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Abstract 
 

As humans, we reason about quantity in at least two distinct ways—through our intuitive, 

approximate perception of quantity and through precise number words. With sufficient 

development, these two systems interface and interact, allowing us to make quick judgments 

with crude precision (e.g., how many items are in our shopping basket). To date, two theories 

have been proposed to explain the underlying mechanism of this interface between perception 

and language. Under the first—the associative mapping theory—children create item-specific 

associations between particular number words (e.g., “ten”) and the perceptual representations 

that they most frequently experience. While under the second—the structure mapping theory—

children map number words to their perceptual representations by realizing the inherent 

similarity in the representational structure of the two systems (e.g., both are linear dimensions 

where higher values represent more/greater amounts). Existing literature has almost exclusively 

focused on understanding how children create this interface in one domain of quantity (i.e., 

number), leaving the critical question of how children map number words to other, non-numeric 

domains of quantity (e.g., length, area) entirely open. This thesis explores when and how 

children map number words to a broader spectrum of quantities by examining their estimation 

abilities in number, length, and area. We find that while the perception of number, length, and 

area are largely independent of each other, estimation accuracy and variability are tightly linked 

and show a similar age of maturity, supporting the structure mapping account. These results are 

discussed in the broader context of how language and perception interact and change with 

development.  
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Lay Summary 
 

As humans, we represent and reason about quantity in at least two distinct ways—

through our intuitive but imprecise “sense” of quantity and through precise number words. 

Eventually, we learn to integrate our intuitive representations with number words. To date, two 

theories have been put forth to explain how this is achieved, yet the majority of the research has 

only explored the interface in only one domain of quantity (i.e., number), leaving open the 

question of how we learn to map number words to other domains (e.g., length, area). This thesis 

explores how and when children learn to integrate their intuitive perceptions of quantity with 

number words across a number, length, and area estimation task. We discuss the implications of 

our findings relevant to current theories in the field, including how we learn to reason about our 

rich perceptual world.  
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Introduction 

As adults, we represent and reason about quantity in at least two ways. The first is 

through utilizing our intuitive, automatic—albeit imprecise—perceptual representations of 

quantity. For instance, without counting or measuring, we can instantly judge which set of dots is 

more numerous, which line is longer, or which blob is bigger (see Figure 1). These intuitive 

quantity representations also permit a variety of mathematical operations to be carried over them, 

including addition, subtraction, and division (Dehaene, 2001, 2009, 2011; Bonny & Lourenco, 

2013), providing us with quick and effortless ways to think and reason about quantity. Moreover, 

we share these perceptual representations with most—if not all—non-human animals (Howard, 

Avarguès-Weber, Garcia, Greentree, & Dyer, 2018; Lucon-Xiccato, Gatto, & Bisazza, 2018; 

Jordan & Brannon, 2006; Piffer, Petrazzini, & Agrillo, 2013; Platt & Johnson, 1971; Premack & 

Woodruff, 1978) and have them readily available from birth onward (Izard, Sann, Spelke, & 

Streri, 2009; Dehaene, 2001; Feigenson, Dehaene, & Spelke, 2004). The cost of such a readily 

available system is its imprecision: how well we discriminate between two quantities is 

dependent on their ratio, a constraint known as Weber’s law (see Odic & Starr, 2018; Cantlon, 

2018). As a result, our ability to judge quantity is limited by perceptual noise, or imprecision, 

and the closer two quantities appear to be, the harder it is to tell them apart.  

The second way of representing and reasoning about quantity is through number words, 

most often through a slowly learned counting routine (Sarnecka & Carey, 2008; Wynn, 1992; 

Benoit, Lehalle, & Jouen, 2004; Wiese, 2007; Le Corre & Carey, 2007). Number words allow us 

to represent quantity precisely and discretely. Thus, a key advantage of reasoning about quantity 

in this way is that it is ratio-independent: while a plate of 100 cookies is perceptually near-

indistinguishable from a plate of 101, verbally or symbolically distinguishing between these two 
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amounts (e.g., “one-hundred” vs. “one-hundred-and-one”) becomes as easy as visually 

distinguishing between much larger differences (e.g., ratio of 2.0, or 200 vs. 100 cookies). The 

cost to using such a precise system, however, is the difficulty in mastering it: no non-human 

animal has access to precise number representations (Beran, Rumbaugh, & Savage-Rumbaugh, 

1998; Boysen & Capaldi, 2014; Tomonaga, 2008), children in Western cultures take a very long 

time to master the counting routine (Le Corre & Carey, 2007), and some human cultures that 

lack number words, such as the Amazonian Pirahã tribe, apparently lack access to these 

representations altogether (Frank, Everett, Fedorenko, & Gibson, 2008; Holden, 2004; Pica, 

Lemer, Izard, & Dehaene, 2004). 

Although children’s intuitive sense of quantity and the acquisition of exact number words 

have often been studied in isolation, these two systems also interface and interact starting from 

around age five onward, allowing children and adults to fluidly convert their intuitive 

representations into exact ones and vice-versa (Le Corre & Carey, 2007; Odic, Le Corre, & 

Halberda, 2015). For example, a typical preschooler shown a display of dots on a screen for just 

a few seconds—too quick to count—can attach a precise number word to their perception of 

number (e.g., estimating that there are “ten” dots on the screen), and if given a precise number 

word (e.g., “eight”), young children can in turn produce an approximate representation of that 

amount by tapping on the table that number of times (Odic et al., 2015). The interface between 

these two systems—the perceptual and the linguistic—has been theorized to be critical in 

children’s higher-level concepts of basic mathematical operations (Libertus, Feigenson, & 

Halberda, 2013; Libertus, Odic, & Halberda, 2012; Bonny & Lourenco, 2013; Libertus, 

Feigenson, & Halberda, 2011), fractions (Schneider & Siegler, 2010; Siegler, Fazio, Bailey, & 

Zhou, 2013; Siegler, Thompson, & Schneider, 2011), and currency (Marques & Dehaene, 2004). 
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In this thesis, I explore the mechanisms that support the interface between children’s 

intuitive representations of number, length, and area and exact number words. While the existing 

literature has extensively focused on understanding how children map number words to their 

intuitive (or “gut”) sense of number—the Approximate Number System (ANS)—it has left the 

question of how children map number words to other, non-numeric domains of quantity entirely 

open. Yet, as I discuss below, understanding when and how children map number words to a 

broader spectrum of quantity representations is key to our understanding of development not 

only because we, as adults, have access to precise categories of length, size, etc. (e.g., inches, 

squared meters, etc.), but also because any similarities and differences in the acquisition of this 

interface across dimensions can inform theories of how children learn to map perceptual 

representations to language and vice-versa in the first place. 

