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Abstract 

This thesis is to probe the systems-level neurobiological bases for executive function in patient 

populations overarchingly.  

We focus on two representative diseases, Parkinson’s Disease (PD), and Multiple Sclerosis (MS), 

as although they have different pathologies, patients often result in similar cognitive deficits. We 

examine resting-state fMRI data from both PD and MS subjects with novel methods in a network 

fashion. We employ advanced connectivity analyses to evaluate graph theoretical, static and 

dynamic resting-state functional connectivity (rsFC) measures. Multivariate statistical methods 

such as Canonical Correlate Analysis (CCA) and Multiset Canonical Correlate Analysis (MCCA) 

are used to robustly link rsFC and cognitive performance. PD data used in the thesis research 

include three cohorts: Parkinson’s Progression Markers Initiative (PPMI) and two research 

projects conducted at UBC (project name: BCT and GFM2). For MS, two cohorts are included: 

OPERA MS clinical trial and COGMS research project, which are both conducted at UBC.  

After a general introduction in the first chapter, in the second chapter we examine multivariate 

relations between demographic and cognitive profiles with CCA, showing that female gender is 

associated with better cognitive performance in both diseases possibly due to protective effects of 

estrogen.  

In chapter 3, we use correlation to assess functional connections. Both diseases have significantly 

altered interhemispheric connectivity, which is associated with altered cognitive performance in 

MS, but not PD.  

In chapter 4, we utilize graph theoretical approaches and find increased segregation of rsFC in PD, 

supporting a previously-proposed model of vulnerability of hubs in disease populations. In MS, 

higher modularity of the rsFC network is correlated with better executive skills. 
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In chapter 5, we explore dynamic rsFC and discover that longer disease duration in MS is 

associated with decreased dynamic rsFC. In both populations, dynamic interhemispheric 

connectivity is robustly associated with cognitive abilities.  

In chapter 6, MCCA is applied to jointly explore the associations between dynamic and stationary 

rsFC, and behavioural measures. In MS, better executive functioning is supported by higher 

education, stronger and dynamic rsFC; in PD, better memory function is related to segregated brain 

networks and dynamics of interhemispheric connections. 

Chapter 7 summarizes and concludes these chapters. 
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Lay Summary 

Cognitive deficits are a very troubling symptom for people with neurological disease. 

Understanding cognitive deficits has been difficult because there does not seem to be a simple 

relationship between damages to one part of the brain and the deficits. It seems that disease effects 

over widespread brain areas are more associated with cognitive deficits. In this research, we 

investigated functional connectivity (FC), i.e. how brain regions communicate through 

information transfer, and its relations to cognitive deficits in two diseases showing similar 

cognitive impairments: Parkinson’s Disease and Multiple Sclerosis. Novel analyses with 

functional magnetic resonance imaging (fMRI) data were used to examine FC and advanced 

statistical methods were used to link FC and cognitive function. In both diseases, we found robust 

associations between network level descriptions of FC and performance on cognitive tests. 

Determining the networks associated with cognitive performance is a first step towards targeted 

therapy attempting to reduce deficits. 
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Chapter 1: Introduction 

This chapter provides a general introduction of the cognitive deficits, related studies on functional 

connectivity, and common analyses in two neurological conditions: Parkinson’s Disease and 

Multiple Sclerosis. In addition, the summary relates findings of previous research to a proposed 

model of higher-order cognitive function. Finally, suggested approaches to study the neuronal 

bases of cognitive function are made.    

 

Executive function is a set of higher-order cognitive processes that include inhibition, working 

memory, cognitive flexibility, reasoning, problem-solving, and planning to achieve goal-directed 

behaviour. Executive functions are important for activities of daily living and a satisfactory quality 

of life [Diamond, 2013], and poor executive function leads to decreased productivity and problem 

solving abilities at work and school [Bailey, 2007; Blair and Peters Razza, 2007; Brown and 

Landgraf, 2010]. As a variety of neurological disorders can result in executive dysfunction, 

understanding the mechanisms of these deficits has become necessary in order to guide therapeutic 

options [Elliott, 2003]. Attempts at clinicopathological correlation, where damage to specific 

regions is correlated with particular deficits, were modestly successful at best with cognitive 

deficits, and this has been referred to as the clinical-radiological paradox [Barkhof, 2002]. 

Traditional clinical imaging focusing on damage to particular brain regions may obscure more 

diffuse structural and functional connectivity changes which are likely more important for complex 

cognitive processes such as executive function. To overcome this, a combination of novel brain 

imaging techniques such as resting-state functional magnetic resonance imaging (rsfMRI) and 

suitable analyses such as network measures and multivariate approaches can be used to investigate 
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correlations between different behaviour and associated connectivity patterns [Hackmack et al., 

2012; van den Heuvel and Hulshoff Pol, 2010; Smith et al., 2009].  

Executive dysfunction is prominent in several neurological and psychiatric illnesses including 

frontal lobe damage, basal ganglia disorders, depression and schizophrenia [Elliott, 2003]. This 

dissertation focuses on two neurological disorders known to impact executive function: Multiple 

Sclerosis (MS) and Parkinson’s Disease (PD). These diseases have been chosen because they 

represent entirely different primary pathologies (myelin damage vs basal ganglia dysfunction), 

affect different ages and genders, yet still result in executive dysfunction. Contrasting and 

comparing the cognitive deficits in these two diseases are expected to provide insights into the 

common origins of executive dysfunction. We focus especially on resting-state functional 

connectivity (rsFC) in these two neurological conditions, as this will examine distributed 

representations that are complementary to the traditional clinicopathological correlation model. 

1.1 Executive dysfunction and neuroimaging in Multiple Sclerosis and Parkinson’s 

Disease 

These two conditions are well-described progressive diseases of the central nervous system, which 

result in executive dysfunction. MS is characterized by white matter lesions and PD is a basal 

ganglia disorder with dopamine depletion. This section reviews the executive deficits in MS and 

PD as well as the relations to traditional neuroimaging measures.   

1.1.1 Multiple Sclerosis  

MS is a neuroinflammatory disease which shows widespread lesions (demyelinated axons attacked 

by T cells) mainly in the white matter and spinal cord but occasionally in the grey matter, resulting 
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in a broad range of deficits such as motor, cognitive, and neuropsychiatric symptoms [Goldenberg, 

2012]. Four subtypes of MS have been defined: relapsing-remitting, secondary progressive, 

primary progressive and progressive-relapsing MS depending upon the pattern of temporal 

evolution of symptomatology. This review focuses on the most common subtype of MS – 

relapsing-remitting MS (RRMS).  

In RRMS, up to 70% of patients demonstrate cognitive impairment, with the most commonly 

affected domains being information processing speed, attention, visuospatial ability, memory, and 

executive function [Chiaravalloti and DeLuca, 2008; Langdon, 2011; Wallin et al., 2006]. The 

affected domain incorporating attention involves complex processes such as alertness, 

selective/focused/divided attention, and vigilance rather than “simple” attention (e.g. as tested by 

asking a subject to repeat a series of digits) [Chiaravalloti and DeLuca, 2008; Guimarães and Sá, 

2012]. Processing speed, a commonly impaired domain in MS, is required in many cognitive tasks 

to rapidly react to processed information [Chiaravalloti and DeLuca, 2008; Guimarães and Sá, 

2012]. Research has suggested that difficulty in acquiring new knowledge in MS might be a greater 

problem than information retrieval in the memory domain [Chiaravalloti and DeLuca, 2008]. 

Executive dysfunction in MS also includes poor planning, decreased working memory, set-shifting 

and mental flexibility problems [Foong et al., 1997; Holland et al., 2014]. Patients with MS 

generate significantly fewer words in the Verbal Fluency Test, take longer time to complete the 

Stroop test, make more errors in the Stroop test and spatial working memory test, and require 

longer time to initiate motor execution in a test of planning and problem solving [Foong et al., 

1997]. In a young MS population, 35% of the subjects score lower than the normative data on the 

Trail Making Test B (TMT B), suggesting disabilities of mental flexibility [Holland et al., 2014]. 
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Among the cognitive deficits, executive dysfunction seems to impact patients’ quality of life and 

occupational performance the most [Preston et al., 2013].  

Traditional MRI methods have been explored in MS as biomarkers for cognitive impairment, but 

results have only met with modest success. Diffuse lesions observed in fluid-

attenuated inversion recovery (FLAIR) MRI sequences and T2-weighted images in the 

periventricular white matter and the commissural fiber tracts are associated with processing speed 

deficits, working memory difficulties, perception and spatial processing [Houtchens et al., 2007; 

Rossi et al., 2012; Stankiewicz et al., 2009]. However, only a few studies have actually shown 

strong correlations between executive deficits and particular MRI-detectable lesion locations in 

MS [Filippi et al., 2010]. This has raised concerns whether lesion location (or even overall lesion 

load) can be a specific indicator of cognitive deficits, especially executive dysfunction [Rocca et 

al., 2014]. It is this observation that has motivated a network approach to cognitive deficits as done 

in this thesis. 

Newer imaging methods have proved more successful in finding a link between imaging features 

and cognitive dysfunction in MS. Decreased white matter integrity, as evaluated by fractional 

anisotropy (FA)-based graphical measures in the frontoparietal network, subcortical regions, and 

insula are associated with impaired attention and executive performance [Llufriu et al., 2017]. 

Cortical thinning in the left anterior cingulate, superior frontal, lateral orbitofrontal, and superior 

parietal regions have been shown to be associated with executive deficits (e.g. verbal fluency) 

[Geisseler et al., 2016]. 
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1.1.2 Parkinson’s Disease  

PD is a neurodegenerative movement disorder that is characterized by degeneration of 

dopaminergic neurons in the substantia nigra pars compacta [Dauer and Przedborski, 2003], 

affecting dopaminergic pathways such as nigrostriatal and mesocortical pathways [Ouchi et al., 

2001]. In addition to dopamine depletion, several factors have been considered contributing to the 

impairments in PD such as protein misfolding, impaired cholinergic activity, and adenosine 

receptor abnormalities [Aarsland et al., 2017]. This dissertation focuses on sporadic PD (i.e. there 

is no apparent genetic linkage), which is the most common type [Dauer and Przedborski, 2003]. 

Executive dysfunction has been commonly reported, using tasks which require planning, set-

shifting, control of attention, working memory, and timing skills such as the Wisconsin Card 

Sorting Test (WCST), TMT, Tower of London Test (ToL), and time perception task [Dirnberger 

and Jahanshahi, 2013; Goldman and Litvan, 2011; Palavra et al., 2013; Parker et al., 2013; 

Williams-Gray et al., 2007]. In the dual syndrome hypothesis, the frontal cognitive subtype, more 

commonly seen in tremor-predominant PD, is associated with decreased dopamine levels in 

frontal-striatal circuits, resulting in impaired executive function such as reduced verbal fluency 

and impaired planning ability [Kehagia et al., 2010; Siepel et al., 2014; Williams-Gray et al., 2007]. 

The posterior cognitive subtype, associated with a more profound cholinergic deficit, demonstrates 

impaired visuospatial abilities, and dementia [Miller et al., 2013]. Choline acetyltransferase 

(ChAT) activity can be reduced in the hippocampus, prefrontal cortex, and temporal cortex and 

the degradation is correlated with global cognitive decline in PD [Mattila et al., 2001]. Positron 

emission tomography (PET) studies have shown that cholinergic degradation in PD correlates with 

performance of attention, working memory, and executive tests, while this degradation is not 
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correlated with motor symptoms [Bohnen et al., 2006]. Thus both dopamine and cholinergic 

signaling have been shown to affect cognitive domains such as working memory, decision making, 

and attention [Ballinger et al., 2016; Takahashi et al., 2012]. In fact, decreased cholinergic and 

dopaminergic signaling and neuronal death may be joint pathological features in PD which affect 

cognition [Ballinger et al., 2016].  

Other pathological changes can also be observed and linked to executive impairment in PD. 

Cortical thinning in the dorsolateral superior frontal gyrus as well as white matter abnormalities 

underlying bilateral frontal and temporal cortices have demonstrated relationships to executive 

dysfunction [Koshimori et al., 2016]. Diffusion tensor imaging (DTI) has demonstrated a positive 

correlation between FA in frontal-subcortical regions and executive scores [Gallagher et al., 2013]; 

likewise, executive function has been positively correlated with FA and negatively correlated with 

mean diffusivity (MD) in frontal white matter tracks such as the anterior limb of the internal 

capsule and the genu of the corpus callosum [Zheng et al., 2014]. Taken together, structural 

changes in the frontal areas are associated with executive dysfunction in PD as well as some 

temporal/posterior regions. Neurotransmitter abnormalities are also related to cognitive 

impairments in attention, memory, and executive domains.     

1.1.3 Summary  

MS and PD are two distinct neurological conditions, which both present with executive 

dysfunction regardless of the location of lesions and affected areas/circuits, supporting the notion 

that executive function requires widely distributed regions to coordinate as a whole rather than 

engaging one specific region of the cerebral cortex such as the prefrontal cortex [Alvarez and 

Emory, 2006; Elliott, 2003; Heyes, 2012; McIntosh, 2000; McIntosh, 2004; Miller and Wallis, 
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2009]. Newer techniques such as fMRI allow observing neural events with a broader outlook and 

examining brain regions that are active under certain conditions. When these techniques are used 

to look at the temporal co-activation of regions they move beyond a simple localization approach 

(which region does what function) to looking at distributed networks of activation (which 

regions are acting in concert or sequence with each other). This approach is referred to as 

functional connectivity, which allows investigations of how anatomically segregated brain regions 

communicate [Elliott, 2003; van den Heuvel and Hulshoff Pol, 2010].   

1.2 Functional connectivity and analysis approaches in clinical research 

1.2.1 Resting-state functional connectivity  

Neuroimaging techniques have been applied to study executive function in order to understand its 

neurobiological correlates [Bunge and Souza, 2009; Chung et al., 2014]. With structural magnetic 

resonance imaging (sMRI), structural changes such as grey matter atrophy and altered cortical 

thickness in brain regions have been compared with the performance of executive tasks that are 

assessed outside of the MRI scanner. With functional modalities, such as fMRI and PET, subjects 

perform executive tasks in the scanner while the functional images are being acquired to monitor 

neuronal activation patterns and metabolism triggered by the cognitive demands of the tasks.  

Recently, rsfMRI has been used rather than, or in conjunction with, tasked-driven fMRI to study 

brain activity. rsfMRI involves scanning participants who are awake but not engaged in direct 

cognitive action (subjects are asked to not think about anything in particular, also known as 

spontaneous or non-directed cognition) and may be more appropriate for disease populations 

where poor behavioural performance in task based studies may affect interpretation of studies. 
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Analysis of task-driven fMRI studies is usually based on testing hypothesized amplitude-related 

blood oxygenation level dependent (BOLD) changes at different brain regions. With rsfMRI one 

does not have a priori hypothesized waveform as participants are not performing specific tasks 

and data driven methods, such as assessing rsFC are used for analysis. rsFC describes the statistical 

association of neural patterns between distinct brain regions during rest [Friston, 1994; van den 

Heuvel and Hulshoff Pol, 2010]. This ability to apply an exploratory approach is advantageous 

when considering compensatory and adaptive mechanisms as there is little a priori knowledge of 

which brain areas may demonstrate such behaviour. Although subjects do not perform specific 

cognitive tasks during rsfMRI studies, patterns of rsFC have been linked to performance on 

subsequent cognitive tasks [Diez et al., 2015; van den Heuvel and Hulshoff Pol, 2010; Rosazza 

and Minati, 2011; Smith et al., 2009; Smith et al., 2013; Spreng et al., 2012].  

Connectivity in rsfMRI can be divided into functional connectivity and effective connectivity 

[Friston, 1994; Friston, 2011]. This literature review focuses on functional connectivity due to the 

paucity of research using effective connectivity to look at clinical populations to date. Functional 

connectivity describes the temporal correlation between spatially segregated events and it does not 

contain information about directionality, meaning that the analysis reports only the covariance 

between brain regions/voxels (i.e. how much the neural activity changes in different locations are 

related to each other). Several approaches have been used to assess rsFC in healthy subjects and 

patients with neurological conditions to explore brain organization and neuroimaging biomarkers, 

respectively [Bowman, 2014b; Lindquist, 2008; Margulies et al., 2010; Pievani et al., 2014].  
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1.2.1.1 Common analyses and applications  

Several common approaches have been applied to clinical studies such as Independent Component 

Analysis (ICA), seed-based correlation, whole brain correlation, and graphical analysis. In brief, 

ICA decomposes the data into maximally spatially independent components (spatial maps) and 

corresponding time courses [McKeown et al., 2003]. Voxels within the same maps may be 

considered functionally connected. Maps may correspond with areas associated with the default 

mode network, sensorimotor processing, visual processing and saliency [Damoiseaux et al., 2006]. 

Another approach for determining rsFC is to utilize a seed-based approach. In this technique, one 

must pre-specify seed region(s) and correlation between the time course of the seed region(s) and 

other voxels are calculated [Greicius et al., 2003]. Whole-brain correlational analysis takes into 

account several brain regions at the same time and evaluates the covariance/correlation between 

regions rather than looking at specific seed regions [Prodoehl et al., 2014].  

Once connectivity strengths between brain regions have been computed, the results are usually 

collected into a matrix and summarized. One such summarizing method is graph theory. In 

mathematics, a “graph” consists of nodes and edges, and in this context, the nodes represent brain 

regions and the edges represent the statistical relation between their respective time courses (e.g. 

correlation, possibly after thresholding and setting small correlational values to zero). Recently, 

graphical analyses have become a popular tool to describe how networks are organized and how 

the information is coordinated through biological fundamentals in connectome studies [Rubinov 

and Sporns, 2010]. Topological features reveal that the brain is a small-world organization (i.e. 

networks are highly clustered like a scale-free network but nodes are linked by small path lengths 

like a random network) with a balance between how well the information is processed within one 
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system (i.e. functional segregation) and how efficient the information is integrated throughout the 

brain (i.e. functional integration) [Deco et al., 2015; Sporns, 2013]. These organization principles 

aim to reduce wiring cost yet enhance the efficiency of information flow [Bullmore and Sporns, 

2012; Sporns, 2013]. As the volume of the human brain has increased during evolution, neural 

signaling is required to travel longer distance along white matter, resulting in longer travel time 

(i.e. wiring cost) [Hofman, 2014]. Other adaptations have also been proposed as strategies to 

reduce wiring cost in addition to segregation, integration, and small world organization. As the 

travel distance increases, “short cuts” of the brain have been developed such as long-range 

connections so neuronal signals can bypass other regions through these short cuts [Hofman, 2014]. 

In addition, studies have proposed that several regions are more densely connected to other regions 

either within one network or between networks, forming high traffic spots in the brain called 

“hubs” [Achard et al., 2006; van den Heuvel and Sporns, 2013; Power et al., 2013]. Therefore, 

neuronal signals can “transfer” between these hubs to reduce wiring cost as the information flow 

can be more efficiently carried out across the brain.  

1.2.2 Dynamic functional connectivity 

The above-mentioned methods assume that connectivity patterns are relatively temporally 

stationary and estimate the average connectivity patterns that represent neurophysiological events 

across the scanning time. However, new studies with computational models implemented have 

suggested that functional connectivity is not stationary and this aspect has been referred to as 

dynamic functional connectivity [Hutchison et al., 2013b; Hutchison et al., 2013a], i.e., the 

neuronal patterns fluctuate across time (in seconds/minutes) in order to maintain brain function in 
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response to different environmental stimuli. This temporal connectivity pattern is also a crucial 

component of brain organization. 

1.2.2.1 Methods and applications  

The most common analytical model for dynamic functional connectivity is perhaps a sliding 

window approach, with pairwise correlation implemented [Hutchison et al., 2013b; Hutchison et 

al., 2013a]. This model estimates correlations between brain regions within a fixed-length, sliding 

window, with the (possibly overlapping) windows ultimately moved over the entire data. As a 

result, each correlation matrix represents the connectivity at each window. With post hoc analyses, 

features that summarizes connectivity changes across time can be calculated [Liao et al., 2015]. 

Another approach is to apply clustering methods (i.e. to separate matrices into different states) and 

calculate the “dwell time” of each state [Damaraju et al., 2014]. Alternatively, principal component 

analysis (PCA) can be applied to study whole brain dynamics based on windowed correlation 

matrices [Leonardi et al., 2013]. Nevertheless, there are potential pitfalls with sliding window 

approaches [Hindriks et al., 2016; Hutchison et al., 2013b]; if the window is too long, important 

dynamic changes may be missed. If the window is too short, the connectivity estimates may be 

unstable as too few samples are available for the statistical inferences. A window length of 30-60 

seconds for fMRI data has been heuristically suggested [Leonardi and Van De Ville, 2015; Zalesky 

and Breakspear, 2015]. Other time-varying approaches have also been implemented to investigate 

dynamic functional connectivity such as the combination of sliding window and Hidden Markov 

Model [Chiang et al., 2016], the Sticky Weighted Regression Model [Liu et al., 2015], and 

Dynamic Conditional Correlations [Lindquist et al., 2014]. Other methods which investigate 

dynamics in frequency domain and integrate with graph analysis have been proposed [Chang and 
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Glover, 2010; Chiang et al., 2016]. A comprehensive review has pinpointed the strengthens and 

issues of each method [Preti et al., 2017]. Although some of them have been applied to clinical 

studies, the majority studies which explore the links between disease, cognition, and dynamic 

functional connectivity still favour the sliding window approach.  

Dynamic functional connectivity allows for different degrees of engagement in areas/networks 

across different time scales (i.e. a given brain area gets involved in the connectivity network at a 

certain time point, but in a different time frame the area is not engaged in the network). Studies in 

behaviour and simultaneous recording of functional connectivity and electrophysiological data 

suggest that temporal variations link neuronal origin, cognitive processes and behaviour [Chang 

et al., 2013; Thompson et al., 2013]. For example, increased temporal variability of neural activity 

is associated with stable performance in an electroencephalography (EEG) memory task [McIntosh 

et al., 2008]. Moreover, recently both rsfMRI and tasked fMRI research has further suggested that 

these dynamic and topological features have been linked to cognitive architecture --  especially 

higher-order cognitive processes [Mattar et al., 2015; Shafto and Tyler, 2014]. Compared to motor 

tasks, the performance of the N-back memory task requires more functional integration between 

regions and relies on the ability to flexibly integrate information across regions and networks 

especially in frontoparietal and frontotemporal networks [Braun et al., 2015; Shine et al., 2016]. 

Such brain organization has been seen in rsfMRI as well, whereby the rsFC network related to 

cognition requires flexibility [Mattar et al., 2015]. In addition, it has been concluded that dynamic 

interaction between networks supports cognitive functions, especially ones which requires 

complex processes such as language [Chai et al., 2016; Shafto and Tyler, 2014].   
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1.3 Resting-state functional connectivity and executive function in Multiple Sclerosis and 

Parkinson’s Disease  

Table 1.1 summarizes the studies which have explored the associations between executive deficits 

and rsFC in MS and PD. Figure 1.1 visualizes the rsFC patterns related to executive function.  

1.3.1 Multiple Sclerosis 

Many studies have reported decreased functional connectivity in MS in resting-state networks 

(RSNs) including the default mode, salience, executive control, working memory, and 

sensorimotor networks [Bonavita et al., 2011; Rocca et al., 2012]. The decreased connectivity 

indicates that cortical regions fail to integrate information (especially the medial prefrontal cortex 

and posterior cingulate cortex) and has been associated with worsening executive function in 

cognitively impaired patients [Cruz-Gómez et al., 2014; Louapre et al., 2014], which supports the 

idea that cognitive deficits in MS may be the result of disconnection. In addition, studies which 

investigate whole-brain rsFC have revealed weaker connectivity among widespread regions 

including frontal, parietal, temporal, and subcortical areas as well as interhemispheric connectivity 

[Richiardi et al., 2012; Zhou et al., 2013].  

Research with novel approaches such as graph theoretical analysis provides insight into alterations 

of functional connectivity in a topological fashion [Gamboa et al., 2014; Rocca et al., 2016b; 

Schoonheim et al., 2013]. Patients with MS exhibit reduced global efficiency, node degree, 

centrality, and increased path length on average compared to normal subjects, demonstrating 

altered rsFC in network organization [Rocca et al., 2016b]. As global efficiency calculates the 

average inverse of shortest path lengths, the reduced measure indicates that the shortest path length 
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increases, and thus a marker of inefficient information transfer in the brain. Decreased node degree 

suggests that brain regions lose connections to/from other regions, indicating a reduction in overall 

connectivity. Centrality represents the “importance” of a given region (i.e. the fraction of shortest 

paths that pass through a given node) and a small value implies that 1) the region loses shortest 

paths and 2) hubs potentially vanish. As a consequence, the organized brain network structure, 

which is meant to reduce wiring cost, fails. These topological changes in MS illustrate impaired 

functional integration and the impairment is associated with executive dysfunction such as reduced 

accuracy in dual-task performance [Gamboa et al., 2014; Schoonheim et al., 2013]. This implies 

that the MS brain becomes more segregated and will be less efficient to support complex 

behaviour. In addition, the loss of hub regions in MS (include the superior frontal gyrus, precuneus, 

and anterior cingulate cortex) leads to impaired functional integration, as hubs are an important 

aspect of functional integration where several networks are integrated [Rocca et al., 2016b]. As 

many of these regions are highly related to executive function, the results imply that higher 

cognitive function requires not only the frontal cortex but other cortices, such as the parietal cortex 

in case of the precuneus, to coordinate information flow.  

However, other studies have also reported that increased functional connectivity in some RSNs is 

associated with reduced cognitive efficiency, indicating that cognitive deficits may be associated 

with enhanced functional coupling in MS possibly reflecting compensatory and/or adaptive 

mechanisms at different stages of disease progression [Faivre et al., 2012; Hawellek et al., 2011b]. 

Moreover, the authors reported that the major connectivity which modulated behaviour required 

shifts between the default mode network and the central executive network depending on the 

degree of patient’s cognitive impairments, in which connectivity shifted toward executive network 
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in patients with higher cognitive efficiency [Hawellek et al., 2011b]. The networks with increased 

connectivity lost “flexibility” in network interactions and resulted in stronger connectivity at a 

longer time scale. As these networks commonly require coordinated information flow across 

cortices via long-range fibers, it has been postulated that cognition-related connections may 

constantly shift between regions and increased functional connectivity reflects a loss of diversity 

in network interactions.  

With a seed-based approach, other studies have demonstrated that increased functional 

connectivity, which was observed in the frontal regions, anterior cingulate cortex, and posterior 

areas, was  related to better performance of executive ability [Loitfelder et al., 2012]. As the seed 

regions in the studies are all important hubs in cognitive processes (i.e. the anterior cingulate 

cortex, ventral medial prefrontal cortex, and posterior cingulate cortex), the results imply that core 

cognitive regions may first demonstrate compensatory effects. Yet these studies focus on a limited 

number of seed regions, which may lose sensitivity to detect connectivity patterns in other regions. 

In addition, studies often report both increased and decreased activation as a function of disease 

stage and cognitive impairments. Perhaps rather than increased or decreased activity per se, the 

“interactions” between networks with altered activation/connectivity would be more informative 

to cognitive impairments and disease severity. Therefore, studying whole brain connectivity may 

prove beneficial. Effects of age and disease stage on cognitive deficits may also lead to inconsistent 

results. This may be related to cognitive reserve capacity whereby in early stages of the disease 

there is altered connectivity and normal cognitive performance, but over time or under higher 

cognitive demands, the capacity for compensation diminishes and the altered connectivity 

becomes aberrant.   
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1.3.2 Parkinson’s Disease  

The majority of research into rsFC in PD focuses on the connectivity between the motor cortex 

and subcortical areas such as cortico-striatal connections as well as how rsFC correlates with 

clinical scores [Helmich et al., 2010; Kwak et al., 2012; Luo et al., 2014; Sharman et al., 2013; 

Wu et al., 2009]. Since non-motor symptoms such as cognitive deficits in PD have profound effects 

on quality of life, a few studies have started investigating whole-brain functional connectivity and 

its association with cognitive deficits [Amboni et al., 2014a; Baggio et al., 2014; Disbrow et al., 

2014; Hirano et al., 2012; Olde et al., 2014; Owen, 2004].  

Through a seed-based approach with a seed in the caudate, demented PD patients exhibited 

decreased connectivity to frontal regions [Seibert et al., 2012], suggesting that alterations in the 

connections between frontal and subcortical regions are important contributors to dementia in PD.  

Research on whole brain functional connectivity showed that the inferior frontal gyrus and 

posterior regions of the brain (e.g. superior parietal lobes and multiple occipital regions) had 

decreased connectivity and demonstrated stronger correlation with global cognitive function 

(including orientation, language, memory, praxis, attention, abstract thinking, perception and 

calculation) than motor deficits [Olde et al., 2014]. Connectivity alterations in frontal and parietal 

areas have also been shown to be associated with mild cognitive impairment (MCI) in PD [Amboni 

et al., 2014b]. Furthermore, decreased activity in the ICA-derived default mode network was 

independent of patients’ cognitive states but decreased frontoparietal connectivity was associated 

with worsening visuospatial, memory, and executive functions [Amboni et al., 2014b]. However, 

another study has proposed the opposite pattern: namely that executive performance in PD is 

related to the default mode network rather than the executive control network [Disbrow et al., 
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2014]. In addition, inter-network connectivity (i.e. correlations between RSNs) between the default 

mode network (DMN), salience network (SN), and central executive network (CEN) was altered 

in PD with increased coupling between the DMN/CEN and decreased coupling between the 

CEN/SN in PD with a particularly reduced interaction between the SN and striatum [Putcha et al., 

2015].  

The discrepancies between rsFC in PD imply that a more robust measure across cohorts is needed 

to study how connectivity is related to cognition. Graph-theory based analysis of rsfMRI data 

suggests that PD manifests as a disconnection syndrome [Göttlich et al., 2013]. Graphical 

measures demonstrated that PD showed lower connectivity (lower node degree) in the medial and 

middle orbitofrontal cortex, while the superior parietal, posterior cingulate, supramarginal, and 

supplementary motor areas presented increased connectivity (higher node degree), the latter being 

interpreted as compensation for cortico-striatal dysfunction. The connections between subcortical 

areas and orbitofrontal/temporal regions as well as within cortical regions were weaker in the PD 

group, indicating that PD is associated with widely disrupted resting-state networks [Göttlich et 

al., 2013]. Baggio et al. investigated the relationship between graphical measures and cognition in 

PD [Baggio et al., 2014]: MCI-PD subjects presented with increased modularity and clustering 

coefficients. Modularity quantifies the degree to which the network may be subdivided into 

separate groups and it is an index of functional segregation, i.e. how well the information is carried 

out within one system. Clustering coefficient measures the degree to which nodes in a network 

tend to gather together, which is also a measure of functional segregation. In PD, functional 

connectivity has become more segregated as the long-range connections were affected between 

frontal, parietal, and occipital areas. Hub reorganization has been identified in MCI-PD, where 
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normal hubs in the parietal and superior temporal lobes lose their central role and non-hubs in the 

middle frontal gyrus gain importance, implying an association between cognitive deficits and hub 

distribution [Baggio et al., 2014]. Furthermore, these graphical measures were correlated with test 

scores of worsening attention, executive function, memory, and visuospatial functions in MCI-PD 

compared to control subjects, indicating that segregated brain networks measured by graphical 

approaches reflect decreased cognitive ability including executive functions. Hub reorganization 

has been described in another study where patients with PD no longer had prominent connectivity 

in the insula but caudate connectivity became more prominent, however, no cognitive scores were 

related to the changes [Koshimori et al., 2016].  

To summarize, weakened connections between frontal and other regions are associated with 

cognitive dysfunction in PD. Although many studies have shown that cognitive deficits are related 

to widespread dysconnectivity between frontal and other cortical regions (i.e. posterior and 

occipital areas), we cannot exclude the importance of frontostriatal circuits as the impaired 

dopamine pathways may cause inefficient feedback to frontal areas, leading to cognitive 

dysfunction [Owen, 2004]. In fact, studies have reported the links between impaired dopamine 

signaling in the frontal areas and executive dysfunction such as working memory and set-shifting 

deficits [Narayanan et al., 2013]. In addition to dopaminergic system, cholinergic dysfunction 

(which affects frontal, temporal, occipital, and forebrain areas) has been suggested as another 

contribution to executive dysfunction [Narayanan et al., 2013; Pagonabarraga and Kulisevsky, 

2012]; therefore, investigating distributed regions is necessary rather than focusing on specific 

circuits. Meanwhile, the finding of increased connectivity patterns, which have been interpreted 

as compensatory effects, is not consistent across studies. We speculate that this might be because 
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the nature of dynamic functional connectivity in PD is not captured by traditional analyses and the 

appropriate emphasis of “hub regions” has been neglected. As switching ability is impaired in PD 

[Cools et al., 2001], patients demonstrate cognitive inflexibility and perhaps neuronal inflexibility, 

which is implied by the studies showing that dopamine signaling can impact dynamic neural phase 

coordination and play a role in cognitive processes [Dzirasa et al., 2009]. Therefore, we 

hypothesize that how rsFC changes (i.e. network dynamics or dynamic functional 

connectivity) together with how hub regions and networks are remapped might be a feature 

which reflects cognitive rigidity in PD. Further studies with time-varying approaches and 

graphical analyses are necessary to reveal hidden patterns in rsFC.  
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Disease  Authors  Methods for 

rsFC 

Purposes and 

methods for 

neuropsychological 

tests  

Subjects  Main findings in patients 

Multiple 

Sclerosis (MS) 

Bonavita et al., 

2011 

ICA-RSNs determine CI and 

CP 

CI-RRMS, CP-

RRMS, NC 

DMN showed decreased rsFC in the anterior 

cingulate cortex but increased rsFC in the posterior 

cingulate cortex 

 Rocca et al., 2012  ICA-RSNs NA RRMS - decreased rsFC in the salience, executive control, 

working memory, sensorimotor, visual networks as 

well as DMN 

- increased rsFC in the executive control and 

auditory networks  

 Cruz-Gómez et al., 

2014 

ICA-RSNs - determine CI and 

CP 

- regression analysis 

CI-RRMS, CP-

RRMS, NC 

- All RSNs in CI decreased compare to NC and CP   

- CP showed decreased rsFC in the left 

frontoparietal network 

- rsFC was related to radiological variables not 

cognition 

 Louapre et al., 

2014  

ICA-RSNs determine CI and 

CP  

CI-RRMS, CP-

RRMS, NC 

- increased rsFC in CP at the attention network  

- decreased rsFC in CI at DMN and the attention 

network especially between the medial PFC and 

PCC 

 Richiardi et al., 

2012 

Pearson’s r 

whole brain 

matrix and 

classification 

NA RRMS, NC the connections in subcortical and fronto-parieto-

temporal areas were the most discriminative as well 

as inter-hemispheric connections  

 Zhou et al., 2013 Pearson’s r in 

symmetric 

interhemispheric 

voxels 

NA RRMS, NC - decreased rsFC in high-order cognitive regions 

including frontal, temporal, and occipital regions 

- increased rsFC in the OFC, insula, thalamus, 

cerebellum, subcortical, and inferior temporal areas 

 Gamboa et al., 

2014 

graph theory – 

the Brain 

Connectivity 

Toolbox 

correlation analysis RRMS, CIS, NC - reshaped modules in MS were negatively 

correlated with the accuracy of dual task 

performance and indicated impaired functional 

integration 

 Rocca et al., 2014 graph theory - 

the Brain 

Connectivity 

Toolbox  

determine CI and 

CP 

 

RRMS, benign 

MS, SPMS, NC 

- MS lost hubs in the superior frontal gyrus, 

precuneus, and anterior cingulum but gain hubs in 

the temporal pole and cerebellum  

- decreased degree, clustering coefficient, global 

efficiency, hierarchy as well as increased path 
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length and assortativity in MS indicated impaired 

functional integration  

- functional integration was more impaired in CI 

 Schoonheim et al., 

2013 

graph theory – 

eigenvector 

centrality 

mapping 

correlation analysis RRMS, PPMS, 

SPMS, NC 

- increased centrality/importance in the thalamus 

and PCC 

- decreased centrality/importance in sensorimotor 

(related to EDSS) and ventral stream areas (related 

to poor executive function and processing speed)   

 Faivre et al., 2012 ICA-RSNs correlation analysis RRMS, NC - increased rsFC in DMN and the fronto-parietal 

network was correlated with decreased semantic 

fluency and increased PASAT scores 

 Hawellek et al., 

2011 

ICA-RSNs factor analysis and 

correlation analysis 

relapse-free MS, 

NC 

higher rsFC in the cognitive control network and 

DMN was related to reduced executive function 

(set-shifting) 

 Loitfelder et al., 

2012 

seed-based  multiple regression 

model 

CIS, RRMS, 

SPMS, NC 

- increased rsFC in the ACC, PCC, angular gyrus, 

and postcentral gyrus 

- better executive abilities were related to increased 

rsFC in the cerebellum, middle temporal gyrus, 

occipital areas, and angular gyrus 

 Wojtowicz et al., 

2014 

seed-based act as covariates in 

connectivity 

analysis 

RRMS, NC better processing speed was related to greater rsFC 

between the ventral PFC and left frontal pole 

Parkinson’s 

Disease (PD) 

Helmich et al., 

2010 

seed-based NA PD, NC - decreased rsFC between the posterior putamen and 

motor areas/inferior parietal cortex 

- increased rsFC between the anterior putamen and 

inferior parietal/temporal cortex  

(this study was not related to executive function) 

 Kwak et al., 2012 amplitude of 

low frequency 

fluctuations 

(*measure fMRI 

signal intensity) 

measure overall 

cognition  

PD, NC - with OFF medication, increased rsFC was seen in 

the primary and secondary motor areas, 

middle/medial prefrontal cortex 

- with ON medication, reduced rsFC in the 

prefrontal and motor cortical areas 

- poor motor task performance was associated with 

higher rsFC 

(this study was not related to executive function) 

 Luo et al., 2014 seed-based  measure overall 

cognition 

PD, NC - reduced rsFC in the mesolimbic-striatal and 

corticostriatal loops 
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- decreased functional integration across striatum, 

mesolimbic cortex, and sensorimotor areas 

- higher non-motor symptom indices were related to 

reduced rsFC in amygdala-putamen circuits (but not 

restricted to executive function)   

 Sharman et al., 

2013 

seed-based NA PD, NC - increased rsFC in the limbic and associative 

cortex, limbic cortex and thalamus, putamen and 

thalamus 

- decreased rsFC in the sensorimotor cortex and 

thalamus, globus pallidus and putamen/thalamus, 

substantia nigra and globus pallidus/putamen/ 

thalamus 

(this study was not related to executive function) 

 Wu et al., 2009 regional 

homogeneity 

measure overall 

cognition  

PD, NC - decreased rsFC in the putamen, thalamus, and 

supplementary motor areas  

- increased rsFC in the cerebellum, primiary 

sensorimotor cortex, and premotor area  

(this study was not related to executive function) 

 Seibert et al., 2012 seed-based  NA PDD, PD, NC  - PDD showed decreased rsFC in middle frontal 

regions 

 Olde et al., 2014 synchronization 

likelihood for 

whole brain 

connectivity  

generalized 

estimated equations 

(combine correlation 

and linear 

regression) 

PD, NC - decreased rsFC in the inferior frontal gyrus, 

superior parietal lobs, and occipital regions showed 

stronger correlations to cognitive function including 

executive function rather than motor symptoms  

 Amboni et al., 2014 ICA - RSNs correlation analysis PD, MCIPD, NC - decreased DMN in PD and MCIPD was not 

correlated with cognition 

- decreased rsFC in the frontoparietal network in 

MCIPD was related to worse executive function but 

not clinical variables 

 Disbrow et al., 

2014 

seed-based  - measure cognitive 

profile  

- correlation analysis 

 

PD, NC - No changes in the executive control network  

- decreased rsFC within DMN was seen in PD and 

greater DMN rsFC was related to faster processing 

speed  

 Putcha et al., 2015 ICA – RSNs and 

Pearson’s r  

measure overall 

cognition  

PD, NC - interactions between RSNs were altered in PD 

- decreased interactions between the salience and 

executive networks  
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- increased interactions between the DMN and 

executive network   

 Göttlich et al., 2013 graph theory – 

the Brain 

Connectivity 

Toolbox 

NA PD, NC - lower node degree in the medial/middle OFC and 

occipital pole  

- increased node degree in the superior parietal, 

PCC, supramarginal, and supplementary motor 

areas 

- decreased rsFC between the subcortical, medical 

OFC and temporal regions  

 Baggio et al., 2014 graph theory - 

the Brain 

Connectivity 

Toolbox  

- determine PD and 

MCIPD 

- linear regression 

analysis 

 

MCIPD, PD, NC - both MCIPD and PD showed reduced rsFC in 

long-range connections which include frontal, 

occipital, and parietal regions  

- increased local rsFC in MCIPD including higher 

clustering, local efficiency, and modularity in the 

frontal areas was correlated attention/executive 

scores 

- MCIPD showed reduced importance in hubs   

 Koshimori et al., 

2016 

seed-based and 

graph theory – 

Graph-

Theoretical 

Analysis 

Toolbox 

correlation analysis PC, NC - hub reorganization was seen in PD, which PD lost 

the insula but gained the caudate as a new hub in 

cognitive networks  

- increased rsFC in the DLPFC and insula of 

cognitive networks  

- reduced intrahemispheric rsFC within insula and 

supplementary motor areas was related to 

medication not cognition  

Table 1.1 Summary of the rsFC studies in MS and PD. The inclusion criteria for the studies are 1) performing neuropsychological tests, 2) using 

statistical analyses to link fMRI measures and cognitive scores and 3) the reported results are associated with executive performance or dementia if the 

neuropsychological tests are used for determining dementia.  

