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Abstract

Random nested lattice codes have played an important role in network information theory.

However, they are less accessible than conventional random codes because their achievability proofs

are often involved, even for the case of the additive white Gaussian noise (AWGN) channel. In

sharp contrast, their finite field counterparts, nested linear codes, enjoy much simpler achievability

proofs. In this thesis, we make use of an intriguing connection between nested lattice codes and

nested linear codes to handle their achievability proofs in a unified approach. As a by-product of

this unified approach, we show it’s capable of proving that the algebraic lattice codes constructed

using number field could achieve the AWGN channel capacity.
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Lay Summary

It’s usually considered as an involved problem to use the lattice codes to achieve the capacities

of noisy channel. This thesis provides a simpler and more transparent proof by using the underlying

algebraic structure of the lattice codes.
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Chapter 1

Introduction

1.1 Motivation

In 1948, Claude E. Shannon established the maximum rate at which information can be trans-

mitted reliably over a noisy channel [1]. The mathematical setup is shown in Figure 1.1, where the

channel is modeled as a probabilistic mapping from the input to the output, and the encoder and

decoder are to be designed. Under this setup, Shannon proved a remarkable “phase transition”

result: There is a fundamental rate limit—referred to as the channel capacity—under which one

can design the encoder and decoder to achieve an arbitrarily small probability of error, but above

which the probability of error is bounded away from zero (i.e., it cannot be made arbitrarily small

no matter how we design the encoder and decoder) [1].

Shannon’s channel coding theorem consists of two parts. The achievability part says that the

probability of error can be made arbitrarily small for any rate below the channel capacity. The

converse part states that the probability of error is bounded away from zero for any rate above

the capacity. While the converse part applies to any decoder, the achievability part often involves

several specific decoders, such as the maximum-likelihood (ML) decoder [2, p.37] and the joint

typicality decoder [1][3, p.199]. These decoders, together with a random coding argument where

the encoder generates independent and identically distributed (i.i.d.) codewords according to some

codeword distribution, are used to prove the existence of good codes (without explicitly constructing

them).

Practical communication systems are subject to complexity constraint. To control the compu-

tational complexity of encoding and decoding operations, codes with (algebraic) structures are used

Encoder Channel Decoder

m m̂

Figure 1.1: The model of a point-to-point communication system.
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1.2. System Setup

in practice. This motivates a study of structured codes, such as linear codes [4] and lattice codes

[5–7]. In the sequel, we formally present the system setup and then discuss the use of structured

codes in this setup.

1.2 System Setup

Here we describe Shannon’s mathematical model of a point-to-point communication system

depicted in Figure 1.1. Let X and Y denote the input and output alphabets, respectively. The

channel maps an input sequence (of length n) x = (x1, . . . , xn) to an output sequence (of length

n) y = (y1, . . . , yn) in a symbol-by-symbol manner. For example, when X and Y are finite, the

conditional probability for the channel to output y ∈ Yn given x ∈ X n is

p(y|x) =
n∏
i=1

p(yi|xi),

where p(y|x) is a conditional probability mass function (pmf). This channel model is called a dis-

crete memoryless channel (DMC). When X and Y are continuous alphabets, conditional probability

density function (pdf) f(y|x) should be used instead of p(y|x). In particular, when

f(y|x) =
1√

2πσ2
e−

(y−x)2

2σ2 ,

the corresponding channel model is called an additive white Gaussian noise (AWGN) channel.

The encoder maps a message m ∈ {1, . . . ,M} to its corresponding codeword x(m) from a

codebook C = {x(1), . . . ,x(M)}. The decoder receives an output sequence y from the channel,

and finds an “estimate” m̂ of m according to certain decoding rule (such as ML decoding and joint

typicality decoding).

We say an error occurs if m̂ 6= m and denote this error probability as

Pe(m;C) , P(m̂ 6= m),

where the randomness comes from the channel noise. We define the average error probability as

Pe(C) ,
1

M

M∑
m=1

Pe(m;C).

2



1.3. Structured Codes

A rate R is said to be achievable if there exists a sequence of codebooks C(n) of length n and size

M (n) such that M (n) ≥ 2nR and Pe
(
C(n)

)
→ 0 as n→∞. Achievable rates are often derived using

a random coding argument. For a DMC with p(y|x), we can fix a pmf p(x) and construct a random

i.i.d. ensemble in which each symbol of each codeword is generated independently according to

p(x). More specifically, we randomly and independently generate M (n) = d2nRe codewords x(m)

for m ∈ {1, . . . ,M (n)}, each according to p(x) =
∏n
i=1 p(xi). Hence, the probability of generating

a particular codebook C(n) in the ensemble is

p
(
C(n)

)
=

M(n)∏
m=1

p (x(m)) .

The key idea behind Shannon’s random coding argument is the following. Although the error

probability Pe
(
C(n)

)
for a particular codebook C(n) is often hard to evaluate, the expected error

probability averaged over all the codebooks in the ensemble is much simpler to analyze. In other

words, random coding argument is an instance of the probabilistic method [8]. Using random

coding argument, Shannon proved that random i.i.d. ensembles achieve both DMC capacity and

AWGN channel capacity under joint typicality decoding in his 1948 paper [1].

1.3 Structured Codes

Instead of random i.i.d. ensembles, we can make use of random structured ensembles (such

as random linear codes and random lattice codes) for the achievability proof. For example, Elias

used random linear codes to establish the achievable rate for the binary symmetric channel (which

is a special case of DMC) in 1955 [9]. Perhaps surprisingly, in their seminal work [10], Körner

and Marton demonstrated that random linear codes yield better achievable rates than random

i.i.d. ensembles for a multi-user source coding problem. Modern developments along this direction

include coding problems from relay networks [11–20], interference channels [21–28], distributed

source coding [29–33], and physical-layer secrecy [34–36], where random structured codes achieve

better rates than random i.i.d. codes.

The use of random structured codes is also of practical value. For instance, random linear codes

allow for computationally efficient encoding (since the encoding operation is essentially a matrix-

vector multiplication), and random lattice codes allow for lattice decoding (which enjoys lower

complexity than ML decoding and joint typicality decoding). Hence, the following two questions

3



1.3. Structured Codes

naturally arise

1. Can random linear codes achieve the DMC capacity?

2. Can random lattice codes achieve the AWGN channel capacity?

Unlike random i.i.d. codes, random structured codes are much less well understood. For

example, it is only recently that Padakandla and Pradhan have demonstrated nested linear code

ensembles achieve DMC capacity under joint typicality encoding and decoding [28, 37, 38]. In an

independent work, Miyake and Muramatsu showed that nested linear code ensembles with special

structures based on sparse matrices can also achieve DMC capacity under ML decoding [39–41].

In 2004, Erez and Zamir showed that nested lattice code ensembles achieve the AWGN channel

capacity under lattice encoding and decoding [42]. See [42–50] for a history of this long-standing

problem and Zamir’s book [51] for a survey of recent results.

Despite these exciting developments, the achievability proofs associated with random structured

codes are sometimes involved, making them much less accessible than their counterparts—random

i.i.d. codes. Very recently, several attempts have been made towards simplifying the proofs related

to random nested linear/lattice codes [52–54]. In this thesis, we will review these new developments

and simplifications, with a particular focus on presenting a unified approach based on elementary

probability, linear algebra, and number theory.

In the meanwhile, lattices used in the previous achievability proofs can rarely solve problems

related to fading channels. Algebraic number theory turns out to be a very useful mathematical

tool that enables the design of good lattice codes for fading channels. The lattice codes constructed

using algebraic number theory (known as algebraic lattice codes) have good diversity and product

distance [55]. In [56], algebraic lattice codes are used to achieve the ergodic fading channel capacity

under Gaussian shaping. Very recently, the same authors also applied algebraic lattice codes to

the Compute-and-Forward over compound fading channels [57]. However, whether the capacity is

achievable under lattice encoding and lattice decoding remains an open problem. In this thesis,

this problem is not tackled but we will take a minor step by showing the lattice codes of this kind

could achieve the AWGN channel capacity by adopting the unified approach utilized in nested

linear/lattice codes.