At present, two mechanisms have been put forth to explain how children acquire the 

interface between number words and the ANS (Sullivan & Barner, 2010, 2011, 2013). Under the 

associative mapping theory, children create item-specific associations between particular number 

words (e.g., “ten”) and the perceptual representations that they most frequently experience. As a 

result, given that we all experience smaller numbers more often than larger numbers (Piantadosi, 

2016), we should expect that children acquire the mapping between words like “one”, “two”, and 

“three” well before acquiring the mapping for words like “eighty-six”. Consistent with this 

theory, children learn number words in a slow, graded fashion, first associating “one” with 

exactly 1 item, then “two” with exactly 2 items, then “three” with 3 items, etc. until they 

eventually understand the principal of cardinality (Le Corre & Carey, 2007). Furthermore, work 

by Sullivan and Barner (2010) has shown that adults are unwilling to adjust their estimation 

behaviour in response to feedback or outright experimenter instructions, if the range of numbers 
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being viewed/estimated is below 20, which is exactly in the range where we would expect 

associative mapping to form.  

Yet, while the associative mapping theory accounts for how children first map number 

words to small quantities, it does not explain how children eventually learn to reason about larger 

quantities (Sullivan & Barner, 2011). The alternative—the structure mapping theory—posits that 

children map number words to the ANS by realizing the inherent similarity in the 

representational structure of the two systems: both are linear dimensions where higher values 

represent more/greater amounts. Thus, rather than creating item-by-item mappings, children may 

instead generate links between number words and the ANS based on analogy, proportional 

reasoning, or an understanding of ordinality between the two systems (Sullivan & Barner, 2010, 

2013; Barth, Starr, & Sullivan, 2009). In support of this account, studies have shown that 

participants’ entire range of verbal estimates can be impacted by mislabeling visually presented 

stimuli (e.g., calling a set of 30 items, “twenty-five”) or misinforming participants about the 

highest numerosity shown (e.g., being told that there will be at most “seventy-five” dots despite 

there actually being 350; Sullivan & Barner, 2010). However, this account still fails to explain 

why the initial process of matching number words to the ANS occurs in such a graded fashion, 

requiring item-by-item pairings (Le Corre & Carey, 2007; Sarnecka & Carey, 2008). 

To gain further insights into the mechanisms that support the relationship between 

perceptual quantity representations and precise number words, we can compare and contrast how 

children form this mapping for dimensions beyond just number, including length and area. If the 

interface is formed through associative mapping, then we should expect that children’s 

acquisition of the interface in one dimension (e.g., number) has no bearing on the acquisition of 

another dimension (e.g., length), as children’s associative experiences between these dimensions 
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should be independent. In other words, under this account, we should find that the interface 

between number words and our perceptual representations of number, length, and area emerge 

separately and independently of each other.  

If, on the other hand, children acquire the interface through structure mapping, then the 

very moment that a child has realized the common ordinal structure between number words and 

the ANS, they should be able to extend it to other, non-numeric dimensions, as well (e.g., length, 

area). Therefore, under this account, we predict that children should be able to map between 

number words and their intuitive representations of number, length, and area at roughly the same 

time and using a shared cognitive mechanism.  

Previous work has shown that although our intuitive sense of number, length, and area 

share the same psychophysical signatures (e.g., ratio-dependence, consistent with Weber’s law), 

children show independent precision and development across the three dimensions (Odic, 2018; 

Odic, Libertus, Feigenson, & Halberda, 2013). For example, while both number and area acuity 

steadily improve throughout childhood, children exhibit adult-like precision in area 

discrimination much earlier than do they do in number (Odic, 2018; Odic et al., 2013). 

Moreover, how well children and adults distinguish between quantities in one domain (e.g., 

number) has not been shown to relate to their abilities to distinguish quantity in another (e.g., 

length, area, time, density; Odic, 2018; Odic et al., 2013; Cordes & Brannon, 2011, 2008), 

leading some researchers to propose that dimensions like number, length, and area are 

represented by domain-specific perceptual abilities (Burr & Ross, 2008; Ross & Burr, 2010); for 

alternative accounts see Dakin, Tibber, Greenwood, and Morgan (2011), Gebuis and Reynvoet 

(2012), Gebuis and Van Der Smagt (2011), or Leibovich, Katzin, Harel, and Henik (2017).  
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In the present experiment, we test 5- to 12-year-olds and adults on two tasks—a 

number/length/area discrimination task, and a number/length/area estimation task—to measure 

individual and developmental differences in the precision of each participant’s perceptual 

representations of quantity (i.e., discrimination) and the quality of the interface between these 

perceptual representations and precise number words (i.e., estimation). In turn, we examine 

whether children’s developing interface between number words and the representations of 

number, length, and area emerges independently and in piecemeal, as predicted by the 

associative mapping theory, or together and as a single shared ability, as predicted by the 

structure mapping theory. In addition, to make sure that any commonalities in the interface 

between number words and the perceptual representations of number, length, and area are 

emerging primarily because of the interface itself, we also control individual and developmental 

differences in these perceptual representations themselves through the discrimination task.  

 

Methods and Procedures 
 
Participants.  
 

A total of 90 children (47 males) between the ages of 5- to 12-years-old (M = 8;9) 

participated in the study, ranging from 5;1 (5 years, 1 month) to 12;11 years (12 years, 11 

months). We chose this age range, as some work suggests that children begin establishing the 

interface between their intuitive representation of quantity and number words from age five 

onwards (Le Corre & Carey, 2007; Barth et al., 2009). An additional 14 children were tested, but 

failed to complete both tasks in full due to unwillingness to continue.  

