written

as below

Re =
ρDhU

µ
, (1.1)

where ρ is the density of the fluid, Dh is the hydraulic diameter of the channel, and U

is the mean velocity of the fluid, and µ is the dynamic viscosity of the fluid.

In microchannel, it requires extremely high pumping power to make Re high enough

(∼ 2, 000) to reach the turbulent regime owing to the small scale of Dh. Thus the laminar

flow is often preferred, and heat transfer will be limited by the thermal diffusion process

if there is no vortex inside to disturb the flow field. Since the extensive quantities like

energy can be transported with flowing fluid, the mixing process including heat transfer

can be enhanced by vortexes which disturb the flow field. Lots of previous studies have

been focusing on generating vortexes inside single-phase flow. Another alternative, which

has also gained attention, is to involve flow boiling inside the microchannel to make full use

of the latent heat. In the next section, previous works related to both the options mentioned

above will be reviewed.

1.2 Challenges faced by cooling in microchannel

Most studies have been aiming to generate vortexes in the single-phase flow by either

putting vortex promoters or varying geometries of the channel. However, their studies still

require quite high Re (100 ∼ 5, 600) in order to generate strong vortexes and have an

apparent heat transfer enhancement. Hence, these methods will face a similar challenge of

extremely high pumping power as triggering turbulent flow in microchannel does. Thus the

application of these methods can be limited. The reviews of some selected works related to

the above methods are presented below.

Vortex generators are obstacles with different geometry in the channel, and they can

produce transverse flow due to flow separation on the interface between the obstacles and

the fluid. In the numerical study of Meis, Varas, Velazquez, and Vega[24], obstacles with
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different shapes and orientations were installed inside a microchannel as vortex promoters.

The Reynolds number required in their work above vary within 600 ∼ 1, 200, and this

design has a slightly higher heat transfer enhancement than pumping power penalty. In the

experimental study of Wang, Houshmand, Elcock and Peles [25], Wang, Nayebzadeh, Yu,

Shin and Peles[26], micropillar of different shapes/pin fins were put into the microchannel,

respectively. The micro particle image velocimetry (µPIV) technique was used to observe

flow structure downstream of a pillar, while resistance temperature detector (RTD) was

used to measure the spatially averaged temperature. The triangular pillar has the best

enhancement with Nusselt number vary within 17.7 ∼ 88.9, while the corresponding range

for Reynolds number is 100 ∼ 5, 600 in order to generate vortexes in the downstream of the

pillar. Nevertheless, they do not include information about pressure loss.

Another way of introducing vortexes is by making the channel curved to obtain Dean

vortexes. Dean vortexes are a kind of secondary flows (which always appear in a pair of

counter-rotating vortexes) generated by the imbalance between centrifugal forces and radial

pressure [27]. The dimensionless Dean number (De) can be used to describe the strength

of Dean vortexes. It is defined as below

De = Re

√
Dh

2Rc
, (1.2)

where Re is the Reynolds number, Dh is the hydraulic diameter, and Rc is the radius

of curvature of the path of the channel.

In the numerical studies of Sui, Teo, Lee, Chew, and Shu[28], wavy channel shapes were

applied to generate Dean vortexes inside the microchannel. The Reynolds number required

in these two works is within 100 ∼ 400 and 300 ∼ 650 respectively. The enhancement in

Nusselt number is about 1.67 ∼ 2.02 times depending on the tunnel shape, while the pressure

loss penalty is slightly lower than the heat transfer enhancement. In the numerical study

of Xia, Jiang, Wang, Zhai, and Ma[29], besides applying wavy channel, reentrant cavities

at the wall were added to provide more heat transfer area. Nevertheless that the drag area

increased simultaneously, and the authors did not mention the efficiency of add-on cavities.

Chai, Xia, Wang, Zhou, and Cui[30] investigated both numerically and experimentally

the flow heat transfer inside microchannels with periodically expansion-constriction cross-
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sections. The interval for Re in their work is within 300 ∼ 750, and the Nusselt number

can be enhanced by up to 180%, they did not provide details about pressure loss as well.

Experimental studies about flow in microchannel involving boiling have also been carried

out in recent years due to the considerable latent heat of fluid. Despite many applications

of cooling with phase change in electronics, the physics behind phase change is not clear,

which leads to high complexity to flow control [18]. The reviews of selected works related

to above are presented below.

The heat removal in a mini-channel can be as high as 10 kW/cm2 [31], where DI (de-

ionized) water was used and the mass flow rate is 5, 000 ∼ 134, 000 kg/m2s−1. However,

in the microchannel, the mass flow rate is much lower, and the critical heat flux (CHF)

usually cannot reach this ultra high value. In the work of Deng, Wan, Qin, Zhang and

Chu[32], Krishnamurthy and Peles[33], structured microchannel with micro pin fins (SM-

MPF) were fabricated using a laser micro-milling method. Lots of tiny reentrant cavities

increase nucleation site density (the number of sites where nucleation happens in a given

area) for boiling. The mass flow rate is 200 ∼ 300 kg/m2s−1 and CHF can be 0.01 ∼

0.11 kW/cm2, which results in 10% ∼ 175% enhancement comparing to flow boiling in

straight microchannel depending on working liquids. Liu, Li, Liu and Gau[34] and Choi,

Shin, Yu and Kim[35] investigated the influence of wettability of the wall upon boiling in

the microchannel and found out that the heat transfer in hydrophobic microchannels is

higher than that in hydrophilic ones. In hydrophobic channels, the nucleation site density

is observed to be higher, and more departure bubbles can disturb the flow field inside the

liquid film, making the liquid film unstable and enhance the heat transfer. Jaikumar and

Kandlikar[36] aligned nucleating regions with non-nucleating ones in the feeder microchannel

to separate pathways for returning liquid and upward floating vapor. The separate pathways

led the fluid to refill the boiling nucleation to hinder the dry-out and thus can enhance the

boiling efficiency. They found out an optimal alignment for enhancement, and the critical

heat flux can be 0.39 kW/cm2 under this alignment.

Overall, introducing vortexes in the single-phase flow has the requirement of high Re

while the mechanism of flow boiling is still not well understood, which makes flow boiling

hard to predict and control. Thus, stable multiphase flow without phase change is preferred
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for prediction and easier control [18]. Among all the multiphase flow types without phase

change, the plug flow has drawn attention in recent years [37]. The simple introduction to

plug flow and the vortexes inside is made below.

Figure 1.1: Schematic show for the recirculation in plug flow. The contour plot is from the
results in chapter 2 in this thesis.

Plug flow is also called slug flow, Taylor flow or segmented flow, it is a flow structure

where another kind of immiscible fluid segments the liquid into separate plugs. The liquid

plug has a shape of plug and nearly takes all the cross-section of the channel [38]. In the

reference sticking to a moving plug, the non-slip wall becomes a moving wall with a velocity

in the transverse direction. The moving wall drives the fluid by viscous force, and then the

flowing fluid bounces back at the interface at the rear end of the plug, then travels along

the middle axial of the plug and bounces back again at the frontal end and finishes a circle

of recirculation(fig. 1.1). Comparing to using vortex promoter or generating Dean vortexes,

this method prefers the lower speed of the plug[39], and thus extremely high pumping power

is not required. To explain this, a new dimensionless parameter, Weber number is written

as below, where l is the characteristic length and λ is the surface tension,

We =
ρ u2 l

λ
. (1.3)

Weber number (We) represents the ratio between inertia and surface tension. When the

velocity of the plug is small, We is small, and the interface tends to be more solid comparing

to the momentum brought by the circulation, and thus the flow pattern inside tends to be

more stable. Besides this advantage of not requiring high pumping power, plug flow also has

the advantage of vortex size. Comparing to vortex promoters where vortexes are generated
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only after the obstacles, the vortexes in a liquid plug nearly takes up the whole cross-section

[37] which indicates the possibility of better mixing ability.

1.3 Numerical/experimental studies of plug flow in

microchannel

The heat transfer inside the plug flow has been investigated experimentally in the recent

decades. In the experimental work of [40], Nitrogen gas was injected coaxially into DI (de-

ionized) water for stable two-phase flow. The high-speed camera and thermocouples along

the channel were used to measure the flow field and the temperature field respectively. The

enhancement of the Nusselt number is 176% while the pressure loss penalty is around 22%.

Though the intrusive thermocouples may disrupt the flow field and furthermore influence

the heat transfer results. What is more, thermocouples can only collect the temperature at

limited points instead of alongside the whole channel. Thus, the non-intrusive measuring

technique that can collect data for an area is preferred.

Figure 1.2: Schematic show for stages of the heat transfer of gas-liquid plug flow in a slit
microchannel in [3]. For plug flow: (I) the thermal entrance region. (II) the transition
region. (III) the fully developed region. For single-phase flow there is no transition region.
Reprinted with permission.
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A high-resolution infrared(IR) camera was used in [41] to collect the continuous tem-

perature distribution of a stainless steel tube which contained plug flow inside. They found

out the developing stages of the plug flow heat transfer with constant input heat flux can

be summarized into following (also see the schematic show in fig. 1.2):

• In the entry region (about one plug length long), the Nusselt number for short or long

plugs reaches the plug fully developed asymptotic limit, or the continuous flow limit

respectively;

• In the transition region (about one period of internal circulation of the plug), Nusselt

number oscillates for short plugs (validated in [3, 42]);

• In the fully developed stage, Nusselt number gradually becomes stable.

Despite their explicit reveal of the stages of plug flow heat transfer, the IR camera can

only measure the surface temperature of the outer channel wall, the information inside for

both flow and thermal field are missing.

The most precise optical measuring technique of the flow field to date is the micro

particle image velocimetry (µPIV), and one can find literature reviews of visualization

in microfluidics in the work of Wereley and Meinhart[43], Sinton[44]. The laser-induced

fluorescence (LIF) method is ideal to measure the temperature field inside the flow field

non-intrusively, which was adopted in the work of Ross, Gaitan and Locascio[45], Ghaini,

Mescher, and Agar[1]. A third order polynomial correlation was set up to show the tem-

perature distribution by the dye particle density in the microchannel, and the precision is

about 2.5 ∼ 3.4◦C [45]. However, these optical methods meet challenges when the light tilts

through the interfaces with different refractive indexes, which happens for curved channel

walls [46]. The materials have to be chosen carefully to match the refraction coefficients

in order to avoid the failure. To our best knowledge, there are very few investigations into

plug flow heat transfer using both µPIV and LIF, and it could be a research point in the

future.

A review for numerical work for the plug flow heat transfer are included in [47]. Most

studies had focused on the plug flow heat transfer inside of circular [48, 49] or slit channels
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1.3. Numerical/experimental studies of plug flow in microchannel

[50–52], which can be a result of dramatically increasing the computational time when the

field is unable to be simplified using symmetricity. Though, some works conducted in the

3-D domain also use techniques (such as the volume of fluid method, lattice Boltzmann

method, level set method and moving grid method) to capture the interface between fluids

[53–56]. Though these methods can capture details with high precision, the calculation time

for them is too long. In the real design/optimization work where additional simulations

besides the flow field will be conducted (for multiple times before finding out an optimum

design), it is preferred using existing flow field results [3, 42, 57]or at least by pre-defining

the interface shape [58] to save calculation time.

Despite many investigations of both gas-liquid and liquid-liquid plug flow heat transfer,

it has been pointed out in the review works recently that significant gaps exist concerning

both the measured values and the correlations for heat transfer coefficient and pressure

drop between different pieces of literature, and there are little agreements among them

[18, 47, 59]. The only scenario where some agreement is observed is the gas-liquid plug flow

in the circular microchannel [59]. Most of the correlations did not reveal a clear picture for

the physics of heat transfer, and were merely a collection of obtained results, and thus can

not be applied when it exceeds their original conditions.

Since there still lacks reliable correlations for the plug flow heat transfer under various

conditions, fast simulation and dense database can be an alternative. Unlike flow in macro

size and under high speed, the Stokes simplification for slow viscous flow is very reliable

because Reynolds number for plug flow is small (Re � 1) in microchannel [38]. Thus, the

only challenge of building up a dense database remains as calculation time. The normal

procedure for simulating fluid flow heat transfer is by solving the flow field and thermal field

simultaneously, which will result in a considerable amount of calculation time. Fortunately

in the microchannel flow scenarios, the temperature difference does not need to be too

much to reach a considerable temperature gradient owing to the small scale (i.e., the mean

temperature difference between the inlet and the outlet is less than 9 K, the difference

between the wall and the mean value is less than 2 K in [41]), the thermal properties can

usually be assumed to be constant. If the Prandtl number (defined below, where k is

thermal conductivity of the fluid) is large (Pr� 1), the momentum diffusivity (ν) is much
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1.4. Analytical models of plug flows

larger than thermal diffusivity (α), then the flow and thermal field can be decoupled to save

calculation time [3, 42, 60].

Pr =
ν

α
=
cpµ

k
. (1.4)

Moreover, the analytical method can be applied in the microchannel with certain kinds

of simple geometry to calculate the flow field with some simplifications, which has nearly

no calculation time and therefore are preferred for building up the database. In the next

section, a review of all existing analytical methods of plug flow in microchannels is prepared.

1.4 Analytical models of plug flows

The Graetz problem describes the steady-state heat transfer in fully developed internal

flow, which implies the zero or the constant temperature derivative in the flow direction

depending on boundary conditions. It applies the assumption of the constant thermal

properties such as ρ, µ, k and cp and incompressible Newtonian flow. This model has been

applied in studying plug flow heat transfer, and the literature related will be presented

below.

In the work of Shojaeian and Kosar [61, 62], a simple analytical model was adopted based

on the Graetz problem while the velocity in the channel is assumed to be constant and uni-

form. Muzychka, Walsh, and Walsh [63] also made full of the Graetz problem by assuming

the velocity is constant and uniform. They managed to conclude the influence of tunnel

geometries by extracting a few key parameters of the cross-section shape. These methods

could help estimate the heat transfer performance roughly. However, the assumption of

uniform and constant velocity field drops the recirculation inside the plug and can highly

underestimate the mixing ability of plug flow. A better way is to consider the vortexes

formed inside plugs by modeling and solving the flow field in the 2-D cross-section.