4



1.4. Organization of the Thesis

1.4 Organization of the Thesis

In Chapter 1, we introduce the model of the communication system and the motivation of using

nested linear/lattice codes. In Chapter 2, we present definitions related to nested linear/lattice

codes and introduce several elementary results from number theory that we use in our proofs. In

Chapter 3, we prove that nested linear codes achieve the DMC channel capacity. In Chapter 4, we

prove that nested lattice codes achieve the AWGN channel capacity. We make a particular effort in

keeping these two proofs in parallel. In Chapter 5, we extend our techniques to lattice constructed

using the algebraic number theory. We first briefly introduce a generalized version of construction

A from [58] and then use it to construct AWGN-capacity-achieving lattice codes from the number

field Z[i].

1.5 Notations

We closely follow the notations in [59]. We use the notation F,Q,R,Fq to denote a (general)

field, the rational numbers, the real numbers, and the field of order q, respectively. We use X ,Y to

denote the alphabets. We use lowercase letters x, y, ... to denote constants. We use bold lowercase

letters x,y, ... to denote constant row vectors. The i-th component of x is denoted as xi. An all-

zero vector (0, . . . , 0) with a specified dimension is denoted as 0. The i-th unit vector is denoted as

ei. We use uppercase, sans-serif font letters to denote constant matrix and codebooks, e.g., a linear

code C, and a matrix G ∈ Fk×nq . We use uppercase letters X,Y, . . . to denote random variables.

We use bold uppercase letters X,Y to denote random row vectors. The i-th component of X

is denoted as Xi. We use bold, uppercase, sans-serif font letters to denote random matrix, e.g.,

a random linear code C and a random matrix G. As for the notations for the algebraic number

theory, we use K to denote a algebraic number field and OK to denote its ring of integers. The

ideals of OK are denoted by gothic font letters as p, a. A summary of our key notations is provided

in the list of symbols at the beginning of this thesis.
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Chapter 2

Preliminaries

2.1 Nested Linear Codes

An (n, k) linear code over Fq is a k-dimensional subspace of the vector space Fnq . Such a code

can be expressed as

C = {aG : a ∈ Fkq}

for some full-rank matrix G ∈ Fk×nq (called a generator matrix of C).

A nested linear code is a pair of linear codes (Cf ,Cc) such that Cc ⊂ Cf , i.e., each codeword of

Cc is also a codeword of Cf . For convenience, Cf is called the fine code and Cc is called the coarse

code. A coset of Cc in Cf is defined as

cf + Cc = {cf + c : c ∈ Cc},

where cf is some codeword of Cf . Two cosets are either identical or disjoint [60]. The number

of (distinct) cosets of Cc in Cf is called the index of Cc in Cf and is denoted by [Cf : Cc]. By

Lagrange’s theorem [60],

[Cf : Cc] =
|Cf |
|Cc|

,

where |Cf | and |Cc| denote the cardinalities of Cf and Cc, respectively.

Suppose that a nested linear code consists of an (n, kf ) fine code Cf and an (n, kc) coarse code

Cc. Then the index [Cf : Cc] is qkf−kc , since |Cf | = qkf and |Cc| = qkc . Moreover, there exist two

generator matrices Gf ∈ Fkf×nq and Gc ∈ Fkc×nq for Cf and Cc, respectively, such that

Gf =

Gc
G′

 ,
where G′ is a matrix of size (kf − kc)× n.

6



2.2. Nested Lattice Codes

2.2 Nested Lattice Codes

A lattice is a discrete subgroup (under vector addition) of Rn. Any (full-rank) lattice Λ in Rn

can be expressed in terms of some (full-rank) n× n generator matrix GΛ ∈ Rn×n as

Λ = {aGΛ : a ∈ Zn}.

That is, Λ is the set of all integer combinations of the rows of GΛ.

A nearest neighbour quantizer QΛ : Rn → Λ associated with the lattice Λ maps a vector in Rn

to the closest lattice point

QΛ(x) = arg min
λ∈Λ
‖x− λ‖, (2.1)

where ties in (2.1) are broken systematically. The Voronoi region of Λ, denoted by V(Λ), is the set

of all vectors in Rn which are quantized to 0, i.e., V(Λ) = {x ∈ Rn : QΛ(x) = 0}. The volume of

the Voronoi region is denoted by V (Λ).

The modulo-Λ operation is ‘defined as

x mod Λ = x−QΛ(x)

A nested lattice is a pair of lattices (Λc,Λf ) such that Λc ⊂ Λf . Similar to nested linear codes,

Λf is called the fine lattice and Λc is called the coarse lattice. A coset of Λc in Λf is defined as

λf + Λc = {λf + λ : λ ∈ Λc}.

A nested lattice code L(Λc,Λf ) consists of the lattice points of Λf in the Voronoi region V(Λc),

i.e.,

L(Λc,Λf ) = Λf ∩ V(Λc).

For this reason, L(Λc,Λf ) is also known as a Voronoi codebook. The number of codewords in

L(Λc,Λf ) is

|L(Λc,Λf )| = V (Λc)

V (Λf )
.

Intuitively, each lattice point of Λf “occupies” a Voronoi region of volume V (Λf ), and so the number

of lattice points inside V(Λc) is V (Λc)/V (Λf ).

There is an alternative characterization of nested lattice codes: L(Λc,Λf ) consists of the short-

7



2.3. Nested Construction A

Figure 2.1: An example of nested lattices

est vectors of distinct cosets. To see this, for each coset λf + Λc, let us take a particular coset

representative λf − QΛc(λf ). First, λf − QΛc(λf ) is the shortest vector in the coset λf + Λc by

the definition of QΛc(·). Second, λf −QΛc(λf ) is in the Voronoi region V(Λc) of Λc.

In Fig. 2.2, we present an example of nested lattices. Black (grey) points belong to the fine

(coarse) lattice. The small (large) hexagon area is the Voronoi region of the fine (coarse) lattice.

The lattice points inside the large hexagon form the Voronoi codebook (the ties on the boundaries

are broken systematically). There are 16 lattice points in the codebook due to the tie breaking.

Also note that the volume of the large hexagon is 16 times of the volume of the small one.

2.3 Nested Construction A

A nested lattice code can be constructed from a nested linear code. Consider two linear codes

C1 and C2 over the field Zp = {0, 1, . . . , p − 1}, where each code Ci is determined by a (full-rank)

ki × n generator matrix Gi for i = 1, 2. Suppose that the generator matrices are related as

G1 =

G2

G′

 , (2.2)

where G′ is a matrix of size (k1− k2)×n. Clearly, we have C2 ⊂ C1 ⊂ Znp . By “lifting” these linear

codes to Zn via Construction A, we obtain two lattices

Λ1 = {x ∈ Zn : x mod p ∈ C1}

8



2.3. Nested Construction A

and

Λ2 = {x ∈ Zn : x mod p ∈ C2}

with Λ2 ⊂ Λ1 ⊂ Zn.

Finally, we apply some positive scaling factor γ to obtain a fine lattice

Λf = γΛ1 , {γλ : λ ∈ Λ1}

and a coarse lattice

Λc = γΛ2 , {γλ : λ ∈ Λ2}

with Λc ⊂ Λf ⊂ γZn. The volumes of the Voronoi regions of Λf and Λc are V (Λf ) = γnpn−k1 and

V (Λc) = γnpn−k2 , respectively.

To facilitate encoding and decoding operations, we “label” each (discrete) point of γZn as

follows. Let ϕ : γZn → Znp be a map from points in γZn to vectors in Znp given by

ϕ(x) =
1

γ
x mod p.

Clearly, a point x is in Λf (or Λc, respectively) if and only if its label ϕ(x) is a codeword in C1 (or

C2, respectively). Moreover, the map ϕ is homomorphic, i.e.,

∀x,y ∈ γZn, ϕ(x+ y) = ϕ(x) + ϕ(y).

A visualization of ϕ(·) when p = 5 is provided in Fig. 2.2. The labels of the points in γZn can be

obtained by periodically shifting the labels in the rectangle.

It is also convenient to define an inverse operation that maps a vector in Znp to a point in γZn.

