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Abstract

We analyzed the non-smooth dynamics for the Stommel model for thermohaline circulation
with additional mechanisms like slowly varying bifurcation parameters and high frequency
oscillatory forcing. Our goal was to find an analytic approximation to the tipping point and
forced bifurcation induced by the new features in the model. We first analyze a simpler one
component model that has similar structure to the Stommel model and gradually build in
more complexity into the one component problem and study the effects on the tipping point.
In this context, we compare the relative strengths of the non-smooth effects on the tipping
point to the smooth effects which has been previously studied. With the one component
model understood, we then apply similar methods to the Stommel model and study the
effects on the non-smooth tipping points and forced bifurcations. With these results we
have the ability to fully describe the hysteresis found in the Stommel model.

iii



Lay Summary

We study the behavior of the thermohaline circulation. This circulation is responsible
for moving water from around the globe and thus a model was created to understand
how it functions. Work has previously been done on certain components of this model,
but the analysis we provide is done around the less studied pieces known as the non-
smooth dynamics. We ultimately provide a solution to the non-smooth dynamics and even
incorporate more mechanisms in the original model to account for a larger class of observable
behavior. This allows for a better understanding of the thermohaline circulation and could
help predict and prepare for sudden abrupt changes to the ocean currents that drive our
climate.

iv



Preface

This thesis is original, unpublished, independent work by the author, C. Griffith.
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Chapter 1

Introduction

Dynamical systems is the study of the possible states an observable solution may experience
and is important in most engineering, biological or even chemical systems to name a few.
This approach allows conditions to be given for when a solution can be found or when
there is stable behavior. Often we find that parameters inherent in the model play huge
roles in the dynamical behavior and they can be the difference between a system having an
equilibrium or not. When we find a parameter that has this effect, we call it a bifurcation
parameter since there is some value that changes the qualitative behavior of the system.

For example, the Hodgkin-Huxley model for neurons contains a parameter for injected
current I which turns out to be a bifurcation parameter with a Hopf bifurcation. This
bifurcation is responsible for the actual firing of a neuron in the brain. In epidemiological
modeling, the basic SIR model with an additional transition function between the infected
and recovered population causes the reproduction number R0 to become a bifurcation pa-
rameter with a backward bifurcation. This causes a temporary equilibrium to form in the
infected population that usually would never see an equilibrium. Even in activation poten-
tials of neural networks, using a hyperbolic tangent function causes a bifurcation to occur
in the synaptic feedback parameter w which results in a pitchfork bifurcation. This causes
wildly different equilibria for learned parameters in a machine learning setting. The canon-
ical example is the saddle-node bifurcation and was the first to be found within a complex
system studied from a dynamical perspective. The saddle-node bifurcation has the locally
topological equivalent form

ẋ = a− x2, (1.1)

where by locally topological equivalence we mean the behavior near the bifurcation may be
represented in this form. This property is critical to reducing most complex problems and
models to simpler local problems that can be studied individually.
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Chapter 1. Introduction

Figure 1.1: Vector field of a saddle-node bifurcation a = 0.

Figure 1.2: Bifurcation diagram of saddle-node bifurcation a = 0.

In figure 1.1 we show the vector field of the system that contains a saddle-node bifurca-
tion. The equilibria of this system is x = ±

√
a for any a ≥ 0 where stable equilibrium points

are marked with red filled points and unstable with unfilled points. Notice that at a = 0
we are no longer able to find a stable equilibrium and when a < 0 there are no equilibria at
all. Thus a = 0 is a simple example of a bifurcation where two equilibria annihilate. This
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Tipping in a Slowly Varying System

behavior is why the bifurcation is often referred to as a fold bifurcation, although we refer
to this as a saddle-node bifurcation in this thesis. In figure 1.2 we plot the same system
against the parameter a, which we call the bifurcation diagram. Here we see the region
with two equilibrium a > 0, the bifurcation a = 0 and the region of no stability a < 0. For
more on the saddle-node bifurcation see [12].

There are many types of bifurcations that appear in different systems that each have
their own key properties. Studying these properties leads to a deeper understanding of the
system on both a global and a local scale. Work has been done on systems that have smooth
bifurcations due to how commonly these appear, but non-smooth dynamics still are present
in the physical world.

Non-smooth bifurcations are a topic that arise in special systems and for how frequent
they appear, they have not been studied nearly as much as their smooth counter parts.
This thesis discusses the role of the non-smooth saddle-node bifurcation in a simplified one
component system in chapter 2 as well as in the classic Stommel model for thermohaline
circulation dynamics in chapter 3. Many interesting ocean and weather mechanisms may
be incorporated into the Stommel model to provide more realistic predictions for weather
patterns. We choose to study slowly varying bifurcation parameters and their effect on the
stability of a system while contrasting this with non-autonomous oscillatory forcing. The
interaction of these features causes complex dynamics around the standard bifurcations and
can lead to an advanced bifurcation or delayed tipping. For the one component system, a
detailed analysis of these features is done on the smooth bifurcation in [24].

Tipping in a Slowly Varying System

A system with a parameter known to cause a bifurcation will no longer admit a bifurcation
in the standard sense when the parameter slowly varies. Instead, these conditions give rise
to a smooth but rapid change in the system’s equilibria. The point in which this behavior
occurs is then called a tipping point.

More formally, a tipping point is a point that causes an abrupt smooth transition in
dynamical behavior as the system moves into a qualitatively different state. This is usually
caused by some exterior control system that pushes change towards a different state once
a critical point has been passed, for example with biological systems seen in [2]. These
are known to be caused by changes in one or more parameters in the system. An analysis
that lays the theoretical backing of slowly varying parameters with algebraic bifurcations
is found in [7].

Tipping points have been discovered to occur in a wide variety of systems and have be-
come a big staple in the study of areas like catastrophe theory and dynamical systems. They
aid in predicting the future of a system and even could be a warning for irreversible change
like in the case of the Stommel model. A tipping point thus shares similar characteristics
to a bifurcation and typically occurs close to the static bifurcation location.

In this thesis we use the results from [24] where the system

ẋ =Da+ k0 + k1x+ k2x
2,

ȧ =− ε,
(1.2)

3



Tipping in a Slowly Varying System

where ε � 1 was studied. This model is a slowly varying quadratic differential equation
containing a smooth saddle-node bifurcation and appears in many physical models, for
example [6]. A key result from [24] is that the solution and tipping point for (1.2) have the
form

x ∼ 1

|k2|

(
k1

2
+

(
D|k2|
ε

)1/3
)
Ai′
(

[D|k2|ε]−2/3
(
k21
4 + k0|k2|+D|k2|a

))
Ai
(

[D|k2|ε]−2/3
(
k21
4 + k0|k2|+D|k2|a

)) (1.3)

atip = (D|k2|)−1/3aAiry −
as
D

for as = k0 +
k2

1

4|k2|
, (1.4)

with Ai(·) being the Airy function and aAiry = ε2/3 · (−2.33810 . . .) corresponding to the
first zero of the Airy function. The singularity found in (1.4) is a recurring tool for the work
presented in this thesis, even though we deal with a version of (1.2) that has a non-smooth
bifurcation.

(a) (b)

Figure 1.3: The saddle-node bifurcation. In (a) an example of tipping occurring around
the bifurcation for two sizes of slow variation, ε = {.01, .1}. In (b) a zoom in closer to the
bifurcation. The dashed (ε = .01) and dash-dotted (ε = .1) black lines are the numerical
solutions, we overlay the bifurcation diagram for reference.

In figure 1.3 we show a numerical solution to the simple saddle-node system with tipping
(1.2). Here we have D = 1, k0 = k1 = 0 and k2 = −1 which is the model from (1.1). The
solution follows closely to the stable branch even after the bifurcation for the static model,
which is an example of this delayed behavior. From here on we refer to the numerical tipping
point to be when the numerical solution has passed a threshold away from the equilibrium
such that it is reasonable to say the solution is transitioning to a new state. We call this
threshold the tipping criterion and it is specified whenever we compare our estimates to the
numerical solution.
The task of finding where tipping points occur depends on the situation, but in general
the approach is to search for when a solution to a model fails or becomes large. Examples
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The Stommel Model

could be when the solution fails to be real or when an exponential term grows large, both
of which are seen throughout this thesis.

The Stommel Model

Global circulation models have primarily focused on three different categories:

• Atmospheric components - the effect greenhouse gases have on the atmosphere,

• Oceanic components - the effect of tides and interaction of temperature with salinity
in the oceans,

• Sea ice and land surface components.

These categories all contribute significantly to the overall prediction of weather and climate
for the planet, which has importance to just about every industry and economy. Failure to
adhere to and prepare for sudden changes in the climate has led to drastic situations like
severe droughts or ocean acidification. Atmospheric models have been vastly studied but
far less work has been done on the contribution from the ocean and the dynamics that drive
the tides and currents.

A key feature of oceanic models is when patterns form around regions of bi-stability of
temperature and salinity. An example of this is the thermohaline circulation (THC) which
has abrupt qualitative changes at certain points, see [1, 14, 17, 18]. Just earlier this year
evidence was found of weakening occurring around these abrupt changes in a system of
ocean patterns known as the Atlantic meridional overturning circulation (AMOC) [4]. This
is the first evidence of ocean dynamics responding to temperature change on the surface
and can help further predict the future of the system. It is imperative that appropriate
action is taken to prepare for the future of these type of systems as they are outside our
realm of control.

To study these phenomena we create parametric models to replicate the dynamics we
observe. Initially, Henry Stommel proposed the two box model in 1961 to understand the
physics of the THC, shown in figure 1.4. In [23], it is suggested that there are actually
two different stability regimes which even overlap in the system that is proposed and con-
cluded that oceanic dynamics behave very similarly about these equilibria. These type of
systems have since been a heavily studied area for both climatology due to the wide ranging
applications and dynamical systems for its generalization into bi-stability.
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The Stommel Model

Figure 1.4: The Stommel Two Box Model: Differing volume boxes with a temperature and
salinity, Ti and Si. The boxes are connected by an overflow and capillary tube that has a
circulation rate V . There is also a surface temperature and salinity for each box, Ti

s and
Si
s. We assume that there is some stirring to give a well mixed structure.

With emphasis on mathematics, the focus of this thesis is on developing an effective
approach to models with bi-stability and additional mechanisms. Thus the physical quan-
tities are brushed aside in favor of their non-dimensional alternatives, see Appendix A for
the derivation. The non-dimensionalized Stommel model is represented with the system

Ṫ = η1 − T (1 + |T − S|),
Ṡ = η2 − S(η3 + |T − S|).

(1.5)

The variables T and S are the temperature and salinity respectively where the non-smoothness
is seen directly from the |T − S| term. The parameters η1, η2, and η3 are all dimensionless
quantities that each have physical interpretation to the relaxation times and volumes of the
box. Here η1 is thought of as the thermal variation, η2 as the saline variation otherwise
known as the freshwater flux, and η3 as the ratio of relaxation times of temperature and
salinity. It also is a physical restriction for both η1 and η3 to be positive quantities that
take any value. The parameter η3 has the additional property to determine the orientation
of the equilibria. We denote a standard orientation to be when η3 < 1, reverse orientation
for η3 > 1, and η3 = 1 a special case. The different orientations are shown in figure 1.6.
Recall that η3 is the ratio of relaxation rates and when η3 = 1 the relaxation rates for both
the thermal and salinity variables are the same. Under these conditions we lose bi-stability
and instead see a single stable equilibrium.
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The Stommel Model

The parameter η2 is the most interesting as different values cause major qualitative
and quantitative changes in the dynamics of the system. Bifurcations have been discovered
at two different points in the system, each being called either a smooth or a non-smooth
saddle-node bifurcation. In the Stommel model, it is convenient to view the system in terms
of the circulation rate V = T − S, see Appendix A for the derivation. This leads to the
system

Ṫ = η1 − T (1 + |V |),
V̇ = (η1 − η2)− V |V |−T + η3(T − V ).

(1.6)

(a) V vs. T (b) η2 vs. V

Figure 1.5: The equilibria of the non-dimensionalized system (1.6). Parameters values
are η1 = 4 and η3 = .375. The above plots are two-dimensional projections of the full
3-dimensional system in (η2,V ,T ). We see non-smooth behavior happening in both plots
when V = 0. The red line indicates a stable branch where the dashed dotted line is for an
unstable branch.

As shown in figure 1.5, the equilibrium curves reveal much about the dynamics. In (a)
the graph of the equilibria for V vs. T shows non-smooth behavior occurring at V = 0 and
in (b) the two types of bifurcation appear clearly in the graph of equilibria for η2 vs. V . In
this plot, both the upper and lower branches of the equilibrium are stable with the middle
branch being unstable. The stable branches relate to which variable is dominant. For the
lower branch, we call this the saline branch, and the upper branch the thermal branch. The
location of the non-smooth bifurcation is found analytically, (η2ns, Vns, Tns) = (η1η3, 0, η1),
and the smooth bifurcation, (η2smooth, Vsmooth, Tsmooth), is the only real solution to a cubic
polynomial. The smoothness of each bifurcation is apparent and arises from the absolute
value term in the defining dynamics of (1.6), which is non-smooth only at V = 0.
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The Stommel Model

(a) η3 = .375 (b) η3 = 1

(c) η3 = 1.875

Figure 1.6: The choice in η3 dictates the orientation of the problem, in each plot we have
fixed η1 = 4. The case for η3 = 1 is special due to the two bifurcations overlapping and the
unstable equilibrium vanishing.

Much is known about the Stommel model in the case where η2 is fixed but realistically
this is not the case. In [17], this parameter is described as the influx of freshwater into the
Atlantic and the changing nature of η2 is justified by a positive feedback loop for salinity
that drives the THC to move high-salinity water towards deep oceans. This loop causes the
abrupt smooth bifurcation but then afterwards, a salinity deficit causes the parameter to
decrease back towards the non-smooth bifurcation.

This type of behavior is known as hysteresis, where there is some bi-stability region that
the solution cycles through and observes both states of the equilibria. A similar analysis to
the Stommel model’s hysteresis can be found in [19]. The phenomena of hysteresis appears
in many physical systems, for example [11, 8, 10]. The smooth component of the hysteresis
curve has been studied in a reduced one component model, see [24]. In this thesis we
complement these results with an analysis of the non-smooth component.
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Numerical Methods

Numerical Methods

To obtain numerical solutions to the ordinary differential equations studied in this thesis, we
choose to use both 2nd order and 4th order Runge-Kutta methods. The 2nd order method
are used for the one component model and the 4th order method for the two component
model. The choice in these methods comes from using the simplest scheme since numerical
sensitivity is not present in our problem. We use the numerical solutions to compare our
approximations to the observed state transition.
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Chapter 2

One Component Model

We consider a simpler system to give insight into the more complex two component Stommel
model. Here we use a toy system to build the analysis on and the spatial variables may not
have a physical interpretation. This system is the following one component model in terms
of the variables x and µ

ẋ = −µ+ 2|x| − x|x|+A sin(Ωt),

µ̇ =− ε,
(2.1)

x(0) = x0, µ(0) = µ0,

where the fixed parameters are the slow variation rate of ε � 1, the amplitude of oscil-
lation A and the frequency of oscillation Ω. We also assume the initial conditions to be
x0 = 1−

√
1 + µ0 and µ0 > µns which focuses our calculations on the lower equilibrium

branch where x < 0 and study nearby behavior. The value µns refers to the non-smooth
bifurcation which is discussed below in section 2.1.

The system (2.1) is generalized from a basic model that contains both a smooth and
non-smooth saddle-node bifurcation. This structure is similar to the Stommel model and
hence a good model to test features like slow variation or oscillatory forcing. The slow
variation is clear, but we use oscillatory forcing here in preparation for the two component
model of the next chapter. In each case, emphasis is put on the non-smooth component of
the model to study the non-smooth bifurcation and the role it plays in the hysteresis curve
we anticipate in the Stommel model.

2.1 Static Bifurcations

The foundation to our understanding comes from the simplest structure lying within the
canonical system (2.1) which is the bifurcation structure. This means finding the general
form for the equilibria in (2.1) with A = 0 and ε = 0, which is our basic model with a static
µ and no forcing. As we have a fixed parameter value, we search for a point or set of points
that the solution relaxes to as t→∞. We call these points the equilibrium points and they
are either stable or unstable. Since we are considering all possible µ, we want all of the
equilibrium points for each µ and thus we call these the equilibrium branches.

To find all equilibrium branches, we search for when the solution has come to a rest,
which is equivalent to setting the derivative of x to zero. Thus we set (2.1) to zero with

0 = −µ+ 2|x|−x|x|. (2.2)

Solving (2.2) results in 3 solutions where the stability of each is characterized by small
perturbations to the equilibrium either linearly growing or decaying. We denote the stable
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2.2. Slowly Varying Bifurcation Parameter

equilibria as xl and xu for the lower and upper branches respectively, and a single unstable
middle branch, xm. These are given by

xl = 1−
√

1 + µ, xu = 1 +
√

1− µ, xm = 1−
√

1− µ.

We note that xl is valid for µ ≥ 0 and both xu and xm for µ ≤ 1. Thus this system
has a stable equilibrium for each value of the parameter and has a region of bi-stability for
0 ≤ µ ≤ 1. The boundaries of this region are (µns, xns) = (0, 0) and (µsmooth, xsmooth) =
(1, 1) which are the non-smooth and smooth saddle-node bifurcations respectively. Both
are saddle-node due to pairs of equilibria annihilating at these locations which is shown in
figure 2.1.

Figure 2.1: The one component bifurcation diagram with the upper and lower equilibrium
branches as well as the unstable middle branch. The non-smooth bifurcation occurs at (0,0)
denoted by the circle and the smooth bifurcation occurs at (1,1) by the box.

2.2 Slowly Varying Bifurcation Parameter

To develop a method for the slowly varying Stommel model, we consider (2.1) with ε � 1
and A = 0. Under these conditions, µ(t) is a function of time and thus a bifurcation
no longer occurs. Instead, it is expected that a tipping point occurs nearby the static
bifurcation points as long as ε is small. Also, due to µ(t) being a function of time, we will
find equilibria that are also functions in time, which we call pseudo-equilibira. The smooth
case is well understood, see [24], so we consider the behavior of the non-smooth bifurcation
with x < 0. From [7] as well as the smooth model [24], it is common practice to rescale
time in a model with slow variation to put the dynamics on the same order and allow for
algebraic solutions to be found. Here the parameter µ(t) is slowly varying in time so it
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2.2. Slowly Varying Bifurcation Parameter

makes sense to rescale using this as our slow time, τ = εt. Applying both x < 0 and this
slow time approach to the system (2.1) then gives

εxτ =− µ(τ)− 2x+ x2,

µτ =− 1.
(2.3)

A standard approach to extracting information out of complicated models is to find
reduced equations by separating the behavior at each order of the slow time. This approach
is known as using an asymptotic expansion and further details can be found in Murray’s
Asymptotic Analysis [15]. With ε being the small quantity that dictates our slow time, we
choose to use an asymptotic expansion of x with

x(τ) ∼ x0(τ) + εx1(τ) + ε2x2(τ) +O(ε3). (2.4)

This approach captures the slowly varying behavior of the solution in terms of this small
quantity ε and aims to relate the slow variation to the solution. We substitute the expansion
(2.4) into the scaled system (2.3) to get

εx0τ + ε2x1τ + . . . = −µ(τ)− 2x0 + x2
0 + ε(−2x1 + 2x1x0) + ε2(−2x1 + 2x2x0 + x2

1) + . . .