In order to analytically obtain the vortex inside plugs, the Stokes flow assumption,

which implies Reynolds number is very small (Re � 1) and drops the convection of the

momentum, was firstly used in gas-liquid plug flows by Sivasamy, Che, Wong, Nguyen, and

Yobas [38]. In their work, the 2-D flow field was built and analytically solved using a fourth
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order partial differential equation set (PDEs). This model has been proved to be effective

and convenient in microchannels with different shapes, such as in a slit microchannel [38],

in a curved microchannel [64], and in a microchannel with circular cross-section [2]. Some

numerical studies of heat transfer based upon the analytical flow field were carried out

[3, 42], and the flow field results helped to understand the mechanism behind the heat

transfer enhancement. The analytical model for the liquid plug train in a 2-D channel was

proposed in [57]. The basic idea is the same as the gas-liquid plug flow in [38], though

the friction force between two immiscible liquids increased the complexity on the interface.

One of the simplified results of the liquid plug train, the liquid-liquid plug flow, was applied

for the study of heat transfer performance for liquid-liquid plugs at asymmetric boundary

conditions in [60].

1.5 Motivation and Objective

This thesis analytically and numerically studies the plug flow and heat transfer of this

flow type.

With the fast developing of applications such as MEMS, the size of these devices shrinks

dramatically, and the heat flux also increases considerably. Traditional flow cooling meth-

ods, which usually generate vortexes in turbulent flow regime, have faced the challenge

brought by small characteristic length and small Reynolds number under micro scales. The

plug flow shows promising potential for enhancing heat transfer because it can generate well-

defined vortexes even in the Stokes regime (Re � 1) resulting from the interface between

another kind of immiscible fluid. Hence, plug flow based heat exchanger can be a solution

to the future thermal management in MEMS. However, according to the previous section,

there still lacks the analytical studies of plug flow in microchannels with many other kinds

of geometry. For instance, one of the most commonly seen geometry in the traditional heat

exchanger, the concentric tube, is not studied before. Moreover, in the previous studies,

heat transfer simulations were mostly conducted using the transient method which leads to

a quite long calculation time even provided with pre-stored flow field results and makes it

hard and costly to build/extend the database.
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Thus, the most primary objective of this thesis is to find the analytical solutions of plug

flow in different geometries that people have not studied. The analytical flow field results

can help understand the mechanism of heat transfer enhancement. The second objective

is to systematically investigate the heat transfer within plug flows in these geometries, as

well as the influences of geometrical parameters or other parameters upon the heat transfer

performance. At last, optimally a simplified heat transfer model can be extracted to save

calculation time so that I can build up a database/an empirical correlation to cover a

massive amount of working conditions in an acceptable amount of time. The pre-stored

database/pre-defined correlation can help the optimization without the need of running

simulations for multiple times by the designers. Only a few times of accurate simulation

are needed for calibration after they have found the optimal designs.

1.6 Organization of the Thesis

In chapter 2, I find the analytical solution of gas-liquid plug flow inside the concentric

microchannel. The flow patterns like locations of vortex center, the stream functions of

vortex centers, the radial transport velocity and recirculation period are investigated. The

pumping power in the form of skin friction coefficient is studied.

In chapter 3, I carry out the heat transfer simulations in plug flow in chapter 2 at

three different kinds of commonly seen asymmetric boundary conditions: The inner iso-

flux boundaries (shorten as IFB), the iso-thermal boundaries (shorten as ITB), and the

outer iso-flux boundaries (shorten as OFB). Simplified thermal networks for these heat

transfer processes are extracted. The influences of plug aspect ratio, the inner-outer radius

ratio as well as Peclect number upon heat transfer enhancement are analyzed. Finally, in

this chapter, a simplified model for heat transfer at the fully developed stage is found to

save calculation time. An extensive database containing results from about 12,000 working

conditions are built up for future design work.

In chapter 4, I find the analytical solution of liquid-liquid plug flow inside microchannel

with a round cross-section by modeling and solving the flow field in two immiscible fluids

simultaneously. The focus is on flow patterns, among which stands out the secondary vortex
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inside the plug with low viscosity when the viscosity ratio is far from 1. The secondary vortex

at the cap of the plug is resulting from the momentum transfer due to interface continuity.

The influence of plug lengths and viscosity ratio upon the skin friction coefficients are

analyzed in preparation for calculating the pressure loss in real design work.

In chapter 5, a summary of this thesis is made. The limitations of this work as well

as those of the analytical modeling are also presented. Some suggestions for the potential

work are provided in the end.

In appendix A, my supervisor Dr. Ri Li and I find out a correlation for calculating

maximum and minimum stream functions in the plug flow in chapter 2. However, the

correlations for heat transfer performance or enhancement is not established due to limited

time. Hence, this part is recorded in an appendix as a secondary outcome of the thesis.
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Chapter 2

Analytical study of gas-liquid plug

flow in concentric microchannel

2.1 Mathematic modeling

2.1.1 Governing equations and boundary conditions

Figure 2.1: Schematic show for gas-liquid plug flow in concentric microchannel

The plug flow in the micro concentric tube is modeled under a cylindrical coordinate

system, which is moving at the same speed as the liquid plug, using a fourth order PDE. The

governing equations have the following assumptions: 1. the flow field is fully developed, 2.

the liquid plug takes up the whole cross-section, 3. the interface between the liquid and the

gas is flat, 4. the whole flow field is rotationally symmetric, 5. the fluid is Newtonian with

uniform and isotropic physical properties, 6. the fluid obeys Stokes assumption (Re� 1).

Before starting the modeling procedures, I would like to talk firstly about the gap
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between these assumptions and real scenario. To my best knowledge, the Stokes assumption

is the most appropriate method to date for analytically calculating the flow field in plug

flows. The request of low Reynolds number (Re � 1) can be easily reached under micro-

scales. Meanwhile, it can capture the vortexes formed because the flow field is solved in the

2-D domain.

However, some assumptions above such as that the whole cross-section is taken up by

the plug (no liquid film) can hardly be reached in real scenarios. It has been studied in

[41, 51, 52, 54, 65] that the liquid film’s thickness is very small and negligible only when

Ca � 1 (capillary number Ca is defined below, the ratio of viscous force and the surface

tension). Otherwise, the liquid film will be thicker and the plug shape will deform owing to

the viscous force. The existence of liquid film can also lead to the slippery boundary between

the plug boundary and the wall, which makes the modeling and deriving the solution more

complicated.

Ca =
µU

λ
. (2.1)

The interface is also hard to be flat in the real cases. The influence of curvature upon

the flow field was investigated in [2], where the author set the contact angels at two ends to

be the same. It was found out that the flow field was not much affected when the contact

angel is between 45◦ ∼ 135◦. Under these cases the flat end assumption is valid and the

contribution of surface tension upon, for instance, the pressure loss, can be de-coupled from

the contributions from the frictional force. However, in real cases, the contact angle can be

different at two ends, and it is also different at two walls if the channel is not symmetric

(i.e., the meandering channel or the concentric channel in this work) which leads to too

many combinations to validate.

As mentioned earlier in section 1.3, the capture of these detailed features can only be

done by accurate multi-phase flow simulation with surface capturing methods if they are

not pre-defined, which are also very time-consuming. Negotiation has to be made between

the accuracy and efficiency. Hence, in this work, I will still adopt the analytical method

with the Stokes flow model and the above assumptions because I aim to build either a

quick method or a dense database for the design need. Though it is recommended that in

14



2.1. Mathematic modeling

the real design work, the analytical results in this chapter, the results from the simplified

model of heat transfer in chapter 3 and the analytical results in chapter 4 can be used for

primary searching to narrow down the range of optimal designs quickly. Then a few times

of accurate simulation can be conducted to calibrate the influences brought by liquid film

or curved interfaces.

Following the assumptions above, the continuity equation is,

∇ • u = 0. (2.2)

In the momentum equation, the convection term is neglected (Re� 1 ),

µ∇2u−∇P = 0. (2.3)

By applying the Stokes stream function, the continuity equation eq. (2.2) is satisfied

automatically, and the momentum equation eq. (2.3) is simplified as below by taking curve

at both sides

L4
−1ψ = 0, (2.4)

where the Stokes stream function ψ is defined as

ur = −1

r

∂ψ

∂z
, uz =

1

r

∂ψ

∂r
, (2.5)

and the operator L4
−1 is

L4
−1 = (

∂2

∂z2
+

∂2

∂r2
− 1

r

∂

r
)(
∂2

∂z2
+

∂2

∂r2
− 1

r

∂

r
). (2.6)

Three assumptions are made here to obtain the boundary conditions: First, because of

the continuity of the streamline, the stream function can be set to a constant value at all

boundaries. For simplicity, it is set to zero. Second, there is no slip between the walls and

the liquid plug. Thus, the axial velocity at walls is −U in the moving reference. At last,

there is no shear stress caused by the gas because usually, gas has low viscosity. As a result,

the boundary condition can be written as,
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ψ(0, r) = 0, ψ(l, r) = 0, ψ(z, r1) = 0, ψ(z, r2) = 0, (2.7)

1

r

∂2ψ

∂z2
(0, r) = 0,

1

r

∂2ψ

∂z2
(l, r) = 0, (2.8)

1

r

∂ψ

∂r
(z, r1) = −U, 1

r

∂ψ

∂r
(z, r2) = −U. (2.9)

The nondimensionalization is done before solving the PDEs, and the aspect ratio β, the

inner-outer radius ratio η and the eigenvalues ωn are also defined by

ẑ ≡ z

r1
, r̂ ≡ r

r1
, ûz ≡

uz
U
, ûr ≡

ur
U
, ψ̂ ≡ ψ

Ur2
1

, (2.10)

η =
r2

r1
= r̂2, β =

l̂

1− η
, ωn =

nπ

l̂
, (2.11)

Substitute eqs. (2.10) and (2.11) into eqs. (2.4) and (2.7) to (2.9) to obtain the dimen-

sionless governing equation and boundary conditions

L̂4
−1ψ̂ = 0, (2.12)

ψ̂(0, r̂) = 0, ψ̂(l̂, r̂) = 0, ψ̂(ẑ, 1) = 0, ψ̂(ẑ, η) = 0, (2.13)

1

r̂

∂2ψ̂

∂ẑ2
(0, r̂) = 0,

1

r̂

∂2ψ̂

∂ẑ2
(l̂, r̂) = 0, (2.14)

1

r̂

∂ψ̂

∂r̂
(ẑ, 1) = −1,

1

r̂

∂ψ̂

∂r̂
(ẑ, η) = −1. (2.15)

2.1.2 Analytical solution

Strong periodicity can be observed focusing the boundary conditions at the two plug

ends in eqs. (2.13) and (2.14) Thus, the finite Fourier transformation can be applied here.
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Due to the zero value of the function at these ends, the Sine transformation is chosen

Sn[ψ̂] =
2

l̂

∫ l̂

0
ψ̂ sin (

nπ

l̂
ẑ)dẑ = gn(r̂). (2.16)

The anti-transformation can be applied to obtain the original function, which is the

universal solution to the PDEs.

ψ̂ =
∞∑
n=1

ψ̂n =
∞∑
n=1

sin (
nπ

l̂
ẑ)gn(r̂). (2.17)

The properties of the Sine transformation are listed below.

Sn[
∂2ψ̂

∂ẑ2
] = −ω2

ngn +
2ωn

l̂
[ψ̂(0, r̂)− (−1)nψ̂(l̂, r̂)] = −ω2

ngn, (2.18)

Sn[
∂4ψ̂

∂ẑ4
] = −ω2

nSn[
∂2ψ̂

∂ẑ2
] +

2ωn

l̂
[
∂2ψ̂

∂ẑ2
(0, r̂)− (−1)n

∂2ψ̂

∂ẑ2
(l̂, r̂)] = ω4

ngn, (2.19)

Sn[
∂ψ̂

∂r̂
] =

dgn
dr

. (2.20)

Substitue eqs. (2.16) and (2.18) to (2.20) into eqs. (2.12) to (2.15), the system then

becomes a 4th order, linear and homogeneous ordinary differential equation one (ODEs).

(
d2

dr
− 1

r

d

dr
− ω2

n)(
d2

dr
− 1

r

d

dr
− ω2

n)gn = 0, (2.21)

gn(η) = 0, gn(1) = 0, (2.22)

g′n(η) = −2η[1− (−1)n]

l̂ωn
, g′n(1) = −2[1− (−1)n]

l̂ωn
, (2.23)

The universal solution of the ODEs eq. (2.21) is

gn(r̂) = Anr̂
2I2(ωnr̂) +Bnr̂I1(ωnr̂) + Cnr̂

2K2(ωnr̂) +Dnr̂K1(ωnr̂), (2.24)

where Iν ,Kν are the νth order of first and second modified Bessel functions respectively.
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2.1. Mathematic modeling

Also, obviously, for series n being even numbers, only zero solution will be obtained. In this

chapter, the series n is by default set to be odds without further notice. For odd series, the

constant coefficients can be mounted using the boundary condition eqs. (2.22) and (2.23).

The system is formed with n linear and homogeneous subsystems each with a dimension of

4× 4, which can all be solved easily by Cramer’s rule [66].


I2(ωn) I1(ωn) K2(ωn) K1(ωn)

ηI2(ωnη) I1(ωnη) ηK2(ωnη) K1(ωnη)

I1(ωn) I0(ωn) −K1(ωn) −K0(ωn)

ηI1(ωnη) I0(ωnη) −ηK1(ωnη) −K0(ωnη)




An

Bn

Cn

Dn

 =



0

0

− 4
l̂ω2
n

− 4
l̂ω2
n


. (2.25)

A series solution of the eqs. (2.12) to (2.15) can be traced back finally by putting

eq. (2.24) into eq. (2.17). Then, the velocity field is obtained using the definition of the

stream function in eq. (2.5).

ψ̂ =
∑

n=1,3,5...

sin(ωnẑ)[Anr̂
2I2(ωnr̂) +Bnr̂I1(ωnr̂) + Cnr̂

2K2(ωnr̂) +Dnr̂K1(ωnr̂)], (2.26)

ûz =
∑

n=1,3,5...

ωn sin(ωnẑ)[Anr̂I1(ωnr̂) +BnI0(ωnr̂)− Cnr̂K1(ωnr̂)−DnK0(ωnr̂)], (2.27)

ûr = −
∑

n=1,3,5...

ωn cos(ωnẑ)[Anr̂I2(ωnr̂) +BnI1(ωnr̂) + Cnr̂K2(ωnr̂) +DnK1(ωnr̂)]. (2.28)

As mentioned earlier, the pumping power is a key factor in evaluating the performance

and efficiency of a heat exchanger. Thus, the pressure difference ∆P and the skin friction

coefficient Cf are derived in the following for later study.