This can be done through an embedding map ϕ̃ : Znp → γZn: for any c in Znp , we choose a point x

in γZn of the shortest Euclidean norm such that ϕ(x) = c. Clearly, such a point x = ϕ̃(c) must

live in the grid γZn ∩ [−γp
2 ,

γp
2 ]n. Reader can view this from a more algebraic perspective. The

kernel kerϕ is a subgroup of Znp and thus is also a lattice. All the points that will be mapped to c

by ϕ belong to ϕ̃(c) + kerϕ. The point of the shortest Euclidean norm among ϕ̃(c) + kerϕ must

belong to the Voronoi region of kerϕ, which is exactly [−γp
2 ,

γp
2 ]n. For convenience, we denote kerϕ

as Λp.

In fact, the embedding map ϕ̃ can be viewed as a Euclidean embedding for the vector space Znp ,

9



2.4. Useful Lemmas
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Figure 2.2: A visualization of ϕ(·) when p = 5.

which connects the nested lattice codes with the underlying nested linear codes.

2.4 Useful Lemmas

In this section, we present some useful lemmas related to nested linear/lattice codes. Readers

who are not familiar with entropy and typical sequence are also encouraged to read Appendix A

and Appendix B.

Let G be a random matrix uniform over Zk×np , i.e., each entry of G is drawn uniformly and

independently from Zp.

Lemma 1(Uniformity): For any fixed non-zero vector a, aG is uniform over Znp .

Proof. We leave it as an exercise to our readers.

Lemma 2(Linear independence⇒ statistical independence): For any linearly independent vectors

a and b, the random vectors aG and bG are statistically independent.

Proof. Since a and b are linearly independent, there exists a full rank matrix A ∈ Zk×np whose

first row vector is a, and the second row vector is b, i.e., e1A = a, e2A = b. For any fixed vectors

c1, c2 ∈ Zkp, e1AG = aG = c1 and e2AG = bG = c2, if and only if the first and second row vector

of AG are c1 and c2. Let Sc1,c2 = {B ∈ Zk×np | e1B = c1, e2B = c2}, then |Sc1,c2 | = p(k−2)n. Hence

P(aG = c1, bG = c2) =
∑

B∈Sc1,c2

P(G = A−1B) =
1

p2n

10



2.4. Useful Lemmas

Hence, P(aG = c1, bG = c2) = P(aG = c1)P(bG = c2), which means aG and bG are

statistically independent.

Lemma 3(Crypto lemma): Let Λ be a lattice. Let D be a random variable uniformly distributed

over V(Λ). Let T be a random variable over V(Λ), and is independent from D, then X = D +

T mod Λ is uniformly distributed over V(Λ), and is independent from T .

Remark 1: This lemma is a discrete parallel of [42, Lemma 1].

Proof. Note that P(X = x | T = t) = P(D = [x − t] mod Λ | T = t). By the fact that D and

T are independent, we obtain P(X = x | T = t) = P(D = [x − t] mod Λ). Since D is uniform

over V(Λ), P(X = x | T = t) is constant for all possible combinations of x and t. Hence, X is

uniformly distributed over V(Λ), and is independent from T .

Let B (s, r) denote a ball of radius r > 0 centered at the point s ∈ Rn, i.e., B (s, r) is the set

{x ∈ Rn : ‖x− s‖ ≤ r}. For convenience, we denote B (0, r) as B (r). The volume of B(r) is given

by rnVn, where Vn is the volume of the unit-radius ball.

Lemma 4(Lattice points inside a ball [58, Lemma 4]): Let Λ ∈ Rn. Let l = supx∈V(Λ) ‖x‖, for

any r > l, we have

(r − l)n Vn
V (Λ)

≤ |B (r) ∩ Λ| ≤ (r + l)n
Vn
V (Λ)

Specifically, we can choose Λ as Zn. For Zn, we have l =
√
n

2 and V(Zn) = 1. We then obtain

the following lemma

Lemma 5(Integer points inside a ball [53, Lemma 1]): For any s ∈ Rn, the number of points of

Zn inside s+ B(r) can be bounded as

Vn

(
max

{
r −
√
n

2
, 0

})n
≤ |Zn ∩ B (s, r) | ≤ Vn

(
r +

√
n

2

)n
.

Lemma 6(Bertrand’s postulate [61]): For any integer n that’s larger than 3, there exists a prime

p such that n < p < 2n− 2 and p mod 4 = 1.

11



Chapter 3

Achievable Rate of Nested Linear

Codes

We begin with the case of a pre-determined nested linear code, to get readers familiar with the

encoding and decoding methods. We then introduce a random ensemble of nested linear codes. We

will show the average error probability of this ensemble will vanish as the length of codewords goes

to infinity and the achievable rate is close to the desired channel capacity. By the above facts, it’s

then clear that we find some pre-determined codebooks that achieve the channel capacity.

3.1 The Case of a Pre-Determined Nested Linear Code

Codebook generation. Given a pair of linear codes (Cf ,Cc) and a dither vector d ∈ Fnq , we

construct a codebook whose codewords are shifted cosets of the form {cf +d+Cc : cf ∈ Cf}. The

number of (distinct) codewords is [Cf : Cc], which doesn’t depend on the dither vector d. These

codewords can be expressed using generator matrices as follows.

Let Gf ∈ Fkf×nq and Gc ∈ Fkc×nq be two generator matrices for Cf and Cc, respectively, such

that

Gf =

Gc
G′

 .
Then all the codewords (i.e., the shifted cosets) can be expressed as

{
mG′ + d+ Cc : m ∈ Fkf−kcq

}
.

Note that there is a one-to-one correspondence between the vectors in Fkf−kcq and the shifted cosets

of Cc. Hence, m can be viewed as the “index” of the shifted coset mG′+d+Cc, and the codebook

contains qkf−kc (distinct) codewords.

Encoding. To send a message vectorm ∈ Fkf−kcq , the encoder first finds an “information-carrying”

12



3.1. The Case of a Pre-Determined Nested Linear Code

shifted coset mG′ + d+ Cc. We also define the following typical set

T (n)
ε′ (X) = {x : |π(x | x)− pX(x)| ≤ εpX(x) for all x ∈ X},

where the distribution pX(·) can be arbitrary distribution. However, in order to achieve the channel

capacity, we will choose it as the distribution that maximize the mutual information between the

channel input and channel output. The encoder then checks the intersection

mG′ + d+ Cc ∩ T (n)
ε′ (X).

If the intersection is nonempty, the encoder transmits a vector x ∈ Fnq chosen uniformly at random

from the intersection. Otherwise, the encoder declares a failure and then transmits a vector x ∈ Fnq
chosen uniformly at random from the shifted coset mG′ + d+ Cc (which is not in T (n)

ε′ (X)).

Decoding. Upon receiving y ∈ Fnq , the decoder searches for a unique index m̂ ∈ Fkf−kcq such that

the corresponding shifted coset has a non-empty intersection with T (n)
ε (X | y). The set T (n)

ε (X | y)

consists of all the good codewords that are close to y and is defined as

T (n)
ε (X | y) = {x : (x,y) ∈ T (n)

ε (X,Y )},

where T (n)
ε (X,Y ) is the typical set defined with respect to the joint distribution pX,Y (·, ·) which is

induced by the input distribution pX(·) and the channel pY |X(·). In other words, we will find m̂

such that

m̂G′ + d+ Cc ∩ T (n)
ε (X | y) 6= ∅.

If there is none or more than one such vector, the decoder declares a failure.

Analysis. For any given message vector m, we say the decoding is successful if the unique index

m̂ = m. This occurs if all of the following events happen

• mG′ +D + Cc ∩ T (n)
ε′ (X) 6= ∅;

• (x,y) ∈ T (n)
ε (X,Y ) (which implies that mG′ + d+ Cc ∩ T (n)

ε (X | y) 6= ∅);

• ∀m′ 6= m : m′G′ + d+ Cc ∩ T (n)
ε (X | y) = ∅.

13



3.2. The Case of a Random Nested Linear Code

3.2 The Case of a Random Nested Linear Code

We then proceed to the case of a random nested linear code, which allows us to apply the

probabilistic method.

