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Abstract

A lattice of interacting Majorana modes can occur in a superconducting
film on a topological insulator in a magnetic field. The phase diagram as
a function of interaction strength for the square lattice was analyzed re-
cently using a combination of mean field theory and renormalization group
methods, and was found to include second order phase transitions. One of
these corresponds to spontaneous breaking of an emergent U(1) symmetry,
for attractive interactions. Despite the fact that the U(1) symmetry is not
exact, this transition was claimed to be in a supersymmetric universality
class when time reversal symmetry is present and in the conventional XY
universality class otherwise. Another second order transition was predicted
for repulsive interactions with time reversal symmetry to be in the same
universality class as the transition occurring in the Gross-Neveu model, de-
spite the fact that the U(1) symmetry is not exact in the Majorana model.
We analyze these phase transitions using a modified ε-expansion, confirming
the previous conclusions.
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Lay Summary

At zero degrees Celsius, water freezes. This is an example of a phase tran-
sition between two phase of the molecule H20: liquid water and ice. Phase
transitions occur in all materials, and their classification has led to great
discoveries across all branches of physics. Recently, a class of materials has
been discovered with a unique feature: on their surfaces, these materials
can exhibit a new type of particle, called a Majorana particle, that has been
observed nowhere else in nature. In this thesis, we use a model of Majorana
particles to predict the phase transitions that may occur on the surface of
these novel materials. This research may have applications in the field of
computer science, where scientists are attempting to use Majorana parti-
cles to create the first quantum computer – a machine that uses quantum
mechanics to solve problems faster than a conventional computer.
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Chapter 1

Introduction

In 1928, PAM Dirac proposed the existence of the positron: a particle with
the same mass and spin as the electron, but with opposite charge [1]. The
positron (and electron) are examples of Dirac fermions: particles which
have distinct antiparticles of the same mass, but with opposite physical
charges. Dirac fermions can be contrasted with fermions that equal their
own antiparticle, known as Majorana fermions [2]. While the positron was
detected shortly after Dirac’s prediction [3], a Majorana particle has never
been observed in particle physics.

In condensed matter physics, a Majorana fermion can arise despite the
absence of fundamental Majorana particles, as an emergent phenomenon.
Following the discovery of topological materials, it has been predicted that
Majorana excitations appear in various situations at topological defects and
boundaries of topological insulators [4, 5]. In fact, this prediction has led
to an intense effort to develop a topological quantum computer that utilizes
the physics of Majorana fermions [2, 4].

A setting in which a macroscopic number of interacting Majorana fermions
is predicted to occur is a layer of ordinary superconductor on a strong topo-
logical insulator in a transverse magnetic field. The resulting vortex lattice is
predicted to have a Majorana mode localized at every vortex core [2]. While
there has been renewed interest in Majorana physics over the past decade,
interaction effects have not been considered until recently. Much of the
work on this subject has stemmed from the development of the Majorana-
Hubbard model – a version of the Hubbard model involving Hermitian op-
erators, and a four-site interaction term. [6–10]. This is the simplest in-
teraction possible since a Hermitian Majorana operator obeying a canonical
anticommutation relation will square to unity.

In this thesis, we study the critical behaviour of the Majorana-Hubbard
model on the square lattice in two spatial dimensions. In Chapter 2, we
introduce the model, discuss its features, and review the mean-field predic-
tions made in [10]. We then review and extend the low energy field theory
describing the predicted gapless phases of this model, for both repulsive and
attractive interactions. A unique feature of this model is that it possesses an
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Chapter 1. Introduction

emergent U(1) symmetry, unlike the exact U(1) that is assumed in related
models [11–16]. One of the major tasks of this thesis is to the determine
the role that U(1) breaking operators may have on the phase diagram. In
Chapter 3, we introduce various renormalization group methods that will be
used to study these operators. Then, in Chapter 4, we show that all U(1)
breaking operators are irrelevant to one loop order, using an ε-expansion
and Wilson’s approach to the renormalization group . Finally, in Chap-
ter 5, we consider the effects of a time reversal breaking perturbation, a
fermion mass term, on the Majorana-Hubbard model. Using a combination
of renormalization group and supersymmetry methods, we show that such
a perturbation is relevant, and results in a critical point in the conventional
XY universality class. If time reversal is an approximate symmetry, the crit-
ical point may exhibit signs of N = 2 supersymmetry, which has previously
been realized in [11–15]. Just like the Majorana particle, supersymmetry
is a prediction from high energy theory that has not yet been verified ex-
perimentally. Based on our results, we propose that the Majorana-Hubbard
model on a square lattice is a candidate system for realizing the signatures
of supersymmetry in an experimentally realizable set-up.
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Chapter 2

The Majorana-Hubbard
Model

In the theory of topological materials, a Majorana mode is predicted to occur
at the core of a vortex on the surface of a superconducting layer placed on
a strong topological insulator [2]. A lattice of vortices will occur when this
layered material is placed in a transverse magnetic field, and it is believed
that the corresponding Majorana lattice will exhibit interactions that fall
off exponentially with the superconducting coherence length [9]. We denote
by γj the Majorana fermion operator at lattice site j. Since these operators
are Hermitian, the canonical anticommutation relation

{γi, γj} = 2δij (2.1)

implies that the shortest possible range interaction term must occur on 4
sites (an odd number of sites would lead to a Hamiltonian that is not a
bosonic operator). The simplest model describing a lattice of interacting
Majorana fermions is then the Majorana-Hubbard model – a Hamiltonian
with nearest neighbour hopping and shortest possible range 4-site interaction
term:

H = it
∑
〈ij〉

eiφijγiγj + g
∑
[ijkl]

γiγjγkγl (2.2)

Here 〈ij〉 denotes nearest neighbour lattice sites, and [ijkl] denotes sets of 4
closest lattice sites. The phase factor eiφij is determined by the requirement
that one superconducting flux quantum passes through each lattice point,
giving rise to one Majorana fermion at each site [9, 17]. This model was first
introduced by Stern and Grosfeld in the context of the fractional quantum
Hall effect [17].

In one dimension, the Majorana-Hubbard model was shown to have an
interesting phase diagram [6–8]. At large enough interaction strength g,
the Majorana modes on the chain dimerize to form (non-Hermitian) Dirac
fermions, breaking translational symmetry. In the case of g > 0, this phase
transition was shown to be described by the tricritical Ising model, which
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2.1. The Majorana-Hubbard Model on the Square Lattice

exhibits supersymmetry. As we will see below, this manifestation of super-
symmetry is not unique to one dimension.

More recently, the Majorana-Hubbard model has been studied in two
dimensions on the square lattice [10, 18] and the honeycomb lattice [19]. In
this thesis, we restrict our attention to the square lattice in two dimensions.

2.1 The Majorana-Hubbard Model on the
Square Lattice

On the square lattice, the interaction term occurs on plaquettes:

H = it
∑
m,n

γm,n[(−1)nγm+1,n + γm,n+1] + g
∑
m,n

γm,nγm+1,nγm+1,n+1γm,n+1

(2.3)
The phase factor eiφij in (2.2) has been fixed so that there is π magnetic flux
through each plaquette, corresponding to one vortex at each site, according
to [9, 17]. The sign of t can be changed by a Z2 gauge transformation

γm,n → sm,nγm,n sm,n = ±1 (2.4)

but cannot be completely removed [10]. Without loss of generality, we as-
sume t > 0. When g > 0, the underlying physical interactions are attractive,
as can be shown using mean field theory, or by mapping the theory to its
continuum limit (see below).

This model was studied in detail in [10], where it was shown to have
a rich phase diagram as a function of gt−1 (Figure 2.1). The large g limit
was also studied recently in [18]. As in the one dimensional Majorana-
Hubbard model, at strong enough coupling, the Majorana modes like to
pair up on neighbouring sites to form Dirac fermions, breaking translation
symmetry in either the horizontal or vertical direction. For g > 0, the Dirac
fermions’ energy levels are empty, while they alternate being empty and
occupied for g < 0. We call these dimerized phases ‘ferromagnetic’ (FM)
and ‘antiferromagnetic’ (AFM), respectively. Furthermore, two second order
phase transitions were predicted to occur at g = gc,1 ≈ −0.9t and g = gc,2 ≈
+0.9t. The dotted line in Figure 2.1 is a first order phase transition that
does not have an interpretation in terms of Majorana pairings.

By deriving the low energy continuum limit of (2.3), emergent Lorentz
and U(1) symmetries were found to occur at these transitions. In terms of
a 2-component complex fermion ψ, the imaginary time Lagrangian density
was found to be

LU(1) = ψ̄γµ∂µψ + 64gΛ−2
0 (ψ̄ψ)2. (2.5)

4



2.1. The Majorana-Hubbard Model on the Square Lattice

0 gSUSYGross-Neveu

gaplessbroken T-reversal‘AFM’ MM pairing ‘FM’ MM pairing

Figure 2.1: Proposed phase diagram of the Majorana-Hubbard model with
time reversal symmetry

Here ψ̄ := ψ†γ0, and the Dirac gamma matrices, γµ, satisfy

γµ := {σy, σx,−σz} {γµ, γν}ab = 2δab. (2.6)

The coefficient Λ0 = a−1 is a bare cutoff defined by the inverse lattice
spacing, a, and the imaginary time coordinate has been rescaled so that the
velocity v = 4ta ≡ 1. Using (2.5), it was argued that the phase transition at
gc,1 is in the universality class of the Gross-Neveu model, while the transition
at gc,2 corresponds to the N = 2 supersymmetric (SUSY) universality class.

When a fermion mass term ψ̄ψ is present, it was further argued that
supersymmetry is broken, and the transition at gc,2 falls into the XY uni-
versality class (the gc,1 transition is not present in the massive case). Such a
term can be generated by adding a second-neighbour hopping to the Hamil-
tonian:

H → H + it2
∑
m,n

∑
s,s′=±1

γm,2nγm+s,2n+s′ (2.7)

This term breaks time reversal symmetry (see (2.28)) and should be included
in any model hoping to describe a vortex lattice in a transverse magnetic
field.

In this thesis, we use renormalization group methods to check the uni-
versality class predictions for gc,1 and gc,2 made in [10]. In particular, we
will use an ε-expansion to determine the relevance of leading U(1) break-
ing operators and the fermion mass term. In the next section, we begin
by re-deriving the low energy field theory and calculating the leading U(1)
breaking corrections. We then introduce a boson (real or complex, depend-
ing on the sign of g), using a Hubbard-Stratonovich transformation. These
fermion-boson models will be the starting point of our renormalization group
analysis in later chapters.
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2.2. Low Energy Field Theory

2.2 Low Energy Field Theory

Due to the alternating nature of the nearest neighbour hopping in (2.3), the
unit cell spans two lattice sites, so we define

γm,2n = γe
m,2n γm,2m+1 = γo

m,2n+1. (2.8)

These definitions of γe/o are slightly different than those of [10], and are
chosen to simplify the form of the U(1) breaking operators. To derive a
low energy field theory, we start with the dispersion relation of the non-
interacting model (g = 0):

E± = ±4t
√

sin2 kx + sin2 ky. (2.9)

We then replace each Majorana operator γe/o with a combination of two
slowly varying Majorana fields χe/o,±, according to

γe/o(~r) ≈ 2
√

2Λ−1
0 [χe/o+(~r) + (−1)xχe/o−(~r)]. (2.10)

These fields χ± consist of the momenta modes of γ near the two Dirac points
of the non-interacting theory, which occur at ~k = (0, 0) and ~k = (π/a, 0).
The coefficient Λ−1

0 = a is the lattice spacing, and its inverse defines a
bare energy cutoff of the theory. To derive the continuum limit, we Taylor
expand the quadratic and quartic pieces of (2.3) in Appendix A. We expand
the quartic operator to two derivatives, while keeping only leading order
quadratic terms, since the underlying symmetry of the lattice model forbids
any quadratic operator from breaking the U(1) symmetry (as proven below).
The resulting Hamiltonian density is

H = 4ita
∑
±

[
± χe±∂xχ

e± ∓ χo±∂xχ
o± + 2χe±∂yχ

o±
]

+Hint (2.11)

where
1

64gΛ−4
0

Hint = (2.12)

−4Λ2
0χ

e−χe+χo−χo+−
∑
s,s′=±

ss′χes∂xχ
esχos′∂xχ

os′+2∂y(χ
e−χe+)∂y(χ

o−χo+)

+2χe−χe+∂xχ
o−∂xχ

o+ + 2∂xχ
e−∂xχ

e+χo−χo+ + ∂x(χe−χe+)∂x(χo−χo+).