Once we separate the equations at each order of ε, we find the following system of equations

O(1) : 0 = −µ(τ)− 2x0 + x2
0, (2.5)

O(ε) : 0 = −x0τ − 2x1 + 2x1x0, (2.6)

O(ε2) : 0 = −x1τ − 2x2 + 2x2x0 + x2
1. (2.7)

Each of the equations (2.5)-(2.7) gives the respective order’s pseudo-equilibrium. Thus we
solve each equation progressively to find the terms of our asymptotic expansion (2.4) as

x(t) ∼ 1−
√

1 + µ(t) +
ε

4(1 + µ(t))
− 3ε2

32(1 + µ(t))5/2
+O(ε3). (2.8)

We call (2.8) the outer solution as it approximates the solution well for values of x(t) away
from the bifurcation value µns. Since the dynamics of the system (2.1) change at x = 0 due
to the non-smooth bifurcation of the underlying static system, this solution is valid only for
x < 0 and µ > 0.

It is a key assumption of an asymptotic expansion that the terms are clearly separated
by order of ε. We search for a scaling of µ and x for which (2.8) is no longer valid under this
assumption of order separation. This assumption fails when x0 ∼ εx1 which occurs here
for µ ∼ O(ε). To confirm, we conduct a simple scale analysis to determine the appropriate
scaling for the local analysis about x = 0. Hence we consider the general scales

x = εαy, µ = εβm,
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2.2. Slowly Varying Bifurcation Parameter

with α > 0 and β > 0 for an inner scaling. We apply these local variables in (2.1) to get
the system

εαẏ =− εβm+ εα2|y|−ε2αy|y|,
εβṁ =− ε.

(2.9)

We balance the leading order terms εαẏ with εβm to find α = β. Here the equation for m
calls for β = 1, thus we have the scaling for the local analysis

x = εy, µ = εm. (2.10)

We have found that the scalings in (2.10) apply to all x and thus we consider the region
of x > 0. Substituting the local variables (2.10) into the original model (2.1) we find the
following inner system for the region of x > 0

ẏ =−m(t) + 2y − εy2,

ṁ =− 1.
(2.11)

We recall that we are searching for a link between y and m, and from [7] we use that it is
then convenient to change the differentiation on y to be with respect to the slowly varying
parameter m. This incorporates the behavior of m(t) directly into the equation we solve
and gives us a direct method for finding the tipping point. Then the leading order equation
is

ym = m− 2y. (2.12)

The leading order solution to (2.12) is found explicitly as follows

y(m) = Ce−2m +
m

2
− 1

4
+O(ε).

With the inner solution found in terms of the parameter m, we write this in terms of the
original variables with

x(t) ∼ Ce−2µ(t)/ε +
µ(t)

2
+O(ε). (2.13)

We call the solution (2.13) the inner solution as it approximated the solution well near the
bifurcation value µns. Since the inner solution behaves exponentially, the tipping point,
µslow, occurs when the exponential term begins to grow rapidly. Here we consider tipping
to occur when the solution becomes O(1/ε). Then we find the tipping point µslow to take
the form

µslow =
1

2
ε log(ε). (2.14)

Thus we have the tipping point for the slowly varying model. Notice that for small
values of ε, µslow < µns and this is consistent with considering the inner equation (2.11) for
the region x > 0 as we found in the analysis. Hence we find that a slowly varying bifurcation
parameter causes a delay in the rapid transition to the upper branch and we expect the
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2.2. Slowly Varying Bifurcation Parameter

solution to remain near the lower branch for longer than in the static problem. In terms of
hysteresis, then slow variation allows for a longer period before the states switch from the
lower to the upper branch.

In figure 2.2 (a,b), two examples of this tipping is shown for different sizes of ε along
with the standard bifurcation diagram where (c) demonstrates the tipping approximation
across a range of ε. The concavities match as well as agreement in the estimation of the
tipping point as ε goes to 0.

(a) (b)

(c)

Figure 2.2: In (a) the numerical solutions (black dashed and dash-dotted lines) to (2.1)
are given with A = 0 and ε = {.01, .04} respectively. The bifurcation plot is overlayed
for convenience. In (b) a zoom in of what happens near the non-smooth bifurcation. The
solid vertical lines (black) are tipping points where we use the tipping criterion x > .5 on
the numerical solution. The dashed and dash-dotted vertical lines (blue) are the tipping
estimates. In (c) a range of ε and their corresponding tipping (red stars) are compared to
our estimate (solid black line) from (2.14).
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2.2. Slowly Varying Bifurcation Parameter

2.2.1 Stability

From the static model we know our outer solution (2.8) to be stable, but to verify that
the inner solution (2.13) is stable we use a simple linear stability analysis on the inner
system. Typically to do this, an analysis would be performed about an equilibrium to see
if perturbations would grow or decay. Although, in this model there is a parameter that
is allowed to vary and hence we must be careful to note the analysis is about the pseudo-
equilibrium instead. In the first region of interest, m(t) ≥ 0, the following inner equation
and pseudo-equilibrium, z0(t), hold below the axis

ẏ = −m(t)− 2y = f(t, y), z0(t) = −m(t)

2
. (2.15)

We then consider simple perturbations of the pseudo-equilibrium, u, in (2.15) with

y(t) = z0(t) + u(t), ‖u(t)‖ � 1.

Normally, a Taylor expansion would result in expressing the perturbations with their own
equation that we could use to determine stability. Since z0(t) is not fixed, we must consider
its contribution to the derivative in this region of the parameter space with m(t) ≥ 0. Thus
we find

ẏ = ż0 + u̇,

ż0 =

{
−1

2ṁ = 1
2 m(t) > 0,

0 m(t) = 0.

(2.16)

Now we apply the standard Taylor expansion to see the behavior of these perturbations and
with the contributions in (2.16), the inner equation (2.15) becomes

ẏ =f(t, z0) + fy(t, z
0)(y − z0) = fy(t, z

0)u,

u̇ =

{
−1

2 − 2u, m(t) > 0,

−2u, m(t) = 0.

(2.17)

If this were the static parameter problem, we would always have the second case in
(2.17), which is always stable due to the sign. Since we allow for a varying parameter,
we learn that the solution is attracted to just below the pseudo-equilibrium z0(t). As this
system always experiences the critical point m = 0 due to the continuous decrease in m(t),
the slowly varying parameter eventually acts like the static parameter in section 2.1. Hence
we have that for x < 0, the pseudo-equilibrium is hyperbolic and asymptotically stable.
Here there is a critical point at (µns, xns) = (0, 0) which corresponds to a non-hyperbolic
equilibrium point. Generally, non-hyperbolic behavior signals equilibrium structures to
change. Here, this signals a transition in behavior for x > 0 and helps identify that the
tipping occurs in this region.

For the second region of interest, m(t) < 0, we found a solution that had the following
inner equation which has the pseudo-equilibrium above the axis with

ẏ = −m(t) + 2y, z0(t) =
m(t)

2
. (2.18)
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In (2.18) we find a contradiction, here m(t) < 0 yet the solution of this region is above the
axis x = 0. Thus we may conclude that this inner equation has no equilibrium in this region
and further verifies that the critical point (µns, xns) was non-hyperbolic and tipping occurs
for m(t) < 0.

2.3 High Frequency Oscillatory Forcing

To understand the oscillatory forcing in the Stommel model, consider the canonical system
(2.1) with A ∼ O(1), Ω� 1 and ε = 0, which gives high frequency oscillatory forcing in the
system. Under these conditions, we have a static parameter and for each parameter value
there is oscillatory forcing with solutions characterized by oscillations about a fixed point.
Thus we should expect to find a bifurcation influenced by oscillations occurring under these
conditions. Here we develop a method to find oscillatory solutions to determine what the
effect of oscillatory forcing has on the bifurcation of (2.1). In section 2.2, we focused only on
the slowly varying dynamics but here we have both a slow time scale t and a fast time scale
T = Ωt. This naturally suggests a multiple scales approach where we search for a solution
that is dependent on both of these scales, x(t) = x(t, T ). This method is commonly used
in problems that have behavior observable on multiple scales, and we use it here to find
a way to accurately analyze each scale and effectively combine their behavior into a single
unifying solution. Further discussion on this method can be found in [20].

Recall that our focus is on the non-smooth behavior and hence we restrict the solution
to follow along the lower stable equilibrium branch where x < 0. Using this multiple scales
approach, our canonical system (2.1) has the following form

xT + Ω−1xt = Ω−1
(
−µ− 2x+ x2 +A sin(T )

)
. (2.19)

Note: We choose to use the subscript notation for partial derivatives, ∂x
∂T = xT . In (2.19),

the small quantity Ω−1 appears which suggests an asymptotic expansion in powers of this
quantity

x(t, T ) ∼ x0(t, T ) + Ω−1x1(t, T ) + Ω−2x2(t, T ) +O(Ω−3). (2.20)

Substituting (2.20) into (2.19), we find

x0T + Ω−1x0t + Ω−1x1T + . . . = Ω−1(−µ− 2x0 + x2
0 +A sin(T )) + Ω−2(−2x1 + 2x1x0) + . . .

Here we separate by each order of Ω to find the following system of reduced equations

O(1) : x0T = 0, (2.21)

O(Ω−1) : x1T + x0t = −µ− 2x0 + x2
0 +A sin(T ), (2.22)

O(Ω−2) : x2T + x1t = −2x1 + 2x0x1. (2.23)

With an equation at each order, we must be able to solve each equation to proceed to
the next but we must also further restrict our solution from having resonant or linearly
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2.3. High Frequency Oscillatory Forcing

growing terms to prevent any multiplicity or exponential growth. This assures that the
terms in the asymptotic expansion are compatible with one another and we are able to find
a robust solution. A common method to guarantee compatible solutions with sublinear
growth at each order is the Fredholm alternative. This provides a solvability condition for
each equation of the form xiT = Ri(t, T ) with

lim
T→∞

1

T

∫ T

0
Ri(t, u) du = 0,

although for this system we consider the periodic form of the Fredholm alternative

1

2π

∫ 2π

0
Ri(t, T ) dT = 0. (2.24)

Both the general and periodic form of the Fredholm alternative have been well studied
and a more theoretic approach to the periodic version is discussed in Bensoussan’s Asymp-
totic analysis for periodic structures [3]. From (2.21), we learn the leading order term is
only dependent on the slow time, x0 = x0(t). Applying the Fredholm alternative (2.24) to
(2.22) gives an equation for the slow behavior which then implies an equation for the fast
behavior with

0 =
1

2π

∫ 2π

0

(
−x0t(t)− µ− 2x0(t) + x0(t)2 +A sin(T )

)
dT,

x0t =− µ− 2x0 + x2
0, x1T = A sin(T ).

(2.25)

Solving for the equilibrium solution of (2.25) leads to the leading order solution, x0, and
also allows us to partially solve for the first correction term x1 with

x0 =1−
√

1 + µ,

x1(t, T ) =v1(t)−A cos(T ).

Repeating this procedure in (2.23), as shown in Appendix B, results in the expansion (2.20)
written in the original variables

x ∼ 1−
√

1 + µ− Ω−1A cos(Ωt) +O(Ω−2). (2.26)

Once again, the explicit outer solution (2.26) performs well for x away from the axis x = 0,
we search for when the assumptions of the asymptotic series fail indicating where an inner
analysis is needed. This is when x0 ∼ εx1 which occurs for µ ∼ O(Ω−1).

We consider a general scaling in the form of x = Ω−αy and µ = Ω−βm where α > 0
and β > 0 allow for an inner equation to be found. Applying these local variables to (2.1)
results in

ẏ = −Ωα−βm+ 2|y|−Ω−αy|y|+ΩαA sin(Ωt). (2.27)

In the local system (2.27), we find similar behavior occurring across multiple scales and
thus we are able to use the same time scales from the outer analysis, t = t and T = Ωt.
Then we have y(t) = y(t, T ) and hence a similar multiple scales argument in (2.27) leads to

yT + Ω−1yt = −Ωα−β−1m+ Ω−12|y|−Ω−α−1y|y|+Ωα−1A sin(T ). (2.28)
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2.3. High Frequency Oscillatory Forcing

With a standard balancing argument between the leading order terms in (2.28) yT and
Ωα−1A sin(T ), we see that α = 1. We also want to see the terms Ωα−β−1m balance with
Ω−12|y|, which gives us that β = 1 as well. This results in the inner equation

yT + Ω−1yt = Ω−1 (−m+ 2|y|)− Ω−2y|y|+A sin(T ). (2.29)

Similarly to the outer equation, we approximate the solution with an asymptotic expansion
in terms of Ω−1

y(t, T ) ∼ y0(t, T ) + Ω−1y1(t, T ) +O(Ω−2). (2.30)

Substituting the expansion (2.30) into the inner equation (2.29) we find

y0T + Ω−1y0t + Ω−1y1T + . . . = Ω−1(−m+ 2|y0 + Ω−1y1 + . . . |) +A sin(T )

+ Ω−2(y0 + Ω−1y1 + . . .)|y0 + Ω−1y1 + . . . |.

Here we then find the following system of equations at each order of Ω

O(1) : y0T = A sin(T ), (2.31)

O(Ω−1) : y1T + y0t = −m+ 2|y0|. (2.32)

Solving the leading order equation (2.31) gives that the leading order term has the form,
y0(t, T ) = v0(t)−A cos(T ). Applying the Fredholm alternative (2.24) to (2.32) leads to

v0t(t) = −m+
1

π

∫ 2π

0
|v0(t)−A cos(T )| dT. (2.33)

In this setting, we must consider two cases for v0(t) that determine the nature of this
integrand. Case I: if v0(t) is large enough to keep y0 from ever changing sign and Case II:
if v0(t) is too small and y0 crosses the x = 0 axis. In figure 2.3 we show the range of each
case, the region on the right is following under case I, the green dotted vertical line defining
the parameter range between the cases, the middle region for case II and the blue vertical
line giving the bifurcation, µosc, which is determined below.
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2.3. High Frequency Oscillatory Forcing

Figure 2.3: The parameter ranges for each case are shown here with A = 2. For reference,
the original bifurcation diagram is overlayed.

2.3.1 Case I: v0(t) ≤ −|A|

We call this the ’below axis’ case as the solution stays far from the axis x = 0 for most of the
oscillation and thus the behavior is not influenced by the non-smooth dynamics. We do not
expect to see the bifurcation occur under these conditions but instead we find the parameter
range for each of these cases. Here the integral in equation (2.33) is straightforward to
evaluate as v0(t) is a constant with respect to the fast time T , thus we find the inner
equation and equilibrium

v0t = −m− 2v0, v0 = −m
2
.

This gives the leading order equilibrium solution with oscillations of the local variables for
this case which we write in terms of the original variables

y(t, T ) ∼− m

2
−A cos(T ) +O(Ω−1),

x(t) ∼− µ

2
− Ω−1A cos(Ωt) +O(Ω−2).

(2.34)

The condition v0(t) ≤ −|A| combined with the equilibrium allows us to establish when
(2.34) holds

µ ≥ 2|A|
Ω

. (2.35)

Following the equilibrium to (2.35) leads us to case II where the oscillations cross the axis
and the assumptions of this case no longer hold.
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2.3.2 Case II: |v0(t)|< |A|

We call this the ’crossing’ case; here the equilibrium is small enough that the oscillations
can now push the solution above the axis. Under these conditions, the solution spends time
near the axis x = 0 and thus experiences non-smooth influence. As the crossing continues,
the non-smooth behavior drives the solution to gradually grow. Therefore we expect to find
the bifurcation here. From (2.35), we have a range of µ when this case applies, µ < 2|A|

Ω . It
is important to note that the integrand in (2.33) is non-trivial when |v0(t)|< |A|. In order
to deal with the sign changing inside the integral, we break the integration into regions
based on the sign. Recall that we are searching for equilibrium behavior, and so we may
make the assumption that we are dealing with a fixed value of v0 such that |v0|≤ |A|. In
figure 2.4 we observe the function that we are integrating.

Figure 2.4: The non-smooth function |y0(T )|= |v0−A cos(T )| that we integrate is shown as
a solid red line. We also show an example of v0 as a horizontal blue dotted line. Here the
value of |v0|≤ |A|, which causes kinks to appear at the roots of |y0|: T1 and T2 respectively.
These are the vertical black dashed dotted lines.

From figure 2.4, the roots of the integrand are

T1 = arccos(v0/A), T2 = 2π − arccos(v0/A).

Here we notice 0 < T1 < T2 < 2π and that the sign of the integrand stays the same on each
interval. We only assume that the first interval [0, T1] observes a solution while the center
is still negative, thus the integrand will also be negative. From this, the integral in (2.33)
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2.3. High Frequency Oscillatory Forcing

is computed as∫ 2π

0
|v0 −A cos(T )| dT =−

∫ T1

0
(v0 −A cos(T )) dT+∫ T2

T1

(v0 −A cos(T )) dT −
∫ 2π

T2

(v0 −A cos(T )) dT.

(2.36)

Evaluating (2.36) and using a trigonometric identity, sin(arccos(x)) =
√

1− x2, we find the
integral to be ∫ 2π

0
|v0 −A cos(T )| dT =

2

π

(
arcsin(v0/A)v0 +

√
A2 − v2

0

)
.

Notice that our argument above is simple for fixed v0, but we have used a multiple scales
approach for our fast time with t � T implying that v0(t) is approximately fixed over
T ∈ [0, 2π]. This holds true due to having a high frequency Ω and otherwise would not be
a valid approximation. Thus we can evaluate (2.33) to find the inner equation

v0t = −m+
4

π

(
arcsin(v0/A)v0 +

√
A2 − v2

0

)
. (2.37)

In its current form, (2.37) prevents v0(t) to be found analytically, so we use a quadratic
Taylor approximation to be able to solve this equation explicitly. This then gives

v0t ≈ −m+
4|A|
π

+
2

π|A|
v2

0, (2.38)

which has the following equilibrium with positive constant C

v0 = −C
√
m− 4|A|

π
. (2.39)

Thus we have the leading order inner equilibrium (2.39) and writing this in the original
variables gives

y ∼− C
√
m− 4|A|

π
−A cos(T ) +O(Ω−1),

x(t) ∼− C

√
Ω

(
µ− 4|A|

πΩ

)
− Ω−1A cos(Ωt) +O(Ω−2).