 Children were recruited from the Greater Metro-Vancouver area in British Columbia, 

Canada through the Early Development Research Group database at the University of British 
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Columbia (UBC). All participants were individually tested at the Centre for Cognitive 

Development at UBC in a quiet room on a 13” MacBook Air running custom-made 

Psychtoolbox-3 scripts. Consent was obtained from the parent or legal guardian present during 

the time of the study, and experimenters received verbal assent before each child’s participation. 

Following the study, participants were rewarded with a small prize (e.g., toy, t-shirt, or book) 

and a certificate of appreciation.  

In order to generate more predictive models of the age of maturity and development 

across domains, 14 college-age adults (2 males; ranging from 19;6 – 34;6 years, M = 24;1) were 

also tested on identical Discrimination and Estimation tasks and were rewarded with university 

course credit and/or a certificate of appreciation for their time. An additional adult was recruited, 

but eliminated from analysis for failure to complete the Estimation Task, due to technical issues. 

This left us with a final sample of 104 participants (5- to 12-year-olds and adults).  

 

Discrimination Task.   
 

Participants were first presented with three dimensions: number (i.e., “which side has 

more dots”), length (i.e., “which line is longer?”), and area (i.e., “which blob is bigger?”). The 

number stimuli were spatially separated collections of yellow dots on the left and blue dots on 

the right side of the screen; the line stimuli were two randomly oriented lines, with a yellow line 

on the left and a blue line on the right side on the screen; the area stimuli were two amorphous 

blobs, with a yellow blob on the left and a blue blob on the right side on the screen (Figure 1). 

Each side had a colour-matched cartoon character (Spongebob for yellow and a Smurf for blue), 

and participants were asked to indicate their answer verbally or by pointing. All responses were 

entered in on the computer (via pressing F for yellow/Spongebob or J for blue/Smuf) by the 
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experimenter to minimize the influence of motor control on the results. Adult participants were 

allowed to press the computer keys themselves during this task.  

Figure 1. Discrimination task stimuli (without the cartoon characters), in which participants had 
to judge which side was more numerous (e.g., which side has more dots, which line is longer, 
which blob is bigger). 
 
 

The stimuli were shown on the screen for only 500 milliseconds (ms) to prevent the 

participants from counting (Cordes, Gallistel, Gelman, & Latham, 2007). The task began with 6 

easy practice trials—2 in each dimension—to ensure that participants understood the task. 

Subsequently, participants completed 192 trials (64 per dimension) in an intermixed order, thus 

eliminating any potential order effects. To alter difficulty, each trial varied in one of 4 ratios 

which were identical across the three dimensions: 2.0 (e.g., 20 vs. 10 dots), 1.50 (e.g., a 12 vs. an 

18 cm line), 1.20 (e.g., a 120 mm2 vs. a 100 mm2 blob), and 1.07. Participants were given 

feedback based on their performance that was either positive (i.e., a female computer voice 

saying, “Good job!” or “Great!”) or negative (i.e., “Oh no, that’s not right!”), and the 

experimenter would encourage the participant to continue. Children and adults took between 10 

– 12 minutes to complete the task.  

For each of the three dimensions—number, length, area—the dependent variable was 

accuracy (i.e., percent correct across all trials) and the Weber fraction (w), which roughly 

indexes the hardest ratio an individual can discriminate at around 75% accuracy (i.e., a higher w 
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corresponds to greater imprecision in number representations and poorer discrimination 

performance; Halberda & Feigenson, 2008; Lidz, Pietroski, Halberda, & Hunter, 2011; Odic, 

2018; Pica et al., 2004). As discussed in detail in Results, we used a standard and frequently used 

psychophysical model to estimate each participant’s w separately from their guessing rate (g).  

 
Number Word Task.  
 

Because children can dramatically vary in their knowledge of the verbal count sequence, 

children were given a short Number Word Task following completion of the Discrimination 

Task and before the start of the Estimation Task, in which they were asked to count to at least 25, 

a target that previous standardized testing shows should be expected for 5-year-old children 

(Ginsburg & Baroody, 2003). Experimenters recorded whether each child reached the target 

number during counting or the highest number counted to without error, such as skipping a 

number or double counting. Additionally, children were asked to determine which of two 

numbers was greater (i.e., “12 vs. 15,” “18 vs. 12,” “20 vs. 10”) to ensure that they had a basic 

understanding of cardinality. Responses were recorded for participants’ failure or success on the 

latter task, which served as a control to ensure that they understood number words and 

cardinality, necessary for estimation.  

 
Estimation Task. 
 

In the Estimation Task, participants were asked to verbally assign a number word to the 

amount of stimuli they saw across number, length, and area trials. In order to control for 

experience that they may have had with particular units (e.g., cm, mm2, etc.), which could 

influence their estimation performance, all participants were provided with novel units. These 

novel units were introduced one at a time, across 6 training phases, with 2 consecutive training 
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phases per dimension. For length, participants were introduced to a “blicket,” which appeared on 

the screen as a single orange line segment (Figure 2). They were then told a story about how the 

“blickets live in a house,” which subsequently appeared on screen, and were then asked to 

estimate “how many blickets” they thought were in that house. In order to demonstrate how the 

units worked, once participants gave an estimate, they were shown the correct number of 

blickets, which was always either 2, 3, or 4. Following the two training trials for blickets, 

participants were shown 2 training trials for a unit in area estimation (i.e., a blue amorphous blob 

called a modi), and then 2 training trails for units for number estimation (i.e., a yellow dot called 

a toma), which followed the same pattern of training noted earlier (Figure 2).  

 

Figure 2. Estimation task stimuli for training and testing, in which participants had to judge how 
many items were displayed (e.g., how many tomas, how many blickets, how many modies). The 
top panels illustrate the training stimuli during which children were acquainted with the units in 
the context of objects living in a house. The bottom shows the actual testing stimuli.  
 

