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Abstract

We address the transport properties of a mesoscopic realization of the Sachdev-
Ye-Kitaev (SYK) model which is an exactly solvable system of interacting
spinless fermions connected to the black hole physics through the holo-
graphic principle. Starting with a recent proposal for simulating the SYK
model in a graphene flake in an external magnetic field and extending it by
considering leads attached to it, we model a realistic transport experiment
and calculate directly measurable quantities featuring non-Fermi liquid sig-
natures of the SYK physics. We show that the graphene flake realization
is robust in the presence of leads and that measuring the tunneling current
across the leads one can experimentally observe a non-Fermi liquid - Fermi
liquid transition by tuning the external magnetic field threading the flake.
After establishing the transport signatures of the SYK model near equilib-
rium using linear response framework, we then derive a formula to extend
our results for tunneling current using Keldysh formalism to explore the
effects of finite bias voltage across the leads, going beyond equilibrium.
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Lay Summary

Very strong interactions between electrons in a metal are well known to give
rise to rich physics yet such materials are in general difficult to analyze the-
oretically. However, a rare exception has emerged recently. In this work, we
consider a new and very popular system called the Sachdev-Ye-Kitaev model
which has strong interactions and can be solved exactly. This model is very
attractive because it is not only accessible analytically but also has certain
properties which are mathematically similar to those of black holes due to its
very random, strongly interacting nature. We start with a recently proposed
experimental realization of this model and study its electrical conductance in
the hopes of understanding implications of very strong interactions between
electrons.
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Preface

All of the results presented in this thesis have been published on the arXiv
e-print archive. [Oguzhan Can, Emilian M. Nica, and Marcel Franz. Charge
transport in graphene-based mesoscopic realizations of Sachdev-Ye-Kitaev
models, ArXiv e-prints, arXiv:1808.06584 [cond-mat], Aug 2018 ] At the
time of writing this thesis, this paper has also been submitted to a peer-
reviewed journal.

The universal jump we observe in section 2.1 has been discovered, and
the finite temperature weak tunneling regime dependencies of the current
presented in section 2.3 have been analytically calculated by my supervi-
sor, Marcel Franz who has also provided the initial idea for this project. I
have worked out the details of his preliminary analytical calculation for the
zero temperature linear response regime using Keldysh path integral formal-
ism (see appendix) and numerically confirmed and extended these results to
finite temperature. My collaborator Emilian Nica has later calculated the fi-
nite temperature analytical expression for the linear response current, which
is a result we refer to yet do not discuss in this thesis but it can be found
in the aforementioned publication.

Keldysh saddle point derivation of the general current expression pre-
sented in section 2.4, which is my original contribution, is the main result
in this thesis and its details can be found in the appendix. It has also been
independently derived by Emilian Nica using diagrammatic techniques.

Analytic results in section 2.5 that provide us with a modified form of
the saddle point equations incorporating the effects of the reservoirs on the
system are Emilian Nica’s work. I have performed the numerical solution to
these equations which then showed that the low energy SYK physics on the
flake is robust in the presence of explicit coupling to the reservoirs.

Contributions of my collaborators to the analytical results described
above, which are critical for presentation and completeness of this work are
cited appropriately within the text. I have performed all of the numerical
work using Python and these calculations are completed on the high per-
formance computing cluster LISA at the Stewart Blusson Quantum Matter
Institute (SBQMI), UBC.
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Chapter 1

The Model

1.1 Introduction to SYK model and the proposal

SYK is an exactly solvable quantum mechanical model connected to black
hole physics in AdS2 space-time gravity theories through holographic prin-
ciple. [1] Complex fermion variant of the SYK model is given by

HSYK =
1

(2N)3/2

∑
ijkl

Jijklc
†
ic
†
jckcl

where the couplings among N spinless fermionic modes, Jijkl are drawn

from complex random Gaussian distribution with variance |Jijkl|2 = J2.
This model develops an emergent conformal symmetry [2] at low energies,
for 1 � βJ � N . In this so called conformal regime, SYK model displays
holographic behaviour such as saturating the chaos bound [3] and finite zero
temperature entropy [4] which are also properties of charged black holes. [5]

Though SYK is not the first holographic model, it is remarkable due
to its simplicity and the fact that it is exactly solvable. [6] This makes
the model crucial in further understanding of the AdS/CFT correspondence
which is also called the holographic duality. Holography relates two seem-
ingly unrelated physical systems in the sense that the correlators and certain
thermodynamic quantities of the two theories show the same functional de-
pendence [5] and the symmetries of these two theories match [7]

SYK and its variants are popular examples of holographic quantum mat-
ter where non-Fermi liquid (NFL) behaviour is observed in the presence of
strong correlations and strong disorder. In a non-Fermi liquid, elementary
excitations of the system can not be associated with non interacting elec-
tronic excitations through adiabatic continuity arguments. This means that
the familiar quasiparticle description fails, making theoretical considerations
difficult. Nevertheless, SYK model is special: despite the strong correlations
it can be solved and certain observable quantities can be analytically ob-
tained [6]. However, the distinct non-Fermi liquid behaviour of SYK model
remains to be experimentally observed. Recently, various realizations have
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1.1. Introduction to SYK model and the proposal

been proposed involving ultracold atoms [8], Majorana modes on the surface
of a topological superconductor [9], semiconductor quantum wires attached
to a quantum dot [10] and finally a graphene flake in external magnetic field
[11], See a recent review [12] for a comprehensive overview of these different
approaches. Our focus will be the complex fermion realization of the SYK
model utilizing the highly degenerate zeroth Landau levels on a graphene
flake in external transverse magnetic field [11]. Though it is shown that such
a model realizes the SYK hamiltonian, an actual experimental situation and
the quantities that would be measured in a laboratory setup are relatively
unexplored.

In this work, we model a transport experiment that would probe the
conformal behaviour of the SYK model with this graphene flake realization
by attaching two leads that would drive a current through the flake hosting
the SYK model. We address the signatures of the conformal SYK behaviour
in a transport experiment, effects of attaching the leads to the original model
and in particular, study whether the SYK behaviour is robust in the presence
of leads. We start with a rather conventional linear response approach near
equilibrium and then extend our results to nonequilibrium phenomena.

B

Figure 1.1: A schematic of the proposed experimental setup

In order to study the effects of the leads, we consider an interesting exten-
sion of SYK model, proposed by Banerjee and Altman [13], which is an SYK
model of N complex fermions coupled to a set of M auxiliary non interact-
ing fermionic degrees of freedom. The authors have shown that by tuning
only the fermion density of the SYK model, one observes a quantum phase
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1.2. Roadmap

transition from a Fermi liquid to a non-Fermi liquid. A remarkable result
they obtain is that the phase diagram of this model does not depend on the
strength of the coupling between these two sub-systems but only on the SYK
fermion density and the ratio of the number of fermions p = M/N constitute
the two. Just as in the original SYK model, this system is also exactly solv-
able in the large-N,M limit. We propose that the extension of SYK model
by Banerjee and Altman [13] can be adapted to the graphene flake realization
[11] where the noninteracting auxiliary fermions would model the endpoints
of leads coupled to graphene flake which hosts SYK complex fermions. Once
such a system is realized in an experimental setting, through a simple trans-
port experiment that only requires readily available technologies, we could
obtain the experimental signatures of the SYK model in the large-N limit
where the numerical techniques run into difficulties. This model would not
only make it possible to probe holographic matter, but also make the ex-
perimental study of the predicted Fermi liquid - non-Fermi liquid transition
[13] possible, in the hopes of confirming the theoretical predictions.

We also demonstrate that the random Gaussian model for the lead end-
points is not absolutely necessary and we consider a lead model made of
noninteracting ballistic chains attached to the SYK graphene flake and show
that the SYK physics persists even in the presence of strong coupling to such
leads.

1.2 Roadmap

An outline of this thesis is the following. In chapter 1, we first introduce
the Banerjee-Altman model [13] briefly (section 1.3) and generalize it to
our experimental setup proposal. In section 1.4 we present the equations of
motion we solve in Keldysh formalism. These equations are valid beyond
equilibrium and can be reduced to the Banerjee-Altman model equations of
motion in equilibrium.

In chapter 2, we study the transport properties of the system. We study
the system near equilibrium in two separate regimes we call “linear response
regime” (section 2.1) and the “weak tunneling regime” (section 2.3). We
then derive an expression (section 2.4) for the current at saddle point which
is valid in equilibrium and beyond. We then show that the numerical results
obtained with this formula match weak tunneling results near equilibrium
(section 2.4.1). Next, we turn to linear response regime and again show that
the formula we derived matches the linear response regime results (2.4.2).
Finally, we go beyond equilibrium and explore the I-V characteristics for

3



1.3. Starting Point - BA model in equilibrium

finite bias voltage across the two leads. Up to this point, we have assumed
that the lead endpoints are in equilibrium with reservoirs but have not con-
sidered their effect on the spectral densities of the leads for simplicity of
the model. We justify this assumption in section 2.5 and reproduce some
of the results we had in earlier sections in the presence of explicit coupling
to the reservoirs. We find that the SYK signatures we predict in transport
observables are robust even when the the graphene flake is strongly coupled
to the reservoirs.

1.3 Starting Point - BA model in equilibrium

We start our discussion by reviewing the variant of the SYK model proposed
by Banerjee and Altman [13]. The model couples the original N complex
fermion SYK4 model Hc to a set of M auxiliary noninteracting fermionic
degrees of freedom Hψ which are also random disordered (which we will call
SYK2). The couplings Hcψ between these two systems are again random
disordered. The model is given by the following Hamiltonian:

Hc =
1

(2N)3/2

∑
ijkl

Jijklc
†
ic
†
jckcl − µ

∑
i

c†ici (1.1)

Hψ =
1

(M)1/2

∑
ij

tijψ
†
iψj − µ

∑
i

ψ†iψi (1.2)

Hcψ =
1

(NM)1/4

∑
ij

Vijc
†
iψj + V ∗ijψ

†
jci (1.3)

where {Jijkl}, {tij} and {Vij} are random Gaussian distributions with vari-

ances defined as |Jijkl|2 = J2, |tij |2 = t2 and |Vij |2 = V 2 where antisym-
metrization and Hermiticity of Hc implies

Jjikl = −Jijkl Jijlk = −Jijkl Jklij = −J∗ijkl (1.4)

since Hψ must also be Hermitian,

tji = t∗ij (1.5)

We shall start with this Banerjee-Altman model (which we shall refer to
as BA from now on) which has only one set of auxiliary fermions (modeled
by Hψ) and then extend it to two auxiliary flavours of fermions which are
modeled as the endpoints of the leads attached to the SYK4 graphene flake
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1.3. Starting Point - BA model in equilibrium

quantum dot (which will correspond to Hc). In the following we use the
terms “graphene flake”, “quantum dot” or “the dot” interchangably.