We introduce two-component Majorana fermions χ+ := (χe+, χo+)T and
χ− := (χo−, χe−)T, so that the first term of (2.11) becomes

H0 := H−Hint = 4ita
∑
±
χ±T [σz∂x + σx∂y]χ

±. (2.13)
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2.2. Low Energy Field Theory

These two-component Majorana fermions satisfy the canonical anti-commutation
relations {χi(~r), χj(~r′)} = δijδ(~r− ~r′). Since Hint is not a function of ∂tχ

±,
we have Lint = Hint in imaginary time, and the Lagrangian density corre-
sponding to (2.11) is

L =
∑
±
χ̄±γµ∂µχ

± +Hint. (2.14)

We’ve set the velocity v = 4ta to unity, used the Euclidean gamma matrices
defined in (2.6), and defined χ̄± := χ±Tγ0. In order to identify any emergent
U(1) invariance of (2.14), we define a complex fermion ψ according to

ψ = χ+ + iχ− =

(
χe+ + iχo−

χo+ + iχe−

)
. (2.15)

In this language, the most relevant U(1) breaking operator in (2.14) is

16gΛ−4
0

(
ψ1ψ2[∂xψ1∂xψ2 − ∂yψ1∂yψ2] + h.c.

)
(2.16)

as shown in Appendix A. Including this term, the low energy field theory
describing (2.3) is

L = ψ̄γµ∂µψ+Mψ̄ψ+64gΛ−2
0 (ψ̄ψ)2+16gΛ−4

0

(
ψ1ψ2∂rψ1∂rψ2+h.c.

)
(2.17)

where we’ve introduced the notation

∂rψa∂rψb := ∂xψa∂xψb − ∂yψa∂yψb. (2.18)

and we’ve also introduced a fermion mass term: As shown in [10], when the
second-neighbour hopping term is included (see (2.7)),

L → L+Mψ̄ψ M := 8t2 (2.19)

Since
(ψ̄ψ)2 = −ψ∗1ψ∗2ψ2ψ1 (2.20)

we see from (2.17) that g > 0 corresponds to underlying physical interactions
that are attractive. As a last comment, we note that the Nielson Ninomiya
theorem [20] is not violated here, even though we have achieved a single
Dirac fermion on the lattice, since the U(1) symmetry is only emergent, and
not exact.

7



2.2. Low Energy Field Theory

2.2.1 Hubbard-Stratonovich Transformation

In the absence of the U(1) breaking operator, the interaction term in (2.17)
is proportional to (ψ̄ψ)2. In this case, we expect a massless boson to appear
at the phase transitions gc,1, gc,2, whose expectation value provides the order
parameter of the transition [10, 16]. Such a boson can be introduced using
a Hubbard-Stratonovich transformation. This procedure depends on the
sign of the (ψ̄ψ)2 interaction: in the case of attractive interactions (g >
0), a complex charge-2 boson is introduced, while in the case of repulsive
interactions (g < 0), a real boson is introduced. To promote these bosonic
variables to dynamical fields, we reduce the energy scale of the continuum
theory from Λ0 down to some reduced scale Λ � Λ0. Using the same
symbols to denote these renormalized fields, we arrive at the following two
imaginary time Lagrangian densities, depending on the sign of g:

• Repulsive Interactions (g < 0):

L1 = ψ̄γµ∂µψ+(∂µσ)2+r2σ2+η1σψ̄ψ+η2
2σ

4+h1 [ψ1ψ2∂rψ1∂rψ2 + h.c.]
(2.21)

• Attractive Interactions (g > 0):

L2 = ψ̄γµ∂µψ+Mψ̄ψ|∂µφ|2+m2|φ|2+λ1

[
φ∗ψTCψ + h.c.

]
+λ2

2|φ|4+L′2
(2.22)

where C = iγ0 and

L′2 := h2ψ1ψ2∂rψ1∂rψ2+h3φ∂rψ1∂rψ2+h4φ[∂2
rψ1ψ2+ψ1∂

2
rψ2]+h.c. (2.23)

We have only included a fermion mass in the case of attractive interactions;
the phase transition for g < 0 vanishes as soon as time reversal symmetry
is broken, according to mean field theory [10]. Note that in the case of at-
tractive interactions, two additional U(1) breaking operators are generated
during this renormalization procedure. Such terms do not occur for a real
boson σ, since they violate an underlying π

2 -rotation symmetry of the lattice,
as explained in Section 2.3. The Greek coupling constants {λi, ηi} precede
U(1) preserving operators, while the Latin coupling constants {hi} precede
U(1) breaking operators. Equations (2.21) and (2.22) will be the starting
point for all of our calculations that follow. We will assume that the symme-
try breaking parameters {hi} and M are small, so that the theories are close
to their quantum critical points. This is not an unreasonable assumption for
the lattice model: the U(1) breaking operators are superficially irrelevant,

8



2.3. Symmetry Constraints on U(1) Breaking Operators

and are preceded by a factor of Λ−4
0 . At a reduced cutoff Λ� Λ0, the cou-

pling constants will be suppressed by four factors of Λ/Λ0. Of course, this
argument is incomplete, as it ignores higher order renormalization effects.
If the {hi} and M are not small, their flow will depend on the the presence
of additional fixed points in parameter space.

We have assumed that under this renormalization, the velocities of the
boson and fermion flow to a common value. This has been shown to be the
case in the U(1) invariant version of these models, and to linear order in
M and {hi}, we expect the same result to hold [12, 13]. The irrelevance
of Lorentz breaking operators has also been established for fermion-boson
models on the honeycomb lattice.[21–23] The fermion and boson velocities
would be identical if Lorentz invariance was exact.

In [10], the nature of the transitions at gc,1 and gc,2 was predicted using
the U(1) symmetric versions of (2.21) and (2.22), and invoking universality.
In the fermion-boson models, the transitions are driven by reducing the
squared boson mass, and letting it change sign. The U(1) symmetric version
of (2.21) was considered in [16], and the transition was shown to correspond
to that of the Gross-Neveu model, with spontaneous breaking of the Z2

symmetry
σ → −σ ψ̄ψ → −ψ̄ψ (2.24)

It is not the Ising transition, because an additional massless fermion field
ψ is present. The U(1) version of (2.22) involving the charge-2 boson φ,
(2.22), has been studied as well [11–13, 15, 16], and the transition is known
to exhibit N = 2 supersymmetry when M = 0. This should not be confused
with the N = 1 supersymmetry that is present in [24].

2.3 Symmetry Constraints on U(1) Breaking
Operators

To complete this chapter, we comment on the symmetries of (2.17). The
authors of [10] identified various exact symmetries of the lattice Hamiltonian
(2.3), which must be obeyed at the continuum level. We label them C for
charge conjugation, P for parity, and R for π

2 -spatial rotation. Explicitly,
they are:

C : ψ(x, y) 7→ ψ∗(x, y) (2.25)

P : ψ(x, y) 7→ −iγ1ψ∗(−x, y) (2.26)

R : ψ(x, y) 7→ e−
iπ
4 e

iπ
4
γ0ψ(−y, x) (2.27)

9



2.3. Symmetry Constraints on U(1) Breaking Operators

Additionally, in the special case of t2 = M = 0, the model is also invariant
under time reversal, T :

T : ψ(x, y) 7→ −γ0ψ∗(x, y), i 7→ −i (2.28)

In the following, we demonstrate how C and R are sufficient to en-
sure that all quadratic operators in the continuum theory preserve the U(1)
symmetry, as is in the case in (2.11). We then demonstrate how the U(1)
breaking term in (2.16) is the only possible quartic operator, with two or less
derivatives, that satisfies the symmetries C,P and R. These results apply
even when the fermion mass is nonzero, since neither argument requires the
use of T . Finally, we explain how R limits the U(1) breaking fermion-boson
interactions to the ones present in (2.21) and (2.22).

2.3.1 Quadratic Operators

The most general U(1) breaking quadratic operator (with or without deriva-
tives) is of the form

ψTAψ + ψ†A†ψ∗ (2.29)

for some differential operator A(x, y). Under C,

C : ψTAψ + ψ†A†ψ∗ 7→ ψTA†ψ + ψ†Aψ∗ (2.30)

which forces A to be Hermitian. Under R,

R : ψTA(x, y)ψ 7→ − i
2
ψT (1− iσy)A(−y, x)(1 + iσy)ψ. (2.31)

The right hand side of (2.31) cannot appear for nonzero A, since it is anti-
Hermitian, and violates (2.30). Therefore, no charge 2 operator is allowed
by symmetry.

2.3.2 Quartic Operators

One-Derivative Quartic Operators

A four-Fermi operator involving a single derivative can only have charge
0 or ±2: terms with charge ±4 include at least three fermi fields with-
out derivatives, and vanish by Fermi statistics. Since R is a combination
of spatial rotation by π

2 and U(1) rotation by −π
4 , these two possibilities

require, respectively, a derivative operator that transforms trivially or one
that transforms with a prefactor of i. Of these, only the latter exists:

∂x + i∂y (2.32)

but such an operator breaks CP .

10
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Two-Derivative Quartic Operators

Repeating the previous argument, the derivative operator of a charge 2 four-
fermi term must transform with a factor of i to satisfy R symmetry. This is
not possible for a generic two-derivative operator Aab∂a∂b, ruling out charge
2 operators. Charge 4 terms require a derivative operator that transforms
with a prefactor of −1 to be invariant under R. By Fermi statistics, the two
derivatives must act on separate Fermi fields, so the most general operators
are

ψ1ψ2[∂xψ1∂xψ2 − ∂yψ1∂yψ2] (2.33)

and
ψ1ψ2[∂xψ1∂yψ2 − ∂yψ1∂xψ2] (2.34)

Of these, only the former is allowed, since the latter breaks CP . Therefore,
the U(1) breaking operator appearing in (2.14) is the only possible term
with two or less derivatives.

2.3.3 Fermion-Boson Operators

In the case of attractive interactions, a complex boson φ ∼ ψ1ψ2 is intro-
duced. Using (2.27), we see that

R : φ(x, y)→ iφ(−y, x) (2.35)

Since ψTCψ also picks up a factor of i under R, the following two derivative,
U(1) breaking operators are invariant under R-symmetry:

φ[∂xψ1∂xψ2 − ∂yψ1∂yψ2] + h.c. (2.36)

and
φ
[
(∂2
x − ∂2

y)ψ1ψ2 + ψ1(∂2
x − ∂2

y)ψ2

]
+ h.c. (2.37)

It is easy to check that the remaining symmetries (2.25 - 2.27) also leave
these operators invariant.

In the case of repulsive interactions, a real boson σ ∼ ψ̄ψ is introduced,
which is invariant under R:

R : σ(x, y)→ σ(−y, x) (2.38)

Using the above constraints on pure fermion operators, the most relevantU(1)
breaking femrion-boson operator is then

σ2ψ1ψ2[∂xψ1∂xψ2 − ∂yψ1∂yψ2] (2.39)

which is too irrelevant for our considerations.
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Chapter 3

Renormalization Group
Methods

In the previous chapter, we derived the low energy field theories that char-
acterize the Majorana-Hubbard model near its quantum critical points gc,1

and gc,2 (equations (2.21) and (2.22)). Both of these theories contain oper-
ators that a priori do not let us easily determine their universality classes.
The main result of this thesis will be to use the renormalization group to
characterize these problematic operators, and determine the role they play
near these two critical points. In this chapter, we review various methods
from renormalization group theory that we will apply throughout the fol-
lowing chapters. This material is explained very clearly in the texts [25, 26],
and in the paper [27].

3.1 Beta Functions

The fundamental idea behind the renormalization group is to quantify how
the coupling constants of a theory depend on the choice of length scale. If
a certain coupling constant increases as we increase the scale, we say the
corresponding operator is relevant. If a coupling constant decreases at larger
length scales, we say the corresponding operator is irrelevant. Finally, an
operator whose coupling constant does not evolve is called marginal. In
condensed matter theory, where there is often a great difference of scales
between the ‘bare’ scale of the lattice constant and the observable scale of
macroscopic phenomena, an irrelevant operator can safely be excluded from
the effective Lagrangian. Thus, our task will be to show whether or not the
U(1) breaking and T -breaking operators of (2.21) and (2.22) are irrelevant
or not. If so, the classification of the related U(1) and T symmetric models
of [10] may be applied here.

The equations describing the evolution of coupling constants as a func-
tion of length scale are known as beta functions. Given a family of length
scales b−1Λ, parametrized by b = eδl, the beta function of coupling constant

12
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X is defined to be

βX :=
dX

d log b
=
dX

dδl
(3.1)

Relevant operators have positive beta functions, while irrelevant operators
have negative ones. In some applications, such as those introduced in Section
3.3, it is more natural to quantify how coupling constants depend on a energy
scale parameter µ, instead of a length scale. In this case,

βX = − dX

d logµ
(3.2)

Beta functions can also be used to identify critical points. At a critical
point, the system exhibits scale invariance, and the coupling constants do
not evolve. In other words, critical point correspond to ‘fixed-points’ in
parameter space, which are precisely the zeros of the beta functions.

We will calculate these beta functions using two different approaches to
the renormalization group: 1) the Wilson, or ‘momentum shell’, approach,
and 2) dimensional regularization.