Subsequently, participants completed 96 test trials (32 per dimension) in an intermixed 

order. On each trial, they would see the unit—either a blue blob (i.e., modi), an orange line (i.e., 
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blicket), or a yellow dot (i.e., toma)—and, when ready, they would see a larger amorphous blob, 

a larger orange line, or a collection of yellow dots rapidly appear and disappear. The stimuli 

would stay on the screen for 500 ms, too quick to count (Cordes et al., 2007). Each participant 

would then be asked to estimate, “how many modies/blickets/tomas” they saw, with the use of 

the quantifier (i.e., how many) and plural syntax (e.g., modies) guiding them towards providing 

us with a number word. The experimenter would then write down the verbal estimate provided 

on a response sheet.  

The correct answer on each trial was always either 5 (e.g., a line five times the length of 

the standard), 8 (e.g., 8 dots), 13 (e.g., a blob thirteen times larger than the standard), or 21 

across each dimension. Participants were not provided with any direct feedback during the test 

trials, but were encouraged to continue (e.g., “Alright, let’s do another one!”, “You’re doing 

well! Let’s do some more.”). If they gave nonsense numbers, such as a combination of two or 

more numbers (e.g., “eleventy-four”) or numbers that exceeded the realm of possibility (e.g., 1 

million/billion/trillion), participants were prompted to provide their “next best guess” or asked if 

they were “sure.” Additionally, if participants responded with “one” or “a big one,” they were 

reminded of the rules of the game (e.g., “Remember, how the blickets cuddled together in the 

house? How many blickets do you think were cuddling there?”), and then asked to provide their 

“next best guess.” For the participants who declined to alter their responses, their estimates were 

recorded on the response sheet as is, and the experimenter proceeded to the next trial. Children 

and adults took 15 – 20 minutes to complete this task. 

Consistent with prior research, the dependent variable was—for each dimension— (1) the 

estimation accuracy and (2) estimation variability (see Odic et al., 2015). For each participant, 

we plotted their verbal estimates against the true/objective stimulus; in ideal circumstances, an 
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individual with a perfect mapping between number words and their intuitive sense of quantity 

should (on average) always say “eight” for the collection of 8 dots, or an 8 cm line, etc. As a 

result, the linear slope—or beta in a standard linear regression—between their responses and the 

objective quantity is the index of how accurate one’s mapping is, with a slope of 1.0 indicating 

perfect mapping, a slope of 0 indicating no mapping at all, and a slope between those two values 

indicating some degree of under-estimation. To better evaluate the degree of over- and under-

estimation from a perfect mapping (i.e., a slope of 1.0), we took the absolute differences in the 

beta values from 1.0 for each dimension, yielding our measure of estimation accuracy (i.e., how 

closely what participants reported across various quantities matched the objective quantities 

shown).  

In addition, we calculated each participant’s estimation variability, corresponding to the 

sigma value in a standard linear regression (i.e., the average standard deviation of their estimates 

divided by the objective magnitude presented, with values closer to 0 indicating more and more 

precise mapping). Examining the variability of the estimates, thus, allowed to us to interpret how 

participants’ estimates were distributed around the objective quantities.  

By using both measures—estimation accuracy (i.e., difference in slope from 1.0) and 

estimation variability (i.e., standard deviation divided by the true quantity shown)—we indexed 

how well each participant estimated across number, length, and area. Relying on both measures 

was key, as in theory participants can demonstrate similar performance when examining 

estimation accuracy, but differ dramatically in their estimation variability. Consider a child who, 

when shown 15 dots over multiple trials, estimates “fourteen”, “fifteen”, and “sixteen”, against a 

child who estimates “ten”, “fifteen”, and “twenty-five”; while both these children have an 

average estimate of 15, the latter child has much worse precision than the former. Thus, we rely 
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on both measures to more robustly index estimation abilities across dimensions (as we show in 

the Results, these two measures were additionally not correlated, further supporting the notion 

that they index two separate aspects of performance). 

Results 

Number Word Task.  

 
Only 4 (M = 6;7) children failed to answer some portion of the Number Word Task 

correctly, with one child failing to count correctly beyond 21 and three children answering one of 

the three number comparison questions incorrectly. Additionally, one child was not given the 

Number Word Task due to experimenter error. Because of overall excellent performance we saw 

no reason to exclude any participants from the Estimation Task analyses based on these results. 

 
Descriptives.  
 

Next, we examine overall performance in each of the three dimensions across 

Discrimination and Estimation tasks to explore participants’ intuitive perceptual representations 

and, more importantly, the interface between these representations and precise number words. To 

analyze this data, we grouped participants into the nearest age-group (Table 1), forming 8 groups 

for children ranging from 5- to 12-years of age; adult participants were all categorized as being 

24-years-old (i.e., the mean group age), though for the purposes of these analyses, the binning 

method is irrelevant as we are treating age categorically.  
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Table 1. Distribution of participants across age groups. 

 
In Discrimination, a 3 (Dimension: Number, Length, Area) x 4 (Ratio: 2.0, 1.5, 1.2, 1.07) 

x 9 (Age group: 5, 6, 7, 8, 9, 10, 11, 12, 24) Greenhouse-Geisser corrected Mixed-Measures 

ANOVA with accuracy as the dependent variable (DV) showed a main effect of Dimension 

(F(1.66, 158.12) = 78.74; p < .001, hp
2 = .45), Ratio (F(2.28, 216.63) = 409.77 p < .001, hp

2 = 

.81), Age (F(8, 95) = 9.57; p < .001, hp
2 = .45), and a significant Dimension x Ratio interaction 

(F(4.23, 401.94) = 13.73; p < .001, hp
2 = .13), but no significant Dimension x Age interaction 

(F(13.32, 187.60) = 1.03; p = .42 hp
2 = .08), nor a Ratio x Age interaction (F(18.24, 216.63) = 

1.19; p = .27, hp
2 = .09), nor a Dimension x Ratio x Age interaction (F(33.85, 401.94) = 1.03; p 

= .41, hp
2 = .08). As can be seen in Table 2, these significant effects broadly replicate previous 

work in the literature (e.g., Odic, 2018): all three dimensions show strong ratio effects (consistent 

with Weber’s law), participants performed the worst on the Number discrimination trials and 

best on the Area and Length trials, and performance on all three dimensions improved with age 

(see also Figure 3). We also found significant correlations between each of the three tasks and 

Age, even when we treated it continuously. 