Let us first review their main results that are relevant to our model.
BA model displays a quantum phase transition between a non-Fermi liquid
(NFL) and a Fermi liquid (FL) which is controlled by only two parameters
p = M/N , and the total fermion density n = (N〈nc〉 + M〈nψ〉)/(M + N).
At half filling, n = 1/2, the NFL/FL transition occurs are p = pc = 1.
Away from half filling, this transition occurs at lower values of p = pc < 1,
depending on the value of n. A remarkable feature of this transition is that
pc marking the transition does not depend on any of the parameters t, V or
J but n only. They show that in the NFL phase, though in the presence of
the coupling to the auxiliary fermions, the model has finite zero temperature
entropy and it saturates the chaos bound [3] as expected of the SYK model.
However, once the transition occurs, the zero temperature entropy vanishes
and the model is not maximally chaotic anymore.

Here we copy the saddle point equations [13] that are obtained in Mat-
subara imaginary time formalism after disorder averaging the action. We
will later derive a similar set of equations in Keldysh formalism since we
are also interested in nonequilibrium properties of this model. Going back
to the BA model, the saddle point equations in Matsubara frequencies are
given by:

G−1(iωn) = iωn + µ− ΣJ(iωn)− V 2√pG(iωn)

G−1(iωn) = iωn + µ− V 2

√
p
G(iωn)− t2G(iωn)

where G(τ) = −〈T̂ c(τ)c†(0)〉 and G(τ) = −〈T̂ψ(τ)ψ†(0)〉 are the disorder
averaged imaginary time ordered Green’s functions. The saddle point equa-
tions above can be analytically continued to:

G−1
R (ω) = ω + µ− ΣR

J (ω)− V 2√pGR(ω)

G−1
R (ω) = ω + µ− V 2

√
p
GR(ω)− t2G(ω)

In the conformal limit, analytical solution to above equations can be
obtained. For the NFL phase, (at half filling, n = 1/2 or θ = 0 where
p < pc = 1):

GR(ω) =
Λe−iπ/4√

Jω
GR(ω) = −√p

√
Jωeiπ/4

V 2Λ

5



1.3. Starting Point - BA model in equilibrium

ΣR
J (ω) = −Λ3

π
eiπ/4

√
Jω

This holds when ω � ΣR
J (ω) and ω � V 2√pGR(ω) such that the first equa-

tion becomesG−1
R (ω) = −ΣR

J (ω)−V 2√pGR(ω) and t2GR(ω)� V 2/
√
pGR(ω)

as well as ω � V 2/
√
pGR(ω) such that G−1

R (ω) = −V 2
√
pGR(ω) which can be

substituted back into the previous equation. We then obtain the same form
as the original SYK model saddle point equations. The above four inequal-
ities define four critical frequencies below which the solutions above are
justified [13]:

ωc1 =
J

2
√
π

(1− p)3/2 ωc2 =
J

2
√
π

p2

√
1− p

ωc3 =

(√
πV 4

2J

√
1− p
p

)1/3

ωc4 =

√
πV 4

t2J

√
1− p
p

(1.6)

The conformal solution then holds when all four inequalities hold [13]

ω � min(ωc1 + ωc2, ωc3, ωc4)

1.3.1 Extending to two symmetric leads

Generalization to two auxiliary and identical SYK2 models (withM fermions
each) is straightforward. Now we relabel G auxiliary fermion Green’s func-
tions as G(L) for the left lead and introduce G(R) for the right lead which
couples in the same way as G(L) since we have two identical leads (note that
for the lead Green’s functions below the subscript R means the retarded
Green’s function while the superscript (L/R) is the site index correspond-
ing to left and right leads respectively):

G−1
R (ω) = ω + µ− ΣR

J (ω)− V 2√p
(
G(L)
R (ω) + G(R)

R (ω)
)

(G(L)
R )−1(ω) = ω + µ− V 2

√
p
GR(ω)− t2G(L)

R (ω)

(G(R)
R )−1(ω) = ω + µ− V 2

√
p
GR(ω)− t2G(R)

R (ω)

If we take two symmetric leads, we can then take G(R)
R (ω) = G(L)

R (ω) =
GR(ω). If we also define Ṽ = 21/4V and p̃ = 2p, then above equations
reduce to

G−1
R (ω) = ω + µ− ΣR

J (ω)− Ṽ 2
√
p̃GR(ω)

6



1.3. Starting Point - BA model in equilibrium

G−1
R (ω) = ω + µ− Ṽ 2

√
p̃
GR(ω)− t2GR(ω)

But these equations have the same form as the original BA model. Therefore,
everything we know about the BA model holds except that V and p are
renormalized. For instance the FL/NFL transition occurs at 2p = p̃ = 1.
Therefore we expect to see the FL/NFL transition at p = 0.5 in
this extended model. Then the NFL solutions for the identical lead case

GR(ω) =
Λe−iπ/4√

Jω
(1.7)

G(R)
R (ω) = G(L)

R (ω) = −√p
√
Jωeiπ/4

V 2Λ
(1.8)

(note that we used the ratio
√
p̃/Ṽ 2 =

√
p/V 2 nevertheless we get the same

form for the solution.) In the Fermi liquid case, (p > pc = 0.5), the Green’s
functions (two symmetrical leads) are found to be

GR(ω) = − it√
2V 2

1√
2p− 1

(1.9)

G(L)
R (ω) = G(R)

R (ω) = GR(ω) = − i
t

√
2p− 1

2p
(1.10)

In this case, the critical frequencies below which we observe conformal regime
become

ωc1 =
J

2
√
π

(1− 2p)3/2 (1.11)

ωc2 =
2J√
π

p2

√
1− 2p

(1.12)

ωc3 =

(√
πV 4

J

√
1− 2p

2p

)1/3

(1.13)

ωc4 =

√
πV 4

t2J

√
1− 2p

p
(1.14)

note that as we tune p, near p = 0.5, ωc = min(ωc1 + ωc2, ωc3, ωc4) becomes
arbitrarily small. Therefore, at the FL/NFL transition we expect to
leave conformal regime as we tune p through pc = 0.5 at particle hole
symmetry. This also implies that outside the conformal regime, the analyti-
cal forms (1.7) will start showing corrections even at arbitrarily low energies.
We will see consequences of this in the following sections.
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1.4. Keldysh Formalism for Beyond Equilibrium

1.4 Keldysh Formalism for Beyond Equilibrium

In order to study far from equilibrium transport properties and beyond linear
response, we have to resort to more advanced Keldysh formalism. Results we
obtain here will be more general and should reduce to equilibrium results
that we considered in previous section. Following the same formalism as
an earlier study [14], we work with Keldysh time contour path integral as
opposed to the imaginary time path integrals in Matsubara formalism. See
the appendix for the details of the saddle point approximation (Section A.1)
for Keldysh action. The saddle point equations in real time are given by:

Σc
ss′(t) = ss′J2G2

ss′(t)Gs′s(−t)+ss′
√
pV 2GL,ss′(t)+ss′

√
pV 2GR,ss′(t) (1.15)

ΣψL
ss′ (t) = ss′t2GL,ss′(t) + ss′(1/

√
p)V 2Gss′(t) (1.16)

ΣψR
ss′ (t) = ss′t2GR,ss′(t) + ss′(1/

√
p)V 2Gss′(t) (1.17)

along with the Dyson’s equations in frequency space

Gss′(ω) = [σz (ω + µ)− Σc]−1
ss′ (1.18)

GL,ss′(ω) =
[
σz (ω + µ)− ΣψL

]−1

ss′
(1.19)

GR,ss′(ω) =
[
σz (ω + µ)− ΣψR

]−1

ss′
(1.20)

where G,GL and GR are the time contour Green’s functions of the dot, left
and right leads respectively. They have the matrix form Gss′ which is defined
as:

G =

(
GT G<

G> GT̃

)
=

(
G++ G+−
G−+ G−−

)
where GT and GT̃ are the time ordered and anti-time ordered Green’s func-
tions, respectively. G< and G> are the lesser and the greater Green’s func-
tions. These four quantities are not independent. By construction, they
are related by GT + GT̃ = G< + G>. Path segment index s (takes val-
ues of ±1 in the equations (1.15-1.17) for forward (+) and backward (−)
parts of the contour respectively) is the real time path index which appears
since we split the time loop contour into two pieces defined on real time
axis. In above form we assumed time translational invariance, ignoring the
transient behaviour as the couplings are turned on over the time contour
path. The following expression of fluctuation-dissipation theorem allows us

8



1.4. Keldysh Formalism for Beyond Equilibrium

to introduce temperature in equilibrium:

GK(ω) = 2i tanh

(
βω

2

)
ImGR(ω). (1.21)

where the Keldysh correlator GK is defined to be GK = G< +G>

We solve these equations (1.15-1.20) iteratively while imposing the condi-
tion (1.21) for parts of the system which are in equilibrium with a reservoir.

9



Chapter 2

Transport Properties of the
Quantum Dot

We are interested in evaluating the conductance or current between two leads
attached to the dot. Since we will limit ourselves to steady state transport,
it is sufficient that we consider transport between one of the leads and the
dot. The current should be the same between the dot and the other lead
since the total charge must be conserved and there is no charge accumulation
on the dot in the steady transport state.

There are two standard regimes we explore near equilibrium. The first
one is the case where the bias voltage between two leads is smaller than all
the other scales in the system so that we can treat the bias as a perturbation.
Then, we define equilibrium as the state where the bias difference between
two sites of interest is zero. This condition can also be stated as that the
chemical potential is identical among all parts if the system thus the elec-
trons have no tendency to jump from one site to the other on average. We
will call this the “linear response regime”.

The other case we can treat near equilibrium is where we start with a
finite, arbitrary bias difference between sites but initially these sites, namely
the dot and the lead, are decoupled. We then turn on the perturbation as
the coupling between two sites, allowing electrons to tunnel between two
systems. As long as the coupling parameter is smaller than all the other
scales in system, this approach is justified. Following the convention in the
literature, we will call this regime the “weak-tunneling regime”.

What these two approaches have in common is that we start with an
equilibrium state and perturb the system slightly. As long as the pertur-
bation is small, our approach is valid. However, we run into difficulties if
we would like to go far from equilibrium. First, linear response approach is
called ‘linear’ because we truncate the S-matrix expansion to first order in
perturbation δH in order to obtain the expression (2.1). If the perturba-
tion is large, we would have to take the full S-matrix into account. Second,
when we calculate the correlators, standard quantum field theory approach
where we start with a noninteracting ground state in the distant past and

10



Chapter 2. Transport Properties of the Quantum Dot

turn on and off the interactions adiabatically in the distant past and future
respectively is not valid since there is the implicit assumption that after
we turn off the interactions the state we end up with is identical (up to a
phase factor) to the ground state we started with. This assumption does
not hold for a generic time dependent Hamiltonian where the system is not
in equilibrium. One way to resolve this issue is that instead of considering
the evolution of the system from distant past to distant future, one intro-
duces a “time loop contour” that starts from a ground state in the distant
past, evolves the system forward in time to the future and then backwards
all the way to ground state we started from in the distant past, defining a
closed loop. In this approach, we have only one noninteracting ground state
we work with, therefore we do not run into the issue we described above
in nonequilibrium situations. An additional problem we run into is specific
to disorder averaging which is the crucial step that makes the SYK model
solvable. Consider the generic correlator

〈T̂Cc†a(τ1)db(τ2)〉 =

∫
C D[c, d]ca(τ1)db(τ2)eiS∫

C D[c, d]eiS

Regardless of the formalism we use, Keldysh or Matsubara, expressions are
structurally the same. If the action S, however, contains random Gaussian
variables that need disorder averaging, note that the same variable would
appear in both the numerator and denominator. It is not immediately clear
how to proceed with disorder averaging due to the path integral in the de-
nominator since the disorder averaging must be carried out simultaneously
for both the numerator and the denominator before evaluating the path in-
tegrals to obtain an effective action. In Matsubara formalism, this issue can
be avoided by introducing the ‘replica trick’ (as illustrated in [13, 15]) In con-
trast, in Keldysh formalism, the denominator is identically unity, therefore
it does not need to be evaluated. [16] Thus, it suffices to disorder average
only the numerator while completely omitting the denominator. The price
we pay for this convenience is that we have to promote the saddle point
equations and the Dyson’s equations to matrix equations which we have to
resort to regardless since we are interested in nonequilibrium physics. There-
fore, Keldysh formalism will be the ideal tool to study the nonequilibrium
transport properties of the SYK model.

