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Abstract

In this thesis we study the response of a BCS superconductor to an external ultra-fast terahertz

electromagnetic field, which we choose so as to mimic the setup in a pump-probe experiment.

We begin by considering an optical experimental setup and demonstrate that in an optical pump-

probe experiment, the superconducting amplitude Higgs mode can be excited and measured with

ultra-fast terahertz pump pulses. Moreover, for an anistropic d-wave superconductor, there are two

Higgs mode, one at the usual 2∆ energy and one with a lower energy. The latter can be used to

differentiate the d-wave symmetry from isotropic s-wave, by varying the polarization of the pump

relative to the sample. For a linearly polarized pump with a vector potential aligned along a d-wave

node we find only a single Higgs mode, while for a direction along an antinode we find two Higgs

modes.

Next, we consider an angle resolved photoemission spectroscopy (ARPES) experiment and derive

a new set of equations of motion, for which we can analyze the two-time nonequilibrium Green’s

functions. We show that the Higgs mode can also be studied in an ARPES pump-probe experiment.

Moreover, we show how an ARPES pump-probe experiment can be used to differentiate between

different momentum-dependent nonequilibrium Higgs modes. Our results suggest that in a d-wave

superconductor, the second low-energy Higgs mode is of osculating, B1g character, which corresponds

to a symmetry breaking along the d-wave nodal lines. Further study of the role of momentum

symmetry breaking promises to provide deeper insight into generating new nonequilibrium states.
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Lay Summary

In this thesis, we develop a theoretical framework that can be used to elucidate future experimental

findings in terahertz time-resolved experiments on superconductors. The theoretical framework

and experimental methods proposed in this thesis can be used to characterize different symmetries

inherent to superconductors in equilibrium and nonequilibrium. These advances in the field of Higgs

spectroscopy promise to provide a deeper insight into superconducting dynamics and advance the

growing field surrounding nonequilibrium superconductors and materials research.
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Preface

• A version of the work discussed in Chapter 2 is currently published as B. Fauseweh, L. Schwarz,

N. Tsuji, N. Cheng, N. Bittner, H. Krull, M. Berciu, G. S. Uhrig, A. P. Schnyder, S. Kaiser,

D. Manske arXiv:1712.07989. It makes use of the formalism by Papenkort, Axt and Kuhn

[37].

• I carried out the numerical calculations and numerical analysis in this publication, which per-

tain to the interaction of the superconductor with an electromagnetic field, while the analytic

work on quenches and different nonequilibrium symmetries was primarily contributed by B.

Fauseweh, L. Schwarz. and N. Tsuji. The project was primarily overseen by D. Manske and

the publication is based on collaboration with Bittner, Krull, Berciu, Uhrig, Schnyder, Kaiser.

The draft of the manuscript was also written by B. Fauseweh.

• I have also carried out all of the work in Chapter 3, which will be submitted for publication

shortly.
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Chapter 1

Introduction

Superconductivity, discovered in 1911 by Kamerlingh Onnes [51], continues to be one of the most

interesting phases of matter. Originally shown to appear in mercury below 4.2 Kelvin, it is now

known that most elemental metals and simple metallic compounds undergo a phase transition to

a superconducting state below some critical temperature in the range of up to 20 K. Remarkably,

upon cooling below this transition temperature, these materials exhibit absolutely zero resistivity

and, partly as a consequence, expel weak magnetic fields from the bulk – the Meissner effect. As

would later be discovered, the source of such peculiar properties is a low energy bosonic condensate

with an energy gap corresponding to the condensate energy. However, this explanation would not

be established until 45 years later.

These compounds became known as conventional superconductors when in 1986 the first so-

called unconventional superconductor [7] was discovered in lanthanum doped copper oxide. Quickly,

an entire class of copper oxide superconductors were discovered that continue to be an ongoing and

challenging research topic in condensed matter physics. This class of superconductors is unique

for a number of reasons, the first being an unusually high superconducting transition temperature.

Among other peculiarities, these superconductors do not have a uniform superconducting energy

gap. In fact, for certain points in the Brillouin zone, the superconducting gap actually closes. Since,

there have been many other classes of superconductors with unconventional forms of momentum

dependence beyond conventional s-wave – d-wave, s+/-, etc. – making symmetry a meaningful

method of distinguishing between these classes.

1.1 BCS theory of superconductivity

As a testament to the difficulty of both experimentally probing and theoretically describing this

phase, a microscopic description of conventional superconductivity was not discovered until the

1957 Bardeen Cooper and Schrieffer (BCS) theory of superconductivity [1–3, 11], for which they

would receive the 1972 Nobel prize in physics (for unconventional superconductivity, a conclusive

microscopic description remains elusive). While widely known in the 50s that a weak attractive

potential can bind a pair of particles in two-dimensions, but not three, Cooper showed that certain

three-dimensional electrons, which exist in a thin shell of energy near the Fermi energy (the Fermi

surface) and in the presence of an attractive electron-electron potential, will also form pairs of

bound states (Cooper pairs) between electrons of opposite momentum [11]. Together with Schrieffer

and Bardeen, Cooper wrote down a microscopic Hamiltonian for such an interaction, which would

become known as the BCS theory of superconductivity [2, 3]:

HBCS =
∑
k,σ

εkc
†
k,σck,σ +

∑
k,k′

Vk,k′c†k↑c
†
−k↓c−k′↓ck′↑ (1.1)
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In the original work, the form of the potential Vk,k′ was taken to be some constant attractive term

between electrons (holes) c†k,σ (ck,σ) of opposite spin and momentum in some band εk. However,

the exact potential is now known to be highly momentum dependent depending on the specific

superconductor. For instance, in the d-wave superconductors, the potential has a d-wave dependence,

which we will discuss in detail below.

1.1.1 Mean-field superconductivity

Fortunately, for conventional superconductors in particular, electron pairs often span tens or even

hundreds of lattice sites. As such, the electron (hole) pairing density is relatively constant and a

mean-field approximation is well justified. Making such an approximation reduces the quartic su-

perconducting Hamiltonian to a simple, quadratic Hamiltonian for a single particle and additionally

defines a complex order parameter representing the superconducting gap ∆k, which is defined in

terms of the mean-field parameter,

∆k′ =
∑
k∈W

Vk,k′〈c−k↓ck↑〉. (1.2)

Here, we also enforce the requirement that these electrons (holes) reside within a thin shellW above

(below) the Fermi surface – as required for electrons (holes) to experience an attractive electron-

electron (hole-hole) interaction. In this case, the mean-field Hamiltonian reduces to

HMF =
∑
k,σ

εkc
†
k,σck,σ +

∑
k∈W

[
∆kc

†
k↑c
†
−k↓ + ∆∗kc−k↓ck↑

]
. (1.3)

It is convenient to write the Hamiltonian in terms of Bogoliubov quasiparticle operators, which are

given by,

αk = u∗kck,↑ + vkc
†
−k↓ (1.4a)

βk = u∗kc−k↓ − vkc
†
k↑ (1.4b)

Under these transformations and normalizing – |uk|2 + |vk|2 = 1 – the mean-field Hamiltonian

written in terms of the Bogoliubov quasiparticles is then,

HMF =
∑
k

[
Rkα

†
kαk −Rkβkβ

†
k + Ckα

†
kβ
†
k + C∗kβkαk

]
(1.5)

where Rk and Ck are given by,

Rk = εk(1− 2vkv
∗
k) + ∆∗kukvk + ∆u∗kv

∗
k (1.6a)

Ck = −2εku
∗
kvk + ∆k(u∗k)2 −∆∗k(vk)2 (1.6b)

For finite ∆k, the quasiparticle energy Ek =
√
ε2k + |∆k|2 is non-vanishing for all points around the

Fermi surface, so the quasiparticle spectrum is gapped by ∆k. As the superconducting gap ∆k closes

to zero, Ck must vanish so that the Hamiltonian becomes diagonal; Rk then simply has the form of

the band energy. We choose our normalization in such a way that uk is real and vk is complex and
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Re(∆)Im( ∆)

F

Figure 1.1: Ginzburg-Landau free energy potential in the superconducting phase
with respect to some global order parameter ∆.

carries the phase of the gap, ∆k. To satisfy these condition and re-obtain our original mean-field

Hamiltonian uk and vk are defined in the following way:

uk =

√
1

2

(
1 +

εk
Ek

)
(1.7a)

vk =
∆k

|∆k|

√
1

2

(
1− εk

Ek

)
(1.7b)

with Ek =
√
ε2k + |∆k|2. Besides being of a much simpler form, this mean-field Hamiltonian also

allowed the reconciliation of the BCS, microscopic theory of superconductivity with the more macro-

scopic or phenomenological, Ginzburg-Landau theory of superconductivity.

1.2 Ginzburg-Landau theory

Originally formulated prior to the BCS theory, the Ginzburg-Landau theory [18, 28] attempted to

describe the continuous phase transition between the superconducting and normal states in terms of

some global order parameter for which they gave no microscopic justification. Even so, their theory

was rather effectively able to describe certain macroscopic properties according to this complex order

parameter field. For instance, it allows one to derive two length-scales corresponding to the London

penetration depth of a magnetic field into the superconductor and the characteristic length scale

of superconducting density fluctuations, the superconducting coherence length. Ginzburg-Landau

theory has since been derived beginning from the microscopic BCS description of superconductivity.

In essence, Ginzburg-Landau theory is just an extension of Landau mean-field theory for continuous,
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second order phase transitions. It states that in the absence of a superconducting current, the free

energy density in the superconducting state, Fs, is the sum of the normal state free energy density

Fn and terms depending on some complex field ∆ (which we know from BCS theory corresponds to

the superconducting order parameter).

Fs = Fn + α|∆|2 +
β

2
|∆|4 (1.8)

The total free energy is of course,

F =

∫
dV Fs (1.9)

Above the transition temperature Tc, this problem admits the trivial solution |∆| = 0 as a minimum

solution for α > 0. However for α < 0 and β > 0, this problem admits a second solution for

temperatures below Tc of the form,

|∆|2 = −α(Tc − T )

β
(1.10)

where the form of the temperature dependence of α = α(Tc − T ) below the transition temperature

is included. The approximate form of α and β can also be derived from BCS theory for various

thermodynamic points. This family of solutions corresponds to a nonzero minimum of F occurring

exactly at |∆| and, since the phase of ∆ remains arbitrary, the free energy F has the form of the

so-called ”Mexican-hat” potential (Fig. 1.1).

1.3 Nonequilibrium spectroscopy

Researchers have always been interested in studying the dynamics of systems. Historically, such

research led to the invention of the first motion picture films in the 1890s, which implemented

shutter speeds on fast enough timescales to resolve and photograph the constituents of motion.

To the same effect, nonequilibrium research in science has sought to capture the time-evolution of

a variety of systems ranging from the flutter of a hummingbird’s wings all the way down to the

microscopic scale motion of atoms and electrons; the latter become increasingly more difficult to

image as they require ”shutter-speeds” fast enough to capture motion at the femtosecond and even

shorter timescales. Among numerous nonequilibrium milestones, the 1967 Nobel Prize in Chemistry

was awarded to Eigen, Norrish and Porter for the visualization of rapid chemical reactions and,

with the development of femtosecond spectroscopy, the 1999 Nobel Prize in Chemistry was awarded

to Zewail for his work on imaging transition states in chemical reactions. Modern time-resolved

experiments operate across a wide spectrum of energies in the femtosecond and even attosecond

timescale and are rapidly becoming more proficient in the study of quantum effects.

While the study of equilibrium properties may provide the foundations needed to describe a

material, investigating its dynamics is crucial to developing a complete understanding [10, 13, 23, 33].

For instance, nonequilibrium experiments can access and probe non-thermal excited states otherwise

inaccessible in thermal equilibrium. One of the most prominent tools to excite and study a system

in nonequilibrium conditions is pump-probe spectroscopy. A pump pulse is first used to excite the

system into a nonequilibrium state and after a short time delay, an ultra-fast probe pulse is used to

measure the nonequilibrium state as a function of the delay time. Successive probes in turn can be
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used to illustrate the time-resolved dynamics of the nonequilibrium state.