(2.40)

It then is clear that the bifurcation, µosc, occurs when (2.40) fails to be real valued. Thus
we find µosc to take the form

µosc =
4|A|
πΩ

. (2.41)

From the result (2.41), we gather that the oscillatory forcing in the system causes
the bifurcation to occur sooner, µosc > µns, and this is controlled by the size of A and
Ω. Heuristically, the model experiences the non-smooth behavior sooner in µ with the
oscillations, but we can see as Ω → ∞ then µosc → µns. This effect is contrary to the
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2.3. High Frequency Oscillatory Forcing

slow variation where the solution experienced a delayed tipping, µslow < µns. Although our
assumption that Ω � 1 must be met for our analysis to hold, we may still see a medium-
range Ω. From figure 2.5 (d) we may have Ω = 5 and get reasonable approximations
with µosc. This means that our approximation µosc improves with increasing Ω, but it
still provides a reasonable approximation for bifurcations away from µns for a range of Ω.
Advanced bifurcation also indicates that the region of bi-stability is shrunk with oscillatory
forcing and thus can be used to eliminate the region entirely with A and Ω chosen properly,
effectively destroying any hysteresis. We compare our estimate to numerical results for
varying sizes of Ω−1.

(a) (b)

(c) (d)

Figure 2.5: In (a) the numerical time series solutions to (2.1) are given from bottom to top
with µ = {.8, .33, .15} in case I, case II and µ < µosc in (2.41) respectively with A = 2,
Ω = 10 and ε = 0. In (b) we show the time series on the bifurcation diagram. In (c), a
zoom in closer to the non-smooth bifurcation of (b), where the dotted vertical lines dictate
the region between case I and case II (green) as well as the bifurcation estimate (blue)
respectively. In (d) a range of Ω−1 and the corresponding numerical bifurcations (red
stars) are compared to our estimate of the bifurcations (black solid line). We consider the
bifurcation criterion to be when the numerical solution has passed x > .5.
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2.3. High Frequency Oscillatory Forcing

In figure 2.5 an example is given of the effect oscillatory forcing has on the solution given
a choice of A and Ω with (a), (b) and (c), but (d) shows the bifurcation approximation
across a range of Ω−1. There is an allowed range of Ω from our assumption of Ω � 1
and in this region we see agreement between the numerical results and our approximations.
The concavity is well represented and the behavior as Ω−1 → 0 converges to the static
bifurcation. Thus we expect that our methodology is valuable for the Stommel model.

2.3.3 Stability

Once more, the outer solution (2.26) is stable from the static model in section 2.1. In
this section, we have two regions of interest and establish their stabilities agree with our
analysis. Each region has a particular version of the same inner equation dictating the
solution’s behavior, namely

v0t = −m+
1

π

∫ 2π

0
|v0 −A cos(T )| dT. (2.42)

Case I: v0(t) < −|A|

In this region we did not find any bifurcation behavior and (2.42) simplifies to the inner
equation with equilibrium z0 as follows

v0t = −m− 2v0 = f(v0), z0 = −m
2
.

Similarly to section 2.2, we have a fixed parameter equation that we have shown to cause
perturbations to decay exponentially and hence we find the equilibrium to be hyperbolic
and asymptotically stable in the paramter range found in the analysis (2.35)

µ ≥ 2|A|
Ω

.

Case II: |v0(t)|< |A|

For this region we found the bifurcation and hence we should expect to lose stability here.
The Taylor approximation (2.38) for the inner equation with equilibrium z0 is

v0t = −m+
4|A|
π

+
2

π|A|
v2

0, z0 = −C
√
m− 4|A|

π
. (2.43)

We consider a simple linear perturbation of (2.43), v0(t) = z0 + u(t) with ‖u(t)‖ � 1.
Applying the standard Taylor expansion to determine the equation for the perturbations,
we find

v0t =f(z0) + fv0(z0)(v0 − z0) +O(‖v0 − z0‖2),

ut =− 2

√
m− 4|A|

π
u.

(2.44)

The sign of (2.44) gives that the perturbations decay exponentially and hence the equi-

librium is hyperbolic and asymptotically stable as long as m > 4|A|
π or equivalently µ > 4|A|

πΩ .
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2.4. Slowly Varying and Oscillatory Forcing

We find that once µ reaches this value in (2.41), then the stability of (2.44) is non-hyperbolic.
When the stability switches like this, we expect a bifurcation. Thus we have further evidence
to support that (2.41) is the oscillatory bifurcation we seek.

2.4 Slowly Varying and Oscillatory Forcing

Now that we have established an approach for each feature of the model individually, we
combine them in the full one component model (2.1) where ε � 1 and A ∼ O(1). Due
to the slow variation in µ, we do not see a bifurcation occur under these conditions but
rather a tipping point. Hence we must find the behavior of the solution and search for
when a rapid transition towards the upper branch occurs. Since the high frequency could
be approximated by a power of slow variation, we choose to relate these mechanisms with
a generic polynomial Ω = ε−λ for a parameter λ > 0. With a general λ, we classify regions
of behavior by ranges of λ and are able to determine where mixed behavior occurs or
when one of the mechanisms becomes dominant. With both mechanisms in effect, we again
choose to use a multiple scales approach to capture both slow behavior and fast oscillations.
Although now, we truly have slow behavior, the slowly varying parameter µ(t), as well as
fast behavior, the rapid oscillations sin(Ωt). The choice in time scales is then τ = εt and
T = ε−λt, which leads to the system

xT + ελ+1xτ = ελ(−µ(τ) + 2|x|−x|x|+A sin(T )),

µτ =− 1.

Once again, we assume initial conditions satisfying x < 0 and starting far enough away
from x = 0, before any crossing occurs, to find the outer solution. Thus we have the system

xT + ελ+1xτ = ελ(−µ(τ)− 2x+ x2 +A sin(T )),

µτ (τ) =− 1.
(2.45)

We perform an asymptotic expansion in terms of the small quantity ελ, where we note that
this is the same as Ω−1,

x(τ, T ) ∼ x0(τ, T ) + ελx1(τ, T ) +O(ε1+λ, ε2λ). (2.46)

Introducing the expansion (2.46) into the outer multi-scaled equation (2.45) gives

x0T +ελ+1x0τ+ελx1T +. . . = ελ(−µ(τ)−2x0+x2
0+A sin(T ))+ε2λ(−2x1+x1x0)+. . . (2.47)

Here we separate (2.47) at each order of ελ to find the following system of equations

O(1) : x0T = 0, (2.48)

O(ελ) : x1T = −µ(τ)− 2x0 + x2
0 +A sin(T ), (2.49)

O(ε2λ) : x2T + ε1−λx0τ = −2x1 + 2x0x1. (2.50)
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2.4. Slowly Varying and Oscillatory Forcing

Depending on the value of λ, O(ελ+1) may be the next order before O(ε2λ), although
considering either produce the same equation at their respective order and hence our choice
in λ does not change the calculations up to this correction term. Thus for the outer solution,
we consider the system with O(ε2λ). Each equation gives the behavior of each order of
the solution; (2.48) indicates that the leading order term is only slow time dependent,
x0 = x0(τ). In Appendix B we apply the Fredholm alternative (2.24) to (2.49) and (2.50)
to find the first few terms of the expansion in (2.46) explicitly. The resulting solution is

x(t) ∼ 1−
√

1 + µ(t)− ε

4(1 + µ(t))
− ελA cos(Ωt) +O(ε1+λ, ε2λ). (2.51)

In the outer solution (2.51), we consider when the terms violate the assumptions of the
expansion to find where we need to use an inner equation. This happens either when
x0 ∼ O(ε) or when x0 ∼ O(ελ) which is when µ ∼ O(ε) or µ ∼ O(ελ) respectively and
depends on the value of λ.

To find an inner equation we use a general scaling for both x and µ given the ambiguity
of the choice in µ with

x(t) = εαy(t), µ(t) = εβm(t), (2.52)

where α > 0 and β > 0 allow for inner equations to be found. Applying the local variables
(2.52) to the canonical equation (2.1) gives

εαẏ =− εβm(t) + εα2|y|−ε2αy|y|+A sin
(
ε−λt

)
,

ṁ =− ε1−β.
(2.53)

From (2.53) we find the fast time still appears but the slow time has multiple choices
depending on λ. For convenience we choose to take a multiple scales approach with scales
t and T = ε−λt in (2.53) to find

εα−λyT + εαyt =− εβm(t) + εα2|y|−ε2αy|y|+A sin(T ),

mt =− ε1−β.
(2.54)

To determine the correct scalings in (2.52), we balance the leading order terms on both
sides of (2.54) εα−λyT and A sin(T ), which gives us that α = λ. This suggests that the
oscillatory term persists in the inner asymptotic expansion of (2.1) regardless of the choice
in λ.

We now consider the same scales t and T = ε−λt on the canonical system (2.1)

xT + ελxt =− ελ+βm(t) + ελ2|x|−ελx|x|+ελA sin(T ),

mt =− ε1−β.
(2.55)

Here we use the expansion

x(t, T ) = ελy0(t, T ) + . . . ,

where the next terms of this expansion depend on whether λ ≤ 1 or λ > 1. We consider
these ranges in case I and case II respectively.
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2.4. Slowly Varying and Oscillatory Forcing

2.4.1 Case I: λ ≤ 1

We call this the ’mixed effects’ case a both slow variation and oscillatory forcing causing
noticeable effects on the solution for this range of λ. Hence we consider the expansion

x(t, T ) ∼ ελy0(t, T ) + εqy1(t, T ) + . . . , (2.56)

with the next term q > λ to be consistent with the scale analysis above that determined
inner behavior to start at O(ελ). Substituting (2.56) into (2.55) gives

y0T + ελy0t + εq−λy1T + εqy1t + . . . = − εβm(t) + ελ2|y0 + εq−λy1 + . . . |+A sin(T )

+ ε2λ(y0 + εq−λy1 + . . .)|y0 + εq−λy1 + . . . |.

Separating by distinct orders of ε then gives the following equations at each order

O(1) : y0T = A sin(T ), (2.57)

O(ελ) : εq−2λy1T + y0t = −εβ−λm(s) + 2|y0|. (2.58)

In (2.58) we find that the appropriate next term in the expansion (2.56) is with q = 2λ.
This choice in q keeps the equations balanced but q implies that λ > 1

2 for an expansion
to be found. Otherwise, the quadratic terms must be included and we no longer find local
equations. This indicates that the range of λ ≤ 1

2 behaves differently. We discuss this further
in chapter 4. There is also the choice between β = λ or β = 1 and each has a particular
appeal. With β = λ, the form of (2.58) is simple, but the equation for the slow variation is
mt = −ε1−λ. This then suggests a slower time scale to approach the problem. We instead
choose to allow β = 1 for convenience and track a small coefficient on m(t) in exchange
for keeping the same time scale with mt = −1. This is valid as long as we are tracking
small coefficients and not large ones as this would suggest we used an incorrect scaling, but
both of these choices lead to the same conclusion. Using (2.57) gives the appropriate form,
y0(t, T ) = v0(t)−A cos(T ). We then apply the Fredholm alternative (2.24) to (2.58) which
gives a similar equation to the integral (2.33) in section 2.3 with

v0t = −ε1−λm(t) +
1

π

∫ 2π

0
|v0(t)−A cos(T )| dT. (2.59)

The approach developed in section 2.3 is applied here to (2.59), where we separate the
behavior of the integral based on the relative size of v0(t) to A. We have the following
situations, sub-case I: v0(t) ≤ −|A| and sub-case II: |v0(t)|< |A|.

Sub-Case I: v0(t) ≤ −|A|

Once more, we call this the ’below axis’ sub-case and we do not expect tipping to occur
under these conditions since the solution is entirely negative and far from the axis x = 0
for most of the oscillation. Under these conditions, (2.59) gives the simple inner equation

v0t = −ε1−λm(t)− 2v0. (2.60)
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2.4. Slowly Varying and Oscillatory Forcing

Solving (2.60) can be done under our assumptions much like in subsection 2.3.1 but instead
we focus on the pseudo-equilibrium. This choice results in finding the effective parameter
range for µ which distinguishes these sub-cases and helps to determine when the solu-
tion enters sub-case II. Since m(t) is allowed to vary, this must be thought of more as a
pseudo-equilibrium and we are only interested in when the pseudo-equilibrium violates the
assumptions of this case. Finding the pseudo-equilibrium of (2.60) gives

v0(t) = −ε1−λm(t)

2
.

Using the condition v0(t) ≤ −|A| gives that m(t) ≥ ελ−12|A|. Writing this result in original
variables gives us the parameter range

µ(t) ≥ 2|A|
Ω

, (2.61)

for sub-case I which agrees with the range from (2.35) in section 2.3. Following the pseudo-
equilibrium to the boundary (2.61), we eventually reach sub-case II where we see the oscil-
lations crossing the axis.

Sub-Case II: |v0(t)|< |A|

Again, we call this the ’crossing’ sub-case. Here the behavior of the solution depends
strongly on the sign of the solution similarly to section 2.3. We seek the relationship between
slow variation and oscillatory forcing on the tipping point. As the pseudo-equilibrium gets
closer to the x = 0 axis, the solution spends more time above this axis and more complicated
contributions from the sign changing appear. We expect tipping to happen under these
conditions.

The methodology of solving the integral in (2.59) holds identically to that of subsec-
tion 2.3.2. Here, we have a slow time function v0(t) that is approximately fixed with
respect to the fast time T under the multiple scales approach. Thus we evaluate the in-
tegral by separating the sign of the integrand with the values T1 = arccos(v0/A) and
T2 = 2π − arccos(v0/A) to find

v0t = −ε1−λm(t) +
4

π

(
arcsin(v0/A)v0 +

√
A2 − v2

0

)
. (2.62)

We then choose to find an explicit analytic expression by approximating (2.62) with a
quadratic Taylor expansion. This gives

v0t =− ε1−λm(t) +
4|A|
π

+
2

π|A|
v2

0,

mt =− 1.

(2.63)

With (2.63) in terms of slow time, it restricts any analytical approaches that link the effects
of the varying parameter. Instead we take the same approach from [7] and switch the
differentiation onto the slow varying parameter m with

v0m = ε1−λm− 4|A|
π
− 2

π|A|
v2

0. (2.64)
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It is here where we take advantage of the form of (2.64) with the form from (1.3) to solve,
resulting in

v0(m) ∼ ε(1−λ)/3

(
π|A|

2

)2/3 Ai
′
(
ε2(λ−1)/3

(
2

π|A|

)1/3
(ε1−λm− 4|A|

π )

)
Ai

(
ε2(λ−1)/3

(
2

π|A|

)1/3
(ε1−λm− 4|A|

π )

) .
With the solution to (2.56) we rewrite back into the original variables

y0(t, T ) ∼C
Ai′
(
ε2(λ−1)/3

(
2

π|A|

)1/3
(ε1−λm(t)− 4|A|

π )

)
Ai

(
ε2(λ−1)/3

(
2

π|A|

)1/3
(m(t)− 4|A|

π )

) − ελA cos(T ) + . . . ,

x(t) ∼C
Ai′
((

Ω
ε2

)1/3 ( 2
π|A|

)1/3
(µ(t)− 4|A|

πΩ )

)
Ai

((
Ω
ε2

)1/3 ( 2
π|A|

)1/3
(µ(t)− 4|A|

πΩ )

) − ελA cos(Ωt) + . . .

(2.65)

Given the inner solution (2.65), we search for the singularity of this solution in order to
identify tipping. Recall from (1.4) that the singularity relates to the first root of the Airy
equation. Here we find the singularity µmixed to be

µmixed =

(
ε2

Ω

)1/3(
π|A|

2

)1/3

(−2.33811 . . .) +
4|A|
πΩ

. (2.66)

The value µmixed which causes this singularity is our tipping point. We rewrite (2.66) to
emphasize the contributions from the slow variation of the parameter and the oscillatory
forcing

µmixed =

(
π|A|
2Ω

)1/3

µsmooth + µosc, (2.67)

with µsmooth = ε2/3 (−2.33811 . . .), similarly to the smooth problem from [24], and µosc from
(2.41) respectively.

The resulting tipping approximation (2.67) indicates that the size of the amplitude A
determines whether the tipping occurs early or late relative to the bifurcation. Naturally
we see a larger amplitude cause more contribution from the oscillations and hence an earlier
tipping. On the other hand, larger values in ε cause this tipping to occur later. So these
effects have opposite pulls on the tipping and can effectively cancel one another out under
proper conditions. It would even be possible to break the hysteresis cycle by eliminating
the region of bi-stability in this model with sufficiently large amplitude and small ε. The
tipping point holds for any λ ∈ (1

2 , 1] and we see different behavior for larger λ.

2.4.2 Case II: λ > 1

We call this the ’slowly varying dominant’ case as this is when we see that the oscillations
contribute less than the slow variation. For this range of λ the scaling for µ is simple,

28



2.4. Slowly Varying and Oscillatory Forcing

µ = εm. Thus we expect to see integer powers in the leading order along with powers of λ
so we choose the expansion

x(t, T ) ∼ ελy0(t, T ) + εy1(t, T ) + εqy2(t, T ) + . . . , (2.68)

where q > λ to allow for consistency with the scale analysis but not necessarily the same
value as in case I. Substituting (2.68) into (2.55) gives

εy0T + ελ+1y0t + ελy1T + εqy2T + . . . =− ελ+1m(t) + ελ+12|y0 + ελ−1y1 + . . . |
+ ελ+2(y0 + ελ−1y1 + . . .)|y0 + ελ−1y1 + . . . |
+ ελA sin(T )

Here we separate out each order of ε to find the equations at each order

O(ε) : y0T = 0, (2.69)

O(ελ) : y1T = A sin(T ), (2.70)

O(ελ+1) : εq−λ−1y2T + y0t = −m(t) + 2|y0 + ελ−1y1|. (2.71)

We learn in (2.71) that q = λ + 1 keeps the terms balanced. From (2.69) we find that
the dominant behavior for this case is only slow time dependent, y0 = y0(t) and from
(2.70) that the oscillatory behavior occurs in y1 with y1(t, T ) = v1(t) − A cos(T ). Since
we have y1 as a correction to y0, we may absorb the slow behavior into y0. Thus we treat
y0(t) = y0(t) + ελ+1v1(t) ≈ y0(t). Applying Fredholm to (2.71) gives

y0t =−m(t) +
1

π

∫ 2π

0
|y0(t)− ελ−1A cos(T )| dT. (2.72)

With λ ≈ 1, we see nearly identical behavior in (2.72) as that of what we explored in
subsection 2.4.1. As long as the amplitude of oscillations inside the integral are ελ−1A ∼
O(1), then this integral is similar to the integral in Case I (2.59). To see this, we follow
the same approach as to integrate (2.72) with T1 = arccos

(
y0/ε

λ−1A
)

and T2 = 2π −
arccos

(
y0/ε

λ−1A
)

which gives

y0t = −m(t) +
4

π

(
arcsin

(
y0/ε

λ−1A
)
y0 +

√
(ελ−1A)2 − y2

0

)
. (2.73)

Here we apply the same quadratic Taylor approximation to (2.73) to find

y0t =−m(t) + ελ−1 2|A|
π

+ ε1−λ
2

π|A|
y2

0,

m =− 1.

(2.74)

We again use the result from (1.4) to find the tipping, which we then write into original
variables
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mmixed =ε(λ−1)/3

(
π|A|

2

)1/3

(−2.33811 . . .) + ελ−1 4|A|
π

,

µmixed =

(
π|A|
2Ω

)1/3

µsmooth + µosc.