 

Age Group n Mean 
Age 

SD of  
Age 

Min 
Age 

Max 
Age 

5 10 5.53 0.26 5.15 5.90 
6 10 6.53 0.33 6.10 6.90 
7 10 7.51 0.24 7.13 7.86 
8 15 8.44 0.24 8.01 8.96 
9 21 9.51 0.29 9.01 9.92 
10 10 10.47 0.28 10.13 10.94 
11 10 11.33 0.34 11.01 11.95 
12 4 12.57 0.40 12.18 12.95 
24 14 23.80 4.37 19.56 34.54 
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Table 2. Discrimination performance across age. Note that correlations between Age and w are 
Spearman rho values, due to the non-normal distribution of w values. As described in the Results 
section, a corresponds to the bottom asymptote (the minimum value with development), k to the 
top asymptote (the maximum value with development), m to the age at which development has 
reached roughly halfway, and b to the rate of development. Because lower w values are better, 
growth rates for this dependent variable are negative.  
 

 Because each dimension obeyed Weber’s law (i.e., was ratio-dependent) we fit a standard 

psychophysical model to estimate each participant’s perceptual precision for each of the three 

dimensions (i.e., their Weber fraction, w; Odic, 2018; Halberda & Feigenson, 2008; Lidz et al., 

2011; Pica et al., 2004):  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 1 − 𝑔 ∗ Φ
𝑅𝑎𝑡𝑖𝑜 − 1

	𝑤 1 + 𝑅𝑎𝑡𝑖𝑜4
∗
𝑔
2

 

 
where F is the Gaussian cumulative distribution function, w is each participant’s Weber 

fraction, and g is each participant’s guess/lapse rate (the consistent percentage of trials on which 

they took a random guess). This model assumes the underlying representations are distributed 

along a continuum of Gaussian/Normally distributed random variables, consistent with prior 

theories of intuitive quantity representations (Lidz et al., 2011). Because each representation is 

distributed across a continuum, two values will naturally overlap in representation, leading to 

Discrimination Task 

 Dimension Mean SD Correlations  
with Age 

Growth Modelling 

a k m b Age of 
Maturity 

A
cc

ur
ac

y Number 78.82 9.28 .38** 50 85.02 4.05 0.35 16.15 

Length 89.57 6.72 .37** 50 92.32 1.99 0.44 12.05 

Area 88.31 6.03 .42** 50 89.74 4.54 1.70 7.11 

w
 

Number 0.20 0.15 -.26** 0.12 1 2.45 -0.51 11.21 
Length 0.09 0.07 -.30** 0.06 1 -0.19 -0.45 9.88 
Area 0.09 0.07 -.34** 0.07 1 1.75 -0.67 8.50 

** p < .01 
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confusion. As a result, the smaller the ratio is between two quantities, the greater overlap there 

will be of their Gaussian representations, and thus the greater difficulty participants will have 

with being able to discriminate between them. Therefore, lower w values indicate better 

performance. To estimate each participant’s w, we fit their accuracy data over ratios to the above 

equation through R’s mle2 function.  

A 3 (Dimension: Number, Length, Area) x 9 (Age group: 5, 6, 7, 8, 9, 10, 11, 12, 24) 

Greenhouse-Geisser corrected Mixed-Measures ANOVA, with Weber fraction (w) values as the 

DV, revealed a main effect of Dimension (F(1.42, 135.06) = 34.66; p < .001, hp
2 = .27), a main 

effect of Age (F(8, 95) = 5.47, p < .001, hp
2 = .32), but no Dimension x Age interaction 

(F(11.37, 135.06) = 0.66; p = .78, hp
2 = .05). As shown in Table 2, we found average w values 

that replicate previously established patterns in the literature (e.g., Odic, 2018; Halberda & 

Feigenson, 2008; Halberda, Ly, Wilmer, Naiman, & Germine, 2012): Number w was 

significantly worse than that of Area and Length, but in the correct range given previous findings 

in these age groups, and there were general improvements with age even when treated 

continuously. 

Next, we examined Estimation Task performance, focusing on both estimation accuracy 

and estimation variability as dependent variables. To account for instances in which participants 

may have taken a random guess, we excluded estimates that were more than 3 standard 

deviations away from each participant’s mean guess and below 2. We find that, with the 

exception of Area Estimation, there are no correlations between estimation accuracy and 

estimation variability, even when controlling for age and even when excluding adults: Area 

(rhoadults = -.38, n = 104, p < .001; rhonoadults = -.41, n = 90, p < .001), Number (rhoadults = .14, n = 

104, p = .14; rhonoadults = .031, n = 90, p = .77), Length (rhoadults = -.13, n = 104, p = .18; 
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rhonoadults = -.18, n = 90, p = .09). In other words, these two signatures of estimation performance 

index separate abilities, at least in the case of Length and Number. Because of this, we report all 

estimation accuracy vs. variability analyses separately below. 

A 3 (Dimension: Number, Length, Area) x 9 (Age group: 5, 6, 7, 8, 9, 10, 11, 12, 24) 

Greenhouse-Geisser corrected Mixed-Measures ANOVA with estimation accuracy as the DV 

revealed a main effect of Dimension (F(1.99, 189.90) = 95.73; p < .001, hp
2 = .50), a main effect 

of Age (F(8, 95) = 3.21; p = .003, hp
2 = .21), but no significant Dimension x Age interaction 

(F(15.99, 189.90) = 1.29; p = .21, hp
2 = .10). As can be seen in Table 3, in contrast to the 

Discrimination Task, participants had the best estimation accuracy on the Number estimation 

trials and the worst estimation accuracy on the Area estimation trials, with Length in-between. 

Additionally, across all three dimensions estimation accuracy improved (i.e., approached 0) with 

age (see also Figure 4).  

 In addition, a 3 (Dimension: Number, Length, Area) x 9 (Age group: 5, 6, 7, 8, 9, 10, 11, 

12, 24) Greenhouse-Geisser corrected Mixed-Level ANOVA with estimation variability as the 

DV revealed a main effect of Dimension (F(1.79, 169.67) = 69.84; p < .001, hp
2 = .42), a main 

effect of Age (F(8, 95) = 6.66; p < .001, hp
2 = .36), but no significant Dimension x Age 

interaction (F(14.29, 169.67) = 0.74; p = .73, hp
2 = .06). As can be seen in Figure 4, in the case 

of estimation accuracy, we also found the best performance (i.e., lowest variability) for Number 

estimation trials, and the worst performance for Area estimation trials, with Length in the 

middle, when examining estimation variability (Table 3).  