The profile of the pump used to excite the system can be varied to induce different excitation

spectra. For instance, a continuous pumping pulse can be used to coherently excite a specific state,

thereby providing a degree of optical control. Other optical pumps effectively excite the sample

into a high temperature state, from which information can be deduced by studying the decay and

the lifetime of the different induced excitations. However, both of these methods can be classified

as adiabatic methods, as the relevant timescales are often much longer than the response time

of the system. For the rest of this thesis, we will focus on non-adiabatic pump pulses, which

occur on timescales faster than the response time of the system. Effectively, the pump acts as a

quantum quench, driving the system into a nearby state while simultaneously inducing non-adiabatic

excitations such as the Higgs amplitude mode. As a result, the effects are often highly non-linear

and become increasingly difficult to study theoretically – especially in the field of strongly-correlated

materials, which are already difficult to model, even in equilibrium.

1.4 Synopsis

An equilibrium superconducting condensate satisfies the minimum of Eq.1.8 by definition. In the

following chapters we will theoretically investigate the nonequilibrium effects of perturbing the con-

densate and thus, the form of Eq. 1.8. We refer to this experimental technique as ”Higgs spec-

troscopy”. To study and characterize the resulting phenomena – the Higgs amplitude mode – we

have developed software to solve the equations which follow, as well as a new formalism to de-

scribe the superconducting dynamics in time-resolved angle resolved photoemission spectroscopy

(tr-ARPES) experiments. The thesis is outlined as follows.

In Chapter 2, we begin with an introduction to the nonequilibrium Ginzburg-Landau free energy

picture of a superconductor. Following a brief introduction to the symmetries of the systems we

wish to study – s-wave and d-wave – we derive the equations of motion for a BCS superconduc-

tor interacting with an electromagnetic field according to the standard density matrix formalism.

We use this form of Hamiltonian and subsequent equations to mimic the form of a pump-probe

experiment and compare the effects of exciting the Higgs amplitude mode(s) in s-wave and d-wave

superconductors. We also calculate the relevant linear response functions for an optical experiment

and predict possible techniques which can be used to experimentally measure these nonequilibrium

modes. Our results reveal the possibility of exciting two out of the four Higgs amplitude modes in

a d-wave superconductor. This is in contrast to an isotropic s-wave superconductor where only a

single Higgs mode can be excited; there is only one nonequilibrium Higgs mode in an isotropic su-

perconductor. Therefore, differentiating the Higgs amplitude mode excitations in a superconductor

is a highly effective way of directly characterizing the condensate pairing symmetry.

To better understand the nature of the nonequilibrium modes, in Chapter 3 we derive a new

formalism to calculate the two-time nonequilibrium Green’s functions, which can be compared with

tr-ARPES spectra. We show that, as in the case of time-resolved optical experiments, tr-ARPES

can also be used to detect and distinguish s-wave and d-wave superconductors based on their Higgs

amplitude mode response. Moreover, the ARPES momentum resolution can also be used to dis-

tinguish the symmetry of the nonequilibrium Higgs mode that is excited. For a linearly polarized

pump incident on a d-wave superconductor, our results predict that aligning the magnetic potential
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along a d-wave antinode will excite both the Higgs breathing mode (A1g) and Higgs osculating

mode (B1g), while aligning the magnetic potential along a d-wave node will only excite the Higgs

breathing mode. Lastly, we discuss a possible explanation and extensions for exciting other Higgs

amplitude modes using the symmetry breaking of the linear electromagnetic pumping term.

Finally, in Chapter 4, we summarize the main results of this thesis and discuss further promising

avenues to study superconductors via Higgs spectroscopy.
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Chapter 2

Nonequilibrium Superconductivity:

Optical Response

2.1 Introduction and analogy with Ginzburg-Landau theory

In this thesis we theoretically study the nature of a non-equilibrium superconductor that is excited

and measured using pump-probe spectroscopy. Specifically, since we want to study rather low energy

features, we will be interested primarily in energies in the range of a few terahertz, timescales on

the order of a few hundred femptoseconds and small enough fluence that the superconducting state

remains intact – the pump should not heat the superconductor into the normal state. Considering

the narrow experimental window, these experiments are difficult and come close to the boundary

of allowable experimental precision given by the Heisenberg uncertainty principle. However, recent

experiments have been successful in studying non-equilibrium isotropic superconductors [29–32] and

have just begun studying anisotropic superconductors [24], thus paving the way towards directly

probing the superconducting condensate. A myriad of theoretical proposals and experiments have

been conducted [4–6, 8, 9, 15, 16, 25–27, 34–50, 52, 53] to study phenomena ranging from coupled

superconductors to other exotic phenomena. In this thesis, we develop a theoretical framework to

prove that experimental measurements of the Higgs amplitude mode can uncover the superconduct-

ing symmetry, thus laying the foundation for studying these phenomena via the new technique of

”Higgs spectroscopy”.

Let us return to the Mexican hat potential, which coincidentally, also arises in high energy physics

with the Higgs boson. Since a Cooper pair is in fact a boson, a superconductor can be viewed as

a condensed matter analogue to the high-energy physics Higgs-boson [22]. This equivalency of

structure gives rise to the nomenclature of the Higgs amplitude mode. For a superconducting

condensate at the minimum of the potential, there are clearly two oscillatory modes permitted – an

amplitude Higgs mode up and down the walls of the potential and a Goldstone phase mode around

the minimum of the Mexican hat (Fig. 2.1).

To experimentally investigate the Higgs mode, pump-probe spectroscopy must be employed to

induce and measure the non-equilibrium state. Physically, a few pairs of electrons are broken by

the pumping pulse, which causes the Mexican-hat potential to shrink slightly, but does not destroy

the overall superconductivity. As the potential is altered, one of two scenarios can occur. Either

the potential is shrunk slowly so that the condensate is only excited in an adiabatic fashion and

always remains at the bottom of the potential, or the potential is shrunk faster than the condensate

can respond. In this latter non-adiabatic case, the condensate will wind up elevated above the new

potential minimum along the potential wall. This intermediary state then relaxes towards the new

equilibrium, giving rise to the Higgs oscillations.
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Im( ∆)

F

Re(∆)

Figure 2.1: Nonequilibrium superconducting oscillatory modes. The amplitude
Higgs mode manifests as the condensate oscillates up and down the potential
walls (green line). The Goldstone mode manifests as the condensate phase os-
cillates around the potential minimum (white line).

2.1.1 Superconducting symmetries

Superconductors are different from high-energy physics models in that they also allow further degrees

of freedom – the momentum dependence of the superconducting order parameter and the symmetry

of the lattice. In this sense, superconductors actually host an additional degree of freedom through

which one can probe the Higgs mode [4, 39, 41]. One of the key results of this work will be to

investigate the effect of including the momentum dependence on the Higgs amplitude mode and

discovering a second Higgs mode for certain anisotropic momentum dependencies.

In this thesis, we work solely with a two-dimensional square lattice. In this case, the two super-

conducting symmetries, s and dx2−y2 , belong to the A1g and B1g representations of the D4 point

group (Table 2.1) because they are even (odd) under C4 rotation around the z-axis out of plane, even

(even) under C ′2 rotation around the x and y axes intersecting the antinodes and even (odd) under

C ′′2 rotation around the x̂y axis intersecting the nodes [14]. While in an isotropic superconductor,

the nonequilibrium Higgs only permits a single mode – A1g isotropic expansion and contraction

of the order parameter – as momentum anisotropy is introduced, the superconductor can permit

various nonequilibrium Higgs oscillations depending on the specific group symmetries of the order

parameter and the lattice. For instance, a dx2−y2 superconductor can admit four possible in-plane

nonequilibrium amplitude modes corresponding to the A1g, A2g, B1g and B2g symmetries listed in

Table 2.1 and illustrated pictorially in Fig. 2.2. The focus of this thesis will be on studying differ-

ences between the most common superconducting symmetries, s and dx2−y2 , though the predictions

and analysis can easily be extended to other symmetries using group theory considerations.
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D4 Table E C2 2C4 2C ′2 2C ′′2

A1g 1 1 1 1 1

A2g 1 1 1 −1 −1

B1g 1 1 −1 1 −1

B2g 1 1 −1 −1 1

Table 2.1: Character table for the D4 point group. For a square lattice aligned
along the x and y axes, C2 and C4 correspond to rotations about the z-axis. C ′2
corresponds to rotations around the x and y axes. C ′′2 corresponds to rotations
around the xy-axes.

(a) Breathing mode (b) Osculating mode (c) Rotating mode (d) Clapping mode

Figure 2.2: Pictorial representation of all four possible dx2−y2 nonequilibrium
Higgs amplitude modes, as allowed by group symmetry considerations. In terms
of the group symmetry they are the (a) A1g breathing mode, (b) B1g osculating
mode, (c) A2g rotating mode, (d) B2g clapping mode.
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2.2 Model Hamiltonian

We now consider a time-dependent Hamiltonian. In particular, we study the time-evolution of a

BCS superconductor in the presence of some time-varying electromagnetic potential, which will take

the form of a realistic experimental pumping or probing laser. As a starting point, a mean-field BCS

superconductor HMF is considered together with some electromagnetic interaction HEM . This will

prove to be an auspicious starting point, as many experimental techniques probe such light-matter

material interactions. We are especially interested in the class of pump-probe experiments that probe

the time-dependence of particular properties following some electromagnetic pump excitation, which

disturbs the equilibrium of the material. The Hamiltonian is,

H = HMF +H
(1)
EM +H

(2)
EM (2.1)

where we have broken up the electromagnetic interaction term into linear and quadratic order terms.

Following the discussion from the previous chapter, the BCS mean-field Hamiltonian is given by,

HMF =
∑
k,σ

εkc
†
k,σck,σ +

∑
k∈W

[
∆kc

†
k↑c
†
−k↓ + ∆∗kc−k↓ck↑

]
. (2.2)

where c†k,σ and ck,σ are, respectively, the electron creation and annihilation operators for an electron

of momentum k and spin σ. εk = ~2k2/(2m)− EF is the electron dispersion for a single quadratic

band with a circular Fermi surface, m is the effective mass and EF is the Fermi energy level. W is

the set of all momentum vectors k, such that |εk| ≤ ~ωc for some cutoff energy ~ωc in the pairing

interaction. Finally, ∆ is the mean-field gap-parameter determined by the microscopic interaction

Vk,k′

∆k′ =
∑
k∈W

Vk,k′〈c−k↓ck↑〉. (2.3)

The electromagnetic portion of the Hamiltonian in second quantization is,

H
(1)
EM =

e~
2m

∑
k,q,σ

(2k + q) ·Aq(t)c†k+q,σckσ (2.4a)

H
(2)
EM =

e2

2m

∑
k,q,σ

∑
q′

Aq−q′(t) ·Aq′(t)

 c†k+q,σckσ (2.4b)

where Aq is the electromagnetic vector potential for a momentum transfer q.

We now make a change of basis to Bogoliubov quasiparticle operators, which are again given in

Eq. 1.4. This change of basis will be more intuitive when we consider the time-dependent equations

of motion for the superconductor. Under this change of basis, the mean-field superconducting

Hamiltonian (Eq. 2.2) becomes,

HMF =
∑
k

[
Rkα

†
kαk −Rkβkβ

†
k + Ckα

†
kβ
†
k + C∗kβkαk

]
(2.5)
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where Rk and Ck are the same as in Eq. 1.6. We now also need to make the change of basis for the

electromagnetic term HEM .

H
(1)
EM =

e~
2m

∑
k,q

(2k + q) ·Aq(t)
[
(u∗k+quk + vk+qv

∗
k)α†k+qαk − (v∗k+qvk + u∗kuk+q)β†kβk+q

+(vk+qu
∗
k − u∗k+qvk)α†k+qβ

†
k + (v∗kuk+q − v∗k+quk)βk+qαk

]
(2.6a)

H
(2)
EM =

e2

2m

∑
k,q

∑
q′

Aq−q′(t) ·Aq′(t)

[(u∗k+quk − vk+qv
∗
k)α†k+qαk − (v∗k+qvk − u∗kuk+q)β†kβk+q

−(vk+qu
∗
k + u∗k+qvk)α†k+qβ

†
k − (v∗kuk+q + v∗k+quk)βk+qαk

]
(2.6b)

Though the phase in a superconductor is arbitrary, we can fix a specific initial phase of ∆ for our

calculations. In fact, we have verified that varying this initial choice of phase has no impact on the

calculation beyond the initial phase-offset. Therefore, to simplify notation, we choose our initial ∆

to be real and positive and employ the following shorthand for the subsequent sections,

L±k,q = uk+quk ± vk+qvk

M±k,q = uk+qvk ± vk+quk
(2.7)

2.3 Equations of motion

To calculate the time-dependence of various quantities in the system, there are generally two different

approaches. One can take the quasiparticle operators to be time-dependent and the states themselves

to be time-independent (the Heisenberg picture), or the quasiparticle states to be time-dependent

and the operators time-independent (the Schrödinger picture). We will utilize the first approach,

which involves solving the Heisenberg equations of motion for an operator Â,

d

dt
Â(t) =

i

~
[H, Â(t)] +

(
∂Â

∂t

)
H

(2.8)

Since our interest is in determining experimental observables, our choice of working in the Heisenberg

picture makes taking any expectation value with respect to our time-independent states trivial. The

particular values we will be interested in are the four quasiparticle expectation values that appear in

our Hamiltonian with various momenta: 〈α†kαk+q〉(t), 〈β†kβk+q〉(t), 〈α†kβ
†
k+q〉(t) and 〈αkβk+q〉(t).