Random codebook generation. Randomly generate a matrix Gf ∈ Fkf×nq and a vector D ∈ Fnq
where each entry of Gf and D is drawn independently and uniformly from Fq. As before, let

Gf =

Gc

G′

 .
If Gf is full rank, then Gc is also full rank and, in particular, they are valid generator matrices. In

this case, the codebook consists of qkf−kc shifted cosets of the form

{
mG′ +D + Cc : m ∈ Fkf−kcq

}
.

If Gf is not full rank, we declare a codebook failure.

Encoding. The same as before.

Decoding. The same as before.

Analysis of the probability of error. For any given message vector m, a successful decoding

occurs upon receiving Y if all of the following events happen

• Gf is full rank;

• mG′ +D + Cc ∩ T (n)
ε′ (X) 6= ∅;

• (X,Y ) ∈ T (n)
ε (X,Y );

• ∀m′ 6= m, l : (m′G′ +D + lGc,Y ) /∈ T (n)
ε (X,Y ).

To conduct the error analysis, we define the following events

• E1 = {Gf is not full rank};

• E2(m) = {mG′ +D + Cc ∩ T (n)
ε′ (X) = ∅};

• E3(m) = {(X,Y ) /∈ T (n)
ε (X,Y )};

• E4(m) = {∃m′ 6= m, l : (m′G′ +D + lGc,Y ) ∈ T (n)
ε (X,Y )}.

14



3.2. The Case of a Random Nested Linear Code

Let Pe(m) be the error probability for message m. Then, by the union bound, we have

Pe(m) ≤ P(E1) + P(E2(m)) + P(E3(m)) + P(E4(m)).

3.2.1 Analysis of the Codebook Failure

It is a well known result that

P(E1) = 1−
kf−1∏
i=0

(
1− qi

qn

)
.

Moreover, it is easy to show that

P(E1) ≤ 1

q− 1

1

qn−kf
.

Hence, P(E1)→ 0 as q→∞ or (n− kf )→∞.

3.2.2 Analysis of the Encoding Failure

Bounding P(E2(m))

Note that E2(m) is equivalent to

∑
l∈Fkcq

I
(
mG′ +D + lGc ∈ T (n)

ε′ (X)
)

= 0.

Since mG′ +D + lGc is uniformly distributed over Fnq , we have

E
(
I
(
mG′ +D + lGc ∈ T (n)

ε′ (X)
))

=
|T (n)
ε′ (X)|
qn

and

Var
(
I
(
mG′ +D + lGc ∈ T (n)

ε′ (X)
))

=
|T (n)
ε′ (X)|
qn

(
1− |T

(n)
ε′ (X)|
qn

)
.

Note that for any l′ 6= l, mG′ +D + l′Gc and mG′ +D + lGc are independent. Hence,

E

∑
l∈Fkcq

I
(
mG′ +D + lGc ∈ T (n)

ε′ (X)
) = qkc

|T (n)
ε′ (X)|
qn

15



3.2. The Case of a Random Nested Linear Code

and

Var

∑
l∈Fkcq

I
(
mG′ +D + lGc ∈ T (n)

ε′ (X)
) =

|T (n)
ε′ (X)|
qn

qkc

(
1− |T

(n)
ε′ (X)|
qn

)
.

Finally, by Chebyshev’s inequality, we have

P(E2(m)) = P

∑
l∈Fkcq

I
(
mG′ +D + lGc ∈ T (n)

ε′ (X)
)

= 0


≤

Var
(∑

l∈Fkcq
I
(
mG′ +D + lGc ∈ T (n)

ε′ (X)
))

E
(∑

l∈Fkcq
I
(
mG′ +D + lGc ∈ T (n)

ε′ (X)
))2

≤ qn−kc

|T (n)
ε′ (X)|

.

Bounding P(E3(m))

By the law of total probability, we have

P
(

(X,Y ) /∈ T (n)
ε (X,Y )

)
= P(X ∈ T (n)

ε′ (X))P((X,Y ) /∈ T (n)
ε (X,Y )|X ∈ T (n)

ε′ (X))

+ P(X /∈ T (n)
ε′ (X))P((X,Y ) /∈ T (n)

ε (X,Y )|X /∈ T (n)
ε′ (X))

≤ P((X,Y ) /∈ T (n)
ε (X,Y )|X ∈ T (n)

ε′ (X)) + P(X /∈ T (n)
ε′ (X)).

By the conditional typicality lemma [59, p. 27], P((X,Y ) /∈ T (n)
ε (X,Y )|X ∈ T (n)

ε′ (X)) → 0, as

n → ∞. Finally, note that X /∈ T (n)
ε′ (X) is equivalent to the event E2(m). Hence, we obtain

P
(

(X,Y ) /∈ T (n)
ε (X,Y )

)
→ 0, as long as P(E2(m))→ 0.

3.2.3 Analysis of the Decoding Failure

By the union of events bound, we have

P(E4(m)) ≤
∑
m′ 6=m

∑
l

P((m′G′ +D + lGc,Y ) ∈ T (n)
ε (X,Y )).

16



3.3. Analysis of the Error Probability

For each term, by the law of total probability, we have

P((m′G′+D+lGc,Y ) ∈ T (n)
ε (X,Y )) =

∑
y

P(Y = y)P
(
m′G′ +D + lGc ∈ T (n)

ε (X | y)
∣∣∣Y = y

)
.

Note that, for any m′ 6= m and any l, the random vector m′G′ +D + lGc is independent of the

random shifted coset mG′ + D + Cc. This implies that m′G′ + D + lGc is independent of Y .

Hence,

P(m′G′ +D + lGc ∈ T (n)
ε (X | y)|Y = y) = P(m′G′ +D + lGc ∈ T (n)

ε (X | y)).

Since P(m′G′ +D + lGc ∈ T (n)
ε (X | y)) = |T (n)

ε (X|y)|
qn , we have

P(E4(m) | Y = y) ≤
(
qkf−kc − 1

)
qkc
|T (n)
ε (X | y)|

qn

< qkf
|T (n)
ε (X | y)|

qn
.

Hence, we have

P(E4(m)) ≤
∑
y

P(Y = y)
|T (n)
ε (X | y)|
qn−kf

.

3.3 Analysis of the Error Probability

Our goal is to select kc and kf (as functions of n) such that

n− kf →∞ (3.1)

qn−kc

|T (n)
ε′ (X)|

→ 0 (3.2)

∀y :
|T (n)
ε (X | y)|
qn−kf

→ 0. (3.3)

We show in Appendix B that

|T (n)
ε′ (X)| ≥ (1− ε′)2n(1−ε′)H(X),

∀y ∈ Yn : |T (n)
ε (X | y)| ≤ 2n(1+ε)H(X|Y ).
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3.3. Analysis of the Error Probability

Let δ > 0 be some constant. We choose qn−kc = 2n(1−ε′−δ)H(X) and qn−kf = 2n(1+ε+δ)H(X|Y ).

More precisely, we choose

kc =

⌈
n− (1− ε′ − δ)H(X)

log2 q
n

⌉
and

kf =

⌊
n− (1 + ε+ δ)H(X|Y )

log2 q
n

⌋
.

We can easily verify that conditions (3.1), (3.2) are satisfied. This implies the average error

probability of the random ensemble we use is vanishing. In other words, there exists a non-zero

portion of pre-determined codebooks in our ensemble that have vanishing error probability.

Finally, we calculate the achievable rate

1

n
log2 q

kf−kc ≥ I(X;Y )− (ε′ + δ)H(X)− (ε+ δ)H(X|Y )− 2
log2 q

n
.

Since ε, ε′ and δ can be arbitrarily small, any rate below I(X;Y ) is achievable as n → ∞. Since

we can choose the distribution pX(·) to be the one that maximizes I(X;Y ), the achievable rate

then can be arbitrarily close to the channel capacity. Hence, we claim there exist pre-determined

codebooks in our ensemble that achieve the channel capacity.
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Chapter 4

Achievable Rate of Nested Lattice

Codes

Similar to the case of nested linear codes, we begin with the case of a pre-determined nested

linear code, to get readers familiar with the encoding and decoding methods. We then introduce

a random ensemble of nested lattice codes. We will show the average error probability of this

ensemble will vanish as the length of codewords goes to infinity and the achievable rate is close to

the desired channel capacity. By the above facts, it’s then clear that we find some pre-determined

codebooks that achieve the channel capacity.