In the following, our approach will be to study the two aforementioned
limits near equilibrium, and then try to bridge the two in nonequilibrium
territory by deriving a more general formula using Keldysh formalism.
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2.1. Linear Response

2.1 Linear Response

Linear response formalism allows us to extract transport quantities provided
that we do not perturb the system far from equilibrium. For a generic
expectation value 〈A(t)〉 of an observable operator A, we need to evaluate
the following expression:

〈A(t)〉 = 〈A〉0 − i
∫ t

−∞
〈[A(t), δH(t′)]〉H0dt

′ (2.1)

where the Hamiltonian H = H0 + δH consists of the Hamiltonian H0 of
the system in the absence of perturbation that leads to response and the
perturbation δH, typically coupling to an external system or a gauge field
which leads to response. The correlators one needs to calculate in linear
response formalism are defined with respect to the equilibrium state (δH =
0), where Matsubara formalism can be used at finite temperature.

Introducing the minimal coupling in the linear response regime

We start with a generic Hamiltonian H made of c and ψ operators living
on the quantum dot and the lead respectively. We define the Hamiltonians
Hc for the dot and Hψ the lead. Assuming [Hc, Hψ] = 0, we further intro-
duce the coupling Hcψ between these two systems. Then we can write the
Hamiltonian for the coupled system:

H = Hc +Hψ +Hcψ

where
Hcψ =

∑
ij

Vijc
†
iψj + V ∗ijψ

†
jci

We are interested in the linear response regime where the coupling above
is fully taken into account to all orders. We introduce a small chemical
potential difference between two sites and treat this difference as the per-
turbation in the linear response regime. This can be achieved by introducing
the minimal coupling in Hcd

Vij =⇒ Vije
−i e

c

∫ j
i
~A.~dl

here the gauge field ~A will be related to the potential difference U between
two sites. In linear response approximation, we expand the perturbed Hamil-
tonian to first order in ~A, and write the perturbation δH due to minimal

12



2.1. Linear Response

coupling separately:

δH = −ie
c

∫
~A.~dl

∑
ij

Vijc
†
iψj − V

∗
ijψ
†
jci


Here we take ~A = ic

ω
~E0e

iωt since it must hold that ~E = −1
c
∂ ~A
∂t and assume

that ~E0 is constant throughout the intermediate region between two sites.
We label the length of this region by ~a. Then, the above expression can be
rewritten in terms of the potential difference between the lead and the dot
U/2 = ~E.~a as

δH(t) =
eUeiωt

2ω

∑
ij

Vijc
†
iψj − V

∗
ijψ
†
jci

recall that the current operator can be written as

I = −ie
∑
ij

Vijc
†
iψj − V

∗
ijψ
†
jci (2.2)

therefore we obtain:

δĤ(t) =
i

ω

U

2
eiωtÎ(t)

Then we use the linear response expression (2.1) for δH and assuming 〈I〉0 =
0 since we do not expect a current in the absence of external field:

〈I(t)〉 =
U

2ω

∫ t

−∞
〈[Î(t), Î(t′)]〉δH=0e

iωt′dt′ (2.3)

= i
U

2ω

∫ ∞
−∞
−iθ(t− t′)〈[Î(t), Î(t′)]〉δH=0︸ ︷︷ ︸

CRII(t−t′)

eiωt
′
dt′ (2.4)

where we defined CRII(t − t′) = −iθ(t − t′)〈[I(t), I(t′)]〉δH=0 is the retarded
current current correlator between the lead and the dot.

〈I(t)〉 =
iU

2ω

∫ ∞
−∞

CRII(t− t′)eiωt
′
dt′ (2.5)

= − iU
2ω
eiωt

∫ ∞
−∞

CRII(t− t′)e−iω(t−t′)d(t− t′)︸ ︷︷ ︸
CRII(ω)

(2.6)
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2.1. Linear Response

Where we multiplied and divided the expression by eiωt and then changed
the integration variable dt′ → d(t− t′) Therefore we arrive at an expression
for the current between two sites given the potential difference U between
is given:

〈I(t)〉 = − i

2ω
CRII(ω)︸ ︷︷ ︸
σ(ω)

Ueiωt

The observed quantity would be the conductance:

Re[σ(ω)] =
ImCRII(ω)

2ω

This current current correlator can be obtained using Keldysh time contour
formalism. We need to evaluate the time contour correlator

CII(τ1, τ2) = −i〈T̂CI(τ1)I(τ2)〉

at saddle point, this expression is found to be (see appendix A.2 for details)

CII(τ1, τ2) = −ie2V 2
√
NM [G(τ1, τ2)G(τ2, τ1) + G(τ1, τ2)G(τ2, τ1)] (2.7)

where G is the time contour Green’s function for c operators living on the
dot while G represents the Green’s function for the lead operators d Here
τ1, τ2 are defined on the Keldysh contour. We can analytically continue this
expression to obtain ImCRII(t1, t2). The retarded correlator CRII in real time
is defined as:

CRII(t1, t2) = −iθ(t1 − t2)〈[I(t1), I(t2)]〉 (2.8)

= −iθ(t1 − t2)(〈I(t1)I(t2)〉︸ ︷︷ ︸
iC<II(t+1 ,t

−
2 )

−〈I(t2)I(t1)︸ ︷︷ ︸
iC>II(t−1 ,t

+
2 )

〉) (2.9)

note that C<II and C>II can be obtained by anaylytically continuing time
contour correlator (2.7) refer to appendix A.3.3. We then obtain

C<II(t
+
1 , t
−
2 ) = −ie2V 2

√
NM

[
G<(t1, t2)G>(t2, t1) + (G↔ G)

]
C>II(t

−
1 , t

+
2 ) = −ie2V 2

√
NM

[
G>(t1, t2)G<(t2, t1) + (G↔ G)

]
if we plug in these expressions into (2.8) and assuming time translational
invariance (ignoring transient response) we get

CRII(t) = −ie2V 2
√
NMθ(t)[G<(t)G>(−t) + G<(t)G>(−t)

−G>(t)G<(−t)− G>(t)G<(−t)] (2.10)
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2.1. Linear Response

Fourier transforming,

CRII(ω) = e2V 2
√
NM

∫
dω1

2π

dω2

2π

G<(ω1)G>(ω2)−G>(ω1)G<(ω2)

ω1 − ω2 − ω + iδ
+(G↔ G)

since we are dealing with equilibrium Green’s functions we also haveG<(ω) =
inF (ω)A(ω) and G>(ω) = −i(1 − nF (ω))A(ω) and likewise for G Green’s
functions. Taking the imaginary part,

ImCRII(ω) = −πe
2V 2
√
NM

2π

∫
dω1

2π
G<(ω1)G>(ω1−ω)−G>(ω1)G<(ω1−ω)

+ (G↔ G) (2.11)

using the relation between lesser and greater Green’s functions and the spec-
tral functions in equilibrium, we arrive at:

ImCRII(ω) =
πe2V 2

√
NM

4π2

∫
dω1[nF (ω1−ω)− nF (ω1)][A(ω1)A(ω1−ω)+

A(ω1)A(ω1 − ω)] (2.12)

〈I(t)〉 =
ImCRII(ω)

2ω︸ ︷︷ ︸
σ(ω)

U =
1

e

ImCRII(ω)

2ω
eU

Zero temperature solution at particle-hole symmetry (µ = 0) NFL

At zero temperature, Fermi functions reduce to step functions:

ImCRII(ω) =
πe2V 2

√
NM

4π2

∫ ω

0
dω1[A(ω1)A(ω1 − ω) +A(ω1)A(ω1 − ω)]

(2.13)
For the NFL phase, the solutions to the saddle point equations are given by
(at half filling, n = 1/2 or θ = 0 where p < pc = 0.5). Green’s function G
for the dot and G for one of the leads:

GR(ω) =
Λe−iπ/4√

Jω
GR(ω) = −√p

√
Jωeiπ/4

V 2Λ

from which we can obtain the spectral functions:

A(ω) =

√
2Λ√
J |ω|

A(ω) =
√

2p

√
J |ω|
V 2Λ

(2.14)
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2.1. Linear Response

plugging these into above expression for ImCRII(ω) in equation (2.13) we
obtain:

ImCRII(ω) =
√
pe2
√
NM

1

2π

∫ ω

0
dω1

√
ω − ω1

ω1
+

√
ω1

ω − ω1︸ ︷︷ ︸
ωπ

=
√
pe2
√
NM

1

2
ω

the current is given by:

〈I(t)〉 =
ImCRII(ω)

2ω︸ ︷︷ ︸
σ(ω)

U =

√
pe2
√
NM

4
U

where U is the overall bias difference between two leads. Reintroducing
h = 2πh̄:

〈I(t)〉 =
π

2

√
p
√
NM

e2

h
U

Zero temperature solution at particle-hole symmetry (µ = 0) FL

For the FL phase (p > pc = 0.5), the Green’s functions (two symmetrical
leads) are found to be

GR(ω) = − it√
2V 2

1√
2p− 1

GR(ω) = − i
t

√
2p− 1

2p

and the respective spectral functions

A(ω) =
2t√

2V 2
√

2p− 1
A(ω) =

2

t

√
2p− 1

2p

and as we calculate the imaginary part of the correlator using the same
expression in equation (2.13)

ImCRII(ω) =
e2
√
NM

π
ω

1
√
p

similar to previous result in NFL phase, again reintroducing h = 2πh̄

〈I(t)〉 =
e2

h

1
√
p

√
NMU
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2.1. Linear Response

To summarize (at zero temperature), we find [17] that

〈IDC〉 = lim
ω→0

ImC(ω)

2ω
U =

{
π
2

√
p
√
NMU e2

h p < 0.5
1√
p

√
NMU e2

h p > 0.5
(2.15)

where U is the bias difference between one of the leads and the dot. If we
define G0 =

√
NM e2

2h , we find that p = 0.5 the DC conductance of the entire
system has a jump π

√
pG0 → 2√

pG0

Numerical Study for Linear Response Regime Conductance

In previous section we have used the conformal solutions that are obtained
from the saddle point equations to evaluate the zero temperature DC con-
ductance analytically (equation 2.15).

