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Abstract

Quantiles and their functions are important population characteristics in many ap-

plications. In forestry, lower quantiles of the modulus of rapture and other mechan-

ical properties of the wood products are important quality indices. It is important

to ensure that the wood products in the market over the years meet the established

industrial standards. Two well-known risk measures in finance and hydrology,

value at risk (VaR) and median shortfall (MS), are quantiles of their correspond-

ing marginal distributions. Developing effective statistical inference methods and

tools on quantiles of interest is an important task in both theory and applications.

When samples from multiple similar natured populations are available, Chen et al.

[2016] proposed to use a density ratio model (DRM) to characterize potential latent

structures in these populations. The DRM enables us to fully utilized the infor-

mation contained in the data from connected populations. They further proposed

a composite empirical likelihood (CEL) to avoid a parametric model assumption

that is subject to model-mis-specification risk and to accommodate clustered data

structure. A cluster-based bootstrap procedure was also investigated for variance

estimation, construction of confidence interval and test of various hypotheses.

This thesis contains complementary developments to Chen et al. [2016]. First,

a user-friendly R package is developed to make their methods easy-to-use for prac-

titioners. We also include some diagnostic tools to allow users to investigate the

goodness of the fit of the density ratio model. Second, we use simulation to com-

pare the performance DRM-CEL-based test and the famous Wilcoxin rank test for

clustered data. Third, we study the performance of DRM-CEL-based inference

when the data set contains observations with different cluster sizes. The simulation

results show that DRM-CEL method works well in common situations.
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Lay Summary

Quantiles and their functions are important population characteristics in many ap-

plications. In this thesis, we focus on lower quantiles of lumber strength distribu-

tion, which are usually used as quality indices for wood products. It is important

to ensure that the wood products in the market over the years meet the established

industrial standards. Therefore, monitoring some certain lower quantile of the dis-

tribution of strength of wood products across years is of big concern. We first re-

view some existing quantile monitoring methods. Based on one of these methods,

we developed an user-friendly R package to make the method easy-to-use for prac-

titioners. Further, with the help of this package, we investigate the performance of

this monitoring method in a more general situation, which is not considered in the

original paper.
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Chapter 1

Introduction

Population quantiles and their functions are important measures in many applica-

tions. For example, in forestry, it is important to maintain the value of the fifth

lower percentile of lumber strength distribution. Such engineering properties are

vital to the strength of wood structures. See American Society for Testing and

Materials (ASTM) Standard D1990 International [2007]. Two well-known risk

measures in finance and hydrology, value at risk (VaR) Pflug [2000] and median

shortfall (MS) Bertsimas et al. [2004], are quantiles of the corresponding distribu-

tions. They are generally used to evaluate the risk tolerance of financial institutions

and hydrological structures. Monitoring the levels of these quantiles is of great in-

terest in these applications.

This thesis is motivated by a research project on forestry at the University of

British Columbia through funding “The NSERC CRD FPInnovations grant” and by

the work of Chen et al. [2016]. The Canadian forestry industry is a major contrib-

utor to the Canadian economy. Canada has 42 percent of its land acreage covered

by forests. The country contains 10 percent of the world’s forested land and the

forests are made up mostly of spruce, poplar and pine. To meet the society’s long-

term demand for forest products and the near-term economic benefit, responsible

forest management is required to ensure that forests are legally harvested and man-

aged. Data collection and statistical analysis are important parts of the effective

management.

The properties of wood products may change over time due to some long term

1



trends such as the climate change, and some catastrophic short term impacts such

as extreme forest fire series and mountain pine beetles. All of these factors might

affect the mechanical strength of wood materials. Therefore, people from forestry

are very serious at monitoring the change of quality of wood products. To mea-

sure the mechanical property of wood, modulus of elasticity (MOE) and modulus

of rupture (MOR) Bier and Collins [1985] are two important and commonly used

quality indices Barrett and Kellogg [1991], Bendtsen and Senft [2007], Boone and

Chudnoff [1972], Smith et al. [1991]. MOE and MOR are measurements of lum-

ber’s elasticity and toughness respectively. Lower quantiles of the population dis-

tribution of these two indices are used to measure the reliability of wood products.

The 5% quantile is usually a common choice. They are important design values for

wood structures.

Imagine populations made of lumber produced by a number of mills over years.

The lumber samples may be collected as follows. Each year, a number of mills are

randomly chosen and then several lots of wood pieces are randomly sampled from

them. From each lot sampled, several pieces of wood are selected to form a sample

from this mill. They form the data set to be analyzed to decide whether the wood

product meets the industrial standard and to provide other information useful to

wood industry and engineers. Clearly, the observations obtained are clustered in

such applications.

Many standard statistical methods are developed for data in which the ob-

served values may be regarded independent of each other. This includes the fa-

mous Wilcoxon rank sum test, Kolmogorov goodness-of-fit test, and the method

of Anderson [1979]. The data collected from wood industry and likely in other

applications are, however, often clustered. This can be seen from the exploratory

data analysis of real data and based on some background information Verrill et al.

[2015]. Because the wood pieces sampled from the same lot/mill are likely from

the same tree, or from trees grown in the same region and so on, they are more

likely to have have similar strengths.

When observations are correlated but analyzed as if they are independent, the

uncertainty in statistical inference is generally underestimated. This leads to under-

coverage of the confidence intervals and inflated type I error of significance tests.

To investigate the effect of clustered data to type I errors of some standard proce-
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dures, Verrill et al. [2015] conducted extensive simulation studies of eight statistical

tests proposed by the United States Department of Agriculture. Their investigation

largely confirms the damaging effect of clustered data if the clustering structure

is not properly looked after. In addition, although the parameter of interest in the

targeted application is lower quantiles, these methods are generally designed from

other population statistics. Hence, even if they work well for their original purpose,

additional developments are in great needs.

The forestry data and data from some applications have two important char-

acteristics. The first is that we often have samples from multiple populations that

share latent structures. The second is that the data can be clustered. The paper

of Anderson [1979] proposes a semi-parametric density ratio model which takes

the shared latent structure into consideration; it further develops an empirical like-

lihood approach for estimation, confidence interval and hypothesis test regarding

population quantiles. For clustered data in forestry and likely in some other ap-

plications, the joint distributions are exchangeable. This leads to non-parametric

cluster effect assumption in Chen et al. [2016] and the proposed composite empiri-

cal likelihood. To avoid inflated type I error in monitoring tests, Chen et al. [2016]

further propose to use cluster-based bootstrapping method for variance estimation.

Asymptotically valid confidence intervals and hypothesis tests are subsequently

obtained.

This thesis contains complementary work to these two papers as well as new

developments to the research and application area. We first give a brief review of

the materials in these two papers in the next section.

1.1 The density ratio model
In common problems, one may have a set of random observations from a popula-

tion with distribution F . We may estimate F by its empirical distribution

Fn(x) = n−1
n

∑
i=1

1(xi ≤ x)
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where 1(·) is the indicator function. We have used x1, . . . ,xn as observed values

with sample size n. For any p ∈ (0,1), the sample quantile is defined to be

ξ̂p = F−1
n (p) = inf{x : Fn(x)≥ p}.

Generally speaking, the sample quantile ξ̂p is a good nonparametric estimator Ser-

fling [2009].

When F is known to be a member of parametric distribution family, say, F(x)=

F(x;θ). One may first estimate θ with an efficient method and subsequently esti-

mate population quantile ξp by F−1(x; θ̂). This is also a valid approach.

As pointed out in Anderson [1979], when we have data from multiple con-

nected populations, the empirical quantiles fail to utilize this extra information.

The efficiency of the parametric quantile estimator F−1(x; θ̂) cannot be further im-

proved, but it can suffer from model mis-specification. If one wishes to avoid risky

parametric model assumption and make use of the information in multiple samples,

a density ratio model is an attractive choice.

Let G1,G2, . . . ,Gm be distribution functions of m connected populations from

which some observations are available. In forestry, they may stand for populations

from m calendar years. Let g1,g2, . . . ,gm be their density functions with respect to

some σ -finite measure. The DRM postulates that

gk(x)
g1(x)

= exp{θθθ τ

kq(x)} (1.1)

for some known function q(x) of dimension d and corresponding unknown param-

eter vector θθθ k, where θθθ
τ

k is the transpose of θθθ k. The first entry of q(x) is generally

required to be constant one so that the first element of θθθ k is a normalization param-

eter. The DRM is semi-parametric and it allows users to choose or specify the basis

function q(x) to reflect the nature of the populations in applications. When the ba-

sis function is properly chosen, the information from multiple samples is pooled

together to permit more efficient statistical inference. The pooled information may

improve the efficiency of each quantile estimate. Unless otherwise specified, we

will regard these densities as with respect to Lesbesgue measure.

Take two risk measures, VaR and MS, in finance and hydrology as examples.
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They are quantiles of the populations under investigation. Due to the lack of ob-

servations in extreme tails of the distribution, non-parametric inferences are usu-

ally not meaningful so that some parametric assumptions are usually specified.

The generalized extreme value (GEV) distribution family is often assumed for data

analysis. If we assume the shape parameters ξ of the corresponding distributions

are identical, we can verify that these distributions are special cases of DRM with

proper basis functions. Under the assumption, it is advantageous to make inference

under the semi-parametric DRM.

We now move to the review of empirical likelihood method under the density

ratio model.

1.2 Empirical likelihood under density ratio model
Consider the simple case where the observations in multiple samples are denoted

as xk, j : k = 1,2, . . . ,m and j = 1,2, . . . ,nk. Suppose they are independent and the

distribution of Xk, j is given by Gk satisfying the DRM (1.1). In the spirit of Owen

[2001], Chen and Chen [2000] restrict the form of G1 to

G1(x) = ∑
k, j

pk, j1(xk, j ≤ x),

where pk, j is the likelihood contribution of observation xk, j. If not specified, the

range over summation or product will be all possible values of the indices. Under

the DRM assumption, we may write Gr as

Gr(x) = ∑
k, j

pk, j exp{θθθ τ

r q(xk, j)}1(xk, j ≤ x)

for r = 1,2, . . . ,m, with θθθ 1 = 0. Since Gr’s are distribution functions, we must

have

∑
k, j

pk, j exp{θθθ τ

r q(xx, j)}= 1 (1.2)

for all r = 1,2, . . . ,m.
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The empirical likelihood (EL) function is given by

L(G1, . . . ,Gm) = ∏
k, j

dGk(xk, j) = {∏
k, j

pk, j}exp{∑
k

θθθ
τ

k ∑
j

q(xk, j)}

with pk, j and θθθ k satisfying (1.2).

By standard method of Lagrange multipliers Nakayama et al. [1975], the fitted

values of pk, j are given by

p̂k, j =
1

n∑
m
r=1 ρr exp{θ̂θθ τ

r q(xk, j)}

where ρr = nr/∑
m
k=1 nk. The fitted cumulative distribution functions are given by

Ĝk(x) = ∑
k, j

p̂k, j exp{θ̂θθ τ

kq(xk, j)}1(xk, j ≤ x).