Thus we conclude that there is a natural transition into case II from case I with almost
the same behavior and identical tipping as in (2.67). As λ continues to grow, the amplitude
of oscillation in (2.72) decays and the contribution from the oscillations weaken. This allows
us to say that the integral is approaching

y0t = −m(t) + 2|y0|. (2.75)

With (2.75) taking the same form as in section 2.2, this allows us to use the results there
to find the solution. We write this in terms of the original variables

y0(t, T ) ∼Ce−2m(t) +
m(t)

2
− 1/4 + ελA cos(T ),

x(t) ∼Ce−2µ(t)/ε +
µ(t)

2
− ελA cos(Ωt) +O(ε2λ).

(2.76)

This then leads to the same tipping as in the slowly varying model with

µslow =
1

2
ε log ε.

Thus we find that in this case and with λ near 1, the same tipping point µmixed in (2.67) from
subsection 2.4.1 is found. For large λ, the oscillations have less of an impact and the solution
tips entirely like µslow in (2.14) from section 2.2. For convenience, this is summarized in the
following table.

One Component Tipping Points

ε > 0 and A = 0: µslow = ε ln(ε)/2

ε = 0 and A 6= 0 with Ω� 1: µosc = 4|A|
πΩ

ε > 0, A 6= 0 and λ ≤ 1: µmixed =
(
π|A|
2Ω

)1/3
µsmooth + µosc

ε > 0, A 6= 0 and λ > 1 with λ ≈ 1: µmixed =
(
π|A|
2Ω

)1/3
µsmooth + µosc

ε > 0, A 6= 0 and λ > 1: µslow = ε ln(ε)/2

Table 2.1: Overview of the tipping points of the one component model for each mechanism
and case.

In figure 2.6, we see an example of the numerical solution to the canonical system (2.1)
with slow variation and oscillatory forcing. This example has a tipping point occurring in
case I due to λ ∈ (1

2 , 1] allowing the slow variation and oscillatory forcing to produce a
mixed effect on the tipping point. Although we see noticeable contributions from the slow
varying parameter the tipping point still occurs near the oscillatory bifurcation. This tells
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2.4. Slowly Varying and Oscillatory Forcing

us that for these choices in the values the strongest effect is the oscillatory forcing. It is
possible to find values of ε, A and λ that cause the non-smooth tipping to occur at the same
place as the smooth bifurcation. This would eliminate the region of bi-stability and destroy
the hysteresis curve entirely for this model.

(a) (b)

Figure 2.6: On the left, one can see the bifurcation diagram for the canonical system (2.1)
with the numerical solution (black dotted line). On the right, a zoom in around the non-
smooth bifurcation. The dotted vertical line is the tipping point µmixed (2.66) (blue). The
vertical line (black) is the when the numerical solution has passed the tipping criterion
x > .5. The parameter values are ε = .05, λ = .8 and A = 4.

In figure 2.7, we see an example of λ falling into case II yet close enough to 1 that we see
mixed behavior in the tipping. Here the slow variation is dominant and the oscillations are
only noticeable in the zoom in. The green dotted line is the tipping point approximation
(2.14) from section 2.2 and µmixed is still approximating the tipping point well.
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(a) (b)

Figure 2.7: On the left, one can see the bifurcation diagram for the canonical system (2.1)
with the numerical solution (black dotted line). On the right, a zoom in about the non-
smooth bifurcation. The dotted vertical lines are the tipping point µmixed (2.66) (blue)
and slowly varying tipping µslow (2.14) (green). The vertical line (black) is the when the
numerical solution has passed the tipping criterion x > .5. The parameter values are ε = .05,
λ = 1.05 and A = 4.

In figure 2.8, we see an example of λ falling into case II but large enough that we
see almost entirely slow behavior in the tipping. Even upon closer inspection it is hardly
noticeable that oscillations are present in the model. The green dotted line is the tipping
approximation (2.14) from section 2.2, and it is clear that this is a better approximation
than the mixed tipping point.
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(a) (b)

Figure 2.8: On the left, one can see the bifurcation diagram for the canonical system (2.1)
with the numerical solution(black dotted line). On the right, a zoom in around the non-
smooth bifurcation. The dotted vertical lines are the tipping point µmixed (2.66) (blue)
and slowly varying tipping µslow (2.14) (green). The vertical line (black) is the when the
numerical solution has passed the tipping criterion x > .5. The parameter values are ε = .05,
λ = 1.6 and A = 4.

In figure 2.9 we compare the tipping between case I and case II with the numerical
tipping. For smaller λ, the frequency Ω gets smaller and the case I tipping becomes more
predominant. For the analysis performed in this section, Ω � 1 and for λ ≤ 1

2 we have
Ω ∼ O(1). We do not consider a low frequency corresponding to λ ≤ 1

2 in this thesis. The
larger λ becomes, the less effect we see due to the oscillatory forcing until it is negligible
for some λ > 1. This is also seen in the asymptotic solution for each case, (2.51), (2.65),
and (2.76), where the oscillatory component of the term has a ελ coefficient and shrinks the
effects as λ grows.
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Figure 2.9: An example of numerical tipping (red stars) as the numerical solution to (2.1)
passes the tipping criterion x = .5 for the last time. The parameter values are ε = .01 and
A = 4. The lines are the case I tipping estimate (2.66) (black solid line) and the case II
tipping estimate (2.14) (blue dotted line).

The performance of our estimates are seen in figure 2.10. For case I tipping, the range
of appropriate ε is highly dependent on the choice in λ. Often, the range is quite small for
accurate estimates, but with this in mind both case approximations have good performance
over a reasonable range of ε.

(a) λ = .8 (b) λ = 1.3

Figure 2.10: The numerical tipping (red stars) follows the appropriate case depending on λ.
The case I tipping estimate (black solid line) and the case II tipping estimate (blue dotted
line) are shown.

34



2.4. Slowly Varying and Oscillatory Forcing

2.4.3 Stability

Similarly to section 2.3, there are two ranges for λ that govern the stability of solutions
found in our analysis, namely λ ≤ 1 and λ > 1.

Case I: λ ≤ 1

Recall that for this case, we must have λ ∈ (1
2 , 1] and for this range, we found the inner

equation

v0t = −ε1−λm(t) +
1

π

∫ 2π

0
|v0(t)−A cos(T )| dT = f(t, v0). (2.77)

As in our previous analysis, we consider two regions of the solution v0(t) for this integral,
in subsection 2.4.1 with sub-case I: v0(t) ≤ −|A| and in subsection 2.4.2 with sub-case II:
|v0(t)|≤ |A| where each these sub-cases deal with the respective size of v0(t) to the amplitude
of the effective oscillations.

Sub-Case I: v0(t) ≤ −|A|

Recall from the analysis that equation (2.77) simplifies in this region of v0(t) and has the
following inner equation and pseudo-equilibrium z0(t)

v0t = −ε1−λm(t)− 2v0 = f(t, v0), z0(t) = −ε1−λm(t)

2
. (2.78)

As we saw in section 2.2, special treatment of the pseudo-equilibrium stability analysis is
needed with linear perturbations v0(t) = z0(t)+u(t), where ‖u(t)‖ � 1 and z0

t = −ε1−λmt2 =
ε1−λ

2 . The resulting Taylor expansion is thus

v0t =f(t, z0) + fv0(t, v0)(v0(t)− z0(t)) +O(‖v0(t)− z0(t)‖2),

ut =− ε1−λ

2
− 2u.

This leads to the conclusion that equation (2.78) causes perturbations to decay exponen-
tially to just below the pseudo-equilibrium. Hence we find the pseudo-equilibrium to be a
hyperbolic and asymptotically attracting solution.

Sub-Case II: v0(t) ≤ |A|

With the Taylor approximation from the analysis (2.63), we have the following inner equa-
tion and pseudo-equilibrium z0(t)

v0t = −ε1−λm(t) +
4|A|
π

+
2

π|A|
v2

0 = f(t, v0), z0(t) = −C
√
ε1−λm(t)− 4|A|

π
. (2.79)
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We consider simple linear perturbations to this pseudo-equilibrium (2.79), v0(t) = z0(t) +
u(t) with ‖u(t)‖ � 1. Treating the pseudo-equilibrium carefully, we find that the slowly
varying component of the equilibrium contributes to the derivative. Thus we have

v0t =z0
t (t) + ut,

z0
t (t) =


ε1−λ

2C
√
ε1−λm(t)− 4|A|

π

ε1−λm(t) > 4|A|
π ,

0 ε1−λm(t) = 4|A|
π .

(2.80)

Now applying a Taylor expansion, we find the following behavior of perturbations

v0t =f(t, z0) + fv0(t, z0)(v0 − z0(t)) +O(‖v0(t)− z0(t)‖),

ut =

−
ε1−λ

2C
√
ε1−λm(t)− 4|A|

π

− 2

√
ε1−λm(t)− 4|A|

π u ε1−λm(t) > 4|A|
π ,

0 ε1−λm(t) = 4|A|
π .

(2.81)

From (2.81), we find that the perturbations decay to a fixed negative quantity. This
indicates, much like in section 2.2, that there is an attracting solution below the pseudo-
equilibrium. The negative sign describes exponential decay and hence this equilibrium is
hyperbolic and asymptotically stable for ε1−λm(t) > 4|A|

π or µ(t) > 4|A|
πΩ . For ε1−λm(t) = 4|A|

π
or µ(t) = µosc, the stability of (2.81) suddenly becomes non-hyperbolic. This tells us that
we lose stability at the oscillatory bifurcation but the tipping point occurs afterwards, which
agrees with the conclusion in the tipping approximation from (2.67).

Case II: λ > 1

From the analysis, we discovered that as long as ελ−1A ∼ O(1), then we have a similar
behavior in the tipping point. With the Taylor approximation from the analysis (2.72), the
inner equation and pseudo-equilibrium z0(t) are

y0 =−m(t) + ελ−1 2|A|
π

+ ε1−λ
2

π|A|
y2

0 = f(t, y),

z0(t) =− ελ−1C

√
m(t)− ελ−1

4|A|
π

.

(2.82)

Similarly to Case I, we consider simple linear perturbations to this pseudo-equilibrium
(2.85), y0(t) = z0(t) + u(t) with ‖u(t)‖ � 1. Treating the pseudo-equilibrium carefully,
we find that the slowly varying component of the equilibrium contributes to the derivative.
Thus we have

y0t =z0
t (t) + ut,

z0
t (t) =


ελ−1

2C
√
m(t)−ελ−1 4|A|

π

m(t) > ελ−1 4|A|
π ,

0 m(t) = ελ−1 4|A|
π .

(2.83)

36



2.4. Slowly Varying and Oscillatory Forcing

Now applying a Taylor expansion, we find the following behavior of perturbations

y0t =f(t, z0) + fy0(t, z0)(y0 − z0(t)) +O(‖y0 − z0(t)‖2),

ut =

−
ελ−1

2C
√
m(t)−ελ−1 4|A|

π

− 2

√
m(t)− ελ−1 4|A|

π u m(t) > ελ−1 4|A|
π ,

0 m(t) = ελ−1 4|A|
π .

(2.84)

The conclusions from case I still apply to (2.84) and thus we still have an attracting solution
until µ(t) = µosc and expect to see tipping occurring after the oscillatory bifurcation which
is consistent with our tipping approximation for this case.

On the other hand, for large λ the integral (2.72) approaches

y0t = −m(t) + 2|y0|. (2.85)

This is the same type of behavior from section 2.2, where we found that for m(t) ≥ 0 our
pseudo-equilibrium was attracting and for m(t) < 0 searching for the pseudo-equilibrium
caused a contradiction. Thus, we conclude that the tipping point occurs in the region of
m(t) < 0 which agrees with (2.14).
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Chapter 3

Two Component Model

With the methods and approaches developed in chapter 2 for the one component model, we
have an expectation of the behavior of the two component Stommel model around the non-
smooth bifurcation under similar conditions. Recall that we study the non-dimensionalized
model (1.6) and η2 is the control parameter linked to the flow rate. With the bifurcation
structure we explored in chapter 1, we consider a generalization of the Stommel model

V̇ = η1 − η2 + η3(T − V )− T − V |V |+A sin(Ωt),

Ṫ = η1 − T (1 + |V |) +B sin(Ωt),

η̇2 = −ε
V (0) = V 0, T (0) = T 0, η2(0) = η2

0,

(3.1)

with slow variation ε � 1, high frequency Ω � 1, amplitudes of oscillation A and B,
and model parameters η1 and η3 as positive constants. We assume the initial conditions
V 0, T 0 and η0

2 > η2ns are along the lower equilibrium branch which puts emphasis on
the non-smooth behavior of the Stommel model with two additional features. First, we
allow for slow variation in the bifurcation parameter which has been shown to be realistic
since η2 is related to the freshwater flux and therefore not a fixed parameter; the same
assumption is made in [19]. Second, we consider periodic forcing in the additive parameter
η1 to account for oscillations in seasonal effects, annual effects as well as tidal currents.
This same approach is taken in [16] to look into idealized forcing in the Atlantic Meridonal
Overturning Circulation (AMOC). It should be noted that although oscillatory forcing is
present, there is strong evidence to believe that stochastic forcing is also present in the
AMOC [4] and [16] which is suggestive of the same being true for the THC. Thus we
consider periodic forcing in the Stommel model, but we discuss stochastic forcing in the
future work section. To fully understand the effects of each component on the model, we
consider them individually before putting them together.

For the remainder of this thesis, we make two assumptions: first that η3 < 1 which
gives the smooth bifurcation Vsmooth of (3.1) in the region V > 0. The value of η3 describes
the relative strength of the temperature relaxation to that of salinity, and it is frequently
assumed that salinity has a slower relaxation, giving η3 < 1. Thus we restrict our attention
to η3 < 1 and the case of η3 > 1 follows similarly. The second assumption we make is that
even though we have a model in terms of V and T , the variable V is driving the dynamics
of the system as confirmed in the analysis below. This assumption means that we want to
understand the non-smooth behavior in V where T follows in response to the effects of V .
The evidence below shows that change in temperature respond to change in salinity. This
assumption reduces the model, expressing the behavior of T in terms of V to find equations
in only one variable.
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3.1. Slowly Varying Bifurcation Parameter

3.1 Slowly Varying Bifurcation Parameter

We consider the slow variation mechanism to understand the effects on the Stommel model
(3.1) with ε� 1 and A = B = 0, where the bifurcation parameter η2 slowly varies without
oscillatory forcing. We expect to find a tipping point in the neighborhood of the aforemen-
tioned non-smooth bifurcation at η2ns = η1η3. With the choice of η3 < 1, the lower branch
with V < 0 is the branch we focus on in order to approach the non-smooth behavior, thus
(3.1) is

V̇ = η1 − η2(t) + η3(T − V )− T + V 2,

Ṫ = η1 − T (1− V ),

η̇2 = −ε.
(3.2)

From section 2.2, we learned that the one component model had a solution that displayed
one type of behavior away from the non-smooth axis x = 0 and another type close to x = 0
thus a local analysis gave insight into the tipping. Here we search for an outer solution
to (3.2) that helps us understand the behavior of the system away from the non-smooth
V = 0. Since we have slow variation in η2, we choose to scale the system (3.2) with the
slow time τ = εt

εVτ =η1 − η2(τ) + η3(T − V )− T + V 2,

εTτ = η1 − T (1− V ),

η2τ = −1.

(3.3)

We use asymptotic expansions in terms of the small quantity ε to look for slowly varying
solutions. Here we choose

V (τ) ∼V0(τ) + εV1(τ) + ε2V2(τ) + . . . ,

T (τ) ∼T0(τ) + εT1(τ) + ε2T2(τ) + . . . ,
(3.4)

and substitute (3.4) into (3.3) to find

εV0τ + ε2V1τ + . . . =η1−η2(τ) + η3(T0 − V0)− T0 + V 2
0

+ ε(η3(T1 − V1)− T1 − 2V1V0) + . . .

εT0τ + ε2T1τ + . . . =η1 − T0(1− V0) + ε(−T1(1− V0) + V1T0) + . . . .

Separating at each order of ε then gives the following system of equations

O(1) :

{
0 = η1 − η2(τ) + η3(T0 − V0)− T0 + V 2

0 ,

0 = η1 − T0(1− V0),
(3.5)

O(ε) :

{
V0τ = η3(T1 − V1)− T1 + 2V1V0,

T0τ = −T1(1− V0) + V1T0.
(3.6)
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We then solve (3.5) simultaneously for the pseudo-equilibria noting that T0 is explicitly in
terms of V0

T0(V0) =
η1

1− V0
,

0 = η1 − η2(τ)− T0(V0) + η3(T0(V0)− V0) + V 2
0 .

(3.7)

With T0 and V0 found, we solve (3.6) for T1 explicitly in terms of V1

T1(V1) =
T0τ − T0(V0)V1

1− V0
,

V1 =
−(1− V0)V0τ + (1− η3)T0τ (V0τ )

(1− η3)T0(V0) + (η3 − 2V0)(1− V0)
.

(3.8)

This gives the first few terms of the asymptotic expansion (3.4) with (3.7) and (3.8). Given
these expressions, in the two component problem it is not immediately obvious when the
outer solution breaks down. However, noting that for V0 → 0 the asymptotic expansion for
V is no longer valid, we rescale the system to find an inner equation in this region.

Analogously to section 2.2, this corresponds to the non-smooth bifurcation at (η2ns, Vns, Tns) =
(η1η3, 0, η1), so we rescale (3.1) around these values. This results in the local variables

η2 =η2ns + εn,

V =εX,

T =η1 + εY.

(3.9)

Then we introduce these local variables (3.9) into the Stommel model (3.1) to find the
following inner system

Ẋ = −n(t)− η3X − (1− η3)Y − εX|X|,
Ẏ = −η1|X|−Y − ε|X|Y,
ṅ = −1.

(3.10)

Here we outline the influence of the parameters η1 and η3 on the behavior of a solution. We
already determined in the introduction that η3 determines the orientation of the problem.
By viewing (3.10) as a 2× 2 system of spatial variables, we find an interaction between the
parameters η1 and η3 in the eigenvalues of this system. Linearizing then gives(

Ẋ

Ẏ

)
=

(
−η3 −(1− η3)

−η1sgn(X) −1

)(
X
Y

)
−
(
n(t)

0

)
. (3.11)

A linearized stability analysis about the pseudo-equilibria similar to [21] is needed to
determine the stability of the lower pseudo-equilibria. This is performed in [5] and hence we
note that both stability of the lower branch and non-hyperbolic behavior at (η2ns, Vns, Tns)
is observed. Thus we expect our tipping point to occur just after the static non-smooth
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bifurcation η2ns. With this in mind, we consider V > 0 and with (3.11) we find the inner
system

Ẋ = −n(t)− η3X − (1− η3)Y − εX2,

Ẏ = −η1X − Y − εXY,
ṅ = −1.

(3.12)

Following the approach from section 2.2, we change the differentiation to be in terms of n
to find (

Xn

Yn

)
=

(
η3 1− η3

η1 1

)(
X
Y

)
+

(
n+ εX2

εXY

)
.

