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Abstract

The structure of cellular networks is under disruptive innovations as a response to the growth
of data traffic demands and the emergence of new applications. On the one hand, cellular
networks are evolving into complex infrastructures comprising of several tiers of base stations
(BS), known as heterogenous cellular networks (HetNets). On the other hand, multiple-input
multiple-output (MIMO) multi-stream (multiplexing) communications are deployed to im-
prove the communication reliability and increase the transmission rate. A comprehensive
network-level analysis of MIMO multiplexing HetNets in terms of influential system param-
eters is therefore required. This dissertation focuses on this matter and studies the network
performance of several prominent MIMO multiplexing HetNets by adopting the powerful
tool of stochastic geometry.

Unfortunately, the current literature lacks an accurate definition of the coverage prob-
ability in multiplexing systems, often considers simplistic cell association (CA) scenarios,
and commonly provides the analytical results in numerically expensive forms. In general,
these drawbacks render complexities in performance evaluation and hinder scalable system
design. With these regards, this thesis aims at 1) analyzing the coverage performance from
a link-level perspective; 2) considering the maximum signal-to-interference-plus-noise ratio
(max-SINR) CA rule; and 3) deriving the network performance through easy-to-compute
formulas.

Our analytical results are insightful and permits us to further explore various practical
design issues. Specifically, thanks to compact formats and manageable computational costs

of our analytical results, we are able to 1) comprehensively study the correlation across
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Abstract

data streams of a given communication link, and prove that this correlation undermines
the coverage performance; 2) prove that in MIMO multiplexing HetNets growing the mul-
tiplexing gains reduces the coverage probability, thus diversity systems stands as the best
option to maximize coverage probability; 3) investigate the relationship between spectral ef-
ficiency, multiplexing gains, and densification from a network-level perspective; 4) optimize
the network in order to maximize aggregated multiplexing gains under prescribed coverage
loss against the best possible coverage performance; and 5) explore the spectral efficiency

optimization of the network subject to prescribed constraints.
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Lay Summary

In recent years, the demands for wireless data traffic are exponentially growing thanks to the
popularity of mobile video streaming and the proliferation of the data-hungry applications.
Yet it is necessary to guarantee reliability of the data communications and the quality of
service delivery. Accordingly, a dramatic shift in the design and deployment of cellular
networks is taking place, which calls for the development of powerful mathematical tools
that enable efficient, accurate, and scalable analysis and design of the network. These
concerns are among the main focuses of this thesis.

We employ the mathematical tool of stochastic geometry to model and analyze the cel-
lular networks in an analytically tractable approach. We then vigorously investigate various
performance metrics of cellular networks that engineers require in order to properly design

the network. We explore several of such practical design issues and provide several guidelines.
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Chapter 1

Introduction

Cellular networks are evolving into complex infrastructures by the deployment of diversified
classes of base stations (BSs) with distinct technological and operational components. A
typical 3G/4G cellular network comprises of the traditional tower-mounted macro BSs that
are suitable for long-range communication and wide-area coverage. To stretch the coverage
area of the network and also to increase the network capacity specially at hot-spots, e.g.,
shopping malls, stadiums, train stations, and airports, these standards permit the installation
of operator-managed pico BSs and distributed antenna ports [2, 3]. On the other hand,
short-range femto cells are often installed by the end users to eliminate the dead zones and
gain much higher transmission rate [4]. This sophisticated structure of the current cellular
networks is coined as a heterogeneous cellular network (HetNet); see Fig. 1.1 that illustrates
an exemplary picture of HetNet, comprising of three macro cells overlayed with many pico
cells, femto cells, and distributed antenna ports. On the other hand, to increase the capacity
of cellular network several other disruptive technologies including multiple-input multiple-
output (MIMO) communications [5], massive MIMO and mmWave communications [3, 6, 7],
coordinated communications [8], and proximity aware device-to-device (D2D) networks [9]
are introduced. Witnessing the crushing demands for mobile data traffic caused by the
proliferation of data-hungry devices and applications, the evolution toward heterogeneity
will accelerate.

Meanwhile, backed by decades of thorough investigations, MIMO communications have
thus far been embodied in multiple IEEE 802.11 standards as well as in 3GPP LTE-Advanced

[5, 10, 11]. Pervasive exploitations of sophisticated MIMO technologies in conjunction with
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Figure 1.1: An exemplary picture of heterogenous cellular network (HetNet).

occurring densification in HetNets makes MIMO HetNet a key enabling communication
paradigm. It is therefore envisioned that MIMO HetNets can smoothly deal with the occur-
ring deluge of traffic demands [12], and thus are incorporated in the design and implemen-
tation of 4G/5G standards and beyond [3, 6].

The reason that MIMO communications are becoming so imperative in current and fu-
ture cellular technologies should not however be surprising. It is in fact well established
that such technologies are able to effectively harness diversity and multiplexing potentials of
the wireless medium, attaining a colossal capacity (the maximum achievable data rate) gain
as well as highly reliable communications (low symbol error rate) [13]. Importantly, these
gains are achievable without necessitating higher transmission power and/or bigger chunk
of wireless spectrum—which are usually limited in dense deployments as well as small-cells
and D2D networks—compared to the single-antenna, a.k.a. SISO, counterpart systems [14].
In effect, the tremendous potentials of MIMO technologies can be comprehended through
the decomposition of a point-to-point communication link by the aid of the singular value
decomposition (SVD) method. In fading environments, this permits the simultaneous trans-

missions of as many streams as the minimum number of antennas that the transceivers at
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either ends of the link are equipped with [15]. Consequently, multi-stream MIMO, or MIMO
multiplexing, systems—whereby at each time instance a number of independent streams of
data are transmitted on each communication link—are attractive for current and upcoming
generations of high-capacity cellular systems.

Nevertheless, in the state-of-the-art research, there are several shortcomings regarding
comprehensive performance evaluation of MIMO multiplexing systems from a network-level
perspective [5]. Network-wise performance is of utmost importance when it comes to design
and implementation of large-scale communication systems with millions of nodes. In fact,
while in a single-cell system allocating the system resources is rather well-established, the
same cannot be concluded from a network-wise performance context. For instance, in a
single-cell system, decisions such as the number of antennas to be switched on/off, the number
of user equipments (UEs) to be concurrently served, or choosing between multiplexing (using
antennas for increasing data rate) and diversity (using antennas for increasing reliability) in
order to maximize the capacity or similar objective functions are well investigated [5, 14,
16, 17], whereas in a multi-cell network, such decisions need sophisticated solutions based
on network-wise performance metrics. In fact, while increasing the number of transmitted
data streams in a single-cell system can be appealing and even locally optimal, it increases
the inter-cell interference (ICI), almost with the same order, which could offset the effect of
the former. It is, therefore, debatable whether strategies yielding higher capacity or better
coverage from the perspective of local decisions result also in the network-wise optimality. We
should also emphasize that even under the clustered-based solution, coordinated multi-point
(CoMP) and networked MIMO [§], it is shown that the ultimate performance is quite sensitive
to out-of-cluster interference [18, 19], so that regardless of the growth of the transmission
power at the BSs the capacity stays flattened.

In light of the influential impact of ICI on the performance of MIMO HetNets, this
dissertation is chiefly concerned with analyzing MIMO multiplexing systems under ICI.

This introductory chapter will start in Section 1.1 by reviewing key aspects of cellular net-
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works, and the common modelling techniques researchers adopt to analyze the performance
of cellular networks. We further pinpoint multiple drawbacks existing in the evaluation of
MIMO communications under conventional cellular models. In Section 1.2, we introduce
stochastic geometry and review important aspects of this theory that are relevant to the
scope of this dissertation. In Section 1.3, we provide a comprehensive literature review.
This section further discusses the research gaps we have spotted in the current literature,
which serve as the main motivations behind this dissertation. Section 1.4 enumerates the

key contributions of this thesis. Finally, the outline of the thesis is provided in Section 1.5.

1.1 MIMO Cellular Networks: Modelling and
Analytical Approaches

In its simplest form, a wireless medium attenuates the transmitted signals quite proportional
to the transmitter-receiver distance, what is known as distance-dependent path loss attenu-
ation [14]. Because of path-loss attenuation, beyond a certain distance from the transmitter
it becomes almost insurmountable for the receiver to distinguish information-bearing signals
from the background noise. While it stands as an unfavorable outcome, this same phe-
nomenon results in the desirable effect that two transmitters that are sufficiently far apart
in space impose insignificant interference on each other. This forms the basis of frequency
reuse in cellular networks, which permits the division of the service area into many disjoint
cells. Therefore, although each cell is served by one BS, the time-frequency resources can be
reused across adjacent cells [16].

However, other impairments of wireless channels, e.g., fading and ICI, restricts the cover-
age area of each cell. ICI is the aggregate impact of many interferers located at the adjacent
cells utilizing the same time-frequency resources. Therefore, because of fading and ICI,
network factors such as the locations of BSs, their transmit strategies (e.g., power alloca-

tion, sleep mode, and load balancing), the propagation environment, and also the receiver
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structure (e.g., interference cancellation, MIMO scheme, and the like) are influential in un-
derstanding the network-level performance of cellular infrastructures.
In the following, we review various approaches that are commonly adopted in research

communities to investigate the network-level performance.

1.1.1 Conventional Models for Cellular Networks

In a cellular system, a group of adjacent BSs attempt to provide seamless connection to a
set of UEs. Commonly ecach UE is associated to only one BS [14, 16] as the serving BS.
Nevertheless, via more sophisticated schemes such as coordinated communications or cloud
radio access networks (C-RAN) [6, 20] it is possible to simultaneously transmit data to a

single UE from several BSs.

Remark 1.1.1. In this dissertation, we do not focus on coordinated communications and
always assume that a UFE receives information from one BS in each communication session.
We shall however emphasize that the contributions of the thesis is straightforwardly appli-
cable for those scenarios that each UE chooses the most proper BS/antenna ports from a
set of candidate BSs. This scheme also falls into a BS cooperation strategqy often referred

transmission point selection [21] or dynamic cell selection [20, 22].

In general, cell association (CA) is required in order to associate each UE to the best pos-
sible BS before the information transmission starts. CA could be as simple as connecting to
the nearest BS to UEs or can be accomplished based on sophisticated optimization targeting
a well-defined local or global objective function, for example, maximizing the net scheduled
data rate (or a utility function) [23, 24, 25, 26]. Regardless of the conducted approach, in
general one should expect that the CA procedure tessellates the network coverage area into
several individual non-overlapping cells, each of which containing the potential positions of
associated ULs.

Nota that in order to analyze the cellular systems, conventionally the traits of CA is
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Figure 1.2: A one dimension Wyner model for cellular network.

represented via idealized layouts including Wayner model and hexagonal model [14, 16]. We

briefly review these models in the following.

Wyner model

According to 1-d Wyner model [27], BSs are lined up horizontally at a fixed distance D, and
each cell covers a rectangular coverage area as shown in Fig. 1.2. Obviously, this model is very
simplistic, and may only be representable of a very narrow application of practical cellular
networks. Further, under this topology, the interference is modelled quite unsophisticatedly
by assuming that the victim UE, located in the coverage cell of the focused BS, realizes
interference merely from its 1 or 2 immediate neighboring cells. The main reason for such a
simplistic interference model in the Wyner model is the desire for solid information-theoretic
analysis of cellular networks [28, 29]. Nevertheless, this approach is quite simplistic when it
comes to providing a comprehensive understanding of the coverage probability and possible

effects of CA mechanism.

Hexagonal Grid Model

The hexagonal grid model is regularly adopted to model the cellular networks [14, 16] to
evaluate the performance of cellular systems. As also seen from Fig. 1.3, in this model, BS
locations are in the centers of hexagonal grids. To manage the complexity of the model, it is
a common practice to limit the model to 1 or 2 layers of BSs around the origin, resulting in
a 7 BSs grid or 19 BSs grid system. Basically, analyzing statistics of signal-to-interference-
plus-noise ratio (SINR) under this model is complicated and in many cases mathematically

unamenable. Therefore, researchers often resort to extensive, time consuming simulations to
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Figure 1.3: Hexagonal grid model for BS locations.

evaluate the coverage performance. While hardly being scalable, these sorts of simulations
are prone to bugs and are inherently limited in their scope as it is hard to derive wide-range
insights/guidelines required for adaptive system design. Note that one always benefits from
availability of easily evaluated formulas of the network performance at least for sanity check

of simulation and also tuning simulation parameters.

1.1.2 Performance Evaluation under Conventional Models

In order to evaluate the performance of cellular networks we need to formulate the SINR, as
any other wireless communication networks [14, 16]. As a quintessential scenario, consider
the cellular system shown in Fig. 1.4 consisting of N BSs, BSi, BSs,...BSy, using the
same time-frequency resources. Assume we are interested in measuring the performance
of a targeted UE located at the origin, which is assumed to be associated to BS; located
at distance r;. Due to wireless channel impact, the signal transmitted from the nth BS,

B,,, undergoes an attenuation before impinging the UE’s receive antenna. In the simplest
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Figure 1.4: A cellular network comprising of supporting BS and interfering BSs.

form, the received power at the UE can be formulated as P,, = Ph,r. %, where P is the

n
BS transmit power, which is assumed to be fixed and the same across BSs, « € (2,8) is the
path-loss exponent, 7, is the distance of the interfering BS B, from the UE and h,, denotes
the random attenuation present in the channel which includes small-scale fading or possibly

large-scale shadowing. Hence, the SINR at the victim UE is given as

Phﬂ“l_a
SINR = e : (1.1)

02+ Y Phyr;®

n=2

where o2 is the additive white Gaussian noise (AWGN) power at the receiver. In this formula,
the term % Ph,r;“ is actually the ICI, which, among other things, depends on the location
of the intzzerers. One is then able to derive the distribution and various statistics of the
SINR. One essential metric to describe the efficiency of the cellular network is the coverage

probability, which by definition is the probability that the SINR (1.1) stays above a given
threshold 8 > 0 [1, 14], i.e.,

>0 (1.2)
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Remark 1.1.2 (Beyond Coverage Analysis). From the definition (1.2), it is apparent
that the coverage probability is actually equivalent to the complementary cumulative distribu-
tion function (CCDF) of the SINR, and having it specified one is then able to derive other
appealing performance metrics such as Ergodic capacity, effective capacity, energy efficiency,
and spectral efficiency [14], [30]. This is because these performance metrics are functions of
the CCDF of SINR. For example the Ergodic capacity, C, is related to the CCDF of SINR

through

C =Elog (1 + SINR) = / fg:’) dv. (1.3)

v>0

Furthermore, for given delay exponent 8 € R™ the effective capacity can be evaluated

-1
(o) = TIOg Ee 00+SINR) — 1 _ / c('u_% — 1)dw. (1.4)
v<0<1
Consequently, although throughout the thesis we often explore the coverage performance, it

is straightforward to adopt the analysis to evaluate these performance metrics.

Note that assuming ;s are fixed/given, knowing the distribution of the fading is nearly
sufficient to calculate the coverage probability. For the case of exponential distribution such
a calculation is straightforward. However, this evaluation of the coverage probability is
inherently limited and merely serves a particular scenario, e.g., the coverage probability on
the cell boundary. On the other hand, if one desires to evaluate the coverage performance in

a more generic setup, it is recommended to adjust the calculation, at least, as the following

Ph
c= / / 17’1 >0 E(r1,ray ..., ry)dry.dry, (1.5)
o2+ Z Phyr e
=2
where Z(rq, 79, ...,7,) is a generic function that can capture the distribution of BSs with ac-

cordance to the hexagonal layout and implemented frequency reuse pattern. In this case, the

coverage probability (1.5) is valid for any possible position of UEs in the cell and also any be-

9
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havior of BSs (e.g., sleep mode) that affects distances through the function Z(ry,rq, ..., 7).
Nevertheless, this analysis is cumbersome and difficult to proceed. Furthermore, the com-
plexity of this approach dramatically increases for MIMO systems, which admit substantially

more complex SINR formulas.

1.1.3 Is Evaluation of MIMO Communications Performance

under Conventional Models Holistic?

Using analytical tools of random matrix theory, the performance evaluation of MIMO mul-
tiplexing systems is broadly focused and discussed in the literature [15, 31, 32]. Here we are
not to review them as the literature is broad and is not in the main interest of this disserta-
tion. Yet, we ought to highlight that the main focus of such literature has often been on the
point-to-point—what we call isolated—scenarios. Although significant in its own right, such
literature overlooks the incorporation of ICI that is imposed by other active communication
links. As the dominant practice in previous cellular generations (2G/3G) recommended ag-
gressive frequency reuse, it was quite acceptable to assume that interference is secondary
factor compared to the other aspects of the communication systems such as intra-cell inter-
ference, fading, pecoding/decoding procedures, the availability of channel state information
(CSI) at the receiver/transmitter, and the like. But, now that the trends of network con-
figuration advocates heterogeneity, unprecedented densification, and aggressive frequency
reuse, the impact of interference becomes more dominant and should be incorporated in the
analysis.

Evaluation of the capacity and symbol error rate/probability (SEP) have been the main
trends of the research community in order to understand the impact of interference on the
performance of MIMO systems [33, 34, 35]. Nevertheless, a number of pressing drawbacks

can be spotted in this literature:

e The main scopes are mainly on diversity systems, e.g, single-stream MIMO-SVD

10
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communications, whereby in each time slot only one stream of data is transmitted
[33, 34, 35]. Generally, it is not straightforward to extend the method and analysis of
this literature to the cases of multi-stream (multiplexing) MIMO systems.? One reason
is that in MIMO multiplexing systems the impinged signal quality across received data

streams are statistically correlated.

e Generally, a handful of interferers — usually by neglecting the impact of path-loss
attenuations and by assuming equal interference power on the victim receiver — are
considered. This network model is inaccurate, and even far from the simplistic setup
provided in Section 1.1.2. Thus, this approach cannot correctly model recent trends
of cellular networks including HetNets. Furthermore, the existence of ICI, which itself
behaves randomly, plays an integral role in inducing correlation among signals in MIMO
multiplexing systems. This phenomenon substantially adds to the complexity of the

analysis of multi-stream MIMO HetNets.

e Analytical results are provided in very complex forms of determinants of matrices the
entries of which are special mathematical functions (e.g., hypergeometric functions)
[33, 37, 38]. Besides restricting the scalability, such mathematical complexities hamper
the applicability of the results to the practical cases where path-loss attenuations of

the interfering signals are not deterministic, e.g., cellular networks.

e Even for such a simplified /unrealistic interference model, the capacity of multiplexing
systems is actually considered as the main performance metric, and the evaluation
of the coverage probability is occasionally focused; see, e.g., [39]. To understand the
coverage probability in MIMO multiplexing systems, one needs to evaluate the CCDF
of the scheduled data rate across data streams, which compared to the SISO systems

(see Section 1.1.2) is prohibitively complex even for the simplistic isolated scenario.

We should, on the other hand, highlight that these drawbacks are becoming more pressing

LComprehensive overviews of different MIMO communication techniques are provided in [5, 13, 36].

11
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due to the random deployment of heterogenous BSs (e.g., plug-and-play installation of femto
cells and distributed antenna ports [3, 6]), on/off status of BSs for managing sleeping modes,
aggressive frequency reuse, many possible MIMO communication technologies one can choose
from, unprecedented complexities in CA management, and large-scale system design based
on network-level performance evaluation.

More than ever, efficient mathematical tools facilitating the comprehensive analysis of
the network in terms of influential system parameters—required to effectually manage the
adaptive designs and to gain engineering insights—are demanded.

To bridge the gaps, in this dissertation we aim to comprehensively evaluate the network-
wise (spatial) performance of multi-stream MIMO systems in HetNets with the desire to
provide computationally friendly expressions of the main performance metrics. To this end,
we adopt powerful tools of stochastic geometry and Poisson point processes (PPP); see,
e.g., [40, 41, 42] and references therein. Please refer to Appendix A for a brief overview of

stochastic geometry.

1.2 Using Stochastic Geometry for Cellular Network

Modeling

Stochastic geometry is a natural modelling tool for ad hoc and sensor networks as it captures
their intrinsic spatial randomness [41, 43, 44]. In contrast, for modelling cellular networks
that are mostly assumed to be spatially deployed according to an idealized grid layouts
it seems rather unreasonable to adopt the stochastic geometry. Our goal in this section
is to provide sufficient evidences backing up the suitability of stochastic geometry for the
modeling, analysis, and design of cellular networks. We further discuss CA under stochastic

geometry model.

12
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1.2.1 Applications of Stochastic Geometry in Cellular Networks
Analyzing Cellular Networks

We first start by highlighting that stochastic geometry has been extensively adopted to
analyze, design, and provide guidelines in cellular networks. The downlink of a single-tier
cellular networks is generally the main focus in the literature [1, 45, 46]. With the main
emphasis on load balancing, many of these works have also extended to multi-tier systems
[47, 48, 49, 49, 50, 51, 52]. Cellular networks with MIMO antenna arrays and massive
MIMO communications are investigated in [7, 53, 54, 55, 56, 57]. The impacts of CoMP,
interference cancellation, and C-RAN on the performance of cellular networks are focused in
[19, 58, 59, 60, 61, 62, 63]. Millimeter (mmW) based communication in cellular networks is
characterized in [64, 65]. Furthermore, the impact of different path-loss model, line-of-sight,
and shadowing are considered in [66, 67, 68, 69]. In [65, 70, 71] stochastic geometry tools
are exploited to provide an analytically trackable account of blockage in cellular networks.
Various simulations results are reported to corroborate the models. For the case of uplink
communication, works of [72, 73, 74| investigate the partial power allocation and CA. On
the other hand, stochastic geometry is found to be very handy to investigate handoff rate,
impact of mobility, and interference correlation in cellular networks [55, 75, 76, 77, 78].
Furthermore, a great deal of research is devoted to comprehensively study self-organized
cellular networks and D2D communications [79, 80, 81]. Moreover, issues such as relay-
aided communications, full-duplex communications, physical layer security, and jamming

are well investigated in [82, 83, 84, 85]

Design of Cellular Networks

Assume one is interested in investigating the effect of increasing multiplexing gain on the
coverage performance of a MIMO multiplexing system. Traditionally, one assumes the lo-

cations of BSs to be known. However, instead of repeating the analysis for each and every

13
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geographical setup of the cellular networks, it is also desirable to obtain a general perfor-
mance analysis applicable to many analogous scenarios. In this way, the stochastic geometry
analysis of the cellular network is not primarily concerned with the performance evaluation
of a specific realization of the cellular network at a specific geographical location, for example
a given city. Instead, a general analytical model that applies on average for all cellular net-
work realizations in a particular wireless environment, for example countryside, downtown,
or dense urban environment, is the main scope of this approach. This implies that from
the analysis viewpoint, the exact locations of the BSs are basically considered unknown.
However, there are plenty of rooms to customize this model in accordance to available in-
formation and measurement data. In effect, it is possible to distinguish between distinctive
environments and network setups, such as different cities (Vancouver versus Toronto) or even
different neighborhoods of a city (UBC campus against downtown of Vancouver). One can
achieve this by adjusting influential system parameters, e.g., shadowing and blockage effects
as well as density of BSs and blockages, based on available measurements.

We should also note that without the large-scale analysis of cellular networks, network-
level optimizations can be overwhelmingly baffling simply because of the sheer number of
network elements in HetNets that makes centralized instantaneous solutions impractical.
Accordingly, stochastic geometry is gaining momentum providing concrete methodology re-
quired for adaptive design and drawing engineering guidelines in cellular networks. In its
core, such an approach endorses the statistically optimized operation relying upon averaged
performance that is usually formulated through stochastic geometry analysis. Such a sta-
tistical optimization empowers the designer to draw tradeoffs between complexity, signaling
overhead, and performance since the statistical network parameters (e.g., distribution of
channel gains, spatial distribution and intensity of network clements, and path-loss com-
ponents) change on longer time scales. For instance, load balancing is heavily conducted
through this technique [49, 51, 52]. Optimization of energy efficiency, energy harvesting,

and BS sleeping mode for green cellular operations are vastly explored in the literature; see,
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e.g., [86, 87, 88]. Also, system-level optimization for simultaneous wireless information and
power transfer is the subject of [89]. Optimized coordination between D2D communications

and cellular network is discussed in [80].

1.2.2 1Is Stochastic Geometry a Right Tool?

So far, a great body of research results supports the practical values of stochastic geometry
[90, 91]. Nevertheless, there might be skepticism regarding the accuracy of PPP for modelling
the locations of Macro BSs [91]. This is because PPP models the position the BSs in the
network plane almost indiscriminately, whereas in practice, Macro BSs are often placed far
from each other. This issue is investigated further in [1], where the PPP assumption is shown
to result in adequately precise characterization of Macro BSs. The PPP model is shown to
provide a rather pessimistic bound on the coverage performance in contrast to other analytic
methods such as hexagonal and lattice models that provide optimistic bounds. Large-scale
measurements and industry-scale simulations in [90, 92, 93, 94, 95] also confirm that the
PPP model results in sufficiently accurate estimation of the SINR distribution in cellular
networks.

The authors in [96, 97] show that the spatial patterns exhibited by actual BS locations
in different geographical places can be accurately fitted to random spatial patterns obtained
via PPP analysis. Specifically, the results of [96] confirm the tight lower bound provided
by the random network to the users SINR in simulations with actual BS locations. It is
further shown in [90, 91, 97, 98] that typically a 1-3 (dB) SINR shift is enough to match the
SIR distribution obtained under a PPP model with the one obtained from measurements
or grid models. As a result, one is able to adjust the anticipated coverage probability from
PPP analysis to the actual performance of the network by a suitable horizontal SIR shift.
On the other hand, the results prove that the trends observed from measurements and also
system-level simulations are exactly captured by the PPP analysis.

On the other hand, the analysis and simulation results presented in [99, 100] show that
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any grid setting can be adequately modelled as a PPP simply because of the shadowing effect.
This implies that any grid-based cellular model with strong shadowing effect is adequately
representable by a PPP model without shadowing effect when the density of BSs in both
models stays the same. Furthermore, work of [101] provides evidences behind log-normal
model of shadowing from a stochastic geometry analysis.

Finally, adopting more sophisticated point process models such as determinantal point
processes, such as Ginibre point process, one is able to properly account for repulsion among
BSs of a class or across classes [95, 102]. This could be helpful when extra information re-
garding the deployment of BSs in particular regions is available. The downside of the analysis
based on such sophisticated point processes is the substantial growth of the mathematical

complexities.

1.2.3 Cell Association Under Stochastic Geometry Model

As we mentioned previously, under the grid model, CA is idealistically incorporated through
the considered layout, e.g., hexagonal. However, to correctly model cellular network with
stochastic geometry one needs to properly incorporate the traits of the CA mechanism [23].
In general, one can think of two main approaches to specify the CA procedure, as discussed

in the following.

Range Expansion Cell Association

The most common approach is the closest-BS CA, which is basically the association of a UE
to the BS that provides the maximum average received power [1, 23, 49]. Such an association
leads to the Voronoi tessellation [44] of the network, i.e., the network coverage area is rep-
resentable by non-overlapping mosaics each of which is associated with a BS containing all
points that are closest to it. This approach is well-suited for single-tier networks as BSs have
the same transmission power limit. Note that since fading fluctuations are averaged-out, the

closes-BS CA rule circumvents the ping-pong effect, which makes it practically appealing.
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Figure 1.5: A single-tier cellular network modelled by PPP under the closest-BS CA rule.

Therefore, as far as the UE stays within the cell associated with the BS B, regardless of
the UE’s motion trait, it will always receive information from BS B. As also seen from Fig.
1.5, from the interference perspective, under this CA rule each UE actually produces an
associated exclusion zone guaranteeing the the interfering BSs are farther to UE than the
serving BS. From Fig. 1.5 we note that the typical UE is associated with the closest BS,
with separation distance r meters. Therefore, all the interfering BSs are always farer than r
meters. This induces a guard-zone around the UE. Note that the radius of this guard zone
depends on the density of BSs, A, through Rayleigh PDF f(r) = 2xAre ™" [1]
Nevertheless, the closest-BS CA rule could lead to severe performance damage in HetNets
due to mismatch between the transmission power of BSs of different technologies. To deal
with this issue and also facilitate traffic ofloading from congested Macro BSs to small cells,
a twisted version of the closest-BS CA rule is usually considered, whereby the received
average power of each class of BSs is multiplied by an associated scaler parameter known as
bias/weight. This method is termed as range-expansion CA and permits optimizing biases

based on desired network performance or optimal traffic offloading [49, 52, 103]. In this
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way, it is easily understandable that the closest-BS CA rule describes a special case of range
expansion: the former is derived from the latter by choosing all biases equally.

Disadvantages of Range Fxpansion: Despite its practical merits and straightforward an-
alytical advantages, range-expansion CA does not necessarily provide the maximization of
the coverage probability/average data rate as it does not guarantee the maximization of
the instantaneous SINR experienced at UEs. On the other hand and more relevant to the
scope of this dissertation, for the particular case of MIMO HetNets the range-expansion
systematically overlooks key features of physical (PHY) layer specifications of MIMO com-
munications, including the precoding/decoding technique, the number of antennas, and the
like in the stage of CA, as it treats all MIMO technologies indiscriminately.

As a plausible configuration scenario of 5G networks [3, 6], assume Tier 1 has massive
MIMO technology while Tier 2 supports dense SISO communications. For these scenarios,
under range expansion both tiers are treated similarly in the stage of CA, which is obviously
oversimplifying. Under range expansion, it is not hard to imagine the scenarios that many
massive MIMO BSs will end up staying often silent as each UE always finds a close-by
femto base station for association. But, in reality while densified femto tier offers benefits by
reducing transmission distance among pairs, massive MIMO tier also offers benefits through
substantially large MIMO gains, which may be comparative to the former. Therefore, one
can argue that if the CA policy is chosen properly, a more efficient usage of ecach tier’s
particular potentials can be achieved. One can address this issue, at least partially, via
considering the max-SINR CA rule (see the following), as besides path-loss attenuations, it

incorporates the traits of transmission/reception technologies in the stage of CA policy.

Maximum-SINR Cell Association

In comparison to range-expansion (or closest-BS) based CA rule, under the max-SINR CA
rule each UE is attached to the BS that provides the maximum SINR across all BSs and

classes of BSs. This implies that the serving BS may not necessarily be the closest BS to
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the typical UE, which is also seen from Fig. 1.6. As seen from Fig. 1.6, the typical UE is
associated with the BS that provides the highest post-processing SINR. In comparison to
the closest-BS CA rule, here the serving BS may not be the closest BS. As a result, the
interfering BSs can be closer to the UE than the serving BS.

To implement the max-SINR CA rule, at the start of each communication session each
UE listens to pilots emitted from BSs and estimates channels. Then it estimates post-
processed SINR values, and after sorting them, it chooses the most proper BS for association.
Therefore, the max-SINR, CA rule is actually suitable for instantaneous association policies:
In cach time instance that fading fluctuations and/or path-losses undergo new values, due for
instance to mobility of UEs and/or activity factor of BSs, the typical UE should recalculate
the post-processed SINR and connect to the BS that provides the strongest communication
link.

Why Max-SINR CA Rule? In effect, from the literature of resource allocation in HetNets,
which desires to apply CA based on resource allocation, transmission policy, and underly-
ing scheduling procedure, it is well known that the range expansion is a very simplistic CA
method, and far from the optimal policy (see [23, 24, 25, 26] for details). Such a literature
shows that disjoint treatment of CA and resource allocation can substantially degrade the
achievable performance of the network and undermine the potentials of HetNets. As a result,
in this literature, the CA is decided upon, for example, solving properly designed complex
optimization problem where the objective function and constraints are formulated based on
(expected/estimated) SINR as a function of PHY layer specifications, transmission policies
and scheduling procedures across tiers, see, e.g., [23, 24, 25, 26]. Unfortunately, such line
of work is only applicable for a cluster of BSs with limited number of BSs. Therefore, the
resultant policy can be deficient in thoroughly addressing the network-level implications. Ad-
mittedly, it is of vital importance to bring the aspects of this optimized CA into the network-
level performance evaluation of HetNets. While it is dramatically complex and analytically

intractable to model and analyze the traits of such locally optimization-driven CA approach
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Figure 1.6: A single-tier cellular network modelled by PPP under the max-SINR CA rule.

in the stochastic geometry analysis of HetNets, it is yet possible to think of mimicking some
of its traits through developing CA policies that permit the mathematical tractability. The
max-SINR CA rule actually serves this goal. This should not, however, be regarded as a
haphazard choice as the mentioned optimized-driven CA problems generally concentrate on
maximizing a monotonically increasing function of SINR. Accordingly, stochastic analysis
of the network based on the max-SINR CA rule can be regarded as an attempt to develop
analytical tools allowing incorporation of some aspects of locally optimization-driven CA
policies into the network-level performance evaluation of HetNets.