The α and β operators are intrinsically time-independent. Therefore, for these expectation values,

the last term in Eq. 2.8 will be identically zero. The Heisenberg equations of motion we need to
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solve are:

i~
d

dt
〈α†kβ

†
k+q〉 = −

〈[
H,α†kβ

†
k+q

]〉
= −

〈[
Hsc +H(1)

em +H(2)
em, α

†
kβ
†
k+q

]〉
, (2.9a)

i~
d

dt
〈αkβk+q〉 = −〈[H,αkβk+q]〉 = −

〈[
Hsc +H(1)

em +H(2)
em, αkβk+q

]〉
, (2.9b)

i~
d

dt
〈α†kαk+q〉 = −

〈[
H,α†kαk+q

]〉
= −

〈[
Hsc +H(1)

em +H(2)
em, α

†
kαk+q

]〉
, (2.9c)

i~
d

dt
〈β†kβk+q〉 = −

〈[
H,β†kβk+q

]〉
= −

〈[
Hsc +H(1)

em +H(2)
em, β

†
kβk+q

]〉
(2.9d)

If we return to our Hamiltonian, this means that the order parameter describing the system will

incur an explicit time-dependence. Rewriting ∆(t) in terms of Bogoliubov quasiparticle expectation

values, we find

∆k′(t) =
∑
k∈W

Vk,k′

[
ukvk(〈α†kαk〉(t) + 〈β†kβk〉(t)− 1)− u2k〈αkβk〉(t)− v2k〈α

†
kβ
†
k〉(t)

]
(2.10)

where the explicit time-dependence has been included for all of the constituents.

2.3.1 Equations of motion following the pump

Before we proceed with the explicit calculation, it is convenient to choose a specific electromagnetic

field profile, which can help to simplify the number of equations we need to solve. The particular

choice we make for the electromagnetic field, which will constitute the pumping laser in a pump-

probe experiment, is a classical monochromatic laser source – an electromagnetic field with a single

well-defined frequency and momentum. The exact time-dependent profile need not be fixed, however

we choose a Gaussian shape, which should be representative of most experimental setups. We define

the vector potential for the pump, Aq(t),

Aq(t) = Ap exp

−(2
√

ln2t

τp

)2
 (δq,q0

e−iωpt + δq,−q0
eiωpt) (2.11)

where the amplitude of the pump is Ap and the full width at half maximum is τp. The pumping

frequency and momentum are given by ωp and qp. We also choose a linear polarization for Ap such

that the momentum vector qp and the vector potential Aq(t) are orthogonal vectors as required by

electromagnetic theory.

Taking the commutator with the Hamiltonian, the time-dependent equations of motion for our

four quasiparticle expectation values are given by:
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i~
d

dt
〈α†kβ

†
k′〉 = −(Rk +Rk′)〈α†kβ

†
k′〉+ C∗k′〈α†kαk′〉+ C∗k(〈β†k′βk〉 − δk′,k)

+
e~
2m

∑
q′=±q0

2k ·Aq′(t)
[
−L+

k,q′〈α†k+q′β
†
k′〉+ L+

k′,−q′〈α†kβ
†
k′−q′〉

−M−k′−q′〈α†kαk′−q′〉+M−k,q′(〈β†k′βk+q′〉 − δk′−k,q′)
]

+
e2

2m

∑
q′=0,±2q0

∑
qi=±q0

Aq′−qi
(t) ·Aqi

(t)
[
−L−k,q′〈α†k+q′β

†
k′〉 − L−k′,−q′〈α†kβ

†
k′−q′〉

−M+
k′−q′〈α†kαk′−q′〉+M+

k,q′(−〈β†k′βk+q′〉+ δk′−k,q′)
]

(2.12)

i~
d

dt
〈αkβk′〉 = +(Rk +Rk′)〈αkβk′〉+ Ck′〈α†k′αk〉+ Ck(〈β†kβk′〉 − δk′,k)

+
e~
2m

∑
q′=±q0

2k ·Aq′(t)
[
+L+∗

k,q′〈αk+q′βk′〉 − L+∗
k′,−q′〈αkβk′−q′〉

−M−∗k′−q′〈α†k′−q′αk〉+M−∗k,q′(〈β†k+q′βk〉 − δk′−k,q′)
]

+
e2

2m

∑
q′=0,±2q0

∑
qi=±q0

Aq′−qi(t) ·Aqi(t)
[
+L−∗k,q′〈αk+q′βk′〉+ L+∗

k′,−q′〈αkβk′−q′〉

−M+∗
k′−q′〈α†k′−q′αk〉+M+∗

k,q′(−〈β†k+q′βk〉+ δk′−k,q′)
]

(2.13)

i~
d

dt
〈α†kαk′〉 = +(Rk′ −Rk)〈α†kαk′〉+ Ck′〈α†kβ

†
k′〉+ C∗k〈αk′βk〉

+
e~
2m

∑
q′=±q0

2k ·Aq′(t)
[
−L+

k,q′〈α†k+q′αk′〉+ L+∗
k′,−q′〈α†kαk′−q′〉

+M−k,q′〈αk′βk+q′〉+M−∗k′,−q′〈α†kβ
†
k′+q′〉

]
+

e2

2m

∑
q′=0,±2q0

∑
qi=±q0

Aq′−qi(t) ·Aqi(t)
[
−L−k,q′〈α†k+q′αk′〉+ L−∗k′,−q′〈α†kαk′−q′〉

−M+
k,q′〈αk′βk+q′〉 −M+∗

k′,−q′〈α†kβ
†
k′+q′〉

]
(2.14)
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i~
d

dt
〈β†kβk′〉 = +(Rk′ −Rk)〈β†kβk′〉+ Ck′〈α†kβ

†
k′〉+ C∗k〈αk′βk〉

+
e~
2m

∑
q′=±q0

2k ·Aq′(t)
[
+L+

k,−q′〈β†k−q′βk′〉 − L+∗
k′,q′〈β†kβk′+q′〉

−M−k,q′〈αk′βk+q′〉 −M−∗k′,−q′〈α†kβ
†
k′+q′〉

]
+

e2

2m

∑
q′=0,±2q0

∑
qi=±q0

Aq′−qi
(t) ·Aqi

(t)
[
−L−k,−q′〈β†k−q′βk′〉+ L−∗k′,q′〈β†kβk′+q′〉

−M+∗
k′,q′〈α†k′+q′β

†
k〉 −M

+
k,−q′〈αk−q′βk′〉

]
(2.15)

After integrating these differential equations, one can determine the pump induced changes in the

superconducting order parameter and by extension, the amplitude mode Higgs oscillations, via Eq.

2.10.

2.3.2 Equations of motion following the probe

Next, we want to consider the equations of motion following a second probing pulse, which will

measure experimental observables. In particular, we are interested in the optical response, which

can be related to the current density induced by the probe, jqpr
. Again we split up the response

into two parts,

j−qpr
= j

(1)
−qpr

+ j
(2)
−qpr

(2.16a)

j
(1)
−qpr

=
−e~
2mV

∑
k,σ

(2k + qpr)c
†
k,σck+qpr,σ (2.16b)

j
(2)
−qpr

= − e2

mV

∑
k,q,σ

Aqpr−qc
†
k,σck+qpr,σ (2.16c)

where V is the normalization volume. The second term j
(2)
qpr , is the diamagnetic current density,

which has previously been shown [37, 38] to only lead to an offset in the imaginary part of the

spectrum and therefore may be neglected. Performing the same transformation to the Bogoliubov

quasiparticle basis, the current density j
(1)
qpr is given by,

j
(1)
−qpr

=
−e~
2mV

∑
k

(2k + qpr)
[
(u∗kuk+qpr

+ vkv
∗
k+qpr

)α†kαk+qpr
− (v∗kvk+qpr

+ u∗k+qpr
uk)β†k+qpr

βk

+(vku
∗
k+qpr

− u∗kvk+qpr
)α†kβ

†
k+qpr

+ (v∗kuk+qpr
− v∗k+qpr

uk)αk+qpr
βk

]
(2.17)

With the current density, we can then calculate other quantities such as the optical conductivity σ,

σ(ω) =
〈jqpr
〉(ω)

iωAqpr(ω)
(2.18)

by taking the Fourier transform of j(t) and Aqpr(t), where the probing vector potential takes the
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same functional form as the pumping vector potential in Eq. 2.11. The exact parameters of the

probe will differ from those used in the pump.

We now turn to the equations of motion following the probing pulse. As is the case with most

optical experimental setups, we work with a probing pulse polarized perpendicular to the pumping

pulse so that the off-diagonal terms are decoupled between the two pulses. To simplify this portion

of the calculation, we assume that the probe pulse is sufficiently weak that it need only be calculated

to linear order. Second, we assume that the prominent excitations are induced by the pump, so that

we can approximate 〈α†k+qpr
βk+qpr

〉 ' 〈α†k+qp
βk+qp

〉, where we have used the subscripts pr and p

to represent the probe and pump respectively.

The differential equations for the expectation values of the quasiparticles needed to calculate the

optical response of the probe are as follows:

i~
d

dt
〈α†kβ

†
k+qpr

〉 = −(Rk +Rk+qpr
)〈α†kβ

†
k+qpr

〉+ C∗k+qpr
〈α†kαk+qpr

〉+ C∗k〈β
†
k+qpr

βk〉

+
e~
2m

2k ·Aqpr
(t)
[
−L+

k,qpr
〈α†k+qp

β†k+qp
〉+ L+

k,qpr
〈α†kβ

†
k〉

+M−k,qpr
〈α†kαk〉+M−k,qpr

(〈β†k+qp
βk+qp

〉 − 1)
]

(2.19)

i~
d

dt
〈αk+qpr

βk〉 = +(Rk +Rk+qpr
)〈αk+qpr

βk〉+ Ck〈α†kαk+qpr
〉+ Ck+qpr

〈β†k+qpr
βk〉

+
e~
2m

2k ·Aqpr(t)
[
+L+

k,qpr
〈αkβk〉 − L+

k,qpr
〈αk+qp

βk+qp
〉

−M−k,qpr
〈α†k+qpr

αk+qpr
〉 −M−k,qpr

(〈β†kβk〉 − 1)
]

(2.20)

i~
d

dt
〈α†kαk+qpr

〉 = −(Rk −Rk+qpr
)〈α†kαk+qpr

〉+ Ck+qpr
〈α†kβ

†
k+qpr

〉+ C∗k〈αk+qpr
βk〉

+
e~
2m

2k ·Aqpr
(t)
[
−L+

k,qpr
〈α†k+qp

αk+qp
〉+ L+

k,qpr
〈α†kαk〉

+M−k,qpr
〈αk+qp

βk+qp
〉 −M−k,qpr

〈α†kβ
†
k〉
]

(2.21)

i~
d

dt
〈β†k+qpr

βk〉 = +(Rk −Rk+qpr
)〈β†k+qpr

βk〉+ Ck〈α†kβ
†
k+qpr

〉+ C∗k+qpr
〈αk+qpr

βk〉

+
e~
2m

2k ·Aqpr
(t)
[
L+
k,qpr
〈β†kβk〉 − L

+
k,qpr
〈β†k+qp

βk+qp
〉

+M−k,qpr
〈αkβk〉 −M−k,qpr

〈α†k+qp
β†k+qp

〉
]

(2.22)
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2.3.3 Initial conditions and numerical approximations

The Bogoliubov quasiparticles are fermions and obey Fermi statistics. Therefore, we can calculate

the occupation values for a given temperature prior to the pump or probe pulse as follows,

〈α†kαk′〉 =
1

e
Ek

kBT + 1
δk,k′ (2.23a)

〈β†kβk′〉 =
1

e
Ek

kBT + 1
δk,k′ (2.23b)

〈α†kβ
†
k′〉 = 0 (2.23c)

〈αkβk′〉 = 0 (2.23d)

where Ek =
√
εk + ∆k is the quasiparticle energy. For our calculations, we limit ourselves to the

T = 0 case. Qualitatively, the results are similar for sufficiently low temperatures.

