
Analysis of Data-At-Rest Security In Smartphones

by

Ildar Muslukhov

B. Information Technology, Ufa State Aviation and Technical University, 2003

M. Information Technology, Ufa State Aviation and Technical University, 2005

Ph.D., Ufa State Aviation and Technical University, 2008

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL
STUDIES

(Electrical and Computer Engineering)

The University of British Columbia
(Vancouver)

August 2018

© Ildar Muslukhov, 2018

The following individuals certify that they have read, and recommend to the
Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation en-
titled:

Analysis of Data-At-Rest Security In Smartphones

submitted by Ildar Muslukhov in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

in Electrical and Computer Engineering

Examining Committee:

Prof Konstantin Beznosov
Supervisor

Prof Sidney Fels
Supervisory Committee Member

Prof Julia Rubin
Supervisory Committee Member

Prof Sathish Gopalakrishnan
University Examiner

Prof Reid Holmes
University Examiner

ii

Abstract

With almost two billion users worldwide, smartphones are used for almost every-
thing – booking a hotel, ordering a cup of coffee, or paying in a shop. However,
small size and high mobility makes these devices prone to theft and loss. In this
work we aim to broaden our understanding of how smartphone users and applica-
tion developers protect sensitive data on smartphones.

To understand how well users are protecting their data in smartphones, we con-
ducted several studies. The results revealed that 50% of the subjects locked their
smartphone with an unlocking secret and 95% of them chose unlocking secrets
that could be guessed within minutes.

To understand how well application developers protect sensitive data in smart-
phones, we analyzed 132K Android applications. We focused on identifying mis-
use of cryptography in applications and libraries. The study results revealed that
developers often misuse cryptographic API. In fact, 9 out of 10 Android applica-
tions contained code that used a symmetric cipher with a static encryption key.
Further, source attribution revealed that libraries are the main consumer of cryp-
tography and the major contributor of misuse cases. Finally, an in-depth analysis
of the top libraries highlighted the need for improvement in the way we define and
detect misuse of cryptography.

Based on these results we designed and evaluated a system for encryption
keys management that uses wearable devices as an additional source of entropy.
Evaluation results showed that the proposal introduces insignificant overhead in
power consumption and latency.

iii

Lay Summary

This thesis presents the results of research on how secure user data in smartphones
against data thieves. We studied this question from two perspectives, i.e., users
and application developers. With end-users we focused on how they choose their
passwords to lock smartphones. The results of the study revealed that more than
95% of users choose passwords that are easy to guess, i.e., a thief can guess it in
under an hour. With application developers we looked at how often developers
put user data at risk, by incorrectly using certain security functions. Our findings
show that application developers do put user data at risk. Overall, this research
shows that when it comes to data security in smartphones, we are still far from
having adequate protection.

iv

Preface

This research was the product of a fruitful collaboration between the author of the
dissertation and the following people: Yazan Boshmaf, San-Tsai Sun, Primal Wi-
jesekera, Ivan Cherepau and Konstantin Beznosov (advisor) from the University
of British Columbia, and Cynthia Kuo and Jonathan Lester from Nokia Research.
I am deeply grateful to my mentors Michael Halcrow and Andrew Honig from
Google for an opportunity to work on improving Linux Kernel fuzzing and adding
encryption to the EXT4 file system.

Work presented herein consists of research studies that have been published or
are under review in peer-reviewed international conferences and workshops.

The user studies on characterization of smartphone end users presented in
Chapter 2, and partly discussed in Chapter 5, led to the following publications:

• I. Muslukhov, Y. Boshmaf, C. Kuo, J. Lester, K. Beznosov. Understanding
Users? Requirements for Data Protection in Smartphones. In Proceed-

ings of Data Engineering Workshops of the 28th IEEE International Con-

ference on Data Engineering (ICDEW’12), pp. 228–235, Arlington, VA,
USA, 2012.

• I. Muslukhov, Y. Boshmaf, C. Kuo, J. Lester, K. Beznosov. Know Your
Enemy: The Risk of Unauthorized Access in Smartphones by Insiders. In
Proceedings of the 15th International Conference on Human-Computer In-

teraction with Mobile Devices and Services, Munich, Germany, 2013, Pages
271-280, 22% acceptance rate.

v

• I. Cherepau, I. Muslukhov, N. Asanka, and K. Beznosov. On The Impact
of Touch ID on iPhone Passcodes. In Proceedings of the 11th Symposium

On Usable Privacy and Security (SOUPS ’15), Ottawa, ON, Canada, 2015,
Pages 257-276, 24% acceptance rate.

• D. Marques, I. Muslukhov, T. Guerreiro, L. Carriço, K. Beznosov. Snoop-
ing on Mobile Phones: Prevalence and Trends. In Proceedings of the 12th

Symposium On Usable Privacy and Security (SOUPS ’16), Denver, CO,
US, 2016, 28% acceptance rate. Distinguished Paper Award.

• A. Mahfouz, I. Muslukhov, and K. Beznosov. Android users in the wild:
Their authentication and usage behavior. Pervasive and Mobile Computing.
Special Issue on Mobile Security, Privacy and Forensics, Volume 32, Pages
50-61, Elsevier, October 2016.

I was responsible for designing and conducting the interview-based user study,
where Yazan Boshmaf actively participated in the interviewing process. Me and
Yazan separately coded interview data to reduce personal bias. Other project
members actively participated in the discussion of the interview guide, discus-
sion of the data analysis, and the paper writing process (the first paper on the list
above). For this study I obtained ethics approval from the Behavioural Research
Ethics Board (BREB) at UBC. Approval H11-02230, titled “Mobile Data Protec-
tion.”

After the completion of the interview-based study, I proceeded with the design
of an online survey. Administration of the survey and data analysis was done by
me. All co-authors actively participated in the discussion of the survey structure,
questions, results and paper writing process (the second paper on the list above).
For this follow-up study I obtained ethics approval from the BREB. Approval
H11-03512, titled “Mobile Data Protection - Follow up.”

I have significantly contributed to the study design, data analysis and paper
writing process for papers three and five on the list above. For both of these publi-
cations we obtained approvals from BREB. Approvals H12-02254 titled “Smart-

vi

phone Unlock in a Wild” and H14-02759 titled “TouchID.”
My contributions to the publication with Diogo Marques were limited to the

discussion of research questions, study design and paper writing process. I did not
participate in data analysis and data collection processes.

The measurement study on how smartphone applications (mis)use crypto-
graphic API, presented in chapter 3, resulted in the following publication:

• I. Muslukhov, Y. Boshmaf and K. Beznosov. Source Attribution of Crypto-
graphic API Misuse in Android Applications. In Proceedings of the 2018 on
Asia Conference on Computer and Communications Security (ASIACCS
’18). Incheon, Republic of Korea, 2018, Pages 133-146, 20% acceptance
rate.

The cryptography (mis)use study was designed, implemented and executed
by me. I was also responsible for all data analysis. Co-authors, Yazan Boshmaf
and Konstantin Beznosov, contributed to the preliminary research discussion and
paper writing process.

The design of the Sidekick system – a user-space approach at decoupling data-
at-rest encryption and smartphone unlocking, presented in Chapter 4, led to the
following publication in a peer-review journal:

• I. Muslukhov, S-T. Sun, P. Wijesekera, Y. Boshmaf, and K. Beznosov. Us-
ing Wearable Devices to Secure Data-At-Rest in Stolen Tablets and Smart-
phones. Pervasive and Mobile Computing. Special Issue on Mobile Se-

curity, Privacy and Forensics, Volume 32, Pages 26-34, Elsevier, October
2016.

Work on this project was mainly done during my collaboration with the Fu-
sionpipe company through Engage and Engage+ grants. The idea of the project
was conceived by me through discussion of the needs of Fusionpipe’s clients. All
co-authors contributed to the discussion of research questions, study design and
paper writing process.

vii

While working on the research presented in this thesis, I also participated in
relevant industry led projects, that resulted in the following patents:

• H. Khosravi, I. Muslukhov, P. Luong. Method and System for Decoupling
User Authentication and Data Encryption on Mobile Devices. US Patent
Application. 13/943,070, Patent number US20140321641 A1. Publication
date 16 July, 2013.

• U. Savagaonkar, M. Halcrow, T. Y. Ts’o and I. Muslukhov. Method And
System of Encrypting File System Directories. US Patent Application. US
Patent Application.US 14/829,095, Patent number US 9639708 B2. Publi-
cation date 5 Feb, 2017.

The discussion in Chapter 5 is partially influenced by ideas and findings that
led to the following publication:

• Serge Egelman, Andreas Sotirakopoulos, Ildar Muslukhov, Konstantin Beznosov,
and Cormac Herley. 2013. Does my password go up to eleven?: the impact
of password meters on password selection. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’13). ACM,
New York, NY, USA, 2379-2388.

viii

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . ix

List of Tables . xiii

List of Figures . xv

Acknowledgments . xx

Dedication . xxi

1 Introduction . 1
1.1 Goals and Methodology . 4
1.2 Research Summary . 5

1.2.1 Smartphone Users’ Experiences with Data Protection . . . 5
1.2.2 Analyzing Cryptographic API use in Android Applications 7
1.2.3 Storing Encryption Keys on Wearable Devices 10

1.3 Contributions Summary . 11

ix

2 Smartphone Users Experience with Data Protection 13
2.1 Research Questions . 13
2.2 Approach . 15
2.3 Study 1 – Interviews . 15

2.3.1 Methodology . 15
2.3.2 Results . 17
2.3.3 Summary . 27

2.4 Study 2 – Online Survey . 28
2.4.1 Methodology . 28
2.4.2 Results . 30
2.4.3 Summary . 39

2.5 Limitations . 41
2.6 Related Work . 41
2.7 Discussion and Future Work . 45

2.7.1 All-or-Nothing Locking Approach 47
2.7.2 Improving Security of Unlocking Methods 48

2.8 Challenges . 50
2.9 Conclusion . 51

3 Analyzing Cryptographic API use in Android Applications 52
3.1 Motivation and related work . 52
3.2 Common rules in cryptography 55

3.2.1 Symmetric key encryption 56
3.2.2 Password-based encryption 57
3.2.3 Random number generation 58

3.3 Cryptography in Android . 58
3.3.1 Android applications ecosystem 58
3.3.2 Java cryptography . 59

3.4 Datasets . 60
3.5 Crypto API linting with BinSight 61

3.5.1 Preprocessing . 62

x

3.5.2 Linting . 64
3.5.3 Attribution . 66

3.6 Measuring Crypto API misuse 68
3.6.1 Preprocessing . 69
3.6.2 Linting and attribution 70
3.6.3 Crypto API misuse in Android Applications 73
3.6.4 The impact of third-party libraries 85
3.6.5 In-depth analysis of top libraries 87
3.6.6 The impact of third-party libraries revisited 92

3.7 Discussion and Future Work . 93
3.7.1 Extending the Crypto API analysis 95
3.7.2 How Crypto API Misuse Rates Have Changed 97

3.8 Conclusion . 98

4 Storing Encryption Keys on Wearable Devices 100
4.1 Introduction . 100
4.2 Threat Model . 101

4.2.1 Threats and Risks . 102
4.2.2 Attack . 103
4.2.3 General Assumptions . 104
4.2.4 Crypto-Attacker . 105
4.2.5 Network-Attacker . 106

4.3 Sidekick Design . 107
4.3.1 High Level Overview . 107
4.3.2 Securing Communications over BLE 110

4.4 System Evaluation . 112
4.4.1 Experimental Setup. 112
4.4.2 Latency . 112
4.4.3 Power Consumption . 113
4.4.4 Session Key Renewal . 115
4.4.5 Summary . 115

xi

4.5 Related Work . 116
4.6 Discussion and Future Work . 117
4.7 Conclusion . 119

5 Discussion and Conclusion . 120

Bibliography . 123

A User Studies Questions . 138
A.1 Pre-screening Questions . 138
A.2 Interview Scenario and Coding Sheet 140

A.2.1 Introduction . 140
A.2.2 Applications Types and Your Experience Today/Yesterday 140
A.2.3 Application Specific Questions 141
A.2.4 Data Types Specific Questions 141
A.2.5 Current Practices . 142

A.3 Study 2 Questionaire . 143
A.3.1 Part I: Consent Forms and Smartphone Task 143
A.3.2 Part II: Demographic Questions 143
A.3.3 Part III: Smartphone Experience 146
A.3.4 Part IV: Smartphone Lock Use 148
A.3.5 Part V: Applications and Data Being Used 151
A.3.6 Part VI: Password Saving Habits 153
A.3.7 Part VII: Data Types Sensitivity and Value 154

xii

List of Tables

Table 2.1 Demographics of 22 Interview Participants in Study 1. 19
Table 2.2 Types of Data and their Sensitivity and Value from Users’ Per-

spectives. 20
Table 2.3 Security Practices and Experience of Interviewed Participants . 24
Table 2.4 The 15 most used data types by the subjects. All cases include

only data types for personal use, since no work-related data
types made it to the top 15. 33

Table 2.5 Distribution of reasons for using a locking system (N=379).
Note that N 6= ∑n, because the participants were able to pro-
vide multiple reasons. CI stands for confidence interval, given
the number of subjects that were able to answer that question. . 34

Table 2.6 Distribution of reasons for not using a locking system (N=345).
Note that N 6= ∑n, because the participants were able to pro-
vide multiple reasons. CI stands for confidence interval given
the number of subjects that were able to answer this question. . 35

Table 2.7 The distribution of “negative” experience of the participants
(N = 724). 37

Table 2.8 Parameters of logistic regression models, where a0 is intercept,
a1 is the coefficient in front of Age variable, p is the biggest
p-value for both a0 and a1, RD is the residual deviance, AIC is
Akaike Information Criterion, and R2 is Nagelkerke R-squared. 39

xiii

Table 3.1 Summary of used datasets . 61
Table 3.2 Cryptographic API endpoints and related rules. 65
Table 3.3 Summary of duplicates and Crypto API use in all three datasets 68
Table 3.4 Obfuscation analysis of class identifiers. 70
Table 3.5 Attribution of cryptographic API call sites. 71
Table 3.6 The top-6 ciphers used in Android applications. PDE was used

with MD5 and 3DES. 80
Table 3.7 Summary of Top-2 libraries from each dataset that made use of

Crypto API. Empty values imply that the library was not found
in the dataset. 86

Table 4.1 Overall Latency for each four request/response message pairs
for the default values for CInterval and CLatency. 113

Table 4.2 CR2032 battery life in days, depending on the acceptable over-
all latency for a request and on the number of requests per day. 114

xiv

List of Figures

Figure 2.1 CDF of new collected information across the interviewed par-
ticipants. 18

Figure 2.2 The proportion of concerned users with sensitivity in the pres-
ence of a stranger (horizontal axis) and in the presence of
an insider (vertical axis). Data labels across the vertical axis
and circles in the plots represent data types for personal use;
data labels across the horizontal axis and squares in the plots
represent data types for work related use. Filled shapes and
red-colored data labels represent statistically significant dif-
ferences between subjects’ concerns with respect to a stranger
and an insider (U-test for rates, WSRT for ranks, p < 0.05).
The meanings for the abbreviated data type labels are in Ta-
ble 2.4. 36

Figure 2.3 Distribution of the experiences E4-E7 (meaning for these la-
bels are provided in table 2.7) over participants’ age groups.
We removed all the subjects that were younger than 10 and
those that were 50 or older for clarity purposes. 40

Figure 3.1 Cryptographic API linting for Android applications using Bin-
Sight. Gray components represent parts that were reimple-
mented from CryptoLint [57], and white components repre-
sent the extensions that we added. 61

xv

Figure 3.2 Ratio of APK files that violated at least one Crypto API use
rule per dataset. “Any” category includes all call-sites for the
analysis, without considering the source (i.e., library or an ap-
plication). This approach was used in the CryptoLint study.
The remaining categories (Libs, Libs?, Apps and ?) include
call-sites that belong to the corresponding source only (i.e., a
library, a possible library, an application or a fully obfuscated
case). The proportions are calculated as the ratio of APK files
that contained at least one misuse from specific category (or,
any category for “Any”) against the total number of APK files
that used Crypto API in the dataset. The total number of APK
files that made at least one call to Crypto API for each dataset
is provided in the legend. 74

Figure 3.3 Ratio of call-sites that violated one Crypto API use rule per
dataset. The total number of call-sites to Crypto API for each
dataset is provided in the legend. 75

Figure 3.4 Ratio of APK files that violated Rule 1 - “Do not use ECB
mode for symmetric cipher.” The total number of APK files
that used symmetric cipher per dataset is provided in the legend. 77

Figure 3.5 Ratio of call-sites that used ECB mode for symmetric cipher.
The total number of call-sites that created symmetric Cipher
objects in Java per dataset is provided in the legend. 78

Figure 3.6 Ratio of APK files that violated Rule 2 - “Do not use static
IV for CBC mode in symmetric cipher.” The total number
of APK files that used symmetric cipher in CBC mode per
dataset is provided in the legend. 79

Figure 3.7 Ratio of call-sites that used static IV with CBC mode for sym-
metric cipher. The total number of call-sites that used Cipher
objects in CBC mode per dataset is provided in the legend. . . 80

xvi

Figure 3.8 Ratio of APK files that violated Rule 3 - “Do not use static
encryption key for a symmetric cipher.” The total number of
APK files that used symmetric cipher per dataset is provided
in the legend. 81

Figure 3.9 Ratio of call-sites that used static encryption key for a sym-
metric cipher. The total number of call-sites that set an en-
cryption key for a symmetric cipher per dataset is provided in
the legend. 82

Figure 3.10 Ratio of APK files that violated Rule 4 - “Do not use static salt
for PBKDF.” The total number of APK files that used PBKDF
per dataset is provided in the legend. 83

Figure 3.11 Ratio of call-sites that used static static salt for PBKDF. The
total number of call-sites that provided a salt value for PBKDF
per dataset is provided in the legend. 84

Figure 3.12 Ratio of APK files that violated Rule 5 - “Do not use less than
1,000 iterations for PBKDF.” The total number of APK files
that used PBKDF is provided in the legend. 85

Figure 3.13 Ratio of call-sites that used 1,000 or less iterations for PBKDF.
The total number of call-sites that used PBKDF per dataset is
provided in the legend. 86

Figure 3.14 Ratio of APK files that violated Rule 6 - “Do not use static
seed for SecureRandom.” The total number of APK files that
used SecureRandom per dataset is provided in the legend. . . . 87

Figure 3.15 Ratio of call-sites that used static seed for SecureRandom.
The total number of call-sites that seed SecureRandom per
dataset is provided in the legend. 88

xvii

Figure 3.16 Proportion of APK files that would become Crypto API misuse-
free depending on the number of fixed top ranked libraries.
The legend shows the total number of applications that had at
least one misuse in the corresponding dataset. We identified
222, 507 and 198 libraries with misuse in R12, R16 and T15
datasets, hence, the end of the corresponding lines. 89

Figure 4.1 In currently deployed systems, a user needs to provide an unlock-

ing secret to unlock his or her device. The unlocking secret, most

probably, is an easy-to-guess one. That secret is then used to derive

a Data Encryption Key (DEK), which is then used for data encryp-

tion/decryption. When application developers need to encrypt data

in smartphones, they usually use a static data encryption key, i.e.,

hard code it into their application, and then also roll out their own

implementation of the data encryption. Sidekick addresses both is-

sues by randomly generating key encryption keys (KEK) and then

storing them on a wearable device. Sidekick makes data encryption

independent from the unlocking secret, by mainly relying on KEKs

while making the use of unlocking secrets optional (showed as a

dashed line). It also provides a simpler API to application develop-

ers so that they do not need to roll out their own implementation of

data encryption and a encryption key management system. 108

xviii

Figure 4.2 High-level design of the Sidekick System. A data containing device

(DCD) runs applications that link the Sidekick library. The library

takes care of all communications with the KSD, e.g., storing or re-

trieving a KEK. Once a required KEK is retrieved, a corresponding

DEK is decrypted and stored in the Decrypted DEKs Cache by the

Sidekick Library. The DEK is then passed to the Data Encryption

System in order to encrypt/decrypt data. Each application has a

separate KEK List. The Reference Monitor on the KSD mitigates a

misbonding attack by ensuring that each application has access only

to its own KEK List. 109

Figure A.1 Different types of smartphone locks. 148

xix

Acknowledgments

First and foremost, I would like to thank my advisor, Konstantin Beznosov, for
giving me the opportunity to venture into different topics and disciplines, and for
patiently guiding me through this journey.

Second, I would like to thank all of my collaborators, colleagues and support-
ive friends. In no particular order, I give my special thanks to you all: Yazan Bosh-
maf, San-Tsai Sun, Primal Wijesekera, Ivan Cherapau, Cynthia Kuo, Jonathan
Lester, Diogo Marques, Ahmed Mahfouz and Lina Qiu.

Third, I would like to thank all members of LERSSE for their feedback and
constructive discussions. I would like to thank Ross Sheppard for his invaluable
help with proofreading this dissertation.

Fourth, I would like to give special thanks to Dmitry Samosseiko from Sophos
for providing vital support for the study of Android applications. I would also like
to thank my internships hosts in Google, Andrew Honig and Michael Halcrow, for
the opportunity to work on cool projects for Linux OS.

Last but not least, I would like to thank my wife Albina, who patiently sup-
ported me during this journey, and my kids David and Daniel, who surrounded me
no matter what.

xx

Dedication

To my wonderful family Albina, David and Daniel, who were always
beside me and cheered me up no matter what. To my parents and

Albina’s parents, who were of significant help during Daniel’s
appearance to this world.

xxi

Chapter 1

Introduction

Smartphones have become ubiquitous, highly personal and versatile devices that
are used by almost two billion users [15, 24]. Additionally, useful and diverse
sets of applications and features, in combination with vast internal storage, have
made these devices appealing for organizations [5]. The diverse sets of data that
users can store on their smartphones may of course include sensitive or confiden-
tial data. For example, photos, videos, emails, or saved passwords are consid-
ered sensitive or confidential by various stakeholders. Unfortunately, due to high
mobility, smartphones are prone to theft and loss [2, 4], which implies that this
sensitive data needs adequate protection.

Indeed, recent reports provide evidence that the threat of smartphone theft
and the consequential risk of sensitive information disclosure have a significant
impact on companies and users today. In the US, every tenth smartphone owner
has been a victim of a smartphone theft at least once [4], more than 30% of all
street robberies involve a smartphone [2], the number of stolen smartphones has
doubled in 2014, reaching 3.1 million devices [1], and in 96% of cases when a lost
device is found, the person who finds it attempts accessing sensitive information
on the lost device [9].

One way to protect confidentiality of sensitive data on smartphones is through
file system level encryption. For example, the current implementation of full-disk

1

encryption in Android provides such a service as part of the storage IO stack [91].
Another approach is to implement custom, application-specific solutions using

a supported cryptographic application program interface (API), or Crypto API for
short. For example, application developers can encrypt user data before storing it
on a device or transmitting it over a network. Unfortunately, neither one of these
approaches is problem-free. Users often choose such unlocking secrets that are
vulnerable to unsophisticated password guessing attacks [56, 85].

Significant improvements in general purpose GPU technologies, such as CUDA
by NVidia [26] and availability of the tools that can harness GPU’s hardware (e.g.,
HashCat [33]), password guessing attacks became highly practical. For instance,
recent experiment demonstrated1 that NVidia GTX 1070 GPU can probe around
four million secret candidates for Android OS. This allows attackers to try all pos-
sible combinations for a 6-digit PIN code in under a second. When it comes to
iOS, Apple decided to slow down password based key derivation function by em-
ploying a specialized hardware with embedded key. Such design allowed them to
slow down a single encryption key derivation call to 80 milliseconds [37], which
allows probing 1.08 million secrets in a day. Considering that unlocking secret
guessing attack for iOS stack is significantly slower, I use iOS encryption key
derivation speed as a baseline to define easy-to-guess term, which is a secret that
can be guessed by trying one million most probable secrets. Note, that if a user
chose to use a 6-digit PIN as an unlocking secret, then this definition implies that
an attacker will be able to search the entire space.

To mount a password guessing attack an attacker would first obtain a bit-by-
bit image of the internal storage [104]. We can safely assume that attackers are
aware of formats and data structures for the used file system, thus, knows how
to extract the encrypted version of the master key. This assumption is sound,
considering that both iOS and Android use well documented file systems. Once
the attacker obtains encrypted master key, he launches password guessing attack

1Experiment setup and all stats can be found at the following address http://www.netmux.com/
blog/how-to-build-a-password-cracking-rig

2

http://www.netmux.com/blog/how-to-build-a-password-cracking-rig
http://www.netmux.com/blog/how-to-build-a-password-cracking-rig

on external hardware, by trying most probable combinations of the secret and
decrypting the master key. The attacker verifies the correctness of the decrypted
master key by decrypting content with known data structure. For iOS devices,
unlocking secret guessing attack has to be partially executed on the stolen device,
since key derivation process iOS relies on the embedded key, which is stored in the
specialized hardware. This requires that the attacker is able to hijack the booting
sequence, in order to gain control over specialized hardware.

In addition to the aforementioned password guessing attack, easy-to-guess se-
crets are also vulnerable to shoulder surfing attacks [93]. Recent improvements
in smartphone authentication technology have targeted certain usability problems
with the use of complex secrets. For instance, the Touch ID sensor in iPhones
reduces the frequency of secret-based authentications, thus, making it easier for
users to choose longer alphanumeric passwords for unlocking secrets. The results
of a recent study showed, however, that even when users enable the Touch ID
sensor, they still tend to choose easy-to-guess unlocking secrets [45].

As for application-specific solutions, the CryptoLint study report from 2012
showed that 88% of Android applications misuse Crypto API [57]. In particular,
application developers often use static encryption keys or initialization vectors
(IVs), which violate cryptographic notions of security, such as indistinguishabil-
ity under a chosen-plaintext attack (IND-CPA) [52]. The problem of Crypto API
misuse, however, is still far from being fully understood. First, the CryptoLint
study was limited in the analysis of libraries, which increases the risk of counting
the same bug multiple times, especially in light of recent results from the Lib-
Scout study [39], which showed that third-party libraries also misuse Crypto API.
Second, the results from the CryptoLint study are five years old, and it is unclear
if misuse rates have changed since then, and if they have, in which direction they
have changed.

3

1.1 Goals and Methodology
The main objective of this research is three fold. First, this work aims to widen
understanding of issues and threats users face when it comes to protecting their
smartphones with an unlocking secret. Second, we aim to provide a deeper anal-
ysis of the current state for the problem of Crypto API misuse in mobile applica-
tions, especially when it comes to the source of the code from which the misuse
originates. Finally, we evaluate technical feasibility of using wearable devices for
improving encryption key management system in mobile devices, such as tablets
and smartphones.

To achieve these goals, I adopted the following research methodology. First,
a set of user studies was conducted to gain a better understanding of the user
experience with the existing data protection systems in smartphones. Second,
135,590 Android applications were analyzed to (a) measure how the misuse rates
of Crypto API have changed since the CryptoLint study [57], and (b) identify
the responsible party for each misuse case, by attributing it to its source, i.e., a
third-party library or an application. The results of both studies revealed that the
key management subsystem of data encryption in smartphones is the weakest link,
which renders data protection insecure. Third, a key management system based on
wearable devices was designed, implemented and evaluated in terms of technical
impact on data access latency and power consumption.

The results of the user studies showed that smartphone users tend to choose
easy-to-guess unlocking secrets, which makes it trivial for an attacker to derive a
proper encryption key. The analysis of Android applications revealed that 9 out
of 10 applications use static encryption keys, i.e., an attacker can extract these
encryption keys with any of the existing tools (such as ApkTool [17]), and, thus,
decrypt data. The experimental evaluation of the proposed key management sys-
tem for smartphones and tables revealed that one can find a trade off between
increasing data access latency and power consumption that allows the wearable
device to run for more than a year on a single coin cell battery.

4

1.2 Research Summary
The research presented in this dissertation consists of three parts. The first part
presents the results of the studies on user experience in regards to data protection
in smartphones. The second part of this thesis presents the results of the analysis
of 132K Android applications focusing on the misuse rates of Crypto API. This
includes the source attribution analysis results and the results of the trend analysis
based on the differences between the applications collected in 2012 and 2016. The
third part, contained in Chapter 4, explores a possible approach to addressing the
identified limitations of data encryption in smartphones for specialized domains,
such as health care. In what follows I summarize an approach taken for each of
the research projects and the key findings.

1.2.1 Smartphone Users’ Experiences with Data Protection
With the user base of smartphones slowly approaching two billion, there are still
open research questions on how to protect users’ data in smartphones. In partic-
ular, it is not clear what kinds of experiences users have with the existing data
protection systems today. To fill this knowledge gap we performed a set of user
studies. First, we conducted a set of interviews. The study was designed to col-
lect qualitative data on users’ experiences with data protection systems, such as
smartphone locking. In modern smartphones, the smartphone locking system is
the corner stone for data-at-rest protection, since the unlocking secret is used to
protect the data encryption key. If the unlocking secret is easy-to-guess, then an
attacker can mount an offline password-guessing attack, which eventually will al-
low the attacker to decrypt all encrypted data. In addition to user experience, we
looked at how different types of attackers impacted user perception of associated
risks. These interviews allowed us to get a better understanding of a variety of
issues that smartphone users face every day. To corroborate the results of the in-
terviews and to assess the prevalence of different experiences, we designed and
administered a follow up study in the form of an on-line survey.

5

The results of the studies revealed that users are divided into three categories
(a) those who store sensitive data on their devices and use unlocking secrets
(around 50%), (b) those who store sensitive data, but do not use unlocking se-
crets due to usability issues (20%), and, finally, (c) those who choose not to store
sensitive data on smartphones (the remaining 30%).

Both of the above studies broadened our understanding on which data types
are considered sensitive and why. In particular, the results showed that personal
messages, account credentials, photos, and videos are among the most sensitive
types of data. Further, studies showed that data sensitivity depends on the type
of adversary. For instance, SMS messages were considered to have a higher sen-
sitivity when the intruder was someone from the victim’s acquaintances, i.e., an
insider. Contact details, on the other hand, were only considered sensitive for
strangers, i.e., someone who does not know the victim.

The results of the study revealed that while 50% of smartphone users em-
ployed authentication-based smartphone locking, 95% of them chose an easy-to-
guess unlocking secret. Since unlocking secrets are used to protect data encryption
keys, the use of easy-to-guess secrets makes it simple for an attacker to obtain the
key by mounting an inexpensive password-guessing attack [56]. The results of a
follow up study, led by Ivan Cherapau [45], showed that even if a fingerprint sen-
sor was available, smartphone users still preferred to use easy-to-guess unlocking
secrets for various reasons, mainly rooted in usability issues.

Finally, the results of the studies showed that apart from the usual thieves,
smartphone users are facing insider attackers. In particular, the results obtained
in the studies provide evidence that 1 in 10 of smartphone users have accessed
someone’s device without permission. The accuracy of these results was improved
in a follow up study, led by Diogo Marques [83]. In particular, the results of
this study revealed a higher rate; that 1 in 5 smartphone users had snooped into
someone else’s smartphone.

The main contributions of the conducted user studies are the following: (a)
investigation of users’ experiences with existing data protection systems in smart-

6

phones, (b) sensitivity assessment for various types of data in the presence of
strangers and insiders, and (c) measured prevalence of snooping behavior. The re-
sults suggest that assumptions made by previous research studies about the safety
of certain locations are, to say the least, questionable. For instance, while both
Riva et al. [94] and Hayashi et al. [72] have suggested that work or home are safe
locations and that smartphones should disable smartphone locking completely at
these locations, the results from our studies suggest the opposite; these locations
having plenty of insider attackers. Furthermore, because users tend to choose
easy-to-guess unlocking secrets for their smartphones, existing data protection
systems in smartphones are rendered insecure due to the central role of unlocking
secrets in protecting encrypted data.