One may argue that the max-SINR CA rule complicates the network management in
comparison to the range expansion, e.g., more frequent CA mechanisms and more pilot mea-
surements. We could argue that by introducing many distinctly sophisticated technologies
including dense small cells, massive MIMO, mmWave communications, and D2D communi-
cations in recent years, it is far from optimal to keep using the CA policies that are originally
suitable for single-tier systems. On the other hand, the complex structure of future cellu-

lar systems calls for more complex network management and CA policies. Otherwise, the
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expected performance boost that such technologies (e.g., dense small cells, massive MIMO,
mmWave communications, and D2D communications) are expected to introduce may be
partially degraded simply because of inappropriate, perhaps outdated, CA policy that in
nature dose not distinguish and appreciate the distinctive traits of current technologies (e.g.,
dense small cells, massive MIMO, mmWave communications, and D2D communications).
Is Max-SINR CA Rule Implementable? Tt is also vital to note that the signaling overheads
and computational complexities of max-SINR CA rule can be manageable in particular when
the fading is slow (low mobility scenarios). Regardless of mobility/fading traits, although
for the selection of the BS with the maximum SINR across all BSs many pilot measurements
seems inevitable, in practice such measurements should be confined to only a number of
adjacent BSs. This is mainly attributable to the simple observation that due to the severe
path-loss attenuations distant BSs are less likely to preserve the required SINR thresholds.
In reality, it is highly probable that one of the close-by BSs (not necessarily the closest one)
preserves the best communication quality. Furthermore, for the sake of affordable handoff
rate, it is more suitable to attach to a close-by BS than the too-distant BSs, as the chance that
a far BS preserves the required SINR threshold for a couple of consequent communication

sessions is rather vanishing.

Our Choice of CA

Regarding the important practical aspects of the max-SINR CA rule, we therefore concen-
trate mainly on this CA policy in this thesis. On the other hand, as we will also discuss
in the literature review section, compared to the range expansion approach the literature of
the max-SINR CA rule in MIMO multiplexing/diversity HetNets is unfortunately minuscule

and little is known related to its performance and design issues.
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1.3 Literature Review and Motivations of the

Dissertation

1.3.1 Cellular SISO Communications

Various aspects of stochastic geometry for cellular networks have already been explored
and reviewed in the previous section. In general, under the stochastic geometry analysis
researchers often adopt the powerful technique of a probability generating functional (PGFL)
for a straightforward evaluation of the SINR distribution [41, 42, 104, 105]; see Appendix A
for more details.

Particularly, under Rayleigh fading in SISO systems, closed-form expressions of key per-
formance metrics, including coverage probability, achievable rate (i.e., Ergodic capacity [14]),
and area spectral efficiency (ASE), have been proposed [1, 47, 49]. Note that ASE by defi-
nition measures the accumulated throughput per unit area. In [47], the authors model the
HetNets based on K classes of BSs each of which is independently modelled by a PPP. Their
work is among the first to provide the coverage probability in a closed-form expression. The
authors then extended their analysis to account for the impact of BSs loads on the coverage
performance of HetNets in [51]. Further investigations regarding the impact of CA on the
coverage probability are provided in [48]. The work of [49] investigates the selection of best
biases for optimal load balancing based on long-term statistical network parameters, e.g.,
density of UEs and BSs. Furthermore, the authors of [106, 107] investigate the SINR process
in HetNets and then evaluate the k-coverage probability, i.e., the probability that & BSs can
potentially support the typical UE. The impact of CA on the coverage performance of Het-
Nets is also investigated in [108]. The CA considered in [108] is specifically designed for load
balancing, where the closest Macro BS is chosen when there is no femto BS in the vicinity of
the UE that provides the highest SIR. The impact of CA on the network performance is also

investigated in [109], where a heuristic association technique is also developed in order to
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manage the CA according to statistical network parameters. The technique in [109] selects
the associated tier for each UE based on a max-ratio association policy. Under this policy,
for each UE a tier is selected such that the UEs distance to its nearest BS is smaller than
that in other tiers, while its distance to the second-nearest BS in that tier is larger than that
in other tiers. The closest BS of the selected tier is then considered as the serving BS. The
work in [109] assumes that each tier has its own exclusive bandwidth.

Nevertheless, under more general fading distributions, such as Nakagami, and/or when
the communication paradigms involve MIMO techniques, the effectiveness of the PGFL tech-
nique in providing casy-to-compute approximations of desirable network-level performance
metrics partially collapses [42, 65, 105]. Many existing results in the related literature require
numerical evaluations of two-fold infinite integrals of (two-fold) higher-order differentiations
of complex functions [55, 110, 111, 112, 113] or a matrix norm of some matrices with entries
of computationally expensive functions [114]. Assuming a general fading distribution, the
authors in [113] obtain the coverage performance, which however requires complicated nu-
merical integration over complex regions. By introducing a piece-wise linear approximation,
the authors in [115] approximate the coverage probability of K-tier HetNets with Nakagami
fading and noise through a summation of integrals. A recursive method is also developed
to estimate the corresponding bounds of the integrations. Adopting a developed novel tech-
nique that permits the evaluations of functionals of PPP, [116] provides the SIR distribution
under Nakagami fading. The coverage results are provided in integral formats of sophisti-
cated functions. In [117], the authors develop a powerful moment generating method for
approximating the SIR distribution of SISO systems under Nakagami fading. The derived
moments require several improper integrations. Under this fading distribution, [94] studies
the coverage probability of a single-tier cellular network when the BS deployment pattern is

based on a Ginibre PP.

Remark 1.3.1 (Quantifying the Numerical Cost). Throughout the thesis, when we

discuss the numerical complexity of the analysis one should keep two particular regimes in
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mind: 1) the counterpart SISO system with exponential channel power gain; and 2) MIMO
systems or SISO system under Nakagami-type channel power gain. Regime 1 represents
the baseline of numerical complexity. In specific, we know that the coverage performance of
regime 1 is generally expressable through (at most) an infinite integration which integrant is
not represented in a higher-order differentiation form or the determinant of a matriz. We
call this expression numerically friendly. Therefore, if we claim our analysis is also numer-
ically friendly/affordable or is given in easy-to-compule expression, we implicitly mean that
the format of the coverage probability is reminiscent of that of Regime 1. On the other hand,
regarding Regime 2 if we argue that the analytical result is numerically heavy, we implicitly
mean that the evaluation of the coverage probability requires the evaluation of several (more
than one) infinite integrations while the integrand may also be given in complex forms com-
prising of either several higher-order differentiations or determinant forms. Accordingly, we
are not quantifying the numerical complezity of the analysis from an algorithmic view point,
but wn the measure that whether it relies on evaluating the determinant of a matrix, higher-
order differentiations, and couple of infinite integrations. Therefore, numerical complexity
and numerical cost is treated similarly throughout the thesis. Finally, for the sake of fairness
we generally refer to the communication scenarios of the mentioned regimes that are based on
the main assumptions we also consider throughout the thesis: 1) independency of PPP sets;
2) independency of channel power gains of interfering BSs; 3) standard path-loss mode; and
4) either range expansion based CA or maz-SINR CA. Therefore, we do not target the an-
alytical complexity of the literature involving more sophisticated system model, e.g., Ginibri

Point process.

1.3.2 MIMO Communications in Ad Hoc Networks

Our main focus in this dissertation is the stochastic geometry treatment of multi-stream
MIMO HetNets. Our work is however related to the developments made in the literature of

MIMO ad hoc communications too; see, e.g., [55, 62, 118, 119, 120, 121, 122, 123]. Note that
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the analytical results of this literature may not necessarily fit with the model of this thesis
due to existence of significant discrepancies between cellular and ad hoc networks (attributed
to CA mechanisms and MAC protocols).

First, we review the single-stream MIMO communications. In [124], the authors focus on
the evaluation of ergodic spatial capacity—accumulated ergodic capacity per unit area—in
a single-input multiple-output (SIMO) random network. Therein, it is assumed that the
receivers are designed to devote part of their receive array diversity for cancelling a number
of dominant interferers (e.g., partial zero-forcing (PZF) receiver). Work of [121] also studies
the transmission capacity — the maximum density of transmitters that fulfills the prescribed
outage probability multiplied by the achievable throughput — of the SIMO system, when
the receive filter is either PZF or minimum mean square error (MMSE). The conducted
investigations in these works reveal that, by a careful design of PZF receiver, one can harness
a proportional growth of the transmission capacity at most by the number of receive antennas.
In [125], the CDFs of SIR of the MMSE filter in homogeneous, heterogenous, and also
hierarchical PPP systems are calculated. The outage performance of the optimal combining
in SIMO systems has also provided in [112, 126]. Furthermore, in [55, 78|, the authors show
that the inter-user interference causes a new source of correlation among the received signals
in a multi-antenna receiver, which, in turn, degrades the diversity order of receive arrays.

For multi-stream MIMO systems, in [62, 118], the authors study the transmission capacity
when the PZF receivers are designed to adaptively suppress interference. Further, work
of [119] studies the outage probability and transmission capacity of MIMO multiplexing
systems of sero-forcing beamforming (ZFBF'), maximum ratio combining (MRC) as well as a
diversity system of orthogonal space-time block codes (OSTBC), assuming that transmitters
do not have access to channel state information CSI, i.e, open-loop MIMO. For this system,
the authors pinpoint several advantages of ZFBF in enhancing the coverage performance
of ad hoc networks, and further show that the multi-stream communications can actually

outperform a single-stream ad hoc network. The authors then extend their analysis in [127]
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to incorporate the multi-stream MMSE filters too. Work of [123] focuses on the examination
of transmission capacity of ZFBF, antennas selection, and MRC diversity systems.

One of the main limiting aspect of the above literature is that the outage performance,
and thus the transmission capacity, is merely studied from the perspective of a given stream
— stream-level perspective. Put it in another word, the above literature simply assumes
that the coverage probability of a data stream is equivalent to the coverage probability of
the link. This is not, however, accurate. Specifically, while fading fluctuations across dif-
ferent streams (both related to interfering and desired signals) are generally independent,
the interfering path-loss attenuations generated from the same set of interferers across data
streams prompt correlation among data streams. We already know from works of 78, 112]
that in SIMO ad hoc networks interference causes substantial correlation among impinged
signals across receive antennas. Similar conclusions have also been reported in [55], where
the interference correlation in space-time MIMO ad hoc networks was the focus. The au-
thors observe that ignoring the interference correlation among antennas may in some cases
substantially compromise the accuracy of the analysis.

However, in the multiplexing system, where each link runs a number of streams, the
outage probability needs to be investigated from the perspective of the link — [link-level
perspective. In fact, as in the isolated scenario; see, e.g., [128, 129], the mutual information
is the main indicator of the outage performance as the cigenvalues across data streams are
heavily correlated [130, 131] even when interference is absent. In the non-isolated scenarios
besides the correlation among eigenvalues there is another source of correlation: the com-
mon location of interfering BSs across data streams. Therefore, the method of the mentioned
literature, which is based on a stream-level performance evaluation, is undoubtedly simpli-
fying, and, to some levels, inaccurate. Thus, a comprehensive investigation of the link-level
performance of multi-stream MIMO communication is crucial.

Interestingly, the importance of such analysis is partly recognized in the literature of ad

hoc MIMO communications too. In [132], the authors study the link-level outage probability
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of multi-stream MIMO-ZFBF receivers [14] when the transceivers are equipped with the same
number of antennas. However, in this work the authors have heuristically substituted the
actual covariance of the interference with the one in which fading is levelled out. Further,
their result is based on a lower bound on the CCDF of mutual information, which was
initially proposed by Foschini et. al. in [133]—this lower bound on the capacity essentially
overlooks the correlation among eigenvalues of the link by substituting eigenvalues with a
number of independent chi-squared random variables. The work of [134] also elaborates on

some aspects of link-level coverage probability in random networks.

1.3.3 Cellular MIMO Communications

Assuming the CA rule of range expansion (see Section 1.2.3), [110, 114, 135] study the
coverage performance and ASE of multiple-user spatial-division multiple access (SDMA) in
MISO HetNets. In [114], the authors first derive the coverage probability through a L;th
norm of a well-packed matrix with entries derived through a recursive procedure. The results
are then exploited to explore the optimal density of BSs in conjunction with the multiplexing
gains of each tier in order to maximize ASE. The authors of [135] used the method of [114]
and introduce a threshold-based range expansion in the downlink of SDMA systems. Work
of [110] provides various heuristic CA procedures with respect to MIMO configurations, e.g.,
the number of equipped antennas at the BSs and the number of serviced UEs in the downlink.
The authors then discuss optimal offloading based on the developed CA rules. The focus in
[111] is the single Macro cell system overlaid by a number of multi-antenna femto cells. In
[136, 137], the coverage performance of quantized beamforming system is estimated, and the
results are used to adaptively share the feedback bits across users.

With multi-antenna receivers, the authors in [55, 73] focus on MRC and optimal combin-
ing in downlink and uplink of cellular networks, respectively. By exploiting the Gil-Pelaez
inversion theorem, [138, 139] analyze the symbol error probability (SEP) of MIMO multiplex-

ing systems. The impact of interference-driven correlation on dual-branch MRC receivers
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in both ad hoc network and the downlink of a single-tier cellular network, is investigated
in [112, 126]. Authors show that in comparison to ad hoc networks, in cellular communica-
tions a higher level of interference correlation across receive antennas is observable simply
due to CA procedure. They also show that such interference correlation can substantially
damage the diversity order of the receive arrays such that in many cases simple antenna
selection combining can almost achieve the same coverage performance as does MRC or
optimal combining.

Authors in [140] studied the bit error probability (BEP) of ZFBF with the aid of mod-
elling ICI through the summation of an infinite number of Gaussian random variables, leading
to a new mathematical technique referred Equivalent-in-Distribution (EiD). Therein BEP
provided via twofold integral was shown to be simplified to a single integral formula when
noise is neglected. The result was then extended in [141] to cover receive-diversity, multiplex-
ing, and orthogonal space-time systems. In [142], the authors developed a new technique to
model the ICI based on suitable Gaussian distribution in order to develop a unified frame-
work for the evaluation of coverage probability and data rate of MIMO cellular systems.
Closed-form expressions of the moments of the desired signal and ICI provided in [143], were
further exploited to characterize spectral efficiency. Open-loop orthogonal space-time codes
set the focus of the analysis in [55]. Their analysis covered the coverage probability of both
interference blind MRC and optimal combining receiver techniques. Focusing on a single tier
cellular network, MMSE and PZF beamforming schemes are investigated in [144].

In [86, 143, 145, 146, 147, 148], the authors adopt the theoretical results of [110, 114, 117]
to optimize ASE and energy efficiency in uplink/downlink multi-user MIMO systems. The
impact of beamforming schemes on energy-efficiency of MIMO downlink is investigated in
[86]. Optimized offloading for controlling inter-cell interference utilizing coordinated MIMO
communications was the subject of [147]. In [143], the coverage probability, spectral effi-
ciency, and load balancing in MIMO systems is considered. [57] derives the ergodic capacity

of several MIMO schemes in the downlink of a single-cell cellular network.
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The works mentioned above assume range expansion for the CA policy. For the case of
max-SINR CA rule (see Section 1.2.3), the work of [56] provides ordered results on the cov-
erage, capacity, and ASE of MISO systems for qualitatively comparing several beamforming
methods. Therein, the authors adopt stochastic ordering results to compare the coverage
performance and ASE of SDMA and SISO systems. As far as we are aware, only this work
studies MIMO HetNets under max-SINR CA rule, which indicates that many aspects of such
configuration are missing in the state-of-the-art.

Despite these significant progresses in analyzing MIMO communications in HetNets, ex-
isting results are inadequate to comprehensively address the impact of multiplexing tech-
niques on the coverage performance of HetNets. One reason is that the already existing
results are mathematically very complex for numerical evaluations; see, e.g., [55, 56]. Com-
monly, the performance expressions in the literature of MIMO communications require sin-
gle/double improper integrations of nested higher-order (as many as the number of antennas)
derivatives of some numerically expensive functions such as hypergeometric functions (please
refer to [126] for an example of the numerical algorithm). Unfortunately, the numerical com-
plexities can become even more staggering when noise is included and also for large arrays.
Such complexities may eventually overwhelm the desirable scalability for the particular pur-
poses of system designs and engineering insights. We therefore set our goal to provide the
coverage probability in numerically friendly expressions of the main system parameters. The
obtained analytical results enable thorough investigations of densification and multiplexing
gains in MIMO HetNets, some of which will be explored in the dissertation.

On the other hand, similar to the case of MIMO multiplexing in ad hoc networks, the
above mentioned literature simply assumes that the coverage probability of a data stream
is equivalent to the coverage probability of the link, which we alrecady argue that it is not
accurate. Consequently, we need to evaluate the coverage performance of MIMO multiplexing
in HetNets from a link-level (that considers the reception of all the data steams) as opposed

to the stream-level or individual (that considers the reception of a randomly selected data
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stream) point of view.

Finally, note that the max-SINR CA rule is mainly studied for the SISO systems under
exponential power gain in the literature; see, e.g., [47, 51, 106, 149, 150]. Note that there
are a number of subtle differences between max-SIR, CA rule in SISO systems and in MIMO
systems, which do not allow straightforward extension of analytical results of the former to
the latter: (1) as it is specified in [47, 51] in SISO systems the max-SIR CA rule is in effect
equivalent to CA rule based on strongest instantaneous signal power. But this is actually not
true in MIMO systems: the effective channel power gains on each data stream substantially
differs from the channel matrix representing each communication link. In fact, as it is also
pointed out in [56], in MIMO scenarios when a BS is the serving BS its fading distribution
is essentially different than when it is an interfering BS, which is not the case of SISO
systems. (2) In MIMO multiplexing systems, a communication link, which is physically
represented by a channel matrix, is converted via precoding/decoding procedures into a
number of data streams cach with an associated post-processed SINR. Both, the CA and
the coverage probability are then specified based on this post-processed channels. This, on
the other hand, necessitates establishing a rule based on the quality of all the experienced
SINR values across data streams received from a BS to decide upon CA, which differs from
the SISO case.

In sum, observing these research gaps of the current literature, we aim at obtaining the

coverage probability of MIMO multiplexing HetNets under the max-SINR CA rule.

1.4 Contributions and Results

Main Scope

This dissertation is mainly concerned with understanding the performance of MIMO mul-
tiplexing systems in HetNets. In effect, instead of concentrating on the resource allocation

aspect of MIMO HetNets or improving beamforming techniques, we chiefly work toward
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developing analytical tools for the purposes of investigating the coverage performance of
MIMO multiplexing systems in large-scale cellular networks.

On the other hand, backed by the provided in-depth discussion in Section 1.2.2, through-
out the thesis we assume that the stochastic geometry model is legitimate and acceptable.
This is important as it allows us to entirely focus on the main goals of the thesis. This
however does not mean that the thesis undermines the legitimate concerns regarding the ac-
curacy of analysis for a particular configuration of the cellular network, for instance, in the
downtown of Vancouver. We generally believe such concerns should be thoroughly covered
in separate investigations. However, for such an investigation, assuming the empirical data
is available, one still needs to access proper analytical tools beforehand, which is what this
dissertation aims to provide.

Furthermore, our main focus is on the Sub-6 GHz (Microwave) spectrum, which sub-
stantially differs from mmWave communications that are strongly noise-limited, thanks to
the strong link directionality [3, 6, 64, 65]. We also like to point out that 1) the stochastic-
geometry investigation of mmWave communications commonly excludes the evaluation of
a link-level performance, and usually focus is on stream-level analysis [3, 6, 64, 65]; 2) the
techniques developed in [3, 6, 64, 65] usually rely upon incorporating the effect of (ana-
log) beamforming through sectionized antennas with properly randomized antenna gains,
which cannot correctly model the multiplexing systems; 3) [3, 6, 64, 65] usually assumes
exponential distribution to model the post-processed channel power gain, which is not the
case of the MIMO multiplexing systems where on each data stream Nakagami-type fad-
ing governs the fast fading propagation effect; 4) as far as we are aware of, the literature
of mmWave communications commonly assume range expansion to model CA; and 5) the
mmWave communications are severely vulnerable to blockages [70], so that it is acceptable to
exclude non-LOS signals (could be originated from serving or interfering BSs) from analysis.
In contrary, for many practical cases in the Sub-6 GHz, the LOS components are of sec-

ondary importance meaning that they could affect the performance solely when the network
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is substantially densified [67].

On the other hand, in this thesis we adopt tools of stochastic geometry to study the
scenario that a receiver is in the link-level coverage. We refer to it simply by coverage; unless
otherwise specified. Our particular definition of link-level coverage implies the successful
reception of all transmitted data streams of a link. This notion of coverage probability is
known as all-coverage probability in the literature of isolated MIMO systems [128, 151]. We
should emphasize that for those transceiver structures that the SER is related to the CCDF
of the weakest data stream [128, 152, 153, 154], this definition of coverage probability is
of course intuitive. However, as in the case of isolated scenarios other possible choices for
specifying the coverage probability exist: sum-coverage and any-coverage. Regarding the
former, a typical UE is assumed to be in coverage if the aggregate transmission data rate
stays above a threshold. Regarding the latter, if the most powerful data stream of the link is
undetectable, the link is assumed to be in outage. We in this dissertation mainly investigate
the all-coverage probability. Note also that regardless of MIMO system structure, defining
the coverage probability based on all-coverage notion has important practical implication too.
In essence, it advocates the design of the network so that the UEs can successfully decode
as many independent data streams as can be transmitted —i.e., no wastage of multiplexing
gain.

The main scope of the analysis is devoted to the evaluation of the coverage probability.
Nevertheless, recalling Remark 1.1.2, it is then a matter of straightforward manipulations to
explore several other performance metrics such as spectral efficiency, capacity, and energy
efficiency. When we want to provide concrete results, we explore spectral efficiency of the
cellular network to demonstrate this point. On the other hand, we also broadly adopt the
analytical results in order to explore various important design issues in MIMO multiplexing
HetNets. Thanks to the numerically tractable form of our analytical results, such design

problems permit us to draw interesting guidelines.
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A Broad Goal

It is the goal of many researchers to seek analytical methods that simplify the analysis
of wireless networks. For SISO systems and under practically fair assumptions, this goal
is readily achieved. As a well-appreciated result, consider the downlink of a HetNet with
K tiers of BSs, where 8 > 1 is the SIR threshold for successful transmission. Under the

SISO

max-SIR CA rule, the coverage probability, ¢>*>, is derived from the following [47]

- T

SO = —C’(a)ﬁ“’ (1.6)
where C'(«) only depends on the path-loss exponent . As it is also discussed by the au-
thors of [155], what (1.6) in essence provides is reminiscent of the comfort that the simple
equation of bit error rate (BER) of BPSK modulation in Gaussian/fading channels provides.
Analogous to modulation theory, using (1.6) the system designer is then well-equipped to
design the network instead of resorting to try-and-fail exhaustive simulations.

Recalling from the modulation theory that for more sophisticated modulation/coding
schemes the evaluation of the BER becomes dramatically more convoluted and less mathe-
matically tractable, the same pattern in effect emerges in HetNets when the subject of the
analysis shifts from SISO systems toward MIMO systems. Main complexities root in the
fact that, as opposed to SISO scenarios, there are many MIMO techniques to choose from
and each affects the signal propagation differently. On the other hand, the effective channel
power gains deviate from the exponential distribution.

Thus, for MIMO multiplexing systems, we attempt to develop analytical tools that allow
the network-level evaluation of key network metrics including the coverage probability hope-
fully with the same comfort that one enjoys in the analysis of counterpart SISO systems. As
an example, for a MIMO-ZFBF system, assuming the multiplexing gain S and when UEs

are equipped with N” > S antennas, we show that the coverage probability, ¢?¥, is obtained
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from

o Q(S,N", av), (1.7)

<
— C(e)pe
where C(a) only depends on the path-loss exponent a and Q(S, N”,a) is a function of
multiplexing gain, path-loss exponent, and the number of receive antennas. Interesting
similarity between SISO and MIMO formulas are evident. Further, while the MIMO system
has much more complexities, our analysis is yet able to manage them and provide the key
performance metric in numerically pleasing expression.

Therefore, a broad goal of this dissertation is to present the coverage probability of MIMO
multiplexing systems in easy-to-compute and succinct expressions of the key network param-
eters. We desire to attain the same complexity as that resulting from network performance
evaluation under SISO systems. We further aim to achieve this goal without sacrificing the

accuracy of the analysis.

Main Contributions

We develop a comprehensive downlink model consisting of K tiers or classes of BSs, such as
Macro-cells, femto-cells, pico-cells and distributed antennas. The BSs across tiers differ in
terms of transmit power, deployment density, target SINR, number of transmit antennas, and
multiplexing gains. We explore this model for popular MIMO multiplexing schemes, ZFBF,
MRC, and SVD, by providing the coverage probability as the main performance metric.
Regarding all-coverage probability and assuming the max-SINR CA rule, this dissertation

provides the following contributions:
e For the case of ZFBF multiplexing HetNet:

1. We obtain an upper- and a lower-bound on the link-level coverage probability. The
upper-bound requires a single integration, while the lower-bound is in closed-form
and has much lower computational complexity compared to the upper-bound. We

also specify our results for the scenarios of full-multiplexing system, and the single-
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stream communication (diversity system), and show that our results accurately
predict the SISO system performance [47]. The conducted extensive simulations

corroborate the analysis.

2. We also analytically prove that a single-stream communication has higher coverage

performance than that of the multi-stream counterpart.

3. We investigate the impact of the cross-stream correlation on the coverage proba-
bility by introducing the full-correlation (FC) assumption, and derive the coverage
probability under it. Specifically, we show that by averaging out the impact of
interfering fading fluctuations the coverage probability results in the lower-bound
on the coverage probability, which we also derive. Our simulations indicate that
the induced performance gap, because of FC assumption, is slightly noticeable. As
a result, it is safe to assume that in MIMO multiplexing systems data streams are
fully correlated (from the coverage probability/SINR distribution perspective),

which in some cases can substantially simplify the analysis of the network.

4. When the noise effect is negligible, i.e., in interference-limited systems, our cov-
erage analysis does not rely upon the evaluation of integrals, and is given in a

closed-form expression.

5. We exploit our analysis to investigate the interconnection between densification,
multiplexing, and diversity in HetNets. We also formulate the spatial throughput
of multiplexing systems when the quantized values of SINRs are available at the
serving BSs through dedicated low-latency, error-free feedback channel with lim-
ited capacity. Our reported results show that by considering feedback channels
with capacity up to 8 bits per frame per BS, the spatial throughput grows by at

most 180% over the conventional 1-bit feedback system.

e For MIMO-MRC multiplexing systems, we also investigate the coverage probability. In

comparison to ZFBF, under MRC the received data streams of a given communication
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link interferes together as the receiver does not cancel out the cross-stream interference.
Our analysis also incorporates the impact of inaccurate CSI at the receiver (CSIR).

For this system:

1. We obtain an easy-to-compute, tight upper-bound on the network coverage prob-
ability in closed-form expression. Our analytical results—supported by extensive
simulation—provide significant practical insights on the impact of densification
on the link-level coverage performance. We then conclude that improvement in
the network coverage performance and ASE by densification is subject to careful
selection of multiplexing gains in different tiers, which is also observed for the case
of MIMO-ZFBF multiplexing system. Besides, we quantify the trade-off between
densification and multiplexing gains in multi-stream MRC systems. Our results
indicate that increasing CSI inaccuracy compromises the coverage advantage of

multi-stream over single-stream systems.

2. We demonstrate practical cases in which the high processing costs of ZFBF justi-
fies using MRC, although ZFBF generally outperforms MRC in terms of coverage
probability. We further provide quantitative insights on the coverage cost of

adopting MRC compared to ZFBF.

3. We also analyze the cross-stream SIR correlation coefficient amongst multiple
streams in a communication link. Our analysis provides quantitative insights on
the impact of tiers’” BSs density, path-loss exponent, CSI inaccuracy, and mul-
tiplexing gains on the SIR correlation among data streams. Besides exploring
the coverage probability of MIMO-MRC under full-correlation assumption, we
further discuss another extreme correlation scenario, no SIR correlation (NC)
assumption, where all data streams of a communication link are deemed to be
entirely uncorrelated. We show that the NC setting substantially over-estimates

the coverage performance. Observing that the FC setting slightly underestimates
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the coverage probability reconfirms the conclusion that in multiplexing systems

the data streams can be regarded as nearly-fully correlated.

e We also derive the coverage probability of SVD systems. Compared to MRC and
ZFBF schemes, under SVD the effective fading power gains across data streams are
related the eigen-values of channel matrix. The distribution of eigenvalues deviates
from chi-squared distribution, which is the case of MRC and ZFBF, and also causes new
source of correlation across data streams. Both effects make the developed methods for
ZFBF and MRC ineffective to derive the coverage probability under SVD. Our main

contributions in this part are:

1. Investigation of statistical correlation among streams caused by heterogenous in-
terference. For the cases that the antennas are spatially uncorrelated, our analysis

indicates that ICI causes path-loss driven correlation among data streams.

2. In comparison to the general trend of the literature that provides the coverage
probability of MIMO-SVD in terms of very complex forms of determinants of
matrices where entries are special mathematical functions (e.g., hypergeometric
functions), our coverage result in this part is given in closed-from expression with

the same level of complexity of ZFBF as well as MRC.

3. Our results also specify the regimes where increasing the number of antennas
substantially improves the coverage performance. Highlighting the significance
of channel state information at transmitter (CSIT) in HetNets, we then demon-
strate substantial grows of the coverage performance under full multiplexing SVD

systems compared to ZFBF and MRC systems.

1.5 Thesis Outline

The rest of this thesis is organized as follows:
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e In Chapter 2, we introduce a K-tier PPP model for MIMO-ZFBF multiplexing HetNets
in downlink. We present the signal model, formulate the SINR, and define the all-
coverage probability. We further elaborate on extending the max-SINR CA rule based
on all-coverage probability. In this chapter, we first derive the coverage probability
of staggering computational complexity, which also stands as a motivation for the
consequent analysis of the chapter. To tackle the computational burden, we then
develop a lower-bound and an upper-bound on the coverage probability. We further
introduce notion of full-correlation (FC) assumption and prove that the lower-bound on
the coverage probability coincides with the coverage probability under FC assumption.
We also analytically prove that in HetNets increasing the number of transmitted data
streams reduces the coverage performance. Further, we derive the coverage probability
for interference-limited scenario. We also extend our analysis for the case of spectrum-
sharing D2D HetNets and show how one can adjust the equivalent noise power based
on the D2D communication parameters. Furthermore, in this chapter we discuss the
coverage performance when path-loss exponents across tiers are different. We also
explore a practical version of max-SINR CA rule whereby a limited number of BSs are
available for CA. To derive the coverage probability for this practical CA rule we use
the FC assumption. Last, this chapter discusses the extension of the analysis for several

pertinent MIMO systems such as SDMA and maximum ratio transmission (MRT).

e The approach of Chapter 3 is quite similar to Chapter 2. In this chapter the main focus
is on MRC multiplexing systems. However, here we extend the analysis to quantify
the cross-stream SIR correlation coefficient. We derive this parameter and evaluate
the impact of many important system parameters and inaccurate CSIR on it. We fur-
ther quantify the relationship between ASE, coverage probability, multiplexing gains,
densification, and CSIR inaccuracy. Since ZFBF outperforms MRC in HetNets, we
elaborate on scenarios that MRC provides a more efficient receiver choice by taking

the receiver complexity into account. This chapter also introduces the no-correlation
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(NC) assumption scenario, which is actually the method of the literature, to derive
another upper-bound on the coverage probability. We observe that NC assumption
substantially over-estimates the coverage probability. We analytically prove that the

growth of cross-stream SIR correlation decreases the coverage probability.

Our analysis in Chapter 2 and Chapter 3 assumes that the CSIT is unavailable. In
Chapter 4, we alleviate this assumption and focus on the scenario of full CSIT. The
coverage analysis of SVD systems are notoriously complex even for simple cases of
isolated systems. We in this chapter develop analytical tools allowing an accurate
estimation of the coverage probability based on the PDF of the min eigenvalue distri-
bution of central Wishart matrix. We also explore the cross-stream SIR correlation
in SVD systems. This chapter shows the great benefit of CSIT from a network-level
perspective. In effect, we observe that full multiplexing SVD can increase the cov-
erage performance compared to MRC by up to 1000 per cent. Also, SVD systems
demonstrate great potentials in improving the coverage probability by increasing the
number of transmit antennas, whereas the coverage performance of ZFBF and MRC

based systems are nearly constant.

Chapter 5 summarizes the contributions of the thesis and outlines areas of future

research.

Appendix A provides a short discussion on stochastic geometry and main analytical
tools which are often used throughout the thesis. Appendix B proves two important

Lemmas, which we often refer to, when deriving the coverage probability.
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Chapter 2

Analysis and Design of Multi-Stream
MIMO-ZFBF Receivers in HetNets

2.1 Introduction

The pioneering work of [47] proposes a flexible approach for modeling K-tier HetNets through
a K spatially and spectrally coexisting tiers, each with its own BSs. BSs are distributed
in 2-d plane through K tiers of independent PPPs. In conjunction with the max-SINR CA
rule, the authors derive key system performance metrics, including coverage probability as
a function of the main influential system parameters in a closed-form expression, which is
undeniably hard to achieve under conventional cellular models, e.g., grid/hexagonal model.