[NC: normal controls, CI: cognitive impaired, CP: cognitive preserved, DMN: the default mode network, ICA – RSNs: independent component analysis 

derived resting state networks, RRMS: relapsing-remitting MS, SPMS: secondary progressive MS, CIS: clinically isolated syndrome, PASAT: Paced 

Auditory Serial Addition Test, PDD: demented PD, MCIPD: mild cognitive impairment PD, PFC: prefrontal cortex, PCC: posterior cingulate cortex, 

ACC: anterior cingulate cortex, OFC: orbitofrontal cortex, DLPFC: dorsal lateral prefrontal cortex]  
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Figure 1.1 The connections and regions of rsFC correlated with executive performance in healthy subjects 

(HS), multiple sclerosis (MS), and Parkinson’s disease (PD). The left panel shows the rsFC in HS from 

[Hampson et al., 2006; Reineberg et al., 2015; Reineberg and Banich, 2016; Seeley et al., 2007]. The upper-right 

panel shows the rsFC in MS with a small brain indicating the pathological features (lesions in white matter). 

The lower-right panel demonstrates the rsFC in PD and the small brain indicates the pathology (affected 

dopamine pathways). In MS and PD, node size explains whether the region obtains or loses hub identity. 

Small nodes indicate a loose of hub identity, while big nodes indicate a gain of hub identity. The nodes with 

medium size represent unchanged hub identity. The maps are generated with the BrainNet Viewer 

(http://www.nitrc.org/projects/bnv/) based on the studies in Table 1.1.  
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1.3.3 Summary 

It is becoming increasingly common to interpret cognitive performance as a result of coordination 

of information between brain regions and rapid re-configuration among connectivity states 

[McIntosh, 2000; Shaw et al., 2015; Sridharan et al., 2008]. Regardless of distinct pathology, early 

rsFC studies either applied exploratory methods to discover specific brain areas and networks, or 

they focused on pathways based on prior hypotheses related to the disorders, which has led to a 

paucity of research exploring the role of other regions and networks. For example, the default 

mode network has been intensively studied in MS, and most studies have reported decreased 

connectivity. Functional connectivity within frontostriatal loops in PD has been extensively 

examined due to affected dopaminergic pathways and reduced connectivity in the loops has been 

linked to clinical deficits. However, with the approaches which assess whole brain functional 

connectivity, widespread connectivity alterations have been revealed rather than abnormalities in 

just one circuit.   

1.4 Impacts and contributions of studies on resting-state functional connectivity to 

clinical neuroscience 

1.4.1 Key connections in cognitive deficits  

Long-range connections, such as frontal and parietal links, seem to play an important role in 

executive functions regardless of distinct neurological impairments. From an evolutionary 

perspective, the human brain has increased in size dramatically and intrahemispheric connections 

have been shown to be stronger in larger brains [Hänggi et al., 2014; Hofman, 2014]. In addition, 

it has been proposed that long range communication networks in humans linking prefrontal areas 
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to other regions, such as parietal areas, are important adaptations in evolution compared to other 

species, and these connections are necessary for complex behaviour and sophisticated cognitive 

abilities in humans [Hofman, 2014; Shaw et al., 2015].  

A review of neurological disorders based on network analyses has proposed that hub overload and 

failure potentially affect long-range connections by disrupting the normal hierarchical architecture 

of connectivity networks (i.e. imbalance between local process and global process via hubs) and 

the changes are related to executive dysfunction, which may be a common pathway leading to 

cognitive impairments in neurological disorders [Stam, 2014]. However, how hub reorganization 

alters spatial and temporal coordination between brain regions through long-range connections 

(i.e. flexibility in long-range connections) remains unclear. Long-range connections propagate 

neural information, which is essential for high-order cognition between segregated brain regions, 

and these information flows can be better organized and coordinated through hubs so that wiring 

cost is minimized. In order to investigate these associations, more research on the links between 

brain topology and dynamic functional connectivity is required.  

The idea proposed by Stam [Stam, 2014] is consistent with the studies we have discussed in the 

review sections of this chapter, in which many investigations have reported impaired long-range 

connectivity between frontal, parietal, and occipital regions in different neurological conditions. 

Research has also demonstrated the associations between frontal-parietal connectivity and high-

order cognitive processes including executive function, emphasizing the importance of long-range 

connections in human cognition. For instance, a study which combined fMRI meta-analysis and 

DTI tractography revealed that a ventral branch of the superior longitudinal fasciculus, which 

connects inferior frontal and inferior parietal lobes, is associated with several cognitive functions 
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such as working memory, decision making, language process, inhibition, and attention [Parlatini 

et al., 2016]. Moreover, another study has demonstrated that diffusion measures in the superior 

longitudinal fasciculus are correlated with performance in executive function, information 

processing speed, and memory domains [Sasson et al., 2013]. These studies further emphasize the 

strong links between long-range connections and cognition.  

Long-range connections are impaired in neurological disorders, and may be inferred by structural 

MRI studies. Cortical thinning in frontal and parietal cortices has been correlated with worse 

executive function in PD, while poor executive performance can be predicted by cortical thinning 

in the anterior cingulate cortex in MS [Duncan et al., 2016; Geisseler et al., 2016]. In addition, 

based on our unpublished studies, higher myelin integrity in the bilateral inferior fronto-occipital 

fasciculus, inferior longitudinal fasciculus, and superior longitudinal fasciculus, which connect 

frontal/parietal/occipital areas, is associated with better executive function in MS, supporting that 

long-range connections are important for higher-order functions [Baumeister et al.,]. Therefore, 

the literature suggests that executive dysfunction may be partially caused by disruptions between 

frontal regions and the posterior part of the brain (especially frontal and parietal cortices) in both 

neurological conditions presented in this chapter. 

1.4.2 Three components of executive function  

Why would the disconnection between frontal and parietal regions contribute to executive 

dysfunction in neurological conditions? In other words, what are the roles of frontal and parietal 

regions in executive function? Research has concluded that the prefrontal cortex (PFC) is a core 

area in executive function, but it also relies on the inputs from other regions such as the posterior 

cortex to facilitate the process [Bunge and Souza, 2009; Carpenter et al., 2000; Miller and Cohen, 
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2001; Miller and Wallis, 2009]. Miller and Cohen have proposed a model of executive function, 

which includes three components of neuronal activity: inputs, internal states, and outputs [Miller 

and Cohen, 2001]. The PFC receives sensory inputs such as visual, somatosensory, and auditory 

information from the occipital, temporal, and parietal regions as the PFC is connected to secondary 

or association sensory cortex. The intrinsic connections communicating between sub-regions in 

the PFC allow information to be processed and distributed to other sub-regions, which facilitates 

the core process (i.e. intensive “thinking”) of executive function. Finally, the processed 

information has to be executed through motor outputs such as motor association areas and 

subcortical regions as recent research states [Monchi et al., 2006; Owen, 2004]. Therefore, the 

connections between frontal regions and sensory cortices become indispensable as these are the 

inputs for executive processes. Of note, the central executive network identified by rsfMRI 

includes both prefrontal areas as well as parietal areas. Only a few of the studies included in this 

chapter report connectivity alterations in the temporal cortex [Richiardi et al., 2012], and there is 

not enough information to conclude whether connectivity in the temporal areas is strongly 

associated with executive functions in PD and MS. Although several imaging studies have reported 

cortical changes in the temporal areas, not all the cortical alterations show strong correlation to 

executive dysfunction [Achiron et al., 2013; Möller et al., 2016; Tam et al., 2005]. Overall, the 

results of connectivity in temporal regions are inconsistent. Therefore, we concluded that impaired 

long-range connections bridging frontal, parietal, and occipital areas possibly damage the "inputs” 

component, resulting in executive dysfunction seen in clinical presentation (Figure 1.2).  
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Figure 1.2 A model of executive function. This diagram incorporates anatomical information into the model 

proposed by Miller and Cohen [Miller and Cohen, 2001] and illustrates how information flows between the 

three components: inputs, internal states, and outputs. The blue curved arrows represent the sensory inputs 

coming from parietal, occipital, and temporal lobes to the prefrontal cortex. The yellow gradient illustrates 

where the core process happens in internal states, which is the prefrontal cortex. Red straight arrows show 

the outputs are sent to subcortical areas to execute (thick red arrow) as well as the feedback information 

(thin red arrow) coming from subcortical regions, which are labeled with red gradients. The thin red double 

arrow indicates the coordination between subcortical regions and the motor association cortex.   
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Another well-known model of executive function is the dorsolateral prefrontal circuit, which is 

one of the frontal-subcortical circuits [Bonelli and Cummings, 2007]. The dorsolateral prefrontal 

circuit mediates executive function through the neurons which originate in the prefrontal lobes and 

project between the dorsolateral prefrontal cortex, caudate nucleus, global pallidus, and thalamus. 

Early evidence that patients with lesions in this loop demonstrated executive deficits measured in 

neuropsychological assessments emphasized the role of the dorsolateral prefrontal circuit in 

executive function [Bonelli and Cummings, 2007]; however, the model neglects regions which are 

not directly linked to this circuit, potentially providing an over-simplified viewpoint of executive 

functioning in humans.  

Working memory has been proved to be strongly correlated with executive function and also relies 

on connections in prefrontal-parietal regions. For example, in neuroimaging studies, the 

dorsolateral prefrontal cortex and parietal regions were involved in both working memory and 

executive tasks [Carpenter et al., 2000], while behavioural studies showed the correlation between 

working memory capacity and executive function was higher than that between other domains 

[McCabe et al., 2010]. However, executive function is not the same as working memory even 

though certain activation patterns overlap. In fact, many tasks which assess executive function also 

require working memory ability, which makes it difficult to isolate working memory from 

executive function explicitly. The literature presented in this chapter suggests that long-range 

connections between prefrontal and parietal regions are essential for executive function in 

neurological disease, and are also important for working memory. Further neuroimaging research 

is needed to profile the neural patterns of these domains, such as network dynamics and cortical 

coordination.  
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1.4.3 Unique features of brain organization in different neurological conditions may all 

result in executive dysfunction  

We have proposed that impaired long-range connectivity might be one of the common causes of 

executive dysfunction in MS and PD. In addition to this common impairment, there are unique 

features which may contribute to cognitive deficits. As executive function requires flexibility to 

switch approaches [Diamond, 2013], it has been shown that the neuronal connectivity of executive 

function involves abilities to dynamically recruit different brain regions and coordinate 

information in a flexible manner, including or excluding networks based on the neuronal need to 

overcome the trade-offs between wiring cost and connectivity [Braun et al., 2015; Bullmore and 

Sporns, 2012; Mattar et al., 2015]. This brain organization principle, which has been mentioned 

previously (section 1.2.2) as dynamic functional connectivity, has been referred to as one of the 

fundamental aspects of higher-order cognition (i.e. the cognitive processes that require intensive 

thinking and planning) [Bressler and Scott Kelso, 2001; Hutchison et al., 2013a; Stephens et al., 

2013]. Furthermore, as human brain volume has increased in evolution, the efficiency of 

information transfer in long-range connections has become more important for cognition [Hofman, 

2014]. Proposals have been made that hub regions are formed to better propagate information flow 

between distinct brain regions by reducing wiring cost and these hubs are especially active in 

higher-order cognition [Baggio et al., 2015; van den Heuvel and Sporns, 2013; Hofman, 2014; 

Power et al., 2013]. Altered hub organization reduces efficiency of information flow between 

anatomically segregated regions in MS, contributing to cognitive deficits. The executive deficits 

in PD are perhaps also caused by impaired frontostriatal connectivity [Owen, 2004], which may 

damage the “output” component of execution function. Moreover, abnormal brain organization 
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such as decreased dynamic connectivity and hub changes may contribute to executive dysfunction 

as well. 

Taken together, both hub organization and dynamic functional connectivity are key factors to 

facilitate higher-order cognition including executive function. Losing dynamic coordination and/or 

efficiency of information transfer may contribute to clinical deficits including cognitive 

dysfunction in several brain disorders [Fornito et al., 2015]. Therefore, we argue that dynamic 

functional connectivity, impaired in PD due to neurotransmitter dysregulation, probably causes 

executive dysfunction; while altered hub organization in these two conditions contribute to 

executive deficits unequally as the affected hubs are not exactly the same.  

1.5 Research objectives and thesis organization  

Traditional research which investigates functional connectivity and cognitive decline in PD and 

MS has focused on specific loops and regions. The approaches that have thus far been applied 

neglect that 1) compensation effects may occur in many locations of the brain, 2) higher-order 

cognitive function, which appears to impact quality of life the most, requires not only frontostriatal 

loops but other remote regions, and 3) temporal variation of functional connectivity potentially 

plays a prominent role in cognition. Several studies utilizing advanced network analyses to 

investigate brain organization in healthy and disease populations have demonstrated promising 

preliminary results. These analyses on whole brain rsFC have revealed that functional integration, 

functional segregation, dynamic functional connectivity, and hub structures are necessary and 

indispensable to executive functioning. However, clinical research that applies these analyses to 

study the associations between executive function, clinicopathology, and rsFC remains limited. In 

this dissertation, the goal is to highlight the importance of brain organization to executive 
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function with the use of advanced network analyses (e.g. graph theoretical theory and time-

varying approaches) and explore the relations between cognition, clinicopathology, and 

brain organization in two representative neurological conditions. Figure 1.3 illustrates the 

overall flow of the thesis.         

 

Figure 1.3 A diagram of the flow in this thesis research. Red and blue areas represent 

cognitive impairments in MS and PD, respectively. The overlapping area in purple represents 

the common cognitive deficits: executive dysfunction. 

 

In the following chapters, we utilize different data sets: 
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- The Parkinson’s Progression Marker Initiative (PPMI). This is a publically-available data set 

funded by The Michael J. Fox Foundation for Parkinson’s Research, containing advanced imaging, 

biologic sampling, clinical and behavioural assessments with the goal of identifying biomarkers 

of Parkinson’s disease progression. We included one cohort in the PPMI database which contained 

31 subjects as all the subjects were scanned in the same medical centre. This data set is included 

in chapter 2 and 4.     

- The COGMS data set. This data set was generated from a MS-society grant (awarded to 

MacKay and McKeown). The original design was to evaluate advanced structural imaging 

features, resting-state fMRI measures, and cognitive profile in subjects with MS and combine three 

components together to study the relations between structural integrity, functional connectivity, 

and cognitive performance (particularly executive function). Forty-six MS subjects were included 

in chapter 2,4,5, and 6 as well as a subset of age-matched MS and control subjects. 

- The BCT data set. This was data acquired in Pacific Parkinson’s Research Centre (PPRC) and 

the original design included task-driven fMRI and resting-state fMRI to evaluate the functional 

connectivity under a motor task and at rest rather than brain-cognitive relations. Therefore, there 

were limited cognitive measures. Twelve PD subjects and ten healthy controls were included and 

the data was used in chapter 3.  

- The OPERA data set. This was a phase III clinical trial conducted in MS clinic at UBC Hospital 

and supported by F. Hoffmann-La Roche, Ltd. The purpose was to evaluate the effects of 

Ocrelizumab using both structural and functional MRI. Only the baseline resting-state fMRI data 

were included in this thesis research (chapter 3, 25 MS and 41 controls); therefore, the results 

described here were independent to pharmaceutical interventions.     
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- The GFM2 data set. These data were acquired in Pacific Parkinson’s Research Centre (PPRC) 

and the design was to identify biomarkers for PD and evaluate the effects of vestibular stimuli 

interventions using advanced structural MRI, resting-state fMRI, and task-driven fMRI (with 

stimulus). Clinical assessments were done in both 24 PD and 15 healthy subjects. The data were 

included in chapter 5 and 6. 

Since this work is from a pooling of different data sets, some of the cognitive tests are not perfectly 

aligned across studies. However, for the studies which assessed cognitive performance, several 

domains are commonly evaluated in both disease populations such as executive function, 

processing speed, working memory, and attention.  
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Chapter 2: Cognitive profiles in Parkinson’s Disease and Multiple Sclerosis 

In this chapter, the cognitive profiles in PD and MS are investigated utilizing a machine-learning 

approach – Canonical Correlation Analysis (CCA), which can be seen as an extension of a 

multivariate linear regression model. The purpose of the study is to explore the associations 

between cognitive domains, demographical characteristics, and clinical data such as diseases 

severity and comorbidity. The results shall help understand how the disease affects cognitive 

functions in neurological disorders.  

 

2.1 Introduction of cognitive profiles in Parkinson’s Disease and Multiple Sclerosis 

Parkinson’s disease (PD) is a neurodegenerative movement disorder resulting in motor symptoms 

of tremor, rigidity, bradykinesia, and postural instability. In addition to motor symptoms, non-

motor deficits, especially cognitive impairments, have a major impact on quality of life in patients 

with PD. Patients with PD show cognitive deficits in several common domains such as attention, 

memory, visuospatial, and executive functions [Pagonabarraga and Kulisevsky, 2012; Poewe, 

2008]. These cognitive deficits are typically assessed with such tasks as Digit Span, the Tower of 

London Test (ToL), the Trail-Making-Test (TMT), and the Verbal Fluency Task [Miller et al., 

2013; Williams-Gray et al., 2007]. Older age, non-tremor subtype, and higher Unified Parkinson's 

Disease Rating Scale (UPDRS) scores are risk factors for the rapid overall cognitive decline 

[Williams-Gray et al., 2007], and specifically, information retrieval and visuospatial abilities can 

predict global cognitive impairments in PD. Rather than simply categorising patients into 

cognition-intact and cognition-impaired subtypes, there is substantial heterogeneity of cognitive 
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performance in PD, and “frontal”, “posterior”, and “mixed” subtypes have been proposed [Miller 

et al., 2013]. Related details of cognitive subtypes in PD have been described previously in section 

1.1.2. In short, patients with the “frontal subtype” commonly demonstrate executive dysfunction 

related to decreased dopamine levels in frontostriatal circuits. Patients with the “posterior subtype” 

constantly show visual-spatial problems related to parietal-temporal deficits as well as 

degeneration of cholinergic fibers. The disease severity of this subtype can predict dementia and 

patients often demonstrate symptoms of postural instability and gait disorder (PIGD). Patients with 

the mixed subtype cannot be easily categorized into the above subtypes. As a result, subtypes 

proposed in the “dual syndrome hypothesis” are overlapping with the frontal/posterior subtypes 

[Kehagia et al., 2012; Miller et al., 2013].     

Traditional cognitive tests typically attempt to probe one aspect of cognition (e.g. attention), but it 

is very difficult to test components of cognition in an isolated fashion. Hence performance on 

different cognitive tests often correlate with each other, and it is likely that novel analyses utilizing 

machine-learning approaches will be more suitable in establishing overall cognitive profiles in 

subjects with neurological disorders. 

Multiple sclerosis (MS) is a neuroinflammatory disease which causes sensory and motor 

disturbances, diplopia, ataxia, bladder disturbance, fatigue, and cognitive dysfunction [Gelfand, 

2014]. Among these symptoms, cognitive impairments may have a strong impact on subjects’ 

daily lives as the commonly affected cognitive domains in MS include impaired information 

processing speed, attention, memory, and executive function [Wallin et al., 2006]. A characteristic 

feature of MS is that more women are affected than men. In addition to prevalence, gender 

differences have been addressed in MS with respect to genetic susceptibility, clinical presentation, 
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effects of sex hormones, immune system, and response to therapy [Harbo et al., 2013]. Previous 

studies have proposed several links between gender effects and neuroimaging findings such as 

cortical atrophy, functional connectivity, and white matter changes [Savettieri et al., 2004; 

Schoonheim et al., 2012a; Schoonheim et al., 2012b]. However, despite the clinical importance of 

cognition for overall well-being in the MS population, research on the direct association between 

gender and cognitive dysfunction has not been widely reported in MS.   

Schoonheim et al. demonstrated that male subjects with MS showed significantly lower cognitive 

scores compared to male controls in several cognitive domains such as executive functioning, 

verbal memory, processing speed, working memory, attention, and psychomotor speed, yet these 

domains were relatively preserved in female subjects [Schoonheim et al., 2012b]. The authors also 

found that male subjects had a better correlation between subcortical volume and a crude cognitive 

marker (the average Z-score of a battery of cognitive tests). In addition, significant white matter 

changes such as lower fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), 

and radial diffusivity (RD) in diffusion tensor imaging (DTI) data have been observed in male 

subjects who had lower cognitive Z scores, but not in female subjects whose cognition was 

relatively intact [Schoonheim et al., 2014]. In fMRI, male subjects demonstrated decreased resting 

state functional connectivity as well as lower network efficiency in association with deteriorating 

cognitive performance [Schoonheim et al., 2012a], especially reduced visuospatial memory. While 

these studies have focused on the relationship between cognitive dysfunction and 

functional/structural changes in the brain, less emphasis has been on the characterization of 

cognitive differences and gender effects in MS.  
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Several factors appear to be predictors of cognitive dysfunction in MS: early age of onset, male 

sex, secondary progressive course, neurodegeneration, and low baseline intelligence [Benedict and 

Zivadinov, 2011]. Male subjects are more likely to develop a severe disease course including 

physical disability and cognitive impairments. In MS subjects, it appears that cognitive 

dysfunction in females is less dependent on factors such as physical disability, while cognitive 

decline in males is correlated with Expanded Disability Status Scale (EDSS), age, disease duration, 

and education level [Savettieri et al., 2004]. Another study also found that female subjects 

performed better on the Mini Mental State Examination (MMSE), Wisconsin Card Sorting Test 

(WCST), language, and memory tests in Repeatable Battery for the Assessment of 

Neuropsychological Status Update (RBANS) [Beatty and Aupperle, 2002]. Thus, male subjects 

appear to be particularly cognitively vulnerable in MS.     

In this study, eight neuropsychological tests that employed executive function were administered 

to an MS cohort (13 males, 33 females). Since these tests all probe aspects of executive function, 

it is likely that performance in these individual tests will be related to (correlated with) one another, 

yet each test still likely provide unique information. It is therefore desirable to determine if the 

tests could be judiciously combined in some way and if overall performance across the 

neuropsychological tests. Specifically, we wanted to establish if there was an established overall 

pattern of neuropsychological deficits seen in MS, and if this pattern of deficits could be predicted 

based on disease severity and other demographic factors, including gender. Our implicit hypothesis 

is that a combination of gender, age, education, and clinical indices will correspond with a 

combination of results seen in neuropsychological tests. In order to achieve this, we employed 

canonical-correlation analysis (CCA), a type of machine learning method used to identify patterns 
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in large data sets. We show that a combination of demographic (i.e., gender, age, education, alone 

or in combination) and clinical indices (i.e., disease duration, severity of disability, affective states) 

accurate predicts results of frontal lobe testing. When we then interrogated the particular 

combination of demographic factors that predicted neuropsychological test performance in MS, 

we found that gender had the greatest influence. 

In the PD cohort, the same method was applied to investigate the cognitive profiles and the 

relations to demographics in PD, specifically whether gender also contributed to cognitive 

differences.   

2.2 Materials and methods 

2.2.1 Subjects  

PD data are from the Parkinson's Progression Marker Initiative (PPMI) and MS data are from 

COGMS project.   

Thirty-one subjects with PD who enrolled in the PPMI were included in the study. All subjects 

underwent neuropsychological assessments and imaging scans with T1-weighted MRI and resting-

state fMRI (rsfMRI). All data in this study were acquired at baseline (fMRI results are reported in 

another chapter). The inclusion criteria required subjects must show at least two of the following: 

resting tremor, bradykinesia, rigidity or either asymmetric resting tremor or asymmetric 

bradykinesia. Subjects had a diagnosis of PD for two years or less, Hoehn and Yahr stage I or II, 

off medication, age 30 years or older at diagnosis, and ability to provide written consent. Exclusion 

criteria included atypical PD syndromes, taking any PD medication, taking levodopa or dopamine 

agonists prior to baseline for more than a total of 60 days, dementia (screened by Montreal 
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Cognitive Assessment (MoCA)), and any other medical or psychiatric condition or lab 

abnormalities. Demographics were shown in Table 2.1. For the analysis of cognitive profiles, all 

31 subjects were included and three of them showed MCI. 

Forty-six relapsing-remitting MS subjects (13 males, 33 females) were enrolled in a study 

examining the relations between results of various MRI sequences (including Diffusion Tensor 

Imaging, Myelin Water Imaging, lesion load, resting state fMRI functional connectivity, and 

cortical thickness), cognitive performance, clinical measures and demographics. For the purposes 

of this chapter, we focus on clinical measures and demographics (Table 2.2) as the imaging will 

be the subject of another report (in other chapters). All the subjects fulfilled the McDonald criteria 

for MS diagnosis and were recruited from the MS clinic at the UBC Hospital. Referrals underwent 

a telephone screen and subjects with significant untreated depression and/or other psychiatric 

illness, learning disabilities, history of drug or alcohol abuse, had used steroids in the last 3 months 

or evidence that they were in an active flare were excluded from this study. Subjects were also 

screened for adequate motor skills for their ability to manipulate a pencil which would have direct 

impact on some of the tasks (i.e., Coding and Symbol Search). Ethics approval was issued by the 

University of British Columbia's Research Ethics Board and all subjects provided signed informed 

consent. 

 Parkinson’s subject (mean±SD) 

 10 females  21 males  

demographics & clinical data 

  age  59.85±10.8 61.48±9.4 

  UPDRS 17.3±7.1 14.67±12.9 

  depression  4.7±1.2 5.43±0.9 

  education in years  17.1±2.3 16.67±3.2 

cognitive scores    
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  MOCA 27.8±2.1 27.38±2.1 

  BJLOTOT 25.2±4.0 25.24±4.0 

  HVLTTOT 25.2±5.8 22.43±5.2 

  HVLTDELAY* 9.9±2.4 7.57±2.7 

  DVT-HVLTTOTAL* 53.3±13.3 40.05±13.1 

  DVT-HVLTDELAY* 57.5±9.1 45.29±17.4 

  DVT-HVLTRETENTION 56.6±8.7 49.61±16.1 

  LNS-RAW 11.0±2.5 9.9±2.7 

  SFCOM 52.1±11.9 45.10±9.8 

  SFVEG* 15.6±3.9 12.28±3.7 

  SFANI 21.0±5.5 21.29±4.9 

  SFFRU* 15.5±4.3 11.52±2.8 

  SDMT 41.10±9.8 39.67±9.0 

Table 2.1 Demographics, clinical data, and cognitive scores in PD subjects.  

[UPDRS = Unified Parkinson's Disease Rating Scale, MOCA = Montreal Cognitive Assessment, BJLOTOT = 

Bento Line Orientation Total Score, HVLTTOT = Hopkins Verbal Learning Test-Revised Total Score, 

HVLTDELAY = HVLT Delayed Recall Score, DVT-HVLTTOTAL = standardized HVLT Total Score, DVT-

HVLTDELAY = standardized HVLT Delayed Recall Score, DVT-HVLTRETENTION = standardized HVLT 

Recognition Trial Score, LNS-RAW = raw Letter-Number Sequencing Test Score, SFCOM = Sematic Fluency 

Test – combination, SFVEG = Sematic Fluency Test – vegetable trial, SFANI = Sematic Fluency Test – animal 

trial, SFFRU = Sematic Fluency Test – fruit trial, SDMT = Symbol Digit Modalities Test] 

* Differences in two-sample t-test with p<0.05  

 Multiple sclerosis subjects (mean±SD)  

33 females 13 males 

Demographics & Clinical measures    

    Age 41.1±10.3  45.8±11.6  

    Education (years) * 15.3±2.2  13.7±2.7  

    EDSS 2.3±1.6  1.9±1.5  

    Disease duration (months) 129.0±86.2  128.9± 133.1  

Neuropsychological scores    

    WAIS Digit Span ScS 9.0±2.5  8.2±2.2  

               Arithmetic ScS 9.0±2.6  8.9±3.3  

               Letter Number Sequencing ScS 9.6±2.7  8.8±2.4  

               Symbol Search ScS 10.4±3.5  9.2±3.2  

               Coding ScS 10.3±2.6  9.0±2.1  
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2.2.2 Test battery  

The neuropsychological assessments performed on PD subjects have been previously described 

[Lebedev et al., 2014]. In total, there were 13 scores from the assessments included MoCA, Benton 

Judgment of Line Orientation (BJLO), raw Hopkins Verbal Learning Test-Revised (HVLT), raw 

               Working Memory Index SS 93.7±12.4  91.0±14.7  

               Processing Speed Index SS 101.9±16.0  94.5±14.1  

    FAS ADJ 41.0±10.7  37.4±14.4  

    WCST Errors SS 93.1±13.7  82.2±19.0  

                Perseverative Responses SS 92.3±12.6  86.2±23.6  

                Perseverative Errors SS 91.1±12.9  86.3±23.6  

                Categories Completed Raw *** 5.5 ±1.1  3.3±1.9  

                Trials to Complete First Category Raw*** 12.7±4.4  38.6±38.3  

                Failure to Maintain Set Raw 0.5±0.8  1.0±1.6  

                Learning to Learn Raw N/A N/A 

    TMT A Raw * 30.7±12.3  40.3±13.3  

                 Z -0.7±1.5  -1.2±1.4  

                 E Raw 0.2 ±0.4  0.1±0.3  

    TMT B Raw  74.2±61.0  110.7±49.8  

                Z  -0.5±2.3  -1.5±2.5  

                E Raw 0.4±1.0  0.6±1.1  

    MDI Total Score Raw 31.9±22.4  38.3±21.8  

                                  T 47.3±8.9  52.7±10.2  

    STAI State SS 49.8±10.4  50.2±9.7  

             Trait SS 54.6±12.5  58.5±7.8  

    FSS Raw 38.2±15.2  35.2±14.8  

Table 2.2 Demographics, clinical measures, and neurological scores in MS subjects. 

[WAIS: Wechsler Adult Intelligence Scale—Fourth Edition, FAS: Verbal Letter Fluency Test, WCST: 

Wisconsin Card Sorting Test, TMT A: Trail Making Test A, TMT B: Trial Making Test B, MDI: Multiscore 

Depression Inventory, STAI: State-Trait Anxiety Inventory, FSS: Fatigue Severity Scale, ScS: scaled score 

adjusted by age, SS: standardized score, ADJ: adjusted for age/gender/education, Raw: raw score, Z: Z score, 

E: error, T: t score, N/A: more than 5 missing data sets] 

* Differences in two-sample t-test with p<0.05  

*** Differences in two-sample t-test with p<0.001 



44 

 

HVLT delayed recall, standardized HVLT, standardized HVLT delayed, standardized HVLT 

recognition trial, raw Letter-Number Sequencing test (LNS), Sematic Fluency Test – combination 

(SFCOM), Sematic Fluency Test – vegetable trial (SFVEG), Sematic Fluency Test – fruit trial 

(SFFRU), Sematic Fluency Test – animal trial (SFANI), and Symbol Digit Modalities Test 

(SDMT) scores (Table 2.1). MoCA screened for overall cognitive functions, BJLO evaluated 

visuospatial function, HVLT assessed verbal memory, executive functions were evaluated by the 

Fluency test and MoCA subtests, and SDMT and LNS tested attention. Therefore, memory, 

visuospatial, and attention/executive functioning domains were measured in this study, which were 

the most common affected domains in PD. Questionnaires for depression were also administered 

to measure affective symptoms.   

All MS subjects underwent eight psychometric measures assessing processing speed, working 

memory, executive function, and attention. This battery was selected not for clinical purposes. The 

tests included WAIS IV (Wechsler Adult Intelligence Scale IV) subtests (Digit Span, Arithmetic, 

Letter Number Sequencing, Symbol Search, and Coding), Verbal Letter Fluency Test (FAS), 

Wisconsin Card Sorting Test (WCST), and Trail Making Test A and B (TMT A and B).  Composite 

Index scores from the WAIS IV were also obtained including Working Memory Index (WMI) 

which utilized scores from Digit Span, Arithmetic, and Letter Number Sequencing subtests.  The 

WAIS IV Processing Speed Index (PSI) is based on the Symbol Search and Coding subtests. 

Clinical questionnaires were also administrated in order to examine affective status, which 

included Multiscore Depression Inventory (MDI) and State-Trait Anxiety Inventory (STAI). The 

other measure administered was a widely used fatigue measure in the MS field, the Fatigue 

Severity Scale (FSS). The duration of the assessment was approximately one hour. Raw cognitive 
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scores were converted to standardized scores using published normative data that considers 

psychometric factors such as age, education and gender. The patient’s disability rated by the 

Kurtzke Expanded Disability Status Scale (EDSS) was determined by a neurologist at the time of 

recruitment or scanning. 