Next, we choose the superconducting symmetries to consider. We primarily study the two well

known superconductor symmetries: s-wave and d-wave. In this case, our interaction term in Eq.

2.10, Vk,k′ , is of the form

Vk,k′ = V (2.24)

or

Vk,k′ = V (cos kx − cos ky)(cos k′x − cos k′y) (2.25)

for s-wave and d-wave (dx2−y2) respectively. However, it would be trivial to extend our formalism

to other interaction symmetries in one and two-dimensions, such as p-wave.

We can now proceed to fix V , or ∆ and the other superconducting properties. When choosing

which type of pump and probe, the pumping timescale should be on the same scale as the response

time of the superconductor, which turns out to be in the order of a few hundred femptoseconds for

superconducting gaps in the order of a few meVs. As discussed previously, this is required to induce

a non-adiabatic excitation such as the Higgs amplitude mode. The superconducting parameters

used throughout this thesis were historically used to study a lead superconductor, however we have

investigated the effects of varying superconducting parameters and for a reasonable choice of pump

and probe pulses, the effects are purely quantitative and have do not change the qualitative results.

Therefore, we proceed with the same parameters for both s-wave and d-wave for comparison. The

exact values used in our calculation are presented in Table 2.2.

We also need to make certain choices to simplify the numerical calculations, so long as they do

not affect the qualitative results of our calculations. We take a 2-D momentum grid with spacing

along the pumping momentum direction equal to the pumping momentum transfer. This may seem

unjustified at first, but our pumping momentum is extremely small (see Table 2.2) and we have

also numerically verified that choosing a smaller discretization does not affect the calculation. In

the second momentum direction, we choose to rather discretize the angle for simplicity. This turns

out to being equivalent to choosing Chebyshev points along the second direction. Furthermore, this

gives us the most equal distribution of points between nodes for the case of a d-wave superconductor.

For the d-wave case, we approximate the pairing as ∆k = ∆0 cos 2θ. We also limit the number of

off-diagonal terms to four. In Eq. 2.3.1, this amounts to restricting |k − k′| < 5q0. Lastly, the
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Parameters

Superconductor Pump Probe

a 10−10 m ~ωp 3.0 meV ~ωpr 2.5 meV

EF 9470 meV ωp 4.56×10−3 fs-1 ωpr 3.80×10−3 fs-1

m 1.9me Ap 7.0× 10−8 J s
C m Apr 0.7× 10−8 J s

C m

wc 8.3 meV τp 400 fs-1 τpr 250.0 fs-1

∆0 1.35 meV qp a 1.52× 10−6 qpr a 1.26× 10−6

Table 2.2: Parameters for our calculations. a is the lattice spacing, EF is the
Fermi energy, m is the re-normalized mass and wc is the cutoff frequency. ∆0 is
the initial size of the gap before the pump is turned on. ωp/pr , Ap/pr, τp/pr and
qp/pr are the pump/probe frequency, amplitude, full width at half maximum and
momentum.

standard fourth-order Runge-Kutta method is used to time-evolve the density matrices according

to the equations of motion.

2.4 Results

2.4.1 Higgs oscillations

Following the application of a pumping laser, the magnitude of the order parameter decreases and

oscillates due to changes in the free energy potential of the superconductor. The degree to which the

potential is altered depends both on the amplitude and length of the pump. For longer duration and

larger amplitudes, more Cooper pairs are depleted, which decreases the central value about which

the order parameter oscillates. The strongest signal occurs for a pumping laser on the order of a

few hundred femptoseconds, or faster than the intrinsic superconductor response time. Additionally,

the amplitude or fluence of the pump should not be so large that the number of Cooper pairs is so

significantly depleted that oscillations cannot occur.

The results for our specific parameters are presented in Fig. 2.3. At t = 0, the pump is turned on

and the magnitude of the order parameter rapidly decreases as Cooper pairs are broken; the order

parameter then begins to oscillate after the pump is turned off. In Fig. 2.3(a) , the Higgs oscillations

of an isotropic, s-wave superconductor interacting with a laser are presented. As previously found

for the case of an isotropic superconductor, ([37, 38], etc.) the oscillations decay with a characteristic

1/
√
t dephasing of the Bogoliubov quasiparticles and the oscillations themselves have a characteristic

2∆ frequency (Fig. 2.3(c)), where ∆ is the new order parameter in the t = ∞ limit. Increasing

the total amount of incident energy, will further decrease this value of the order parameter, as well

as the frequency of the oscillations. These results are contrasted with the Higgs oscillations of a

dx2−y2 superconductor (Fig. 2.3(b)). Most notably, the dx2−y2 superconductor oscillations depend

strongly on the angle between the superconductor and polarization of the laser. φ = 0 corresponds

to a magnetic vector potential aligned along one of the dx2−y2 antinodes (and subsequently, the
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Figure 2.3: Comparison of s-wave (a) and d-wave (b) Higgs oscillations following
the pumping pulse for the parameters given in Table 2.2. (c) Fourier transform
of (a) and (b). φ is the relative angle between the vector potential and the
dx2−y2 antinode.

momentum vector also points perpendicularly along an adjacent node), while φ = π/4 corresponds

to having the vector potential aligned along one of the nodes. Moreover, the oscillations themselves

are much smaller in amplitude and have a much more rapid decay, which has partly contributed to

the difficulty thus far in detecting Higgs oscillations in anisotropic superconductors. The differences

are perhaps best illustrated in the Fourier transform of the oscillations (Fig. 2.3(c)). While the

isotropic, s-wave superconductor has a single sharp oscillation frequency at 2∆, depending on the

polarization angle φ, the dx2−y2 superconductor has as many as 2 oscillation frequencies. As the

polarization angle φ is rotated from the node to the antinode, the amplitude of the 2∆ mode decreases

and a second mode develops below 2∆. The frequency of this second mode also depends strongly

on the amplitude and particularly the duration of the pump. The exact symmetry of this second

mode will become more apparent in the following chapter.

2.4.2 Optical response

After the pump, a probing pulse is applied to measure the oscillations of the gap parameter ∆(t). In

reality, many probing pulses are applied to measure the oscillation at various time-delays δt between
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Figure 2.4: Comparison of different optical conductivity Higgs responses be-
tween (a) an s-wave superconductor and (b-f) a dx2−y2 superconductor for the
parameters in Table 2.2. The relative angle φ between the vector potential and
the dx2−y2 antinode is (b) φ = 0 (c) φ = π/16 (d) φ = π/8 (e) φ = 3π/16 (f)
φ = π/4 .

the pump and the probe, each of which define a different set of differential equations to be solved.

δt is a measure of the time-difference between the centers of the pump and probe pulses. For pump

and probe time-scales on the order of a few hundred femptoseconds, this means that the smallest

allowable time-delay, without significant pump and probe overlap, is around one picosecond.

The results for our parameters are presented in Fig. 2.4. For an isotropic s-wave superconductor

(Fig. 2.4 (a)), there is clearly only a single, sharp mode in the conductivity spectra at 2∆. The

oscillation frequency in delay-time δt is also equal to 2∆ as expected from our analysis of the order

parameter after the pump. In contrast, the conductivity response of a dx2−y2 superconductor is very

different. For a linear pump polarization such that the vector potential is aligned along the dx2−y2

antinode (φ = 0), there is a broad mode below 2∆. The exact energy of the second mode depends on

the specifics of the pump, but not on the geometry. As the vector potential of the pump is rotated

towards the node (away from the anti-node), the intensity of the low energy mode decreases, while

the intensity of the 2∆ mode increases until around an angle of π/8 between the vector potential

and the d-wave anti-node, at which point the second mode is no longer visible in the conductivity

spectra. The intensity of the 2∆ mode increases to a maximum when the vector potential and

d-wave node become perfectly aligned (φ = π/4). As for the oscillations in time-delay, they have

both the frequencies of the 2∆ mode and the mode below 2∆. Lastly, the signal has an eight-fold

reflection symmetry as the pump polarization is rotated around the remaining 7π/4 degrees; the

signal is identical to the reflection across the π/4, C ′′2 axis and the C ′4 axis. In other words, there

is no differentiation between positive and negative antinodes, nor is there a difference for points of

equal amplitude across a single antinode.
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2.5 Discussion

As we have shown, the Higgs amplitude mode of a nonequilibrium superconductor can be excited

and measured in an optical pump-probe experiment with terahertz pumping energies and a pumping

duration on the order of a few hundred femptoseconds. Moreover, the Higgs amplitude mode can

be used to differentiate between isotropic and anisotropic superconductors, simply by rotating the

sample relative to the polarization of the pump. For a dx2−y2 superconductor, this corresponds to the

excitation of an additional mode below the isotropic 2∆ mode as the vector potential is rotated to lie

along an antinode. In an optical experiment, this can be detected either by noting the appearance of

a low energy mode below the 2∆ energy or by observing changes to the frequency of the oscillations

as a function of time-delay between the pump and probe. Our results also can easily be extended

to different symmetries, for instance s± or p symmetries, which we expect will also be simple to

differentiate from the two cases presented here, but will follow similar trends. Therefore, among

other possibilities, exciting the Higgs amplitude mode via Higgs spectroscopy offers an unambiguous

method for studying and differentiating between the different superconducting symmetries in a

material.

What remains is to identify the specific symmetries of the nonequilibrium modes. While we

expect the 2∆ mode in the dx2−y2 superconductor to correspond to the isotropic breathing mode

since this is the only possible mode for the isotropic s-wave superconductor, the mode below 2∆ in the

dx2−y2 superconductor is not quite as easy to identify using momentum integrated spectroscopy. We

do not expect the nonequilibrium mode to acquire any angular momentum, therefore the osculating

mode is the most likely candidate. However, this does not rule out the potential of generating these

additional nonequilibrium modes by introducing additional pumping pulses of various geometries,

which could produce the angular momentum necessary to generate other nonequilibrium modes. To

determine the exact symmetry which is broken in this setup, it will be necessary to study the Higgs

modes with momentum resolved spectroscopy, presented in the next chapter.
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Chapter 3

Nonequilibrium Superconductivity:

ARPES

3.1 Introduction to Green’s functions

We turn now to the study of nonequilibrium superconductivity beyond the context of optical ex-

periments. Namely, we want to study how the Higgs oscillation(s) will manifest in various other

experimental contexts. In condensed matter physics, one of the most powerful tools for describing

a system is the set of Green’s functions, which are closely related to various experimental observ-

ables such as those measured in angle resolved photoemission spectroscopy (ARPES) [12, 13, 17]

or scanning tunneling microscopy (STM). Since we will be working at zero temperature, only the

zero-temperature Green’s functions are presented. The two-time electron Green’s function for a

translationally invariant system is given by,

Gσ,σ′(k′, t, t′) = −i〈T ck,σ(t), c†k,σ′(t
′)〉 (3.1)

where T is the time ordering operator and c†k,σ (ck,σ) creates an electron (hole) with momentum

k and spin σ. For the sake of simplicity and relevance to our problem, we only consider Green’s

functions for states of equal spin, since our Hamiltonian is spin symmetric. The Green’s function is

also closely related to four other quantities, the nonequilibrium greater and lesser Green’s functions,

G≶(k, t, t′) and the retarded and advanced Green’s functions, GR(k, t, t′) and GA(k, t, t′). They are

defined as follows:

G>(k′, t, t′) = −i〈ck,σ(t), c†k,σ(t′)〉 (3.2a)

G<(k′, t, t′) = +i〈c†k,σ(t′), ck,σ(t)〉 (3.2b)

GR(k′, t, t′) = −iΘ(t− t′)〈{ck,σ(t), c†k,σ(t′)}〉 (3.2c)

GA(k′, t, t′) = +iΘ(t′ − t)〈{c†k,σ(t), ck,σ(t′)}〉. (3.2d)

In non-equilibrium photoemission spectroscopy, the ARPES intensity IARPES , is related to the

spectral function, A(k, ω) of the non-equilibrium Green’s function. Often, this is presented simply

in terms of the lesser Green’s function, G<(k, ω), which gives us information about the electronic

density (as opposed to information regarding the hole density, which is given by G>(k, ω)).