Chen and Liu [2013] prove that the DRM-EL quantile estimators derived from

the above Ĝk(x) are more efficient than the empirical quantiles. They also inves-

tigate other properties such as the asymptotic normality, confidence intervals and

the hypothesis test problems. We will not go over these details.

1.3 DRM-CEL for clustered data
As explained earlier that the data are often clustered in applications. Ignoring the

cluster structure may lead to inflated type I errors for hypothesis tests and under-

coverage problem for the confidence intervals. Hence, the methods developed in

Chen and Liu [2013] must be modified. For this purpose, Chen et al. [2016] further

developed a DRM based composite likelihood approach. Consider the situation

where each Xk, j,l is a d-dimensional random vector, where k is the population index,

j is the cluster index and l is the data index within each cluster. Let Fk(y1, . . . ,yd) be

the joint distribution function of Xk, j,l . In many applications, it is quite reasonable

to assume that this distribution is exchangeable. For example, when d = 4, the

exchangeability of Fk means

Fk(y1,y2,y3,y4) = Fk(y1,y3,y2,y4) = Fk(y4,y3,y1,y2) = · · · .
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This implies that the marginal distributions of each entry are same. For this reason,

the population distribution of any entry of Xk, j,l is given by

Gk(x) = Fk(x,∞,∞,∞) = Fk(∞,x,∞,∞) = Fk(∞,∞,x,∞) = Fk(∞,∞,∞,x).

If so, the DRM-EL methods seem to work, at least artificially. We need not impose

additional restrictions on Fk.

We can motivate the direct use of previous DRM-EL methods through the no-

tion of composite likelihood of Lindsay [1988].

Consider a random vector Y , with probability density function f (y;θ) for some

parameter vector θθθ ∈Θ. Denote by {A1, ...,AK} a set of events with associated like-

lihoods Lk(θθθ ;y) ∝ f (y ∈ Ak;θθθ). Following Lindsay [1988] a composite likelihood

is the weighted product

Lc(θθθ ;y) =
K

∏
k=1

Lk(θθθ ;y)wk ,

where wk are nonnegative weights to be chosen. One should not assume any prop-

erties of the authentic likelihood functions for Lc(θθθ). One may choose wk to reflect

the some knowledge on the relationship between these events and to improve the

inference efficiency Varin et al. [2011]. In Chen and Liu [2013], they consider the

composite likelihood of each cluster. Specifically, for each cluster

xxxk, j = (xk, j,1,xk, j,2, . . . ,xk, j,d)
τ ,

Chen and Liu [2013] suggest to have Ai as the event {Xk, j,i = xk, j,i} for i= 1,2, . . . ,d.

With A1,A2, . . . ,Ad being symmetric (the exchangeability of the joint distribution

Fk), it is natural to have w1 = w2 = · · · = wd and define a composite likelihood to

be

Lc(G1, . . . ,Gm) = ∏
k, j
{

d

∏
l=1

dGk(xk, j,l)}.

defined on the space of G1, . . . ,Gm satisfying

Gr(x) = ∑
k, j,l

pk, j,l exp{θθθ τ

r q(xk, j,l)}1(xk, j,l ≤ x)

7



with θθθ 1 = 0 and that for r = 1,2, . . . ,m,

∑
k, j,l

pk, j,l exp{θθθ τ

r q(xk, j,l)}= 1.

Following the same algebra in Section 1.2, the composite likelihood is maximized

when

p̂k, j,l =
1

nd ∑
m
r=1 ρr exp{θ̂θθ τ

r q(xk, j,l)}

where θ̂θθ r is the maximum CEL estimator. Subsequently, the maximum CEL esti-

mator of Gr(x) is given by

Ĝr(x) = ∑
k, j,l

p̂k, j,l exp{θ̂θθ τ

r q(xk, j,l)}1(xk, j,l ≤ x).

The DRM-CEL based quantile estimators are given by ξ̂r,α = Ĝ−1
r (α).

Chen et al. [2016] prove that the DRM-CEL based quantile estimators remain

consistent as the total sample size
m
∑

k=1
nkd increases under some conditions and

are still asymptotically normal. However, their asymptotic variances are usually

larger than those obtained when the data are not clustered. For this reason, the

results of Chen et al. [2016] on monitoring tests cannot be directly used. To address

this problem, they propose to use resampling methods to avoid variance under-

estimation. This is the topic of the next section.

1.4 Bootstrap and the monitoring test
As pointed out from the beginning, one problem of interest in forestry is to monitor

the change of lower quantiles. This task may be regarded as a hypothesis test prob-

lem. We wish to know whether the population quantile of one year is significantly

lower than that of the previous year, or lower than some industrial standard.

Because of this, we wish to test hypothesis in the form of

H0 : ξ1,α ≤ ξ2,α

8



versus one-sided alternative

H1 : ξ1,α > ξ2,α

where ξ1,α ≤ ξ2,α are α-quantiles of the first two populations for some selected

quantile level α . We consider this problem when there may also be samples from

G3,G4 and so on. We also want to know whether the existing method works or not

when data are clustered.

The results in Chen et al. [2016] imply that the difference of two DRM-CEL

quantile estimators, ξ̂k1,α− ξ̂k2,α , where k1 and k2 are population indices, is asymp-

totically normal with zero mean and finite variance. Therefore, we may use Wald

method for the purpose of hypothesis test if we have an easy to use estimate of

the asymptotic variance. It turns out that the asymptotic variance has a complex

expression and depends on specific cluster structures. Hence, a straight estimation

of the asymptotic variance is not a convenient option.

To overcome this difficult, Chen et al. [2016] propose a cluster-based bootstrap

method to estimate the distribution of ξ̂k1,α− ξ̂k2,α . In this scheme, the nk bootstrap

clusters are sampled from the observed clusters without replacement from the kth

sample. A bootstrap sample is therefore formed as

{xxx∗k, j; j = 1,2, . . . ,nk,k = 1,2, . . . ,m}.

The DRM-CEL is then applied to this bootstrap sample to obtain ξ̂ ∗k1,α
− ξ̂ ∗k2,α

. This

process is repeated a large number B times. The empirical distribution formed by

these B values of ξ̂ ∗k1,α
− ξ̂ ∗k2,α

is utilized to give an estimate of the distribution of

ξ̂k1,α − ξ̂k2,α .

Clearly, confidence intervals for ξ̂k1,α − ξ̂k2,α can then be constructed accord-

ingly. From the relationship between the confidence interval and the hypothesis

test, we further obtain a procedure for monitoring test.

In Chen et al. [2016], the validity of this bootstrap procedure is summarized as

the following theorem.

Theorem 1 Let ξk1,α ,ξk2,α be two population quantiles of Gk1 and Gk2 . Let ϕ(x,y)

be a differentiable function. Let (ξ̂k1,α , ξ̂k2,α) and ξ ∗k1,α
,ξ ∗k2,α

be DRM-CEL quantile

estimators based on the original sample and bootstrap sample. Then under some

9



conditions and as the total sample size n→ ∞,

supx

∣∣Pr∗
(√

n{ϕ(ξ ∗k1,α
,ξ ∗k2,α

)−ϕ(ξ̂k1,α , ξ̂k2,α)} ≤ x
)

−Pr
(√

n{ϕ(ξk1,α ,ξk2,α)−ϕ(ξk1,α ,ξk2,α)} ≤ x
)∣∣= op(1)

where Pr∗ denotes the conditional probability given data corresponding to boot-

strapping distribution.

Note that a null hypothesis in the form of ξ1 = ξ2 can be expressed as ϕ(ξ1,ξ2)=

0 with ϕ(x,y) = x− y. We test the hypothesis

H0 : ϕ(ξk1,α ,ξk2,α) = 0

by observing whether an appropriate levelled confidence interval of ϕ(ξk1,α ,ξk2,α)

contains 0. We will give details of the bootstrap procedure later.

1.5 Contribution of this thesis
To apply the methods developed by Chen and Liu [2013] and Chen et al. [2016] on

realistic problems, a user-friendly R package is needed. Several relevant R func-

tions have been built by the authors to carry out the simulation studies in their

papers, but these R functions are not easy to use by users from industry. Based on

these existing R functions, we further build a user-friendly R package called “dr-

mmt” to implement these DRM based quantile estimation methods. The functions

in this package are designed for application requirements and easy to access.

In this thesis, we first present the R functions in the package “drmmt”. With

these R functions, we use simulation studies to compare the performances of dif-

ferent methods for quantile estimations of clustered data, and investigate the per-

formance of the method developed by Chen et al. [2016] in a more general case.

In Chapter 2, we first present the data collection procedure for lumber example,

followed by an introduction to the required data format of our R functions for any

data set. Although the method developed by Chen et al. [2016] is motivated by

lumber project, their method actually can be applied to many other areas as long

as the corresponding model assumptions are satisfied. For our R functions, as long
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as the format of data set is complete, they can be applied on any data sets from any

area. Then we present how to input a real data set into our R functions. In Chap-

ter 3, we first review the statistical model and corresponding parameter estimation

method Chen et al. [2016]. We present the statistical questions coming from the

targeted applications and the solutions of these questions. Then we present the R

functions in our package “drmmt”. For each R function, we illustrate its inputs and

outputs and demonstrate it by a code example. We explain the algorithms behind

these function and introduce the R functions being used from other R packages. At

the end of this chapter, we use a real data example to demonstrate how to apply the

functions from this package to a realistic problem.

In Chapter 4, we first review the classical Wilcoxon rank sum test Lehmann

[2006] and introduce a cluster-based Wilcoxon rank sum test developed by Rosner

et al. [2003]. The classical Wilcoxon rank sum test is not appropriate for our tar-

geted application because it is designed for independent dataset and it is not built

to detect the change in population quantiles. Even if the cluster-based Wilcoxon

rank sum test has a good performance in the clustered dataset, its hypothesis is

still not testing the change in quantiles. Admittedly, under some extra assumption,

the Wilcoxon rank sum tests can be used to detect the change in medians, but the

median is not a useful index in the targeted applications. In some common cases,

the alternative hypothesis of this cluster-based Wilcoxon rank sum has the same

direction with the alternative hypothesis of the targeted applications, but they are

not always identical. It may bring potential risks for the statistical inference and in

the following section, we use simulation studies to illustrate this. Compared with

the Wilcoxon-type hypothesis tests, the DRM-CEL monitoring test of Chen et al.

[2016] can be used to test the hypothesis related to more general population quan-

tiles, not only the median. In the paper, one of the assumptions under which the

monitoring that is developed, is that the clusters of samples have a same number

of observations. However, in realistic applications, a data set with equal cluster

sizes cannot always be guaranteed. If this is the case, whether we still can use this

method to monitor the quantiles is of our interest. For example, the cluster sizes of

the real data set we use in Chapter 4 are not equal, but we still use the DRM-CEL

method to analyze it. We loosen the restriction of cluster sizes of populations being

equal in Chen et al. [2016] and use simulation studies to investigate the influence
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of unequal cluster sizes on the DRM-CEL method. The simulation results support

that as long as the maximum cluster size over all populations is finite and the num-

ber of clusters of each population is large enough, this DRM-CEL monitoring test

still works. I believe that the mathematical techniques behind this conclusion are

very similar to that given in Chen et al. [2016], Serfling [2009]. The theory behind

this conclusion is one of my further research topics. At the end of this Chapter,

we use simulation studies to investigate the performance of long term monitoring

test when model is misspecified in the cases of cluster sizes being not equal. A

summary is given at the end of this thesis.
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Chapter 2

Problem Description

As mentioned in the introduction, the wood quality is vital to all the other related

areas. This quality can be depicted by some certain lower quantile of the distribu-

tion of lumber mechanical strength. Such a quantile is called the quality index of

a population in this context. Before a statistical analysis is conducted, real world

problems need to be defined clearly first and then to be transfered into statistical

problems. Answers to these statistical problems are sought based on data collected

on representative samples from representative populations.