3.2 Wilson’s Approach to Renormalization

Much of our modern understanding of the renormalization group is thanks
to Ken Wilson [28]. In his approach, one calculates beta functions by slightly
reducing the energy scale of the theory by integrating out fields whose mo-
mentum modes lie in a thin shell in momentum space. This shell consists
of all momenta with magnitude lying within {b−1Λ,Λ}, where Λ is the UV
cutoff of the original theory.

We will explain how this integration is carried out for the case of a
single scalar field ϕ. This will introduce the notation that we will use in the
following chapters for the more complicated field theories (2.21) and (2.22).
The Lagrangian density is taken to be

Lϕ =
1

2
(∂ϕ)2 +

∑
i

XiOi[ϕ] (3.3)

where Oi[ϕ] is a generic operator involving the field ϕ and its derivatives.
We begin by separating the field into a slow and fast component

ϕ = ϕs + ϕf , (3.4)

where ϕs contains the momentum modes of ϕ with magnitude less than
b−1Λ, and ϕf contains the modes that lie within the shell. In terms of these
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3.2. Wilson’s Approach to Renormalization

new variables, the Lagrangian density can be reorganized as follows:

Lϕ = Ls + L0
f + Lsf . (3.5)

The first term, Ls, equals the original Lagrangian density, but with ϕ re-
placed with ϕs. The second term, L0

f , equals the free fast Lagrangian density,
1
2(∂ϕf )2. The remaining term contains all operators that mix slow and fast
components. The partition function can then be rewritten as

Z =

∫
Dϕsϕfe−

∫
ddx(Ls+L0f+Lsf ) (3.6)

= Z0,f

∫
Dϕse−

∫
ddx(Ls+δL)) (3.7)

where

Z0,f :=

∫
Dϕfe−

∫
ddxLf 〈· · · 〉f := Z−1

0,f

∫
Dϕf · · · e−

∫
ddxLf (3.8)

and
e−

∫
ddxδL := 〈e−

∫
ddxLsf 〉f (3.9)

In other words, integrating out the fast modes has generated new terms in
the Lagrangian. Since the operators appearing in (3.3) were generic, we can
write

δL =
1

2
δZϕ(∂ϕs)

2 +
∑
i

δZiOi[ϕs] (3.10)

in terms of renormalization constants δZϕ and δZi. To compare Ls + δL to
the original theory, we rescale coordinates

x→ b−1x (3.11)

so that the new UV cutoff is once again Λ, and rescale the field

ϕs → ϕs

√
(1 + δZϕ)bd−2 (3.12)

so that the new kinetic term is once again 1
2(∂ϕ)2. Defining di and ni to be

the mass dimension and number of factors of ϕ, respectively, of Oi, we find
that the coupling constants of the reduced theory, {Xi(b)}, satisfy

Xi(b) = Xi

(
1 +

δZi
Xi

)
(1 + δZϕ)−nibdi (3.13)
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3.3. Dimensional Regularization

This expression can now be differentiated with respect to log b, yielding the
beta functions of the theory, {βXi}.

While very physical, the Wilsonian approach to the renormalization
group leads to complications beyond first order in perturbation theory, when
nested momentum shell integrations are required. We now introduce a sec-
ond approach to the renormalization group that is more suited for higher
order calculations [25, 27].

3.3 Dimensional Regularization

Instead of explicitly changing the length scale of the theory, beta functions
can also be calculated using a properly regularized theory at a fixed energy
scale. Consider the following example Lagrangian density of a real scalar
field:

Lϕ4 =
1

2
(∂ϕ)2 +m2ϕ2 +Xϕ4 (3.14)

This theory is not regularized: a perturbative expansion of its correlation
functions will lead to divergences, order by order. To resolve this, we use
a procedure known as dimensional regularization, in which we continue the
spacetime dimension away from an integer, rendering momentum loop inte-
grals finite. We then subtract off these contributions by introducing coun-
terterms into the Lagrangian density, before continuing back to an integer
dimension. This is performed at a given energy scale µ, which we fix.

For example, at one loop, the ϕ self energy receives a contribution pro-
portional to ∫

ddp

(2π)d
1

(p2 +m2)
∝ Γ

(
1− d

2

)
(3.15)

where Γ(x) is the gamma function with poles at non-positive integers. For
non-integer d, this expression is finite, and can be cancelled by introducing
a counterterm

δZϕ
1

2
(∂ϕ)2 (3.16)

into the Lagrangian, with

δZϕ ∝ −Γ

(
1− d

2

)
(3.17)

Repeating these steps for all divergences at a given order, we arrive at a
renormalized Lagrangian density at scale µ,

Lϕ4,r =
1

2
Zϕ(∂ϕr)

2 + Zmµ
2m2

rϕ
2
r + ZXµ

4−dXrϕ
4
r , (3.18)
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in terms of renormalized field ϕr and renormalized coupling constants mr

and Xr. The renormalization constants Zi contain the introduced countert-
erms δZi according to

Zi = 1 + δZi (3.19)

The explicit energy scale µ enters to make the renormalized coupling con-
stants dimensionless. Now, to extract the beta functions, we must relate the
two Lagrangian densities (3.14) and (3.18). Matching kinetic terms, we find

ϕ =
√
Zϕϕr (3.20)

and then rescaling, we find

mr = mµ−1ZϕZ
−1
m (3.21)

Xr = Xµ4−dZ2
ϕZ
−1
X (3.22)

These equations are the dimensional regularized analogues of (3.13). Differ-
entiating with respect to − logµ generates the desired beta functions.

3.3.1 Modified Minimal Subtraction Scheme

Exactly how the counterterms in (3.19) are defined leads to further choice in
renormalization scheme. If only the divergent parts of the loop diagram are
included in the counterterm, the scheme is known as ‘minimal subtraction’.
In our calculations, we use the more common ‘modified minimal subtrac-
tion’ scheme, or MS, which adds to the counterterm the universal constant
log (eγE/4π) that always occurs in Feynman diagrams. This is implemented
by rescaling the energy scale µ→ µ e

γE

4π in (3.18) [25, 27].

3.4 The Epsilon Expansion

In both the Wilsonian and dimensional regularization pictures of the renor-
malization group, we are tasked with calculating beta functions and de-
termining their fixed points. In practice, these fixed points are often not
accessible in two space dimensions and one time dimension; instead, one
must consider the theory close to its upper critical dimension (UCD), and
expand about this point. This procedure is known as the ε-expansion, and
was first introduced to study the theory Lϕ4 (defined in (3.14)) [25]. In d
spacetime dimensions, the scaling dimension of the interaction term ϕ4 is

4× d− 2

2
= 2d− 4
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3.4. The Epsilon Expansion

and its upper critical dimension is 4. In other words, the methods of mean
field theory are expected to break down for the physically interesting cases
of d = 1, 2, 3. To resolve this problem, theorists promoted the parameter d
to a continuous variable, and considered the model in d = 4− ε dimensions
for ε� 1, and expanded in powers of ε. This was said to correspond to the
theory ‘close to 4 dimensions’. Formally, this procedure of promoting d to a
continuous variable is done at the level of Feynman diagrams, carrying out
momentum integrals using d-dimensional spherical coordinates. The idea is
that for ε small, the interaction is only ‘slightly’ relevant, and mean field
theory might not be so bad.

In this expansion, to O(ε), the beta function of X in (3.14) can be shown
to be [26]

βX = εX − 9

2π2
X2 (3.23)

revealing a nontrivial fixed point X∗ = 2π2

9 ε. This showcases the true power
of the ε-expansion: the ability to search for new phase transitions that are
inaccessible using mean field theory.

While we might expect the ε-expansion to be valid in the limit of in-
finitesimal ε, it has shown to be surprisingly predictive in the limit ε → 1.
For example, the theory Lϕ4 , which corresponds to the classical Ising model,
predicts the specific heat to scale with critical exponent α = 1/6 at O(ε) and
α = .109 at O(ε5) [26]. Even at O(ε), the agreement with the experimental
range of 0–0.14 is impressive. It is results like these that have resulted in
physicists regarding the ε-expansion as a very important tool in the study
of critical phenomena.

For the U(1) symmetric versions of (2.21) and (2.22), both the Gross-
Neveu and N = 2 SUSY critical points were identified using the ε-expansion
(the upper critical dimension of both σψ̄ψ and φ∗ψTCψ+ h.c. is also four).
These fixed points occur at the following values:[16, 27]

λ2
1,∗

(4π)2
=

ε

12
+O(ε2) (3.24)

η1,∗
(4π)2

=
ε

8
+O(ε2) (3.25)

To linear order in the fermion mass and the U(1) breaking couplings {hi},
the value of these fixed points will not change, and so it makes sense to ask
the following question:

What are the beta functions of M and {hi}, evaluated at the critical
points λ1,∗ and η1,∗?
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We will provide an answer to this question in Chapters 4 and 5. However,
in addressing this question, an issue arises involving Lorentz invariance. In
the original ε-expansion of ϕ4 theory, ϕ is a Lorentz scalar, transforming as
a singlet under the SO(d) Lorentz group in every dimension d. For a theory
involving fermions, more care is needed, since not all operators invariant
under SO(3) are invariant under the larger SO(4) Lorentz group in four
dimensions. In the following section, we introduce the necessary formalism
to treat these issues.

3.5 Modified Epsilon Expansion

Since the upper critical dimension of the fermion-boson interactions σψ̄ψ
and φ∗ψTCψ + h.c. is four, we will carry out an ε-expansion about four
dimensions. In four dimensions, a two-component complex fermion is a Weyl
fermion. To derive the Weyl Lagrangian, we start from the four dimensional
Dirac theory in real time,

LD = iΨ̄Γa∂aΨ. (3.26)

The gamma matrices are in the Weyl basis, and can be written in terms of
two sets of Pauli matrices {σi} and {τi}:

Γ0 = τx ⊗ σ0 Γk = iτy ⊗ σk (3.27)

where σ0 := 1. These matrices satisfy

{Γa,Γb} = 2diag(1,−1,−1,−1). (3.28)

Writing Ψ as
Ψ = (ψR ψL)T (3.29)

and expanding (3.26), the fields ψL and ψR decouple. Defining ψ̄ = ψ†σy,
the ψL sector can be written as

LW = iψ̄σy∂0ψ+ iψ̄[σyσx∂1 +∂2 +σyσz∂3]ψ ψ̄ := ψ†γ0 = ψ†σy (3.30)

where we’ve suppressed the ‘L’ subscript, and inserted σ2
y = 1 in each term.

By relabelling coordinates ∂2 ↔ ∂3, and performing a Wick rotation, we
find that the imaginary time Lagrangian density for the Weyl fermion is

LW = ψ̄[∂µγ
µ + i∂3]ψ µ = 0, 1, 2 (3.31)
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Since (3.31) is a Lorentz scalar, and (∂µ, ∂3) is a 4-vector, we see that the
object ψ̄ψ is no longer invariant under the Lorentz group. Instead, it is a
component of the 4-vector,

A =

(
ψ̄γµψ
ψ̄ψ

)
, (3.32)

that is contracted with (∂µ, ∂3) in (3.31). This can also be seen explicitly,
using the general form of a Lorentz transformation in the Weyl basis:[25]

Λ(α) = e~α·~σ ~α ∈ C (3.33)

Under this transformation,

ψ̄ψ 7→ ψ†e~α
∗·~σγ0e~α·~σψ = ψ̄e−~α

∗·~σT e~α·~σψ (3.34)

which does not equal ψ̄ψ for general ~α. It is only invariant under a
subset of operators,

{eλσx , eλσz , eiλσy}, λ ∈ R

which generate the three dimensional Lorentz group.

The breaking of Lorentz invariance creates difficulties when studying the
fermion mass operator Mψ̄ψ, as well as the Gross-Neveu interaction ψ̄ψσ
in (2.21). While these operators are invariant under the three dimensional
Euclidean Lorentz group SO(3), they transform nontrivially under the full
SO(4) Euclidean Lorentz group. As a consequence, additional operators
that are invariant only under the SO(3) ⊂ SO(4) subgroup can be generated,
including (for k ∈ Z+)

ψ̄(i∂3)kψ |∂k3φ|2 (∂k3σ)2 (φ∂k3φ
∗ + h.c.) σ∂k3σ (3.35)

We will only discuss the role of the most relevant operators, with k = 1.
Then in four dimensions, we should replace the Lagrangian densities (2.21)
and (2.22) with the following:

L′1 = ψ̄[/∂+ i∂3 + if1∂3]ψ+Mψ̄ψ+(∂aσ)2 +f2(∂3σ)2 +η1σψ̄ψ+η2σ
4 (3.36)

+f3σ∂3σ + · · ·
L′2 = ψ̄[/∂+i∂3+if1∂3]ψ+Mψ̄ψ+|∂aφ|2+f2|∂3φ|2+λ1[φψTCψ+h.c.] (3.37)

+λ2
2|φ|2 + f3(φ∂3φ

∗ + h.c.) + · · ·
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The ‘· · · ’ represent the U(1) breaking operators present in (2.21) and
(2.22), which are unchanged. Since the parameters {fi} are not present
in the three dimensional model, they only appear in the four dimensional
model after at least one renormalization step, and are suppressed by at
least one factor of M or η1 (the Lorentz breaking operators in (3.36) and
(3.37)). In either case, terms O(f2

i ) and O(fiM) are beyond our order of
approximation, and should be dropped from the calculations that follow.