Now, we obtain the DC conductance using the numerical solutions of
the saddle point equations (1.15) to (1.17) in DC current expression we
obtained (equation 2.12). Since this is linear response regime, we also use the
fluctuation dissipation relation (2.24) for both the dot and the lead Green’s
functions. This is where temperature enters the calculation. Strictly zero
temperature is not numerically accessible since we have to use a finite value
for β = 1/kBT 6= 0. We plot the dimensionless DC conductance G/G0 as
a function of p = M/N . We expect to see the NFL behaviour for p < 0.5
separated from the FL behaviour for p > 0.5 by a critical point. (See the
discussion in section 1.3.1)

While the FL (p > 0.5) regime is relatively insensitive to temperature at
least below 1K, in the NFL regime we see deviations from the zero temper-
ature curves near the critical point p = 0.5 as we increase the temperature.
These deviations are more pronounced at higher temperatures and closer to
the critical point and they occur due to corrections that become significant
as the system starts to leave the conformal regime.
Numerical solution has the advantage of accessing the entire spectrum of
energies while the analytic solution [6] is valid only for low energies, bound
by a critical frequency ωc(p) � ω (see equation 1.11) below which we ob-
serve conformal regime. This means that numerical solutions will include
corrections to the conformal solution as we cross over to higher energies
near and above ωc(p). Note the p dependence (1.11) of ωc(p) which vanishes
(as

√
1/2− p) [13] as p → 0.5 where we observe the strongest deviations

from the conformal behaviour. In the following, we illustrate that the de-
viations from the analytic results in Fig. 2.1 are high energy contributions
outside the conformal part of the spectral densities. Now let us go back
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Figure 2.1: Dimensionless DC Conductance in linear response regime at var-
ious temperatures as a function of p = M/N Gray dashed lines correspond

to zero temperature analytic results (eqn. 2.12) We defined G0 =
√
NM e2

2h

to the general expression (2.12) after rearranging and writing in terms of

G0 =
√
NM e2

2h

G/G0 = lim
ω→0

V 2

2

∫
dω1

nF (ω1 − ω)− nF (ω1)

ω
[A(ω1)A(ω1 − ω)

+A(ω1)A(ω1 − ω)]

evaluating the limit,

G/G0 = −V 2

∫
dω1∂ωnF (ω1)A(ω1)A(ω1)

which further reduces to the following integral after differentiating the Fermi
factor:

G/G0 = βV 2

∫
dω1

1

4 cosh2 βω1

2

A(ω1)A(ω1)

note that (4 cosh2 βω1

2 )−1 is a distribution function which has the form of a
peak centred at ω1 = 0 with FWHM = 2 cosh−1(2) 1

β ∼ β
−1 ∼ T . Conformal

regime, where we have analytic expressions for spectral densities [13] is ob-
served only for frequencies ω � ωc. For very low temperatures, the 1/ cosh2

distribution vanishes before we leave the conformal regime. However, when
T becomes comparable to critical frequency ωc as we increase temperature,
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2.2. Experimental Considerations

contributions from the nonconformal part of the spectal densities A and
A in the integrand above become important and result in deviations from
the conformal behaviour of the DC conductance. This departure from con-
formal behaviour defines a scale T ∗ which marks a crossover to a different
regime which we explore numerically in Fig. 2.2. Notice the drastic change
in the qualitative behaviour in both NFL and FL regimes. Even at very
high temperatures flat curves above p > 0.5 can easily be distinguished by
their counterparts below p < 0.5.
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Figure 2.2: Dimensionless DC Conductance in linear response regime at
temperatures above T � T ∗

2.2 Experimental Considerations

In the proposed experimental setup, the main physical parameters that can
be controlled are the bias voltage applied to the leads and the transverse
magnetic field that is applied to the graphene flake. It is estimated that in
the original realization [11] of SYK model on a graphene flake in a magnetic
field, the number of SYK fermions N is estimated by

N =
SB

Φ0
=

Φ

Φ0

which is simply the number of flux quanta threading the graphene flake. In
order to connect the results we have so far with the real experimental setup,

19



2.3. Weak Tunneling Regime

we relate the parameter p = M
N to Φ/Φ0 by eliminating N :

1

p
=

Φ/Φ0

M

which is the number of flux quanta per lead mode where we have M of them.
M can be estimated by the conductance GLead of the lead if we assume the
lead has M ballistic transport channels such that GLead = M e2

h . Therefore,
if we wish to use more experimentally relevant quantities, we should plot
G/GLead versus Φ/Φ0

M . In this case, we can present the data in Fig. 2.1 with
respect to these new parameters in Fig. 2.3.
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Figure 2.3: DC conductance versus the number of flux quanta per lead mode.

2.3 Weak Tunneling Regime

In this section we consider the “weak tunneling” regime where the bias
voltage across the two leads can be finite. However, the coupling V between
the leads and the dot must be the smallest scale in the system such that
we can treat it as the perturbation with respect to the equilibrium. For
simplicity, we consider the following setup: The quantum dot is at particle-
hole symmetry, µD = 0 and the lead bias voltages are symmetrically shifted
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2.3. Weak Tunneling Regime

by ± = U/2 such that µL = eU/2 and µR = −eU/2. We then turn on the
coupling (2.21) provided that V is sufficiently small. (We copy the following
analysis from [17])
We can use the standard tunneling conductance result ([18], Pg. 566) after
Gaussian averaging the couplings Vij . We can then obtain the following
tunneling current formula for the weak tunneling regime:

〈I(t)〉 = 2πeV 2
√
NM

∫ ∞
−∞

ρψ(ε+ eU)ρc(ε)[nF (ε)− nF (ε+ eU)]dε (2.16)

The spectral densities we use in this formula are calculated when the leads
are decoupled from the dot. The retarded Green’s function of the SYK4

model [5] at particle-hole symmetry for finite temperatures is given by:

GR =
−iC√
2πT

Γ(1/4− iβω/2π)

Γ(3/4− iβω/2π)

We can then obtain the spectral density ρc = − 1
π ImGR

ρc ∝
1√
T
|Γ(1/4 + iβω/2π)|2 cosh

(
βω

2

)
and the Green’s function for the SYK2 model on the leads can be obtained
from the retarded Green’s function by setting V = 0 in saddle point equa-
tions and solving for the lead Green’s functions:

ρψ =
1

πt
Re

√
1−

( ω
2t

)2

plugging in these expressions into equation (2.16):

〈I(t)〉 ∝ eV
2

t

√
NM

1√
T

×
∫ ∞
−∞
|Γ(1/4 + iβε/2π)|2 cosh

(
βε

2

)
[nF (ε)− nF (ε+ eU)]dε

where we assumed that the lead spectral density ρψ ≈ 1
πt is flat - considering

contributions only for ε� t at low energies, effectively introducing a cutoff
for the integral bounds which we send to infinity, ignoring further high
energy contributions. We estimate this integral in two limits:
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2.3. Weak Tunneling Regime

eU � kBT limit: Fermi factors reduce to the derivative of Fermi factor

lim
βeU→0

[nF (ε)− nF (ε+ eU) =
βeU

4 cosh2 (βε/2)

the integral above becomes:

〈IWT )〉 ∝ eV
2

t

√
NM

1√
T
eU

∫ ∞
−∞

|Γ(1/4 + iβε/2π)|2

4 cosh (βε/2)
d(βε)

Note that the integral reduces to a dimensionless constant. Then, from this
expression we can easily extract the dependence to the external parameters
of the model.

〈IWT 〉 ∝
eU√
T

(eU � kBT ) (2.17)

eU � kBT limit: Fermi factors introduce limits to the integral this time,
as they are effectively step functions at temperatures much smaller than bias
voltage:

〈I(t)〉 ∝ eV
2

t

√
NM

1√
T

1

β

∫ 0

−βeU
|Γ(1/4 + iβε/2π)|2 cosh

(
βε

2

)
d(βε)

for βε� 1 the integrand can be estimated as the following:

|Γ(1/4 + iβε/2π)|2 cosh

(
βε

2

)
∼ 1√

|βε|

then the integral can be estimated as

〈IWT 〉 ∝ e
V 2

t

√
NM

1√
βT

√
eU

from which we can extract the dependencies to external parameters:

〈I(t)〉 ∝
√
eU (eU � kBT ) (2.18)

It is important to recall that we assumed ω � t above, which that the results
that we have should be valid only when temperature and the bias is much
smaller than t. To summarize our results for the weak tunneling regime, we
found that the weak tunneling current IWT is given by

〈IWT 〉 ∝

{
eU/
√
T (eU � kBT )√

eU (eU � kBT )
(2.19)
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2.4. Beyond Equilibrium

We can also read off the tunneling conductance from these results:

G(U) ∝

{
1/
√
T (eU � kBT )

1/
√
U (eU � kBT )

(2.20)

Note the non-linear behaviour at temperatures much lower than the bias
voltage across the leads.

In next section, we will derive a more general formula (2.22) for the
current which is valid even when we are far from equilibrium. After obtaining
the general formula, we show that the numerical results we obtain with it
reduces to the dependencies (2.19) near equilibrium.

2.4 Beyond Equilibrium

In this section we obtain a general expression for the current between two
sites where the coupling between the two is given by

Hcψ =
1

(NM)1/4

∑
ij

Vijc
†
iψj + V ∗ijψ

†
jci (2.21)

where the couplings Vij are drawn from a random Gaussian distribution with

the variance |Vij |2 = V 2. We have used the Keldysh formalism to address
nonequilibrium transport where the bias voltage between two sites can be
finite. The derivation given in detail can be found in the appendix A.3. The
general expression for net current from the left lead (ψL operators) to the
quantum dot (c operators) is given by

〈ILD〉 = ie
√
NMV 2

∫
dω
{
G<(ω)AL(ω)− G<L (ω)A(ω)

}
(2.22)

Where G and GL are the correlators associated with c and ψL respectively.
The Green’s functions enter this formula must be calculated in the presence
of couplings between sites. This formula is valid in large-N,M saddle point
approximation. Similarly, we could define the current from the quantum dot
to the right lead (ψR operators)

〈IDR〉 = ie
√
NMV 2

∫
dω
{
G<R (ω)A(ω)−G<(ω)AR(ω)

}
(2.23)

In steady state, where there is no charge accumulation on the quantum dot,
the net current 〈I〉 through the entire junction must be 〈I〉 = 〈ILD〉 = 〈IDR〉.
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2.4. Beyond Equilibrium

This is the statement of current conservation which we will address shortly
in section 2.4.3 We assume that the ψL and ψR degrees of freedom, fermionic
modes at the endpoints of the left and right leads respectively, which are
the SYK2 models of the tips of the leads are in equilibrium with reservoirs.
However, we do not assume equilibrium for the graphene flake quantum
dot, which we take to be at zero chemical potential. We symmetrically
shift the chemical potentials of the leads by ±µ/2 where µ = eU where
U is the potential difference between two leads, across the entire system.
In the following analysis we ignore the effect of the reservoirs on the leads
except that the reservoirs determine the thermal distribution functions for
the leads. In section 2.5, we will justify this assumption. Since the leads
are in equilibrium as they are in contact with reservoirs, we can impose the
FDT condition on the leads Green’s functions. We assume that the left lead
has the higher potential:

GKL/R(ω) = 2i tanh

(
β(ω ± µ/2)

2

)
ImGRL/R(ω). (2.24)

With these assumptions, we compute the current (2.22) as a function of
applied bias in the next section for linear response regime and weak tunneling
regime.