4.1 The Case of a Pre-Determined Nested Lattice Code

Codebook generation. Given a pair of lattice codes (Λf ,Λc) and a dither vector u ∈ Rn, we

construct a codebook whose codewords are shifted cosets of the form {λf +u+ Λc : λf ∈ Λc}. The

number of codewords is V (Λc)/V (Λf ), which doesn’t depend on the dither vector u.

Suppose that the pair (Λf ,Λc) is constructed via Nested Construction A using generating ma-

trices (Gf ,Gc) and a scaling factor γ. Then all the codewords (i.e., the shifted cosets) can be

expressed as {
ϕ̃(mG′) + u+ Λc : m ∈ Fkf−kcp

}
.

Note that there is a one-to-one correspondence between the vectors in Fkf−kcp and the shifted cosets

of Λc. Hence, m can be viewed as the “index” of the shifted coset ϕ̃(mG′) + u + Λc, and the

codebook contains pkf−kc (distinct) codewords.

Encoding. To send a message vectorm ∈ Fkf−kcp , the encoder first finds an “information-carrying”

shifted coset ϕ̃(mG′) +u+ Λc. The encoder then transmits a shortest vector x ∈ Rn in the shifted

coset, i.e.,

x = ϕ̃(mG′) + u mod Λc.

19



4.2. The Case of a Random Nested Lattice Code

Decoding. The channel considered here is the AWGN channel, so instead of using typicality

decoding as we did in last chapter, we will follow [62] to use lattice decoding. In other words,

upon receiving y ∈ Rn, the decoder searches for a unique index m̂ ∈ Fkf−kcp such that the distance

between its corresponding shifted coset ϕ̃(m̂G′) + u + Λc and αy is the shortest among all the

shifted cosets, where α = P
P+N is some scaling factor (whose role will be explained later). P and

N are the average power of the codeword and the noise per dimension, respectively. That is,

m̂ = arg min
m

d
(
ϕ̃(mG′) + u+ Λc, αy

)
.

In fact, one can easily show that the unique shifted coset with the shortest distance is given by

QΛf (αy − u) + u+ Λc.

Analysis. For any given message vector m, the average power constraint is satisfied if

• ‖x‖2 ≤ nP .

The decoding is successful if

• ∀m′ 6= m : d (ϕ̃(m′G′) + u+ Λc, αy) > d (ϕ̃(mG′) + u+ Λc, αy).

In Fig. 4.1, we provide a counter example in which the signal is decoded wrongly. The transmitted

vector is x, which is then “shifted” by the Gaussian noise z to y. The received signal y is scaled

by α to αy. The decoder will find the nearest coset to αy. In this example, the nearest coset to αy

is the coset containing x̂ (the star points) instead of the one containing x (the rectangle points).

Hence, a decoding failure happens.

4.2 The Case of a Random Nested Lattice Code

We then proceed to the case of a random nested lattice code, which also allows us to apply

probabilistic methods.

Random codebook generation. Randomly generate a matrix Gf ∈ Zkf×np and a vector U ∈ Znp
where each entry of Gf and U is drawn independently and uniformly over Zp. As before, let

Gf =

Gc

G′

 ,
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4.2. The Case of a Random Nested Lattice Code

Figure 4.1: An example of decoding failure

and if Gf is full rank, so is Gc. In this case, the codebook consists of pkf−kc shifted cosets of the

form {
ϕ̃(mG′) + ϕ̃(U) + Λc : m ∈ Fkf−kcp

}
.

If Gf is not full rank, we declare a codebook failure.

Encoding. The same as before.

Decoding. The same as before.

4.2.1 Analysis of the Codebook Failure.

Let E1 = {Gf is not full rank}. As before

P(E1) ≤ 1

p− 1

1

pn−kf
.

Hence, P(E1)→ 0, as p→∞ or (n− kf )→∞.

4.2.2 Analysis of the Encoding Failure.

Recall that ‖X‖2 ≤ nP if and only if ϕ̃(mG′) + ϕ̃(U) + Λc ∩ B
(√

nP
)
6= ∅, where B

(√
nP
)

is the ball centred at the origin with radius
√
nP . Let

E2(m) = {ϕ̃(mG′) + ϕ̃(U) + Λc ∩ B
(√

nP
)

= ∅}.

We will show that P(E2(m))→ 0 under certain condition.
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4.2. The Case of a Random Nested Lattice Code

Note that when B
(√

nP
)
⊂ V(Λp), where Λp = kerϕ = (pZ)n and V(Λp) = [−γp

2 ,
γp
2 ]n, E2(m)

is equivalent to ∑
l∈Zkcp

I
(
ϕ̃(mG′ +U + lGc) ∈ B

(√
nP
))

= 0,

because the set {ϕ̃ (mG′ +U + lGc) : l ∈ Zkcp } generates all the points of ϕ̃(mG′) + ϕ̃(U) + Λc

inside V(Λp).

Since ϕ̃ (mG′ +U + lGc) is uniformly distributed over the grid γZn ∩ V(Λp) and there are

exactly pn different points inside V(Λp), we have

E
(
I
(
ϕ̃(mG′ +U + lGc) ∈ B

(√
nP
)))

=
|γZn ∩ B

(√
nP
)
|

|γZn ∩ V(Λp)| =
|γZn ∩ B

(√
nP
)
|

pn

and

Var
(
I
(
ϕ̃(mG′ +U + lGc) ∈ B

(√
nP
)))

=
|γZn ∩ B

(√
nP
)
|

pn

1−
|γZn ∩ B

(√
nP
)
|

pn

 .

Similar to the case of nested linear codes, we have

P(E2(m)) ≤ pn−kc

|γZn ∩ B
(√

nP
)
|
. (4.1)

4.2.3 Analysis of the Decoding Failure.

Recall that a successful decoding occurs upon receiving Y if

∀m′ 6= m : d
(
ϕ̃(m′G′) + ϕ̃(U) + Λc, αY

)
> d

(
ϕ̃(mG′) + ϕ̃(U) + Λc, αY

)
.

Let

E3(m) = {∃m′ 6= m : d
(
ϕ̃(m′G′) + ϕ̃(U) + Λc, αY

)
≤ d

(
ϕ̃(mG′) + ϕ̃(U) + Λc, αY

)
}.

Recall that X = ϕ̃(mG′) + ϕ̃(U) mod Λc, and, in particular, X ∈ ϕ̃(mG′) + ϕ̃(U) + Λc.

Hence,

d
(
ϕ̃(mG′) + ϕ̃(U) + Λc, αY

)
≤ ‖X − αY ‖ = ‖(α− 1)X + αZ‖.
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4.2. The Case of a Random Nested Lattice Code

Let W = (α− 1)X + αZ be the “effective noise.” By the Total Probability Theorem, we have

P(E3(m)|Gc = Gc)

≤ P(W /∈ B (re) |Gc = Gc) + P(W ∈ B (re) |Gc = Gc)P(E3(m)|W ∈ B (re) ,Gc = Gc),

where B (re) is the “typical ball” for the effective noise W with radius re. It will be specified in

Sec 4.2.3. It follows that

P(E3(m)) ≤ P(W /∈ B (re)) +
∑
Gc

P(W ∈ B (re) ,Gc = Gc)P(E3(m)|W ∈ B (re) ,Gc = Gc).

Bounding P(W /∈ B (re))

Let ε be a small positive constant. We set α = P
P+N and set the radius

re =
√

(1 + ε)n((α− 1)2P + α2N)

=

√
(1 + ε)

nPN

P +N
.

Let

EX = {‖X‖ >
√
nP},

EZ = {‖Z‖ >
√

(1 + ε/2)nN ],

EP = {‖XZT ‖ > n
1
4

√
nPN}.

It’s clear that when n is large, EcX ∩ EcZ ∩ EcP implies ‖W ‖ ≤ re. Hence,

P(W /∈ B (re)) ≤ P(EX) + P(EZ) + P(EP ).