Seeking a leading order solution in this region, we drop the ε order terms to give(
Xn

Yn

)
=

(
η3 1− η3

η1 1

)(
X
Y

)
+

(
n
0

)
. (3.13)

For the system (3.13), we find the eigenvalues

λ1,2 =
η3 + 1

2
± 1

2

√
(1 + η3)2 + 4(η1(1− η3)− η3). (3.14)

The eigenvalues in (3.14) must be real as η3 < 1 guarantees the discriminant is always
positive. The type of stability also follows as one of the eigenvalues is positive and the
other is negative. This causes the solution to be unstable, which confirms tipping to occur
in the region V > 0. With real eigenvalues, the solution in the V > 0 region takes the
following exponential form with constants Ki,j being component j of the corresponding i-th
eigenvector

X(n) ∼K1,1e
λ1n +K2,1e

λ2n + C1n+ C2,

Y (n) ∼K1,2e
λ1n +K2,2e

λ2n + C3n+ C4.
(3.15)

Translating both solutions in (3.10) back to our original variables we find

V (t) ∼εK1,1e
λ1(η2(t)−η1η3)/ε + εK2,1e

λ1(η2(t)−η1η3)/ε +O(ε),

T (t) ∼η1 + εK1,2e
λ1(η2(t)−η1η3)/ε + εK2,2e

λ2(η2(t)−η1η3)/ε +O(ε).
(3.16)

With (3.16) admitting the solution in the region V > 0, we determine the system to
tip once one of these exponentials becomes large (i.e O(1/ε)). This causes the system to
abruptly transition away from our lower branch towards the upper stable branch. The
tipping point η2slow is then

η2slow = min
i
{η2ns − ε ln(ε)/λi}, i = 1, 2. (3.17)

Thus we have the tipping for this problem with (3.17) and this has a similar form to the
tipping point from section 2.2. As we found in (3.14), one of the eigenvalues is always
positive and thus η2slow < η2ns. This means the slow variation causes a delay in the rapid
transition from the lower branch to the upper branch and the solution spends more time
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around the lower branch. These effects shrink as ε→ 0 until we return to the static problem
with ε = 0.

(a) (b)

Figure 3.1: In (a) the numerical solutions (black dotted and dash-dotted lines) to (3.1) are
given with η1 = 4, η3 = .375, and ε = {.01, .04} respectively. In (b) a zoom is given closer
to the non-smooth bifurcation region. The blue vertical lines are the predictions (3.17)
against the black solid vertical lines which are the tipping points with the tipping criterion
V > Vsmooth on the numerical solution.

In figure 3.1 the numerical solution with a slowly varying η2 is given for two choices of
ε in (a) and we zoom in around the non-smooth bifurcation in (b). Here we use the tipping
criterion to be whenever V > Vsmooth which is large enough that the numerical solution is
strongly moving towards the upper branch. The delay in moving towards the upper branch
in the V solution causes a similar delay in T , as seen in figure 3.2. This is best seen with
the outer solution (3.4) as the correction terms are negative. Thus, when the tipping point
in V is reached, the solution for T has yet to reach the maximum value. Notice that after
the tipping occurs, the numerical solution passes entirely over the unstable branch and even
some of the upper stable branch before following the upper branch closely.
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(a) (b)

Figure 3.2: In (a) we have the numerical solutions (black dotted and dash-dotted) over the
standard equilibrium plot for V vs. T . In (b) a zoom in closer to the bifurcation area.

In figure 3.3 we compare the numerical tipping to the predicted tipping in (3.17) over
a range of ε. Here we see performance even better than in section section 2.2 as even for
relatively large ε the prediction has a small error. This is an artifact of having a higher
dimensional problem, where now two exponentials in (3.16) are dominating the behavior of
the solution in the V > 0 region. As in section 2.2, the concavity of the predicted tipping
against the numerical tipping matches very well and we can expect the prediction to hold
for reasonably small values of ε.
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Figure 3.3: The numerical tipping (red stars) vs. the estimate η2slow (black line) with
η1 = 4 and η3 = .375. The top blue line is the tipping of the second eigenvalue. The tipping
criterion on the numerical solution is V > Vsmooth.

3.2 High Frequency Oscillatory Forcing

We consider oscillations occurring in the dynamics of the THC that are not originally
encompassed by the Stommel model [1, 9, 14, 17, 18, 22]. We allow η1 to exhibit oscillatory
behavior to account for this. As η1 appears in both equations for V and T , we consider
oscillatory forcing on both, but permit their amplitudes to be different. In other words, the
canonical system (3.1) with A,B ∼ O(1), Ω � 1 and ε = 0 which is the purely oscillatory
forcing problem. Under these conditions, like with the one component model in section 2.3,
we expect to find oscillations that are attracting. Here stable behavior should act like
oscillations about the equilibria of a reduced inner problem. Thus our analysis must locate
these equilibria as a function of η2 in order to find the bifurcation.

To begin our analysis, we note that the dynamics occur on multiple time scales, a slow
t and fast R = Ωt. Following a multiple scales approach, we consider V (t) = V (t, R) and
T (t) = T (t, R) and substituting this into (3.1), we get the system

VR + Ω−1Vt =Ω−1 (η1 − η2 + η3(T − V )− T − V |V |+A sin(R)) ,

TR + Ω−1Tt =Ω−1 (η1 − T (1 + |V |) +B sin(R)) .
(3.18)

We follow the lower branch to study dynamics near the non-smooth bifurcation. Thus we
consider the system (3.18) with V < 0

VR + Ω−1Vt =Ω−1
(
η1 − η2 + η3(T − V )− T + V 2 +A sin(R)

)
,

TR + Ω−1Tt =Ω−1 (η1 − T (1− V ) +B sin(R)) .
(3.19)
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From (3.19), it makes sense to consider an asymptotic expansion for both V and T in terms
of the small quantity, Ω−1, with

V (t, R) ∼ V0(t, R) + Ω−1V1(t, R) + Ω−2V2(t, R) +O(Ω−3),

T (t, R) ∼ T0(t, R) + Ω−1T1(t, R) + Ω−2T2(t, R) +O(Ω−3).
(3.20)

Substituting (3.20) into the system (3.19) gives

V0R + Ω−1V0t + Ω−1V1R + . . . =Ω−1(η1 − η2 + η3(T0 − V0)− T0 + V 2
0 +A sin(R))

+Ω−2(η3(T1 − V1)− T1 + 2V1V0) + . . . ,

T0R + Ω−1T0t + Ω−1T1R + . . . =Ω−1(η1 − T0(1− V0) +B sin(R))

+Ω−2(−T1(1− V0) + T0V1) + . . . .

Here we find the following equations separated by order of Ω−1 with

O(1) :

{
V0R = 0,

T0R = 0,
(3.21)

O(Ω−1) :

{
V1R + V0t = η1 − η2 + η3(T0 − V0)− T0 + V 2

0 +A sin(R),

T1R + T0t = η1 − T0(1− V0) +B sin(R),
(3.22)

O(Ω−2) :

{
V2R + V1t = η3(T1 − V1)− T1 + 2V0V1,

T2R + T1t = −T1(1− V0) + T0V1.
(3.23)

We learn from (3.21) that both our leading order terms are only dependent on the slow time,
V0 = V0(t), T0 = T0(t). Much like section 2.3, we must introduce a solvability condition
on the resonant terms to be able to solve for the correction terms, ensuring for the sub-
linear growth resulting in a stable solution. Here, we use the Fredholm alternative (2.24)
on (3.22)-(3.23) and search for the equilibrium solutions. This is shown in Appendix C.
Collecting these solutions leads to the outer solution in original variables

V ∼V0 − Ω−1A cos(Ωt) + . . . ,

T ∼T0 − Ω−1B cos(Ωt) + . . . .
(3.24)

Here both V0 and T0 are the same equilibrium solutions from the static model in the
introduction with

T0(V0) =
η1

1− V0
,

0 = η1 − η2 + η3(T0(V0)− V0)− T0(V0) + V 2
0 .

For the one component model in section 2.3, we had to use a local expansion so we needed
to scale both the variable x as well as the parameter µ and analyze the local behavior around
the axis x = 0. Since we again have non-smooth dynamics at the axis V = 0, we expect to
use a local expansion for the two component model as well. While the precise scaling of the
breakdown of the outer solution (3.24) is too complex for us to search for, we instead observe
that once V0 → 0 the oscillations begin to dominate the solution and this is not consistent
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3.2. High Frequency Oscillatory Forcing

with our assumptions of the expansion. So we introduce the local variables analogously to
section 2.3

V =Ω−1X,

T =η1 + Ω−1Y,

η2 =η2ns + Ω−1n.

(3.25)

Substituting (3.25) into (3.1) leads to the inner system

Ẋ =− n+ η3(Y −X)− Y − Ω−1X|X|+ΩA sin(Ωt),

Ẏ =− η1|X|−Y − Ω−1|X|Y + ΩA sin(Ωt).
(3.26)

The form suggests behavior on the same time scales in (3.26), the slow t and the fast R = Ωt.
Considering X(t) = X(t, R) and Y (t) = Y (t, R) gives the multiple scales inner system

XR + Ω−1Xt =Ω−1 (−n+ η3(Y −X)− Y )− Ω−2X|X|+A sin(R),

YR + Ω−1Yt =Ω−1 (−η1|X|−Y )− Ω−2|X|Y +B sin(R).
(3.27)

Once more, as we see the small quantity Ω−1 appearing in (3.27), we choose an expansion
of the form

X(t, R) ∼X0(t, R) + Ω−1X1(t, R) +O(Ω−2),

Y (t, R) ∼Y0(t, R) + Ω−1Y1(t, R) +O(Ω−2),
(3.28)

where we then substitute (3.28) into (3.27) to get

X0R + Ω−1X0t + Ω−1X1R + . . . =Ω−1(−n+ η3(Y0 −X0)− Y0) +A sin(R)

+Ω−2(X0|X0 + Ω−1X1 + . . . |+η3(Y1 −X1)− Y1) + . . .

Y0R + Ω−1Y0t + Ω−1Y1R + . . . =Ω−1(−η1|X0 + Ω−1X1 + . . . |−Y0) +B sin(R)

+Ω−2(−|X0 + Ω−1X1 + . . . |−Y0 − Y1) + . . .

We then separate the terms by their orders of Ω−1 to find the equations

O(1) :

{
X0R = A sin(R),

Y0R = B sin(R),
(3.29)

O(Ω−1) :

{
X1R +X0t = −n− η3X0 − (1− η3)Y0,

Y1R + Y0t = −η1|X0|−Y0.
(3.30)

From (3.29) we find that the leading order terms of (3.28) have the form

X0 = P0(t)−A cos(R), Y0 = Q0(t)−B cos(R), (3.31)
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where Q and P track the slow time components for their respective variables. Substituting
(3.31) into (3.30), we apply the Fredholm alternative (2.24) to derive equations for the slow
functions P0(t) and Q0(t). This gives

P0t =− n− η3P0 − (1− η3)Q0,

Q0t =− η1

2π

∫ 2π

0
|P0 −A cos(R)|dR−Q0.

(3.32)

As we are concerned with finding the bifurcation, we search for the equilibrium solutions
to (3.32). We notice that in the equation for Q0 we find a similar integral equation to the
inner equation (2.33) in section 2.3. This leads us again to two cases, Case I: |P0(t)|≤ −|A|
where the sign of the integrand does not change, and Case II: |P0(t)|< |A| where the
integrand changes and the integral has a non-trivial solution. These cases can be seen in
figure 3.4.

Figure 3.4: Here we have the parameter ranges for case I and case II shown as the right
most green vertical line and the bifurcation value as the left blue vertical line respectively.

3.2.1 Case I: P0(t) ≤ −|A|

We call this the ’below axis’ case, with the solution X0 below the axis V = 0 so we do
not expect a bifurcation here. Instead this case helps to simplify the integration in (3.32)
but also helps us to determine when the solution acts differently under case II. We use the
equilibria of X and Y to define a parameter range in η2 between case I and case II. Under
the conditions of this case, the system (3.32) simplifies to

P0t(t) =− n− η3P0(t)− (1− η3)Q0(t),

Q0t(t) =η1P0(t)−Q0(t).
(3.33)
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3.2. High Frequency Oscillatory Forcing

Solving for the equilibria in (3.33) results in

Q0(P0) = η1P0, P0 = − n

η1(1− η3) + η3
.

Together with these equilibria and with the condition P0(t) ≤ −|A|, we find the param-
eter range that distinguishes between case I and case II in terms of our inner parameter,
which we then rewrite in original variables with

n ≥(η1(1− η3) + η3)|A|,

η2 ≥η2ns +
(η1(1− η3) + η3)|A|

Ω
.

(3.34)

For values of η2 below the values given in (3.34), we see the oscillations crossing above the
axis V = 0 and hence more contribution from the integral in (3.32). We use a separate case
to deal with this behavior.

3.2.2 Case II: |P0(t)|< |A|

We call this the ’crossing’ case; here the solution oscillates about the axis V = 0 while the
center of the solution approaches this axis. With this behavior, we expect a bifurcation to
occur in this region and use the equilibria for (3.32) to determine the location. While this
problem is two-dimensional in nature, the integral in (3.32) is nearly identical to the integral
(2.33) in section 2.3. So we may use the ideas of that section here to get an approximate
solution. Thus, under the assumptions of this case, we fix a value of P0 and integrate (3.32)
over the regions defined by

R1 = arccos(P0/A), R2 = 2π − arccos(P0/A).

As in section 2.3, the solution to (3.32) is negative for P0(t) the region R ∈ [0, R1] and
alternates sign for the regions R ∈ (R1, R2] and R ∈ (R2, 2π]. We follow the same procedure
of integrating over each region to get the exact form for (3.32) with

P0t =− n− η3P0(t)− (1− η3)Q0,

Q0t =− 2η1

π

(
arcsin(P0/A)P0 +

√
A2 − P 2

0

)
−Q0.

(3.35)

Although this is the explicit inner equation from (3.35), it is analytically too complex to
find an explicit form for a bifurcation and thus we use a second order Taylor approximation
to give an approximate system

P0t =− n− η3P0 − (1− η3)Q0,

Q0t =− 2η1|A|
π

−Q0 −
η1

π|A|
P 2

0 .
(3.36)

We solve for the equilibria of (3.36) in order to locate the bifurcation. For simplicity, we

define a = η1
π|A| , and c = 2η1|A|

π . Thus the equilibria satisfy

Q0(P0) =− aP 2
0 − c,

0 = −n+ (1− η3)c− η3P0 + aP 2
0 .

(3.37)
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Here the equation for P0 in (3.37) is a quadratic that would have two solutions, with the
situation of following the lower branch given by the negative solution with

P0 =
η3

2a(1− η3)
− 1

2a(1− η3)

√
η2

3 + 4a(1− η3)(n− c(1− η3)). (3.38)

The equilibrium for P0 in (3.38) is real only for positive discriminant. Then the local
bifurcation, nosc, is given for vanishing discriminant

nosc =
η1(1− η3)|A|

π

[
2−

(
πη3

2η1(1− η3)

)2
]
. (3.39)

Here the equilibria in (3.37) are given in terms of the local variables. We write the solution
for V , T and bifurcation, η2osc, in the original variables

V (t) ∼Ω−1 (P0 −A cos(Ωt)) ,

T (t) ∼η1 − Ω−1

(
η1

π|A|
P 2

0 +
2η1|A|
π

+B cos(Ωt)

)
,

(3.40)

η2osc = η2ns +
η1(1− η3)|A|

πΩ

[
2−

(
πη3

2η1(1− η3)

)2
]
. (3.41)

With (3.41) we have found the bifurcation induced by the addition of oscillatory forcing
in the Stommel model. As we learned from the one component model in section 2.3, the
effect of oscillatory forcing is early bifurcations where η2osc > η2ns. Our result in (3.41)
holds under the caveat that we restrict the parameters with

η3 <
2
√

2η1

π + 2
√

2η1

,

which is the condition to guarantee the second term in (3.41) is positive. This restriction
is reasonable as generally the parameters have the behavior of η3 < 1 and η3 � η1 as the
thermal variation is much larger in real ocean dynamics than the ratio of relaxation times.

In figure 3.5 the numerical solution to (3.1) for V and a zoom of the solution around
the numerical bifurcation is shown. The static bifurcation diagram is underlayed as well for
comparison. We contrast the result in (3.41) to these numerics and find that the bifurcation
prediction from our analysis agrees. Notice that there is a bifurcation for η2 > η2ns with the
oscillations present, this causes a region of the static lower branch in V to never be followed.
In figure 3.6 the numerical solution to (3.1) for T and a zoom in around the bifurcation is
shown with the static bifurcation diagram underlayed. Due to the bifurcation η2osc > η2ns

in V , the maximum value of T is never reached in (b).
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(a) (b)

(c)

Figure 3.5: In (a) the numerical time series solutions to (3.1) is given with parameters in
each qualitatively different case of η2 = {2.3, 1.8, 1.51} with η1 = 4, η3 = .375, A = B = 2
and Ω = 10. In (b) these same solutions are shown on the bifurcation diagram. In (c)
a zoom in closer to the non-smooth bifurcation region where the blue vertical line is the
estimated bifurcation (3.41).
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(a) (b)

(c)

Figure 3.6: In (a) we have the same numerical time series solutions for the qualitatively
different cases η2 = {2.3, 1.8, 1.51}. In (b) we plot these solutions over the standard equi-
librium plot for V vs. T . In (c) a zoom closer to the bifurcation area is provided.

To evaluate the performance of this prediction, we compare (3.41) to the numerical
bifurcation over a range of Ω−1. In figure 3.7 we allow for this range to be Ω−1 ∈ (0, .2).
For small values, the two agree very well and as we expect, they begin to diverge once the
values of Ω−1 become too large from the assumption that Ω� 1 and the asymptotics cannot
capture the behavior for low frequency oscillations. This outperforms the approximation
from the one component model in section 2.3.
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3.2. High Frequency Oscillatory Forcing

Figure 3.7: The numerical tipping (red stars) vs. the estimate (black line). The model
parameters are η1 = 4,η3 = .375 and A = B = 2. The bifurcation criterion for the
numerical solution is V > Vsmooth.

3.2.3 Stability

Since we have a non-autonomous system when A 6= 0, we approach the stability with a
linearized analysis about the equilibria much like in section 2.3. To do this, recall from
(3.32) that we found the system

P0t =− n− η3P0 − (1− η3)Q0,

Q0t =− η1

2π

∫ 2π

0
|P0 −A cos(R)| dR−Q0.

(3.42)

We must consider the stability of solutions over the relative sizes of P0(t) with Case I:
P0(t) ≤ −|A| and Case II: |P0(t)|≤ |A|.