Although the test batteries were different between PD and MS groups, some sub-tests were the 

same. The Letter Number Sequencing (LNS) and the Verbal Fluency Test (SFCOM in PD, FAS 

in MS) were included in both test batteries. In addition, the Symbol Digit Modality Test (SDMT) 

in PD was very similar to the Coding sub-test in MS and they both evaluated processing speed.    

2.2.3 Analysis   

Two-sample t-tests (two-tailed) were carried out with all the scores in male and female groups. 

Transformed scores were calculated in R (version 3.2.0)- which is a language and environment for 

statistical computing- if normality did not hold. CCA [Krzanowski, 1988] was done in MATLAB 

(The MathWorks, Inc.) to determine if demographics were related to cognitive scores. CCA was 

chosen to study the multivariate data and it can be considered one of the original “machine 

learning” algorithms that are now used to explore “big data” in many fields [Correa et al., 2008; 

Donner et al., 2006; Palmer, 1993]. The advantage of the CCA method is that it is an extension of 

regression that enables additional factors to be included. If we have two sets of correlated variables 

(e.g the performance on the neuropsychological tests will likely be correlated, and some 

demographic factors such as disease duration and age will likely be correlated), CCA attempts to 

find the linear combinations of these two sets of variables that maximally correlate with each other. 

Note that this will likely be a more powerful approach than regression where one could try and 
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predict the neuropsychological performance on 1 test – i.e. in regression one only has 1 dependent 

variable. 

In PD, the two sets were the cognitive scores measured by neuropsychological assessments and 

the demographics of 31 PD subjects. The demographics included gender (encoded as female 2 and 

male 1), age, UPDRS scores, Depression, and years of education. The cognitive scores included 

MoCA, BJLO, raw HVLT, raw HVLT delayed recall, standardized HVLT, standardized HVLT 

delayed, standardized HVLT recognition trial, raw LNS, SFCOM, and SDMT scores. As in 

sematic fluency, the combination trial should represent the performance of sematic fluency in 

animal, vegetable, and fruit trials, so we only included SFCOM instead of taking all 4 scores. All 

scores were normalized into z-scores before CCA. We performed CCA in leave-one-out fashion, 

to ensure robustness of our results, and reported the loadings (i.e. the correlation between 

transformed CCA data and raw scores) for each variable. Specifically, we excluded one subject at 

a time and performed the CCA analysis each time. The variability in the weightings/loadings, when 

each of the subjects was removed, was recorded.  This gives an estimate of how much the results 

could change if more subjects were added. If the 95% confidence intervals based on the cross-

validation of each variable did not cross zero, we regarded this variable as a significant contributor 

to the CCA model. 

In MS, in keeping with prior neuropsychological approaches, we analyzed timed and untimed tests 

separately. We performed CCA on cognitive scores divided into two groups (timed and untimed 

tests) and demographical variables. The “timed group” included 4 affective variables (Multiscore 

Depression Inventory Total T scores, State-Trait Anxiety Inventory standardized State scores and 

Trait scores,  and Fatigue Severity Scale Raw scores) and 8 variables from the tests in which 
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subjects were timed during performance, including 3 scaled scores in WAIS-IV (Arithmetic, 

Symbol Search, and Coding), Verbal Letter Fluency Test, and 4 measures of Trail-Making Tests ( 

transformed TMT A scores, TMT A Z scores, transformed TMT B scores, and TMT B Z scores). 

Due to non-normality, raw scores of TMT A and B were transformed by taking the square root of 

the reciprocal of the raw scores (the transformed score could be expressed as the 

following:√
1

𝑇𝑀𝑇 𝑟𝑎𝑤 𝑠𝑐𝑜𝑟𝑒𝑠
). In the “untimed group”, 4 affective variables (same as “timed group”) 

and 8 cognitive variables from the tests in which subjects were not timed were included. The 

cognitive 8 variables were 2 scaled scores in WAIS-IV (Digit Span and Letter Number 

Sequencing) and 6 measures in WCST (standard score of Errors, Perseverative Response, 

Perseverative Errors, raw scores of Categories Completed, Trials to Complete First Category, and 

Failure to Maintain Set). Age, gender, education, EDSS scores, and disease duration were included 

as demographical variables in both groups. Of note, due to the data and sample size, we did not 

perform analysis in different groups in PD. 

Calculations were performed in leave-one-out fashion to control for multiple comparisons and 

ensure the robustness of our results as previously described. The error bars indicated the variability 

of the results across subjects. 

2.3 Results  

2.3.1  PD 

In PD, CCA revealed that demographics/clinical data were inter-correlated with cognitive scores 

(Figure 2.1). In the combination of demographics and clinical data, gender, age, depression, and 
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education all showed significant canonical loadings, but UPDRS scores did not have an impact on 

this model. In the combination of cognitive scores, all variables demonstrated significant loadings 

except the standardized HVLT Recognition Trial Score. Variables with loadings the same sign 

were correlated with each other (i.e. negative loadings in demographics were positively correlated 

with negative loadings in cognitive scores) and anti-correlated with the variables that demonstrated 

the opposite sign. The two linear combinations of these two sets of variables were significantly 

correlated with each other with a correlation coefficient of 0.90 and p=0.011.  

The model demonstrated gender differences of cognitive performances in PD, where female 

subjects with more years of education were related to higher scores in almost all cognitive tests as 

they showed higher performance z-scores than males (Appendix A.1). Further analyses supported 

this observation, as the mean z-scores of all cognitive tests/variables with significant CCA loadings 

were higher in female subjects than male subjects except the BJLO test (Appendix A.1). Therefore, 

the variable gender in the model (shown in Figure 2.1) demonstrated an overall common effect to 

cognition across tests rather than specific patterns in individual tests. Similarly, education 

supported overall cognitive functions in PD. Meanwhile, higher age and higher scores in 

depression scale were anti-correlated with all cognitive scores which showed significant loadings, 

implying that aging and PD comorbidities such as depression worsened cognitive abilities. 
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Figure 2.1 The CCA model shows inter-correlated cognitive patterns with demographics and clinical data in 

PD. The linear combination of demographics/clinical data is significantly correlated with the linear 

combination of cognitive performances with correlation coefficient 0.90 and p 0.01 (left panel, cross-

validation with leave-one-out). Gender, age, depression, and education have significant loadings in the 

combination of demographics and clinical data (middle panel, i.e. 95% confidence interval does not cross 

zero as indicated by error bars). In the combination of cognitive scores (right panel), all the variables show 

significant loadings except standardized HVLT Recognition Trial Score as the 95% confidence interval 

crosses zero. [GEN: gender, EDUY: education in years, MoCA: Montreal Cognitive Assessment, BJLOTOT 

= Bento Line Orientation Total Score, HVLTTOT = Hopkins Verbal Learning Test-Revised Total Score, 

HVLTDELAY = HVLT Delayed Recall Score, DVT-HVLTTOTAL = standardized HVLT Total Score, 

DVT-HVLTDELAY = standardized HVLT Delayed Recall Score, DVT-HVLTRETENTION = standardized 

HVLT Recognition Trial Score, LNS-RAW = raw Letter-Number Sequencing Test Score, SFCOM = Sematic 

Fluency Test – combination, SDMTTOT = Symbol Digit Modalities Test total scores] 
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2.3.2 MS 

In MS, CCA results showed that gender (mean canonical coefficient: timed = 1.01, untimed = 

0.94) appears to be an important factor (i.e. weightings can be distinguished from zero) in the 

combination of demographics for both timed and untimed tests. In the untimed group, EDSS (mean 

canonical coefficient: 0.26) was influential in addition to gender. Age, education, and disease 

duration showed limited effects on both timed and untimed tests (mean canonical coefficient: 

timed/untimed = 0.07/0.00, 0.03/-0.05, -0.02/-0.03, respectively) (Figures 2.2&2.3).  

Since we assigned gender male as 1 and female as 0 in the calculation, the variables which showed 

positive canonical coefficient indicated higher scores in male subjects as long as gender also 

showed positive weightings. On the other hand, the tests on which female subjects obtained higher 

scores show negative canonical coefficients. This was because the model treated female gender 

(0) as “baseline”. The weightings of gender indicate the effects of gender male compared to female 

in combination of demographics as well as combination of cognitive scores. In the “timed group”, 

transformed TMT A and B scores showed strongly negative effects compared to other variables 

(mean canonical coefficient: -28.3 and -31.8, respectively) (Figure 2.2). In contrast, the TMT A Z 

score demonstrated a positive mean canonical coefficient with 0.64 in the combination of cognitive 

scores, illustrating that there was a gender-specific pattern in timed cognitive tests where female 

subjects had higher transformed TMT A and B scores and male subjects had higher TMT A Z 

scores. In addition, the combination of cognitive scores and demographics were highly correlated 

with each other (correlation r = 0.84, p-value < 0.001, Figure 2.2 right panel), meaning that the 

linear combination of all the variables in demographics and all the variables in timed cognitive 

scores forms a significant model to explain and predict the data.  
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Figure 2.2 CCA results of timed cognitive tests in MS. The left panel shows that among five demographical 

variables, gender has a relatively strong effect in the combination. The middle panel illustrates the 

weightings of every variable in the combination of timed cognitive scores based on their association with 

demographics (negative scores indicate females performing test better). TMT performances show strong 

effects (mean canonical coefficient: transformed TMT A and B = –28.3 and–31.80, respectively). The right 

panel demonstrates the high correlation (r=0.84) between two sets of multivector (demographics and timed 

cognitive scores) with significance (p=0.0002). The error bars indicate how various the results are during the 

leave-one-out calculations.  

[AGE: age in years, GEN: gender, ED: education in years, EDSS: Expanded Disability Status Scale, DDyear: 

disease duration in years, AR.ScS: scaled WAIS Arithmetic, SS.ScS: standardized Symbol Search, CD.ScS: 

standardized Symbol Coding, FAS.ADJ: adjusted Verbal Letter Fluency, sq.recip.TMT.A.Raw: 

transformed Trail-Making Test, Part A scores, TMT.A.Z: Trail-Making Test, Part A Z scores, 

sq.recip.TMT.B.Raw: transformed Trail-Making Test, Part B scores, TMT.B.Z: Trail-Making Test, Part B 

Z scores, MDI.TOT.T: Multiscore Depression Inventory Total T scores, STAI.S.SS: standardized State-

Trait Anxiety Inventory State scores, STAI.T.SS: standardized State-Trait Anxiety Inventory Trait scores, 

FSS.Raw: Fatigue Severity Scale Raw scores.] 
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Figure 2.3 shows the results from the “untimed group”. Male subjects had higher scores (i.e. these 

scores showed higher weightings in male subjects) on WCST Errors, WCST Perseverative Errors, 

Trials to Complete First Category, Trait anxiety, and fatigue (mean canonical coefficient: 0.03, 

0.14, 0.01, 0.02, and 0.01, respectively), while female subjects obtained higher scores (i.e. these 

scores were more influential on the linear model of all scores in female subjects) on WAIS IV 

Digit Span, WAIS IV Letter Number Sequencing, WCST Perseverative Responses, WCST 

Categories Completed, Failure to Maintain Set, and state anxiety (mean canonical coefficient: -

0.03, -0.04, -0.14, -0.29, -0.06, and -0.01, respectively). This implied that female subjects 

completed more categories on the WCST than males, but higher Perseverative Responses also 

indicated that female subjects were potentially more prone to cognitive inflexibility as they 

changed strategies less frequently. Moreover, female subjects also did better on the Digit Span and 

Letter-Numbering Sequencing tasks, meaning that they had better attentional abilities since the 

scores of these two tests partially form Working Memory Index. Finally, the two sets of variables 

(combination of cognitive scores and combination of demographics) were highly correlated with 

each other in untimed group (correlation r = 0.84, p-value < 0.001, Figure 2.3 right panel), 

indicating that the linear combination of all the variables in demographics and untimed cognitive 

scores forms a model explaining the data. 
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Figure 2.3 CCA results of untimed cognitive tests in MS. The left panel shows that gender and EDSS have 

strong effects in the combination of demographics compared with other variables. The middle panel 

illustrates the weightings of every variable in the combination of untimed cognitive scores. WCST Errors 

showed weightings in male subjects as well as WCST Perseverative Errors, transit anxiety, fatigue, and 

WCST Trials to Complete First Category (mean canonical coefficient: 0.03, 0.14, 0.02, 0.01, and 0.01, 

respectively). WAIS IV Digit Span, WAIS IV Letter-Number Sequencing, WCST Perseverative Responses, 

WCST Categories Completed, Failure to Maintain Set, and state anxiety demonstrated effects in female 

subjects (mean canonical coefficient: –0.03, –0.04, –0.14, –0.29, –0.06, and –0.01, respectively). The right 

panel demonstrates that these two sets of multivector (demographics and timed cognitive scores) are 

significantly correlated with each other (p=0.001, r=0.84). The errorbars indicate how various the results 

are during the leave-one-out calculations.  

[AGE: age in years, GEN: gender, ED: education in years, EDSS: the Expanded Disability Status Scale, 

DDyear: disease duration in years, WAIS.DS.ScS: scaled WAIS Digit Span, LN.ScS: scaled WAIS Letter 

Number Sequencing, WCST.TE.SS: scaled WCST Total Errors, WCST.PR.SS: standardized WCST 

Perserverative Responses, WCST.PE.SS: standardized WCST Perserverative Errors, WCST.CC.Raw: raw 

WCST Categories Completed, WCST.TCFC.Raw: raw scores of WCST Trails to Complete First Category, 

WCST.FMS.Raw: WCST Failure to Maintain Set, MDI.TOT.T: Multiscore Depression Inventory total T 

scores, STAI.S.SS: standardized State-Trait Anxiety Inventory State scores, STAI.T.SS: standardized State-

Trait Anxiety Inventory Trait scores, FSS.Raw: Fatigue Severity Scale Raw scores.] 
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2.4 Discussion  

Several studies have utilized CCA to study inter-correlations between behavioural data, cognition, 

imaging findings, and daily activity in both healthy subjects and disease populations [Alonso Recio 

et al., 2013; Davis et al., 2011; Lin et al., 2017; Nilsson et al., 2016; Perry et al., 2017; Smith et 

al., 2015], indicating that CCA is a useful tool to study relations between two sets of data. 

With CCA method, we reported that 1) there were gender specific cognitive patterns in MS and 2) 

some demographical variables had stronger effects on cognitive performance. More importantly, 

utilizing a focused test battery of tests sensitive to aspects of executive functioning, there were 

significant gender differences. The findings from the current study endorse the need for sensitivity 

to include both untimed and timed tasks in the cognitive assessment of individuals with remitting 

and relapsing MS. Similarly, CCA models also revealed the inter-correlated behaviour between 

demographics, clinical measures, and cognitive performances that are commonly impaired in PD 

including executive function in this study. Interestingly, we also observed gender effects in PD 

and some demographical data showed stronger impacts than others.     

2.4.1 Cognitive profiles in PD: female gender and education support better cognitive 

function, while comorbidity is related to poor cognition 

In PD, a CCA approach found that working memory, attention, planning, and problem solving 

were inter-correlated with visuospatial memory and episodic memory in early stage PD and 

executive function (index of working memory, attention, planning) and visuospatial memory 

contributed the most to cognitive deficits [Alonso Recio et al., 2013]. Although these studies have 

shown that there are inter-correlations in cognition and disease, gender differences have not been 
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previously observed in PD with a CCA approach. We found that education supported better 

cognitive performance in visuospatial, verbal learning, verbal memory, working memory, 

executive domains as well as information retrieval abilities. Our results are consistent with the 

concept of cognitive reserve theory, whereby education is one of the factors that may enhance 

neuronal plasticity to maximize/optimize performance or strengthen the ability to engage altered 

brain networks in the setting of regular aging in healthy individuals and/or neurodegenerative 

disease [Stern, 2002; Tucker-Drob et al., 2011; Vance et al., 2010]. The enhanced plasticity in a 

variety of neural circuits includes increased dendritic connections between neurons, an increase in 

neutrophic factors, and stronger connections between neurons, which provides more neural 

resources supporting brain function and increases the capacity to cope with damages due to aging, 

injury, and diseases [Ansari, 2012; Vance et al., 2010]. Therefore, subjects can tolerate more 

insults while still being able to perform normally or even more efficiently in cognitive tests before 

functional impairments are apparent. As a result, the factors which trigger such alterations can be 

considered protective factors such as education in our study [Stern, 2002]. However, longitudinal 

studies have suggested that aging may be a stronger factor regarding cognitive changes than 

education [Tucker-Drob et al., 2011; Zahodne et al., 2011]. This is similar to what we found where 

both education and age showed strong loadings in the CCA model -- a pattern that has been 

reported in healthy subjects as well [Perry et al., 2017].   

The gender differences that we discovered have been observed previously in PD, but the 

differences in cognition have not been extensively studied and results of non-motor symptoms 

have been inconsistent [Augustine et al., 2015; Miller and Cronin-Golomb, 2010]. In general, 

female subjects tend to perform better on many cognitive tests in older healthy subjects [Smith et 
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al., 2015]. However, a study with 1700 individuals with PD reported that motor-symptoms were 

not different between male and female, but female subjects fared better in non-motor aspects which 

included SDMT performance and daily functioning [Augustine et al., 2015]. Moreover, male 

subjects have faster decline of cognitive abilities in verbal, letter, and category fluency tests; while 

females tend to have worse visuospatial abilities [Corkin et al., 2003; Riedel et al., 2008]. Our 

results also demonstrated that females performed better in SDMT, verbal fluency tests, and overall 

cognition measured by MoCA, but presented with worse visuospatial function (Appendix A.1), 

consistent with previous research. Generally, attention, executive functioning, and overall 

cognitive function is relatively less affected in female PD subjects, which is possibility supported 

by education. The purported mechanisms of gender differences in cognition are unclear, but it has 

been postulated that estrogen may impart neuroprotective effects by activating receptors, altering 

protein expression, and activating kinase on dopaminergic pathways across cortices (e.g. the 

hippocampus and prefrontal cortex) in several neurodegenerative disorders [Brann et al., 2007; 

Green and Simpkins, 2000; Miller and Cronin-Golomb, 2010]. Moreover, estrogen therapy may 

prevent cognitive decline and support the abovementioned viewpoints, but the effects vary across 

lifetime [Sherwin, 2012].   

Unsurprisingly, in PD, we found that depression had a negative effect on cognitive function, 

consistent with previous research [Starkstein et al., 1989]; however, we did not have evidence to 

probe whether cognitive decline induced depression or depression manifested cognitive 

dysfunction in PD – an area of debate [Menza et al., 1993]. We can only interpret that there is a 

strong association between the co-existence of aging and psychiatric comorbidity and poor 

cognitive performance that requires attention and executive abilities. Surprisingly, the commonly 
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used measure of overall disease severity, UPDRS, did not show significant loadings, which 

implied that overall motor assessment did not directly reflect cognitive decline. Motor deficits and 

cognitive dysfunction engage partially different pathways and systems [Sawamoto et al., 2002], 

but there is still a certain degree of association of degeneration as individuals with higher disease 

severity have a higher chance of developing cognitive impairments. 

2.4.2 Cognitive profiles in MS: female gender supports better cognitive function and 

disease severity is related to worse performance     

In MS, gender differences have been reported in previous studies which showed that females 

perform better than males on memory tasks and the Wisconsin Card Sorting Test [Beatty and 

Aupperle, 2002; Schoonheim et al., 2012a]. Moreover, male sex has been speculated as a risk 

factor for development of severe cognitive decline [Benedict and Zivadinov, 2011]. These studies 

investigated cognitive function based on the responses on cognitive tests in male and female 

separately. Given that cognition is a complex multi-dimensional entity which can be assessed 

within different domains [Heyes, 2012], it is reasonable to assume that there are multiple 

intercorrelated variables modulating cognition. Therefore, we investigated the intercorrelation 

from combinations of demographics and cognitive variables through CCA, determining which 

linear combination of demographics and cognitive scores best represent the data in two genders as 

a whole. 

As figure 2.2 and 2.3 demonstrate, gender was a strong demographic factor in timed tests and both 

gender and EDSS were influential in untimed tests as the rest of the variables had limited effects. 

Demographical factors were taken into account in our model, which highlighted the fact that both 

EDSS and gender were influential factors for cognition in our data especially gender. Our results 
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were in agreement with previous research showing that gender was a predictor for cognitive 

dysfunction in MS and male subjects generally showed worse performance [Benedict and 

Zivadinov, 2011; Schoonheim et al., 2012b]. Education and affective states can directly impact 

cognition [Bruce and Arnett, 2005]. However, in this study education did not impact cognitive 

profile even though female subjects had higher education. Moreover, none of the affective 

variables were significantly different between the two genders and all of them had limited 

weightings in CCA results. Although there were trends that the females in this study were more 

educated, it was not a significant difference (Table 2.2). Therefore, we concluded that education 

and affective status did not significantly influence cognition in our cohort. 

However, of note, when rsFC, demographics, and cognitive scores are combined together in 

another analysis with a similar approach, education appears to be influential. This study is reported 

in chapter 6.  

In our MS data, due to the fact that transformed TMT scores were the square roots of reciprocal 

TMT raw scores (which had opposite meanings to raw TMT scores), our interpretation of high 

weightings in TMT scores (Figure 2.2) is that female subjects performed better on both TMT A 

and B tests (i.e. faster responses). We conclude that set-shifting abilities assessed by TMT A/B 

tests were less impaired in female MS subjects than males. Finally, the high correlation between 

the combination of demographics and combination of timed cognitive scores illustrated that these 

linear combinations were significant and robust enough to explain the data.  Figure 2.3 

demonstrates that gender had strong weightings in the combination of demographics and untimed 

scores. Among all the untimed scores, male subjects obtained high weightings on WCST 

Perseverative Errors and Errors, illustrating poor performance in the Wisconsin Card Sorting Test. 
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In contrast, female subjects tended to perform Wisconsin Card Sorting Test better because they 

had higher scores on WCST Categories Completed. However, they also had higher scores on 

WCST Perseverative Responses and Failure to Maintain Set, which possibly indicates an inability 

to use feedback to modify their response behaviour. It is interesting to know that perseverative 

behaviour, whether errors or responses, are found in both genders. This is more indicative of the 

neuropathology (i.e. white matter damages reduce neuronal communication) seen in MS. In 

addition, female subjects obtained higher scores on WAIS IV Digit Span and Letter-Number 

Sequencing tests, indicating that, compared to male subjects, their basic ability to sustain attention 

was less affected. Finally, the untimed group also demonstrated high correlations between the 

combination of cognitive scores and combination of demographics, and again, gender and a subset 

of WCST scores were the strong factors which explained cognitive patterns.   

Gender differences on cognitive tasks have been long established [Miller and Halpern, 2014]. 

Separating the timed from non-timed tasks is an important, growing trend in the analysis of 

neuropsychological test data in multiple sclerosis [Leavitt et al., 2014]. We also analyzed timed 

and untimed scores together, but the model was not significant. The current results indicate that 

analyzing timed and untimed scores separately is more capable of distinguishing cognitive profiles 

between male and female MS subjects. 

2.4.3 Commonalities and differences  

To conclude, the cognitive profiles in PD and MS shared similar patterns that gender appeared to 

be an influential factor in cognition. In both cohorts, female subjects performed cognitive tests 

better, especially tests that required set-shifting abilities. On the other hand, there are several 

differences in their cognitive profiles. First, some demographical factors showed distinct effects, 
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whereby age and education were influential on cognition in PD but not in MS, which possibly due 

to that PD subjects are generally older so aging could impact cognition more than that in MS. 

Second, disease severity also showed different effects to cognition. UPDRS was not a significant 

factor in PD, while EDSS was associated with worse performance in MS, which raises debates 

whether 1) disease severity measured with motor symptoms can represent cognitive impairments 

or 2) psychological disabilities show certain degree of associations between clinical symptoms and 

cognitive dysfunction as patients with stronger psychological impairments are more likely to 

develop cognitive deficits. Further research with a bigger sample size is needed regarding these 

issues. Finally, psychiatric comorbidity significantly impacted cognition in PD but not in MS. The 

discrepancies may be related to the neurotransmitter dysregularization as several neurochemistry 

pathways are altered in PD including serotonin which is highly related to mood disorders [Dauer 

and Przedborski, 2003], but similar research is relatively limited in MS. A few studies have 

demonstrated that altered neurotransmitter systems in MS are more related to immune function 

rather than affective state [Polak et al., 2011], which could be the possible explanation why 

psychiatric comorbidities were not significantly associated with cognitive performance in our 

results. However, more research is needed to draw firm conclusions. Finally, as PD subjects are 

generally older than MS subjects, differences could be partly explained due to age. Aging has been 

shown to impact several cognitive domains such as processing speed, working memory, and 

executive function by potentially impairing microstructural changes [Fjell et al., 2017; Murman, 

2015]. In addition, age-related diseases accelerate the progression of neural loss, neuronal 

dysfunction, and cognitive decline [Murman, 2015]. Taken together, the associations between 

aging and cognitive decline explained why age demonstrated significant effects to cognition in 

PD, an older population, but not MS, a much younger population.        
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2.4.4 Limitations  

As described roughly in section 2.2, test batteries used in PD and MS were different even though 

some sub-tests were the same. These test batteries were designed to reflect the cognitive 

impairments seen in PD and MS. Given that the profiles of cognitive impairments are not exactly 

the same, test batteries would most likely vary. However, the common affected domain – executive 

function – was evaluated in both batteries with the Verbal Fluency Test, Wisconsin Card Sorting 

Test, and Trial-Making-Tests. In addition, as the purpose of the chapter was to explore the 

cognitive profiles in PD and MS, healthy subjects were not included in the analysis, which may 

fail to establish whether performance was objectively deficient. Finally, although previous 

research has implied that the affected neurotransmitter systems in PD are more related to mood 

disorders and such links are not seen in MS, further investigations are required to study the 

associations between cognition and psychiatric comorbidities in neurological conditions.         

2.5 Conclusion  

In this chapter, we applied a machine-learning method to explore the relations between cognitive 

performance and demographics/clinical data in PD and MS. In PD, the CCA model demonstrates 

that female sex and education supported the cognitive performance which requires attention and 

executive functioning. Moreover, age and depression were associated with poorer performance, 

indicating an association between PD comorbidity and cognitive decline. In MS, we conclude that 

gender is one of the influential factors on cognitive performances in subjects with MS. There are 

specific cognitive patterns in MS subjects: First, female subjects performed TMT tests better than 

males. Second, in untimed tests, male subjects made more errors and female subjects performed 

better on the Wisconsin Card Sorting Test. Finally, our results imply that with this particular test 
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battery, female subjects with MS were less cognitively impaired than male subjects. Our study is 

unique in that we have discovered gender differences exist on selected executive tasks and report 

a trend that gender differences may also exist on timed tasks vs untimed tasks, which has become 

an important area of focus in the cognitive assessment of individuals with remitting and relapsing 

MS. 

Taken together, we propose an inter-correlated pattern between cognitive performance, clinical 

evaluation, and demographical characteristics in PD and MS. Moreover, we conclude that gender 

is an influential factor to such complex cognitive patterns and female gender shields cognitive 

functions regardless pathologies, possibly owning to the neuroprotective effects of estrogen. We 

also revealed differences in the cognitive profiles, whereby demographical characteristics, disease 

severity, and comorbidities impacted cognition differently in PD and MS.  
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Chapter 3: Resting-state functional connections and cognition 

As Chapter 1 hypothesizes, long-range connections appear to be particularly important for 

executive function and alterations in these connections might be a common cause of cognitive 

impairments in both Parkinson’s Disease (PD) and Multiple Sclerosis (MS). In this chapter, several 

strategies are applied to investigate whether neurological diseases demonstrate alterations in long-

range connections as well as other important connections such as interhemispheric ones. 

Regression analyses are also used to explore the associations between rsFC and cognitive scores. 

  

3.1  Introduction  

3.1.1 Effects of interhemispheric and long-range connections to cognition  

Interhemispheric connectivity appears to be particularly important for performance of information 

processing and other cognitive functions [Bloom and Hynd, 2005]. Diseases that result in abnormal 

volumes of the corpus callosum and/or abnormal interhemispheric connectivity show deficits in 

several cognitive domains, such as memory, speed of processing, and executive function [Bodini 

et al., 2013; Lee et al., 2010; Mwansisya et al., 2013; Paul et al., 2007; Saar-Ashkenazy et al., 

2014]. For instance, patients with agenesis of the corpus callosum (AgCC) have severely impaired 

high-order cognition (e.g. complex thinking, reasoning and decision making, cognitive flexibility) 

[Paul et al., 2007]. Decreased interhemispheric connectivity in schizophrenia correlates with 

negative symptoms and relates to lower information processing speed [Mwansisya et al., 2013]. 

Moreover, patients with Alzheimer’s disease and mild cognitive impairment (MCI) have reduced 
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volume in corpus callosum [Lee et al., 2010], and impaired interhemispheric connectivity in post-

traumatic stress disorder is also highly associated with poor performance in associative memory 

tasks [Saar-Ashkenazy et al., 2014]. With rsfMRI, patients with major depression disorder (MDD) 

show negative correlation between rsFC of homotopic regions and the severity of cognitive 

impairments [Wang et al., 2013]. These regions are located in prefrontal areas and cerebellum. 

Furthermore, decreased interhemispheric connectivity in stroke patients has been shown to be able 

to predict behaviour in multiple domains such as verbal and visual memory [Siegel et al., 2016].    

However, only a few of these studies specifically target interhemispheric functional connectivity. 

Most of the studies either assess interhemispheric connections with structural data or simply 

interpret observed rsFC changes as interhemispheric connectivity.      

Long-range connections (i.e. corticocortical connections) have been thought of as supporting 

diverse cognitive functions, especially higher-order cognition, as well as resting-state patterns 

[Park and Friston, 2013]. Compared to attention, memory ability engages stronger long-range 

intrahemispheric connectivity [Hermundstad et al., 2013], showing that higher cognitive load 

requires stronger long-range connectivity. Language processing is associated with long-range 

connectivity between the inferior frontal gyrus, posterior middle temporal gyrus, basal temporal 

cortex, supramarginal gyrus, and superior temporal cortex [Salmelin and Kujala, 2006]. These 

long-range connections are affected in diseased populations. For example, long-range connectivity 

between the fusiform gyrus and other remote cortical regions is decreased in autism spectrum 

disorder (ADS) [Khan et al., 2013]. Decreased connectivity in the fronto-parietal network, perhaps 

one of the most well-known cognitive networks that also requires long-range connectivity, has 

been reported in a variety of diseases and associated with cognitive deficits such as schizophrenia, 
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chronic traumatic brain injury, and Parkinson’s disease [Han et al., 2016; Sheffield et al., 2015; 

Vervoort et al., 2016].      

3.1.2 Interhemispheric and long-range connections in Parkinson’s Disease and Multiple 

Sclerosis   

We hypothesize that interhemispheric connectivity may also be important in maintaining cognitive 

performance in MS. Structural research suggests that white matter lesions have a propensity to 

involve callosal connections [Bodini et al., 2013], and callosal atrophy is related to lower 

processing speed abilities measured by the Symbol Digit Modalities Test (SDMT) at both baseline 

and follow-up in MS [Bergendal et al., 2013]. In addition to altered structural interhemispheric 

connectivity, studies of functional interhemispheric connectivity with other modalities have also 

been described in MS. Decreased magnetoencephalography (MEG) synchronization between the 

two hemispheres has been found in MS, suggesting that weakened functional interhemispheric 

connectivity could be a biomarker for cognitive impairment [Cover et al., 2006]. Therefore, 

studying the relationship between cognitive performance and interhemispheric connectivity is 

crucial for further understanding the cognitive profile of MS.  

In PD, voxel-mirrored homotopic connectivity (VMHC), which assesses pairwise correlation 

coefficient between homotopic regions, has been primarily used to evaluate interhemispheric 

connectivity with fMRI data. PD patients with depression demonstrated lower interhemispheric 

rsFC in the dorsolateral prefrontal cortex and calcarine, and was associated with overall cognition 

measured by the Mini Mental State Examination (MMSE) [Zhu et al., 2016]; compared to healthy 

subjects, lower VMHC values in the putamen, sensorimotor cortex, and supramarginal gyrus in 

PD subjects are correlated with disease severity and disease duration [Luo et al., 2015b]. In 
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addition, with diffusion weighted MRI data, which quantifies white matter microstructural 

integrity, PD subjects exhibited lower white matter integrity of interhemispheric tracts in the 

somatosensory cortex, primary motor cortex, supplementary motor area (SMA), and pre SMA 

[Fling et al., 2016]; however, the decreased callosal integrity in PD was only correlated with motor 

performance rather than cognitive evaluation.        

Studies which report the associations between executive function and long-range connections of 

rsfMRI in PD and MS have been discussed previously (see Section 1.4).   

3.1.3 Analyses  

Technical issues may complicate interpretation of functional interhemispheric connectivity. For 

interhemispheric connections, similarity between neural activities in homologous regions may not 

necessarily be based on transcallosal activity, but rather both hemispheres may be influenced by 

common brainstem and/or subcortical input. Functional connectivity measures that distinguish 

between direct and indirect (common) influences between homologous regions are therefore 

desirable for functional interhemispheric connectivity studies. This can be achieved by partial 

correlation, whereby the relation between homologous pairs is assessed controlling for the activity 

in another region. Although the VMHC approach, as discussed previously, specifically examines 

functional interhemispheric connectivity, pairwise correlation appears to be less robust to noise 

and possible effects from other regions compared to partial correlation as used here [Smith et al., 

2013]. For assessing changes in long-range connections, perhaps exploratory analyses are more 

suitable given that there is no clear a priori knowledge and definition of such connections. 

Although most studies interpret corticocortical connectivity as long-range connections between 
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frontal, parietal, and occipital regions [Park and Friston, 2013; Salmelin and Kujala, 2006], other 

connections may have functional significance.   

In this study, we examined functional interhemispheric connectivity in MS and PD during resting-

state fMRI using both simple and partial correlations. We then applied elastic net regression 

models to investigate the relationship between observed functional connectivity changes and 

performance on cognitive tests. Whole brain connectivity patterns were calculated as well to 

investigate potential changes in long-range connections. We demonstrate that functional 

connectivity features are complementarily associated with performance on cognitive tests. 

3.2 Materials and methods  

3.2.1 Subjects  

PD data are from BCT research project and MS data are from OPERA clinical trial, which is 

different from the previous chapter.   

We recruited 25 patients with relapsing-remitting MS (mean age ± SD = 37.2 ± 9.5; 10 male, 15 

female) and 41 age-/gender-matched healthy control subjects (HC) (mean age ± SD = 34.9 ± 10.1; 

14 male, 27 female) in a Phase III randomized, double-blind, double-dummy trial to evaluate the 

efficacy and safety of ocrelizumab versus interferon beta-1a in relapsing forms of MS (OPERA II; 

NCT01412333). The data included in this study (clinical scores and imaging data) were from the 

baseline time point only. Ethics approval was received from the University of British Columbia's 

Clinical Research Ethics Board and all subjects provided written, informed consent. HC did not 

have psychiatric, medical, cognitive, or other conditions that caused an inability to participate in 

an MRI study. Patients had Expanded Disability Status Scale (EDSS) scores ranging between 0 
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and 4 (median EDSS = 2). All patients performed the multiple sclerosis functional composite 

(MSFC) battery including the Paced Auditory Serial Addition Test (PASAT). They also performed 

a Low Contrast Visual Acuity Test (LCVA), and the Symbol Digit Modalities Test (SDMT) (Table 

3.1). 

Twelve subjects with idiopathic PD (60.0±9.9 y/o) and 10 age-matched HC were recruited through 

the movement disorder clinic at UBC hospital. Ethics approval was issued by the University of 

British Columbia's Clinical Research Ethics Board and all subjects provided written, informed 

consent. PD subjects were asked not to take their medication one night before the visit (i.e. off 

medication). After the first MRI scan and clinical examination in the morning, they took 

medication and underwent the second MRI scan in the afternoon on the same day. In addition to 

the Unified Parkinson's Disease Rating Scale (UPDRS) part III, questionnaires of apathy and Beck 

depression scale were administered and overall cognitive function was assessed by Montreal 

Cognitive Assessment (MoCA). Detailed demographics are shown in Table 3.2.  

 HC subjects (mean ± SD) MS patients (mean ± SD) 

Age 34.85 ± 10.1 37.20 ± 9.5 

Gender 14 males/27 females 10 males/15 females 

EDSS ND 2.14 ± 0.95 

Disease duration (months) ND 67.08 ± 64.85 

PASAT ND 42.44 ± 15.38 

SDMT ND 49.88 ± 11.03 

LCVA ND 40.92 ± 9.65 

Table 3.1 Demographics of MS and HC subjects.  