2.1 Targeted statistical problems
We identify a few typical statistical problems to be addressed as follows.

• Does the quality index of a population meet the published standard?

• Do two populations have the same quality index value?

• Has the quality index of a population decreased?

We design our numerical tools to handle data collected in the following schemes.

Consider the situation where lumbers are produced in a population of mills.

• A set of mills are selected with probability proportional to their volume of

productions.
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• For each sampled mills, a pre-specified number of lumbers are randomly

selected.

2.2 Typical data structure
The chosen lots from the same year make a population of representative samples

of the lumber strength for that certain year. Wood pieces from the same mill have

similar solid strength which has been verified by real data. Such a feature seems

reasonable. Wood pieces from the same mill are very likely from the same tree,

or from trees grown in the same region. They are then very likely to have similar

strength. Moreover, the wood strength is also affected by the devices that they

are produced from. Wood pieces produced from same devices might have some

similarity and this affect their strength. Both of them implies a correlation in wood

strength among the wood pieces sampled from the same mill. Therefore, wood

pieces from the same mill should be treated as a cluster. The following example

presents the information can be contained in a lumber strength data set.

region mill lot piece mor

1 1 1 1 2.51250

1 1 1 2 7.92980

1 1 1 3 5.66030

... ... ... ... ...

1 1 2 11 3.76650

1 1 2 12 2.64550

1 1 2 13 3.68530

1 2 1 1 6.85073

1 2 1 2 7.51707

1 2 1 3 4.71568

... ... ... ... ...

1 2 2 11 5.88808

1 2 2 12 4.91489

1 2 2 13 4.89644

1 2 2 14 6.41309

... ... ... ... ...
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In this data set, “region” indicates the place where lumber is collected. “mill”

indicates the wood manufactories. “lot” is the index of lots for each manufactory.

“mor” is the abbreviation of “modulus of rupture”, which is a material property,

defined as the stress in a material just before it yields in a flexure test. We can

observe from this example data set that 13 pieces of wood from the first mill form

a cluster and 14 pieces of wood from the second mill form another cluster.

As mentioned above, to monitor the quality of lumber across years, we need

to monitor the values of lumber strength distribution quantiles across years. In

other words, if we regard the year when lumber strength observations measured

as population index, our target is to compare some lower quantiles of different

population distributions and then to figure out if the lumber quality become worse

or not.

Focusing on this quantile comparison problem, Chen et al. [2016] use the den-

sity ratio model (DRM) to link the lumber strength distributions of different years

and use the composite empirical likelihood method to estimate parameters. A hy-

pothesis of the difference of two population quantiles is considered for the purpose

of detecting the quantile change among different lumber strength distributions.

Such a hypothesis is called monitoring test in the context because its motivation

is to monitor lumber quality across years. A cluster-based bootstrap procedure

is proposed to make statistical inference on this hypothesis and to construct con-

fidence intervals of desired quantiles. In the paper, their simulation results sup-

port that such confidence intervals have satisfactory precise coverage probabilities.

This monitoring test controls type I error rates tightly with good power. For con-

venience, let DRM-CEL denote the method from Chen et al. [2016]. More details

of this long term monitoring test are presented in the next chapter.

Although this DRM-CEL-based method is motivated by the project of moni-

toring lumber quality across years, it is not limited to this specific area. Such a

method can be applied to any data set for the purpose of monitoring the quantile

change as long as the model assumptions are satisfied. Let xk, j,l denote the lth ob-

servation in the jth cluster from the kth sample. Usually a qualified data set should

contain the information of population indices, cluster indices and observed values

as follows.
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population cluster observed values

1 1 x_{1,1,1}

1 1 x_{1,1,2}

... ... ...

1 2 x_{1,2,1}

1 2 x_{1,2,2}

... ... ...

2 1 x_{2,1,1}

2 1 x_{2,1,2}

... ... ...

In Chen et al. [2016], a solid theoretical foundation has been established for

their DRM-CEL method and its performance has been evaluated by the correspond-

ing simulation study. There are two remaining tasks on this method.

The first one is to fill in the gap between the theoretical results and the corre-

sponding applications. There are already some R program as the realization of this

DRM-CEL-based method but the program is developed for the research purpose

and is not easy to access for users without much statistical background. For the

convenience of users from industry, a user-friendly R package that can be applied

easily is needed. This package should contain the functions that can be used to

obtain the desired quantile estimates, to visualize the results and to diagnose the

results.

The second task is to extend their DRM-CEL quantile estimator and their

cluster-based bootstrap method to a more general case. Chen et al. [2016] only

consider the scenario that clusters of all populations share a same cluster size. In

this thesis, we will use simulation study to investigate the performance of their

method in the situation without the constraint of equal cluster size.
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Chapter 3

Numerical tools for DRM-CEL
Monitoring Test

Chen and Chen [2000], Chen and Liu [2013] and Chen et al. [2016] have devel-

oped an extensive set of statistical tools for data analysis regarding quantiles and

quantile functions given multiple samples. They have also subscribed many nu-

merical recipes to carry out the data analysis. At the same time, they have yet to

materialize all numerical recipes. Mostly, their developments enable them to in-

vestigate the properties of proposed inference methods. In applications, users not

only must carry out the data analysis suggested by the authors, but also want to do

some exploratory analysis. As an important part of this thesis, we develop some

numerical tools for exploratory data analysis as well as tools for more elaborate

statistical inference.

As mentioned in Chapter 2, three pieces of information are required for a data

set, population indices, cluster indices and observed values. We consider the situ-

ation where the samples are organized into a list with the kth entry being a matrix

or a data frame consisting of observations from the kth sample. Specifically, for

clustered data, each sample needs to be saved in a matrix with two columns or a

data frame with two columns (one column for cluster indices and one column for

observations). For the data frame format, users can specify variable names for the

cluster indices and the observed values, and the order of two columns. For the ma-

trix format, since its columns can not be named, by default, the first column is for

17



cluster indices and the second column is for the observed values. For independent

data, each sample is just saved in a vector of observed values. Here we use the

same data set in Chapter 2 as an example. The variable “mill” is treated as the

population index and “lot” is treated as the cluster index.

region mill lot piece mor

1 1 1 1 2.51250

1 1 1 2 7.92980

1 1 1 3 5.66030

... ... ... ... ...

1 1 2 11 3.76650

1 1 2 12 2.64550

1 1 2 13 3.68530

1 2 1 1 6.85073

1 2 1 2 7.51707

1 2 1 3 4.71568

... ... ... ... ...

1 2 2 11 5.88808

1 2 2 12 4.91489

1 2 2 13 4.89644

1 2 2 14 6.41309

... ... ... ... ...

If users want to use a data frame format, two possible ways of the first entry of

the list are as follows.

lot mor

1 2.51250

1 7.92980

1 5.66030

... ...

2 3.76650

2 2.64550

2 3.68530
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or

mor lot

2.51250 1

7.92980 1

5.66030 1

... ...

3.76650 2

2.64550 2

3.68530 2

If users want to use a matrix format, there is only one way for the first entry of

the list, which is as follows.

1 2.51250

1 7.92980

1 5.66030

... ...

2 3.76650

2 2.64550

2 3.68530

In the next section, we introduce the R functions in our package and we present

their inputs, outputs with examples and the algorithms behind them.

3.1 Model Fitting: drm fit(· · · )
The first numerical task of the DRM-CEL approach is to find the fitted values of

θθθ r: r = 1,2, . . . ,m. One must look for

Gr(x) = ∑
k, j,l

pk, j,l exp{θθθ τ

r q(xk, j,l)}1(xk, j,l ≤ x)

satisfying θθθ 1 = 000 and for r = 1,2, . . . ,m,

∑
k, j,l

pk, j,l exp{θθθ τ

r q(xk, j,l)}= 1
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that maximize

Lc(G1, . . . ,Gm) = ∏
k, j
{

d

∏
l=1

dGk(xk, j,l)}.

Luckily, the numerical solution to the above problem in θθθ is the same as find

the maximum point of the following dual likelihood function:

`n(θθθ) =−∑
k, j,l

log
[ m

∑
r=1

ρr exp{θθθ τ

r q(xk, j,l)}
]
+ ∑

k, j,l
θθθ

τ

kq(xk, j,l) (3.1)

Once its maximum point θ̂θθ is obtained, we have

p̂k, j,l =
1

nd ∑
m
r=1 ρr exp{θ̂θθ τ

r q(xk, j,l)}
.

Subsequently, the maximum CEL estimator of Gr(x) is given by

Ĝr(x) = ∑
k, j,l

p̂k, j,l exp{θ̂θθ τ

r q(xk, j,l)}1(xk, j,l ≤ x).

See Chen and Liu [2013], Chen et al. [2016] Keziou and Leoni-Aubin [2008], and

Qin and Zhang [1997].

It is interesting to find the dual likelihood function coincides with the likeli-

hood function under multinomial logistic regression model Czepiel [2002]. There

is a well written R-function “multinom(· · · )” from a R package called “nnet” for

fitting a multinomial logistic regression model by finding the maximum likelihood

estimates of parameters Ripley et al. [2016]. We will adopt this function for our

purpose and provide some explanations on the connections between the dual like-

lihood and the likelihood under the multinomial logistic regression model.

Let there be N experiment units divided into m groups. All responses take

values in categories {1,2, . . . ,m}. For each unit, the probability that its response

falls into category r is

πr = Pr{Y = r}.

Let ∆u,r = 1 if the response of the uth unit is in category r and ∆u,r = 0 otherwise.

Let ∆u and δu be corresponding random vector and observed response vector. We
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may then write

Pr{∆u = δu}= π
δu,1
1 π

δu,2
2 · · ·πδu,m

m .

Now, assume that πr’s are not the same for all units but satisfy a logistic regres-

sion model: the log-odds of a unit falls into category r is a linear function of some

covariate z
log
(πr

π1

)
= zτ

βββ r

for r = 2, . . . ,m, where βββ r is a regression coefficient vector. We may let βββ 1 = 000 for

convenience.

Given data of N units, assume the independence between units and the multi-

nomial logistic regression, we get the log likelihood function

`N(β ) = ∑
u

[
m

∑
r=1

δu,r{zτ
uβββ r}− log

( m

∑
r=1

exp{zτ
uβββ r}

)]
.

Clearly, `N(β ) is algebraically similar to the dual empirical likelihood given in

(3.1). Hence, “multinom(· · · )” can be used for DRM-CEL based data analysis. To

use this function for DRM-CEL, we need to match the corresponding components

to items in the logistic likelihood function.