Note that EX is the same event as E2, which is bounded via (4.1). Since Z ∼ N (0, NIn), we obtain

P(EZ) ≤ 8ε2n−1 by Chebyshev’s inequality. The probability of EP can be bouned as

P(EP ) ≤ P(EP | ‖X‖ ≤
√
nP ) + P(‖X‖ >

√
nP )

= P(‖XZT ‖2 > n
3
2PN | ‖X‖ ≤

√
nP ) + P(E2)
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4.2. The Case of a Random Nested Lattice Code

≤ E(‖XZT ‖2 | ‖X‖ ≤
√
nP )

n
3
2PN

+ P(E2)

where the last inequality follows from the Markov’s inequality. Note that for any given X = x with

‖x‖ ≤
√
nP , xZT ∼ N (0, ‖x‖2N), we then obtain E(‖XZT ‖2 | ‖X‖ ≤

√
nP ) ≤ nPN . Hence,

P(EP ) ≤ n− 1
2 + P(E2).

Therefore,

P(W /∈ B (re)) ≤ 8ε2n−1 + n−
1
2 + 2× pn−kc

|γZn ∩ B
(√

nP
)
|
.

Bounding P(E3(m) |W ∈ B (re) ,Gc = Gc)

Note that

P(E3(m) |W ∈ B (re) ,Gc = Gc)

≤ P
(
∃m′ 6= m : d

(
ϕ̃(m′G′) + ϕ̃(U) + Λc, αY

)
≤ ‖W ‖ |W ∈ B (re) ,Gc = Gc

)
≤
∑
m′ 6=m

P
(
d
(
ϕ̃(m′G′) + ϕ̃(U) + Λc, αY

)
≤ ‖W ‖ |W ∈ B (re) ,Gc = Gc

)
.

Note also that

d
(
ϕ̃(m′G′) + ϕ̃(U) + Λc, αY

)
= d

(
ϕ̃(m′G′) + ϕ̃(U) + Λc,X + (α− 1)X + αZ

)
= d

(
ϕ̃(m′G′) + ϕ̃(U) + Λc,X +W

)
= d

(
ϕ̃(m′G′)− ϕ̃(mG′) + Λc,W

)
.

Hence,

P(E3(m)|W ∈ B (re) ,Gc = Gc)

≤
∑
m′ 6=m

P
(
d
(
ϕ̃(m′G′)− ϕ̃(mG′) + Λc,W

)
≤ ‖W ‖ |W ∈ B (re) ,Gc = Gc

)
≤
∑
m′ 6=m

P
(
d
(
ϕ̃(m′G′)− ϕ̃(mG′) + Λc,W

)
≤ re |W ∈ B (re) ,Gc = Gc

)
.
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4.2. The Case of a Random Nested Lattice Code

Next, we observe that G′ and W = (α − 1)X + αZ are conditionally independent when

given Gc = Gc. To see this, note that conditioned on Gc = Gc, X is uniformly distributed over

γZn ∩ V(Λc) and is independent of G′ by Lemma 3. By the total probability theorem, we have

P
(
d
(
ϕ̃(m′G′)− ϕ̃(mG′) + Λc,W

)
≤ re|W ∈ B (re) ,Gc = Gc

)
=

∫
w∈B(re)

f̃W |Gc(w | Gc)P
(
d
(
ϕ̃(m′G′)− ϕ̃(mG′) + Λc,w

)
≤ re|Gc = Gc

)
dw

where

f̃W |Gc(w | Gc) =
fW |Gc(w | Gc)

P(W ∈ B (re) | Gc = Gc)
.

It turns out that the term P (d (ϕ̃(m′G′)− ϕ̃(mG′) + Λc, w) ≤ re|Gc = Gc) can be bounded

following Loeliger’s approach [48].

Since d (ϕ̃(m′G′)− ϕ̃(mG′) + Λc,w) ≤ re implies

[ϕ̃(m′G′)− ϕ̃(mG′)] mod Λc ∈ [w + B (re)] mod Λc,

we have

P
(
d
(
ϕ̃(m′G′)− ϕ̃(mG′) + Λc,w

)
≤ re|Gc = Gc

)
≤ P

(
[ϕ̃(m′G′)− ϕ̃(mG′)] mod Λc ∈ [w + B (re)] mod Λc | Gc = Gc

)
.

On the other hand, ([ϕ̃(m′G′)− ϕ̃(mG′)] mod Λc) is uniformly distributed over γZn ∩ V(Λc),

and so

P
(
[ϕ̃(m′G′)− ϕ̃(mG′)] mod Λc ∈ ([w + B (re)] mod Λc)|Gc = Gc

)
=
|γZn ∩ V(Λc) ∩ (w + B (re))|

pn−kc

≤ |γZ
n ∩ (w + B (re))|

pn−kc
.

Therefore,

P
(
d
(
ϕ̃(m′G′) + ϕ̃(U) + Λc, αY

)
≤ ‖W ‖ |W ∈ B (re) ,Gc = Gc

)
≤ max
w∈B(re)

|γZn ∩ (w + B (re))|
pn−kc
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4.3. Analysis of the Error Probability

and

P(E3(m)|W ∈ B (re) ,Gc = Gc) ≤ pkf−kc max
w∈B(re)

|γZn ∩ (w + B (re))|
pn−kc

≤ max
w∈B(re)

|γZn ∩ (w + B (re))|
pn−kf

.

4.3 Analysis of the Error Probability

By the union bound, the error probability Pe of the coding scheme is bounded by

P ≤ P(E1) + P(E2) + Pe(E3), (4.2)

because the decoding is successful if Gc is full rank, ‖X‖2 ≤ nP , and the shifted coset containing

ϕ̃(mG′) + ϕ̃(U) is the closest coset to αY . In Chapter 4.3.2, we will show that, for any ε > 0, we

can select parameters kf , kc, p, γ as functions of n such that a rate of

R =
1

2
log2

(
1 + P/N

1 + ε

)

is achievable with error probability Pe → 0 as n→∞.

However, the above result doesn’t imply our random ensemble achieves the AWGN capacity,

because the power constraint is not always satisfied. In fact, the power constraint is violated with

probability P(E2). To address this issue, we introduce a spherical shaping strategy, which is in

parallel with the minor change introduced in [59, p.47] for proving channel coding theorem with

input cost constraint.

4.3.1 Spherical Shaping

We apply a “truncated” spherical shaping to X as follows

XS =


X, if ‖X‖ ≤ nP,

0, otherwise.

Clearly, the power constraint is always satisfied for the new coding scheme. Note that the error

probability for the new coding scheme is still bounded by P(E1) + P(E2) + P(E3), because the

spherical shaping converts an encoding failure to a decoding failure.
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4.3. Analysis of the Error Probability

4.3.2 The Selection of Parameters.

To complete the proof that our random ensemble achieves the AWGN capacity with lattice

encoding and decoding, we carefully select the values of kf , kc, p, γ so that Pe goes to zero and the

rate of our coding scheme goes to the AWGN capacity as n goes to infinity.

We have already bounded the error probability as

Pe ≤ P(E1) + P(E2) + P(E3)

≤ 1

p− 1

1

pn−kf
+ 8ε2n−1 + n−

1
2 + 3× pn−kc

|γZn ∩ B
(√

nP
)
|

+ max
w∈B(re)

|γZn ∩ (w + B (re))|
pn−kf

.

Using Lemma 5, we obtain

Pe ≤
1

p− 1

1

pn−kf
+ 8ε2n−1 + n−

1
2 + 3× pn−kc(

max
{√

nP
γ −

√
n

2 , 0
})n

Vn
+

(
re
γ +

√
n

2

)n
Vn

pn−kf
.