1.2.2 Analyzing Cryptographic API use in Android
Applications

While users can protect their data by enabling encryption2 and choosing suffi-
ciently complex unlocking secrets, application developers can also play a role in
data protection. In particular, application developers can choose to encrypt user
data themselves, by calling Crypto API directly. With millions of applications
available to smartphone users, it is important to understand how these applications
(mis)use Crypto API. Unfortunately, a recent study showed that 88% of Android
applications made at least one mistake while consuming Crypto API [57]. Fur-
ther, it is unclear if these misuse rates have changed since the mentioned study
took place. In addition, the report [57] had limited analysis of libraries and did
not look into the security implications of the misuse cases.

To bridge this knowledge gap we designed and developed the BinSight system
- a system that uses static analysis and program slicing in order to identify Crypto
API misuse cases in Android applications. We analyzed 132K Android applica-
tions in total, which originated from three datasets collected in 2012, 2015, and

2In iOS disk encryption is always enabled, while in Android it is an option a user can enable
or disable.

7

2016. The dataset from 2012 was given to us by the authors of the CryptoLint
study [57], which allowed us to replicate the original study and assess the ratio of
over-counted bugs in the CryptoLint report.

Our analysis results revealed that 9 out of 10 calls to Crypto API originated
from third-party libraries and that the original CryptoLint study had missed 249
(or 96%) libraries in their dataset. Further, the results showed that 222 of the
missed libraries were responsible for 70% of the flagged Android applications.
This strongly suggests that source attribution is crucial for the accuracy of Crypto
API misuse analysis. Comparison of the misuse rates between applications col-
lected in 2012 and 2016 showed that while applications and libraries have im-
proved in certain aspects of Crypto API use, they worsened in others. In particu-
lar, while libraries have significantly reduced the use of ECB mode for symmetric
ciphers, libraries significantly increased their reliance on static IVs and static en-
cryption keys. In addition, the RC4 cipher, a cipher with a known vulnerability,
gained popularity in 2016 and became the third most commonly used cipher.

Analysis of the applications collected in 2016 revealed that 89.5% of the
flagged applications had Crypto API misuse cases in only third-party libraries. In
other words, 507 libraries were responsible for introducing Crypto API misuses
to 79,207 (out of 88,510) Android applications. Unfortunately, such dominance
makes the current approach of measuring misuse rates of Crypto API highly bi-
ased towards libraries. The root cause of the bias is that libraries, especially the
popular ones, inflate the ratio of APK files that misuse Crypto API. To address this
limitation, we proposed to use the ratio of call-sites with and without mistakes for
each source type. This allowed us to identify cases when the original metric, i.e.,
the ratio of Android applications with misuses, conveyed a misleading message.
In particular, according to the ratio of Android applications, applications them-
selves have significantly improved in terms of not using static encryption keys. At
the same time, the call-sites ratio suggests the opposite, i.e., the code of applica-
tions worsened.

Finally, the results of manual in-depth analysis of the top libraries revealed

8

that a misuse of Crypto API does not necessarily imply security vulnerability.
In particular, one might use Crypto API for reasons other than confidentiality or
integrity protection. As we show, the Google Play SDK library used a symmetric
cipher to obfuscate code. In addition, we found an edge case to the use of ECB
mode, when a single block of random data was encrypted.

The present study makes the following contributions: (1) replication of previ-
ously published research through obtaining the original data from the CryptoLint
study, (2) comparative analysis of Crypto API misuse in Android applications be-
tween 2012 and 2016, (3) improvements to the analysis framework by introducing
source attribution and de-duplications, (4) and analysis of security implications of
misuses in the top libraries.

In comparison with existing tools, e.g., Soot [32], neither CryptoLint [57] nor
BinSight introduce anything novel to the field of static analysis itself. They are
both highly specialized tools tailored towards the analysis of specific issues in
Android applications. Nevertheless, while CryptoLint failed to analyze 23% of
the APK files, BinSight was able to analyze all but six of APK files out of a ten
times larger dataset. Furthermore, the results of the analysis demonstrated that
the previously used method of measuring misuse rates is biased towards libraries.
To address this issue, we proposed to use the ratio of call-sites with mistakes to
all call-sites, which provides intuition into how probable it is that a call to Crypto
API from an application itself or a library would make a mistake.

Overall, when it comes to protecting user data in smartphones, both applica-
tion and library developers are doing a poor job. In particular, 50% of all calls to
symmetric cipher API end up using a static, i.e., hard-coded, encryption key. This
suggests that the encryption key management system is currently the weakest link,
since (a) smartphone users tend to choose easy-to-guess unlocking secrets and (b)
application and library developers rely on static encryption keys.

9

1.2.3 Storing Encryption Keys on Wearable Devices
The results from both user studies and the analysis study on the rates of Crypto
API misuse in Android applications revealed that the encryption key is not ef-
fectively protected. On one hand, we see that users tend to choose easy-to-guess
unlocking secrets, making password-guessing attacks trivial. On the other hand,
application and library developers often use static encryption keys, which can be
extracted from binaries with any of the existing reverse engineering tools. To
address this limitation we designed and evaluated a system we named Sidekick.
The Sidekick system uses wearable devices to store encryption keys, eliminating
the dependency of data encryption security in smartphones on the entropy of un-
locking secrets, and providing a secure location for developers to store encryption
keys.

The evaluation of the Sidekick system revealed that our proposal is both ef-
fective and efficient. In particular, the system it allows fetching a 256-bit long
encryption key from the wearable device in under a second. This is a significant
improvement over a commonly chosen 4-digit PIN-code, which, in comparison,
provides around 13-bits of entropy (assuming that a PIN is selected randomly).
Sidekick’s power consumption impact on smartphones was below 1% of battery
capacity and allowed the wearable device to function for up to 400 days on a
single coin-cell battery.

The contributions of this study include: (a) the design and evaluation of a
system that decouples user authentication and data encryption in smartphones,
(b) recommendations on the value for configuration parameters for the wireless
communication stack, and (c) making the system available as open source and
incorporating key parts of it in a real product. We envision the Sidekick sys-
tem’s inclusion in features provided by existing wearable devices, such as smart
watches or fitness trackers, so that users would not need to use yet another device.
Considering that the proposed system needs 20Kb of ROM and 4Kb of RAM on
a wearable device and can run on an 8-bit CPU, such an integration should be
simple.

10

1.3 Contributions Summary
To summarize the previously stated, this thesis makes the following contributions
to research:

First, we studied user experiences with data protection in smartphones.
We show that half of smartphone users do not use locking systems due to various
usability issues or security concerns. We also show that the majority of the users
that lock their smartphones choose easy-to-guess unlocking secrets, which makes
data decryption a simple exercise for an attacker. Finally, our results suggest that
the assumptions of recent research about certain environments are highly ques-
tionable. In particular, while several authors have suggested that work and home
are safe environments, we showed that these locations commonly experience in-

siders. The studies presented in this dissertation provide evidence that users ex-
perience attacks by insiders in real life. These results imply that the security of
data-at-rest in smarpthones needs to be re-evaluated without assuming that users
will choose a hard-to-guess unlocking secret. Specifically, if developers of the
data encryption layer use unlocking secret to generate or protect their master key
(the actual encryption key used for data protection) they should not use unlocking
secret as a single source of randomness and should use other sources as well.

Second, we replicated previous study on Crypto API (mis)use rates in An-
droid applications. By obtaining the set of applications used in the previously
published research, we were able to replicate the original study and confirm its
findings. While doing so, we identified certain limitations in the methodology. In
particular, we showed that the authors of the CryptoLint study missed 96% of the
libraries in their dataset, which resulted in a misleading message. That is, while
they reported that 88% of the applications misused Crypto API, 70% of them were
due to 222 libraries.

Third, we conducted analysis of Crypto API (mis)use rates in Android
applications. By collecting new applications in 2016 we were able to compare
how the misuse rates have changed since 2012. In particular, we showed that
while applications and libraries have improved in certain areas, e.g., the use of

11

ECB mode for symmetric ciphers, they have become worse in others, e.g., the use
of static encryption keys.

Analysis of Crypto API misuse revealed that while applications developers
improved in certain aspects (e.g., random number generation), they made more
mistakes when it comes to the use of symmetric ciphers. Specifically, the use of
static encryption keys and initialization vectors has increased between 2012 and
2016. Even more, the popularity of long time considered insecure (e.g., DES
or RC4) ciphers has also increased. Combination of with users preferences on
unlocking secret choices with frequency of Crypto API misuse by applications
developers suggest that both parties fail to secure sensitive data in smartphones,
thus further research is needed into various aspects of the problem. First, usable
security research community should investigate if it is possible to have a usable,
yet secure authentication method on smartphones, such that be used as a source
of entropy for encryption key derivation function.

Finally, we evaluated technical feasibility of encryption key management
system based on wearable devices for smartphones. We designed, implemented
and evaluated the technical aspects of using wearable devices for encryption keys
management in smartphones. The results of the lab experiment revealed how
one can approach the trade-off between data access latency, session key refresh-
ing schedule and power consumption on both wearable devices and smartphones.
Such an approach can be used to address both users preference of easy-to-guess
unlocking secrets and misuse of Crypto API. In particular, by acting as an ad-
ditional source of entropy for key derivation process, the proposed system can
eliminate the sole dependency of security of master encryption key on security
of unlocking secret. This can be achieved by encrypting the master encryption
key with a randomly generated key encryption key (KEK), which is then stored
on a wearable device. Second, by integrating such system with existing file sys-
tem (e.g., EXT4) one can simplify data encryption for application developers. In
such design, developers would declare a file as encrypted and use the proposed
encryption keys management system to manage encryption keys.

12

Chapter 2

Smartphone Users Experience with
Data Protection

This chapter presents the results of two user studies conducted to gain a better
understanding of how users perceive threats associated with disclosure of data-at-
rest stored on the smartphones they own. This chapter begins with a discussion of
research questions. It then proceeds to the design and results of the first user study,
which was qualitative in nature based on the results of semi-structured interviews.
We then present the quantitative results of the second user study, which was based
on the results of online surveys. The chapter concludes with overview of related
work and a summary of three follow up studies and a discussion of results and
conclusions.

2.1 Research Questions
By studying smartphone users one can get a deeper understanding of how users
perceive smartphone threats, such as loss and theft, and risks associated with theft
and loss, e.g., confidential and sensitive information disclosure or reputation dam-
ages. The following research questions were defined, in order to fill this knowl-
edge gap:

13

• RQ1 - What types of sensitive data do users store on their smartphones?

• RQ2 - What practices do users employ and do not employ for data confi-

dentiality protection?

• RQ3 - Why do users choose to use (or choose not to use) certain security

practices?

• RQ4 - How concerned are users with unauthorized access of their data or

smartphone functionality by an attacker?

• RQ5 - How many users have experienced unauthorized access to sensitive

data?

Throughout this study we define data as being sensitive if a user wants it to
be available to a limited number of persons, including just to him/herself. For
instance, while users might want to keep photos of their children accessible to
family members, they might want to limit access to personal messages or browsing
history to themselves.

Answering RQ1 provides a better understanding of the variety of sensitive
data that users store on their smartphones. Knowing the types of data we need
to protect makes it easier for the research community to design an effective and
efficient data protection system. Answering RQ2 and RQ3 would improve our
understanding about which security practices in smartphones users employ or do
not employ and, most importantly, why they choose to do so. Having a better
understanding on these two important research questions would give us and the
wider research community a clearer picture of everyday issues that users face
when they try to protect their smartphone data.

Finally, answering RQ4 and RQ5 provides a better understanding of users’
perception and previous experiences with theft and loss threats. In particular, RQ4
provides a deeper insight into whether or not users consider the risk of confidential
data disclosure important.

14

Answering RQ5 provides empirical evidence to the question of whether or
not users have experienced theft and loss of their smartphones, which results in
confidential data disclosure. Even more, RQ5 is looked at from two perspectives.
First, subjects were treated as victims, i.e., asked if someone else had unauthorized
access to their smartphones. Second, subjects were treated as attackers and were
asked if they had accessed someone else’s smartphone without permission.

2.2 Approach
To answer the research questions defined in the previous section, two user studies
were conducted. First, a qualitative study based on a set of semi-structured inter-
views was conducted ("Study 1" throughout the rest of this chapter). Second, in
order to corroborate the results of Study 1 and to gain statistical power, a quantita-
tive study was administered in the form of an online survey ("Study 2" throughout
the rest of this chapter).

2.3 Study 1 – Interviews
This section presents the methodology and the results of the qualitative study
based on interviews with 22 subjects.

2.3.1 Methodology
In the exploratory study we used semi-structured interviews for data collection.
The main objective of this study was to gather qualitative answers, rather than
quantitative. The decision to begin with a qualitative study is based on the fact
that qualitative studies give a better opportunity to explore the problem domain
without restricting ourselves. That is, by starting with a qualitative study, we
can conduct a well-informed quantitative study. One crucial advantage of semi-
structured interviews is that an interviewer can easily deviate from the initial in-
terview structure, which allows researchers to dig deeper into unanticipated topics
that emerge during the interviews.

15

We used theoretical sampling [67] rather than random sampling during the se-
lection process of participants. We made this choice, because it was more impor-
tant for us to recruit a diverse pool of subjects, rather than having a representative
sample of general population. Diversity is often more important during qualitative
studies, especially when questions on variability of some parameters need to be
answered. Accordingly, before scheduling an interview with a candidate we asked
each of them to fill out a pre-interview questionnaire. Once we obtained their an-
swers, we checked if demographic parameters added to the diversity of our subject
pool. In the questionnaire, we asked seven questions about age, gender, completed
education, job position(s) and area of work, hobbies, annual household income,
and native language. The list of questions is provided in Section A.1. Each inter-
viewed participant was paid $25 CAD for a one-hour long interview. We applied
and received approval from UBC Behavioural Research Ethics Board to conduct
this study (application H11-02230).

All interviews began with a set of simple questions, such as “what applica-

tions did you use during the last few days?” or “what was the first thing you did

with your smartphone today?” Subjects were then asked about the applications
they were using on their smartphones, while interviewers recorded the names of all
mentioned applications. For the applications that could have been used for busi-
ness or work, such as calendar, emails, and messengers, subjects were also asked
to clarify if they used these applications for work or business related activities.
Afterwards, each subject was asked about how he or she used these applications
and what kinds of data each application stored.

In what followed, subjects were asked if there was a user account associated
with each application and, if so, if they need to authenticate every time they launch
the application. This was asked in order to uncover applications where users chose
to save their credentials, allowing application launching without re-entering login
information. For example, if a participant used an email client, we asked her
about the kinds of emails she would usually receive to the accounts she registered
in that application. We also asked whether she saved passwords from any of the

16

used email accounts or typed them in each time she needed to access her emails.
In most cases, to validate responses from subjects, we asked them to launch the
application in front of us.

During a pilot study, we found that it is difficult for participants to provide a
clear answer about the sensitivity and the value of their data without a scenario.
To address this issue, we gave several scenarios to participants, aimed to commu-
nicate probable risks more clearly. For the sensitivity of each data type we asked
participants about the consequences of disclosing the information to a stranger or
an insider. We explained these two terms to subjects as follows - a stranger is
someone you do not know and he/she does not know you (e.g., a thief on a bus),
while an insider is someone from your social circle or someone who knows you
(e.g., a coworker).

Finally, by the end of the interview, participants were asked about the practices
they used to ensure that their sensitive data are kept confidential. Subjects were
also asked why they did not use certain tools and features, e.g., unlocking secrets
or regular data backup.

All interviews were conducted by two interviewers in order to ensure that all
important questions were asked. Interviews were audio-recorded and transcribed
verbatim. Later, the transcriptions of the interviews were coded, analyzed and
checked by both interviewers. To ensure sufficient numbers of participants in our
study we used information saturation analysis. That is, after each interview we
categorized all additional unique pieces of information that the interview revealed.
Once information saturation was observed, the recruitment of new subjects was
stopped.

2.3.2 Results

Demographics of Recruited Subjects

In total, 22 interviews were conducted during October, 2011. Half of them were
conducted at the University of British Columbia (UBC) Point Grey campus, and

17

Figure 2.1: CDF of new collected information across the interviewed participants.

the rest at UBC’s Robson Square campus in Vancouver. As shown in Table 2.1
the demographics of the recruited participants were diverse and included subjects
from various occupations and age groups. Note, that some of the participants
had more than one job, resulting in the total number of subjects not equaling the
number of participants per occupation.

After the 18th participant we observed that adding additional participants did
not reveal new information. In accordance with the theoretical sampling approach,
the recruitment of new subjects was stopped. The graph, shown in Figure 2.1,
supports this decision and shows that saturation in data collection was reached.

RQ1 - Types of Data Stored on Smartphones

While analyzing the types of data users mentioned during the interviews, we ob-
served that users refer to data from two different angles. First, they explicitly
define that certain types of data are sensitive for them. Second, they defined
some types of data as being valuable. The sensitive data included records that
users wanted to keep to themselves, e.g., personal messages, while valuable data

18

Table 2.1: Demographics of 22 Interview Participants in Study 1.

Parameter Property Participants
Gender Males 10

Females 12
Age under 18 1

19-24 7
25-30 5
31-35 2
36-40 3
41-45 3
46-50 1

Education Still in High School 1
High School 6
Professional School or
College Degree 4
University (Bachelor’s) 6
Graduate School
(Master’s or PhD) 5

Household income under 15K 6
15K-30K 3
30K-50K 3
50K-80K 7
more than 80K 3

Smartphone OS iOS 11
Android 4
Symbian 2
BlackBerry OS 4
WebOS 1

Occupation 1 Caregiver, 1 Curator Assistant, 1 Entrepreneur, 2
Graduate Students, 1 High-school Student, 1 Lan-
guage Teacher, 2 Marketing Specialists, 2 Munic-
ipal Workers, 1Network Administrator, 1 Nurse, 1
Librarian, 1 Pilot Instructor, 1 Proof-reader, 4 Sales
Workers, 1 Security Guard, 1 Software Engineer, 1
Tailor, 1 Undergraduate Student, and 1 Unemployed

Data Stored Work Related 9
Personal 22

Phone Ownership Personal 19
Company 3

19

Table 2.2: Types of Data and their Sensitivity and Value from Users’ Perspectives.

Data Type Sensitive Valuable

SMS Messages

Photos/Videos

Voice Recordings

Notes

Contacts

Music

Passwords

Emails

Documents

Events in Calendar

Recorded GPS Tracks

included data that users were worried about loosing, e.g., memorable photos or
videos. Considering users’ needs, sensitive data require confidentiality protec-
tion, i.e., should be only accessible by the owners, while valuable data require
availability protection, i.e., being available to the user, even if the device is lost
or stolen. If, however, a data record is both sensitive and valuable, one should
carefully design the availability of the system in order to avoid compromising
confidentiality. Considering that most systems for availability protection rely on
some sort of cloud storage, this creates another attack vector on users’ sensitive
data, and could have a devastating impact on users themselves, e.g., recent iCloud
hacks that exposed personal images of celebrities 1.

A summary of data types and their sensitivity and value is provided in Ta-
ble 2.2. Based on subjects’ feedback, we mark sensitivity and value as none,
partial or full. In Table 2.2 a fully filled circle in sensitive and valuable columns

1 Due to the vulnerability of the iCloud’s web interface, attackers were able to mount a pass-
word guessing attack on celebrity accounts and eventually gained access to the backup of their
photos from their smartphoneshttp://www.bbc.com/news/entertainment-arts-39280844

20

http://www.bbc.com/news/entertainment-arts-39280844

means that most of the subjects agreed that the data type is sensitive or valuable.
On the other hand, an empty circle means that a data type was not considered
sensitive or valuable by any participant. Data types that were considered sensitive
only by a minority, i.e. at least one participant, are shown as half filled circles.

Again, considering that these results were obtained in a qualitative study, one
should treat them with caution. This is why I refrain from reporting any statistics
from our observations, aside from the diversity of opinions. In fact, I do not pro-
vide any descriptive statistics about the data types or their classes as this was not
the goal of Study 1. To provide such descriptive statistics one should use a differ-
ent, quantitative approach. The following discusses the reasons subjects used to
justify the sensitivity or value of data types.

Passwords: Some of our participants stored passwords on their smartphones us-
ing different means. One participant stored passwords for online banking as con-
tact records in their address book. Another created notes for door PIN-codes for
her workplace. A sub-group of the participants used special applications, such
as password managers. Most participants opted to allow applications to save the
associated credentials, so that they did not have to enter a password every time
they opened the application (e.g., email clients, Facebook application, etc). All
participants considered these passwords to be sensitive. It should be noted that
the participants who used password managers were less worried, since such ap-
plications usually required an additional password. However, they did admit that
the password they used was the name of a person or a simple word. Interestingly,
some of the participants considered password lists highly valuable, and these lists
were stored only on their smartphones where loss of the list would incur a signif-
icant amount of work to restore access to the corresponding accounts.

Music and Events in the Calendar: Music and events, on the other hand, were
never mentioned as being sensitive or valuable. Most of the participants justified
such judgment by the fact that they had a copy of such data on their computers,

21

online, or that they could remember the information. In the case of losing appoint-
ment information or events, subjects reported that they also had a physical agenda
book to keep the information.

Voice Recordings: Several subjects used their smartphones to record audio of
conversations, which had the potential for being confidential and sensitive. For
example, one of the subjects was a quality assurance specialist, and had recorded
multiple conversations with employees that provided anonymous feedback on the
internal affairs of the company. On the other end of the spectrum, subjects also
used voice recordings for taking notes and memos. These types of recordings
were not considered as sensitive. Most of the subjects that used voice recorders
for note taking did consider these recordings as valuable, mainly because subjects
were not sure if they would be able to recover them if lost.

Photos and Videos: Some of the participants defined photos and videos on their
smartphone as both sensitive and valuable. Others considered their photos and
videos sensitive for cultural reasons. For example, one of the participants stated
that photos of his family were sensitive, as women in his culture wear a Hijab in
public. Interestingly, most of the participants who took pictures and videos on
their smartphones kept them there for some period of time in order to accumulate
a considerable amount before transferring them to a PC. Several participants who
recently lost or damaged their phones admitted that they had lost valuable pictures
as well. Moreover, it was hard for participants to recall on the spot whether they
had valuable or sensitive pictures, without first looking through their images and
videos.

SMS Messages: The analysis of the interviews revealed that SMS messages have
a short temporal value, which is lost once they have been read. Most of the partic-
ipants stated that they do not use SMS for highly meaningful conversations, and
rather use SMS messages for friendly chats and as a way to keep in touch with

22

their friends. Certain subjects did, however, consider specific types of messages
as being sensitive, but only if they were read by certain people, e.g., their parents
“I do not like the idea of someone, especially my parents, going through my mes-

sages...”. At the same time, these subjects were comfortable sharing these SMS
messages with their friends.

Contacts: The participants sometimes considered contact details as being sen-
sitive, mostly because they were not comfortable sharing such data with others.
Reasons varied from reputation consequences “If someone got hold on of my con-

tacts, I would feel uncomfortable, because I feel like those people trusted me to

keep their phone numbers private” to expected threats to people “I am not sure

what those who got my contacts numbers will do with them, they could call them

or send them spam”. The value of contact details was justified mainly by the
lack of synchronization with a PC or an online account. Interestingly, some of
the participants stated that they had a copy of their contact details in paper form,
which they carried around with them as they had lost their smartphone previously
or experienced other technical problems, such as their batteries dying.

Email Messages: Participants classified their emails as being not valuable, be-
cause all of them were able to access emails either online or on their personal
computers. A majority of the participants had multiple email accounts config-
ured on their smartphones. They classified their emails as “junk-collecting” or
“sign-up” email, personal and work related. Nine of the participants used work
email accounts on their phones and received confidential business emails which
contained unreleased products details, marketing company budgets, business pro-
posals, etc. The mix of unimportant and important emails defined email sensitivity
as “could be sensitive”.

Documents: Some participants uploaded work-related documents to their smart-
phones. These documents often contained confidential information, such as de-

23

Table 2.3: Security Practices and Experience of Interviewed Participants

Parameter Property Participants
Use pin-lock Yes 7

No 11
No, but used to 4

Had experience of Losing phone 5
Breaking phone 4
Losing and Breaking phone 1

scription of new products or sales figures. The necessity of having such data on
their smartphones was justified by the need to access vital numbers during travels.
These documents were not considered valuable, since they were also stored on the
company’s servers or work-related computers.

GPS Tracks: GPS tracks are usually recorded by training assistant applications,
such as miCoach for iOS. Subjects used such applications to track their outdoor
exercises and monitor performance. The tracking information that these applica-
tions collected was considered to be highly sensitive, mainly since most of these
tracks lead to the subjects’ homes.

RQ2 – RQ4 - Security Practices for Data Protection and Concerns

Subjects were asked whether or not they used any tools for data protection. In ad-
dition, the interview structure also included questions that focused on the reasons
for and against using such tools. The results of the interviews on such practices
are presented as follows. A short summary of the results is provided in Table 2.3.

Most of the participants, but not all of them, backed up valuable data whenever
they “felt” that they needed to, which varied from once a week to once in six

months. Those who lost their devices and valuable data, however, admitted that
they started paying greater attention to this practice after the loss. The subjects

24

often cited the following reasons for such infrequent and irregular backups (1)
inconvenience of current systems, (2) lack of time, and (3) lack of information on
what data needs to be backed up.

Several participants stated that they do not trust the security of their smart-
phones at all, and, thus, decided not to store any sensitive or valuable data on such
devices. Their decisions were based on concerns they had with the security of
smartphones, especially if they were lost, stolen or infected by malware. Inter-
estingly, 20 participants stated that they considered smartphones to be less secure
than PCs. The high mobility of smartphones was cited as the main justification,
since this meant an increase in chance that the device could be lost or stolen.

The participants were then asked about what they would do if they had just lost
their smartphone. A majority of the subjects told us that their first action would
be to try to recover their device, by going through places they visited in the last
few hours. Four participants said that they use special applications to track their
devices, such as “Find my iPhone” [3] and would try to locate their smartphones
through this approach first. The answers of those who had lost their mobile phones
before did not show any differences.

In the case that subjects could not recover their smartphone within a couple
of hours, all participants told us that they would call their service providers and
block their line to avoid paying for someone else using their high cost services.
All participants who stored phone passwords in any form said that they would
change their passwords in a day or two after the loss. Not surprisingly, the phone
itself was also mentioned as a financially valuable asset to lose.

In the scenario when their smartphone had been stolen or used by someone
else, participants showed a different perception of risks, depending on who the at-
tacker was. Threat expectations were higher for 17 participants when the attacker
was someone who knows them. The participants also stated that when lending
their smartphone to their friends, they would like to keep an eye on them because
they had concerns about this person looking through their personal data, such as
messages and pictures. Most of the time they did not care about showing some

25

data, such as messages and emails, to complete strangers, but did care if such data
were seen by someone within their social circle.

Not surprisingly, 21 participants stated that they would like to store backups
of sensitive data at home on their PCs or external hard drives, rather than having
them online. Two Android users decided to disable synchronization with their
Gmail account completely because of privacy concerns. Moreover, half of the
participants only used external hard drives as a backup solution for their home
media files, such as videos, pictures and documents. Although most of them did
use some form of “cloud” storage, such as Gmail, Facebook or Dropbox, they
preferred to store only “shareable” content with these services. This is, also, con-
sistent with the findings of Ion et al. [74], where they studied users’ attitudes
towards adoption of cloud storage in general.

Out of 22 subjects, only seven participants used PIN-locks on their smart-
phones. Out of these seven, one subject used it only because of a company work
policy, and told us that he would not use it otherwise. Another participant said
that she only used PIN-lock to protect her SMS messages from her parents, and
found it annoying that she was not able to isolate and protect these messages. All
participants that used PIN-codes stated that they typed PIN-codes very often for
data that is both not sensitive and not valuable to them, such as weather forecasts
or games.

Those who previously used device locking with a PIN-code, but who switched
it off at some point, justified this decision by needing quick access to specific data
and functions of the device on the go or in specific circumstances. For instance,
one of the participants said that she gave up on using PIN-codes to lock her device
when she was at a party and needed constant access to the Internet to check certain
information. She found it highly inconvenient to type her PIN-code each time, so
she decided to switch off smartphone locking completely. Moreover, needing to
type PIN-codes or passwords in on-the-go situations rendered some users’ devices
unusable, especially when users were in a rush.

Similarly, users who did not use any type of PIN-code agreed that typing a

26

PIN-code for every application on their phone “does not make any sense”. For
those who did not use such locks, the main reasons were (1) subjects did not have
any sensitive data on their smartphones, (2) it was too inconvenient for them to
type their PIN code or password, or (3) they felt “socially-awkward” to type a
password in front of their friends or family members.

RQ5 - Experience with Unauthorized Access

Two subjects stated that they had been victims of unauthorized access to their
smartphones in the past. One subject said that she had to lock her smartphone
at home because her brother and parents tried to access her photos and messages
“I am enabling smartphone lock once I am home, to prevent my brother and my

parents going through all my pictures and SMS messages.” Another subject, a
female student who shared an apartment with other students, said that while she
was asleep, her roommates used her phone without her permission.

One subject admitted that she looked through all messages and pictures on a
phone that she found in a cinema theater “I first called to the last number in call

history [...] then I had to wait for them, so I decided to peek into photos and

messages, just out of curiosity. Would you not do the same?”.

2.3.3 Summary
The results of the qualitative study presented in this section provide a better un-
derstanding of users’ perspective on threats to smartphones, especially those that
are relevant to confidential data disclosure. In addition, the results of the study
sheds light on (1) the data types that smartphone users store on their devices, (2)
participants’ opinions on data sensitivity, and (3) security practices users employ
or do not employ and why.

Overall, the results of the qualitative study suggest that users store significant
amounts of sensitive data on their smartphones and that they are concerned with
the disclosure of such data if the device is lost or stolen. The majority of them,
however, tend to not take any actions in order to ensure confidentiality protec-

27

tion. In particular, only a few subjects used secure passwords, while the rest used
4-digit PIN-codes. Even more, the PIN-codes were considered unusable by a ma-
jority of the subjects and were often avoided completely. Subjects justified such
behavior by the need to have instant access to their data and applications, which
often appeared to be not sensitive (e.g., games, weather forecast applications, and
internet browsers).

Finally, this study provides evidence that users indeed experience unautho-
rized access to their devices and data. It is clear that these attacks are mounted by
both strangers and insiders. In particular, several subjects admitted that they had
been victims of such attacks, where one of them took proactive actions to defend
herself, by locking her phone at home (i.e., an insider attacker). Another subject
admitted that she accessed photos and messages on a phone she found in a cinema
theater (a stranger attacker).

2.4 Study 2 – Online Survey
Although Study 1 provided us with rich qualitative data, it did not allow us to
quantify different opinions, and hence, did not allow us to answer such quantita-
tive questions as “How many users use PIN-codes for device locking?” or “How

many users encountered unauthorized access to their devices?” To address this
knowledge gap, a quantitative study, based on online surveys, was performed.

2.4.1 Methodology
The design of Study 2 is based on the results of Study 1. In particular, the ques-
tions and structure of the online survey was defined around the identified data
types in Study 1. In addition, subjects were questioned about their perception of
threats and risks with two different types of adversaries in mind, i.e., a stranger

and an insider. In Study 2, we used an online survey, which allowed us to recruit a
larger and more diverse participant pool and measure statistical prevalence of var-
ious opinions, practices and experiences. To ensure clarity of the questions and

28

correctness of the data collection process, we conducted four pilot studies (be-
tween January and May 2012) with 60 subjects in total. Data from pilot studies
are not included in the analysis presented in this chapter.

The online survey consisted of four parts. In the first part, general questions
were asked about the use of smartphones. In particular, participants were asked
when they locked their smartphones and if they also used a code (either PIN,
Draw-a-Secret, or a password) to unlock it2. Next, the subjects were asked to visit
a web page on their smartphones. Our data collection tool used this opportunity
to record a UserAgent3 string from their smartphone. This allowed us to eliminate
subjects that did not provide evidence that they owned a smartphone.

The second part of the survey included questions about respondents’ previous
experience with their smartphones, e.g., loss or damage. Subjects were also ques-
tioned if they had previously accessed someone’s smartphone without permission,
and if someone had accessed their smartphone without their permission.