Let the observations in multiple sample problem be {xk, j,l}, where xk, j,l is the

lth observation in cluster j of population k. The total number of observations is

given by N = d ∑k nk. Let q(x) be the user specified basis function of length T +1

and (βββ 1,βββ 2, . . . ,βββ m) be regression coefficient matrix of size (T +1)×m.

By regarding the lth unit in cluster j from population k as a unit whose response

falls into category k with zk, j,l = q(xk, j,l) being its covariate zk, j,l . Using u for

index (k, j, l), we can see δu,k′ = 1 when k = k′ and δu,k′ = 0 otherwise. Under the

multinomial logistic regression model, we get the log likelihood function

`N(β ) = ∑
u

[
m

∑
r=1

δu,r{βββ τ

r q(xu)}− log
( m

∑
r=1

exp{βββ τ

r q(xu)}
)]

.

Note that δu,r = 0 unless u = (r, j, l) for some j, l. The above expression, when
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written in terms of (k, j, l), becomes

`N(βββ ) = ∑
k, j,l

[
{βββ τ

kq(xk, j,l)}− log
( m

∑
r=1

exp{βββ τ

r q(xk, j,l)}
)]

.

Meanwhile, the dual composite empirical likelihood would have been

`d(θ) = ∑
k, j,l

θ
τ
k q(yk, j,l)−∑

k, j,l
log
( m

∑
r=1

ρr exp{θ τ
r q(yk, j,l)}

)
(3.2)

where ρr = nr/n. Let

βββ r = θθθ r +(logρr,0, . . . ,0)τ ,

we find

`N(βββ ) = `d(θθθ)+
m

∑
k=1

nk logρk.

Hence, if θ̂θθ and β̂ββ are the maximum points of `d(θθθ) and `N(βββ ) respectively, we

must have

θ̂θθ k = β̂ββ k− (logρr,0, . . . ,0)τ .

This relationship enables us to use “multinom(· · · )” to obtain β̂ββ of a multinomial

logistic regression and then θ̂θθ of DRM.

With the help of “multinom(· · · )”, I build an R function called “drm fit(· · · )”
for model fitting.

Input:

• z: An optional character indicating the name of data values.

• cluster: An optional character indicating the name of clusters.

• data: A list of m samples. If data are clustered, a matrix format is required

each sample. If variable names are not provided by the user, by default, the

first column of the matrix is cluster identifier; the second column is for the

observed values. If data are independent, each sample is saved in a numerical

vector.

• basis: A vector of characters defining the basis function q(x) required in

DRM.
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– Examples:

basis= c(1, ‘x’, ‘xˆ2’)

– The basis function can be user-defined functions. Example:

ff = function(x) {x + sin(x)}

basis=c(1,‘ff(x)’)

Output:

• distr est: The first output is a matrix with its rth column made of likeli-

hood contributions of xk, j,l for the rth distribution function Ĝr(·) after xk, j,l

is sorted. The estimated distributions Ĝr(·) can be obtained from this matrix.

• theta hat: The second output is a matrix with columns θ̂θθ 1, θ̂θθ 2, . . . , θ̂θθ m.

• data: The third output is a matrix with the second column being the sorted

observations, and the first column is its population identifier.

This output is designed to be used as input of other R functions in the pack-

age.

3.2 Quantile Estimates: quan est(· · · )
After DRM-CEL estimate of the population distribution Ĝr is obtained, the corre-

sponding quantile estimates are readily computed. We have written an R function

quan est(· · · ) for this purpose. Some numerical details are as follows.

For population distribution Gr, we obtain information on the support of Ĝr,

which is the original data set, and corresponding probabilities (or likelihood con-

tributions) on the support.

For any α ∈ (0,1), the DRM-CEL quantile of the population r is defined to be

ξ̂r(α) = inf{x : Ĝr(x)≥ α}.

The above definition does not ask us to solve equation Ĝr(x) = α because Ĝr(x) is

not continuous.
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To simplify the computation, I use linear interpolation to obtain a continuous

distribution function Ĝ′r(x). After which, I solve Ĝ′r(x) = α and report its solution

as ξ̂r(α).

I use an R function wtd.quantile(· · · ) from R package “Hmisc” Harrell and

Dupont [2008] with argument: type=“ i/(n+1)”. This function uses linear interpo-

lation.

My R function for computing quantiles is called quan est(· · · ). Its input and

output are as follows:

Input:

• fit: an output of drm fit(· · · ).

– Example:

fit = drm_fit(...)

• quan: A numeric vector indicating quantile levels to be estimated. It can be

a single value or several values.

– Two examples:

quan = 0.05

quan = c(0.05, 0.10, 0.15)

Output:

• If the input of quan is a single value, α , then the output is a vector containing

Ĝ−1
r (α) for r = 1, . . . ,m.

If the input quan is a vector, α1,α2, . . . ,αt , then the output is a t×m matrix

with the ith row being a vector containing Ĝ−1
r (αi) for i = 1, . . . , t.

3.3 Visualization Tool: plot cdf(· · · )
After DRM-CEL estimate of the population distribution Ĝr is obtained, a user is

likely interested to have a visual impression of fitted distributions. We have written

an R function plot cdf(· · · ) to make this task easy. It depicts the following function
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for any r = 1,2, . . . ,m:

Ĝr(x) = ∑
k, j,l

p̂k, j,l exp{θ̂θθ τ

r q(xk, j,l)}1(xk, j,l ≤ x).

Some numerical details are as follows.

For population distribution Gr, we obtain information on the support of Ĝr,

which is the original data set, and (or likelihood contributions) on the support.

Gr(·) under the assumption is a continuous distribution while Ĝr(·) is a discrete

distribution function. I first compute values of

Ĝr(x) = ∑
k, j,l

p̂k, j,l exp{θ̂θθ τ

r q(xk, j,l)}1(xk, j,l ≤ x).

at y = xk, j,l for all k, j and l.

For a user-specified set of r values, this R function plots curves connecting the

points (xk, j,l, Ĝr(xk, j,l)) over all k, j and l by a default R function plot(· · · ) with

argument

plot(..., type = ‘l’).

This argument makes the function plot(·) plot the points first and then connect these

points with line segments.

Its inputs and outputs are given as follows:

Input:

• fit: An output of drm fit(· · · ).

– Example:

fit = drm_fit(...)

• index: A numeric vector indicating populations to be plotted. Single entry is

also permitted.

• x name: An optional character for the name of the x-axis of the plot. If not

specified, the x-axis of the plot will not have a name.

Output: The plot of Ĝr(x) of selected populations.
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3.4 Diagnostic Tools: plot kde(· · · ) and plot qq(· · · )
When a DRM with user specified basis function q(x) is fitted, a user may wonder

whether the data and the fitted model actually match each other. While formal

procedures can be developed, one simpler solution is to create a density estimate

based on the DRM-CEL fit and compare it with the histogram of the original data;

another is to have a quantile-quantile plot of the DRM-CEL estimate Ĝr against

the empirical distribution from the rth population.

We use plot kde(· · · ) to produce a kernel density estimate and plot it with the

histogram of the corresponding sample. If the model fits data well, the kernel

density estimate should match the histogram well.

We use plot qq(· · · ) to generate a plot between DRM-CEL-quantiles and sam-

ple quantiles of a chosen population. If the model fits data well, these points should

approximate a line with slope 1.

Here is the specifications for plot kde(· · · ).
Input:

• fit: A list that is the output of drm fit(· · · ).

– Example:

fit = drm_fit(...)

• index: identity of the population to be plotted.

• n : the number of grids required for the plot. The default value is 200.

• x name: An optional character indicating the x-axis name of the plot. If not

specified, the x-axis will not have a name.

• main: An optional character indicating the main title of the plot. If not

specified, the plot will not have a title.

Output: The output of plot kde(· · · ) is a figure of kernel density estimation of

Ĝk(x) together with a histogram of the corresponding sample.
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Some details are as follows: we use hist(..., breaks = ’FD’, ...)

with ‘Freedman-Diaconis rule’. It selects the size of the bins according to

Bin size = 2
IQR(x)

m1/3 ,

where IQR(x) is the interquartile range of the data and m is the number of observa-

tions in the sample x.

We follow Chen and Liu [2013] to produce a kernel density estimate. Let K(·)
be a commonly used kernel function. For some bandwidth b > 0, let Kb(x) =

(1/b)K(x/b). Then a kernel estimate of gr(x) is given by

gr(x) =
∫

Kb(x− y)dĜr(y).

In plot kde(· · · ), we set K(x) to the standard normal density function. We choose

the bandwidth b according to the rule of thumb of Silverman [2018].

We select n points uniformly in the range of data at which the kernel density

estimates (KDE) are calculated. We obtain the density estimate curve by con-

necting each pair of consecutive points. We overlay the density estimate over the

histogram.

Now we give some details for the other diagnostic tool, plot qq(· · · ), which can

be used to produce a quantile-quantile plot stated as the above.

Input:

• fit: an output of drm fit(· · · ).

Example: fit = drm_fit(...)

• index: identity of the population to be plotted.

• n : the number of quantiles used to plot. The default value is 200.

• main: An optional character indicating the main title of the plot. If not

specified, the plot will not have a title.

Output: The output of plot qq(· · · ) is a quantile-quantile plot between Ĝr(x) and

the sample quantiles of the rth sample. The n quantile levels, α1, ..., αn, are chosen

evenly between 1% and 99%.
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The linear interpolation is used to obtain quantiles of Ĝr(x) and empirical quan-

tiles through R function wtd.quantile(· · · ) from the R package “Hmisc’ Harrell and

Dupont [2008]. We use “plot(· · · )” with argument “type = p”, “col = blue” and

“pch = 3” to plot these two vectors of quantiles of length n. We add a straight red

line starting from the origin with slope 1.

3.5 Monitoring Test: monitor test(· · · )
We have a function to carry out monitoring test for the following two types of

hypotheses:

H0 : ξk1,α ≤ ξk2,α vs H1 : ξk1,α > ξk2,α

H0 : ξk1,α = ξk2,α vs H1 : ξk1,α 6= ξk2,α

for any α ∈ (0,1).

This R function, monitor test(· · · ), is designed to test the above hypotheses

by the bootstrap method Efron [1992], Hall [1986, 1988]. The output of this R

function includes p-values of hypothesis tests of interest and one-sided/ two-sided

confidence intervals of ξk2,α − ξk1,α . The following shows the inputs and outputs

of this function.

Input:

• z: An optional character indicating the name of data values.

• cluster: An optional character indicating the name of clusters.

• data: A list containing the observations of variables. The format for data set

of this function is the same as the R function drm fit(· · · ).

• basis: A vector of characters indicating the basis function in DRM, that is,

q(y).

Example: basis= c(1, ‘x’)

Example: ff = function(x) { x + sin(x)}; basis=c(1,‘ff(x)’)

• quan: the levels of quantiles α in the above hypotheses, which can be a

single value or a vector of desired values.
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Example: quan = c(0.05, 0.15)

• Comp: identities of two populations.