IARPES ∝ Im G<(k, ω, δt) (3.3)

where G<(k, ω, δt) is the Fourier transform of G<(k, t′ − t, δt) and δt is the time-difference between
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the pump and the probe. The non-equilibrium spectral function also relates the retarded and

advanced Green’s functions to the lesser and greater Green’s functions according to

A(k, t, t′) = G>(k, t, t′)−G<(k, t, t′) = GR(k, t, t′)−GA(k, t, t′). (3.4)

Therefore, in order to study properties of the nonequilibrium ARPES signal, we must develop a

formalism for evaluating the expectation value for two times rather than a single time as we have

done previously.

3.2 Model Hamiltonian

Since we want to study the same phenomena and how it manifests in different experiments, we begin

with the same Hamiltonian as in the previous chapter – a mean-field BCS superconductor placed in

an arbitrary electromagnetic field.

H = HMF +H
(1)
EM +H

(2)
EM (3.5)

For clarity, the relevant equations for the Hamiltonian are presented again. In terms of the Bogoli-

ubov quasiparticles,

αk = u∗kck,↑ + vkc
†
−k↓ (3.6a)

βk = u∗kc−k↓ − vkc
†
k↑ (3.6b)

the mean-field Hamiltonian is again of the form,

HMF =
∑
k

[
Rkα

†
kαk −Rkβkβ

†
k + Ckα

†
kβ
†
k + C∗kβkαk

]
(3.7)

where Rk and Ck are the same as in Eq. 1.6. The electromagnetic Hamiltonian terms are,

H
(1)
EM =

e~
2m

∑
k,q

(2k + q) ·Aq(t)
[
(u∗k+quk + vk+qv

∗
k)α†k+qαk − (v∗k+qvk + u∗kuk+q)β†kβk+q

+(vk+qu
∗
k − u∗k+qvk)α†k+qβ

†
k + (v∗kuk+q − v∗k+quk)βk+qαk

]
(3.8a)

H
(2)
EM =

e2

2m

∑
k,q

∑
q′

Aq−q′(t) ·Aq′(t)

[(u∗k+quk − vk+qv
∗
k)α†k+qαk − (v∗k+qvk − u∗kuk+q)β†kβk+q

−(vk+qu
∗
k + u∗k+qvk)α†k+qβ

†
k − (v∗kuk+q + v∗k+quk)βk+qαk

]
(3.8b)

The same shorthand is employed as before,

L±k,q = uk+quk ± vk+qvk

M±k,q = uk+qvk ± vk+quk
(3.9)
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3.3 Time-dependent ansatz

We need to develop a time-dependent operator ansatz, which will allow us to calculate the values

of α†k(t), β†k(t) – and thus also c†k,σ(t) and ck,σ(t) and all relevant two-time Green’s functions. Our

time-dependent ansatz is of the form [19–21],

α†k(t) =
∑
δ

[ak+δ(t)α
†
k+δ + bk+δ(t)βk+δ + ... (3.10)

where we maintain our original time-independent operator basis, but take into account time-dependent

prefactors and mixing with the other operators in our basis. This ansatz arises from the Heisen-

berg picture for the time-dependence of the Hamiltonian. In the Heisenberg picture, due to the

time-dependence of the Hamiltonian, H(t), a time-dependent operator, U(t, t0) is introduced given

by,

U(t, t0) = exp

(
−i
∫ t

t0

H(t′)dt′
)

(3.11)

which yields a simple expression for the time-dependence of U(t, t0),

i~
∂

∂t
U(t, t0) = H(t)U(t, t0) (3.12)

The time-dependence of a given operator can then be calculated from some initial value t0, which

can be set to zero for simplicity,

A(t) = U†(t)A(0)U(t) (3.13)

This results in the very simple equation for the time evolution of A(t),

i~
d

dt
A(t) = i~

d

dt
U†(t)A(0)U(t) + i~U†(t)A(0)

d

dt
U(t) (3.14a)

= −U†(t)H(t)A(0)U(t) + U†(t)A(0)H(t)U(t) (3.14b)

= [U†(t)A(0)U(t), U†(t)H(t)U(t)] (3.14c)

= [A(t), H̃(t)] (3.14d)

with H̃(t) given by, H̃(t) = U†(t)H(t)U(t). Under this transformation, it is possible to calculate

the new Hamiltonian in terms of the time-dependent operators.

Our ansatz for the time-dependence of the operators arises from this equation in the following way.

If we begin with the simple assumption that for the time-dependence of our operator A(t) = a(t)A,

then by calculating the commutation relations, depending on the details of the Hamiltonian, we

either can arrive at a closed form for the time-dependence of our prefactor a(t), or introduce further

time-dependent prefactors for another operator in the system. If the latter is the case, our first

assumption is adjusted by adding the new operator and prefactor, and now take into account that

the Hamiltonian, H̃(t) has changed as well. This process can then be repeated to improve the

accuracy of the time-dependence by adding in additional terms for more operators in the system.

Alternatively, one can make a truncation by commuting the current ansatz for the time-dependence

with the newly derived Hamiltonian.
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3.3.1 Model Hamiltonian with the ansatz

Fortunately, our Hamiltonian is bilinear. Therefore, when we apply this method to our Hamiltonian,

the time-dependent ansatz for our operators depends only on two of our time-independent operators,

α†k(t) =
∑
δ

lk,δ(t)α
†
k+δ +mk,δ(t)βk+δ (3.15a)

β†k(t) =
∑
δ

nk,δ(t)β
†
k+δ + ok,δ(t)αk+δ (3.15b)

with the initial conditions that lk(0) = 1, nk(0) = 1, lk,δ = nk,δ = 0 ∀ δ s.t. δ 6= 0 and mk,δ(0) =

ok,δ(0) = 0 ∀ δ. δ can, in general, correspond to some arbitrary momentum transfer from the

commutator with the electromagnetic part of the Hamiltonian. However, in the next section, we

limit the pump to a single momentum, which will restrict δ to integer multiples of the momentum

q corresponding to to the chosen value for the pumping pulse Aq.

Though in the previous chapter it was beneficial to break up the electromagnetic Hamiltonian

into linear and quadratic parts to differentiate between the quadratic excitations generated by the

pump and the linear response of the probe, we will now focus solely on the former and so work with

a single electromagnetic term. Our Hamiltonian in terms of our ansatz is now,

H̃ = H̃MF + H̃EM (3.16)

with H̃MF given now in terms of the new ansatz for our operators as

H̃MF =
∑
k,δ,η

[
α†k+δαk+η

(
(lk,δl

∗
k,η − o∗k,δok,η)Rk + (lk,δok,η)Ck + (l∗k,ηo

∗
k,δ)C

∗
k

)
+β†k+ηβk+δ

(
(−m∗k,ηmk,δ + nk,ηn

∗
k,δ)Rk + (−mk,δnk,η)Ck − (m∗k,ηn

∗
k,δ)C

∗
k

)
+α†k+δβ

†
k+η

(
(lk,δm

∗
k,η − nk,ηo∗k,δ)Rk + (lk,δnk,η)Ck + (o∗k,δm

∗
k,η)C∗k

)
+βk+δαk+η

(
(mk,δl

∗
k,η − n∗k,δok,η)Rk + (mk,δok,η)Ck + (n∗k,δl

∗
k,η)C∗k

)
+δδ,η

(
(−o∗k,δok,η +m∗k,ηmk,δ)Rk + (mk,δnk,η)Ck + (m∗k,ηn

∗
k,δ)C

∗
k

)]
.

(3.17)

The explicit time-dependence of l,m, n and o has been excluded for compactness. We can simplify

the Hamiltonian slightly by dropping the last term in the Hamiltonian, as it only amounts to a

constant energy offset and does not effect the dynamics of the system. H̃EM given in terms of the

new ansatz for our operators is,
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H̃EM =[
e~
2m

∑
k,q,δ,η

(2k + q)Aq

]
×

[
α†k+q+δαk+η

(
(lk+q,δl

∗
k,η + o∗k+q,δok,η)L+

k,q + (−lk+q,δok,η + o∗k+q,δl
∗
k,η)M−k,q

)
+β†k+ηβk+q+δ

(
(−m∗k,ηmk+q,δ − nk,ηn∗k+q,δ)L

+
k,q + (+mk+q,δnk,η − n∗k+q,δm

∗
k,η)M−k,q

)
+α†k+q+δβ

†
k+η

(
(lk+q,δm

∗
k,η + nk,ηo

∗
k+q,δ)L

+
k,q + (−lk+q,δnk,η + o∗k+q,δm

∗
k,η)M−k,q

)
+βk+q+δαk+η

(
(mk+q,δl

∗
k,η + n∗k+q,δok,η)L+

k,q + (−mk+q,δok,η + n∗k+q,δl
∗
k,η)M−k

)
+δδ+q,η

(
(−o∗k+q,δok,η +m∗k,ηmk+q,δ)L

+
k,q + (mk+q,δnk,η + n∗k+q,δm

∗
k,η)M−k,q

)]
+
e2

2m

∑
k,q,δ,η

(∑
q′

Aq−q′ ·Aq′

)
[
α†k+q+δαk+η

(
(lk+q,δl

∗
k,η − o∗k+q,δok,η)L−k,q − (lk+q,δok,η + o∗k+q,δl

∗
k,η)M+

k,q

)
+β†k+ηβk+q+δ

(
(−m∗k,ηmk+q,δ + nk,ηn

∗
k+q,δ)L

−
k,q − (−mk+q,δnk,η − n∗k+q,δm

∗
k,η)M+

k,q

)
+α†k+q+δβ

†
k+η

(
(lk+q,δm

∗
k,η − nk,ηo∗k+q,δ)L

−
k,q − (lk+q,δnk,η + o∗k+q,δm

∗
k,η)M+

k,q

)
+βk+q+δαk+η

(
(mk+q,δl

∗
k,η − n∗k+q,δok,η)L−k,q − (mk+q,δok,η + n∗k+q,δl

∗
k,η)M+

k

)
+δδ+q,η

(
(−o∗k+q,δok,η +m∗k,ηmk+q,δ)L

+
k,q + (mk+q,δnk,η + n∗k+q,δm

∗
k,η)M−k,q

)]
(3.18)

Again, we can drop the last term as it only amounts to a constant offset in our Hamiltonian.

We can also write an expression for the order parameter ∆k(t) in terms of the ansatz for our

new operators. Beginning with a modified Eq. 2.10 for the now explicit time-dependence of our

operators,

∆k′(t) =
1

N

∑
k∈W

Vk,k′

(
ukvk(1− 〈α†k(t)αk(t)〉 − 〈β†k(t)βk(t)〉) + u2k〈βk(t)αk(t)〉 − v2k〈α

†
k(t)β†k(t)

)
.

(3.19)

We must calculate the expectation values for our new operators in terms of our ansatz. The first

expectation value is given by,

〈α†k(t)αk(t)〉 = 〈
(∑

ρ

lk,ρ(t)α
†
k+ρ +mk,ρ(t)βk+ρ

)(∑
δ

l∗k,ρ(t)αk+ρ +m∗k,ρ(t)β
†
k+ρ

)
〉 (3.20)

and due to the fact that, for general operators A and B, 〈A†B〉 = 0 and 〈AB†〉 = δA,B we get a
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simple expression for 〈α†k(t)αk(t)〉 and the three subsequent expectation values,

〈α†kαk〉 =
∑
ρ

|mk,ρ(t)|2 (3.21a)

〈β†kβk〉 =
∑
ρ

|ok,ρ(t)|2 (3.21b)

〈βkαk〉 =
∑
ρ

n∗k,ρ(t)m
∗
k,ρ(t) (3.21c)

〈α†kβ
†
k〉 =

∑
ρ

nk,ρ(t)mk,ρ(t) (3.21d)

Clearly the final two expectation values are the complex conjugate of each other, since l,m, n and o

are simple complex numbers. Therefore, we can rewrite our equation for the gap parameter ∆k′(t)

as,

∆k′(t) =
1

N

∑
k∈W,ρ

Vk,k′

(
ukvk(1− |mk,ρ(t)|2 − |ok,ρ(t)|2) + u2kn

∗
k,ρ(t)m

∗
k,ρ(t)− v2knk,ρ(t)mk,ρ(t)

)
(3.22)

It is a simple matter to also calculate the other four expectation values for the remaining two operator

combinations, which will be useful for calculating the Green’s functions later:

〈αk(t)α†k(t)〉 =
∑
ρ

|lk,ρ(t)|2 (3.23a)

〈βk(t)β†k(t)〉 =
∑
ρ

|nk,ρ(t)|2 (3.23b)

〈αk(t)βk(t)〉 =
∑
ρ

l∗k,ρ(t)o
∗
k,ρ(t) (3.23c)

〈β†k(t)α†k(t)〉 =
∑
ρ

lk,ρ(t)ok,ρ(t) (3.23d)

3.4 Equations of Motion

We now derive the new equations of motion in terms of the time-dependent operators. In fact, the

time-dependent equations of motion are now equations of motion for the prefactors in our ansatz.