[HC: healthy control; MS: multiple sclerosis; EDSS: Expanded Disability Status Scale; LCVA: Low Contrast 

Visual Acuity; PASAT: Paced Auditory Serial Addition Test-3 seconds; SDMT: Symbol Digit Modalities Test; 

ND: no data] 

 HC subjects (mean ± SD) 

mean ± SD 

PD subjects (mean ± SD)  

mean ± SD 
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age 59.4±6.1 60.0±9.9 

sex 6 males/4 females 9 males/3 females 

UPDRS ND 29.5±9.6 

bradykinesia ND 10.75±3.7 

tremor ND 5.25±3.5 

rigidity ND 5.92±2.5 

PIGD ND 4.58±2.2 

H & Y ND 2.5±0.4 

disease duration ND 5.92±3.5 

medication dosage 

(levodopa) 

ND 625±351.9 

apathy+ ND 7.5±5.4 

Beck depression scale+ ND 5.75±5.5 

MoCA+ ND 27.14±3.4 

Table 3.2 Demographics of PD and HC subjects.  

[HC: healthy control; PD: Parkinson’s disease; UPDRS: Unified Parkinson's Disease Rating Scale; PIGD: 

Postural Instability and Gait Disorder; H&Y: Hoehn and Yahr scale; MoCA: Montreal Cognitive Assessment; 

ND: no data]  

+ 5 data points missing in apathy, Beck depression scale, and MoCA 

 

3.2.2 Image acquisition   

Images of both cohorts were acquired with a Philips Achieva 3.0 Tesla MRI scanner (Best, The 

Netherlands). 3D T1-weighted images were acquired with CLEAR homogeneity correction with 

1×1×1 mm3 resolution. Eight minutes of resting-state functional MRI (rsfMRI) data were acquired 

with an echo-planar imaging sequence with 3×3×3 mm3 resolution, 36 slices, 2000 ms TR, 30 ms 

TE, and 240 dynamics.  

3.2.3 Image preprocessing  

Several image preprocessing steps were applied to the fMRI data including slice-timing, isotropic 

reslicing, and motion correction in MATLAB using SPM8 functions (the Wellcome Trust Centre 
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for Neuroimaging, UK) and in-house Matlab codes. FLIRT (the FMRIB Centre, UK) was used to 

register fMRI images and structural images. T1-weighted images were used for cortical and 

subcortical parcellation, which was carried out using FreeSurfer software 4.5.0 (Massachusetts 

General Hospital, USA). For MS subjects, thirty-eight cognition-related regions-of-interest 

(ROIs), which were commonly reported in the MS neuropsychology literature, were chosen (Table 

3.3) for connectivity analysis. For PD subjects, fifty-four ROIs that were clinically relevant for PD 

were chosen (Table 3.4). As the original purpose for the MS project was to evaluate functional 

connectivity and its relation to cognition, included ROIs were selected based on the 

neuropsychology literature so these ROIs were supposed to be highly associated with cognition. 

However, the original purpose for this PD project was to investigate the connectivity among the 

most clinically affected regions in PD regardless of motor or cognitive syndromes. Therefore, the 

selected ROIs were not the same, which is one of the limitations in this chapter. The mean time 

courses over all voxels within one region in fMRI data were extracted from the given ROIs. All 

calculations were done in the subject’s native space. As the processing pipeline was original 

designed based on common preprocessing steps in SPM package, further steps such as temporal 

filtering and nuisance signal regression were not applied. However, linear detrending was applied 

on the extracted time courses and voxel outliers were removed. Typically, we exclude subjects 

who show higher than 2 mm in translation and/or 2 degrees in rotation, but none of the subjects 

reached these criteria.    

Bilateral ROIs 

frontal pole parietal and occipital junction areas 

superior frontal gyrus superior occipital gyrus 

middle frontal gyrus anterior cingulate cortex 
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inferior prefrontal cortex posterior cingulate cortex 

temporal pole, insula cortex, amygdala precuneus 

superior temporal cortex medial orbitofrontal cortex 

posterior parietal cortex lateral orbitofrontal cortex 

post central gyrus fusiform gyrus 

supramarginal gyrus superior parietal cortex  

medial temporal lobe, hippocampus, parahippocampal gyrus 

Table 3.3 The 38 ROIs in the study for MS (19 bilateral regions).  

 

Bilateral ROIs 

middle frontal gyrus lateral occipital region 

ventral lateral prefrontal gyrus caudal anterior cingulate cortex 

insula posterior cingulate cortex 

superior temporal gyrus precuneus 

middle temporal gyrus ventral medial prefrontal cortex 

inferior temporal gyrus cerebellum 

parahippocampal gyrus primary motor cortex 

hippocampus supplementary motor area 

superior parietal gyrus pre supplementary motor area 

inferior parietal lobe premotor area dorsal part 

occipital-parietal area premotor area ventral part 

thalamus putamen 

caudate pallidum 

Table 3.4 The 54 ROIs in the study for PD (27 bilateral regions).  

 

3.2.4 Functional connectivity analysis  

For assessing interhemispheric connectivity, we computed correlation coefficients using a 

combination of two approaches. For each subject, we first divided the time courses from n ROIs 
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into n/2 homologous left, right pairs. For the ith pair, Pi(L,R), we examined the remainder right and 

left homologous pairs P1…n/2,≠i (L,R) and computed both the simple correlation (Pearson’s r) and 

the partial correlation conditioned on Pi(L,R) (i.e. the rest ROIs). We then computed the difference 

in the sum of the correlations and partial correlations between each homologous pair, Pi(L,R). The 

calculation could be expressed as the following mathematical style pseudocode: 

 ∑ ( | (partial correlation values – simple correlation values) | ).  

In order to determine if interhemispheric connectivity was associated with altered performance on 

cognitive tests, we performed robust regression, which is a common method to predict clinical or 

behavioural responses using neuroimaging data [Bowman, 2014a]. We took all homologous pair 

connectivity difference values from every subject as independent variables and behavioural scores 

as the dependent variable. Age was also included as a nuisance covariate. In MS, the behavioural 

scores included SDMT, PASAT, EDSS and LCVA scores. In PD, due to small sample size, only 

the significant connectivity pairs were used for regression analysis as robust regression cannot take 

more features (connectivity pairs) than observations (sample size). All the clinical scores were 

included except MoCA, apathy, and Beck depression scale because missing data points resulted in 

insufficient data to perform robust regression. The first calculation with robust regression obtained 

β values, which represented the weighting between interhemispheric connectivity and behavioural 

scores. These values were then included in the second calculation to generate predicted 

cognitive/clinical scores. Finally, R-squared between raw and predicted scores was reported. 

Figure 3.1 explains the procedure in a graph fashion.  
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Figure 3.1 The procedure of regression analysis. The purpose of the 1st calculation (the left panel) is to obtain 

β values (highlighted with yellow) in a robust regression model. In the 2nd calculation (the right panel), these 

β values are included in a linear regression to calculate predicted scores (highlighted in red). 

 

In order to determine if certain homologous pairs had the largest influence on predicting clinical 

and cognitive scores, we repeated the regression with a sparsity penalty on the regression 

coefficients by implementing elastic net regression (lasso function in Matlab, with alpha = 0.75) 

and included age as a covariate. This algorithm attempts to find a balance between predicting 

cognitive scores and including as few interhemispheric connections as possible to make that 

prediction. We used a leave-one-out cross validation to determine the optimal shrinkage parameter 

λ.  

For evaluating whether long-range connections were different between patients and HC, we 

applied an exploratory approach by calculating the whole brain connectivity matrix using 

Pearson’s r correlation. The matrix elements were then transformed to Fisher’s z values and then 

converted into a vector for the two-sample t-test with false discovery rate (FDR) corrected. The 

vectors were reshaped back to matrices and significant differences of connectivity pairs between 

groups were reported.    
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3.3 Results  

Conditioning on the different left ↔ right ROI pairs resulted in significant differences between 

partial and simple correlation in MS (Figure 3.2). The changes in overall instantaneous 

interhemispheric connectivity were significantly different between MS and HC (corrected p = 

0.05) when the following ROI left ↔ right pairs were used for the partial correlation: the superior 

parietal cortex, superior occipital gyrus, and precuneus. In addition, the MS group constantly 

showed higher differences than HC group no matter what pairs were conditioned. In PD, 

significantly different interhemispheric connectivity was only observed between HC and PD on-

medication when the ventral medial prefrontal cortices was used for partial correlation (corrected 

p = 0.05). Similar to MS, PD subjects also showed higher differences than HC regardless which 

pairs were conditioned (Figure 3.3). The differences represent the relative importance 

(connectivity values) of the brain regions (conditional ROI) when it is included in the analysis. A 

larger difference reflects greater importance of that region.    



73 

 

 

 

Figure 3.2 Functional interhemispheric connectivity in normal controls and MS. The overall pattern 

demonstrates that in MS, the differences are higher than in normal subjects across all regions. This suggests 

greater overall interhemispheric connectivity in MS. 

[front-pole: frontal pole; front-sup: superior frontal gyrus; front-middle: middle frontal gyrus; inf-

prefrontal: inferior prefrontal cortex; tem-pole/Ins/Amyg: temporal pole and insula and amygdala merged; 

sup-temp: superior temporal cortex; med-temp/hip/parahip: midial temporal lobe and hippocampus and 

parahippocampus merged; postcentral: post central gyrus; sup-par: superior parietal cortex; suprama: 

supramarginal gyrus; par-occi: parietal and occipital junction areas; sup-occi: superior occipital gyrus; 

cACC: caudal anterior cingulate cortex; PCC: posterior cingulate cortex; precun: precuneus; med-OFC: 

medial orbitofrontal cortex; lat-OFC: lateral orbitofrontal cortex; fusiform: fusiform gyrus; pos-par: 

posterior parietal cortex] 
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Figure 3.3 Functional interhemispheric connectivity in healthy controls, PD on-medication, and PD off-

medication. The only difference is found between HC and PD on-medication. The overall pattern 

demonstrates that PD shows higher differences than HC across all regions. This suggests greater overall 

interhemispheric connectivity in PD, especially in off-medication state.  

[M1: primary motor cortex; SMA: supplementary motor area; PMd: premotor area dorsal part; PMv: 

premotor area ventral part] 

 

Using robust linear regression, SDMT and PASAT scores could be accurately predicted from the 

differences between interhemispheric partial and simple correlation (Figure 3.4); while EDSS and 

LCVA results were insignificant. We performed elastic net regression to detect if only a few of 

the interhemispheric connections were responsible for prediction (Figure 3.5). However, even with 

the sparsity constraint (as we set α = 0.75, the elastic net regression model was more toward L1 

norm of β (lasso regression) than L2 norm of β (ridge regression), which sparsity constraint was 

taken into account.) on the regression coefficients, 18 and 10 ROI pairs respectively were still 
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included in the model to predict SDMT and PASAT scores. This method is able to show which 

linear combination of ROI pairs plus age best predict cognitive performance (i.e. linear 

combination of positive plus negative weightings). The frontal pole, temporal pole, insula, 

amygdala regions, superior temporal gyrus, parietal and occipital junction areas, anterior cingulate, 

and posterior parietal cortex were found to have more positive weights on SDMT performance. In 

contrast, the superior temporal gyrus, medial temporal gyrus, hippocampal regions, supramarginal 

areas, superior occipital gyrus, and anterior cingulate cortex impacted PASAT more than other 

ROI pairs.  

 

 

 

Figure 3.4 Relationships between real scores and predicted scores in SDMT and PASAT tests based on cross-

validation. The predicted scores are calculated based on interhemispheric connectivity values and ß values 

in the linear regression model. Raw and predicted SDMT scores demonstrate a strong correlation (R2=0.97) 

as well as raw and predicted PASAT scores (R2=0.83). The 45-degree lines indicate perfect predictability. 

[PASAT: Paced Auditory Serial Addition Test; SDMT: Symbol Digit Modalities Test] 
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Figure 3.5 Important brain regions for cognitive performances in MS. With elastic net regression, the upper 

left and upper right panels express weights of important connectivity pairs in predicting SDMT and PASAT, 

respectively. The lower panel shows positive correlations between real scores and predicted scores of SDMT 

and PASAT with the limited number of pairs. Real and predicted SDMT scores especially demonstrate a 

good correlation with R2 = 0.96. The 45-degree thick-red lines indicate perfect predictability. The thin-red 

lines indicate linear fitting. The two lines are overlapped in SDMT.  
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[front_pole: frontal pole; front_sup: superior frontal gyrus; front_middle: middle frontal gyrus; 

inf_prefrontal: inferior prefrontal cortex; tem_pole/Ins/Amyg: temporal pole and insula and amygdala 

merged; sup_temp: superior temporal cortex; med_temp/hip/parahip: midial temporal lobe and 

hippocampus and parahippocampus merged; postcentral: post central gyrus; sup_par: superior parietal 

cortex; suprama: supramarginal gyrus; par_occi: parietal and occipital junction areas; sup_occi: superior 

occipital gyrus; cACC: caudal anterior cingulate cortex; PCC: posterior cingulate cortex; precun: 

precuneus; med_OFC: medial orbitofrontal cortex; lat_OFC: lateral orbitofrontal cortex; pos_par: 

posterior parietal cortex] 

 

In PD, due to insufficient data, we cannot perform elastic net regression and only the significant 

connectivity pair in the t-test (i.e. ventral medial prefrontal connectivity) was used in robust 

regression. Only medication dose was predicted with R-square 0.2 in PD on-medication. The other 

scores were all predicted poorly with R-square lower than 0.2 in both on and off medication status 

(results are shown in Appendix B.1).   

Figure 3.6 shows the connectivity pairs that are significantly different between MS and HC in the 

connectivity matrices (p<0.05, FDR corrected). Overall, most of the significant connections linked 

frontal and parietal/occipital regions as well as frontal and temporal areas, which can be seen as 

long-range connections. The connections that link two hemispheres were also seen. Figure 3.7 

demonstrates the significant connections which distinguish PD on-medication and PD off-

medication (p<0.05, FDR corrected). These connections linked the caudate, premotor area, and 

middle frontal gyrus, which is part of the frontostriatal loops and the output component of the 

executive function model [Miller and Cohen, 2001] (see section 1.4.2). No significant connections 

were found between HC and PD regardless patients’ medication status.     
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Figure 3.6 Connections that are significantly different between HC and MS. In addition to the connections 

which link two hemispheres (not restricted to homologous regions), many connections link frontal and 

parietal/occipital regions as well as frontal and temporal areas distinguish two groups. In total, there are 163 

connections. The figure is created using BrainNet Viewer [Xia et al., 2013].   

  

 

Figure 3.7 Connections that are significantly different between PD off-medication and 

PD on-medication. These connections link the middle frontal gyrus, caudate, and 

ventral premotor area. The figure is created using BrainNet Viewer [Xia et al., 2013].   
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3.4 Discussion  

3.4.1 Enhanced interhemispheric connectivity may indicate compensatory mechanisms   

Previous fMRI studies have reported decreased functional connectivity in MS [Dogonowski et al., 

2013; Kingwell, 2012]; while increased functional connectivity has also been reported during rest 

as well as during performance of tasks [Janssen et al., 2013; Kingwell, 2012; Specogna et al., 

2012], which may reflect compensatory mechanisms. For example, within the default mode 

network areas, several cortices demonstrate enhanced functional coupling in MS, which is 

associated with a concomitant loss of cognitive efficiency [Hawellek et al., 2011a]. Consistent 

with prior studies, we found overall enhanced interhemispheric connectivity in MS subjects as 

demonstrated in Figure 3.2 where the MS group constantly showed bigger differences. The 

differences measured alterations between connectivity values derived from two methods (simple 

correlation and partial correlation). Hence, bigger differences also indicated higher connectivity. 

In this study, we discovered significantly altered functional interhemispheric connectivity in MS 

through an approach which specifically assessed homologous connections. 

In PD, previous studies which specifically measured connectivity between homologous regions all 

reported decreased functional interhemispheric connectivity [Luo et al., 2015b; Zhu et al., 2016]. 

However, the approach (i.e. VMHC) utilized in these studies is very different from our approach. 

Simply calculating Pearson’s r correlation between homotopic voxels may capture effects from 

other regions and voxels as simple correlation does not measure “direct correlation”. Moreover, 

the disease severity in our cohort is different from those studies. If we interpret increased 

interhemispheric connectivity in this study as a compensatory effect, the disease severity of the 

study cohort plays an important role and it could be one of the reasons for distinct findings. A 
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model of network collapse has been proposed in MS, which describes a non-linear relation between 

functional connectivity, cognitive impairments, and structural damage across disease course 

[Schoonheim et al., 2015]. Although MS and PD have unique pathologies, we believe that there 

are certain similarities between them as discussed in Chapter 1 & 2. Therefore, such model may 

apply to PD as well. A study which recruited PD patients with similar disease severity (based on 

H & Y scale) also demonstrated increased rsFC as a compensatory mechanism [Simioni et al., 

2016]. In addition, this study also observed that patients in an off-medication state showed 

increased connectivity in the cerebellum, primary motor cortex, and subcortical regions; while in 

on-medication state, these stronger connections were reduced and both on/off-medication rsFC 

were correlated with/predicted motor performance, confirming that such increased rsFC pattern 

reflected a compensatory mechanism. Our results also support that increased rsFC in PD may 

represent compensation. Similarly to MS, PD also demonstrated higher interhemispheric 

connectivity than HC especially in off-medication state (Figure 3.3). In fact, not only 

interhemispheric connections, but the whole brain connectivity in off-medication exhibited higher 

rsFC than HC (Appendices B.2). Although we did not perform regression analysis to probe 

whether cognitive performance was related to such compensatory pattern (only medication dose 

can be roughly predicted, Appendices B.1), our findings still provide insights into the disease 

affects neuronal networks in PD. 

We used both partial and simple correlation to investigate the interhemispheric connectivity. This 

approach has not been used in the previous research assessing interhemispheric connectivity, 

which makes the methodology in this study unique. Given that the calculation estimated 

correlation differences only between homologous brain regions with and without conditioning, it 
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is more straightforward to interpret the results as interhemispheric. Since the correlation 

differences were robustly larger in MS and PD (Figure 3.2 & 3.3) and the overall interhemispheric 

connectivity was also larger in the patient groups, there is both enhancement and homogenisation 

of interhemispheric connectivity in neurological disorders, meaning that the interhemispheric 

connections are more dependent on each other. If one connection is altered, the rest of the 

connections are more likely to be influenced as well. This also implies that interhemispheric 

connections in MS and PD lose their ability to independently modulate connectivity. Instead, the 

homologous regions require further support from other connectivity pairs in order to transfer 

information across the two hemispheres, which indicates that enhanced interhemispheric 

communication could be an early compensatory change in MS and PD.  

3.4.2 Interhemispheric connectivity predicts cognitive performance  

In addition to the finding of overall interhemispheric connectivity, we have also demonstrated that 

altered functional interhemispheric connectivity closely reflects performance on cognitive tests, 

namely the SDMT and PASAT in MS (Figures 3.4 & 3.5). Interestingly, even when we used a 

sparsity constraint on the regression in order to see if only a few interhemispheric connections 

were important for SDMT and PASAT performance, we still found several ROI pairs were 

required for accurate prediction of cognitive performance. Thus both SDMT and PASAT 

performance appear to rely on widespread interhemispheric connectivity. Nevertheless, some 

cortical regions, which showed positive and high weightings with SDMT and PASAT, had greater 

influence on predicting cognitive scores such as the insula, frontal areas, temporal areas, anterior 

cingulate cortex, supramarginal areas, and parietal/occipital regions. Many of these areas are 

considered “hub” regions in distributed brain networks and reflect critical waypoints for 
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information transfer [Achard et al., 2006; Hagmann et al., 2008; van den Heuvel and Sporns, 

2011], playing an important role in maintaining connectivity and information integration (a key 

aspect of cognition) in anatomically segregated brain networks. Since hub regions underline 

numerous aspects of cognition, we believe that these interhemispheric connectivity pairs 

dramatically influence the cognitive processes which are involved in SDMT and PASAT 

performance. In addition, it has been suggested that hub regions may be particularly sensitive to 

functional disruption [Hagmann et al., 2008; van den Heuvel and Sporns, 2011], which is perhaps 

another reason why both SDMT and PASAT are sensitive measures of cognitive dysfunction in 

MS. Among the clinical tests, LCVA did not show significant association with interhemispheric 

connectivity compared to other tests, suggesting that vision problems are less likely to impact 

interhemispheric connections in our cohort. The results further emphasize the importance of 

interhemispheric connectivity in cognition. 

In PD, unfortunately, due to sample size, we did not have enough results to probe whether 

interhemispheric connectivity could accurately predict cognitive function, however, we do not 

necessarily exclude this possibility. In fact, studies which evaluate structural interhemispheric 

connectivity have shown associations between worsening cognitive function and reduced white 

matter integrity of interhemispheric fiber tracts in parkinsonism [Fling et al., 2016]. In an MEG 

study, cognitive symptoms were related to increased interhemispheric connectivity of alpha 

frequency estimated by synchronization likelihood in newly-diagnosed PD patients [Stoffers et al., 

2008]. Taken together, both structural and functional interhemispheric connectivity show relations 

with cognitive functions in PD and related disorders to certain degree; however, more research on 

the effects of interhemispheric connections to cognition in PD is needed to draw a firm conclusion.    
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3.4.3 Sensitivity of interhemispheric connectivity to different cognitive tests  

Although both PASAT and SDMT are clinically used for investigating cognitive deficits in MS, 

numerous studies have reported the SDMT to be a more sensitive, valid and reliable measure than 

the PASAT [Drake et al., 2010; Langdon et al., 2012; Parmenter et al., 2007; Sonder et al., 2014; 

Strober et al., 2009]. Indeed, we found a very strong correlation between SDMT and 

interhemispheric connectivity measures (Figure 3.4), consistent with prior studies suggesting 

SDMT is more strongly associated with MRI measures [Benedict et al., 2006]. With the elastic net 

regression, we show that connectivity is important between frontal pole, temporal pole, insula, 

amygdala, superior temporal cortex, parietal and occipital regions, and posterior parietal cortex for 

SDMT performance (Figure 3.5), which are partially consistent with previous studies showing that 

parietal areas play a role in SDMT as well as frontal areas and occipital regions [Forn et al., 2011]. 

The other regions that we found, such as temporal pole, insula, amygdala, and superior temporal 

cortex have not been mentioned in previous studies. We suspect that these regions act as mediators 

in information communication between frontal and parietal areas for a short time, which cannot be 

observed by the methods used in previous studies. In contrast, performance on PASAT may require 

information coordination between frontal, parietal regions, and the cerebellum since activation 

patterns mainly locate within one hemisphere among these regions [Forn et al., 2011], which will 

not be captured by the interhemispheric connectivity measures examined here but shall be 

encapsulated in long-range connectivity.   

3.4.4 Altered long-range connections  

As Chapter 1 hypothesized, cortico-to-cortical long-range connections, which are important for 

executive function, are impaired in neurological disorders. We have shown that the connections 
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which significantly distinguish MS and HC were cross hemispheric connections and long-range 

connections primarily connecting frontal, temporal, parietal, and occipital regions as shown in 

Figure 3.6. Interestingly, such connectivity pattern was correlated with PSAST but not SDMT 

performance (Appendices B.3), supporting the idea in the section 3.4.3 that PASAT performance 

may require coordination between frontal, parietal, cerebellar regions (i.e. long-range connections) 

more than SDMT performance. On the other hand, in PD, connections which primarily linked the 

middle frontal gyrus and caudate were significantly different between PD on and off medication 

states. This connectivity pattern is partially consistent with the output component mentioned in 

Chapter 1 and the frontostriatal circuits in the PD literature. Due to the fact that the PD subjects 

we assessed were mild and not cognitively impaired (average MoCA>26), perhaps long-range 

connections between frontal, parietal, and occipital regions were less impaired compared to the 

MS cohort. In addition, given that PD patients demonstrate cognitive inflexibility and such deficit 

has been linked to neuronal activity [Cools et al., 2001; Lange et al., 2017], rsFC might be less 

flexible as well, which cannot be captured in the current analysis. Instead, time-varying approaches 

are able to detect temporal changes of rsFC and estimate dynamic functional connectivity. This 

aspect in PD will be discussed in a later chapter.       

3.5 Limitation  

We emphasized ROIs associated with higher order cognition based on the previous clinical 

literature, and thus would not detect other types of connectivity disruption affecting lower 

cognitive domains such as vision. Moreover, as mentioned in section 3.2, the original study goals 

of two projects were different so the selected ROIs were not the same, which causes some difficulty 

in directly comparing results between two disease populations. In a future study, ROI selection 
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could be more consistent. In addition, here we aimed to study cortical connectivity so some 

subcortical regions, which might be important for high order cognition, were not included. 

Therefore, our data were not sufficient to investigate cortico-striatal loops in MS for example. Due 

to the study design, we did not administer a comprehensive neuropsychological test battery to 

examine all cognitive domains. Therefore, the results only represent the cognitive tests which have 

been commonly used in clinical trials and clinical screening. Nonetheless, the PASAT and SDMT 

are well validated, sensitive and widely used measures of cognition in neurological disorders and 

inclusion of these measures allows us to compare to previous imaging and cognition studies. Future 

studies should seek to determine interhemispheric connectivity across a wide range of cognitive 

domains. While we made attempts to prevent overfitting, including cross-validation, more subjects 

would enhance the robustness of our results. In addition, the patients were not recruited based on 

cognitive impairment so our results might not be representative of neurological disease cohorts 

with severe cognitive problems. Finally, fMRI feature selection for assessing relations between 

rsFC and cognitive functions remains challenging. Including too few features may lead to 

insufficient information for brain-behaviour analysis, but having too many features often causes 

overfitting in neuroimaging research. How to extract informative rsFC characteristics has become 

an important need. Several methods have been proposed to summarize rsFC patterns such as graph 

theoretical analysis and other advanced network approaches [Fornito et al., 2013; Rubinov and 

Sporns, 2010]. These approaches will be discussed in the following chapters.      

3.6 Conclusion  

This study emphasizes the importance of intact functional interhemispheric connectivity in MS 

and PD, particularly with respect to cognitive performance. We have demonstrated the 
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characteristics of interhemispheric connectivity in neurological conditions and healthy controls: 

these connections are enhanced and become more homogeneous in patients. Furthermore, in MS, 

SDMT and PASAT scores were robustly correlated with interhemispheric connectivity. 

Exploratory analysis revealed that long-range connections were altered in MS and such 

connectivity pattern was related to PASAT performance; while the connections between the frontal 

and caudate regions distinguished PD on and off medication states but were not related to any 

clinical scores. The results may potentially benefit the development of novel treatments for 

cognitive deficits in neurological disorders: targeting interhemispheric connections (as well as 

long-range connections) and providing cognitive training may help with maintaining normal 

cognitive functioning.   
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Chapter 4: Brain organization and executive function   

In this chapter, graph theoretical analysis is carried out to investigate the brain organization in PD 

and MS, which includes functional integration, functional segregation, and hub structures. 

Moreover, correlation and regression analyses are implemented to explore the relations between 

brain organization, cognitive performances, and disease severity in both neurological populations. 

A simple analysis is conducted to test the reproducibility of these graphical measures.    

 

4.1 Introduction  

4.1.1 Connections and networks of rsFC and the relations to cognition  

Many neuroimaging studies attempt to link cognitive deficits and functional connectivity (FC) at 

rest. Impaired corticostriatal connectivity resulting in decreased integration among the striatum, 

mesolimbic cortex, and sensorimotor cortex has been associated with some non-motor symptoms 

in PD such as mental “rigidity” [Luo et al., 2014]. Overall global cognitive performance in PD is 

shown to be associated with decreased FC in widespread regions including the paracentral lobe, 

superior parietal lobe, occipital regions, inferior frontal gyrus, and superior temporal gyrus [Olde 

et al., 2014]. Weakened FC in the frontoparietal network has been shown to be related to worsening 

executive function in PD with mild cognitive impairment (MCI) [Amboni et al., 2014a]. Therefore, 

it is speculated that not only the frontostriatal connections but whole-brain altered connectivity 

contributes to cognitive deficits in PD.  
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In MS, decreased connectivity indicates that cortical regions fail to integrate information in 

resting-state networks (RSNs) derived from independent component analysis (ICA), especially the 

medial prefrontal cortex and posterior cingulate cortex in the default mode network (DMN), and 

has been associated with worsening executive function in cognitively impaired patients [Cruz-

Gómez et al., 2014; Louapre et al., 2014]; however, another study which calculated whole brain 

Pearson’s r matrices reported that increased functional coupling of rsFC within the DMN regions 

was related to worsening cognitive efficiency, which was measured by several tests reflecting 

executive function [Hawellek et al., 2011b]. With a seed-based approach, increased functional 

connectivity between “cognitive hubs” and the cerebellum, middle temporal gyrus, occipital pole, 

and angular gyrus was associated with better performance of executive ability, but this study 

focused on limited brain regions and may neglect ROIs which are not mentioned in the traditional 

psychology literature [Loitfelder et al., 2012].   

4.1.2 Graphical measures and cognition  

One of the strategies to characterize the whole brain FC is to apply graph theory analysis to 

summarize the overall network of connections between Regions of Interest (ROIs). These network 

characteristics summarize the whole brain FC globally and locally in terms of functional 

integration, segregation, and core/hub structures [Rubinov and Sporns, 2010; Sporns, 2013]. 

Several network measures have been linked to human intelligence and cognitive functions in 

healthy subjects [Cohen and D’Esposito, 2016; Pamplona et al., 2015]. In PD, regions in the 

orbitofrontal regions and occipital pole show decreased node degree (i.e. fewer numbers of 

connections to/from a given region); while superior parietal, posterior cingulate cortex, 

supramarginal, and supplementary motor areas have increased node degree [Göttlich et al., 2013]. 
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Baggio et al. [Baggio et al., 2014] discovered reduced FC in long-range connections (i.e. 

connections between frontal, occipital, and parietal areas) in both PD and PD with MCI; while 

increased graph theoretical measures such as clustering coefficient, local efficiency, and 

modularity in the frontal areas were negatively correlated with attention/executive scores in PD 

with MCI, possibly as compensation/adaptation for impairments in long-range connections. 

Patients with MS exhibit reduced global efficiency, node degree, centrality, and increased path 

length on average compared to normal controls, demonstrating altered rsFC in network 

organization as well as implying inefficient information transfer in the brain in MS [Rocca et al., 

2016a]. Another study found that only local measures (local efficiency and clustering coefficient 

in the left insula, inferior frontal areas, and cuneus) were decreased in MS, but these alterations 

did not show any associations with cognitive scores in a correlation analysis [Shu et al., 2016]. In 

addition, an article concluded that increased modularity of rsFC in early stage MS, which 

represented diminished functional integration, was correlated with worse performance in a dual 

task [Gamboa et al., 2014]. Overall, although there are minor discrepancies between studies, 

research with graph theory implies that rsFC in MS is more segregated and may be less efficient 

to support complex cognitive tasks. 

4.1.3 Hub structures and cognition  

Previous work has suggested that “hub regions” may be particularly vulnerable to 

neurodegenerative processes [Crossley et al., 2014]. In healthy subjects, the insula and several 

frontal regions such as the superior frontal gyrus act as hubs and may facilitate cognitive processes 

to an even greater extent than the caudate [Baggio et al., 2015; van den Heuvel and Sporns, 2013]. 

In PD, there is a tendency of failure in hub regions and non-hub regions become more important 
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than that in healthy subjects [Koshimori et al., 2016]. Reduced importance of normal hubs in the 

frontal areas and increased importance of non-hub regions in other cortices has been observed in 

PD with MCI [Baggio et al., 2014]. In PD, the insula may be less likely to act as a hub, but there 

may be an enhanced role of the caudate as a hub [Koshimori et al., 2016]. This altered brain 

organization may indicate that the disease first impairs hubs that are important for cognition, 

resulting in cognitive dysfunction in PD.  

On the other hand, in MS, decreased importance in sensorimotor and ventral stream regions has 

been related to higher disease severity and poor cognition, respectively [Schoonheim et al., 2013]. 

In MS with MCI, increased connectivity in the DMN and frontoparietal network, which engage 

many hub regions, is correlated with worse cognitive performance, stating that cognitive 

impairment affects distributed communication between non-hub regions in “hub-rich” networks 

[Meijer et al., 2017].           

4.1.4 Study aims 

In this study, we aimed to investigate 1) functional connectivity changes in PD and MS subjects 

measured by graph theory analysis, and 2) how cognition is associated with altered graphical 

measures in PD and MS. Instead of only investigating FC in specific circuits such as the 

frontostriatal loops, we studied whole-brain connectivity and characterized it by graph theory 

measures. Finally, we utilized correlation analyses to explore the associations between FC and 

cognitive profiles and performed regression analyses to predict behavioural outcomes.   

Advanced network analyses have been increasingly conducted and applied to clinical 

neuroimaging research. As there is a growing trend to include these measures in rsfMRI studies, 
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reproducibility of such features needs to be addressed. Some studies have shown that several 

graphical measures demonstrate high reliability and reproducibility such as global efficiency, path 

length, and clustering coefficient among others [Braun et al., 2012; Shah et al., 2016; Telesford et 

al., 2010]. We also conducted a simple analysis to test whether these graphical measures were 

reproducible across scans.      

4.2 Materials and methods  

4.2.1 Subjects and behavioural data 

Eleven healthy subjects (mean age: 25.7±3.6, 4 females, 7 males, all with university education 

level) were recruited to test the reproducibility of advanced network measures. None of these 

subjects showed neurological or psychiatric conditions. 

The PD data are from the Parkinson's Progression Marker Initiative (PPMI) and MS data are from 

the COGMS project -- the same as chapter 2. Only a subset of MS subjects were used to ensure 

that the healthy subjects used for comparison were age-matched healthy subjects.   

Thirty-one PD patients who enrolled in the PPMI were included in this study. Detailed descriptions 

are provided in section 2.2.1. For imaging analysis, twenty-three subjects were included as 8 

subjects had excessive imaging and motion artifacts and they were removed from the analysis. 

Only one subject in the final cohort showed MCI. For comparison, nineteen age-matched healthy 

subjects (HS) were recruited in this study through Pacific Parkinson’s Research Centre at UBC 

Hospital. None of the HS showed cognitive impairment screened by MoCA. Ethics approval was 

issued by the University of British Columbia's Research Ethics Board and all subjects provided 
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written, informed consent. Table 4.1 shows the demographical characteristics of PD and HS 

subjects.     

Forty-six Relapsing-Remitting Multiple Sclerosis (RRMS) patients were included in the study and 

all the subjects underwent both cognitive testing and MRI scanning. Demographics are shown in 

Table 4.2. A subset of MS subjects and age-matched normal controls (NC) with university 

education were included for comparison purposes (18 MS and 15 NC, mean age±SD in MS/NC: 

32.00±4.93/28.93±5.00) (Table 4.2). All patients fulfilled the McDonald 2005 criteria [Polman et 

al., 2005] for the diagnosis of MS and were recruited from the MS clinic at the University of British 

Columbia Hospital. Exclusion criteria included: 1) subjects with significant depression and/or 

other psychiatric illness, 2) history of drug or alcohol abuse, or 3) use of steroids in the last 3 

months. 

After the exclusions for movements and imaging artifacts, the final PD cohort included 23 subjects 

and 19 healthy controls. The data were used in both measure comparison and brain-behaviour 

analysis. The final MS cohort included 46 MS subjects for brain-behaviour analysis. For measure 

comparison, a subset of the MS subjects were chosen (18 subjects) and 15 healthy controls were 

included in order to be age-matched.     

 Parkinson’s subject (mean±SD) healthy subject (mean±SD) 

demographics & clinical data   
  gender  10 females/13 males 9 females/10 males 

  age b  61.04±9.8 56.12±16.9 

  UPDRS b 16.96±11.2 no data 

  depression b 5.17±1.1 no data 

  education in years b 17.17±2.8 no data 

cognitive scores    

  MOCA b 27.48±2.2 27.39±1.6a 

  BJLOTOT b 25.30±4.2 no data 
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  HVLTTOT b 23.09±5.8 no data 

  HVLTDELAY b 8.39±2.7 no data 

  DVT-HVLTTOTAL b 44.70±15.4 no data 

  DVT-HVLTDELAY b 49.00±16.0 no data 

  DVT-HVLTRETENTION b 49.61±13.0 no data 

  LNS-RAW b 10.74±2.6 no data 

  SFCOM b 48.22±10.6 no data 

  SFVEG 13.74±3.9 no data 

  SFANI 21.52±4.9 no data 

  SFFRU 12.96±4.1 no data 

  SDMT b 41.57±9.3 no data 

Table 4.1 Demographics, clinical data, and cognitive scores in PD and HS.  