• alternative: either “two.sided”, “greater” or “less”.

Suppose “Comp = c(i, j)”. The alternative hypotheses are

two.sided : ξi,α 6= ξ j,α ;

greater : ξi,α ≥ ξ j,α ;

less : ξi,α ≤ ξ j,α .

• B: number of bootstrap repetitions. The default value is 999.

• ci level: nominal level of bootstrapping confidence intervals.

Output:

• $p value: p-values of desired hypothesis tests.

• $CI 1: confidence limits of quantiles ξα1,i, ..., ξαL,i.

• $CI 2: confidence limits of quantiles ξα1, j, ..., ξα1, j.

• $CI diff: confidence limits of ξαl ,i−ξαl , j for l = 1, ...,L

– If “alternative = ‘two.sided’ ”, confidence limits are two-sided.

– If “alternative = ‘greater’ ”, then upper confidence limits.

– If “alternative = ‘less’ ”, then lower confidence limits.

A detailed algorithm of this R function is given as follows.

• We sample nk clusters IIDfrom the kth sample for k = 1, ...,m, where nk is

the number of clusters in the kth sample. This forms a bootstrap sample.

• Call a function similar to quan est(· · · ) to obtain {ξ̂ ∗k2,α
− ξ̂ ∗k1,α

}(b) for the

bootstrap sample.

29



• Repeat the above to obtain, {ξ̂ ∗k2,α
− ξ̂ ∗k1,α

}(b), b = 1, ...,B.

• For one-sided alternative, we compute the p-value as the percentage of times

when

{ξ̂ ∗k2,α − ξ̂
∗
k1,α}

(b) > 0

in B bootstrap samples.

• For two-sided alternative, we also compute the percentage of times when

{ξ̂ ∗k2,α − ξ̂
∗
k1,α}

(b) < 0

and the twice of the lower percentage is the p-value.

• The solution to the confidence interval is similar.

3.6 Data Example
In this section, I apply these R functions to a real data set. The dataset contains

samples from three populations which will be referred to as 2007, 2010 and 2011.

There are 98, 282 and 445 modulus of rupture (MOR) measurements in the three

samples, respectively.

I save the MOR measurements from three years into “lmbdata” following the

format mentioned before. The 1st, 2nd and 3rd entries of “lmbdata” are MOR

data of 2007, 2010 and 2011 respectively. All of the measurements are treated as

independent observations.

Several different choices for basis function qqq(x) are considered. We first fit

the model with “drm fit(· · · )” with different basis functions qqq(x) and then use

“plot qq(· · · )” and “plot kde(· · · )” to generate diagnostic plots. Based on these

diagnostic plots, we finally use qqq(x) = (1, logx) in the DRM. The choice of basis

function has a significant influence on model fitting. Fokianos and Kaimi [2006]

quantified the effect of choosing an incorrect linear form of qqq(x). In general, the

point estimate is adversely affect when model is misspecified. For this reason,

Fokianos [2007] consider a model selection approach for DRM. Fokianos [2007]

suggest to select qqq(x) as a linear combination of a rich class of functions. The most
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appropriate qqq(x) is then determined by selecting a sub-vector of the current qqq(x).

The classical model selection approaches can be applied here. With the following

code, we obtain Figures 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6.

model_fit = drm_fit(z = ‘obs’, cluster = ‘id’,

data = lmbdata, basis = c(1, ‘log(x)’))

plot_qq(z = ’obs’, cluster = ’id’, data = lmbdata,

distr = model_fit, index = 1)

plot_qq(z = ’obs’, cluster = ’id’, data = lmbdata,

distr = model_fit, index = 2)

plot_qq(z = ’obs’, cluster = ’id’, data = lmbdata,

distr = model_fit, index = 3)

plot_kde(z = ’obs’, cluster = ’id’, data = lmbdata,

distr = model_fit, n = 1000, index = 1,

main = ’KDE’)

plot_kde(z = ’obs’, cluster = ’id’, data = lmbdata,

distr = model_fit, n = 1000, index = 2,

main = ’KDE’)

plot_kde(z = ’obs’, cluster = ’id’, data = lmbdata,

distr = model_fit, n = 1000, index = 3,

main = ’KDE’)

We compute 5%, 10% and 15% quantiles of three populations with “quan est(· · · )”.

qq = quan_est(distr = model_fit,

quan=c(0.05, 0.1, 0.15))

print(qq)

The 5%, 10% and 15% quantile estimates of 2007 are 4.55, 4.97 and 5.26. The

5%, 10% and 15% quantile estimates of 2007 are 4.55, 4.99 and 5.28. The 5%,

10% and 15% quantile estimates of 2007 are 3.51, 4.02 and 4.48.

We now test for the following hypotheses:

H0 : ξ1,0.05 ≤ ξ2,0.05 vs H1 : ξ1,0.05 > ξ2,0.05;

H ′0 : ξ2,0.05 ≤ ξ3,0.05 vs H ′1 : ξ2,0.05 > ξ3,0.05.

These can be accomplished with the following commands:
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Figure 3.1: Q-Q Plot of 2007
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Figure 3.2: Q-Q Plot of 2010

p_value = monitor_test(z = ‘obs’, cluster = ‘id’,

data = lmbdata, quan = 0.05,

basis = c(1, ‘log(x)’), Comp = c(1,2),

B = 999, ci_level = 0.95,

alternative = ‘greater’)$p_value.
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Figure 3.3: Q-Q Plot of 2011
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Figure 3.4: Kernel Density Estimate Plot of 2007

p_value = monitor_test(z = ‘obs’, cluster = ‘id’,

data = lmbdata, quan = 0.05,

basis = c(1, ‘log(x)’), Comp = c(2,3),

B = 999, ci_level = 0.95,
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alternative = ‘greater’)$p_value.

P-values of the above hypothesis tests are 0.47 and 0.01. The bootstrapping

confidence intervals of ξ1,0.05 − ξ2,0.05, and ξ2,0.05 − ξ3,0.05 are (−0.34,∞) and

(0.76,∞). Since zero falls in the first interval but not the second one, we do not

have sufficient evident to reject H0 but we reject H ′0 at the significance level 5%,

which implies that the lumber quality of 2011 very probably become worse com-

pared with that of 2010.
To visualize the estimated distributions, we use the following code to generate

a plot of three estimated distributions under DRM.

plot_cdf(distr = model$distr_est, index = c(1:3),

x_name = ’MOR’)

In Figure 3.7, the black line is the estimated distribution of 2007, the red line is

the estimated distribution of 2010 and the green line is the estimated distribution of

2011. From the plot, we notice that the lumber quality of 2010 and 2011 are very

probably better than that of 2007.
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Figure 3.5: Kernel Density Estimate Plot of 2010

KDE

MOR

D
en

si
ty

4 6 8 10

0.
00

0.
10

0.
20

0.
30

Figure 3.6: Kernel Density Estimate Plot of 2011
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Figure 3.7: Estimated Distributions under DRM
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Chapter 4

Monitoring tests for Clustered
Data

In Chen et al. [2016], the problem of interest is to efficiently and accurately monitor

the change of population quantiles, which are often used as quality indices for

wood products. In that paper, the performances of several conventional statistical

tests for monitor purpose are discussed and compared. These conventional tests are

often designed for assumed i.i.d. samples. When the observations are independent,

the nonparametric Wilcoxon rank sum test has promised properties. However when

the data are clustered, Wilcoxon rank sum test and most other tests all have inflated

type I errors.

If the monitoring targets are lower quantiles, then the Wilcoxon rank sum test is

not an appropriate choice in the first place. However, it has always been a familiar

tool for users. If the data distribution is not too far from normal, then the change

in quantile often leads to other changes for which Wilcoxon rank sum test can

detect effectively. Hence, if the Wilcoxon rank sum test can be modified to work

for clustered data, it may draw attention to many practitioners. For this purpose,

we investigate the performance of a modified large-sample Wilcoxon rank sum test

proposed by Rosner et al. [2003] and it incorporates the clustering effects. Rosner

et al. [2003] have shown the type I error of this cluster-based Wilcoxon test close

to the nominal level when the sample size is not very small. It is of interest to

compare it with the DRM-CEL approach of Chen et al. [2016].
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To distinguish the “old” Wilcoxon test and the “new” Wilcoxon test, we use

“the classical Wilcoxon test” for the test designed for i.i.d. data and use “the mod-

ified Wilcoxon test” to for the test designed for clustered data proposed in Rosner

et al. [2003].

The classical Wilcoxon test is often presented as an alternative to a t-test when

the data are not normally distributed. Whereas a t-test is a test of population means,

the Wilcoxon test is commonly regarded as a test of population medians. This is

not strictly true, and treating it as such can lead to inadequate analysis of data.

The Wilcoxon test is a test of both location and shape. In the case where the only

distributional difference is a shift in location, this can indeed be described as a

difference in medians.

In this chapter, we first review some details of the classical Wilcoxon rank sum

test. In section 4.2, we introduce the modified Wilcoxon rank test for the clustered

data proposed by Rosner et al. [2003].

4.1 Classical Wilcoxon Rank Sum Test
The Wilcoxon rank sum test is a nonparametric test for the hypothesis that it is

equally likely that an observation from one population will be less than or greater

than an observation from a second population. Suppose that we have two samples

of sizes m and n, respectively. Wilcoxon test is conducted under the assumption

that the observations from both samples are independent of each other.

Wilcoxon test works for the null hypothesis

H0 : Pr{X > Y}= Pr{Y > X}.

The alternative hypothesis H1 could be a two-sided: Pr{X > Y} 6= Pr{Y > X}; or

a one-sided such as Pr{X > Y}< Pr{Y > X}.
We denote the combined sample by Z. The sample size of Z will be denoted

by N = m+n. Define

W =
m

∑
i=1

Rank(Xi).

where Rank(Xi) is the rank of i-th observation in the X sample among the combined
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Z sample of m+n observations. The expectation and variance of W are given by

E(W ) = m(N +1)/2 (4.1)

Var(W ) = [mn/{N(N−1)}]
N

∑
i=1

(Rank(Zi)−
1+N

2
)2. (4.2)

The Wilcoxon rank sum statistic is defined to be

T = {W −E(W )}/{Var(W )}1/2,

The test statistic T is asymptotically standard normal. Wilcoxon rank sum test

uses the asymptotic distribution to determine the critical regions Lehmann [2006].

The expression 4.2 works well in the situation of independent data. For clustered

data set, the observed values from a cluster tend to have similar ranks among the

combined sample and therefore, their ranks also form a cluster as well. In this

situation, 4.2 may overestimate the variance of W and this leads to a inflated type I

error when using Wilcoxon rank sum test on clustered data set.

4.2 Modified Wilcoxon Rank Sum Test
The test statistic of the modified Wilcoxon rank sum test is derived in two steps.

Consider a simple case that data are balanced so that there are equal number of

observations in each cluster and the sub-units in clusters are exchangeable. Let m

and n denote the numbers of clusters in X and Y respectively, and let the cluster

size be g.

Let us keep Z for the combined data set and use Zi j for jth sub-unit of the ith

cluster. Let δi = 1 if the ith cluster is in sample X and δi = 0 if it is in sample Y .