Together, these results stand in strong contrast to the Discrimination results: while 

children and adults generally struggled the most with Number discrimination, they were the least 

accurate and least precise for Area and Length estimation. However, these results do not yet 
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answer the question of whether the interface emerges and peaks at the same time for the three 

dimensions, or if it is built in a piecemeal fashion. To understand that, we next calculate the 

approximate age of maturity for each dimension, followed by examining correlations in 

estimation performance across the three dimensions.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3. Estimation performance across age. Note that all correlations with Age are Spearman 
rho values because both estimation accuracy and variability are non-normally distributed. As 
described in the Results section, a corresponds to the bottom asymptote (the minimum value 
with development), k to the top asymptote (the maximum value with development), m to the age 
at which development has reached roughly halfway, and b to the rate of development. Because 
lower estimation accuracy and variability values are better, growth rates for these dependent 
variables are negative.  
 

Age of Maturity.  
 

To better understand precisely when each dimension reaches its developmental plateau, 

we modelled the discrimination and estimation data through a standard logistic growth model 

(e.g., Kersey, Braham, Csumitta, Libertus, & Cantlon, 2018; Odic, 2018; Marceau, Ram, Houts, 

Grimm, & Susman, 2011; Ram & Grimm, 2015),  

Estimation Task 

 Dimension Mean SD Correlations  
with Age 

Growth Modelling 

a k m b Age of 
Maturity 

A
cc

ur
ac

y Number 0.24 0.19 -.19^ 0.21 1 4.07 -1.1 6.52 

Length 0.35 0.21 -.36** 0.20 1 2.80 -0.24 14.08 

Area 0.58 0.24 -.32** 0.64 0.42 11.72 -0.57 17.06 

V
ar

ia
bi

lit
y Number 0.17 0.10 -.60** 0.12 1 2.45 -0.51 11.21 

Length 0.27 0.11 -.53** 0.18 1 1.55 -0.32 15.28 

Area 0.31 0.13 -.41** 0.23 1 1.51 -0.32 15.04 

** p < .01     
^ p = .06 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(𝑎𝑐𝑐) = 	𝑎 +	
𝑘 − 𝑎

1 + e:;(<=>:?)
 

 
where a is the bottom asymptote, k is the top asymptote, b is the rate of growth, and m is the 

midpoint or age between onset and end of development (see Table 2 and Table 3). In the case of 

discrimination accuracy, the top asymptote (k) represents the end-point of development, whereas 

in the case of estimation accuracy and estimation variability the bottom asymptote (a) represents 

the end-point of development, since lower values are indicative of better performance. Although 

this model has four free parameters, in practice we would fix one (either k or a) depending on 

whether growth grows towards a positive asymptote (e.g., accuracy) or towards a negative 

asymptote (e.g., estimation accuracy and variability). We estimated these parameters by fitting 

the above equation to the age group level, through R’s mle2 function.  

As shown in Figure 3 and 4, we found that the logistic growth model was an excellent fit 

to the data across dimensions and tasks (Table 2 and 3)2. Given the fit parameters, we can 

estimate the approximate age of maturity by checking at what age the model estimates that the 

data is within 5% of the adult-like peak level of performance (see Odic, 2018).  

 

 

 

																																																								
2	The one exception to this was the model’s fit for area estimation accuracy, where we found 
issues with getting the model to converge. This may be a result of area slopes showing bimodal 
patterns of development, as can be seen in Figure 4. An alternative possibility is that we captured 
different types of strategies across development used to estimate in area. This could also reflect 
differences in how the task was understood. Thus, we interpret our results lightly for this 
dimension.	
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Figure 3. Discrimination performance modeled across development and dimension. The bold 
dots indicate group means, while the faded dots are individual participants. Lines indicate the 
best fit logistic growth models. For aesthetics, the figures only show data up to age 28.  
 

 The estimated approximate age of maturity for each of the three dimensions for both 

tasks is shown in Table 2 and 3. Replicating previous results (e.g., Odic, 2018), we find that—in 

the case of Discrimination accuracy—Number reaches maturity last in middle adolescence (M = 

16;1, SE = 2.31) compared to Length (M = 12;0, SE = 0.99) and Area (M = 7;1, SE = 1.48), 

which peak around the elementary school years (see Figure 3). This difference can be tested 

statistically through Fisher’s Z test. We find that the age of maturity for Number is significantly 

different from Length (Z = 3.29, p < .001) and Area (Z = 2.77, p < .01) but that Area and Length 

peak at the same age (Z = 1.63, p = .10). 

In contrast to Discrimination, we find the reverse pattern in Estimation accuracy and 

variability. As can be seen in Table 3 and Figure 4, estimation accuracy for Number peaks very 

early (M = 6;6, SE = 0.63), followed by Length (M = 14;0, SE = 0.97; Z = 6.53, p < .001) and 
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Area (M = 17;0, SE = 1.58; Z = 6.20, p < .001), which are, in turn, not significantly different 

from each other (Z = 1.60, p = .11). We find the same pattern of results for estimation variability, 

with Number peaking much sooner than Length and Area.  

Figure 4. Estimation performance modeled across development and dimension. The bold dots 
indicate group means, while the faded dots are individual participants. Lines indicate the best fit 
logistic growth models. For aesthetics, the figures only show data up to age 28. 

 
These results suggest that the interface between number words and perceptual quantity is 

not built in piecemeal, as the age of maturity for Area and Length are reached at roughly the 

same time (Table 3). However, these findings also suggest that Number holds a privileged status 

within this interface, as it peaks significantly before the other dimensions. In the final section, we 

further examine whether the interface between these dimensions and language is domain-specific 

or domain-general by turning to correlations. 
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Correlations Within and Across Tasks.  
 