Following the same methodology as in the previous chapter, we work with the Heisenberg equations

of motion. Our operators have an explicit time-dependent term now, however we assume that the

change in our operators is small compared to the commutator term. This should be justified given

that we imposed the time-dependence as part of our ansatz; had we not, the operators would have no

explicit time-dependence. This should be equivalent to the time-independent basis of the previous

chapter, since in both cases no time-dependence will be incurred beyond terms coming from the
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commutator with the Hamiltonian. The equations of motion are:

i~
d

dt
α†k(t) =

[
α†k(t), H̃

]
(3.24a)

i~
∑
ρ

( d
dt
lk,ρ(t)α

†
k+ρ +

d

dt
mk,ρ(t)βk+ρ

)
=
[
α†k(t), H̃sc + H̃em

]
, (3.24b)

i~
d

dt
β†k(t) =

[
β†k(t), H̃

]
(3.25a)

i~
∑
ρ

( d
dt
nk,ρ(t)β

†
k+ρ +

d

dt
ok,ρ(t)αk+ρ

)
=
[
β†k(t), H̃sc + H̃em

]
. (3.25b)

ρ will be some integer multiple of the transferred momentum q from the electromagnetic portion

of the Hamiltonian. For a relatively small total incident energy, the additional terms in ρ are

proportionally small to the power of the integer, so sum will converge on short time-scales beyond

some sufficiently large cutoff integer.

As before, we define the vector potential for the pump Aq(t),

Aq(t) = Ap exp

−(2
√

ln2t

τ

)2
 (δq,q0

e−iωpt + δq,−q0
eiωpt) (3.26)

where the amplitude of the pump is Ap and the full width at half maximum is τp. The pumping

frequency and momentum are given by ωp and qp. We choose a linear polarization for Ap such

that the momentum vector qp and the vector potential Aq(t) are perpendicular vectors as required

by electromagnetic theory. Since we have once again chosen the form of a monochromatic pump

(and vector potential), the equations of motion will only couple terms of integer multiples of the

transferred momentum q.

While we now only have two explicit equations to solve, our operators (and our Hamiltonian) are

significantly more complicated. The α†k commutator with the electromagnetic part of the Hamilto-

nian is as follows,
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[
α†k′(t), H̃em

]
=

[
e~
2m

∑
k,q,δ,η,γ

(2k + q)Aq

]
×

[
α†k+q+δ(−δk′+γ,k+η)

(
lk′,γ

(
(lk+q,δl

∗
k,η + o∗k+q,δok,η)L+

k,q + (−lk+q,δok,η + o∗k+q,δl
∗
k,η)M−k,q

)
+mk′,γ

(
(lk+q,δm

∗
k,η + nk,ηo

∗
k+q,δ)L

+
k,q + (−lk+q,δnk,η + o∗k+q,δm

∗
k,η)M−k,q

))
+βk+q+δ(δk′+γ,k+η)

(
mk′,γ

(
(−m∗k,ηmk+q,δ − nk,ηn∗k+q,δ)L

+
k,q + (+mk+q,δnk,η − n∗k+q,δm

∗
k,η)M−k,q

)
− lk′,γ

(
(mk+q,δl

∗
k,η + n∗k+q,δok,η)L+

k,q + (−mk+q,δok,η + n∗k+q,δl
∗
k,η)M−k,q

))]
+

[
e2

2m

∑
k,q,δ,η,γ

(∑
q′

Aq−q′ ·Aq′

)]
×

[
α†k+q+δ(−δk′+γ,k+η)

(
lk′,γ

(
(lk+q,δl

∗
k,η − o∗k+q,δok,η)L−k,q − (lk+q,δok,η + o∗k+q,δl

∗
k,η)M+

k,q

)
+mk′,γ

(
(lk+q,δm

∗
k,η − nk,ηo∗k+q,δ)L

−
k,q − (lk+q,δnk,η + o∗k+q,δm

∗
k,η)M+

k,q

))
+βk+q+δ(δk′+γ,k+η)

(
mk′,γ

(
(−m∗k,ηmk+q,δ + nk,ηn

∗
k+q,δ)L

−
k,q − (−mk+q,δnk,η − n∗k+q,δm

∗
k,η)M+

k,q

)
− lk′,γ

(
(mk+q,δl

∗
k,η − n∗k+q,δok,η)L−k,q − (mk+q,δok,η + n∗k+q,δl

∗
k,η)M+

k,q

))]
(3.27)

and for β†k we obtain a similar expression. Collecting like terms, we then get the following differential

equations for the pre-factors of α†k′(t) by choosing k′ + ρ = k + δ and k′ + ρ = k + q + δ in the

subsequent 2 sums:
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i~
d

dt
lk′,ρ(t)α

†
k′+ρ =

−
∑
δ,γ

α†k′+ρ

(
lk′,γ

(
(lk′+ρ−δ,δl

∗
k′+ρ−δ,γ+δ−ρ − o∗k′+ρ−δ,δok′+ρ−δ,γ+δ−ρ)Rk′+ρ−δ

+ (lk′+ρ−δ,δok′+ρ−δ,γ+δ−ρ)Ck′+ρ−δ + (l∗k′+ρ−δ,γ+δ−ρo
∗
k′+ρ−δ,δ)C

∗
k′+ρ−δ

)
+mk′,γ

(
(lk′+ρ−δ,δm

∗
k′+ρ−δ,γ+δ−ρ − nk′+ρ−δ,γ+δ−ρo

∗
k′+ρ−δ,δ)Rk′+ρ−δ

+ (lk′+ρ−δ,δnk′+ρ−δ,γ+δ−ρ)Ck′+ρ−δ + (o∗k′+ρ−δ,δm
∗
k′+ρ−δ,γ+δ−ρ)C

∗
k′+ρ−δ

))
−
[
e~
2m

∑
q,δ,γ

(2(k′ − q + ρ− δ) + q)Aq

]
×

α†k′+ρ

(
lk′,γ

(
(lk′+ρ−δ,δl

∗
k′+ρ−δ−q,γ+δ+q−ρ + o∗k′+ρ−δ,δok′+ρ−δ−q,γ+δ+q−ρ)L

+
k′−q+ρ−δ,q

+ (−lk′+ρ−δ,δok′+ρ−δ−q,γ+δ+q−ρ + o∗k′+ρ−δ,δl
∗
k′+ρ−δ−q,γ+δ+q−ρ)M

−
k′−q+ρ−δ,q

)
+mk′,γ

(
(lk′+ρ−δ,δm

∗
k′+ρ−δ−q,γ+δ+q−ρ + nk′+ρ−δ−q,γ+δ+q−ρo

∗
k′+ρ−δ,δ)L

+
k′−q+ρ−δ,q

+ (−lk′+ρ−δ,δnk′+ρ−δ−q,γ+δ+q−ρ + o∗k′+ρ−δ,δm
∗
k′+ρ−δ−q,γ+δ+q−ρ)M

−
k′−q+ρ−δ,q

))
−
[
e2

2m

∑
q,δ,γ

(∑
q′

Aq−q′ ·Aq′

)]
×

α†k′+ρ

(
lk′,γ

(
(lk′+ρ−δ,δl

∗
k′+ρ−δ−q,γ+δ+q−ρ − o∗k′+ρ−δ,δok′+ρ−δ−q,γ+δ+q−ρ)L

−
k′−q+ρ−δ,q

− (lk′+ρ−δ,δok′+ρ−δ−q,γ+δ+q−ρ + o∗k′+ρ−δ,δl
∗
k′+ρ−δ−q,γ+δ+q−ρ)M

+
k′−q+ρ−δ,q

)
+mk′,γ

(
(lk′+ρ−δ,δm

∗
k′+ρ−δ−q,γ+δ+q−ρ − nk′+ρ−δ−q,γ+δ+q−ρo

∗
k′+ρ−δ,δ)L

−
k′−q+ρ−δ,q

− (lk′+ρ−δ,δnk′+ρ−δ−q,γ+δ+q−ρ + o∗k′+ρ−δ,δm
∗
k′+ρ−δ−q,γ+δ+q−ρ)M

+
k′−q+ρ−δ,q

))
(3.28)

and again similar expressions are found for the βk, αk and β†k operators.

3.4.1 Initial conditions and numerical approximations

In order to limit the number of equations in our system, one must choose an upper bound N such

that, |γ|, |δ|, |ρ|, η ≤ Nq ∀ η
q ,

γ
q ,

δ
q ,

ρ
q , N ∈ Z. We will set the coefficients outside of this bound

to zero. In practice, N is chosen so that the equations are sufficiently convergent within the time

domain of interest. Convergence will, in general, not be expected for all forms of an electromagnetic

term, however, we will enforce a pump with a sufficiently small amplitude that convergence can be

reached for a reasonable number of terms. This is because nonzero integer terms will scale as powers

of Az
0. With this choice of N , our sum now becomes limited in the following way:

1) Since we have chosen k′ + γ = k + η and k′ + ρ = k + δ in the first sum of Eq. 3.28 and A.4, we

have the following additional restriction that, given ρ, δ, γ ∈ [−Nq, Nq] s.t. |ρ− δ − γ| ≤ Nq.

2) In the subsequent sums of Eq. 3.28 and A.4, we choose k′ + γ = k + η and k′ + ρ = k + q + δ so
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Parameters

Superconductor Pump

a 10−10 m ~ωp 6.0 meV

EF 9470 meV ωp 9.12×10−3 fs-1

m 1.9me Ap 1.0× 10−8 J s
C m

wc 8.3 meV τp 100 fs-1

∆0 1.35 meV qp a 3.04× 10−6

Table 3.1: Parameters for our calculations. a is the lattice spacing, EF is the
Fermi energy, m is the re-normalized mass and wc is the cutoff frequency. ∆0 is
the initial size of the gap before the pump is turned on. ωp/pr , Ap/pr, τp/pr and
qp/pr are the pump/probe frequency, amplitude, full width at half maximum and
momentum.

that we get the additional restriction that, given ρ, δ, γ ∈ [−Nq, Nq] s.t. |ρ− δ − q− γ| ≤ Nq

3) Since we have chosen k′ + γ = k + δ and k′ + ρ = k + η in the first sum of Eq. A.5 and A.6, we

have the following additional restriction that, given ρ, η, γ ∈ [−Nq, Nq] s.t. |ρ− η − γ| ≤ Nq.

4) In the subsequent sums of Eq. A.5 and A.6, we choose k′ + ρ = k + η and k′ + γ = k + q + δ so

that we get the additional restriction that, given ρ, η, γ ∈ [−Nq, Nq] s.t. |ρ− η − q− γ| ≤ Nq. It

turns out that choosing Nq in the order of ∼ 10 provides reasonable convergence for the parameters

presented in Table 3.1. However, this number rapidly increases with increasing pumping incident

energy, as compared to the number of off-diagonal terms we needed in the previous formalism.

To limit the number of equations to a reasonable number, it is necessary to use a smaller intensity

of pump than in the previous chapter. We also choose a smaller time-constant in order to decrease

the length of the calculations as well. Nevertheless, we expect the same qualitative physics as we are

still in the same non-adiabatic, small fluence regime as in the previous chapter. Moreover, similar

modifications of the pump parameters in the previous formalism resulted in equivalent qualitative

behaviour to the parameters used in Chapter 1 (Table 2.2). The parameters used here are presented

in Table 3.1.