The third part of the survey contained questions about data types that subjects
stored on their smartphones. Participants were provided with a pre-populated list
of data types (compiled based on the results of Study 1) and were asked to select
those that they stored. An option to add a new type was also available. These
questions were asked twice, once for personal data and once for work-related
data.

In the final part of the survey, subjects were required to rate their agreement
with the following statement, “I would not have any concerns if Personal/Work

Data Type could be viewed by such a thief” on a 5-point Likert scale for each
data type. The following options were provided: Strongly Agree, Agree, Neutral,
Disagree, Strongly Disagree. The rating task was performed twice, once for a
stranger scenario and once for an insider scenario. The stranger scenario was

2Face and finger print recognition were not available at the time of this study.
3A UserAgent is a string that every browser sends to the web server. For instance, the follow-

ing string is sent from an HTC Sensation 4G that runs Android 2.3.4 - ”Mozilla/5.0 (Linux; U;
Android 2.3.4; en-us; HTC Sensation 4G Build/GRJ22) AppleWebKit/533.1 (KHTML, like Gecko)
Version/4.0 Mobile Safari/533.1”

29

presented as, “Assume your smartphone was just stolen by a person who does not
know you [sic],” and the insider scenario as, “Assume your smartphone was just
stolen by a person who knows you [sic].”

Finally, subjects ranked the importance of each data type they stored on their
smartphones. Ranking was performed twice, once for the stranger scenario and
once for the insider scenario. In each ranking task, subjects were asked to rank
the data types by their level of concern, with most concerned at the top and least
concerned at the bottom. A drag and drop user interface was provided for this
task.

We instrumented a custom survey website with tools that allowed us to track
the following: how much time each subject spent on each question; IP addresses of
the PC and smartphone used for the survey; and UserAgent strings for the PC and
smartphone. Later, these data were used to remove subjects that either skimmed
through the survey (23 subjects), or did not use a smartphone (942 subjects). The
UserAgent string was also used to measure the representativeness of our subjects
in terms of mobile platforms and OS versions.

In our data analysis, we used the Fisher Exact Test (FET) or Chi-Squared
Test (CHI) for tests on contingency tables. To analyze the differences between
sensitivity rates for strangers and insiders, we used the U-test (Wilcoxon rank
sum test). To analyze the differences between sensitivity ranks for strangers and
insiders, we used the Wilcoxon signed-rank test (WSRT).

Study 2 was conducted between May 16 and June 23, 2012. The survey was
available in the US, UK, Australia, New Zealand, and Canada on Amazon’s Me-
chanical Turk (MTurk); through other advertisement services, such as Kijiji and
Craigslist; and through “word of mouth” approach. The study was approved by
the UBC Behavioural Research Ethics Board (application H11-03512).

2.4.2 Results
In what follows we report the results of Study 2.

30

Demographics of Recruited Subjects

2,092 subjects were recruited for the online survey. 1,725 respondents success-
fully completed the survey, i.e., answered all required questions. Further investi-
gation revealed that only 783 of the subjects used their smartphones as required
in the smartphone ownership testing task. As was identified in the preliminary
pilot studies, the survey required at least 10 minutes to finish. This is why 23
participants, who finished the study in less than 10 minutes, were excluded from
the analyzed set. Finally, considering that the MTurk platform was the most suc-
cessful recruitment tool, we decided to remove subjects recruited through other
means, as to avoid having a user study that was difficult to re-produce.

The remaining 724 participants completed the survey in 25 minutes on av-
erage (std. dev., s=12.5). The majority of the participants were from the US
(634); the rest were divided between Canada (50), the UK (29), Australia (9),
and New Zealand (2). The majority of subjects used Android OS (391/51%)
and iOS (278/37%). We did not find a statistically significant difference for our
sample platform distributions and the distributions reported by Google and Kun-
zler [8, 68] (FET,p>0.08). Three hundred seventy of the subjects were male (51%)
and 354 of the subjects were females. The average age for the subjects was 25.6
years (s=5.98). The average annual income was $43k (s=$19k).

The list of occupations reported by the participants was diverse and included
more than 500 different titles in 16 various industry fields, such as agriculture,
business, construction, education, etc.

We compared the demographics of our subjects with the results reported by
Smith [105]. To the best of our knowledge, Smith’s study is the only study that
provides statistics on a representative sample of the US population of smartphone
users (n=2,253), and the majority of our subjects were from the US. For this part
only, all non-US subjects were removed (90). For the rest of the analysis, all
724 subjects were used. The analysis of differences between our US subjects and
the ones reported by Smith’s study [105] did not reveal a statistically significant
difference in gender distribution. However, there was a statistically significant

31

difference in age, income, and education. In particular, our participants appeared
to be younger (29.6, σ = 9.69,χ = 361.6676,d f = 3, p < 0.001). This, how-
ever, is not surprising, as it was previously shown that MTurk subjects tend to
be younger [88]. Although the differences in education and income distributions
were statistically significant (FET, p < 0.001), we consider them practically in-
significant due to small relative values. The average income in Smith’s study was
higher by 6% ($46k, sd = $20k), and the difference in education levels revealed
that our sample had 9% more subjects with a high school diploma and 9% fewer
subjects with a college or higher degree.

Demographic data analysis suggests that the recruited subject pool is a diverse
and a representative sample, at least for the US, with a slight bias towards younger
smartphone users.

RQ1 - Types of Data Stored on Smartphones

Subjects found the list of options for data types that we provided sufficient, since
only three of them added new types. The 15 most used data types are provided in
Table 2.4. Note that each data type name has a corresponding code, e.g., photos
and videos are coded as phv, which is later used in discussion and figures for
brevity.

RQ2 and RQ3 - Security Practices for Data Protection

The results of the online survey confirmed findings from the interview-based
study, which suggested that most of the subjects did not take appropriate actions
to protect their data on smartphones. In particular, only roughly half of the sur-
vey participants (379, 52%) locked smartphones with a code. These subjects are
referred to as the lock-using group (LOCK). The remaining (345) participants did
not use a locking system. We refer to this group as OPEN.

Subjects justified the necessity to lock their device by needing to limit access
to data or functionality. In particular, 64% (243) of subjects in the LOCK group
did so to prevent unauthorized access to their data, while 73% (278) of them did

32

Data Type (Label) %
1 - Photos and videos (phv) 94
2 - SMS/MMS messages (sms) 93
3 - Call history (cah) 90
4 - Emails (eml) 87
5 - Contacts details (cod) 87
6 - Music (mus) 81
7 - Browser search history (bsh) 74
8 - Browsing history (bwh) 73
9 - Events in calendar (evt) 73
10 - Notes and memos (n&m) 72
11 - Data in social networking applications (osn) 68
12 - Progress in games (gam) 68
13 - Documents (doc) 64
14 - Voice recordings (voc) 42
15 - Passwords saved in applications or passwords managers) (pwd) 37

Table 2.4: The 15 most used data types by the subjects. All cases include only data
types for personal use, since no work-related data types made it to the top 15.

so to avoid unauthorized use of the smartphone’s functionality.
Similar to the results of Study 1, the OPEN group included 155 subjects that

kept sensitive data on their smartphone and had used a locking system before, but
had stopped due to various usability problems (too many authentication prompts,
necessity to authenticate even if non-sensitive data was accessed, etc.). The other
190 subjects in the OPEN group did not have any sensitive data on smartphones.

Interestingly, most of the subjects in the LOCK group used either a PIN-code
(206) or a Draw-a-Secret (DAS) (168) authentication method, whereas only 52
used alpha-numeric passwords. Note that subjects were able to select multiple
types of authentication methods if they owned several smartphones, thus ∑n 6=
379. The participants from Study 1 justified the choice of PIN or DAS with ease of
use, in comparison to fully-fledged alphanumeric passwords. The distribution of
subjects’ justifications for using a smartphone lock is presented in Table 2.5, and
the distribution of reasons for not using a smartphone lock is shown in Table 2.6.

33

Reason n % CI (α =
0.05,
zα/2 =
1.96)

I feel comfortable having such protection 334 88 ±3.18
I do not want other people to use my phone services with-
out my permission

284 75 ±4.28

I do not want other people sneaking into my smartphone,
when I do not see it

246 65 ±4.7

I have confidential and sensitive data on my smart-
phone(s)

167 44 ±4.89

My employer requires that 25 7 ±2.39
I do not want my smartphone to "pocket dial" 6 2 ±1.2
My smartphone got stolen and i did not have a lock on it. 1 ≈ 0 -
I lose (and later recover) my cell phone a lot. 1 ≈ 0 -
It is a default on my phone 1 ≈ 0 -

Table 2.5: Distribution of reasons for using a locking system (N=379). Note that
N 6= ∑n, because the participants were able to provide multiple reasons. CI
stands for confidence interval, given the number of subjects that were able to
answer that question.

To summarize, a majority of subjects in the LOCK group used smartphone
locking to feel comfortable, to avoid others using their device or looking through
their data, or because they stored sensitive data (in some cases as required by their
employer). On the other hand, 58% of OPEN group subjects did not lock their
device because they did not store any data that required protection. Interestingly,
46% of subjects previously had locked their smartphones with a code, but stopped
doing so due to usability issues. These results are consistent with the findings from
the interview-based study, where subjects voiced concern about lack of granularity
in the current locking mechanisms of smartphones.

34

Reason n % CI (α =
0.05,
zα/2 =
1.96)

I do not have any data that I want to hide on my phone 200 58 ±4.86
I tried locks before and found them very inconvenient 159 46 ±4.9
I often need instant access to applications that do not store
any sensitive data (e.g. weather forecast, news, games)

145 41 ±4.84

It is not worth for me to use smartphone lock, because the
amount of data and applications that are sensitive are very
small compared to those non-sensitive

114 33 ±4.62

I do not save my passwords in applications and type it
every time I use an application that stores sensitive data
(e.g. email application, facebook application)

66 19 ±3.84

I do not care if my phone services will be used by some-
one

55 16 ±3.6

It’s always with me or in my sight 16 5 ±2.08
I did not have time to setup it (new phone) or I am lazy 5 1.38 ±1.15
I did not know about this feature 3 1 ±0.89
Other 6 2 ±1.25

Table 2.6: Distribution of reasons for not using a locking system (N=345). Note
that N 6= ∑n, because the participants were able to provide multiple reasons.
CI stands for confidence interval given the number of subjects that were able to
answer this question.

RQ4 - Security Concerns with Sensitive Data

To answer RQ4 the differences between users’ concerns with confidentiality of
their data were analyzed. First, we analyzed Likert scale ratings with U-test,
since the collected data were ordinal, and, thus, parametric tests (such as t-test,
ANOVA) were not applicable. The results of U-test revealed that out of the 32
data types subjects rated their concerns differently for only six types. In particu-
lar, subjects showed highest concern with an insider threat for SMS messages, call
history, browsing history, and search history in the browser. Additionally, subjects
were more concerned about strangers for contact details and progress in games.

35

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

Ratio of Concerned Subjects, % (Stranger)

R
at

io
 o

f C
on

ce
rn

ed
 S

ub
je

ct
s,

 %
 (

In
si

de
r)

(a) Rates

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

gam
mus

gps
evt
voc
bsh
bwh
cah
n&m

cod
doc
phv
osn
sms

eml
pwd

m
us

ga
m

bs
h

bw
h

ca
h

sm
s

ev
t

os
n

gp
s

ph
v

vo
c

co
d

n&
m

do
c

em
l

pw
d

r=
0.

91

●●
●

●
●●

●

●

●

●

●
●

●

●

●

●

Sensitivity Rank (Stranger)

S
en

si
tiv

ity
 R

an
k

(I
ns

id
er

)

(b) Ranks

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Lo
w

er
 S

en
si

tiv
ity

H
ig

he
r

S
en

si
tiv

ity
Lower Sensitivity Higher Sensitivity

gam

gps
mus

voc
bsh
evt
bwh
cah
n&m
osn
doc

cod
pwd
phv
eml
sms

ga
m

m
us

gp
s

os
n

bw
h

vo
c

bs
h

ev
t

ca
h

n&
m

ph
v

pw
d

sm
s

do
c

co
d

em
l

r=
0.

96

Figure 2.2: The proportion of concerned users with sensitivity in the presence of a
stranger (horizontal axis) and in the presence of an insider (vertical axis). Data
labels across the vertical axis and circles in the plots represent data types for
personal use; data labels across the horizontal axis and squares in the plots
represent data types for work related use. Filled shapes and red-colored data
labels represent statistically significant differences between subjects’ concerns
with respect to a stranger and an insider (U-test for rates, WSRT for ranks,
p < 0.05). The meanings for the abbreviated data type labels are in Table 2.4.

Figure 2.2a shows the proportions of subjects that were concerned with strangers
(x axis) and insiders (y axis) for every data type. The proportion of concerned sub-
jects for a data type was estimated as a fraction of the number of subjects that were
either concerned or highly concerned with unauthorized access to the total number
of subjects that stored such data. This plot shows that users’ concerns with regards
to both adversaries are highly correlated (r=0.91), which suggests that both types
of adversaries are worth considering.

Statistical analysis of ranks for data types revealed 11 statistically significant
differences (WSRT, p < 0.05). Most of the differences, however, had small ab-
solute values, and could be ignored. For each of the data type we calculated an
average value of the user provided rank and plotted results on Figure 2.2b. Simi-

36

Description of the experience n/%
E1 - I have left my mobile phone at some place, but recovered it
later (e.g., at my friends’ place, in a restaurant, at parents’ house, at
school, etc.)

363/50

E2 - I have broken my mobile phone before, so that it was not usable 335/46
E3 - I have lost my mobile phone before and did not find it 165/23
E4 - Someone used my mobile phone without my permission with
intention to use its functionality (phone call, browsing the Internet,
etc.)

100/14

E5 - I used someone’s mobile phone without owner’s permission for
some functions (phone call, browsing the Internet, etc.)

102/14

E6 - Someone used my mobile phone without my permission with
intention to look at some of my data

89/12

E7 - I used someone’s mobile phone without owner’s permission to
look into his/her data

66/9

Table 2.7: The distribution of “negative” experience of the participants (N = 724).

lar to the ratings, the correlation between ranks of user concerns for both types of
attackers was high (r=0.96).

From these results, we can conclude that while users are concerned with unau-
thorized access to their data, these concerns are somewhat different for various
data types. For example, users are more concerned with insiders gaining unautho-
rized access to their SMS messages, call history or browsing history. At the same
time, users are more concerned with strangers if contact details are at stake.

RQ5 - Experience with Unauthorized Access To Smartphone

A summary of subjects’ “negative” previous experiences is provided in Table 2.7.
Half of the subjects had left their phones behind before. While such experience
does not necessarily translate into theft or loss, it does make their device an easy
target, since an attacker would have plenty of time to go through data. Almost a
quarter of subjects (23%) that lost a device did not recover it.

Interestingly, 12% of the subjects had found that someone accessed sensitive

37

data on their smartphones without their permission. Furthermore, 9% had admit-
ted looking into someone else’s smartphone without permission. These results
provide empirical evidence that unauthorized access to data and functionality by
insiders impacts about 10% of smartphone users. Subjects from Study 1 justified
these invasions of privacy by simple curiosity (e.g., for partners or roommates)
or by an urge to take care of and be informed about their children, i.e., parents
"snooping".

We performed a logistic regression analysis in order to identify groups of
smartphone users that had higher chances of being a victim of an authorized ac-
cess. Logistic regression is best suited for models with binomial independent vari-
ables – in this case, those who have or do not have experience. In this analysis, we
only analyzed the experience related to an unauthorized access (i.e., E4-E7). We
built a model for each experience separately, four models in total. If a subject had
such an experience, then we coded it as 1, otherwise 0. For independent variables,
we considered the following values: A -Age, G - Gender, and L - Lock Use. For
binomial independent variables (Gender, Lock Use), we used bipolar representa-
tion (-1,1). Equation 2.1 shows the form of the model we investigated, where Ex

stands for one of the experiences from E4-E7.

Ex =
ea0+a1G+a2L+a3A+a4GL+a5GA+a6LA+a7GLA

1+ ea0+a1G+a2L+a3A+a4GL+a5GA+a6LA+a7GLA (2.1)

The intuition of the model shown above is to assess if a given experience is
correlated with subjects’ attributes, such as age or gender [108]. The goal of logis-
tic regression analysis is to eliminate attributes that do not have significant impact
on an experience. In addition to the analysis of attributes, we also had to con-
sider any interaction effect that might arise from a combination of variables, e.g.,
younger females or adult males who do not lock their device. These interaction
effects are represented as GL, GA, LA and GLA variables in the equation above.

Logistic regression analysis revealed that, for all four models, all interaction
effects were not statistically significant (p > 0.174), and thus could be removed
from the model. Furthermore, Gender and Lock Use also showed statistically

38

Experience a0 a1 p RD AIC R2

E4 -2.95 -0.53 < 0.001 546 550 0.09
E5 -2.90 -0.51 < 0.001 554 558 0.08
E6 -2.70 -0.36 < 0.001 521 525 0.05
E7 -3.13 -0.52 < 0.001 425 429 0.05

Table 2.8: Parameters of logistic regression models, where a0 is intercept, a1 is the
coefficient in front of Age variable, p is the biggest p-value for both a0 and a1,
RD is the residual deviance, AIC is Akaike Information Criterion, and R2 is
Nagelkerke R-squared.

insignificant prediction power on the experience (p > 0.185). That is why we
simplified our models to the form shown in Equation 2.2. The parameters of the
models are shown in Table 2.8.

Ex =
ea0+a1A

1+ ea0+a1A (2.2)

First, the logistic regression analysis revealed that our models did not have
strong predictive power since R2 values were low. However, the coefficients of
intercept and age showed a statistically significant difference from zero. Negative
values of the intercept and the coefficient for age showed that the younger subjects
had higher chances of experiencing unauthorized access. This is also depicted in
Figure 2.3, where a larger ratio of younger subjects had experienced E4-E7. This
might be attributed to various factors. For instance, younger smartphone users
might tend to share their devices more frequently, or younger students often share
accommodation with others while attending college or university.

2.4.3 Summary
The results of Study 2 confirmed the findings of Study 1. In particular, users
were concerned with an unauthorized access to their devices for both data and
functionality. Furthermore, the results provided evidence that threat of an insider
attacker impacts about 10% of smartphone users. That is, 12% of smartphone

39

%
 o

f P
ar

tic
ip

an
ts

0

5

10

15

20

25

30

35

40

E4 E5 E6 E7

Subjects' Age

10−14
15−17
18−24
25−29
30−34
35−39
40−44
45−49

Figure 2.3: Distribution of the experiences E4-E7 (meaning for these labels are pro-
vided in table 2.7) over participants’ age groups. We removed all the subjects
that were younger than 10 and those that were 50 or older for clarity purposes.

users have experienced unauthorized access of their data or functionality, and 9%
of the participants admitted that they had accessed someone else’s smartphone
without permission.

Study results suggest that most subjects (95%) who locked their smartphones
(i.e., subjects in LOCK group, n=379), used PIN or DAS authentication meth-
ods. According to the recent research [55, 71], these methods are not resistant to
eavesdropping, especially when users are distracted by other factors [48]. Even
more, as was explained in Chapter 1, such unlocking secrets fall into easy-to-guess

category. This is why we argue that the effectiveness of data protection systems
against attackers that steal a victim’s device is at least questionable and requires
further research.

40

2.5 Limitations
The design of this study has several limitations. First, both Study 1 and Study
2 rely mainly on self-reporting, which is subjective, e.g., subjects might have not
understood certain terminology. In order to reduce this risk to validity, we avoided
security terminology and jargons in the questionnaire. In addition, a set of pilot
studies for both Study 1 and Study 2 were carried out, in order to improve the
clarity of the interview and survey questions.

Second, because the results of Study 2 are based solely on smartphone owners,
the results in Table 2.7 should be treated as a lower bound. In addition, users
might be reluctant to report on socially unacceptable behavior, such as snooping
into someone’s phone without permission. It is also possible that a user might not
know if someone had accessed his or her smartphone without permission.

Finally, the participants of this study were recruited on the MTurk platform,
which has been reported to differ [88] from the population of smartphone users [105].
Even though, alternative recruiting methods were used during subject recruitment,
they unfortunately proved to be less effective. The comparison of demographics
between recruited subjects and the previously reported population of smartphones
users in the US [105] did reveal statistically significant differences. Most of them,
however, were insignificant in practical terms.

2.6 Related Work
Several authors have investigated user concerns with the security and privacy of
their smartphones. Chin et al. [46] conducted a user study to understand how
concerned users are about their privacy when they use smartphone applications,
especially for sensitive tasks like banking or shopping, etc. The authors found that
users do tend to reduce the frequency of such activities because they are highly
concerned with privacy. The participants attributed the cause of their behavior
to fear; interestingly, theft and loss of a smartphone were among users’ top five
indicated fears. Unfortunately, none of these fears were investigated further. In

41

particular, it is still unclear if these fears reflect real threats, and whether or not
users had experienced such threats.

Dorflinger et al. [54] investigated users’ attitudes towards gradual security lev-
els and novel authentication methods. Although the authors provide a better un-
derstanding of user concern with novel authentication methods for smartphones,
the question of how concerned users are with sensitive data in their smartphones
remains unanswered. Even more, it is not clear what kinds of data users consider
to be sensitive and if such sensitivity depends on who the attacker is. The studies
presented in this chapter, on the other hand, fill this knowledge gap.

Similarly, Ben-Asher et al. [42] studied users’ attitudes towards alternative
authentication methods and the sensitivity of data and smartphone functionality.
The authors, however, considered a limited set of data types, which only included
seven different types of data. The authors also did not investigate how data sen-
sitivity varied with different types of attackers, such as insiders or strangers. To
improve on these results, subjects in both user studies presented in this chapter
were allowed to provide their own data types. In addition, subjects assessed data
sensitivity for two scenarios: (1) when data is leaked to a stranger, and (2) when
data is leaked to an insider.

The research community has paid a lot of attention to evaluating novel au-
thentication methods in recent years. For example, Shi et al. [102] and Riva et
al. [94] evaluated implicit authentication methods for smartphones based on user
behavior or context. Hayashi et al. [72] discusses possible extension to the whole
approach of how we lock our mobile devices. In particular, the authors suggest
that we could automatically detect specific environments and disable smartphone
lock, if the environment is considered to be safe. In all the aforementioned papers,
the authors made the following crucial assumption; that environments can be eas-
ily classified into safe environments, e.g., home or work, and not safe. By being
able to detect safe environments, the authors were able to reduce the number of
authentication attempts for a user, and thus, improve device locking usability.

In September 2013 Apple unveiled the Touch Id sensor in the new iPhone

42

5S smartphone. The finger-print sensor was designed to improve user experience
with unlocking smartphones by simply pressing the home button. Such a design,
however, raises an interesting research question “How does technology like Touch
Id affect the strength of locking secrets that users choose?” Although Touch Id ad-
dresses certain usability problems (e.g., being able to unlock devices on the go),
the strength of unlocking secrets is still crucial for confidentiality protection of
data in smartphones. When a user fails to unlock his iPhone with a finger print,
the device will ask for the unlocking secret. Furthermore, the underlying data
encryption sub-system also uses unlocking secrets in the encryption key deriva-
tion process. Having a guessable unlocking secret increases the chance that an
attacker will mount a successful password guessing attack, and sequentially gain
unauthorized access to data-at-rest.

To understand how the use of Touch Id impacts users’ selection of unlocking
secrets, Cherapau et al. [45] conducted three user studies based on interviews
and surveys. The authors began with a study based on in-person surveys, which
allowed us to measure the adoption of Touch Id and the strength of unlocking
secrets. They then proceeded with interviews to understand the justification for
the chosen unlocking secrets used with Touch Id. Finally, an online survey was
conducted to measure the prevalence of the various adoption strategies established
in the first two studies. Overall, the results of the study revealed that users do
not take full advantage of the Touch Id sensor and still use guessable unlocking
secrets. In particular, there was no statistically significant difference observed
between the size of the search space of unlocking secrets chosen by users that used
Touch Id and those that did not. That is, both groups relied mainly on 4-digit PINs.
Similarly to Study 1, presented in Section 2.3, participants stated that they adopted
short PIN codes instead of alphanumeric passwords because of the better usability
of the former. These results suggest that the addition of biometric sensors, such
as Touch Id, has not changed the current state of affairs on data security in lost or
stolen smartphones. After we published our results, Apple introduced an option
for using 6-digit PIN codes. It is still unclear, however, how many users would

43

switch to this option, given that more than 30% of subjects in the Touch Id study
were unaware that they could choose to use alphanumeric passwords.

Asking participants to admit socially undesirable behavior has its limitations,
since users might be reluctant to share such information with others. To address
this limitation Marques et al [83] used an anonymity preserving list survey exper-
iment, which allowed users to share their experience without explicitly admitting
their actions [84]. List experiments employ a between subjects design, i.e., two
distinct groups of subjects. Both groups are presented with a list of activities
or opinions, and the subjects are required to report the number of items that they
have done or share. The lack of explicit selection provides subjects with a sense of
anonymity. The control group has a list of four items, where two of the items cho-
sen are highly likely to be selected by participants, e.g., brushing teeth or drinking
water. The other two options chosen are highly unlikely to be selected by the
participants, e.g., flying to the Moon. The treatment group also includes an extra
option, which in our case was the act of snooping on someone else’s smartphone.

For each of the groups the authors analyzed the reported numbers of items
users selected. The difference between the averages corresponds to the ratio of
subjects in the treatment group that selected the extra option. The results of the
analysis revealed that the snooping rate was significantly higher, i.e., 31% in the
recruited subjects pool, or 1 in 5 adults, if the results are prorated for the general
population of smartphone users in the US. In addition, the results of this study con-
firmed the correlation between age and snooping behavior; younger smartphone
users had a higher chance of being a victim of a snooping attack.

To gain a better understanding of how often users unlock their devices on
a daily basis, Mahfouz et al. [82] conducted a field study with 41 smartphone
users. Each participant installed a custom built monitoring application and ran
it for at least 20 days. The application collected various data about smartphone
usage, including the number of successful and unsuccessful unlocking attempts,
the length of unlocking attempts, the number of failed unlocking attempts and
other events. The results of the study revealed that users who used an unlocking

44

secret unlocked their smartphone more frequently, i.e., 51 times a day on average
against 41 times a day. Users who relied on PIN-codes were also less prone to
make a mistake during the authentication process (0.5% error rate) in comparison
to users who used Draw-A-Secret (3.5%) or an alpha-numeric password (4%).
Although Draw-A-Secret (DAS) showed a significantly higher error rate than PIN-
codes, it was used by 69% of subjects that used unlocking secrets, whereas PIN-
codes were adopted by 22%. This suggests that users are willing to compromise,
to some extent, the error rate of the authentication methods in smartphones for
usability. Yet, it is still unclear which usability properties of an authentication
method are the main factors for such decisions, e.g., ability to remember and
recall secrets easily, ability to enter the secret easily, or ability to use the method
while distracted and on the go, etc. It is also not clear to what extent users are
willing to tolerate the error rate.

2.7 Discussion and Future Work
The results of Studies 1 and 2 revealed that users do store various types of data on
their smartphones, including both relatively small data items, such as SMS mes-
sages, and large data items such as photos and videos. Sensitivity of data varied
and also depended on the type of attacker. For instance, while contact details were
considered sensitive if a stranger accessed them, users were not concerned with
an insider reading them. On the other hand, users had higher concerns with an
insider accessing certain personal data records, such as SMS messages. This sug-
gests that a data protection system for smartphones should be both (1) efficient
at supporting data types of various sizes, and (2) provide effective protection for
data types against both insiders and strangers.

This chapter also presented analysis on the security practices users employ
today, in order to protect confidential data in smartphones. In particular, while half
of the recruited subjects used an unlocking secret, 95% of them chose either DAS
or PIN-codes. These methods, however, allow the attacker to mount a relatively
inexpensive password guessing attack. For example, it takes less than a second to

45

go through all combinations of 4-digit PIN-codes for Android OS [104] and about
14 minutes for iOS [34, 37]. Even more, research by Raguram et al. [93] showed
that these unlocking secrets can be reconstructed from recording reflections of a
smartphone screen.

The results of the study on the impact of Touch ID on users’ choice of un-
locking secrets revealed that smartphone users still preferred weaker, easier to
use authentication methods. Even more, about a quarter of the surveyed subjects
stated that they previously used a locking secret, but decided to disable it due to
various usability issues. Interestingly, a follow-up study revealed that a higher er-
ror rate of authentications does not necessarily correspond to a lower adoption rate
(i.e., PIN-codes and DAS). This shows the importance of authentication method
usability in smartphones for choosing which method to adopt. Considering that
the same set of authentication methods is still being used today, and that the ad-
dition of finger print sensors, such as Touch ID, have not increased the entropy of
unlocking secrets users choose, a data protection system should not assume that
users will employ a hard to guess authentication secret to keep data in smartphones
protected.

Another important result of the studies presented in this chapter is that the re-
sults of the studies provide evidence that smartphone users experience attacks by
insiders. In particular, 89 subjects (or 12%) in Study 2 had caught someone from
their social circle snooping through their smartphone without permission. Even
more, 9% of surveyed subjects admitted that they had accessed data in some-
one else’s smartphone without permission. The accuracy of this estimate was in-
creased in the followup study [83], by revealing that 1 in 5 users in the US looked
through someone’s smartphone without permission.

These results suggest that novel authentication methods, especially those that
are proposed to be used in smartphones, have to be evaluated against attackers that
are as capable as insiders. In addition, the assumptions that the research commu-
nity makes about safety of certain locations should be reevaluated. For example,
both Riva et al. [94] and Hayashi et al. [72] proposed approaches to reduce the

46

frequency of required authentications for smartphone unlocking based on loca-
tion type. In particular, these authors assumed that home is safer and proposed
disabling smartphone locking at home completely. The studies presented in this
chapter, however, suggest the opposite, that the home can be full of insider at-
tackers. This is especially true when a user has a roommate or a family member
willing to peek into their smartphone.

Finally, the results presented in this chapter show that younger demographic
groups have a higher risk of experiencing unauthorized access by insiders. It
is still not clear, however, which factors increase or decrease this likelihood. The
fact that younger users often share accommodation while in school could be one of
such factors. Living with parents and siblings might also contribute to the increase
of insider threat. Finally, more relaxed social norms, such as over-sharing, could
also increase chances of unwanted access to data in a smartphone by an insider.

2.7.1 All-or-Nothing Locking Approach
These results presented in this chapter suggest that there is a gap in what the
current smartphone locking systems provide and what smartphone users actually
need, especially to protect themselves from insiders. Future research should focus
on how to deter and prevent such attackers from unauthorized access. For exam-
ple, in addition to smartphone locking, one can use facial recognition to detect
when the current user is not the owner of the smartphone. The recently introduced
Face ID unlocking mechanism in iPhone X could be the enabling technology for
such an approach. In cases when a smartphone owner needs to share his device
with someone, researchers might propose an easy-to-configure interface that un-
locks certain parts of the smartphone that the owner considers public.

Recent research also studied contextual awareness for the unlocking process [73,
79, 92]. In such proposals, the context usually defines the complexity and usability
of the unlocking process. In safe environments the user is required to go through
a simple authentication mechanism, such as PIN-code or DAS. In untrusted envi-
ronments the unlocking process relies on stronger authentication methods. Such

47

approaches, however, might increase the mental load on users, and will have to be
more carefully studied "in the wild".

Other researchers have tried to improve the current “all-or-nothing” model for
smartphone locking. In such a model, the locking of a smartphone is either fully
enabled or completely disabled. The all-or-nothing model, as the results from our
studies showed, pushed 20% of smartphone users to disable smartphone locking.
To address these limitations, Riva et al. [94] and Hayashi et al. [72] proposed
automatic disabling of locking in certain assumed-to-be-safe locations, work or
home. The results from our user studies, however, showed that these assumptions
are questionable. In particular, the results revealed that these locations are full of
insiders and users do experience invasion of privacy by such attackers. Thus, it
is still not clear how to design a more granular access control system that takes
context into account and provides greater flexibility to the users, while defending
the users against potential insiders.