To be noted that there are too many factors affecting the skin friction coefficient Cf to be

all included (like the capillary number Ca, Weber number We and the interface curvature).
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2.2. Results and discussions

Here, only the friction force caused by the radial gradient of the internal recirculation is

considered. The influences of these interface geometry parameters are neglected due to the

assumption of the two flat ends.

Ff = 2πµ(r

∫ l

0

∂uz
∂r

dz)

∣∣∣∣r1
r2

, (2.29)

∆P =
Ff

π(r2
1 − r2

2)
. (2.30)

The Fanning friction factor and the skin friction coefficient are defined as below, where

Dh =
4π(r21−r22)
2π(r1+r2) = 2(r1 − r2),

f =
1

4

Dh
∆P
l

1
2ρV

2
=
Dh∆P

2ρlV 2
, (2.31)

Cf = fRe. (2.32)

eqs. (1.1) and (2.29) to (2.32) yield the result for the Fanning skin friction coefficient

Cf =
8

β(1 + η)

∑
n=1,3,5...

ωn[Anr̂
2I0(ωnr̂) +Bnr̂I1(ωnr̂) + Cnr̂

2K0(ωnr̂) +Dnr̂K1(ωnr̂)]

∣∣∣∣η
1

.

(2.33)

The sensitivity study is carried out, where the skin friction coefficient Cf is used as the

objective. It is clearly shown in fig. 2.2 that Cf becomes stable after the series number is

higher than 101. For security, for all of the calculations, I set the series number to 101 to

ensure accuracy.

2.2 Results and discussions

2.2.1 Verify solution accuracy using CFD Results

A comparison to the numerical simulation conducted in the Fluent 16.2 (ANSYS, inc.

USA) is made to verify the accuracy of the analytical results. The inner-outer radius ratio
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2.2. Results and discussions

Figure 2.2: The sensitivity study for the analytical solution. Variation of Cf with the
growing series number. β = 2, η = 0.5.

is η =, 0.5, 0.75 , and the aspect ratio is β = 1. The frontal and rear ends of the plug are

set to be planar to fit the assumption of the analytical model. The laminar flow model is

applied, the Reynolds number is set to be 0.5. Water is chosen as the operating fluid. The

number of meshes for all three cases are about 5×105, which passes the mesh independence

check. The outer and the inner walls are set to moving wall condition with −10mm/s. For

the two ends between the liquid plug and the gas, no shear wall condition is applied. The

absolute criteria for convergence are set to be 10−3 for continuity and velocity in all three

directions. Since the model is axisymmetric, I randomly choose a slice which passes the

axial. Then the data for the flow field on these slices are exported for comparison.

From fig. 2.3.(a) and .(b), the velocity field of the analytical model and that of the CFD

simulation corresponds well with each other. No obvious difference could be found. The

comparison here can be treated as a verification to the analytical solution’s accuracy.
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2.2. Results and discussions

Figure 2.3: The velocity vector plot of (a). the analytical model and (b). the CFD results,
β = 1, η = 0.50

2.2.2 Validate using continuous flow(1-D model)

To validate the analytical model using continuous flow, the flow field of fully developed

Stokes flows in the concentric annulus was calculated in [67],

û1D(r̂) =
2(r̂2 − 1) ln η − 2(η2 − 1) ln r̂

η2 − 1− (η2 + 1) ln η
− 1. (2.34)

The stream function can be integrated from eq. (2.34) and the constant term could be

bounded using the zero value boundary condition.

ψ̂1D(1) = ψ̂1D(η) = 0, (2.35)

ψ̂1D(r̂) =
[(r̂2 + η2 − 1) ln η − (2η2 − 1) ln r̂]r̂2 + r̂2 ln r̂ − η2 ln η

2(η2 − 1− (η2 + 1) ln η)
. (2.36)

The skin friction coefficient for 1-D model is also be derived in a similar fashion (eqs. (1.1),

(2.29) to (2.32) and (2.34))

Cf,1D =
16(1− η)2 ln η

η2 − 1− (η2 + 1) ln η
. (2.37)

Especially, the skin friction coefficient can be calculated under 2 asymptotic situations

where the inner radius is zero (in a circular tube, η → 0, Cf,1D → 16) and is infinitely close
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2.2. Results and discussions

to the outer radius (in a slit channel, η → 1, Cf,1D → 24), respectively. The results for Cf,1D

will be used as a validation between continuous flow and very long plugs in section 2.2.6.

Figure 2.4: The comparison between plugs with different aspect ratio β and the 1-D model
of (a) the axial velocity ûz. (b) The stream function ψ̂. The sample line is at ẑ = 0.25 l̂,
and the inner-outer radius ratio is η = 0.90.

The comparison between the axial velocity and the stream function on the sample line

(ẑ = 0.25 l̂) of the plug flow model and these of the continuous 1-D model is plotted in

fig. 2.4. When the plug is short (i.e., β = 1.0), a maximum difference of 0.2 and 0.0025 can

be observed for ûz and ψ̂, respectively. When β = 2.0, the difference becomes very small but

still visible. When the plug is long enough (i.e., β = 10.0), the axial velocity distribution,

as well as that of stream function, will be infinitely close to those of the 1-D model. Thus,

the result here can be considered as a validation under the asymptotic scenarios.

2.2.3 Two asymmetric vortexes

The vortexes in plug flow are forced vortexes resulting from the driving force of the

moving wall (in the plug reference) and the interface between fluids. Hence, the flow pattern

inside the plug can be influenced by the geometry parameters including the inner-outer

radius ratio η of the channel and the aspect ratio β of the plug.

A group of contours of the stream function is presented in fig. 2.5. Two asymmetric

vortexes can be observed. The one closer to the inner wall is referred to as the inner vortex,

while the other is called the outer vortex. Obvious variation such as the size of the two
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2.2. Results and discussions

vortexes, the location of their centers and the maximum/minimum stream function values

can be observed with growing η. Thus, discussions upon these phenomena will be conducted

in this subsection.

Figure 2.5: The contour plots for stream function in plugs with different η, the cross shape
marker are the locations for vortex centers.

Since the inner and the outer vortex have different orientations, they can be classified

using the signal of their stream functions. Due to the rotationally symmetric system, I can

set the polar angel interval to be 0 ∼ 1 for simplification. Then, the size or the volume

taken up by the inner vortex can be numerically integrated using the formula below, where

sgn is the signal function,

V̂in,v =

∫ l̂

0

∫ 1

η

1− sgn(ψ̂)

2
r̂dr̂dẑ. (2.38)

Similarly, the volume of the outer vortex can be written as,

V̂out,v =

∫ l̂

0

∫ 1

η

1 + sgn(ψ̂)

2
r̂dr̂dẑ. (2.39)

The total volume of the plug is,

V̂plug = V̂in,v + V̂out,v =

∫ l̂

0

∫ 1

η
r̂dr̂dẑ =

(1− η2)l̂

2
. (2.40)

The volume ratio between the inner and the outer vortex V̂in,v/V̂out,v is plotted in fig. 2.6.

V̂in,v/V̂out,v is always smaller than 1 and it is a increasing function of η. When η → 1 two

vortexes become nearly identical to each other, the volume ratio V̂in,v/V̂out,v becomes close

to 1, which is like the plug flow in a slit channel. V̂in,v/V̂out,v is also a decreasing function
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2.2. Results and discussions

of the aspect ratio β, especially when it is short (β < 2). This indicates the inner vortex

can take up more space when β < 2. When β > 2, volume ratio becomes nearly stable and

the influence of β is not obvious.

Figure 2.6: The volume ratio between the inner and the outer vortex V̂in,v/V̂out,v.

The volume change of vortexes can also lead to the swift locations of their centers. The

centers always locate at the middle (axial direction) of the plug, and the radial index are

where stream function reaches maximum/minimum value (r̂ψmax , r̂ψmin). Define the index

for the relative locations in the radial direction of vortex centers as below,

Iout,v =
r̂ψmax − η

1− η
, Iin,v =

r̂ψmin − η
1− η

. (2.41)

The indexes Iout,v and Iin,v are plotted in fig. 2.7. When η increases, both Iout,v and

Iin,v increases, which means both centers move towards the outer wall. As shown in fig. 2.6,

the inner vortex takes more volume of the whole and expands when η increases, it is natural

for the inner vortex center to shift away from the inner wall. Meanwhile, the outer vortex

shrinks and the center should move towards the outer wall for the similar reason. Moreover,

the indexes also become independent of the aspect ratio when β > 2.
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2.2. Results and discussions

Figure 2.7: The index for relative location in radial direction of vortex centers.

The strength difference between the two vortexes is also of interest. Thus, the absolute

value of the ratios of minimum and maximum stream functions |ψ̂min/ψ̂max| are plotted in

fig. 2.8. |ψ̂min/ψ̂max| has nearly the same variations to those of the volume ratio V̂in,v/V̂out,v

(in fig. 2.6). Thus there is no need to describe these variations again. However, the ratios

of both volumes and the stream functions only reveals the difference between the inner

and the outer vortex in the same plug, and it can not be used to describe the magnitudes

of circulation cross multiple cases with different geometry parameters. The magnitudes of

circulation inside the plug thus will be discussed in the next subsection.

2.2.4 Quantify radial transport using the averaged recirculation flux

Che, Wong, and Nguyen [3] have pointed out in their research that the heat transfer

enhancement inside the plug flow (in a slit channel) is due to the internal recirculation

and the transverse flow near the front and the rear ends. They plotted out the transverse

velocity distribution on the sample lines which cross the vortex centers for investigation.

Here I adopt the similar strategy by putting sample lines through the two vortex centers.

However, instead of using the radial velocity, the product of velocity and radius r̂ûr (referred

to as the recirculation flux) is studied owing to the changing cross-section area at different r̂
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2.2. Results and discussions

Figure 2.8: The stream function ratio between the inner and the outer vortex centers
ψ̂min/ψ̂max.

in the cylindrical coordinator. Moreover, the averaged value of r̂ûr at inner/outer vortexes

are studied instead of their distributions for the convenient comparison between multiple

cases. The averaged recirculation flux can be calculated by concerning the volumetric flow

rate (the change of stream function defined by eq. (2.5)) on the right half of sample lines,

ψ̂max/min = ψ̂max/min − 0 =

∫ l̂/2

l̂
(−r̂ûr)dl̂

∣∣∣∣
r̂ψ̂max/min

=

∫ l̂

l̂/2
r̂ûrdl̂

∣∣∣∣
r̂ψ̂max/min

.

Reorganize the equation above and define the averaged recirculation flux (r̂ ˆ̄ur)out,v/in,v

of two vortexes, where the signal of it represents the direction of rotation only.

(r̂ ˆ̄ur)out,v/in,v =
ψ̂max/min

l̂ − l̂/2
=

2ψ̂max/min

l̂
. (2.42)

As shown in fig. 2.9 recirculation flux at both vortexes are decreasing functions of aspect

ratio β, which is referred to as the diminishing effect when the plug length increases. In the

small subplot in fig. 2.9, the recirculation at the outer always vortex is stronger than that of
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2.2. Results and discussions

the inner vortex. When the inner-outer radius ratio η increases, the averaged recirculation

flux of the inner vortexes becomes stronger, and that of the outer vortex becomes weaker.

When η → 1, they become nearly the same in absolute value because the channel tends to

be a slit one and the flow field becomes symmetric.

Overall, the averaged recirculation flux (r̂ ˆ̄ur)out,v/in,v can describe and compare the

magnitudes of vortexes under multiple cases. This parameter can help understand the heat

transfer enhancement.

2.2.5 Recirculation period

As mentioned earlier in section 1.3, the recirculation period is an important factor for

evaluate procedures of heat transfer in plug flow such as estimating the entrance region.

However, the definition of the recirculation period is not consistent. For example, it was

roughly defined as one plug length plus twice of the hydraulic diameter of the tube (lplug +

2Dh) in [41] because this definition can suit his explanation for experiment results, while

more accurate trajectory simulations were conducted in [3, 42] to record the distribution of

recirculation period. Here I applied the latter way to investigate the recirculation period.

The recirculation periods are recorded by numerically tracing some passive points which

are initially put on the central plane until they finish one period of recirculation. The

nondimensionalization is conducted as below,

t̂ =
tU

(r1 − r2)
. (2.43)

The distributions of recirculation period t̂ on the central plane(in axial direction, ẑ = l̂/2)

are plotted in fig. 2.10. When β increases, the amplitude of t̂rec increases exponentially

owing to the diminishing effect mentioned earlier, which can lead to weaker heat transfer

enhancement. The double-arrow marks are the boundaries between the inner and the outer

vortexes, and it also moves slightly towards the inner wall, which indicates a smaller volume

ratio V̂in,v/V̂out,v. This matches well with the conclusion made in fig. 2.6.
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2.2. Results and discussions

Figure 2.9: The recirculation flux r̂ûr of the inner vortex and the outer vortex. Main plot
is the averaged value, the small subplots show where the sample line is (right-top), and a
detailed distribution on the sample line for β = 2, η = 0.5 (right-bottom), respectively.
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2.2. Results and discussions

Figure 2.10: The distribution of recirculation time t̂ on the central of the plug (ẑ = l̂/2).
The double-arrows mark the boundaries between the inner and the outer vortexes. β =
1, 2, 3, 4, η = 0.5.

2.2.6 The skin friction coefficient

The influences of β are presented in fig. 2.11.(a). under selected η. With the increasing

β, Cf drops down dramatically owing to the diminishing effect of the recirculation. The dash

lines in fig. 2.11.(a). are the results for the 1-D model calculated through eq. (2.37). The

1-D results are infinitely close to those of long plugs and it can be treated as a validation.

When β > 46 the gap between the Cf of the plug flow and the 1-D model is lower than

1%. Thus, Cf can be simply evaluated using the results from 1-D model (eq. (2.37)) when

the plug is long enough (β > 46). An asymptotic case with η = 10−5 is also conducted to

compare with the Cf in plug flow with circular cross-sections [2]. And, the results show a

perfect agreement.

The influences of η are presented in fig. 2.11.(b). under selected β. Overall, Cf increases

as η grows. The trend is more obvious for relatively longer plugs. For instance, Cf increases

about 12.5%, 25% and 50% for β = 2, 10, 100 when η increases from 0.05 to 0.95, respec-

tively. For long plugs the internal recirculation is quite weak, thus the influence of different
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2.3. Summary of this chapter

curvature of the 2 walls plays an important role. While for short plugs (β = 1) the flow is

almost characterized by the recirculation, thus Cf is less dependent on η.