3.5.1 Propagators

Inverting the quadratic forms in (3.36 3.37), we find the following propaga-
tors, to linear order in M and fi:

G(p) = 〈ψ(p)ψ̄(p)〉 =
ip + f1p3 +M

p2
− 2p3(M + f1p3)

ip + p3

p4
(3.38)

where we’ve introduced a four dimensional ‘slash notation’

A := Aµγ
µ − iA3 (3.39)

We write this propagator as a sum of a Lorentz invariant (G1) and a non-
Lorentz invariant (G2) part:

G(p) = G1(p) +G2(p) (3.40)

G1(p) =
ip +M

p2
G2(p) =

p3

p2

[
f1 − 2(M + f1p3)

ip + p3

p2

]
(3.41)

Only the first term is a Lorentz invariant. Likewise, the boson propagators
are

D(p) = 〈σ(p)σ(−p)〉 = 〈φ(p)φ∗(p)〉 = D1 +D2 (3.42)

where

D1(p) =
1

p2
D2(p) = −f2p

2
3

p4
− f3ip3

p4
(3.43)

The presence of these non-Lorentz invariant terms in the fermion and
boson propagators may seem problematic. This is because when we think
of an ε-expansion, we usually continuously change the dimension without
altering the underlying symmetries of the theory. However, this is not feasi-
ble when working with fields that transform nontrivially under the Lorentz
group, such as spinors: the terms are still invariant under SO(3), but this is
no longer the Lorentz group in four dimensions.
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Of course, this is not the first time an ε-expansion has been attempted
on these models. In the case of attractive interactions, the conventional ap-
proach is to relate (2.22) to the Nambu-Jona-Lasinio model in four dimen-
sions, involving a 4-component Majorana fermion χ, and two real bosons φ1

and φ2 [15, 16, 29]. The interaction term in this model is

χ̄(φ1 + iγ5φ2)χ (3.44)

where γ5 is the fifth gamma matrix in four dimensions. In the massless case,
this theory possesses a continuous U(1) chiral symmetry:

χ→ eiαγ5χ φ→ e−2iαφ (3.45)

In the Majorana representation, γ5 is pure imaginary, so that this trans-
formation leaves the Majorana real. In three dimensions, this model corre-
sponds to the U(1) version of (2.22), with the chiral U(1) mapping to the
charge U(1) symmetry in the three dimensional theory. However, since a Ma-
jorana mass breaks the chiral U(1), we are unable to adopt this approach to
our model when a fermion mass term is present.

Another popular approach in the literature, for the U(1) versions of
both (2.21) and (2.22), is to extend the theory to one of N Dirac fermions
in four dimensions, and then continue N → 1

2 in the ε-expansion [16]. This
approach is difficult to justify, since a four dimensional Dirac mass does
not correspond to a three dimensional Dirac mass in this limit. See for
instance, [30]. Instead, the four dimensional mass couples different chiral
sectors together. Using a change of basis, we can decouple the sectors, but
in this case the three dimensional masses occur with opposite signs, and the
limit N → 1

2 is ill-defined. This is explained in more detail in Appendix B.
Therefore, we are forced to develop a new approach in order to calculate

renormalization group functions in these theories. In the end, this approach
will agree with the naive N → 1

2 limit in a conventional ε-expansion, but
is arguably more reliable, since it keeps the form of all operators fixed as d
is continued back to three dimensions. Perhaps there is a simple argument
justifying the N → 1

2 limit, but we haven’t been able to produce one.

3.5.2 An Expansion in d = 3 + (1− ε) Dimensions

In this thesis, we use a different approach to extract only the Lorentz in-
variant contributions to our Feynman diagram calculations. It is a modified
ε-expansion that isolates the Lorentz breaking direction (‘p3’ in momentum
space), and shrinks it to zero extent in the ε→ 1 limit. To understand this,
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recall that the conventional ε-expansion is carried out at the level of internal
momentum integrals. In a Lorentz invariant theory, all momentum integrals
will have the structure ∫

d4p

(2π)4
F (p) (3.46)

for some function F depending only on the magnitude of momentum. Now,
we continue from four to d dimensions, by writing∫

d4p

(2π)4
F (p)→

∫
ddp

(2π)d
F (p) = Ωd

∫
dppd−1F (p) (3.47)

where Ωd is the surface area of the sphere Sd−1. Both Ωd and the radial
integral are well-defined as functions of a continuous parameter d.

Now, let us turn to our non-Lorentz invariant theory, which has propaga-
tors modified by terms proportional to p3

p2
. To lowest order in p2

3, any Lorentz
breaking contribution to a momentum integral will have the structure∫

d4p

(2π)4
F (p)p2

3 (3.48)

since odd powers of p3 vanish by the symmetric integration. Higher powers
of p2

3 will be at least quadratic in the small parameters M and fi. In the con-
ventional ε-expansion, we would now promote p to a d-dimensional vector,
write p2

3 = p2F ′(θi) in terms of spherical coordinates, and find some nonzero
contribution. But this is unphysical, since all Lorentz breaking contributions
should vanish when we return to the three dimensional theory. Instead, we
promote p to a 3 + d′ dimensional vector, and p3 to a d′ dimensional vector,
with d′ = 1− ε:∫

d4p

(2π)4
f(p)p2

3 →
∫

d3+d′p

(2π)3+d′
F (p)|p3|2 =

∫
d3+d′p

(2π)3+d′
F (p)

2+d′∑
i=3

p2
i (3.49)

= d′
∫

d3+d′p

(2π)3+d′
F (p)p2

1 =
d′

3 + d′
Ω3+d′

∫
dpp3+d′+1F (p) (3.50)

In the limit ε → 1, d′ → 0, this integral vanishes. Since this applies to
all Lorentz breaking contributions to the Feynman diagrams, the modified
ε-expansion amounts to replacing the propagators in (3.40, 3.42) with their
Lorentz invariant pieces, and carrying out the conventional ε-expansion:

G(p)→ G1(p) D(p)→ D1(p) (3.51)

Throughout the following chapters, we implement this modified scheme,
and drop the subscript ‘1’ in the fermion and boson propagators.
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Chapter 4

Renormalization of U(1)
Breaking Operators

In this chapter, we determine the relevance of the U(1) breaking operators
present in (2.21) and (2.22) to one loop order in the modified ε-expansion.
This is done by calculating the beta functions of these operators in the
Wilsonian renormalization scheme. To begin, we decompose fields into slow
and fast components, following the conventions of Chapter 3. We separate
the Lagrangian density into a slow, fast, and ‘mixed’ piece, according to
(3.5), and keep mixed terms that have exactly two fast fields; operators
with more or less fast fields do not contribute at one loop order. For the
case of repulsive interactions in the Majorana model (2.21),

Lsf,1 = η1σsψ̄fψf + η1σf (ψ̄sψf + ψ̄fψs) + 6η2
2σ

2
sσ

2
f + 2σ2

sσ
2
f (4.1)

+
h1

4
[CabCcdψa,sψb,s∂rψc,f∂rψd,f + ψa,fψb,f∂rψc,s∂rψd,s + h.c.]

+h1 [CabCcdψa,fψb,s∂rψc,f∂rψd,s + h.c.]

For the case of attractive interactions in the Majorana model (2.22),

Lsf,2 = λ2

[
φ2
sφ
∗
f

2 + 2|φs|2|φf |2
]

+ λ1Cab[2φ
∗
fψa,fψb,s + φ∗sψa,fψb,f ] (4.2)

+
h2

4
CabCcd [ψa,sψb,s∂rψc,f∂rψd,f + ψa,fψb,f∂rψc,s∂rψd,s + 4ψa,fψb,s∂rψc,f∂rψd,s]

+
h3

2
Cab [φs∂rψa,f∂rψb,f + 2φf∂rψa,f∂rψb,s]+h4Cab

[
φs∂

2
rψa,fψb,f + 2φf∂

2
rψa,fψb,s

]
plus Hermitian conjugate terms. Integrating out the fast fields in the above
theories will generate a series of Feynman diagrams, which we calculate
below. These diagrams will contribute to renormalization constants Zi, in
terms of which the coupling constants are:

h1 = h1,0Zh1Z
−2
ψ b−d h2 = h2,0Zh2Z

−2
ψ b−d (4.3)
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4.1. U(1) Breaking Operators with Attractive Interactions

h3 = h3,0Zh3Z
−1/2
φ b−d/2 h4 = h4,0Zh4Z

−1/2
φ b−d/2 (4.4)

Above, the {hi,0} are the ‘bare’ couplings defined at scale Λ, while the
{hi} are the couplings defined at the scale b−1Λ. The explicit factors of b are
generated from the rescaling (3.11). Differentiating these expressions with
respect to log b, we obtain the desired beta functions.

Throughout our calculations, we consider all one loop diagrams that
are O(hi),O(λ2

i ),O(η2
i ) and O(M). We define the operator ∗ on momenta

vectors a, b as
a ∗ b := axbx − ayby (4.5)

and we use faint/bold propagator lines to denote slow/fast fields in our
Feynman diagrams. We also use the notation p := /p − ip3, introduced in
Chapter 3. From the outset, we set the boson masses to zero, since this
marks the phase transitions of interest. All Feynman diagrams have been
drawn using the package [31].

4.1 U(1) Breaking Operators with Attractive
Interactions

In this section, we evaluate the one loop diagrams corresponding to (2.22).
Using the modified ε-expansion, the fermion and boson propagators are

G(p) =
ip +M

p2
D(p) =

1

p2
(4.6)

We use solid lines to represent the fermion propagators, and dashed lines to
represent the boson propagators. An arrow is used to indicate the direction
of charge; this charge is +1 for the fermion, and +2 for the boson. Finally, we
include the operators of the external legs in the definitions of our Feynman
diagrams.

4.1.1 Feynman Diagrams

Fermion Propagator

The single one loop diagram that renormalizes the fermion propagator to
O(hi) is shown in Figure 4.1. Including the external legs, it equals

=

∫
ddk

(2π)d
ψ̄s(k)Σψ(k)ψs(k) (4.7)
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4.1. U(1) Breaking Operators with Attractive Interactions

k

p

Figure 4.1: Fermion self energy diagram in Wilson RG for g > 0

where

Σψ(k) = −4λ2
1

∫
f

ddp

(2π)d
D(p)CTGT (p− k)C (4.8)

and the p integration is over the Wilson shell. Using the modified ε-expansion
propagators, and expanding to linear order in the slow momentum k, this is

Σψ(k) = −4λ2
1

∫
f

ddp

(2π)d
1

p2

[
−ik† −M

p2
+ 2p · k ip

p4

]
(4.9)

Since the region of integration is symmetric, we can replace

p · kip† → p2

d
ik† (4.10)

to find

Σψ(k) = −ik†4λ2
1

[
1− 2

d

] ∫
f

ddp

(2π)d
1

p4
− 4λ2

1M

∫
f

ddp

(2π)d
1

p4
(4.11)

Using∫
f

ddp

(2π)d
1

p4
= Ωd

∫ Λ

b−1Λ
dppd−5 =

2

(4π)d/2Γ(d/2)
Λd−4δl +O(δl2) (4.12)

for b = eδl, we find the following renormalization constants for the fermion
kinetic term and fermion mass term:

Zψ = 1 +
8λ2

1

(4π)d/2Γ(d/2)

[
1− 2

d

]
Λ−εδl ZM = 1− 8λ2

1

(4π)d/2Γ(d/2)
Λ−εδl

(4.13)
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4.1. U(1) Breaking Operators with Attractive Interactions

k

p

Figure 4.2: Boson self energy diagram in Wilson RG

Boson Propagator

The unique one loop diagram that renormalizes the boson propagator to
linear order in O(hi) is shown in Figure 4.2. It equals

=

∫
ddk

(2π)d
φ∗s(k)Σφ(k)φs(k) (4.14)

where

Σφ(k) = 2λ2
1

∫
f

ddp

(2π)d
tr[CG(p)CGT (k − p)] (4.15)

Using

= CGT (p)C =
ip−M
p2

(4.16)

we have

Σφ(k) = 2λ2
1

∫
f

ddp

(2π)d
1

p2(k − p)2
tr[(ip +M)(ik† − p† −M)] (4.17)

Since the phase transition occurs when the boson mass is tuned to zero,
we isolate the terms proportional to k2, to extract Zφ. We need not be
concerned with the generation of terms proportional to k4 only, since these
drop out of the modified ε-expansion. We find

Zφ = 1 +
8

(4π)d/2Γ(d/2)

[
1− 2

d

]
λ2

1Λ−εδl. (4.18)

Renormalization of h2

At one loop, there is no diagram renormalizing h2. Therefore,

Zh2 = 1 (4.19)
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4.1. U(1) Breaking Operators with Attractive Interactions

Renormalization of h3 and h4:

There are two diagrams that contribution to the renormalization of h3 and
h4 at one loop. The first is shown in Figure 4.3, and equals

k

p

k2

k1

Figure 4.3: First diagram renormalizing h3 and h4 in Wilson RG.