Finally, our studies also revealed that younger smartphone users have a higher
risk of experiencing unauthorized access by insiders. It is still not clear which
particular factors increase or decrease this likelihood. The fact that younger users
often share accommodation while in school could be one of such factors. Liv-
ing with parents and siblings might increase the insider threat. Further, more re-
laxed social norms, such as over-sharing, could also be a factor that increases the
chances of unwanted insiders access. Future research needs to aim at improving
our understanding of factors that impact such experiences.

2.7.2 Improving Security of Unlocking Methods
Increasing the complexity of unlocking secrets that smartphone users choose leads
to stronger security of full-disk data encryption, since this derives its encryp-
tion key from the unlocking secret. This can be achieved by either nudging
users to pick stronger unlocking secrets, or by improving authentication meth-
ods themselves in terms of security and usability. Persuading users to choose
more complex secrets have been vastly studied in the usable security domain (e.g.,

48

see [58, 66, 77, 106]). For example, Egelman et al. [58] and Ur et al. [106] studied
the effect on password strength meters on users’ choice. While the results from
both studies showed that password meters can be effective in improving users’
choice, it is still unclear how these results would translate to mobile context, such
as smartphone or typing on the go. Forget et al. [66] studied effectiveness of per-
suasive text passwords (PTP). In PTP, once a user chooses a password the system
automatically adds a random character in a random place. User is allowed to shuf-
fle the character and the position until he finds the combination that he accepts.
The results of the user study showed this approach was mostly effective, with ex-
ception of password that were randomly chosen to begin with. Finally, Komanduri
et al. [77] studied the effect password selection policies have on the actual security
of passwords that users choose. Surprisingly, the study revealed that commonly
adopted practices, such as requirement of having a special character in the pass-
word, lead to less secure passwords, while simple policies, such as lower-case 16
characters, allow users to choose less guessable passwords.

Other researchers have focused on improving the authentication methods them-
selves. For instance, both De Luca et al. [49, 50] and von Zezschwitz et al. [107]
have proposed novel authentication methods that improved the usability of user
authentication in smartphones, while addressing specific types of attacks, e.g.,
shoulder surfing [59, 99, 113]. These proposals, however, are still prone to pass-
word guessing attacks, due to a relatively small search space for authentication
secrets, which is comparable to a commonly adopted 4-digit PIN-code.

Recent improvements in sensor capabilities provide additional opportunities
for improving the usability of existing authentication methods that are believed to
be unusable. For instance, a finger print scanner in iPhones (Touch ID sensor),
significantly reduces the frequency of user authentication based on secrets. This
makes it possible for a user to choose a more complex alpha-numeric password
instead of relying on a 4-digit PIN-code. Unfortunately, one of the follow up
studies [45] revealed that smartphone users still prefer easy-to-guess authentica-
tion secrets, such as 4-digit PIN-codes. The main reasons for such preferences

49

were unawareness that a more complex option was available and the need to share
unlocking secrets with others.

Finally, it is still unclear to what extent easy-to-guess unlocking secrets are
being exploited. While there is some anecdotal evidence that attackers try to ac-
cess private data on a stolen device (e.g., Honey Stick Project by Symantec [9]),
such results were not obtained in a scientifically sound manner. In this work I
assumed an opportunistic attacker – an attacker that aims to profit from the stolen
smartphone itself, but who opportunistically tries to access data as well. There is
no evidence to suggest that such attackers pose a real threat. This is why future
research should also attempt to uncover the impact of data breaches that originate
from stolen smartphones for which users choose easy-to-guess unlocking secrets.

2.8 Challenges
Conducting user research is challenging, but doing research on sensitive mat-
ters, such as private data in smartphones, adds another dimension of complexity
- ethics. Researchers are bound to high ethics standards that often make certain
kinds of research impossible. For example, when researchers attack existing sys-
tems, they often are limited to using the researchers themselves as subjects, e.g.,
evaluation of a shoulder surfing attack [93], or must clearly state their intent before
the attack. Both of these approaches impact outcomes through bias.

In particular, in late 2012 I tried to evaluate the assumption that users are
vulnerable to eavesdropping attacks in public places, such as coffee shops and
while using public transit. The study design was based on observing users in
real settings to assess (in)security of their unlocking secrets. To limit subject
bias, we planned to approach subjects for debriefing and consent for including
their data in the analysis after the observations were made. While initially our
study was approved by the ethical board, the application was rejected two months
later4. This made it impossible for me to assess how easy it was for an attacker to

4Application H12-02254, titled “Smartphone Unlock in a Wild”. Approved on December 19,
2012. Rejected on February 25, 2013

50

eavesdrop a user’s unlocking secret before stealing their smartphone.
Similarly, it is challenging to assess how often user data is being accessed

by insiders, since it is challenging to obtain consent from the insider attackers
without impacting their behavior. Furthermore, when it comes to strangers, it is
unclear how often they actually try to guess unlocking secrets and decrypt data.
All we have at the moment is the anecdotal evidence that attackers are interested
in accessing private data and that users employ easy-to-guess unlocking secrets.

2.9 Conclusion
This chapter presents the results of user studies that focused on understanding
users’ concerns with sensitive data in smartphones in the presence of two different
types of attackers, insiders and strangers. It provides evidence that an insider
threat is real and that 1 in 5 users in the US had peeked into someone else’s
smartphone without permission. In addition, the studies revealed that the vast
majority of smartphone users employ unlocking secrets that can be guessed within
minutes. It also appears that the introduction of novel authentication mechanisms,
such as Touch ID, did not have a considerable effect on password complexity.

These results suggest that research on novel authentication methods for smart-
phones needs to account for an attacker as capable as an insider. An insider is
an attacker who aims to eavesdrop an unlocking secret and mount a so-called
lunchtime attack, where a victim leaves her device unattended for a brief span of
time, sufficient for the attacker to unlock it and gain unauthorized access to sen-
sitive data. In addition, researchers should not assume that smartphone users will
choose an unlocking secret that is complex enough to keep their sensitive data
protected. As the results of the conducted studies suggest, the state is the oppo-
site, users prefer choosing unlocking secrets that are easy to memorize and type,
which, unfortunately, are also easy-to-guess for attackers.

51

Chapter 3

Analyzing Cryptographic API use in
Android Applications

While smartphone users can protect of their data by choosing an unlocking secret
that is hard to guess for an attacker in a reasonable amount of time (e.g., tens
or hundreds of years), developers control secrecy of their applications’ data by
using encryption algorithms and protocols in a secure fashion. In this chapter I
present the results of the analysis of how application developers use and misuse
a set of cryptographic functions that are commonly employed for encryption key
derivation, secure random number generation and symmetric ciphers.

3.1 Motivation and related work
The research community has paid a lot of attention to the (mis)use of cryptogra-
phy in smartphone applications. For instance, Lazar et al. [78] studied Common
Vulnerabilities and Exposures (CVE) that were reported between January of 2011
and May of 2014 that were related to cryptography. The results of their analysis
showed that 83% of the CVEs were introduced by application developers that in-
correctly used Crypto API. To understand how this issue can be addressed, Acar
et al. [36] studied the usability of several cryptographic libraries. The results of

52

their user study suggested that while making the Crypto API simpler had its bene-
fits, application developers still required proper documentation, code samples and
certain features to be available for the library to be used properly.

Several researchers used static analysis methods and tools to analyze Crypto
API misuse in Android application binaries. For example, Fahl et al. [62] studied
the misuse of asymmetric cryptography for SSL/TLS protocols, and certificate
validation in particular. The analysis of 13,500 top free Android applications
revealed that 8% of the analyzed applications misused SSL/TLS API, which made
these applications potentially exploitable.

Egele et al. [57] designed and implemented the CryptoLint system based on
AndroGuard [23] framework. CryptoLint used static analysis to identify misuses
of Crypto API in Android applications. The authors defined six rules for correct
use of Crypto API, which were either based on formal definitions, such as Indis-

tinguishability under chosen-plaintext attack (IND-CPA) notion of security [52],
or recently published reports. For instance, the use of the Electronic Code Book
(ECB) mode of operation for symmetric ciphers is considered to be insecure under
IND-CPA, since symmetric ciphers in the ECB mode produce exactly the same ci-
phertext for two identical plaintexts, allowing attackers to identify plaintext by the
corresponding ciphertext.

Other rules, e.g., the use of SecureRandom class, require that developers do
not use static seed values, since using static values makes a random number gen-
erator (RNG) predictable. If a predictable RNG is used for encryption key gener-
ation, then an attacker can seed his RNG with the same static value, generate the
same encryption key, and, eventually, decrypt data.

When it comes to password-based encryption key derivation functions (PBKDF),
one should be careful with two parameters: (a) the salt value, and (b) the number
of iterations. The use of a static salt value allows attackers to employ a rainbow
table approach [87], which can significantly reduce the computational efforts re-
quired to mount a successful password guessing attack. The number of iterations
defines how much computational work an attacker needs to do for a single pass-

53

word candidate. Choosing the number below the recommended value of 1,000
iterations, results in faster computation for attackers.

The results of the analysis based on the CryptoLint system revealed that 88%
of Android applications that used Crypto API violated at least one rule. Sim-
ilarly to the CryptoLint study, we focus on the same set of rules (replicated in
Section 3.2), while introducing source attribution to the analysis pipeline. In ad-
dition, we extended the original dataset of the CryptoLint study by adding newly
collected applications from 2015 and 2016. To make reproduction of similar stud-
ies easier in the future, we made the BinSight tool available as open source.

Other researchers focused on libraries or source of the information the de-
velopers used. For instance, Derr et al. [39] studied how promptly application
developers adopt new versions of libraries, especially when there is a known vul-
nerability in the library. While doing so, the authors also evaluated the six rules
defined in the CryptoLint study for the identified libraries. Unsurprisingly, the re-
sults of the analysis revealed that libraries violated these rules too. In comparison,
we studied violations that originated from either of the sources, i.e., a library or
an application itself. Acar et al. [35] studied how the source of information that
applications developers used during implementation of the applications impacted
code security. The results of the studies showed that developers with no security
background often use sources, such as Stack Overflow, that frequently contain
insecure snippets. Furthermore, majority of the applications on Google Play con-
tained security related errors that were common in the wild, including discussion
threads on Stack Overflow. Similarly, Fisher et al. [64] showed that 15.4% of
applications on Google Play contained security-related code snippets from Stack
Overflow, 97.9% of which were insecure.

To summarize, while previous research has looked into either libraries or An-
droid applications as a whole, there are still several open research questions on
misuse of Crypto API. That is, it is unclear how similar or different the misuse
of Crypto API in applications themselves and libraries. In addition, it is not clear
if either of these source has changed since 2012 and how. Finally, it is unclear

54

if libraries or applications contribute the most of Crypto API misuse cases. To
answer these questions we ought to be able to attribute calls to Crypto API to
libraries or to applications. From practical perspective, attributing a Crypto API
misuse to its source has several important implications. First, one needs to clearly
identify the responsible party for fixing the bug. Second, identifying the source
of a misuse allows researchers to reduce over-counting of bugs, by identifying
ones that originate from libraries. In addition, by being able to analyze binaries,
the BinSight tool allows applications developers to obtain an insight into how a
library (mis)uses Crypto API. This allows them to make an informed decision on
whether or not they want to use this library in their application.

3.2 Common rules in cryptography
Similarly to the CryptoLint report [57], we analyzed the same set of rules for
secure use of Crypto API. Throughout the rest of this chapter I use the term APK

file to refer to an Android Application binary as a whole, i.e., when the origin
of a call to Crypto API is not taken into account. Such treatment of Android
applications as a whole resembles the reporting approach from the CryptoLint
study [57]. I use the term applications to refer to the cases when Crypto API calls
originate from Android applications themselves. Finally, I use the term libraries

to refer to the cases where Crypto API are called from libraries.
An APK file was flagged as misusing Crypto API if it contained a violation of

any of the rules from any source. While one can declare these APK files as inse-
cure, we note misuse of Crypto API does not imply an exploitable vulnerability.
The main reason for this argument is that developers might be using cryptography
for purposes other than data confidentiality or integrity. For example, one might
use Crypto API for obfuscation. In the rest of this section, the Crypto API use
rules are explained in more detail. For a complete description of rules and their
in-depth justification, please refer to the CryptoLint study report [57].

55

3.2.1 Symmetric key encryption
A block cipher is a deterministic algorithm that operates on fixed-length groups
of bits, called blocks, with an unvarying transformation specified by a symmetric
key. A stream cipher, on the other hand, is a stateful algorithm that combines
plaintext digits with a pseudo-random keystream, which is generated from a sym-
metric key. Block and stream ciphers are used in symmetric key encryption to
encrypt messages of arbitrary length. It is important to know that a symmetric
key encryption scheme must be either probabilistic or stateful to be IND-CPA
secure [40].

In block ciphers, a mode of operation defines security properties the cipher
would provide, such as confidentiality. A popular mode is electronic codebook
(ECB), which is a stateless, deterministic algorithm defined over a block cipher.
As such, the ECB mode is not IND-CPA secure. The major problem with ECB
mode is that identical messages encrypt to identical ciphertexts, which represents
an information leak that is often intolerable. Still, ECB mode is commonly con-
sidered secure if the message is smaller than the size of the block in the underlying
cipher, and all messages are unique. Therefore,

Rule 1: Do not use ECB mode for encryption.

Another popular mode of operation is ciphertext block chaining (CBC), which
is an encryption algorithm that is built from a block cipher, where each block of
plaintext is XORed with the previous block of ciphertext before being encrypted
with the block cipher. The first block of plaintext is XORed with an initialization
vector (IV). Using a constant IV will result in a deterministic, stateless cipher,
which is not IND-CPA secure. Thus,

Rule 2: Do not use a constant IV for CBC mode.

Any symmetric encryption scheme, defined using a block or a stream cipher,
should not reveal its key. If the key is hard-coded into a publicly-available applica-
tion as a constant, then the key is not private, and so the resulting encryption does

56

not provide confidentiality. Symmetric encryption schemes commonly assume a
randomized key generation algorithm that should be used instead. Accordingly,

Rule 3: Do not use constant encryption keys.

3.2.2 Password-based encryption
User-created passwords are often predictable and prone to offline password guess-
ing attacks [101]. For technical details on how an offline password guessing attack
is usually mounted please refer to Chapter 1. To address this issue, password-
based encryption (PBE) schemes try to increase the costs of such attacks by re-
quiring significant amounts of computation in order to derive an encryption key.
For example, in iOS the key derivation process is calibrated to take about 80 mil-
liseconds [37]. This results in a significant increase of efforts for attackers, since
they need to try thousands of different password candidates, while virtually having
no effect on end-user experience. PBE schemes achieve this by using random salt
value and applying multiple iterations of a cryptographic hash function, typically
using a key derivation algorithm.

The salt and the iteration count entail a multiplicative increase in the work
required for a password guessing attack [41]. Using constant salt values en-
ables attackers to use the rainbow table approach [87], which significantly re-
duces computational burden in cases when passwords for multiple accounts are
being guessed. Choosing low iteration counts results in less work per guess for at-
tackers, which, again, speeds up the password guessing attack. For this reason, we
chose to use 1,000 iterations as a minimum value, as suggested by RFC 2898 [76].
Hence,

Rule 4: Do not use constant salts for PBE, and

Rule 5: Do not use fewer than 1,000 iterations for PBE.

Note, that several recent publications proposed different approaches on in-
creasing computational cost of key derivation process, e.g., scrypt [89] or using

57

10,000 iterations for PBKDF2 [70], in this work we decided to use 1,000 as our
bare minimum in order to be able to compare with the results from 2012. Future
research, however, should strongly consider increasing the number of iterations.

3.2.3 Random number generation
Android provides an API to a seeded, cryptographically-strong pseudo-random
number generator (PRNG) via the SecureRandom class [31]. This PRNG is de-
signed to produce non-deterministic output, but if seeded using a constant value,
it will produce a constant, known output across all implementations. If such a
PRNG is used to derive keys, the resulting keys would not be random, making the
encryption insecure. As such,

Rule 6: Do not use a constant to seed SecureRandom.

3.3 Cryptography in Android
As discussed in Section 3.1, there are various reasons to use cryptography in
Android by both applications and third-party libraries. In the following, a brief
introduction is provided for the application ecosystem in Android, focusing on
packaging and Java runtime, and for the use of cryptography in Java.

3.3.1 Android applications ecosystem
Android applications are authored as either native C/C++ or Java source code. In
this study, only applications written in Java are considered, because Java has had
a stable Crypto API interface since the release of Java 1.4 in 2002. An Android
Java application is compiled to Dalvik executable (DEX) bytecode. This bytecode
is packaged with additional resources, such as images, third party libraries, and
configuration files, into an application package (APK) file. The APK file is then
uploaded to the Google Play Store, and when a user installs the application, the
APK file is downloaded and installed on their device.

58

Even though DEX bytecode is compiled from Java, the Dalvik virtual machine
(DVM) is considerably different from the Java virtual machine. For example,
while the Oracle Java virtual machine is stack-based, DVM is register-based, with
a dedicated assembly language called Smali. However, it is possible to convert
DEX bytecode to Oracle’s Java bytecode with the Dex2Jar tool [19], albeit with
some limitations, such as the inability to decode specific classes. We note that
DVM was recently replaced by Android runtime (ART), which translates the DEX
bytecode into the CPU’s native instructions for faster execution.

3.3.2 Java cryptography
Android provides a rich execution framework that offers access to various sub-
systems, including Java cryptography architecture (JCA). The JCA standardizes
how developers make use of many cryptographic algorithms by defining a stable
API. Accordingly, a cryptographic service provider (CSP) is required to register
with the JCA in order to provide the actual implementation of these algorithms.
This abstraction allows developers to replace the default CSP, which is Boun-
cyCastle [18] in Android, with a custom CSP that satisfies their demands. For
example, SpongyCastle [22] is a popular third-party CSP that supports a wider
range of cryptographic algorithms.

Symmetric and asymmetric encryption schemes are accessible to developers
through the Cipher class, as described in Listing 3.1. To use a specific encryption
scheme, the developer calls the Cipher.getInstance factory method and provides a
transformation as an argument. A transformation is a string that specifies the name
of an algorithm, a cipher mode, and a padding scheme to use. In Listing 3.1, the
returned cipher instance uses AES in CBC mode with PKCS#5 padding. Only the
algorithm name is mandatory, while cipher mode as well as the padding scheme
are optional. Unfortunately, all CSPs default to the ECB mode of operation if only
the cipher name is specified, which is insecure [30].

Listing 3.1: Simplified symmetric key encryption in Java

59

// values of iv and key should be randomly generated

public byte[] encrypt(byte[] iv, byte[] key, byte[] data) {

IvParameterSpec iv_spec = new IvParameterSpec(iv);

SecretKeySpec key_spec = new SecretKeySpec(key, "AES");

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.ENCRYPT_MODE, key_spec, iv_spec);

return cipher.doFinal(data);

}

3.4 Datasets
As summarized in Table 3.1, three datasets were used for the analysis, 132,590
APK files in total. R12 is a subset of the CryptoLint dataset with 10,990 APK
files. The original dataset had 145,095 APK files and was collected between May
and July of 2012 [57] by crawling the Google Play marketplace. First, the authors
of CryptoLint excluded all APK files that did not use Crypto API. Second, the
authors also excluded all APK files that had all Crypto API calls originating from
11 white-listed libraries. This resulted in a sub-set with 15,134 APK files. The
CryptoLint tool, however, failed to analyze 3,386 files from this sub-set and 758
files were lost since 2012, resulting in 10,990 APK files in the R12 dataset. Con-
sidering that the 758 lost files are a random sample of the set that was presented
in the CryptoLint report [57], such loss does not have a significant impact on our
results.

R16 dataset was collected in May of 2016 with the help of Sophos. To select
APK files in the R16 dataset we first generated a random sample of 120,000 APK
files that were available on Google Play market at that time and then downloaded
that set from Sophos servers. Unfortunately, some of the files were corrupted
during the downloading process, leaving us with 117,320 APK files.

For trend analysis we focused only on the R12 and R16 sets. In addition, we
considered two versions of the R12 and R16 datasets. First, we analyzed subsets
of R12 and R16 from which we removed all APK files that had all calls to Crypto

60

Name Number of APKs Sampling Year

R16 117,320 Random 2016
R12 10,990 Random 2012

T15 4,280 Top-100 2015

Table 3.1: Summary of used datasets

DeduplicationDisassembly sCFG
Extraction

Static Program
Slicing

Rule
Evaluation

Preprocessing Linting1 2

Obfuscation
Analysis

Third-party
Library Detection

Attribution3

Figure 3.1: Cryptographic API linting for Android applications using BinSight.
Gray components represent parts that were reimplemented from Cryp-
toLint [57], and white components represent the extensions that we added.

API originating from 11 libraries selected by the authors of CryptoLint. We denote
these sub-sets as R12* and R16* respectively. Second, we analyze both R12 and
R16 as-is.

Finally, the T15 dataset includes the Top 100 Android applications in each
category from June 2015. For this dataset a list of the Top 100 applications was
first obtained through Google Play store API. Then each APK file was separately
downloaded through the ApkDownloader tool [25]. The downloading process
was completed between June 13–28, 2016. As 20 applications were removed
from the Google Play Store before we were able to download them, the final size
of the dataset is 4,2801. We compared T15 to R16 only for additional insight into
differences between average and top Android applications.

3.5 Crypto API linting with BinSight
At a high level, the rules defined in §3.2 represent temporal properties that can be
validated using automated program analysis in a task known as linting [61]. Lint-

1Due to large size of T15 and R16 datasets we cannot make them available online, but will
share upon request. For the R12 dataset we refer readers to the authors of the CryptoLint study.

61

ing is a process of validating certain formal conditions on source code through
static analysis of the code or binary. Usually, it implies that one converts an appli-
cation into a super control flow graph (sCFG) representation and then analyzes the
structure of the graph to validate defined conditions. For example, one can trace
all the inputs for a variable that holds an encryption key and check whether or not
that variable holds static values, i.e., values that are hard-coded, or dynamically
generated values, e.g., through a random number generator.

While previous research has proposed various linters for Android Crypto API [57,
103], they suffer from various limitations. In particular, the state-of-the-art linter
CryptoLint is not available as open source and is unable to analyze over 23% of
APK files [57] . In addition, none of these tools provide any code navigation,
which is valuable for manual in-depth analysis. Finally, existing tools do not sup-
port attribution of the source of misuse, i.e., by using these tools one cannot tell
whether a misuse is due to an application code or a third-party library.

To overcome these limitations, we developed BinSight framework based on
technical description of the CryptoLint [57]. Although the BinSight tool does not
introduce any novel ideas to the field of static analysis, it nevertheless improves
analysis stability over CryptoLint, provides a rich, graphical UI for manual in-
spection of an APK file, and attributes a Crypto API call to an application or a
library. To improve accuracy of the analysis conducted in the CryptoLint study,
we introduced two additional stages to the APK analysis pipeline, as illustrated in
Figure 3.1. We released BinSight as an open source project and included imple-
mentation details as comments in the source code2.

In what follows, each stage of the analysis pipeline is discussed.

3.5.1 Preprocessing
Each downloaded APK file undergoes a two-step pre-processing stage before it is
linted. The goal of this stage is to filter out all applications that do not use Crypto
API and remove all duplicate APK files, as described below.

2The project can be located at the following URL: https://github.com/iim/binsight

62

https://github.com/iim/binsight

Disassembly

Similar to CryptoLint, our analysis operates on a higher-level representation of
the Dalvik bytecode. In particular, we use ApkTool [17] to decode an APK file
and disassemble it into a set of Smali files. Each Smali file represents a class def-
inition, and uses DEX operation codes to represent instructions [20]. We picked
ApkTool over AndroGuard [23], which was used by CryptoLint, to improve anal-
ysis reliability. As shown in §3.6, BinSight was unable to analyze six applications
out of 95K, while CryptoLint failed to analyze 23% of applications out of 15K.

After an application was disassembled, we searched all of its generated Smali
files to locate entry points to Crypto API. If such entry points were not found, the
application was disregarded from further analysis. Otherwise, we proceeded to
the de-duplication step.

Deduplication

Downloading thousands of APK files from Google Play is technically challenging.
First, it has to span over weeks or months in order to avoid account blocking.
Second, an application might be listed in multiple categories. These challenges
lead to duplicates in a dataset, and thus, removing duplicates is important for
validity of the results. For de-duplication we relied on application Id (stored in
the manifest file).

For each dataset we separately generated a list of all APK filenames, corre-
sponding application Id and its download time (for T15 and R16 sets), or, when
available, application version (R12). We then identified all duplicates within a
dataset by grouping files with the same application Id. For identified duplicates
within a dataset we kept the latest version of the application, based on its down-
load date or version.

63

3.5.2 Linting
Once the interesting pool of APK files was identified, BinSight evaluated the com-
mon cryptographic rules defined in Section 3.2. In particular, it computed static
program slices that terminate in calls to Java Crypto API, and then extracted the
necessary information from these slices to evaluate the rules.

In what follows I provide a brief overview of the three main steps involved in
this stage. I refer the reader to related work for further details [57, 103].

Super Control Flow Graph extraction

It is typical for an application to use Crypto API in multiple methods. For exam-
ple, a cipher object could be instantiated in an object constructor and then used in
two different methods to encrypt and decrypt the data. If the two methods were
analyzed in isolation, we would not be able to extract the encryption scheme that
was used when the cipher object was instantiated. Fortunately, the super control-
flow graph (sCFG) of an application allows us to perform inter-procedural anal-
ysis, which is required to correlate the use of a cipher object for encryption and
decryption with its instantiation.

BinSight constructs the sCFG of a preprocessed application as follows. First,
it extracts the intra-procedural CFGs of all methods from the decoded Smali class
files. This task also involves translating all methods into single static assignment
(SSA) form [47], and extracting the class hierarchy of all classes in the appli-
cation. Next, BinSight superimposes a control-flow graph over the CFGs of the
individual methods, resulting in the sCFG. In this sCFG, call edges are added
between call instructions and method entry points, and method exit points are
connected with exit edges back to the call site.

One one hand, similar to CryptoLint, BinSight constructs an over-approximated
sCFG of the application. That is, BinSight extracts calls that might never be ex-
ecuted when the application is running. On the other hand, BinSight does not
analyze dynamic edges, which could be created through Java Reflection API [29].
This creates a risk of missing crucial calls to Crypto API, hence the resulting

64

Endpoint signature Rule

Cipher.getInstance() 1
cipher.init() 2
secureRandom.setSeed() 6

new SecretKeySpec() 3
new PBEKeySpec() 4
new PBEParameterSpec() 5
new SecureRandom() 6

Table 3.2: Cryptographic API endpoints and related rules.

sCFG would become under-approximated.

Static program slicing

Static program slicing is the computation of a set of program statements, called
slices, that may affect the values of certain variables at a particular program point
of interest, referred to as a slicing criterion [44]. BinSight applies static program
slicing on the sCFG to identify if the analyzed application uses any of the Crypto
API. In particular, BinSight searches the sCFG for nodes that belong to Java’s
Crypto API endpoints. If these nodes are found, it uses their incoming edges to
locate all call sites in the application. Note that this search depends on the type of
the Crypto API endpoint in the sCFG. Table 3.2 shows the relevant API endpoints
and their corresponding cryptographic rules.

Rule evaluation

Rule evaluation depends on the values assigned to the parameters of a Crypto
API, where value assignment can be either local or external to the containing
method. For the earlier case, BinSight computes a backward slice of the program
to all possible locations where the involved parameter is set, after which we apply
validation logic on its value. As for the latter case, the evaluation depends on
the origin of value assignment outside the method. As such, BinSight computes

65

backward slices to all locations where this value can be assigned. BinSight stops
the computation if it reaches a dead-end, where a node does not have any incoming
edge or it reaches an assignment to a static value.

3.5.3 Attribution
After the linting stage, every call site that terminates in a Crypto API is attributed
to its source, which could be the application code itself or a third-party library.
Our attribution approach relies on package names of classes that have API call
sites, and cross-references them with an exhaustive list of third-party libraries.
The attribution has to overcome obfuscated package names in order to correctly
map call sites to libraries. This is done in the following two steps.

Obfuscation analysis

Although de-obfuscating Android applications has been recently studied [43, 81],
the underlying techniques, while effective for manual forensics, are inefficient for
analyzing applications on a large scale. Moreover, it is unclear how prominent the
use of obfuscation is in the real-world, especially in the classes that use Crypto
API. To automatically detect the level of obfuscation a rule-based classifier was
developed that identifies whether a given package name is fully obfuscated or not.
The manual analysis of the results of the classifier revealed that even if the package
was partially obfuscated, one can still use it to identify the library it belongs to.
Section 3.6 shows that less than 4% of package names were fully obfuscated,
requiring sophisticated de-obfuscation techniques.

The following rules were defined as a result of several manual iterations over
the results the classifier provided. Our main objective at this point was to find pat-
terns that one can use in the classifier. Eventually, seven rules (listed below) were
assembled, which allowed automatic assignment of the level of class identifier
renaming (CIR), i.e., none, class, partial, and full CIR obfuscation.

1. If all parts of the identifier are of length one, then it is a case of full ob-
fuscation. An identifier of a class is the combination of the class name and

66

its package name, e.g., com.google.ads.ShowAd defines a class ShowAd in
com.google.ads package.

2. If all but the first part of the identifier are of length 1 and the first part is
in the set {com, ch, org, io, jp, net}, then it is a case of full obfuscation.
For instance, the example provided in step 1 would translate to com.a.a.B,
where com.a.a would be renamed package name and B would be renamed
class name.

3. If none of the package name parts in the identifier are of length one, then
it is a case of either none or class-level obfuscation. The intuition behind
this rule was based on the observation that, obfuscating software tends to
rename parts to a single character.

4. If at least one part but not all of the identifier are of length one, then it is a
case of partial obfuscation. The intuition behind this rule was the same as
for the step 3.

5. If class name is longer than 3 chars then it is a case of no obfuscation.
Similarly to rules 3 and 4, we observed that if a class names were renamed
to names with one or two characters.

6. If class name length is 1 character, then it is a case of class name obfusca-
tion.

7. If class name length is 2 or 3 characters and the first character is in lower
case, then it is a case class name obfuscation. We observed that naming
convention for Java classes uses an upper-case letter for the first character,
thus, the cases where the first character was in lower-case and the length of
the name was 2 or 3 characters it meant that the name is obfuscated.

Third-party library detection

As mentioned above, almost all call sites that terminate in cryptographic APIs
correspond to package names that were identifiable. The fully obfuscated pack-

67

Number of APKs

Name Total Unique Dups Crypto?

R12 10,990 10,222 768 (7%) 10,222 (100%)

R16 117,320 115,683 1,637 (1.4%) 95,775 (82.8%)
R16* 117,320 115,683 1,637 (1.4%) 93,994 (81.3%)

T15 4,280 4,067 213 (5%) 3,645 (89.6%)
Total 132,590 129,972 2,618 109,642

Table 3.3: Summary of duplicates and Crypto API use in all three datasets

age names were labeled as “obfuscated”, meaning that BinSight was unable to
attribute them to a library or the application.

For the remaining majority of the package names a frequency analysis was
conducted. All non-obfuscated package names that were seen in a single APK file
were assigned to the application category. For the remaining set of package names
a manual analysis was conducted, starting with the most frequently encountered
package names first. The manual analysis was finished once it covered 95% of the
call-sites. The remaining package names, which were not covered by the manual
analysis, were labeled as “possibly library”. As a result of this analysis, a list
of package names was compiled that allowed BinSight to identify libraries and
possible libraries. Note that this approach complements a recent proposal that
relies on a list of library signatures generated from a large database of third-party
SDKs [39].