Figure 2.11: The skin friction coefficient (a). versus β for selected η and (b). versus η for
selected β

2.3 Summary of this chapter

The plug flow has two well-defined vortexes due to the immersible interfaces between

the liquid and the gas, which can potentially enhance the mixing ability and heat transfer.

In this work, the plug flow in the concentric microchannel is modeled using a 4th order

PDE set. The series solution for the set is found, and the flow field is investigated in

detail. Focuses are made upon the influence of the geometry parameters (the aspect ratio

β, and the inner-outer radius ratio η) upon the flow pattern such as vortex center location

I, intensity ratio |ψ̂min/ψ̂max|, the volume ratio V̂in,v/V̂out,v, the averaged recirculation flux

r̂ ˆ̄ur of two vortexes and the recirculation period t̂. The influences upon the skin friction

coefficient Cf are also studied. These findings are summarized as below:

• The flow pattern is greatly influenced by the inner-outer radius ratio η. The higher

η makes the flow tend to be like plug flow in a 2-D microchannel with symmetric

patterns (V̂in,v/V̂out,v → 1, |ψ̂min/ψ̂max| → 1). At lower η, however, two different

vortexes were generated. The outer vortex is similar to that in the microchannel with

round cross-section which takes up most of the volume in the plug, while the inner
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2.3. Summary of this chapter

vortex is weaker and takes up the smaller volume (V̂in,v/V̂out,v < 1, |ψ̂min/ψ̂max| < 1).

• The radial transport phenomena can be quantified using the averaged recirculation

flux. At the inner vortex, the averaged recirculation flux grows stronger with increas-

ing η, while that at outer vortex becomes weaker. The averaged recirculation fluxes

of both vortexes decrease dramatically when β increases, which leads to exponentially

increasing recirculation period with increasing β. This is referred to as the diminishing

effect of recirculation with increasing β.

• The skin friction coefficient Cf can be influenced by both β and η. Overall Cf drops

nearly exponentially with growing β. It increases with growing η, though this trend is

more obvious for relatively longer plugs. For instance, Cf increases about 12.5%, 25%

and 50% for β = 2, 10, 100 respectively when η increases from 0.05 to 0.95.
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Chapter 3

Numerical study of heat transfer

inside plug flow in chapter 2 at

asymmetric boundary conditions

3.1 Modeling for transient heat transfer process in plug

flow

3.1.1 Governing equation and initial/boundary conditions

The governing equation for transient heat transfer for a single plug can be written as

below, where α = k/ρcp represents the thermal diffusivity, k is the conductivity and cp is

the specific heat of the fluid.

∂T

∂t
+

1

r

∂(urTr)

∂r
+
∂(uzT )

∂z
= α[

1

r

∂

∂r
(r
∂T

∂r
) +

∂2T

∂z2
]. (3.1)

It should be noted that the influences of viscous dissipation, body forces, and pressure

difference are all neglected by assuming the Eckert number is small (Ec� 1). The physical

meaning of Ec is the ratio of the kinetic energy to the enthalpy driving force (cp∆T )

for heat transfer (∆T is the temperature difference between the wall and the mean value

of fluid). This assumption is reasonable and can be validated by calculating Ec using

parameters from previous studies. For example, in the experimental work of Asthana,

Zinovik, Weinmueller and Poulikakos[22] the velocity is U = 1 m/s, the working liquid is

water with cp = 4186J/(K · kg), ∆T ∼= 2.55K. Thus the Eckert number is Ec = 0.9E−5 � 1

and the effects of above can be neglected.
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3.1. Modeling for transient heat transfer process in plug flow

Ec =
U2

cp∆T
. (3.2)

In the real cases, the initial condition should be a steady-state temperature distribution,

which is determined by the boundaries before the heating part of the channel. Though using

the real initial condition can help improve the accuracy of the developing process of the

field, it requires much more input pieces of information and adds more complexity to our

investigation. Hence for the initial condition in this work, the whole plug is set to have a

uniform temperature distribution.

T = Ti. (3.3)

There are many kinds of boundary conditions in reality, and it is costly to evaluate

the heat transfer performance at all of these boundary conditions. Hence, three typical

boundary types are chosen to study in this thesis and they are listed as below.

• The inner iso-flux boundaries (shorten as IFB). It represents the plug enters a heat

exchanger with constant heat flux at the inner wall, while the outer wall is isolated.

• The iso-thermal boundaries (shorten as ITB). It represents the plug enters a heat

exchanger with constant inner and outer wall temperatures.

• The outer iso-flux boundaries (shorten as OFB). This boundary type is basically the

same as IFB, the only difference is the orientation of the heat transfer that constant

heat flux is loaded from the outer wall, while the inner wall is isolated.

The schematic show for transient heat transfer is plotted in fig. 3.1. As the liquid plug

moves towards the downstream of the channel, it gradually accumulates heat. The thermal

field inside also develops. The development of the thermal field, as well as heat transfer

ability, is of interest.

The boundary condition for IFB

− k∂T
∂r

(z, r2) = q′′, −k∂T
∂r

(z, r1) = 0. (3.4)
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3.1. Modeling for transient heat transfer process in plug flow

Figure 3.1: The schematic show of boundary conditions (a). The inner iso-flux boundaries
(IFB). (b). The iso-thermal boundaries (ITB). (c). The outer iso-flux boundaries (OFB).
The contours are taken at t̂ = (1, 6, 25, 40) (eq. (2.43)) under these 3 boundary types
correspondingly. (β, η,Pe) = (2, 0.5, 100).
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3.1. Modeling for transient heat transfer process in plug flow

For ITB

T (z, r2) = Th, T (z, ri) = Ti. (3.5)

For OFB

− k∂T
∂r

(z, r2) = 0, −k∂T
∂r

(z, r1) = −q′′. (3.6)

The heat transfer at two ends of the plug is neglected because its segmented by gas.

Thus the adiabatic condition at the two ends of the plug is as below,

∂T

∂z
(0, r) = 0,

∂T

∂z
(l, r) = 0. (3.7)

3.1.2 Nondimensionalization

The nondimensionalization for governing equations and boundary conditions could be

conducted using the parameters below

T̂ ≡ T − Ti
∆Tstd

, (3.8)

where the standard temperature difference ∆Tstd = q′′(r1−r2)
k is for the IFB and OFB,

∆Tstd = Th − Ti for ITB.

Substitute eqs. (2.10), (2.11), (2.43) and (3.8) into eqs. (3.1) and (3.3) to (3.6) to obtain

the the dimensionless governing equations

∂T̂

∂t̂
+ (1− η)(

ûr
r̂

∂(T̂ r̂)

∂r̂
+ ûz

∂T̂

∂ẑ
) =

(1− η)2

Pe
[
1

r̂

∂

∂r̂
(r̂
∂T̂

∂r̂
) +

∂2T̂

∂ẑ2
], (3.9)

where Pe is the Peclet number. Pe represents the ratio between advection ability and

diffusion ability,

Pe =
U(r1 − r2)

α
. (3.10)

The initial condition

T̂ = 0. (3.11)
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3.2. Modeling for the asymptotic case - continuous Stokes flow heat transfer

Grids
T̂ : vertex centered, uniform grids
û: staggered grids, pre-stored analytical results

Nr, Nz 200, β ∗ 200

∆t̂ 1
8 min(1/Nr,Pe/N2

r )

Advection terms Linear upwind differential scheme (LUDS)

Diffusion terms Central differential scheme (CS)

Temporal terms First order forward in time (1st FT)

Table 3.1: Set-up for numerical solution of heat transfer

The boundary condition for IFB

∂T̂

∂r̂
(ẑ, η) = − 1

1− η
,
∂T̂

∂r̂
(ẑ, 1) = 0. (3.12)

For ITB

T (ẑ, η) = 1, T (ẑ, 1) = 0. (3.13)

For OFB
∂T̂

∂r̂
(ẑ, η) = 0,

∂T̂

∂r̂
(ẑ, 1) =

1

1− η
. (3.14)

And, the adiabatic condition at the two ends of the plug

∂T̂

∂ẑ
(0, r̂) = 0,

∂T̂

∂ẑ
(l̂, r̂) = 0. (3.15)

The eqs. (3.9) and (3.11) to (3.15) are discretized using the finite volume method, then

coded to be simulated in MATLAB 2016A. As illustrated in section 1.3, the flow field and

the thermal field is decoupled under the scenarios where Pr � 1. The simulation uses the

pre-stored flow field results obtained by the analytical method in chapter 2. More details

about the setup of the numerical solving can be examined in table 3.1.

3.2 Modeling for the asymptotic case - continuous Stokes

flow heat transfer

When discussing the heat transfer performance of the plug flow configuration, usually

that of the single-phase flow is also derived for comparison. For instance, the ratio of the
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3.2. Modeling for the asymptotic case - continuous Stokes flow heat transfer

Nusselt number Nu of the two kinds of configurations can be used to show the enhancement

by plug flow.

To obtain the fully developed thermal field of the continuous Stokes flow heat transfer

inside the concentric tube, firstly a Euler reference sticking to the ground is used for sim-

plification. Under this reference, the fully developed thermal field is a function of spatial

indexes (ẑ, r̂) only, and the axial derivative ∂T̂
∂ẑ becomes constant and independent of the

radial index r̂ [68]. The derivation of the solution for the fully developed thermal field at

IFB is shown as below, while those at other two boundary types can also be obtained in a

similar fashion.

With the help of the control volume method, it is found out that

∂T̂

∂ẑ
=

2η

Pe(1− η2)
. (3.16)

A simplified version of eq. (3.9) is used to describe the thermal field by substitute

eq. (3.16) into it, plus by setting the radial velocity ûr = 0, the axial diffusion term ∂2T̂
∂ẑ2

= 0,

and the temporal term ∂T̂
∂t̂

= 0.

2η

(1 + η)(1− η)2
(ûz r̂) =

1

r̂

∂

∂r̂
(r̂
∂T̂

∂r̂
). (3.17)

To be noted here the ûz is the dimensionless velocity to the ground, thus it equals to

û1D(r̂) + 1 in the Euler reference sticking to the plug in eq. (2.34). For simplification, the

form of the velocity field is reorganized for later derivation.

ûz = Er̂2 + F ln r̂ − E, (3.18)

where the constant coefficients E,F are

E =
2 ln η

η2 − η2 ln η − ln η − 1
, F =

2(1− η2)

η2 − η2 ln η − ln η − 1
. (3.19)

Substitute eqs. (3.18) and (3.19) into eq. (3.17), then integrate twice to obtain the fully

developed thermal field in the form of difference between local temperature and that of

the inner wall T̂ − T̂in,w. Since in the internal flow, heat transfer performance is usually
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3.3. Heat transfer performance at inner iso-flux boundary (IFB)

described using dimensionless parameters (like Nusselt number Nu or thermal resistance σ)

based upon temperature difference and spatial derivative, the distribution of T̂ − T̂in,w is

enough for calculation.

T̂ − T̂in,w =
2η

(1 + η)(1− η)2
(
E

16
r̂4 +

F

4
r̂2 ln r̂ − E + F

4
r̂2 +

E + F

4
ln r̂)

∣∣∣∣r̂
η

. (3.20)

Using a similar fashion, the results under the inner iso-thermal and the outer iso-flux

boundaries can also be obtained.

For ITB,

T̂ = logη r̂. (3.21)

For OFB,

T̂ − T̂out,w =
2

(1 + η)(1− η)2
(
E

16
r̂4 +

F

4
r̂2 ln r̂− E + F

4
r̂2 +

E + F + 2− 2η

4
ln r̂)

∣∣∣∣r̂
1

. (3.22)

The calculation was conducted in MATLAB 2016A, and results were stored in the

compatible style as these from plug flows, so they can be quoted for the same post-processing

(such as calculating Nu), and then compared with each other. In the following sections,

subscript sp represents that the results are taken from single-phase/continuous Stokes flow

heat transfer.

3.3 Heat transfer performance at inner iso-flux boundary

(IFB)

In this section, the heat transfer process at IFB is presented versus the dimensionless

time t̂. Then a simplified thermal network is introduced, where several dimensionless pa-

rameters such as the dimensionless thermal conductance σplug are defined to evaluate the

heat transfer performance. The enhancement by applying plug flow configuration is calcu-
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3.3. Heat transfer performance at inner iso-flux boundary (IFB)

lated by comparing to the single-phase flow in the form of conductance ratio σplug/σsp, and

influences of dimensionless inputs η, β and Pe are presented and discussed.

3.3.1 Processes of heat transfer and its simplified thermal network

Figure 3.2: Heat transfer process at IFB, (β, η,Pe) = (2, 0.5, 100). (a). (I) ∼ (IV) Sequence
of dimensionless temperature T̂ distribution at t̂I∼IV = (1, 6, 25, 40). (b). Variation of
dimensionless temperature at the inner wall T̂in,w, at the outer wall T̂out,w and the mean

value ˆ̄T , and the mixing index γ. The black solid points correspond to the examples shown
in (a). (c). Simplified thermal network for IFB.

A typical sequence of the developing thermal field of a plug (β, η,Pe) = (2, 0.5, 100)

at IFB is plotted in fig. 3.2. After entering the heating channel with a uniform initial

temperature, the thermal boundary layer first develops within the inner vortex with the
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3.3. Heat transfer performance at inner iso-flux boundary (IFB)

help of both advection and diffusion (fig. 3.2 (a). (I).). The mean temperature ˆ̄T (defined

below) and the inner wall average temperature ˆ̄Tin,w both increase (fig. 3.2 (b).). At this

beginning stage, there is nearly no heat input into the outer vortex yet, thus no obvious

increase is observed for the outer wall average temperature
ˆ̂
Tout,w.

ˆ̄T =

∫ r1
r2

∫ l
0 ruzTdzdr∫ r1

r2

∫ l
0 ruzdzdr

=

∫ 1
η

∫ l̂
0 r̂ûzT̂dẑdr̂∫ 1

η

∫ l̂
0 r̂ûzdẑdr̂

. (3.23)

The expansion of the thermal layer continues and reaches the boundary between the

inner and the outer vortexes (fig. 3.2 (a). (II).). Then there occurs an obvious heat transfer

between the inner and the outer vortex. The heat transferred through the vortex boundary

is considered as the input into the outer vortex, and it initiates the increase of the outer

wall average temperature ˆ̄Tout,w (fig. 3.2 (b).) with the help of the advection and diffusion

of the outer vortex.