In this chapter, we aim at extending the proposed in [47] to a multi-stream MIMO HetNet,
and investigate its coverage performance and explore several aspects of this configuration.
Our focus is on open-loop—no CSIT— MIMO-ZFBF. This scheme is practically attractive
due to its straightforward implementation, low computational complexity, and almost zero

feedback overhead [36]. Regarding this model, we attempt to accomplish three specific goals:

1. The first goal concerns the lack of numerically suitable formula(s) for the evaluation of
the coverage probability of MIMO multiplexing systems, particularly ZFBF receivers.
In fact, the model [47] is adopted by the same authors in [56] to investigate the coverage
probability of a multi-user MISO, a.k.a SDMA-ZFBF, donwlink in a HetNet. However,
the authors only provide ordering results implying that the coverage performance of a

single-user MISO is higher than SISO counterpart system, while both systems provide
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higher coverage performance than multi-user MISO system. The main shortcoming of
this work is that the derived coverage provability for the considered MIMO system has a
staggering high computational complexity, making it almost unsuitable for numerical
analysis. Furthermore, their method is not straightforwardly extendable for multi-
stream MIMO communication scenarios. As we already mention in Chapter 1, the
complex analytical results are quite persistent in the stochastic geometry analysis of
MIMO systems. We therefore believe it is of high priority to invest in developing
analytical tools that conceivably scale down the computational burden of the analysis

without sacrificing accuracy.

2. On the other hand, in the context of ad hoc networks, the literature shows several
advantages of ZFBF in enhancing the coverage performance [119]. The authors in
[119] prove that multi-stream communications can actually outperform a single-stream
ad hoc network. In light of this finding, one may then argue that the same trends can
hold in MIMO HetNets by noticing the convergence, albeit partial, of HetNets toward
ad hoc networks, for instance through random installation of remote antenna ports,

relays, and small cells.? It is, therefore, necessary to investigate:

e Whether or not the multi-stream MIMO schemes, such as ZFBF, are of practical

significance in enhancing the coverage performance of HetNets;

e Whether in MIMO HetNets, cell densification and high multiplexing gains should

be practiced simultaneously in all tiers;
e If new techniques are needed to evaluate, whether excessive densification is prefer-

able to increase multiplexing gains.

Thanks to the developed analysis, these questions and similar design issues can be

thoroughly addressed by devising suitable optimization solutions. In this chapter, we

2Apart from such analogies, significant discrepancies between these two networks exists which can be
due to the corresponding CA mechanisms governing HetNets, as well as centralized TDMA/FDMA MAC
protocols, which are commonly practiced in infrastructure-based configurations.
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explore several of such design issues, highlighting important aspects of the MIMO

multiplexing systems and providing various guidelines.

3. Finally, as mentioned in Chapter 1, one of the main limiting aspect of the literature of
MIMO multiplexing systems, e.g., [62, 118, 123, 127], is that the outage performance
is merely studied from the perspective of a given stream — stream-level perspective.
This is not accurate due to the common location of interfering BSs across the data
streams of a link. Thus, in multiplexing systems, where each link runs a number of
streams, the outage probability needs to be investigated from the perspective of the
link — link-level perspective. In this chapter we provide a notion of link-level coverage

probability and build over the analysis.

We shall also emphasize that the method developed in this chapter is general enough
and will be exploited/extended to investigate many other prominent MIMO systems. Some
direct extensions are pinpointed in this chapter. Other relevant ones which require extra
elaborations or adoption of more sophisticated steps are covered in the other chapters of this
dissertation.

The rest of the chapter is organized as follows. The system model and main assumptions
are presented in Section 2.2. Coverage performance is analyzed in Section 2.3. We then
present an approximation of the coverage probability by introducing the FC assumption in
Section 2.4, followed by investigating the impact of multiplexing gain on the coverage perfor-
mance in Section 2.5. Section 2.6 discuses the coverage probability of the interference-limited
system. In Section 2.7, we present the simulation and numerical results. In Section 2.8, we
discuss several pertinent system design and explore performance evaluation of the network
via numerical studies. In Section 2.9 we provide various extensions of the provided analysis.
The extensions include: 1) spectrum sharing in MIMO HetNets, 2) non-homogenous path-
loss environment, 3) a more practical version of the max-SINR CA mechanism, 4) other

MIMO techniques. The provided extensions are to demonstrate how the analysis can be
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exploited to discuss relevant MIMO communication scenarios, thus we exclude full-fledged

investigations of the subjects. The chapter is finally concluded in Section 3.7.

2.2 System Model and Assumptions

2.2.1 Network Model

Consider the downlink communication of a K-tier heterogeneous cellular networks. The
HetNet is comprised of K > 1 tiers of randomly located BSs in which the BSs of Tier ¢ €
are spatially distributed according to a homogenous PPP, ®;, with spatial density, A; > 0.
A brief introduction to PPP is available in Appendix A. Parameter A; is the number of BSs
per unit area [47]. We further assume that ®;, i € K are mutually independent. For the
ease of exposition we also denote & = {®;}y;. UEs are also randomly positioned across
the network and form a PPP, ®, independent of ®, with given density A\y. According to
Slivnayak’s Theorem [40, 41] (see also Theorem A.1.2 and Definition A.1.6 in Appendix A)
and due to the stationarity of the point processes, the spatial performance of the network
can be obtained from the perspective of a typical UE positioned at the origin.

Time is slotted and, similar to [47, 50, 55, 56], we assume that at each given resource
block (e.g., time slot) only one UE is served per active cell. In cases where more than one
UE is associated with a given BS, UEs will be scheduled across resource blocks (e.g., time
slots, sub-carriers). We also assume that UEs are equipped with N” antennas.

Each Tier ¢ is fully characterized by the corresponding spatial density of BSs, A;, the
transmission power of BSs, P, W, the SINR threshold, (;, the number of the transmit
antennas BSs possess, N/, the number of scheduled streams S; < min{ N}, N"} (also referred
to as multiplering gain [118, 119, 156]), and the associated noise power o2. As [47, 50, 56], we
assume that SINR thresholds §; > 1, only for analytical purposes—more details regarding

this assumption is provided in Remark 2.3.2.

43



2.2. System Model and Assumptions

2.2.2 Signal Model

Let a typical UE be associated with BS x;, transmitting S; data streams. The received

signal, y,. € CN"™1 g

Yo, = il 2 Hayso, + > > layll > Hyyso, + w, (2.1)
JEK xj€®;\zo
where Vr;,i € K, 85, = [Sg;1---82,.5,]7 € C5*¥L s, ~ CN(0, P,/S;) is the transmitted
signal corresponding to stream [; in Tier i, H,, € CN"*% is the fading channel matrix
between BS z; and the typical UE, with entries independently drawn from CA(0,1), i.c.,
Rayleigh fading. Also, w; stands for the background noise which is assumed to be additive,
Gaussian, and white.

In our model, we assume that the transmitted signals are independent of the channel
matrices. In (2.1), ||z;||7® is the distance-dependent path-loss attenuation, where ||z;|| is
the Euclidian distance between BS z; and the origin, and a > 2 is the path-loss exponent.
We also assume perfect CSI is available at the receiver (i.e., CSIR), which is attainable by

dedicating enough pilot transmission.

Remark 2.2.1 (Large-Scale Shadowing). Our model does not explicitly include the im-
pact of large-scale shadowing. Nevertheless, under certain conditions it is quite straightfor-
ward to include its impact in the analysis. Assume shadowing is i.i.d., i.e., shadowing gains
across BSs of a tier are i.i.d.. Further, let x,, be the shadowing effect between BS x; and
the typical UE so that E[xgl] < 00, where & = 2/a. Therefore, according to the results of
[50, 100, 157], one then is able to simply scale the densities as N\ — NE[XS| in order to
incorporate the impact of the shadowing. For instance when x,, is governed by the log-normal
distribution as x,, ~ 10V&Va0D) where N'(x;, Var(x;)) stands for a Normal distribution

with finite mean X; and variance Var(x;), it is straightforward to confirm that

log 10 X; log 10 Var(x;
og5 %+0.5( og5 {iX;))2

Elx;] = e
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Note that under this particular choice of shadowing, the PPP sets ®;s stay homogeneous,
which is desirable. Nevertheless, when shadowing is spatially correlated (e.g., large buildings
probably impose the same shadowing effect on adjacent BSs) [16], or it does affect the fading
characteristics, resulting a composite fading distribution [158, 159, 160, 161/, the analysis be-
comes substantially more intricate as the net effect of shadowing manipulates the Poisson sets
®;s which are demonstrating distance-dependent inhomogeneity. Among suitable approaches
permitting to deal with the possible analytical complexities one can suggest 1) considering
more realistic path-loss model that includes LOS/NLOS components (this approach can to
some levels account for the source of shadowing in cellular networks); 2) modeling the corre-
lated shadowing through a suitable clustered point process (therefore, BSs that falling into the
same cluster have the same shadowing gain); and 3) considering more reqular Point models,
e.g., Manhatan Poisson line process, to account for street-type structure of cities. Our main

focus in this thesis does not include such scenarios.

2.2.3 SINR Formulation

As [118, 119], we focus on the scenario in which the CSIT is unavailable, and hence the
BSs of each Tier ¢ simply turn on S; transmit antennas, where the transmit power P; is
equally divided among the transmitted data streams. Such a simple pre-coding scheme is
often categorized as open-loop, see, e.g., [118, 119]. In this chapter, we analyze a dominant
open-loop technique viz. ZFBF at the receiver.

A typical UE utilizes the CSIR, H,,, to mitigate the inter-stream interference to suc-
cessfully decode the /;th stream. The typical UE obtains matrix (H Ll H,)'H Lw and then
multiplies the conjugate of its /;th column by the received signal in (2.1). The post-processing
SINR associated with the /;th stream is then obtained from [119] as

SINRZF %H%H_QHEEZ,- (2.3)

Tili P. _ :
S S ST P Y7
je’CZ‘qu)j\l‘i ’
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The numerator is the effective power of the attending/intending signal per stream after
post-processing, and the denominator is the ICI plus AWGN power. The intending channel

power gain associated with the /;th data stream, H?

@il

and the ICI caused by z; # x; on

data stream I;, G%F

T
:L’j,li7

2(N"—8;+1), and 25}, respectively. Note that for each [;, H. a%fli and G%Y, are independent

]7li

are chi-squared random variables (r.v.) with Degree-of-Freedom (DoF)

r.v.s. Further, HZY (resp. G’fJF’li) and HZ¥, (resp. G’fJFJ) are i.i.d. for I # [;. In (2.3), for
a given communication link, SINR;F_ ;,» are identically, but not independently, distributed
across streams, which roots in the path-loss attenuations. We discuss this issue with more

details in Section 2.4.

Remark 2.2.2 (Beyond ZFBF). As mentioned in 2.1, in addition to its practical simplic-
ity, ZFBF provides mathematical tractability, which is hard to achieve in non-linear MIMO-
based techniques. However, the analytical tools developed in this chapter are to some extents
general enough to be adopted to study some other pertinent MIMO systems, e.g., space-
division multiple access (SDMA). As a rule of thumb, one is able to use the analysis of this
chapter quite straightforwardly if the system under the scrutiny admits the same SINR formu-
lation of (2.3). The main characteristics that should be maintained in order to successfully
achieve this goal is that the SINR should 1) include Nakagami-type fading distribution in
attending and/or interfering signals, 2) maintain the statistical independence of numerator
and denominator, and 3) involve no intra-cell interference. Nevertheless, when the SINR
formula demonstrates non-Nakagami-type fading (e.g., under SVD processing as is covered
in Chapter 4), the receiver suffers from intra-stream interference (e.g., MRC system which is
covered in Chapter 3), and correlation between the numerator and denominator (e.g., corre-
lated received antennas or the quantized beamforming), one is then required to substantially

upgrade the analysis of this chapter.

Remark 2.2.3 (Receive Antenna Correlation). In reality, both of the intending and
interfering channel matrices may demonstrate degrees of row correlation because of spatial

antenna correlation at the receiver side [14, 37, 162, 163]. Such a phenomenon renders
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substantial analytical complications as 1) Hffli and G%¥

L1, are now correlated governed by the

eigenvalues of intending and interfering channel matrices and associated correlated matrices,
2) the intending channel power gain HEEZ behaves as a mizture of generalized chi-squared
r.v.s (comprised of Gauss hypergeometric functions, see, e.g., [164]), which are less tractable
than the chi-squared r.v.. Both of these issues cause substantial complexities, hampering the
analytical investigation of the coverage probability. More sophisticated tools facilitating the

investigation of antenna correlation on the network-level performance are then required.

2.2.4 Coverage Probability in Multi-Stream MIMO Cellular

Communications

The coverage probability of a single-stream MIMO communication is directly related to the
CCDF of the SINR. More specifically, for Tier i, the coverage probability is the probabil-
ity that the SINR stays above a given SINR threshold ;. In the case of multiple streams
however, depending on the transceiver structure and/or Quality-of-Service (QoS) require-
ments, evaluation of the coverage probability becomes more complex. For instance, in some
transceivers, the coverage probability is related to the CCDF of the weakest data stream
[128, 152, 153, 154]. This is the main subject of this thesis, whereby a UE is considered cov-
ered if all of its streams are successfully decoded. As the isolated scenarios [128, 151] case,
this interpretation of the coverage is referred to all-coverage probability, which is formally

defined in the following:

Definition 2.2.1 (All-Coverage Probability). In a multi-stream MIMO system, o UE

1s considered covered if all of its streams are successfully decoded.

All-coverage probability, in effect, encourages the transmission of as many independent
data streams in each tier that the system is able fully decode, i.e., no wastage of multiplexing
gain.

Having our interpretation of coverage specified, what remaines is to specify the CA:
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Serving BS :

Matrix Channel
.1

Matrix Channel
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Physical channel
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Post-processing data
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Figure 2.1: Post-processed MIMO multiplexing scenario.

Definition 2.2.2 (Max-SINR Cell Association under All-Coverage Probability).
The typical UE is associated to the BS through which the weakest SINR across the streams is
larger than the corresponding SINR threshold, ;. Accordingly, the typical UE is considered

in the coverage area if A”Y is nonempty, where

z;€P; [;=1,...,

AZF {Elz' € K : max mins_ SINR%EQ > ﬁz} . (2.4)

Let ¥ = P{A%F £ ()} denote the all-coverage probability.

Remark 2.2.4. The maxz-SINR CA mechanism introduced in Definition 2.2.2 is practically
influential as it allows the typical UE staying always associated with a single BS across all
data streams, adhering to the fact that all the data streams are basically originated from
a single BS (2.1). This is also shown in Fig. 2.1. This illustration shows the equivalence
between the signal model based on channel matrices and the post-processed association model.
Since the coverage performance depends upon the post-processed SINR values, it is important

to specify the association based on the status of the link and not each individual data stream.
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If coverage probability per stream is considered, one may encounter occasions that the typical
UE simultaneously receives data from several BSs (as with non-vanishing probability different
unique BSs can provide strongest SIR value on different data streams), which obviously is

not the reality of the signal model in (2.1).

Remark 2.2.5 (Load Balancing). By load balancing, one is able to manipulate the CA
(by including artificial biases) to more aggressively offload traffic a from heavily-loaded tier
(usually Macro BSs) into small cells [49, 110]. This is an cffective approach to compensate
for higher transmission power of Macro BSs form a network-level perspective. This approach
to load balancing is heavily investigated under the range expansion CA rule (see Section 1.2.83
for details). Although the maz-SINR CA rule does not specifically address load balancing in
HetNets, it is but straightforward to incorporate such design issue into the analysis. As an
exzample, assume parameters 0 < p; < 1 are the association biases such that Y, p; = 1. The

(modified) maz-SINR CA rule is then constructed as

AZF _ {Eli € K : max p; minS SINREEQ > ﬂl} . (2.5)

z;€P; i=1,...,5;

Applying 5; — %, one simply attains the conventional max-SINR CA rule (2.5), where
parameters B;s are variable that need to be optimally evaluated based on the particular design

agenda and system constraints.

¥ in a computationally friendly

Our main goal in the rest of this chapter is to evaluate c*
expression, which is not a trivial task. This is because 1) associated with each data stream,
the fading fluctuation of the intended signal is chi-squared, which is not as amendable to
analysis as the exponential distribution, 2) the existence of noise, and finally 3) the correla-
tion of the SINR values across data streams of a communication link, which has roots in the
common location of interferers across data streams, i.e., as seen from (2.3), the same path-

loss attenuation ||z;]|~® from interfering BS z; # z;, which is random due to the random

location of BS z;, is realized across data streams [;.
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2.2.5 Characterization of Inter-Cell Interference

The denominator of (2.3) represents the aggregate ICI imposed from concurrent transmis-

sions in adjacent cells. The ICI on stream [; is given by

A P i-a
LEDY jllfvjll G, (2.6)
J

jEIC J}jEUJ- q)j\:l?i

which is a shot noise process [104, Section III-A] (see Section A.2 in Appendix A), and is

entirely characterized by its Laplace transform L, (t) (A.9). It is straightforward to show

that
Lp(t) = Ee " (2.7)
sl me,
- E‘I’E{GZFzz}z/ Ve, H H E ot (2.8)
JEK x;€P; \1Z
T aysvd
_ HEQ) H EC 6 s Il il G @)l (29)
jeK ;€D \xz;
~15C() X A (52) El( GZF )a]
S 7 i (2.10)
where C(a) = 7I'(1 — &) and I'(a f t*~te~tdt is the standard Gamma function. The

last step is because of [104, Eq. 8] (see also Example A.2.2 in Appendix A). Since G%]F,li i

chi-squared with DoF 25, then E(Ggili)d = F(lf‘—JrSL Using this, (2.10) is finally reduced to

Ly (t)=e ™9, (2.11)

where letting S = (S1, S, ..., Sk), we have

weoms@) R e

jex

Remark 2.2.6. Under the max-SINR CA rule interfering BSs can be closer to the typical UE
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than the serving BS [47, 56]. This, in turn, implies that in comparison to the range expansion
CA, here for the evaluation of Ly, (t) in (2.10) the inclusion of an exclusion zone around
the typical UE is unnecessary. We are actually in favor of this characteristic of max-SINR
CA rule, as it permits formulating the Laplace transform of ICI in (2.11) in a form suitable
for analytical purposes—observing that L, (t) is explicitly formulated through variable t has
favorable analytical consequences. In comparison, under the closest-BS CA rule, the Laplace
transform of ICI can at best be formulated in an integral formula, impossible to explicitly
formulate it as a function of variable t. This leads to complications in deriving the coverage

probability in analytically favorable expressions.

2.3 Analyzing the Coverage Performance

Our main goal in this chapter is to provide computationally affordable expressions for the
coverage probability. Let us first state these two following Lemmas, which are broadly

exploited in the analysis of this chapter and the consequent chapters.

1

1

— M-
Lemma 2.3.1. For a r.v. H distributed according to x3,; with CCDF Fg(z) =e? Y 2

m=0
_ M-1
the inverse Laplace transform of Iy (2) is L’%;(z)(t) = > L6 (1 —1), where ™ (1) is the
m=0
mth derivative of the Dirac delta function. Furthermore, there holds
® -1 M—1 .
/ Eruc Wy 5~ _Lavm) (2.13)
/ e — Ma)'(m+1)
Proof. See Appendix B.1. O

Lemma 2.3.2. Consider a shot noise process, I = Y I;, where Ij = > Pjlla;|"*H,,,
jeK 1:]'6(1)]'
and Hy;s are i.i.d. random variables distributed according lo X%Sj- Assume H is distributed

according to x35 and is independent of Hy,s. Then, for a given real parameter A > 0 there
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holds
P{H >AI} = / Lo et ATME) (2.14)

where L’%L(z) (t) is the inverse Laplace transform of the CCDF of r.v. H as given in Lemma
2.3.1.

Proof. See Appendix B.2. O

We now use the above lemmas to drive the coverage probability ¢?F in the following

proposition.

Proposition 2.3.1. The coverage probability of a multi-stream MIMO-ZFBF multiplering

HetNet is -
N"— m T4, +m
=Y 2m / " z z I
ekl ] : ’
w ‘)ml ams" '—‘ZF( t t )
oL i Ti,t1,.. S;
X / v 77, ’ ridri, (215)
ot,™i ..Otg™ ;=191
where
[e%
Cla) [ 5;8;\¢ & AN S s; 5
— 7T 771245(71'7)( P, ) ’;l )\]<%) ]E{G]ZIZ:* }lz |:<1 _1(1 l,tlz) :|*/3z?'r'01(72l 2 tl1
= (it . ts) =€ = : i (2.16)

Proof. The coverage probability is defined in (2.2.2). Let denote r; = ||z;]|. According to

[47, Lemma 1], and assuming 3; > 1, Vi the coverage probability is obtained as

A = P{ max mm SINRZFl > G (2.17)
U zi€®; [i=1,..
S
_ - Z¥ ‘
= E E g 1 (ll:ninnsl SINRZ;,. > @) (2.18)
€L x;€P;
(@)
o ey ) )
EEK 27\ / {ll_IElI{ S, SINRZ" ﬁz} dr; (2.19)
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Si
2 S o, / rie [ [ P{SINRZ, > ;|®} dr;, (2.20)

e li=1

where Step (a) is due to Slivnyak’s Theorem and Campbell’s Theorem, and Step (b) is
because conditioned on process ®, the SINR expressions across streams are statistically
independent. Now we use Lemma 2.3.2 to express probability P {SINREfli > 0 |<I>} through
the inverse Laplace transform of the CCDF of the intended fading gain of stream [; (see

Lemma 2.3.1). Doing so, for a given r; we then write

P {SINRZ', > g;|®}

S;
—P{H,%Fl_@ ot a8 Y S B cb} (.21)
Z ]EICxJECD\xZ

. ., Sipeg? P S Y el G,
E (tz)e PP Z]E{G?Fl}e Jje xjeéj\xz dt% (222)
7"

7 ] T o ZF
L' (1) ‘tﬂzP”"zH I1 Egar, Al O gy (2.93)

? JEK ;€@ \x;

where Step (a) is due to Lemma 2.3.2. As r.v. HZF is distributed according to X%( T

—S5;+1)
_ NT-S;i
with CCDF Fyze(z) = e * >~ %, based on Lemma 2.3.1 the inverse Laplace transform
_ " N,
of CCDF Fpyzr(2) is 511 (tz) = > "3 §(m) (1 —1) where 6™ (t) is the m,-th derivative of
m;=0

the Dirac’s Delta functlon In Step (b) we use the independency among the interfering links

Hy, Vx;, 5. Now, substitute (2.23) into (2.20) and apply some straightforward manipulations,

to obtain
s,
Z27TA /T'ZE(I) H/LF t e_tlﬁlp 1"040'2
e li=17,
— 47,0441 aZF
<] 1l Bez, e O s IR s (2.24)

JEK x;€®;\x;
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(2.24) is then expressible as

ireo? S,
A = Z%A /7 dr; Eq)/ / R HL; (t,)dty, (2.25)

e 0

(H H HEGZF e ﬁlplrilsjllw I~ aGZFl l)

JERK zjedj\w; li=1

X

@ ZQW)‘i/ndT’E‘i’

[ee] S. Sy S,
—Bigtrio? 3 by, 2
/ € Fi =1 H E%l e (tl,;)dtli (22())
H?
0

/ O\x

ik 0 Li=1 i
S;
X (H H ]EGZFH _'BZP i s el G >,
JEK xj€®;\x; ;=1

where Step (a) is because GZF, s are i.i.d. across streams [;. Now, due to the independency

of PPP sets ®;s, ¢”" is further reduced to

00 0o 00 Sq
7P —ﬂiﬁzT?GiZ 2 tli -1
o= Z 27N [ rmdry [ . [ e L=t H L~ " (ti,)dty, (2.27)
H
0 0 0

ek

—Bi ﬁ S
X H ]E@j H EG%fe

jex ;€D \x;
00 o ~ ) a K AN :
—r2C@) (%) L N[ L) B ZFKZ Gl ) ]
S /ndn/.../e G E(8) mer (2] | g
ek 0 0
LA — 3 Sireo2y,
e Tl et
11':1 ¢
iek 0 0
S; —r2 &8 5'( 52’3’ : f: A (G ZF K GZ )a] 5
< ]Je SO ]<S’> E ﬁizF(tzi)B_mw "y,
l;=1 i

where Step (a) is due to PGL (see (A.4)) of shot noise process (see (A.2.2)). Now, recalling

NT=S,
that £ L) =2 —0(mi)(t — 1), along with applying B.3, the desired result follows.
i m=0 "
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O

Remark 2.3.1 (Other Notions of Coverage in MIMO Multiplexing Systems). As
discussed in Chapter 1 besides all-coverage probability one can also consider any-coverage

and sum-coverage too. The former is defined as

A —=P<{ max max SINR .= Big, (2.30)
U z;€®; l;=1,...,S,
9

which implies that to announce coverage it is enough to have the best data stream to be

received successfully. Under the latter, the coverage is defined as

7ZF 7F

= SINR, > 6. 2.31

Coum UKm;fg@ E vl =0 (2.31)
1€ i —Lyeees

For the case of any-coverage taking some primarily steps we can express the any-coverage

probability as a function of all-coverage probability as follows:

oy =1 —]P’{l max SIRZ', < ﬂz} (2.32)
= sz/riﬂ«:@ (1 —P{SIRZ" > g;|®}) dr, (2.33)
i€k 0
S S, s I
= > 2mn Yy (/) (_1)z,+1/nEq, 11 {SIRZFZ, > @ycp} dr;.  (2.34)
i€kl =1 V" 0 =1

The inner integral is then represented in the form similar the integral encountered in (2.20).
What is remained is to take the same steps provided in thr proof of Proposition 2.5.1 to
derive any-coverage probability.

Newvertheless, the case of sum-coverage is more involved and exact evaluation needs sepa-

rate analysis. A simple approximation however can be introduced based on the any-coverage
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2.3. Analyzing the Coverage Performance

and all-coverage probabilities:

A~ 0.5¢2 4054 (2.35)

sum any

To achieve this approzimation one can note that for m identical but dependent r.v.s Z1, Zo, ... Zpy
we have M min,, Z,, <> Zyn < M maxy, Zy,. Therefore, P{min Z,, > R/M} <P{>  Z, >

R} < P{maxZ,, > R/M}. Using this we then approzimate P{>_ Z, > R} through the

m
mean of the upper-bound and lower bound. Note that (2.35) is heuristic, one is on the other

hand able to approximate sum-coverage probability by Gaussian distribution after deriving

ZF
the first and second moments of r.v. l _123 . SINRZ,-

Remark 2.3.2 (Analytical Significance of Assumption 5; > 1 Vi). In the proof of
Proposition 1 (see second step in (2.20)) we exploit the assumption B; > 1 Vi to convert the

probability of event

max min SINRZ, > 3
U zi€®; L;i=1,...,5; o
i€k

nto its equivalent form

£33 1 in, SR, 2.5).

€K 1, €P;

We here remark on the legitimacy of this step with more details.

Let us fist consider the counterpart SISO system with exponential power fading gain and
maz-SINR CA rule. Under the assumption (; > 1 Vi, it is proved in [47, Lemma 1] that
for this SISO system the coverage probability is accurately equivalent to the probability of
whether or not there is a BS that can support the typical UE with the required SIR threshold.
However, for the case of B; < 1 this statement partially tumbles, as there are now possibilities
that more than one BS can tentatively support the typical UE, which is also referred to by
the k-coverage in [106, 107]. Yet, via simulations the authors in [47] observe that for SIR

thresholds as small as -6 dB the derived coverage probability under the assumption [3; > 1 Vi
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still stays accurate.

On the other hand, for this SISO system when the assumption 3; > 1 is applicable but
the fading distribution on the attending link is changed to a Nakagami-type, which is actually
covered by the SINR formula in (2.3) too, it is argued in [56, Section IV-B] that there is a
slight chance that more than one BS can support the typical UE. For such scenario, if the
average power of the fading of the attending channel is much higher than that of the fading
of the interfering channel, we expect that the likelihood of having more than 1 BS supporting
the typical UE grows. Therefore, the coverage probability can be larger than one.

Now consider our model. Let us denote X =37, > 1(1,:H1nns, SIR?Eli) as the number
of BSs that can support the typical UE, which is lower-bounded by d Poisson r.v. with mean
value p = E[X] = . This implies that P{X > 1} < 1 — pe™ — e™*, which the right-hand-
side is a monotonically increasing function of p. Simulation result in Fig. 2.2 indicates
that for p € [0,1] (note that p is equivalent to the coverage probability, therefore we are
technically interested in applicable range p € [0, 1]) almost surely we have P{X > 1} < 0.3.
This implies that it is generally safe to assume that the second step in (2.20) is legitimate.
We explore the impact of SINR thresholds on the coverage probability with more details in

Section 2.7 via simulations.

As seen, Proposition 2.3.1 has a substantial analytical intractability, which in turn leads to
undesirable high computational complexity. In particular, apart from improper integration,
the complexity has mainly rooted in the nested higher-order differentiations of the function
E2%(ry,ty, ..., ts,), which is not expressed explicitly in term of variables ¢y, . .., ts,. Therefore,

in the rest of this section we set our goal to scale down on the computational complexity of

Proposition 2.3.1, hopefully without sabotaging the desirable accuracy.

Proposition 2.3.2 (Upper-Bound). Define

gm 2 2(_1)”’ <T’;,) E(an' — ). (2.36)
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0.35

0.3f

0.25¢

(X>1)

O 0.15}

0.1f

0.05f

Figure 2.2: P{X > 1}.

The coverage probability of MIMO-ZFBF is then upper-bounded by

[e'¢) 25\ & N"—8S,; . I (my - m/
7F 5,5 a2 —722(335-31) A(S) g (_1)ml(m:) Si ao)
¢ < E 2\ | e TR e : 1+ E E —,' Birio;

° — T m;: i
S 0 mi=1 m}=0

CLont (826,\ " A(S)"
X[l—I—ZF(Pi Sl" T

n=1

S;

Proof. To tackle the computational complexity of (2.15), we start by working on expression

S )
Eqqzry, (> sz»ftli)"‘] in function =% (r;, t1,...,ts,) (2.16). To that end, we attempt to
Blitte = "
&

lower-bound it by noting that the function g(v) = v*, v > 0, is concave, and thereafter

applying Jensen’s inequality [165] yields

S, & S o1
K B 1 1
YZF o e YZF .
Eggzry, (E:Gj,zitlzv) = Sikery, <§§:G1,zith> (2.38)

;=1 v =1
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S.
1 & s
> 5@ Eqz ), [S > (GH,) ] (2.39)
l;=1
S
= S77'Y Eew [(GF1)] 8 (2.40)
l;=1
S —I—a 5
= ot Z (2.41)

where the last step is because GJZF is chi-squared with 2.5; DoF. We now substitute (2.41) into
(2.30), and use the introduced parameter A(S) in (2.12) to reach the following upper-bound

on the coverage probability

t
= (2.42)

S 51 A(S) & o
2227")\ /rldrl/ /H ( ) t —ﬁzpr Utliﬁi (tl )dtl >(243>

€KX l;=1

2 512'61) A(S) ta

o 5§ pa g2 =T
= ZQW)\i/ridriH (/e_ﬁ”%r" gitiﬁ%LZF (ti)e 1< VA dt) (2.44)
0 7

S ;=1 0
ITEIALIE
= > om) / ndn< / Ol UtzEFi,ZF(W ( p,) Zd@) , (2.45)
ek i

where the last two steps are due to the fact that r.v.s {H/"}, are i.i.d.. Now, putting the
expression for the inverse of CCDF F pzr from (B.1) along with the identity (B.2), we derive

a closed-form expression for the inner integral in (2.45) as the following:

o

578, )" As) s
—/31#7’1 oiti 1 ) _T?( i ) Si
/‘8 EFH.ZF(LL%)@ dt
O 7
() e
Z —ﬂz#n i, ) FUm (¢ — 1)dt (2.46)
m!
m;=0
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NSZ

mz dmi i s 2 _,y,2<5i2»3i>d/\(5)fa
r®o, i P; S; 7t
_ E _Am et T TR ) s (2.47)
= mi! ati’™ t=1
;=0
2 & NT™— .
2( 55 A(S) m: i .
—ﬂzp”'f‘ 126—1” ( Pi ) s; n g <m2>
E : E : /
m;
m;=1 m/;=0 v
dmi—mi —[3 Z'r o2, dm; _T2(3i5i>d1\('5)t@
L | R S )
dt;nz m tl:ldt:nl =1

where the last step is because of the Leibnitz’s formula. By borrowing [166, Eq. (15)] and

applying some manipulations we then have the following result on the second derivative term

n (2.48):
m! 2528\ " AS) 4 o528\ %Ay M m) 23\ @ "
d —e r’(ﬂ') S :€T2<Pz‘> S Z@L T?(‘%ﬁz) A(S) Com > 1,
i ti=1 — n! P, S;

where QS?; is given in (2.36). Applying (2.49) into (2.48), we then have

3 21

(2.48) = e ﬁlpw,a?—rz(si‘.‘if“f)( g CUMG)

: mi;—m) m; " SQ : & 2A S "
(ﬁz 2"3) 1+Z¢n! (( P’?) S§ )> . (2.50)

The final result in then in order by plugging (2.50) into (2.45). O

Importantly, the provided upper-bound on the coverage probability in (2.37) has an ac-
ceptable computational burden. In effect, it poses the same level of computational complexity
that does the case of SISO system in [47]. On the other hand, this upper-bound captures
the impact of many important system parameters, including density of BSs, multiplexing
gains, transmission powers, SIR thresholds, and noise power. It is therefore suitable for
network-level performance evaluation and also deriving system engineering insights, if one

desires.
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0

w8 ¢
( . A S streams
= Serving BS 3
Y
Tk

)
=

A

Y] a8t %%-S
@ (ﬂr
Interfering BS Interfering BS uj
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Figure 2.3: Full-correlation (FC) scenario.
2.4 Full-Correlation (FC) Assumption

In the previous section, we derived a numerically feasible upper-bound on the coverage
probability. It is still possible to further reduce the numerical complexity, which is persuaded
in this section. As a useful byproduct, the conducted analysis leads us shedding some lights
on the impact of the cross-stream interference correlation on the coverage performance of
the multiplexing system, which happens to be useful in explaining several behaviors of the
multiplexing system we are exploring in the rest of this chapter. Note that throughput this
thesis we frequently revisit the method developed in this section as an effective method to
derive the coverage probability of sophisticated MIMO multiplexing systems, which otherwise
is rather impossible to investigate in a numerically affordable approach.