=

∫
ddk1

(2π)d
d2k2

(2π)d
φs(−k1 − k2)ψa,s(k1)Fab(k1, k2)ψb,s(k2) (4.20)

where k := −k1 − k2, the solid vertex denotes an insertion of the U(1)
breaking operator h2, and

F (k1, k2) = −λ1h2

2

∫
f
ddp

[
C[p∗(k−p)+k1∗k2]tr[CG(p)CGT (k−p)] (4.21)

−4k2 ∗ (k − p)CG(p)CGT (k − p)C
]

The integrand of this expression is, to O(M),

−2C
[p ∗ (k − p) + k1 ∗ k2]

p2(k − p)2
p·(k−p)+4k2 ∗ (k − p)C

p2(k − p)2
[p·(k−p)+iM(p−k†+p†)]

(4.22)
where we’ve dropped terms according to the modified ε-expansion procedure.
In spherical coordinates,

p ∗ p = p2
x − p2

y = p2 sin θ cos(2φ) (4.23)

integrates to zero over angular coordinates when multiplied by any power of
|p|, so we can drop such terms. Likewise, (p ∗ k)p integrates to zero since it
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4.1. U(1) Breaking Operators with Attractive Interactions

is odd in pz. Keeping at most two powers of slow momenta k, and dropping
terms that vanish upon integration, we can replace the previous expression
with

2C
3k1 ∗ k2 + 2k2 ∗ k2

p2
(4.24)

so that

F (k1, k2) = −λ1h2C[3k1 ∗ k2 + 2k2 ∗ k2]

∫
f
ddp

1

p2
(4.25)

= −λ1h2C[3k1 ∗ k2 + 2k2 ∗ k2]
2

(4π)d/2Γ(d/2)
Λd−2δl (4.26)

The second diagram renormalizing h3 and h4 is shown in Figure 4.4, and
equals

k2

k1

p
k

Figure 4.4: Second diagram renormalizing h3 and h4 in Wilson RG

∫
ddk1

(2π)d
d2k2

(2π)d
φs(−k1 − k2)ψa,s(k1)Gab(k1, k2)ψb,s(k2) (4.27)

where k := −k1 − k2, and the solid vertex denotes the insertion of the U(1)
breaking operators proportional to h3 and h4, and

G(k1, k2) = −4λ2
1

∫
f

ddp

(2π)d
D(p)CG(p− k1)CGT (−p− k2) (4.28)
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4.1. U(1) Breaking Operators with Attractive Interactions

× [h3k2 ∗ (−p− k2) + 2h4(p+ k2) ∗ (p+ k2)]

Again, we drop terms proportional to p∗p and k∗p, since they will integrate
to zero. The result is, to quadratic order in the slow momenta k,

G(k1, k2)→ −4(2h4 − h3)k2 ∗ k2λ
2
1

∫
f

ddp

(2π)d
D(p)CG(p− k1)CGT (−p− k2)

(4.29)

= −4(2h4 − h3)k2 ∗ k2λ
2
1C

∫
f

ddp

(2π)d
1

p4
(4.30)

= −4(2h4 − h3)k2 ∗ k2λ
2
1C

2

(4π)d/2Γ(d/2)
Λ−εδl (4.31)

Adding this result to (4.25), we find the following renormalization con-
stants:

Zh3 = 1− 6λ1h2

h3

2Λ−εδl

(4π)d/2Γ(d/2)
(4.32)

and

Zh4 = 1 +
[
2λ1h2 + 4(2h4 − h3)λ2

1

] 2Λ−εδl

(4π)d/2Γ(d/2)h4
(4.33)

The factors of Λ2 were removed by redefining the couplings constants to
be dimensionless from the start of the calculation.

Remaining Diagrams

For all remaining diagrams, we cite the calculations of [27], since these do
not receive corrections from the U(1) breaking terms or the fermion mass
to this order. As a result, the beta functions for λ1 and λ2 are unchanged,
and we can use the critical value λ2

1 from [27]:

λ2
1,∗

(4π)2
=

ε

12
+O(ε2) (4.34)

Renormalization Constants at O(ε)

To determine the value of these renormalization constants to O(ε), we re-
place λ2

1 in these expressions with λ1,∗ in (4.34). Any corrections from U(1)
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4.1. U(1) Breaking Operators with Attractive Interactions

breaking operators or the fermion mass will be higher order in the parame-
ters {hi,M}. We find, to O(ε), the following renormalization coefficients:

Zψ =1 +
ε

3
δl (4.35)

ZM =1− 2ε

3
δl (4.36)

Zh2 =1 (4.37)

Zh3 =1− 6h2δl

h3

√
3(4π)

√
ε (4.38)

Zh4 =1 + 2δl

[
h2
√
ε

h44π
√

3
+
ε(2h4 − h3)

3h4

]
(4.39)

(4.40)

4.1.2 Beta Functions of U(1) Breaking Operators

Using (4.3 - 4.4), we find

βM =M

[
1 +

dZM
dδl

− dZψ
dδl

]
= M [1− ε] (4.41)

βh2 =− h2

[
d+ 2

dZψ
dδl

]
= −h2

[
4− ε

3

]
(4.42)

βh3 =− h3

[
d

2
+

3

2

dZψ
dδl
− dδZh3

dδl

]
= −h3

[
2 +

6h2
√
ε√

3(4π)h3

]
(4.43)

βh4 =− h4

[
d

2
+

3

2

dZψ
dδl
− dδZh4

δl

]
= −h4

[
2− 2h2

√
ε

h44π
√

3
− 2ε(2h4 − h3)

3h4

]
(4.44)

(4.45)

Since βh2 is only a function of h2, and is negative for ε = 1, we conclude
that h2 flows to zero at large length scales, independent of h3 and h4. This
implies that βh3 is also negative at large length scales, so that h3 → 0.
Finally, we are left with

βh4 → −h4

[
2− 4ε

3

]
→ −2

3
h4 < 0 (4.46)

so that h4 also flows to zero. Therefore, at the critical point gc,2, all U(1)
breaking operators are irrelevant. Meanwhile, the fermion mass operator is
marginal at one loop, and requires a higher order calculation. In the next
chapter, we set the U(1) breaking operators to zero, and carry out a four
loop study to address the relevance of a fermion mass.
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4.2. U(1) Breaking Operators with Repulsive Interactions

4.2 U(1) Breaking Operators with Repulsive
Interactions

We now calculate the renormalization constants for the theory (2.21). In this
case, the only U(1) breaking operator is a four-fermi term. According (4.3),
to determine the h1 beta function, we only have to calculate Zψ and Zh1 .
Since there is no one loop diagram renormalizing h1, calculating the fermion
propagator will be sufficient. Note that we are using the same symbol Zψ
for the renormalization constant in both (2.21) and (2.22), even though they
are different quantities.

Using the modified ε-expansion, the fermion and boson propagators are

G(p) =
ip

p2
D(p) =

1

p2
(4.47)

The fermion mass is set to zero since time reversal symmetry is present at the
transition gc,1. We use solid lines (with an arrow indicating the direction of
charge) to represent the fermion propagators, and dashed lines to represent
the boson propagators. As before, we include the operators of the external
legs in the definitions of our Feynman diagrams.

4.2.1 Feynman Diagrams

Fermion Propagator

The single one loop diagram that renormalizes the fermion propagator to
O(h1) is shown in Figure 4.5. It equals

k

p

Figure 4.5: Fermion self energy in Wilson RG for g < 0

=

∫
ddk

(2π)d
ψ̄s(k)Σψ(k)ψs(k) (4.48)
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4.2. U(1) Breaking Operators with Repulsive Interactions

where

Σψ(k) = η2
1

∫
ddp

(2π)d
D(p)G(k + p) (4.49)

We expand Σψ(k) in powers of k, and extract the linear piece to determine
Zψ:

Σψ(k) = η2
1

∫
ddp

(2π)d
D(p)G(k + p)→

∫
ddp

(2π)d
1

p2

[ ik
p2
− 2p · k ip

p4

]
(4.50)

= η2
1

[
1− 2

d

]
(ik)

∫
ddp

(2π)d
1

p4
= η2

1

[
1− 2

d

]
(ik)

2Λ−εδl

(4π)d/2Γ(d/2)
(4.51)

so that

Zψ = 1 +

[
1− 2

d

]
2η2

1Λ−ε

(4π)d/2Γ(d/2)
(4.52)

where we’ve replaced k with k†, since the difference renormalizes the operator
ψ̄k3ψ, which doesn’t enter into the modified ε-expansion.

Since the beta functions for η1, η2 receive no O(h1) corrections, we can
cite the results of [16] that at the critical point gc,1, η1 has a value of

η2
1,∗

(4π)2
=
ε

8
+O(ε2) (4.53)

so that to O(ε),

Zψ = 1 +
η2

1

(4π)2
= 1 +

ε

8
(4.54)

4.2.2 Beta Functions of U(1) Breaking Operator

Using (4.3), we find

βh1 = −h1

[
4− 3

4
ε

]
(4.55)

at the phase transition gc,1. Therefore, to one loop order, the U(1) breaking
operator is irrelevant, and the phase transition falls into the Gross-Neveu
universality class, as predicted in [10].
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Chapter 5

Relevance of the Fermion
Mass Operator

In this chapter, we determine the relevance of the fermion mass operator in
(2.22) beyond one loop order in the modified ε-expansion. We treat M as
a small parameter, so that terms O(M2) will be dropped. We also neglect
all U(1) breaking operators, since these were shown to be irrelevant in the
previous section.

A straightforward, but tedious approach to the problem is to calculate
all two loop diagrams in the modified ε-expansion. This is done in Appendix
C. A more efficient approach is to relate the fermion mass beta function to
the stability critical exponent in the massless theory, which allows us to go
to O(ε4), using the following identity:

βM = M [1− ω] ω :=
d

dλ2
1

dλ2
1

d logµ

∣∣∣
λ1=λ∗1,(massless)

(5.1)

In words, ω is the derivative of the beta function for λ2
1, in the massless the-

ory, evaluated at the critical point. To prove equation (5.1), we first develop
the superspace formalism. This argument closely follows the derivation of
the identity

βm2 = m[2− ω] (5.2)

for the boson mass operator m2|φ|2 in [27]. The identity (5.2) was first
claimed in [11]).

5.1 The Power of Supersymmetry

In this section, we derive (5.1) for the theory (2.22) at the critical point
gc,2, where the two U(1) invariant couplings λ1 and λ2 flow to a common
value, λ∗ [27]. We use the results of Chapter 4 to ignore all U(1) breaking
operators, so that the theory is supersymmetric in the massless limit.
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5.1.1 Superspace Formalism

Our first step will be to rewrite the massless theory (2.22) in the superspace
formalism. This is most easily done in real time. We introduce a chiral
superfield

Φ(y) := φ(y) +
√

2θψ(y) + θ2F (y) (5.3)

where θ, θ̄ are two-component Grassmann spinors, and y is the (real time)
superspace coordinate

yµ := xµ − iθγµRθ̄ (5.4)

By real time, we mean that xµ is a real time coordinate, and the matrices
γµR = {−γ0, iγ1, iγ2} satisfy the 2+1 dimensional Minkowski metric:

{γµR, γνR} = 2diag(1,−1,−1) (5.5)

Throughout, we use the following spinor summation convention:

θα = εαβθβ θα = εαβθ
β θ2 = θαθα = 2θ2θ1 (5.6)

where

εαβ :=

(
0 −1
1 0

)
εαβ :=

(
0 1
−1 0

)
(5.7)

Within this convention, we have the following identities

θαθβ = θαθβ =
1

2
θ2εαβ θγµRθ̄θγ

ν
Rθ̄ =

1

4
θ2θ̄2tr[γµRγ

ν
R] =

1

4
θ2θ̄2ηµν

(5.8)
Finally, the Grassmann integration measure is defined as follows:

d2θ = −1

4
dθαdθβεαβ =⇒

∫
d2θθ2 = 1 (5.9)

Using this formalism, the superfield can be expanded as

Φ(y) = φ(x)−iθγµRθ̄∂µφ(x)−1

4
θ2θ̄2∂µ∂νηµνφ+

√
2θψ(x)+

iθ2

√
2
∂µψ(x)γµRθ̄+θ

2F (x).

(5.10)
where ∂2

R := ∂µ∂νη
µν .