After developing with the help of the convection in the inner vortex, the heat transfer

through the vortex boundary and the convection in the outer vortex, the relative shape

of the temperature contour gradually becomes steady (fig. 3.2 (a). (III) and (IV).). This

yields the steady and identical growth rate of ˆ̄T , ˆ̄Tin,w and ˆ̄Tout,w. The mixing index γ is

defined to describe the relative location of ˆ̄T between the interval of ˆ̄Tin,w and ˆ̄Tout,w. At

this stage, the mixing index γ becomes steady due to the identical growth rate of ˆ̄T , ˆ̄Tin,w

and ˆ̄Tout,w. Thus, the fully thermal developed field is considered to be reached here.

γ =
ˆ̄T − ˆ̄Tout,w

ˆ̄Tin,w − ˆ̄Tout,w
. (3.24)

The result in fig. 3.2 reveals the process of heat transfer at IFB: (1). The convection

inside the inner vortex. (2). The development of the heat transfer through the boundary

between the inner and the outer vortexes. (3). The convection in both vortexes and (4).

The fully thermal developed field. Under the fully thermal developed field, a simplified

thermal network is proposed in fig. 3.2 (c). to describe the heat transfer performance inside

the plug flow. The thermal resistance 1/σ̂in,w and 1/σ̂out,w are defined as below to evaluate

the overall heat transfer ability between the inner wall and the fluid, the outer wall and
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3.3. Heat transfer performance at inner iso-flux boundary (IFB)

the fluid respectively. Since the outer wall is adiabatic under this boundary condition, the

route for 1/σ̂out,w is cut, and all the heat flows into the capacitor (plug) to increase the

mean temperature ˆ̄T .

σ̂in,w−f = − η
β

∫ l̂
0(∂T̂∂r )r̂=ηdẑ

ˆ̄Tin,w − ˆ̄T
. (3.25)

σ̂out,w−f =
1

β

∫ l̂
0(∂T̂∂r )r̂=1dẑ

ˆ̄Tout,w − ˆ̄T
. (3.26)

Substitute eq. (3.12) into eq. (3.25), the thermal resistance under this boundary con-

dition (IFB) is obtained below. The simple relationship in eq. (3.27) indicates that the

higher the conductance is, the relatively lower inner wall temperature (comparing to the

mean temperature) is achieved, and it is less possible to cause device failure due to local

high temperature.

σ̂plug = σ̂in,w−f =
η

1− η
1

ˆ̄Tin,w − ˆ̄T
. (3.27)

Since both the heat input and the total plug capacity are proportional to the plug length

l̂. It is better to define Ĉplug as the thermal capacity per length for comparison between

cases with different lengths. Then Ĉplug can be calculated using control volume method

(with the results in eq. (3.16)),

Ĉplug =
Pe(1− η2)

2
=

PeV̂plug

l̂
. (3.28)

Since the properties has been assumed to be constant and uniform, the thermal capac-

ity for the volume taken up by the inner and the outer vortex can also be calculated by

comparing eqs. (2.38) to (2.40) and (3.28),

Ĉin,v =
PeV̂in

l̂
. (3.29)

Ĉout,v =
PeV̂out

l̂
. (3.30)
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3.3. Heat transfer performance at inner iso-flux boundary (IFB)

It is easily validated that Ĉin,v/Ĉout,v = V̂in,v/V̂out,v. This actually applies to any

extensive physical properties as long as they are distributed uniformly. Thus in the later

discussions, no specific difference needs to be addressed between one kind of capacity ratio

and another such as the thermal capacity ratio and the mass capacity (volume) ratio.

In the following subsections, the influences of the plug aspect ratio β, the inner-outer

radius ratio η, and the Peclect number Pe are taken into account. Considering that in the

heat exchanger design work, the thermal field is fully developed for the most part of the

device, only influences at this stage are investigated. Thus, the mixing index γ is recorded

to assure that the thermal fully developed field is reached before the investigation.

3.3.2 Influences of the inner-outer radius ratio η

In fig. 3.3 (a). there presents the developing of the thermal conductance σ̂plug under

varying inner-outer radius ratios η, while the other two parameters are fixed at (β,Pe) =

(2, 200) during the simulations. σ̂plug experiences a decreasing process after the starting of

the heat transfer and reaches a constant value after a period of time. The dimensionless time

for sampling here is t̂ = 58, and the conductance σ̂plug for all thermal fields are independent

of t̂ afterwards, thus the fully developed stage is reached.

The influence of the inner-outer radius ratio η is plotted in fig. 3.3 (b). The thermal

conductance σ̂plug increases with increasing η, because (1). the increasing averaged recircu-

lation flux (r̂ ˆ̄ur) at the inner vortex enhances the advection near the inner wall (fig. 2.9),

(2). the capacity ratio Ĉin,v/Ĉout,v of the inner vortex increases (fig. 2.6), and the plug mean

temperature ˆ̄T is therefore closer to the average inner wall temperature ˆ̄Tin,w, ˆ̄Tin,w − ˆ̄T is

relatively lower, σ̂plug is therefore higher (eq. (3.27)).

The conductance for single-phase flow heat transfer σ̂sp and the enhancement denoted

by σ̂plug/σ̂sp are plotted in fig. 3.3 (b). It is found that the enhancement to single-phase

flow σ̂plug/σ̂sp first increases when η increases, it reaches a peak value of 2.78 at η = 0.55,

and then decreases when η increases furthermore. All of the enhancements at different η

are larger than 1.46 (obtained at η=0.90), which means there exist enhancement to the

single-phase flow for all the inner-outer radius ratio η.
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3.3. Heat transfer performance at inner iso-flux boundary (IFB)

Figure 3.3: (a). Development of the thermal conductance σ̂plug, (b). influence of the
inner-outer radius ratio η upon σ̂plug and the enhancement by plug flow comparing to the
single-phase flow heat transfer σ̂plug/σ̂sp. (β,Pe) = (2, 100)
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3.3.3 Influences of the aspect ratio β

In fig. 3.4 it plots the influence of plug dimensionless length β upon the thermal con-

ductance σ̂plug, while the Peclet number Pe is fixed at Pe=200 during the simulations. In

fig. 3.3 (a). σ̂plug decreases when β increases, while its increasing trend with increasing η

remains still.

This decreasing effect with growing β is already predicted earlier in both section 2.2.4 and

section 3.3.1. Since the recirculation velocity, which determines the strength of advection,

decreases with growing β. Moreover, the increasing length also increases the distance for

each recirculation trajectory, which highly increases the recirculation period t̂rec (fig. 2.10),

reduces the recirculation frequency, and reduces the heat transfer enhancement.

In fig. 3.4 (b). the enhancement comparing to the single-phase flow heat transfer

σ̂plug/σ̂sp decreases when β increases. When η = 0.9, σ̂plug/σ̂sp drops slightly and re-

mains about 1.42 when β increases from 1 to 10. While at η=0.1, σ̂plug/σ̂sp drops from 2.02

to 1.10 when β experiences the same increase. This indicates that for the lower inner-outer

radius ratio η, the enhancement tends to be more affected by the plug length β. One of the

reason can be that, at lower η the capacity ratio σ̂plug/σ̂sp decreases more obviously with

the growing β (fig. 2.6), and the plug mean temperature ˆ̄T is thus away from inner wall

temperature ˆ̄Tin,w, the difference ˆ̄Tin,w− ˆ̄T increases more, and σ̂plug drops more (eq. (3.27)).

Under each β, the enhancement still increases first, reaches the peak and then decreases

again with the growing η. The peak value of each σ̂plug/σ̂sp curve drops due to the dimin-

ishing of the internal recirculation, while the η to reach the peak value also increases when

β increases. This interaction of β and η makes the enhancement to single-phase flow more

complex, and thus the findings here can be used to search for the optimum design.

3.3.4 Influences of the Peclet number Pe

The influence of Pe is plotted in fig. 3.5 while the dimensionless plug length is fixed at

β=2 during the simulations. In fig. 3.5 (a). the thermal conductance σ̂plug increases when

Pe grows. Meanwhile, it is observed in fig. 3.5 (b). that the enhancement to the single-phase

flow σ̂plug/σ̂sp also increases greatly when Pe grows. The mathematic explanation behind

this is obvious that the total capacity of the plug Ĉplug = Pe(1 − η2)/2 is proportional to
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Figure 3.4: Influence of plug dimensionless length β upon (a). the thermal conductance
σ̂plug, (b). the enhancement by plug flow comparing to the single-phase flow heat transfer
σ̂plug/σ̂sp. The arrows in figures mark the direction of increasing β. Pe = 100.
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the increasing Pe (eq. (3.27)), the amplitude of temperature difference ˆ̄Tin,w − ˆ̄T then shall

decreases with comparable scale, and the conductance therefore becomes higher (eq. (3.27)).

The physics behind this explanation is that higher Pe means relatively higher heat capacity

or convection ability, more portion of heat is carried by the hot fluid directly into the

colder area away from the wall. Instead of diffusion in a single direction (inner wall-outer

wall), this portion of heat diffuses into the vortex center/the outer vortex when advected

by the fluid on the closed stream line, the diffusion area is larger, and thus the overall heat

transfer performance is stronger. In fig. 3.5 (b). η to reach the peak value increases when

Pe increases. The result is similar to that in fig. 3.3 (b). and is therefore useful for the

design work.

Despite the findings in this section at IFB. In the real heat exchangers, there exist

more types of boundary conditions and the whole process can be more complex. Thus, the

discussions of the heat transfer at 2 other typical boundary conditions are carried out in

the following 2 sections. Lots of the conclusion at this 3 boundary conditions are similar,

and more focus will be made upon the differences between them.

3.4 Heat transfer performance at the inner iso-thermal

boundaries (ITB), comparison to IFB

Unlike the inner iso-flux boundary condition, the outer wall here is not adiabatic and

there exists the heat output through the outer wall. The developments of the heat input

Q̂in, the heat through the vortex boundary Q̂b and the heat output Q̂out for a typical plug

are plotted in fig. 3.6 (a)., while the other working conditions are the same as in fig. 3.2

The heat input Q̂in reaches a high value as soon as the heat transfer starts and gradually

decreases. Heat through the vortex boundary Q̂b initiates at about t̂ = 0.5 and gradually

increases. At last, heat output through the outer wall Q̂out initiates at t̂ = 3.0 and gradually

increases. Three heat transfer rates obey the following relationship Q̂out ≤ Q̂b ≤ Q̂in, which

yield positive heat accumulation and temperature growing in both vortexes (Q̂in − Q̂b ≥ 0

and Q̂b − Q̂out ≥ 0). The equitation is obtained when the thermal field develops long

enough (t̂ > 26.0), and there exists zero heat accumulation in the plug (Q̂out = Q̂b = Q̂in),
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Figure 3.5: Influence of Peclet number Pe upon (a). the thermal conductance σ̂plug, (b).
the enhancement by plug flow comparing to the single-phase flow heat transfer σ̂plug/σ̂sp.
The arrows in figures mark the direction of increasing Pe. β = 2.
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the mean temperature ˆ̄T will no longer increase as well. Since the mixing index can be

simplified into the plug mean temperature at ITB γ =
ˆ̄T−T̂out,w

T̂in,w−T̂out,w
=

ˆ̄T−0
1−0 = ˆ̄T , the mean

temperature ˆ̄T can be used as the index to assure the thermal fields are fully developed

during the simulations.

Figure 3.6: Heat transfer process at ITB, (β, η,Pe) = (2, 0.5, 100). (a). Variation of the

mean temperature ˆ̄T , and the dimensionless heat flow at the inner wall Q̂in, at the outer
wall Q̂out and at the boundary between two vortexes Q̂b. The black solid points correspond
to the examples shown in (b)., (b). (I) ∼ (IV) Sequence of dimensionless temperature T̂
distribution at t̂I∼IV = (0.5, 3, 9.5, 25).

The thermal network for the iso-thermal boundary condition is then extracted and

plotted in fig. 3.7 (b). Comparing to that under the inner iso-flux boundary condition

in fig. 3.7 (a). the power source is changed from constant flux into constant temperature
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ˆ̄Tout,w = 1. There exists both the resistance between the inner wall and the fluid, and

that between the fluid and the outer wall since the outer wall is not adiabatic. The total

resistance is thus 1/σ̂in,w−f + 1/σ̂out,w−f = (σ̂in,w−f + σ̂out,w−f )/(σ̂in,w−f σ̂out,w−f ) , which

yields the overall plug conductance σ̂plug = (σ̂in,w−f σ̂out,w−f )/(σ̂in,w−f + σ̂out,w−f ) under

the iso-thermal boundary condition. At the stage of the fully thermal developed field, there

is zero flow into the capacitor Ĉplug, which exactly corresponds to zero heat accumulation

in the whole plug.

Figure 3.7: Comparison between IFB and ITB (a) (b). the thermal networks, (c). the
thermal conductance σ̂plug, (d). the enhancement by plug flow comparing to the single-phase
flow heat transfer σ̂plug/σ̂sp. The working condition is the same as in fig. 3.3.

The plug conductance, as well as the enhancement comparing to the single-phase flow,

are then plotted in fig. 3.7 (c). and (d). respectively. It can be concluded that changing

the boundary condition to the iso-thermal type only lowers the amplitude of the thermal

conductance σ̂plug and the enhancement σ̂plug/σ̂sp, while their trends versus varying working

conditions like η are not much affected. The reason can be the existence of an additional
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resistor between the outer wall and the fluid 1/σ̂out,w−f , which has been discussed above.

3.5 Heat transfer performance at the outer iso-flux

boundaries (OFB), comparison to IFB

If the heat is loaded at the outer wall, the overall heat transfer performance should

vary as well, because the heat path has reversed, and because the two vortexes are not

symmetric to each other. In the thermal network (fig. 3.8 (a). and (b).), the overall plug

conductance is not the same one at two boundary types. For the inner iso-flux boundary

condition σ̂plug = σ̂in,w−f is the conductance between the inner wall and the fluid, while

σ̂plug = σ̂out,w−f is that between the outer wall and the fluid for the outer iso-flux boundary

condition.

The plug conductance for both boundary types are plotted in fig. 3.8 (c). that σ̂plug is

always higher under the outer iso-flux boundary condition. This is due to the stronger outer

vortex with higher radial transport velocity (fig. 2.9) and higher capacity (fig. 2.6). The

difference of σ̂plug between two boundary types gradually decreases when η grows, because

the difference between the two vortexes gradually diminishes.