3.4.2 Nonequilibrium Green’s functions

The solutions of the equations of motion can then be used to calculate all Green’s function G(k, t, t′),

which we want to relate to the ARPES spectra. Rewriting the operators in terms of the Bogoliubov

quasiparticle operators,

〈ck,↑(t), c
†
k,↑(t

′)〉 = 〈(ukαk(t)− vkβ†k(t))(ukα
†
k(t′)− vkβk(t′))〉 (3.29a)

〈ck,↓(t), c†k,↓(t
′)〉 = 〈(v−kα†−k(t) + v−kβ−k(t))(v−kα−k(t′) + u−kβ

†
−k(t′))〉. (3.29b)

However, as our Hamiltonian is spin symmetric, it will suffice to consider only the spin-up regime.
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Thus, for the non-equilibrium Green’s functions,

G>(k, t, t′) = −i〈(ukαk(t)− vkβ†k(t))(ukα
†
k(t′)− vkβk(t′))〉 (3.30a)

G<(k, t, t′) = +i〈(ukα†k(t′)− vkβk(t′))(ukαk(t)− vkβ†k(t))〉. (3.30b)

Finally, using Eqs. 3.21 and 3.23, in terms of the ansatz, the non-equillibrium Green’s functions are,

G>(k, t, t′) =

− i
∑
ρ

[
u2kl
∗
k,ρ(t)lk,ρ(t

′)− vkukok,ρ(t)lk,ρ(t′)− vkukl∗k,ρ(t)o∗k,ρ(t′) + v2kok,ρ(t)o
∗
k,ρ(t

′)
]

(3.31a)

G<(k, t, t′) =

+ i
∑
ρ

[
u2kmk,ρ(t

′)m∗k,ρ(t)− vkukmk,ρ(t
′)nk,ρ(t)− vkukn∗k,ρ(t′)m∗k,ρ(t) + v2kn

∗
k,ρ(t

′)nk,ρ(t)
]

(3.31b)

and for the retarded and advanced Green’s functions,

GR(k, t, t′) =

Θ(t− t′)
∑
ρ

[
u2kl
∗
k,ρ(t)lk,ρ(t

′)− vkukok,ρ(t)lk,ρ(t′)− vkukl∗k,ρ(t)o∗k,ρ(t′) + v2kok,ρ(t)o
∗
k,ρ(t

′)

− u2kmk,ρ(t
′)m∗k,ρ(t) + vkukmk,ρ(t

′)nk,ρ(t) + vkukn
∗
k,ρ(t

′)m∗k,ρ(t)− v2kn∗k,ρ(t′)nk,ρ
]

(3.32a)

GA(k, t, t′) =

Θ(t′ − t)
∑
ρ

[
− u2kl∗k,ρ(t)lk,ρ(t′) + vkukok,ρ(t)lk,ρ(t

′) + vkukl
∗
k,ρ(t)o

∗
k,ρ(t

′)− v2kok,ρ(t)o∗k,ρ(t′)

+ u2kmk,ρ(t
′)m∗k,ρ(t)− vkukmk,ρ(t

′)nk,ρ(t)− vkukn∗k,ρ(t′)m∗k,ρ(t) + v2kn
∗
k,ρ(t

′)nk,ρ
]

(3.32b)

3.5 Results

3.5.1 Higgs oscillations

Similarly to the previous chapter, following the application of a pumping laser, the magnitude of

the order parameter decreases and oscillates due to changes in the free energy potential of the

superconductor. The degree to which the potential is altered again depends both on the amplitude

and length of the pump. Since we are interested particularly in understanding the second Higgs

mode in a dx2−y2 superconductor, we will focus immediately on those results. The results for our

specific parameters are presented in Fig. 3.1 and agree well with the results from the previous

formalism (Fig. 2.3). There is once again a well-defined oscillation frequency at 2∆ and a second

low-energy frequency below this threshold. This shows that our ansatz reproduces the same physics

from the previous chapter.
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Figure 3.1: (a) Absolute value of a dx2−y2 order parameter ∆(t) as a function
of time following the pump in the new formalism. (b) Fourier transform of the
order parameter in (a). φ is the relative angle between the antinode of the dx2−y2

order parameter and the direction of the vector potential of the pump.

3.5.2 Spectral Function

To determine the symmetry of the oscillations and thus, the order parameter, it is most useful to

visualize the spectral function within the energy scale of the order parameter ∆. These results

are presented in Fig. 3.2 after a time-delay of 0.55 picoseconds and for a pump polarized so that

the vector potential lies along θ = π/2 in the polar plots. The dx2−y2 character is easily evident.

However, for a vector potential aligned along the antinode (Fig. 3.2(a)), the x̂y intensity symmetry

is broken between the dx2−y2 nodes, along the C ′′2 axis, which is indicative of the osculating, B1g

nonequilibrium mode (Fig. 2.2 d). In contrast, when the vector potential is aligned along the node

(Fig. 3.2(b)), the symmetry between antinodes is not broken. Rather, the C ′2 symmetry is broken

within a single antinode. Together, these facts point towards the second Higgs oscillation mode

coming from an osculating origin.

This symmetry breaking is further exemplified when looking at the time-delay data for various

points around the Fermi surface and near to the antinode. In Fig. 3.3, we show the oscillations in

the spectral function as a function of time-delay. Notably, the oscillations of the spectral function

are fixed in energy and only the amplitude oscillates in our calculations. These oscillations again

have characteristic frequencies corresponding to the two modes in Fig. 3.1. For the vector potential

aligned along the antinode (Fig. 3.3(a)), there is a single sharp peak at ∆(θ) for angles away from

the θ = π/2 (θ = 3π/2) antinode. However, near to this antinode, the peak becomes broad and an

additional peak is clearly visible in the spectral function at the antinode. In contrast, for a vector

potential aligned along the node (Fig. 3.3(b)), while there is broadening along the θ = π/2 direction,

there is no additional peak in the spectral function along a specific antinodes or antinodes.

3.6 Discussion

The ansatz proposed in this section is clearly a powerful tool for determining additional information

beyond what can be achieved by the density matrix formalism, while still maintaining the same
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Figure 3.2: Comparison of the spectral functions A(θ, ω) for a pumped dx2−y2

superconductor after 0.55 picoseconds, with the vector potential aligned (a) ver-
tically along the antinode (b) vertically along the node.

(a) (b)

Figure 3.3: Comparison of the spectral functions A(θ, ω, δt) near the antinode
for a pumped dx2−y2 superconductor with the vector potential lying along the
(a) antinode and (b) node, as a function of delay-time δt. The plots correspond
to various polar angle cuts near to the π/2 antinode in Fig. 3.2(a) and the 3π/4
antinode in Fig. 3.2(b).
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underlying physics. In our model, we are able to use this ansatz to reproduce the spectral function

for a superconductor with arbitrary symmetry interacting with an electromagnetic field and predict

the ARPES response based on the nonequilibrium spectral function. Having this information is

particularly useful for evaluating the symmetry-breaking terms since ARPES (and the spectral

function) contain relevant experimental momentum information, which is integrated over in optical

experiments simulated in the previous chapter on optical response.

Considering the group symmetry of our lattice, we know the oscillations must fall into the

category of either the A1g, A2g, B2g or B1g symmetries. We can now identify the mode at 2∆ as

the A1g, or breathing mode from our analysis in the previous chapter and comparisons with isotropic

superconductors. In the spectral function, as the vector potential of the pump is aligned along the

dx2−y2 antinode there is a broken x̂y symmetry. That is, the C4 and the C ′′2 symmetry are broken,

while the C ′2 is not. This is more clear upon examination of the electromagnetic coupling term.

While the second order term does not couple to the momentum, the first order term does couple to

the ŷ momentum along the direction of polarization, which breaks the C ′2 momentum symmetry of

the lattice. Accordingly, this shows that our second mode corresponds to the osculating mode in

Fig. 2.2. In terms of the D4 character table, the coupling to our electromagnetic field, which has

been polarized such that the vector potential lies along the ŷ axis, perturbs the equilibrium BCS

Hamiltonian with a momentum anisotropy that is of A1g and B1g character.

For a pump polarization where the vector potential lies along the nodal direction, the C ′′2 (x̂y)

symmetry is not broken. Instead, the C ′2 symmetry is broken due to the π/4 sample rotation.

However, there is no clear indication of a B2g mode as would be the case for this symmetry breaking.

This should be somewhat expected because the pump should not induce any modes associated with

an angular momentum symmetry breaking, as is the case of the A2g and B2g modes. Moreover, the

momentum that incurs the maximum symmetry-breaking is along the nodal lines, which presents

a further explanation regarding the absence of this mode in the superconducting amplitude Higgs

mode oscillations.
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Chapter 4

Conclusions and Outlook

The subject of this thesis is the nonequilibrium response of superconductors with different pair-

ing symmetries. The experimentally motivated models studied in this thesis have revolved around

the interaction of a BCS superconductor with a short-time electromagnetic field, modeled so as to

emulate real experimental pump-probe spectroscopy. Our main findings show how this novel tech-

nique, Higgs spectroscopy, can be used both to excite and study the nonequilibrium superconducting

mode(s), as well as distinguish and study the inherent superconducting symmetries of the system in

various experimental setups.

In chapter 2, we used two short-time electromagnetic fields to emulate the pump and probe

respectively. We found that the first interaction with the electromagnetic field (the pump) first

reduced the size of the order parameter and then induced Higgs oscillations of the order parameter.

As discussed in section 2.1, the change in value and the oscillations can be attributed to nonadiabatic

changes to the free energy potential of the superconductor. An isotropic nonequilibrium oscillating

mode at 2∆ was present regardless of the superconducting symmetry while a second lower energy

mode appeared for a dx2−y2 , anisotropic superconductor depending on the relative orientation of the

sample and polarization of the pump. In addition, a second short-time electromagnetic interaction

was included to simulate an experimental probing pulse after some time-delay. With this second

pulse, we can calculate the optical response (conductivity) of the system. For a dx2−y2 supercon-

ductor, we can then isolate the two different responses by either orienting the vector potential along

a dx2−y2 antinode to induce only the low energy mode, or along the dx2−y2 node to induce only

the 2∆ mode. As a function of delay-time, the conductivity also exhibited oscillations in amplitude

with both the low energy and 2∆ frequencies. Overall, we showed how an optical experiment can

be used to measure various symmetry-dependent nonequilibrium Higgs modes and actually resolve

the momentum pairing symmetry of a superconductor.

In chapter 3, we first developed a formalism to study the spectral function and determine the

two-time Green’s functions for a superconductor interacting with an electromagnetic field. This

framework allowed us to additionally make predictions regarding the time-resolved ARPES (tr-

ARPES) response. The results from our approximation compare well with the results from the

more established density matrix formalism in chapter 2 and we were able to reproduce the same

angle-dependent Higgs modes for a dx2−y2 superconductor. Moreover, this new formalism allowed

us to study the momentum dependence of the time-resolved response. Particularly, we were able

to identify that a vector potential aligned along one of the antinodes of a dx2−y2 superconductor

induced an x̂−ŷ symmetry breaking, which is characteristic of the osculating nonequilibrium mode of

a dx2−y2 superconductor. In contrast, a vector potential aligned alone one of the nodes of a dx2−y2

superconductor did not induce the same symmetry breaking. From this, we were able to posit

that the low energy Higgs mode, generated by pumping with a vector potential aligned along the

dx2−y2 antinode, corresponds to the osculating nonequilibrium Higgs mode and that the 2∆ mode,
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which can be seen regardless of the polarization or superconductor symmetry, corresponds to the

isotropic breathing mode. Thus, beyond already being able to identify aspects of the superconducting

symmetry in equilibrium, utilizing momentum and time-resolved experimental techniques, such as

tr-ARPES, is crucial to experimentally verifying the exact momentum-dependent nature of the

nonequilibrium Higgs oscillations in a superconductor.

Higgs spectroscopy presents a novel experimental technique for directly probing and studying

properties of the superconducting condensate regardless of the pairing symmetry. One of the most

promising extensions of this work would be to exploit the coupling between the pump and the su-

perconducting momentum by applying series of ultra-fast pumps with different geometry to excite

angular momentum-dependent modes or study the effects of depopulating electron-pairs along par-

ticular momenta and breaking the superconducting symmetry along different axes. The methods

in this thesis can easily be extended to study other superconducting symmetries than considered

here, such as p-wave and anisotropic s-wave. In addition, the methods can also be used to study

the phase of the superconducting condensate and phase-dependent nonequilibrium response, which

can be a powerful tool for determining the phase differences present in s± superconductors. As an

experimental technique, with refinement and experience, Higgs spectroscopy will likely uncover more

physics beyond the scope of this thesis.

In conclusion, the novel field of Higgs spectroscopy is just emerging. In this thesis, we have de-

veloped a theoretical framework to describe the nonequilibrium Higgs mode, as well as proposed the

experimental setups that would be required to excite different symmetry dependent nonequilibrium

Higgs modes in both optical and time-resolved ARPES experiments. These methods can sequentially

resolve the symmetry-dependent response, which can be used to both resolve the different pairing

symmetries, as well as the inherent symmetry in the different Higgs amplitude modes.
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Appendix A

First Appendix

The full derivation of the equations of motion for the operators in Chapter 3 are presented here.