First note that one of the main reasons that the analytical evaluation of the coverage
probability in multi-stream systems is challenging is due to the cross-stream interference
correlation that is chiefly induced by the common location of interferers. In fact, as seen

from Fig. 2.3, path-loss fluctuation ||z;||~® caused by the interfering BS x; is the same
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across different data streams of the communication link which is also evident from (2.3). As
seen from Fig. 2.3, the location of BSs in both scenarios are the same, the only difference
is that under the FC assumption all interfering streams are fully correlated. However, due
to independency of fading fluctuations across interfering data streams, the net effect of
interfering signals across data streams fluctuates around ||z;||~®, which causes the SINR
values to stay partially correlated among streams. Such a partial cross-stream correlation
is generally hard to manage, rendering mathematical intractability as witnessed above. To
bypass it, in this section we heuristically assume that the ICI values across data streams are
fully correlated:

Definition 2.4.1 (Full-Correlation (FC) Assumption). Assume the typical UE is as-

sociated with BS x;. Further, let’s replace the interfering fading gain G%f ;, with its average

value Eqzr = S;. Under FC assumption, ICI is then formulated as

x5,y

re=3" 3" Pllayl™ (2.51)

jEIC IjECI)j /112,
Moreover, the post-processing SINR on data stream l; is approximated as

P —a [JZF
S; || || x4l . (252)

ZF-FC __
SINRM,lz‘ o JFC 4 52
i

z;,min

Now, denote H%F 2 l _n{lins H lell Under the max-SINR CA rule and FC assumption,

the typical UE is then stated to be in coverage if set

P; —a  JZF
ST Hw min
AZF_FC = {ElZ € K : max Si H ” = 2 ﬂl} , (253)

r;€P; IFC + Ui2

ZF=FC " As it is seen, contrary to (2.5),

is not empty, the probability of which is denoted by ¢
in (2.53) the determining quality of the desired signal is effectively encapsulated into the r.v.
HZ¥ We use the statistics of HZF . the following proposition to provide a closed-from

x;,min" x;,min

expression for the coverage probability.
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Proposition 2.4.1 (FC Assumption). Define

~— A Sl —1
Zik - Z (k?o, ]{72, .. ) ’ (254)

L knr_s
k0+k2+--~+kNT—Si:Si_1 » WNT=5;

and
) NT—S;
Si(k) EN" =S +1+ > lh. (2.55)
1=0
Furthermore, let
AFC2 (¢ Z A P (2.56)

Thus, the coverage probability under FC assumption is obtained from

B o~ 27\ (— 1) SUIT (S, (K
F-FC ZZ i
Nr—8, OZ
iek ik u=0 F(Si)u! H ([l)
1=0

ot

m; mi) (AFCyn m; mz —m;
)™ (i) (A€)"gn” ) 257

m;=1 m =0

% QSZ 2 mi—m; mz—ml
)RS 35 3 o

5.5, —né ’ m}—m;
mi=1m!=0 n=1 m;In! ( 1’#) (@ﬁ:ai)

2

it 525, \ % \ro
A _ rag2 —7’2(%) A
o= /rmo‘+2"+1 ﬁ’P e ' dr;. (2.58)
0

Proof. To prove the proposition, we first note that the PDF of r.v. H”F. is represented by

1, min

00 Si
d gV s
leZEm(h,) = % /6 gmd!] (259)
h
Si—1
pNT-S qNLSi
- Qe h_° 9_< 2
Sie TN = 5) /e F(N"—Si)dg (2.60)
h
NT—S, Si—l
i hl hN —Sie—h
— Si /_h - =< 2 1
(f’ ; u) T(N" — S,) (261)
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— hS (k)—1

= S s NT 5 (2.62)
F( Zz k (ll)

=0

where the last step is due to multi-nominal expansion. The PDF (2.62) admits the CCDF

k)—1
ST(Si(k)) Y LSS

u!

FHzZ,Em(h) - ZZ k uz?\]r_si . (263)
DN =8 T (e
=0

The inverse Laplace transform of CCDF Fzr (h) is also obtained from

i,min

gi(k})—l

__ SI(Si(k) Y (- 8)
_ u=0
EFLZFA (2) = Zi’k T . (2.64)
iymin T(N"—S;) [T (IO
=0

Now, under the same logics put forth in the proof of Proposition 2.3.1, and using Lemma, 2.3.2

and the obtained expression ﬁ; e (2) in (2.64), we then evaluate the coverage probability

under the FC assumption as the following:

ZF—-FC %HxiH_aHa%me
c = >YE> 1 e B; (2.65)

€L z, €P;

Sir‘?’ z
= ) 2\ / nEq»/ T (O
. H.” .
0

Sirq. o
<[1 I e """ atar, (2.66)
JERK z;€®; /a;

o0 o

Sipag2y _p2( 8ibi &
= D 2mh, / rdr, / AT (e () Ny (a.6)

= 0 0 FHZ'ZF
NN N 2rh(=D)msett T(Si(k))
Z Zi’k ['(S;)u! Nhs 1y

=0
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(2.68)

o0
U S, B, & Cla
x/ndn—d e Aipriait i (Sh) AT
dt?
0

Applying the Leibnitz’s formula along with [166, Eq. (15)], similar to what was done in
(2.49), the desired result then follows. O

Recall from Definition 2.4.1 that under the FC assumption we let the interference across
data streams stay totally correlated. We now scrutinize the relationship between the coverage
performance under the FC assumption and the actual coverage performance. This allows
us to better grasp the impact of ICI-driven cross-stream SIR correlation on the coverage
probability.

Proposition 2.4.2. FC assumption yields a lower-bound of the coverage probability.

Proof. We derive a lower-bound on the coverage probability by upper-bounding the term
S; ) )

Egar (> G]Z»lFtli)"‘] as the sequel. Note that the function g(v) = v*, v > 0, is concave.

M=

Consequently, by applying Jensen’s inequality [165] along with some mathematical manipu-

lations, we can show that

S; [ [
EG]Z_F (Z G tl,;) < (Z EGZF tl1> (2.69)
l;=1

l;=1

Si ;
- S8 (Ztlz) : (2.70)

l;=1

where the last step is because G7] is chi-squared with 25; DoFs. Using (2.70) in (2.30), the

following lower-bound on the coverage probability is obtained:

A > ZQW/\ /7‘ drz/ / ?1 ' Z: Hﬁ— (t,,)dty,

i€l l;=1

—r20(a)(S2)" 3 AjPﬁ( > t)
xe U VA (2.71)
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On the other hand, using LGF of the PPP, the expression (2.71) can be (reversely) expanded

as (see also (A.9))

(2.71)

% 00 5, Sirag? % .S
_ i?z.r?‘ji 1 i
i s —1
ZQW)\ /ndn/ ) /6 ti=1 HﬁﬁHzp(tli)dtli
e 0 0 l;=1 i
Sy
85 Pye 3 1,
jEK l'jE(I)j\l'i
REEALOPY
ZQﬂx\i/’ridri/.../e li= Hﬁ— o (4,)dty,
ick 0 0 0 =1
S; <
jE/C l‘qu)'\l‘i ;=1
=Y om, /nEq,H/ﬁ (e
HZF
13 l;=1 0
> H H e ts) iﬁiT?PjHIj” dt;dr;
jelCa:jeI’j\xi
(a) ZF Si a2
= Z 27\, | r;Ee H P 12 @Fn o;
ieKk 0 l;=1 !

S0% Y Al a|¢}dr,

JjeEK .IJG(I) \&4

DN om [ rEo ﬂp{ﬂgi > ﬂl—lro‘az + ]Fc\d)}dm

e l;=1

2 Gl HZE
T,;Eq,]?{ ﬂ {W = ﬂzl@ dT,;

li=1

I
(]
0\8 0\8 O\

. ||xl||_a 1’le
r; EqP , nin —>BZ|<I> dr;

i=1,...,8; IFC + O‘

where Step (a) is due to Lemma B.2, and in Step (b) we notice (2.51).

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

O

The result of Proposition 2.4.2 is interesting, as it implies that ICI-driven cross-stream
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SIR correlation renders a smaller coverage probability in the multi-stream MIMO-ZFBF
communication. This is because when the ICI becomes more correlated (or equivalently
when the impinged signals at the receive antennas become more correlated) the potential
diversity order of receive antennas deteriorates.

On the other hand, our simulation results in Section 2.7 show that the FC assumption
actually slightly underestimates the actual coverage probability. This implies that one can
simply assume, without damaging the accuracy of the analysis, that ICI across data streams
of a typical communication link is fully correlated. In fact, it is straightforward to show

that the Laplace transform of interference under FC assumption is Lrc (1) = e—tTATC

, where
A¥C is given in (2.56). Comparing this with the actual Laplace transform of ICI (2.11) and
noting that AYCT(1 + &) < A(S) (see (2.109)), we observe that since I'(1 + &) < 2! = 2 the
Laplace transform under the FC assumption slightly smaller than that of the actual Laplace
transform.

Since the provided expression of the coverage probability under FC assumption in Propo-

sition 2.4.1 has more manageable computational evaluation, this last observation makes the

analysis of multiplexing systems even more tractable.

2.5 Impact of Multiplexing gain on the Coverage
Performance

By increasing the multiplexing gains, one may come upon 1) a decrease of DoF of the in-
tending signal (lowering diversity gain of each stream and its effective power), 2) growing the
effective interference fading power, and 3) a lower likelihood of preserving the retrievability
of the all transmitted data streams, recalling that the association and coverage is based
on the minimum SINR among all transmitted streams of a communication link. It is then
surmisable that the growth of multiplexing gains should lead to a decline of the coverage

probability. In this section, we study the impact of increasing multiplexing gain on the
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coverage probability.
We first discuss some especial cases of the multiplexing system: SISO, single-stream, i.e,

S; = 1 Vi or diversity/SIMO, and full-multiplexing (full-MUX), i.e., S; = N" = N} Vi.
Corollary 2.5.1 (SISO scenario). When N" =1, Proposition 2.3.2 implies that

(SISO 2277)\/ o - 3(%)%5180(1%

1€ 0

in which

K
ASO 2 C(a) Y\ P (2.84)

where C'() 2 C()T(1 + &). This expression coincides with the result of [47, Theorem 1].

Note that 359 is the exact coverage probability.

Corollary 2.5.2 (Diversity /SIMO System). For the case of a single-stream setting, i.e,

S; = 1 Vi, Proposition 2.3.2 simplifies to

N'—1 m; (_ / mz)(pﬂ’:z m
Zzﬂ—)\ 5501—1— Z Z / .

B m;—m;
1€ ml—lm—O ’rnZ ( XU )

N'—1 m; ™ (_1)mﬁ(z})(ASIMO)n¢ -Am1 m
DI I - | (2.85)
mi=1m/=0n=1 m In! (%) (ﬂz 2)
where
3 K
ASMO A Ga)D(1 4 a) Y AP — A0, (2.86)
j=1
and N
@Z; é /,r;na-i-Qn-‘rl —&7‘?0@26—??(%) ASIMOdTi. (287)
0

Here, (2.85) stands as the exact coverage probability.

Note that Corollary 2.5.1 and Corollary 2.5.2 are the actual coverage probabilities as for
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S; = 1 the inequality (2.41) reduces to the equality.

Corollary 2.5.3 (Full-MUX System). Let assume N} > N Vi. For the Full- MUX sys-
tem, whereby S; = N" Vi, Proposition 2.3.2 can be used to show that the coverage probability

1s upper-bounded by

<Y o, / SBOD e 2(%) A, (2.88)

ieX

A2 _L(N'+d) ASIMO
where A = WA

Intuitively, the distribution of the fading of the desired signal remains exponential ir-
respective of the growth of N”, while the strength of the interfering signals proportionally
grows with N". Besides, N” data streams must be simultaneously decoded successfully to
declare the coverage, which is very unlikely to happen for larger values of N”, thus by grow-
ing N" the coverage probability of full-MUX decreases. This statement can also be seen by

closely scrutinizing Corollary 2.5.3. To that end, we can argue that the impact of N” on

parameter A is quite circumscribable, since due to F(]ET Nfa) < (N™)® [78] and noticing that

ASMO = ASTSO (gee Corollary 2.5.1 and Corollary 2.5.2), there holds
D(1 4 a)ASS0 < A < ASBO, (2.89)

As AS0 does not depend on N”, it is straightforward to see that (2.88) reduces by N". We

formally, state that:

Corollary 2.5.4. For the all-coverage probability and under maxz-SINR CA rule, the SISO
system has a higher coverage probability than the full-MUX system, which its coverage prob-

ability declines by increasing the number of antennas at the receiver.

Now we formally prove that the growth of multiplexing gain leads to a reduction of the

coverage probability:
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Proposition 2.5.1 (Impact of Multiplexing Gains on Coverage). By growing the
multiplexing gain, the coverage probability can decline. It implies that the diversity system

has a higher coverage probability than the multiplexing system.

Proof. First consider the cases of full-MUX and diversity system. We prove that the coverage
probability under the former is smaller than the latter. We then extend the proof for the
general case.

Consider full-MUX scenario and a generic multiplexing system under the FC assumption.
Note that under the FC assumption the coverage probability is slightly underestimated. We
then note two evidences: firstly, it is helpful to spot subtle similarities between the provided
expressions of the coverage probability in Proposition 2.4.1 and Corollary 2.5.2. In effect,
as I'(1 + a&)AYC = ASIMO holds, we can argue that from a network-level perspective a single-
stream scenario and the FC assumption expose nearly the same level of ICI from the eye
of a typical UE. Secondly, in the diversity scenario the fading on the intended channel is
distributed as x25+. (Note that under the FC assumption the determining fading is governed
by H ffmin =ming—;__g, X%( NT_S, +1).) Using these two observations, it is then conceivable to
claim that transmitting multi-stream of data can result in a smaller coverage. To confirm

this argument, we firstly write

_ g S;

Ptz = (P () (2.90)
< P o) (2.91)
< Fy,(2), vz >0 (2.92)

where the last inequality is attributable to stochastic ordering results, see, c.g., [56]. Using
this and knowing that under the FC assumption the coverage probability is nearly equal to

the actual coverage probability, we then have

Mo RO (2.93)
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[ Si6 S5
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where in Step (a) we plug (2.51), in Step (b) we use Lemma B.2 to write

- ﬂz a 2 PJG:%JF,Q
FX%JW FZ g; + _Z E{GZFl }Z Z SH'I'HO[ (2103)
JEK zje®;\z; JHa
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< e i Cfg (tl)E{GgFl}e 7= dt; (2105)
. Xonr e
0
Bi 2 ﬁz PjG%F,lz ,
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JEK wjed N\ I
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In Step (c), we apply Lemma B.2. Step (d) is, finally, because using [78, Eq. (3)] we can

write

AS) = Cla)d N (S—J> 1“(5(—;)04) (2.107)

J=1

> T i < ) (2.108)

= T(1+a)A", (2.109)

Now, knowing that I'(1+&)AFC = AS™MO we then conclude that the expression in Step (d) is
actually the coverage probability of the single-stream system. This proves that the coverage
performance of diversity system is larger than full-MUX.

Now, consider the general scenario.

AP x AFFC (2.110)

= ZﬂAi/ZE[FCFH%me <%zaaf + %ZQIFC> dz (2.111)

+ 2y A / ByreFpzr (S}’f L 202 + %ﬁf”) dz.  (2.112)
iE v

On the other hand, using stochastic ordering results we can show that for general multiplexing

system by growing the multiplexing gain in Tier ¢ the CCDF of HZ¥ . is upper-bounded as

T mln

FHa%f:min(z) - (FXQ(Nr s+1)(z))SZ (2.113)
< Pz gy ()™ (2.114)
< (Fg (2))%*, Ve>0.  (2115)

Xo(NT—8,;+2)

As the case of full-MUX, one is able to apply the same lines developed above to show that

by adding to the multiplexing gain in Tier ¢ expression (2.111) declines. On the other hand,
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due to (2.109) we can conclude that A(S) is an increasing function of multiplexing gains.
Therefore, by increasing S;, (2.112) also reduces. These two statements then prove that by

increasing S; the coverage probability declines, which proves the proposition. O

2.6 Interference-Limited Scenario

Aggressive frequency reuse and densification make the operating point of HetNet lend toward
interference-limited regime, i.e., negligible background noise. This can be exploited, as we

see in the following, to substantially simplify the analysis of the multiplexing system.

Proposition 2.6.1. For an interference-limited system, the coverage probability of the MIMO-

ZFBEF multiplexing system is upper-bounded as

w () )

F m Bi
< — : . (2.116)
C’(a)%éz \ (&)a (r(ngrsj))Sz
jek N\ 5 (5))
where
N™—8S,; '
¢ F(g + mz)
[z 2 ALt . (2.117)
Tg;o ()T (1 +my)

Proof. Consider (2.30), and let 07 = 0 Vi, to attaint

iek

z

s x xS

< Z2m/rdn/ /H (t)dty (2.118)
0 0 =1

& & S5 &

—r2C() (1) §>\1<%> {"]Z-f-}KzZ::IG’Z’ZFit“) ]

xe (2.119)
- ZQ?T)\i/.../HﬁF (t,) dtlz/rl (2.120)
€ 0 0 l;=1 i 0
28 (580 (5, K i >a]
o OO () Fam | (2, dr; (2.121)
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H ﬁ, (t, )diy,

B8] [l

e j

J

Direct evaluation of (2.122) is complex, and hence we use the arithmetic-geometric inequality

for deriving an upper-bound. Thus,

o (s
(a) a /S 5
i€k Z )‘j (SJ) E{GZF Sza <H G]Z];‘tlz>
jeX J Hhi li=
(P \" N o oo o LU (3 )dt
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F o (8) By e 0
r (2 A o7t () \T
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N a2l — / i | (2.125)
N (#) (Bam@n®) " \o w

where the last step is due to the fact that r.v.s GZ¥ 11, are 11.d. across streams. Since H ZE 4

a chi-squared r.v. with 2(N" — S; + 1) DoF, applying Lemma B.1 completes the proof. [

The bound presented in Proposition (2.6.1) reflects the effect of system parameters in-
cluding multiplexing gains, S;s, deployment densities, \;, and transmission powers, F;, on

the the coverage performance. Note that by substituting ¢? = 0 Vi in (2.3) for 62 = 0 we

obtain:
o0 523, & N"™-S; m; msg ms 2 no n Si
7 () A (=™ ont (Si5i A"(S) o,
c SZQW&/@ < ) 1+Z Tl' 1—1—27 P Sn T; rydr;.
ek 0 mi=1 n=1 U

(2.126)
In general, it is hard to derive (2.116) from this expression. This is because the derivation of
Proposition 2.3.2 is based on Jensen’s inequality while here we exploit arithmetic-geometric

inequality.
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Interestingly, for the case of SISO, Nf = N" = 1 Vi, the upper-bound (2.116) reduces to
the expression previously derived in [47, Corollary 1] for the counterpart SISO system.

Using Proposition (2.6.1), the coverage performance for Tier ¢ is upper-bounded as

o (B grag-a Si
O

i V - S
PA\Y (T(&+S5)\""
Djek A (sf) <%@_)>

Further, by considering per-stream coverage probability as the performance metric (see,

(2.127)

e.g., [b5, 118, 120]), and following the same lines of arguments in the proof of Proposition

2.6.1, one can also show that the coverage probability per stream I; is

&
P; —&TZE
7F T A (5_1) BT
W X R & :
T (o P;\™ T(a+5;)
(o) EjelC /\J' (s_j) I‘(S])J

In the upper-bound, the effect of the ICI imposed from tier j # 7 is shown to be represented

(2.128)

solely through He+S) which is independent of S;. Since

D(5+5) _ r(ats;)
(s, <

N R CO R

multiplexing gain
S; could reduce the negative effect of higher multiplexing gain S;, on the link performance
compared to the given stream performance due to the dependency of SIR values among the
streams. A direct conclusion is that performance of a given stream of a communication link
does not necessarily represent the entire picture of the communication link performance. Fur-
ther, the multiplexing gain S; affects the intended signal strength in (2.127) via ;¢ (FiZF)Si
that is dependent on N" — S; 4+ 1 which is the available DoF for transmitting each stream
of data. Comparing (2.127) with (2.128), one can see that by considering the per-stream

coverage as the performance metric, this effect is overlooked.

2.7 Simulation and Numerical Results

In this part, we examine the accuracy of the proposed approximations of the coverage proba-
bility. We further study the impact of various system parameters on the coverage probability

as well as spectral efficiency in order to shed some light on the effects of densification, mul-
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tiplexing gains, and propagation environment.

The simulation results are based on Monte Carlo technique. We randomly produce BSs
based on given densities in a dick with radius 10,000 meters, and repeat the procedure for
40,000 times. Each time, fading matrices are randomly produced based of Rayleigh fading
distribution. We set P, =50 W, P, = 10 W, N{ = 16, and N} = 16 which are generally kept
fixed during the simulation experiments. Other parameters are assumed to be variable and
their particular values will be specified in each experiment. Note that in our simulations,

density is measured as the number of nodes per square meter.

Impact of SINR Thresholds

In Fig. 2.4 (resp. Fig. 2.5) we plot the coverage probability vs. SINR threshold (2 (resp.
(1). First, we observe from both figures that by growing the SINR thresholds the coverage
probability decreases, which is expected as the higher is the SINR thresholds, the smaller is
the chance of successfully decoding all the transmitted data streams. Further, as seen, the
upper-bound and lower-bound (associated with the FC assumption) are both very accurate
for 3; > 1. We also observe that, except the case of A = 107® and N" = 8 in Fig. 2.5,
both the upper-bound and the lower-bound preserve acceptable level of accuracy for SINR
thresholds as small as 0.5. These observations are in line with the provided discussion in
Remark 2.3.2.

Interestingly, we note that, to our main interest which includes 5; > 1, under FC assump-
tion the coverage probability is slightly lower-bounded, therefore, in multiplexing systems it
is safe to assume that from the coverage probability perspective the data streams are fully
correlated.

On the other hand, from both Fig. 2.4 and Fig. 2.5 we observe that when N" =
8, depending on the SINR thresholds, the coverage probability may increase/decrease by
densifying Tier 1. In fact, as seen from Fig. 2.4 we observe that when f; £ 5 by densifying

Tier 1 the coverage probability improves. In contrary, from Fig. 2.5 we see that when 5; < 3
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Figure 2.6: Coverage probability vs. N”. Parameters are: 0> = 1075, \; = 107", \y = 1073, 8, = 5, and
By = 2.5.
by densifying Tier 1 the coverage probability improves. This implies that densification should
be practiced with accordance to other system parameters, for this example SINR thresholds,
otherwise it may not lead to what we expect it to achieve (i.e., improving the coverage

probability). We explore this issue in more depth in Section 2.8.

Impact of Number of Receive Antennas

From Fig. 2.4 and Fig. 2.5, we further observe that by increasing the number of receive
antennas from N” =4 to N" = 8 the coverage probability improves, attributable to a higher
diversity potential of larger arrays. However, as Fig. 2.4 shows, by growing (5 the benefit of
using larger arrays at the receiver declines. In the contrary, Fig. 2.5 indicates that almost
156% coverage growth is introduced by doubling the number of antennas at the receiver, but
the gain stays nearly stable despite the growth of (.

To better assess the impact of N” on the coverage probability, Fig. 2.6 demonstrates the
coverage probability of the diversity system (see Corollary 2.5.2) vs. N for several choices of

path-loss exponent, «. As seen, by growing N” the coverage probability increases. In fact, the
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DoF of the desired signal proportionally grows by N”, while the fading power distribution of
the interfering signals remains exponential with mean value one irrespective of N”. However,
the growth of the coverage probability by N7 is not linear. This is apprehensible referring
to Corollary 2.5.2. Superficially, Corollary 2.5.2 implies that because of (—1)™ the terms
involved in the outer summation partially cancel out each other, leading to a sub-linear
growth of the coverage probability by N”.

Furthermore, this illustration demonstrates that by increasing the path-loss exponent «,
the coverage probability increases as parameter AS™O© in (2.86) is a decreasing function of a.
Intuitively, for smaller values of o many not-too-close interfering BSs can pose substantial
interference making the victim receiver more susceptible to ICI, which, conceivably, leads
to a disappointingly small coverage performance. In contrary, for large values of «, only a
handful number of nearby interfering BSs may impose sufficiently powerful ICI at the victim
UE.

Fig. 2.6 also demonstrates that the coverage probability of the SISO system (see Corollary
2.5.1) is smaller than that of the single-stream system, while it is higher than that of the
full-MUX system (see Corollary 2.5.3). These results are inline with what Corollary 2.5.4
and Proposition 2.5 also anticipate. In effect, in the SISO system the fading of both the
desired signal and the interfering signals are exponential, so compared to the single-stream
system there is no diversity available to be exploited. On the other hand, under the full-
MUX system, while the desired fading is exponentially distributed with mean 1, as the SISO
scenario, the interfering fading is chi-squared with DoF 2N", which is much more powerful
than the exponential gain with mean 1. Besides, in the full-MUX system, to declare coverage,
N" number of data streams should be received successfully, which is way less probable to
happen in comparison with the case of the SISO system.

Finally, as in the single-stream scenario, this illustration shows that by increasing the
path-loss exponent « the coverage probability of the full-MUX system increases. However,

it is seen that in this case the impact of « is not as significant as the case of single-stream
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scenario. Furthermore, its impact reduces by the growth of N™.

Note that when « is large a number of closed-by interferers are sufficient to cause outage.
However, the existence of such close-by interferers can also result in large ICI correlation
across receive antennas, reducing the diversity of the array. Consequently, as a increases the
benefits of receive diversity reduces. To combat such negative effect one way is to increase

the number of receive antennas, which the results of Fig. 2.6 support it.

Impact of Deployment Densities and Multiplexing Gains

Fig. 2.7 (resp. Fig. 2.8) shows the coverage probability vs. Ao (resp. A1) when (s = 2.5
and ; = 5. Both of the figures confirm the accuracy of our analysis (see also Remark 2.3.2)
for a wide range of deployment densities and multiplexing gains. Specifically, we notice that
the relative gaps between the simulation result and the upper-bound and lower-bound are

almost indistinguishable.
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0.6f
> 0.55¢
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Figure 2.7: Coverage probability vs. Ao when A, = 10™%. Parameters are: N” =8, S, =2, 02 = 10710,
ﬂg = 2.5 and ﬂl = 5.
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Figure 2.8: Coverage probability vs. A; when s = 5 x 10~%. Parameters are: N” = 8, Sy = 2, 0% = 10710,
By = 2.5 and 1 = 5.

On the other hand, both of the figures show that by increasing the multiplexing gains in
Tier 1, the coverage probability declines, which is also predicted by Proposition 2.5. This
is because by growing S; it becomes less likely to simultaneously decode all the transmitted
streams successfully. Yet, from Fig. 2.7 and Fig. 2.8, we obviously recognize that the
reduced coverage probability by the growth of S; depends on the deployment densities. In
fact, Fig. 2.7 reveals that the detrimental effect of increasing S can be entirely compensated
for by substantially densifying Tier 2. This is an important observation, as it implies that
densifying Tier 2 allows the growth of multiplexing gain in Tier 1 without undermining the
coverage probability. This is because, by increasing A, the typical UE will be more probably
associated with a BS from Tier 2, and the resultant association will be probably successful
due to its small multiplexing gain.

However, from Fig. 2.8 we observe that if one is to increase the multiplexing gain of Tier

1, this is not recommended if this tier is to be densified too. As seen, only when Tier 1 is
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sparse increasing its multiplexing gain is rather harmless to the coverage probability.

Comparison with Grid Layout and the Closest-BS CA rule

In this part, we compare the coverage performance under PPP model with the max-SINR CA

rule with the grid layout and also the PPP model with the closest-BS CA rule. Regarding

the grid layout, we position the BSs of Tier 2 in accordance to the PPP model, but the BSs

of Tier 1 is positioned according to a hexagonal layout. The number of BSs of Tier 1, and

thus the associated cell coverage of each BS, is then obtained based on density A;. On the

other hand, under the closest-BS CA rule we let UEs attach to the closest BS.
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Figure 2.9: Coverage probability vs. Ay when A\, = 10~*. Parameters are: N” =8, Sy =2, 02 = 10710,

[ = 2.5 and B; = 5.

In Fig. 2.9 and Fig. 2.10, we demonstrate the results. As seen from both figures, the PPP

model underestimates the coverage performance of the grid layout, where the gap reduces

by growing the density. The curves demonstrate the consistency of PPP model in predicting

the pattern observed under the grid layout for different multiplexing gains and also density
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of BSs.

On the other hand, the max-SINR CA rule outperforms the closest-BS CA rule where the
performance gap is more appreciable when the density of BSs is small. In fact, by growing
the density both CA rules converge as with higher probability the BS that provides the

maximum SINR is also the closest BS.
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Figure 2.10: Coverage Probability vs. Ay when A\; = 10~%. Parameters are: N" =8, Sy =2, 0> = 10710,
[ = 2.5 and 1 = 5.

Impact of Noise

In Fig. 2.11, we study the impact of noise power on the coverage probability. We observe
that our analysis predicts the coverage probability very accurately. In this illustration we
also include “No-Noise” scenario obtained from Proposition 2.6.1. As seen, for as larger
as 02 = 107% (resp. o2 = 107*) the operating regime is accurately representable by the

interference-limited system (see Section 2.6) when A\; = 10™* (resp. A\; = 1073).
Remark 2.7.1. Regarding the observation made from Fig. 2.11, we, therefore, in the rest
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Figure 2.11: Coverage probability vs. ¢2. Parameters are: S; =2, S =2, Ay = 1072, 31 = 5, and 5 = 2.5.

of this thesis generally discard the impact of noise, and assume that the operating point of

the network is well modelled by the interference-limited system.

Remark 2.7.2 (Application to the Spectrum Sharing Systems). The result of Fig.
2.11 is insightful, as it implies that sharing the cellular spectrum with other services such as
D2D communications [9], [79] may not affect the coverage performance of MIMO HetNets
as far as the power of the imposed inter-service interference—assuming is modelled as the
background noise—does not exceed a threshold. Such a policy can substantially simplify the
network management, as by knowing only a parameter—permissible noise power threshold—
it 1s possible to decouple the management of cellular and D2D networks. However, such
an approach requires modelling the effect of D2D network via background noise. In Section

2.9.1, we briefly look at this issue and discuss it with more details.
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2.8 Design Issues and Performance Evaluation

2.8.1 Optimizing the Accumulated Multiplexing Gains

Proposition 2.5.1 implies that the growth of the multiplexing gains can lead to a lower
coverage probability (see also Fig. 2.8 and Fig. 2.7). Nevertheless, in some cases it is yet
possible to increase the multiplexing gains subject to a given coverage constraint with respect
to the diversity system, which according to Fig. 2.6 yields the maximum attainable coverage
performance. In fact, one may desire to increase the multiplexing gains as much as possible
subject to a coverage penalty against the diversity systems. Here, we look into such a design

issue by deploying the following optimization problem:

Oy : gl%x(sl +.5s) (2.129)

s, MO PP <g) (2.130)

where the objective is the total number of transmitted data streams in the network. Thresh-
old &; stands for the maximum permissible coverage loss against the SIMO counterpart
system due to the growth of the multiplexing gains. In Fig. 2.12, we show the numerical
results of this optimization problem when & = 0.05 for several values of the deployment
densities. Interestingly, we observe that one can still practice MIMO communications with
large multiplexing gains across tiers without undermining the coverage probability. But,
inline with what Fig. 2.7 and Fig. 2.8 also imply, it is important to choose multiplexing
gains across tiers judiciously according to deployment densities. Specifically, Fig. 2.12-(a)
demonstrates that by growing s, it is possible to increase .S;. However, if one densifies Tier
1 too, the permissable S7 should be smaller; so that the high value of S; is only suitable
when Tier 2 is super dense. On the other hand, Fig. 2.12-(b) indicates that it is ill-advised
to simultaneously grow density of Tier 2 and its multiplexing gain. Moreover, by densifying

Tier 1, the multiplexing gain in Tier 2 should decrease. In effect, when the multiplexing
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2.8. Design Issues and Performance Evaluation

gain of a tier increases, it is getting harder to preserve acceptable coverage probability, thus,
one ought to densify the other tier to compensate for the induced loss. As a general rule of
thumb, a recommended practice is to densify the tier that is practicing a lower multiplexing

gain such that the sparser tier be able to transmit a larger number of data streams.
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Figure 2.12: (a): Maximum number of data streams in Tier 1 vs. Ay that guarantees SIMO _ (ZF < () 05.
(b): Maximum number of data streams in Tier 2 vs. Ag that guarantees ¢S™M© — ¢ZF < 0.05. Parameters
are: N" =8, 02 =10"19, 3, = 2.5 and 3; = 5.