In fig. 3.8 (d). it is found that the enhancement comparing to the single-phase flow

σ̂plug/σ̂sp is a decreasing function of the inner-outer radius ratio η under the outer iso-flux

boundary condition. This is a result of both decreasing (1). the recirculation flux (r̂ ˆ̄ur)

(fig. 2.9), and (2). The capacity of the outer vortex Ĉout,v (fig. 2.6). When η → 1 the two

vortexes become nearly identical to each other, thus σ̂plug/σ̂sp under two boundary types

have a trend to converge with each other, both of which can be replaced using the results

in a slit channel.

The results in this section enhance the fact that different thermal conductance and en-

hancement to the single-phase flow vary with the different boundary types [18], it also varies

when the heat is loaded from the outside or the inside due to the asymmetric vortexes. Since

the correlations for plug flow heat transfer is far away from being sufficient for designing

the plug flow-based heat exchanger [59], if any correlations are to be proposed in the future

work, these effects should be taken into consideration.
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Figure 3.8: Comparison between IFB and OFB (a) ∼ (b). the thermal networks, (c). the
thermal conductance σ̂plug, (d). the enhancement by plug flow comparing to the single-phase
flow heat transfer σ̂plug/σ̂sp. The working condition is the same as in fig. 3.3.
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3.6 Results for steady heat transfer under fully developed

stage

3.6.1 Simplification based upon control volume method

An interesting observation is in section 3.3.1, that the growth rate of ˆ̄T , ˆ̄Tin,w and ˆ̄Tout,w

is identical at fully developed stage. It indicates a possibility that the conclusion for single

phased flow mentioned in [68], that ∂T̂
∂Ẑ

is uniform inside the channel, also suits for the

2-D scenario in plug flow heat transfer. To examine that, the distribution of ∂T̂
∂t̂

at the

fully developed stage as below under the same condition as in fig. 3.2 is plotted out. The

standard deviation of ∂T̂
∂t̂

is also calculated.

Figure 3.9: Temporal derivative of the thermal field ∂T̂
∂t̂

at t̂ = 50 ,at IFB, all other param-
eters are same as in fig. 3.2

As shown in fig. 3.9, the distribution of ∂T̂
∂t̂

is quite uniform, the value is about 6.7 ×

10−3 = 2×0.5
100×(1+0.5) = 2η

Pe(1+η) , and the standard deviation of ∂T̂
∂t̂

is as low as 1.4431× 10−5,

which is 0.2202% of the mean value of ∂T̂
∂t̂

. This can be a validation to the hypothesis

that the uniform distribution of ∂T̂
∂t̂

is obtained in the plug flow heat transfer under the

fully developed stage. With the help of above conclusion, a demonstration of deriving the

solution of fully developed thermal field at IFB will be presented below, while the other two

boundary conditions can be processed using a similar fashion.
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At IFB, the growth rate can be calculated by the control volume method, which is

2η
Pe(1+η) . The governing equation under fully developed stage is

2η

Pe(1− η2)
+ (1− η)(

ûr
r̂

∂(T̂ r̂)

∂r̂
+ ûz

∂T̂

∂ẑ
) =

(1− η)2

Pe
[
1

r̂

∂

∂r̂
(r̂
∂T̂

∂r̂
) +

∂2T̂

∂ẑ2
]. (3.31)

Figure 3.10: Comparison between (a). thermal field under simplified model for fully devel-
oped stage, and (b). that at t̂ = 60 using transient method, at OFB, all other parameters
are same as in fig. 3.2

Where the definition for the the dimensionless temperature T̂ = T
∆Tstd

− 2η
Pe(1+η) t̂−const,

which is independent of the developing time t̂. As mentioned earlier, when evaluating

the heat transfer performance the relative shape, or say the spatial distribution instead
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3.6. Results for steady heat transfer under fully developed stage

Range of Pe SOR

0 ∼ 500 1− (3/2500)Pe
500 ∼ 1000 200/Pe− Pe/4000 + 1/8
> 1000 75/Pe

Table 3.2: Set-up for relaxation ratio (SOR) for steady state heat transfer

of the absolute value is important. Thus, taking away the term 2η
Pe(1+η) t̂ will not effect

the calculation of, for example, σ̂in,w−f in eq. (3.25). Other boundary conditions are the

same as in eq. (3.12), though it should be noted that there lack the boundary condition

for temperature values. To bound the system, the temperature at a certain location is

artificially set to zero (T̂ (η, 0) = 0). Then eq. (3.31) is discretized using the finite volume

method (details provided in table 3.1), though the time step is not involved in this problem.

The equation is iterated using the Jacobi method with a relaxation ratio (SOR) based upon

Pe. Details about SOR are provided in table 3.2.

A comparison between the result of this method at OFB and that from the transient

method at t̂ = 60 is plotted as below. There exist nearly no difference in the relative shape

between two contours, the results based on spatial distribution such as σ̂ will not be affected

at all. Thus this can be treated as a validation.

With the help of this simplified model, calculating the thermal field under 3× 19× 19×

11 = 11, 913 kinds of commonly seen working conditions (coefficients are for numbers of

boundary conditions, β, η, Pe respectively) was conducted in an acceptable time, and the

results are stored in a database for later study.

3.6.2 Some results and potential future design work

A popular dimensionless parameter Nusselt number (Nu) is chosen to describe the results

under all 11, 913 working conditions. The definition of Nu is

Nu =
hDh

k
. (3.32)

Where h is the convective heat transfer coefficient, and Dh =
4π(r21−r22)
2π(r1+r2) = 2(r1−r2). For

IFB and ITB,
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3.6. Results for steady heat transfer under fully developed stage

h =

∫ l
0(−k ∂T∂r )r=r1dz∫ l

0(Tin,w − T̄ )r=r1dz
. (3.33)

For OFB,

h =

∫ l
0(−k ∂T∂r )r=r2dz∫ l

0(Tin,w − T̄ )r=r2dz
. (3.34)

Substitute eqs. (3.4) to (3.6) and (3.24) into eqs. (3.33) and (3.34)

For IFB,

Nu =
2

T̄in,w − ˆ̄T
. (3.35)

For ITB,

Nu = − 2

β

∫ l̂
0(∂T̂∂r̂ )r̂=ηdẑ

1− ˆ̄T
. (3.36)

For OFB,

Nu =
2

T̄out,w − ˆ̄T
. (3.37)

It is easily validated that Nu/Nusp = σ/σsp, because one can derive from, for instance,

eqs. (3.25) and (3.35) that Nu = f(η)σ and Nusp = f(η)σsp, where f(η) only depends on the

boundary for sampling. Thus, mathematically speaking its equivalent to use either of them

to describe the heat transfer enhancement. Here Nu is chosen only due to its popularity

among engineers and there is no need to analyze the thermal network in this subsection.

The distribution of Nu versus β and η is plotted using the mesh plot function in MATLAB

2016A, where each subplot is under a certain Pe.

These plots along with the datasets can be quoted in the future design work, which is

preferred especially for optimization/inverse problem. For example, when Pe for a particular

working condition is near anyone in our database, one can efficiently use the interpolation to

obtain the required outputs. Even if Pe exceeds any of those in the database, calculating the

thermal field is quite fast with the help of analytical flow field solution and our simplified
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3.6. Results for steady heat transfer under fully developed stage

Figure 3.11: I of II: The sequence of plots for Nu under Pe = 1, 2, 5, 10, 20, 50 at IFB
condition.
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3.6. Results for steady heat transfer under fully developed stage

Figure 3.12: II of II: The sequence of plots for Nu under Pe = 100, 200, 500, 1000, 2000 at
IFB condition.
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3.6. Results for steady heat transfer under fully developed stage

Figure 3.13: I of II: The sequence of plots for Nu under Pe = 1, 2, 5, 10, 20, 50 at ITB
condition.
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3.6. Results for steady heat transfer under fully developed stage

Figure 3.14: II of II: The sequence of plots for Nu under Pe = 100, 200, 500, 1000, 2000 at
ITB condition.
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Figure 3.15: I of II: The sequence of plots for Nu under Pe = 1, 2, 5, 10, 20, 50 at OFB
condition.
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3.6. Results for steady heat transfer under fully developed stage

Figure 3.16: II of II: The sequence of plots for Nu under Pe = 100, 200, 500, 1000, 2000 at
OFB condition.
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3.7. Summary of this chapter

model. The advantage would be more evident with the increasing amounts of working

conditions needed in order to search for an optimal design.

3.7 Summary of this chapter

The numerical simulation for the heat transfer process at three kinds of boundary con-

ditions in gas-liquid plug flow in tube-in-tube microchannels is carried out in MATLAB

2016A. The heat transfer process is analyzed and extracted into simplified thermal net-

works. The mixing index γ is used to assure the simulation is continuing until the thermal

field is fully developed. At the fully thermal developed field, the influences of the plug length

β, the inner-outer radius ratio η and the Peclet number Pe upon the plug thermal resis-

tance σ̂plug and upon the enhancement to the single-phase flow σ̂plug/σ̂sp are investigated.

The difference between heat transfer performance between the inner iso-flux boundaries and

other two boundaries are presented and explained using their thermal networks. Summary

of findings are listed as follows:

• The process of heat transfer inside the plug flow at a certain boundary type can be

simplified using a thermal network. Different boundary conditions determine whether

some routes containing resistors should be cut, they also determine the location and

the type of the heat source, as well as the orientation of the heat transfer path.

• At the inner iso-flux condition (IFB), growing η leads to the higher thermal capacity

ratio of the inner vortex Ĉin,v/Ĉout,v as well as higher recirculation flux (r̂ ˆ̄ur) at the

inner vortex, which lowers the temperature gap between the inner wall and the mean

value of the plug ˆ̄Tin,w− ˆ̄T and increases the thermal conductance σ̂plug. The variation

of the enhancement to single-phase flow heat transfer with varying η is not singular,

and the peak enhancement is reached at about η = 0.55 when (β,Pe) = (2, 100).

• Longer plugs have lower σ̂plug and σ̂plug/σ̂sp, which is caused by lower (r̂ ˆ̄ur) and

dramatically longer recirculation period t̂rec. With growing β, the η corresponding to

the peak of σ̂plug/σ̂sp also increases.

• Higher Pe increases the thermal capacity of the whole plug Ĉplug, which leads to more
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3.7. Summary of this chapter

portion of heat being directly advected into the plug and enhances the combining

effect of advection and diffusion, σ̂plug and σ̂plug/σ̂sp are enhanced, therefore.

• At the iso-thermal boundary condition (ITB), lower amplitudes of both σ̂plug and

σ̂plug/σ̂sp are reached comparing to those at the inner iso-flux boundary condition.

However, their trends versus different working conditions like η are not affected. This

variance in the amplitudes is caused by an additional resistor between the outer wall

and the fluid 1/σ̂out,w−f .

• At the outer iso-flux boundaries (OFB), both σ̂plug and σ̂plug/σ̂sp are always higher

than those under the inner iso-flux boundary condition, because both the capacity of

the outer vortex Ĉout,v and the recirculation flux (r̂ ˆ̄ur) of the outer vortex are larger

than those of the inner vortex. When η → 1, all these parameters tend to converge

at both IFB and OFB because now the plug is like the plug inside of a slit channel.

The difference between these three boundary types enhances the fact that different

correlations should be developed when the boundary condition type changes, or the

heat transfer path reverses. It can be a focus of the future work.

• A simplified model for heat transfer at the fully thermal developed stage was intro-

duced to save simulation time. About 12, 000 cases were simulated in an acceptable

time, Nusselt number of which were extracted and mesh plotted for design work need

in the future.
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Chapter 4

Analytical study of liquid-liquid

plug flow in circular microchannel

The liquid-liquid plug flow in microchannel has different boundary conditions comparing

to the gas-liquid plug flow. In gas-liquid flow, the viscous force at the two ends of the liquid

plug is neglected since the low viscosity of the gas plug. In liquid-liquid plug flow, this

interfacial interaction between the two plugs can no longer be ignored. Also, it makes the

boundary condition, along with the analytical solutions, more complicated.

In this chapter, firstly the focus is on the mathematical modification towards the bound-

ary conditions, as well as towards the process of obtaining the analytical solutions in the

liquid-liquid plug flow in the microchannel with a round cross-section. Then, some discus-

sions are made upon phenomena caused by the interface interaction. Finally, the influence

of the viscosity ratio of the two plugs upon the skin friction coefficient will be presented.

4.1 Mathematic modeling

4.1.1 Governing equations and boundary conditions

Apply the same basic assumptions in chapter 2, and use two moving coordinators sticking

to each plug respectively, the liquid-liquid plug flow can be modeled using two PDEs with the

plug index i = 1, 2; j = 2, 1 in the substrate respectively. Here the nondimensionalization

process has been skipped since it is basically the same as in chapter 2.

{L̂4
−1ψ̂}i = 0, (4.1)

Two of the assumptions about boundary conditions can be still adapted from chapter 2:
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4.1. Mathematic modeling

Figure 4.1: Schematic show for liquid-liquid plug flow in microchannel with round cross-
section.

1. The stream function is zero at all boundaries, 2. there is no slip between the walls and

liquid plug.

{ψ̂(0, r̂)}i = 0, {ψ̂(β, r̂)}i = 0, {ψ̂(ẑ, 1)}i = 0 (4.2)

{ 1

r̂

∂ψ̂

∂r̂
(ẑ, 1)}i = −1, (4.3)

However, at the two ends of each plug, there exists viscous force due to the velocity

gradients. They can be described using: 1. continuity for velocities at two sides of the

interface, 2. continuity for the viscous force at two sides of the interface.

{ 1

r̂

∂ψ̂

∂ẑ
(0, r̂)}i = { 1

r̂

∂ψ̂

∂ẑ
(β, r̂)}j , (4.4)

µi
µj
{ 1

r̂

∂2ψ̂

∂ẑ2
(0, r̂)}i = { 1

r̂

∂2ψ̂

∂ẑ2
(β, r̂)}j . (4.5)

From eqs. (4.4) and (4.5) it can be seen that PDEs for plug 1 and 2 are coupled together,

thus two systems should be solved simultaneously.

65



4.1. Mathematic modeling

4.1.2 Analytical solution

To obtain the series solution of eqs. (4.1) to (4.5), similar fashion can be found from a

more general problem from [4]: the Stokes flow in a 2-D cavity given boundary conditions

on both top/bottom walls and front/rear walls. In this work, the authors used 2 infinite

series under 2 orthogonal basis functions of x, y respectively to describe the flow field.