2.4.1 I-V characteristics in Weak-Tunneling Regime

In weak tunneling regime which we introduced in section 2.3, we studied the
the tunneling current IWT in two different limits. While it is proportional
to eU/

√
T for eU � kBT , in eU � kBT limit it shows

√
eU dependence. In

this section, we will match these near equilibrium weak-tunneling results to
the current computed with the formula (2.22) using the numerical solutions
of the saddle point equations (1.15-1.17) in the weak tunneling regime where
we take V to be sufficiently small. Here we take t = J/2, V = 0.025J
and p = 0.3. First we consider the high bias regime (eU � kBT ). (See
Fig. 2.4(a)) Note that in high bias regime I-V curves do not depend on
temperature and agree with the analytical prediction I ∝

√
eU/J (2.19) up

to eU ∼ 0.1J . At low biases, we observe a temperature dependent behaviour
yet it is linear in applied bias. In Fig. 2.4(b) we plot I

√
T versus eU to

observe the scaling collapse that occurs for I ∝ eU/
√
T at low bias regime

(eU � kBT )
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Figure 2.4: I-V characteristics in the weak tunneling regime for various tem-
peratures. Numerical results are shown in solid curves. In high bias regime
eU � kBT we find that the current calculated with (2.22) using numerical
solutions of the saddle point equations matches weak tunneling analytical
prediction (2.19) I

√
T - eU/J characteristics in the weak tunneling regime

for various temperatures. For low bias regime eU � kBT we observe a
scaling collapse, confirming the predicted eU/

√
T dependence
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2.4. Beyond Equilibrium

2.4.2 I-V characteristics in Linear Response Regime

Using the numerical solutions of the saddle point equations with the as-
sumptions described above, we compute the current as a function of applied
bias. We plot the I−V characteristics of the system in Fig. 2.5. Notice the
linear behaviour at very low values of bias eU/J . The current curves are
normalized by a 1/

√
p factor and for sufficiently low values of bias all curves

tend to collapse to a single line, suggesting that current has
√
p dependence,

which is in agreement with the linear response regime results (2.15). As the

0.00 0.01 0.02 0.03 0.04 0.05
eU/J

0.00
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0.05

I/
p

 - 
[a

.u
]

p = 0.2
p = 0.24
p = 0.28
p = 0.32
p = 0.36
p = 0.4
p = 0.44

Figure 2.5: DC current versus bias voltage eU at steady state transport in
arbitrary units for T= 400mK and various values of p = M/N < 0.5 in the
NFL regime

bias eU is increased, the curves depart from the linear response regime. The
onset of nonlinear regime begins relatively earlier as we get closer to the
phase transition p→ 0.5 whereas deep in the NFL phase (near p = 0.2) we
see linear I − V characteristics up to roughly eU = 0.025J

We plot the current in Fig 2.6 as a function of p for various bias values
up to eU ∼ J such that we can observe the how the current evolves as
we depart from the linear response regime as a function of p. The lowest
bias that we show is eU = 0.006J . For the same bias value, we project

26



2.4. Beyond Equilibrium
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Figure 2.6: DC current at steady state transport in arbitrary units for
T= 400mK. Solid curves correspond to various bias voltages U across two
leads. The dashed curve shows the linear response current projected to
eU = 0.006J from the DC conductance G we have calculated numerically
using (2.12)
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2.4. Beyond Equilibrium

the linear response current (dashed curve) from the DC conductance we
have computed numerically in section 2.1. This shows that the formula
(2.22) captures the linear response regime. We can now increase bias eU
and study the departures from the linear response regime. The lowest three
curves (the third one corresponds to eU = 0.04J) show that while the FL
part (p > 0.5) is unaffected, the range of p values below which we see the√
p dependence shrinks until we crossover to a different regime at higher

biases at order eU ∼ J where the p dependence of current is very similar
to high temperature linear response behaviour (Fig. 2.2) we obtained near
equilibrium.

2.4.3 Current conservation

In steady state transport, there should not be any charge accumulation on
the dot. This means that the current between the left lead and the dot ILD
is equal to the current between the dot and the right lead IDR. The current
conservation

ILD = IDR

then implies when we incorporate the equation (2.22) into this equality:∫
dω
{
G<(ω)AL(ω)− G<L (ω)A(ω)

}
=

∫
dω
{
G<R (ω)A(ω)−G<(ω)AR(ω)

}
which can be rearranged as∫

dω
{
G<(ω)(AL(ω) +AR(ω))− (G<L (ω) + G<R (ω))A(ω)

}
= 0 (2.25)

This is the statement of current conservation and does not depend on the
specifics of the system apart from the random Gaussian form of coupling
(2.21) we have defined in the large-N,M limit. It can be shown, for our
model, that in the saddle point approximation a stronger statement could
be made than equation (2.25). Combining the saddle point equations (1.15-
1.17) with the Keldysh equation G< = GRΣ<GA which follows from the
Dyson’s equation in Keldysh formalism, it can be shown that not only the
equation (2.25) holds but also the integrand is zero for all frequencies [17].
Then we obtain the following form for the G<:

G<(ω)(AL(ω) +AR(ω)) = (G<L (ω) + G<R (ω))A(ω) (2.26)

since we assume that the leads are in equilibrium with reservoirs, they follow
the distributions:

fL(ω) =
1

eβω+eU/2 + 1
and fR(ω) =

1

eβω−eU/2 + 1
(2.27)
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2.5. Coupling to Reservoirs

at half filling µ = 0. And in equilibrium for the leads, we can combine
G<L/R = ifL/R(ω)AL/R with equation (2.26) to obtain a distribution form
for the dot green’s function G which is not in equilibrium:

G<(ω) = i
fL(ω)AL(ω) + fR(ω)AR(ω)

AL(ω) +AR(ω)
A(ω) (2.28)

This is the statement of current conservation. We use this condition on the
dot Green’s function G when we solve the saddle point equations (1.15-1.17)
numerically.

2.5 Coupling to Reservoirs

In our analysis we have assumed that the lead endpoints are in equilibrium
with reservoirs but we have so far ignored the effect of the reservoirs on
the leads even though the lead endpoints must be strongly coupled to the
reservoirs so that we can assume equilibrium forms (2.27) for the lead end-
points. When the extended leads are ignored we have M fermionic modes
which constitute the SYK2 models on the lead endpoints which are coupled
to the dot via equation (2.21). To introduce the effect of the reservoirs,
one can couple the reservoirs to the lead endpoints (where the SYK2 lives)
with semi-infinite noninteracting 1D ballistic chains. (See SM for reference
[17]). This coupling can be taken into account by renormalizing the bare
lead propagators [17] G0

L and G0
R (this is shown in equilibrium, therefore

one can work in Matsubara formalism which can then be incorporated into
Keldysh equations in equilibrium):

G0
L/R(iωn)→ G0

L/R(iωn)− ΣE(L/R)(iωn)

where, after analytic continuation, retarded self energy ΣR
E(L/R) is given by:

ΣR
E(L/R) = ρEt

2
E ln

∣∣∣∣ω +D

ω −D

∣∣∣∣− iπρEt2E
where tE is the coupling of the 1D chains to the lead endpoints, ρE is local
density of states at the end of leads and D � J is a cutoff of the order of
the lead bandwidths. Once we have the retarded self energy ΣR

E(L/R) for
both leads, we can write it a s in Keldysh basis and update the bare lead
endpoint propagators in Dyson equations (1.18-1.20) as following:

σz (ω + µ)→ σz (ω + µ)− Σw
L/R(ω)
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2.5. Coupling to Reservoirs

therefore, taking the corrections due to coupling to the extended leads into
account. Now we can solve the updated saddle point equations numerically
and compare the solutions where we considered the coupling to reservoirs
with the earlier solutions where we have ignored it. In Fig. 2.7 we consider
the spectral functions of the dot and the left lead in the same plot for various
values of ρEt

2
E , in equilibrium.
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Figure 2.7: Spectral functions of the dot (solid lines) and the left lead
(dashed lines) for various values of ρEt

2
E in units of J in equilibrium, p = 0.1

The low energy behaviour is unaffected (up to ρEt
2
E ∼ J) by the coupling

of the lead endpoints to the semi-infinite wires coupling the system to the
reservoirs. In conformal regime, dot and the lead spectral functions show
ω−1/2 and ω1/2 dependence (2.14) respectively. This conformal behaviour is
outlined by grey dashed lines.

We tune the coupling tE from 0 to tE ∼
√
J/ρE . (t = V = J/2, in equi-

librium) Notice that the low energy spectrum where we see the conformal
behaviour is robust in the presence of coupling to semi infinite wires. Since
the transport quantities we have considered so far depend on low energy
features of the spectral functions at low temperatures, we therefore expect
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2.5. Coupling to Reservoirs

to see similar transport behaviour when we actually couple the system to
the reservoirs.

Now consider the case where we turn off the disorder, completely ignoring
the SYK2 part at the endpoints of the leads and still couple the SYK4 dot to
the semi-infinite wires with random couplings (2.21). This can be achieved
by setting V = J/2 as before, but t = 0 then turn on tE which is the coupling
of the lead endpoints to the rest of the semi-infinite wire (Fig. 2.8) Even
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Figure 2.8: Spectral functions of the dot (solid lines) and the left lead
(dashed lines) for various values of ρEt

2
E in units of J in equilibrium, p = 0.1,

in the absence of SYK2 (t = 0) at the lead endpoints. The low energy be-
haviour is the same (compare to Fig. 2.7), regardless of whether disorder is
present at the lead endpoints.

if we completely ignore disorder at the lead endpoints, we find that the
conformal low energy behaviour is the same as BA [13] model. We can
also consider the linear response conductance results which we computed
earlier in Fig. 2.1. We compare three cases where the system is completely
decoupled from the reservoirs (Fig. 2.9a), coupled to reservoirs (Fig. 2.9b)
and finally, the case where there is no disorder at the lead endpoints (t = 0)
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2.5. Coupling to Reservoirs

but the system is coupled to the reservoirs (Fig. 2.9c) We use the same model
paramters as above, but tE =

√
J/2πρE when the system is coupled to the

reservoirs. See Fig.2.9 for comparison of DC conductances as functions of
p in these three cases we described above. We observe the same qualitative
behaviour in all three cases away from the critical point pc = 0.5, justifying
our assumption of ignoring the explicit coupling to the reservoirs. Note
that the deviations from the conformal behaviour near the critical point is
weaker in the presence of coupling to the reservoirs (Figs. 2.9b and 2.9c) in
comparison to the isolated model (Fig. 2.9a) we started with.
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(c) Coupled to reservoirs, no disorder at the lead endpoints (V = J/2, t = 0)

Figure 2.9: DC conductance as a function of p. We consider the effects of
coupling to the reservoirs tE =

√
J/2πρE and the presence of disorder t at

the lead endpoints
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Chapter 3

Summary and Conclusion

We have explored the charge transport signatures of the SYK model.Starting
with the “linear response” (section 2.1) and the “weak tunneling” (section
2.3) regimes near equilibrium, we then bridged these two approaches with a
more general formula (A.34) we have derived which is valid in and beyond
equilibrium at finite bias voltage across the leads. Although we have used
this formula for the specific model we studied in this work, the derivation
of the current expression for large-N at saddle point approximation did not
depend on the specific details of the model except for the form of coupling
(2.21) between two sites between which we consider the current. The formula
is valid as long as the two sites we consider for transport admit large-N
“classical” saddle point solutions as SYK model does. For instance, the
same formula can be used to study nonequilibrium transport properties of
a chain of SYK models which are coupled via the form (2.21).