To examine whether our perceptual sense of number, length, and area are domain-

general, we examined correlations of w values while controlling for age (because the 

heterogeneous age of the adults may disproportionally affect the correlation coefficients, we 

report the data both with and without adults included). As positive correlations can be induced by 

task-general aspects, such as guessing behaviour due to fatigue, we focused primarily on w, 

which statistically removes the effects of guessing, rather than Discrimination accuracy.  

We found that Number and Length w values were not significantly correlated (rhoadults = -

.01, n = 104, p = .90), nor was Number w correlated with Area w (rhoadults = .05, n = 104, p = 

.64). However, we found that there was a significant correlation between the Length and Area w 

values (rhoadults = .25, n = 104, p = .008). We find the same effects, when adults are excluded: 

Number w does not correlate with Length w (rhonoadults = -.02, n = 90, p = .85) nor Area w 

(rhonoadults = .03, n = 90, p = .75), but Length w and Area w are correlated (rhonoadults = .33, n = 

90, p = .001). These results replicate previous work suggesting a domain-specific number sense 

(e.g., Odic, 2018; Odic et al., 2013), and further new insights about the correlation between 

Length and Area perception, which has not been previously tested.   

In contrast, we found that estimation accuracy was significantly correlated across all 

dimensions when adults were excluded: Number and Length (rhonoadults = .26, n = 90, p = .01), 

Number and Area (rhonoadults = .33, n = 90, p = .001), and Length and Area (rhonoadults = .46, n = 

90, p < .001). With adults, included in the analyses, we find the same effects with Number and 

Area (rhoadults = .32, n = 104, p < .001) and Length and Area (rhoadults = .47, n = 104, p = < .001), 

and a marginal significance between Number and Length (rhoadults = .17, n = 104, p = .08). When 

examining estimation variability, we find that performance was significantly correlated across all 
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dimensions, with and without adults: Number and Length (rhoadults = .31, n = 104, p < .001; 

rhonoadults = .32, n = 90, p = .002), Number and Area (rhoadults = .35, n = 104, p < .001; rhonoadults 

= .35, n = 90, p < .001), and Length and Area (rhoadults = .46, n = 104, p < .001; rhonoadults = .49, 

n = 90, p = < .001). 

Lastly, we explored whether there were any relationships across the two tasks. We found 

that when controlling for age-related improvements, discrimination accuracy did not correlate 

with estimation accuracy in Number (rhoadults = -.07, n = 104, p = .49; rhonoadults = -.08, n = 90, p 

= .43), Length (rhoadults = -.05, n = 104, p = .65; rhonoadults = -.13, n = 90, p = .24), nor Area 

(rhoadults = -.07, n = 104, p = .51; rhonoadults = -.12, n = 90, p = .28). These results replicated 

when examining w and estimation accuracy: Number (rhoadults = .03, n = 104, p = .76; rhonoadults 

= .01, n = 90, p = .89), Length (rhoadults = -.01, n = 104, p = .93; rhonoadults = .05, n = 90, p = 

.66), Area (rhoadults = .03, n = 104, p = .79; rhonoadults = .09, n = 90, p = .42). 

Likewise, we find no significant correlation between discrimination accuracy and 

estimation variability in Length (rhoadults = -.03, n = 104, p = .74; rhonoadults = -.02, n = 90, p = 

.84) nor Area (rhoadults = -.06, n = 104, p = .54; rhonoadults = -.06, n = 90, p = .57), but we do find 

a correlation between these factors in Number (rhoadults = -.20, n = 104, p = .04; rhonoadults = -.27, 

n = 90, p = .01). We find a similar pattern of results when examining the relationship between w 

values and estimation variability: no significant correlation in Length (rhoadults = -.001, n = 104, 

p = .99; rhonoadults = -.02, n = 90, p = .84) nor Area (rhoadults = .01, n = 104, p = .90; rhonoadults = 

.009, n = 90, p = .94), and a significant correlation between these factors in Number, but only 

when adults were excluded (rhoadults = .18, n = 104, p = .07; rhonoadults = .24, n = 90, p = .02). 

These findings largely suggest that the perceptual acuity of these intuitive representations did not 
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predict participants’ abilities to interface language (i.e., number words) with them, with the 

apparent exception of Number estimation variability.  

General Discussion 

By their fifth birthday, children have formed an interface between their intuitive, 

approximate sense of number and number words. This thesis examined when and how this 

interface is extended to other perceptual magnitudes: is the interface formed at once for all 

dimensions (e.g., number, length, and area) due to a domain-general structure mapping process, 

or is the interface formed in a slow, piecemeal fashion due to associative mapping between 

number words and each independent dimension?  

Under the associative mapping account, children should learn to interface precise number 

words with each dimension separately, through independent experiences of how a number word, 

like “five,” maps to a particular representation of dots (number), lines (length), or blobs (area). 

Hence, we should expect that: (1) children form the interface for each dimension at different 

times (in proportion to the relative experience they gain with number, length, and area in their 

daily lives), and (2) that the quality of the interface for one dimension should not predict the 

quality of another. Contrary to this—and consistent with the structure mapping account—our 

results show that, unlike in discrimination, number, length, and area estimation are strongly 

correlated and show a similar age of maturation in both estimation accuracy and variability. At 

the same time, however, we find that number estimation abilities peak significantly sooner 

compared to length and area, suggesting a privileged status for children’s interface between 

number words and the Approximate Number System (ANS). Moreover, the earlier emergence of 

the interface with number is not merely due to inherent differences at the perceptual level, as in 

discrimination, number acuity peaks last. These results hold a number of important implications 
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for our understanding of how our continuous and universal perceptual sense of magnitude 

interacts with human-specific and culturally acquired number words.  

First, the asymmetry in the age of maturation for number discrimination vs. estimation 

suggests an important and unique status for the interface between number words and the ANS 

throughout early development. Why do number estimation abilities peak so much sooner than the 

ANS? One possibility explaining this asymmetry is that, despite the higher perceptual noise and 

later maturation, ANS representations are highly salient and lend themselves naturally to 

children forming categorical number word labels over them. Consistent with this idea, work by 

Ferrigno, Jara-Ettinger, Piantadosi, and Cantlon (2017) has shown that adults, children, and even 

monkeys will spontaneously choose to categorize stimuli by number over other dimensions (e.g., 

size, area; see also Cantlon, Safford, & Brannon, 2010), and that these patterns are observed in 

human cultures with both low- and high-numeracy knowledge (i.e., Tsimane’ adults in Bolivia 

and U.S. adults, respectively). Thus, number could be a naturally salient, prominent dimension, 

independent of species or culture (see also Cantlon & Brannon, 2007a, 2007b; Dehaene, 

Dehaene-Lambertz, & Cohen, 1998; Boysen, Berntson, Hannan, & Cacioppo, 1996; Xu & 

Spelke, 2000), contributing to the earlier emergence its interface with precise and discrete 

number words.  