3.6 Measuring Crypto API misuse
This section presents the result of the analysis of 109,642 APK files (out of
132,590) that had at least one call to Crypto API. To the best of our knowledge,
this is the largest dataset analyzed for Crypto API misuse (e.g., the CryptoLint
study is based on the analysis of 11,748 APK files only). First, we discuss dupli-
cates, obfuscation detection and source attribution for each of the datasets. Then
we present the overall statistics on Crypto API misuse, and proceed with the anal-

68

ysis of each rule separately. In our analysis we compare R12 to R16 in order to
understand what may have changed between 2012 and 2016, and T15 to R16 in
order to understand how a top application differs from an average one.

For each comparison we conducted a statistical significance test (Chi-square)
to test whether the found difference was statistically significant with 99% con-
fidence. In what follows we discuss only statistically significant results, and all
figures show 99% confidence interval whiskers.

3.6.1 Preprocessing
Unsurprisingly, every application in R12 made at least one Crypto API call, con-
firming the analysis and the white-listing performed by Egele et al. [57]. Inter-
estingly, while Egele et al. found that only 10.4% of the applications in their
original dataset with 145K APK files made a call to Crypto API, this ratio has
significantly changed for R16 and T15. In particular, we found that 83% and 90%
of the applications in R16 and T15, respectively, made at least one call to Crypto
API. Such a significant increase in use of Crypto API in Android applications can
be attributed to many reasons, including white-listing that authors of CryptoLint
applied or increased necessity to protect user data.

Our analysis revealed that while all datasets contained duplicates, R12 had the
largest ratio, of 7%. We removed all duplicates from the analyzed datasets. The
summary of the datasets after de-duplication is shown in Table 3.3.

Unlike CryptoLint, BinSight was able to disassemble and analyze all but six
of the 132,590 APKs, which represents a significant improvement over the Cryp-
toLint tool, and which failed to analyze 3,386 APK files (23% of the analyzed set)
due to technical problems3. BinSight completed analysis in about 14 days on a
dual Xeon CPU computer with 128GB RAM, i.e., processing about 7500 APK
files a day, which suggests that BinSight is not only robust, but also scalable. We

3According to CryptoLint authors, there were two major problems: (a) the tool did not finish
analysis within 30 minutes, and (b) the analysis infrastructure ran out of memory.

69

Class identifier renaming level

None Class Partial Full Total

R16 509,643 203,447 106,091 21,279 840,460
60.64% 24.21% 12.62% 2.53% 100%

R12 78,883 14,513 6,882 2,002 102,280
77.12% 14.19% 6.73% 1.96% 100%

T15 26,821 12,907 3,620 1,804 45,152
59.40% 28.59% 8.02% 3.99% 100%

Table 3.4: Obfuscation analysis of class identifiers.

made BinSight available as an open source project4.

3.6.2 Linting and attribution

Obfuscation analysis

As noted in Section 3.5, it is unclear how prominent obfuscation is, in particular
in class identifier renaming (CIR) [39]. To understand this, the reliability of using
package names for source attribution was analyzed, by quantifying CIR in each
dataset. The analysis was limited to only those classes that made at least one
call to Crypto API. While this served the needs of this study, these results on
the prevalence of obfuscation should not be considered as a generalization to all
Android applications.

There are different levels at which CIR can be applied by an obfuscator like
DexGuard. For instance, for class com.domain.package.Class, an obfuscator
might not change the identifier at all. It might rename the class name only, parts
of the package name, or sometimes the whole class identifier. For the first three
levels, we can map the class to a library or an application if the package name has
an identifiable prefix. As for the fourth level, we cannot use the package name for
source attribution.

4https://github.com/iim/binsight

70

https://github.com/iim/binsight

Source (%)

Call sites Libs Apps Libs? ?

R16 840,460 90.7 4.9 1.9 2.5
R12 102,280 79.5 14.5 4.0 2.0
T15 45,152 80.6 10.7 4.7 4.0

Table 3.5: Attribution of cryptographic API call sites.

The goal of this analysis was to quantify how many class identifiers fall into
each of the four CIR levels, as follows. First, a list was automatically compiled
that contained all unique class identifiers that made at least one call to Crypto API.
Then the list was manually inspected, in order to derive patterns for full and partial
obfuscations. After the set of identified rules was updated, the list of package
names that made at least one call to Crypto API was recompiled. At this point,
the category was also added to each package name, so that the further analysis
was focused on package names without category. The process was completed
in four runs, which resulted in the list of seven classification rules presented in
Section 3.5.3. While the presented rules were simple to evaluate, they suffered
from false positive and negative cases. The analysis of those case showed that
the number of such cases was below 1% out of total number of cases (i.e., false
positive and negative rates combined).

The results of the analysis revealed that using package names for source at-
tribution is still reliable. In particular, for applications in R16 we were able to
identify the source for 97.5% of classes that made calls to Crypto API. The results
of the analysis for all datasets are provided in Table 3.4.

Third-party library detection

We classified package names into one of four categories: applications (apps), li-
braries (libs), possible libraries (libs?), and obfuscated (?). We now describe how
we performed this classification. First, we assigned all package names that have
been fully obfuscated to the obfuscated category. We then assigned all pack-

71

age names that were found in a single application into the applications category.
For the remaining packages, which were found in two or more applications, we
ranked them based on how many applications used them in each dataset, and then
performed manual inspection in a decreasing order of rank. In particular, for each
package name we labeled as a library if we were able to find the library’s source
or website, or if our manual inspection revealed that it was indeed a library. We
stopped manual analysis once we identified enough package names to cover 95%
of the call sites. We assigned the remaining unclassified package names to the
possible libraries category.

In total, we manually analyzed 12,165 package names from the three datasets,
out of which 3,622 (29.7%) belonged to libraries. Overall, we identified 638,
260, and 265 libraries in R16, R12 and T15, respectively. The top-2 libraries and
their package names are shown in Table 3.7. The fact that our analysis revealed
260 libraries in the R12 dataset suggests that the CryptoLint study suffers from
over-counting misuse cases.

Source attribution based analysis revealed that the libraries were responsible
for the majority of calls to Crypto API in all three datasets, as summarized in
Table 3.5. Furthermore, 79.5% of all calls to Crypto API in the R12 dataset origi-
nated from 260 libraries. While the authors of the CryptoLint study did white-list
11 libraries, our analysis shows that the white-listing approach was inadequate.
In particular, the authors missed 249 libraries, which accounted for 79.5% of the
calls in their dataset. This suggests that the reported results in CryptoLint study
suffer from over-counting, due including same library in their statistics multiple
time. Overall, these results with missed libraries and the ratio of calls that origi-
nate from libraries suggests that researches that analyze Android applications for
Crypto API misuse one should be careful misuse inflation, due to counting the
same misuse cases from a library multiple times.

To this end, we showed that (a) one can reliably use package name for source
attribution, since this covers 97.5% of the calls to Crypto API, and (b) libraries
are the major contributor to Crypto API calls and should be properly identified.

72

3.6.3 Crypto API misuse in Android Applications
In what follows we present the main findings on Crypto API misuse rates across
all source categories (applications or libraries) for all three datasets. We begin
with the results of the analysis on overall misuse rates across all rules, i.e., at least
one rule is violated. Then we proceed with an in depth analysis of misuse rates
for each rule separately.

To understand the extent of which the white-listing approach used in the Cryp-
toLint study has impacted results, we additionally analyzed two sub-sets R12* and
R16*, which were generated by applying the same white-listing approach to the
R12 and R16 datasets respectively.

We measured misuse rates from two complimentary perspectives. First, sim-
ilar to the CryptoLint study, we assessed the ratio of APK files that contained
a misuse. Second, we assessed the ratio of Crypto API call-sites that made a
mistake. While the APK files ratio provides intuition into how many APK files
contain at least one misuse of Crypto API, such an approach is biased towards
libraries, especially popular ones. Call-site ratio provides an assessment of the
likelihood that a call from an application or a library will make a mistake. And
since we separate calls from libraries and applications, this measure provides a
stronger intuition into how misuse rates have changed within libraries and appli-
cations.

The following reports the ratio of APK files with misuse for each category
separately (named accordingly) and overall (“Any” category). The ratio for each
category is computed for the total number of APK files in the dataset. This, how-
ever, does not imply that the sum of ratios for all four categories will be equal to
the “Any” category, since an APK file might have misuses contributed by various
sources. Similarly, the ratio of call-sites with misuse contains the “Any” category,
which shows the ratio for all call-sites. Unlike the ratio of APK files, the ratio of
call-sites with misuse is assessed separately for calls within each category.

73

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?

R12* (10222) R16* (93994) R12 (10222) R16 (95775) T15 (3645)

Figure 3.2: Ratio of APK files that violated at least one Crypto API use rule per
dataset. “Any” category includes all call-sites for the analysis, without con-
sidering the source (i.e., library or an application). This approach was used
in the CryptoLint study. The remaining categories (Libs, Libs?, Apps and ?)
include call-sites that belong to the corresponding source only (i.e., a library,
a possible library, an application or a fully obfuscated case). The proportions
are calculated as the ratio of APK files that contained at least one misuse from
specific category (or, any category for “Any”) against the total number of APK
files that used Crypto API in the dataset. The total number of APK files that
made at least one call to Crypto API for each dataset is provided in the legend.

Overall Crypto API misuse rate

The ratios of APK files with at least one violation of the rules per category are
shown in Figure 3.2. Unsurprisingly, our results for the R12* subset were in-line
with previously reported results, i.e., 94.5% in our study and 88% in CryptoLint
study [57]. We attribute the difference here to two factors: (a) we removed 7%
of duplicates, and (b) 768 APK files from the original R12 dataset were lost. As

74

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?

R12* (113571) R16* (1185970) R12 (138465) R16 (1274445) T15 (66492)

Figure 3.3: Ratio of call-sites that violated one Crypto API use rule per dataset.
The total number of call-sites to Crypto API for each dataset is provided in the
legend.

expected, we found that the white-listing approach used in the CryptoLint study
reduced the ratio of APK files to include libraries that had introduced misuses.
However, this did not have any impact on the call-sites ratio, as shown in Fig-
ure 3.3.

Overall, we found that since 2012 the ratio of APK files with at least one mis-
use has decreased from 94.5% to 92.4%. At the same time, the overall likelihood
of a call-site to Crypto API to make a mistake remained around 28%, that is,
each fourth call to Crypto API makes a mistake. Per category analysis, however,
showed that while libraries have increased the ratio of APK files they introduced
to Crypto API misuses to 90% (from 80%), the likelihood of a call-site from a
library to make a mistake did not change significantly. The increase in the ratio
of APK file libraries introduced to misuses of Crypto API can be explained by the

75

overall increase in the number of libraries. In particular, while the R12 dataset
contained only 260 libraries, R16 had 638 identified libraries.

Unlike libraries, applications have improved in both the ratio of APK files and
the likelihood of a call-site that makes a mistake. In particular, the ratio of APK
files decreased from 21% to 5% and the ratio of call-sites from 31.8% to 27.7%.
Although, the increase in the total number of libraries might have also impacted
the ratio of APK files for applications.

Comparing T15 with R16 revealed a single statistically significant difference,
namely, the ratio of APK files to which applications introduced misuses. While
the ratio for R16 was 5%, for T15 it was 14.6%. This difference can be attributed
to various factors, such as the difference in the total number of libraries (265 in
T15 against 638 in R16).

Symmetric key encryption

Data analysis revealed that the overall use of ECB mode for symmetric ciphers
has significantly decreased since 2012, as shown in Figures 3.4 and 3.5 . That is,
the number of APK files that were flagged as using ECB mode has dropped from
77% in R12 to 30% in R16. Similarly, the ratio of relevant call-sites that use ECB
mode has dropped from 53% to 29%. Source attribution, however, revealed that
this decrease can be mainly attributed to improvements in libraries. In particular,
while applications decreased the ratio of relevant call-sites that use ECB mode
from 63% to 47%, libraries have reduced this ratio from 52% to 26%, i.e., a two
fold improvement. Comparison of the T15 and R16 datasets revealed that an
average application is less likely to use the ECB mode than the top application.
The white-listing approach used by the CryptoLint study had a negligible impact
on the results, i.e., most of the introduced differences were either not statistically
significant or practically negligible.

Despite the positive outlook on the use of ECB mode, we found that there was
a statistically significant increase in the use of static IVs, as shown in Figures 3.6
and 3.7. In particular, since 2012 the ratio of APK files that use a symmetric

76

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?

R12* (10102) R16* (86309) R12 (10144) R16 (88323) T15 (3519)

Figure 3.4: Ratio of APK files that violated Rule 1 - “Do not use ECB mode for
symmetric cipher.” The total number of APK files that used symmetric cipher
per dataset is provided in the legend.

cipher in CBC mode to static IVs increased from 32% to 96% by 2016. The
ratio of relevant call-sites to symmetric cipher APIs has increased from 31% to
71%. The increases were mainly due to libraries rather than applications, since
the later actually improved and decreased their use of static IVs. In particular,
applications reduced the ratio of call-sites that violate Rule 2 (use of static IV
with CBC mode) from 64% to 52%, while libraries have increased that ratio from
26% to 72%. Comparison of the T15 and R16 datasets did not reveal practically
significant results, i.e., the T15 dataset was comparable to the R16 dataset. While
the white-listing approach did have a statistically significant impact on the R12*
sub-set, it did not have similar effect on the R16* sub-set and it did not have an
effect on the overall results, since all differences were still statistically significant.

The decrease in use of ECB mode and the increase of static IV use with CBC

77

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?
R12* (25061) R16* (230184) R12 (31192) R16 (251021) T15 (14105)

Figure 3.5: Ratio of call-sites that used ECB mode for symmetric cipher. The total
number of call-sites that created symmetric Cipher objects in Java per dataset
is provided in the legend.

mode, suggest that while developers tried to move away from insecure ECB mode,
they failed to adopt a secure mode for symmetric ciphers. This failure might be
explained by a lack of understanding. Another factor that may have impacted
the shift is the warning message that the Android Lint tool began to show after
the CryptoLint study was conducted. The warning message highlights that ECB
mode is default and is insecure (“...because the default mode on android is ECB,

which is insecure.”). In fact, Crypto Stack-Exchange5 is full of questions and
suggestions on how to “fix” this warning message by replacing “ECB” mode with
“CBC”.

The analysis of Rule 3 violations (not using static encryption keys) revealed
that, again, the overall rates of static key usage have increased (see Figures 3.8

5http://crypto.stackexchange.com/

78

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?

R12* (2516) R16* (79895) R12 (6007) R16 (82092) T15 (3265)

Figure 3.6: Ratio of APK files that violated Rule 2 - “Do not use static IV for CBC
mode in symmetric cipher.” The total number of APK files that used symmet-
ric cipher in CBC mode per dataset is provided in the legend.

and 3.9). In particular, since 2012 the ratio of APK files that use symmetric cipher
with a static key increased from 70% to 93%. The ratio of call-sites that use sym-
metric cipher with static key increased from 45% to 57%. Unlike with the use of
static IV, both applications and libraries were to blame. Although applications did
decrease the ratio of APK files that contribute to a violation of rule 3, the ratio of
call-sites that violate rule 3 and originate from applications showed the opposite,
i.e., the likelihood that a call from applications would use a static encryption key
increased from 40% to 44%. This highlights that relying solely on the ratio of
APK files with misuses might be misleading due to the impact libraries have on
this measurement.

In addition to validating the formal rules of using cryptography, we extracted
the top-6 most-used symmetric ciphers from each dataset, as summarized in Ta-

79

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?
R12* (7457) R16* (136425) R12 (12697) R16 (152280) T15 (7565)

Figure 3.7: Ratio of call-sites that used static IV with CBC mode for symmetric
cipher. The total number of call-sites that used Cipher objects in CBC mode
per dataset is provided in the legend.

Cipher (%)

Call sites AES DES 3DES PDE∗ RC4 Blowfish Others

R16 251,021 64.4 13.6 1.1 0.7 2.1 0.9 17.2
R12 31,192 58.9 12.5 8.8 6.5 0.4 1.9 10.9
T15 14,105 67.8 8.9 0.8 0.9 1.1 0.8 19.7

Table 3.6: The top-6 ciphers used in Android applications. PDE was used with MD5
and 3DES.

80

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?

R12* (8559) R16* (87524) R12 (9339) R16 (89438) T15 (3495)

Figure 3.8: Ratio of APK files that violated Rule 3 - “Do not use static encryption
key for a symmetric cipher.” The total number of APK files that used symmet-
ric cipher per dataset is provided in the legend.

ble 3.6. While the use of AES has increased and DES cipher has barely changed,
triple DES, which is a more secure version of DES, has significantly decreased,
from 9% in R12 down to about 1% in both R16 and T15. Surprisingly, we found
that the RC4 cipher has made it to the top-3 used ciphers in both T15 and R16,
even though it is considered insecure [65] and the security community has sug-
gested removing it from cryptography libraries [90].

Assuming that the warning message might have been the root cause in the
drastic decrease of ECB mode use, it is worth investigating in future research if
adding similar messages for static IVs and encryption keys will have a similar
effect. In addition, to supplement these warning messages, Google can provide
“ready-to-use” code snippets to application developers in Android Studio IDE.
This can eliminate the necessity for the developers to search online for code ex-

81

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?

R12* (20820) R16* (225202) R12 (26090) R16 (236506) T15 (12635)

Figure 3.9: Ratio of call-sites that used static encryption key for a symmetric cipher.
The total number of call-sites that set an encryption key for a symmetric cipher
per dataset is provided in the legend.

amples that might potentially have implementation issues.

Password-based encryption

Since 2012, the rates of misuse of Password-based encryption (PBE) has overall
decreased for both static salts (Rule 4) and number of iterations (Rule 5), as shown
in Figures 3.10- 3.13. In particular, the ratio of APK files that provided static
salts for PBKDF has decreased from 81% to 74%. The ratio of APK files that
used less than 1,000 iterations decreased from 58% to 51%. The ratio of calls to
relevant Crypto API that violate either Rule 4 or 5 has also decreased (as shown
on Figures 3.11 and 3.13). Source attribution-based analysis showed that both
libraries and applications have improved.

Comparison of the T15 and R16 datasets showed that, on average, 19% and

82

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?

R12* (1867) R16* (8380) R12 (2355) R16 (11840) T15 (714)

Figure 3.10: Ratio of APK files that violated Rule 4 - “Do not use static salt for
PBKDF.” The total number of APK files that used PBKDF per dataset is
provided in the legend.

24% less APK files from T15 violated rules 4 and 5 respectively. Further, per
source-category analysis revealed that this was mainly due to improvements in
libraries used by the applications in the T15 dataset. Applications, however, vio-
lated rule 4 more frequently (10% more). We omit discussion of R12* and R16*
sub-sets since our analysis did not reveal any statistically and practically signifi-
cant results.

While these results suggest that there is a negative trend in the misuse of
Crypto API, future research should focus on how to improve these results even
further. For example, one might consider showing a message to application devel-
opers with implications of using static salts or fewer than 1,000 iterations. Such a
warning message might include time estimates of how long a password guessing
attack would take on today’s hardware to go through the entire password space.

83

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?

R12* (5318) R16* (33283) R12 (6398) R16 (38773) T15 (1765)

Figure 3.11: Ratio of call-sites that used static static salt for PBKDF. The total num-
ber of call-sites that provided a salt value for PBKDF per dataset is provided
in the legend.

Random number generation

The use of static seed values for SecureRandom has significantly decreased since
2012 (Figures 3.14 and 3.15). In particular, while the ratio of APK files that
provide static seed to SecureRandom has dropped from 73% to 67%, the ratio
of relevant call-sites that use static seed value decreased to 43% from 69%. Al-
though the ratio of APK files where libraries have introduced a violation of rule
6 has grown by 3%, call-site analysis has revealed that the libraries have signif-
icantly reduced the likelihood that a call to SecureRandom will provide a static
value (from 72% in 2012 to 42% in 2016). This, again, shows that relying on the
APK files ratio as the only way of measuring Crypto API misuse might convey an
incorrect message.

Comparison of the T15 and R16 datasets revealed that libraries used by the top

84

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?

R12* (1867) R16* (8380) R12 (2355) R16 (11840) T15 (714)

Figure 3.12: Ratio of APK files that violated Rule 5 - “Do not use less than 1,000
iterations for PBKDF.” The total number of APK files that used PBKDF is
provided in the legend.

applications had much lower impact on the APK files with violation of rule 6 and
had a lower rate of calls to Crypto API that provided static values. I omit discus-
sion of R12* and R16* sub-sets, since the analysis did not reveal any statistically
or practically significant results.

Considering that the SecureRandom class can seed itself and that re-seeding
does not decrease its entropy, we would suggest that this class always seeds itself,
even if an application developer provides a static seed value for the constructor.

3.6.4 The impact of third-party libraries
Another important factor to consider for libraries is popularity. That is, a pop-
ular library with misuse will impact a significantly larger set of APK files. To
understand how popularity impacts misuse rates we proceed with the following

85

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?

R12* (5318) R16* (33283) R12 (6398) R16 (38773) T15 (1765)

Figure 3.13: Ratio of call-sites that used 1,000 or less iterations for PBKDF. The
total number of call-sites that used PBKDF per dataset is provided in the
legend.

Rank in dataset

Company Library Package Violated rules R16 R12 T15

Google Play SDK com.google.android.gms.internal 2, 3 1 – 1
Apache HTTP Auth org.apache.http.impl.auth 1 2 3 5
InMobi Advertising com.inmobi.commons.core.utilities.a – 3 – 2
Google Advertising com.google.ads.util 3 38 1 36
VPon Advertising com.vpon.adon.android.utils 1, 3 – 2 –

Table 3.7: Summary of Top-2 libraries from each dataset that made use of Crypto
API. Empty values imply that the library was not found in the dataset.

86

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?

R12* (3173) R16* (7176) R12 (3239) R16 (7190) T15 (579)

Figure 3.14: Ratio of APK files that violated Rule 6 - “Do not use static seed for
SecureRandom.” The total number of APK files that used SecureRandom
per dataset is provided in the legend.

analysis. We measured the number of APK files that would be misuse-free if one
began fixing misuses in libraries, starting with the most popular libraries. Fig-
ure 3.16 shows this impact for each dataset. In particular, by fixing the top most
library in R16, 50,015 APK files would become misuse-free (or 56% of all APK
files with misuses), and by fixing all libraries 79,207 APK files would be fixed (or
89.5% of APK files with misuses).

3.6.5 In-depth analysis of top libraries
Considering that libraries made 90% of all calls to cryptographic APIs and, if
fixed, can potentially reduce the number of APK files with API misuse by a factor
of 10 (see Figure 3.16), an in depth manual analysis on the top 2 libraries from
each dataset was performed. After selecting the top 2 libraries from each dataset,

87

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Any Libs Libs? Apps ?

R12* (3377) R16* (11930) R12 (3480) R16 (11944) T15 (833)

Figure 3.15: Ratio of call-sites that used static seed for SecureRandom. The total
number of call-sites that seed SecureRandom per dataset is provided in the
legend.

we found that one library was in the top 2 in T15 and R16, resulting in 5 libraries
in total.

In what follows we provide the details of the results of our manual in-depth
analysis of five libraries. This analysis was mainly focused on the reasons for
the use of Crypto API and the security impact of the identified misuses, if any.
Overall, the results of the analysis revealed that four out of five top libraries vi-
olated some of the rules. Three of them were identified as false positives, i.e.,
formal violation of Crypto API use which did not introduce a security vulnerabil-
ity. Most of the analyzed misuse cases originated from obfuscation. In addition,
three libraries implemented their own data encryption layer over HTTP or HTTPS
protocols. This issue, however, can be trivially addressed by switching to HTTPS
for all communications and dropping the libraries’ implementations of data en-

88

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500

Libraries rank

R12 (9,886)
R16 (88,510)
T15 (3,491)

Figure 3.16: Proportion of APK files that would become Crypto API misuse-free
depending on the number of fixed top ranked libraries. The legend shows the
total number of applications that had at least one misuse in the corresponding
dataset. We identified 222, 507 and 198 libraries with misuse in R12, R16
and T15 datasets, hence, the end of the corresponding lines.

cryption.

Google advertisement

This library was the top library in the R12 dataset, and made the top 40 in both
the T15 and R16 datasets. This library provides advertisement services to ap-
plications. It makes use of data encryption API in the AdUtil class, located in
com.google.ads.util package. The implementation uses a static key for en-
cryption (i.e., violating Rule 3), which is hard-coded in the AdUtil class. The
encryption function receives plaintext as a string and returns cipher text, also as

89

a string. The encryption uses AES cipher in CBC mode with PKCS5Padding.
The encryption function is later used to encrypt a string representation of a user’s
location, before being sent back to Google’s servers. Considering that the com-
munication happens over HTTPS protocol, the use of static key does not impact
confidentiality in the presence of a network attacker. However, we would recom-
mend fixing this to avoid exploitability if for some reason the HTTPS protocol
was not available.

In addition, we found that in R16 and T15, this library has significantly changed.
In particular, the newer version no longer used encryption. The structure of the
library was significantly simplified as well. There were, however, several appli-
cations in both T15 and R16 datasets where the old version of the library was
used and had AdUtil class with the same key and same misuse. Interestingly,
these applications were updated relatively recently (2 – 3 months prior to the data
collection of T15 and R16). This observation confirms findings from a recent re-
port [39] which showed that application developers are slow to adopt new versions
of libraries.

VPon advertisement

This library is also an advertisement library, present only in the R12 dataset. Sim-
ilarly, it uses a cipher to encrypt and decrypt data. All identified call-sites were
located in the CryptUtils class in the com.vpon.android.utils package. This
library violates two rules: the use of ECB mode (rule 1) and a static encryption
key (rule 3). CryptUtils class exposes two types of encryption functions, one
that uses javax.crypto.SealedObject as an input for encryption, and one that
accepts key and data as a string and returns a string as a result. The functions that
work with SealedObject are used to encrypt requests that are sent back to the
server and decrypt responses from it. This suggests that the static key is shared
between the library and VPon’s servers. The requests are sent over both HTTP
and HTTPS. Unfortunately, we were unable to understand exactly what data are
sent over what protocol. The second function, based on strings as input and out-

90

put, is only used to decrypt obfuscated string literals. Decrypting string literals
in Android applications is a common obfuscation approach, which implies that
data confidentiality is not the primary objective. To summarize, this library vio-
lates two rules (use of ECB mode and use of static key) to communicate with the
advertisement server and to obfuscate data.

Apache library

This library provides an ability for applications to communicate over HTTP and
HTTPS protocols. It was the only library in the top 5 in all three datasets. The
library uses Crypto API in many locations, but one specific call site, which used
ECB mode, drew our attention. In particular, this library implements a suit of
NT Lan Manager (NTLM) authentication protocols, which are commonly used
to authenticate over HTTP(s). This protocol, by design, uses a DES cipher in
ECB mode (i.e., violating rule 1), to implement challenge response validation.
However, it only encrypts a single cipher block (i.e., 16 bytes). Considering such
use, this misuse was classified as a false positive, since the encrypted content is
random and fits into a single block.

Google Play SDK

This library provides services of the Google Play platform, such as In-App pur-
chases or authentication with Google accounts. This library was the top most
library in both T15 and R16, and was absent from the R12 dataset. It violated
two rules, the use of static IV and static keys (rules 2 and 3). Interestingly, this
library implemented only a decryption function that accepts a byte array as a key
and a string as cipher-text. It outputs plain-text as a byte array. The key is Base64
encoded and hard-coded as a property in a static class, which is located in the
com.google.android.gms.internal package. The same static class contains all the
cipher-texts that get decrypted. All cipher texts are hard-coded in Base64 for-
mat. Further analysis revealed that one of the cipher texts is actually an encrypted
DEX file, which upon decryption (about 3K in size) loaded into application space

91

through Java Reflection API [29]. The remaining cipher texts are properties of the
class (such as name of class and name of its fields or functions). This case falls
into the obfuscation category, and was thus considered as a false positive.

InMobi advertisement

This library (the second-most popular library in the T15 dataset) provides in app
advertisement capabilities to the applications. The call-sites to Cipher facilities
were found in InternlSDKUtil, located in the com.inmobi.commons.internal

package. This class uses an AES cipher in CBC mode with PKCS7 padding.
It also uses an RSA cipher, to exchange a symmetric key with the server. We
found that this library, similarly to VPon, uses encryption facilities to encrypt
communications with their advertisement server. Interestingly, we saw the use
of both HTTP and HTTPS protocols for communication to the same domain ad-
dress, thus, it is unclear why the library developers had not switched all com-
munications to HTTPS. This library generates an encryption key once, stores it
in SharedPreferences and then reuses it on all subsequent communications.
Formally, InMobi’s implementation did not violate any of the evaluated rules of
Crypto API use.

3.6.6 The impact of third-party libraries revisited
The results of the in-depth analysis of the top libraries revealed that the current
approach used for identification of Crypto API misuses in APK files suffers from
a significant ratio of false positives. We classify a misuse case as a false positive
if the actual use of the Crypto API was not meant to provide integrity or confi-
dentiality protection, i.e., not a concern for IND-CPA. For example, while Google
Play SDK violated Rules 2 and 3 (did not use static IV for CBC mode and static
encryption key), it did so for obfuscation purposes only. Another limitation of the
current approach is that it misses certain edge cases, e.g., encryption of a single
block of random data in ECB mode. Such cases significantly inflate misuse rates,
and thus, convey a wrong state of actual misuse of cryptography in Android appli-

92

cations. Future research should focus on expanding BinSight’s ability to classify
if cryptographic APIs are used for obfuscation purposes.

3.7 Discussion and Future Work
The results of the analysis of more than 132K Android applications revealed that
9 in 10 calls to Crypto API originate from third party libraries. Libraries are
also the main source of misuse cases, where 89.5% of the APK files collected in
2016 were flagged only due the libraries they used. By re-analyzing the dataset
from the CryptoLint study we found that the authors have missed 249 out of 260
libraries in their dataset, which significantly contributed to over-counting in their
results. In particular, 222 of the missed libraries were responsible for 70% of
the flagged APK files in their dataset. These results suggest that future research
sources on Crypto API (mis)use must use source attribution and analyze libraries
and applications separately.

Our implementation of source attribution relies on package names. For this
approach to work, the classes with calls to Crypto API should not be fully ob-
fuscated, i.e., full renaming of class identifiers should not be used. Although our
analysis revealed that only 2.5% of the classes were fully obfuscated among the
applications in 2016, future research should focus on improving the ability of
analysis tools to identify libraries and applications. One can achieve this objec-
tive by exploring methods for de-obfuscation proposed by Bichsel et al. [43] or
Backes et al. [39].

To help developers choose secure libraries, the research community should
also invest time in establishing a centralized repository to share identification data
for libraries. Application developers would be able to consult such a repository
to make informed decisions on which libraries to use, while library developers
would also be able to respond to the discovered issues and explain misuse cases.

By using static analysis we inherited all limitations that come with such an
approach. In particular, our sCFG is both an over and under estimation of the
actual sCFG. One one hand, we overestimated sCFGs by including all detected

93

edges. Such an approach might include edges that will never be executed during
an application’s run-time. On the other hand, in our analysis we did not include
edges that were dynamically created. Such edges are usually created through Java
Reflection API [29]. These limitations create risks for validity of the presented
results. Future research should consider complementing BinSight with dynamic
analysis capabilities and include analysis of reflection API into the sCFG con-
struction process.

Although one cannot obfuscate calls to platform APIs, such as Crypto API, it
is still possible to hide them through late binding. In particular, one can use Java
Reflection API to side-load a binary that would make the actual call to Crypto API.
This, as mentioned above, can be addressed by augmenting BinSight’s analysis
pipeline with the analysis of calls to Java Reflection API, which can be based on
the same static analysis approach we used for Crypto API calls.

Even though the ratio of fully obfuscated classes in our datasets was negligi-
ble (2.5% in R16), understanding how obfuscated applications differ from non-
obfuscated ones is still an important and interesting research question to investi-
gate. Such low adoption of full obfuscation, on the other hand, allowed us to use
trivial yet efficient and effective source attribution based on package names.