[UPDRS = Unified Parkinson's Disease Rating Scale, MOCA = Montreal Cognitive Assessment, BJLOTOT = 

Bento Line Orientation Total Score, HVLTTOT = Hopkins Verbal Learning Test-Revised Total Score, 

HVLTDELAY = HVLT Delayed Recall Score, DVT-HVLTTOTAL = standardized HVLT Total Score, DVT-

HVLTDELAY = standardized HVLT Delayed Recall Score, DVT-HVLTRETENTION = standardized HVLT 

Recognition Trial Score, LNS-RAW = raw Letter-Number Sequencing Test Score, SFCOM = Sematic Fluency 

Test – combination, SFVEG = Sematic Fluency Test – vegetable trial, SFANI = Sematic Fluency Test – animal 

trial, SFFRU = Sematic Fluency Test – fruit trial, SDMT = Symbol Digit Modalities Test]  

a: one data point is missing  

b: the tests that were included in brain-behaviour analysis 

 

 46 MS subjects 

(mean±SD) 

18 MS subjects 

(mean±SD) 

15 NC subjects 

(mean±SD) 
Age 42.89±10.9 32.00±4.9 28.93±5.0 

Gender 13 males/33 females 3 males/15 females 7 males/8 females 

EDSS 2.47±1.8 1.63±1.5 no data 

Education (years) 14.80±2.5 15.67±2.5 18a 

Disease Duration 

(years) 

11.45±8.7 5.46±3.8 no data 

Table 4.2 Demographics in MS and NC.  

a Due to many missing data points, 18 is an estimated number.   
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The neuropsychological assessments in PD and MS have been described in section 2.2.2. Detailed 

cognitive scores of 46 MS subjects are shown in Table 2.2. Overall, attention, executive function, 

visuospatial ability, and memory domain were evaluated in PD and 14 behavioural scores were 

included in brain-behaviour analysis as indicated in Table 4.1. Attention, executive function, 

processing speed, and working memory domains were assessed in MS and 14 behavioural scores 

were included in brain behaviour analysis such as age, education, EDSS, disease duration, 

Working Memory Index (WMI), Processing Speed Index (PSI), Verbal Fluency Test (FAS), 

Wisconsin Card Sorting Test Complete Categories (WCST-CC), transformed Trail-Making-Test 

A and B (tTMTA/B), Multiscale Depression Inventory (MDI), State-Trait Anxiety Inventory State 

(STAIS), State-Trait Anxiety Inventory Trait (STAIT), and Fatigue Severity Scale (FSS).  

4.2.2 Imaging acquisition  

For testing the reproducibility, three resting state fMRI (rsfMRI) sessions were scanned 

continuously  on a Philips Achieva 3.0 Tesla MRI scanner with an echo-planar imaging (EPI) 

sequence with the following parameters: 3×3×3 mm3 resolution, 36 slices, 2000 ms Repetition 

Time (TR), 30 ms Echo Time (TE), 90 degrees flip angle, and 240 volumes/dynamics (8 minutes 

in total). 3 Dimensional (3D) T1 weighted images were acquired with 1×1×1 mm3 resolution, 60 

slices, 28 ms TR, 4 ms TE and 27 degrees flip angle. 

In PD subjects, a standardized MRI protocol on a 3 Tesla Siemens Trio Tim MR system was used. 

3D T1-weighted structural images were acquired using MPRAGE GRAPPA sequence with TR 

2300 ms, TE 2.98 ms, Field of View (FoV) 256 mm, and resolution 1x1x1 mm3. RsfMRI images 

were acquired using echo-planar imaging (EPI) to detect Blood Oxygenation Level Dependent 

(BOLD) contrast with 212 volumes, 40 slices in ascending direction, TR 2400 ms, TE 25 ms, FoV 
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222 mm, and resolution 3.3×3.3×3.3 mm3. All HS subjects underwent imaging scans in MRI 

research centre at UBC Hospital with a Philips Achieva 3.0 Tesla MRI scanner. 3D T1-weighted 

images were acquired with TR 8 ms, TE 4 ms, FoV 256 mm, and resolution 1×1×1 mm3. RsfMRI 

data were acquired with EPI sequence and the following parameters: 186 volumes/dynamics, 36 

slices in interleaved direction, TR 2500 ms, TE 30 ms, FoV 240 mm, and resolution 3×3×3.97 

mm3.  

Both MS and NC subjects underwent imaging studies at the University of British Columbia (UBC) 

MRI Research Centre. Resting-state functional MRI (rsfMRI) data were acquired using an 8 

channel head coil and an EPI sequence with the following parameters: 3×3×3 mm3 resolution, 36 

slices, 2000 ms TR, 30 ms TE, 90 degree flip angle, and 240 volumes/dynamics. 3D T1 weighted 

images were acquired with 1×1×1 mm3 resolution, 60 slices, 28 ms TR, 4 ms TE and 27 degree 

flip angle.  

During rsfMRI scan, all subjects were instructed to rest quietly with their eyes closed and not to 

fall asleep. 

4.2.3 Preprocessing  

The preprocessing steps were the same as chapter 3. Image preprocessing steps were performed in 

each subject’s native space with the functions of slice timing and motion correction from Statistical 

Parametric Mapping 8 (SPM8, University College London, London) for correcting temporal and 

spatial differences. For registration, the FMRIB's Linear Image Registration Tool (FLIRT) from 

the FMRIB Software Library 6.0 (FSL, FMRIB, Oxford) was used and a brain mask was applied 

to remove non-brain areas before registration. Moreover, fMRI images were rescaled to isotropic 



96 

 

using a self-programmed script in Matlab (The MathWorks, Inc.), so all fMRI data were 3×3×3 

(MS and all healthy subjects) and 3.3×3.3×3.3 (PD subjects) mm3 resolution. Cortical parcellation 

of the high-resolution T1 image was done in Freesurfer (Massachusetts General Hospital, Boston, 

Boston). Human motor association area template (HMAT) was implemented in order to define the 

ROIs that are specifically related to human motor function [Mayka et al., 2006]. For the test of 

reproducibility, thirty-six cortical ROIs were selected as the purpose was to quickly examine 

network measures initially. For studies in PD and MS, sixty-eight cortical and subcortical ROIs 

were included for connectivity analysis. We considered as many cortical regions as possible but 

excluded the ROIs that may have a poor signal-to-noise ratio (SNR) in fMRI due to partial volume 

effect such as the frontal pole, temporal pole, etc. Table 4.3 lists these 68 ROIs. A brain mask was 

applied before registration to remove non-brain tissue and we registered the structural image to the 

mean fMRI image. The same transformation was subsequently applied to the ROI mask in order 

to obtain the ROIs in fMRI resolution. The ROIs acted as masks to determine the appropriate 

voxels making up the average ROI time courses. Finally, the fMRI time courses of selected ROIs 

were extracted using in-house scripts in Matlab and the data were detrended before connectivity 

analysis. Subjects who had translational and rotational head movements during data acquisition of 

more than 2 mm and 2 degrees respectively were excluded.  

4.2.4 Functional connectivity analysis  

In the 11 healthy subjects, binary Pearson’s r correlation matrices were created to form the 

undirected/unweighted “edges” and the 36 ROIs acted as the “nodes”. The Brain Connectivity 

Toolbox (https://sites.google.com/site/bctnet/) [Rubinov and Sporns, 2010] was used to calculate 

graphical measures including global efficiency, assortativity, characteristic path length, density, 
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information flow coefficient, modularity, and rich-club coefficient, which were commonly used in 

clinical research. Table 4.4 describes the definition of the graphical measures used in this chapter. 

Repeated measure ANOVA (rmANOVA) and was applied to test whether these measures were 

significantly different across three scans and coefficient of variation (COV) (standard deviation 

divided by the mean) was calculated to evaluate the variance across time.   

Bilateral ROIs 

thalamus middle temporal gyrus 

pallidum superior temporal gyrus 

caudate superior occipital gyrus 

hippocampus fusiform gyrus 

amygdala lingual gyrus 

insula inferior parietal gyrus 

accumbens postcentral gyrus 

superior frontal gyrus posterior cingulate cortex 

rostral middle frontal gyrus precuneus 

caudal middle frontal gyrus superior parietal gyrus 

inferior frontal gyrus angular gyrus 

lateral orbitofrontal cortex supramarginal gyrus 

medial orbitofrontal cortex cerebellum cortex 

caudal anterior cingulate cortex primary motor cortex 

rostral anterior cingulate cortex supplementary motor area 

entorhinal pre supplementary motor area 

inferior temporal gyrus  

Table 4.3 68 ROIs are used in the PD and MS studies. 

 

 Measures Definition 

global 

measures 

global efficiency 
the average inverse shortest path length in the network (measure of 

integration) 

transitivity 
the ratio of triangles to triplets in the network (measure of 

segregation) 

modularity 
it quantifies the degree to which the network may be subdivided into 

clearly different groups (measure of segregation) 
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assortativity 

correlation coefficient between the degrees of all nodes on two 

opposite ends of a link (nodes link to other similar nodes, measure of 

resilience) 
characteristic path 

length 

the average shortest path length in the network (measure of 

integration) 

rich club 

coefficient 

the fraction of edges that connect nodes of degree k or higher out of 

the maximum number of edges that such nodes might share (in this 

study k = 6 in PD & 10 in MS) 

local 

measures 

betweenness 

centrality 

the fraction of all shortest paths in the network that contain a given 

node (measure of centrality/hub) 

local efficiency 
the global efficiency computed on the neighborhood of the node 

(measure of segregation) 

Table 4.4 Definitions of the graphical measures used in this study.  

 

In PD and MS studies, partial correlation analysis was conducted to generate a connectivity matrix 

for each subject, which resulted in a 68-by-68 matrix. The Brain Connectivity Toolbox (BCT) 

[Rubinov and Sporns, 2010] was used to compute graph theoretical measures. The partial 

correlation matrix was proportionally thresholded and binarized with the density of 15% to ensure 

equal density across subjects [van den Heuvel et al., 2017]. For global measures, global efficiency, 

transitivity, modularity, assortativity, characteristic path length, rich club coefficient (for PD, it 

was at level 6, which is the highest degree that did not give a Not-a-Number (NaN) across subjects 

due to matrix sparsity; for MS, it was at level 10) were computed [Fornito et al., 2016; Rubinov 

and Sporns, 2010]. These global measures summarized network characteristics of the entire brain 

network. For local measures, betweenness centrality and local efficiency were computed [Fornito 

et al., 2016; Rubinov and Sporns, 2010], which reported nodal characteristics in the network. Two 
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sample t-tests were carried out to test whether graph theoretical measures were significantly 

different between patient and control groups.  

4.2.5 Brain-behaviour analysis  

Several approaches were applied to study the brain-behaviour relationship (i.e. associations 

between graph theory measures and cognitive scores) in PD and MS studies only.  

First, we utilized Spearman’s correlation analysis exploring whether individual cognitive tests 

were correlated with graph theoretical measures in PD and MS. The correlation analyses were 

carried out on all the global measures against raw cognitive scores from individual tests. For local 

measures, only ROIs that showed significant differences in t-tests were included in the analyses. 

The local measures of these ROIs were included to correlate with raw cognitive scores. Bonferroni 

correction was applied to correct for multiple comparisons. Of note, only composite scores were 

included in the brain-behaviour analysis as these scores were representative for cognitive domains. 

For example, only WMI and PSI were included rather than all subscores of WAIS IV.   

Linear regression was carried out on all global measures against cognitive scores. In other words, 

all global measures were concatenated in a matrix and acted as predictors, while each cognitive 

score was the response variable. The p values of the linear regression model and R-squared values 

between real and predicted cognitive scores were reported. Finally, we performed LASSO 

regression on local measures (predictor data) with 10-fold cross validation to select the nodal 

values which contributed to individual behavioural scores (the responses). The regression 

coefficients for such LASSO model were then included in a linear regression to “predict” 

behavioural scores. At this stage, all calculations were done with all the subjects as a whole without 
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separating data into training and testing data sets; therefore, we referred the findings as “regression 

results”. Results with R-squared higher than 0.5 were considered good results and p values were 

reported. This preliminary approach allowed selection of variables between graphical measures 

and cognitive scores. Finally, we repeated such processes with training and testing data sets to 

precisely predict the behavioural outcomes in a leave-one-out fashion, which were referred as 

“prediction results”.        

4.3 Results  

4.3.1 Reproducibility  

None of the graphical measures showed significant differences among the three fMRI sessions (pr 

> 0.05 in all measures, Figure 4.1). Moreover, COV of most of the measures derived from three 

fMRI sessions demonstrated similar values except the measures that were non-Gaussian 

distributed (Table 4.5). The results indicate that these measures are reproducible across scans. 

 

Figure 4.1 rmANOVA results of graphical measures across 3 fMRI sessions 
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Graphical Measures 1st fMRI 2nd fMRI 3rd fMRI 

global efficiency  42.7% 29.4% 43.2% 

assortativity 70.3% # 70.3% # 61.6% # 

characteristic path length 33.4% 29.4% 32.3% 

density 17.8% 16.2% 16.5% 

information flow coefficient  31.5% 28.4% 30.2% 

modularity  6.8% 3.9% 9.6% 

rich club coefficient  36.4% * 31.1% * 18.8% 

Table 4.5 COV of all graphical measures across fMRI sessions. 

* not Gaussian  

# take absolute values 

 

4.3.2 Parkinson’s Disease  

4.3.2.1 Graphical measures  

None of the global graph theoretical measures were different between PD and HS, however, 

several ROIs showed altered local efficiency and betweenness centrality. Figure 4.2 left panel 

shows the average connectivity patterns in PD on a brain template. Color-coded connections 

indicated the connectivity within the ROIs that distinguish PD and HS. Figure 4.2 right panel 

presents the local measures in PD on a ring diagram. The right hippocampus, left supramarginal 

gyrus, left pre-motor cortex, left middle temporal gyrus, right entorhinal cortex, left postcentral 

gyrus, left amygdala, left angular gyrus, and right postcentral gyrus demonstrated higher local 

efficiency in PD (p<0.05, uncorrected) (Figure 4.2, Appendices C.1), indicating that functional 

connectivity was more segregated in PD. Figure 4.3 left panel highlights the connections that 

differentiate PD and HS. Figure 4.3 right panel demonstrates local measures in HS ranked by 

betweenness centrality in a ring diagram and color-coded the ROIs that were significantly different 
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between two groups. These ROIs showed lower betweenness centrality in PD such as the left 

superior frontal gyrus, bilateral superior parietal cortices, left middle temporal gyrus, and right 

inferior frontal gyrus; while the right accumbens area and right pallidum exhibited higher 

betweenness centrality in PD (Figure 4.3, Appendices C.1). The changes of betweenness centrality 

in PD indicated an altered hub organization, where important nodes lost significance and the nodes 

with a less central role have become more important. However, the results did not survive for 

multiple comparison. Appendices C.2 shows another analysis with logistic LASSO to indicate that 

graphical measures can be clearly separated into PD and HS groups.  
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Figure 4.2 Local graphical measures in PD. (left panel) Partial correlation connectivity patterns with the 

6.32th percentiles (strongest 144 connections) are shown in PD. The orange connections indicate the 

connectivity within the ROIs that present higher local efficiency in PD. (right panel) Local efficiency (red 

bars) and betweenness centrality (black bars) of each node ranked by local efficiency are shown in a ring 

diagram. Bold font size indicates the regions that show higher local efficiency in PD (p<0.05). The figure is 

derived from NeuroMArVL (http://immersive.erc.monash.edu.au/neuromarvl/). 
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Figure 4.3 Local graphical measures in HS. (left panel) Partial correlation connectivity patterns with the 

6.32th percentiles (strongest 144 connections) are shown in HS. The orange connections indicate the 

connectivity within the ROIs that distinguish PD and HS with higher betweenness centrality in PD; while 

the blue ones represent the connections between the ROIs that differentiate two groups with decreased 

betweenness centrality in PD. (right panel) The ring diagram presents betweenness centrality (black bars) 

and local efficiency (red bars) of each node ranked by betweenness centrality. Bold and bigger font size 

indicates the regions that are significantly different between two groups (p<0.05). Except the right pallidum 

and accumbens, all the regions with bold font show lower betweenness centrality in PD. The figure is derived 

from NeuroMArVL (http://immersive.erc.monash.edu.au/neuromarvl/) 
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4.3.2.2 Brain-behaviour association  

In the Spearman’s rank correlation analysis, only raw Symbol Digit Modality Test (SDMT) scores 

were significantly correlated with global efficiency and characteristic path length (p = 0.002 and 

rs = -0.6, p = 0.002 and rs = 0.61, respectively, survive for Bonferroni correction with 14 tests were 

run) (Figure 4.4). Higher global efficiency was related to lower SDMT scores; while higher 

characteristic path length (which is the inverse measure of global efficiency) was associated with 

better performance. Overall, correlation results indicated that only specific network measures were 

correlated with the performance of certain cognitive tests. No significant associations were found 

in local measures.  

 

Figure 4.4 Spearman’s correlation between cognitive scores and graphical measures in PD. Spearman's 

correlation shows that SDMT is negatively correlated with global efficiency and positively correlated with 

characteristic path length. These correlations survive for Bonferroni correction.  

[SDMTTOT: Symbol Digit Modalities Test total scores, chapath: characteristic path length]  
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With all global measures as predictors and individual behavioural scores as responses, linear 

regression did not reveal any significant models for PD. While performing LASSO on local 

measures to predict behavioural outcomes, the models were over-fitted as there were 23 

observations but 68 features in one model even the processes were carried out in leave-one-out 

fashion. Therefore, we were unable to report results for regression and prediction analysis in PD. 

However, with a multivariate approach, better cognitive performance was related to higher 

modularity and transitivity. The analysis and details are shown in Appendices C.4. 

4.3.3 Multiple Sclerosis  

4.3.3.1 Graphical measures  

None of the global and local measures showed significant differences between MS and NC.  

4.3.3.2 Brain-behaviour association 

In the Spearman’s rank correlation analysis, only the performance of the Verbal Fluency Test 

(FAS) was significantly correlated with modularity in MS (r= 0.49, p=0.001, survived for 

Bonferroni correction with 14 tests as indicated in section 4.2.1) (Figure 4.5). Higher FAS score 

(better performance) was related to higher modularity (i.e. more segregated networks).  
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Figure 4.5 Spearman’s correlation between cognitive scores and graphical measures in MS. Spearman's 

correlation shows that FAS is positively correlated with modularity. Such correlation survives for 

Bonferroni correction.  

 

As none of the local measures demonstrate differences, we did not included either betweenness 

centrality or local efficiency in the Spearman’s rank correlation analysis. In linear regression, the 

model of all global measures against FAS appeared significant (p=0.04); however, only modularity 

demonstrated significant weighting (p=0.0038) and the predictability of this model was small (R-

squared=0.16). In other words, FAS was correlated with modularity, but modularity cannot 

accurately predict FAS in a linear regression.  

In the regression results of local measures, we discovered 6 models that demonstrated significant 

relations between LASSO-selected nodal measures and behavioural outcomes. Selected 

betweenness centrality exhibited significant relations with EDSS (p<0.001, R-squared=0.66), 
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MDITOT (p<0.001, R-squared=0.65), and transformed TMTB (p<0.001, R-squared=0.82) (Figure 

4.6, Table 4.5). Selected local efficiency showed significant relations with DD (p<0.001, R-

squared=0.77), PSI (p<0.001, R-squared=0.89), and STAIS (p<0.001, R-squared=0.77) (Figure 

4.6, Table 4.5). Furthermore, in the prediction results, whereby 23 training and 23 testing data sets 

were applied, 8 nodal measures of local efficiency accurately predicted EDSS with p=0.0078 and 

R-squared = 0.55 (Figure 4.7). These 8 nodal measures were the local efficiency of the following 

ROIs: left thalamus, left inferior frontal gyrus, left lateral orbitofrontal gyrus, left entorhinal cortex, 

right accumbens area, right lateral orbitofrontal gyrus, right primary motor cortex, and right 

supplementary motor area.    

 

Local 

measures 

LASSO-selected ROI (gyrus/cortex) 
Behavioural 

score 

Statistics 

betweenness 

centrality 

L caudal middle frontal, L rostral anterior cingulate, L 

inferior temporal, L middle temporal, L inferior parietal, L 

M1, R caudate, R lateral orbitofrontal, R middle temporal, R 

superior occipital, R superior parietal 

EDSS 

R2 = 0.66 

p=3.0e-

07 

betweenness 

centrality 

L inferior frontal, L lateral orbitofrontal, L superior temporal, 

L Lingual, L Angular, M1, R thalamus, R rostal middle 

frontal, R medial orbitofrontal, R inferior temporal, R 

superior occipital, R cuneus, R superior parietal, R 

supramarginal, R preSMA 

MDITOT 

R2 = 0.65 

p=7.7e-

06 
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betweenness 

centrality 

L Hippocampus, L rostral middle frontal, L lateral 

orbitofrontal, L middle temporal, L superior temporal, L 

cerebellum, L preSMA, R hippocampus, R superior frontal, 

R rostral middle frontal, R inferior frontal, R lateral 

orbitofrontal, R inferior temporal, R supramarginal 

transformed 

TMTB 

R2 = 0.82 

p=7.3e-

10 

local 

efficiency 

L thalamus, L hippocampus, L inferior frontal, L entorhinal, 

L cerebellum, L M1, R hippocampus, R accumbens, R 

superior frontal, R caudal middle frontal, R lateral 

orbitofrontal, R medial orbitofrontal, R rostral anterior 

cingulate, R entorhinal, R superior temporal, R lingual, R 

M1, R SMA 

disease 

duration 

R2 = 0.77 

p=2.1e-

07 

local 

efficiency 

L hippocampus, L inferior frontal, L medial orbitofrontal, L 

caudal anterior cingulate, L rostral anterior cingulate, L 

inferior temporal, L fusiform, L inferior parietal, L 

postcentral, L post cingulate, L angular, L supramarginal, L 

M1, L SMA, L preSMA, R caudate, R insula, R accumbens, 

R superior frontal, R lateral orbitofrontal, R rostral anterior 

cingulate, R fusiform, R lingual, R inferior parietal, R 

postcentral, R cuneus, R cerebellum 

PSI 

R2 = 0.89 

p=1.6e-

07 

local 

efficiency 

L hippocampus, L caudal middle frontal, L entorhinal, L 

superior temporal, L superior occipital, L fusiform, L 

angular, R thalamus, R pallidum, R caudate, R hippocampus, 

R amygdala, R superior frontal, R rostral middle frontal, R 

caudal anterior cingulate, R entorhinal, R middle temporal, 

R superior temporal, R inferior parietal, R postcentral, R 

preSMA 

STAIS 

R2 = 0.77 

p=3.3e-

06 
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Table 4.6 Regression results of local measures in MS. The table shows the statistical power to predict 

behavioural scores using the nodal measures selected by Lasso regression.  

[L: left hemisphere, R: right hemisphere, M1: primary motor cortex, preSMA: pre supplementary motor area, 

SMA: supplementary motor area, EDSS: Expanded Disability Status Scale, MDITOT: Multiscore Depression 

Inventory Total Scores, TMTB: Trail Making Test B, PSI: Processing Speed Index, STAIS: State-Trait Anxiety 

Inventory State] 

 

 

Figure 4.6 Regression results of local measures in MS. The LASSO-selected nodal measures are included in 

a linear regression to calculated scores and the predictability (p and R2 values) is reported.  
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Figure 4.7 Prediction results of local 

measures in MS. The 8 LASSO-selected 

nodal measures of 23 training data sets 

are included in a linear regression to 

predict behavioural scores in 23 testing 

data sets. 

 

 

4.4 Discussion  

Our results of reproducibility further support previous studies that have shown that graphical 

measures are robust observations for resting state functional connectivity. Although sophisticated 

statistical methods shall be implemented such Inter Class Correlation (ICC), our preliminary 

results reinforced the rationale of using graphical measures to study brain organization.   

4.4.1 Changes of brain organization  

Overall brain organization can be thought of as a balance between integration and segregation, in 

which the former facilitates information integration across the whole brain; while the latter enables 

information transfer within individual networks [Sporns, 2013]. This organization allows the brain 

to function in an economical way by reducing the wiring cost of linking anatomically segregated 

regions [Bullmore and Sporns, 2012]. In addition, hub regions – the cortical areas that play a 
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central role in the networks – support information integration in many cognitive functions as well 

as neuronal coupling between networks [van den Heuvel and Sporns, 2013]. These principles 

together maintain brain function and support cognition in healthy subjects; in the diseased brain, 

this delicate balance is altered and fails to sustain normal functioning [Crossley et al., 2014; Fornito 

et al., 2015; Stam, 2014].  

Some studies have reported altered functional organization measured by graph theory in PD. For 

example, PD with MCI presented increased measures of segregation such as modularity and 

clustering coefficient and these measures in the frontal areas were both negatively and positively 

correlated with cognition, meaning that functional connectivity in the frontal regions has become 

more segregated and failed to support cognitive functions [Baggio et al., 2014]. Although other 

studies reported decreased clustering coefficient and local efficiency [Luo et al., 2015a], which 

implied that FC might be less segregated, differences in methodology should be taken into account. 

Increased local efficiency has been observed in PD in another study, further suggesting that 

information transfer in PD is better within local sub-networks than at the global network level 

[Berman et al., 2016]. Furthermore, hub reorganization has been described, in which PD lost hubs 

but other non-hub regions became more important as compensation [Koshimori et al., 2016].  

Our results of local graph theoretical measures indicated increased segregation of rsFC in PD, 

consistent with the previous studies utilizing graph theory. As ROIs across temporal, occipital, 

parietal, motor association and sensory regions presented higher local efficiency in PD, we propose 

that functional connectivity of multiple regions in PD has become more segregated than that in 

HS. Interestingly, most of the ROIs that showed significant differences also had higher local 

efficiency in PD (Figure 4.2), implying that these regions played important roles in local networks 
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rather than global connectivity. We also observed hub changes in this cohort, which demonstrated 

decreased betweenness centrality (i.e. an index of hub and measures how important a given node 

is) in the ROIs that showed higher values than other regions. These ROIs have been previously 

defined as functional hubs, such as the superior frontal gyrus, superior parietal gyrus, middle 

temporal gyrus, and inferior frontal gyrus [van den Heuvel and Sporns, 2013] (Figure 4.3). 

Although the results were not apparent after controlling for multiple comparison, there was still a 

trend that these hub regions were affected compared to non-hub regions. In addition, as shown in 

Appendices C.3, with a more nuanced approach (i.e. Logistic LASSO), local measures can be 

clearly categorized into PD and HS groups, implying that collectively these nodal measures 

provide a robust way to distinguish between groups. Thus our findings are consistent with the 

vulnerability of hubs in neurological disease populations [Crossley et al., 2014; Stam, 2014]. Only 

two ROIs (the right accumbens and pallidum) in this PD population demonstrated increased 

betweenness centrality and these ROIs in HS showed the smallest values (Figure 4.3).  

The increase in connectivity in the right accumbens and pallidum that we observed is intriguing. 

The nucleus accumbens (NAc) receives dopaminergic projections from the ventral tegmental area 

(VTA) and substantia nigra (SN) regions and projects to several deep grey matter areas which 

include globus pallidus; therefore, the NAc has been hypothesized to be associated with the 

nigrostriatal and mesolimbic systems [Salgado and Kaplitt, 2015] and linked to reward behaviour 

[Knutson et al., 2007]. In PD, the NAc receives less dopamine projection from the VTA and SN 

and the globus pallidus receives output from the NAc, so the increased FC is perhaps surprising. 

The PD patients in this study were relatively mildly affected, and likely capable of a significant 
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amount of compensation. Thus NAc and pallidum may up-regulate their overall connectivity to 

maintain function.  

Unlike previous studies which reported changes in global measures such as modularity [Baggio et 

al., 2014], we did not observe differences in global indices. Again, as our cohort was relatively 

mildly affected, the limited damages in local regions might not be severe enough to impact global 

measures. Local FC might be more sensitive to pathological and physiological features and 

potentially serve as biomarkers than global measures at early disease stages. 

In our MS cohort, we did not find any graphical measures which were significantly altered. 

Although the sample size was relatively larger than that in our PD cohort, none of the MS subjects 

demonstrated cognitive impairments at the time of examination. Therefore, we suspected that the 

pathological damages were not severe enough to impact functional connectivity measured by 

graph theory. However, brain-behaviour analysis revealed some promising results (discussed in 

the following sections), which implied that even though there were no significant changes of brain 

organization, subtle alterations of graphical measures were informative of cognitive decline and 

disease severity.       

4.4.2 Reduced functional integration and increased functional segregation correlated 

with better cognitive performance  

The relations between FC, graph theoretical measures, and cognition have gained attention lately 

in network neuroscience and clinical studies. Several graphical measures have been associated 

with intelligence, working memory, and executive functions in healthy subjects [Cohen and 

D’Esposito, 2016; Pamplona et al., 2015; Reineberg and Banich, 2016], yet research in 
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neurological disorders has been limited to a few studies. With a correlation approach, a study 

reported that hub organization in PD was more related to dopaminergic medication dosage rather 

than cognitive functions [Koshimori et al., 2016]. Although the study did not rule out the 

associations between hubs and cognitive functions that a simple correlation method might not be 

able to catch, more sensitive statistical analyses are required to explore complex relations between 

cognition and FC. With a linear regression analysis, Baggio et al. discovered that increased local 

measures in PD with MCI, such as clustering coefficient, local efficiency, and modularity in the 

frontal areas, were correlated with worse attention and executive function [Baggio et al., 2014]. 

As previously mentioned in the introduction (section 4.1.2), some studies have proposed that 

function connectivity in MS is more segregated (i.e. reduced integration) compared to healthy 

subjects [Gamboa et al., 2014; Liu et al., 2017; Rocca et al., 2016a]; however, whether such 

segregated brain organization is related to any cognitive function remains unclear. Overall, in both 

PD and MS, more evidence of the associations between cognitive functions and FC is needed to 

underline the neural mechanism of cognition and how the disease affects behaviour.  

In this study, we only observed strong correlations between measures of integration (i.e. global 

efficiency and characteristic path length) and SDMT scores in PD with a correlation analysis. The 

performance of SDMT requires attention, processing speed, scanning abilities, and engages several 

brain regions including the occipital cortex, middle frontal gyrus, precuneus, superior parietal 

lobes, and cerebellum [Forn et al., 2011] and has been proven as a robust tool to detect cognitive 

impairments in healthy aging and neurological disorders [Alamri et al., 2017; Parmenter et al., 

2007; Sheridan et al., 2006]. Therefore, it would be reasonable to assume that higher functional 

integration is related to better SDMT performance. In fact, our results demonstrated the opposite 
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trend, whereby higher functional integration (i.e. higher global efficiency and lower characteristic 

path length, as they are inversely related) was related to poor performance of SDMT. Furthermore, 

as shown in Appendices C.3, with a multivariate approach we revealed that better cognitive 

function in several domains was associated with higher measures of functional segregation, 

supporting the results with the univariate method (i.e. correlation). Such paradoxical relations may 

be potentially due to disease effects, leading toward a more segregation-oriented brain organization 

in order to respond to cognitive demand. This is consistent with prior reports, demonstrating more 

segregated FC in frontal areas related to attention/executive function in PD [Baggio et al., 2014]. 

We suggest that “pathological resonance” in the basal ganglia–cortical network, previously 

described in PD [Eusebio et al., 2009], may result in excessive regional integration but overall 

global segregation.  

Although increased modularity in MS has been related to worse dual task performance [Gamboa 

et al., 2014], we, in fact, observed the opposite relation. Higher modularity, which implies a 

stronger subdivision into segregated groups of nodes, was correlated with better performance of 

verbal fluency test in our cohort. Such association asserted that the executive skills of 

spontaneously generating information according to rules are associated with brain regions 

subdividing into segregated groups in mild MS. Patient demographics could be a factor to explain 

these discrepancies between studies. First, the previous study [Gamboa et al., 2014] included both 

RRMS and clinically isolated syndrome (CIS) patients as they counted for “early stage of MS”. 

On the other hand, we only included RRMS in the study. Moreover, the sample size in our study 

is almost 6 times bigger (46 RRMS in our study, 8 RRMS in the previous study) than that in the 

previous research, which provides stronger statistical power to obtain robust results. Finally, 
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although the dual task included PASAT and a maze test, subjects were instructed to give priority 

to the PASAT. The cognitive performance of the previous study required different skills compared 

to the Verbal Fluency Test. Presumably, such dual task requires more attention, calculation, 

processing speed, and visuospatial orientation abilities; while the Verbal Fluency Test measures 

higher-order skills which is more goal-oriented. Therefore, we concluded that better executive 

functioning is associated with more segregated rsFC in MS. Such segregated rsFC, which 

represents a reduction of network efficiency, could be a result of compensating for tissue damage 

before network collapse [Fleischer et al., 2017].   

The optimal balance between brain segregation and integration for higher-order cognitive function 

remains a source of debate, with previous research arguing for more of one or the other [Cohen 

and D’Esposito, 2016; Reineberg and Banich, 2016]. Between-network communication (i.e. 

integration) may be important for working memory [Cohen and D’Esposito, 2016], but executive 

functions may require more nodal FC (i.e. segregation) [Reineberg and Banich, 2016]. The delicate 

balance of segregation/integration may relate to the balance between focusing on internal brain 

states versus external sensory input [Miller and Cohen, 2001]. Sensory input from several cortices 

can send signals to the prefrontal cortex, which integrates this information with internal brain 

states, with the resultant output transferred to subcortical and motor association areas to executive 

the action. Presumably, during processing of input and output in the prefrontal regions, integration 

is required in order to communicate with different brain regions; while processing internal states, 

redundant and unnecessary regions are excluded in order to focus on the processes within the 

prefrontal cortex. We propose that the disease may have preferentially affected integration between 

remote regions rather than internal processing, consistent with the “pathological resonance” 
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concept alluded to above in PD. Moreover, in MS, segregated brain organization may represent a 

compensatory mechanism before network collapse.    

4.4.3 Predictability of graphical measures to behaviour 

One of the challenges to predict behavioural outcome using imaging data is sample size. 

Unfortunately, due to small sample size, we were unable to perform LASSO analysis on local 

measures in PD as there were too many features and not enough observations. The linear regression 

model did not show significant relation between global measures and behavioural outcome in PD. 

Therefore, this section mainly discusses the findings in MS.  

Although correlation analysis showed the associations between individual graphical measures and 

behavioural scores, further analyses can be done to investigate whether any of the features were 

jointly related to any behavioural outcome. In this study, with linear regression, only modularity 

was related to verbal fluency performance, further supporting the relation between segregated 

brain organization and executive skills. However, the predictability of such altered rsFC to 

executive skills was not promising in linear regression as R-squared value between real and 

predicted FAS was only 0.16. Taken together, certain executive skills were indeed related to 

segregated brain networks (i.e. brain networks have more modules rather than working as a whole), 

but the association was not strong enough for brain connectivity to accurately predict behaviour.  

For local measures, as there were too many features for linear regression and caused insufficient 

observations, we decided to perform LASSO first as a step of feature selection. The selected nodal 

graphical measures were included as predictor data in linear regression and individual scores acted 

as responses. This process revealed which nodal measures were influential to behavioural 
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outcomes and whether such influence was strong enough to predict individual scores. For EDSS, 

the betweenness centrality (indicate the importance of a given node) across frontal, temporal, 

parietal, and occipital regions as well as motor areas demonstrated strong impacts to predict disease 

severity measured by physical disability. For depression symptoms, interestingly, most of the 

influential nodes were located in the frontal regions and a subset were in the occipital, parietal, 

and subcortical areas. For TMTB performance, the importance of several frontal and temporal 

nodes were significantly influential as well as the inferior parietal region and cerebellum. These 

nodal measures together highly predicted TMTB performance, which requires task switching 

ability. Therefore, we propose that 1) the disease severity was related to distributed regions in MS, 

2) the importance of frontal regions was largely related to depression symptoms in MS, and 3) 

executive function (i.e. task switching ability) was significantly associated with the coordination 

between not only frontal, temporal, and parietal regions but also the cerebellum, supporting the 

“cognitive role” of cerebellum in neurological diseases [Buckner, 2013].  

Local efficiency (i.e. network efficiency in nodal level) of frontal, subcortical, and motor-

associated regions highly predicted disease duration. Of note, this was the only model that could 

predict disease duration in the testing data. In the prediction results, even though fewer nodes were 

selected, these regions still covered frontal, subcortical, and motor association regions, which 

further emphasized the role of these regions regarding disease duration. The longer the disease 

duration, the higher nodal efficiency in these regions. For processing speed ability, highly 

distributed regions were included, highlighting that processing speed requires distributed regions 

across whole brain (include cerebellum) to coordinate together. Finally, unlike depression, state 

anxiety was more related to nodal efficiency in subcortical and temporal regions rather than the 
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frontal cortex, suggesting a different mechanism compared to depression even though both 

symptoms are affective. To conclude, pathology-related scores were more associated with nodal 

efficiency in frontal, subcortical, and motor areas; while cognition-related scores were more 

associated with connectivity across whole brain. Anxiety, on the other hand, involved different 

mechanism opposite to other affective disorders.                      

4.4.4 Limitations  

First, due to motion and image artifacts, eight PD subjects had to be removed from the connectivity 

analysis and the sample size was relatively small. For advanced statistical approaches, including 

machine learning methods, a bigger sample size will likely be needed. Although the sample size 

of MS cohort seemed to be sufficient to preform LASSO regression and leave-one-out cross 

validation was applied, a bigger sample size would still be required to maximize the advantages of 

machine learning approaches and avoid over-fitting. Moreover, subjects in both study cohorts 

tended to be mild and were in the early stages of the disease. This could be the reason why we did 

not observe significant differences between patients and HS after correcting for multiple 

comparison and why we found few associations between graphical measures and cognitive scores 

in correlation and regression analyses.  