Using this, the free SUSY Lagrangian density is

L0
SUSY =

∫
d2θd2θ̄Φ†Φ = −1

4
[∂2
Rφφ

∗+φ∂2
Rφ
∗]+|F |2+

1

2
∂µφ∂νφ

∗ηµν (5.11)

+i

∫
d2θ̄θψ̄∂µψγ

µ
Rθ̄ − i

∫
d2θθγµR∂µψ̄θψ
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5.1. The Power of Supersymmetry

Since

θ̄∂µγ
µ
Rθ̄ =

1

2
θ̄2ψ̄γµ,TR ∂µψ θγµ∂µψ̄θψ = −1

2
θ2ψ̄γµ,T∂µ (5.12)

up to total derivatives, equation (5.11) equals

|F |2 + ∂µφ
∗∂νη

µνφ+ iψ̄γµ,TR ∂µψ (5.13)

To produce a boson-fermion interaction term, we add to (5.11) a superpo-
tential term

δLSUSY =

∫
d2θW (Φ) +

∫
d2θ̄W (Φ†) W (Φ) :=

λ

3
Φ3 (5.14)

and apply the equations of motion for the auxiliary field F :

F = −λφ∗2 F ∗ = −λφ2 (5.15)

We find, using θψθψ = −1
2ψ

T [iσ2]ψ, that

LSUSY := L0
SUSY+δLSUSY = ∂µφ

∗∂νη
µνφ+iψ̄γµR∂µψ−λ2|φ|4−λ

(
φψTCψ + h.c.

)
(5.16)

which is exactly the real time version of (2.22), at the critical point
λ1 = λ2 = λ ≡ λ∗. In other words:∫

d2θd2θ̄Φ†Φ +

∫
d2θ

λ

3
Φ3 +

∫
d2θ̄

λ

3
Φ†

3
= L2,real (5.17)

5.1.2 Relating the fermion beta function and the stability
critical exponent

Now that we’ve rewritten (the real time version of) L2 in the superspace for-
malism, we would like to introduce a fermion mass operator in this language.
This is achieved by adding the following expression to (5.17):

−
∫
d2θd2θ̄2MΦ†θθ̄Φ = −4M

∫
d2θd2θ̄θ̄ψ̄θθ̄θψ = −Mψ̄ψ (5.18)

To linear order in M , this addition can be compensated by rescaling the
superfield,

Φ→ (1 +Mθθ̄)Φ (5.19)

which shifts the coupling λ accordingly:

λ→ λ̃(M) := λ+ 3Mθθ̄ (5.20)
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In other words, the massive theory with coupling λ is equivalent to the
massless theory with coupling λ̃. Now, to access the scaling dimension of
ψ̄ψ, we require the notion of bare and renormalized fields and masses. We
write the bare theory in terms of bare Φ0 and bare M0, λ0:

Lbare =

∫
d2θd2θ̄Φ†0(1− 2M0θθ̄)Φ0 +

∫
d2θ

λ0

3
Φ3

0 +

∫
d2θ̄

λ0

3
[Φ†0]3 (5.21)

and the renormalized theory in terms of Φ and Mµ,λµε/2:

L =

∫
d2θd2θ̄Z̃Φ†(1−2Mµθθ̄)Φ+

∫
d2θ

λµε/2

3
Φ3

0+

∫
d2θ̄

λµε/2

3
[Φ†0]3 (5.22)

Here the renormalization scale µ has been introduced so that M and λ are
dimensionless. Notice that there is no renormalization constant Zλ – this
follows from SUSY nonrenormalization theorems [32, 33]. In the massless
theory, we can write down an equation similar to (5.22), replacing Z̃ with
some other renormalization constant Z. In general, these two functions will
be different; however, using (5.20), we have

Z̃(λ) = Z(λ̃) = Z(λ)

[
1 + 3Mµθθ̄λ

∂ logZ

∂λ

]
+O(M2) (5.23)

Using this and comparing (5.21) to (5.22), and we find the relation

M = M0µ
−1

[
1− 3

2
λ
∂ logZ

∂λ

]−1

(5.24)

Writing

λ
∂ logZ

∂λ
= 2λ2∂ logZ

∂λ2
(5.25)

to expand [
1− 3

2
λ
∂ logZ

∂λ

]−1

= 1 + 3λ2∂
2 logZ

∂λ2
+O(λ4), (5.26)

we can differentiate (5.24) with respect to logµ to find

− βM :=
∂M

∂ logµ
= M

[
−1− 3λ2 ∂γ

∂λ2

]
(5.27)

where γ = − ∂Z
∂ logµ is the anomalous dimension of the fermion in the massless

theory. The unconventional negative sign is introduced so that these func-
tions agree with their Wilson counterparts. Now, in the supersymmetric
theory, γ can be rewritten in terms of the beta function of λ2, since

λ2
0 = λ2µ−εZ(λ)3 (5.28)
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5.2. Fermion Mass Beta Function

because the superpotential is not renormalized. The beta function is

− βλ2 = − dλ2

d logµ
= λ2[−ε− 3γ] (5.29)

Differentiating with respect to λ2, and using the fact that to O(ε4), the value
of γ at the SUSY point (=: λ∗) is ([29])

γ(λ∗) = − ε
3

(5.30)

we have

− dβλ2

dλ2
= −ε− 3γ(λ∗)− 3λ2

∗
∂γ

∂λ2
= −3λ2

∗
∂γ

∂λ2
(5.31)

Comparing this to (5.27), we find

βM = M

[
1− dβλ2

dλ2

]
(5.32)

proving (5.1).

5.2 Fermion Mass Beta Function

In [29], ω has been evaluated in the massless theory to four loop order:

ω = ε− ε2

3
+

(
1

18
+

2ζ3

3

)
ε3 +

1

540

(
420ζ3 + 1200ζ5 − 3π4 + 35

)
ε4 +O(ε5)

(5.33)
Using Padé extrapolation (see [16]), the authors of [29] found the values
ω = 0.872 and ω = 0.870, depending on which Padé approximant is used.
In [34], the value ω = .910 was obtained using the conformal bootstrap. In
all three approaches,

βM = M [1− ω] (5.34)

is positive, and the fermion mass operator is relevant. Therefore, at the
phase transition gc,2, a time reversal breaking perturbation will destroy the
emergent supersymmetry. The resulting universality class is determined in
the following subsection. However, if time reversal is an approximate sym-
metry of the underlying lattice model, some signatures of supersymmetry,
including equal scaling dimensions for the boson and fermion fields, may still
be present. In passing, we note that our explicit two loop results, calculated
using dimensional regularization, agree with (5.1) and (5.33) to O(ε2) (see
Appendix C).
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5.3. Consequence of a Relevant Fermion Mass Operator

5.3 Consequence of a Relevant Fermion Mass
Operator

Since the fermion mass is relevant, a large mass will be generated near the
critical point. At energy scales � M , the fermion degrees of freedom can
be integrated out completely. To perform this integration explicitly, we
use a Hubbard-Stratonovich transformation to replace all of the four-Fermi
interactions in (2.17) with

Lint = −m2|φ|2 + (φ[ρ1ψ̄Cψ̄
T + ρ2∂rψ

TC∂rψ] + h.c.) (5.35)

where

ρ1 = 4m
√
gΛ−1

0 ρ2 =
m

2

√
g

Λ3
0

(5.36)

This expression (5.35) reproduces (2.17) to O(g) when φ is integrated out.
The boson φ no longer corresponds to the Cooper pair φ ∼ ψ1ψ2 of (2.22);
instead, it corresponds to

φ ∼ ψ1ψ2 +
1

2
∂rψ

∗
1∂rψ

∗
2. (5.37)

We can use (5.37) to determine how φ transforms under the exact lattice
symmetries (2.25 - 2.27). Explicitly, these transformations are

C : φ(x, y) 7→ φ∗(x, y) (5.38)

T : φ(x, y) 7→ −φ∗(x, y), i 7→ −i (5.39)

P : φ(x, y) 7→ φ∗(−x, y) (5.40)

R : φ(x, y) 7→ iφ(−y, x) (5.41)

The most noteworthy equation is (5.41), since it implies that the most
relevant U(1) breaking operator allowed by symmetry is φ4 +φ∗4. To deter-
mine the coefficient of this operator, we integrate out the fermions explicitly,
using the notation introduced in Chapter 4. The unique one loop diagram
generating a φ4 interaction is shown in Figure 5.1. We are not interested
in derivative operators, so we can set all external momenta to zero. The
contribution to the operator φ4 is then equal to

= −8ρ2
1ρ

2
2

∫
d3p

(2π)3
(p ∗ p)2tr[G(p)CGT (−p)CG(p)CGT (−p)C] (5.42)

where the integral is over all momentum modes up to a cutoff Λ ∼M . Using
C(/pT +M)C = /p−M , the trace equals

tr[G(p)CGT (−p)CG(p)CGT (−p)C] =
2

(p2 +M2)2
(5.43)
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Figure 5.1: Diagram generating φ4 + h.c. when the fermion mass is relevant

Writing p ∗ p = p2 sin2 θ cos(2φ) in spherical coordinates, the expression
(5.42) equals

− 16ρ2
1ρ

2
2

∫
d3p

(2π)3

p4 sin4 θ cos2(2φ)

(p2 +M2)2
∝ ρ2

1ρ
2
2M

3 (5.44)

Therefore, a φ4 + h.c. operator is generated, with coupling constant pro-
portional to

ρ2
1ρ

2
2M

3 ∝ Λ−1
0

(
m

Λ0

)4

g2

(
M

Λ0

)3

(5.45)

Since our original assumption was that the fermion mass is small com-
pared to the bare cutoff, we see that the coefficient of φ4 is highly suppressed.
Therefore, the low energy theory near the critical point gc,2 has the following
structure

L = |∂µφ|2 +m2|φ|2 + ρ|φ|4 + ρ̃(φ4 + φ∗4) ρ̃� ρ (5.46)

This model was studied in [35, 36] using ε-expansion techniques and
in [37] using Monte Carlo, where it was shown that ρ̃, which lowers the
symmetry from U(1) to Z4, is irrelevant in 3 spacetime dimensions and the
critical point is the XY one. Therefore, once the fermion mass becomes
relevant, the universality class of gc,2 will change from N = 2 SUSY to the
conventional XY transition.
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Chapter 6

Conclusion

In this work, we have shown that the emergent U(1) symmetry present at
the critical points of the Majorana-Hubbard model is preserved when U(1)
breaking corrections are taken into account. Moreover, we have shown that
a fermion mass term, generated by a time reversal breaking perturbation,
is a relevant operator at four loops in the ε-expansion. These results sug-
gest that in the case of repulsive interactions, the Majorana-Hubbard model
has a critical point in the Gross-Neveu universality class, and in the case of
attractive interactions, the model has a critical point in the N = 2 super-
symmetric universality class when time reversal symmetry is unbroken, and
in the XY universality class otherwise. These results agree with the clas-
sification of Affleck et. al.[10]. Numerical confirmation of these predictions
remains a major open challenge.
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Appendix A

Derivation of the Low
Energy Field Theory

In this appendix, we derive (2.11), which is the low energy continuum de-
scription of (2.3).

A.1 Quadratic Hamiltonian

Relabelling the Majorana operators γ according to (2.8), the first term of
(2.3) becomes

H0 = it
∑
m,n

γe
m,2n[γe

m+1,2n+γo
m,2n+1]+γo

m,2n+1[−γo
m+1,2n+1+γe

m,2n+2]. (A.1)

Now using the expansion (2.10), the first piece of (A.1) is

γe
m,2n[γe

m+1,2n + γo
m,2n+1] ≈ (A.2)

8Λ−2
0 [χe+(m, 2n)+(−1)mχe−(m, 2n)][χe+(m+1, 2n)+(−1)m+1χe−(m+1, 2n)

+χo+(m, 2n+ 1) + (−1)mχo−(m, 2n+ 1)]

where we’ve suppressed the lattice constant a in the arguments of χ.
To derive a continuum field theory, we will Taylor expand the fields χ

about the point a(m+ 1
2 , 2n+ 1

2). Let χ := χ(m+ 1
2 , 2n+ 1

2), and define

∂± :=
1

2
(∂x ± ∂y). (A.3)

Each derivative will contribute an additional factor of lattice spacing a =
Λ−1

0 . Then (A.2) becomes, after an integration by parts,

8Λ−2
0

∑
±
±χe±ea∂xχe± + χe±ea∂yχo± (A.4)
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A.2. Quartic Hamiltonian

where we’ve dropped alternating terms that do not contribute to the low
energy theory. Performing a similar expansion for the second piece of (A.1),
and adding both contributions together yields

8Λ−2
0

∑
±
±χe±ea∂xχe± ∓ χo±ea∂xχo± + χe±[ea∂y − e−a∂y ]χo± (A.5)

Note that even-derivative functions vanish when sandwiched between the
same Majorana operator, since integration by parts gives

χ∂(2k)χ = (−1)2k∂(2k)χχ, (A.6)

and {χ, ∂(2k)χ} = 0. Therefore we can replace ea∂x by its odd part. Finally,
using ∑

m,n

7→ 1

2
Λ2

0

∫
dxdy (A.7)

we find that the quadratic Hamiltonian density is

H0+H′2 = 4it
∑
±
±χe± sinh(a∂x)χe±∓χo± sinh(a∂x)χo±+2χe± sinh[a∂y]χ

o±

(A.8)
In Section 2.3, it is shown that the underlying symmetry of the lattice
model forces all quadratic operators to preserve the emergent U(1) sym-
metry. Therefore, in our leading order study of U(1) breaking operators, we
neglect the effects of H′2.