Any distribution in the x direction, such as boundary condition on the top or on the

bottom, has an unique position in the functional space containing the orthogonal basis

M(x) = 〈M1(x),M2(x) · · · 〉 = 〈Mm(x)〉. Where M(x) is found through the eigenvalue

problem. Then the index function for each basis can be found by substituting the basis

into original PDEs, denoted as g(y) = 〈g1(y), g2(y) · · · 〉 = 〈gm(y)〉. Coefficients for g(y)

can be bounded by getting the inner product of the boundary condition and each basis

Mm(x) respectively, because of the orthogonality, only the terms of series m will be kept.

Similarly, any distribution in the y direction has an unique position in the functional space

containing the orthogonal basis L(y) = 〈Ll(y)〉, which comes with an index function in this

space f(x) = 〈fl(x)〉. The sum of 2 infinite series M(x) • g(y) + L(y) • f(x) thus can fit

any distributions on both direction x, y, thus can fit any given boundary conditions on both

top/bottom and front/rear walls.

Figure 4.2: Schematic show for Stokes flow in a cavity with moving walls, a demonstration
of the problem in [4]. F ,G are generic boundary conditions.
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4.1. Mathematic modeling

Thus here the sum of 2 infinite series is used to describe the flow field,

ψ̂ = M(r̂) • g(ẑ) + L(ẑ) • f(r̂).

The orthogonal basis L(ẑ) must obey

∂2

∂ẑ2
L = −Ω2L, (4.6)

where Ω is the eigenvalue matrix,

Ω =


ω1

ω2

. . .

 .

The boundary condition for this set of basis is

L(0) = L(β) = 0. (4.7)

The basis from eqs. (4.6) and (4.7) is L(ẑ) = 〈sin(ω1ẑ), sin(ω2ẑ) · · · 〉 = 〈sin(ωlẑ)〉, where

ωl = lπ/β. This has been obtained already in chapter 2. Then the index vector should obey

(
∂2

∂r̂2
− 1

r̂

∂

r̂
−Ω2)(

∂2

∂r̂2
− 1

r̂

∂

r̂
−Ω2)f = 0. (4.8)

From eq. (4.8), the index function can be obtained

f(r̂) = 〈fl(r̂)〉 = 〈

 r̂I1(ωlr̂)

r̂2I2(ωlr̂)

 •

El
Fl

〉,
which is part of that in chapter 2. The terms of r̂K1(ωlr̂), r̂

2K2(ωlr̂) are dropped because

here the flow is in the circular tube in stead of concentric tube, and these terms approach

the infinity when r̂ = 0.

The orthogonal basis in r̂ direction can also be found in a similar fashion, which is

(
∂2

∂r̂2
− 1

r̂

∂

r̂
)M = −X2M , (4.9)
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where the eigenvalue matrix is

X =


χ1

χ2

. . .

 .

The boundary condition is

M(0) = M(1) = 0. (4.10)

The solution of eqs. (4.9) and (4.10) is M(ẑ) = 〈r̂J1(χ1r̂), r̂J1(χ2r̂) · · · 〉 = 〈r̂J1(χmr̂)〉,

where χm is the mth zero root of J1(χ) and Jν is the νth order of Bessel function of the

first kind. The index vector here obeys

(
∂2

∂ẑ2
−X2)(

∂2

∂ẑ2
−X2)g = 0. (4.11)

From eq. (4.11), the index function can be obtained

g(ẑ) = 〈gm(ẑ)〉 = 〈


sinh(χmẑ)

cosh(χmẑ)

ẑ sinh(χmẑ)

ẑ cosh(χmẑ)

 •


Am

Bm

Cm

Dm

〉.

Thus, the universal solution is the sum of 2 series,

ψ̂ = M(r̂) • g(ẑ) + L(ẑ) • f(r̂) =

∞∑
l=1

sin(ωlẑ)[Elr̂I1(ωlr̂) + Flr̂
2I2(ωlr̂)]

+

∞∑
m=1

r̂J1(χmr̂)[Am sinh(χmẑ) +Bm cosh(χmẑ) + Cmẑ sinh(χmẑ) +Dmẑ cosh(χmẑ)],

(4.12)

where A ∼ F are constant coefficients. Substitute eq. (4.12) into boundary conditions

eqs. (4.2) to (4.5), then apply the finite Fourier transformation eq. (2.16) when dealing
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with distribution in ẑ direction, and apply the Hankel transformation (defined below) when

dealing with distribution in r̂ direction.

Hm[ψ̂] =

∫ 1

0
ψ̂J1(χmr̂)dr̂. (4.13)

The zero value for stream function on the wall,

{ElI1(ωl) + FlI2(ωl)}i = 0. (4.14)

The zero value for stream function on the front/rear ends of the plug,

{Bm}i = 0, {Am sinh(χmβ) + Cmβ sinh(χmβ) +Dmβ cosh(χmβ)}i = 0. (4.15)

Continuity for velocity at two sides of the interface,

{ J2(χm)2

2


χm cosh(χmβm)

sinh(χmβm) + χmβm cosh(χmβm)

cosh(χmβm) + χmβm sinh(χmβm)

 •


Am

Cm

Dm


+
∞∑
l=1

ωl(−1)l

 ∫ 1
0 r̂J1(χmr̂)I1(ωlr̂)dr̂∫ 1

0 r̂
2J1(χmr̂)I2(ωlr̂)dr̂

 •

El
Fl

}i

= { J2(χm)2

2


χm

0

1

 •


Am

Cm

Dm

+

∞∑
l=1

ωl

 ∫ 1
0 r̂J1(χmr̂)I1(ωlr̂)dr̂∫ 1

0 r̂
2J1(χmr̂)I2(ωlr̂)dr̂

 •

El
Fl

}j . (4.16)

The non-slip boundary on the wall

{βωl
2

I0(ωl)

I1(ωl)

 •

El
Fl

+

∞∑
m=1

χmJ0(χm)


∫ β

0 sinh(χmẑ) sin(ωlẑ)dẑ∫ β
0 ẑ sinh(χmẑ) sin(ωlẑ)dẑ∫ β
0 ẑ cosh(χmẑ) sin(ωlẑ)dẑ

 •


Am

Cm

Dm

}i
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= {−1− (−1)l

ωl
}i (4.17)

Continuity for viscous force at two sides of the interface,

µi
µj
{


χ2
m sinh(χmβ)

2χm cosh(χmβ) + βχ2
m sinh(χmβ)

2χm sinh(χmβ) + βχ2
m cosh(χmβ)

 •


Am

Cm

Dm

}i = {2χmCm}j . (4.18)

By truncating both series, the infinity large system formed by eqs. (4.14) to (4.18) can

be truncated into a system of (N × 5× 2)× (N × 5× 2), where N is the maximum order of

the truncated series, and all (N × 5× 2) coefficients can be obtained by solving this linear

system. To reduce the rank of the matrix, it is recommended to reorganize the equations

starting from eqs. (4.14), (4.15) and (4.18), where the coefficients for one series are not

tangled with these from the other one. Choose an independent variable from each series at

an order, thus all the other 3 coefficients at this order can be expressed by them. Then,

substitute into eqs. (4.16) and (4.18), and the system is reduced into (N×2×2)×(N×2×2).

In the practice of this thesis, Cm, Fl are chosen as the two sets of independent variables, and

then calculations for other three sets of coefficients are conducted after solving the system.

This can save a considerate amount of calculation time.

After bounding the coefficients in eq. (4.12), the flow field as well as the skin friction

coefficients for each plug can be calculated. Refer to chapter 2 for the procedures since they

are basically identical.

ûz =
∞∑
l=1

ωlsin(ωlẑ)[ElI0(ωlr̂) + Flr̂I1(ωlr̂)]

+

∞∑
m=1

χmJ0(χmr̂)[Am sinh(χmẑ) + Cmẑ sinh(χmẑ) +Dmẑ cosh(χmẑ)], (4.19)

ûr = −
∞∑
l=1

ωlcos(ωlẑ)[ElI1(ωlr̂) + Flr̂I2(ωlr̂)]
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−
∞∑
m=1

J1(χmr̂){[Amχm + Cmχmẑ +Dm] cosh(χmẑ) + [Cm +Dmχmẑ] sinh(χmẑ)}, (4.20)

Cf =
4

β

∞∑
l=1

ωl[1− (−1)l][ElI1(ωl) + FlI0(ωl)]. (4.21)

The sensitivity study is also carried out here. The objective is the averaged skin friction

coefficient (eq. (4.23)). It is shown in fig. 4.3 that the averaged skin friction coefficient is

stable after series number is larger than 61. Thus, 61 is chosen as the maximum series

number.

Figure 4.3: The sensitivity study for the analytical solution. Variation of averaged Cf with
the growing series number. β1 = 1, β2 = 1, µ2/µ1 = 16.

4.2 Results and discussions

4.2.1 Validate using previous numerical study [1]

To validate the analytical solution, a case from [1] is chosen for comparison. The working

liquid for plug 1 is n-butyl acetate (l1 = 3.0 mm, µ1 = 7.370 × 10−4 Pa · s) while that for
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plug 2 is water (l2 = 2.4 mm, µ2 = 8.090× 10−4 Pa · s). The inner diameter for the channel

is 1.0 mm (r = 0.5 mm). Thus, the dimensionless parameters here is β1 = 6.0, β2 =

4.8, µ2/µ1 = 1.2076. The comparison between the results from [1] and from the analytical

solution is plotted in the fig. 4.4. As it shows, no obvious difference can be seen in two

subplots, most of the main characters such as well defined internal circulation and the turn

around of streamlines near the ends of plugs are well captured by our analytical solution.

Thus, it can be treated as an validation.

Figure 4.4: Comparison between plots of flow field (a) from simulation in [1] (re-printed with
permission) and (b) from the analytical solution in this work. β1 = 6.0, β2 = 4.8, µ2/µ1 =
1.2076.

4.2.2 Validate using the existing gas-liquid model [2]

The gas-liquid plug flow model is a simplification of the liquid-liquid model, where the

viscosity is neglected in the gas phase. Hence, two models should converge when µ2/µ1 is

large enough and phase 1 becomes the gas phase in the liquid-liquid model.

The gas-liquid plug flow can either be obtained by setting the inner-outer radius ratio

infinity close to 1 (η → 1) in chapter 2 (though some numerical error will occur owing to

the large value of Bessel function K near the inner wall). Thus, it is preferred to obtain

the results from the previous work of Che, Wong, Neng and Nguyen [2] directly. The case
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for validate is β = 2 for the gas-liquid model and β1 = 1, β2 = 2, µ2/µ1 = 64 for the

liquid-liquid model. The viscosity ratio µ2/µ1 = 64 is chosen because throughout my work,

I find lots of variations with increasing viscosity ratio becomes stable when µ2/µ1 > 64

(These variations will be discussed in the next a few subsections).

Figure 4.5: Comparison between contours of stream function (a) from the analytical solution
of the gas-liquid model in [2] (here only the equations in this citation are used to plot the
contour) and (b) from the analytical solution of liquid-liquid model in this work. (c) The
distribution of axial velocity ûz on 3 sample lines ẑ = 1.00, 0.40, 0.20. β1 = 1, β2 =
2, µ2/µ1 = 64 (β1, µ2/µ1 are not needed for (a)).

The comparison between two results is plotted in fig. 4.5. No obvious difference can be

seen from two contour plots. The axial velocity distribution is also nearly identical. Thus,

this can be treated as a validation under the condition when the viscosity ratio µ2/µ1 is far

from 1.
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4.2.3 Influence of viscosity ratio µ2/µ1

As mentioned in [57, 59], the gradient of ûr near the interface is the key for momentum

transfer as well as for generating cap vortexes. When µ2/µ1 is larger than 1, the gradient of

ûr is different at two sides of the interface owing to the continuity of shear force. The plug

1 with smaller viscosity will have larger ∂ûr/∂ẑ, this might lead to the transverse velocity

near the interface because of the continuity of velocity, and in another word, might lead to

secondary vortex near this interface. A demonstration is shown in fig. 4.6.

Figure 4.6: Schematic show of the reason for cap vortexes when µ2/µ1 is sufficiently large.
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The most natural way of strengthening or weakening the shear force is to vary the

viscosity ratio of two plugs µ2/µ1. In fig. 4.7, the influence of viscosity ratio µ2/µ1 of two

plugs upon the flow pattern as well as secondary vortexes are presented, where the lengths

of two plugs are mounted at β1 = 1, β2 = 1. In fig. 4.7 (a) when µ2/µ1 is 1, an well defined

vortex (main vortexes) can be seen in each plug with a shape of bullet head (head is towards

the center of channel r̂ = 0). The ’cache’ zone can be seen near the interface of two fluids,

where the velocity gradually becomes nearly zero in both plugs. In fig. 4.7 (b) when µ2/µ1

is 2, the shape of the main vortex in the plug 1 becomes like triangle with curved head and

the ’cache’ zone takes more space. The main vortex of plug 2 however expands, the head

(at r̂ = 0) of the curved triangle becomes wider. The cap vortexes, which develop inside

the ’cache’ zone and firstly appear when µ2/µ1 approaches 4 as in fig. 4.7 (c), gradually

become stronger when µ2/µ1 increases to 16 and squeeze the space of original main vortex

as in fig. 4.7 (d).

Figure 4.7: Sequence of stream lines with increasing µ2/µ1 = (1, 2, 4, 16), where β1 = β2 = 1.

In fig. 4.8 (b), the intensity of secondary vortex center ψ̂min is plotted against varying

µ2/µ1. Since the negative symbol here means the rotation of the vortex, thus the decreasing

of ψ̂min in fig. 4.8 (b) yields the strengthening cap vortexes however in the inversed rotation
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as that of the main vortex. The decreasing trend of ψ̂min is obvious when µ2/µ1 firstly

increases because of stronger momentum transfer by shear force at the interface, and then

it becomes stable when ψ̂min reaches 64, where the plug 1 can be treated as a gas plug.

Figure 4.8: The influence of increasing µ2/µ1 upon (a) ψ̂max the intensity of main vortex
centers , (b) ψ̂min the intensity of cap vortex centers in plug 1 and (c) Ĉcap the capacity
(volume) of the cap vortex in plug 1.

Similarly, in fig. 4.8 (c) an increasing trend of the volume taken up by the cap vortexes

Ĉcap (defined below) can be firstly observed, then it becomes stable when µ2/µ1 becomes

larger than 64. The variation of the intensity of main vortexes ψ̂max then can be easily

understood as in fig. 4.8 (a). When µ2/µ1 increases, the ’cache’ zone in plug 1 gradually de-

velops and becomes cap vortexes which completes with its main vortex, thus ψ̂max decreases

until µ2/µ1 becomes 64. The inversed process and trending happen in plug 2 naturally.
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Ĉcap =

∫ β

0

∫ 1

0

1− sgn(ψ̂)

2
r̂dr̂dẑ. (4.22)

4.2.4 Influence of plug lengths β1, β2

As discussed in chapter 2 the circulation inside the gas-liquid plug flow can be highly

affected by the lengths or say aspect ratios of plugs. Thus, the influences of the length of

plug 1 and plug 2 are investigated, respectively.