Because the observations in a cluster are assumed exchangeable, we still use X and

Y for single random variables from two populations. The null hypothesis remains

to be

H0 : Pr{X > Y}= Pr{Y > X}.

The alternative hypothesis H1 again could be a two-sided: Pr{X > Y} 6= Pr{Y >

X}; or a one-sided such as Pr{X > Y}< Pr{Y > X}.
Let Ri j be the rank of jth sub-unit in the ith cluster among all Ng sub-units.
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Define

Wc =
N

∑
i=1

δiRi+

where Ri+ = ∑
g
j=1 Ri j. In other words, Wc is the same as the classical Wilcoxon

rank sum test statistic after regarding sub-units as independent observations from

populations X and Y .

The expectation and variance of Wc are given by

E(Wc) = mg(Ng+1)/2 (4.3)

Var(Wc) = [mn/{N(N−1)}]
N

∑
i=1

[Ri+−g(1+Ng)/2]2. (4.4)

The modified Wilcoxon rank sum test statistics Zc is defined to be

Tc = {Wc−E(Wc)}/{Var(Wc)}1/2

When N is large, Tc is asymptotically standard normal.

When cluster sizes are not the same, assume the sub-units in the same cluster

are exchangeable. This implies that all units from the same population have the

same marginal distribution.

Let (mg,ng) = number of clusters of size g in population X and Y respectively.

The cluster size of the ith cluster is denoted as gi. Let gmax = maxi{gi}, then

1≤ gi ≤ gmax}. Denote Ng = mg+ng and N =
gmax

∑
g=1

Ng. Similarly, let Ri j be the rank

of jth sub-unit in the ith cluster among all
gmax

∑
g=1

gNg sub-units, and Ri+ = ∑
gi
j=1 Ri j.

Define

Wc =
N

∑
i=1

δiRi+,

where δi is same as the above. Let ∆ig = 1 if the size of the ith cluster is g and
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∆ig = 0 if its size is not g. The expectation and variance of Wc are given by

E(Wc) =
gmax

∑
g=1

mg[
N

∑
i=1

∆igRi+]/Ng (4.5)

Var(Wc) =
gmax

∑
g=1

[ngmg/{Ng(Ng−1)}]
Ng

∑
i=1

(∆igRi+− [
N

∑
i=1

∆igRi+]/Ng)
2. (4.6)

In this situation, they find that

Tc = {Wc−E(Wc)}/{Var(Wc)}1/2

is asymptotically standard normal.

Compared with 4.2, 4.4 and 4.6 take the effect of clusters into account which

improve the accuracy of normal approximation, as supported by simulations in

Rosner et al. [2003]. Specifically, the simulation in Rosner et al. [2003] shows that

when the sample size is above 80, the normal approximation leads to tests with

accurate sizes.
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4.3 Wilcoxon rank sum test for monitoring purpose
Based on the simulation results, Rosner et al. [2003] find the type I error of the clas-

sical Wilcoxon rank sum test is seriously inflated and the modified Wilcoxon test

has an accurate type I error and a good power. Recall that the statistical problem

of interest is to test the hypothesis

H0 : ξ1,α ≤ ξk,α against Ha : ξ1,α > ξk,α

where index k refers to the kth population in the multi-sample setting.

Strictly speaking, both Wilcoxon tests are not developed for the comparison of

two quantiles. Wilcoxon test works for the null hypothesis

H0 : Pr{X > Y}= Pr{Y > X}.

The alternative hypothesis H1 could be a two-sided: Pr{X > Y} 6= Pr{Y > X}; or

a one-sided such as Pr{X > Y} < Pr{Y > X}. However, this null hypothesis is

commonly regarded as a test of population medians,

H0 : Xm = Ym,

where Xm and Ym are medians of X population and Y population, respectively. This

premise is based on a misunderstanding of the null hypothesis as pointed out by

Kruskal and Wallis [1952]. The practical value of this is hard to see, and thus the

null hypothesis of Wilcoxon test sometimes is presented as “the two populations

have equal medians”. The actual null hypothesis can be expressed as the latter

median hypothesis, but only under the additional assumption that the shapes of the

distributions are identical in each group. In other words, the interpretation of the

test as comparing the medians of the distributions requires the location-shift-only

alternative to be the case. For most of cases,

Pr{X > Y}= Pr{X < Y}< Xm = Ym.

Even if, we assume the location-shift-only alternative, the Wilcoxon-type tests
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still not appropriate for the hypothesis of our interest

H0 : ξ1,α ≤ ξk,α against Ha : ξ1,α > ξk,α

What we would like to show here is that the modified Wilcoxon test can reject

H0 for a wrong reason: an observation from one population has a higher probability

of being larger than the observation from another population but their αth quantiles

are equal. We demonstrate this point with a targeted simulation experiment.

Specifically, we carry out a simulation study based on a normal random effect

model. We simulate data with two samples from the following normal random

effect model:

yk jl = µk + γk j + εk jl

for k = 1,2, j = 1, . . . ,40 and l = 1, . . . ,d, where γk j is the random effect and εk jl

is the error term. The random effects and error terms are normally distributed

independent of each other. Based on this model, we generate two samples each

with 40 clusters.

In Scenario 1, we set

µ1 = 0.8224, γ2, j ∼ N(0,0.5), ε2, j,l ∼ N(0,1.75);

µ2 = 0, γ1, j ∼ N(0,0.5), ε1, j,l ∼ N(0,0.5).

We put the cluster size at g= 10. The marginal distribution of y1, j,l is N(0.8224,2.25)

and the marginal distribution of y2, j,l is N(0,1). The 5% quantile of N(0.8224,2.25)

is equal to the 5% quantile of N(0,1), and Pr(y1,· > y2,·)> Pr(y1,· < y2,·).

In Scenario 2, we set

µ1 = 1.6449, γ2, j ∼ N(0,0.5), ε2, j,l ∼ N(0,3.5);

µ2 = 0, γ1, j ∼ N(0,0.5), ε1, j,l ∼ N(0,0.5).

We put the cluster size at g = 5. The marginal distributions are N(1.6449,4) and

N(0,1). The 5% quantiles of N(1.6449,2) and N(0,1) are equal, and Pr(y1,· >

y2,·)> Pr(y1,· < y2,·).

43



In Scenario 3, we set

µ1 = 0, γ1, j ∼ N(0,0.5), ε1, j,l ∼ N(0,0.5);

µ2 = 0, γ2, j ∼ N(0,0.5), ε2, j,l ∼ N(0,1.75).

We put the cluster size at g= 5. The marginal distributions are N(0,1) and N(0,2.25).

Their 5% quantiles are not equal, and Pr(y1,· > y2,·) = Pr(y1,· < y2,·).

In Scenario 4, we set

µ1 = 0, γ1, j ∼ N(0,0.5), ε1, j,l ∼ N(0,0.5);

µ2 = 0, γ2, j ∼ N(0,0.5), ε2, j,l ∼ N(0,3.5).

We put the cluster size at g = 5. The marginal distributions are N(0,1) and N(0,4).

The 5% quantiles are not equal, and Pr(y1,· > y2,·) = Pr(y1,· < y2,·). .

Let two pairs of hypotheses be

H0 : ξ1,α ≤ ξ2,α against Ha : ξ1,α > ξ2,α .

and

H ′0 : Pr(y1,· > y2,·)≤ Pr(y1,· < y2,·) against H ′a : Pr(y1,· > y2,·)> Pr(y1,· < y2,·).

In Scenarios 1 and 2, H0 is true but H ′0 is not true, and in Scenarios 3 and 4, H ′0 is

true but H0 is not true. The simulated rejection rates are given in Table 4.1

From Table 4.1, in Scenarios 1 and 2, where H0 is true, the DRM CEL method

has accurate type I errors when the nominal level of hypothesis test is 5%. How-

ever, in these two scenarios, the modified Wilcoxon test rejects H0 wrongly with re-

jection rates 94.4% and 100% among 1000 repetitions. In Scenarios 3 and 4, where

H0 is not true, the DRM CEL monitoring test rejects H0 with rejection rates 22.7%

and 60.7% among 1000 simulations. However, in these two scenarios, the modified

Wilcoxon test only rejects the hypothesis with rates 6.3% and 7.2%. Therefore, if

the problem of interest is to compare some quantile differences, the DRM CEL

monitoring test is more appropriate and reasonable than the modified Wilcoxon
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Table 4.1: Rejection Rates (%) of DRM CEL Monitoring Test and Modified
Wilcoxon Test at Nominal Level 95%

Setting Method Rejection Rate (×100)

Scenario 1
DRM CEL 5.1

Modified Wilcoxon 94.4

Scenario 2
DRM CEL 5.7

Modified Wilcoxon 100

Scenario 3
DRM CEL 22.7

Modified Wilcoxon 6.3

Scenario 4
DRM CEL 60.7

Modified Wilcoxon 7.2

test.

4.4 The DRM CEL monitoring test with unequal sized
clusters

Chen et al. [2016] develop a DRM CEL monitoring test under the assumption that

all clusters have the same size. From my observation, this requirement is not nec-

essary in applications. The R-package we developed earlier can be easily applied

to clustered data with unequal sized clusters. We are therefore interested to know

if the tests still have accurate sizes, namely, whether their type I errors are close

to nominal values. In addition, it is of interest to compare the performance of the

DRM CEL monitoring test and the cluster-based Wilcoxon rank sum test.

We first use simulation to investigate the coverage precision of the confidence

intervals constructed by the cluster-based bootstrap for quantiles and quantiles dif-

ferences. The simulation study sheds light on whether unequal cluster sizes impact

the performance of bootstrap-based confidence intervals. We also like to know how

large the sample must be before the similar asymptotic results become applicable.

Two data generating models are used in our simulation study. They are given

as follows. For convenience, we call them “normal model” and “gamma model” in

the following context.
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• Normal Random Effect Model

yk, j,l = µk + γk, j + εk, j,l

for k = 1,2,3,4, j = 1, ...,nk and l = 1, ...,dk, j, where nk is the number of

clusters of kth populations and dk, j is the cluster size of the jth cluster of the

kth population. γk, j is the term of random effect and εk, j,l is the error term.

The random effects and error terms are normally distributed and independent

of each other.

• Gamma Random Effect Model Nadarajah and Gupta [2006]

Given the population index k and cluster index j, let U1,...,Udk, j be dk, j i.i.d.

random variables with beta distribution having shape parameters a and b

(positive constant). Further let Wk, j be i.i.d. gamma-distributed random vari-

ables with shape parameter a+b and rate parameter β .

That is,

Wk, j
i.i.d∼ Gamma(a+b,β );

U1, . . . ,Udk, j

i.i.d∼ Beta(a,b).

Define

Yτ
k, j =Wk, j× (U1, . . . ,Udk, j).

The distribution of Yτ is the multivariate gamma with corr(Yi,Yj) = a/(a+

b). The marginal distribution of Yi is Gamma with shape parameter a and

rate parameter β .

We apply the DRM CEL monitoring test via the R function “monitor test(· · · )”
to datasets generated from the above models. We summarize the two-sided cover-

age probabilities of two chosen quantiles and their difference.