While looking into the top libraries we found that not all misuses of Crypto
API necessarily have security implications. However, our analysis was exploratory
in nature and does not provide precise assessment of the ratio of all identified
Crypto API misuses that are false positives. Considering that the top library from
R16 was responsible for 56% of flagged APK files and that it used Crypto API for
obfuscation, we suspect that a significant portion of misuse cases are indeed false
positive. This suggests that the current approach to analyzing Crypto API misuse
is inadequate in several aspects.

First, as we showed, currently defined rules miss certain edge cases, which
inflate the number of misuse cases. Second, without understanding the purpose
of why the Crypto API is used in the first place, it is impossible to say when
we actually encounter a misuse, given that Crypto API might be used for other

94

reasons than confidentiality or integrity protection. Finally, without understanding
the types of data that are being handled in the Crypto API calls, it is impossible to
say to what extent a misuse might correspond to a security vulnerability.

To this end, our analysis showed that there are still plenty of open research
questions that need to be addressed by future research. Given the identified limita-
tions of the current approach to the analysis of Crypto API misuse, it is impossible
to say if the current misuses actually results in security issues. In what follows, I
discuss two research areas for future work.

3.7.1 Extending the Crypto API analysis
In our analysis we used the same six rules for secure use of Crypto API that the
authors of the CryptoLint study defined. This set, however, is far from complete.
First, future research should consider adding new rules, based on the recently re-
ported attacks on the use of cryptographic APIs or modes of operation [95, 112].
Second, extending BinSight’s coverage to asymmetric ciphers, similarly to what
Shaui et al. [103] proposed, would provide the research community and applica-
tion developers with a single tool that can provide an overall evaluation of how
an application uses symmetric and asymmetric cryptography. Such an evaluation
would have to be able to separate public keys from private ones, since having a
static public key does not pose the same security threat as using static encryption
keys for symmetric ciphers. Third, considering that recent research has showed
that applications incorrectly validate SSL certificates [62], one can also include
analysis for the implementation of secure protocols, such as TLS or SSL.

While identifying misuse cases is important, it is also highly important to un-
derstand what happens with data once it is encrypted. In addition, an insight into
what kind of data is being encrypted would allow ranking the uncovered issues
based on severity level. That is, if highly sensitive data are being handled by code
that misuses Crypto API, one should try to fix that issue first, comparing to a
benign misuse such as obfuscation.

One can achieve such a goal by analyzing program slices that gather data be-

95

fore submitting them for encryption. Furthermore, these slices should also include
the flows where cipher-text is passed through an input/output (IO) API. Including
IO flows is important for a proper assessment of security, since the attack surface
is significantly different for network and on-host attackers. Finally, one can use
dynamic analysis methods and data tainting to track all sensitive data records. For
example, see [60] and [38].

Although one cannot obfuscate calls to platform APIs, such as Crypto API, it
is still technically possible to hide such calls from static analysis. For instance, an
application can use Java Reflection API to side-load a binary that would contain a
class definition that makes the actual calls to Crypto API. To uncover such cases,
future research should introduce analysis of the Reflection API into the BinSight
pipeline. Once such call sites are found and the corresponding binaries are down-
loaded, one can feed these binaries to the existing BinSight pipeline, and proceed
with the analysis as usual.

More importantly, our manual in-depth study of top libraries revealed that the
identified misuse cases did not impact the actual security of the applications. In
particular, while static linting was efficient in detecting Crypto API misuses, it
failed to capture actual security implications, since most of the manually analyzed
libraries used cryptography for other reasons than confidentiality or integrity pro-
tection. Reporting too many false positives would make it hard to convince ap-
plication and library developers to change their coding practices. Future research
should first focus on identifying these false positives. For instance, one could
white-list known benign misuse cases and share them with the community. An
example of this is the use of ECB mode in the Apache library for NTLM proto-
col implementation, which is secure since it encrypts a single block of random
data. Another approach is to employ dynamic analysis and data tainting, in order
to uncover the kinds of data involved. This would allow ranking of all misuses
based on how sensitive the involved data are, and thus, would allow the research
community to focus on what is most important.

96

3.7.2 How Crypto API Misuse Rates Have Changed
By using the original dataset from the CryptoLint study [57], we were able to
(a) replicate the original study and (b) compare how misuse rates have changed
between 2012 and 2016. The analysis of applications from the CryptoLint study
showed comparable results, i.e., about 90% of Android applications contained at
least one misuse of Crypto API. The analysis of applications collected in 2016
revealed similar results, i.e., around 90% also had at least one case of Crypto API
misuse.

In contrast to the CryptoLint study itself, we analyzed calls from libraries
and applications separately. Source attribution analysis revealed that 9 out of 10
calls to Crypto API originated from libraries. Such library domination makes the
misuse rate measured by the CryptoLint study highly biased towards libraries. In
particular, we showed that 507 libraries in the 2016 dataset were the only reason
why 80.5% of APK files were flagged as misusing Crypto API. To provide better
understanding of trends, we used the ratio of call-sites with mistakes to all call-
sites as a complementary metric. While the ratio of APK files with Crypto API
misuse provides insight into the impact of libraries and applications on the overall
number of APK files with misuses, the call-site ratio provides intuitive probability
for how often a call from libraries or applications will make a mistake.

Trend analysis showed that while both applications and libraries have im-
proved in certain aspects, e.g., the use of ECB mode for symmetric ciphers, they
have significantly worsened in others areas, such as in the use of static encryption
keys. As there has been a decrease in the use of the ECB mode, a reason for this
is possibly the introduction of a warning message in Google’s Android Applica-
tion Integrated Development Environment (IDE), which highlights the insecurity
of the ECB mode. Interestingly, there are plenty of “suggestions” online for how
to “fix” this warning message by replacing the ECB mode with CBC.

In addition, our analysis has revealed that RC4, a symmetric cipher with
known vulnerabilities [65], has become the third most-used cipher among ap-
plications collected in 2016. Future research should focus on studying if warn-

97

ing messages, similar to the “insecure ECB mode” message, would change how
developers use Crypto API. Further, recent research showed that application de-
velopers also need code samples to make sure they use API properly [36]. Thus,
one approach would be to incorporate samples into the IDE as ready-to-use code
snippets.

3.8 Conclusion
This chapter presents the results of a study on the misuse of cryptography APIs
in Android applications. Although other researchers had previously measured the
spread of misuse, this study differs in that it focused on source attribution, i.e.,
understanding whether a misuse originates from a library or an application. Such
focus revealed that 9 out of 10 calls to Crypto APIs originate from libraries and
that libraries are the major contributor of misuse, both in terms of APK files and
the ratio of call-sites. In particular, third-party libraries were the only source of
Crypto API misuses for 89.5% of flagged APK files.

While replicating the CryptoLint study and confirming its results, we showed
that the study’s analysis missed most of the libraries (249 out of 260). This led to
over-counting, i.e., counting the misuse multiple times, since 70% of the identified
APK files by the CryptoLint had misuses that originated only from 222 libraries.
That is, 222 libraries were solely responsible for the flagging of 6932 APK files
in the R12 dataset (out of 9886).

This chapter also provides insights on how Crypto API misuse rates have
changed between 2012 and 2016. We found that the trends were mixed. While
the overall ratio of APK files with misuse attributable to libraries had significantly
worsened, libraries managed to improve in some areas (decreasing the use of ECB
mode and static seed for SecureRandom). This chapter also demonstrates that us-
ing the ratio of APK files is biased towards libraries, especially the popular ones.
To address this limitation we proposed to use the ratio of call-sites that made a
mistake. We demonstrated that in certain cases the ratio of APK files provides a
misleading message.

98

Finally, this study also provides insights into misuse cases by presenting re-
sults of a manual in-depth analysis of the top-2 libraries from each dataset. The
results showed that while static linting is efficient at detecting Crypto API mis-
uses, it fails to capture actual security implications. In particular, manual analysis
revealed that the investigated libraries used cryptography for reasons other than
confidentiality or integrity protection. Another observation was the edge case for
Rule 1, i.e., encrypting a single cipher block of random data in ECB mode. This
is why future research on Crypto API misuse should focus on improving the abil-
ity of analysis tools to identify use cases, their ability to detect edge cases, and,
more importantly, their ability to identify types of data being processed by calls
to Crypo API. Understanding the all this allows assessing the severity of a misuse
cases, i.e., does it potentially leads to a data breach of sensitive data, or it is a mere
functional false positive, e.g., obfuscation.

99

Chapter 4

Storing Encryption Keys on
Wearable Devices

In this chapter we present the results of feasibility evaluation of a system that
uses wearable devices to manage encryption key. The main intuition on why
such a system might help address the issues presented in previous chapters is
the proliferation of various wearable technologies (e.g., smart watches or fitness
trackers).

4.1 Introduction
Public and private organizations see plenty of benefits in the adoption of smart-
phones or tablets for their businesses. For example, the bring your own device

(BYOD) policy has become a norm [5]. While some businesses have less con-
straints on how well company’s data needs to be protected, certain types of data
are under stricter requirements. For example, health related data in the US is re-
quired to follow the Health Insurance Portability and Accountability Act of 1996
(HIPAA) [28] and protection of any personally identifiable information in Canada
has to follow the Personal Information Protection and Electronic Documents Act
(PIPEDA).

100

Adoption of the BYOD policy creates certain challenges in following HIPAA
or PEPIDA. In particular, as shown in Chapter 2, 90% of users tend to rely on easy-
to-guess unlocking secrets, which results in practical password guessing attacks
and enables data decryption. Furthermore, 1 in 3 users do not lock their devices
at all, which makes any data stored on the device immediately readable.

Although it is hard to measure how often an attacker actually tries to access
confidential data on users’ smartphones, there is some anecdotal evidence to con-
sider. In the US alone every tenth smartphone owner has experienced theft at least
once [4]. More than 30% of all street robberies involve smartphone theft [2]. Fi-
nally, 46% of companies from North America and Europe stated that theft of a
data bearing device, such as a smartphone, was the key factor in the data breaches
they experienced [5].

All of the above makes it challenging, if not impossible, for certain organi-
zations to adopt smartphones and tablets in their businesses. In the following we
design and evaluate a system, called Sidekick, that aims to address two issues.
First, it aims to make unlocking secrets optional for data-at-rest security, by im-
plementing wearable devices as key storage devices. Second, it aims to give full
control to organizations over how their data are being encrypted, while still allow-
ing the BYOD policy.

Evaluation results revealed that this proposal is practical from a technical point
of view. That is, one can use Sidekick on all existing platforms and on devices
that have Bluetooth Low Energy (BLE) stack. In addition, the system imposes
negligible latency and power consumption overhead. There are still, however,
plenty of open research questions, especially on usability of this proposal.

4.2 Threat Model
This section provides a description of threats, risks and attackers’ capabilities con-
sidered during the design and development of the Sidekick system.

101

4.2.1 Threats and Risks
The Sidekick system was designed with a focus on smartphone loss and theft
threats, or theft, for brevity. In an adversarial model we consider an opportunistic
attacker, i.e., an attacker who’s main objective is to profit from selling the device
itself. As an additional source of revenue, such an attacker might attempt access-
ing data. Such an opportunistic attacker would only spend sufficient amount of
time to find an unlocking secret which is easy-to-guess, as defined in Chapter 1.
To achieve this, the attacker would use available tools for offline password guess-
ing attack, e.g., HashCat [33] in order to find the unlocking secret. Attackers
who aims accessing data as a primary objective are beyond our scope, since they
can coerce smartphone owners to give up their unlocking secret through physical
threats.

Once the device is in the hands of an attacker, there is a risk of confidential data
disclosure. If an attacker gains access to confidential data, the owner of the data
might suffer losses, such as reputation and/or financial damages. For example, the
victim might have to pay fees for leaking private customer information. Our main
focus is on organizations that adopted the BYOD policy but need control over pro-
tection of their data confidentiality. To achieve this, such organizations are willing
to require their employees to carry a wearable device. This is why in our evalu-
ation we focused only on technical aspects and not on usability of the proposal.
The main reason for us to focus on the technical aspects, rather than usability or
security, is three fold. First, we aimed to use the BLE communication stack which
is available on all mobile platforms, but was deliberately compromised for energy
efficiency [10]. Second, we evaluated a well-known and researched mutual au-
thentication protocol on top of the BLE stack, with the Elliptic Curve Diffie Hell-
man protocol for establishing session keys. Third, considering that we envisioned
Sidekick to be implemented as a background service on the wearable devices that
are already in use, thus, having minimal impact on the user interactions with the
wearable device.

102

4.2.2 Attack
Accessing confidential data that are not encrypted by either PBE or the application
itself is trivial. If, however, PBE is enabled, the attacker would need to extract a
bit-by-bit image of the internal storage first. This can be achieved through existing
tools (e.g., [7]). The main reason for extracting the image first is to bypass the
limitation on the number of failed unlocking attempts. This limitation is enforced
on the OS level and often leads to complete data wipe-out. For example, in iOS
a user can enable device wipe-out after 10 unsuccessful unlocking attempts. With
the storage image in hands, the attacker mounts a password guessing attack in
order to recover the key encryption key (KEK), which is used to protect the actual
data encryption key (DEK).

The stolen device might use specialized hardware for PBE. For instance, iPhones
and iPads use cryptographic chip for key derivation process. This chip has an em-
bedded hardware key, which is used in key stretching. If such specialized hard-
ware is used, the attacker will need to run certain computations on that hardware
during the password guessing attack. Such attacks are called on-device brute-
force attacks and, in general, are significantly slower than off-device attacks since
massive parallelization becomes unavailable. Both on-device and off-device at-
tacks are considered offline, as they bypass enforced limitations on the number
of allowed failed unlocking attempts. In off-device scenario, the storage image
is process off device, hence none of the restrictions can be applied. In on-device
scenario, an attacker uses specialized hardware directly, which allows him to cir-
cumvent limitations enforced by Operating System or drivers. On-device attacks,
however, are significantly harder to mount and require certain types of vulnera-
bilities in the booting sequence. Once the attacker recovers the KEK, it becomes
trivial to recover the DEK and obtain access to encrypted data.

If an attacker needs to bypass data encryption implemented by an application,
a binary file of the application needs to be first obtained and reversed engineered.
For example, Android applications are distributed as APK files, which can be
downloaded from the Google Play store with existing tools such as APKDown-

103

loader [25]. If a misuse of cryptographic API is found, the attacker then uses this
knowledge to decrypt the data.

Because Sidekick relies on wearable devices, one must evaluate attacks on the
used wireless communication stack and its implications on the overall security of
the encrypted data. An attacker might attempt to obtain KEKs transferred over
the BLE channel. If such an attack is successful, then one can decrypt DEK, and
then decrypt encrypted data. An attacker might aim to corrupt the KEK during
transmission over BLE, which, if successful, would make the corresponding DEK
encryption cryptographically inaccessible. This capability might be exploited by
ransomware – a malware that encrypts data and requires a payment to be made for
the victim to get his or her data back.

4.2.3 General Assumptions
The design of Sidekick makes several general assumptions about the capabili-
ties of an attacker. First of all, a perfect cryptography is assumed, i.e., attackers
cannot differentiate the used cipher (AES) from a random permutation function.
Considering that non-generic attacks have yet to be found for the AES cipher,
this assumption is sound. It is also assumed that there are no security bugs in the
implementation of the data encryption system that would introduce a shortcut for
encryption and decryption (e.g., by using a hard-coded KEK or DEK, or by using
a biased and predictable random number generator).

In addition, confidential data disclosures through a compromised OS kernel
are not considered for the following reasons. First, having a secure OS kernel does
not prevent the password guessing attack and attacks on misused cryptographic
APIs. Second, unless a trusted secure platform is used, a compromised OS kernel
renders any data encryption ineffective. That is, by virtue of controlling the OS
kernel, the attacker can read and write any memory page, and thus can extract
DEKs and KEKs from RAM directly.

Use of wireless communication stacks enables attackers to track users based
on device addresses (i.e., Media Access Code). It is assumed, however, that track-

104

ing users is not one of the objectives of the attackers. Such an objective is not only
unrelated to data-at-rest security, but can also be trivially addressed with existing
methods and tools, e.g., by enabling the BLE privacy feature [10]. Finally, the
ability to deny the existence of data is not considered either, since (a) it is com-
plimentary to confidentiality protection, and (b) can be addressed using one of the
available systems (e.g., [104]).

Finally, we assume that an attacker’s main focus is the smartphone itself and
the data stored on the device is secondary. That is, an attacker would attempt
accessing data only if data protection is inadequate, e.g., the device is unlocked
or unlocking secret can be guessed within time frame that the attacker considers
reasonable. Considering that the main objective of the Sidekick is increasing the
search space for the encryption keys, we focus the evaluation on costs associated
with the use of such external device. We do not focus on security of the wearable
device itself, both in terms of physical and operating systems, since we assume
that the attacker will either not have access to this wearable device or a secure and
tamper resistant device is being used.

4.2.4 Crypto-Attacker
The crypto-attacker aims to obtain confidential data by recovering the KEK through
password search. It is assumed that the crypto-attacker has the following capabil-
ities. First, he has physical access to the victim’s smartphone. Second, the crypto-

attacker knows the design of the data encryption system and knows how the KEK
is generated. Third, he can obtain a bit-by-bit image of the internal storage on the
stolen smartphone, which allows bypassing the file system access control. Tech-
niques that allow acquiring the raw storage image have been widely discussed in
the last few years [104, 114]. Fourth, if the stolen device uses special hardware
for data encryption, e.g., crypto-chip in iPhones, he knows how to mount an on-

device password guessing attack. Finally, it is assumed that the crypto-attacker

has limited time during the attack, and that the attacker is not capable of mounting
a successful guessing attack on a pseudo-randomly generated 128-bit KEK.

105

4.2.5 Network-Attacker
A network-attacker might have several objectives. First, he might be interested in
data-at-rest stored on the smartphone. In this case the attacker plans to steal the
smartphone later, but first aims to obtain all KEKs transmitted over BLE in order
to eliminate the necessity to later perform a KEK search. Second, the network-

attacker might be interested in corrupting KEKs to cryptographically lock the
user’s valuable data. The attacker can then use his knowledge of how he corrupted
the KEK and request a ransom payment from the victim.

To compromise the wireless channel, the network-attacker can use one of two
approaches. First, the attacker can focus on the wireless messages themselves by
exploiting insecure protocols and gaining the ability to recover or corrupt KEKs.
In particular, we assume that the network-attacker is able to exploit vulnerabilities
reported in BLE stack thus far [96–98]. In particular, these attacks showed that
recovering the established pairing keys for the BLE stack is practical. This gives
the attacker ability to decrypt and modify any message transmitted over the BLE
stack.

Second, if the attacker has control over an application on the victim’s smart-
phone with access to the Bluetooth stack, he can communicate with the wear-
able device and retrieve required KEKs before stealing the device. This type of
an attack is called a misbonding attack [86]. In order to mount a misbonding
attack an attacker needs to obtain access to the Bluetooth stack, by requesting
android.permission.BLUETOOTH permission for an Android application. This
allows the application to communicate with all Bluetooth devices that are paired
and connected, including the wearable device used for KEKs storage. From the
wearable device perspective, all applications that communicate with it have the
same identity, that of the paired smartphone. That is why wearable device with
Sidekick must be able to identify each application in order to enforce access con-
trol on the stored KEKs.

106

4.3 Sidekick Design
In this section we present the design of the Sidekick system. We begin with a
high-level overview of the system, then proceed with a discussion of used counter-
measures to mitigate attacks by a network-attacker. We conclude with a security
analysis of the proposal in the presence of network and crypto attackers.

4.3.1 High Level Overview
The Sidekick system relies on a wearable device in the encryption keys manage-
ment task. This allows the decoupling of user authentication and data encryption
by making the dependency on the unlocking secret optional in the Data Encryption
Key derivation process. Instead, Sidekick generates all KEKs randomly and stores
them on an external device. Such systems that separate storage have been already
proposed and deployed for personal computers and laptops, e.g., TrueCrypt and
BitLocker [12, 14]. With the evaluation of the Sidekick system we aim to evalu-
ate if it is practically feasible to use an insecure BLE stack while achieving both
(a) keeping the latency and power consumption reasonable, and (b) mitigating the
misbonding attack by introducing mutual authentication between applications on
the smartphone side and Sidekick service on the wearable device side.

The key technical difference in the design of the Sidekick system from all
existing proposals is the process of fetching the KEK from a wireless wearable
device, shown in Figure 4.1. Thus, our technical evaluation of Sidekick is focused
on the performance of the KEK fetching process.

There are several reasons to choose a wireless stack and a wearable device
over existing physical connections. Physically attached external devices, such as
memory cards or USB flash drives, are not well suited for smartphones, since
not all modern smartphones have a USB port or allow using external memory
cards. Physically attached external devices also require constant user attention,
since forgetting to unplug the external device from the smartphone destroys all
security properties that a data encryption system provides. The proliferation of

107

Figure 4.1: In currently deployed systems, a user needs to provide an unlocking
secret to unlock his or her device. The unlocking secret, most probably, is an
easy-to-guess one. That secret is then used to derive a Data Encryption Key
(DEK), which is then used for data encryption/decryption. When application
developers need to encrypt data in smartphones, they usually use a static data
encryption key, i.e., hard code it into their application, and then also roll out
their own implementation of the data encryption. Sidekick addresses both
issues by randomly generating key encryption keys (KEK) and then storing
them on a wearable device. Sidekick makes data encryption independent from
the unlocking secret, by mainly relying on KEKs while making the use of
unlocking secrets optional (showed as a dashed line). It also provides a simpler
API to application developers so that they do not need to roll out their own
implementation of data encryption and a encryption key management system.

wearable devices, such as smartwatches and fitness trackers, suggest that there
will be plenty of options for users to choose from for storing KEKs.

Sidekick uses the BLE stack for the following reasons, which are mostly prac-

108

Figure 4.2: High-level design of the Sidekick System. A data containing device
(DCD) runs applications that link the Sidekick library. The library takes care
of all communications with the KSD, e.g., storing or retrieving a KEK. Once a
required KEK is retrieved, a corresponding DEK is decrypted and stored in the
Decrypted DEKs Cache by the Sidekick Library. The DEK is then passed to
the Data Encryption System in order to encrypt/decrypt data. Each application
has a separate KEK List. The Reference Monitor on the KSD mitigates a
misbonding attack by ensuring that each application has access only to its own
KEK List.

tical. First, BLE hardware and BLE APIs are available on all platforms today,
while other Personal Area Network (PAN) stacks, notably Near Field Communi-
cation (NFC), have limited support. Second, the use of BLE in wearable devices
is energy efficient, since recent research has showed that a BLE-based System-
On-Chip (SoC) can work for months off a single coin-cell battery [6, 69]. Finally,
most of the released wearable devices already rely on the BLE stack for their com-
munications with smartphones (e.g., Nike+ [16]). Sidekick was prototyped on the
CC2540 SoC developed by Texas Instruments. Although several other, more ca-
pable BLE-enabled SoCs were available at the time, CC2540 was chosen since
it was the most popular and least capable BLE-enabled SoC at the time of the
experiments [13].

The overall design of Sidekick is shown in Figure 4.2. A smartphone, that
stores sensitive data is called a data containing device (DCD). A wearable device
that stores KEKs is called a key storing device (KSD). When a users tries to access
sensitive data on the DCD, Sidekick fetches the corresponding KEK from the KSD

109

and recovers the DEK. Once the data is decrypted with the recovered DEK, a user
can read or modify that data on the DCD.

There are four requests that Sidekick can send to a KSD, namely get, store,
update, and delete on a KEK. Each of the four requests (Req) has a corresponding
response (Resp) from the KSD. For instance, when the DCD needs to store a
new KEK on the KSD, it sends a StoreReq to the KSD with the new KEK in the
payload. Once the KSD has processed that request, it responds with a StoreResp,
which contains a KEKID, a unique KEK identifier, in the payload. Later, when
the DCD needs to fetch that KEK, it needs to provide the KEKID it received in the
StoreResp payload.

4.3.2 Securing Communications over BLE
While the main objective of Sidekick is to mitigate attacks by thecrypto-attacker,
we have to address the risks that arise from the use of the BLE stack. In particular,
a network-attacker can exploit one of the previously reported vulnerabilities [96–
98]1. The existence of such attacks is not surprising, since the security of BLE
was compromised on purpose to make BLE-based SoCs power-efficient [10]. In
addition, Sidekick needs to overcome the limitations in access control in mobile
operating systems for access to the BLE stack. In particular, Sidekick needs to
control access to each KEK so that two different applications cannot fetch each
other’s KEKs.

Transport Layer Security. To ensure integrity and confidentiality protec-
tion for all of Sidekick’s communications over the BLE (to protect against the
network-attacker who aims to corrupt KEKs), we used the Counter with CBC-
MAC mode (CCM) [109], since (a) all BLE-enabled SoCs have this implemented
in hardware [10], and (b) it has been proven to be secure [75].

Mutual Authentication. On top of the transport layer, which is the Attribute
Protocol (or ATT) in the BLE stack, a well-known and studied mutual authentica-
tion protocol based on a shared secret was used [63]. The mutual authentication

1As of this writing all these attacks are still practical.

110

protocol was used for two reasons: (a) to establish a pairing key during the ini-
tial pairing between the KSD and an application on the DCD, and (b) since each
application established its own key, the pairing key was used to authenticate ap-
plications to properly enforce access control to KEKs.

Pairing KSD and DCD. For mutual authentication to work, one should first
establish a bootstrapping shared secret. Unfortunately, wearable devices are often
limited in their Input/Output capabilities. For instance, the CC2540 SoC only has
two LEDs in the default circuit design, which is why a blinking LED (BLED)
approach, proposed by Saxena et al. [100], was adopted in Sidekick to establish
the initial shared secret. In BLED, one device generates a pseudo random key and
shares it by controlling how an LED blinks, while the other, significantly more
capable device, uses a camera and converts a blinking LED into a bit stream. The
security of a secret established in this way is only important while a new, signifi-
cantly stronger shared key is being established through a key establishment proto-
col, such as Elliptic Curve Diffie-Hellman (ECDH). The results of benchmarking
experiments with the Samsung S3 and the iPhone 4S revealed that both devices
can reliably handle a bit-stream of 3 bits/s. To make the wait time shorter for
end users, while maintaining a sufficient level of security, Sidekick uses BLED
to established a 32-bit secret in about 10 seconds, which corresponds, approxi-
mately, to a six-digit PIN-code. Limited amount of RAM and processing power
available in modern wearable devices make it impossible to use the original DH
protocol [51]. To overcome this limitation, Sidekick uses the ECDH protocol,
based on the P128 curve.

Other Considerations. Sidekick needs to mitigate Replay and Retry attacks
as well. To mitigate Replay attacks Sidekick uses a Nonce in each message and
verifies that Nonce on the recipient side. To mitigate Retry attacks, Sidekick uses
a monotonically increasing number as a Nonce, which allows a recipient to detect
retried old messages by comparing the message number of the message in question
with the last message sent/received thus far.

111

4.4 System Evaluation

4.4.1 Experimental Setup.
Sidekick was evaluated with an iPhone 4S and a Samsung S3 smartphone as the
DCDs, and a CC2540 SoC [11] as the KSD. The KSD was implemented in C as a
firmware for the CC2540. The DCD side was implemented in native languages for
the given platforms, i.e., Objective C for iOS, Java for Android. Sidekick had low
memory requirements on the KSD side (20Kb or ROM and 4Kb or RAM), and
negligible impact on smartphones. The evaluation of the system was conducted
under the assumption that KEKs and DEKs are 256-bit long.

4.4.2 Latency
The overall latency is defined as the time span from the moment an application
on the DCD submits a request to the moment the application receives a corre-
sponding response from the KSD. The overall latency consists of two parts (a)
communication latency – the time spent on completing a request over BLE, and
(b) computation latency – the time spent on all required calculations, such as mes-
sage encryption and decryption. Considering that the benchmarking experiments
revealed that communication latency is in the order of several magnitudes higher,
the computation latency is omitted from further discussion.

There are several fundamental factors in BLE that impact communication la-

tency. First, maximum transmission unit size at the ATT layer, referred to as
MTU_ATT in the BLE specification [10], limits the number of bytes one can fit
into a single ATT packet. Second, the BLE specification defines a connection in-
terval (CInterval), i.e., a time window for a single packet. Finally, BLE defines
a connection interval latency (CLatency), which defines the maximum number of
allowed connection intervals without a message before the connection is consid-
ered closed. Note that, to maintain connection, the BLE stack sends so called
empty-PDUs in unused connection intervals. CLatency allows devices to skip

112

sending empty-PDU to conserve energy, by allowing the wearable device to stay
longer in the most power-efficient modes.

The results of sniffing on the BLE connection setup process revealed that the
CC2540 SoC and Android OS smartphones supported up to 23 bytes in each
packet, while the iPhone 4S allowed up to 132 bytes in a single packet. The
default values for CInterval were 30ms and 48.5ms for Android and iOS respec-
tively. Finally, both platforms used zero as the default value for CLatency, i.e.,
skipping connection intervals was not allowed by default.

Table 4.1 provides a summary of latency for each of the four supported re-
quests. These results suggest that with the default configuration of BLE stack in
both iOS and Android, Sidekick introduces less than a second delay in the DEK
recovery process. Considering that this delay is significantly smaller than the pro-
cess of unlocking a smartphone with a secret, as was shown in Chapter 2, one can
hide this delay by fetching KEK during the unlocking process.

Table 4.1: Overall Latency for each four request/response message pairs for the de-
fault values for CInterval and CLatency.

Req/Resp , Overall Latency, ms
(Payload Length, bytes) Android OS iOS
Store (32/4) 873 540
Retrieve (4/32) 873 540
Update (32/0) 873 540
Delete (4/0) 776 480

4.4.3 Power Consumption
Smartphones. Power consumption is a crucial property of a system that is meant
to be used in smartphones. Draining too much power would make the proposal
less appealing to end-users. The results of the laboratory experiment on power
consumption revealed that retrieving a single 256-bit KEK consumes approxi-
mately 5.7µAh on smartphones, or about 0.0004% their battery capacity. That is,
if a user unlocks their smartphones 100 times a day and a KEK is fetched dur-
ing each unlock, that would consume 0.04% of battery capacity. Considering that

113

users tend to charge their smartphones on a daily basis, one can completely ignore
the power consumption overheads that Sidekick introduces.

Wearables. The CC2540 SoC is based on the 8-bit 8051 CPU, which provides
great flexibility in power consumption through four power modes: Active Mode,
and Modes 1-3. In theory, CC2540 can run for 9 hours in Active Mode and up to
30 years in Mode 3 on a single CR2032 battery [69]. Of course, in practice the
battery lifespan depends on specific firmware. Power-consumption experiments
revealed that retrieving a single KEK consumes approximately 0.12µAh of battery
capacity on CC2540, which corresponds approximately to 0.00005% of CR2032
capacity. That is, a single CR2032 battery allows the KSD to receive and process
about 2 million requests from the DCD.

To assess battery lifespan more precisely, one needs to define a daily workload,
i.e., the number of requests sent per day to the KSD. For example, if we consider
that the KSD stores a single KEK for the entire smartphone, then we can set the
expected daily workload to approximately 100 requests a day [110]. On the other
hand, a banking or a business application might store multiple keys on the KSD.
Four workloads were used, with 1, 10, 100, and 1,000 requests a day, to cover
various Sidekick usage scenarios.

In addition, several various values for CInterval were used to show how a
slight increase in the overall latency impacts battery lifespan. In particular, the
following four values {0, 15, 32, 48} for CInterval parameter were evaluated. The
values correspond to 540, 1000, 1500, 2000 ms of the overall latency for a KEK
fetching request.

Table 4.2: CR2032 battery life in days, depending on the acceptable overall latency
for a request and on the number of requests per day.

Maximum Latency, ms
Requests per Day 540 1,000 1,500 2,000

1 14 217 443 652
10 14 217 442 651

100 14 215 434 633
1,000 14 197 366 496

114

The results shown in Table 4.2 suggest that the default configuration for the
BLE channel (CInterval = 30ms and CLatency = 0) for the CC2540-based KSD
allows it to run for only two weeks. If, however, we increase maximum allowed
latency up to 2,000 ms, then KSD can last more than 600 days on a single battery,
assuming a workload of 100 requests per day.