In linear response regime, at low temperatures, we observed a jump (see
Figs. 2.1 and 2.3) in tunneling conductance as we tune the magnetic field
threading the flake. This jump corresponds to an experimental signature of
the NFL-FL transition proposed in the Banerjee-Altman model [13]. As we
increase the temperature, we find that the jump disappears and we see a
crossover to a high temperature (Fig. 2.2) regime where the remnants of the
NFL-FL transition at zero temperature can still be seen.

Weak tunneling regime allows us to study the current-bias characteristics
at finite biases within the linear response framework. We have found [17]
(2.20) that in the NFL regime at temperatures much lower than the bias
voltage, tunneling conductance G ∝ U−1/2 is highly nonlinear and does not
depend on temperature. At higher temperatures, conductance G ∝ T−1/2

becomes ohmic and exhibits temperature dependence.
Using the general current formula (A.34), we have computed the current-

bias curves (Fig. 2.6) for finite bias voltage values up to order J . We find
that the jump that we have seen in linear response regime disappears and
we observe a crossover to a high bias regime where the I-V characteristics
are very similar to the high temperature regime I-V characteristics of the
linear response regime at infinitesimal bias across the two leads.
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Chapter 3. Summary and Conclusion

We have also considered the effect of the reservoirs on the transport
signatures of the SYK model and shown numerically that the low energy
behaviour is unaffected (Fig. 2.7) by explicit coupling of the lead endpoints
to featureless extended wires which are modeled as the reservoirs, justifying
our inital assumption of considering only the lead endpoints (assumed to be
decoupled from, yet in equilibrium with the reservoirs) which are generically
modified by explicit coupling to reservoirs.

To summarize, we have proposed a relatively simple transport experi-
ment and computed directly measurable quantities displaying signatures of
SYK physics. We believe that the graphene flake realization [11], through
such an experiment, would open up more possibilities for further exploration
of the SYK model in a laboratory setting, confirm theoretical predictions
and possibly help us overcome the difficulties we encounter using numerical
and theoretical techniques.
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Appendix A

Saddle Point Calculations

A.1 Keldysh Action

Following Ref. [14], we write down the path integral for equations 1.1-1.3,
ignoring the extended leads, and obtain an effective action after disorder
averaging

Z =

∫
D
[
ψ,ψ, c, c

]
eiS , (A.1)

where the Grassmann fields ψ, c correspond to a lead endpoint and the dot,
respectively. We work with only one lead for simplicity since both leads are
identical. The other lead will be introduced at the end of the calculation.
The real-time action is defined on the Keldysh contour and can be written
as a sum of contributions from the lead, dot, and coupling between them:

S = SL + SD + SLD (A.2)

SL =
∑
s

∑
α

∫
dt
{
ψαs(t)s [i∂t + µ]ψαs(t)

}
−
∑
ss′

∫ ∫
dtdt′

ss′ it22M

(∑
α

ψαs(t)ψαs′(t
′)

)∑
β

ψβs′(t
′)ψβs(t)


SD =

∑
s

∑
i

∫
dt {cis(t)s [i∂t + µ] cis(t)}

+
∑
ss′

∫ ∫
dtdt′

ss′ iJ2

4N3

(∑
i

cis(t)cis′(t
′)

)2
∑

j

cjs′(t
′)cjs(t)

2
(A.3)
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A.1. Keldysh Action

SLD = −
∑
ss′

∫ ∫
dtdt′

{
ss′

iV 2

√
NM

(∑
i

cis(t)cis′(t
′)

)(∑
α

ψαs′(t
′)ψαs(t)

)}
.

(A.4)
The integrals run from −∞ to ∞ and the index s = ±1 labels the forward
and backward direction on the Keldysh contour. We introduce the fields G
and G together with the Lagrange multipliers Σc,ψ:

∫
D[G,Σc]eN

∑
ss′

∫ ∫
dtdt′Σc

ss′ (t,t
′)[Gs′s(t′,t)−

i
N

∑
i cis(t)cis′ (t

′)] = 1

∫
D[G,Σψ]eM

∑
ss′

∫ ∫
dtdt′Σψ

ss′ (t,t
′)[Gs′s(t′,t)− i

M

∑
i ψis(t)ψis′ (t

′)] = 1.

The resulting action is

SL =
∑
ss′

∑
α

∫ ∫
dtdt′

{
ψαs(t)

[
σzss′δtt′ (i∂t + µ)− Σψ

ss′(t, t
′)
]
ψαs′(t

′)
}

+
∑
ss′

∫ ∫
dtdt′

{
iss′

Mt2

2
Gs′s(t′, t)Gss′(t, t′)− iMΣψ

ss′(t, t
′)Gs′s(t′, t)

}

SD =
∑
ss′

∑
i

∫ ∫
dtdt′

{
cis(t)

[
σzss′δtt′ (i∂t + µ)− Σc

ss′(t, t
′)
]
cis′(t

′)
}

+
∑
ss′

∫ ∫
dtdt′

{
iss′

NJ2

4
G2
s′s(t

′, t)G2
ss′(t, t

′)− iNΣc
ss′(t, t

′)Gs′s(t
′, t)

}

SLD =
∑
ss′

∫ ∫
dtdt′

{
iss′
√
NMV 2Gs′s(t

′, t)Gss′(t, t′)
}

After integrating out fermions, we find the saddle point of the action

δS

δGss′(t, t′)
= 0,

δS

δGss′(t, t′)
= 0 (A.5)

δS

δΣc
ss′(t, t

′)
= 0,

δS

δΣψ
ss′(t, t

′)
= 0 (A.6)
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A.2. Linear Response at Saddle Point

Dropping the dependence on two time indices, we obtain the saddle-point
equations which follow from equations (A.5)

Σc
ss′(t) =ss′J2G2

ss′(t)Gs′s(−t) + ss′
√
pV 2Gss′(t) (A.7)

Σψ
ss′(t) =ss′t2Gss′(t) + ss′

V 2

√
p
Gss′(t), (A.8)

where p = M/N . These are supplemented by the (matrix) Dyson equation
for the frequency-dependent Green’s functions which we obtain from (A.6)

Gss′(ω) = [σz (ω + µ)− Σc]−1
ss′ (A.9)

Gss′(ω) =
[
σz (ω + µ)− Σψ

]−1

ss′
(A.10)

These equations can easily be generalized to the case where there are two
separate flavours of ψ operators corresponding to left and right leads. We
need to add a third term to (A.7) similar to its second term (to introduce
the other lead) and write down another self energy equation similar to (A.8)
as well as a separate Dyson’s equaiton for this new fermion flavour we in-
troduced. The final result is given by (1.15-1.17)

A.2 Linear Response at Saddle Point

We need to evaluate the time contour correlator

CII(τ1, τ2) = −i〈T̂CI(τ1)I(τ2)〉

which can then be analytically continued to the retarded correlation function
CRII(ω). Plugging in the expression for current operator in equation (2.2), we
obtain the following (we suppress the denominator in Vij = Vij/(NM)1/4)

CII(τ1, τ2) = ie2
∑
ijkl

VijVkl〈T̂ c†i (τ1)dj(τ1)c†k(τ2)dl(τ2)〉

− VijV ∗kl〈T̂ c
†
i (τ1)dj(τ1)d†l (τ2)ck(τ2)〉

− V ∗ijVkl〈T̂ d
†
j(τ1)ci(τ1)c†k(τ2)dl(τ2)〉

+ V ∗ijV
∗
kl〈T̂ d

†
j(τ1)ci(τ1)d†l (τ2)ck(τ2)〉 (A.11)

We can evaluate these correlators in path integral formalism (Keldysh con-
tour) at the saddle point. Let us compute one of these terms explicitly as
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A.2. Linear Response at Saddle Point

the others will follow similarly. For instance, consider the third term in the
above expression. In time-contour path integral formalism, we can write:

− ie2
∑
ijkl

V ∗ijVkl〈T̂ d
†
j(τ1)ci(τ1)c†k(τ2)dl(τ2)〉

= −ie2
∑
ijkl

∫
D[c, d]eiSc+iSddjτ1ciτ1ckτ2dlτ2V

∗
ijVkle

∑
ij φijVij+φ

∗
ijV
∗
ij (A.12)

where Sc and Sd are the Keldysh actions for c and d fermions. We wrote
the coupling term separately, with the shorthands φij = −iε

∑
τ ciτdjτ and

φ∗ij = −iε
∑

τ djτciτ . In order to obtain the Gaussian average of this quantity
over the distribution {Vij} we need the following intermediate result (see
Appendix A.3.6 for a proof):

V ∗a Vbe
∑
m Vmφm+V ∗mφ

∗
m =

{
(V 2 + V 4φaφ

∗
a)e

∑
φφ∗ a = b

V 4φaφ
∗
be

∑
φφ∗ a 6= b

(A.13)

this then allows us to write

V ∗ijVkle
∑
ij φijVij+φ

∗
ijV
∗
ij = δikδjl

[
V 2 + V 4φijφ

∗
ij

]
+ (1− δikδjl)V 4φijφ

∗
kl

In large N,M limit, only the V 2 term survives to leading order inside the
path integral. Only second and third terms include terms of order V 2 and
we only keep these terms in the large N,M limit. We then end up with

CII(τ1, τ2) = −ie2

∫
D[c, d]eiSc+iSd

∑
ij

V 2[djτ1ciτ1ciτ2djτ2

+ ciτ1djτ1djτ2ciτ2 ]e
∑
φφ∗

Rearranging this expression yields

CII(τ1, τ2) = iV 2e2NM

∫
D[c, d]eiSc+iSd+

∑
φφ∗ (

1

N

∑
i

ciτ1ciτ2)︸ ︷︷ ︸
iG(τ1,τ2)

× (
1

M

∑
j

djτ2djτ1)︸ ︷︷ ︸
iG(τ2,τ1)

+ (
1

N

∑
i

ciτ2ciτ1)︸ ︷︷ ︸
iG(τ2,τ1)

(
1

M

∑
j

djτ1djτ2)︸ ︷︷ ︸
iG(τ1,τ2)

(A.14)

where the expressions in brackets above yield the Green’s functions G and G
in large-N saddle point after disorder averaging and Hubbard-Stratanovich
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A.3. Current at Saddle Point

decoupling. Recall we had suppressed the denominator in Vij = Vij/(NM)1/4

Therefore we should also have V 2 → V 2/
√
NM . We then obtain the ex-

pression:

CII(τ1, τ2) = −ie2V 2
√
NM [G(τ1, τ2)G(τ2, τ1) + G(τ1, τ2)G(τ2, τ1)]

Here τ1, τ2 are defined on the Keldysh contour. We can analytically continue
this expression to obtain ImCRII(t1, t2).