Case I: v0(t) ≤ −|A|

For the ’below-axis’ case the solution spends most of its time away from the axis V = 0.
We expect to find attraction around the lower branch and thus we expect stability there.
Under these conditions, the inner equation (3.42) simplifies to the equations

P0t =−m− η3P0 − (1− η3)Q0,

Q0t =η1P0 −Q0.
(3.43)

The equilibria of (3.43) is found with Q0(P0) = η1P0. Thus we find the following reduced
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one component equation and equilibrium Z0 with

P0t = −n− (η3 + (1− η3))Q0 = f(P0), Z0 = − n

η3 + η1(1− η3)
. (3.44)

Now we consider a simple linear perturbation about this equilibrium with P0(t) = Z0 +U(t)
where ‖U(t)‖ � 1. Our standard Taylor expansion about the equilibrium Z0 results in

f(P0) =f(Z0) + fP0(Z0)(P0 − Z0) +O((P0 − Z0)2),

Ut =− (η3 + η1(1− η3))U
(3.45)

From (3.45) we now conclude the equilibrium Z0 is hyperbolic and attracting due to the
exponential decay in perturbations. Thus we find that no bifurcation occurs for this case
which agrees with our findings from the analysis above. This holds for η2 in (3.34)

η2 ≥ η2ns +
(η3 + η1(1− η3))|A|

Ω
.

Case II: |P0(t)|< |A|

We called this case the ’crossing’ case and here the solution experiences the non-smooth
behavior when it crosses V = 0. We expect the stability to fail under these conditions and
we found in the analysis that the crossing V = 0 gives (3.42) in the form

P0t =− n− η3P0 − (1− η3)Q0,

Q0t =− 2η1|A|
π

− η1

π|A|
P 2

0 −Q0.
(3.46)

As we search for the equilibria of (3.46), we find the equilibrium for Q0 in terms of P0

Q0(P0) = −2η1|A|
π

− η1

π|A|
P 2

0 ,

which then gives the following inner equation with the equilibrium Z0 for P0 < 0

P0t =− n+
2η1|A|
π

− η3P0 +
η1

π|A|
P 2

0 = f(P0),

Z0 =
π|A|

2η1(1− η3)

(
η3 −

√
4η1(1− η3)

π|A|
(n− nosc)

)
.

(3.47)

For simplicity we write Z0 in terms of the local bifurcation nosc we found in the analysis
with (3.39). We now consider a simple linear perturbation about this equilibrium in (3.47)
with P0(t) = Z0 + U(t) where ‖U(t)‖ � 1. The standard Taylor expansion about the
equilibrium is thus

f(P0) =f(Z0) + fP0(Z0)(P0 − Z0) +O((P0 − Z0)2),

Ut =− 2

√
η1(1− η3)

π|A|
(n− nosc)U.

(3.48)
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Thus with (3.48) we learn that the perturbations U(t) decay exponentially as long as the
square-root is non-zero. We restrict our attention to real solutions so that our perturbations
are real. Thus we have that Z0 is a hyperbolic and asymptotically stable equilibrium for
P0 and find stability in Q0 as well. This gives an attracting solution for this region but we
lose this stability once the square-root becomes zero, here when

nosc =
η1(1− η3)|A|

π

[
2−

(
πη3

2η1(1− η3)

)2
]
.

This indicates the equilibrium Z0 at this point is non-hyperbolic which is indicative of a
bifurcation. The results here are in agreement with our analysis and thus we can say that
the value found in (3.41) is the bifurcation under the oscillatory forcing.

3.3 Slow Variation with Oscillatory Forcing

With the one component model solved and both the slowly varying and high oscillatory
two component models analyzed, we have all of the tools needed to analyze the full system
(3.1) with both ε� 1 and A,B ∼ O(1) simultaneously. This is the most general setting we
discuss in this thesis by accounting for both, slowly varying η2 that leads to abrupt changes
seen in [1, 14, 17] as well as the oscillatory forcing seen in [19, 9]. Our goal is to study the
interaction of these mechanisms in the physical Stommel model and give an approximation
on catastrophic behavior in the model. Under the framework of slowly varying parameters
we expect to find a tipping point instead of a bifurcation. Hence our method for finding the
tipping point follows a mixture of both section 3.1 and section 3.2. This procedure dictates
that we search for inner behavior about the non-smooth bifurcation and to do so we need
to solve the inner equation and estimate when this solution abruptly transitions towards
the upper branch. Ultimately, we provide a solution that captures the abrupt change from
the lower stable branch to the upper branch in the full Stommel model.

To begin, we take our standard approach of following the lower branch towards the
non-smooth behavior with V < 0 in (3.1) which gives the following system

V̇ = η1 − η2 − T + η3(T − V ) + V 2 +A sin(Ωt),

Ṫ = η1 − T (1− V ) +B sin(Ωt),

η̇2 = −ε.
(3.49)

As in section 2.4, we write the frequency in terms of the slow variation, Ω = ε−λ with
exponent λ > 0. This assumption allows us to find the relative influence of the slowly
varying parameter and fast oscillations on the tipping. We notice in (3.49) that there is
variation on a slow scale in η2(t) and on a fast scale in sin(Ωt), so this suggests a multiple
scales approach with slow time τ = εt and fast time R = ε−λt. Using this approach in
(3.49) yields

VR + ελ+1Vτ = ελ
(
η1 − η2 − T + η3(T − V ) + V 2 +A sin(R)

)
,

TR + ελ+1Tτ = ελ (η1 − T (1− V ) +B sin(R)) ,

η2τ = −1.

(3.50)
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To approach the solution to the outer equations in (3.50), we use an asymptotic expansion
with both ελ and integer powers as we have not specified the range of λ and both could be
significant. Thus our expansion is

V (τ,R) ∼V0(τ,R) + ελV1(τ,R) +O(ε2λ, ελ+1),

T (τ,R) ∼T0(τ,R) + ελT1(τ,R) +O(ε2λ, ελ+1).
(3.51)

Here we substitute (3.51) into (3.50) to give

V0R + ελ+1V0τ + ελV1R + . . . =ελ
(
η1 − η2 − T + η3(T0 − V0) + V 2

0 +A sin(R)
)

+ ε2λ (−η3V1 − (1− η3)T1 + 2V0V1) + . . . ,

T0R + ελ+1T0τ + ελT1R + . . . =ελ (η1 − T0(1− V0) +B sin(R))

+ ε2λ (−T1 + T0V1 + T1V0) + . . . .

Separating the equation at each order of ε then gives the following sets of equations

O(1) :

{
V0R = 0,

T0R = 0,
(3.52)

O(ελ) :

{
V1R = η1 − η2(τ) + η3(T0 − V0)− T0 + V 2

0 +A sin(R),

T1R = η1 − T0(1− V0) +B sin(R),
(3.53)

O(ε2λ) :

{
V2R + ε1−λV0τ = η3(T1 − V1)− T1 + 2V0V1,

T2R + ε1−λT0τ = −T1(1− V0) + T0V1.
(3.54)

We consider a λ where the next order in (3.51) is O(ε2λ). Similar results follow from a
choice in λ where O(ελ+1) < O(ε2λ). From (3.52) the leading order terms in our expansion
are only dependent on slow time, V0 = V0(τ) and T0 = T0(τ). The solutions of (3.53) and
(3.54) are found in Appendix C, giving the outer solution

V ∼V0 +
ε(V0τ (1− V0) + (1− η3)T0τ )

(1− η3)T0 + (2V0 − η3)(1− V0)
− ελA cos(Ωt),

T ∼T0 +
εT0τ

1− V0
− εT0(V0τ (1− V0) + (1− η3)T0τ )

(1− η3)T0(1− V0) + (2V0 − η3)(1− V0)2
− ελB cos(Ωt),

(3.55)

where V0 and T0 are the same leading order solutions from the slowly varying Stommel
model in section 3.1. Unfortunately, the common theme of the Stommel model is that these
outer solutions are complex but it is clear the outer expansion breaks down as V0 → 0 as
the scale separation between V0 and V1 no longer exists. Thus we derive a scaling for the
inner equations which is analogous to that of section 2.4.

For simplicity, we assume that the scaling for both V and T is the same, but this isn’t
necessary to arrive at the same conclusion. Hence we rescale about the bifurcation point
(η2ns, Vns, Tns) = (η1η3, 0, η1) with

V = εαX, T = η1 + εαY, η2(t) = η2ns + εβn(t), (3.56)
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where both α > 0 and β > 0 allow for this to be a local scaling. Applying the local variables
in (3.56) to the full Stommel model (3.1) gives

εαẊ =− εβn(t)− εα(X + (1− η3)Y )− ε2αX|X|+A sin
(
ε−λt

)
,

εαẎ =− εα(η1|X|+Y ) + ε2α|X|Y +B sin
(
ε−λt

)
ṅ =− ε1−β.

(3.57)

From (3.57) it is apparent that there is still fast behavior within the oscillations. Also
note that due to the scaling in (3.56), the local variable’s slow behavior has been moved
into the regular time t. To flesh out the particular choice in α, we then take a multiple
scales approach to capture the oscillations with t and R = ε−λt. This choice comes with
the ambiguity in β and is discussed further below. Applying the multiple scales in (3.57)
results in

εα−λXR + εαXt =− εβn(t)− εα(X + (1− η3)Y )− ε2αX|X|+A sin(R),

εα−λYR + εαYt =− εα(η1|X|+Y )− ε2α|X|Y +B sin(R)

nt =− ε1−β.
(3.58)

Next we balance the leading order terms in each equation of (3.58), εα−λXR and A sin(R)
as well as εα−λYR with B sin(R), which gives us that α = λ and confirms that the scales V
and T are the same. The scaling for η2 has yet to be determined and could have multiple
possibilities depending on λ. Due to this choice in α we expect the oscillatory term to
persist in the inner asymptotic expansion of (3.1) regardless of choice in λ.

Here we use a multiple scales approach with t and R = ε−λt on the full Stommel model
(3.1) along with the general scaling (3.56) on η2 which gives

VR + ελVt =− ελ+βn(t)− ελ(η1 − η1η3 + η3(T − V )− T − V |V |+A sin(R)),

TR + ελTt =ελ(η1 − T (1 + |V |) +B sin(R)),

nt =− ε1−β.
(3.59)

In section 2.4 the results depended on the relative size of the slow variation with respect
to the oscillations. The distinction in that case was when λ ≤ 1, where a mixture between
the slow variation and oscillations influence the tipping or λ > 1, where the slow variation
dominates the tipping. We find a similar distinction here and hence consider a separate
asymptotic expansion for Case I: λ ≤ 1 and Case II: λ > 1 to find an accurate classification
of behavior for the full Stommel model.

3.3.1 Case I: λ ≤ 1

We call this the ’mixed effects’ case where there is significant influence from both slow
variation and fast oscillations due to the size of λ. Here we cannot determine what the next
term in the expansion should be and thus we choose a general expansion with

V (t, R) ∼ελX0(t, R) + εqX1(t, R) + . . . ,

T (t, R) ∼η1 + ελY0(t, R) + εqY1(t, R) + . . . ,
(3.60)
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with q > λ to allow for O(ελ) to be the leading order term which our local analysis suggested.
Substituting (3.60) into (3.59) then gives the governing dynamics for this case

X0R + ελX0t + εq−λX1R . . . = − εβn(t)− ελ(η3X0 + (1− η3)Y0)

− ε2λ(X0 + εq−λX1 + . . .)|X0 + εq−λX1 + . . . |
− εq(η3X1 + (1− η3)Y1) +A sin(R) + . . . ,

Y0R + ελY0t + εq−λY1R + . . . =− ελ(η1|X0 + εq−λX1 + . . . |+Y0 + εq−λY1 + . . .)

+ ε2λ|X0 + εq−λX1 + . . . |(Y0 + εq−λY1 + . . .)

+B sin(R) + . . . .

Separating by the distinct orders of ε gives the following equations at each order

O(1) :

{
X0R = A sin(R),

Y0R = B sin(R),
(3.61)

O(ελ) :

{
εq−2λX1R +X0t = −εβ−λn(t)− η3X0 − (1− η3)X0,

εq−2λY1R + Y0t = −η1|X0|−Y0.
(3.62)

We learn from (3.62) that q = 2λ balances the equations, which implies that λ > 1
2 for

an expansion to be found. If λ ≤ 1
2 then we would need to include the quadratic terms in

O(ελ) and our reduced equations would be the same as the full Stommel model (3.1). This
indicates that our local approximation would no longer hold and that the high frequency
assumption is failing. Without this, the physical behavior of the problem is qualitatively
different and we explore this further in chapter 4. On this range of λ, there are two choices
for the scaling of η2 with β = 1 or β = λ. The advantage to choosing β = λ is that the
equation (3.62) is simple, but the slow variation equation has the form nt = −ε1−λ and
implies a slower time scale. On the other hand, β = 1 keeps a small coefficient on n in
(3.62) but gives the slow variation equation as nt = −1, which allows the time scale t to be
used. Both of these choices result in the same approximation of the tipping point in original
variables. Here we choose β = 1 for convenience. From (3.61) we find the appropriate forms
of the leading order terms, X0 = P0(t)−A cos(R) and Y0 = Q0(t)−B cos(R). Using these
forms for the leading order term and applying the Fredholm alternative (2.24) to (3.62) we
find

P0t =− ε1−λn(t)− η3P0 − (1− η3)Q0,

Q0t =− η1

2π

∫ 2π

0
|P0(t)−A cos(R)| dR−Q0,

nt =− 1.

(3.63)

Analogously to section 3.2 we must approach this integration with the relative size
of P0(t) to the amplitude of oscillation A in mind. This is due to the sizes determining
the contributions of the integral in (3.63). We consider these sizes of P0(t) as Sub-case I:
P0(t) ≤ −|A| and Sub-case II: |P0(t)|< |A| similar to section 3.2. These cases separate
X0 = P0−A cos(R) from either staying entirely below V = 0 or changing signs respectively
and allows for the integration to have two distinct forms.
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3.3. Slow Variation with Oscillatory Forcing

Sub-Case I: P0(t) ≤ −|A|

We call this the ’below-axis’ sub-case, where the solution P0(t) is entirely below the axis
V = 0 and this means the full solution X0 has oscillations far from crossing. Under these
conditions we don’t expect any tipping behavior as the solution is far from V = 0, but
we may use this size of P0(t) to find the range of η2 that distinguishes these cases. With
P0(t) ≤ −|A|, we find (3.63) simplifies to

P0t =− ε1−λn(t)− η3P0 − (1− η3)Q0,

Q0t =η1P0 −Q0.
(3.64)

Although we have the means available to solve (3.64) as it takes the form of an equation
we have seen in section 3.1, instead we search for when the pseudo-equilibrium fails the
assumption of this sub-case. This results in the parameter range between these sub-cases
and taking this approach is more convenient than solving the system. Here the form of the
pseudo-equilibria is simple to find as Q0(P0) = η1P0 and thus

P0(t) = −ε1−λ n(t)

η3 + η1(1− η3)
.

We recall that for this sub-case P0(t) ≤ −|A|, which gives the range for n and we rewrite
this in the original variables of η2 with

εn ≥ελ(η3 + η1(1− η3))|A|,

η2 ≥η2ns +
(η3 + η1(1− η3))|A|

Ω
.

(3.65)

With the parameter range (3.65), we now have an effective region for sub-case I and have
the range for sub-case II in terms of the parameter η2.

Sub-Case II: |P0(t)|≤ |A|

We call this the ’crossing’ sub-case and under these conditions we see the integral in (3.63)
is more complex. As this contribution changes, there is an increasing effect on the system
and it is here that we anticipate the tipping point to occur. In section 2.4, we found a
similar integral to (3.63) that we could evaluate with the assumption that A ∼ O(1). Note
that the assumptions that allowed for evaluation of the integral in (2.59) from section 2.4
still hold here with a fast time R that is sufficiently large due to the high frequency. Thus
we follow the approach from section 2.4 by integrating with R1 = arccos(P0/A) and R2 =
2π−arccos(P0/A) which is analogous to T1 and T2 from section 2.4 and then use a quadratic
Taylor approximation about P0 = 0 as in (2.63) to give

P0t =− ε1−λn(t)− η3P0(s)− (1− η3)Q0,

Q0t =− 2η1|A|
π

− η1

π|A|
P 2

0 −Q0.
(3.66)

The form in (3.66) is known as a quadratic two component Riccati-type equation. We
recall the assumption that the solution to the equation for T being in terms of V was
realistic to the THC, so the behavior we are interested in lies within the dynamics for V .
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3.3. Slow Variation with Oscillatory Forcing

For this reason, we choose to approximate by reducing (3.66) to a one component model by
assuming our equation for Q0 is in pseudo-equilibrium with

Q0(P0) = −2η1|A|
π

− η1

π|A|
P 2

0 . (3.67)

The resulting reduced system from introducing the equilibrium (3.67) into the inner equation
(3.66) is then

P0t =− ε1−λn(t) +
2η1(1− η3)|A|

π
− η3P0 +

η1

π|A|
P 2

0 ,

nt =− 1.

(3.68)

Again for convenience, we rewrite the differentiation in (3.68) in terms of the parameter n
giving

P0n =ε1−λn− 2η1(1− η3)|A|
π

+ η3P0 −
η1(1− η3)

π|A|
P 2

0 . (3.69)

Now (3.69) is in a form where the result from (1.2) applies. Thus we determine that (3.69) is
an Airy-type equation and that the tipping point follows with (1.4). We write the solution
in original variables and obtain results similar to previous sections with

ntip =− ε(λ−1)/3

(
π|A|

η1(1− η3)

)1/3

(2.33810) + ελ−1 η1(1− η3)|A|
π

(
2−

(
πη3

2η1(1− η3)

)2
)
,

η2tip =

(
π|A|

η1(1− η3)Ω

)1/3

µsmooth + η2osc.

(3.70)
We conclude that the tipping point in (3.70) has a similar form as the tipping point

found with (2.67) in section 2.4, where we found a weighted average between the smooth
tipping point µsmooth from [24] and the oscillatory bifurcation η2osc for this range of λ. We
also found in (3.62) that any choice for λ ≤ 1

2 gave equations that cannot be studied using
the multiple scales approach in this section. This heuristically makes sense since for λ ≤ 1

2
we have low frequency oscillations with our polynomial relationship and the contributions to
the dynamics from this behavior require a different approach than presented in this paper.
See [24] for an example of a low-frequency method.

3.3.2 Case II: λ > 1

We call this case the ’slowly varying dominant’ case. Here we expect integer powers of ε to
appear in leading order due to the O(ελ) being quite small for this range of λ and thus we
choose the expansion

V (t, R) ∼εX0(t, R) + ελX1(t, R) + εqX2(t, R) + . . . ,

T (t, R) ∼εY0(s,R) + ελY1(t, R) + εqY2(t, R) + . . . .
(3.71)

Substituting (3.71) into (3.59) then gives
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εX0R + ελ+1X0t + ελX1R + . . . = − ελ+βn(t)− ελ+1(η3X0 + (1− η3)Y0)

− ελ+2(X0 + εq−λX1 + . . .)|X0 + εq−λX1 + . . . |
− ε2λ(η3X1 + (1− η3)Y1) + ελA sin(R),

εY0R + ελ+1Y0t + ελY1R + . . . =− ελ+1(η1|X0 + ελ−1X1 + εq−1X2 + . . . |−Y0 − ελ−1Y1 + . . .)

+ ε2|X0 + ελ−1X1 + εq−1X2 + . . . |(Y0 + ελ−1Y1 + . . .)