2.8.2 Joint Optimization of Densities and SINR Thresholds

In Section 2.7, we stress the importance of proper system design pursuing densification with
accordance to the SINR thresholds. Accordingly, it is appealing to inspect if it is possible
to optimally choose the SINR thresholds and deployments densities, subject to a prescribed

coverage requirement. Here, for an illustrative example, we seek such a design issue by

solving the following optimization problem:

2
. G ZF ,
O, : 6121”82?%%\}1(207/\20; AiSici™ log(1 + 3;) (2.131)
st > &, (2.132)
Amin <A < Amax, 1 =1,2. (2.133)
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In Oy, the objective function is ASE, see also [56]. ASE is an essential performance metric
which indicates efficiency of spectral usage throughout the coverage area of a wireless net-
work. The data rate that a BS of Tier i can support a covered UE with S;log(1 + ;). This
is because when UE is covered all the transmitted data streams are recoverable successfully.
On the other hand, &, is the coverage probability constraint; A\pi, and Apay are respectively
the minimum and maximum allowable deployment densities. Note that in this formulation
we enforce §; > 1, to insure that the coverage probability is accurately predictable by our
analysis.

In Fig. 2.13,% we depict the best deployment densities for various multiplexing gains
when Apin = 1077 and Apax = 10. Here, we set & = 0.9. As it is seen from Fig. 2.13-(a), by
growing S; the best policy is to reduce the density of Tier 1. Furthermore, by increasing Sy
the network can accommodate a denser Tier 1. On the other hand, Fig. 2.13-(b) implies that
by growing Sy the best policy is to increase the density of Tier 2, while by the growth of S,
the suitability of densification in Tier 2 reduces. These results can be explained by noticing
that by the growth of the multiplexing gain in a tier, the associated coverage probability
can decrease. So, to preserve the required coverage probability it is advisable to densify the
other tier while keeping its associated multiplexing gain as small as possible. This allows
many UEs seek association with the densified tier, which is more probable to be fruitful.

In Fig. 2.14,* we demonstrate the best SINR thresholds for various values of multiplexing
gains. It is seen that in many cases, close to minimum acceptable SINR thresholds are quite
sufficient. This is because for the smaller values of SINR thresholds it is more probable
to preserve the coverage requirements. Nevertheless, since ASE (the objective function of
O,) may also grow by increasing SINR thresholds, Fig. 2.14 shows that for some particular
combinations of multiplexing gains it is possible to increase [3;s.

Note that although we devise the optimization problem Oy with the SINR thresholds as

3Here optimal densities stand for the deployment densities that are corresponding to the maximum value
of objective function of (2.131).

4Here optimal SINR thresholds stand for the SINR thresholds that are corresponding to the maximum
value of objective function of (2.131).
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Figure 2.13: (a): Optimal \; vs. Sy, (b): Optimal Ay vs. Sy, when N = 16.
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Figure 2.14: (a): Optimal f; vs. S1, (b): Optimal 2 vs. So, when N" = 16.

variables, referring to Remark 2.2.5 one may assume ;s are given and solve the optimization

problem to derive the best offloading biases.

We should highlight that both optimization problems O; and O promote the network-

level design. The deployment densities, which are basically the average number of BSs

per unit area of the network, should be known (for the case of optimization problem O)

or desired to be known (for the case of optimization problem ;). Furthermore, for the

design problem Oj if the network is already deployed (densities are given), one can treat the

obtained densities obtained by solving Oy to specify the percentage of active BSs.
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2.8. Design Issues and Performance Evaluation

2.8.3 Design of Feedback Capacity

The provided coverage probability in our analysis can actually be interpreted as the CCDF of
effective SINR. Consequently, it could be exploited to understand the capacity performance
of the network wviz. spatial throughput (ST), which measures the scheduled data rate per

unit arca. We formulate ST as

7 ESTAR (2.134)

where R-Z " is the expected rate at the typical UE received from a BS in Tier i. However,
for the serving BS z; to estimate affordable data rate Eiz F, there must be feedback channel
between UEs and their serving BS. Taking the capacity of the feedback channel into account
and assuming Gaussian signaling, one may formulate F?F as the following

R.ZF = S;Elog (1 + Q; (max min SINRZF B,-)) , (2.135)

z, €P; I;=1,..., i Torle?

where the expectation operates over the SINRs. Since the typical UE is in coverage if all
the data streams are received successfully and the transmission power is uniformly shared

among data streams, R,

. is thus proportionally increased by the multiplexing gain S;. In

(2.135), B; is the feedback capacity in bits per frame designated to cach BS of Tier i (note
that we assume that only one UE is served per each frame). Furthermore, Q;(., B;) is the
scaler quantization function employed at the UEs to quantize the estimated SINR values—
assuming the estimated values equal to the experienced ones—by B; bits before feeding back
the resultant to the serving BS. For the quantization purpose, consider 2% quantization
thresholds 44, < Jg,414 s0 that Jo; = 0 and Y8, ; = Ymaxi- Here, we assume that the
quantization thresholds and Ayax.; are pre-specified, based on PHY layer particulars including
modulation and coding methods. We in the rest of this part simply assume that Jy,ax; = 1000
Vi, and assume the quantization thresholds are uniformly distributed. We set 4o, = 3; > 1,

thus the typical UE must be in the coverage in order to receive data.
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Using Shannon capacity formula [14], (2.135) is simplified to

777777

2Bi—1
—ZF
R, =5, qz_% []P’{ max _1111111 SINR qw}_

x,€P; 1;=1,...,S;

IP{ max min SINRZ, > /%HZ}] log(1 + 4g,.4)- (2.136)

Using (2.136), ST defined in (2.134) is ultimately formulated as

Z)\S Z [ {nzleag l_ninn SINRZ, > _?qu}

i €P; 1;=1,

—IP{ max mms SINRZ, > 4441, Z}] log(1 + 94,.4) (2.137)

Now, using Proposition 2.6.1, we are able to suggest the following approximation (recall that

Proposition 2.6.1 provides an upper-bound on the coverage probability) of ST:

x5 (£ ) (1)
2 52 i
o R . Z &= et log(1+ Ag,0).  (2138)
Cla) ik sy (a)“(ﬂsﬁ%) 10
Zjelc i \s; T(S;)

In Fig. 2.15 and Fig. 2.16, we show plots of ST vs. By and B for several settings of the
deployment densities and multiplexing gains. As seen, by growing feedback capacity in each
tier the ST proportionally increases before it reaches the plateau, which is partially due to
parameters Ymaxq. For the case that By = By = 1, ST reduces to ASE [56]. Interestingly, we
observe that by designating up to 8 bits feedback capacity per tier per frame, it is possible
to boost the ST by more that 180% over the conventional scenario of 1-bit per frame per BS
(i.e., the ASE performance).

On the other hand, comparing Fig. 2.15 and Fig. 2.16 we further observe that densifica-

tion of Tier 1 may not necessarily add to the growth of ST. In fact, for the case that S} = 2,
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densifying Tier 1 boosts ST by nearly 147% (see, Fig. 2.15), while when S; = 6, it reduces

ST almost by the same figure.

2.9 Extensions of the Analysis

Here we primarily aim at demonstrating how the above analysis can be exploited to discuss
several relevant MIMO communication scenarios in HetNets. Further, our analysis in this

section demonstrates that

e [t is possible to decouple the design of HetNets from underlying spectrum sharing ser-
vices, simply by adjusting equivalent noise power at the UEs and tuning the parameters

of spectrum sharing system to produce the adjusted noise power;

e How to adjust CA parameters, e.g., the number of pilots and the way that is distributed

across tiers, from a network level perspective.

2.9.1 Inclusion of Spectrum Sharing

In Remark 2.7.2, we highlight that one may exploit the analysis of this thesis to simplify
the design of spectrum sharing scenarios, e.g., underlay D2D communications. To be able to
do so, the prerequisite is that the contribution of D2D services be modelled through proper
AWGN. In this section we firstly derive the coverage probability in a spectrum sharing
environment by adopting the same models usually considered in the literature [79, 81, 167].
We then demonstrate how the analysis can be exploited to estimate the equivalent AWGN
power.

Consider the structure shown in Fig. 2.17. Let us assume there are () services, indexed
by ¢, sharing the spectrum with HetNets in underlay mode. In [9], different scenarios of
spectrum sharing in D2D networks are discussed. We denote A, and P, as the density and

transmission power of service ¢, respectively. Assume PPP U, = z, stands for the location
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Figure 2.17: An illustration of a scenario where downlink HetNet is shared with a single D2D service in
underlay setting.
of transmitter devices of service ¢. Denote ¥ = {W¥,},, and assume Vs are independent of
each other. Moreover, let U, ®y, ® be mutually independent. We then denote W._;, as the
effective channel power gain between device z, and the typical UE on stream [;, which, for
the sake of generality, is assumed to be chi-squared with M, DoF. The post-processing SINR

n (2.3) is then rewritten as

pP; — 7ZF
SINRZ, = sl e ,
[ICI+Z > Pllzgll =Wy, + 07

q=1z4€¥,

where [ic is the ICI, i.e., the interference contribution of cellular services; W, ; is the
effective channel power gain between transmitter z, and the typical UE on stream [;. The

second term in the denominator represents the inter-service interference. Define

TEY qujr(%q—]\;;)é‘). (2.139)

Therefore, applying the method developed in the proof of Proposition 2.3.2, we can show
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that the coverage probability is upper-bounded by

Si
A= 3 2m / riByEe [ [P {SINRZ,, > 3,|®, ¥} dr,
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PRSI IYED

(2.141)

(2.142)

S;
) ridr;.  (2.143)

Comparing (2.143) with Proposition 2.3.2, we can conclude that the coverage probability

under spectrum sharing is straightforwardly derivable from Proposition 2.3.2 simply by re-

placing parameter A(S) with A(S) + 7.

On the other hand, for given value of T and background noise o2,

we can exploit (2.143)

and Proposition 2.3.2 to derive the equivalent AWGN contribution of inter-service interfer-

ence, denoted by o2, which is unknown. One can simply devise an equation as (2.143)=(2.37),

and then solve it for 2. This calculation allows to map the contribution of spectrum sharing

devices through AWGN, without affecting the accuracy of the coverage analysis.
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2.9.2 Coverage Performance under Nonhomogeneous Path-Loss

Exponents

Here, we derive the coverage probability when path-loss exponents are nonhomogeneous. Let
us denote «; as the path-loss exponent associated with Tier j. Further, define &; = 2/q;.
We first introduce parameter Y;(oy, «;) defined as

25 (SEB\Y (B L(S; + )
Vg o) 2 A (20 1) i) 2144
(i, o) il ( P ) <Sj> SiL'(S5) | !

Now, under nonhomogeneous path-loss model the expression (2.48) can be shown to be

upper-bounded as

o0 0 Y Si
_ S O"zo. X —ZY'(D@',O& )ti]
A <N 2, / n-dn-( / AR (e T dt¢> . (2.145)

el 0 0

Now analogous to (2.48), we should derive the inner integral through the following expression

that requires the evaluation of higher-order differentiations:

[ a5 3 V(e s POR IR NZT‘S"( 1)m
—BiZir o2ty A -2 Yilanag)t _g Siprige — 2 Yilaiag — i
e /BZPZ- i i lﬁil (tz)e j dtl —e ﬂz ;i ie 3 +
Fyzr m;!
7 :1
0 mg
i m;—m, o m: S Vilas .)tdj
m; ATy _8, 8§92, d™i Z i (oiag)t,
Y P 1
X ( ) e —e (2.146)
oo \"i/ dt, i ti=1 qt]" ti=1
i _
TV
Th 1>

The evaluation of T} in closed-form expression is straightforward. However, the evaluation
of Ty is substantially more involved than the counterpart term (2.49) corresponding the
homogenous path-loss model. To calculate T, we apply [112, Brunos formula Eq. (16)] to

obtain

’

dm
7€

dl"

(]

o
=2 Vjlai,a5)t;’
j

D\ -5 (o)
= By (y§1),...,yfmz)>e 7 (2.147)

K3

ti=
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in which

m

m—1
Z/z(m) = ZYi(ai» a1 = zYi(ai, ;) (H(dj — n)) . (2.148)
i j

Here, By,(z1,. .., 2m) is the nth complete Bell polynomial. Plugging this back into (2.146)
and substituting the resultant into (2.145) along with some manipulations and rearrange-

ments, we eventually derive the following expression for the coverage probability

¥ <227T/\/ ,—Bi ir:”afc ZJ:Y a”a7)< NZS i - (ml) (6 i al 2>mi—m§

i€l mz_l m =0

by —

mi—1 Si
1+ By <ZY g, Q) ZYz‘(OéuOéj)( H (a; — n)))]) ridr;. (2.149)

j n=0

This expression resonates the same for that does the homogenous path-loss model in (2.37).
Nevertheless, in this case, as explicitly recognizable, the coverage probability is computa-

tionally very expensive due to the integration as well as the computation of Bell polynomial.

2.9.3 Coverage Probability of MIMO-ZFBF Multiplexing under
Practical Max-SINR CA Rule

Regarding the discussion provided in Section 1.2.3, the max-SINR CA rule relies upon an
idealistic assumption: in each communication frame that the network’s status changes—due
for instance to mobility, handoff, and fading/shadowing—UEs are assumed stayed associated
with the best BS, which is selected out of the entire pool of BSs across all tiers. The best BS
is the one that provides the maximum SINR on the link. But, to find this so-called best BS
large number of measurements of the emitted pilot signals from all the BSs is required, which
is an unrealistic assumption and imposes staggering complexities and ultimately depletes the
resources. In effect, the entire frame time might be simply designated for merely the CA

mechanism, and unfortunately nothing will be left for actual data transmission—zero spectral
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Figure 2.18: An illustration of limited max-SINR CA rule.

efficiency:.

In practice however, UEs are advocated to check the feasibility of a number of adjacent
BSs for association (sce also Fig. 2.18). Accordingly, our goal in this section is to investigate
the impact of practical CA rule on the performance of MIMO-ZFBF HetNets. To do this, we
derive the coverage probability taking into account the maximum number of BSs across all
tiers that UEs are allowed to assess for association, Ky > 1. This is inline with relevant issues
dominating the practical scenarios, pilot’s reuse factor, handoff rate, and network’s resource
constraints. Further, let 0 < n; < Ky be the number of i-th tier pilots that the typical
UE measures so that >_,n; = Ky. We introduce set ®/ as the index of BSs of tier ¢ that
UE assesses for CA procedure. Regarding the fact that in practice pilots corresponding to
nearby BSs have a higher chance of being successfully detected, and network’s configuration
advocates handoff to adjacent cells rather far cells, set ® is assumed to contain the n; BSs

nearest, to the typical UE.
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Accordingly. the typical UE is considered covered if A%" is nonempty, where

AZE {Elz € K : max mm SINRm L2 @}. (2.150)

z, €@ li=1,...,

Note that compared to (2.5) the maximization is over ®. Thus, by increasing Ky — oo,

so that n; — oo Vi, we have ® — ®; Vi, which implies that the coverage of the network
incrementally converges to the case that all BSs are available for CA.

Now, we derive the coverage probability under the devised max-SINR CA rule. Let

P = P{A% # ()} denote the coverage probability. To derive the coverage probability, we

sort the BSs in Tier ¢ such that ||m§l) | < Hxl(»lﬂ) ||, where xgl) is the position of the /th closest

BS to the origin. Note that r.v. 77)\i||m§l)||2 is distributed according to 2l chi-squared [121].

Thus, ¢“F can be lower-bounded as
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where the inequality in Step (a) is because un-conditioning reduces the probability of an
event, Step (b) is because at most n; candidate BSs in Tier i are available for CA procedure,
Step (c) is obtained by using the FC assumption, Step (d) is because the distance to the {th
associative BS from Tier 7 is a chi-squared r.v. with 2 DoF [121], and Step (e) is based on

the proof of Proposition 2.4. Here parameter ¢ is defined as

2 .
A % ontt _w _ r;; (Siﬁz)aAFc
m = . X mao n )2 P TA, 1
wm'l = fXéz (rl)ri e (@A)2Ph ¢ i i
0

dY’i.
The final result has a similar composition to the lower-bound (2.57). One then can select
best Ky and n;s by maximizing ¢”* for given density of BSs and multiplexing gains.

Note that this practical CA model is still simplistic. In practice one can include the
power of pilots, as weak pilots may not be detectable at UEs. Further, the share of power at

the BSs for pilot transmission phase and signal transmission phase should be included too.

2.9.4 Other MIMO Techniques

The main focus of this chapter is on the evaluation of coverage performance in open-loop
ZFBF multiplexing systems. However, as mentioned in Remark 2.2.2, the analysis is general
enough and can be adopted to predict the coverage performance of other particular examples
of MIMO systems. In this section, we provide instances to demonstrate how the derived
analytical results in Section 2.6 can be employed to predict the coverage probability of other

HetNets. For simplicity, here we only consider interference-limited scenario.
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Single-Input Multiple-Output (SIMO) Systems
For the SIMO systems, we set S; = 1, Vi. Proposition 2.6.1 reduces to

N"—1

SIMO _ SISO [(a+r)
; E 2.151
‘ D)1 +7) (2.151)

This is actually the coverage performance of single-stream MIMO-ZFBF (i.e., diversity sys-

tem). Applying Kershaws inequality [62],%> we observe that

NT—1 oy N1 (G + 1) NT-1
— 0.5+ V3 .2) 2.1
; (r 0.5+ v/a + 0.25 ;r( e < Z (r + 0.50)° (2.153)

or equivalently

NT—1 N1 NT—1
a—1 NG 3
/ <m —05+Va+ 0.25) do < % < / (x +0.50)* " de. (2.154)
0 r=0 0
Therefore,
o da—1 CSIMO o
S(VHVaF0Z) 5 S £ 5 (V050 (2.155)
This last expression indicates that
SIMO )
CSIT X (Nr)a (2156)

which is an increasing function of N" and decreasing function of path-loss exponent. This
implies that the benefit of receive arrays in enhancing the coverage performance reduces

when the path-loss exponent increases.

SKershaws inequality:

-1 Ilr+s -
(r—0.5+v&+0.25)° f< % < (r+0.58)°""" (2.152)
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Multiple-Input Single-Output (MISO) Systems

So far, we assumed that the CSIT is not available. However, some cases with CSIT known at
the BSs can also be covered by our analysis. Let’s consider a MISO system, where N” =

and S; = 1, Vi, and assume that CSIT is available to the BSs for eigen beamforming,
i.c., maximum ratio transmission (MRT) [16]. In such a system, assuming noisc power is

negligible, the SIR at the typical UE served by x; is

Pila] - T
> T Pl e

jGIC Zqu)j\Zz

SIRM™ =

(2.157)

where H;\fRT and G%RT are chi-squared with 2N} DoF, and exponential r.v.s, respectively.

Using Proposition 2.6.1, the coverage probability is thus

b L'(6+m)
Zielc Ai (BL> Z r(a)? 1T—T-m)

MRT T
MET — . (2.158)
C(a) > ek )\ P‘
We now observe that
P; _T(a+m)
MRT ZielC Ai (Bi) Z T'(&)T(1+m)
SISO = R (2.159)
Zielc Ai (E:)
Using (2.159) we then have
MRT D iex i (Nf&)a
ESISO x on(éa) ° LV (2.160)
P
Zielc Ai (_,)
On the other hand, using (2.158) and (2.151) we can observe that
MRT Do Ay (%%)a
G 5 (2.161)
1€ )\Z (ﬁ)
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In practice, N} > N", therefore we expect that

CMRT

o 2 1 (2.162)

which implies that eign-beamforming outperforms diversity system. This gain can be at-

tributed to the CSIT.

MISO-SDMA Systems

Another example scenario in which the BSs have access to the CSIT, is the MISO-SDMA
system. Let N™ = 1, and S; = 1, Vi. We further assume that each cell of tier i serves U; < N/
UEs adopting ZFBF at the transmitter (see [56, 114] for more information). Assuming a

fixed transmit power, the SIR of the typical UE that is associated with BS z; is

L. |- SDMA
SIRSDMA _ F:H‘L‘l |1|D unz‘ 7 (2 163)
€Ty . .
I T e
jeK: .'l‘jG(I)]/:l',,', ’

where [/PMA and Gi?MA are both chi-squared r.v.s with 2(N} — U; 4+ 1) and DoF of 2U;;,

respectively [56, 111]. Using Proposition 2.6.1, we then obtain (see also [168])

i N I(a+m)

S _Llatm)

SDMA m zie’C Ai (Uzﬂi) mZ::o T(&)T(1+m)

‘ - C P\ D(6+0;) . (2.164)
(OZ) EjEIC A](UJ) r(U;)

2.10 Conclusions

This chapter dealt with a comprehensive analysis of the coverage performance of MIMO-
ZFBF multiplexing HetNet when each multi-stream communication link is subject to noise,
fading, and ICI. We specified our analysis for the max-SINR CA rule and successful reception
of all of the transmitted data streams to declare coverage. Adopting PPP model, we derived

an upper-bound and a lower-bound on the coverage probability. Our proposed expressions
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of the coverage probability were easy-to-compute and explicitly captured impacts of various
system parameters including densities of BSs, SIR thresholds, and multiplexing gains. The
lower-bound was in a closed-form and very tight. We also proved that the lower-bound is
achievable under the FC assumption. We then specified the coverage probability for the
interference-limited system which admitted in closed-form.

We further demonstrated how the analysis of the chapter can be utilized to predict the
coverage probability of some other pertinent MIMO systems, impact of practical CA, non-
homogenous path-loss environment, and spectrum sharing systems.

Our analysis showed that 1) full correlation of ICI across data streams slightly reduces the
coverage probability; 2) increasing multiplexing gains can reduce the coverage probability;
and 3) MIMO multiplexing systems are well modelled by the interference-limited system.

We confirmed the accuracy of our analysis by the aid of simulations. We further studied a
number of optimization problems demonstrating the relationship between densification and
multiplexing gains. Our results demonstrate the importance of practicing densification with
accordance to multiplexing gains as well as SINR thresholds. We also spotted a tradeoff
between densification and multiplexing gain: if one is to increase the multiplexing gain in
one tier, he is recommended to simultaneously densify the other tier.

Finally, we studied the spatial throughput of multiplexing systems when the quantized
values of SINRs are made available at the serving BSs. Results demonstrated that by includ-
ing feedback channels with capacity up to 8 bits per frame per BS, it is possible to increase

the spatial throughput by nearly 180% over 1-bit feedback scenario.
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Chapter 3

Analysis and Design of Multi-Stream
MIMO-MRC Receivers in HetNets

3.1 Introduction

In the previous chapter, we explored the coverage probability of MMO-ZFBF multiplexing
HetNets, and further explored various aspects of MIMO multiplexing systems. In Section
2.9.4, we also discussed the extension of the analysis to multi-user SDMA-ZFBF, MRT, and
diversity systems. However, as we also discussed in Remark 2.2.2 ;the analysis is not directly
applicable for the scenarios where the receiver suffers from intra-stream interference, which
is the case of MRC multiplexing systems. Our main quest in this chapter is therefore to
extend the analysis developed in the previous chapter to MIMO-MRC multiplexing systems.

We shall emphasize that despite the popularity and practical significance of MIMO-
MRC for cellular communications, due to its simple implementation and near zero feedback
overheads, its performance in HetNets has not yet investigated. Specifically, to our best
knowledge, only [119] investigates the stream-level coverage analysis (which as we elabo-
rated in Chapter 1 is not accurate) of MIMO-MRC multiplexing systems in a single-tier
ad hoc network. For K-tier HenNets and under max-SINR CA rule, the link-level coverage
probability of MIMO-MRC multiplexing system has not yet been explored.

Apart from the importance of such an extension, in this chapter, we enrich our system
model to incorporate cases where UEs have partial CSIR, due to mobility and estimation

error. This allows us to discuss the relationship between multiplexing, densification, and
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CSI error estimation from a network-level perspective. This investigation demonstrates that
as the CSIR estimation error grows the possible tradeoff rooms between densification and
multiplexing gain shrinks.

For this model, we further obtain an easy-to-compute, tight upper-bound on the net-
work coverage probability in closed-form. Our analytical results—supported by extensive
simulation—provide significant practical insights on the impact of densification on the link-
level coverage performance. We draw various relationships between densification and multi-
plexing gain in HetNets. Our results indicate that an increased CSI inaccuracy compromises
the coverage advantage of multi-stream over single-stream systems.

We then demonstrate practical cases in which the high processing costs of ZFBF justifies
using MRC, although ZFBF generally outperforms MRC in terms of coverage probability.
We further provide quantitative insights on the coverage cost of adopting MRC compared
to ZFBF, and techniques to control the shrinkage of coverage footprint.

We also analyze the cross-stream SIR correlation coefficient amongst multiple streams in
a communication link. Our analysis provides quantitative insights on the impact of tiers’ BSs
density, path-loss exponent, CSI inaccuracy, and multiplexing gains on the SIR correlation
among data streams.

Besides exploring the coverage probability of MIMO-MRC under FC assumption (see Sec-
tion 2.4 for the definition), we in this chapter discuss another extreme correlation scenario:
no SIR correlation (NC) assumption, whereby under it all data streams of a communication
link are deemed to be entirely uncorrelated. We then show that the NC setting substantially
over-estimates the coverage performance. Observing that the FC setting slightly underesti-
mates the coverage probability reconfirms the conclusion that in multiplexing systems the
data streams can be regarded as fully correlated.

The rest of the chapter is organized as follows. Section 3.2 presents the system model
and Section 3.3 provides coverage evaluation. Section 3.4 investigates the SIR correlation

and its impact on the coverage probability. The simulation results are provided in Section
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3.6. Section 3.5 explores several insightful design issues, followed by conclusions in Section

3.7.

3.2 System Model and Assumptions

The network model in this chapter is similar to the one presented in Section 2.2. In the rest
of this section, we only discuss the required upgrades regarding the MRC filter.

Here, we focus on the scenarios that only partial CSI is available at the receivers. As
in [35, 169], the quantified measure for channel estimation error is considered to be the
correlation coefficient between the actual fading channel coefficient and its estimated value

as

H, =\/1-¢ H, +¢E,, (3.1)

where H ,, is the estimated channel which is a complex Gaussian random matrix with zero

2
i

mean and identity covariance matrix; e; measures the inaccuracy of channel estimation;
and E,, is a complex Gaussian random matrix with zero mean and identity covariance
matrix. Random matrices E,, and /}\I/;,,z are assumed independent, e.g., in cases where CSI
is estimated using a pilot-based MMSE [35, 169].

Similar to (2.1), for the typical UE associated with BS x; transmitting S; data streams,

the received signal, y,. € CN"™1 is:

Yo, = ”xi”7% 1 —6H,, s, + Hxi||7%€iEmzszi + Z Z ||mi||7%szSa:ja (32)

jEK szq)j\zo
Note that here we exclude the impact of noise effect, which is supported by discussions
presented in Section 2.7. The first term in (3.2) accounts for the useful signal, the second
term represents the interference due to inaccuracy of CSI, and the last term is the ICI.

At the receiver, MRC is adopted with decoding filter U,, = H,, = [hy;1...h,, g] [119].
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Post-processing SIR for data stream [; is therefore

S llwill = (1 = Al

SIRMRC _
Tili T ’

it Pt 5j :

Y O o WL L WIS B S S S [
Siflzil® [ZSAE i lhg, I Sjllzill® = ey 112
]

U'#l; jex Zqu)j\l‘i
(3 3)

”hz,[ 1 he, oI
[y, 112

Let r.v. HMHC 2 2 ||hg, . ||? which is chi-squared with DoF 2N HMRC =
U'#l;

which is also chi-squared with DoF 2(S; — 1); and H MAC = ”h—ﬁ’% which is an ex-

. ~ Al ~ Al . Al - A
ponential r.v. Both H;:\f};:“ and Hg%(“ are independent of H%%C. We further set G%f}f’ =

S; it
S5 sy 12
[AE

=1
and M, MRC Using the above notation, Hi\fl}ic, H MRC H MRC , and G%f}?, respectively stand

T4l

HMRC [TMRC

which is also chi-squared with DoF 2S; and independent of s HY o™,
for the channel power gains associated with the intending signal, the interference due to im-
perfect CSI estimation, the inter-stream interference caused by streams I} # [;, and the ICI
imposed by x; # x; on the [;th data stream. Post-processing SIR in (3.3) is then represented

as
— Bl (1 = )3

Tj,y - ) o
il 2o (HMRC QHMRC) LYY §”$j||—aGMRC

x4l z4,l; %,
jelC (L’jECI)j\(BZ‘

(3.4)

Comparing (3.4) with (2.3) and observing that both GMRC and GZFl arc chi-squared with 2.5}
DoF, we conclude that similar to ZFBF, under MRC receiver the ICI is similarly distributed
(refer to (2.11) for its Laplace transform). However, compared to ZFBF, in MRC the DoF
of the intended signal is boosted from 2(N" —S; 4+ 1) to 2N", while each data stream suffers
from inter-stream interference as well as CISR inaccuracy. Our main objective in this chapter
is to develop analytical tools allowing us understanding the effect of both these interference

sources on the coverage performance of the HetNet.
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3.3 Analyzing the Coverage Performance

As in the previous chapter, we consider the max-SIR CA rule as defined in Definition 2.2.2,

which implies that the typical UE is in coverage if the set

AMRC _ {Eli € K : max mln SIRMR_C > Bz} ) (3.5)

z;€D; 1;=1,.. @il

is nonempty. The coverage probability is therefore defined as (MRS = P{AMRC o£ ()}, In the

following proposition, we provide an upper-bound on the coverage probability.

Proposition 3.3.1 (Upper-Bound). In the MIMO-MRC multiplexing HetNet adopting

the max-SIR CA rule, the coverage probability is upper-bounded as:

Pi‘(sl—ﬂz) ) @ (F%VIRC)SZ'

Ai :
MRC < C‘ZT )Z ( 0 o
& Z)\ (%)" <ﬁw>

where

N'—1 ri 4 2% Di 2 —q;—S;+1 2 —q+pi—1
1—¢€ ) 1  (Bi — 1
[MRC & Z Z Z _4qz+2pz (- +0) (L+e (6 )) , (3.7)

and B(a,b) = g+§;) is the beta function.