Alternatively, the interface with number may peak first as a natural by-product of 

experience and practice. After all, children are first introduced to number words through 

counting (Sarnecka & Carey, 2008; Wynn, 1992; Benoit et al., 2004; Wiese, 2007; Le Corre & 

Carey, 2007), and it is not until much later in school that they begin to learn about units of 

measurement in length and area (e.g., cm, mm2). Thus, by the time children reach age five, they 

may have already accumulated more experience with reasoning in number relative to other 
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dimensions, allowing them to map number words onto their ANS significantly sooner. One 

potential way of disentangling these two hypotheses would be to provide children with number 

estimation units that they are not well practiced with, such as with a set of three dots labelled as 

“a toma”. If children’s number estimation abilities are reduced in this task, we would have clear 

evidence that the earlier peak of this interface between the ANS and number words is due to 

experience and practice in the number domain with single object units. Alternatively, observing a 

continued benefit for number estimation in this task would point towards a generally better 

interface between number words and the ANS, independent of practice.  

Second, despite the fact that the interface between the ANS and number words may be 

privileged, the high correlations amongst all three dimensions in estimation accuracy and 

variability demonstrate that some common mechanism underlies children and adults’ abilities to 

map number words to their perceptual magnitude representations. As a result, our data have 

strong implications for theories of how our perceptual representations of quantity interface with 

number words.  

To date, two major theories have been proposed to explain how a structure mapped 

interface may itself function. Under the first, children learn what portions of their internal 

perceptual representations correspond to particular units (e.g., mapping this much of their 

internal perception of length to 1 unit of length), then subsequently perform ratio comparisons 

between their mapping to that unit and their observations (Krantz, 1972; Stevens, 1946). Thus, a 

child should respond with “five” when shown an object that appears to be 5 times longer than the 

memorized unit mapped to her representation of length. This straightforward ratio computation 

could explain why we observe a common age of maturation for area and length: once a child has 

learned now to estimate through ratio computation for number, they could straightforwardly 
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extend that knowledge to other domains. At the same time, however, ratio computations should 

be localized within each perceptual system itself, making it unclear why we observed strong 

correlations in estimation while finding few in discrimination. While some previous work has 

suggested that ratio computations may themselves be domain-general and bridge across 

perceptual domains (e.g., Bonn & Cantlon, 2017), future work is required to empirically validate 

this assumption.  

The alternative view for how structure mapping allows for the interface between number 

words and the ANS is that observers form a categorical “response grid”, learning which 

boundaries of the ANS representations correspond to each number word, much like children 

learn the boundaries of the continuous colour space that correspond to “yellow”, “orange”, 

“blue”, etc. (Izard & Dehaene, 2008; Sullivan & Barner, 2014). Crucially, the child does not 

need to learn the boundary for each and every number word: once they realize that a particular 

range of ANS values all correspond to the same number word, the child can assume that each 

number word captures an equal amount of the internal ANS scale, allowing them to extend their 

response grid to portions of the ANS that they have rarely or never experienced. Under this view, 

once children have formed a response grid for the ANS and number words, they could extend 

this logic to other perceptual dimensions of quantity (e.g., length, area) by virtue of the shared 

representational format that underlies them (e.g., linear dimensions, where higher values 

represent greater quantities). This may account for why we then find the near-simultaneous 

emergence of the interface with length and area following the interface with number; and 

because the response grid is itself fluid and susceptible to internal noise (Izard & Dehaene, 

2008), this could explain the strong correlations we see between the three dimensions in the 

estimation task. 
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Although future work is required to formally disentangle how the interface between 

number words and perceptual magnitudes functions (i.e., via ratio comparison or response grids), 

the current data suggests that any model of this process that functions for number representations 

must be able to easily extend to other perceptual dimensions, as well. 

Thus far, we have only discussed the implications of our data to the literature on 

estimation, but importantly our data also replicate and extend the existing work on the nature of 

perceptual magnitude representations in discrimination tasks. First, we replicate previous work 

showing that number peaks significantly later and is uncorrelated with our perception of area and 

length (Odic et al., 2013; Odic, 2018), suggesting that the ANS is a domain-specific system for 

representing number. At the same time, this work is the first to show a correlation between 

length and area perception, which suggests some shared component within these dimensions. 

This is worthy of further research, as it is unclear whether the observed correlations stem from 

actually shared domain-general perceptual representations of quantity (e.g., Leibovich et al., 

2017; Lourenco, 2015), or whether they emerge due to some shared low-level features used to 

extract length and area information from a visual display. For example, some previous work has 

shown that observers sometimes compute area in a 2D space by taking the diameter or radius of 

the object as a proxy (Nachmias, 2008). Thus, one possibility is that a correlation between 

dimensions is observed when participants elect to use length as a partial proxy for area. 

Nevertheless, one of the most important findings of this thesis are that number representations 

are not correlated with neither length nor area in discrimination, but are strongly correlated in 

estimation, suggesting that a shared mechanism—outside of the domain of perception—underlies 

the interface of these representations with number words.  
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Taken together, these findings provide several novel insights about language and 

perception. While we share with other animals several intuitive perceptual capacities—including 

an intuitive ability to reason about quantity—we can think and talk about our representations in 

ways that far exceed that of our animal counterparts. Understanding when and how children map 

number words to a broader spectrum of quantity representations—beyond just number—is 

critical not only to our understanding of development, but because we, as adults, engage in these 

complex reasoning abilities every day. Furthermore, examining the similarities and differences in 

the acquisition of this interface across a broad range of dimensions—which have previously not 

been tested—contributes to our theories of how children learn to navigate and reason about their 

rich perceptual worlds.  
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