A.3 Current at Saddle Point

In the following, we derive a formula for the current between two islands
using the Keldysh formalism. Our approach is similar to the work of Meir
and Wingreen [19]. We start with a current operator and then evaluate
its expectation value while considering coupling between the two sites to
all orders. The formula we derive applies when the couplins between the
two sites are Gaussian random of the form (2.21) and is valid as long as
the individual Hamiltonians at each island admit “classical” large-N saddle
point solutions. For instance, the formula is valid even if both islands are
SYK4 like. The current operator (rate of change of the charge on the lead)
is given by

I = −ie
∑
ab

Vabc
†
aψb − V ∗abψ

†
bca

Note that we suppress the denominator in Vij = Vij/(NM)1/4 To evaluate
the expectation value of the current, we need an expression for the time
(contour) ordered operator under disorder average:

Vab〈T̂ c†a(τ1)ψb(τ2)〉

and similarly V ∗ab〈T̂ψ
†
b(τ1)ca(τ2)〉 which appears due to the second term in

the current expression we have above. The above correlator (before disorder
average) can be written in the path integral formalism as following:

∑
ab

Vab

(
i〈T̂ c†a(τ1)ψb(τ2)〉

)
= i
∑
ab

Vab

∫
C D[c, ψ]ca(τ1)ψb(τ2) exp (iS)∫

C D[c, ψ] exp (iS)

where the Keldysh action S is given by

S = Sc + Sψ −
∫
dτHcψ(τ)
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A.3. Current at Saddle Point

Here we split the action for c and ψ fermions from the term in the Hamilto-
nian that couples the two flavours which we label by Hcψ. Keldysh formalism
is especially convenient for performing disorder averages since the denomi-
nator Z = D[c, ψ] exp (iS) for the above correlator expression is generically
unity. [16] Therefore, for the following discussion we can ignore
the denominator and proceed with the averaging. We consider the
coupling term to be of the form

Hcψ =
∑
ij

Vijc
†
iψj + V ∗ijψ

†
jci

to simplify the notation, we write the time (contour) integrals as sums
∫
→

ε
∑

τ and change the time index notation on fermionic Grassman numbers
as the following: ca(τ)→ caτ . Now we can rewrite the expression (A.3) as:

∑
ab

Vabi〈T̂ c†a(τ1)ψb(τ2)〉 = i
∑
ab

∫
C
D[c, ψ]caτ1ψbτ2e

iSc+iSψ

× Vab exp

−iε∑
ijτ

Vijciτψjτ

 exp

−iε∑
ijτ

V ∗ijψjτciτ

 (A.15)

Now we would like to compute the average of this quantity over complex
Gaussian distributions Vij with variance V 2. Here we assume that among
all i, j labels, Vij distributions are independent. We are interested in the
identity:

Vabe
(
∑
ij Vijφij+

∑
ij V

∗
ijφ
∗
ij) = V 2φ∗ab × e(

∑
ij Vijφij+

∑
ij V

∗
ijφ
∗
ij) (A.16)

where we defined the shorthands φij = −iε
∑

τ ciτψjτ and φ∗ij = −iε
∑

τ ψjτciτ .
Note that star (*) here does not mean complex conjugate. Proof of this
identity is given in appendix A.3.5. The average on the RHS above can be
evaluated by completing Gaussian integrals to square (see appendix A.3.4)
Replacing φijs back, we obtain (the expression under the bar in equation
(A.15)):

−iV 2

∫
dτ ′′ψbτ ′′caτ ′′ exp

V 2

∫
dτdτ ′

(∑
i

ciτ ciτ ′

)∑
j

ψjτ ′ψjτ



43



A.3. Current at Saddle Point

where we replaced sums with integrals over time contours back ε
∑

τ →
∫

:
finally we plug this expression into (A.15):

Vabi〈T̂ c†a(τ1)ψb(τ2)〉 = −V 2

∫
C
dτ ′′

∫
D[c, ψ]

∑
a

caτ1caτ ′′
∑
b

ψbτ ′′ψbτ2

× eiSc+iSψeV
2
∫
dτdτ ′(

∑
i ciτ ciτ ′)(

∑
j ψjτ ′ψjτ)

Now let us decouple the exponential by introducing a bosonic unity:∫
D[P,Q] exp

(
−
∫
dτdτ ′Pττ ′Qτ ′τ

)
= 1 (A.17)

the exponential in the path integral above can we written as:

eV
2
∫
dτdτ ′... =

∫
D[P,Q]e

∫
dτdτ ′[V 2

∑
i ciτ ciτ ′

∑
j ψjτ ′ψjτ−Pττ ′Qτ ′τ ]

now we do the following change of variables Pττ ′ → Pττ ′ + V
∑

i ciτ ciτ ′ and
Qτ ′τ → Qτ ′τ + V

∑
j ψjτ ′ψjτ cancelling the quadratic fermion cross term:

eV
2
∫
dτdτ ′... =

∫
D[P,Q]e

∫
dτdτ ′[−Pττ ′Qτ ′τ+V Pττ ′

∑
j ψjτ ′ψjτ+V Qτ ′τ

∑
i ciτ ciτ ′ ]

But this completely decouples two different flavours of fermions, allowing us
to rewrite the combined path integral as a product:

Vab〈iT̂ c†a(τ1)ψb(τ2)〉 = −V 2

∫
C
dτ ′′

∫
D[P,Q]e−

∫
ττ ′ Pττ ′Qτ ′τ

×
∫
D[c]

∑
a

caτ1caτ ′′e
iSceV (

∫
ττ ′ Qτ ′τ

∑
i ciτ ciτ ′)

×
∫
D[ψ]

∑
b

ψbτ ′′ψbτ2e
iSdeV (

∫
ττ ′ Pττ ′

∑
j ψjτ ′ψjτ) (A.18)

A.3.1 Evaluation of Gaussian integrals

We would like to evaluate the expression (A.18) above. If fermionic degrees
of freedom are already noninteracting (bilinear), their respective actions
can be Gaussian integrated. Let us consider the following part of the above
action:∫

D[c]
∑
a

caτ1caτ ′′e
iSceV (

∫
ττ ′ Qτ ′τ

∑
i ciτ ciτ ′)

=
1

V

δ

δQτ ′′τ1

∫
D[c]eiSceV (

∫
ττ ′ Qτ ′τ

∑
i ciτ ciτ ′) (A.19)
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A.3. Current at Saddle Point

In RHS above, we simplified the expression by writing it with a functional
derivative. Note that the path integral on the RHS must be a Gaussian
integral or it can be brought to a Gaussian form by further decoupling with
HS transformations. This will introduce more bosonic fields which appear
as terms like Qτ ′τ in the exponential as well as overall bosonic path integrals
for the correlator expression. Let us assume without loss of generality that
Sc =

∫
τ

∑
i ciτ [G−1

0 δττ ′+Bττ ′ ]ciτ ′ has a Gaussian form where Bττ ′ represent
the possible the extra terms we just mentioned above. In the presence of
such fields, overall path integrals

∫
DB over these degrees of freedom are

implied. (G−1
0 = i∂τ) The Gaussian integral above then can be written as:

∫
D[c] exp

(∫
ττ ′

∑
i

ciτ
[
iG−1

0 δττ ′ +Bττ ′ + V Qτ ′τ
]
ciτ ′

)

=
∏
i

∫
D[ci] exp

−∑
ττ ′

ciτ (−ε2)
[
iG−1

0 δττ ′ +Bττ ′ + V Qτ ′τ
]︸ ︷︷ ︸

Ci(τ,τ ′)

ciτ ′


=
∏
i

det(Ci) = exp(
∑
i

Tr[log(Ci)]) = exp(NTr[log(C)]) (A.20)

The last equality holds since Ci = C is the same for all i in the sum. Notice
that C(τ, τ ′) = −iε2G−1(τ, τ ′) where G is the Green’s function renormalized
due to V couplings (as well as extra B fields). We read off this relation
from the above form of the Gaussian integral. If we go back to the above
expression (A.19) to evaluate the path integral,∫

D[c]
∑
a

caτ1caτ ′′e
iSceV (

∫
ττ ′ Qτ ′τ

∑
i ciτ ciτ ′) =

1

V

δ

δQτ ′′τ1
eNTr[log(C)]

= NeNTr log(C)(−ε2)C(τ ′′, τ1)−1 = −iNG(τ ′′, τ1)eNTr[log(C)] (A.21)

where in the last step we used the relation between C and G that we found
above. Note that the above expression did not depend on the pres-
ence or form of additional B bosonic degrees of freedom. They
will vanish under the functional derivative with respect to Q. The
expression for the the other path integral similarly follows. To summarize
these results, we have:∫

D[c]
∑
a

caτ1caτ ′′e
iSceV (

∫
ττ ′ Qτ ′τ

∑
i ciτ ciτ ′) = −iNG(τ ′′, τ1)eNTr[log(C)]

(A.22)
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∫
D[ψ]

∑
b

ψbτ ′′dψbτ2e
iSψeV (

∫
ττ ′ Pττ ′

∑
j ψjτ ′djτ) = −iMG(τ2, τ

′′)eMTr[log(D)]

(A.23)
where

Cαβ = (−ε2)
[
iG−1

0 δαβ +Bαβ + V Qβα
]

= −iε2G−1
αβ (A.24)

Dαβ = (−ε2)
[
iG−1

0 δαβ +B′αβ + V Pβα
]

= −iε2G−1
αβ (A.25)

The expression for the ψ fermions is very similar - note that we introduced
B′ similar to the B we had for c fermions. Now we use equations (A.22)
and (A.23) in the original path integral (A.18).∑

ab

Vabi〈T̂ c†a(τ1)db(τ2)〉

= MNV 2

∫
C
dτ ′′

∫
D[P,Q,B,B′]G(τ2, τ

′′)G(τ ′′, τ1)

× e−
∫
B,B′...e−

∫
ττ ′ Pττ ′Qτ ′τ+NTr[log(C)]+MTr[log(D)] (A.26)

A.3.2 Effective action and the large-N limit

To compute the effective action at saddle point we would have followed the
exact same steps to obtain the disorder averaged expression for Z = 1 except
that we would not take the functional derivatives to bring down the Green’s
functions in the fermionic path integrals as we did in (A.21)

Z =

∫
D[P,Q,B,B′]e−

∫
B,B′...e−

∫
ττ ′ Pττ ′Qτ ′τ+NTr[log(C)]+MTr[log(D)]

(A.27)
we represent the additional bosonic fields by B and B′ which appear af-
ter decoupling of interacting fermionic degrees of freedom. The expression
e−

∫
B,B′... is a shorthand for these additional terms in the action. We can

rewrite the above expression as

Z =

∫
D[P,Q,B,B′]e−Seff [P,Q,B,B′]

where

Seff [P,Q,B,B′] =

∫
B,B′...

+

∫
ττ ′

Pττ ′Qτ ′τ −NTr[logC(B,Q)]−MTr[logD(B′, Q)] (A.28)
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we can obtain the saddle point equations with:

δSeff
δPab

= 0
δSeff
δQab

= 0
δSeff
δB

= 0 ...