4.4.4 Session Key Renewal
Secrecy of the session keys is crucial for the overall security of Sidekick. Power
consumption experiments on wearable devices revealed that establishing a sin-
gle 128-bit session key consumes 0.044% (or 0.1 mAh) of battery. That is, a
single CR2032 battery allows at most 2,272 session keys to be established with
ECDH-P128. This is why it is also important to factor in the energy consumption
of session key establishment and renewals in the battery lifespan assessment for
wearable devices.

For demonstration purposes let us consider the following example:2 a user
unlocks his smartphone 100 times a day, and, in parallel, Sidekick makes a request
to the KSD to fetch the KEK. Considering that the fastest unlocking secret [82]
requires about 2 seconds, we would also assume that having a two second overall
latency is acceptable. With these parameters set, the results shown in Table 4.2
suggest that the CR2032 battery will last for 633 days. Now, if we renew the
session key twice a day, that would correspond to 406 days of battery lifespan,
i.e., 36% of battery capacity will be spent on key establishment.

4.4.5 Summary
Overall, the results of the benchmark, latency and power consumption experi-
ments revealed that the use of wearable devices to decouple user authentication
and data encryption in smartphones is a practical proposal. In particular, the la-
tency of retrieving a KEK can be completely hidden behind the smartphone un-

2This example closely matches requirements of the current data protection systems in iOS and
Android OS.

115

locking process. The evaluated proposal had insignificant impact on battery life
and the current implementation allows a KSD device to run for more than a year
on a single coin-cell battery.

4.5 Related Work
There are two complimentary ways of improving security of password-based en-
cryption. One can increase the cost of password guessing attacks either by in-
creasing the costs of the key derivation process or by nudging users to choose
passwords that are harder to guess.

The research community has also proposed other KDFs such as ones that fo-
cus on substantially increasing the cost of each step for attackers. For example,
Boyen [111] developed a halting key derivation function, which forces an attacker
to perform substantial amounts of additional computations for each guess, and
thus significantly increases the overall cost of the attack, while keeping users’
costs relatively low. Other proposals, e.g., [70, 104], have suggested to increase
the number of PBKDF iterations, to keep up with the recent improvements in
computational capabilities of modern processors. This, however, is a never-ending
arms race.

Others proposals focused on designing and evaluating novel authentication
methods for smartphones (e.g., [49]) that are usable, yet, secure. While the pre-
sented evaluation results suggest that the proposed authentication methods are us-
able and resilient against specific attacks, such as shoulder-surfing attacks, users
still choose easy-to-guess unlocking secrets, which are comparable with 4-digit
PIN-codes in complexity. In contrast, Sidekick is a KDF agnostic system, that is,
it eliminates the dependency of data encryption security on the unlocking secret.
Although, one can tangle a randomly generated KEK with an unlocking secret,
that would still provide at least the same amount of entropy that the randomly
generated KEK does.

Finally, researchers proposed protection techniques for data-at-rest on mobile
devices. For instance, DOrazio et al. [53] proposed an approach to conceal or

116

delete unprotected data in iPhones. In particular, the proposal generates a new
key C and then uses this key to encrypt the per-file key (stored in file’s metadata
block on iOS). This solution renders the file cryptographically unreadable without
C key. If the user does not store that key anywhere, then the data practically
becomes cryptographically deleted. Their solution, however, requires substantial
expertise from end-users in order to setup the concealment. For instance, users
are required to jailbreak their devices. Sidekick, on the other hand, was designed
to work transparently with minimal user involvement. If a user can use a fitness
tracker, she should be able to use Sidekick as well.

4.6 Discussion and Future Work
Overall, the evaluation results suggest that the Sidekick system is practical in
added latency and power consumption. Low power consumption makes the pro-
posal attractive due to minimal maintenance efforts, i.e., frequency of battery re-
placement or not needing to change how often one charges a smartphone. Consid-
ering that the current implementation does not require any changes in the mobile
OS, one can use the proposal right away. In fact, the implementation of secure
communication from Sidekick is being used by the company FusionPipe3.

The Sidekick system was designed for organizations that want to take control
over protecting the confidentiality of the data in their employees’ smartphones.
Hence we have focused our evaluation on primary technical aspects – low cost and
low maintenance solutions. There are, however, plenty of open research questions
and challenges remaining.

First, having yet another device might push users away and it is not clear
if users are embracing existing wearable devices or keeping them closeby at all
times. Thus far it is not clear if a system design based on a wearable device offers
better usability than strict requirements to pick a hard-to-guess unlocking secret.
Second, if such a system is adopted by end users for themselves, one should extend
Sidekick with a usable fall-back mechanism that would allow user recovery in case

3http://www.fusionpipe.com/

117

http://www.fusionpipe.com/

the wearable device becomes unavailable. Finally, physical and system security of
the wearable devices might need to be properly evaluated, especially when such
protection is required.

While technical evaluation of the Sidekick system showed promising results,
there are still plenty of remaining research questions. For instance, it is unclear if
users are willing to trust such a system in the first place, considering that a user
will not be able to access data if something happens with the wearable device.
Also, it is still unknown how often users actually use wearable devices and wear
them. Finally, the usability of all user interactions involved in the configuration
process of Sidekick is not studied, and thus, might potentially hinder adoption.

Fortunately, there are ways to make the proposal simpler, at least for appli-
cation developers. Existing cryptographic libraries and APIs are often hard to
use [36], so to address issues related to the misuse of cryptographic APIs, such
as the use of ECB mode, static IVs and static encryption keys, future research
should consider integrating Sidekick with the recent EXT4 file system driver [27].
This file system has recently4 received an update adding support of per-file en-
cryption [80]. To encrypt a file in EXT4, an application developer or a user would
need to declare the file as encrypted. This can be achieved by either setting file
attributes through system calls or by using the e4crypto command line tool5. The
driver takes care of properly using cryptographic primitives, thus simplifying data
encryption for developers.

While declaring a file as encrypted in EXT4, one needs to provide a so-called
“encryption policy”. This policy can define the process of how file-specific key
encryption key (KEK) is derived in the Linux kernel. The actual data encryption
key is then wrapped with the KEK and stored in the file’s inode. Before proceed-
ing with the requested IO operation, the driver attempts to reconstruct the KEK,
and, subsequently, recover the DEK. As of this writing, the EXT4 driver supports

4The set of patches that enabled encryption in the EXT4 driver were released in 2015 with
Linux kernel 4.1. The author of this thesis worked on its implementation during his internship at
Google in 2015.

5http://man7.org/linux/man-pages/man8/e4crypt.8.html

118

http://man7.org/linux/man-pages/man8/e4crypt.8.html

kernel keyrings6 as the only source of data chucks for the KEK derivation process.
As a result, both the driver and the e4crypto tool need to be extended to support
Sidekick’s wearables.

Integration of the Sidekick system with EXT4 driver would provide several
advantages. First, application developers will not be required to implement the
actual implementation of the data encryption, since it will be provided by the
EXT4 driver. Second, security research community would be able to focus on
smaller code based, i.e., the file system driver. Finally, considering that drivers of-
ten have direct access to hardware, drivers are able to take advantage of hardware
acceleration, such as AES-NI7.

4.7 Conclusion
This chapter presented the design and evaluation of Sidekick – a system that de-
couples data encryption and user authentication in smartphones by using wearable
devices for encryption key management. The evaluation results showed that the
proposed system is effective from a technical standpoint; it can be deployed across
all mobile platforms right away, works on new and old devices, and does not no-
ticeably increase power consumption and latency. However, there are still plenty
of open research questions remaining, especially with regards to usability.

Sidekick was evaluated on iOS and Android platforms and a commonly used
BLE-enabled SoC (CC2540 [11]). The results of experiments on latency and
power consumption revealed that with the session key renewed twice a day, a
Key Storage Device based on CC2540 can work more than 400 days on a single
coin-cell battery.

6https://lwn.net/Articles/639523/
7AES-NI is hardware implementation of AES by Intel CPUs.

119

https://lwn.net/Articles/639523/

Chapter 5

Discussion and Conclusion

In this thesis we looked at data-at-rest security from various angles. In particular,
we studied how end users use and misuse smartphone locking systems. We then
studied how application developers employ Crypto API in their applications and
what kind of mistakes they make. We then looked into practical the use of wear-
able devices is for sensitive data protection in smartphones. In what follows we
summarize the implications of the results presented in this dissertation.

A set of users studies presented in this work provide a deeper insight into how
and why users use (or do not) smartphone locking systems (see Chapter 2 for more
details). The results of these studies revealed that there is a gap in the design of
smartphone locking systems and users needs. First, the authentication methods
are still far from being able to provide both usability and security, since almost
all subjects chose an easy-to-guess unlocking secret. Second, 20% of the subjects
found it cumbersome to unlock their device when all they needed was weather
forecast. Although recent updates to both iOS and Android allowed certain fea-
tures of the phone to be used while in locked state (e.g., Camera), there are still
plenty of other services and applications that need to move in the same acces-
sibility domain, e.g., games, anonymous browser. Finally, results of the studies
revealed that users are targeted by attackers from their social circle, thus, home
might not be as safe as previously thought.

120

These results grant further research into usable authentication methods and
more flexible application access control systems for smartphones. While new
authentication methods should be usable they also need to be secure in the envi-
ronment where shoulder surfing attacks are highly probable.

Another vector of attack on users’ smartphones is through smartphone appli-
cations that victims use. For example, if an application that stores and handles
sensitive data misuses Crypto API, data might be decrypted while in transit or
while stored, if a bit-by-bit image is obtained. To understand the extent of expo-
sure we conducted an analysis study on 132K of Android applications. The results
of the analysis (see Chapter 3 for more details) revealed that the current data pro-
tection systems in smartphones are inadequate in the presence of an attacker with
physical access to the device. In both cases, if a full-disk encryption is used, or
if an application itself encrypts data, then an attacker has higher chances of being
able to recover the encryption key, and thus, decrypt the data.

An attackers’ ability to recover an encryption key arises mainly from two
limitations. First, as we showed in Chapter 2, users tend to choose unlocking
secrets that are easy-to-guess within minutes [34, 37, 104]. Second, more than
half of calls to symmetric cipher API by developers relies on a static encryption
key, which can be trivially extracted with such tools as Dex2Jar and Java Decom-
piler [19, 21].

Addressing both of these limitations is challenging. On the user side, one
needs to understand how to improve complexity of unlocking secrets without de-
grading usability. Unfortunately, while new technologies have promised to ad-
dress certain limitations, they appear to be not as effective [45]. On the applica-
tions developers side of the issue, not much progress has been made. To compli-
cate the matters, the problem of Crypto API misuse is still far from being fully
understood by research community.

While our studies present interesting results, e.g., almost all calls to Crypto
API are made by a small set of libraries, there is still gap in our understand of
what does that mean from practical perspective. Furthermore, manual in-depth

121

analysis showed that the existing analysis approach based on static analysis suffers
from a new type of false positive – functional false positive. A functional false
positive is a case where a misuse has no security implications. For example, in
the recent years binary code obfuscation became a standard, and while it encrypts
certain bits of binary with a static key (i.e., formally misuses Crypto API) the
goal is not to protect confidentiality, but rather make the reverse engineering task
more complex. Future research should not only expand the set of the rules for
Crypto API misuse, but should also look into techniques that can be used to detect
functional false positives.

While application developers used static encryption keys, end-users struggled
with creating hard-to-guess passwords. Both of these issues rendered sensitive
data-at-rest insecure. With the design of Sidekick system (presented in Chapter 4)
we aimed to evaluate if using wearable devices for encryption key management is
vital from practical point of view. We define practical as (a) a solution that would
be unnoticeable from latency point of view, and (b) would not drain significant
amount of power from both a smartphone and wearable. We envisioned Sidekick
to be deployed as a service into already used wearable devices, such as FitBit
or Apple Watch. While results of the experiments showed that wearable devices
could provide a practical solution, it is still unknown if smartphone users would
like to adopt such an approach.

122

Bibliography

[1] Smart phone thefts rose to 3.1 million last year, consumer reports finds.
http://www.consumerreports.org/cro/news/2014/04/
smart-phone-thefts-rose-to-3-1-million-last-year/index.htm. last accessed
April 22, 2015. → pages 1

[2] Announcement of new initiatives to combat smartphone and data theft.
https://www.fcc.gov/document/
announcement-new-initiatives-combat-smartphone-and-data-theft. last
accessed May 12, 2015. → pages 1, 101

[3] Find My iPhone.
http://itunes.apple.com/ca/app/find-my-iphone/id376101648. last accessed
February 4, 2012. → pages 25

[4] Phone Theft In America.
https://www.lookout.com/resources/reports/phone-theft-in-america. last
accessed April 22, 2015. → pages 1, 101

[5] 2014 Cost of Data Breach Study. http://www-935.ibm.com/services/us/en/
it-services/security-services/cost-of-data-breach/. last accessed April 22,
2015. → pages 1, 100, 101

[6] Bluetooth SIG Analyst Digest Q4 2012.
https://www.bluetooth.org/library/userfiles/file/Bluetooth_Analyst2012.
→ pages 109

[7] Elcomsoft iOS Forensic Toolkit. http://www.elcomsoft.com/eift.html,
2012. Accessed February 15, 2013. → pages 103

123

http://www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-last-year/index.htm
http://www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-last-year/index.htm
https://www.fcc.gov/document/announcement-new-initiatives-combat-smartphone-and-data-theft
https://www.fcc.gov/document/announcement-new-initiatives-combat-smartphone-and-data-theft
https://www.lookout.com/resources/reports/phone-theft-in-america
http://www-935.ibm.com/services/us/en/it-services/security-services/cost-of-data-breach/
http://www-935.ibm.com/services/us/en/it-services/security-services/cost-of-data-breach/
http://www.elcomsoft.com/eift.html

[8] Dashboards | Android Developers.
http://developer.android.com/about/dashboards/index.html, 2012.
Accessed July 18, 2012. → pages 31

[9] Symantec Smartphone Honey Stick Project.
http://www.symantec.com/en/ca/about/news/resources/press_kits/detail.
jsp?pkid=symantec-smartphone-honey-stick-project, 2012. → pages 1,
50

[10] Specification Of The Bluetooth System 4.1. https://www.bluetooth.org/
docman/handlers/downloaddoc.ashx?doc_id=229737, 2013. Accessed
Feb 08, 2013. → pages 102, 105, 110, 112

[11] Bluetooth Low Energy System on Chip CC2540.
http://www.ti.com/product/CC2540, 2013. Accessed February 15, 2013.
→ pages 112, 119

[12] TrueCrypt - Free Open-Source On-The-Fly Disk Encryption Software for
Windows 7/Vista/XP, Mac OS X and Linux. http://www.truecrypt.org/,
2013. Accessed February 15, 2013. Version 7.1a. → pages 107

[13] Bluetooth Smart CC2541 SensorTag.
http://www.ti.com/ww/en/wireless_connectivity/sensortag/index.shtml?
DCMP=sensortag&HQS=sensortag-bn, 2014. → pages 109

[14] BitLocker Drive Encryption. http:
//windows.microsoft.com/en-CA/windows7/products/features/bitlocker,
2014. Accessed February 26, 2014. → pages 107

[15] 2 Billion Consumers Worldwide to Get Smart(phones) by 2016, 2014.
URL http://www.emarketer.com/Article/
2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694. →
pages 1

[16] Nike+. https://secure-nikeplus.nike.com/plus/, 2014. Accessed February
26, 2014. → pages 109

[17] Apktool - A tool for reverse engineering Android apk files (Version 2.01).
http://ibotpeaches.github.io/Apktool/, July 2015. last accessed June 29,
2015. → pages 4, 63

124

http://developer.android.com/about/dashboards/index.html
http://www.symantec.com/en/ca/about/news/resources/press_kits/detail.jsp?pkid=symantec-smartphone-honey-stick-project
http://www.symantec.com/en/ca/about/news/resources/press_kits/detail.jsp?pkid=symantec-smartphone-honey-stick-project
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
http://www.ti.com/product/CC2540
http://www.truecrypt.org/
http://www.ti.com/ww/en/wireless_connectivity/sensortag/index.shtml?DCMP=sensortag&HQS=sensortag-bn
http://www.ti.com/ww/en/wireless_connectivity/sensortag/index.shtml?DCMP=sensortag&HQS=sensortag-bn
http://windows.microsoft.com/en-CA/windows7/products/features/bitlocker
http://windows.microsoft.com/en-CA/windows7/products/features/bitlocker
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
https://secure-nikeplus.nike.com/plus/
http://ibotpeaches.github.io/Apktool/

[18] The Legion of the Bouncy Castle. https://www.bouncycastle.org/, July
2015. last accessed June 29, 2015. → pages 59

[19] Tools to work with Android .dex and Java .class files.
https://github.com/pxb1988/dex2jar, July 2015. last accessed June 29,
2015. → pages 59, 121

[20] Dalvik bytecode.
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html, July
2015. last accessed October 29, 2016. → pages 63

[21] Yet another fast Java Decompiler. http://jd.benow.ca/, July 2015. last
accessed June 29, 2015. → pages 121

[22] Spongy Castle - repackage of Bouncy Castle for Android.
https://rtyley.github.io/spongycastle/, July 2015. last accessed June 29,
2015. → pages 59

[23] Reverse engineering, Malware and goodware analysis of Android
applications ... and more (ninja !)).
https://github.com/androguard/androguard, November 2016. last accessed
November 16, 2016. → pages 53, 63

[24] Android now has 1.4 billion 30-day active users globally.
https://techcrunch.com/2015/09/29/
android-now-has-1-4bn-30-day-active-devices-globally/, 2016. Accessed
August 2, 2016. → pages 1

[25] Direct apk downloader. Direct APK Downloader, 2017. URL
https://androidappsapk.co/apkdownloader/. → pages 61, 104

[26] CUDA | GeForce, 2017. URL
https://www.geforce.com/hardware/technology/cuda. → pages 2

[27] Ext4 file system.
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt, 2017. →
pages 118

[28] Summary of the HIPAA Security Rule, 2017. URL https://www.hhs.gov/
hipaa/for-professionals/security/laws-regulations/index.html. → pages
100

125

https://www.bouncycastle.org/
https://github.com/pxb1988/dex2jar
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
http://jd.benow.ca/
https://rtyley.github.io/spongycastle/
https://github.com/androguard/androguard
https://techcrunch.com/2015/09/29/android-now-has-1-4bn-30-day-active-devices-globally/
https://techcrunch.com/2015/09/29/android-now-has-1-4bn-30-day-active-devices-globally/
https://androidappsapk.co/apkdownloader/
https://www.geforce.com/hardware/technology/cuda
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html

[29] java.lang.reflect (Java Platform SE 8) - Provides classes and interfaces for
obtaining reflective information about classes and objects., 2017. URL
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/
package-summary.html. → pages 64, 92, 94

[30] Java Cryptography Architecture Oracle Providers Documentation for Java
Platform Standard Edition 7. http://docs.oracle.com/javase/7/docs/
technotes/guides/security/SunProviders.html, May 2017. last accessed
May 15, 2017. → pages 59

[31] SecureRandom (Java Platform SE 7), 2017. URL https:
//docs.oracle.com/javase/7/docs/api/java/security/SecureRandom.html.
→ pages 58

[32] Soot - a framework for analyzing and transforming java and android
applications, 2017. URL https://sable.github.io/soot/. → pages 9

[33] hashcat - Advanced Password Recovery. https://hashcat.net/hashcat/, 07
2018. → pages 2, 102

[34] D. Abalenkovs, P. Bondarenko, V. K. Pathapati, A. Nordbø,
D. Piatkivskyi, J. E. Rekdal, and P. B. Ruthven. Mobile Forensics:
Comparison of extraction and analyzing methods of iOS and Android.
Master Thesis, Gjøvik University College, 2012. → pages 46, 121

[35] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky.
You get where you’re looking for: The impact of information sources on
code security. In Security and Privacy (SP), 2016 IEEE Symposium on,
pages 289–305. IEEE, 2016. → pages 54

[36] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and
C. Stransky. Comparing the usability of cryptographic APIs. In
Proceedings of the 38th IEEE Symposium on Security and Privacy, 2017.
→ pages 52, 98, 118

[37] Apple. iOS Security, 8.1 and up.
http://www.apple.com/business/docs/iOS_Security_Guide.pdf, 2014.
Accessed April 26, 2015. → pages 2, 46, 57, 121

[38] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: Precise context, flow, field,

126

https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/package-summary.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html
https://docs.oracle.com/javase/7/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/7/docs/api/java/security/SecureRandom.html
https://sable.github.io/soot/
http://www.apple.com/business/docs/iOS_Security_Guide.pdf

object-sensitive and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, pages 259–269, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2784-8.
doi:10.1145/2594291.2594299. URL
http://doi.acm.org/10.1145/2594291.2594299. → pages 96

[39] M. Backes, S. Bugiel, and E. Derr. Reliable third-party library detection in
android and its security applications. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’16, pages 356–367, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4139-4. doi:10.1145/2976749.2978333. URL
http://doi.acm.org/10.1145/2976749.2978333. → pages 3, 54, 68, 70, 90,
93

[40] M. Bellare and P. Rogaway. Introduction to modern cryptography, 2017.
URL https://cseweb.ucsd.edu/~mihir/cse207/classnotes.html. → pages
56

[41] M. Bellare, T. Ristenpart, and S. Tessaro. Multi-instance security and its
application to password-based cryptography. In Advances in
Cryptology–CRYPTO 2012, pages 312–329. Springer, 2012. → pages 57

[42] N. Ben-Asher, N. Kirschnick, H. Sieger, J. Meyer, A. Ben-Oved, and
S. Möller. On the need for different security methods on mobile phones.
In Proceedings of the 13th International Conference on Human Computer
Interaction with Mobile Devices and Services, MobileHCI ’11, pages
465–473, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0541-9.
doi:10.1145/2037373.2037442. URL
http://doi.acm.org/10.1145/2037373.2037442. → pages 42

[43] B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev. Statistical
deobfuscation of android applications. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’16, pages 343–355, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4139-4. doi:10.1145/2976749.2978422. URL
http://doi.acm.org/10.1145/2976749.2978422. → pages 66, 93

[44] D. W. Binkley and K. B. Gallagher. Program slicing. Advances in
Computers, 43:1–50, 1996. → pages 65

127

http://dx.doi.org/10.1145/2594291.2594299
http://doi.acm.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/2976749.2978333
http://doi.acm.org/10.1145/2976749.2978333
https://cseweb.ucsd.edu/~mihir/cse207/classnotes.html
http://dx.doi.org/10.1145/2037373.2037442
http://doi.acm.org/10.1145/2037373.2037442
http://dx.doi.org/10.1145/2976749.2978422
http://doi.acm.org/10.1145/2976749.2978422

[45] I. Cherapau, I. Muslukhov, N. Asanka, and K. Beznosov. On the impact of
touch id on iphone passcodes. In Proceedings of the Symposium on
Usable Privacy and Security, SOUPS ’15, page 20, July 22-24 2015. →
pages 3, 6, 43, 49, 121

[46] E. Chin, A. P. Felt, V. Sekar, and D. Wagner. Measuring user confidence in
smartphone security and privacy. In Proceedings of the Eighth Symposium
on Usable Privacy and Security, SOUPS ’12, pages 1:1–1:16, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1532-6.
doi:10.1145/2335356.2335358. URL
http://doi.acm.org/10.1145/2335356.2335358. → pages 41

[47] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and
Systems (TOPLAS), 13(4):451–490, 1991. → pages 64

[48] A. De Luca, M. Langheinrich, and H. Hussmann. Towards understanding
atm security: a field study of real world atm use. In Proceedings of the
Sixth Symposium on Usable Privacy and Security, SOUPS ’10, pages
16:1–16:10, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0264-7.
doi:http://doi.acm.org/10.1145/1837110.1837131. URL
http://doi.acm.org/10.1145/1837110.1837131. → pages 40

[49] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann. Touch me
once and i know it’s you!: implicit authentication based on touch screen
patterns. In Proceedings of the 2012 ACM annual conference on Human
Factors in Computing Systems, CHI ’12, pages 987–996, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1015-4.
doi:10.1145/2208516.2208544. → pages 49, 116

[50] A. De Luca, M. Harbach, E. von Zezschwitz, M.-E. Maurer, B. E. Slawik,
H. Hussmann, and M. Smith. Now you see me, now you don’t: Protecting
smartphone authentication from shoulder surfers. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’14,
pages 2937–2946, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2473-1. doi:10.1145/2556288.2557097. URL
http://doi.acm.org/10.1145/2556288.2557097. → pages 49

128

http://dx.doi.org/10.1145/2335356.2335358
http://doi.acm.org/10.1145/2335356.2335358
http://dx.doi.org/http://doi.acm.org/10.1145/1837110.1837131
http://doi.acm.org/10.1145/1837110.1837131
http://dx.doi.org/10.1145/2208516.2208544
http://dx.doi.org/10.1145/2556288.2557097
http://doi.acm.org/10.1145/2556288.2557097

[51] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22:644–654, 1976. URL
http://citeseer.nj.nec.com/diffie76new.html. → pages 111

[52] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In SIAM
Journal on Computing. Citeseer, 1998. → pages 3, 53

[53] C. DOrazio, A. Ariffin, and K. K. R. Choo. ios anti-forensics: How can
we securely conceal, delete and insert data? In System Sciences (HICSS),
2014 47th Hawaii International Conference on, pages 4838–4847, Jan
2014. doi:10.1109/HICSS.2014.594. → pages 116

[54] T. Dorflinger, A. Voth, J. Kramer, and R. Fromm. "My Smartphone is a
Safe!" - The User’s Point of View Regarding Novel Authentication
Methods and Gradual Security Levels on Smartphones. In SECRYPT 2010
- Proceedings of the International Conference on Security and
Cryptography, Athens, Greece, July 26-28, 2010, SECRYPT is part of
ICETE - The International Joint Conference on e-Business and
Telecommunications, pages 155–164. SciTePress, 2010. → pages 42

[55] P. Dunphy, A. P. Heiner, and N. Asokan. A closer look at
recognition-based graphical passwords on mobile devices. In Proceedings
of the Sixth Symposium on Usable Privacy and Security, SOUPS ’10,
pages 3:1–3:12, New York, NY, USA, 2010. ACM. ISBN
978-1-4503-0264-7. doi:10.1145/1837110.1837114. URL
http://doi.acm.org/10.1145/1837110.1837114. → pages 40

[56] M. Dürmuth, T. Güneysu, M. Kasper, C. Paar, T. Yalcin, and
R. Zimmermann. Evaluation of Standardized Password-Based Key
Derivation against Parallel Processing Platforms, pages 716–733.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN
978-3-642-33167-1. doi:10.1007/978-3-642-33167-1_41. URL
https://doi.org/10.1007/978-3-642-33167-1_41. → pages 2, 6

[57] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An empirical study
of cryptographic misuse in android applications. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security,
pages 73–84. ACM, 2013. → pages xv, 3, 4, 7, 8, 9, 53, 55, 60, 61, 62, 64,
69, 74, 97

129

http://citeseer.nj.nec.com/diffie76new.html
http://dx.doi.org/10.1109/HICSS.2014.594
http://dx.doi.org/10.1145/1837110.1837114
http://doi.acm.org/10.1145/1837110.1837114
http://dx.doi.org/10.1007/978-3-642-33167-1_41
https://doi.org/10.1007/978-3-642-33167-1_41

[58] S. Egelman, A. Sotirakopoulos, I. Muslukhov, K. Beznosov, and
C. Herley. Does my password go up to eleven?: The impact of password
meters on password selection. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’13, pages 2379–2388,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1899-0.
doi:10.1145/2470654.2481329. URL
http://doi.acm.org/10.1145/2470654.2481329. → pages 49

[59] M. Eiband, M. Khamis, E. von Zezschwitz, H. Hussmann, and F. Alt.
Understanding shoulder surfing in the wild: Stories from users and
observers. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, CHI ’17, pages 4254–4265, New York, NY, USA,
2017. ACM. ISBN 978-1-4503-4655-9. doi:10.1145/3025453.3025636.
URL http://doi.acm.org/10.1145/3025453.3025636. → pages 49

[60] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation, OSDI’10,
pages 1–6, Berkeley, CA, USA, 2010. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1924943.1924971. → pages 96

[61] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android
application security. In USENIX security symposium, volume 2, page 2,
2011. → pages 61

[62] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith. Why eve and mallory love android: An analysis of android ssl
(in) security. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 50–61. ACM, 2012. → pages 53, 95

[63] N. Ferguson, B. Schneier, and T. Kohno. Cryptography Engineering:
Design Principles and Practical Applications. John Wiley & Sons, 2011.
→ pages 110

[64] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl. Stack overflow considered harmful? the impact of copy&paste on
android application security. In Security and Privacy (SP), 2017 IEEE
Symposium on, pages 121–136. IEEE, 2017. → pages 54

130

http://dx.doi.org/10.1145/2470654.2481329
http://doi.acm.org/10.1145/2470654.2481329
http://dx.doi.org/10.1145/3025453.3025636
http://doi.acm.org/10.1145/3025453.3025636
http://dl.acm.org/citation.cfm?id=1924943.1924971

[65] S. R. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling
algorithm of rc4. In Revised Papers from the 8th Annual International
Workshop on Selected Areas in Cryptography, SAC ’01, pages 1–24,
London, UK, UK, 2001. Springer-Verlag. ISBN 3-540-43066-0. URL
http://dl.acm.org/citation.cfm?id=646557.694759. → pages 81, 97

[66] A. Forget, S. Chiasson, P. C. van Oorschot, and R. Biddle. Improving text
passwords through persuasion. In Proceedings of the 4th Symposium on
Usable Privacy and Security, SOUPS ’08, pages 1–12, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-276-4.
doi:10.1145/1408664.1408666. URL
http://doi.acm.org/10.1145/1408664.1408666. → pages 49

[67] B. G. Glaser. Theoretical sensitivity : advances in the methodology of
grounded theory. Sociology Press, Mill Valley, CA, 1978. → pages 16

[68] K. Glen. iOS 5.1 Reaches 61% Adoption in Just 15 Days. http://www.
mactrast.com/2012/03/ios-5-1-reaches-61-adoption-in-just-15-days/,
2012. Accessed July 18, 2012. → pages 31

[69] C. Gomez, J. Oller, and J. Paradells. Overview and evaluation of bluetooth
low energy: An emerging low-power wireless technology. Sensors, 12(9):
11734–11753, 2012. ISSN 1424-8220. doi:10.3390/s120911734. →
pages 109, 114

[70] P. A. Grassi, E. M. Newton, R. A. Perlner, A. R. Regenscheid, W. E. Burr,
J. P. Richer, N. B. Lefkovitz, J. M. Danker, Y.-Y. Choong, K. Greene, et al.
Digital identity guidelines: Authentication and lifecycle management.
Technical report, 2017. URL https:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf. →
pages 58, 116

[71] E. Hayashi, J. Hong, and N. Christin. Security through a different kind of
obscurity: evaluating distortion in graphical authentication schemes. In
Proceedings of the 2011 annual conference on Human factors in
computing systems, CHI ’11, pages 2055–2064, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0228-9.
doi:http://doi.acm.org/10.1145/1978942.1979242. URL
http://doi.acm.org/10.1145/1978942.1979242. → pages 40

131

http://dl.acm.org/citation.cfm?id=646557.694759
http://dx.doi.org/10.1145/1408664.1408666
http://doi.acm.org/10.1145/1408664.1408666
http://www.mactrast.com/2012/03/ios-5-1-reaches-61-adoption-in-just-15-days/
http://www.mactrast.com/2012/03/ios-5-1-reaches-61-adoption-in-just-15-days/
http://dx.doi.org/10.3390/s120911734
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/1978942.1979242
http://doi.acm.org/10.1145/1978942.1979242

[72] E. Hayashi, O. Riva, K. Strauss, A. J. B. Brush, and S. Schechter.
Goldilocks and the two mobile devices: going beyond all-or-nothing
access to a device’s applications. In Proceedings of the Eighth Symposium
on Usable Privacy and Security, SOUPS ’12, pages 2:1–2:11, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1532-6.
doi:10.1145/2335356.2335359. URL
http://doi.acm.org/10.1145/2335356.2335359. → pages 7, 42, 46, 48

[73] E. Hayashi, S. Das, S. Amini, J. Hong, and I. Oakley. Casa: Context-aware
scalable authentication. In Proceedings of the Ninth Symposium on Usable
Privacy and Security, SOUPS ’13, pages 3:1–3:10, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2319-2. doi:10.1145/2501604.2501607.
URL http://doi.acm.org/10.1145/2501604.2501607. → pages 47

[74] I. Ion, N. Sachdeva, P. Kumaraguru, and S. Capkun. Home is Safer than
the Clould! Privacy Concerns for Consumer Cloud Storage. In
Proceedings of Symposium on Usable Privacy and Security, pages 1–20,
Pittsburgh, PA, USA, July 2011. URL
http://cups.cs.cmu.edu/soups/2011/proceedings/a13_Sachdeva.pdf. →
pages 26

[75] J. Jonsson. On the security of CTR+ CBC-MAC. In selected Areas in
Cryptography, pages 76–93. Springer, 2003. → pages 110

[76] B. Kaliski. Pkcs #5: Password-based cryptography specification version
2.0, 2000. → pages 57

[77] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer,
N. Christin, L. F. Cranor, and S. Egelman. Of passwords and people:
Measuring the effect of password-composition policies. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI
’11, pages 2595–2604, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0228-9. doi:10.1145/1978942.1979321. URL
http://doi.acm.org/10.1145/1978942.1979321. → pages 49

[78] D. Lazar, H. Chen, X. Wang, and N. Zeldovich. Why does cryptographic
software fail?: A case study and open problems. In Proceedings of 5th
Asia-Pacific Workshop on Systems, APSys ’14, pages 7:1–7:7, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-3024-4.