Proof. To prove this proposition we apply the developed methods in the proof of Proposition
2.3 and the proof of Proposition 2.6. Denote r; = ||z;|]. We use Slivnyak’s Theorem and

Campbell’s Theorem along with [47, Lemma 1] as §; > 1, Vi, and then write

SEID VD ST (R L ey 33)

e x;€9;
= > 27\ / riEsP {SIR}EC > 3, : VI;| @} dr; (3.9)
i€k
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= > 2m) / riEe H]P’{SIRMRC > B3|} dr;. (3.10)

e l;=1

We then note that conditioned on processes ®;s, the SIR values across streams are statisti-

cally independent. Now we use Lemma 2.3.2. For z;, we have

2 ITMRC 'TMRC
/Bi(ei H:Ei,li + H:Ei,li )
1— 62

Sif;
s DU

jE/C z;€P; \xz

[ i Lo | GMRC
:/EFHMRC H H EGMRC@ St o
) JER x;€D; /xy
B(<F AYHC +AMEC)

xEe - dt; (3.12)
oS ﬁ:l (tz)

/ FHMRC
(1_|_ tﬁz> (1+ tzfzﬁz)

P{SIRMC > glo} = P{miC >

o,}} (3.11)

b

XH H E(‘MRCG_ P(l 62)é Hﬁ g ) ’dtz, (3.13)

JEK ;€ \x;

N1
where L%L e (t;) is the inverse Laplace transform of HMRC Ef (t)= > Hom(t-1)

I\IRC m=0

(see Lemmas 2.14), and 0™ () is the m-th derivative of the Dlrac delta function. Substitut-

ing (3.13) into (3.10) followed by straightforward derivations yields

E_;MRC‘ (tY)
MRC ZZW/\ /TZIE(I, H/
ik ) =19 1+ tlﬁl) (1+t’E ﬂz)
S aGMRC
X H H EgMRbe - P(l 62} S 3 el ldt dr; (3.14)
JEK x;€®; /x4
&) 0 _1
Z 27\ / dr;E / / - HMRC (tli)dtli
— ™ riar;ite
ik o li:1 + 4 ﬂl) (1+ %)
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s PGIRQtl
171

2

JEK x;€®;/x; I;=1

as r.v.s chf] ;, are i.i.d. across the streams. Thus,

c,
2 GYR
3;5r8 J @55l by

TP (1-e2
X HEI’j H EG%Rce Pi(i=e]) bﬂ”‘i”a

oo o0 [o'e) -1 .
Si CFHMR (tz)dth
= ZZTFAZ/TZCIT‘Z// ZS-—
e 0 0 o lLi=1 (1 + %) (1 T tzé ﬁz)

. ) & K -\ @ }
—r?C(a)(%) > )\j(%) Egl\IRC‘ [( Z GMRCtl )O‘]
— 277)\z / .. / 4,5, Si—1 t-ezﬂ-

i€k o 5 Li=1 (1 + ﬁ> 1+ %)

dT‘Z‘

ﬂoo r /\l(%a)a
B e :

i€ )\j <§]L) EG?/IRC |:(E GMRC )
JeK li=1
S; ﬁimc (t:)dy,
% tiB; Si tzezﬁi
e (1 £2) 7 1+

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

which is not easily tractable due to ]EGMRC [( L1 GMR(“ )6‘] . To make the analysis tractable,

we transform Zl - GMRCtl into a multiplicative form H GMRCtl so that expectation op-

l;=1

eration on G;V’Ilf{c becomes effective irrespective of variables ¢;;s. To do this, we adopt the

arithmetic-geometric inequality, which results in the following upper-bound on the coverage
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probability:
x <PZ(1—e2))“ A
5 .5 5
MRC - C(o) : s i
P\ &
F N (&) e @S
Jj=1 li=

0 g, i FHlMRc ‘ g .
x/ /H s — (3.20)
0 2 q_.2

(=)

& S
r (PO=e))Y A o L (1)
e )( SifBi ) S& " Fpvre
:Z 8 — ‘ (3.21)

€28,
(1+ 899

i

SOL
K P & & Sz / t'ﬁ' Sz
T2 (8)" (Bapetyma®)” \o (1)

where the last step is due to the fact that rv.s G%F}LC are i.i.d. across streams. We now

evaluate the integral in (3.21). Using (B.2), we write

x ti_siﬁ%;mc (t:) NT-1 50 1){5%
/ - dt; = Z ! dt;  (3.22)
(1 + tiBi ) ! (1 4 tiegﬁi) — Tz 1 4 tﬁz ) (1 + tﬁ%ﬂi)
0 1—¢? 1—¢? o 1—e2
NT-1 R

_ Z(_r.;)ljt; —_— (3.23)
e e = )R Sk

K3

Applying the Leibniz rule along with straightforward mathematical derivation, we get

dm t_si B Ti (n) dqi 1 dr,-,—q,-, t_g‘
diri S\ Si—1 23, o ) dta , Si—1 28\ dtri—d '
(1+¢2%)" (1+58) =\ )T (1455
S () ()
- ) dpi R
’ pmo \pi/ dt (1+%)
d%—pi 1 di=% _a
s (3.24)

X
dtai—pi (1 + %) dtri—a

%
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We then employ the following formulas:

n—1
dqn 1 (_a)n 1_.[ (S + u)
— = =0 (3.25)
dt™ (1 4 ta)® (1+ta)>™"
dr n—1
b _ ny—b—n c >
Tt = (=) g(b + u), (3.26)
thus (3.24) is further reduced to which is
pi—1 gi—pi—1 ri—gi—1

T R CECTN Wit
(3.24) = = e = s -
w=0pi=0 (%)~ (1 + 12 ) (F25) o (1 + &4 ) (—1)retag s
o, pizl gi—pi—1 ri—gi—1
o 0P T (= ey T 0w T (2
_1)7%22 5 \ ¢ : 5 ¢+8;—1 5;2 —qi+pi : Bie2 qi—pi+1
i (i) " (14 4%) () (1)

Z Z (—1)ri+qi_pi (;:) (Z:)F(Sl -1+ pl)F(qz —p; + ]')F(S% +r; — qz)
- qit+Si—1 Pi—2q; 2\ ai—pitl .
= 062172 4q; (1 t b ) (1&3) (1 + 1[3152) LS — DI'(§)

K3

(3.27)

Using this expression, (3.24) is then rewritten as

3 24 ]\i:l i: ZZ: 2(11 (]- - E? —+ ﬁi)_qi—Si-F]. (1 + EZZ(ﬂZ _ 1))—Qi+pi—1 (3 28)
_4qL+2pz (1 - 6@2)57sz(8@ — Lpi)(ri _ Qi)B(S%, e — qi) . .

=0 ¢;=0p;=

Finally, by substituting (3.28) into (3.21), and noticing that G%IXC is chi-squared with 2.5}
DoF, the desired result follows.

O

Despite significant model complexities, Proposition 3.3.1 provides a closed-form upper-
bound for the coverage probability. Our simulation results in Section 3.6 indicate that the
upper-bound of Proposition 3.3.1 is accurate and representative. We further notice a strik-

ing resemblance between the coverage probability under MRC receiver and that of ZFBF in

112



3.4. Cross-Stream SIR Correlation

(2.116). For the case that CSI is accurately known at the receiver, one can simply exchange
IMRC with T2F to derive the coverage probability of ZFBF from Proposition 3.3.1. This re-
semblance is perhaps attributable to the fact that in both systems ICI is similarly distributed.
Further, in both systems the post-processed fading gains on intending communication link
are Chi-squared random variables, but with different DoFs. The only substantial difference
between these two receivers is that in the case of MRC the intra-stream interference is not

cancelled out. This extra source of interference is captured by I'MRC.

3.4 Cross-Stream SIR Correlation

In Chapter 2.4, we demonstrated the significance of cross-stream interference correlation
on the MIMO-ZFBF multiplexing systems, by showing that under the FC assumption the
coverage probability slightly declines. In this section, we explore other aspects of cross-stream
interference correlation under MRC receiver, by characterizing the correlation coefficient and
analyzing the impact on SIR correlation on the system coverage performance. We shall
emphasize that although we investigate these issues under MRC receiver, by straightforward
manipulations and simple adjustments, it is possible to extend the results to the case of

ZFBF.

3.4.1 SIR Correlation Coefficient

The focus in the related literature (e.g., [78, 170]) is often on understanding the interference
correlation among antennas. In contrast, we here focus on the SIR correlation among data
streams, as in a link the coverage probability is related to the joint SIRs’ CDF of the streams.

To quantify the SIR correlation, the Pearson correlation coefficient is used:

E [STRYCSIRAC| — STR G STRG,

POl ) = (3.29)
\/ Var (SIR)C) Var (SIRY)

7
Tl :L’i,li
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E [SIRW;CSIR%P}P] (SR )2
(3.30)

a Var (SIRMEC)

—=MRC .
where SIR}::i is the average SIR on data stream [;.

Proposition 3.4.1. For a typical UE receiving data from BS x; in a MIMO-MRC multi-

plexing system, the correlation coefficient between data streams l; and I, Vi;, I, 1; # U is:

—C(@) 5 Mg (51 AT (8,7)
. 7 J (to‘+7—°‘)\(S)
1+(t+7)§£z*°‘ (1+tsfz )(1+Tsﬁz “)
s dtdT

{{ (1+t te2 _0‘) (1-}-7’q 6217—04) ((1+t oY) (1+7 Z:c_o‘))

MRC(li, l:) _

Pu;
00 0 NT+1 7(t+7')6‘A(S) e — (& TR)A(S)
— — — | dtdr
J{ <1+“*T>P‘ )(H“s*j;hp")% 1 <1+;f" )(1+§€J>((1+§%)(1+sf%)>s 1
(3.31)
where
Sjl(sj ) 1)Si-1-1 s v (4-2), 25,21
i A ! < Uy —p(i-1y 29,2
R ltSaF(S) X/F(a+l+1,7_) Q. (3.32)
and I'(a,b) = [ 2*"'e~*dz is the upper incomplete Gamma function.
b

Proof. We start with the evaluation of SI_RZH;C Due to the independence of the intended

and interfering signals, and noting that H; MRC is a chi-squared distributed with 2N" DoF,

we write
cMre _ DN "(1—¢2) P MRC | frMRC) GMRC
SIR. — R (2 3 S (3.33)
irki S, S;xé ek oy et J”%“a
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x
Using [ e %*ds = 2!, the expectation in (3.33) is evaluated as

MRC
. PG N
s o (e HY O+ HYNO) —t 3 EREn i

jeK xj€<I>]\x

[
[

P _¢2 fIMRC 5 aGMRC
@ R P T B, 1E(eurey,,, [T IT =" "““var 339
JEK x;€®,\x;
o GMRC
S E@j H EGMR(,B s||x]|| G
(b jex zjed\e; P i
® / dt (3.35)
51
) (1 —l—t%e?) (1+t5§;‘q)
I e O VIEARE e

) <1+ts e )(1+t3$ )

where in Step (a) the independence of r.v.s is used, and in Step (b) we insert the Laplace

(3.36)

transforms of r.v.s ﬁx}flc which is a chi-square distributed with 2(S; — 1) DoF, and I:IXIZC
which is exponentially distributed, at point %x; “. In the last step, we use IE(G?/[RC)GZ =

F(&_;")]) is substituted as GMRC is a chi-squared r.v. with 25; DoF. Finally, substituting A(S)

(2.12) yields

o0

w=MRC  PNT(1— ¢} / e~ t*A(S)

SRV —
Ljsbg Sx()l P Si—1
0 (14 tee) (1+ 1)

dt. (3.37)

To cvaluate Var(SIRSVD ), we first need to evaluate E [(SIRSVD ) }, which can be done

applying the same steps above:

B [(SIRYE)]
s (*«MRC

P; MRC MRQ Sl
i 2‘9@2 ?a E SZ{II? (6ZH1', l; z, l; + Z Z (338)

prrera Sill;ll

(1= QPR
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.aMRC
(1 _ ¢ )2Nr NT 1) R (R (63H§130+HMRC) Y% ?j%ulé
- 252 20¢ ]E//@ ]G)Cx-€<1>]‘\ml dth
0 0
(- @RENT(NT1) [T o~ (HHT)FA(S)
a 25'2 2a s Si—ldth'
00 1+t+73—%6><1+(t+7) )

Combining (3.37) and (3.40), ch(SIRSVD) is then obtained as

(1 )2Nr

(3.39)

(3.40)

Var(SIR}Y)) = PTG

(70 e )2]
dt) |.
Si—1
0 (1) (1+ 1)

On the other hand,

MRO MRC| _ (Pl —¢ )Nr)
[SIR SIRAS } T,
where
(YMI}C
(2 [MRC | MRC Tl
Hi':i-,li iU i +Z Z ||$7||°‘
JEK xje® \x; ]
P MP;/C
i 2 M MRC z
X H +
(szx . 2 2 j||xj||a> ]
JEK z;€®\x;
- o - b a(tGMRC+TGMR(IJ
//]Ee JGICx e<I> \a, Sil751 AL e _S (tHMRC+ HMP;,C 1
e Si%f b dldT.
0 1 +t§%f Z“") (1 —l—TgLe?xz )

It is also straightforward to show that

(tHMRC—‘rTHMRC)

Ee bli

At

2
A 2 byl
N R Ly
Sz 2 112 [k
i VAL x4l l”;tl; zi’li

= Ee

T 7 o~ (TN g1 dr
o[
s 1+t+7—‘—e><1+(t+7) )

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)
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i Rt h 2 Rkt m hT
P |y ”hxl 1y, L’H i I @l gl I Tt I @yl gl I 4 I ol 34 "
s (U 2 TR BT TR, T [N T
= Ee Y [ o i (3.47)
it 2 HfzT nl? 165 2
P; Py 1Py l’ ik ETR PN
_ﬁ (t ’ Z ! H x;,l 1”2 T //Z/ ” H2 +(t+T) ”i’z l ng
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-

5,2 2
((1 + L) (1+ r%x;a)> L+ (t+7)5w

Inserting (3.50) in (3.45) yields:

MRC MRC
P; (th S +TG:v N )

(1 +(t+ T)%xi_a) 11 Eg, II ]EGMRC GMRce Syllz; e

jeEK z7€¢' /x; ki

i
00 (1 + t&e x; ) (1 + 7—16233_0‘) ((1 + t%zi_a)(l + Tgfz;a))

S 1Y

sy dtdr(3.51)

—1 —Cla) X A (£)aW; (L)

_ 7/00 ( (1 +(t+ T)S—’ 0‘) e i dtdr _ (3.52)

S;—27
L thare) (14 rhdare) ((U+ a1+ rar))

where in the last step W;(t, 7) is defined as

W,t,r) = E[( (GRS 4 rGARO) a} (3.53)
oo o0 S]
— //(tgH—ng) (9192)5‘ —(g1+92)dgldg2 (3_54)
/ r2(s))
S;—1

i (Sj—l)(_l)S]—l—l v
_ l N e —v(——f) 25;—2—1
Tsj_d_l_ltsjr(sj)Q X /F(a +1+ 1, 7_) J dv. (355)

To derive (3.55), we note the independence of GM v and GM . The proof is completed by
obtaining (3.30) through combining (3.41), (3.42) and (3.52).
O

As shown in (3.31), the ICI affects the correlation coefficient mainly through A(S'), defined

n (2.12), where A(S) is a function of BSs’ density, transmission powers and multiplexing
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3.4. Cross-Stream SIR Correlation

gains, and path-loss exponents®. Tt is further shown in (3.31) that the multiplexing gains
and the CSI estimation inaccuracy may affect the correlation by imposing self-interference.

To highlight the impact of various parameters on the SIR correlation, we now investigate
the behavior of p%RC(li, I7) in a two-tier HetNet for different settings in Figs. 3.1, 3.2, 3.3,

and 3.4.

S,=S,=6, 0=4, &,=0.1

correlation coefficient

0.01

Figure 3.1: Correlation coefficient vs. A1 and Ay, when P, = 10W and P, = 10W. We set K =2, N" = 8§,
€1 = 0.1, a =4, and x; = 20.

Effect of the Density of BSs

MRC

Figs. 3.1 and Fig. 3.2 show the impact of A; and Ay on p " (15, ). As seen, for a sparse

network, where Ay — 0 and Ay — 0, the correlation coefficient is very close to 0. In other
words, the network behaves like an isolated link, where BSs are sparse in the coverage area.
By increasing the density of BSs pM&C(1;,1}) gets proportionally increased such that in an
extreme case of high density of BSs where A\; &~ 0.01 and/or Ay &~ 0.01, the SIRs of data

streams become highly correlated. In such a case, if a data stream, [;, experiences outage

5Note that for the case that CSIR is accurate it is straightforward to calculate the SIR correlation for
ZFBF following steps developed in the prool of Proposition 3.4.1. However, if one considers CSIR inaccuracy,
one then urges to recalculate the SIR correlation, since under ZFBF the CSIR inaccuracy affects the attending
fading gain as well as induces extra source of interference on each data stream.
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S1=SZ=6, o=4,e,=0.1

SIS ISSTS ‘0"‘““
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0.2

correlation coefficient
o
o

0.01

Figure 3.2: Correlation coefficient vs. Ay and Ay, when P; = 50W and P, = I0W. We set K =2, N" = 8,
€1 =0.1, a =4, and z; = 20.
due to a close-by interfering BS, then other data streams [} # [; will most likely experience

the same.

Effect of Transmit Power

A further comparison of Fig. 3.1 and Fig. 3.2 suggests that increasing the transmit power

results in a substantial increase of p%RC(li, I1). In fact, by increasing P; from 10W to 50W,

the correlation coefficient increases almost 125%. When Py > P, the increase of ph™°(1;, 1))

due to the increase of the density of Tier 1 BSs, Ay, is larger than that of Ao.

Impact of the Multiplexing Gains

The impact of multiplexing gains on the correlation coefficient is shown in Fig. 3.3. The
higher the multiplexing gains, the greater the correlation coefficient among data streams. In
this particular example, Sy shows a greater impact on increasing pxR'C(li, I}) than S since

Ao > A1. This is due mainly to the fact that increasing .S increases the level of ICI at the

typical UE receiver which, in return, increases the SIR correlation.
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3.4. Cross-Stream SIR Correlation

Impact of Path-Loss Exponent and CSI Estimation Error

The impact of path-loss exponent is also seen in Fig. 3.4. For a lower «, even a small number
of moderately close interferers induce a substantial level of interference. This reduces the SIR
for all data streams at the same time, thus causing large correlation among data streams.
For a higher value of «a, the collective impact of the ICI received from the BSs located far
from the receiver causes correlation, and hence unless the density of interferers is very high,
the correlation is negligible. From Fig. 3.4, we further observe that the imposed correlation
due to the CSI estimation error seems negligible. This is because each individual data stream
receives S; — 1 inter-stream interference which is much more powerful than the interference

imposed by the CSI estimation error.

—1n4 7 403 — —
7»1—10 ,7»2—10 ,0(—4,81—0.1

0.075

correlation coefficient

Figure 3.3: Correlation coefficient vs S7 and Ss.

3.4.2 Impact of SIR Correlation on the Coverage Performance

under FC Assumption

As Definition 2.4.1, we can also construct FC assumption to analyze the impact of the cross-

stream SIR correlation on the coverage performance. Assuming a typical UE is associated
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Figure 3.4: Correlation coefficient vs o and ¢;. Parameters are: S; = Sy = 6, A\; = 1074, and Xy = 1073

with BS x;, the corresponding post-processing SIR for stream [; is

P —a MRC
|z 1—e)H,
|| =( €7) il ' (3.56)

SIRNIRC—FC
Sl”%”a <HMRC . 62HMRC> 4 J¥C

We then derive the coverage probability under the FC assumption in the following corollary:

Proposition 3.4.2 (FC Assumption). In the FC setting, the coverage probability of

MIMO-MRC Multiplezing system is upper-bounded as:
C-FC ;) ‘ C\ Si
MRO-FC < AFCZ)\ < 523 ) (TMRCY™ (3.57)
el

where A¥C is given by (2.56) in Proposition 2.4.1.

Proof. We prove the proposition by following the same line of argument as in the proof of

Proposition 3.3.1. In the FC setting, (3.10) is reduced to

Si
PR Yo, / B grey [P (TR > 5|17} (359

. I;,=1
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0

1€ ;=1

1—e 522
_Q = Si
HMRC
.(3.64
S (P ] )
ek 0 1+ 1"‘_7‘1_62

where in Step (a) we insert the Laplace transform of /"¢ and in Step (b) the integrals are

reordered and we integrate the inner integral with respect to z;. In Step (c), arithmetic-

geometric inequality is applied, followed by Step (d) and Step (e) where the fading gains,

are i.i.d.. Applying the method we developed in (3.21), Step (e) then completes the

O

Comparing Propositions 3.3.1 and 3.4.2, we realize that in general for the FC assumption,
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Figure 3.5: This illustration shows an example of the No-correlation (NC) scenario in comparison with the
actual configuration of PPP.
the coverage probability has a more simplified form. On the other hand, the upper-bound of
the coverage performance of a MIMO-MRC HetNet system is (almost) always higher than
the same system assuming the FC assumption. This is because for s% € (0,1), there holds
D(&+8; = .
(FbéTj)]) < Sf’ [78]. Therefore, since (3.6) and (3.57) have the same numerator while the
denominator of the former is larger than that of the latter, we reach the following
CMRC—FC S CNIRC’ (365)
Consequently, we can conclude that, similar to the case of ZFBF (see Proposition 2.4.2),
increased correlation among the data streams of a communication link can reduce the cover-
age probability. Although this result is based on the derived upper-bounds on the coverage

probabilities in (3.6) and (3.57), our simulation results in Section 3.6 confirm its credibility.
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3.4. Cross-Stream SIR Correlation

3.4.3 What If the Cross-Stream SIR Correlation Is Overlooked?

The above analysis shows that approximating a practical scenario based on the FC setting
results in underestimation of the coverage probability. Another way to grasp the impact of
cross-stream SIR correlation on the coverage analysis is to simply ignore the cross stream
SIR correlation, i.e., statistically independent SIR values. We refer to this case as no-
correlation (NC) assumption. For an illustrative example refer to Fig. 3.5. As seen, subject
to association with BS x; the location of interfering BSs across data streams is different
under the NC assumption. Starting from (3.10) and assuming the NC setting, the coverage

probability in (3.10) is written as

MRONC _ gy / 2, HECI)]P’{SIRMRC > 3@} da. (3.66)

e 0 l;=1

Note that in (3.66) we move in the expectation operator into the product operator relying

upon the NC assumption. The coverage probability in (3.66) can then be written as:

7 i Ly ;MRC(ti)
MRC-NC ZZW)\ /a:ZH/ —
X - tlﬁl fzf ﬁ
iek =17 1 + (1 + )
5,02 PJGIIRC
X HE<I) H ]EGMRCB E P(l E2> Syl 1 dt, (3.67)
Jjex z;€d;/x;
a S
@ T T T e (525) (2 9
S 2m, / / e
ek 0
—1
S FHZMRC (tl") & 3.68
t1, Bi Si=1 t; 62,31' L ( ' )
Li=1 (1 + —L> (1+5"%)
7 (P(l NG T (3N
i\ TN
_ S ~ ) /.../(Htl,>
A(S) i€k PisS; 0 0 \Li=1
—1
Si FH%\/[RC (tli)
X < dt;, (3.69)
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T Z & ﬁ oo tlza ;ZMRC (tl,;)
= Ai ( 5 ) dt;, (3.70)
A(S) iek BZS =17 1_|_ Zﬁ (1 + tlze ﬂZ)
S.
af % t;"ﬁ:l (t:) '
b @ Z (Pl(l - 622)) / F o
= M|l =2 dt; | (3.71)
52 e g
A(S) ick ﬂZSZ .0 (1 T %) (1 + f, ﬂ )

where in Step (a) we insert the Laplace transform of the ICI and further notice the definition

of A(S) from (2.12). Denoting the integral in Step (b) by IMR"NC e then have

NT—1 r; qi

[MRO-NC 2 Z ZZ g (-4 p) T - )
_4(]z+2pL _ (:12)31 pyB(S[ _ 17pi)(ri _ q,)B(d, ry— ql) .

=0 ¢;=0p;= l

(3.72)
We then have

(MRO-NC _ Z Al ( = ﬂ ))a (F?ARC—NC)Si ' (3.73)

ZEIC

MRC—-NC is not

Note that the NC setting is in fact an impractically extreme case and thus ¢
achievable. This is because it does not comply with the max-SIR CA rule as in the NC
setting, an independent set of interferers appears on each data stream. On the other hand,

there might be cases where the typical UE becomes associated with different BSs for different

data streams. This, however, contradicts the reality of the MIMO signal model as presented

n (3.2).
Utilizing Proposition 3.4.2, we further note that, as & € (0, 1), by using F(lj’gs)a) <SS a
lower-bound on ¢MR¢~NC ig therefore
PEn () e
— 1€ ‘
(MRC-NC > A (3.74)
P;(1—ef a S;
T Z}C)\ ( gzﬁ ) (F?/IRC)
S
> AFC (3.75)
= MO (3.76)
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3.4. Cross-Stream SIR Correlation

where the second inequality is because TMRNC > TMRC Ty confirm this, we notice that
the beta function is a decreasing function of its arguments, and observing that by comparing

IMRO=NC iy (3.72) and TMRC in (3.7), we note that for a given positive number a, we have

1 1
[MRC-NC _ PMRC o - (3.77)
B(a,a) B(g,a)

On the other hand, since & € (0, 1), there holds [78]

re 5 +5)
j i
Applying this, ¢MR¢ in (3.6) can further be upper-bounded as
S\ S
w3 A (P (mer (1 2)
(MRC i€k e (3.79)
To (D) )
< AFC (3.80)
< MRONC (3.81)

where the last line is because I'(1 + S%) < 1 for ;—YZ € (0,1). Consequently, using the NC
setting, the coverage probability is basically overestimated. This implies that the common
approach that focuses on either isolated scenarios or non-isolated scenarios but with emphasis
on characterization of MIMO communications from the perspective of a data stream is

essentially an overestimation of the actual performance of the network’.

"We should mention that since our focus here is on the interference-limited scenario and inaccurate
CSIR, the method we used to derive the coverage probability and its relationship with the actual coverage
performance under the FC assumption is different from the method we adopted in the previous chapter.
However, as we noticed a striking resemblance between the coverage probability under MRC receiver and
that of ZFBF in (2.116), it is then possible to reach the conclusions of this section for the case of interference-
limited ZFBF too.
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Figure 3.6: Combinations of multiplexing gains for which
and P, = 1W.

3.5 Design Issues

Here we explore various design issues related to the developed analysis in Section 3.3.
Throughout this section, we then consider max-SIR CA rule and consider the actual coverage

probability derived in Proposition 3.3.1.

3.5.1 Is Densification Always Beneficial?
Does Densification Always Improve the Coverage Probability?

We investigate the impact of densification on the coverage probability. We are interested

in combinations of system parameters for which the coverage probability is increased by

HcMRC

increasing the density of the BS in a given tier, namely Tier 1: o 0. For brevity, we
) S;
- . ) r(&4s,
set K =2, and A\ = A\ (P1/51)%, Ao = Xo(FPo/S2)%, Aji = <(_rsfs,—)1)> . In this case, it can

HcMRC
Y

B — (1=€2)B252 a@ (MMRC)S1 Ay,
= (1=2)5:5: (TYRC)S2 Ay, -

> 0, it is necessary to have &(Agl — BAg) < A19B — Ayq, where

be shown that for "
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Figure 3.7: Combinations of multiplexing gains for which a—a“ > (. Parameters are o« = 4, P; = 50W,
and P, = 1W.
Fig. 3.6 shows various combinations of the multiplexing gains that guarantee %(Agl —
1

BAyy) < AjuB — A, In general, for densification of Tier 1 to be effective in improving
coverage performance, we need S; > S;. In fact, as decoding S, data streams is more
unlikely than S} data streams, densification of Tier 1 allows UEs to be more frequently
associated with Tier 1, thus improving the coverage probability. Moreover, as 3; or CSI
inaccuracy increases, we get a smaller number of multiplexing gain combinations, (Sy, Ss),

in which densification improves the coverage probability.

Does Densification Always Improve the Area Spectral Efficiency?

ASE is an essential performance metric which indicates efficiency of spectral usage through-
out the coverage area of a wireless network. In a MIMO HetNet, the data rate of tier i is

Silog(1 + 3;), therefore,

ASEMRC = 3 " XS log (1 + ;) (3.82)

128



3.5. Design Issues

where cMRC denotes the probability that a BS in Tier 4 is being successfully associated with
the typical UE. Using Proposition 3.3.1, we then write

&
P, MRC\ S
MRC T Ai <Sfﬁi) ()

| _é(a)fix(&)d reg s\
1 J Sj F(SJ)

J

(3.83)

SEMRC

Here we are interested in system parameters combinations so that 24 P > 0, i.e., den-
1

sification in Tier 7, increases the ASE. Straightforward mathematical derivations lead to

&A 5;1 A
~ A9+ A2 <L A11+A2; ~ A 1-€2)By P \ ¥ (IMRCYST o (14
B ) ) Z 5\)\2 , Where B £ (( 6%)62 2) ( 11\/[RC)52 IOg( 61) .
12 TlA12+2A21 (1_52)ﬁlpl (Fz ) Og(1+ﬂ2)
2

Fig. 3.7 shows the combinations of multiplexing gains in which the densification of Tier
1 results in an ASE improvement. For S, > Sy, even for small 1, it is still possible to have
a higher multiplexing gain, Sy, while densifying Tier 1. Comparison of Figs. 3.6 and 3.7
further suggests that to improve ASE by densification in Tier 1, i.e., increasing A, one needs

to have a higher multiplexing gain in Tier 2, Sy > 5.

3.5.2 Selecting the Transceiver Technique

We first compare two prevalent open-loop techniques: ZFBF and MRC from the coverage
probability perspective. Here we assume perfect CSIR, i.e., ¢, = 0 Vi. Using (2.116) and
Proposition 3.3.1, we can now inspect whether ZFBF outperforms MRC. For clarity, we set
K = 1. Tt is then straightforward to confirm that ¢?¥ > MRC jf [ZF > PMRC,

Fig. 3.8 shows that, in general, ZFBF yields a higher coverage probability than MRC. This
is mainly because the MRC receivers suffer from inter-stream interference. Furthermore, as
shown in Fig. 3.8-(a), by increasing the multiplexing gain, ZFBF becomes even more efficient
than MRC. For a larger N”, the superiority of ZFBF over MRC is shown to be reduced
because the MRC receivers can harness diversity more effectively than ZFBF. Noticing that
the ZFBF receiver complexity of a large array can be very high (because of the required

matrix inversion operation), MRC provides room for compromising coverage performance
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Figure 3.8: (a) %IZI;S, vs. the multiplexing gain S; (b) %I;S vs. the SIR threshold 3. Parameters are:
Oé:4,K:2, P1:50W, P2:10W

(in fact, slightly for larger arrays) over computational complexity. Such aspects can be
exploited in the design of HetNets. For instance, it is plausible to adaptively select either
ZFBF or MRC in order to keep the prescribed coverage performance intact, while minimizing

the complexity and energy consumption of the signal processing modules at the receivers.

Remark 3.5.1. For the adaptive selection amongst ZFBF or MRC, one requires to know the
density of BSs and other relevant system parameters, e.q., multiplexing gain, SIR thresholds,
and the like. In general, since such a design problem requires network-level performance
metrics, e.g., coverage probability and ASE, the design problem can be solved once a while
(e.g., each 10 minutes or so). This is because, the average behavior of the network may
not considerably change during a short period of time. In practice, a centralized entity is
responsible for gathering relevant system parameters and solving the optimization problem.
Nevertheless, it is also possible to solve the optimization problem in a distributed fashion via

distributed algorithms and allowing singnaling/handshaking across adjacent BSs.

Fig. 3.8-(b) also indicates that for a larger SIR threshold, 3, ZFBF significantly outper-
forms MRC, while for small to moderate values of 3, ZFBF is only slightly better than MRC.
This observation suggests that for low-rate scenarios (e.g., for the cell-edge UEs) one can

trade off a slightly higher performance for a significantly lower computational complexity.
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Fig. 3.8 further indicates that the relative performance of ZFBF and MRC is not related to
the path-loss exponent.

Now we explore if there is any benefit in adopting MRC over ZFBF, despite the above
discussion that the former in general renders the shrinkage of coverage footprint. We here
consider ASE as the main performance indicator. Given the simplicity of MRC receivers,
we are specifically interested in seeing whether there are cases in which considering both
spectral efficiency and the associated computational complexity, it is justifiable to use MRC

over ZFBF. We consider the following optimization problem:

> XiSic™ log (1 + ;) G
Ore m(aG) = max Z)\z'SiCiZF log(1+ 5;) (; XIxizrfc:(N7’Si)> (3.84)

st. N >0,8>1,1<S; <min{N", N/}, Vi (3.85)

A MRC <) (3.86)

In Oy, x_zr (N7",S;) represents the computational cost (number of arithmetic operations)

e
of adopting ZFBF in Tier i over MRC. This parameter incorporates the corresponding
computational cost of the required extra matrix multiplication and inversion while using

ZFBF. The computational cost y zr (N7,S;) of Tier i is formulated as X%(NT,SZ') o

ar
O(SZN™) + O((S;)?Fenv) [171]—The first (resp. second) term is associated with the com-
putational cost of matrix multiplication (resp. matrix inversion). For optimized CW-like
algorithm’s matrix inversion, we have ¢;,, =0.373 [171, Section 28]. In Oy, (3 > 0 represents
the level of importance of the computational cost as part of the performance objective. A
larger (5 indicates that a designer imposes more stress regarding the computational cost in
the system design, due to battery life, energy consumption, processing power, etc.

In Oy, Z XiSicMBC log(14 5;) (resp. z A\iSic? 1og(1+ ;) further represents the ASE of
MRC (resp.l ZFBF) techniques, respectivély, assuming per cell per frame each tier designates

merely one feedback bit to convey back whether it is in the coverage or not. Recall that

since in Tier 7, the number of transmitted data streams is S;, then the ASE is proportionally
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Figure 3.9: (a) 7*(C1,C2) vs. N5 (b) Sy + Sp vs. N”; Parameters are: a =4, K = 2, P, = 50 W, P, = 10
W.

increased by increasing S;. However, since the coverage probability in each tier is also

proportionally reduced by increasing .S;, the growth of S; may not necessarily result in a

higher ASE.