Beginning with α†k′ and the commutator with the superconducting portion of the Hamiltonian (the

time-dependence of the pre-factors l,m, n and o is taken to be implicit for simplified notation),

[
α†k′(t), H̃sc

]
=
∑

k,δ,η,γ

[
α†k+δ(−δk′+γ,k+η)

(
lk′,γ

(
(lk,δl

∗
k,η − o∗k,δok,η)Rk + (lk,δok,η)Ck + (l∗k,ηo

∗
k,δ)C

∗
k

)
+mk′,γ

(
(lk−δm

∗
k,η + nk,ηo

∗
k,δ)Rk + (lk,δnk,η)Ck + (o∗k,δm

∗
k,η)C∗k

))
+βk+δ(δk′+γ,k+η)

(
mk′,γ

(
(−m∗k,ηmk,δ + nk,ηn

∗
k,δ)Rk + (−mk,δnk,η)Ck − (m∗k,ηn

∗
k,δ)C

∗
k

)
− lk′,γ

(
(mk,δl

∗
k,η − n∗k,δok,η)Rk + (mk,δok,η)Ck + (n∗k,δl

∗
k,η)C∗k

))]
(A.1)

and for β†k and the commutator with the superconducting portion of the Hamiltonian,

[
β†k′(t), H̃sc

]
=
∑

k,δ,η,γ

[
αk+η(δk′+γ,k+δ)

(
ok′,γ

(
(lk,δl

∗
k,η − o∗k,δok,η)Rk + (lk,δok,η)Ck + (l∗k,ηo

∗
k,δ)C

∗
k

)
+ nk′,γ

(
(mk,δl

∗
k,η − n∗k,δok,η)Rk + (mk,δok,η)Ck + (n∗k,δl

∗
k,η)C∗k

))
+β†k+η(δk′+γ,k+δ)

(
−nk′,γ

(
(−m∗k,ηmk,δ + nk,ηn

∗
k,δ)Rk + (−mk,δnk,η)Ck − (m∗k,ηn

∗
k,δ)C

∗
k

)
+ ok′,γ

(
(lk,δm

∗
k,η − nk,ηo∗k,δ)Rk + (lk,δnk,η)Ck + (o∗k,δm

∗
k,η)C∗k

))]
(A.2)

and for β†k and the commutator with the EM portion of the Hamiltonian,
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[
β†k′(t), H̃em

]
=

[
e~
2m

∑
k,q,δ,η,γ

(2k + q)Aq

]
×

[
αk+η(δk′+γ,k+δ+q)

(
ok′,γ

(
(lk+q,δl

∗
k,η + o∗k+q,δok,η)L+

k,q + (−lk+q,δok,η + o∗k+q,δl
∗
k,η)M−k,q

)
+ nk′,γ

(
(mk+q,δl

∗
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k.q + (−mk+q,δok,η + n∗k+q,δl
∗
k,η)M−k,q

))
+β†k+η(δk′+γ,k+δ+q)

(
−nk′,γ

(
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+ ok′,γ

(
(lk+q,δm
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∗
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+
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e2
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∗
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+ nk′,γ

(
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∗
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∗
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∗
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(A.3)

and for βk′ with k′ + ρ = k + δ in the first sum and k′ = k + q + δ in the subsequent 2 sums:



Appendix A. First Appendix 43

i~
d

dt
mk′,ρ(t)βk′+ρ =

−
∑
δ,γ

βk′+ρ

(
mk′,γ

(
(m∗k′+ρ−δ,γ+δ−ρmk′+ρ−δ,δ − nk′+ρ−δ,γ+δ−ρn

∗
k′+ρ−δ,δ)Rk′+ρ−δ

+ (mk′+ρ−δ,δnk′+ρ−δ,γ+δ−ρ)Ck′+ρ−δ + (m∗k′+ρ−δ,γ+δ−ρn
∗
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∗
k′+ρ−δ

)
+ lk′,γ

(
(mk′+ρ−δ,δl

∗
k′+ρ−δ,γ+δ−ρ − n∗k′+ρ−δ,δok′+ρ−δ,γ+δ−ρ)Rk′+ρ−δ

+ (mk′+ρ−δ,δok′+ρ−δ,γ+δ−ρ)Ck′+ρ−δ + (n∗k′+ρ−δ,δl
∗
k′+ρ−δ,γ+δ−ρ)C

∗
k′+ρ−δ
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−
[
e~
2m

∑
q,δ,γ

(2(k′ − q + ρ− δ) + q)Aq

]
×

βk′+ρ

(
mk′,γ

(
(m∗k′+ρ−δ−q,γ+δ+q−ρmk′+ρ−δ,δ + nk′+ρ−δ−q,γ+δ+q−ρn

∗
k′+ρ−δ,δ)L

+
k′−q+ρ−δ,q

+ (−mk′+ρ−δ,δnk′+ρ−δ−q,γ+δ+q−ρ + n∗k′+ρ−δ,δm
∗
k′+ρ−δ−q,γ+δ+q−ρ)M

−
k′−q+ρ−δ,q

)
+ lk′,γ

(
(mk′+ρ−δ,δl

∗
k′+ρ−δ−q,γ+δ+q−ρ + n∗k′+ρ−δ,δok′+ρ−δ−q,γ+δ+q−ρ)L

+
k′−q+ρ−δ,q

+ (−mk′+ρ−δ,δok′+ρ−δ−q,γ+δ+q−ρ + n∗k′+ρ−δ,δl
∗
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−
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−
[
e2

2m

∑
q,δ,γ

(∑
q′

Aq−q′ ·Aq′
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×

βk′+ρ

(
mk′,γ

(
(m∗k′+ρ−δ−q,γ+δ+q−ρmk′+ρ−δ,δ − nk′+ρ−δ−q,γ+δ+q−ρn

∗
k′+ρ−δ,δ)L

−
k′−q+ρ−δ,q
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∗
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+
k′−q+ρ−δ,q

)
+ lk′,γ

(
(mk′+ρ−δ,δl

∗
k′+ρ−δ−q,γ+δ+q−ρ − n∗k′+ρ−δ,δok′+ρ−δ−q,γ+δ+q−ρ)L

−
k′−q+ρ−δ,q
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∗
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+
k′−q+ρ−δ,q

))
(A.4)
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For αk′ we collect like terms by choosing k′ + ρ = k + η:

i~
d

dt
ok′,ρ(t)αk′+ρ =∑

η,γ

αk′+ρ

(
ok′,γ

(
(lk′+ρ−η,γ+η−ρl

∗
k′+ρ−η,η − o∗k′+ρ−η,γ+η−ρok′+ρ−η,η)Rk′+ρ−η

+ (lk′+ρ−η,γ+η−ρok′+ρ−η,η)Ck′+ρ−η + (l∗k′+ρ−η,ηo
∗
k′+ρ−η,γ+η−ρ)C

∗
k′+ρ−η

)
+ nk′,γ

(
(mk′+ρ−η,γ+η−ρl

∗
k′+ρ−η,η − n∗k′+ρ−η,γ+η−ρok′+ρ−η,η)Rk′+ρ−η

+ (mk′+ρ−η,γ+η−ρok′+ρ−η,η)Ck′+ρ−η + (l∗k′+ρ−η,ηn
∗
k′+ρ−η,γ+η−ρ)C

∗
k′+ρ−η

))
+

[
e~
2m

∑
q,η,γ

(2(k′ + ρ− η) + q)Aq

]
×

αk′+ρ

(
ok′,γ

(
(lk′+ρ−η+q,γ+η−q−ρl

∗
k′+ρ−η,η + o∗k′+ρ−η+q,γ+η−q−ρok′+ρ−η,η)L+

k′+ρ−η,q

+ (−lk′+ρ−η+q,γ+η−q−ρok′+ρ−η,η + l∗k′+ρ−η,ηo
∗
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−
k′+ρ−η,q

)
+ nk′,γ

(
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∗
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k′+ρ−η,q

+ (−mk′+ρ−η+q,γ+η−q−ρok′+ρ−η,η + n∗k′+ρ−η+q,γ+η−q−ρl
∗
k′+ρ−η,η)M−k′+ρ−η,q

))
+

[
e2

2m

∑
q,η,γ

(∑
q′

Aq−q′ ·Aq′

)]
×

αk′+ρ

(
ok′,γ

(
(lk′+ρ−η+q,γ+η−q−ρl

∗
k′+ρ−η,η − o∗k′+ρ−η+q,γ+η−q−ρok′+ρ−η,η)L−k′+ρ−η,q

− (lk′+ρ−η+q,γ+η−q−ρok′+ρ−η,η + l∗k′+ρ−η,ηo
∗
k′+ρ−η+q,γ+η−q−ρ)M

+
k′+ρ−η,q

)
+ nk′,γ

(
(mk′+ρ−η+q,γ+η−q−ρl

∗
k′+ρ−η,η − n∗k′+ρ−η+q,γ+η−q−ρok′+ρ−η,η)L−k′+ρ−η,q

− (mk′+ρ−η+q,γ+η−q−ρok′+ρ−η,η + n∗k′+ρ−η+q,γ+η−q−ρl
∗
k′+ρ−η,η)M+

k′+ρ−η,q

))
(A.5)
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and for β†k′ , k′ + ρ = k + η:

i~
d

dt
nk′,ρ(t)β

†
k′+ρ =∑

η,γ

β†k′+ρ

(
nk′,γ

(
(m∗k′+ρ−η,ηmk′+ρ−η,γ+η−ρ − nk′+ρ−η,ηn

∗
k′+ρ−η,γ+η−ρ)Rk′+ρ−η

+ (mk′+ρ−η,γ+η−ρnk′+ρ−η,η)Ck′+ρ−η + (m∗k′+ρ−η,ηn
∗
k′+ρ−η,γ+η−ρ)C

∗
k′+ρ−η

)
+ ok′,γ

(
(lk′+ρ−η,γ+η−ρm

∗
k′+ρ−η,η − nk′+ρ−η,ηo

∗
k′+ρ−η,γ+η−ρ)Rk′+ρ−η

+ (lk′+ρ−η,γ+η−ρnk′+ρ−η,η)Ck′+ρ−η + (o∗k′+ρ−η,γ+η−ρm
∗
k′+ρ−η,η)C∗k′+ρ−η

))
+

[
e~
2m

∑
q,η,γ

(2(k′ + ρ− η) + q)Aq

]
×

β†k′+ρ

(
nk′,γ

(
(m∗k′+ρ−η,ηmk′+ρ−η+q,γ+η−q−ρnk′+ρ−η,η + n∗k′+ρ−η+q,γ+η−q−ρ)L

+
k′+ρ−η,q

+ (−mk′+ρ−η+q,γ+η−q−ρnk′+ρ−η,η + n∗k′+ρ−η+q,γ+η−q−ρm
∗
k′+ρ−η,η)M−k′+ρ−η,q

)
+ ok′,γ

(
(lk′+ρ−η+q,γ+η−q−ρm

∗
k′+ρ−η,η + nk′+ρ−η,ηo

∗
k′+ρ−η+q,γ+η−q−ρ)L

+
k′+ρ−η,q

+ (−lk′+ρ−η+q,γ+η−q−ρnk′+ρ−η,η + o∗k′+ρ−η+q,γ+η−q−ρm
∗
k′+ρ−η,η)M−k′+ρ−η,q

))
+

[
e2

2m

∑
q,η,γ

(∑
q′

Aq−q′ ·Aq′

)]
×

β†k′+ρ

(
nk′,γ

(
(m∗k′+ρ−η,ηmk′+ρ−η+q,γ+η−q−ρ − nk′+ρ−η,ηn

∗
k′+ρ−η+q,γ+η−q−ρ)L

−
k′+ρ−η,q

− (mk′+ρ−η+q,γ+η−q−ρnk′+ρ−η,η + n∗k′+ρ−η+q,γ+η−q−ρm
∗
k′+ρ−η,η)M+

k′+ρ−η,q

)
+ ok′,γ

(
(lk′+ρ−η+q,γ+η−q−ρm

∗
k′+ρ−η,η − nk′+ρ−η,ηo

∗
k′+ρ−η+q,γ+η−q−ρ)L

−
k′+ρ−η,q

− (lk′+ρ−η+q,γ+η−q−ρnk′+ρ−η,η + o∗k′+ρ−η+q,γ+η−q−ρm
∗
k′+ρ−η,η)M+

k′+ρ−η,q

))
(A.6)
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