In the simulation study, we consider the problem with four populations. Two

types of data generating procedures are used. Let vector (n1,n2,n3,n4) denote the

numbers of clusters of the four samples. The values of (n1,n2,n3,n4) are pre-fixed

before the simulations. For the first type of data generating procedure, in each

repetition, we simulate data as follows.
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• We first set a range for cluster sizes (l, l +1, ..., l + p);

• We randomly assign a value from (l, l + 1, ..., l + p) to each cluster of each

sample;

• Given the values of (n1,n2,n3,n4) and the randomized cluster sizes from

(l, l +1, ..., l + p), we repeat the following simulation 1000 times:

– In each repetition, two data sets are simulated from the above two mod-

els respectively and we apply the R function “monitor test(· · · )” on

them to obtain the results of our interest.

The second type of data generating procedure is as follows.

• We first set a range for cluster sizes (l, l +1, . . . , l + p);

• Based on the values of (n1,n2,n3,n4) and (l, l + 1, . . . , l + p), we repeat the

following simulation 1000 times:

– In each repetition, we randomly assign a value from (l, l+1, . . . , l+ p)

to each cluster of each sample;

– Given randomized cluster sizes, two data sets are simulated from the

above two models respectively;

– We apply the R function “monitor test(· · · )” on them to obtain the re-

sults of our interest.

In the first type of data generating procedure, cluster sizes are randomly de-

cided before the repetition is started. The same cluster sizes are used over the 1000

repetitions. While in the second type of data generating procedure, the cluster sizes

are randomly assigned for every repetition. The cluster sizes are different over the

1000 repetitions. We want to investigate the influence of the two different types of

unequal cluster sizes on the DRM CEL cluster-based bootstrap method.

For both data generating procedure, several sets of the sample sizes n1, n2,

n3 and n4 are chosen in the simulation. Given (n1,n2,n3,n4), we use different

ranges of cluster sizes and parameter values. A wider range of cluster sizes means

there is more difference between clusters and different parameter values in the data

generating models implies different correlation strengths within clusters.
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Specifically, we simulate data with two settings: (n1,n2,n3,n4)= (38,45,60,60)

and (n1,n2,n3,n4) = (63,75,100,100). For given (n1,n2,n3,n4), the range of clus-

ter sizes is chosen as (5,6,7,8) to (3, . . . ,10).

We calculate the ratios of the true values of target quantiles and their difference

falling in the bootstrap intervals, which give the coverage probabilities. Tables 4.2

and 4.3 present coverage probabilities based on the first type of simulated data from

the normal and gamma models, respectively. Tables 4.4 and 4.5 present coverage

probabilities based on the second type of simulated data from two models.

Based on the simulation results, we find the coverage probabilities are closer

to the nominal 95% when the sample sizes are larger under the normal model. The

precision is also higher when the error variances are smaller. Although there are

many occasions where the simulated coverage probability is as low as 91%, a large

proportion of them are near 94% or higher, but never too much higher than 95%.

Hence, we conclude that the DRM-CEL and bootstrap based confidence intervals

have satisfactorily precise coverage probabilities even when data contain unequal

sized clusters.
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Table 4.2: Coverage probabilities (%) of two-sided 95% bootstrap confidence
intervals under Normal models (type one)

Cluster Sizes Target α = 0.05 α = 0.10 α = 0.05 α = 0.10
(n1,n2,n3,n4) = (38,45,60,60)

(σ2
γ,1,σ

2
γ,2,σ

2
γ,3,σ

2
γ,4) (σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4)

=(2.25, 2.25, 1.00, 1.00) =(1.44, 1.44, 1.00, 1.00)
5 - 8 ξ1,α 92.2 91.4 92.8 91.6

ξ2,α 91.0 93.3 93.6 93.1
∆ξ1,2,α 92.8 93.8 94.6 93.3

4 - 9 ξ1,α 91.2 92.0 92.7 93.1
ξ2,α 91.7 92.9 93.5 94.0

∆ξ1,2,α 93.6 94.9 94.7 94.8
3 - 10 ξ1,α 91.7 91.5 91.9 91.5

ξ2,α 90.7 92.3 92.0 92.5
∆ξ1,2,α 93.0 94.0 94.3 93.7

(n1,n2,n3,n4) = (50,60,80,80)
(σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4) (σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4)

=(2.25, 2.25, 1.00, 1.00) =(1.44, 1.44, 1.00, 1.00)
5 - 8 ξ1,α 91.9 91.4 93.9 91.6

ξ2,α 93.4 93.3 94.6 92.9
∆ξ1,2,α 93.4 93.8 95.1 95.1

4 - 9 ξ1,α 91.6 92.0 92.9 92.8
ξ2,α 93.2 92.9 94.1 93.1

∆ξ1,2,α 95.0 94.9 95.8 95.9
3 - 10 ξ1,α 91.6 91.5 92.2 92.5

ξ2,α 91.4 92.3 92.7 92.8
∆ξ1,2,α 94.0 94.0 94.4 94.1

(n1,n2,n3,n4) = (63,75,100,100)
(σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4) (σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4)

=(2.25, 2.25, 1.00, 1.00) =(1.44, 1.44, 1.00, 1.00)
5 - 8 ξ1,α 93.5 92.4 94.0 93.3

ξ2,α 94.5 91.5 94.3 93.3
∆ξ1,2,α 94.4 94.5 94.6 94.5

4 - 9 ξ1,α 91.9 92.5 93.7 93.0
ξ2,α 93.2 92.6 93.8 92.3

∆ξ1,2,α 95.3 94.9 94.7 94.6
3 - 10 ξ1,α 92.4 91.6 93.0 92.9

ξ2,α 93.1 92.3 93.6 93.2
∆ξ1,2,α 94.5 93.9 94.3 94.4
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Table 4.3: Coverage probabilities (%) of two-sided 95% bootstrap confidence
intervals under Gamma models (type one)

Cluster Sizes Target α = 0.05 α = 0.10 α = 0.05 α = 0.10
(n1,n2,n3,n4) = (38,45,60,60)
b = 14 b = 36

5 - 8 ξ1,α 91.4 91.5 93.5 93.2
ξ2,α 90.7 92.1 93.2 94.0

∆ξ1,2,α 93.2 93.6 94.1 93.8
4 - 9 ξ1,α 91.8 93.7 93.2 94.6

ξ2,α 92.5 94.5 93.2 95.2
∆ξ1,2,α 93.0 92.9 94.2 94.6

3 - 10 ξ1,α 93.4 92.5 93.7 94.5
ξ2,α 93.8 93.0 94.5 94.7

∆ξ1,2,α 93.1 93.2 95.0 95.3
(n1,n2,n3,n4) = (50,60,80,80)
b = 14 b = 36

5 - 8 ξ1,α 92.4 93.8 93.3 92.4
ξ2,α 93.2 93.7 93.2 93.3

∆ξ1,2,α 93.9 94.3 94.4 94.3
4 - 9 ξ1,α 95.1 94.8 94.7 94.2

ξ2,α 94.6 94.3 94.7 94.9
∆ξ1,2,α 95.2 94.7 95.0 95.1

3 - 10 ξ1,α 93.6 93.4 93.3 94.1
ξ2,α 94.1 92.4 94.4 94.5

∆ξ1,2,α 93.8 94.0 94.6 95.2
(n1,n2,n3,n4) = (63,75,100,100)

b = 14 b = 36
5 - 8 ξ1,α 92.1 92.4 93.0 92.7

ξ2,α 92.5 93.0 92.6 92.3
∆ξ1,2,α 94.7 94.5 93.7 93.4

4 - 9 ξ1,α 93.2 94.6 94.2 94.4
ξ2,α 94.0 94.8 95.4 94.8

∆ξ1,2,α 94.6 94.3 94.9 94.9
3 - 10 ξ1,α 93.5 92.9 94.5 93.8

ξ2,α 93.9 93.5 94.4 94.8
∆ξ1,2,α 94.5 94.5 95.2 95.2
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Table 4.4: Coverage probabilities (%) of two-sided 95% bootstrap confidence
intervals under Normal models (type two)

Cluster Sizes Target α = 0.05 α = 0.10 α = 0.05 α = 0.10
(n1,n2,n3,n4) = (38,45,60,60)

(σ2
γ,1,σ

2
γ,2,σ

2
γ,3,σ

2
γ,4) (σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4)

=(2.25, 2.25, 1.00, 1.00) =(1.44, 1.44, 1.00, 1.00)
5 - 8 ξ1,α 93.3 92.7 93.5 93.0

ξ2,α 92.5 93.4 93.7 92.5
∆ξ1,2,α 93.2 92.9 94.5 94.2

4 - 9 ξ1,α 91.3 92.0 94.3 94.1
ξ2,α 91.5 92.4 94.9 93.0

∆ξ1,2,α 94.0 93.6 94.1 93.8
3 - 10 ξ1,α 92.3 93.2 93.1 92.7

ξ2,α 91.9 92.3 93.8 91.8
∆ξ1,2,α 95.2 95.2 94.8 94.4

(n1,n2,n3,n4) = (50,60,80,80)
(σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4) (σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4)

=(2.25, 2.25, 1.00, 1.00) =(1.44, 1.44, 1.00, 1.00)
5 - 8 ξ1,α 91.9 93.4 94.4 92.8

ξ2,α 92.0 93.3 94.4 92.7
∆ξ1,2,α 94.6 94.1 93.6 93.6

4 - 9 ξ1,α 91.9 93.4 93.9 94.3
ξ2,α 93.1 92.3 93.7 94.3

∆ξ1,2,α 94.7 94.3 94.9 95.4
3 - 10 ξ1,α 91.4 92.9 94.2 94.0

ξ2,α 93.8 93.7 93.9 93.0
∆ξ1,2,α 94.7 95.2 94.9 95.2

(n1,n2,n3,n4) = (63,75,100,100)
(σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4) (σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4)

=(2.25, 2.25, 1.00, 1.00) =(1.44, 1.44, 1.00, 1.00)
5 - 8 ξ1,α 93.1 94.5 93.1 93.2

ξ2,α 92.8 93.1 93.6 92.7
∆ξ1,2,α 95.3 95.4 92.3 92.2

4 - 9 ξ1,α 93.3 94.5 94.0 93.5
ξ2,α 94.3 94.3 94.0 94.2

∆ξ1,2,α 94.9 94.7 94.4 93.8
3 - 10 ξ1,α 93.0 93.7 93.7 92.4

ξ2,α 92.4 92.3 92.8 93.2
∆ξ1,2,α 93.6 93.5 93.5 93.9
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Table 4.5: Coverage probabilities (%) of two-sided 95% bootstrap confidence
intervals under Gamma models (type two)

Cluster Sizes Target α = 0.05 α = 0.10 α = 0.05 α = 0.10
(n1,n2,n3,n4) = (38,45,60,60)
b = 14 b = 36