A.2 Quartic Hamiltonian

We now repeat the steps of (A.1) for the interacting piece of (2.3), which
splits into two pieces:

Hint = g
∑
m,n

γe
m,2nγ

e
m+1,2nγ

o
m+1,2n+1γ

o
m,2n+1+γo

m,2n+1γ
o
m+1,2n+1γ

e
m+1,2n+2γ

e
m,2n+2

(A.9)
We are only required to Taylor expand the following object

Ae/o(x, y) := γe/o(x, y)γe/o(x+ a, y) (A.10)

where (x, y) = a
(
m+ 1

2 , 2n+ 1
2

)
. In terms of this function, Hint can be

written as

Hint = −g
2

Λ2
0

[
Ae(x− a/2, y − a/2)Ao(x− a/2, y + a/2) (A.11)
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A.3. Leading U(1) Breaking Operator

+Ae(x− a/2, y + a/2)Ao(x− a/2, y − a/2)
]
.

Using (A.11), and expanding up to two derivatives,

A(x−a/2, y−a/2) ≈ 8Λ−2
0

∑
±
±[aχ±(∂++∂−)χ±−a2∂+χ

±∂−χ
±+

a2

2
(∂2

+−∂2
−)χ±χ±]

(A.12)

+8Λ−2
0 (−1)m

∑
±
±[χ∓χ±+aχ∓(∂−−∂+)χ±−a2∂+χ

∓∂−χ
±+

a2

2
χ∓(∂2

−+∂2
+)χ±]

where we’ve used the notation introduced in the previous subsection. Using
this result, (A.7), and integration by parts, the Hamiltonian density can be
written as

1

64gΛ−4
0

Hint = (A.13)

−
∑

s,s′=±1

ss′χes∂xχ
esχos′∂xχ

os′−4Λ2
0χ

e−χe+χo−χo++2∂y(χ
e−χe+)∂y(χ

o−χo+)

+2χe−χe+∂xχ
o−∂xχ

o+ + 2∂xχ
e−∂xχ

e+χo−χo+ + ∂x(χe−χe+)∂x(χo−χo+)

which is (2.12).

A.3 Leading U(1) Breaking Operator

In this appendix, we derive (2.16), which is the U(1) breaking piece of (A.13)
in the ψ notation. For each type of term of (A.13), we insert the (inverses
of) (2.15), and extract the U(1) breaking part:

• Type 1:
χe−χe+∂xχ

o−∂xχ
o+ + ∂xχ

e−∂xχ
e+χo−χo+

= −1

8
(ψ2ψ

∗
1−ψ∗2ψ1)(∂xψ1∂xψ

∗
2−∂xψ∗1∂xψ2)−1

8
(ψ2ψ1−ψ∗2ψ∗1)(∂xψ1∂xψ2−∂xψ∗1∂xψ∗2)

→ −1

8
[ψ2ψ1∂xψ1∂xψ2 + h.c.] (A.14)

• Type 2:

∂i(χ
e−χe+)∂i(χ

o−χo+) (no sum over i, and for i = x, y)

= −1

4
(∂iψ2∂iψ

∗
2ψ
∗
1ψ1+∂iψ

∗
1∂iψ1ψ2ψ

∗
2)−1

8
[∂iψ1∂iψ2+∂iψ

∗
1∂iψ

∗
2][ψ1ψ2+ψ∗1ψ

∗
2]
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A.3. Leading U(1) Breaking Operator

−1

8
[−∂iψ1ψ

∗
2 − ∂iψ∗1ψ2][ψ∗1ψ2 + ψ1ψ

∗
2]

→ −1

8
[∂iψ1∂iψ2ψ1ψ2 + h.c.] (A.15)

• Type 3:

(χe+∂xχ
e+ − χe−∂xχ

e−)(χo+∂xχ
o+ − χo−∂xχ

o−)

= −1

4
(∂xψ

∗
1∂xψ1ψ

∗
1ψ1+∂xψ2∂xψ

∗
2ψ2ψ

∗
2)−1

8
(∂xψ2∂xψ1+∂xψ

∗
2∂xψ

∗
1)(ψ2ψ1+ψ∗2ψ

∗
1)

−1

8
(∂xψ

∗
2∂xψ1 + ∂xψ2∂xψ

∗
1)(ψ2ψ

∗
1 + ψ∗2ψ1)

→ −1

8
[∂xψ2∂xψ1ψ2ψ1 + h.c.] (A.16)

Using equations (A.14-A.16), we find that the U(1) breaking piece of
(A.13) is

16g0Λ4
0ψ1ψ2[∂xψ1∂xψ2 − ∂yψ1∂yψ2] + h.c. (A.17)

Since Hint = Lint for an imaginary time Lagrangian density, we’ve repro-
duced (2.16).
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Appendix B

Promoting ψ to a Dirac
Fermion in Four Dimensions

One idea to resolve the issue of breaking Lorentz invariance in the ε-expansion
is to promote ψ to a Dirac fermion in four dimensions. If this Dirac theory
can be decoupled into two Weyl sectors, then we may obtain the Weyl renor-
malization group functions by continuing N , the number of Dirac fermions,
from 1 to 1

2 in this theory. We now show that this limit is ill-defined.
To generate the interaction term φ∗ψTCψ in each Weyl sector, we con-

sider following operator

iφ∗ΨT

(
C 0
0 −C

)
Ψ + h.c. C = iγ0 (B.1)

To show that it is Lorentz invariant, it is sufficient to consider ψTCψ, since
Lorentz transformations do not couple Weyl sectors in the Weyl basis. Using
(3.33),

ψTCψ 7→ ψT e~α·~σ
T
Ce~α·~σ = ψTCe−~α·~σe~α·~σψ = ψTCψ (B.2)

under a general Lorentz transformation. Adding this interaction to the free
Dirac Lagrangian density, we have

L = Ψ̄[∂aΓ
a +M ]Ψ + [iφ∗ΨT

(
C 0
0 −C

)
Ψ + h.c.] (B.3)

By rotating ψR → γ0ψR, so that both Weyl fermions propagate in the same
direction, (B.3) becomes

2∑
i=1

[
ψ̄i[∂µγ

µ + i∂3]ψi + [iφ∗ψTi Cψi + h.c.]
]

+Mψ̄LψR + ψ̄RψL (B.4)

where we used (3.31). The two Weyl sectors can be decoupled by introducing

ψ± :=
1√
2

(ψL ± ψR). (B.5)
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This doesn’t affect the interaction term, but it modifies the mass terms to

M [ψ̄LψL − ψ̄RψR] (B.6)

This relative sign in the mass terms cannot be removed, implying that
the two Weyl sectors are distinct. Any continuation of the Dirac number
N → 1

2 would have to choose between one of these two distinct sectors,
rendering the limit ill-defined.
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Appendix C

Two Loop Calculation of the
Fermion Mass Beta Function

In this appendix, we calculate βM at the critical point gc,2 in the massive
theory, to two loop order in the modified ε-expansion. These calculations
verify (5.33) to this order. While our one loop calculations were carried out
in the Wilson picture of the renormalization group, it is easier to use dimen-
sional regularization for higher order calculations. Following the conventions
outlined in Section 3.3, we introduce counterterms, order-by-order, to can-
cel the divergences appearing in loop diagrams. Our task is to determine
the renormalization constants that appear in the renormalized Lagrangian
density

L = Zψψ̄[/∂+i∂3]ψ+MµZM ψ̄ψ+Zφ|∂aφ|2+λ1Zλ1µ
ε/2[φψTCψ+h.c.]+λ2Zλ2µ

ε|φ4|
(C.1)

Here µ is an energy scale characterizing the RG flow; it plays a role analogous
to b−1 in the Wilsonian picture. The factors of µ appearing in L ensure the
renormalized couplings and renormalized mass M are dimensionless. The
beta function of M can be determined using the formulae

βM = − [−1− γψ + γM ]M (C.2)

βX := − dX

d logµ
γX := − dZx

d logµ
(C.3)

The negative signs present in the definitions of βX and γX ensure that these
functions have the same signs as their Wilsonian counterparts, dX

d log b and
dZx
d log b , where b is the length scale characterizing the size of a Wilsonian
momentum shell. The anomalous dimensions satisfy

γx = βλ21
d logZx
dλ2

1

+ βλ22
d logZx
dλ2

2

+ βM
d logZx
dM

(C.4)

and provide a system of equations to find the beta functions at a given
order. To determine the 2 loop anomalous dimensions, we require the 2
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C.1. One Loop Diagrams

loop renormalization functions ZM , Zψ, as well as the 1-loop beta functions
βλ21 , βM , and βλ22 .

In fact, it will turn out that ZM and Zψ only depend on λ2
1 to two loops,

and so we only need to know βλ21 . Because ZM and Zψ are independent of

M , we can use the massless one loop β function from [15]:

βλ21 = −ελ2
1 +

3

(4π)2
λ4

1 (C.5)

Once we verify that Zφ, Zψ and Zλ1 don’t depend on M , it will be sufficient
to calculate Zψ and ZM to two loop order, to determine βM .

In the following, all Feynman diagrams have been drawn using the pack-
age [31]. Solid lines correspond to fermion propagators, dashed lines corre-
spond to boson propagators, and an arrow is used to indicate the direction
of charge. This charge is +1 for the fermion propagator, and +2 for the
boson propagator.

C.1 One Loop Diagrams

C.1.1 Fermion Propagator

At one loop, the fermion propagator is renormalized by a single diagram,
shown in Figure C.1. It equals

k

p

Figure C.1: Fermion self energy in renormalized perturbation theory

= (−2λ1)2

∫
ddp

(2π)d
D(p)CGT (p− k)C = 4λ2

1

∫
ddp

(2π)d
1

p2

i(p† − k†)−M
(p− k)2

(C.6)
where we’ve used

C(ip +M)TC = ip† −M (C.7)
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C.1. One Loop Diagrams

Introducing a Feynman parameter x according to

1

p2(p− k)2
=

∫ 1

0
dx

1

[(p− xk)2 + x(1− x)k2]2
(C.8)

and changing variables to l = p− xk, we have the diagram equalling

4λ2
1

∫ 1

0
dx

∫
ddl

(2π)d
i(l† + (x− 1)k†)−M

[l2 + ∆]2
(C.9)

where
∆ := x(1− x)k2 (C.10)

Finally, using the integral formula∫
ddl

(2π)d
1

[l2 + ∆]n
=

1

(4π)d/2
Γ(n− d

2)

Γ(n)
∆

d
2
−n (C.11)

we find that the diagram (C.1) equals

4λ2
1

∫ 1

0
dx[i(x− 1)k† −M ]

∆
d
2
−2

(4π)d/2
Γ(2− d

2)

Γ(2)
(C.12)

Replacing d with 4 − ε, we find that (C.1) has the following diverging
term in the ε→ 0 limit:

− 4λ2
1

(4π)2
[
i

2
k† +M ]

2

ε
(C.13)

To cancel this divergence, we introduce renormalization constants δZψ
and δZM into the Lagrangian density, that produce the following terms to
this order in λ2

1:
− iδZψψ̄k†ψ +MδZM ψ̄ψ (C.14)

Note that the renormalization constants in (C.1) satisfy

Zx = 1 + δZx + two loop terms (C.15)

To achieve cancellation, we require

δZψ = − 4λ2
1

(4π)2ε
δZM =

8λ2
1

(4π)2ε
(C.16)
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k

p

Figure C.2: Boson self energy in renormalized perturbation theory

C.1.2 Boson Propagator

At one loop, the boson propagator is renormalized by the single diagram in
Figure C.2. It equals

= −1

2
(−2λ2

1)

∫
ddp

(2π)d
trCG(p)CGT (k − p) (C.17)

The factor of 1
2 is a symmetry factor, and the overall minus sign is determined

from Wick’s theorem, and is a common feature of fermion traces in Feynman
diagrams. Introducing the same Feynman parameter as in (C.8), this equals

− 4λ2
1

2

∫
ddp

(2π)d
ddlp

(2π)d
tr[(ip +M)(ik† − ip† −M)]

1

p2(k − p)2
(C.18)

= −4λ2
1

2

∫ 1

0
dx

∫
ddl

(2π)d
tr[l2 − x(1− x)k2 + iM(1− x)k† − iMxk]

[l2 + ∆]2

(C.19)
While tr/p = 0

trMp = −2p3M 6= 0 (C.20)

However, this term is not Lorentz invariant, and can be dropped using the
modified ε expansion introduced in the previous section. Using a secondary
integral formula∫

ddl

(2π)d
l2

[l2 + ∆]n
=

∆
d
2

+1−n

(4π)d/2
d

2

Γ(n− d
2 − 1)

Γ(n)
(C.21)

we find the one loop integral (C.2) equals

− 4λ2
1

(4π)d/2

∫ 1

0
dx

[
d

2
Γ(−1 +

ε

2
)− Γ(

ε

2
)

]
∆1− ε

2 (C.22)
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Now using [ ε
2
− 1
]

Γ(
ε

2
− 1) = Γ(

ε

2
) (C.23)

and

Γ(
ε

2
− 1) = −2

ε
+O(1) (C.24)

the divergent behaviour as ε→ 0 in (C.22) is

4λ2
1

(4π)2

∫ 1

0
dx

6∆

ε
=

λ2
1

(4π)2

k2

ε
(C.25)

To cancel this divergence, we introduce a counterterm δZφ that appears
in the Lagrangian density as

k2δZφ|φ|2 (C.26)

To achieve a cancellation, we require

δZφ = − 4λ2
1

(4π)2ε
(C.27)

C.1.3 Interaction Vertex

At one loop there is no diagram renormalizing the fermion-boson interac-
tion, so that δZλ1 = 0. Moreover, the diagrams renormalizing the pure
boson interaction involve only the field φ at one loop order. Therefore, all
renormalization constants are independent of mass, so that we can safely
use the one loop result for βλ21 , (C.5), from [15]. Now, we must find the two
loop contributions to Zψ and ZM .