4.5 Conclusion   

In this study, with a graph theoretical approach, we demonstrated that rsFC was more segregated 

in PD across regions and PD subjects demonstrated hub vulnerability. Increased connectivity in 

the nucleus accumbens and pallidum suggested possible compensation for PD pathologies in 

mildly-affected individuals. With a correlation analysis, we concluded that attention and 
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processing speed abilities were associated with segregated FC in PD, possibly related to 

pathological synchrony in basal ganglia structures. This conclusion was further supported by the 

results of multivariate analyses. In MS, the ability of generating information based on rules was 

also correlated with segregation rsFC, possibility representing a compensatory effect before 

network collapse. Furthermore, nodal graphical measures across frontal, subcortical, and motor 

association areas can predict disease progression; while nodal measures across cortices in 

cerebrum and cerebellum predicted executive skills. Finally, different affective disorders in MS 

may involve different mechanisms.        
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Chapter 5: Dynamic functional connectivity and executive function  

This chapter investigates whether time-varying dynamic functional connectivity (dFC) at rest can 

be used as a biomarker for neurological disorders (i.e. PD and MS). Several dynamic features are 

calculated to summarize how connectivity changed over time.  Moreover, how dynamic features 

of rsFC are related to cognition, especially executive function, and reproducibility of these 

dynamic features is also investigated.   

 

5.1 Introduction  

5.1.1 Dynamic functional connectivity  

Recent evidence has shown that connectivity fluctuates across time from seconds to minutes even 

in the resting state, which can be estimated by models of dynamic functional connectivity (dFC) 

[Allen et al., 2014; Betzel et al., 2016; Chang and Glover, 2010; Handwerker et al., 2012; 

Hutchison et al., 2013a; Jones et al., 2012]. The simplest, and perhaps most common time-varying 

approach to assess dFC is to estimate correlations between brain regions within a fixed-length, 

sliding window, with the (possibly overlapping) windows ultimately moved over the entire data. 

Nevertheless, there are potential pitfalls with such an approach [Hindriks et al., 2016; Hutchison 

et al., 2013b]; if the window is too long, then important dynamic changes may be missed. If the 

window is too short, the connectivity estimates may be unstable as too few samples are available 

for the statistical inferences. A window length of 30-60 seconds for fMRI data has been 

heuristically suggested [Leonardi and Van De Ville, 2015; Zalesky and Breakspear, 2015]  
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5.1.2 Dynamic functional connectivity and cognition  

Dynamic functional connectivity (dFC), also referred to as network dynamics and assessed by 

time-varying approaches, appears to be particularly pertinent to several cognitive processes 

including memory, language, attention, and executive functions [Braun et al., 2015; Bressler and 

Scott Kelso, 2001; Kucyi et al., 2016; Mattar et al., 2015; McIntosh et al., 2008; Nomi et al., 2017; 

Shafto and Tyler, 2014; Thompson et al., 2013]. Increased dynamical variability in the EEG was 

found to be correlated with better performance (i.e. shorter reaction time and higher accuracy) in 

a memory task, emphasizing the importance of brain complexity in cognitive development 

[McIntosh et al., 2008]. There are associations between dynamic changes in 

frontoparietal/frontotemporal networks and neuropsychological measures, showing that the  

flexibility of neuronal activity in the frontal regions is cognitively beneficial for working memory 

performance and executive functioning [Braun et al., 2015]. This has led to a proposed “functional 

cartography” of the cognitive system, based on the estimated amount of integration and 

recruitment of brain regions during different cognitive processes [Mattar et al., 2015]. In addition, 

cognitive flexibility, which is an important part of executive function, has been associated with 

greater variability of resting-state connectivity [Nomi et al., 2017]. Network dynamics may also 

be important for language function in an aging population [Shafto and Tyler, 2014]. Measures of 

dFC have been recently applied to understand how the human brain is affected by diseases such as 

Parkinson’s disease, Schizophrenia, Alzheimer's disease, and major depression [Damaraju et al., 

2014; Kaiser et al., 2015; Madhyastha et al., 2014; Sakoglu et al., 2010; Wee et al., 2013].  
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5.1.3 Dynamic functional connectivity in diseased populations  

A sliding window approach combined with k-means clustering, demonstrated that patients with 

schizophrenia have shorter “dwell time” in metastable states [Damaraju et al., 2014], implying an 

unstable connectivity pattern. In schizophrenia, decreased connectivity between subcortical 

regions and sensory networks were only observed in dynamic networks, suggesting that static 

connectivity was less sensitive to functional abnormalities. Research in major depression has 

revealed decreased dynamic resting-state functional connectivity (drsFC) between the medial 

prefrontal cortex and parahippocampus, and increased dynamic connectivity between the medial 

prefrontal cortex and dorsolateral prefrontal cortex [Kaiser et al., 2015]. These distinct patterns 

could be the results of positive and negative correlations in activity across sliding windows, which 

would not have been captured in static functional connectivity analysis alone. Alzheimer’s disease 

patients with mild cognitive impairment (MCI) exhibit altered graphical measures such as 

decreased small-world coefficients and smaller clustering coefficients in some temporal networks 

[Wee et al., 2013], indicating a failure to maintain a small-world brain connectivity compared to 

healthy subjects. 

In Parkinson’s disease, with a sliding window approach, altered dFC in the dorsal attention and 

frontoparietal network was related to performance in an attention task [Madhyastha et al., 2014]. 

With a sliding window approach combined with Hilbert transform, deep-brain stimulation (DBS) 

has been shown to “rebalance” the global dynamics in PD towards a healthy regime in the 

thalamus, globus pallidus, and right orbitofrontal regions judged by “phase consistency” [Saenger 

et al., 2017]. Although this study did not investigate the relations between DBS-altered dFC and 

cognitive function, the findings showed that dFC can be an index of disease progression. 
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Combining graph theory, independent component analysis, the sliding window approach, and 

clustering methods together, PD subjects have shown altered rsFC states, whereby networks were 

more strongly interconnected between each other rather than sparsely connected, indicating that 

connections were stronger but less dynamic in PD [Kim et al., 2017]. Such connectivity pattern 

caused abnormal functional integration with higher variability, indicating an inefficiency of 

information transfer in PD [Kim et al., 2017]. A similar approach was applied to PD patients with 

MCI and without MCI. Only patients with MCI demonstrated altered dFC, whereby PD-MCI spent 

less time in the “hypo-connectivity” state and showed more state transitions, implying that PD-

MCI actually presented weaker but more dynamic rsFC than PD and normal subjects [Díez-Cirarda 

et al., 2018]. Perhaps, taken together, stronger rsFC becomes more rigid but weaker rsFC becomes 

more dynamic in PD. On the other hand, with a similar approach, patients with MS demonstrated 

the opposite trend compared to PD.  

MS patients with MCI spent less time in a “high-connectivity” state and demonstrated less switches 

between state transitions (i.e. lower dynamic fluidity) [D’Ambrosio et al., 2018]. Another study 

applied principal component analysis (PCA) to identify “eigenconnectivity” after data were 

processed in the sliding window approach [Leonardi et al., 2013]. People with MS showed reduced 

strength of drsFC in distributed regions including the amygdala, occipital, parietal, middle and 

posterior cingulate, and superior frontal regions. Moreover, two of the eigenconnectivity 

components demonstrated differences between MS and healthy subjects, whereby MS had stronger 

contributions than controls (i.e. the connectivity patterns were more obvious in MS). One 

component showed stronger mean drsFC in the posterior part of the default mode network (DMN), 

while the weaker mean drsFC in anterior and middle temporal regions. The other component 
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demonstrated stronger mean drsFC in temporal and angular areas; while weaker mean drsFC was 

found in fronto-parietal, right amygdala, and motor regions [Leonardi et al., 2013]. Although the 

study revealed that dFC can be a functional biomarker for MS, no correlations were reported 

between connectivity patterns and clinical data. To conclude, these studies have concluded that 

dFC has functional relevance and provides further insights into how brain networks are affected 

in neurological disorders. However, robust associations between dFC and cognitive domains, 

especially executive functioning, rather than cognitive states (i.e. cognitive impaired vs cognitive 

intact) remain absent.  

In this study, we utilize a sliding window approach to calculate connectivity differences across 

time and quantify these changes by estimating dynamic features. Furthermore, methods of 

correlation and regression are implemented to explore the relations between dFC and cognitive 

function in PD and MS. In addition, similar to the last chapter, we carry out an analysis to test 

whether the dynamic features are reproducible across time.    

5.2 Materials and methods 

5.2.1 Subjects and behavioural data  

Eleven healthy subjects (mean age: 25.7±3.6, 4 females, 7 males, all with university education 

level) were recruited for the test of reproducibility as section 4.2.1. 

PD data are from research project GFM2 and MS data are from COGMS project. The MS cohort 

is the same as chapter 2 and 4, but PD cohort is different from the previous chapters. A subset of 

MS subjects are used for comparison with age-matched healthy subjects as previous chapter.    
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The same groups of MS subjects and normal control subjects (NC) as the last chapter were included 

(46 MS for correlation and regression, 18 MS and 15 NC for comparison; details are shown in 

section 4.2.1). The same neuropsychological scores were included as well (Table 2.2). 

Twenty-four PD (mean age: 68.38±4.73, 6 females, 18 males) and fifteen age-matched NC 

subjects were recruited through the movement disorder clinic at UBC Hospital. All subjects went 

through cognitive assessment with Montreal Cognitive Assessment (MoCA) and questionnaire 

evaluations for depression scale, apathy, and fatigue with BECK Depression Inventory II, Apathy 

Scale (SAS), the Lille Apathy Rating Scale (LARS), and Fatigue Severity Scale (FSS). In addition 

to full score, sub-scores in MoCA were reported as well, which evaluated cognitive functions in 

multiple domains: visuospatial and executive functions, rapid naming and lexical retrieval ability, 

concentration, attention, language ability, abstraction, memory, calculation, and orientation skills 

[Julayanont and Nasreddine, 2017]. PD subjects also went through clinical evaluations with MDS-

UPDRS Part I, II, III, and IV for motor and non-motor experience, motor examination, and motor 

complications (Table 5.1). Both image scans and clinical evaluations were done in on medication 

state. Ethics approval was issued by the University of British Columbia's Research Ethics Board 

and all subjects provided signed consent forms.     

 PD subjects (mean±SD) NC subjects (mean±SD)  

demographics    
age  68.38±4.73 69.4±4.76 

gender  6 females/18 males  5 females/10 males 

disease duration  9.92±5.86 no data 

UPDRS I 9.33±5.97 no data 

UPDRS II 10.92±6.51 no data 

UPDRS III 27.25±8.67 no data 

UPDRS IV 1.29±0.91 no data 

HY 2.13±0.61 no data  

cognitive & affective scores    
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MoCA full score 26.08±2.24 26.93±1.96 

MoCA visuospatial/executive 4.63±0.71 4.53±0.64 

MoCA picture naming  3±0 3±0 

MoCA attention 5.25±0.85 5.6±0.51 

MoCA language  2.38±0.64 2.33±0.62 

MoCA abstraction  1.96±0.20 1.87±0.35 

MoCA memory-delay recall 3±0.38 3.67±1.18 

MoCA orientation   5.92±0.28 5.87±0.35 

BECK depression scale 7.92±5.02 3.07±3.90 

SAS 11.53±5.03 8.07±5.51 

LARS -24.75±5.41 -28.8±4.04 

FSS 3.93±1.53 2.36±1.32 

Table 5.1 Clinical, demographical, and cognitive assessment scores in PD and NC. Bold font indicates 

significant differences between two groups in t-tests with p<0.05.  

[UPDRS: the Unfied Parkinson’s Disease Rating Scale, HY: Hoehn and Yahr scale, MoCA: Montreal 

Cognitive Assessment, SAS: apathy scale, LARS: the Lille Apathy Rating Scale, FSS: Fatigue Severity Scale]   

 

5.2.2 Imaging acquisition 

All subjects underwent imaging studies at the University of British Columbia (UBC) MRI 

Research Centre with a Philips Achieva 3.0 Tesla MRI scanner. Resting-state functional MRI 

(rsfMRI) data were acquired using an 8 channel head coil and an echo-planar imaging sequence 

with the following parameters: 3×3×3 mm3 resolution, 36 slices, 2000 ms TR, 30 ms TE, 90 degree 

flip angle, and 240 volumes/dynamics. 3 Dimensional (3D) T1 weighted images were acquired 

with 1×1×1 mm3 resolution, 60 slices, 28 ms TR, 4 ms TE and 27 degree flip angle.  

5.2.3 Preprocessing  

For the studies of reproducibility and MS subjects, preprocessing was the same as previous 

chapters. Image preprocessing steps were performed in each subject’s native space with the 

functions of slice timing and motion correction from Statistical Parametric Mapping 8 (SPM8, 
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University College London, London) for correcting temporal and spatial differences. For 

registration, the FMRIB's Linear Image Registration Tool (FLIRT) from the FMRIB Software 

Library 6.0 (FSL, FMRIB, Oxford) was used and a brain mask was applied to remove non-brain 

areas before registration. Cortical parcellation was done on the T1-weighted images in Freesurfer 

version 4.5.0 (Massachusetts General Hospital, Boston) and thirty-six cognition-associated 

regions-of-interest (ROIs) were selected (Table 5.2). These ROIs have been commonly reported 

in the neuropsychological literature and frequently used to investigate the relations between 

cognition and resting-state functional connectivity (rsFC). Finally, the average fMRI time courses 

among voxels within individual ROIs were extracted using self-programmed scripts in Matlab 

(The MathWorks, Inc.) and the data were detrended before connectivity analyses. 

Bilateral ROIs  

superior frontal gyrus 

medial frontal gyrus 

inferior prefrontal cortex 

temporal pole, insula, and amygdala merged 

superior temporal cortex 

posterior parietal cortex 

post central cortex 

supramarginal region 

middle temporal lobe, hippocampus, hippocampal gyrus merged 

occipital-parietal area 

lateral occipital lobe 

anterior cingulate cortex 

posterior cingulate cortex 

precuneus 

medial orbitofrontal cortex 

lateral orbitofrontal cortex 

fusiform gyrus 

superior parietal cortex 

Table 5.2 Eighteen bilateral regions-of-interest (ROIs) in the connectivity analysis in MS study and healthy 

subjects for reproducibility. Some ROIs are merged as one because these ROIs are anatomically small and 

geographically close. 
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In PD and age-matched control subjects, AFNI (NIMH, Bethesda) software package was used for 

fMRI preprocesses, including despiking, slice timing correction, 3D isotropic correction (3x3x3 

mm3 resolution), and motion correction with rigid body alignment. Whole brain parcellation was 

done in FreeSurfer 6.0 on the T1-weighted images and the structural images were then registered 

to the fMRI images using rigid registration. This registration step provided the FreeSurfer 

segmented ROI mask in the fMRI space. All analyses were done in the native fMRI space rather 

than transforming all fMRI data to a common template, which was designed to prevent introducing 

any unwanted distortions to fMRI. In the next step, several sources of variance such as head-

motion parameters, white-matter, and CSF signals were removed using linear regression. The 

fMRI signals of the same ROIs were extracted and detrended to remove any linear or quadratic 

trends and smoothed with 6 FWHM Gaussian kernels. Finally, bandpass filtering was performed 

to retain the signal between the recommended frequencies of interest for resting state activity (0.01 

Hz to 0.08Hz). 

5.2.4 Dynamic functional connectivity analysis  

For testing reproducibility, a sliding window with Pearson’s correlation, which is the most 

common approach in the literature, was applied to calculate the windowed correlation matrices in 

11 subjects with a window length of 20-time points. The window was moved 1-time point forward 

in each Pearson’s r calculation, resulting in 221 correlation matrices for each subject. Seven 

network features were acquired based on learned dynamic connectivity: Network Variation (NV), 

Network Power (NP), Flexibility of Interhemispheric Connectivity (homologous connections, 

FOCcs), Flexibility of Cross-hemispheric Connectivity (non-homologous connections, FOCcns), 

Flexibility of Intrahemispheric Connectivity (within hemisphere, FOCw), Flexibility of Left-
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hemispheric Connectivity (within left hemisphere, FOCwl), and Flexibility of Right-hemispheric 

Connectivity (within right hemisphere, FOCwr). These features summarized how connectivity 

patterns change between two correlation matrices (Figure 5.1, Table 5.3). Network power (NP) 

measured the summed values of the dynamic functional connectivity pairs in all the windows and 

the values were divided by the number of non-zero elements in each window. Network variation 

(NV) calculated the differences of connectivity values between two adjacent windows and the 

differences of each connectivity pairs were summed up and divided by the number of non-zero 

elements in each window. Flexibility of interhemispheric connections (FOCcs) calculated the 

connectivity differences of homologous connections only between two windows and then the 

values were summed up to form one measure. Flexibility of cross-hemispheric connections (non-

homologous regions, FOCcns) was the measure of summed connectivity differences of non-

homologues connections between two windows. Flexibility of intrahemispheric connections 

(within hemisphere, FOCw) measured the connectivity differences of connections within left and 

right hemisphere between two windows and all the values were then summed up to form one value, 

which can be further divided into Flexibility of right hemispheric connections (FOCwr) and 

Flexibility of left hemispheric connections (FOCwl) 

Repeated measure ANOVA (rmANOVA) and coefficient of variation (COV) (standard deviation 

divided by the mean) were calculated to test reproducibility across time.  
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Figure 5.1 The sliding window approach with Pearson’s correlation. The global features include (A) Network 

Variation (NV) and (B) Network Power (NP). The specific features include (C) Flexibility of 

Interhemispheric Connectivity (x = homologous connections, FOCcs), (D) Flexibility of Cross-hemispheric 

Connectivity (x = non-homologous connections, FOCcns), (E) Flexibility of Intrahemispheric Connectivity 

(x = connections within hemisphere, FOCw), (F) Flexibility of Left-hemispheric Connectivity (x = 

connections in left hemisphere, FOCwl), and (G) Flexibility of Right-hemispheric Connectivity (x = 

connections in right hemisphere, FOCwr). 
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For the analysis in both MS and PD data sets, a sliding window approach (with a window length 

of 20 time points) and the inverse covariance matrix of the ROI time courses was used to estimate 

connectivity. Such a sliding window and inverse covariance matrix approach has been applied to 

capture dynamic functional connectivity and accurately estimate direct connections between brain 

regions in fMRI [Hutchison et al., 2013a; Smith et al., 2013]. Since the TR was 2 seconds, the 20-

point window length (WL) was 40 seconds in length, consistent with previous recommendations 

[Zalesky and Breakspear, 2015]. The window was shifted one time point at a time, resulting in 221 

windowed inverse covariance matrices in total for each subject. Afterwards, 6 network features 

were acquired based on the learned dynamic functional connectivity. In addition to the features 

mentioned in the last paragraph, another feature was calculated only based on regularized matrices. 

Density (DEN) estimated how dense the connections were by taking all non-zero connectivity 

values and divided by all possible connections. In short, DEN and NP measured how dense and 

strong the overall connectivity was, while NV and flexibility measures calculated global and 

specific network dynamics, respectively. All the connectivity values in every measure (except 

DEN, as DEN focused on quality rather than quantity) were squared first, summed and then the 

square root of the sum was taken. All values (the square root of the sum) across windows were 

summed and then divided by the total number of windows. Therefore we did not take into account 

the effects of positive and negative correlation between two ROIs in our analyses, and instead, 

considered how connectivity strength changed. Although these network features were all 

calculated based on learned dynamic connectivity matrices, we considered DEN and NP as 

stationary network features as they did not calculate the differences between two matrices. Rather, 

they represented the average values across the scanning time. Figure 5.2 demonstrates these 

network features in a graph fashion. Table 5.3 describes the mathematical definitions of each 



134 

 

measure. In MS, due to the sparsity of connectivity matrices, FOCw was not divided into FOCwl 

and FOCwr. Therefore, in total, there were 6 dynamic features in MS and 8 features in PD.  

 

Figure 5.2 The sliding window approach with inverse covariance matrix. (A) Network Power (NP) calculates 

the average connectivity strength across windows. (B) Density (DEN) computes how dense the existing 

connections are across windows. (C) Network Variation (NV) estimates the average global connectivity 

changes between two adjacent windows across time. (D) Flexibility of Interhemispheric Connections 

(FOCcs), (E) Flexibility of Cross-hemispheric Connections (FOCcns), and (F) Flexibility of Intrahemispheric 

Connections (FOCw) measure the average connectivity changes in interhemispheric, cross-hemispheric, and 

intrahemispheric connections between two adjacent windows across time, respectively. These features are 

illustrated in a graph fashion as the mathematical definitions are similar to (C) (details in Table 5.3). M ij (t) 
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Network Features Definitions 

Density (DEN) ∑(𝑀𝑖𝑗−𝑛𝑛𝑧(𝑡)/𝑡𝑜𝑡𝑐𝑜𝑛)

𝐿
 

Network power (NP) ∑ √
∑ 𝑀𝑖𝑗(𝑡)2

𝑖𝑗

𝑀𝑖𝑗−𝑛𝑛𝑧(𝑡)

𝐿
 

Network variation (NV) ∑ √
∑ (𝑀𝑖𝑗(𝑡) − 𝑀𝑖𝑗(𝑡 − 1))2

𝑖𝑗

𝑀𝑖𝑗−𝑛𝑛𝑧(𝑡)

𝐿
 

Flexibility of interhemispheric connections (FOCcs) ∑ √∑ (𝑀ℎ𝑖𝑗(𝑡) − 𝑀ℎ𝑖𝑗(𝑡 − 1))2
𝑖𝑗

𝐿
 

Flexibility of cross-hemispheric connections (FOCcns) ∑ √∑ (𝑀𝑛𝑖𝑗(𝑡) − 𝑀𝑛𝑖𝑗(𝑡 − 1))2
𝑖𝑗

𝐿
 

Flexibility of intrahemispheric connections (FOCw) ∑ √∑ (𝑀𝑤𝑖𝑗(𝑡) − 𝑀𝑤𝑖𝑗(𝑡 − 1))2
𝑖𝑗

𝐿
 

Table 5.3 Mathematical definitions of network features learned in the sliding window approach 

[Mij(t) is the i-by-j connectivity matrix containing every element at time t, M ij-nnz(t) contains all the non-zero 

connectivity values in the matrix Mij(t), totcon is the total possible connections in the matrix, which is the 

number of ROI times the same number, Mij(t-1) is the i-by-j connectivity matrix containing every element at 

time t-1, Mhij represents all homologous connections in matrix Mij, Mnij represents all interhemispheric 

connections except homologous elements in matrix Mij, Mwij represents all intrahemispheric connections in 

matrix Mij, L represents the total number of windowed correlation matrices]  

    

is the i-by-j inverse covariance matrix containing every element at time t, M ij (t-1) is the i-by-j inverse 

covariance matrix containing every element at time t-1. Mij-nnz (t) is the i-by-j inverse covariance matrix 

containing non-zero values at time t. L represents the total number of windowed matrices. 
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Two sample t-tests were carried out to investigate significant differences of all network features 

between patient and healthy subject groups. False-discovery rate control (FDR) was applied as a 

method to correct for multiple comparisons.     

5.2.5 Correlation and regression analyses  

Correlations between individual dynamic features and behavioural scores were evaluated by 

Pearson correlation. Only the correlations that survived for Bonferroni correction were reported. 

In addition, a principal component analysis (PCA) was carried out to remove the inter-correlations 

between dynamic features before linear regression. The PCA scores of components (explaining > 

90% of the variance) were included in the linear regression model as predictors and age was also 

included as covariance. Individual behavioural measures were included in the regression model as 

response variables.   

In the MS data set, composite and transformed/standardized scores were included such as the 

Verbal Fluency Test (FAS), Working Memory Index (WMI), Processing Speed Index (PSI), 

transformed Trail Making Test Part A and B (transformedTMTA/B), the Wisconsin Card Sorting 

Test Complete Categories (WCSTCC), Multiscore Depression Inventory Total T Scores 

(MDITOTT), State-Trait Anxiety Inventory: Trait (STAIT), State-Trait Anxiety Inventory: State 

(STAIS), and Fatigue Severity Scale (FSS). In addition, age, education, EDSS, and disease 

duration were included as well. 

In the PD data set, demographical and clinical measures were included in the analysis such as 

disease duration, gender, UPDRS scores of 4 parts, MoCA full scores, H&Y stage, apathy scores, 

fatigue scales, and BECK depression scale scores. Moreover, the sub-scores of MoCA were further 
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included to evaluate functions in multiple cognitive domains: visuospatial and executive functions, 

rapid naming and lexical retrieval ability, concentration, attention, language ability, abstraction, 

memory, calculation, and orientation skills.        

5.3 Results  

5.3.1 Reproducibility  

None of the network features showed significant differences among the three fMRI sessions (pr > 

0.05 in all measures, Figure 5.3). Similarly, COV of most of the measures derived from three fMRI 

sessions demonstrated similar values (Table 5.4). The results indicate that these measures are 

reproducible across scans. 

 

Figure 5.3 rmANOVA results of dynamic features across 3 fMRI sessions.  

 

Dynamic network features 1st fMRI 2nd fMRI 3rd fMRI 

NV 10.5% 12.9% 9.7% 

NP 10.3% * 10.2% * 7.3% * 

FOCcs 14.7% 19.1% 18.2% 
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FOCcns 10.3% 12.8% 9.6% 

FOCw 10.6% 13.0% 9.9% 

FOCwl 10.4% 11.9% 10.6% 

FOCwr 11.4%  15.1%  10.1% 

Table 5.4 COV results of dynamic features across 3 fMRI sessions.  

[* not Gaussian]  

5.3.2 Multiple Sclerosis  

5.3.2.1 Feature comparison  

MS subjects showed lower network variation (NV) and higher flexibility of interhemispheric 

connections (FOCcs) then NC while controlling for a false discovery rate (FDR) (corrected p 

values: 0.02 and 0.04, respectively, Figure 5.4 upper panel). Moreover, MS subjects also 

demonstrated lower density (DEN) and network power (NP) with FDR correction (corrected p 

values: 0.02 and 0.02, Figure 5.4 lower panel). These results indicated that MS subjects had overall 

weaker connectivity, fewer connections, less dynamic overall connectivity, but more flexible 

interhemispheric connections in MS subjects. In other words, there is a loss of dynamic 

coordination in global connectivity and increased interhemispheric connectivity fluctuations in MS 

subjects compared to NC. 
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Figure 5.4 Results of dynamic feature comparison between MS and NC. The upper panel shows the 

differences between NC and MS in dynamic features. MS shows higher flexibility of interhemispheric 

connectivity (corrected p = 0.02) and lower network variation (corrected p = 0.04). The lower panel illustrates 

that MS presents lower network density (corrected p = 0.02) and network power (corrected p = 0.02). All p 

values are controlled for false discovery rate (FDR). 

 

5.3.2.2 Correlation and regression  

Among all the correlation pairs, only disease duration showed significant correlations with 

dynamic features FOCcns (r=-0.55, p<0.001), FOCcs (r=-0.56, p<0.001), and FOCw (r=-0.54, 

p<0.001) in MS after corrections for multiple comparisons with 14 tests were run (Figure 5.5).  
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The first two PCA components of dynamic features in MS explained > 90% of the variance and 

therefore they were included in the linear regression model. These two components represented 

different aspects of dFC. The first component, explaining 79% of the variance, showed similar and 

positive coefficients of all features (except DEN); therefore, this component mostly represented 

global dynamics (Figure 5.6). The second component, explaining 11% of the variance, had NV 

and NP loading negatively while the rest features loaded positively, and thus represented 

connection density and the effects from dFC in specific connections rather than global dynamics 

(Figure 5.6). Among all the demographical, clinical, and cognitive scores, only disease duration 

appeared to be significantly modulated by these two components of dynamic features and age 

(p<0.001). The loadings on both the 1st and 2nd components were negatively correlated with disease 

duration, with significant p values of 0.00088 and 0.03705, respectively. Table 5.5 and Figure 5.7 

illustrate the results of linear regression analysis.   
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Figure 5.5 Significant correlations between disease duration and dynamic features in MS. All correlation 

pairs survive for Bonferroni correction.  

[FOCcns: flexibility of cross-hemispheric connectivity, FOCcs: flexibility of interhemispheric connectivity, 

FOCw: flexibility of intrahemispheric connectivity, DD: disease duration] 
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Figure 5.6 PCA results of dynamic features in MS. These two components explain 90% of the variance and 

are included in the linear regression analysis as predictor data.  

[FOCcns: flexibility of cross-hemispheric connectivity, FOCcs: flexibility of interhemispheric connectivity, 

FOCw: flexibility of intrahemispheric connectivity, NV: network variation, NP: network power, DEN: 

density] 

 

 

For individual predictors 

response/ 

behavioural score 

predictors /PCA components 

of dynamic feature 

estimate in 

regression model 

standard 

error 

p 

values  
disease duration  component 1 -1.56 0.43 0.00088 

 component 2 -2.50 1.16 0.03705 

 age (covariate) 0.37 0.09 0.00015 

For the whole model  

Number of observations: 46, Error degrees of freedom: 43 

Root Mean Squared Error: 6.25 
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R-squared: 0.523,  Adjusted R-Squared 0.489 

p-value = 6.81e-07  

Table 5.5 Significant linear regression model in MS.  

 

 

Figure 5.7 The adjusted variable plot of the linear regression model of PCA components and disease duration 

in MS. The details of adjusted whole model is shown in Table 5.5. The plot shows the fitted responses 

(adjusted disease duration) with the other predictors (2 components of dynamic features and age) averaged 

in the model (adjusted whole model). 

 

5.3.3 Parkinson’s Disease  

5.3.3.1 Feature comparison  

PD subjects did not show any significant differences of dynamic features compared to NC.  
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5.3.3.2 Correlation and regression  

None of the clinical measures were significantly correlated with dynamic features. However, 

FOCcs was correlated with MOCA sub-score delayed recall (r=0.54, p=0.006, Bonferroni 

correction corrected with 7 tests of MoCA sub-scores were run). 

 

Figure 5.8 Correlation between FOCcs and MoCA sub-score DELY in PD. The dynamics of 

interhemispheric connections are significantly correlated with scores of memory sub-test in MoCA with 

r=0.54 and p=0.0060, corrected for Bonferroni correction.  

[FOCcs: flexibility of interhemispheric connections, DELY: memory test – relay recall] 

 

The first four PCA components of dynamic features explained > 90% of the variance and they 

were included in the linear regression analysis (Figure 5.9). The 1st component explained 42 % of 

the variance and mostly represented overall dFC, while the 2nd component explained 29 % of the 

variance, in which non-interhemispheric dynamics and interhemispheric dynamics/connectivity 
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strength loaded heavily. Hence, this component expressed interhemispheric vs non-

interhemispheric dFC. The 3rd component explained 13% of the variance and represented 

interhemispheric vs non-interhemispheric dFC but with less effects from overall connectivity as 

NP and DEN both showed limited loadings. The 4th component, explaining 7% of the variance, 

loaded on all dynamic features equally except FOCw, which implied that this component 

represented overall dynamics with less effects from the variation of intra-hemispheric 

connectivity.      

 

Figure 5.9 Four principal components of the dynamic features in PD.  

[FOCcns: flexibility of cross-hemispheric connectivity, FOCcs: flexibility of interhemispheric connectivity, 

FOCw: flexibility of intrahemispheric connectivity, FOCwr: flexibility of right intrahemispheric 

connectivity, FOCwl: flexibility of left intrahemispheric connectivity, NV: network variation, NP: network 

power, DEN: density]  

  

In the linear regression analysis, UPDRS III and memory sub-score of MoCA were predicted by 

components of dynamic features with p=0.0177 and 0.006, respectively. In the model of UPDRS 

III against components of dynamic features, component 4 demonstrated significant effects 
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(p=0.001) with a negative estimate. On the other hand, in the model of MoCA memory scores 

against components of dynamic features, component 3 and age both showed significant 

contributions with p=0.047 and 0.02 with negative estimates, respectively (Table 5.6, Figure 5.10).  

Model 1 

For individual predictors 

response/ 

behavioural score 

predictors / PCA components 

of dynamic feature 

estimate in 

regression model 

standard 

error 

p 

values  
UPDRS III  component 1 0.80 0.92 0.39394 

 component 2 0.81 0.95 0.40680 

 component 3 -1.02 1.46 0.49399 

 component 4 -7.56 1.94 0.00106 

 age (covariate) -0.21 0.36 0.56314 

For the whole model  

Number of observations: 24, Error degrees of freedom: 18 

Root Mean Squared Error: 6.88 

R-squared: 0.507,  Adjusted R-Squared 0.37 

p-value = 0.0177 

Model 2 

For individual predictors 

response/ 

behavioural score 

predictors / PCA components 

of dynamic feature 

estimate in 

regression model 

standard 

error 

p 

values  
MoCA sub-score: 

Delay recall  

component 1 0.02 0.14 0.89292 

component 2 -0.18 0.14 0.22987 

component 3 -0.47 0.22 0.04703 

component 4 0.57 0.29 0.06325 

age (covariate) -0.14 0.05 0.02096 

For the whole model  

Number of observations: 24, Error degrees of freedom: 18 

Root Mean Squared Error: 1.03 

R-squared: 0.569,  Adjusted R-Squared 0.449 

p-value = 0.00608 

Table 5.6 Two significant linear regression modes in PD.  
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Figure 5.10 The adjusted variable plot of linear regression modes in PD. The plot shows the fitted responses 

(adjusted UPDRS III and Delay Recall Scores) with the other predictors (4 components of dynamic features 

and age) averaged in the model (adjusted whole model). Details of adjusted whole model are shown in Table 

5.6. 

 

5.4 Discussion  

Our results of reproducibility demonstrated that even though dynamic functional connectivity 

underlined how neural patterns change temporally, the dynamic network features were still quite 

reproducible across scans in this study. As section 4.4 stated, advanced statistical methods can be 

used to ensure the robustness of reproducibility, but our preliminary results justified the use of 

dynamic network features to study brain organization.   

5.4.1 Changes in dynamic functional connectivity may indicate compensation in MS   

In this study, we observed that average connectivity strength (i.e. network power) and density were 

both reduced in MS, and that MS subjects had overall reduced dynamic functional connectivity. 

Interestingly, interhemispheric connectivity was more variable compared to NC, possibly to 
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compensate for overall decreased global connectivity. Our results are consistent with previous dFC 

studies in MS [D’Ambrosio et al., 2018]. Previous research had concluded that MS subjects spent 

less time in “high-connectivity” states, which means that networks were more often to be weakly 

connected than strongly connected. This phenomenon was similar to our findings that average 

connectivity strength was reduced and connectivity was less dense in MS. Moreover, fewer 

switches were observed in the previous study in MS [D’Ambrosio et al., 2018], which indicates a 

reduction of dynamics in MS. Similarly, we observed reduced network variation in MS, suggesting 

that global connectivity did not change as much as in normal subjects across time. This finding 

also supports previously-reported dynamic connectivity reduction in MS subjects. However, as 

previous studies did not target specific connections, the dynamic balance between different 

connections was not captured. Our results demonstrated that while global connectivity in MS 

subjects lost dynamic coordination, interhemispheric connections became more dynamic, possibly 

demonstrating a compensatory effect to overcome the functional disruption elsewhere and 

structural damage (i.e. demyelination) in the corpus callosum [Bodini et al., 2013]. Such 

compensatory effect in dFC is also supported by the results in Chapter 3. In Chapter 3, we 

discovered that stronger interhemispheric connections in MS are homogenized and associated with 

better cognitive performance, representing compensatory effects. Therefore, we concluded that 

when structural damages impact information transfer across hemispheres via the corpus callosum, 

the interhemispheric connections become stronger as well as more dynamic (i.e. fluctuate more) 

in order to maintain brain function. Taken together, we propose that global rsFC in MS is weaker, 

sparser, and more rigid; on the other hand, other specific connections such as interhemispheric 

connections may be stronger and more dynamic to compensate for functional disruption elsewhere 

and structural damage in callosal connections.  



149 

 

In PD, we did not observe any differences of dynamic features between PD and NC, which is 

possibly due to the relatively mild disease severity in this cohort. However, the index of overall 

disease severity (i.e. UPDRS III score) was related to dynamic features, which is discussed in the 

following section.   

5.4.2 Disease duration is robustly modulated by dynamic functional features in MS 

In both correlation and regression analyses, only disease duration exhibited association with 

dynamic connectivity features. Longer disease duration was associated with decreased dynamics 

in interhemispheric, intra-hemispheric, and cross-hemispheric connectivity, implying that as 

disease progressed, functional connectivity lost dynamic coordination of distributed brain regions 

connecting the two hemispheres and regions within the same hemisphere. In the linear regression 

model, different aspects of dynamic patterns were affected by disease duration. The loadings on 

both components were negatively correlated with disease duration, supporting the conclusion that 

disease progression is associated with the loss of dynamic coordination across the brain in MS. 