The objective of O is to maximize a performance objective including the relative ASE of
MRC over ZFBF and the associated computational cost of using ZFBF. This optimization is
subject to the required coverage constraint of MRC system over ZFBF, i.e., ¢?F — MRC < (¢},
where (; € (0,1) is the maximum acceptable coverage loss compared to ZFBF due to the
adoption of MRC. Optimization variables in O; are the SIR thresholds, deployment densities,
and multiplexing gains.

In Fig. 3.9-(a) and Fig. 3.9-(b), we respectively present n*(¢; = 0.05,(2), and the
total transmitted data streams across tiers, S; + S5, versus N”. In Fig. 3.9-(a), for ¢, = 0
(computational cost is not of importance to the system designer) ZFEBF does not show any
advantage over MRC as both systems have the same ASE. For ¢, > 0, however, Fig. 3.9-(a)
shows that MRC makes a significant performance gain over ZFBF, where the performance
measure 7*((; = 0.05,(, > 0) grows by increasing N” as well as (. Fig. 3.9-(b) further
indicates that S;+S5s (accumulated multiplexing gains across tiers) is increased by increasing

N'. However, by increasing (» from 0.05 to 0.1, an increase of n*({; = 0.05, (s > 0) does not
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increase the accumulated multiplexing gains, S; + 55 (see Fig. 3.9-(b)), which is due to the
coverage constraint.
The above results suggest that when the computational cost is incorporated, as is the

case in practice, MRC appears to be a better option.

3.5.3 Optimizing the Aggregate Multiplexing (Gains

As we did in Section 2.8, here, we also investigate whether or not one can increase mul-
tiplexing gains in MRC without compromising the coverage performance compared to a
single-stream system (SIMO). Similar to the optimization problem in (2.131), we derive the
best combinations of multiplexing gains S; and S, that guarantee ¢S™© — MRC < & where
& € (0,1) is a given threshold:

02 . IST’IE?JSX(Sl + SQ) (387)

st SIMO _ (MRC o ¢

This optimization provides the maximum number of data streams across tiers, subject to
an acceptable level of coverage degradation compared to SIMO. Note that compared to
(2.131), the above optimization also allows to explore the impact of estimation error on the
multiplexing gain of the network.

In Figs. 3.10-(a) and 3.10-(b) for ¢, = ¢ = 0.1 Vi (lower inaccuracy level), and Figs.3.11-
(a) and 3.11-(b) for ¢, = ¢ = 0.25, Vi (higher inaccuracy level), we derive the optimal
values for several values of deployment densities where (3 = 0.05 (Here optimal values
of multiplexing gains are the ones that maximize the objective function in optimization
problem 3.87). For ¢; = € = 0.1, Figs. 3.10-(a) and 3.10-(b) show that multi-stream MIMO
communications with large multiplexing gains across tiers can be adopted without degrading
the coverage probability compared to SIMO. It is, however, important to carefully select the

multiplexing gains in each tier according to deployment densities. For instance, Fig. 3.10-

133



3.5. Design Issues

(a)

(b)
10 10 :
-v-1,=107°
1074
8F M AREE ok AEEL B oLhly & 4 ---H-0---4-0----0Q =k=1,=10
L] I 1)
. ’ 1 ' ' ' -0-7»:10_3
' [} N 1 ) \J 1
106 ., ! ' ; |- e-h =5x 102
6t 1=v=1,=10 ; . ol | ] | : |
- I
- I F - y \
] _3 ’ [ v '
4r : -‘-7\'1=10 "’ l' 4r I| II ‘\
o le-n =5x 1072 . * * %
1 1 ] . A .
2} ] / ! 1 2} K * ,
,' ’ " S S ‘\
e =A== ---0-¢---0-0 LR e
0 ‘ ‘ 0 ‘ ‘
107° 107 107 107° 107 107
A, A

Figure 3.10: (a) Sy, vs. Ay when ¢; = € = 0.1; (b) S, vs. Ay when ¢; = ¢ =0.1.

(a) implies that by increasing Aq it is possible to increase Sj, but by densification of Tier
1 a smaller S; should be selected. Therefore, a large S; is suitable only when Tier 2 is
highly densified. Fig. 3.10-(b) also shows that simultaneous densification and increasing
multiplexing in Tier 2 compromise the coverage probability. Similarly, with densification in
Tier 1, one should select a smaller multiplexing gain in Tier 2.

We then conclude that by increasing the multiplexing gain in a tier, the coverage perfor-
mance might be compromised, and thus densification in the other tier is required to preserve
the coverage performance. This is because by increasing the multiplexing gain of a tier, it
becomes harder to preserve the required coverage performance. Therefore, the potential cov-
erage loss needs to be compensated for through densification in the other tier while keeping
its multiplexing gain as small as possible such that a larger number of UEs is getting asso-
ciated with this tier. Similar conclusion is also derived from our previous numerical analysis
in Chapter 2.8 in optimization problem (2.131).

We further consider the cases with a higher level of CSI inaccuracy (¢; = € = 0.25), see
Figs. 3.11-(a) and 3.11-(b). Comparison of Figs. 3.10-(a) and 3.10-(b) shows that increasing
the level of CSI inaccuracies reduces the suitability of multi-stream communications. Fig.

3.11-(a) also indicates that there is no setting for which multi-stream communications in
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Figure 3.11: (a) S1, vs. Ay when ¢; = ¢ = 0.25; (b) Sa, vs. A2 when ¢; = ¢ = 0.25.

Tier 1 can improve the coverage while according to Fig. 3.11-(b), Tier 2 can still support
multi-stream communications. Consistent with the low-level inaccuracy in Figs. 3.10-(a)

and 3.10-(b), we also observe that a simultaneous increase of Ay and Sy does not improve
coverage.

3.6 Simulation Results

The simulation setup in the following is exactly the one already discussed in Section 2.7,

with the difference that in the following the CSI is inaccurately known at the receivers.

Impact of Path-loss Exponent, CSI Estimation Error, and SIR Threshold

Fig. 3.12 shows the coverage probability versus the estimation error, ¢ = ¢;, Vi, for several
values of the path-loss exponent, «. The upper-bound is shown to be close to the simulation
result. Also, increased CSI inaccuracy is shown to reduce the coverage performance. This is
because the interference on each data stream is increased due to the CSI inaccuracy. It is also

seen in Fig. 3.12 that increasing the path-loss exponent improves the outage performance.

Remark 3.6.1. Finding out that “the larger is the path-loss exponent, the larger will be the

coverage probability” may come with surprise. However, note that while growing a reduces
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the effective received power of attending signal per data stream, it also weakens the aggregate
interference. As seen, the latter takes precedence, thus the coverage probability improves. On
the other hand, noting that a larger o implies a smaller signal strength, the improved outage

performance suggests that the ICI is one of the main limiting factor in HetNets.

Fig. 3.12 also shows that in contrast to the cases with a smaller path-loss exponent (e.g.,
outdoor communications), the coverage is not significantly affected by the CSI inaccuracy
when the path-loss exponent is high (e.g., indoor communications). This suggests that a
simpler signaling protocol (that may cause higher CSI inaccuracy) can be used when the

path-loss exponent is large without any significant compromise of the coverage probability.

Remark 3.6.2. In our simulation setup we do not distinguish between indoor and outdoor.
Yet, in practice the coverage area is partially covered by buildings and other obstacles. As
a result, the considered path-loss exponent in the simulation setup should be regarded as the
mean value of path-loss exponent. Thus, one can argue that the larger path-loss exponent is
more akin to the scenarios that a larger portion of the network is covered by buildings. Ac-
cordingly, as it is more likely that the typical user is located indoor, this regime is representing

the indoor communication setup.

Fig. 3.13 shows the coverage probability versus (J5. The upper-bound obtained in Propo-
sition 3.3.1 is shown to be sufficiently accurate even for small values of 3, (see also Remark

2.3.2 in Chapter 2). It also shows that a higher 3, results in a lower coverage performance.

Impact of Densification and Multiplexing Gains

In Figs. 3.14, 3.15, 3.16 and 3.17 the coverage probability is given versus A;. We consider 5
settings (Stg) of multiplexing gains between two tiers, where Stgl, Stg2, Stg3, Stg4, and Stgh,
respectively, refer to (S} = 1,52 = 1), (S1 =4,5, = 1), (51 =4,5 =2), (51 =1,5 =2),
and (5] = 8,9, = 2). Figs. 3.14 and 3.15 show the coverage performance for Stgl, Stg2, and
Stg3. The results of Stgl, Stg4, and Stgh are plotted in Fig. 3.16 and Fig. 3.17. All figures
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Figure 3.12: Coverage probability vs. the CSI estimation error. Parameters are: Sy = 4, Sp = 1,
M =10"% XA =102, 3, =5, and B = 10.

demonstrate the outage performance for two values of densities Ay = 1072 and Ny = 1072,

It is seen in Figs. 3.14, 3.15, 3.16 and 3.17 that the analytical result presented in Propo-
sition 3.3.1 closely follows the simulation results. It is also observed that a single stream
communications, Stgl, generally outperforms the other combinations of multiplexing gains,
regardless of the density of the BSs in both tiers. For the single stream case, it is also seen
that densification in Tier 1 always results in a higher improvement in the coverage proba-
bility. Nevertheless, comparison of Fig. 3.14 with Fig. 3.15 (resp. Fig. 3.16 with Fig. 3.17)
suggests that the improvement of the coverage probability by increasing A; is reduced if Tier
2 is also densified at the same time.

Fig. 3.14 and Fig. 3.15 also show that for a small to moderate A;, increasing S; from 1
to 4 (Stgl — Stg2) does not compromise coverage performance. However, for a sufficiently
large A1, the coverage performance in Stg2 is significantly reduced. Comparing Fig. 3.14

with Fig. 3.15, we further observe that for a higher value of Ao, the positive impact of having
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Figure 3.13: Coverage probability vs. 3. Parameters are: A\; = 1074, Ay = 1072, 8, = 5, and € = 0.1.

a larger S; on the coverage performance is lower. Therefore, densification in Tier 2 allows
the growth of multiplexing gain in Tier 1.

These can be understood by noting that for a larger Ao, the UEs are more likely to be
associated with the BSs in Tier 2. This is because the successful decoding of a data streams
where Sy = 1 is more probable than that of S| = 4, so the coverage probability is improved.

Results in Fig. 3.16 and Fig. 3.17 show that for a small to moderate A\, increasing S
from 1 to 2 (Stgl — Stg4) substantially reduces the coverage performance. To tackle this
problem, one may consider increasing A; which reduces the performance gap. For a very
dense Tier 1, the coverage performance of Stgl and Stg4 are then converged. Comparing
Fig. 3.16 with Fig. 3.17, one can see that by increasing A9, the impact of Sy on the coverage
performance is increased. Therefore, when densifying Tier 2, increasing its multiplexing gain
is not recommended. This is because for a larger Ay, the UEs are more likely to be associated
with the BSs in Tier 2. The chance of successful decoding of So = 2 is less than that of
Se = 1, and hence the coverage probability is reduced. To address this issue, one is ought

to densify Tier 1. By increasing A, UEs are more often associated with the BSs in Tier 1,
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where S; = 1 and it is more likely for the data stream to be successfully decoded.

It is further seen in Figs. 3.14, 3.15, 3.16 and 3.17 that both Stg3 and Stg4 similarly
perform with a low coverage performance, where densification neither in Tier 1 nor in Tier
2, can compensate the significant coverage reduction compared to Stgl. This is because in
cases where both S7 and Sy are high, successful decoding of data streams is less likely, even
for a high density of the BSs. For such cases, reducing the multiplexing gains seems the only

way to improve the coverage performance.

Impact of the STR Correlation

In Section 3.4, we quantitatively investigated the impact of SIR correlation on the cover-
age probability. We showed that under the FC assumption the the coverage probability is
underestimated, whereas by ignoring the SIR correlation, the coverage probability is over-
estimated. These results are confirmed through simulations in Fig. 3.12 and Fig. 3.13, and

also Figs. 3.14, 3.15, 3.16, and 3.17.

139



3.6. Simulation Results

- @ =Sim. S1=4,Sz=1

—e— Upper-bound, S1=4,Sz=1

-e-.FC S1=4’82=1

e NC S1=4,Sz=1

=Y =Sim. S1=4,Sz=2
upper-bound, S1=4,Sz=2‘

e FC S1=4’82=2

. NC S1=4,82=2

-v-single—strem

Coverage Probability

-------------------------
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Comparison with ZFBF

Fig. 3.12 shows the coverage performance of ZFBF versus the level of CSI inaccuracy e.
ZFBF is, in general, shown to be more resilient to CSI inaccuracy than MRC. However, for
small to moderate CSI inaccuracy levelsi.e., € 0.3, both systems perform almost the same,
while MRC has a much lower computational complexity. Since MRC already suffers from
uncancelled intra-stream interference on each data stream, it is very susceptible to extra
source of interference that is originated from CSIR inaccuracy. On the other hand, ZFBF
cancels the intra-stream interference out entirely, thus the new source of interference, due to
CSIR inaccuracy, is not that powerful to considerably reduce its coverage probability.

Furthermore, as shown in Figs. 3.14, 3.15, 3.16, and 3.17, there exist combinations of
multiplexing gains and deployment densities in which, compared to MRC, ZFBF does not
improve coverage performance, see, e.g., Fig. 3.14 for (S, Ss) = (4,1) where A\; < 1074, and
Fig. 3.16 for (S}, 5;) = (1,2) where A\; > 1073, In such cases, it would be preferable to use
the latter.
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3.7 Conclusions

Adopting tools of stochastic geometry, we studied the coverage probability of MIMO-MRC
multiplexing systems in HetNets. Our analysis incorporated impacts of many important
system parameters including the density of BSs, transmission powers, SIR thresholds, mul-
tiplexing gains, and CSI inaccuracies on the coverage performance. We derived an accurate
upper-bound on the coverage probability in a closed-form.

Important engineering insights were derived from scrutinizing our analytical and simula-

tion results:

e Densification in multiplexing systems should be practiced in conjunction with multi-
plexing gains, else dramatic coverage loss might be inevitable. Furthermore, by growing

the CSIR inaccuracy, it becomes less suitable to densify the network.

e In indoor scenarios (high path-loss exponent regimes) it is possible to reduce the pilot
signaling overhead, designated for CSI estimation, without imposing noticeable cover-

age loss compared to the outdoor coverage performance. This implies that one can save
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Figure 3.17: Coverage probability vs. A; when Ay = 1072, where 3, = 5, 35 = 10, and N” = 10.

pilot resources in indoor environments without loosing coverage probability compared

to outdoors.

e Although MRC suffers from intra-stream interference in comparison to more complex
receivers such as ZFBF, the relative coverage loss in large array scenarios and/or for
cell edge users (e.g., small SIR thresholds) is barely noticeable. Furthermore, when the
complexity of ZFBF is included, a properly designed configuration may recommend

MRC over ZFBF with slightly loosing coverage probability.

We also developed analytical tools facilitating thorough investigations of the impact of
cross-stream SIR correlation on the coverage performance of multi-stream systems. Specifi-
cally, by focusing on the communication scenarios that the successful decoding of all trans-
mitted data streams are required for the coverage, assuming full correlation among data
streams is shown to yield a slightly smaller coverage performance. On the other hand, our
analysis proved that by neglecting such correlation, as commonly assumed in the literature,

one should expect a substantial overestimation of the coverage probability.
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Chapter 4

Analysis of MIMO-SVD Multiplexing
HetNets

4.1 Introduction

In Chapter 2 and Chapter 3, we studied the coverage performance of ZFBF and MRC
systems, respectively. These receiver filters are among prominent examples of open-loop
techniques, as the transmitters do not rely upon the availability of CSIT, either complete
or quantized, to construct the pre-coding matrices—ecach BS simply turns of a subset of
its transmission antennas and divides the transmission power equally among them. In the
present chapter, we aim at exploring the scenario where the CSIT is completely available at
BSs, by deriving the coverage performance of MIMO-SVD multiplexing communications.
Analogous to the analytical sprit of the previous chapters, here we are aiming at pro-
viding analytical result on the coverage performance of MIMO-SVD multiplexing systems
in HetNets. We evaluate the cross-stream SIR correlation and observe that while in the
isolated scenario the data streams are negatively correlated, ICI causes positive correlation
among data streams. On the other hand, when ICI is included by the growth of the receive
antennas he cross-stream SIR correlation. This is opposite of the isolated scenario in which
the cross-stream SIR correlation converges to zero by the growth of the receive antennas.
Consequently, ICI substantially affects the statistical behavior of SIRs in SVD systems.
Furthermore, we derive easy-to-compute, closed-form approximations of the coverage

probability as a function of deployment density, transmission power of BSs, SIR thresholds,
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the number of antennas and data streams. Extensive simulations corroborate the analysis.
We also compare the coverage performance of full-MUX system—transmitting as many data
streams as the number of receive antennas at the UEs—under SVD, ZFBF, and MRC.
Our results demonstrate that 4) the SVD configuration can provide a substantial coverage
performance growth, which highlights the importance of CSIT in enhancing the coverage
performance of HetNets. For instance, we observe that under the SVD systems up to 450%
(resp. almost 1000%) coverage growth over the ZFBF (resp. MRC) can be achieved while as
many as the minimum number of transmit-receive antennas data streams are transmitted.
it) Importantly, for the full-MUX scenario, while both ZFBF and MRC are entirely oblivious
to the growth of the number of antennas at the BSs, SVD systems can harness considerable
coverage gain. In our view, this suggests the vital value of SVD for large-array antenna
systems. 4ii) However, it may not always be recommendable to increase the number of
antennas at the macro BSs in particular when the network is densifyed in Tier 2. We
observe that if the network is densified in Tier 2, increasing the number of antennas in Tier
1 does not provide coverage enhancement.

Note that the base of our analysis is built upon the one previously developed in Chapter
2. However, compared to ZFBF as well as MRC systems, under SVD procedure, besides the
correlation of ICI across data streams of a given communication link, the effective power of
attending signals are also correlated across data streams, due to the correlation of eigenval-
ues of intending channel matrix. This renders new analytical complexities, which require
upgrading the developed analysis in the previous chapters. Since, to our best knowledge,
the coverage performance of MIMO-SVD multiplexing system in cellular networks (an also
ad hoc communications) has not been investigated so far, in this chapter we set our goal to
tackle this issue.

One should also note that the common methods of the literature [33, 37, 38] are inherently
unsuitable to capture the randomness of the interference, and suffer from lack of scalability.

In fact, it is substantially complex to accurately account for the max-SIR CA, densification,
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and heterogeneity in the analysis of the literature.

On the other hand, as we also thoroughly discuss in Section 1.3, the analysis of [33, 37, 3§]
is not applicable here, since the analytical results are provided in very complex forms of
determinants of matrices with entries in the term of special mathematical functions (e.g.,
hypergeometric functions), prohibiting further expectation operation required to deal with
random location of interferes. We in this section utilized the FC assumption to considerably
reduce the complexity of the analysis.

The rest of this chapter is organized as the following. In Section 4.2 we elaborate on the
SVD model in HetNet. In Section 4.3, we evaluate the cross-stream SIR correlation. Then,
in Section 4.4, we analyze the coverage probability under max-SIR, CA rule. In Section
4.5, we present simulation results and compare the performance of SVD, ZFBF, and MRC

systems. Finally Section 4.6 concludes the chapter.

4.2 System Model

The network model in this chapter is quite similar to the one presented in Section 2.2, we
therefore only discuss the required upgrades.

Under SVD configuration, the N"-dimensional equivalent low-pass received signal, after
matched filtering and sampling, at the output of receiver antennas, y, € CN"™ 1 can be

expressed as

Yo, = |2 Ho, Vi, 80, + Z Z “373‘”_%ijszst (4.1)

JEK x;€®;\w;
in which V, € CN'*5i ig the pre-coding matrix applied at any BS x, which is constructed
according to SVD method [14], [16]. In fact, by applying SVD the communication channel
between BS x; and the typical UE can be decomposed into spatial modes so that H,, =
U,r., VLL_ in which V,, = [v4,1...v,,s,] is the unitary pre-coding matrix of right (input)
eigenvectors, U,, = [Uy,1...U,, 5] is the unitary post-coding (combining) matrix of left

(output) eigenvector, and Iy, is a S; x 9; diagonal matrix of eigenvalues [14], [16]. More
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specifically, v, ;, is associated with the /;th eigenvalue of the corresponding central Wishart
matrix Wi?xsi, where
H,H! N"<N!
W, = (4.2)
H! H, N">N.
Note that non-zero eigenvalues of matrices H,, H I:Z and H LH 2, are the same and conse-
quently distributed statistically equal [163]. We denote ¢,, ;, as the (unordered) /;th non-zero
eigenvalue of W, .
The typical UE multiplies the received signal y, with U L in order to collect post-

processing signal vector z,, = Ulzyw which using (4.1) is

2 ||xi||_%rwi5:r¢ + Z Z ||$j||_%UI:inijjSmj-

jex Tj E@j\xi

It is then seen that the signal power associated with data stream [; is equal to %Hxiﬂ_acp’%li.
Also, the interference power related to the data stream [; imposed from BS z; # x; is

P, _ A 2
SJJHx]H | LH, Vo |°. Define YISJ\G? = ‘ulz_liH%vgﬂj,d , and denote r.v. GE,YB by

Lgybi e

sVvD A S S . .
SYD = ST, YYD Thus, the imposed interference from BS x; # x; on data stream
Jobi = 5abj

l; is in effect obtained from %Hx]H_aGiyg Finally, the SIR associated with the [;th data

stream from BS z; is formulated by

%“wi”_agbﬂnyli

S Y ot
Sillzjllo ™ gl

jE’C l‘jE@j\l‘i

SIRSY) =

(4.3)

Conditioned on H ,,, ule H s, 18 a complex Gaussian r.v. with mean zero and variance

1 [33]. So, each term of stj\é? is distributed exponentially and independent of H,, [33].

Regarding the independencies of r.v.s YzS]\G? across stream [;s, it is straightforward to confirm
that r.v. GEYB is chi-squared with DoF 25; [118, 134].

Note that G?JVE is independent across streams /; and further across BSs [123]. In addition,
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GSVP and ¢,,;, are independent. Furthermore, the denominator of (4.3) is the ICI denoted
by I% (see also (2.6)), and its Laplace transform is given by (2.11). This is because similar

to ZFBF and MRC systems, r.v. G?JVE is also a chi-squared with 25; DoF.

4.3 Derivation of Cross-Stream SIR Correlation

As the case of MRC receivers studied in Chapter 3, one can also straightforwardly derive

the cross-stream SIR correlation, defined as

[SIRSVDSIRSVD} ~SIR, | STR,),
) P (L, 1) (4.4)
\/ Var (SIRSYP) Var (SIRS')
[SIRSVDSIRivﬂ (SR, )2
- , (4.5)

Var (SIRSYD)

In the following, we firstly evaluate constituents of (4.5), which are SIR, l , Var(SIRq"d ),
and E [SIRSVd SIRSVd } e further discuss a numerical evaluation of p3¥P(I;, I}). To derive

WD(I I1), we follow the same method already developed in the proof of Proposition 3.4.1.

17@

Evaluation of SIRSVd

Under the premises of independencies of PPPs as well as of the intended and interfering

channel matrices, and noting that E[¢,, ;] = N [130], we have

——sv P,N" _ 1
i > Y Blallee,
jelCa:]E(I)j\a:,
P F oty FlajlmoGsd,
_ PN E/e JEME%\% E T (4.7)

0
@ P N / Lot (4.8)
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= e M8 (4.9)
0

B PZN”F(% +1) s

D GG (4.10)

where in step (a) Ly, (t) is the Laplace transform of the interference at the typical UE, which

is obtained in (2.11).

Evaluation of Var(SIRSVd )

To evaluate Var(SIRSVd ) we firstly require to evaluate E [(SIRSVd ) } which is carried out in

the following:

5 T(6+55)

s —C(@)(t+T)E 3 A ( —J
[(SIRSVd) } = El@es)] //e PSS s (4.11)
0

2S2 2a
0

252 2a

o NT(NT [
@ NV +5;) / / e~ gt dt, (4.12)
to

80

N™(N" +S;)

—t3A(S)
257,20 e TN Sdt, (4.13)

Il
| O\

N(N" + 5;) 2T(a)
= 4.14
P25k (AS)™ (1)

where in Step (a) we apply E[(¢s,1,)*] = N"(N" + S;) [130], and introduce new variables
to =t and t; =t + 7. Using (4.14) and (4.10), Var(SIRWd ) is then obtained as

N7 a(N;—i—Sj)l—\(a/) - F(% + 1)2
()2 (A(S)*

p;

Var(SIRSY)) =

(4.15)
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Evaluation of E {SIRSVC1 SIRS,"‘}/]

Since E[¢z, 1,¢r, 1] = N"(NT — 1) [130], we can write

PQE[¢$I¢1/]
E |SIRS' SIRwd] _ i BPriLiPai] y
[ S?IL’?O‘ ( )
1 1
x E P; —aysvd P o vsvd (417)
L T Rlmian > Sl ea
i xje A VIS «T]E T4
PQNT NT' . o —t Z J”»'U]” uG;lez
S SRR / e "t (4.18)
0
[ ) — (IS V
_"’J;/Cz .eg\,v %ijll Gz;,iz/i
X € 7 J\Ti d,r (419)
0

PENT(NT—1) [ [
= 52 7 //Eexp Z Z ]||xjH (4.20)
00

JEK z;€; \a:l

X (1GS, +TG§;dl,_))dth (4.21)
P2NT(N" — 1)

- 52 2a //HE@ H Evad Evad (4.22)

JEK z;€0;\x;

| @ riv(‘l G ,

e ey o3,
N'(N" = 1) [ [ ~CS (@),

- P25 //6 dtdr, (4.24)

0 0

where in the last step the function W,(¢,7) is given by (3.55). Note that in this case we

require to apply numerical integration to evaluate (4.24).

Evaluation of g3,
o\bisty

Finally, combining (4.15), (4.10), and (4.24) an expression for p}” l ) s derived as

00 00 —C(a)ZA ( J)“W (t,7)
(N" —1) f fe % dtdr — N"(T(S +1))?

S‘VD(liv l;) -

, (4.25)
a(NT+S; a
—( 5 J)F(a) — F(—2 +1)2
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correlation coefficient

Nl'

Figure 4.1: P;:fl(z,,l;) vs. o and N”. Parameters are P, = 50 Watts, P, = 1 Watt, \; = 10~%, X\, = 1072,
Nt = Nt =16, S, = N,, and S, = N”.

For the purpose of illustration an example of pfcvif](li’l; ) Vs, @ and N" is depicted in Fig. 4.1.
Here we have assumed that the typical UE is attached to a BS of Tier 1 located at ||z;|| = 10.
Note that regarding the results of [130] we already know that the correlation coefficient
among two randomly picked eigenvalues (isolated scenario) is —1/N", which it is vanishing
by growing N”. But with the consideration of ICI, Fig. 4.1 reveals that the correlation
coefficient is an increasing function of N” and the rate of increment is increasing with a.
Furthermore, the larger the path-loss exponent is, the higher the correlation coeflicient will
be. It is interesting to note that for some particular choices of & and N” the data streams
can be actually uncorrelated (o &~ 3 and N” &~ 6). Finally, while in the isolated scenario the
data streams are negatively correlated, ICI renders in many cases positive correlation among

data streams.
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4.4 Analyzing the Coverage Performance

As the previous chapters, we also consider the max-SIR CA rule as defined in Definition

2.2.2, which implies that the typical UE is in the coverage if the set

Agvp = {Eli € K : max mln SIRS\ > ﬂl} , (4.26)

z;€P; 1;=1,...,

is nonempty. The coverage probability is defined as ¢®VP = P{ASVD +£ (}.

We now derive the coverage probability. Let us denote r; = ||a;]|. Since §; > 1 is assumed,
referring to (4.26) and applying the same procedure developed in the proof of Proposition
2.3.2, we can write

ASVD ZEZ < min SIRiYEZ@) (4.27)

...,

€L x;€D;

= > om) / P{ min SIRSVD > ﬂ,} dr (4.28)
i€ =t

= > om) / riEeP {SIRSYD > 3, : Vi;| @} dr; (4.29)
i€

= 3 omn, /nEq,P{qszi,l > Sﬁ’ S

i€ Z
Si Y o
¢xi,Si > %Isz q)}d’ri (430)
— 227-‘—)‘2'/7'1'15:{[%} / /
S 0 Siﬁi.rzo‘ I Siii.r? I
S
XF (Gap. s Gars,) | [ daa,dric (4.31)

l;i=1

in which f (¢4, 1, .., ¢z,.s,) is the joint PDF of unordered eigenvalues ¢, 1, ..., ¢z, 5, > 0. If
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N™ < N[, S; = N" and thus the joint PDF is [163]

f(Pusase vy Gussy)

A
- T4l
(H gbn z) e litt H (gbxi,li - gbxi,li/)Qv (432)

Qi I;=1 1<1;<1,<8;

where Q; = ﬁ (N} = 1;)1(S; — I;)!. Note that for the case that N™ < N/, by exchanging
N! with N" z:ld letting S; = N/, (4.32) yields the joint PDF. Unfortunately, due to the
complicated form of (4.32) and the lower-bounds of the integrals, which are statistically
correlated r.v.s, the form of (4.31) does not lend itself into a tractable form. In fact, a
term-by-term integration of (4.31), assuming it is pursuable, can even cause divergence. As
a result, in the following we attempt to approximate (4.31) by adopting the FC assumption
introduced in Section (2.4).

Recall from Definition 2.4.1, the ICI under FC assumption is denoted by IFC given by

2.51. We are then able to approximate the coverage probability (4.31) as the following

o0 oo
SV SVP-FC — E 2T\, /T'ZEIFC / /
ek Sifir ppe ST e
P; P;

Sy
Xf (¢zi,17 BRI q/):ri,Si) H dql):ri,lldri (433)

l;=1
- 2277)‘ /TzE@P{¢x¢,1 > Siifirifm,...
ek %
7¢$7‘,,S,,; - Sﬂl U IFC|®}dT',L (434)
= qﬁl Ty tFC
= ZZM nEq»P Govmin > 22T\ L (4.35)

e

Accordingly, to evaluate ¢5VP—FC

we require the PDF of ¢, min. This is analogous to the
analysis under the FC assumption for ZFBF conducted in Section 2.4, in which the effective

attending channel power gain is HZF . = Note that statistics of the smallest eigenvalue of
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4.4. Analyzing the Coverage Performance

Wishart matrices are broadly investigated in the literature [32] allowing us to borrow the
results for furthering the evaluation of (4.35). The expression in [32] is in a determinant form
of some matrix in which entries are special mathematical functions, which makes it unsuitable
for our analytical purposes. In effect, using this determinant expression it becomes entirely
intractable to apply expectation over the point processes. We, therefore, adopt an alternative
polynomial expression for the PDF of ¢,, min proposed in [172].

Let first define tensor determinant [163, 172]. For three-dimensional matrices (rank 3

tensors) A = {ak, ky ks th1 ko ks=12,..~n, operator T(A), which is the determinant of A, is

defined as
N
A
= Z sgn(p) Z sgn(n) H Ay e k> (4.36)
o n k=1
where the sum is over all the permutations g and 1 over the integers 1.2,..., N. Here, sgn(.)

is the signature of the corresponding permutation and takes value 1 if the permutation is even
(i.e., whenever the reordering given by the permutation is accomplished through successively
interchanging two entries an even number of times), otherwise —1 if the permutation is odd.

Define matrix A = {4+ 1+ kli)!}lg,lg/,kzizl,...,&—l- We introduce operator Ty, } as

S;—1
A r Nf -5,
Tgo,) = T(A) [ ( " > (4.37)

Using Tk}, We then introduce

N -5
ZT{kz}_ Z Z T, - (4.38)
{ki,} k1=0 ks;—1=0

Utilizing the results of [172], the PDF of ¢, ., can finally be specified in the following

polynomial form:
—Szz

1
o, min (2) § Ty 2 (4.39)
@r {k }
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. Si—1
where Oy, } = Si(N} = S;) = > ki, + 1. Furthermore, the CCDF of ¢, min, denoted by

B ;=1
Fqﬁzi,min ()’ iS

(){kl } O{kli}—l

= S,
F‘i’zi,min (Z) = ZT{kl } {kl / Szw : @ dw
{ki,} z I( {kzi})
é{kl_}_l
— - 2 sz 2
—S; i
= D TwOuwe ™ Y T
{k1,} m;=0 "
- e )
where 8{,% y = {klé}k , which admits the following inverse Laplace transform
Qir(sz)sq; li}
é{kli}_l Sm
F¢ ZT{’W }@{kl } Z m.! 5(m1)(t — Si).
IZZ mln {kl } mZ:O 7.