C.2 Two Loop Diagrams

There are two types of diagrams contributing at two loops. Some are iden-
tical to (C.1), but with either the internal boson or internal fermion aug-
mented with a one loop counterterm δZφ or δZψ. We call these counterterm
diagrams:

C.2.1 Boson Counterterm Diagram

The diagram involving an inserting of δZφ is shown in Figure C.3. It equals

= −δZφ4λ2
1

∫
dd

(2π)d
D(p)CGT (p− k)C (C.28)
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k

p

Figure C.3: Boson counterterm diagram in renormalized perturbation theory

We now wish to extract the diverging behaviour:

− δZφ4λ2
1

∫
dd

(2π)d
D(p)CGT (p− k)C (C.29)

→ −δZφ4λ2
1

∫ 1

0
dx[i(x− 1)k† −M ]

∆d/2−2

(4π)d/2
Γ(2− d

2)

Γ(2)

= − 4λ2
1

(4π)2
δZφ

∫ 1

0
dx[i(x− 1)k† −M ]

(
∆

(4π)2

)− ε
2
[

2

ε
− γ +O(ε)

]
(C.30)

Now, in the MS scheme (see Section 3.3), factors of γ and 4π are taken
care of by rescaling the coupling constants appropriately. Therefore, the
only diverging behaviour is

8

ε

λ2
1

(4π)2
δZφ[

i

2
k† +M ] (C.31)

C.2.2 Fermion Counterterm Diagram

In the fermion counterterm diagram, displayed in Figure C.4,
we replace the fermion propagator according to

1

−ip +M
→ 1

−ip +M
(−iδZψp− 2MδZψ)

1

−ip +M
(C.32)

where we used δZM = −2δZψ. This is

δZψ
−ip +M

− 3MδZψ

(
ip

p2

)2

(C.33)

Replacing
(ip)2 = −p(p† − 2ip3) = −p2 + 2ipp3 → −p2 (C.34)
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k

p

Figure C.4: Fermion counterterm diagram in renormalized perturbation the-
ory

in the modified ε-expansion, we obtain

δZψ
−ip +M

+
3MδZψ
p2

. (C.35)

The diagram (C.4) then equals

− δZψ4λ2
1

∫
ddp

(2π)d
D(p)

i(p† − k†)− 4M

(p− k)2
(C.36)

Using the calculations of (C.1), we find the following diverging behaviour:

δZψ
λ2

1

(4π)2

[
i

2
k† + 4M

]
8

ε
(C.37)

There are two remaining diagrams that contribute to βM at two loops.
One includes a fermion self energy bubble, and one includes a boson self
energy bubble.

C.2.3 Internal Boson Bubble Diagram

The diagram including a boson self energy bubble is shown in Figure C.5.
It equals

= −(−2λ1)2

∫
ddp

(2π)d
CGT (p−k)C

1

p4

[
−
∫ 1

0
dx

4λ2
1

(4π)d/2
(3− ε)[x(1− x)p2]1−

ε
2 Γ(−1 +

ε

2
)

]
(C.38)

where we’ve used (C.22). Now, a generalized version of (C.8) lets us write

1

(p− k)2[p2]1+ ε
2

=

∫ 1

0
dy

(1− y)ε/2

[l2 + ∆(y)]2+ ε
2

[
1 +

ε

2

]
(C.39)
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k

p

q

Figure C.5: Two loop diagram with internal boson bubble in renormalized
perturbation theory

so that the diagram (C.5) equals

= − 16λ4
1

(4π)d/2

[
1 +

ε

2

]2
(3−ε)Γ(

ε

2
)

∫ 1

0
dxdy[x(1−x)]1−

ε
2

∫
ddl

(2π)d
i(y − 1)k† −M
[l2 + ∆(y)]2+ ε

2

(1−y)ε/2

(C.40)

= − 16λ4
1

(4π)d

[
1 +

ε

2

]2 (3− ε)Γ( ε2)Γ(ε)

Γ(2 + ε
2)

∫ 1

0
dxdy[x(1−x)]1−

ε
2 (1−y)ε/2[i(y−1)k†−M ]∆ε

(C.41)
where in the second line we used (C.11). The diverging behaviour is:

= − 16λ4
1

(4π)4

[
1 +

ε

2

]2 (3− ε)Γ( ε2)Γ(ε)

(1 + ε
2) ε2Γ( ε2)

∫ 1

0
dxdy[x(1−x)]1−

ε
2 (1−y)ε/2[i(y−1)k†−M ]

(C.42)
Now, using the expansions∫ 1

0
dx[x(1− x)]1−

ε
2 =

1

6
+

5ε

36
+O(ε2) (C.43)

∫ 1

0
dy(y − 1)(1− y)ε/2 = −1

2
+
ε

8
+O(ε2) (C.44)∫ 1

0
dy(1− y)ε/2 = 1− ε

2
(C.45)

The expression (C.42) simplifies to

= −1

ε

16λ4
1

(4π)4
[1 + ε] Γ(ε)

∫ 1

0
dy(1− y)ε/2[−i(y − 1)k† −M ] (C.46)

= −1

ε

16λ4
1

(4π)4
Γ(ε)

[
− i

2
k†
[
1 +

3ε

4

]
−M

[
1 +

ε

2

]]
(C.47)
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Finally, MS lets us replace Γ(ε)→ 1
ε :

=
1

ε2
16λ4

1

(4π)4

[
i

2
k†
[
1 +

3ε

4

]
−M

[
1 +

ε

2

]]
(C.48)

We record this result and move to the final diagram.

C.2.4 Internal Fermion Bubble Diagram

The final diagram is shown in Figure C.6. It equals

k

k − p

q

Figure C.6: Two loop diagram with internal fermion bubble in renormalized
perturbation theory

= −4λ2
1

∫
ddp

(2π)d
D(p)CGT (p− k)Σψ(p− k)TGT (p− k)C (C.49)

where Σψ is the one loop fermion self energy diagram (C.1). The integrand
is

D(p)CGT (p− k)C2Σ(p− k)TC2GT (p− k)C (C.50)

=
4λ2

1Γ( ε2)

(4π)d/2

∫ 1

0
dxCGT (p− k)C[i(x− 1)(p− k) +M ]CGT (p− k)C∆−

ε
2

(C.51)
(where we used Cp†TC = p). We can rearrange the propagator factors
according to

CGT (p)C[i(x− 1)p +M ]CGT (p)C (C.52)

=
1

−ip−M [i(x− 1)p +M ]
1

−ip−M =
(x− 1)[ip +M ]

−ip−M +
(2− x)M

(−ip−M)2

(C.53)

=
i(1− x)p† − (3− 2x)M

p2
+O(M2) (C.54)

58



C.2. Two Loop Diagrams

where in the last line we made the replacement (C.34). The diagram (C.6)
then equals

−16λ4
1Γ( ε2)

(4π)d/2

∫ 1

0
dx[x(1−x)]−ε/2

∫
ddp

(2π)d
1

p2

[
i(1− x)(p† − k†)− (3− 2x)M

(p− k)2+ε

]
(C.55)

Introducing a Feynman parameter as in (C.39),

1

(p− k)2+εp2
=

∫ 1

0
dy

yε/2

[l2 + ∆(y)]2+ ε
2

[
1 +

ε

2

]
(C.56)

we have

−
[
1 +

ε

2

] 16λ4
1Γ( ε2)

(4π)d/2

∫ 1

0
dydx[x(1− x)]−ε/2yε/2 (C.57)

×
∫

ddl

(2π)d
1

[l2 + ∆(y)]2+ ε
2

[
i(1− x)(y − 1)k†)− (3− 2x)M

]
= −2

ε
Γ(ε)

16λ4
1

(4π)d

∫ 1

0
dydx[x(1−x)]−ε/2yε/2

[
i(1− x)(y − 1)k†)− (3− 2x)M

]
∆−ε

(C.58)
where in the last line we used (C.11). In the MS scheme, we replace Γ(ε)→
1
ε . Therefore, the divergent piece of (C.6) is

= − 2

ε2
λ4

1

(4π)d

∫ 1

0
dydx[x(1− x)]−ε/2yε/2

[
i(1− x)(y − 1)k†)− (3− 2x)M

]
(C.59)

We now use the following expansions:∫ 1

0
dxx−ε/2(1− x)1−ε/2 =

Γ(1− ε
2)Γ(2− ε

2)

Γ(3− ε) =
1

2
[1 + ε] +O(ε2) (C.60)

∫ 1

0
dx[x(1− x)]−ε/2 = 1 + ε+O(ε2) (C.61)∫ 1

0
dyyε/2 = 1− ε

2
+O(ε2) (C.62)∫ 1

0
dyyε/2+1 =

1

2
− ε

8
+O(ε2) (C.63)

We find the following divergent behaviour:

ik
16λ4

1

(4π)4

[
1

2ε2
(1 +

1

4
ε)

]
+M

16λ4
1

(4π)4

4

ε2
(1 +

ε

2
) (C.64)
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C.2.5 Fermion Mass Beta Function

Adding up the divergences (C.31, C.37, C.48, C.64), we find

=
8

ε

λ2
1

(4π)2
δZψ(ik)+

40

ε
δZψ

λ2
1

(4π)2
M+(ik)

16λ4
1

(4π)4

[
1

ε2
+

1

2ε

]
+M

16λ4
1

(4π)4
[5 + ε]

(C.65)
Using the one loop result

δZψ =
−4λ2

1

(4π)2ε
(C.66)

the total divergence at two loops is

= − 16λ4
1

(4π)4
(ik)

[
1

ε2
− 1

2ε

]
− 16λ4

1

(4π)4
M

[
5

ε2
− 5

2ε

]
(C.67)

This determines the renormalization constants to this order:

Zψ = 1− 4λ2
1

(4π)2
− 16λ4

1

(4π)4ε2
+

8λ4
1

(4π)4ε
(C.68)

ZM = 1 +
8λ2

1

(4π)2ε
+

80λ4
1

(4π)4ε2
− 40λ4

1

(4π)4ε2
(C.69)

Having obtained Zψ and ZM , we can now calculate their respective
anomalous dimensions. Expanding:

logZψ = − 4λ2
1

(4π)2ε
− 24λ4

1

(4π)4ε2
+

8λ4
1

(4π)4ε
+O(λ6

1) (C.70)

logZM =
8λ2

1

(4π)2ε
+

48λ4
1

(4π)4ε2
− 40λ4

1

(4π)4ε2
+O(λ6

1) (C.71)

Then differentiating and using the one loop beta function (C.5), we find

γψ = βλ21
d logZψ
dλ2

1

= − 4λ2
1

(4π)2
+

16λ4
1

(4π)4
(C.72)

and

γM =
8λ2

1

(4π)2
− 80λ4

1

(4π)4
(C.73)

Therefore, the beta function is

βM = M [1 + γψ − γM ] = M − 12λ2
1M

(4π)2
+

96λ4
1M

(4π)4
(C.74)
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Using the critical value of λ2
1 found in [15],

λ2
1,∗

(4π)2
=

ε

12
+
ε2

36
(C.75)

the beta function equals

βM (λ1,∗) =

[
1− 12

[
ε

12
+
ε2

36

]
+ 96

ε2

144

]
M =

[
1− ε+

ε2

3

]
M (C.76)

which agrees with the relation (5.33) to O(ε2).
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