Now our goal is to select p, γ, kc and kf (as functions of n) such that

1

p− 1

1

pn−kf
→ 0, (4.3)

pn−kc(
max

{√
nP
γ −

√
n

2 , 0
})n

Vn
→ 0, (4.4)

(
re
γ +

√
n

2

)n
Vn

pn−kf
→ 0, (4.5)

under the constraint B
(√

nP
)
⊂ V(Λp). Recall that V(Λp) = [−γp

2 ,
γp
2 ]n which is equivalent to

γp ≥ 2
√
nP . (4.6)

Let η > 0 and δ ∈ (0, 1) be two constants. Then let γ = n−
1
2
η. Let p be the smallest prime

larger than n1+η which statisfies p mod 4 = 1. By Lemma 6, we can write p = µn1+η where µ is a

bounded constant. We then assign

kc =

n
1− log2(

√
Pn

1
2
η − 1

2) + 1
2 log2((1− δ)nV

2
n
n )

log2 p

 ,
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4.3. Analysis of the Error Probability

and

kf =

n
1−

log2(
√

1
nr

2
en

1
2
η + 1

2) + 1
2 log2( 1

1−δnV
2
n
n )

log2 p


 .

Since γp ≥ n 1
2

+ 1
2
η, it grows faster than n

1
2 and then the constraint (4.6) is met when n is large.

By the facts that limn→∞ nV
2
n
n = 2πe from [53, (2)] and that 1

nr
2
e < P for small ε, one can verify

that 1 ≤ kc < kf < n when n is large. We now substitute p, k1 and k2 into (4.3),(4.4) and (4.5).

It is clear (4.3),(4.4) and (4.5) vanish as n → ∞. In other words, in our random ensemble, there

exist a non-zero portion of pre-determined codebooks whose error probabilities go to zero.

Finally, we calculate the achievable rate

lim
n→∞

1

n
log2 p

kf−kc = lim
n→∞

1

2
log2

(
nP

r2
e

)
=

1

2
log2

(
1 + P/N

1 + ε

)
,

where ε can be arbitrarily small. Hence, we claim there exist pre-determined codebooks in our

ensemble that achieve the channel capacity.
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Chapter 5

Achievable Rates of Nested Algebraic

Lattice Codes

In Chapter 2.3, we constructed a pair of nested lattice codes by using the map ϕ : γZn → Fnp
and its associated map ϕ̃. In this chapter, we will first consider constructing lattice codes from a

more general map φp which maps a lattice point in Λ ⊂ Rm to a point in Fnp , where m = tn and t is

a constant integer. This construction is proposed in [58] and we briefly recapture it in Chapter 5.1.

We then analyze the error probability of the codes we just constructed using almost the same

methods in Chapter 4.2. This analysis only relies on the abstract properties of φp as we will show

in Chapter 5.3. To build concrete examples of such φp, we need to make use of the algebraic number

theory and we will briefly introduce it in Chapter 5.4 and Chapter 5.5. For convenience, we also

call the lattice codes constructed by such φp algebraic lattice codes. At the end of this chapter, we

will show that some algebraic lattice codes could achieve the AWGN channel capacity.

5.1 A Generalized Reduction

Let Λ be a lattice in Rm. Let φp : Λ→ Fnp be a surjective homomorphism. Given a linear code

C in Fnp , its associated lattice via φp is defined as Λp(C) , φ−1
p (C). The kernel of φ is denoted as

ker(φp) = Λp({0}) , Λp. It’s clear that Λp ⊂ Λp(C) ⊂ Λ by noting that Λ = φ−1
p (Fnp) and that

{0} ⊂ C ⊂ Fnp . Moreover, the quotient Λp(C)/Λp ' C and therefore V (Λp(C)) = |C|−1pnV (Λ).

Similar to ϕ̃, we can also define φ̃p, as the associated map of φp, which embeds Fnp into Rm. For

a point c in Fnp , we define φ̃p(c) as the point of the shortest Euclidean norm in φ−1
p (c). Similar to

ϕ̃, φ̃p(c) must lie in V(Λp). Unlike ϕ̃ which embeds Fnp into Rn, the generalized map φ̃p embeds Fnp
into Rm where n and m do not need to be equal.

Equipped with φ̃p, we can naturally construct a pair of nested lattice codes (Λf ,Λc) in Rm from

a given pair of nested linear codes (Gf ,Gc) in Fp as we did in Chapter 4.1.
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5.2 Generalized Codebook Generalization

We first consider the case of a pre-determined nested lattice code. Given a pair of lattice codes

(Λf ,Λc) and a dither vector u ∈ Rm, we construct a codebook whose codewords are shifted cosets

of the form {λf +u+ Λc : λf ∈ Λc} using the same procedure introduced in Chapter 4.1. That is,

all the codewords (i.e., the shifted cosets) can be expressed as

{
φ̃p(mG′) + u+ Λc : m ∈ Fkf−kcp

}
.

Note that φ̃p is a one-to-one map, so that here is still a one-to-one correspondence between the

vectors in Fkf−kcp and the shifted cosets of Λc. Hence, m can still be viewed as the “index” of the

shifted coset φ̃p(mG′) + u+ Λc, and the codebook contains pkf−kc (distinct) codewords.

Encoding. To send a message vector m ∈ Fkf−kcp , the encoder transmits

x = φ̃p(mG′) + u mod Λc.

Decoding. Upon receiving y ∈ Rm, we estimate m as

m̂ = arg min
m

d
(
φ̃p(mG′) + u+ Λc, αy

)
.

In fact, this is almost the same as the decoding procedure in Chapter 4.1. One can easily show

that the unique shifted coset with the shortest distance is given by QΛf (αy − u) + u+ Λc.

As for the random case, we first randomly generate a matrix Gf ∈ Zkf×np and a vector U ∈ Znp
where each entry of Gf and U is drawn independently and uniformly over Zp as we did in Chapter

4.1. As before, let

Gf =

Gc

G′

 ,
and if Gf is full rank, so is Gc. We then generate all the codewords in the random nested lattice

codes as {
φ̃p(mG′) + φ̃p(U) + Λc : m ∈ Fkf−kcp

}
.

30



5.3. Analysis of the Error Probability

5.3 Analysis of the Error Probability

The error probability of the generalized scheme can be analyzed using the same methods in

Chapter 4.2. The sperical shaping in Chapter 4.3.1 is still needed. There are two differences

between the current analysis and the one in Chapter 4.2. The first is that the energy constraint

becomes X ∈ B
(√

mP
)

instead of X ∈ B
(√

nP
)

since the lattices in this chapter lie in Rm

instead of Rn. The second is that the domain of φ̃p is a more general lattice Λ instead of the lattice

γZn used by ϕ̃.

To make the error probability of the generalized scheme goes to zero, we need three conditions

that are similar to the ones (4.3), (4.4), and (4.5) in Chapter 4.3,

pn−kc

|Λ ∩ B
(√

mP
)
|
→ 0, (5.1)

max
w∈B(re)

|Λ ∩ (w + B (re))|
pn−kf

→ 0, (5.2)

B
(√

mP
)
⊂ V(Λp), (5.3)

where re =
√

(1 + ε)mPNP+N . By Lemma 4, the above becomes

V (Λ)pn−kc

(
√
mP − l)mVm

→ 0, (5.4)

(re + l)mVm

pn−kfV (Λ)
→ 0, (5.5)

B
(√

mP
)
⊂ V(Λp), (5.6)

where l = supx∈V(Λ) ‖x‖.
Clearly, the above requirements rely on geometric properties of the base lattice Λ and the

kernel lattice Λp. However, till now, we only rely on the abstract properties of φp, so that we lack

detailed geometric measures. We thus will offer some concrete examples on φp to demonstrate those

measures. The naive example is to choose φp as ϕ. By doing so, we get the same result as the one

in Chapter 4. In the rest of this chapter, we introduce how to construct φp and nested lattice codes

using knowledge of algebraic number field.
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5.4 Algebraic Number Field

In this chapter, we will introduce basics of algebraic number theory briefly. The readers need

some common knowledge of abstract algebra, including the definitions of ring, field, and group.

To find the roots of a polynomial f(X) over a field K, it’s often necessary to pass to a larger

field L containing K. In these cases, the field L is usually called a field extension of K. For example

f(X) = X2 − 2 has no roots in Q. However when considering f(X) as a polynomial in a field

that contains
√

2, we can naturally find roots ±
√

2. We also denote the field extension relationship

between L and K as L/K. As a field extension over K, the field L naturally owns a structure as a

vector space over K. The dimension of this vector space is called as the degree of L over K and is

denoted as [L : K]. If [L : K] is finite, we call L a finite extension of K.