Now, we only require to adopt Lemma 2.3.2 to evaluate (4.35) as follows

_ SiBiry
SVD-FC ZQ?T)\ /r,]EIFc [F%i,mm (%IFC>] dr;

)

€K
9;31
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(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)
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o0 O 1—1  omi
- ZW’\@'/ST{M}@{M} {kf: %ﬁmi)(t,_vsi)‘dt (4.48)
= B = DG DR
Ol .. o
- Z m/leCz )0 D i;!/5(m")(t—5i)t%dt (4.49)
i€k {k1;} m;=0 )
B 7 {kzi}—l D6+ m) r
— _@(a)AFC%; (@ Z) {kzz:} {ki, }G{kl} W;O @) (4.50)

where A¥C is given by (2.56). The significance of the above analysis is that it provides an
approximation for the coverage probability of a complex system in a closed-form expression.
One can explicitly recognize the impact of various important system parameters such as
the density of BSs, transmission powers, SIR thresholds, number of transmit and receive
antennas on the coverage probability. In addition, the required numerical cost of ¢5VP~FC
given in (4.50) to evaluate the coverage probability for each set of network’s parameter is
fairly low. This is because in comparison to [33, 37, 38|, here we do not need to numerically

evaluate infinite integrals, determinant of matrices, and higher order differentiations (see

also Remark 1.3.1).

4.5 Simulation Results

The considered simulation setup is similar to the one proposed in Section 2.7. In all our
experiments we assume S; = Sy = N7, thus the number of data streams the BSs in both tiers
transmit is as many as the number of antennas that UEs are equipped with, e.g., ful-MUX

scenario.

4.5.1 Impact of SIR Thresholds

We start with examining the accuracy of our analysis versus SIR thresholds ; and . Fig.

4.2 and Fig. 4.3 illustrate the coverage probability versus 3; and (s, respectively. Both
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Figure 4.2: Coverage probability v.s. 31 where 3> = 5. Parameters are \; = 1074, Ay =5 x 1073, N{ = 16,

Nt =8, and P, =50 W.
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Figure 4.3: Coverage probability v.s. 8o where 3, = 10. Parameters are \; = 1071, Ay =5 x 1073,

Nt =16, N! =8, and P, = 50 W.
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Figure 4.4: (a) Coverage probability v.s. A; where Ay = 10~3, (b) Coverage probability v.s. Ay where
A1 = 1074, Parameters are 8 = 10, Ay = 5, N! = 16, N} = 8, P, = 50 W.

of these illustrations confirm that our analysis accurately match those from the Monte-
Carlo simulation, which is also inline with the discussion of Remark 2.3.2. Apart from
accuracy perspective, the trends spotted in Fig. 4.2 and Fig. 4.3 are otherwise intuitive as
by increasing SIR thresholds it is generally becoming more difficult for the typical UE to
successfully decode all data streams, which in turn renders smaller coverage probability.

More interestingly, we observe that for smaller values of N” the coverage probability is
higher. In fact, increasing the number of receive antennas from N” = 2 to N = 4 causes
50% reduction of coverage probability. Recalling that MIMO-SVD multiplexing system is a
full-MUX scenario, this can be understood by noticing that in the all-coverage probability
perspective of the communication link it is generally becoming less likely to detect a greater
number of streams.

In Fig. 4.2 and Fig. 4.3 we also include the simulation results of grid model whereby the
location of BSs in Tier 1 is based of hexagonal layout while the location of BSs in Tier 2
is still based on PPP model. As expected, the grid model provides an upper-bound on the

coverage probability.
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4.5.2 Impact of Densification

In Fig. 4.4-(a), we study the coverage probability v.s. A; assuming Xy = 1073, and in Fig.
4.4-(b), we study the coverage probability vs. Ay assuming A\, = 1074

First, both panels show that approximation ¢5VP~FC

can quite accurately predict the
coverage probability for wide range of density of BSs. As expected, this approximation
yields a tight lower-bound on the coverage probability. Second, both panels indicate that
by doubling the number of receive antennas (and thus the number of data streams) the
coverage probability reduces by nearly 50%. Third, Fig. 4.4-(a) shows that by densifying
Tier 1 (increasing the number of macro BSs per unit area) the coverage probability increases
almost 125%. On the other hand, as seen from Fig. 4.4-(b), densifying Tier 2 (installing
more femto BSs) causes more than 50% reduction of the coverage probability.

The negative effect of densification of femto-tier (Tier 2) on the coverage probability can
be reasoned noticing that by increasing Ao, albeit it is becoming more probable for the typical
UE to consider association from Tier 2, the association is not guaranteed to be fruitful. This
is because the severity of ICI from interfering femto cells is simultaneously increased by
practicing the densification. Moreover, femto BSs should yet compete with Macro BSs that
are equipped with greater number of antennas.

On the other hand, the coverage probability increases by densifying Tier 1 because for
larger densities i) it becomes more probable for the typical UE to select one of the macro
BSs for the association, and 2) since Macro BSs are equipped with large number of transmit
antennas, the detection of all the N" data streams transmitted from a Macro BS stays
effectively probable. In this way, it is plausible to argue that the negative impact of growing

ICI due to increasing A; is effectively compensated for.
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Figure 4.5: Coverage probability v.s. N”. Parameters are 3; = 10, 8 = 5, \; = 1074, Xy = 1073, N{ = 16,
Nt =8, P, =50 W.

4.5.3 Impact of Number of Data Streams

Let us increase N". Analytical and simulation results are illustrated in Fig. 4.5. For
comparison we also report the results of MRC and ZFBF. For the MRC and ZFBF systems,
BSs randomly turn on N” transmit antennas and switch the rest off. Fig. 4.5 shows the

coverage performance vs. N”.

Remark 4.5.1 (Remark 2.3.2 Cont.). As seen from Fig. 4.5, the analytical result of
the coverage probability may become larger than 1. We already discuss this issue in Remark
2.3.2. In fact, if the average power of the fading of the attending channel is much higher
than that of the fading of the interfering channel (for this scenario the former is 16 while
the latter is one), it becomes highly probable that more than one BS can support the typical

UE, which makes (4.31) an upper-bound of the actual coverage probability.

159



4.5. Simulation Results

MIMO-SVD System

From Fig. 4.5 we observe that the theoretical and simulation results match-up closely. Now,
consider the case that N} = 8 and P, = 1 W. As seen, by increasing N” the coverage
probability dramatically reduces. In fact, by moving from N" =1 to N" = 2 we experience
almost 50% coverage reduction. This is due to the rapid increase of ICI and the decrease
of intended signal strength by growing N”. However, the rate of reduction of coverage
probability versus N” is reduced for larger values of N". One may ask does increasing the
transmission power help to compensate for the larger values of N"7? To inspect this, we
let the value of P, increase by N". Fig. 4.5 shows that with higher transmission power
the coverage probability does not improve. Finally, let us increase the number of transmit
antennas of femto BSs to N = 16. Fig. 4.5 confirms 10% coverage growth compared to two

previously considered setups.

MRC and ZFBF Systems

As it is seen from Fig. 4.5 MRC system is very vulnerable to the growth of multiplexing gain
(increase of N"). In fact, for N > 2 its coverage probability is almost zero. Unfortunately,
neither increasing P, nor increasing Nj can enhance the robustness of MRC systems against
large values of N”. Compared to MRC system, ZFBF system is more robust against the
growth of N” (see also Fig. 2.6). In fact, Fig. 4.5 shows that by increasing N the coverage
probability is reduced, but with much lower rate compared to MRC system. Surprisingly,
for the case that Ni = 8 and N" = 8 the coverage probability of ZFBF system is almost
equal to that of SVD system.

Note that as the case of MRC system, ZFBF system also does not respond to neither the

growth of transmission power nor the growth of NJ.
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Comparison Between SVD and MRC/ZFBF Systems

For the case of N™ = 1, we observe that SVD system introduces growths more that 450%
in the coverage compared to MRC system. For 2 < N" < 6 and N} = 16 these values are
higher than 1000%. On the other hand, for the case of N" = 1, we measure that SVD system

increases the coverage probability by 450% against ZFBF system.

Analysis (solid line); Simulation (dashed line)
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Figure 4.6: Coverage probability v.s. Ni. Parameters are N™ =2, 3; = 10, 5o = 5, P, =50 W, and N} = 8.

4.5.4 Impact of Transmit Antennas

Here, we are mainly interested to investigate the net effect of equipping BSs with sufficiently
large number of antennas in conjunction with densification. We consider four scenarios: (1)
both tiers are sparse, \; = 107* and Ay = 1073, (2) only Tier 1 is densified, \; = 1072 and
Ay = 1073, (3) only Tier 2 is densified, A; = 107* and Ay = 1072, and (4) both tiers are
densified, \; = 1072 and Ay = 1072. Note that here the introduction of terms “sparse” and

“dense” are merely used to make the discussion succinct.

161



4.5. Simulation Results

Impact of N!

We start by studying N{. The results are reported in Fig. 4.6. For this experiment we set
N} =8and N" = 2.

Scenario (1): First consider scenario (1) in which both tiers are sparse, i.e., A\; = 107*
and Ay = 1072, Coverage probability is shown in Fig. 4.6. As seen from this illustration, the
coverage probability of SVD increases by increasing NY. Specifically, increasing N by 8 folds
results in 160% enhancement of the coverage probability. On the other hand, for ZFBF and
MRC systems, we observe that N{ does not have any impact on the coverage probability.
These observations are inline with our intuition: in the SVD system by increasing the number
of transmit antennas and keeping the receive antennas fixed the power of signal strength
on each data streams grows while the ICI is kept stable, thus, the coverage enhances by
increasing NY. However, in the open-loop systems both signal power and ICI on each data
stream are irresponsive to the amount of N{, hence the resultant coverage probability stays
stable against the growth of N{.

Scenario (2): Now, let us densify Tier 1 to A} = 1072 while keeping the density of
Tier 2 as the scenario 1 equal to Ay = 1073. For the SVD system, as seen, increasing
N monotonically increases the coverage probability. From Fig. 4.6, we further measure
that increasing N{ by 8 folds increases the coverage probability by 334%. Interestingly, for
N} = 64 almost 95% coverage is guaranteed, which is impressive. For the systems of ZFBF
and MRC, results indicate that the coverage probability is unaffected by densification of Tier
1 and/or the growth of NY.

Scenario (3): We densify Tier 2 and keep the density of Tier 1 low, i.e., A} = 10~* and
A2 = 1072, When SVD system is considered, we observe from Fig. 4.6 that (similar to MRC
and ZFBF systems ) the coverage probability does not respond to the growth of Ni. On
the other hand, for small to moderate values of N{ (more specifically NI < 32) this scenario
results in the highest coverage performance. However, for moderate to large values of N{

(more specifically Nf > 32) this Scenario yields the smallest performance. Consequently,
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massively increasing the number of antennas in the tier of macro BSs while the network in
Tier 2 is immensely densified does not provide any appreciable performance value.

Scenario (4): Finally, we observe that when both tiers are densified, almost no perfor-
mance enhancement is introduced in terms of coverage probability compared to Scenario (2).
This observation holds true for all SVD, MRC, and ZFBF systems. Thus, only densifying

Tier 1 is deemed adequate.

Remark 4.5.2 (Remark 2.3.2 Cont.). We also observe from Fig. 4.6 that for sufficiently
large N} the coverage probability obtained from analysis takes values slightly larger than 1.
For this case, the average power of the fading of the attending channel is larger than 50,
which is much higher than that of the fading of the interfering channel that is around 8.
Therefore, it becomes highly probable that more than 1 BS can support the typical UE, which

makes (4.31) an upper-bound of the actual coverage probability.

Impact of N.

We now study impact of N! in Fig. 4.7. Here we set N" = 2 and N{ = 64. First consider
Scenario (1). As seen, the coverage probability monotonically increases with N&. Specifically,
increasing N by 8 folds results in 150% enhancement of the coverage probability.

Now let us densify Tier 2 (i.c., Scenario (3)). It is seen that the coverage probability
increases by increasing N&, so that increasing N! by 8 folds results in 350% enhancement of
the coverage probability.

On the other hand, when densification is practiced in Tier 1 (i.e., Scenario (2)) we observe
that the coverage probability stays stable against the growth of Ni. However, compared to
both previous scenarios, we here recognize that this scenario renders the highest coverage
probability.

In the case of Scenario (4), i.e., both tiers are densified, a slightly smaller coverage
probability to that of Scenario (2) is reported. Furthermore, the coverage is not affected by

increasing N..
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Finally, we see from Fig. 4.7 that the MRC and ZFBF systems do not respond to the
growth of V! in all the considered scenarios. In addition, in all the scenarios SVD adds huge

performance boost compared to these open-loop systems.

Analysis (solid line); Simulation (dashed line)
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Figure 4.7: Coverage probability v.s. Ni. Parameters are N™ =2, 3; = 10, 82 = 5, Ay = 5, and N{ = 64.

4.6 Conclusions

In this chapter, we studied the coverage performance of MIMO-SVD multiplexing system.
We adopted tool of random matrix theory to provide an expression for the coverage prob-
ability in a closed-form, as a function of main system parameters. Our simulation result
confirmed the accuracy of the analysis. We also observed that the MIMO-SVD full-MUX
system has huge benefits in enhancing the coverage performance against the open-loop MIMO
multiplexing systems (MRC and ZFBF). We further noticed that as the cases of MRC and
ZFBF systems, in SVD system it is important to cautiously densify the network with ac-

cordance to multiplexing gain to improve the coverage performance. In effect, we observed
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that it is not recommended to simultaneously densify the network in Tier 2 while massively

adding to the number of transmit antennas in Tier 1.
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Chapter 5

Conclusions and Future Research

Directions

In this final chapter, in Section 5.1, we summarize our results and highlight the contributions
of this thesis. Section 5.2 highlights important engineering insights we have drawn from our

investigations. In Section 5.3, we propose ideas for future research.

5.1 Conclusions

In this thesis, we have developed analytical tools for investigating the coverage performance
and ASE of MIMO multiplexing HetNets. The focus of the thesis is mainly on down-link
communications. The analysis of the thesis is based on stochastic geometry theory. We have
chiefly considered the max-SINR CA rule and focused on the scenario that the successful

reception of all of the transmitted data-streams is required for the coverage.

e In Chapter 2, we have introduced a K-tier PPP model for MIMO multiplexing Het-
Nets and formulated the coverage probability. We have derived an upper-bound and
a lower-bound on the coverage probability. Our proposed expressions of the cover-
age probability are easy-to-compute and explicitly capture impacts of various system
parameters including densities of BSs, SIR thresholds, and multiplexing gains. The
lower-bound is in closed-form and very tight. We have also proved that the lower-
bound is achievable under the full-correlation (FC) assumption. We have specified

the coverage probability for the interference-limited system. We have exploited the
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analysis to study a number of optimization problems demonstrating the relationship
between densification and multiplexing gains. We have studied the spatial throughput
of multiplexing systems when the quantized values of SINRs are available at the serving

BSs.

We have further explored the coverage probability of some other pertinent MIMO
systems, a more practical variation of the max-SINR CA rule, and non-homogenous
path-loss environments. We have also extended the analysis for the case of spectrum-
sharing D2D HetNets and demonstrated how one can adjust the noise power at the
receiver based on the D2D communication parameters. This allows a very straight-
forward and decoupled design of the operating regimes of the D2D and HetNet only

based on a number of statistical parameters.

Our analysis in this chapter have shown that 1) full correlation of ICI across data
streams slightly reduces the coverage probability; 2) increasing multiplexing gains can
reduce the coverage probability; 3) MIMO multiplexing systems are well modelled by
the interference-limited system; 4) the existence of a tradeoff between densification
and multiplexing gain: if one is to increase the multiplexing gain in a tier, it is recom-
mended to simultaneously densify the other tier in order to preserve a level of coverage
performance against diversity system; and 5) by including feedback channels with ca-
pacity up to 8 bits per frame per BS, it is possible to increase the spatial throughput

by nearly 180% over 1-bit feedback scenario.

In Chapter 3 the main focus is on MRC multiplexing systems. Our analysis incorporats
CSI inaccuracies on the coverage performance. We have derived an accurate upper-
bound on the coverage probability in closed-form. We have also developed analytical
tools facilitating thorough investigations of the impact of cross-stream SIR correlation
on the coverage performance of multi-stream systems. Full correlation among data

streams has been shown to yield a slightly smaller coverage performance. On the other
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hand, our analysis has proved that by neglecting such correlation, as commonly as-
sumed in the literature, one should expect a substantial overestimation of the coverage

probability.

Important engineering insights have been derived from optimizing the performance
along with the simulation results: 1) densification in multiplexing systems should be
practiced based on multiplexing gains; otherwise a dramatic coverage loss might be
inevitable; 2) in indoor scenarios (high path-loss exponent regimes) it is possible to
reduce the pilot signaling overhead designated for CSI estimation without imposing
noticeable coverage loss compared to the outdoor coverage performance; and 3) al-
though MRC suffers from intra-stream interference in comparison to more complex
receivers such as ZFBF, the relative coverage loss in large-array scenarios and/or for

cell edge users (e.g., small SIR thresholds) is barely noticeable.

In Chapter 4, we have derived the coverage performance of MIMO-SVD multiplexing
system. We have adopted tool of random matrix theory to provide an approximation of
the coverage probability in an easy-to-use closed-form expression as a function of main
system parameters. We have also observed that the MIMO-SVD full-MUX system
has huge benefits in enhancing the coverage performance against MRC and ZFBF
systems. Our results also shed lights on the relationship between network densification
and massive MIMO-SVD communications: 1) it is not recommended to simultaneously
densify the network in small cell tier while also adding to its number of transmit
antennas at the BSs, as it may not introduce coverage gain; 2) one can keep tier of
Macro BSs sparse and massively add to the number of antennas they are equipped
with to proportionally increase coverage performance with the number of antennas

even when the operating point is full multiplexing.
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5.2 Network-Level Insights and Recommendations

Here, we enumerate important design guidelines and engineering insights that our investi-
gations have achieved. Note that our system model includes max-SINR CA rule along with

all-coverage probability.

e It is important to correctly account for the traits of MIMO multiplexing systems in
the stage of CA. Otherwise, potentials of MIMO systems — enhancing communication
reliability and increasing data rate — may not be fully realizable. We observe that the
max-SINR CA rule can, at least to some extents, achieve this goal without sacrificing

analytical tractability.

e To correctly model MIMO multiplexing systems for a network-level analysis, one should
define coverage probability from the perspective of the communication link. This is
because, due to severe ICI in HetNets, a substantial correlation across the data steams
of a communication link is inevitable. In effect, a stream-level coverage probability

inaccurately overestimates the correct coverage performance.

e Densification in multiplexing systems should be practiced in conjunction with consid-
erations of multiplexing gains, else dramatic coverage loss might be inevitable. Fur-
thermore, when the CSIR is not accurately available at the receivers, the network

densification becomes less attractive as the inaccuracy of CSIR increases.

e Substantial coverage probability growth under the SVD configuration is attainable,
which highlights the importance of CSIT in enhancing the coverage performance of
HetNets. Further, SVD systems can harness considerable coverage gain in large-array
antenna systems. However, if the network is densified in Tier 2, increasing the number

of antennas in Tier 1 does not provide coverage enhancement.
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5.3 Future Research Directions

In this section, we propose some possible research directions that can be followed from this

thesis.

e Receive Antenna Correlation: Throughout the thesis, we assumed that receive anten-
nas are uncorrelated. This assumption substantially simplified our analysis. Never-
theless, in practice receive antennas may exhibits levels of row correlation due, for
instance, to the space limitation at the devices. As a promising direction, we believe
it is important to extend the analysis of this thesis to account for receive antenna

correlation.

e [naccurate CSIR for ZFBF and SVD Systems: This thesis commonly assumed that
accurate CSIR is available at the receiver. The only exception was the case of MRC
systems in Chapter 3. For the other two multiplexing systems (ZFBF and SVD) it is
more involved to incorporate the CSIR inaccuracies into the analysis. From a practical

standpoint it is interesting to investigate how robust is the performance gain of SVD

over ZFBF or ZFBF over MRC is when CSIR is inaccurate.

e Correlated Shadowing: Our analysis is valid when large-scale shadowing independently
affects attending signal and interfering signals. In reality however, large obstacles cause
distance-dependent correlated shadowing; see Fig. 5.1. This implies that the received
signals from interfering BSs may be correlated with the level of correlation influenced
by the size and density of large obstacles. Therefore, a substantial improvement of the

analysis is required to incorporate such practical case.

e More Practical Point Process Models to Incorporate Repulsion: Throughput the anal-
ysis of this thesis, we let BSs be located arbitrarily in the coverage space. However, in
reality BSs may demonstrate minimum separation distance, in particular across macro

BSs. Further, there might be some limitations in the installation location of small cells,
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Carrelated Shadowing

Figure 5.1: An example of correlated shadowing,.

e.g., dead zones, cell edges, and hot spots. We believe it is practically appealing to
extend the analysis of this thesis for more sophisticated yet practically accurate point

process models.

Adaptive Cross-Stream Power Allocation in MIMO SVD System: For the case of SVD
systems, we let the power be equally shared across data streams. However, in reality,
thanks to the availability of CSIT, the BS can adaptively share power across data
streams according to the strength of eigenvalues. One may also enforce zero power
allocation to the weakest channel associated with the weakest eigenvalue to preserve
the transmission power for stronger eigenvalues. For both cases it is then a promising

research direction to extend the method of Chapter 4.
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Appendix A

A Brief Introduction to Stochastic

Geometry

In this appendix, we review several important concepts of stochastic geometry that are
commonly used in the thesis. The materials are mainly reported from [40, 41, 42, 44, 104,
105].

A.1 Basic Concepts

Definition A.1.1 (Point Process (PP)). A Point process ® = {X; : ¢ € N} is a random
collection of points in R? (or any measure space), where d is the dimension. From a counting
measure viewpoint, for a set A € R? the measure #(A) = > ox,co L(Xi € A) counts the

number of points fallen in set A, the distribution of which depends on ®.

Definition A.1.2 (Poisson Point Process (PPP)). A given Point process & = {X :
i € N} is PPP if 1) for any set A € R? counting measure #(A) is a Poisson r.v. with
mean p(A) = E[#(A)], and 2) for countable disjoint sets A;, counting measures #(A;) are

independent.

Definition A.1.3 (Homogenous PPP). For Homogenous PPP there holds pu(A) = M (A),
where A is the intensity or density of the PPP, and l(A) is the size of set A, e.g., if A is a

disk with radius v in R?, then I(A) = 7r?. This implies that

P{#(A) =n} = Me-wz, n=01,.... (A1)

n!
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A.1. Basic Concepts

Theorem A.1.1 (Campbell’s Theorem). Consider function g : R? — R*, thus for PPP

set ® = {X; :i € N} with density A\ we have

E

> g(Xi)] = A / g(z)dx. (A.2)

Xied zeRd

Definition A.1.4 (Probability Generating Functional (PGFL) of PPP). Consider
function g : RY — RT, thus for PPP set ® = {X; : i € N} with density A\, PGFL of the PPP

& with respect to g is defined as

PGFL, = E ] g(x)) (A.3)
X, ed
-2 [ (-g(z))dz
— ¢ wcrd . (A.4)

Definition A.1.5 (Marked PPP and Superposition). For a homogenous PPP & =
{X; :i € N} with density \:

1. One can assign mark @Q;, which can be randomly distributed according to a given

distribution, say Rayleigh with mean 1, to each point to produce marked PPP o =

{(Xi,Qi), X; € @},

2. This implies that if one independently thin a PPP set ® with probability p (i.e., retain-
ing each point X; with probability p and collecting only the points thal are retained),

the resultant process is still homogenous PPP but with density pA.

3. Consider another homogenous PPP set ® independent of ®, with density X', the su-
perposition ®|J P’ is again a homogenous PPP, with density X + .
Definition A.1.6 (Stationary and Isotropic PPP). A PPP set ® = {X; : i € N} is
stationary if under transition the law of the process stays unaffected. Also, if rotation does
not change the law of the process, the process is known as isotropic. A PPP set which is

stationary and isotropic is motion-invariant.
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A.2. Interference/Shot Noise Process

Definition A.1.7 (Palm Distribution). For homogenous PPP ® = {X; : i € N} with
density X\, the Palm distribution represents the conditional distribution assuming there is a

point at location x.

Theorem A.1.2 (Slivnyak’s Theorem). Conditioned on having a point at x, the distri-
bution of the Point process does not change. Thus, a property of the network observed from

this point will be the same all over the set irrespective of conditioning on this point.

A.2 Interference/Shot Noise Process

Consider a homogenous PPP ® = {X, : i € N} with density . Let assign to each point X
countless marks (h;1, hio, .. .), where r.v. h;;, drawn from PDFE f(hq, he,...), is independent
across indices. For any r.v. I that is represented as I = Y ¢(Xj, (hi1, hi2,...)), one is able

X, €D
to use PGFL (A.4) to calculate the Laplace transform of I as follows

Li(t) = Ee¥ (A.5)
—t > 9(Xi,(hit,hiz,...))
= Ee X;€® (A6>
- Ed)E(h“,hﬁ,,,,) H e_tg(Xiv(hiLhiQwu)) (A?)
X;€®
= E@ H E(h“,hig’,,,)e_tg(X“(h'il7hi27-~~)) (AS)
X;ed

A [ (I=Ey .. e 9@ R1h20))de

= € zcRA . (Ag)

For the particular case that the function g(X;, (hi, hi,...)) is governed by the form

L(“Xl”)f/(hzlv hi2> .- ')7

where || .X;|| is the Euclidean norm, L(]|X;||) is the path-loss function (e.g., power-law /standard

path-loss function ||.X;||7® where @ > 2 is the path-loss exponent), and §g(h;1, hig, .. .) is a
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A.2. Interference/Shot Noise Process

function, the r.v. [ is known as interference. This r.v. is the accumulated imposed interfer-
ence from all the points X; at the origin. For this scenario a mark such as (h;1, hia, hi3) can
be encapsulating the interfering fading power gain, designated power at point X;, and MAC

status.

Example A.2.1 (Rayleigh Fading). Assume each point X; C R? is marked by single
r.v. h;, standing for the fading power gain between X; and origin of exponential PDF with
mean one. This implies that each transmitter is always transmitting (i.e., no MAC protocol)
with constant power 1 (i.e., no power control). Further, let us consider standard path-loss

function. Thus, the Laplace transform (A.9) is simplified to

0 —a
—27) [ x(1-Epe~t* “h)dz
0

—27r/\°'ox 1-—L1 —da
= e § o) (A.11)
_ €7>\C(a)t‘i7 (A12)

where C(a) = 71'(1 — a)T(1 + &) and & = 2/«

Example A.2.2 (General Fading). In Example A.2.1, let us keep all the settings intacted,
except the distribution of the mark f(h) that is now assumed to be any legitimate continuous

PDF. Thus, the Laplace transform (A.9) is
Lty = e C@ush] (A.13)

where C(a) = 7T(1 — &). It is easy to check that when the PDF of h is exponential, (A.13)

reduces to (A.12).
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Appendix B

Proofs for Chapter 2

B.1 Proof of Lemma 2.3.1

Adopting [43, Proof of Corollary 1], it is straightforward to show that the CCDF of r.v. H,

M—1
- _ fm,m . .
Fy(z)=e M= 3 X222 admits the inverse Laplace transform
m=0 .

where 6™ (s — 1) is the mth derivative of Delta Dirac function, satisfying

mdm

[ 86 1(s)ds = (-1 )

ds™ s=1

On the other hand, it is a matter of straightforward differentiation to show that

| = o s = oS,

which is then used to show that

where I'(.) is the Gamma function.

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)
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B.2. Proof of Lemma 2.3.2

B.2 Proof of Lemma 2.3.2

Due to the independency of processes ®;s, we can write

7 . —tA %CI].
P{H>AI} — E/cFH(t)e 2 gy (B.6)
0
= / £l T £y, ea) dt, (B.7)
0 jex

where L, (t) is the Laplace transform of r.v. I;, which is a shot noise process, see Appendix

A. According to Example A.2.2, we then have

—tA X Pjllzsllm Ha,

Ly,(t8) = Be 5% (BS)
= B, [] Ep, erd0 00" (B.9)
ij‘I)j
Con P =Y M

_ 2 )\J(j)[l (I+tAPjz; )" |ajde; (B.10)
— e TNAP) UM ) (B.11)

where o0
U(M;, a) = / (1= (1 4wy %)™ du;. (B.12)

0

Applying (A.2.2) to the Laplace transform of the shot noise process I;, we then obtain

cy, (tA) = o~ C(a)A; (tAP)“E[(H;)%] (B.13)
_ 6—C~’(a))\](tAPj)dF(rézX1]M)j)7 (B.14)
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noticing that for a ci-squared r.v. with M; DoF E[(H;)%] = F(F“(;M];[)J) Substituting (B.14)

into (B.7) completes the proof. By comparing (B.14) and (B.11), it can be shown that

Ce) D+ M;)
T (M)

U(M;, 0) = (B.15)

191



Appendix C

Other Contributions

e Mohammad G. Khoshkholgh and Victor C. M. Leung, “Characterizing mutual in-
formation of multi-stream MIMO-SVD systems in heterogeneous random networks,”

IEEFE Transactions on Vehicular Technology, vol. 67, no. 1, pp. 436-453, Mar. 2017.

e Mohammad G. Khoshkholgh, Kang and Victor C. M. Leung, “Analysis of multi-stream
MIMO-ZFBF communications in K-Tier HetNets under LOS/NLOS path-loss model,”

submitted to IEEE Transactions on Mobile Computing, 2017.

e Mohammad G. Khoshkholgh, Kang and Victor C. M. Leung, “Mean delay analysis of
MIMO-ZFBF multiplexing in random networks under LOS/NLOS path-loss model,”

to appear in IEEE Transactions on Wireless Communications, 2018.

e Mohammad G. Khoshkholgh and Victor C. M. Leung, “Analyzing coverage probability
of multi-tier heterogeneous networks under quantized multi-user ZF beamforming,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 4, pp. 3319-3338, April
2018.

e Mohammad G. Khoshkholgh and Victor C. M. Leung, “Adaptive CDI-CQI feedback
bit partitioning for quantized MISO-SDMA in downlink HetNets,” in Proc. of IEEE
86th Vehicular Technology Conference (VIC-Fall), 2017.

e Mohammad G. Khoshkholgh and Victor C. M. Leung, “Impact of LOS/NLOS propa-
gation on the coverage performance of multi-stream MIMO-ZFBF cellular downlink,”

in Proc. of IEEE 86th Vehicular Technology Conference (VIC-Fall), 2017.

192



Appendix C. Other Contributions

Mohammad G. Khoshkholgh and Victor C. M. Leung, “Evaluation of local transmission
delay of MIMO-ZFBF multiplexing receivers under correlated interference,” in Proc.

of IEEE PIMRC, 2017.

Mohammad G. Khoshkholgh, Victor C. M. Leung: “Effective capacity of multi-stream
MIMO-ZFBF communications in large wireless networks,” in Proc. of IEEE 86th
Vehicular Technology Conference (VI'C-Fall), 2017

Mohammad G. Khoshkholgh, Ali A. Haghighi, Victor C. M. Leung: “Evaluation of
multicast efficiency in random clustered networks under antenna selection combining,”

in Proc. of IEEE PIMRC, 2017.

Mohammad G. Khoshkholgh, Nader Mokari Yamchi, Keivan Navaie, Halim Yanikomeroglu,
Victor C. M. Leung, Kang G. Shin: “Radio resource allocation for OFDM-based dy-
namic spectrum sharing: duality gap and time averaging,” IFEE Journal on Selected

Areas in Communications, vol. 33, no. 5, pp. 848-864, 2015.

Mohammad G. Khoshkholgh, Keivan Navaie, Kang G. Shin, C.-H. Liu, Yongguang
Zhang, Victor C. M. Leung, Stein Gjessing: “On the impact of delay constraint on the

multicast outage in wireless fading environment.,” in Proc. ICC, pp. 3714-3719, 2015.

Mohammad G. Khoshkholgh, Victor C. M. Leung, Kang G. Shin: “Fast and accurate
cardinality estimation in cellular-based wireless communications,” in Proc. WCNC pp.

1119-1123, 2015.

Mohammad G. Khoshkholgh, Yan Zhang, Kang G. Shin, Victor C. M. Leung, Stein
Gjessing: “Modeling and characterization of transmission energy consumption in Machine-

to-Machine networks,” in Proc. WCNC' pp. 2073-2078, 2015.

Mohammad G. Khoshkholgh, Keivan Navaie, Kang G. Shin, Victor C. M. Leung:
“Provisioning statistical QoS for coordinated communications with limited feedback,”

in Proc. GLOBECOM, 2016.

193



Appendix C. Other Contributions

e Mohammad G. Khoshkholgh, Ali A. Haghighi, Keivan Navaie, Kang G. Shin, Victor
C. M. Leung: “Exploiting quantization uncertainty for enhancing capacity of limited-

feedback MISO Ad Hoc networks,” in Proc. GLOBECOM, 2016.

194