Previous studies of dFC in MS subjects have conjectured that decreased dynamics served as 

biomarkers [D’Ambrosio et al., 2018; Leonardi et al., 2013], yet the relations between dFC and 

clinical data remain unclear; similarly, whether clinical presentation and cognitive function can be 

predicted by dFC requires further investigation. In this study, we partially addressed this question 

by showing that disease duration is significantly associated with dynamic features in a linear 

regression model. Although advanced statistical methods are required to predict disease 

progression and any other behavioural outcomes, our findings shed light on exploring dynamic 

connectivity and disease effects.  
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Interestingly, EDSS did not show any significant relations to dynamic features but disease duration 

did. Based on the current literature, we assume that dFC is more related to cognitive function rather 

than motor and physical ability. As EDSS mainly evaluates disease severity based on physical 

disabilities, it is possibly that this disease index is less related to dFC. Rather, a more general index, 

such as disease duration, contains information of cognitive decline along disease course and 

exhibits relations to dFC.             

We did not observe any associations between cognitive performance and dynamic features in the 

correlation analysis. Similarly, none of the cognitive scores was modulated by the components of 

dynamic features. However, when more PCA components were included in a linear regression 

model (i.e. data explained almost 100% of the variance), component 4 appeared to be significantly 

related to the Wisconsin Card Sorting Test Complete Categories (WCSTCC) (p=0.011, 

Appendices D.1). In this cognitive task, the ability to switch strategies based on rules is required 

(i.e. cognitive flexibility), which has been shown to be related to dynamic functional connectivity 

[Douw et al., 2016]. Yet this component only explained 1.8% of the variance and flexibility of 

interhemispheric connections (FOCcs) loaded positively and heavily onto this component 

(Appendices D.2). Therefore, this regression pattern implied that the dynamic fashion of 

interhemispheric connections might support the performance of strategy switching, but such 

pattern may not be representative enough in our data as the component explained a limited amount 

of variance.   

We conclude that drsFC can be indicative of disease progression, which could serve as a 

biomarker, and dynamic coordination of homologous regions might be supportive of strategy 

switching ability, but such brain-behavioural association is very mild in our cohort.      
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5.4.3 Disease severity can be predicted by dynamic features in PD  

In the linear regression model, the UPDRS III score could be significantly predicted by the 4th 

component of dynamic features. This component only explained 7% of the total variance in 

dynamic features and represented overall dynamics with fewer effects from intra-hemispheric 

connectivity. As this component was negatively weighted in the regression model, it was 

interpreted that higher overall dynamics was associated with lower UPDRS III scores, implying 

that higher disease severity was related to reduced dFC in PD. Previous research has shown that 

weaker connections were more dynamic but stronger connections lost dynamic coordination in PD 

[Díez-Cirarda et al., 2018; Kim et al., 2017]. As we did not observe differences in dynamic 

features, it is hard to conclude whether such dynamic balance between strong and weak 

connections exist in our data. However, we do show that higher disease severity is related to 

decreased dFC in PD, which is partially consistent with previous studies. One possible explanation 

for this is that different sub-types of motor symptoms in PD have been linked to different types of 

cognitive deficits [Kehagia et al., 2012; Miller et al., 2013; Thenganatt and Jankovic, 2014]. 

Tremor-dominant PD subjects often demonstrate disabilities in planning, working memory, and 

executive functions; therefore, this subtype has been associated with the cognitive “frontal 

subtype” and dopamine depletion. The other subtype is associated with pronounced gait 

disturbance and often shows deficits in visuospatial function and sematic fluency, which has been 

related to the cognitive “posterior subtype” and cholinergic deficits in PD. Therefore, although 

UPDRS III is assessed based on motor symptoms, dopamine depletion not only impairs motor 

loops but also frontal-striatal circuits which are important for many cognitive functions [Kehagia 
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et al., 2012]. Therefore, the relations between UPDRS score and dynamic features in this study 

may be an indirect indicator of the relations between frontal subtype and dFC in PD.            

5.4.4 Memory function is robustly associated with dynamics in PD  

The MoCA sub-score of memory delayed recall screens deficits in retrieval memory, and was the 

only MoCA sub-sore that demonstrated associations in both correlation and linear regression 

analyses. With correlation analysis, FOCcs was positively correlated with scores of delayed recall, 

suggesting that higher dynamics of interhemispheric connections were related to better retrieval 

memory function in PD. In the linear regression model, delayed recall performance was modulated 

by component 3 of dynamic features and age. Component 3 explained 13 % of the variance and 

mainly represented interhemispheric dFC with negative loadings and intra-hemispheric dFC with 

positive loadings as other features showed limited loadings. Because component 3 showed a 

negative regression coefficient, higher FOCcs and lower intra-hemispheric dFC predicted better 

delayed recall performance as they loaded positively and negatively, respectively. Therefore, taken 

together, both correlation and linear regression suggest that better retrieval memory was not only 

correlated with, but also could be predicted by, higher dynamics in interhemispheric connectivity 

in PD, strengthening the important role of dynamic coordination between two hemispheres on 

cognitive process.  

Delayed recall scores were also modulated by age, which acted as covariate in the regression 

model. As age had a negative regression coefficient, the model also reinforced the links between 

aging and decreased cognitive ability in the memory domain. Finally, we also propose that memory 

function might be strongly related to dynamics of interhemispheric connections, but it might be 
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more influenced by aging than dynamic features when they were jointly assessed together, given 

that component 3 was almost not significant in the linear regression model.  

In this study, we did not evaluate cognitive functions in PD subjects with a comprehensive 

neuropsychological battery other than MoCA. Therefore, although we only observed relations 

between memory function and dFC, it did not mean other cognitive domains, especially executive 

function, are unrelated to dFC. In fact, as the sub-tests in MoCA which evaluate attention/executive 

function are relatively easy for subjects without dementia or MCI, using only MoCA might be 

insensitive to mild executive dysfunction in the early stage. Further test batteries which specifically 

evaluate set-shifting, mental calculation, and other executive skills are needed to explore brain-

behaviour associations in PD, which may provide further information to understand the disease 

and develop cognitive training as a treatment for cognitive impairments.     

5.4.5 Limitations  

Choosing ROIs for connectivity analysis is always challenging. As the focus of the study is to 

explore the relations between dFC and cognition in neurological disorders, we selected the 

cognition-related ROIs that are commonly reported in the literature as described in previous 

chapters. Furthermore, in order to reduce the computational demand of calculating inverse 

covariance matrix in the sliding window approach, only a relatively fewer ROIs associated with 

cognition were included in the analysis. For future research, more regions should be included 

regardless whether they are related to cognition or not from a traditional point of view.     
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5.5 Conclusion  

In this chapter, the goal was to investigate 1) whether dFC features can serve as biomarkers for 

neurological diseases and 2) how dFC features are related to cognitive functions in PD and MS – 

two distinct diseases with similar cognitive impairments such as executive dysfunction. In MS, 

average connection density, strength, and global dynamics were all decreased, but 

interhemispheric connections became more variable, possibly compensating for structural damage 

in the corpus callosum and other regions. In PD, we did not observe differences of any dynamic 

features compared to control subjects, which might be due to the relatively mild disease severity 

in our cohort. In the MS subjects, the brain-behaviour analyses revealed that higher disease 

duration was associated with decreased dFC and such association could be predicted by the 

principal components of dynamic features. Set-shifting abilities measured in WCST were 

predicted by the component representing dFC in interhemispheric connections; however, this 

relation did not explain a significant proportion of the variance in the functional connectivity data. 

In PD, better performance of memory tests was robustly related to/predicted by higher dynamics 

in interhemispheric connectivity, while overall disease severity was modulated by global dynamics 

with fewer effects from intra-hemispheric connectivity. Taken together, these brain-behaviour 

associations provide insights into understanding the disease effects in different neurological 

conditions.     
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Chapter 6: Dynamic brain organization, disease severity, and executive 

function  

In this chapter, different aspects of functional connectivity are integrated to study the relations 

between stationary, dynamic functional connectivity, cognitive functions, disease severity, and 

demographical factors. By combining stationary and dynamic functional connectivity, dynamic 

brain organization can be assessed, which provides a more comprehensive approach to investigate 

the relations between functional connectivity, disease progression, and cognitive function as well 

as compensatory effects.      

 

6.1 Introduction  

6.1.1 Stationary and dynamic functional connectivity  

Functional connectivity in human brain networks is usually estimated by calculating the temporal 

correlation (e.g. Pearson’s r correlation) or neural influence (estimated by e.g. conditional 

dependence) between brain signals among anatomically-segregated brain regions [Friston, 1994; 

Friston, 2011]. These methods usually assume that the estimated functional connectivity is 

temporally stationary, i.e. does not change over time. However, connectivity fluctuates across time 

from seconds to minutes even in the resting state, which can be estimated by models of dynamic 

functional connectivity [Allen et al., 2014; Betzel et al., 2016; Chang and Glover, 2010; 

Handwerker et al., 2012; Hutchison et al., 2013a; Jones et al., 2012]. The simplest, and perhaps 

most common time-varying approach to assess dynamic functional connectivity is to estimate 
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correlations between brain regions within a fixed-length, sliding window, with the (possibly 

overlapping) windows ultimately moved over the entire data. Details regarding this method has 

been discussed in sections 1.2.2 and 5.1.1. The time-varying approach can capture the temporal 

variability of functional connectivity, but the spatial network characteristics cannot be estimated 

with this method. A graph theoretical approach appears to be a powerful technique to obtain 

topological information of networks, which quantifies information flow in stationary functional 

connectivity globally and locally.  

6.1.1.1 Cognition and stationary functional connectivity: graph theoretical analysis   

Graph theoretical analysis summarizes network characteristics and can represent how efficiently 

the networks propagate information globally and locally [Sporns, 2013]. Global efficiency, a 

measure of integration, has been related to working memory and verbal comprehension; while 

modularity, a measure of segregation, correlates with motor task performance [Cohen and 

D’Esposito, 2016; Pamplona et al., 2015]. Hub structures are related to higher-order cognitive 

functions such as executive function [Reineberg and Banich, 2016]. With graphical metrics, the 

brain can be divided into modules, with each module related to an individual cognitive component 

[Bertolero et al., 2015]. These “cognitive brain modules” are linked by hub structures and the hubs 

with higher connectivity engage more cognitive modules. Alterations in graphic theoretical 

measures of the computed brain stationary connectivity networks have been associated with a 

variety of cognitive abilities and disease populations. Altered hub structure has been demonstrated 

in people with Parkinson’s disease with attention/executive deficits, with hub nodes having 

reduced importance [Baggio et al., 2014]. Global network measures cannot significantly 

distinguish depressed subjects from healthy controls; however, with a support vector machine 
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approach,  individuals have been accurately classified with network measures [Lord et al., 2012], 

suggesting that a combination of machine learning methods and connectivity features is beneficial 

to assist diagnosis.  

6.1.1.2 Cognition and dynamic functional connectivity: time-varying approach     

Dynamic functional connectivity, as also referred to network dynamics and assessed by time-

varying approaches, appears to be particularly pertinent to several cognitive processes including 

memory, language, attention, and executive functions [Braun et al., 2015; Bressler and Scott Kelso, 

2001; Kucyi et al., 2016; Mattar et al., 2015; McIntosh et al., 2008; Shafto and Tyler, 2014; 

Thompson et al., 2013]. Increased dynamical variability in the EEG was found to be correlated 

with better performance (i.e. shorter reaction time and higher accuracy) in a memory task, 

emphasizing the importance of brain complexity in cognitive development [McIntosh et al., 2008]. 

There are associations between dynamic changes in frontoparietal/frontotemporal networks and 

neuropsychological measures, showing that the  flexibility of neuronal activity in the frontal 

regions is cognitively beneficial for working memory performance and executive functioning 

[Braun et al., 2015]. This has led to a proposed “functional cartography” of the cognitive system, 

based on the estimated amount of integration and recruitment of brain regions during different 

cognitive processes [Mattar et al., 2015]. Network dynamics may also be important for language 

function in an aging population [Chai et al., 2016; Shafto and Tyler, 2014]. Measures of dynamic 

functional connectivity have been recently applied to understand how the human brain is affected 

by diseases such as Parkinson’s disease, Schizophrenia, Alzheimer's disease, and major depression 

[Damaraju et al., 2014; Kaiser et al., 2015; Madhyastha et al., 2014; Sakoglu et al., 2010; Wee et 

al., 2013].  
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6.1.2 Studies looking at both stationary and dynamic aspects of functional connectivity  

Although investigating graph theoretical metrics and dynamic connectivity have become 

increasingly important in clinical and neuroscience (please refer to section 4.1.2, 4.1.3, and 5.1.3 

for review), not many studies evaluate both aspects simultaneously. A few studies have performed 

graph theoretical analysis on the windowed matrices derived from the sliding window approach to 

investigate how brain topological features change across time and the variation of global network 

characteristics [Chen et al., 2016a; Chiang et al., 2016; Kim et al., 2017; Zalesky et al., 2014]. This 

approach has been referred to as dynamic graph analysis and the most commonly used metrics are 

efficiency and modularity [Preti et al., 2017], which offers a promising way to study the balance 

between integration and segregation.  

Compared to other resting-state networks (RSNs) such as sensory-motor, auditory, visual 

networks, the nodes in the salience network (SN), subcortical regions, and the frontoparietal 

network (FPN) showed higher flexibility and diversity (i.e. spatially varied), suggesting that the 

SN, FPN, and subcortical regions are more dynamic and interact with the nodes outside of the 

community determined by graphical analysis. Moreover, the spatiotemporal brain organization of 

the SN predicted processing speed, attention, executive functioning, and cognitive flexibility, 

suggesting that the SN is a hub to facilitate cognitive function by interacting flexibly with other 

networks. Furthermore, the dynamics of topological characteristics have been profiled. The hub 

and inter-modular connections have shown to be more dynamic, which are mainly located in the 

FPN and the default mode network (DMN) and included in long anatomical connections; while 

non-hub regions such as the cerebellum, vermis, and some nodes in temporal areas connectivity 

appeared to fluctuate less [Zalesky et al., 2014]. Of note, the FPN, DMN, and long anatomical 
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connections are highly related to cognitive function (detailed review can be found in section 1.1 

and 1.4). Such brain dynamics possibly react to the balance between different principles of brain 

organization (i.e. efficiency of information transfer, process, and energy cost) as well as cognitive 

processes.    

This approach for studying dynamic brain organization has been applied to a few clinical studies. 

In patients with epilepsy, the network characteristics represent local segregation was more 

dynamic; while the measures represent global integration was more stationary [Chiang et al., 

2016]. In Parkinson’s disease (PD), global efficiency showed higher variation across time 

windows, suggesting that the parallel information transfer was less efficient compared to that in 

healthy subjects [Kim et al., 2017]. Taken together, dynamic brain organization provides insights 

into how diseases affect brain connectivity spatially and temporally, which potentially helps 

predict disease severity. However, none of the clinical research has related dynamic brain 

organization to cognitive performance.       

6.1.3 Study aims  

In this study, the overarching purpose was to study how dynamic and static functional connectivity 

related to cognitive performance in MS and PD. We applied a sliding window approach and graph 

theory analysis to assess dynamic functional connectivity and stationary network characteristics in 

both neurological conditions, aiming to investigate the utility of these measures. In addition, a 

machine learning method, multiset canonical correlation analysis (MCCA), was applied to explore 

the associations between dynamic and stationary functional connectivity features, and behavioural 

data in order to explore models that may be beneficial for treatment development. Since previous 

neuroimaging studies have shown that both dynamic functional connectivity and graphical 



160 

 

measures are beneficial to strengthen understanding of complex cognitive processes, we 

hypothesize that subjects with neurological disorders demonstrating cognitive dysfunction would 

also demonstrate abnormal dynamic and stationary functional connectivity. Furthermore, given 

that human cognition is complex and operates as a network phenomenon [Petersen and Sporns, 

2015], we also hypothesize that cognitive functions in neurological disorders will be jointly 

affected by dynamic and stationary connectivity networks as well as disease severity. 

6.2 Materials and methods  

6.2.1 Subjects  

PD data are from GFM2 project and MS data were from COGMS project. Both cohorts are the 

same as chapter 5.    

Ethics approval was issued by the University of British Columbia's Clinical Research Ethics Board 

and all subjects provided written, informed consent.  

Forty-six Relapsing-Remitting Multiple Sclerosis (RRMS) patients were included in the study and 

all the subjects underwent both cognitive testing and Magnetic Resonance imaging (MRI). 

Demographics are shown in Table 2.2. All patients fulfilled the McDonald 2005 criteria [Polman 

et al., 2005] for diagnosis of MS and were recruited from the MS clinic at the University of British 

Columbia Hospital. Exclusion criteria included the following: 1) subjects with significant 

depression and/or other psychiatric illness, 2) history of drug or alcohol abuse, or 3) use of steroids 

in the last 3 months. 
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The same twenty-four PD patients as the last chapter were included in the study. Clinical 

evaluations and demographics are shown in Table 5.1. All PD patients were in on-medication state 

and severe depressed subjects were excluded in the study.  

6.2.2 Neuropsychological and clinical assessments  

All MS patients underwent a test battery which included Digit Span, Arithmetic, Letter-Number 

Sequencing, Symbol Search, and Symbol Coding subtests from the Wechsler Adult Intelligence 

Scale IV (WAIS-IV), the Verbal Letter Fluency Test (FAS), Wisconsin Card Sorting Test 

(WCST), and Trail Making Test A and B (TMT A and B). The Working Memory Index (WMI) is 

a composite score of Digit Span, Arithmetic, and Letter-Number Sequencing; while the Processing 

Speed Index (PSI) is another composite score of Symbol Search and Symbol Coding. These two 

composite scores were included in the analysis rather than the individual scores in WAIS-IV. 

Clinical questionnaires were administered, which included Multiscore Depression Inventory 

(MDI), State-Trait Anxiety Inventory (STAI), and Fatigue Severity Scale (FSS). The 

neuropsychological battery aimed to evaluate executive skills including mental flexibility, concept 

formation, attentional switching, spontaneous generation of verbal information, and working 

memory as well as processing speed abilities including attention and visual scanning. The subject’s 

disability severity was rated by the Kurtzke Expanded Disability Status Scale (EDSS)[Kurtzke, 

1983] as scored by a neurologist at the time of recruitment. 

All PD patients were assessed with motor and non-motor symptoms with Movement Disorder 

Society Unified Parkinson's Disease Rating Scale (MDS UPDRS). Moreover, depression, apathy, 

and fatigue symptoms were evaluated with questionnaires. Cognitive abilities were assessed with 

Montreal Cognitive Assessment (MoCA). Details have been listed in section 5.2.1.   
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6.2.3 Imaging acquisition and processing  

All subjects underwent imaging studies at the University of British Columbia (UBC) MRI 

Research Centre with a Philips Achieva 3.0 Tesla MRI scanner. Resting-state functional MRI 

(rsfMRI) data were acquired using an 8 channel head coil and an echo-planar imaging sequence 

with the following parameters: 3×3×3 mm3 resolution, 36 slices, 2000 ms TR, 30 ms TE, 90 degree 

flip angle, and 240 volumes/dynamics. 3 Dimensional (3D) T1 weighted images were acquired 

with 1×1×1 mm3 resolution, 60 slices, 28 ms TR, 4 ms TE and 27 degree flip angle.  

The preprocessing was the same as chapter 5. 

In MS, image preprocessing steps were performed in each subject’s native space with the functions 

of slice timing and motion correction from Statistical Parametric Mapping 8 (SPM8, University 

College London, London) for correcting temporal and spatial differences. For registration, the 

FMRIB's Linear Image Registration Tool (FLIRT) from the FMRIB Software Library 6.0 (FSL, 

FMRIB, Oxford) was used and a brain mask was applied to remove non-brain areas before 

registration. Cortical parcellation was done on the T1-weighted images in Freesurfer version 4.5.0 

(Massachusetts General Hospital, Boston) and 36 cognition-associated regions-of-interest (ROIs) 

were selected (Table 5.2). These ROIs have been commonly reported in the neuropsychological 

literature and frequently used to investigate the relations between cognition and resting-state 

functional connectivity (rsFC). Finally, the average fMRI time courses among voxels within 

individual ROIs were extracted using self-programmed scripts in Matlab (The MathWorks, Inc.) 

and the data were detrended before connectivity analyses.   



163 

 

In PD, similar processing steps have been applied but with AFNI (NIMH, Bethesda), including 

despiking, slice timing correction, 3D isotropic correction (3x3x3 mm3 resolution), and motion 

correction. Whole brain parcellation was done in FreeSurfer 6.0 on the T1-weighted images and 

the structural images were then registered to the fMRI images using rigid registration. All analyses 

were done in the native fMRI space rather than transforming all fMRI data to a common template. 

Moreover, several sources of variance such as head-motion parameters, white-matter, and CSF 

signals were removed using linear regression. The fMRI signals of the same 36 cognition-

associated ROIs were extracted and detrended to remove any linear or quadratic trends and 

smoothed with 6 FWHM Gaussian kernels. Finally, bandpass filtering was performed to retain the 

signal between the recommended frequencies of interest for resting state activity (0.01 Hz to 

0.08Hz). 

6.2.4 Connectivity analysis  

Dynamic functional connectivity (dFC) was evaluated in a sliding window approach with inverse 

covariance matrices and several dynamic features were calculated. Analysis details can be found 

in section 5.2.4. In total, 6 features were generated including network variation (NV), flexibility 

of interhemispheric connections (FOCcs), flexibility of cross-hemispheric connections (FOCcns), 

flexibility of intrahemispheric connections (FOCw), density (Den), and network power (NP). 

Although these network features were all calculated based on learned dynamic connectivity 

matrices, we considered DEN and NP as stationary network features as they did not calculate the 

differences between two matrices. Rather, they represented the average values across the scanning 

time.  
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For stationary functional connectivity (sFC), graphical measures were estimated with the Brain 

Connectivity Toolbox. Analysis details can be found in section 4.2.4. In total, global efficiency, 

transitivity, modularity, assortativity, characteristic path length, and rich club coefficient were 

computed. Note that in order to avoid having too many features and overfitting the data in PD, rich 

club coefficient was not included as the highest level was only 7 in our PD data.   

6.2.5 Brain-behaviour associations  

We utilized MCCA to explore the associations between modalities/data sets. MCCA determines 

the linear combinations of data sets that maximize the correlations between data sets. MCCA is a 

popular method for blind source separation and has been used to explore the associations between 

neuroimaging and clinical/behavioural data [Chen et al., 2016b; Perry et al., 2017; Sui et al., 2013].  

In this study, we included five data sets to investigate the relations between dynamic rsFC, 

stationary rsFC, demographics, cognitive scores, and affective variables in RRMS. Dynamic rsFC 

included NV, FOCcs, FOCcns, and FOCw. Stationary rsFC included DEN, NP, global efficiency, 

assortativity, characteristic path length, modularity, rich club coefficient, and transitivity. The 

demographical set included education, EDSS, and disease duration. Cognitive scores included 

WMI, PSI, FAS, WCST number of categories completes, TMT A and B, in which WMI, PSI, and 

FAS were standardized/adjusted scores. Affective variables contained MDI, trait anxiety (STAIT), 

state anxiety (STAIS), and FSS, in which MDI (total score), STAIT, and STAIS were 

transformed/standardized scores. Subjects who showed more than 1 variable that was 

bigger/smaller than 2 standard deviations of the mean were considered outliers. In the end, nine 

subjects/outliers were excluded in the MCCA analysis, resulting in 37 MS subjects in total. Age 

effects were regressed out in a linear regression model and all the data were whitened before 
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performing MCCA. A permutation test with 1000 permutations was performed to assess the 

significance level of each MCCA component. In order to ensure the robustness of results, we used 

a leave-one-out cross-validation. Finally, the MCCA loadings (i.e. correlation between 

transformed canonical data and input scores) and standard errors of each variable were reported.    

In PD, 4 data sets were included. First, dynamic rsFC included NV, FOCcs, FOCcns, and FOCw. 

Stationary rsFC set included DEN, NP, global efficiency, assortativity, characteristic path length, 

modularity, and transitivity. In the clinical set, scores of UPDRS III, Beck Depression Inventory 

(BECK), and Apathy Scale (SAS) were incorporated. Finally, scores of MoCA sub-tests and the 

final full scores were involved in the cognitive set. Due to that naming test did not show 

impairments in any patients (everyone got full score), this sub-score was not included in the 

cognitive set. As the sample size of PD was relatively small, we only included the most important 

variables that we were interested in to avoid overfitting the data. Some demographical and clinical 

variables were not contained in the analysis such as gender, disease duration, MDS UPDRS part 

I, II, and IV, etc. No outliers have been detected in PD; therefore, 24 PD patients were counted in 

the MCCA analysis. MCCA was performed using the same parameters and approach as previously 

described.   

6.3 Results  

6.3.1 MCCA in MS  

MCCA identified one significant component that showed moderate to strong correlations between 

the linear combination of almost all data sets (p=0.01 in a permutation test, Figure 6.1). This 

component represented a linear combination of features in all sets that maximally correlate with 
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each other. Dynamic features showed strong and moderate correlation to stationary features 

(r=0.80) and cognitive scores (r=0.34) as well as demographics (r=0.22). Stationary features also 

demonstrated associations to cognitive scores (r=0.24) but showed limited relations to other 

behavioural measures (i.e. demographics and affect). Demographics were strongly associated with 

affective variables (r=0.60) as well as cognition (r=0.46) and dynamic features (r=0.22). Affective 

(mood) variables were not strongly linked to resting-state functional connectivity (rsFC) features. 

However, affect was associated with cognitive performance tests and demographic features. 

Overall, cognition was more correlated to demographics and dynamic rsFC than static rsFC and 

affect. Affective variables mainly had strong relations to demographics, but they also showed mild 

associations to cognition.  
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Figure 6.2 demonstrates the MCCA loadings of all variables in the significant component (p=0.01 

in a permutation test). Within each set, red stars indicated the variables that showed significant 

loadings and the results were mainly interpreted based on these variables. All the variables which 

showed positive loadings were positively correlated with each other; likewise, all the variables that 

demonstrated negative loadings were positively associated with each other. In short, higher 

dynamics, stronger static connectivity strength, longer education, and better cognitive 

performances were correlated with each other. On the other hand, denser static connectivity, higher 

EDSS and longer disease duration, worse TMTB performance, and depression/anxiety/fatigue 

were positively associated with each other.  

Better executive functions on cognitive testing were related to higher dynamics, stronger stationary 

connectivity, and higher education; while worse mental flexibility measured by TMT B test are 

expressed with the associations of denser static connectivity, higher disease severity, and disease 

comorbidity (i.e. depression, anxiety, and fatigue).   

  

Figure 6.1 Correlation between MCCA sets in MS. The lower triangle shows the correlation coefficients 

between all data sets in the significant MCCA component (p = 0.01 in a permutation test). Each column/row 

represents the linear combination of the MCCA loadings from all variables within each set. The exact 

correlation coefficient between two sets is illustrated in each corresponding element.  
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Figure 6.2 MCCA loadings in MS. MCCA loadings of all variables in all sets are shown with error bars 

indicating standard errors. Red stars highlight the individual variables that demonstrate significant loadings 
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(p<0.05). All the variables that show positive loadings are positively associated with each other. All the 

variables that present negative loadings are positively correlated with each other.  

[NV: network variation, FOCcs: flexibility of interhemispheric connections, FOCcns: flexibility of cross-

hemispheric connections, FOCw: flexibility of intrahemispheric connections, DEN: density, NP: network 

power, GE: global efficiency, assor: assortativity, chapath: characteristic path length, modu: modularity, 

richclub: rich club coefficient, trans: transitivity, ED: education, EDSS: Expanded Disability Status Scale, 

DD: disease duration, WMI: Working Memory Index, PSI: Processing Speed Index, FAS: Verbal Fluency 

Test, WCSTCC: Wisconsin Card Sorting Test number of categories completes, TMTA: Trail Making Test 

A, TMTB: Trail Making Test B, MDITOTT: Multiscore Depression Inventory Total T Score, STAIS: 

Anxiety Inventory-State, STAIT: Anxiety Inventory-Transit, FSS: Fatigue Severity Scale] 

      

6.3.2 MCCA in PD  

MCCA also revealed one significant component that showed moderate to strong correlations 

between the linear combination of all data sets in PD (p=0.02 in a permutation test, Figure 6.3). 

Stationary FC and clinical data sets demonstrated the strongest correlation with r=0.82. The rest 

sets all showed moderate correlations: r=0.58 for clinical set vs cognitive set, r=0.47 for dynamic 

FC vs cognitive set, r=0.44 for dynamic FC vs clinical set, r=0.36 for dynamic vs stationary FC, 

and r=0.31 for stationary FC vs cognitive set. In short, the linear combination of stationary features 

was strongly correlated with clinical data. On the other hand, dynamic features were more 

correlated with cognitive function than other sets. Clinical data and cognitive function also showed 

strong correlation.   
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Figure 6.3 Correlation coefficients between 4 MCCA data sets in PD. The lower triangle shows the 

correlation coefficients between all data sets in the significant MCCA component (p = 0.02 in a permutation 

test). Each column/row represents the linear combination of the MCCA loadings from all variables within 

each set. The exact correlation coefficient between two sets is illustrated in each corresponding element. 

    

The MCCA loadings of the significant component are shown in Figure 6.4 (p=0.02 in a 

permutation test). Within each set, black stars indicated the variables that showed significant 

loadings and the error bars showed standard errors across subjects. In the dynamic FC set, NV and 

FOCw showed significant positive loadings, while FOCcs demonstrated negative loadings. 

Assortativity and transitivity in the stationary set both exhibited significant negative loadings. All 

variables in the clinical data showed significant positive loadings. In the cognitive set (i.e. MoCA 
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scores), LAN was loaded positively and DELAY was loaded negatively. All the variables which 

showed positively loadings were correlated with each other and variables with negative loadings 

were positively related to each other, which resulted in a “positive-negative pattern”. In other 

words, higher dynamics in global and intrahemispheric FC, higher disease severity, more severe 

depression and apathy symptoms were correlated with better language ability. Higher 

interhemispheric dFC, assortativity, and transitivity were related to better memory function 

measured by the delayed recall test in MoCA. 

 

Figure 6.4 MCCA loadings in PD. MCCA loadings of all variables in all sets are shown with error bars 

indicating standard errors. Black stars highlight the individual variables that demonstrate significant 

loadings (p<0.05).  
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 [NV: network variation, FOCcs: flexibility of interhemispheric connections, FOCcns: flexibility of cross-

hemispheric connections, FOCw: flexibility of intrahemispheric connections, DEN: density, NP: network 

power, assor: assortativity, chapath: characteristic path length, GE: global efficiency, modu: modularity, 

trans: transitivity, UPDRS3: Unified Parkinson's disease rating scale part III, BECK: Beck Depression 

Inventory, Apathy: apathy scale, VSEXE: visuospatial/executive function, ATT: attention, LAN: language, 

ABS: abstraction, DELAY: memory test delayed recall, ORIEN: orientation, total score: MoCA full score] 

       

6.4 Discussion  

6.4.1 Relations between dynamic, stationary functional connectivity, education, and 

cognition in MS 

We found two major patterns of the associations between rsFC and behavioural data with the 

MCCA approach in MS. Better working memory, processing speed, and verbal fluency abilities 

were associated with higher education, stronger stationary rsFC as well as higher network 

variability. The other pattern demonstrated that poor switching ability was associated with higher 

depression, state and trait anxiety, fatigue, higher disease severity, longer disease duration, and 

denser but perhaps more rigid rsFC (as density was anti-correlated with all dynamic features).  

Previous research has proposed that more variability in functional connectivity is related to better 

cognitive performance [Kucyi et al., 2016; Mattar et al., 2015; McIntosh et al., 2008]. In our 

results, we also observed positive correlations between variable network features and cognitive 

performance. These cognitive performances not only required attention but also a variety of 

executive skills such as working memory (to temporary hold and manipulate information to 

formulate an answer), processing speed abilities (to perform focused attention, visual scanning, 
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and discriminating visual details under timed conditions), and fluency (to spontaneously generate 

information according to rules and retrieve information from memory) [Kreutzer et al., 2011], 

which were all higher-order cognitive functions and required more neuronal resources [Miller and 

Wallis, 2009].  

We found higher education and stronger static connectivity strength were also associated with 

better higher-order cognitive functions, in keeping with prior results [Alosaimi et al., 2017] and 

“cognitive reserve theory” which suggests that education may provide neuroprotection effects and 

enhance plasticity and flexibility in a variety of neural circuits imparting protection in 

neurodegenerative disease [Stern, 2002; Vance et al., 2010]. Prior studies relating functional 

connectivity with cognition have been variable; stronger [Smith, 2015], or weaker but more 

efficient connections [Santarnecchi et al., 2014] have both been proposed for supporting cognitive 

functions. We suggest, that, the balance between dynamic and stationary connectivity and 

coordination of information flow might be the key factor to facilitate cognition.  

6.4.2 Disease effects on cognition and comorbidity in MS  

The MCCA model also suggested a relation between disease severity, comorbidity, and worsening 

executive functions. Depression and anxiety are frequent comorbidities in MS and are often 

associated with more severe physical disability and disease progression, and poorer quality of life 

[Marrie, 2016]. Although comorbidities in MS have been extensively studied in the clinical 

literature (e.g., [Alosaimi et al., 2017; Marrie, 2017; Rahn et al., 2012]), the relations between 

disease severity, comorbidity, cognition, and rsFC have not been previously investigated. We 

found affective variables were highly correlated with demographics as shown in Figure 6.1. Within 

this association, higher disease severity, reflected by higher EDSS and longer disease duration, 
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was related to higher depression, state and transit anxiety, and fatigue. Worse TMTB performance 

(higher scores) was correlated with above-mentioned associations and higher network density, 

which might be more rigid as DEN was anti-correlated with all dynamic features. TMTB 

performance required a great deal of executive components especially task switching abilities and 

mental speed; therefore, this MCCA pattern indicated a co-existence of disease severity, 

comorbidity, reduced shifting abilities, mental speed, and denser but rigid static rsFC in MS.  

Recent studies have investigated the relations between cognitive decline and psychiatric 

comorbidity in neurological diseases and three theories have been proposed, 1) comorbidity is 

independent of cognitive decline, 2) cognitive dysfunction is qualitatively influenced by 

comorbidity, and 3) comorbidity manifests the existing cognitive impairments in neurological 

diseases (i.e. cognition is  quantitatively affected) [Barone and Santangelo, 2010; Karadayi et al., 

2014; Mavandadi et al., 2009]. We found that disease severity exhibited the strongest association 

with depression, anxiety, and fatigue; while it demonstrated the second strongest correlation to 

cognitive scores. In addition, the correlation between affect and cognition was relatively mild. 

Affective status might have relatively weaker interactions with rsFC but indirectly impact higher-

order cognitive functions in early-stage MS. Therefore, our results are most supportive of the 

theory that psychiatric comorbidity does not directly impact cognition, but rather, it exacerbates 

existing cognitive problems in MS. 

6.4.3 Better memory function in PD is related to dynamic interhemispheric connectivity 

and stationary network segregation  

Delayed recall test in MoCA reflects memory retrieval and encoding function [Julayanont and 

Nasreddine, 2017]. In PD, whether memory deficits are caused by impairments in retrieval or 
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consolidation (i.e. whether patients are unable to re-access information or acquire new 

information) is still under debate [Chiaravalloti et al., 2014; Costa et al., 2014]. However, the 

striatum has been proposed to primarily support memory retrieval and the deficits might be related 

to executive dysfunction [Costa et al., 2014; Scimeca and Badre, 2012]. In this study, although we 

were unable to pinpoint which kinds of memory deficits were represented in our data with only 

sub-tests in MoCA, we demonstrated inter-correlations between better memory function, network 

segregation, and dynamic coordination between two hemispheres.        

In our results, better performance of memory test was associated with 1) higher transitivity and 

assortativity as well as 2) higher dFC in interhemispheric connections. As transitivity is a measure 

of functional segregation, higher value represents that the brain networks are more segregated than 

integrated. Assortativity is a correlation coefficient of node degrees of connected pairs, 

representing the tendency that similar nodes (with similar degree) are linked to each other. 

Therefore, higher value represents higher resilience. Of note, the values of assortativity in all 

subjects were small, which means that resilience may not be very obvious, but the subtle changes 

might still be related to cognition in PD. Higher FOCcs represents higher variation in the 

homologous connections across time, that is, higher dFC in interhemispheric connections. Taken 

together, better memory function in PD was correlated with the segregated and resilience in the 

stationary FC and also related to more dynamic coordination of two hemispheres, supporting that 

1) higher cognitive function is related to functional segregation proposed in Chapter 4 and 2) the 

important role of information transfer through interhemispheric connectivity toward cognition 

stated in Chapter 3.         
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6.4.4 Disease severity and comorbidities are related to compensated dynamics in PD  

The other pattern in our results demonstrated that higher disease severity and comorbidities 

(depression and apathy) were associated with higher global dynamics and connectivity variation 

in intra-hemispheric connections as well as better language functions measured with sentence 

repetition and verbal fluency, which possibly indicated that increased dFC compensated for 

functional disruptions elsewhere. These increased dynamics may therefore facilitate language 

processes, causing paradoxical associations between higher disease severity and better relative 

language functions.    