5 - 8 ξ1,α 92.4 92.0 91.7 92.9
ξ2,α 92.1 92.5 91.7 92.7

∆ξ1,2,α 94.6 94.8 94.1 94.6
4 - 9 ξ1,α 93.2 93.7 93.9 93.8

ξ2,α 93.1 94.6 93.5 94.1
∆ξ1,2,α 94.1 93.9 93.9 94.1

3 - 10 ξ1,α 93.1 92.8 93.9 95.3
ξ2,α 93.0 92.4 93.8 94.2

∆ξ1,2,α 93.4 93.5 93.9 94.2
(n1,n2,n3,n4) = (50,60,80,80)
b = 14 b = 36

5 - 8 ξ1,α 91.7 93.4 93.1 93.6
ξ2,α 92.7 94.2 93.5 94.0

∆ξ1,2,α 93.9 94.2 93.7 93.4
4 - 9 ξ1,α 94.6 93.0 92.6 93.5

ξ2,α 94.3 92.9 92.6 94.0
∆ξ1,2,α 93.6 94.1 94.2 94.1

3 - 10 ξ1,α 93.3 93.0 93.3 94.9
ξ2,α 93.1 93.6 93.1 94.5

∆ξ1,2,α 94.1 93.9 94.2 94.8
(n1,n2,n3,n4) = (63,75,100,100)

b = 14 b = 36
5 - 8 ξ1,α 92.0 93.7 94.4 94.7

ξ2,α 92.0 94.3 94.4 93.8
∆ξ1,2,α 94.8 94.8 93.1 93.5

4 - 9 ξ1,α 93.5 94.0 93.4 93.2
ξ2,α 93.7 94.0 94.4 94.7

∆ξ1,2,α 94.0 94.0 95.6 95.7
3 - 10 ξ1,α 93.4 93.0 93.9 93.4

ξ2,α 93.2 94.4 94.5 95.0
∆ξ1,2,α 94.5 94.1 95.1 94.9
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4.5 Performance of DRM CEL Monitor Test when
Model is Misspecified

In applications, the true distribution of observations is usually unknown. Any sta-

tistical model is just an approximation to the true distribution of data. Usually,

instead of choosing a known basis function qqq(x), one may select qqq(x) as a rich

class of functions and apply some classical model selection approaches to deter-

mine a subset of the class of functions as the basis function of DRM. The quantile-

quantile plot and density plot are two ways to judge the goodness-of-fit. Suppose

that density ratio model is being applied to a data set. Without the full information

of the true distribution of data, the basis function qqq(x) usually can not be chosen

“correctly”. Consequently, the influence of using an “incorrect” basis function for

DRM is of big concern. For this reason, Fokianos and Kaimi [2006] study the im-

pact of using an “incorrect” basis function on the estimation of θθθ , the parameters

of DRM. Such an impact is serious. In Chen and Liu [2013], their simulation re-

sults based on independent data show that the quantile estimation are not as badly

affected by the misspecified model as the parameter estimation. In this section, we

study the same problem with clustered data. We would like to use simulation study

to investigate the performance of DRM CEL quantile estimation when an “incor-

rect” basis function is used, that is, the model is misspecified. Our purpose is to

evaluate the impact of misspecified model on the DRM CEL quantile estimations.

We have used simulation study to investigate the performance of cluster-based

Wilcoxon test for quantile comparison. Even though in Rosner et al. [2003], the

cluster-based Wilcoxon test has controlled type I error and good performance in the

case of relative small sample size, there is a significant potential risk of using it in

quantile comparison. Therefore, we do not consider this method as a comparison

subject anymore.

We simulate random samples from the same Normal and Gamma models as

before. As a trade-off between a well fitted model and a parsimonious model, we

choose q(x) = (1,x, log(1+ |x|), |x|3/2). Two Scenarios are considered for both

models. In scenario 1, all clusters have a same size. In scenario 2, cluster sizes are

not equal.

For each model set up, we generate 1000 samples. For each sample generated,
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999 bootstrap repetitions are used to build two-sided 95% bootstrapping confi-

dence intervals for multiple quantiles of all samples and their difference as well.

We report the coverage probabilities of these confidence intervals based on 1000

repeitions. The simulation results are summarized in Tables 4.6 and 4.7.
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Table 4.6: Coverage probabilities (%) of two-sided 95% bootstrap confidence
intervals under Normal models

Cluster Sizes Target α = 0.05 α = 0.10 α = 0.05 α = 0.10
(n1,n2,n3,n4) = (38,45,60,60)

(σ2
γ,1,σ

2
γ,2,σ

2
γ,3,σ

2
γ,4) (σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4)

=(2.25, 2.25, 1.00, 1.00) =(1.44, 1.44, 1.00, 1.00)
5 - 8 ξ1,α 91.8 90.8 92.8 91.6

ξ2,α 93.5 93.1 93.6 93.1
∆ξ1,2,α 93.6 92.2 94.6 93.3

4 - 9 ξ1,α 91.6 90.1 92.7 93.1
ξ2,α 92.9 91.6 93.5 94.0

∆ξ1,2,α 93.4 93.8 94.7 94.8
3 - 10 ξ1,α 90.6 92.0 91.9 91.5

ξ2,α 91.8 93.8 92.0 92.5
∆ξ1,2,α 93.6 93.4 94.3 93.7

(n1,n2,n3,n4) = (50,60,80,80)
(σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4) (σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4)

=(2.25, 2.25, 1.00, 1.00) =(1.44, 1.44, 1.00, 1.00)
5 - 8 ξ1,α 92.1 91.8 93.9 91.6

ξ2,α 93.6 92.9 94.6 92.9
∆ξ1,2,α 95.3 94.8 95.1 95.1

4 - 9 ξ1,α 92.4 91.4 92.9 92.8
ξ2,α 94.4 92.5 94.1 93.1

∆ξ1,2,α 92.7 94.1 95.8 95.9
3 - 10 ξ1,α 92.8 91.8 92.2 92.5

ξ2,α 93.1 92.3 92.7 92.8
∆ξ1,2,α 93.8 94.0 94.4 94.1

(n1,n2,n3,n4) = (63,75,100,100)
(σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4) (σ2

γ,1,σ
2
γ,2,σ

2
γ,3,σ

2
γ,4)

=(2.25, 2.25, 1.00, 1.00) =(1.44, 1.44, 1.00, 1.00)
5 - 8 ξ1,α 92.3 93.3 94.0 93.3

ξ2,α 92.7 93.7 94.3 93.3
∆ξ1,2,α 93.8 93.0 94.6 94.5

4 - 9 ξ1,α 91.8 92.8 93.7 93.0
ξ2,α 92.8 93.0 93.8 92.3

∆ξ1,2,α 92.4 93.3 94.7 94.6
3 - 10 ξ1,α 92.5 92.4 93.0 92.9

ξ2,α 93.6 94.1 93.6 93.2
∆ξ1,2,α 94.0 94.6 94.3 94.4
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Table 4.7: Coverage probabilities (%) of two-sided 95% bootstrap confidence
intervals under Gamma models

Cluster Sizes Target α = 0.05 α = 0.10 α = 0.05 α = 0.10
(n1,n2,n3,n4) = (38,45,60,60)
b = 36 b = 14

5 - 8 ξ1,α 91.9 90.5 92.1 90.5
ξ2,α 92.9 92.0 93.2 91.4

∆ξ1,2,α 92.9 93.2 94.1 94.9
4 - 9 ξ1,α 93.1 90.6 91.2 91.0

ξ2,α 93.2 92.2 91.6 91.4
∆ξ1,2,α 94.3 93.6 94.3 94.4

3 - 10 ξ1,α 91.1 92.3 90.1 91.5
ξ2,α 92.7 92.9 91.2 91.9

∆ξ1,2,α 94.2 94.2 91.7 91.8
(n1,n2,n3,n4) = (50,60,80,80)
b = 36 b = 14

5 - 8 ξ1,α 93.3 91.1 90.2 92.3
ξ2,α 93.2 92.5 91.1 93.4

∆ξ1,2,α 93.3 93.3 93.4 93.0
4 - 9 ξ1,α 93.7 91.8 91.4 91.7

ξ2,α 93.3 92.1 93.1 92.6
∆ξ1,2,α 94.6 94.9 94.8 94.3

3 - 10 ξ1,α 92.6 92.0 91.9 91.6
ξ2,α 93.3 92.4 92.0 92.6

∆ξ1,2,α 93.8 93.9 94.6 94.7
(n1,n2,n3,n4) = (63,75,100,100)

b = 36 b = 14
5 - 8 ξ1,α 92.9 93.0 91.0 92.6

ξ2,α 93.8 93.2 93.0 93.8
∆ξ1,2,α 92.7 93.2 93.7 93.4

4 - 9 ξ1,α 94.2 94.0 91.0 90.6
ξ2,α 94.8 94.1 91.9 91.6

∆ξ1,2,α 94.7 94.8 92.5 92.9
3 - 10 ξ1,α 91.7 92.8 92.5 92.6

ξ2,α 92.8 92.9 92.6 93.4
∆ξ1,2,α 93.7 93.7 94.0 94.3

From Table 4.6 and 4.7, we notice that the impact of misspecified model on the
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coverage probabilities of 5% and 10% quantiles of populations 1 and 2. Specifi-

cally, the coverage probabilities tend to be lower than the nominal level 95%. But

the simulated coverage probabilities of quantile differences do not suffer too much

from the misspecified model. This might be because the quantile estimates of both

populations tend to be lower or larger than the true values simultaneously so that

their differences are still close to the true values. Based on these simulation results,

we can conclude that the choice of basis function indeed has some influence on the

accuracy of quantile estimation. But as long as we choose an appropriate basis

function such that the model fits data well, the interval estimation of population

quantile is still in a reasonable range. Moreover, the interval estimation of quantile

difference is still very reliable.
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Chapter 5

Summary

The main interest of this thesis lies in the demonstration of our R package for

DRM CEL quantile estimation and how to use the package to do further research.

With the help of this package, we compare the performance of DRM CEL quantile

estimation with cluster-based Wilcoxon rank sum test in different situations. The

cluster-based Wilcoxon test as a nonparametric method, needs less assumptions on

the underlying population distributions. But for the purpose of monitoring popu-

lation quantiles change, this Wilcoxon test is not testing the hypothesis of interest

and DRM CEL is more appropriate here. Taking advantage of the package, we

use simulation study to investigate the performance of DRM CEL quantile in the

case that cluster sizes are not equal, which is not considered in Chen et al. [2016].

We imitate the same cluster-based bootstrap procedure from that paper to conduct

hypothesis tests and to build confidence intervals. Simulation results supports that

the conclusions in Chen et al. [2016] still hold in the general situations.

As future research, adding the multi-parameter one-sided monitoring test by

Zhu and Chen [2017] into our current R package is of interest. This multi-parameter

one-sided monitoring test is also motivated by monitoring multiple quality indices

in forestry products. In the literature, they find a novel way to derive a likelihood

ratio test (LRT) type statistic for monitoring test of interest. Compared with the

classical LRT, the new test retains good control of the type I error and is markedly

more powerful. We would like to organize this new test into our package. Besides,

the simulation results support our guess that the DRM CEL monitoring test should
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work in the general case. We would like to investigate the theory behind it.
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