132

http://dx.doi.org/10.1145/2335356.2335359
http://doi.acm.org/10.1145/2335356.2335359
http://dx.doi.org/10.1145/2501604.2501607
http://doi.acm.org/10.1145/2501604.2501607
http://cups.cs.cmu.edu/soups/2011/proceedings/a13_Sachdeva.pdf
http://dx.doi.org/10.1145/1978942.1979321
http://doi.acm.org/10.1145/1978942.1979321

doi:10.1145/2637166.2637237. URL
http://doi.acm.org/10.1145/2637166.2637237. → pages 52

[79] H. Lu and Y. Li. Gesture on: Enabling always-on touch gestures for fast
mobile access from the device standby mode. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, CHI
’15, pages 3355–3364, New York, NY, USA, 2015. ACM. ISBN
978-1-4503-3145-6. doi:10.1145/2702123.2702610. URL
http://doi.acm.org/10.1145/2702123.2702610. → pages 47

[80] LWN.net. Ext4 encryption [lwn.net]. https://lwn.net/Articles/639427/,
2017. → pages 118

[81] Z. Ma, H. Wang, Y. Guo, and X. Chen. Libradar: Fast and accurate
detection of third-party libraries in android apps. In Proceedings of the
38th International Conference on Software Engineering Companion,
pages 653–656. ACM, 2016. → pages 66

[82] A. Mahfouz, I. Muslukhov, and K. Beznosov. Android users in the wild:
Their authentication and usage behavior. Pervasive and Mobile
Computing, 32:50–61, 2016. → pages 44, 115

[83] D. Marques, I. Muslukhov, T. Guerreiro, L. Carriço, and K. Beznosov.
Snooping on mobile phones: Prevalence and trends. In Twelfth Symposium
on Usable Privacy and Security (SOUPS 2016), Denver, CO, June 2016.
USENIX Association. URL https://www.usenix.org/conference/
soups2016/technical-sessions/presentation/marques. → pages 6, 44, 46

[84] S. McNeeley. Sensitive issues in surveys: Reducing refusals while
increasing reliability and quality of responses to sensitive survey items. In
Handbook of survey methodology for the social sciences, pages 377–396.
Springer, 2012. → pages 44

[85] I. Muslukhov, Y. Boshmaf, C. Kuo, J. Lester, and K. Beznosov. Know
your enemy: the risk of unauthorized access in smartphones by insiders.
In Proceedings of the 15th international conference on Human-computer
interaction with mobile devices and services, MobileHCI ’13, pages
271–280, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2273-7.
doi:10.1145/2493190.2493223. → pages 2

133

http://dx.doi.org/10.1145/2637166.2637237
http://doi.acm.org/10.1145/2637166.2637237
http://dx.doi.org/10.1145/2702123.2702610
http://doi.acm.org/10.1145/2702123.2702610
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/marques
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/marques
http://dx.doi.org/10.1145/2493190.2493223

[86] M. Naveed, X. Zhou, S. Demetriou, X. Wang, and C. Gunter. Inside job:
Understanding and mitigating the threat of external device mis-bonding on
android. In Proceedings of the 21th Annual Network and Distributed
System Security Symposium, NDSS Symposium’14, San Diego, CA, USA,
2014. → pages 106

[87] P. Oechslin. Making a faster cryptanalytic time-memory trade-off. In
Crypto, volume 2729, pages 617–630. Springer, 2003. → pages 53, 57

[88] G. Paolacci, J. Chandler, and P. G. Ipeirotis. Running experiments on
amazon mechanical turk. Judgment and Decision Making, 5(5):411–419,
2010. URL
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1626226. → pages
32, 41

[89] C. Percival, Tarsnap, and S. Josefsson. The scrypt Password-Based Key
Derivation Function draft-josefsson-scrypt-kdf-02, Aug 2015. URL
https://tools.ietf.org/html/draft-josefsson-scrypt-kdf-02. → pages 57

[90] A. Popov. RFC7465 - prohibiting RC4 cipher suites.
https://tools.ietf.org/html/rfc7465, Feb 2015. URL
https://tools.ietf.org/html/rfc7465. → pages 81

[91] A. D. Portal. Encryption | android developers, May 2015. URL
https://source.android.com/devices/tech/security/encryption/index.html.
→ pages 2

[92] D. Preuveneers and W. Joosen. Smartauth: Dynamic context
fingerprinting for continuous user authentication. In Proceedings of the
30th Annual ACM Symposium on Applied Computing, SAC ’15, pages
2185–2191, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3196-8.
doi:10.1145/2695664.2695908. URL
http://doi.acm.org/10.1145/2695664.2695908. → pages 47

[93] R. Raguram, A. M. White, D. Goswami, F. Monrose, and J.-M. Frahm.
iSpy: automatic reconstruction of typed input from compromising
reflections. In Proceedings of the 18th ACM conference on Computer and
communications security, CCS ’11, pages 527–536, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0948-6. doi:10.1145/2046707.2046769.
URL http://doi.acm.org/10.1145/2046707.2046769. → pages 3, 46, 50

134

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1626226
https://tools.ietf.org/html/draft-josefsson-scrypt-kdf-02
https://tools.ietf.org/html/rfc7465
https://source.android.com/devices/tech/security/encryption/index.html
http://dx.doi.org/10.1145/2695664.2695908
http://doi.acm.org/10.1145/2695664.2695908
http://dx.doi.org/10.1145/2046707.2046769
http://doi.acm.org/10.1145/2046707.2046769

[94] O. Riva, C. Qin, K. Strauss, and D. Lymberopoulos. Progressive
authentication: deciding when to authenticate on mobile phones. In
Proceedings of the 21st USENIX Security Symposium, Usenix Security
’12, pages 301–316, Berkeley, CA, USA, 2012. USENIX Association. →
pages 7, 42, 46, 48

[95] J. Rizzo and T. Duong. Practical Padding Oracle Attacks. In Proceedings
of the 4th USENIX Conference on Offensive Technologies, WOOT’10,
pages 1–8, Berkeley, CA, USA, 2010. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1925004.1925008. → pages 95

[96] T. Rosa. Bypassing passkey authentication in bluetooth low energy.
Cryptology ePrint Archive, Report 2013/309, 2013. http://eprint.iacr.org/.
→ pages 106, 110

[97] M. Ryan. Bluetooth: With low energy comes low security. In Presented as
part of the 7th USENIX Workshop on Offensive Technologies, Berkeley,
CA, 2013. USENIX. URL https://www.usenix.org/conference/woot13/
workshop-program/presentation/Ryan. → pages

[98] M. Ryan. Bluetooth Smart: The Good, The Bad, The Ugly and The Fix.
https://www.blackhat.com/us-13/briefings.html#Ryan, 2013. Accessed
February 26, 2014. → pages 106, 110

[99] H. Sasamoto, N. Christin, and E. Hayashi. Undercover: Authentication
usable in front of prying eyes. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’08, pages 183–192, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-011-1.
doi:10.1145/1357054.1357085. URL
http://doi.acm.org/10.1145/1357054.1357085. → pages 49

[100] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure device
pairing based on a visual channel (short paper). In Proceedings of the
2006 IEEE Symposium on Security and Privacy, SP ’06, pages 306–313,
Washington, DC, USA, 2006. IEEE Computer Society. ISBN
0-7695-2574-1. doi:10.1109/SP.2006.35. → pages 111

[101] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek, L. Bauer,
N. Christin, and L. F. Cranor. Encountering stronger password
requirements: User attitudes and behaviors. In Proceedings of the Sixth

135

http://dl.acm.org/citation.cfm?id=1925004.1925008
http://eprint.iacr.org/
https://www.usenix.org/conference/woot13/workshop-program/presentation/Ryan
https://www.usenix.org/conference/woot13/workshop-program/presentation/Ryan
http://dx.doi.org/10.1145/1357054.1357085
http://doi.acm.org/10.1145/1357054.1357085
http://dx.doi.org/10.1109/SP.2006.35

Symposium on Usable Privacy and Security, SOUPS ’10, pages 2:1–2:20,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0264-7.
doi:10.1145/1837110.1837113. URL
http://doi.acm.org/10.1145/1837110.1837113. → pages 57

[102] E. Shi, Y. Niu, M. Jakobsson, and R. Chow. Implicit authentication
through learning user behavior. In Information Security, volume 6531 of
Lecture Notes in Computer Science, pages 99–113. Springer Berlin /
Heidelberg, 2011. ISBN 978-3-642-18177-1. URL
http://dx.doi.org/10.1007/978-3-642-18178-8_9. → pages 42

[103] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie. Modelling
analysis and auto-detection of cryptographic misuse in android
applications. In Dependable, Autonomic and Secure Computing (DASC),
2014 IEEE 12th International Conference on, pages 75–80. IEEE, 2014.
→ pages 62, 64, 95

[104] A. Skillen and M. Mannan. On implementing deniable storage encryption
for mobile devices. In Proceedings of the 20th Annual Network and
Distributed System Security Symposium, NDSS Symposium’13, San
Diego, CA, USA, 2013. → pages 2, 46, 105, 116, 121

[105] A. Smith. Nearly half of american adults are smartphone owners.
http://pewinternet.org/Reports/2012/Smartphone-Update-2012.aspx.
Accessed March 5, 2012. → pages 31, 41

[106] B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. L. Mazurek,
T. Passaro, R. Shay, T. Vidas, L. Bauer, N. Christin, and L. F. Cranor. How
does your password measure up? the effect of strength meters on
password creation. In Proceedings of the 21st USENIX Conference on
Security Symposium, Security’12, pages 5–5, Berkeley, CA, USA, 2012.
USENIX Association. URL
http://dl.acm.org/citation.cfm?id=2362793.2362798. → pages 49

[107] E. von Zezschwitz, A. De Luca, B. Brunkow, and H. Hussmann. Swipin:
Fast and secure pin-entry on smartphones. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, CHI
’15, pages 1403–1406, New York, NY, USA, 2015. ACM. ISBN
978-1-4503-3145-6. doi:10.1145/2702123.2702212. URL
http://doi.acm.org/10.1145/2702123.2702212. → pages 49

136

http://dx.doi.org/10.1145/1837110.1837113
http://doi.acm.org/10.1145/1837110.1837113
http://dx.doi.org/10.1007/978-3-642-18178-8_9
http://pewinternet.org/Reports/2012/Smartphone-Update-2012.aspx
http://dl.acm.org/citation.cfm?id=2362793.2362798
http://dx.doi.org/10.1145/2702123.2702212
http://doi.acm.org/10.1145/2702123.2702212

[108] S. H. Walker and D. B. Duncan. Estimation of the probability of an event
as a function of several independent variables. Biometrika, 54(1-2):
167–179, 1967. → pages 38

[109] D. Whiting, N. Ferguson, and R. Housley. Counter with CBC-MAC
(CCM). http://tools.ietf.org/html/rfc3610, 2003. → pages 110

[110] V. Woollaston. How often do you check your phone? the average person
does it 110 times a day, October 2013. URL
http://www.dailymail.co.uk/sciencetech/article-2449632/. → pages 114

[111] B. Xavier. Halting password puzzles – hard-to-break encryption from
human-memorable keys. In 16th USENIX Security
Symposium—SECURITY 2007, pages 119–134. Berkeley: The USENIX
Association, 2007. Available at
http://www.cs.stanford.edu/~xb/security07/. → pages 116

[112] A. K. L. Yau, K. G. Paterson, and C. J. Mitchell. Padding Oracle Attacks
on CBC-Mode Encryption with Secret and Random IVs, pages 299–319.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN
978-3-540-31669-5. doi:10.1007/11502760_20. URL
http://dx.doi.org/10.1007/11502760_20. → pages 95

[113] N. H. Zakaria, D. Griffiths, S. Brostoff, and J. Yan. Shoulder surfing
defence for recall-based graphical passwords. In Proceedings of the
Seventh Symposium on Usable Privacy and Security, SOUPS ’11, pages
6:1–6:12, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0911-0.
doi:10.1145/2078827.2078835. URL
http://doi.acm.org/10.1145/2078827.2078835. → pages 49

[114] J. Zdziarski. Identifying back doors, attack points, and surveillance
mechanisms in iOS devices. Digital Investigation, 11(1):3–19, 2014. →
pages 105

137

http://www.dailymail.co.uk/sciencetech/article-2449632/
http://www.cs.stanford.edu/~xb/security07/
http://dx.doi.org/10.1007/11502760_20
http://dx.doi.org/10.1007/11502760_20
http://dx.doi.org/10.1145/2078827.2078835
http://doi.acm.org/10.1145/2078827.2078835

Appendix A

User Studies Questions

A.1 Pre-screening Questions
1. What is your gender?

1. Male

2. Female

2. What is your age?

1. under 18

2. 19 – 24

3. 25 – 30

4. 31 – 35

5. 36 – 40

6. 41 – 45

7. 46 – 50

138

8. 51 – 55

9. 56 – 60

10. 61 – 65

11. over 65

3. What is your highest level of completed education?

1. High-school

2. University (Bachelor?s)

3. Graduate School (Master?s, PhD)

4. Professional School (College degree)

5. Other

4. How many jobs do you have and what are they? (Record each job title, industry

sector)

5. What is your household income?

1. under 15K

2. [15K,30K)

3. [30K,50K)

4. [50K,80K)

5. more than 80K

6. What is your native language?

139

A.2 Interview Scenario and Coding Sheet

A.2.1 Introduction
Hello Mr/Ms Participant, thank you for taking part in our study. We appreciate
your time. This study will be in the form of an interview, and is going to be
audio recorded. The audio record will be used only for further analysis and will
be securely stored at UBC before being deleted.

In this study we are investigating the use of mobile phones.
If you don’t have any questions please read this consent form, and if you are

agree to be interviewed today, please sign the form.
Before we start the interview, could I ask you to show us your phone(s)? (if

the participant is ok, photograph their phone(s), and find out exact model(s) and

storage capacity and write this information down)1

For what purposes do you use computer and smartphone?

A.2.2 Applications Types and Your Experience
Today/Yesterday

Could you, please, describe us how have you used your phone(s) today from the
moment you woke up.

How would you describe your daily smartphone usage? (Give example if nec-

essary) For example, you could say that you are using Application A a lot during

1All instructions to the interviewer are in italics.

140

your usual day; occasionally Application B, and so on.
What other applications do you use on your phone?

A.2.3 Application Specific Questions
Repeat these questions for each application you identified in the previous section.

Let?s talk about each of these applications.

1. Why do you use application XYZ on your smartphone?

2. What kind of data do you use with that application?

3. Do you use this application for personal matters of for your work?

Note: sometime interviewee should ask explicitly whenever or not they saved

username and password in the application. Likewise, if you can infer what type

of data an application might use and participant didn?t mention this type of data,

ask him/her explicitly.

A.2.4 Data Types Specific Questions
Repeat these questions for each data type you identified in the previous sections.

How confidential or sensitive are data records of type XYZ for you?
Scenario 1: Assume your smartphone got stolen by a person who knows you

and you know him. Can you answer the following questions:

141

Do you see any risks for you, your family, or your friends if this person can see
data records of type XYZ?
Do you see any risks for you, your family, or your friends if this person can see
data records of type XYZ and corresponding application?

Scenario 2: Assume your smartphone is stolen by a person who doesn?t know
you and you don?t know him. Can you answer the following questions:
Do you see any risks for you, your family, or your friends if this person can see
data records of type XYZ?
Do you see any risks for you, your family, or your friends if this person can see
data records of type XYZ and corresponding application?

A.2.5 Current Practices
1. How many computers do you use at home and at work?
2. How many of those computers you connect your smartphone(s) to?
3. What actions do you take, in order to protect your valuable, confidential and
sensitive data from risks, associated with threat of your smartphone got stolen,
broken, or lost?
4. Do you password protect your smartphone? Why?
5. Assume you have just lost your smartphone. What would you do in first hours?
6. How soon will you get yourself a replacement phone/smartphone?
7. What would you do with the old smartphone before giving it away?
8. Have you ever lost your smartphone or mobile phone?
9. Have you ever lost any data on any device, such as laptop, desktop or smart-
phone?
IF 8 or 9 IS YES THEN ask question 10

10. How it changed your practices in keeping data safe?

142

A.3 Study 2 Questionaire

A.3.1 Part I: Consent Forms and Smartphone Task
First participants were asked to consent with the study and kinds of data being
collected. If, however, the participants stated that his/her age is less than 19 years,
a separate consent form was presented for parents/guardians. We then asked par-
ticipants to follow a link on their smartphones and fill out some contact details
so that we can contact them if they win the raffle. For this purpose the following
message was displayed:

Please follow the link with on your smartphone
As you know we do a raffle among participants of this study for one iPad 3

(WiFi, 32GB). In order to be considered for this raffle you have to follow this

link on your smartphone and provide your contact details in the form. Otherwise,

because this study is anonymous, we will have no means to communicate to you if

you win the prize. http://study.csnow.ca/code.aspx

and enter your email and phone. Warning: you should visit this link from your

smartphone, only those who did so will be considered for the raffle.

Your activation code is:

CODE: ABC123
Please, click "Continue" button after you submit your contact details from your

smartphone.

A.3.2 Part II: Demographic Questions
The demographic section of the survey included the following questions:
Question A: What is your gender?

1. Male

2. Female

Question B: What is your age?

143

http://study.csnow.ca/code.aspx

1. Under 10

2. 10-14

3. 15-17

4. 18-24

5. 25-29

6. 30-34

7. 35-39

8. 40-44

9. 45-49

10. 50-54

11. 55-59

12. 60-64

13. 65+

Question C: What is your highest level of completed education?

1. Less than or still in High School

2. High School

3. University (Bachelor’s)

4. Graduate School (Master or PhD)

5. Community College or Professional School (College degree)

6. Other

144

Question D: List any work for which you have been paid in the past 3 months.

Provide position title for each job. (Open-ended question.)

Question E: Select in what industry(ies) have you worked for the past 3 months?

(Mark all applicable)

1. None or Unemployed

2. Agriculture

3. Forestry, fishing, mining, quarrying, oil and gas (Also referred to as Natural
resources)

4. Utilities

5. Construction

6. Manufacturing

7. Trade

8. Transportation and warehousing

9. Finance, insurance, real estate and leasing

10. Professional, scientific and technical services

11. Business, building and other support services

12. Educational services

13. Health care and social assistance

14. Information, culture and recreation

15. Accommodation and food services

16. Public administration

145

17. Other services

Question F: What is your annual household income in US Dollars?

1. I prefer not to answer

2. Under 5,000 USD

3. From 5,000 USD, up to 9,999 USD

4. From 10,000 USD, up to 14,999 USD

5. From 15,000 USD, up to 29,999 USD

6. From 30,000 USD, up to 49,999 USD

7. From 50,000 USD, up to 74,999 USD

8. From 75,000 USD, up to 99,999 USD

9. From 100,000 USD, up to 149,999 USD

10. More than 150,000 USD

A.3.3 Part III: Smartphone Experience
Question A: How many smartphones currently do you have and use?

1. One

2. Two

3. Three

4. More than Three

Question B: Describe ownership of the smartphones you currently use. (Select all

that apply)

146

1. I bought a new smartphone for personal use

2. I bought used smartphone for personal use

3. My friend/relative gave me a smartphone as a gift

4. My smartphone is given me by my Employer/Company for work

5. My smartphone is given me by my Employer/Company as a gift

6. Other

Question C: Please select what kind of previous experience you have with mobile

phones and smartphones (select all that apply).

1. I have lost my mobile phone before and didn’t find it"

2. I have broken my mobile phone before, so that it was not usable"

3. I have left my mobile phone at some place, but recovered it later (e.g., at
my friends’ place, in a restaurant, at parents’ house, at school, etc.)"

4. Someone used my mobile phone without my permission with intention to
look at some of my data"

5. Someone used my mobile phone without my permission with intention to
use its functionality"

6. Someone used my mobile phone without my permission with no bad inten-
tions"

7. I used someone’s mobile phone without owner’s permission to look into
his/her data"

8. I used someone’s mobile phone without owner’s permission for some func-
tions (phone call, browsing the Internet)

147

Finally, we asked participants if they used any locks on their smartphone. In
order to define what smartphone lock is we first provided them with the following
explanation: In the following question we will ask you about your phone lock. By

“phone lock” we mean a protection of the smartphone that requires some "secret",

such as password or PIN-code, to unlock it. Here are some examples of phone

locks: (Figure A.1).

Figure A.1: Different types of smartphone locks.

Question D: Do you use any type of locks, shown above, on your smartphone(s)?

1. Yes, I use lock

2. No, I don’t use lock

A.3.4 Part IV: Smartphone Lock Use
In this section of the survey we asked participants about the reasons they used or
not used a smartphone lock. The type of the question a participant saw depended
on whether they answered that they used a lock or not. We asked the following
question to all of the participants that did not use a lock.

148

Question A: Why do not you use a lock on your smartphone(s)? (Mark all appli-

cable)

1. I do not have any data that I want to hide on my phone

2. I do not care if my phone services will be used by someone

3. I tried locks before and found them very inconvenient

4. I often need instant access to applications that do not store any sensitive data
(e.g. weather forecast, news, games)

5. I do not save my passwords in applications and type it every time I use an
application that stores sensitive data (e.g. email application, or Facebook
application)

6. It is not worth for me to use smartphone lock, because the amount of data
and applications that are sensitive are very small compared to those non-
sensitive

The participants that did use a lock were asked the following set of questions:
Question A: Which of the locks do you use in your smartphone(s)? (Mark all

applicable)

1. PIN-Code (only digits)

2. Password (could have digits and letters)

3. Draw a Secret (Pattern)

4. Face-recondition

5. Finger print scan

6. Other

Question B: How does the lock in each of your smartphone works? (Mark all

applicable)

149

1. It locks my smartphone after I pushed power button

2. It locks my smartphone after smartphone’s display switches off

3. It locks my smartphone when I am not using it for some period of time

4. It locks my smartphone after it switched off completely or rebooted (which
might happen because battery might got fully discharged or smartphone got
rebooted it

5. It locks my SIM card if phone got switched off completely or rebooted
(which might happen because battery might got fully discharged or smart-
phone got rebooted it

6. Other

Question C: Why do you use lock on your smartphone(s)? (Mark all applicable)

1. My employer requires that

2. I feel comfortable having such protection

3. I have confidential and sensitive data on my smartphone(s)

4. I do not want other people to use my phone services without my permission

5. I do not want other people sneaking into my smartphone, when I do not see
it

Question D: If your employer requires you to use a phone lock, assume for a

moment that this is not the case and you can decide on your own. Rate your

agreement with the following statement: “ would rather use a smartphone lock

for my entire smartphone, than a lock for specific applications or data items”

1. Strongly Disagree

2. Disagree

150

3. Neutral

4. Agree

5. Strongly Agree

6. Not Applicable

Question E: If your employer requires you to use a phone lock, assume for a

moment that this is not the case and you can decide on your own. Rate your

agreement with the following statement: “My need to get fast access to some

applications or data on my smartphone influenced or will influence my decision

on phone lock use”

1. Strongly Disagree

2. Disagree

3. Neutral

4. Agree

5. Strongly Agree

6. Not Applicable

A.3.5 Part V: Applications and Data Being Used
Question A and B was asked separately for work and personal use cases. Our
survey also allowed the participants to add new application or data types, in case
if the list was incomplete.
Question A: In the past year, which applications or features have you used in your

smartphone(s) for work or personal use? (Mark all applicable)

1. SMS/MMS messages

2. Voice Calling

151

3. Email Client

4. Calendar

5. Notes

6. Instant messenger (e.g. GTalk, MSN Messenger, ICQ etc.)

7. Social Networking application (e.g. Facebook, Tweeter, Google+, What’s
UP etc.)

8. Voice recorder

9. Photo Camera

10. Music Player

11. Video Player

12. Maps

13. Training Assistant that helps you to track your exercise performance on the
map.

14. Password Keeper/Manager

15. Games

16. Documents viewers or editors (e.g. Word, Excel, Adobe Acrobat etc.)

Question B: Select data which you created, or received, or stored on your smart-

phone during last 12 months? (Mark all applicable)

1. SMS/MMS Messages

2. Call history

3. Browser Search History

152

4. Browsing History

5. Photos and Videos

6. Voice Recordings

7. Notes and Memos

8. Contacts Details

9. Music

10. Emails

11. Documents

12. Events in Calendar

13. Data in Social Networking Applications

14. Recorded GPS tracks, from such applications as training assistants

15. Progress in Games

16. Passwords (that includes password managers, passwords in notes and saved
passwords in applications)

Note, that in Question C as available options we used which ever data type a
participants selected or added as an answer to Question B.
Question C: In the past year, select data which you preferred to delete from your

smartphone(s) immediately after reading/using it? (Mark all applicable)

A.3.6 Part VI: Password Saving Habits
Question A: How do you check your email on your smartphone(s)?

1. I open the application and see my emails immediately; the application does
not ask me for password

153

2. I open the application, then I type my email account password, after that I
see my emails

3. I use Internet browser to check my emails

4. I do not check email on my phone

5. Other

Question B: With other applications, where an account is required, I usually. . .

1. Save my account password, so that I can open application faster

2. Do not save account password and type it all the times

3. I do both

4. Other

A.3.7 Part VII: Data Types Sensitivity and Value
All data that were identified in Part V of this questionnaire were listed in this
section and users had to rate their agreement with various statements depending
on proposed scenario and type of data use, i.e., personal or work. We used the
following set of statements to assess data type’s sensitivity:

1. I would not have any concerns if Personal/Work DataType could be viewed
by such a thief

2. I will have some concerns if Personal/Work DataType could be viewed by
such a thief

3. I think such thief will use my Personal/Work DataType for some purpose,
that might be detrimental to me

4. I think such thief will not use my Personal/Work DataType for any purposes

154

For the states 1 and 3 we proposed the following scenario:

• Scenario 1: Assume your mobile phone has just been stolen by a thief, who
does not know

For the states 2 and 4 we proposed the following scenario:

• Scenario 2: Assume your mobile phone has just been stolen by a thief, who
knows you. It could be anyone from your social circle, but you do not know
who exactly he or she is.

In order to compare different data types between each other we asked the
participants to rank their data based on its value. This task was done through drag
and drop, where the participants were modifying the rank list by moving items
with their mouse up or down the list. The participants saw the following task
statement:

• Rank Task 1: Scenario 1: Assume your mobile phone has just been stolen
by a theft, who does not know you. Rank data types so that you would have
the biggest concern with the first item being revealed and the least amount
of concern with the last item being revealed. Use drag and drop for ordering.

• Rank Task 2: Scenario 2: Assume your mobile phone has just been stolen
by a theft, who knows you. It could be anyone from your social circle, but
you do not know who exactly he or she is. Rank data types so that you
would have the biggest concern with the first item being revealed and the
least amount of concern with the last item being revealed. Use drag and
drop for ordering.

155

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Goals and Methodology
	1.2 Research Summary
	1.2.1 Smartphone Users' Experiences with Data Protection
	1.2.2 Analyzing Cryptographic API use in Android Applications
	1.2.3 Storing Encryption Keys on Wearable Devices

	1.3 Contributions Summary

	2 Smartphone Users Experience with Data Protection
	2.1 Research Questions
	2.2 Approach
	2.3 Study 1 – Interviews
	2.3.1 Methodology
	2.3.2 Results
	2.3.3 Summary

	2.4 Study 2 – Online Survey
	2.4.1 Methodology
	2.4.2 Results
	2.4.3 Summary

	2.5 Limitations
	2.6 Related Work
	2.7 Discussion and Future Work
	2.7.1 All-or-Nothing Locking Approach
	2.7.2 Improving Security of Unlocking Methods

	2.8 Challenges
	2.9 Conclusion

	3 Analyzing Cryptographic API use in Android Applications
	3.1 Motivation and related work
	3.2 Common rules in cryptography
	3.2.1 Symmetric key encryption
	3.2.2 Password-based encryption
	3.2.3 Random number generation

	3.3 Cryptography in Android
	3.3.1 Android applications ecosystem
	3.3.2 Java cryptography

	3.4 Datasets
	3.5 Crypto API linting with BinSight
	3.5.1 Preprocessing
	3.5.2 Linting
	3.5.3 Attribution

	3.6 Measuring Crypto API misuse
	3.6.1 Preprocessing
	3.6.2 Linting and attribution
	3.6.3 Crypto API misuse in Android Applications
	3.6.4 The impact of third-party libraries
	3.6.5 In-depth analysis of top libraries
	3.6.6 The impact of third-party libraries revisited

	3.7 Discussion and Future Work
	3.7.1 Extending the Crypto API analysis
	3.7.2 How Crypto API Misuse Rates Have Changed

	3.8 Conclusion

	4 Storing Encryption Keys on Wearable Devices
	4.1 Introduction
	4.2 Threat Model
	4.2.1 Threats and Risks
	4.2.2 Attack
	4.2.3 General Assumptions
	4.2.4 Crypto-Attacker
	4.2.5 Network-Attacker

	4.3 Sidekick Design
	4.3.1 High Level Overview
	4.3.2 Securing Communications over BLE

	4.4 System Evaluation
	4.4.1 Experimental Setup.
	4.4.2 Latency
	4.4.3 Power Consumption
	4.4.4 Session Key Renewal
	4.4.5 Summary

	4.5 Related Work
	4.6 Discussion and Future Work
	4.7 Conclusion

	5 Discussion and Conclusion
	Bibliography
	A User Studies Questions
	A.1 Pre-screening Questions
	A.2 Interview Scenario and Coding Sheet
	A.2.1 Introduction
	A.2.2 Applications Types and Your Experience Today/Yesterday
	A.2.3 Application Specific Questions
	A.2.4 Data Types Specific Questions
	A.2.5 Current Practices

	A.3 Study 2 Questionaire
	A.3.1 Part I: Consent Forms and Smartphone Task
	A.3.2 Part II: Demographic Questions
	A.3.3 Part III: Smartphone Experience
	A.3.4 Part IV: Smartphone Lock Use
	A.3.5 Part V: Applications and Data Being Used
	A.3.6 Part VI: Password Saving Habits
	A.3.7 Part VII: Data Types Sensitivity and Value