Although the exact mechanisms of altered language function in PD remains unclear [McNamara 

and Durso, 2018], novel analysis investigating dFC has revealed that flexible and dynamic 

networks facilitate language function [Chai et al., 2016], which explained the inter-correlations 

between language performance and increased dynamic features especially dFC in intra-

hemispheric connections in our results. In addition, the language sub-test in MoCA actually 

reflects both language ability and executive function because verbal fluency is one of the tasks. As 

previously discussed, dFC has been associated with executive function in several studies [Mattar 

et al., 2015; Nomi et al., 2017], the findings further strengthened the conclusion that better 

language/executive function in PD is associated with increased dFC features rather than disease 

severity and comorbidities directly.       

Interestingly, among the 4 data sets in the MCCA, clinical and stationary FC sets expressed the 

strongest correlation compared to other sets (r=0.8). UPDRS scores, depression and apathy 

symptoms were strongly anti-correlated with functional segregation measured with transitivity. 

The loadings of these two sets supported the conclusion in the previous chapters that disease 
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severity and comorbidity are related to functional segregation, and FC in PD has shifted toward a 

segregation-orientated brain organization (please see Chapter 4).     

6.4.5 Limitations and future work  

There are several limitations to our study. All MS subjects were relapsing remitting in the study. 

Therefore, the results might not be representative enough to the whole MS population, but the 

connectivity profile related to cognition in the RRMS disease stage was suggested. Several MS 

subjects were considered outliers and removed from the analysis, which reduced the sample size. 

In PD, as the sample size was relatively small for machine-learning approaches, we only included 

the variables that we were mostly interested in in order to avoid overfitting the data. Therefore, 

some effects of demographic and clinical features were not assessed. A previous chapter discussed 

heavily on gender effects to cognition in PD and MS, but we were unable to evaluate such an effect 

in this study. During the analysis, if gender was included in the demographics data set, none of the 

components were significant and the correlation coefficients between data sets were small 

(r=0.01~0.4). Perhaps, compared to gender, cognitive function was more associated with other 

variables such as education, disease severity, and fMRI measures in a multivariate relation.    

As the original study design focused on the cognitive impairments commonly seen in the clinic, 

the selected ROIs covered the areas that have been identified in the traditional neuropsychological 

literature. However, with a greater recognition that complex cognition is a network phenomenon, 

complete whole brain coverage should be included in the future research. The issue of window 

length and the ways to report connectivity changes might be confounding factors while 

investigating dynamic functional connectivity. In this study, we used suggested window length 

parameters and selected six network features to summarize connectivity differences, which might 
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not capture all the potential connectivity changes. Recently other approaches have been proposed 

to study network dynamics in an unbiased manner, such as the Sticky Weighted Regression Model 

[Liu et al., 2015] and Dynamic Conditional Correlations [Lindquist et al., 2014]. Furthermore, 

other methods have been applied to report meaningful connectivity patterns other than selecting 

certain features [Leonardi et al., 2013]. These methods should also be tested with clinical data in 

the future. We included graphical measures as stationary features, but other network 

representations such as whole-brain connectivity matrices are also alternatives. In addition, nine 

MS subjects were considered outliers, implying inter-subject variability may still be an issue for 

robustness. Finally, changes in functional connectivity might be a result of compensation and 

adaptation for structural damages in MS. We did include brain volume and lesion load to test 

whether structural damages had impact on the results, but the MCCA model was not significant 

(data are not shown). Although structural damage is not commonly considered in PD, recent 

studies have discovered white matter microstructural changes with novel analyses [Zeighami et 

al., 2017]. Combining structural MRI data and functional connectivity in a sophisticated way is 

beyond the scope of this thesis, but it will be implemented to further investigate the disease effects 

structurally and functionally.  

6.5 Conclusion  

In this study, we performed a sliding window approach and a graph theoretical analysis on rsfMRI 

data to investigate dynamic functional connectivity and stationary network characteristics. MCCA 

was applied to explore the associations between dynamic, static network measures and behavioural 

data which included demographics, clinical data, cognitive performances, and affective status in 

subjects with RRMS and PD.  



179 

 

With an MCCA approach that controlled for age effects, we discovered that better executive 

functioning in MS was supported by higher education, stronger rsFC, and dynamic functional 

connectivity; whilst disease severity was highly related to poor executive functioning and affective 

variables, reinforcing the strong relationship between pathology and comorbidities. In PD, the 

inter-correlations in MCCA revealed that better memory function was related to segregated brain 

networks and dynamics of interhemispheric connections, reinforcing the role of interhemispheric 

connectivity to cognition; while disease severity and comorbidity were associated with increased 

dFC in global and intra-hemispheric connections, suggesting a compensatory effect and perhaps 

causing the paradoxical association between disease severity and language performance.  

The brain-behaviour relations revealed in this study may provide influential information for the 

development of customized cognitive treatment and rehabilitation in neurological conditions (e.g. 

rehab in specific domains based on disease severity), but further research is necessary to better 

understand the disease effects as a whole such as combining structural, functional, and behavioural 

data.   
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Chapter 7: Conclusion 

The research presented in this dissertation utilized novel approaches to study resting-state 

functional connectivity (rsFC) and the associations to cognitive deficits in two distinct 

neurological conditions: Parkinson’s Disease (PD) and Multiple Sclerosis (MS). The goals were 

to investigate whether advanced network measures have potential to serve as biomarkers, explore 

relations between altered rsFC and cognitive performance, and predict cognitive function and 

disease severity based on rsFC. The knowledge provides important insights to the understanding 

of disease effects and treatment development.    

 

7.1 Summary of the research 

The included data in each chapter are summarized in Table 7.1. 

Chapter  Subjects  Age  Cognitive tests  Project  

Ch2 31 PD 

46 MS 

PD: 59.9±10.8(f), 61.5±9.4(m) 

MS: 41.1±10.3(f), 45.8±11.6(m) 
Comprehensive 

battery  

PD: PPMI 

MS: COGMS 

Ch3 12 PD & 10 NC 

25 MS & 41 NC 

PD: 60.0±9.9, NC: 59.4±6.1  

MS: 37.2±9.5, NC: 34.9±10.1 

PD: limited 

MS: 

PASAT/SDMT 

PD: BCT 

MS: OPERA 

Ch4 23 PD & 19 NC  

(8 showed artifacts) 

18 MS & 15 NC 

      46 MS for BBA 

PD: 60.95±9.7, NC: 56.13±16.9 

 

MS: 32.00±4.9, NC: 28.93±5.0 

        46 MS: 42.89±10.9 

Comprehensive 

battery as ch2 

PD: PPMI 

 

MS: COGMS 

Ch5 24 PD & 15 NC 

 

18 MS & 15 NC 

      46 MS for BBA 

PD: 68.38±4.7, NC: 69±4.8  

 

MS: same as ch4   

PD: MoCA sub-

scores 

MS: as ch2  

PD: GFM2 

 

MS: COGMS 

Ch6 24 PD 

 

37 MS  

(9 outliers) 

same as ch5  

PD: as ch5 

MS: as ch2,4,5  

PD: GFM2 

 

MS: COGMS 

Table 7.1 The summary of data used in each chapter.  
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[BBA: brain-behaviour analysis] 

7.1.1 Cognitive impairments and functional connectivity  

Chapter 1 presented a literature review on cognitive deficits in PD and MS – two distinct 

neurological diseases that both demonstrate similar cognitive deficits especially executive 

dysfunction – as well as a summary of the clinical research which investigates rsFC and cognitive 

impairments with both traditional (i.e. seed-based connectivity and independent component 

analysis-derived resting networks) and novel/advanced approaches (i.e. graph theory analysis and 

time-varying approaches). This chapter concluded that there are common causes and unique 

features for executive impairments in PD and MS. Impaired long-range connections potentially 

impact the “input component” of executive function, which is a common feature in both diseases. 

Decreased efficiency of global neuronal transfer has been commonly reported in MS, which might 

be a result of hub failure. In PD, the frontal-striatal loops affected by dopamine depletion affects 

the “output component” of the executive function and hub reorganization (i.e. non hubs become 

more important and hubs lose the central role in the networks) altered brain organization. In 

addition, as cognitive inflexibility has been commonly seen in PD clinically, the chapter also 

hypothesizes that connectivity flexibility might be impaired (i.e. dynamic functional connectivity 

which facilitates higher-order cognition) as well and connectivity flexibility shall share certain 

degrees of association with cognitive flexibility.    

7.1.2 Cognitive profiles and the associations to demographical features  

In Chapter 2, Canonical Correlation Analysis (CCA), a multivariate approach, revealed complex 

inter-correlated patterns between cognitive performance and demographical characteristics to 

compare PD and MS in terms of cognitive deficits reported in the literature. In MS, female gender 
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was associated with better executive functions such as set-shifting ability; while male gender and 

disease severity were related to poor performance in card sorting tests. In PD, female gender and 

education were associated with better performance in almost all the cognitive domains that are 

commonly impaired such as verbal learning and memory, executive function, attention, and 

processing speed. On the other hand, age and depression were anti-correlated with better cognitive 

abilities.      

Taken together, the chapter reveals an inter-correlated pattern between cognitive performance, 

clinical evaluation, and demographical characteristics in PD and MS. Moreover, this study 

concluded that gender is an influential factor in preserving cognitive function regardless of 

pathology, possibly due to the purported neuroprotective effects of estrogen.     

7.1.3 Long-range connections, interhemispheric connectivity, and cognitive function  

As Chapter 1 hypothesized that long-range connections might be the common cause to cognitive 

deficits, Chapter 3 utilized whole brain connectivity analysis to investigate long-range connection 

as well as interhemispheric functional connectivity. Several machine learning methods were 

carried out to explore the relations between rsFC and cognitive performance.  

In MS, interhemispheric connectivity appeared to be enhanced and homogenized, possibly 

indicating a compensatory effect. With robust and LASSO regression, we reported that adequate 

cognitive performance requires distributed homologous brain regions, and that interhemispheric 

connectivity can accurately predict performance of attention, processing speed, and working 

memory functions. With an exploratory approach, frontal-parietal/occipital connections were 

significantly different between controls and MS and such pattern was correlated with cognitive 
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performance that required attention and memory, supporting the important role of long-range 

connections in cognitive processes.   

In PD, enhanced interhemispheric connectivity was observed in the medial prefrontal cortex, 

possibly as a compensatory mechanism. Only dopaminergic medication dose could be mildly 

predicted by the altered interhemispheric connectivity. In addition to interhemispheric 

connectivity, several connections within frontal-striatal loops showed differences in PD. Although 

they were part of the “output component” of executive function, no significant associations with 

behavioural scores were found, possibly due to the fact that the patients were very mild and none 

showed significant cognitive impairment. 

Overall, long-range connections and interhemispheric connectivity could predict cognitive 

performance in MS, which supported the hypothesis in Chapter 1. However, the brain-behaviour 

associations in PD were not very promising. Perhaps, other aspects of rsFC should be taken into 

account such as dynamic functional connectivity.         

7.1.4 Topological brain organization and executive function   

In Chapter 4, graph theoretical approaches were applied to capture rsFC network characteristics. 

As functional integration and segregation are important principles of brain organization, we mainly 

calculated the measures representing these two characteristics. In addition, as hubs have been 

associated with higher-order cognitive function, measures of hub structures were included as well. 

In order to explore the brain-behaviour relations reflecting how brain organization is associated 

with cognitive function, we utilized several methods such as correlation, regression, and machine 

learning approaches.  



184 

 

In PD, although global measures did not show any differences, several local measures 

demonstrated alterations across cortices, indicating 1) a segregation-oriented brain organization 

and 2) hub vulnerability. Moreover, increased functional segregation was correlated with better 

cognitive performance which requires executive skills as well as verbal learning and memory 

abilities. The observed brain-behaviour relations further supported that FC has become more 

segregated in order to support cognitive function in PD.    

In MS, there were no alterations in brain organization, which might due to the mild disease course 

in our cohort. However, interestingly, brain-behaviour analyses revealed promising results. First, 

modularity, a measure of functional segregation, was related to the performance of verbal fluency 

test, indicating that executive skills were associated with functional segregation in MS. In addition, 

in several linear regression models, disease severity, psychiatric comorbidities, and cognitive 

performance in executive and processing speed domains could be significantly predicted by local 

measures located across cortices and the cerebellum. Moreover, with a machine learning approach, 

such predictability was enhanced between local efficiency and disease duration. Taken together, 

the brain-behaviour associations illustrated that the disease was affected/predicted by distributed 

regions and executive skills were significantly associated with the coordination between not only 

frontal, temporal, and parietal regions but also cerebellum, supporting the “cognitive role” of 

cerebellum in neurological diseases.  

In short, brain organization reflected information transfer in a topological fashion, which allowed 

us to investigate how diseases altered communication between brain regions. In PD, we 

demonstrated hub vulnerability, which is consistent with previous studies not only in PD but other 
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neurological and psychiatric disorders. In MS, we revealed robust brain-behaviour relations and 

highlighted the influence of distributed brain regions to both disease course and cognitive function.    

7.1.5 Dynamic functional connectivity and executive function  

In Chapter 5, a sliding window approach with inverse covariance matrix estimation was used to 

estimate dynamic functional connectivity with features representing dynamics in global and 

specific connections. Correlation was carried out to explore the associations between dynamics 

features and behavoural data (demographics, clinical measures, and cognitive scores). Linear 

regression was applied to study the relations between principal components of dynamic features 

and behavioural data.  

In MS, global dynamics and connectivity strength/density were decreased, but interhemispheric 

connections increased their dynamics, suggesting a compensatory mechanism whereby 

interhemispheric connections become more variable to compensate for global functional 

disruption. Longer disease duration was related to decreased dFC in several specific connections 

and could be predicted by principal components of dynamic features. Although components 

representing main effects of interhemispheric dynamics could predict set-shifting ability in a 

regression model, this relation was not representative of the whole data set. 

In PD, none of the dynamics features were different between healthy subjects and patients, which 

could be explained by the fact that all PD subjects were very mildly affected. However, subtle 

changes of dFC were related to cognitive performance. Higher dynamics in interhemispheric 

connections were related to better performance in a memory test, emphasizing the importance of 

dynamic coordination between two hemispheres in cognitive processes. Two regression models 



186 

 

showed significant brain-behaviour associations. A principal component that represented overall 

dynamics could predict disease severity; while age and a component which contrasted effects from 

interhemispheric vs non-interhemispheric dFC could predict memory function. The regression 

results supported the interpretation of the correlation patterns but with stronger robustness.  

To conclude, with dynamic features derived from the analysis, we observed compensatory effects 

in MS, whereby increased dynamics in interhemispheric connections compensated for reduced 

dynamics in global networks. Furthermore, dynamic connectivity patterns could predict disease 

duration. In PD, although no network changes were observed, subtle dFC alterations were related 

to cognitive performance, highlighting the role of dFC to cognition and supporting the idea that 

dFC may be a key role in PD, as proposed in Chapter 1.  

7.1.6 Combining dynamic, stationary functional connectivity and behavioural data 

reveals complementary information    

As mentioned in Chapter 1, more sophisticated statistical approaches are needed to explore brain-

behaviour associations. In chapter 6, Multiset Canonical Correlation Analysis (MCCA), a 

multivariate and machine learning approach, was applied to investigate the relations between 

different aspects of FC (i.e. stationary and dynamic), demographics, clinical data, and cognitive 

scores jointly. The dynamic FC set contained dynamic features derived from a sliding window 

approach as described in Chapter 5. For the stationary set, graph theory measures were calculated 

to represent functional integration, segregation, and hub structures as mentioned in Chapter 4. This 

multivariate approach allowed us to combine different modalities to come up with complementary 

information to understand disease effects clinically, functionally, and cognitively. 
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In MS, five data sets were included in the MCCA: dynamic and stationary rsFC, demographics, 

cognitive scores, and affective variables. Better cognitive performance in several tests were 

correlated with higher dynamics, stronger static connectivity strength, and longer education; whilst 

worse set-shifting abilities were related to denser static connectivity, higher disease severity, 

longer disease duration, and comorbidities such as depression, anxiety, and fatigue. Based on these 

inter-correlated patterns, we suggest that the balance between dynamic and stationary connectivity 

and coordination of information flow might be the key factor to facilitate cognition. In addition, 

this MCCA pattern also indicated a co-existence of disease severity, psychiatric comorbidity, 

reduced shifting abilities, mental speed, and denser but rigid static rsFC in MS. 

In PD, the MCCA model utilized four data sets: dynamic and stationary rsFC, clinical data, and 

cognitive performance measured in MoCA sub-tests. Better memory function was associated with 

higher dynamics in interhemispheric, graphical measures assortativity and transitivity, supporting 

the conclusion in the previous chapters that 1) dynamic coordination between two hemispheres 

was important for cognitive function, and 2) rsFC in PD shifts toward a more segregation-oriented 

brain organization. On the other hand, better language performance was related to higher dynamics 

in global and intrahemispheric FC, higher disease severity, more severe depression and apathy 

symptoms. In this brain-behaviour pattern, perhaps higher dynamics represented compensatory 

effects and therefore facilitated language function. As disease severity, depression, and apathy 

jointly are less likely to improve cognitive function, we propose that better language performance 

might be due to compensated higher dynamics.  

Using MCCA with different modalities to examine the brain-behaviour relations provided 

complementary information for the development of customized cognitive treatment and 
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rehabilitation in neurological conditions. Although choosing the data sets included in MCCA could 

be challenging, this approach offers another opportunity to assess brain-behaviour relations more 

comprehensively and supports the benefits of using advanced methods mentioned in Chapter 1.     

7.2 Strengths and limitations 

7.2.1 Strengths: functional connectivity analysis 

Unlike the traditional clinical research in PD and MS, this thesis research carried out whole brain 

connectivity analysis with a focus on brain organization and dynamic functional connectivity as 

opposed to targeting front-striatal loops in PD and independent component analysis (ICA) derived 

resting-state networks in MS. With graphical analysis, we have a border view on how brain 

organization is altered and how connections between regions are changed as a whole. Moreover, 

with whole brain analyses, there is a better chance to investigate compensatory mechanisms as it 

is unclear whether and where these effects appear. Additionally, with a time- varying approach, 

we were able to study how connectivity changes temporally and whether such temporal transitions 

were related to specific aspects of the disease. Traditional analysis methods assume that 

connectivity remains relatively constant, neglecting the variable and fluctuating nature of the brain. 

Although how to report connectivity variation remains an issue with the sliding window approach, 

the current method in the thesis research shed light on dynamic nature of information transfer in 

the brain. Taken together, the approaches utilized in this thesis research were able to study the 

system-level neurophysical events in the brain. 
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7.2.2 Strengths: tested domains  

Several tests were used throughout the studies to evaluate patients’ cognitive function and the 

tested domains were the commonly affected domains in PD and MS. Although these tested 

domains were not exactly the same between two populations, executive function was a common 

theme in both PD and MS. Throughout the thesis research, several domains have been associated 

with demographics and fMRI measures. In chapter 2, all the tested domains (visuospatial, 

executive function, verbal learning and memory, processing speed, working memory) were related 

to demographics in PD; while executive function was most significantly affected domain in MS. 

In chapter 3, due to the original study design, no tested domains were significant in PD; while 

processing speed and working memory were associated with fMRI measures in MS. In chapter 4, 

processing speed was associated with fMRI graphical measures in PD; while executive function is 

the only significant variable in MS. In chapter 5, due to study design (i.e. only MoCA sub-scores 

were used to assess cognition), only memory was strongly related to dynamic fMRI measures 

(relevant discussion in section 5.4.4); while no cognitive domains were significantly related to 

dynamic features in MS. In chapter 6, memory, language, and executive function were correlated 

with FC in PD; while working memory, processing speed, and executive function were associated 

with FC in MS. Overall, executive function has been associated with demographics and fMRI 

measures in three of the chapters. In the remaining two chapters where overall executive function 

was not reported, working memory, processing speed, and memory retrieval function were 

specifically assessed. These cognitive functions all required certain degree of executive skills to 

achieve the oriented behaviour and are routinely considered to subserve higher-order cognitive 

function [Miller and Wallis, 2009]. Therefore, the results still reflected how brain networks and 
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connections facilitated executive skills in PD and MS. To conclude, with whole brain connectivity 

analysis and the tested domains reported in the thesis, the goal to probe the systems-level 

neurobiological bases for executive function in patient populations has been achieved. 

7.2.3 Strengths: brain-behaviour analysis           

Many studies use cognitive scores to evaluate the cognitive states of patients rather than looking 

into how task performance is related to functional connectivity. A few studies have implemented 

statistical approaches such as correlation analysis to explore the associations between connectivity 

and cognitive function; however, as we have proposed, univariate methods may not be able to 

reveal complex interactions and results are either unpromising or hard to interpret. In this 

dissertation, several chapters reported brain-behaviour associations with both univariate (e.g. 

correlation, regression) and multivariate approaches (e.g. PCA, MCCA, CCA). The multivariate 

approaches take into account the complex inter-correlated nature of human brain and behaviour, 

which is especially important for diseased populations due to disease heterogeneity. Therefore, the 

use of multivariate/machine learning methods in this thesis research is significant.    

7.2.4 Limitations: study design   

There are several limitations to the studies. First, multivariate and machine learning approaches 

usually require a big sample size. However, with neuroimaging data, it is more costly and time 

consuming to acquire a huge sample compared to other types of data. Therefore, very often one 

may over-fit the data. Although some common strategies potentially solve this problem (such as 

perform the analysis in a leave-one-out fashion, reduce data dimension first, etc.), overfitting data 

is still a big problem given the sample size in our cohort. In any future study, a power analysis 
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would be beneficial to estimate the required sample size, now that the current studies could provide 

an approximation for effective size. Sample size of training data is one of the key factors in 

generating efficient predictors/classifiers, especially for some of the machine learning approaches 

utilized here [Varoquaux and Thirion, 2014]. In our preprocessing steps, we used standard 

approaches and did not perform extra steps to remove physiological noise caused by heart beat and 

respiratory rhythm, which may or may not affect connectivity analysis. Therefore, in the 

connectivity analysis, partial correlation or regularized partial correlation were preferred as they 

tend to be more robust to noise compared to pairwise correlation. Furthermore, as highlighted in 

the thesis title, one of the main focuses is executive function even though executive function and 

cognitive function are both used throughout the chapters. In fact, it is difficult to clearly separate 

executive function from other cognitive abilities. Many cognitive processes require more or less 

executive skills and the neuropsychological tests in the research may not reflect pure executive 

functioning. Yet the main focus still lay on higher-order cognitive processes which require 

intensive thinking and planning in opposed to lower-order functions such as vision, long-term 

memory, and motor as discussed in section 7.2.2. 

7.2.5 Limitations: gender issues  

In chapter 2, we found that gender appears to be a strong influential factor for cognition in both 

disease populations; however, this factor was less prominent in the rest of the chapters. Gender 

was mostly included in multivariate analyses such as CCA in chapter 2 and MCCA in chapter 6. 

As previously mentioned in section 6.4.5, including gender in MCCA did not provide significant 

or robust results. Based on results in chapter 2 and 6, gender is indeed an influential factor in 

cognition when no imaging modalities are included; however, when fMRI measures are included, 
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gender effects are overwhelmed by FC measures. Taken together, we conclude that cognition is 

likely affected by gender, but functional connectivity, which underlines neural activity in a 

macroscale, is a more powerful factor to cognition compared to gender. This may because 

functional connectivity itself is strongly affected by gender [Gong et al., 2011].    

7.2.6 Limitations: compensatory effects  

In disease populations, increased FC or expanded activation map is frequently interpreted as 

compensation. However, whether the observed alterations represent successful compensation or 

(mal)adaptation remains debated [Scheller et al., 2014]. Simply demonstrating changes of fMRI 

measures without supporting by concomitant behavioural changes may not necessarily represent 

successful compensation. Instead, this could be a process of maladaptation (i.e. disinhibition) 

[Schoonheim et al., 2015]. Throughout the research chapters, we also discovered connectivity 

changes that were correlated with better performance, indicating that these changes likely served 

as compensatory mechanisms. For example, in chapter 3, increased interhemispheric connectivity 

was related to better performance of tasks probing processing speed and working memory in MS. 

In chapter 4, increased functional segregation was also associated with better performance of 

processing speed in PD; while subtle changes of segregation was related to executive function in 

MS. Hub reorganization in PD may indicate compensation, whereby hub regions lost their central 

role in the network and non-hub regions, which may still receive dopamine from the ventral 

tegmental area, became more important. In chapter 5, interhemispheric connections became more 

dynamic to possibly compensate for decreased global measures in MS. Although the brain-

behaviour association did not explain the majority of the variance in the data, such increased 

interhemispheric dynamics was related to better executive function in MS (Appendix D). Overall, 
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our observations of altered connectivity were supported by brain-behaviour relations, allowing us 

to conclude that these connectivity changes were related to compensation. Since the included 

cohorts in the studies were all mildly affected and most of the subjects did not demonstrate severe 

cognitive impairments, the compensatory effects in the thesis only represent adaptation at early 

stage before network collapse [Schoonheim et al., 2015]. In order to comprehensively study 

compensation, more imaging data, bigger sample size, and subjects at different disease stage would 

be required.                          

7.3 Future research directions  

One of the biggest goals in the research is to define the connections, networks, and/or brain regions 

that are important to cognitive dysfunction in neurological disorders. With the knowledge, it would 

be beneficial to develop efficient treatment for cognitive deficits. For example, as Chapter 3 and 4 

revealed, long-range connections, interhemispheric connections, and hub regions have potential to 

predict cognitive functions. A cognitive rehabilitation strategy that specifically targets these 

regions and networks might provide a more efficient treatment. As the current pharmaceutical 

approaches to treat cognitive dysfunction in PD and MS produce only modest improvements, 

cognitive training as a rehabilitation strategy could be an alternative. In fact, such strategy has been 

applied to MS subjects. Although there are some promising results, the overall literature is  about 

such interventions [Mitolo et al., 2015]. However, implementing the knowledge of network effects 

to cognition may provide insights to design more effective interventions.    

For future research, there are several possible directions. First, different models of connectivity 

analysis are desirable. The current research utilized the most common ones in neuroscience field, 

but models with different technical and mathematical assumptions might be able to reveal hidden 
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patterns in connectivity. Moreover, in this thesis research, we used resting-state data and tried to 

link rsFC with cognitive performance outside of the scanner as patients are more able to cope with 

resting-state scans than tasks. Although it has been shown that rsFC reflects neuronal activity of 

cognitive tasks [Smith et al., 2009], task-driven fMRI may be more suitable to investigate brain-

behaviour associations of executive function. Furthermore, there has been a tremendous interest 

in linking functional and structural connectivity. In MS, for example, it would be interesting to 

know whether functional connectivity is related to lesions and/or other structural changes. In PD, 

it would be challenging but exciting to explore whether microstructural changes affect dynamic 

functional connectivity. With both functional and structural information, together with clinical 

data and cognitive scores, scientists will be able to understand diseases structurally, functionally, 

clinically, and cognitively.    
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Appendices 

 

Appendix A    

Appendix A lists supporting materials of Chapter 2.   

A.1 Canonical loadings of individual PD subjects.  

 

The figure illustrates canonical loadings (correlation between transformed CCA data and raw 

scores of CCA input) of the cognitive variables which show significant impacts in the CCA model. 

In each score, blue dots represent female data and red dots are male data. Average canonical 

loadings (indicated as r in the legend) are calculated as well as average cognitive z-scores in both 

groups. Except BJLO (the upper right corner), female subjects show higher average cognitive 

scores, indicating better performances.  
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Appendix B   

Appendix B lists the supporting materials of Chapter 3. 

 

B.1 Robust regression in PD on-medication  

 

Only medication dose could be predicted with the interhemispheric connectivity of the ventral 

medial prefrontal cortex in PD on-medication. The rest scores cannot be well-predicted (R-square 

< 0.2) by this interhemispheric connectivity pair. The red line indicates perfect prediction. The 

blue line indicates current prediction.  
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B.2 Whole brain connectivity matrix of HC and PD  

 

Simple correlation (Pearson’s r) was conducted among 54 ROIs in normal control (NC), PF on-

medication, and PD off-medication subjects. The figure shows the average connectivity matrix of 

three populations. Overall, PD off-medication (the right panel) showed higher global connectivity. 

Compared to NC, PD off-medication and PD on-medication did not show significant connectivity 

difference after corrected for FDR. However, on-medication and off-medication demonstrated 

significant different connections. The results were reported in section 3.3.      

B.3 Correlation between long-range connections and cognitive performance  

In order to study whether the long-range connections observed in MS were related to cognitive 

functions, we performed a simple post hoc analysis. Connections significantly different between 

HC and MS in figure 3.6 were averaged and pairwise correlation was conducted on the mean long-

range connectivity against cognitive scores in MS.  
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SDMT scores did not show correlation to the mean connectivity values; however, PASAT 

performance showed moderate correlation with the mean long-range connection (r=0.42, p=0.036) 

as shown in this figure.  

The results further support that SDMT performance requires more interhemispheric connectivity, 

while PASAT performance engages more long-range connections linking frontal and parietal 

areas.  

In PD, connections which were significantly different between PD on-medication and off-

medication did not show any correlations to the clinical scores.         
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Appendix C   

Appendix C lists the supporting materials of Chapter 4. 

 

C.1 Significantly different local measures between PD and HS  

 

Nine ROIs show higher local efficiency in PD indicated with black stars (p<0.05, uncorrected). 

These ROIs are the left amygdala, left middle temporal gyrus, left postcentral gyrus, left angular 

gyrus, left supramarginal gyrus, left pre-motor area, right hippocampus, right entorhinal cortex, 

and right postcentral gyrus. 

 



234 

 

 

Seven ROIs show altered betweenness centrality in PD, which are indicated with black starts 

(p<0.05, uncorrected). The right pallidum and right accumbens areas show increased betweenness 

centrality; while the rest ROIs show decreased values such as the left superior frontal gyrus, left 

middle temporal gyrus, left superior parietal gyrus, right inferior frontal gyrus, and right superior 

parietal gyrus.  

 

C.2 Logistic LASSO identifies graphical measures into PD and HS groups  

Logistic LASSO was further applied to test whether the graphical measures could be used to 

distinguish PD from HS, as well as indicating those measures with the largest contribution (Matlab 

function lassoglm). With logistic LASSO, the ROIs which showed significant uncorrected p 

values in the t-tests on local measures were all important contributors to the separation of PD and 

HS (Figure C.3) except betweenness centrality in the right superior parietal gyrus, which was 
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almost insignificant in t-tests (p=0.0415). For global measures, logistic LASSO was not able to 

differentiate PD and HS.   

The logistic LASSO model demonstrated that these altered local measures were clearly able to 

distinguish the PD from the HS group. This implies that while individual ROIs may only be mildly 

discriminative, collectively they provide a robust way to distinguish between groups. Although 

not all ROIs selected by the logistic LASSO model were hubs, the results indicated an altered 

network phenomenon may be initiated at hub regions.    

 

Figure C.3 Logistic LASSO distinguishes PD and healthy subjects with all the local measures. In the analysis, 

PD subjects were assigned 1 and healthy subjects were assigned 0 as their labels. Logistic LASSO predicts the 

labels based on all local measures (both local efficiency and betweenness centrality). The estimated/predicted 

labels are accurately categorized into two groups.      
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C.3 Canonical correlation analysis (CCA) between cognitive performance and global 

measures  

We further tested whether graphical measures were correlated with cognitive performance in a 

multivariate manner using CCA. All global measures were concatenated to form one set and the 

other set included cognitive scores. Likewise, the local measures which showed differences in the 

t-tests were included as one set and cognitive scores were included as the other set. All variables 

were normalized into z-scores and then processed with CCA. The canonical loadings with leave-

one-out cross validation of all variables were reported and a permutation test was carried out with 

1000 iterations to evaluate the significance of the correlation in CCA.       

The global graphical measures showed a significant correlation with behavioral scores in CCA 

(r=0.98, p=0.01, Figure C.4). The variables were considered significant if the error bars did not 

cross zero. In global measures, assortativity, modularity, rich club coefficient, and transitivity 

demonstrated significant canonical loadings; while MoCA, BJLO, HVLY delay recall, 

standardized HVLT total, standardized HVLT retention, LNS, and SF scores appeared influential 

in the model. Modularity, rich club coefficient, and transitivity were positively correlated with 

scores of BJLO, HVLY delay recall, standardized HVLT total, standardized HVLT retention, and 

SF. In the other hand, assortativity was correlated with MoCA and LSN performance.  

A CCA model attempting to relate local graphical measures and cognitive scores was not 

significant.   



237 

 

 

Figure C.4 CCA reveals inter-correlations between global graphical measures and cognitive scores (correlation 

= 0.98, p = 0.01, left panel). The error bars indicate 95% confidence interval in leave-one-out cross validation. 

If the error bars do not cross zero, the variables are recognized as significant. Among global measures (middle 

panel), assortativity, modularity and transitivity show significant loadings. In the combination of cognitive 

scores (right panel), MoCA, BJLO, HVLY delay recall, standardized HVLT total, standardized HVLT 

retention, LNS, and SF scores contribute significant loadings.   

[assor: assortativity, chapath: characteristic path length, rich club: rich club coefficient, trans: transitivity, 

MOCA: Montreal Cognitive Assessment, BJLOTOT = Bento Line Orientation Total Score, HVLTTOT = 

Hopkins Verbal Learning Test-Revised Total Score, HVLTDELAY = HVLT Delayed Recall Score, DVT-

HVLTTOTAL = standardized HVLT Total Score, DVT-HVLTDELAY = standardized HVLT Delayed Recall 

Score, DVT-HVLTRETENTION = standardized HVLT Recognition Trial Score, LNS = raw Letter-Number 

Sequencing Test Score, SFCOM = Sematic Fluency Test – combination, SDMTTOT = Symbol Digit Modalities 

Test total scores] 

 

We found that segregation-oriented brain organization was related to better cognitive performance 

with a multivariate approach. Modularity and transitivity, which are both measures of segregation, 

were significantly correlated with better performances in line orientation, verbal learning, and 

sematic fluency tests. This pattern indicated that better visuospatial, verbal learning and memory 
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functions, and executive skills were correlated with segregated brain organization in PD. In 

addition, rich club coefficient, an indication of rich club structure which is thought to facilitate 

cognitive processes [van den Heuvel and Sporns, 2011], was also related to better performance of 

the above-mentioned tests, further emphasizing the important role of rich club structure in 

cognition. On the other hand, assortativity, which shows the tendency of nodes with similar 

connectivity to link with each other, was correlated with overall cognitive function as well as 

memory, attention, and mental manipulation skills. However, as assortativity was ultimately a 

correlation coefficient between node degrees and the measure was small in all subjects (maximum 

value=0.09, minimum value=-0.1), we did not think this measure itself represented very 

meaningful information in this cohort even though it was correlated with MoCA and LNS scores. 

Therefore, taken together, we interpreted that multivariate approach also revealed similar findings 

as univariate analysis but with greater robustness, whereby better cognitive function was related 

to segregated brain networks as well as rich club characteristics in PD.     

In this study, we did not report significant relations between local measures and cognitive 

performance. This is somewhat surprising since the local graphical measures could be used to 

distinguish between subject groups, while the global measures could not. The reason could be that 

the overall, global brain organization is more related to cognitive performance, while smaller, more 

subtle changes in local network characteristics may be related to other non-cognitive differences 

between groups (e.g. related to motor function). 
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Appendix D   

Appendix D lists the supporting materials of Chapter 5. 

D.1 Linear regression model of dynamic features and WCSTCC  

The Wisconsin Card Sorting Test Complete Categories score was modulated by one principal 

component analysis (PCA) component of dynamic features as shown in the following table. 

However, this component only explained 1.8% of the variance. In addition, this component was 

dominated by the effects of flexibility of interhemispheric connections (FOCcs). The PCA 

coefficient of FOCcs was 0.7 and the rest features showed coefficients ranged between -0.13 and 

-0.36.    

For individual predictors 

behavioural 

score 

PCA components of 

dynamic feature 

estimate in regression 

model 

standard 

error 

p 

values  
WCSTCC  component 1 0.01 0.1 0.94 

 component 2 0.14 0.28 0.61 

 component 3 0.18 0.35 0.61 

 component 4 2.45 0.69 0.001 

 age (covariance) -0.32 0.02 0.15 

For the whole model  

Number of observations: 46, Error degrees of freedom: 40 

Root Mean Squared Error: 1.5 

R-squared: 0.314,  Adjusted R-Squared 0.229 

p-value = 0.008 

 

[WCSTCC: the Wisconsin Card Sorting Test Complete Categories] 
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D.2 The component which significantly modulated cognitive flexibility  

 

The flexibility of interhemispheric connections (FOCcs) loaded heavily than other features in 

component 4. Although this component only explained limited variance of the data, it could predict 

the performance of Wisconsin Card Sorting Test Complete Categories.  