+ ελB sin(R).

We separate by each distinct order of ε to find the equations

O(ε) :

{
X0R = 0,

Y0R = 0,
(3.72)

O(ελ) :

{
X1R = A sin(R),

Y1R = B sin(R),
(3.73)

O(ελ+1) :

{
εq−λ−1X2R +X0t = −εβ−1n(t)− η3X0 − (1− η3)Y0,

εq−λ−1Y2R + Y0t = −η1|ελ|X0 + ελ−1X1|−Y0.
(3.74)

We learn in (3.74) that q = λ + 1 balances terms in the expansion. We also find that
β = 1 gives both simple expressions in (3.74) but also nt = −1. Here a single β is found as
opposed to case I where we chose the value of β for convenience. In (3.72) we find that the
leading order behavior for this case depends only on slow time, X0 = X0(t) and Y0 = Y0(t),
thus giving dominant behavior in this case. With (3.73) we find the correction terms are
given by X1 = P1(t) − A cos(R) and Y1 = Q1(t) − B cos(R) and since the slow behavior
in X1 and Y1 is just next order corrections to the purely slow X0 and Y0, without loss of
generality we set P1 ≡ Q1 ≡ 0. This gives purely oscillatory corrections, X1 = −A cos(R)
and Y1 = −B cos(R). Applying Fredholm (2.24) to (3.74) then gives

X0t =− n(t)− η3X0 − (1− η3)Y0,

Y0t =− η1

2π

∫ 2π

0
|X0(t)− ελ−1A cos(R)| dR− Y0,

nt =− 1.

(3.75)

In case I, we used the pseudo-equilibrium of Q0 regardless of the size of the oscillations
to find a solvable equation. Here we expect (3.75) to have a quadratic form like case I,
so we choose a priori to use a similar reduction by assuming the equation for Y0 is in it’s
pseudo-equilibrium with

Y0(X0) = − η1

2π

∫ 2π

0
|X0 − ελ−1A cos(R)| dR. (3.76)
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3.3. Slow Variation with Oscillatory Forcing

We find the resulting reduced one component equation by introducing (3.76) into the inner
equation (3.75) with

X0t = −n(t)− η3X0 +
η1(1− η3)

2π

∫ 2π

0
|X0(t)− ελ−1A cos(R)| dR. (3.77)

The behavior in (3.77) is similar to case I as long as the amplitude of oscillation inside
the integral are consistent with the assumptions of case I, ελ−1A ∼ O(1). Under this
assumption, we find that λ ≈ 1 to see mixed behavior of case I and thus we once more
follow the method of section 2.4. Our assumption on the size of the oscillations allow us
to integrate (3.77) with R1 = arccos

(
X0/ε

λ−1A
)

and R2 = 2π − arccos
(
X0/ε

λ−1A
)

which
again are analogous to T1 and T2 from section 2.4. Another application of a quadratic
Taylor approximation about X0 = 0 as in (2.74) then yields

X0t = −n(t) + ελ−1 2η1(1− η3)|A|
π

− η3X0 + ε1−λ
η1(1− η3)

π|A|
X2

0 . (3.78)

Once more, we find a form to which we apply the result from (1.2). Thus we find the
tipping point for the local parameter n with (1.4) and then transform back into the original
variables to find the tipping point in η2 with

nmixed =− ε(λ−1)/3

(
π|A|

η1(1− η3)

)1/3

(2.33810) + ελ−1 η1(1− η3)|A|
π

(
2−

(
πη3

2η1(1− η3)

)2
)
,

η2mixed =

(
π|A|

η1(1− η3)Ω

)1/3

µsmooth + η2osc.

(3.79)
Our result for η2mixed is not surprising as we had similar forms and assumptions to the

ones of case I. For λ > 1 and away from 1, the amplitude of the oscillations is smaller, and
inside the integral in (3.58) the contribution from the oscillations is reduced. Although no
exact cut-off exists and, depending on the choice in other model parameters η1 and η3, we
find this is typically for λ ≥ 1.5, the system (3.75) is approximated by

X0t =− n(t)− η3X0 − (1− η3)Y0,

Y0t =− η3|X0|−Y0,

nt =− 1.

(3.80)

Here (3.80) is the same system as the slowly varying model in section 3.1. With the
same inner equation and slowly varying n, we are able to use the approximation found in
section 3.1 for the tipping point η2slow from (3.17) here as well. This indicates that the
amplitude of the oscillations are small for larger λ, so that only the slow variation affects
the tipping of the Stommel model.

With both case I and case II, we have described the tipping behavior for any choice in λ.
For λ ≤ 1, we found a similar combination of contributions from the oscillatory bifurcation
η2osc and the smooth tipping point µsmooth in the Airy equation as in section 2.4. The
weighted averaging is reminiscent of the smooth tipping point analysis in [24] where here
the weight depends on the frequency Ω. With this frequency dependency, we have further
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3.3. Slow Variation with Oscillatory Forcing

evidence to see mixed behavior for medium sized frequency (which corresponds to smaller
λ). This behavior is observed for both λ ≤ 1 and λ > 1 but the oscillatory behavior
contributes less to the advance of the tipping point for larger λ. For λ sufficiently large, the
oscillations have a negligible contribution and we recover the tipping point η2slow from the
slowly varying model. The results for the tipping point in the Stommel model with slowly
varying parameter η2 and oscillatory forcing are summarized in the following table.

Two Component Tipping Points

ε > 0 and A = 0: η2slow = min(η1η3 − ε log(ε)/λi) for i ∈ {1, 2}

ε = 0 and A 6= 0 with Ω� 1: η2osc = η1η3 + η1(1−η3)|A|
πΩ

(
2−

(
πη3

2η1(1−η3)

)2
)

ε > 0, A 6= 0 and 1
2 < λ ≤ 1: η2mixed =

(
π|A|

η1(1−η3)Ω

)1/3
µsmooth + η2osc

ε > 0, A 6= 0 and λ > 1 with λ ≈ 1: η2mixed =
(

π|A|
η1(1−η3)Ω

)1/3
µsmooth + η2osc

ε > 0, A 6= 0 and λ > 1: η2slow = min(η1η3 − ε log(ε)/λi) for i ∈ {1, 2}

Table 3.1: Overview of the tipping points in the two component model for each mechanism
and case.

In figure 3.8, we see an example of the numerical solution of V to the Stommel model
(3.1) with slow variation and oscillatory forcing. This example illustrates the tipping for
case I with λ ∈ (1

2 , 1], so that both the slow variation and oscillatory forcing influence the
tipping point. The vertical lines are the tipping, black solid for the numerical and blue
dotted for the approximation for this case (3.70). Although there is a mixture of effects, the
tipping point gives a value near the oscillatory bifurcation η2osc. This tells us that for these
choices in the model parameters the strongest effect is the oscillatory forcing. The results
are shown in figure (3.9) in the V − T plane. Here we see that due to the early tipping in
V , the solution for T also never achieves it’s maximum and there is early tipping here as
well, which agrees with the assumptions we had made of considering T responding to V .
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(a) (b)

Figure 3.8: The model values are λ = .8, ε = .01 with A = B = 2. In (a) the numerical
solution (black dotted line) to (3.1) is given with η1 = 4, η3 = .375. In (b) a zoom in closer
to the non-smooth bifurcation region where the blue dotted vertical line is the tipping
point (3.70) and the black vertical line are the tipping points with the tipping criterion
V > Vsmooth on the numerical solution.

(a) (b)

Figure 3.9: The model values are λ = .8, ε = .01 with A = B = 2. In (a) we have the
numerical solution (black dotted) over the static equilibrium plot for V vs. T . In (b) a
zoom of the bifurcation area.

In figure 3.10 we have chosen a value of λ in case II as λ > 1 but we also have that
λ ≈ 1. Thus we see comparable behavior to case I with the addition that the slow variation
is now dominant. Upon a zoom in, it is apparent that oscillations are still present and we
see a mixture of effects that cause a similar tipping to case I to take place. We’ve plotted
the tipping point η2slow from the slowly varying model (3.17) as the green vertical dotted
line for comparison. As the numerical tipping point is moving towards the slowly varying
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tipping point this confirms that the slow variation is indeed dominating the tipping. In
figure 3.11 we again see very similar behavior to the slowly varying model in section 3.1 but
the zoom-in further reveals the oscillations are present and have minor influence by forcing
the solution to cross the V = 0 axis near the tipping.

(a) (b)

Figure 3.10: The model values are λ = 1.05, ε = .01 with A = B = 2. In (a) the numerical
solution (black dotted line) to (3.1) is given with η1 = 4 and η3 = .375. In (b) a zoom in
closer to the non-smooth bifurcation region where the blue dotted vertical line is the mixed
tipping point (3.70), green dotted verticle line is the slow tipping point (3.17) and the black
vertical line are the tipping points with the tipping criterion V > Vsmooth on the numerical
solution.

(a) (b)

Figure 3.11: The model values are λ = 1.05, ε = .01 with A = B = 2. In (a) we have the
numerical solution (black dotted) over the static equilibrium plot for V vs. T . In (b) a
zoom of the bifurcation area is given.

In figure 3.12 we show the numerics for a λ large enough so that the oscillations are
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negligible and we recover the slowly varying model in section 3.1. Even upon a zoom it is
almost impossible to see oscillations in this solution. The green dotted vertical line is the
slowly varying tipping estimate (3.17) where the blue dotted is the mixed approximation
(3.70). Further evidence is seen in figure 3.13, where this figure resembles the slowly varying
V − T plot (3.2).

(a) (b)

Figure 3.12: The model values are λ = 2, ε = .01 with A = B = 2. In (a) the numerical
solution (black dotted line) to (3.1) is given with η1 = 4 and η3 = .375. In (b) a zoom
in closer to the non-smooth bifurcation region where the blue dotted vertical line is the
mixed tipping point (3.70), the green dotted vertical line is the slow tipping point (3.17)
and the black vertical line are the tipping points with the tipping criterion V > Vsmooth on
the numerical solution.

(a) (b)

Figure 3.13: The model values are λ = 2, ε = .01 with A = B = 2. In (a) we have the
numerical solution (black dotted) over the static equilibrium plot for V vs. T . In (b) a
zoom of the bifurcation area is provided.
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Although the figures above show that we have classified the behavior appropriately for
the various cases in λ and relative solution sizes, performance of this approximate tipping
point needs to be evaluated to compare with numerical results. In figure 3.14 we compare
the tipping points between case I and case II with the numerically obtained tipping points
across a range of λ with a fixed ε. For smaller λ, the frequency Ω is smaller and the
influence of the oscillations on tipping become more predominant. Recall the assumption
that Ω = ε−λ � 1 and that for λ ≤ 1

2 we observe Ω ∼ O(1). We do not consider low
frequency corresponding to λ < 1

2 in this section. For larger λ, there is a reduced influence
for the oscillatory forcing until it is negligible for some λ > 1. We notice that our reduction
tipping approximation for λ < 1 has some bias which can be attributed the information lost
from reducing the full two component Riccati equations to a one component model. Even
though we use a one component reduced equation to get these approximations, they seem
to be performing quite well across all λ which confirms the approach leads to a sufficient
approximation.

Figure 3.14: An example of numerical tipping (red stars) as the numerical solution to (3.1)
passes the tipping criterion V > Vsmooth. The parameter values are ε = .01 and A = B = 3.
The lines are the case I tipping estimate (black solid line) and the case II tipping estimate
(blue dotted line).

We also are interested in the performance of the tipping approximations across values
of ε for λ fixed, which is seen in figure 3.15. For case I tipping, the range of appropriate
ε is highly dependent on the choice in λ. Often, the range is very small to get accurate
estimates which is another artifact of using a reduced model. For case II tipping, we see
that the numerical results are being approximated by the slowly varying tipping section 3.1
as the effective oscillations shrink, ελ−1A→ 0 as λ→∞.
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(a) λ = .8 (b) λ = 1.3

Figure 3.15: The numerical tipping (red stars) follows the appropriate case depending on
λ for ε = 0.01. The case I tipping estimate η2mixed (black solid line) and slowly varying
tipping estimate η2slow (blue dotted line) are shown.

With the numerical results agreeing with our analytic results, we may finally conclude
that this method is both useful for analyzing the non-smooth behavior in the Stommel
model and also results in an approximation that is more accurate in the extremal cases of
the model (i.e Ω � 1 or ε � 1). This gives us a very accessible means of extracting the
tipping in the full two component model without needing to solve difficult Riccati equations
or other complex systems that appear in the full problem. We still need to confirm that
the solutions we’ve found are attracting until stability is lost at the tipping point.

3.3.3 Stability

Case I: λ ≤ 1

From the analysis, we obtained the inner equations that govern the behavior of the solution
for this range of λ are

P0t =− ε1−λn(t)− η3P0 − (1− η3)Q0,

Q0t =− η1

2π

∫ 2π

0
|P0 −A cos(R)| dR−Q0.

(3.81)

But we also found that the relative size of P0(t) dictates the contribution from the integral
in (3.81). In the analysis we treat these as Sub-case I: P0(t) ≤ −|A| and Sub-case II:
|P0(t)|< |A| that each require a separate analysis.

Sub-Case I: P0(t) ≤ −|A|

We called this the ’below-axis’ sub-case due to the solution remaining below the axis and
thus we anticipate this sub-case to remain attracting to a solution near the lower branch.
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The equation (3.81) simplifies for this sub-case to

P0t =− ε1−λn(t)− η3P0 − (1− η3)Q0,

Q0t =η1P0 −Q0.
(3.82)

From the analysis we choose to reduce (3.82) with the pseudo-equilibria Q0(P0) = η1P0.
This gives the following reduced equation with the pseudo-equilibria Z0(t) as

P0t =− ε1−λn(t)− (η3 + η1(1− η3))P0 = f(t, P0),

Z0(t) =− ε1−λ n(t)

η3 + η1(1− η3)
.

(3.83)

We adopt a similar strategy for analyzing the stability of the one component model
in section 2.4 due to (3.83) being a one-dimensional equation. Hence we perform a simple
linear perturbation about the pseudo-equilibrium with P0(t) = Z0(t)+U(t) and ‖U(t)‖ � 1.
Taking special care to note that Z0(t) also varies in time, we find the Taylor approximation

P0t =f(t, Z0) + fP0(t, Z0)(P0(t)− Z0(t)) +O(‖(P0(t)− Z0(t))2‖2),

Ut =− ε1−λ 1

η3 + η1(1− η3)
− (η3 + η1(1− η3))U.

(3.84)

From (3.84) we find that the perturbations decay exponentially to just below the pseudo-
equilibrium Z0. This indicates that the solution for this sub-case is hyperbolically attracting
and that there is no tipping for this range of the parameter η2.

Sub-Case II: |P0(t)|< |A|

We called this the ’crossing’ sub-case and from the analysis above we anticipate the tipping
to occur here. The contributions from V > 0 cause the solution to grow and thus we
expect to lose stability. Under the condition |P0(t)|< |A|, we integrate (3.81) with R1 =
arccos(P0/A) and R2 = 2π − arccos(P0/A) and use a Taylor approximation about P0 = 0,
which leads to

P0t =− n(t)− η3P0 − (1− η3)Q0,

Q0t =− ελ−1 2η1|A|
π

− ε1−λ η1(1− η3)

π|A|
P 2

0 −Q0.
(3.85)

Once more, we assume that Q0 has reached its pseudo-equilibrium to reduce to the
following one component inner equation with pseudo-equilibrium Z0(t). Here we let a =
η1(1−η3)
π|A| for simplicity, thus the reduced equations are

P0t =− ε1−λn(t) +
2η1(1− η3)|A|

π
− η3P0 + aP 2

0 = f(t, P0),

Z0(t) =
1

2a

(
η3 −

√
4a(ε1−λn(t)− nosc)

)
.

(3.86)

We choose to write the argument of the square root in terms of the local oscillatory bi-
furcation nosc found in (3.41). Next, we allow for linear perturbation about the pseudo-
equilibrium P0(t) = Z0(t) + U(t) with ‖U(t)‖ � 1. Taking a Taylor expansion about the
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pseudo-equilibrium then allows us to find the local behavior of the perturbations, but re-
call that we have contributions in the derivative from the perturbation Ut as well as the
pseudo-equilibrium Z0

t . This is seen with

P0t =Z0
t + Ut,

Z0
t =


ε1−λ√

4a(ε1−λn(t)−nosc)
ε1−λn(t) > nosc,

0 ε1−λn(t) = nosc.

(3.87)

Thus we find the following Taylor expansion for the perturbations

P0t =f(t, Z0) + fP0(t, Z0)(P0 − Z0) +O(‖P0 − Z0‖2),

Ut =


ε1−λ√

4a(ε1−λn(t)−nosc)
−
(√

4a(ε1−λn(t)− nosc)
)
U ε1−λn(t) > nosc,

0 ε1−λn(t) = nosc.

(3.88)

From (3.88) we find exponentially decaying perturbations to just under the pseudo-equilibrium
this gives asymptotic attraction to a small value for η2 > η2osc which is the oscillatory bi-
furcation from section 3.2. This corresponds to loss of the pseudo-equilibrium and so there
is no longer attraction to it, yielding a tipping point for η2 < η2osc which agrees with the
results of our analysis.

Case II: λ > 1

In the analysis we determined this to be the ’slowly varying dominant’ case and we obtained
the inner equations that govern the behavior of the solution for this range of λ to be

X0t =− n(t)− η3X0 − (1− η3)Y0,

Y0t =− η1

2π

∫ 2π

0
|X0 − ελ−1A cos(R)| dR− Y0.

(3.89)

The behavior of this case when λ ≈ 1 is similar to case I, thus we anticipate the similar
attraction as well. Hence we consider the behavior when |X0(t)|< ελ−1|A| which is the
sub-case where we found the tipping point to occur in the analysis. As long as we have
ελ−1A ∼ O(1), we are able to follow the same approach as case I where we integrate
(3.89) with a R1 = arccos

(
X0/ε

λ−1A
)

and R2 = 2π − arccos
(
X0/ε

λ−1A
)

and use a Taylor
approximation about X0 = 0 to get

X0t =− n(t)− η2X0 − (1− η3)Y0,

Y0t =− ελ−1 2η1(1− η3)|A|
π

− ε1−λ η1

π|A|
X2

0 − Y0.

As in case I, we expect to use the pseudo-equilibrium reduction for Y0 and thus we find
the inner equation with pseudo-equilibrium Z0(t), taking a = η1(1−η3)

π|A| for simplicity,

X0t =− n(t) + ελ−1 2η1(1− η3)|A|
π

− η3X0 + ε1−λaX2
0 ,

Z0(t) =
1

2a

(
ελ−1η3 −

√
4aελ−1(n(t)− ελ−1nosc)

)
.
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For a linear stability analysis, we consider the linear perturbation of the pseudo-equilibrium
X0(t) = Z0(t) + U(t) with ‖U(t)‖ � 1. We apply a Taylor expansion to find a linear
equation for perturbations, but again recall that we have contributions to the derivative
from both the perturbation Ut as well as the pseudo-equilibrium Z0

t . This is seen with

X0t =Z0
t + Ut,

Z0
t =


ελ−1√

4aελ−1(n(t)−ελ−1nosc)
n(t) > ελ−1nosc,

0 n(t) = ε1−λnosc.