Figure 4.9: Sequence of stream lines with increasing β1 = (1, 2, 4), where β2 = 1 and
µ2/µ1 = 16.

The sequence of streamlines of varying β1 is plotted inside fig. 4.9, where β2 = 1 and

µ2/µ1 = 16. Two obvious findings are listed: 1. The cap vortexes shrink slightly in size

and, thus 2. the shape of the main vortex in plug 1 varies from a triangle to a like trapezoid.

However, no visible change can be observed in plug 2.

The detailed influences of β1 are then plotted in fig. 4.10. From fig. 4.10 (a) it can be

seen that the influence of β1 upon the main vortex in plug 1 is like that in gas-liquid plug

flow. ψ̂max in plug 1 firstly increases, reaches the 1-d asymptotic limit and then becomes

stable when β1 increases. The influence upon ψ̂max in plug 2 is not visible, which suit

well to the observation made earlier in fig. 4.9. In fig. 4.10 (b) and (c) it can be seen that

cap vortexes ψ̂min become slightly weaker while its capacity Ĉcap firstly decreases when β1
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Figure 4.10: The influence of varying β1 upon (a) ψ̂max the intensity of main vortex centers
, (b) ψ̂min the intensity of cap vortex centers in plug 1 and (c) Ĉcap the capacity (volume)
of the cap vortex in plug 1.
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increases from 1 to 2, then increases again when β1 increases from 2 to 10.

Figure 4.11: The influence of varying β2 upon (a) ψ̂max the intensity of main vortex centers
, (b) ψ̂min the intensity of cap vortex centers in plug 1 and (c) Ĉcap the capacity (volume)
of the cap vortex in plug 1.

Similarly, the influences of varying β2 are plotted out in fig. 4.10. However, no obvious

influence of any is observed besides that upon the main vortex in plug 2 itself.

4.2.5 Skin friction coefficients Cf

The skin friction coefficients for two plugs can be quoted from eq. (4.21), respectively.

The total pressure loss can be calculated by repeating the calculation for that introduced

by each plug using their skin friction coefficients. However, an overall coefficient to evaluate
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the pumping power without calculating for multiple times is preferred. It is easily found

out from the definition of skin friction coefficient that,

∆P ∝ µβ.

And since the total pressure loss is

∆P = ∆P1 + ∆P2.

Figure 4.12: The skin friction coefficients for plug 1, plug 2 and their mean value with
varying µ2/µ1, β1 = β2 = 1.

Thus, the definition of the overall friction coefficient is as below. In fig. 4.12, the friction

coefficients for plug 1, plug 2 and their mean value are presented, where the plug lengths are

mounted at β1 = β2 = 1. Identical value is obtained when µ1 = µ2 naturally. When µ2/µ1
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increases from 1 to 128, Cf,1 increases from 76.81 to 99.22, while Cf,2 decreases from 76.81

to 54.41. The mean value for a two-plug period Cf is closer to the variation of Cf,2, which

decreases from 76.81 to 54.76. The value of Cf at extremely high µ2/µ1 is very close to

that of gas-liquid flow in [2], since here the flow field for plug 2 is already close to gas-liquid

flow field with the same length β2.

Cf =
µ1β1Cf,1 + µ2β2Cf,2

µ1β1 + µ2β2
. (4.23)

The detailed influences of plug lengths β1 and β2 are presented in fig. 4.13. In fig. 4.13

(a) It can be concluded that: 1. The mean skin friction coefficient Cf is a decreasing

function of β1. 2. The influence of β1 is more obvious when the viscosity of two plugs are

still comparable (µ2/µ1 is small). When µ2/µ1 is large, as have seen in fig. 4.12 the mean

Cf can be close to Cf,2, and the influence caused by plug 1 is limited. 3. Cf is a decreasing

function of µ2/µ1 when β1 is small, while it becomes an increasing function of µ2/µ1 when

β1 > 2. The influence of β2 is simple as in fig. 4.13 (b) that Cf is a decreasing function of

both β2 and µ2/µ1.

4.3 Summary of this chapter

The interaction between the interface of liquid-liquid plug flow caused by shear force can

complicate the flow field. Secondary vortexes near the caps of the fluid with significantly

smaller viscosity will be generated. In this chapter, 2 PDEs was setup simultaneously to

model the liquid-liquid plug flow in microchannels with round cross-section. Detailed study

of the relationship between main and cap vortexes was carried out, the influence of plug

lengths and viscosity ratio upon flow pattern and skin friction coefficient were discussed.

Findings are summarized as below:

• The cap vortexes would gradually appear when µ2/µ1 increases. It is formed owing

to the velocity continuity on the interface, as well as the high gradient of velocity

in the plug 1 with small viscosity caused by the continuity of shear force. The cap

vortexes become stronger as µ2/µ1 increases, the capacity (volume) of which also

expands simultaneously.
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Figure 4.13: Variations of mean skin friction Cf coefficients with increasing µ2/µ1, β1 =
β2 = 1 under (a)β2 = 1, β1 = 1 ∼ 10, (b)β1 = 1, β2 = 1 ∼ 10
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• The intensity of main vortexes in two plugs show inversed trends to each other with

increasing µ2/µ1. ψ̂max in plug 1 drops since it competes with the cap vortexes inside,

while that in plug 2 grows with increasing µ2/µ1 naturally.

• The lengths of plugs will mainly influence their main vortex. The length of the plug

with small viscosity β1 has an impact upon the cap vortexes in itself, while the length

of another plug β2 barely has an impact upon the cap vortexes.

• The skin friction coefficient Cf is a decreasing function of all β1, β2 and µ2/µ1 but for

one case, where β1 is large and where Cf becomes an increasing function of µ2/µ1.

• All of the trends mentioned here become stable when µ2/µ1 becomes large sufficiently

and converges to that under the gas-liquid plug flow scenario with the same lengths,

which is owing to infinitely small velocity gradient near the ends in plug 2, and hence

its flow field is infinitely close to that in gas-liquid plug flow.
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Chapter 5

Conclusions, limitations and

potential future work

Plug flow creates well defined and stable vortexes, which are owing to the circulating

fluid inside caused by interfaces between two immiscible fluids. It is very efficient in heat

transfer enhancement comparing to single-phase flow. Meanwhile, it is also much easier to

control compared to flow with phase change. Inside microchannel, the dominance of viscous

force makes the momentum equation linear and solvable (the Stokes assumption), which

can help save a considerable amount of time for the design work with a massive number of

cases to search within.

In this thesis, I concentrated on finding analytical solutions to plug flow in microchannels

with different geometry and find out two unrevealed series solutions in the end: 1. gas-

liquid plug flow in the concentric microchannel and 2. liquid-liquid plug flow in the circular

microchannel. Then I systematically investigated the influences of multiple inputs upon

both flow pattern and skin friction coefficient in details.

An application of the gas-liquid plug flow field in the concentric tube, the heat transfer

at three kinds of typical boundary conditions were simulated and investigated in detail.

Enhancements by the plug flow heat transfer to single-phase flow heat transfer were revealed

for all types of boundary types. Three simplified thermal networks of heat transfer at each

boundary type were extracted and used to explain heat transfer performance under different

working conditions. At the end of this numerical study, a simplified model used for the fully

developed thermal field was extracted with the help of the control volume method. Around

12,000 cases were simulated in an acceptable amount of time, whose Nusselt numbers were

stored for direct quoting to help the design work in the future.
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However, there still stand some limitations of this work due to the limited time and

facilities. I will talk about these limitations and give some suggestions to enhance the

results of this thesis and to create new findings in the future.

First of all, though some validation and verification from either asymptotic cases or

previous researches have been carried out, no experiment in the author’s lab has been con-

ducted relevant to this topic. As have illustrated in the introduction, there stand challenges

to both advanced non-intrusive, micro-scale temperature measuring facilities and perfectly

matched materials to avoid failure caused by optical refraction. Unfortunately, there were

limited experienced hands relative to either at the beginning stage of this study, which led

to the hard decision on not doing experiments. However, if one can accurately and quanti-

tatively capture the plug flow field in complicated, non-straight microchannels, merely their

methodology will be a significant contribution.

Secondly, by the very end of finishing this work, my supervisor and I found a correlation

which can directly calculate the maximum/minimum stream functions. The correlation is

not redundant to the analytical solution since it saves the time of calculating and searching

the whole field and only focuses on the key of enhancing mixing or heat transfer. Under

numerous working conditions, it was also found out the maximum/minimum stream func-

tions (in fig. A.4) has a similar trend as the heat transfer enhancement at IFB and OFB (in

fig. 3.8). Though the very dense database and quick simulation based upon simplified model

is already great for engineering design need, this can still be a chance to reveal a quantita-

tive connection between the plug flow field and thermal performance. Unfortunately owing

to limited time (see details in appendix A), the correlation is only developed for the flow

field. To build the connection between circulation flux and the heat transfer enhancement

can be a focus in the future.

Lastly, the limitation of the analytical model has been mentioned earlier in chapter 2.

The influence of surface tension cannot be included in the analytical modeling. However, I

have come up with an idea (thanks to Dr. Brinkerhoff’s hint) of treating the liquid film as a

liquid-liquid interface, when the plug is not deformed too much. The boundary conditions

here may not be interpreted as the non-slip moving wall anymore, however can still be

described using a known distribution when the information about the liquid film is given
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such as the film thickness (which can set the calculation domain) and the slippery velocity

compared to the wall (which can help to determine the first order and second order boundary

conditions). Then by applying similar fashion in chapter 4 the analytical solution can still

be obtained. The modification to heat transfer model can be even more straightforward

since the flow is in laminar region, the heat transfer in the liquid film can be seen as a

Greatz problem or even as pure conduction if the slippery is not strong. Overall, to include

the liquid film in the current analytical modeling can be a potential point for the future

work.
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Appendix A

Correlations for long plugs (β > 2)

in chapter 2

The analysis in this section will focus on long plugs, which have relatively large aspect

ratios, i.e. β > 2. Because as shown in chapter 2, the influence of β upon the volume ratio

of the two vortexes V̂in,v/V̂out,v and the ratio of maximum and minimum stream functions

|ψ̂min/ψ̂max| are negligible when β > 2. Thus these two parameters are dependent on η

only. We will derive the correlation for them when β > 2 with the help of the following

figure,

Figure A.1: The volume ratio of two vortexes V̂in,v/V̂out,v, and the ratio of max/min stream

functions |ψ̂min/ψ̂max| when β > 2. The solid lines are the correlations for the points
obtained from analytical results in chapter 2.
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The solid lines in fig. A.1 are the correlation made. The volume ratio V̂in,v/V̂out,v shows

a relationship with the radius ratio of the channel η, which is

V̂in,v/V̂out,v = η. (A.1)

Similarly, fig. A.1 shows the ratio of max/min stream functions |ψ̂min/ψ̂max| varies with

η as below,

|ψ̂min/ψ̂max| = η1.16. (A.2)

To further derive the correlations, define the total volumetric recirculation rate of the

plug using the summation of those of two vortexes, which is |ψ̂max|+ |ψ̂min| = ψ̂max− ψ̂min.

Figure A.2: The total of volumetric recirculation rate of two vortexes ψ̂max− ψ̂min becomes
independent of β when β > 2.

In the small subplot in fig. A.2 the total recirculation rate grows and then becomes

stable when plug length l̂ increases. This stable value is marked with a subscript max. The
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ratio (ψ̂max − ψ̂min)/(ψ̂max − ψ̂min)max becomes infinity close to 1 as well when β > 2.

Hence, ψ̂max − ψ̂min can also be correlated using η only when β > 2.

Figure A.3: The refresh frequency defined in eq. (A.3). The solid lines are the correlations
for the points obtained from analytical results in chapter 2.

Define the refresh period τ̂ as below, which is the ratio between the volume of the whole

plug V̂plug and the total recirculation rate ψ̂max− ψ̂min, here the result in eq. (2.40) is used,

τ̂ =
V̂plug

ψ̂max − ψ̂min
=

(1− η2)l̂

2(ψ̂max − ψ̂min)
. (A.3)

If τ̂−1 is plotted against the plug length l̂ = β(1 − η) for multiple cases obtained from

chapter 2 with β > 2 as in fig. A.3, it can be clearly concluded that τ̂−1 is dependent on l̂

only. A simple inverse model is adopted here,

τ̂−1 = 0.1973l̂−1. (A.4)

Then the total recirculation rate ψ̂max − ψ̂min is concluded from eqs. (A.3) and (A.4),
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ψ̂max − ψ̂min = 0.0986(1− η2). (A.5)

The correlations for ψ̂max/min are concluded by combining eqs. (A.2) and (A.5),

ψ̂max =
0.0986(1− η2)

1 + η1.16
, (A.6)

ψ̂min = −0.0986(1− η2)η1.16

1 + η1.16
. (A.7)

An important set of parameters for quantifying vortexes, the averaged recirculation flux

by the two vortexes (r̂ ˆ̄ur)out,v/in,v are defined in chapter 2. Thus they can be calculated by

combining eqs. (2.42) and (A.6) or eqs. (2.42) and (A.7), respectively.

(r̂ ˆ̄ur)out,v =
0.1973(1− η2)

(1 + η1.16)l̂
, (A.8)

(r̂ ˆ̄ur)in,v = −0.1973(1− η2)η1.16

(1 + η1.16)l̂
. (A.9)

A comparison between the analytical results in chapter 2 and these from correlations

eqs. (A.5) to (A.7) for long plugs (β > 2) is plotted as below. For the inner vortex, the

correlation in eq. (A.7) shows good agreement with all analytical results. For the outer

vortex, the correlation in eq. (A.7) agrees well with the data points except for plugs with

small inner radius (η <∼ 0.2). As a result, eq. (A.5) predicts the total plug circulation rate

with good accuracy except for small inner radius (η <∼ 0.2). Overall the correlations can

well predict parameters such as maximum or minimum stream functions and the averaged

recirculation flux, the appropriate range for applying these correlations is β > 2 ∧ η >∼ 0.2.
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Figure A.4: Comparison between the correlation and the analytical results. The solid lines
are the correlations for the points obtained from analytical results in chapter 2.
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