For a general formula, however, we do not need to obtain these equations
explicitly. Fermionic degrees of freedom are integrated out but they depend
on the bosonic fields. Next step is to evaluate the bosonic path integrals. We
can approximate these path integrals with the saddle point approximation.
The crucial observation is that as long as the fluctuations with respect to
the saddle point vanish in the large-N limit, the path integral will be given
by the classical action S0

eff evaluated at the saddle point. In large-N limit,
saddle point approximation then reads:

Z =

∫
D[P,Q,B,B′]e−Seff [P,Q,B,B′] ≈ e−Seff [P 0,Q0,B0,B′0] = 1

since in Keldysh formalism Z = 1. Therefore we obtain:

e−Seff [P 0,Q0,B0,B′0] = 1

where the superscript means the saddle point values of the bosonic fields.
Now we go back to the numerator we obtained above (equation (A.26)).
Note that we can do the saddle point approximation that we used for Z as
it is essentially the same expression except that it also contains the Green’s
functions before the exponent. Note that the Green’s functions G(B,Q)
and G(B′, P ) depend on the fields P,Q,B,B′... (eqns A.24, A.25) and they
can not be taken outside the integral immediately. But in the large-N limit,
their fluctuations with respect to the saddle point vanish and we can replace
them with their values at the saddle point and we can take them outside
the path integral. Therefore, in large-N limit, we can rewrite the numerator
(A.26) as:∑

ab

Vabi〈T̂ c†a(τ1)ψb(τ2)〉 = MNV 2

∫
C
dτ ′′ G(τ2, τ

′′)G(τ ′′, τ1)︸ ︷︷ ︸
saddle-point values

×
∫
D[P,Q,B,B′]e−

∫
B,B′...e−

∫
ττ ′ Pττ ′Qτ ′τ+NTr[log(C)]+MTr[log(D)]︸ ︷︷ ︸

e
−Seff [P0,Q0,B0,B′0]

=1

(A.29)

but note that the rest of the integral is nothing but Z = e−Seff [P 0,Q0,B0,B′0] =
1. Therefore, we arrive at the disorder averaged saddle-point current for-
mula:∑

ab

Vabi〈T̂ c†a(τ1)ψb(τ2)〉 = MNV 2

∫
C
dτ ′′G(τ2, τ

′′)G(τ ′′, τ1) (A.30)
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∑
ab

V ∗abi〈T̂ψ
†
b(τ1)ca(τ2)〉 = MNV 2

∫
C
dτ ′′G(τ2, τ

′′)G(τ ′′, τ1) (A.31)

where G and G are the saddle point Green’s functions evaluated in the
presence of all interactions.

A.3.3 Analytic continuation

We are interested in the real-time quantitites:

C<1 (t1, t2) =
∑
ab

Vabi〈c†a(t2)ψb(t1)〉 C<2 (t1, t2) =
∑
ab

V ∗abi〈ψ
†
b(t2)ca(t1)〉

with these we can write the current expectation value as:

〈I〉 = lim
t1,t2→t

−e
(
C<1 (t1, t2)− C<2 (t1, t2)

)
We can obtain these lesser Green’s functions by using Langareth’s rules [20].
The expression

C(τ1, τ2) =

∫
C
dτ ′A(τ1, τ

′)B(τ ′, τ2)

on time ordered contour can be analytically continued to:

C<(t1, t2) =

∫ ∞
−∞

dt′Ar(t1, t
′)B<(t′, t2) +A<(t1, t

′)Ba(t′, t2)

using this expression for equations (A.30) and (A.31) The current expression
then becomes:

〈I〉 = −eNMV 2

∫
dt′Gr(t, t′)G<(t′, t) + G<(t, t′)Ga(t′, t)

−Gr(t, t′)G<(t′, t)−G<(t, t′)Ga(t′, t)

Fourier transforming (assume time translational invariance), we arrive at
the final formula:

〈I〉 = −eNMV 2

∫
dω
{
G<(ω) [Gr(ω)− Ga(ω)]− G<(ω) [Gr(ω)−Ga(ω)]

}
(A.32)
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we can simplify this further by using the relation: GR − GA = 2iImGR =
−iA(ω)

〈I〉 = ieNMV 2

∫
dω
{
G<(ω)A(ω)− G<(ω)A(ω)

}
(A.33)

Recall we had suppressed the denominator in Vij = Vij/(NM)1/4 Therefore
we should also have V 2 → V 2/

√
NM .

〈I〉 = ie
√
NMV 2

∫
dω
{
G<(ω)A(ω)− G<(ω)A(ω)

}
(A.34)

A.3.4 Disorder averaging of the coupling

We would like to evaluate

exp

∑
ij

Vijφij +
∑
ij

V ∗ijφ
∗
ij


let us suppress the indices ij → i for simplicity. We can rewrite this expres-
sion as:

exp

(∑
i

Viφi + V ∗i φ
∗
i

)
=
∏
i

exp (Viφi + V ∗i φ
∗
i )

since all Vi are independent random variables, it suffices that we evaluate
the average (for Γ = V 2 where V is the variance

exp (Viφi + V ∗i φ
∗
i ) =

∫
dz
e−zz

∗/Γ

πΓ
e(zφ+z∗φ∗)

If we switch to real variables z = x+ iy:

exp (Viφi + V ∗i φ
∗
i ) =

∫
dxdy

πΓ
exp(−x

2 + y2

Γ
) + (x+ iy)φ+ (x− iy)φ∗

if we split the x and y integrals and complete them to square, we are left
with:

=
1

πΓ

∫
dxdye−(x2+y2)/Γ︸ ︷︷ ︸

=1

eΓφφ∗

for the last step we assumed that φ and φ∗ commute. This is true in our
case since they are Grassman bilinears. Therefore, we find that:

exp

∑
ij

Vijφij + V ∗ijφ
∗
ij

 = exp

V 2
∑
ij

φijφ
∗
ij


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A.3.5 Proof of the Gaussian average identity (A.16)

We define the complex Gaussian distribution as:

p(z) =
e−zz

∗/Γ

πΓ

Now let us further suppress the pair labels i, j → i and a, b→ a without loss
of generality. Then if we evaluate the variance σ we find 〈zz∗〉 = Γ = σ2.
Now we split the sums in the exponential as following:

VaeVaφaeV
∗
a φ
∗
a exp

∑
i 6=a

Viφi

 exp

∑
i 6=a

V ∗i φ
∗
i


= VaeVaφaeV

∗
a φ
∗
a × exp

∑
i 6=a

Viφi

 exp

∑
i 6=a

V ∗i φ
∗
i

 (A.35)

since the distribution Va is independent of Vi for all i 6= a, we can factor the
averages as above. Now we focus on the first factor and the average over Va
as we expand the exponentials:

VaeVaφaeV
∗
a φ
∗
a =

∑
mn

Va
(V ∗a φ

∗
a)
n

n!

(Vaφa)m

m!
=
∑
mn

Va(V ∗a )m(Va)n
(φ∗a)

m

m!

(φa)
n

n!

(A.36)
Now we use a version of Wick’s theorem for complex Gaussian integrals.
This theorem tells us that the average of a product of Gaussian distributed
variables can we factored into averages of all pairings. For example:

〈z∗i zjz∗kzl〉 = 〈z∗i zj〉〈z∗kzl〉+ 〈z∗i zl〉〈z∗kzj〉

Only pairings of type 〈z∗z〉 = σ2 survive. It can be shown that 〈zz〉 =
〈z∗z∗〉 = 0. Therefore we have

〈VijV ∗kl〉 = V 2δikδjl

Now go back to the average we wish to evaluate:

Va(V ∗a )m(Va)n

According to Wick’s theorem, we can factor this product into all possible
pairings of V s and V ∗s. Let us focus on the first Va that occurs in the
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product. For this expression to survive the average, this first Va must be
paired with a V ∗a . There are m different ways of doing this and they are all
identical:

Va(V ∗a )m(Va)n = m× VaV ∗a ×
(
all pairings of (V ∗a )m−1(Va)

n
)

= m× VaV ∗a︸ ︷︷ ︸
V 2

×(V ∗a )m−1(Va)n

if we use this result in above expression (A.36), we obtain

VaeVaφaeV
∗
a φ
∗
a = V 2φ∗a

∑
mn

(V ∗a )m−1(Va)n
(φ∗a)

m−1

(m− 1)!

(φa)
n

n!

= V 2φ∗a
∑
mn

(V ∗a φ
∗
a)
m−1

(m− 1)!

(Vaφa)n

n!

but now we see the averaged expression in the above line is nothing but the
product of exponentials. Plugging this result back into (A.35)

Va exp

(∑
i

Viφi

)
exp

(∑
i

V ∗i φ
∗
i

)
= V 2φ∗ae

VaφaeV ∗a φ∗a×e
∑
i 6=a Viφie

∑
i 6=a V

∗
i φ
∗
i

(A.37)
but again, the product of these two averages can be combined because aver-
ages of Vi are independent. Then we finish the proof state our intermediate
result about V averages here:

Vab exp

∑
ij

Vijφij +
∑
ij

V ∗ijφ
∗
ij

 = V 2φ∗ab × exp

∑
ij

Vijφij +
∑
ij

V ∗ijφ
∗
ij


(A.38)

A.3.6 Proof of Gaussian Identity (A.13)

In this section, we prove the following identity:

V ∗a Vbe
∑
m Vmφm+V ∗mφ

∗
m =

{
(V 2 + V 4φaφ

∗
a)e

∑
φφ∗ a = b

V 4φaφ
∗
be

∑
φφ∗ a 6= b

51



A.3. Current at Saddle Point

Case 1, a = b

The above expression reduces to:

V ∗a Vb exp

(∑
m

Vmφm + V ∗mφ
∗
m

)
= V ∗a Va exp (Vaφa + V ∗a φ

∗
a)

× exp

∑
m6=a

Vmφm + V ∗mφ
∗
m

 (A.39)

The first factor V ∗a Va exp (Vaφa + V ∗a φ
∗
a) can be written as∑

m,n

V ∗a Va
V m
a φma
m!

(V ∗a )n(φ∗a)
n

n!
= V ∗a Va

∑
m,n

V m
a φma
m!

(V ∗a )n(φ∗a)
n

n!

+
∑
m,n

m× V ∗a Va
m!

n× VaV ∗a
n!

V m−1
a (V ∗a )n−1φma (φ∗a)

n

where used a variant of the Wick’s theorem we introduced in the previous
section. While the first term on the RHS is the pairing of Va and V ∗a that
was outside the exponential initially, the second term involves the pairings
of these two factors with the exponential series. These two terms can again
be written up as exponentials:

= (V 2 + V 4φaφ
∗
a)exp (Vaφa + V ∗a φ

∗
a)

completing the proof, where we used 〈VaV ∗b 〉 = V 2δab.

Case 2, a 6= b

In this case we can split the averages as following:

V ∗a Vb exp

(∑
m

Vmφm + V ∗mφ
∗
m

)
= V ∗a exp (Vaφa + V ∗a φ

∗
a)

× Vb exp (Vaφa + V ∗a φ
∗
a)× e(

∑
m 6=a,b Vmφm+V ∗mφ

∗
m)

we can use the result (A.37) from the previous section to simplify this ex-
pression

= V 2φaexp (Vaφa + V ∗a φ
∗
a)× V 2φ∗bexp

(
Vbφb + V ∗b φ

∗
b

)
× e(

∑
m 6=a,b Vmφm+V ∗mφ

∗
m)

= V 4φaφ
∗
be

(
∑
m Vmφm+V ∗mφ

∗
m)

completing the proof.
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