(3.90)

Thus we find the following Taylor expansion for the perturbations

X0t = f(t, Z0) + fX0(t, Z0)(X0 − Z0) +O(‖X0 − Z0‖2),

Ut =

−
ελ−1√

4aελ−1(n(t)−ελ−1nosc)
−
(√

ελ−14a(n(t)− ελ−1nosc)
)
U n(t) > ελ−1nosc,

0 n(t) = ελ−1nosc.

(3.91)

Similarly to case I, (3.91) shows that the perturbations decay exponentially to just
under the pseudo-equilibrium and we have hyperbolic stability for η2 > η2osc which is the
oscillatory bifurcation from section 3.2. After this point is reached, the system loses its
pseudo-equilibrium which indicates that the tipping point occurs after the bifurcation η2osc.
Comparing this to case I, we see there are small nuances between these perturbations,
although the overall stability remains the same. As for when λ gets large, we already
established that this behaves like the slowly varying model and hence we use the stability
from section 3.1 to conclude that our solution is still stable until the slow tipping point
η2osc.

Thus, the stability for both case I and case II agrees with the results found in the analysis.
We have that the behavior of our solution is stable from the outer solution and that this
stability holds before the solution begins to cross the axis V = 0. Once the crossing starts
to happen, we lose stability at η2osc. Because there is slow variation in this model, there is
delayed behavior and thus the tipping point occurs after the oscillatory bifurcation η2osc. In
both cases we discovered that the pseudo-equilibrium has a contribution to the derivative
and this in turn causes the perturbations to decay towards a small constant below the
pseudo-equilibrium. This means that there is a small region around the pseudo-equilibrium
that attracts the solution.
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Chapter 4

Summary and Future Work

With the results found in this thesis, we have accurately described what kind of behavior is
present about the non-smooth bifurcation when new mechanisms are introduced in both the
one component model (2.1) and Stommel model (3.1). The novelty of this work comes from
the link between delayed tipping methods to the non-smooth Stommel model which then
paves the way for a more general approach to the broader class of non-smooth dynamical
systems.

To describe a large class of observable behaviors, we considered the mixture of advanced
bifurcation due to high oscillatory forcing with frequency Ω � 1 and amplitude A ∼ O(1)
as well as delayed tipping due to slow variation in the bifurcating parameter at rate ε� 1.
We found that addition of these mechanisms have opposite effects on the tipping point
and do mix with a kind of weighted average to produce an effective tipping approximation.
The main results of the paper are the relative effects for the non-smooth bifurcation as
compared to the smooth bifurcation. In the case of the one component model, the strength
of the non-smooth influence on the tipping point is vastly different for each component as
compared to the smooth influence. All of the smooth approximations we pull directly from
[24] as we delve deeper into a comparison between the two.

For the slowly varying parameter with ε > 0 and no oscillatory forcing with A = 0,
we compare the non-smooth tipping point, µslow = ε ln(ε)/2, to the smooth tipping point,
µsmooth = ε2/3(−2.3381). Immediately, we notice that these approximations have different
functions as seen in figure 4.1. From the figure, it is clear that the delayed non-smooth
effects are much smaller and flatten out as compared to the continuously increasing delayed
smooth effects. This indicates that the response to the non-smooth bifurcation occurs sooner
than the response to the smooth bifurcation. Hence we may say that the non-smooth effects
are stronger than the smooth effects.
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Figure 4.1: Comparison between the slow tipping points across ε. The blue solid line is the
non-smooth tipping points where the red dotted line is the smooth tipping points.

For oscillatory forcing with A 6= 0 and static parameter values with ε = 0, we compare
the non-smooth bifurcation, µosc = 4|A|

πΩ , to the smooth bifurcation, µsm+osc = A2

2Ω2 . Here
we have a sense of the strength of each case directly from the functions in terms of Ω−1,
the non-smooth has a linear response whereas the smooth has a quadratic response. This
appears clearly in figure 4.2 where we see that the advanced bifurcation in the non-smooth
case is significantly greater than that of the smooth case. This means that the non-smooth
bifurcation causes the oscillations to advance the bifurcation much further away as opposed
to the smooth bifurcation. Here this also indicates that the effects of the non-smooth effects
are stronger than that of the smooth effects.
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Figure 4.2: Comparison between the oscillatory bifurcation across Ω−1 for A = 2. The blue
solid line is the non-smooth case where the red dotted line is the smooth case.

When we combine these mechanisms, we compare the non-smooth tipping point ,
µmixed = w(Ω, A)µsmooth + µosc with weight w(Ω, A) = (2|A|

πΩ )1/3, to the smooth tipping
point, µsmooth + µsm+osc. The case where the mixed approximation take the form of µslow

for Ω → ∞ has already been discussed above so we do not consider this here. It is im-
portant to note that although we see a similar form between these two, the weight in the
non-smooth tipping point is dependent on both A and Ω so it has significant influence on the
value for different frequencies. This is shown in figure 4.3 for ε varying in (a) and Ω varying
in (b). In (a), since the weight w(Ω, A) < 1 for A < O(Ω), then the slope of non-smooth
influence is smaller than the slope of smooth influence. We also notice the intercept for the
non-smooth influence being significantly larger corresponding to the oscillatory bifurcation
µosc being larger than µsm+osc. Together, these indicate that the non-smooth bifurcation
has a stronger advanced tipping while the curves are both positive, and a smaller delayed
tipping when both curves are negative. In (b), the effect of the changing weight w(Ω, A) is
most clear and we see the advanced tipping being quite strong for mid-range Ω. It is also
clear the non-smoothness of the model causes the approximation µmixed to fail for Ω→∞.
This case is analogous to when λ > 1 from the one component analysis and allows us to
refer back to the slowly varying problem with ε > 0 and A = 0 for Ω→∞. For both plots,
we conclude the non-smooth effects are stronger than the smooth effects even under the
mixed case.
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(a) (b)

Figure 4.3: Comparison between the mixed tipping in (a) with a fixed Ω−1 = .1 and (b)
with a fixed ε = .1. The blue solid line is the non-smooth case where the red dotted line is
the smooth case.

These results give insight into the hysteresis behavior of the Stommel model and the less
studied realm of non-smooth dynamics. The main approach used asymptotic expansions as
well as the methods of multiple scales to identify reduced equations and to find asymptotic
solutions to the models. We found that with oscillatory forcing, the reduced equations
have an expression dependent on the relative size of the solution to the amplitude of oscil-
lation. In the smooth version of this problem, this type of behavior was not present and
considering a case-by-case argument was not necessary. We also discovered that linking the
slow variation ε and the frequency Ω gives important insight into how the system behaves.
The methods developed for finding tipping points in the one component model (2.1) gave
good approximations with the numerical results. Due to the many similarities to the two
component system (3.1) we were able to modify the same analysis to find the tipping points
here as well. We also anticipate the non-smooth bifurcation of the Stommel model to have
a stronger influence on the solution than the smooth bifurcation.

Future work would need to be done on cases where Ω ∼ O(1) or smaller. This case is
qualitatively different as slow oscillations may have dramatic contributions to the dynamics.
These effects are also seen from the analysis where low frequency oscillations no longer allow
for asymptotic expansions in terms of Ω−1 and no longer fall under our assumptions to
integrate with T1 and T2. Hence this case can influence tipping in a way we hadn’t explored
in this paper, we show an example of this in figure 4.4. Also, large amplitude behavior
A > O(1) can force an additional rescaling before any familiar approaches hold which is
seen in figure 4.5. These cases were mentioned but have yet to be performed on this model,
although both have been studied around the smooth case in [24]. It is possible that they
could have some surprising results in the non-smooth case. Together, these could help to
further classify the tipping behavior for the variety of cases in real world ocean dynamics.
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(a) (b)

Figure 4.4: Low Frequency: Model parameters are ε = .01, A = B = 1 and Ω = 3.

(a) (b)

Figure 4.5: Large Amplitude: Model parameters are ε = .01, A = B = 300 and Ω = 1000.

Lastly, we considered only deterministic behavior throughout this analysis but there are
many reasons to incorporate stochastic elements into the Stommel model as well, see [13].
From [24] it is concluded that stochastic forcing has elements of both early bifurcations
and delayed tipping and thus a natural follow-up to the analysis in this thesis. We could
consider stochastic forcing with

V̇ = η1 − η2 + η3(T − V )− T − V |V |+Aξ1(t),

Ṫ = η1 − T (1 + |V |) +Bξ2(t),

η̇2 = −ε
V (0) =V 0, T (0) = T 0, η2(0) = η2

0,

(4.1)

where ξi(t) is standard Gaussian noise with mean 0 and variance t and initial conditions
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centered on the lower branch. This is shown in figure 4.6 and it is clear that a completely
separate analysis is needed.

(a) (b)

(c) (d)

Figure 4.6: Stochastic: In (a) many realizations of the numerical solution for V in (4.1) are
given with model parameters η1 = 4, η3 = .375, ε = .01 and A = B = .7. In (b) a zoom
in closer to the non-smooth bifurcation region can be seen. In (c) we have the realizations
over the standard equilibrium plot for V vs. T . In (d) a zoom of the bifurcation area is
shown.
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Appendix A

The Stommel Model

The original Stommel model has the following balance equations [23]

B1
dT1

dt
=CT1 (T s1 − T1) + |V |(T2 − T1),

B2
dT2

dt
=CT2 (T s2 − T2) + |V |(T1 − T2),

B1
dS1

dt
=CS1 (Ss1 − S1) + |V |(S2 − S1),

B2
dS2

dt
=CS2 (Ss2 − S2) + |V |(S1 − T2),

(A.1)

where B1 and B2 are the volumes of each box containing water of temperature and salinity
(T1, S1) and (T2, S2) respectively. The surface conditions of each box are then T si and Ssi
and the relaxation coefficients for the temperature and salinity are CT and CS . V is the
flow rate between the boxes and is linearly related to the density difference. To reduce this
to a two dimensional model that contains all the same information, we use the differences
T = T1 − T2 and S = S1 − S2. If we also assume the relaxation coefficient is proportional
to volume, then we have CT

B1
= CT

B2
= RT and CS

B1
= CS

B2
= RS . This then gives (A.1) as

dT

dt
=RT (T s1 − T s2 − T )− |V |T

(
1

B1
− 1

B2

)
,

dS

dt
=RS(Ss1 − Ss2 − S)− |V |T B1 +B2

B1B2
.

(A.2)

To simplify further we scale time, temperature, salinity and the flow rate by

t← 1

CT
t,

T ← B1B2C
T

γαT (B1 +B2)
T,

S ← B1B2C
T

γαS(B1 +B2)
S,

V ←B1B2RT
B1 +B2

V,

(A.3)

where αT and αS are the thermal expansion and saline contraction coefficients and γ is a
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hydraulic constant. Then using (A.3) in (A.2) gives

dT

dt
=

(T s1 − T s2 )γαT (B1 +B2)

B1B2RT
− T − |V |T,

dS

dt
=

(Ss1 − Ss2)γαS(B1 +B2)RS
B1B2R2

T

− RS
RT

S − |V |S.
(A.4)

Here we define the non-dimensionalized parameters

• η1 - the strength of thermal forcing,

η1 =
(T s1 − T s2 )γαT (B1 +B2)

B1B2RT
.

• η2 - the strength of freshwater forcing,

η2 =
(Ss1 − Ss2)γαS(B1 +B2)RS

B1B2R2
T

.

• η3 - the ratio of the freshwater to thermal relaxation time scales,

η3 =
RS
RT

.

We recall that V was related to the difference in temperature and salinity, thus giving
V = T − S. This results in the non-dimensionalized Stommel model

dT

dt
=η1 − T − |T − S|T,

dS

dt
=η2 − η3S − |T − S|S.

(A.5)

It is more convenient to analyze ocean circulation in terms of the flow rate V which is also
known as the circulation strength. Then using V = T − S in (A.5) gives

dT

dt
=η1 − T (1 + |V |),

dV

dt
=η1 − η2 − η3(T − V )− T − V |V |.

(A.6)
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Appendix B

One Component

High Frequency Oscillatory Forcing

Here we continue the analysis to explicitly find the solution of the outer equation for the
purely oscillatory model. Recall that we found x1 = v1(t) − A cos(T ), we then apply the
Fredholm alternative (2.24) to the O(Ω−2) equation in (2.23) to get

0 =
1

2π

∫ 2π

0
−x1t − 2x1 + 2x0x1 dT,

v1t =− 2v1 + 2(1−
√

1 + µ)v1,

v1t =− 2
√

1 + µv1.

(B.1)

We search for the equilibrium to find stable behavior on this order but since (B.1) has a
very simple form, the equilibrium is v1(t) ≡ 0 and thus we find the correction term to only
have oscillatory behavior, x1 = −A cos(T ).

Slow Variation and Oscillatory Forcing

Here we continue to find the terms of the outer solution for the slowly varying and oscil-
latory forcing model. We have thus far found x0 = x0(τ) and we have equations at O(ελ)
and O(ε2λ) that give information about x0 and x1 respectively. We apply the Fredholm
alternative (2.24) to the O(ελ) equation (2.49) to find

0 =
1

2π

∫ 2π

0
−µ(τ)− 2x0(τ) + x0(τ)2 +A sin(T ) dT,

0 =− µ(τ)− 2x0(τ) + x0(τ)2,

x0(τ) =1−
√

1 + µ(τ),

x1T =A sin(T ).

(B.2)

From (B.2) we find that x1 = v1(τ) − A cos(T ), which gives us access to solving the next
order equation. Thus we now do the same for the O(ε2λ) equation (2.50) to find

0 =
1

2π

∫ 2π

0
−ε1−λx0τ − 2x1 + 2x0x1 dT,

ε1−λx0τ =− 2v1 + 2(1−
√

1 + µ(τ))v1,

v1(τ) =− ε1−λ x0τ

2
√

1 + µ(τ)
.

(B.3)
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Slow Variation and Oscillatory Forcing

Recall that µτ = −1 and that x0τ = − µτ

2
√

1+µ(τ)
= 1

2
√

1+µ(τ)
and thus we find the form of

the next order term in the expansion as

x1(τ, T ) = −ε1−λ 1

4(1 + µ(τ))
−A cos(T ). (B.4)
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Appendix C

Two Component

High Frequency Oscillatory Forcing

Here we show that the correction term of the outer solution is purely oscillatory. From
the analysis, we found both leading order terms to be purely slow time dependent, i.e.
V0 = V0(τ) and T0 = T0(τ). To find the explicit form for these, we apply Fredholm (2.24)
to the O(Ω−1) equations in (3.22) to find{

0 = 1
2π

∫ 2π
0 −V0t + η1 − η2 + η3(T0 − V0)− T0 + V 2

0 +A sin(R) dR,

0 = 1
2π

∫ 2π
0 −T0t + η1 − T0(1− V0) +B sin(R) dR,{

V0t = η1 − η2 + η3(T0 − V0)− T0 + V 2
0 ,

T0t = η1 − T0(1− V0),

V1R = A sin(R), T1R = B cos(R).

(C.1)

Since we have a fixed parameter η2, we find the equilibria V0 and T0 as well as the form of
the correction terms

T0(V0) =
η1

1− V0
,

0 =η1 − η2 + η3(T0(V0)− V0)− T0(V0) + V 2
0 ,

V1 =X1(t)−A cos(R), T1 = Y1(t)−B cos(R).

Here we note these equilibria to be the same as in the static problem with no forcing from
the introduction. But with the form of the correction terms, we now solve the equation at
O(Ω−2) (3.23) by applying Fredholm (2.24). This results in{

0 = 1
2π

∫ 2π
0 −V1t + η3(T1 − V1)− T1 + 2V0V1 dR,

0 = 1
2π

∫ 2π
0 −T1t + T1(1− V0) + T0V1 dR,{

X1t = η3(Y1 −X1)− Y1 + 2X0X1,

Y1t = Y1(1−X0) + Y0X1.

(C.2)

We then search for the equilibria of (C.2) and find

Y1(X1) = − Y0X1

1−X0
,

0 =

(
η3

(
Y0

1−X0
− 1

)
− Y0

1−X0
+ 2X0

)
X1.

Thus we find that the correction terms are purely oscillatory since X1 ≡ 0 and Y1 ≡ 0. This
gives V1 = −A cos(R) and T1 = −B cos(R).
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Slow Variation and Oscillatory Forcing

Here we continue to find terms of the outer solution by working through the equations
(3.53)-(3.54). In the analysis, we had already determined that the leading order terms are
purely slow time dependent, V0 = V0(τ) and T0 = T0(τ). To find their exact form, we apply
Fredholm (2.24) to the O(ελ) equation (3.53) to find{

0 = 1
2π

∫ 2π
0 η1 − η2(τ) + η3(T0 − V0)− T0 + V 2

0 +A sin(R) dR,

0 = 1
2π

∫ 2π
0 η1 − T0(1− V0) +B sin(R) dR,{

0 = η1 − η2(τ) + η3(T0 − V0)− T0 + V 2
0 ,

0 = η1 − T0(1− V0),

V1R = A sin(R), T1R = B cos(R).

(C.3)

The leading order solution to (C.3) is the same as the slowly varying problem from section 3.1
with

T0(V0) =
η3

1− V0
,

0 =η1 − η2(τ) + η3(T0(V0)− V0)− T0(V0) + V 2
0 .

We also find the form of the correction terms, V1 = X1(τ) − A cos(R) and T1 = Y1(τ) −
B cos(R), which allow us to solve the O(ε2λ) equation (3.54). Applying Fredholm (2.24)
here results in{

0 = 1
2π

∫ 2π
0

(
−ε1−λV0τ + η3(T1 − V1)− T1 + 2V0V1 +A sin(R)

)
dR,

0 = 1
2π

∫ 2π
0

(
ε1−λT0τ − T1(1− V0) + T0V1

)
dR,{

ε1−λV0τ = η3(Y1 −X1)− Y1 + 2V0X1,

ε1−λT0τ = Y1(1− V0) + T0X1.

(C.4)

Recalling that η2τ = −1 and solving (C.4) requires the derivatives of V0 and T0 which are
solvable explicitly as

T0τ (V0τ ) = − η1V0τ

1− V0
,

V0τ =
(1− V0)

η1 + η3(η1 + 1− V0)− 2V0(1− V0)
.

With everything put together, we find the solution to (C.4) as

Y1(X1) =
ε1−λT0τ − T0X1

1− V0
,

X1 =
ε1−λ(V0τ (1− V0) + (1− η3)T0τ )

(1− η3)T0 + (2V0 − η3)(1− V0)
.

Here we now have the first correction term as
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V1(τ,R) =
ε1−λ(V0τ (1− V0) + (1− η3)T0τ )

(1− η3)T0 + ((2V0 − η3)(1− V0)
−A cos(R),

T1(τ,R) =
ε1−λT0τ

1− V0
− ε1−λT0(V0τ (1− V0) + (1− η3)T0τ )

(1− η3)T0(1− V0) + (2V0 − η3)(1− V0)2
−B cos(R).
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