A field K is called a number field if it is a finite extension of Q. Assume the degree of this exten-

sion is n. We know that for any α ∈ K, there must exist a Q-linear dependency {1, α, α2, · · · , αn}.
In other words, there exists a polynomial f whose coefficients lie in Q such that f(α) = 0. We call

α an algebraic number. Among all such polynomials which have a root α, we can find a polynomial

with the smallest degree and call it the minimal polynomial of α.

For example, we can build a number field by “adding”
√

2 to Q. To make this new set a field, we

need to add all multiples and all powers of
√

2 to Q. It turns out the new set is {a+ b
√

2|a, b ∈ Q}.
Readers can check this new set is actually a field. Since

√
2 is the root of X2 − 2 = 0,

√
2 is

an algebraic number. Also, X2 − 2 = 0 is the minimal polynomial of
√

2. Similarly, X − 1 = 0

is the minimal polynomial of 1. By adding more numbers, we can get larger number field. For

instance, by adding 3
√

5 to Q(
√

2), we get Q(
√

2, 3
√

5), which is the smallest field extension over Q

that contains
√

2 and 3
√

5.

Since a number field K is a finite extension of Q, we can write K as Q(α1, α2, . . . , αs) for finite

many algebraic numbers (α1, α2, . . . , αs). We have a stronger result.

Lemma 7( [63, Theorem 2.2]): If K is a number field then K = Q(θ) for some algebraic number

θ, which is also called the primitive element.

The key observation of this lemma is that for a number field Q(α, β), we can always find a

suitable c ∈ Q such that Q(α, β) = Q(α+ cβ). For example, Q(
√

2, 3
√

5) = Q(
√

2 + 3
√

5). Of course,

the representation of K as Q(θ) is not unique since Q(θ) = Q(−θ) = Q(θ + 1) = . . . etc.
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5.4. Algebraic Number Field

Also, as a consequence of this lemma, we find a Q-basis for K as

{1, θ, θ2, . . . , θn−1}.

A number field K = Q(θ) can be embedded into the complex field C by several distinct homo-

morphism σi : K → C. For example, if K = Q(i) where i =
√
−1, we have two possibilities

σ1(x+ yi) = x+ yi,

σ2(x+ yi) = x− yi.

This observation can be described by the following lemma.

Lemma 8( [63, Theorem 2.4]): Let K = Q(θ) be a number field of degree n over Q. Then there

are exactly n distinct homomorphisms σi : K → C, i = 1, 2, . . . , n. The element σi(θ) = θi is the

i-th root in C of the minimal polynomial of θ over Q.

If σi(K) ∈ R, which happens if and only if σi(θ) ∈ R, we say that σi is real ; otherwise, σi is

said complex. As usual, denote the complex conjugate by bars and define

σ̄i(α) = σi(α).

Suppose there are r1 real homomorphisms and 2r2 complex homomorphisms, then the degree

of the field extension n is equal to r1 + 2r2. The couple (r1, r2) is known as the signature of K. For

example, the signature of Q(i) is (0, 1) since there are 2 complex homomorphisms. The signature

of Q( 3
√

(2)) is (1, 1). It’s because there are exactly 3 σi’s, σ1( 3
√

2) = 3
√

2, σ2( 3
√

2) = ω 3
√

2, σ3( 3
√

2) =

ω2 3
√

2, where ω is the cubic root of unity in C.

Equipped with σi’s, we can build the canonical embedding σ which sends a point in K to a

point Rr1+2r2 as

σ : K 7→ Rn

σ(x) = (σ1(x), . . . , σr1(x),Re(σr1+1(x)), Im(σr1+1(x)), . . . ,Re(σr1+r2(x)), Im(σr1+r2(x))).

Readers can check that aQ-basis {α1, α2, . . . , αn} ofK can generate vectors {σ(α1), σ(α2), . . . , σ(αn)}
which are linearly independent over Q. However, we can obtain more as stated in the following

lemma.
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Lemma 9([63, Theorem 8.1]): If α1, α2, . . . , αn is a basis forK overQ, then σ(α1), σ(α2), . . . , σ(αn)

are linearly independent over R.

The following corollary clarifies a way on using the number field K to build lattices.

Corollary 1: If G is a finitely generated subgroup of (K,+) with Z-basis {α1, α2, . . . , αm} then

the image of G is a lattice in Rn with generators {σ(α1), σ(α2), . . . , σ(αm)}.

In the following chapter, we will introduce the ring of integers over K, which is a finitely

generated subgroup of K, as well as some useful properties of it.

5.5 Algebraic Integers

A number θ is an algebraic integer if there is a monic polynomial p(X) with integer coefficients

such that p(θ) = 0. In other words,

θn + an−1θ
n−1 + · · ·+ a0 = 0,

where ai ∈ Z for all i. For example, 1+
√

5
2 is an algebraic integer since its the root of X2−X−1 = 0,

but 1
3 is not an algebraic integer.

For convenience, we denote the set of all algebraic integers B. An insightful observation is given

by the following lemma.

Lemma 10([63, Theorem 2.9]): The algebraic integers form a subring of the field of algebraic

numbers.

For two algebraic integers α and β, it’s not easy to show that αβ and α+ β lie in B. We need

the following lemma.

Lemma 11([63, Lemma 2.8]): A complex number θ is an algebraic integer if and only if the

additive group generated by all powers 1, θ, θ2, · · · is finitely generated.

Since all powers of α and β are finitely generated, we know that powers of αβ and α + β are

also finitely generated. Hence, αβ and α+ β lie in B.

For any number field K, we denote

OK = K ∩ B,

and call OK the ring of integers of K. Obviously, OK is a subring of K and Z ⊂ OK . One of the
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reasons that we are interested in OK is stated as the following.

Lemma 12([63, Theorem 2.16]): Let K be a number field and OK be the ring of integers of K.

The additive group of OK is a free abelian group of rank n equal to the degree of K.

In other words, there exist a Z-basis α1, · · · , αn for OK where αi ∈ OK for all i. As a natural

result, OK is a finitely generated subgroup of K and by Corollary 1, we obtain that the image

σ(OK) generated by the cannoical embedding is a lattice in Rn.

We already bridged the lattice in real field Rn and OK . We then introduce the connection

between OK and a certain finite field so that we can build lattices from linear codes in that

finite field. It turns out the key ingredient of this connection is the unique factorization of ideals.

Similar to the factorization of rational integers, we might factorize algebraic integers into product

of irreducibles. However, we cannot always factorize an algebraic integer uniquely. For example,

if we work in Z(
√
−6), there are two factorizations, 6 = 2 · 3 and 6 =

√
−6 ·

√
−6. Though the

numbers 2, 3 and
√

6 are already irreducible, 2, 3 and
√

6 are not prime since 2 -
√
−6, 3 -

√
−6,

√
−6 -

√
2 and

√
−6 -

√
3. Nevertheless, as we already stated, the facotrization into ideals can be

unique.

We need to introduce two concepts first. Given two ideals a, b, the product of ideals ab is the

set of finite sums
∑
aibi where ai ∈ a, bi ∈ b. An ideal p is a prime ideal if given ab ⊂ p, then

either a ⊂ p or a ⊂ p. Now, we are prepared to introduce the following lemma.

Lemma 13([63, Theorem 5.6]): Every non-zero ideal of OK can be written as a product of prime

ideals, uniquely up to the order of the factors.

For example, in Z
√
−17, we have the unique factorization of 3 as 〈3〉 = 〈3, 1 +

√
−17〉〈3, 1 −

√
−17〉, where both 〈3, 1 +

√
−17〉 and 〈3, 1−

√
−17〉 are prime.

We provide two useful lemmas about prime ideals. Similar to the fact that the prime ideal of

Z is a maximal ideal, we have

Lemma 14: Every non-zero prime ideal p of OK is a maximal ideal of OK . Moreover, the residue

field OK�p is a finite field.

By analogy with factorization of rational integers, for ideals a, b, we shall say that a divides b

(written a | b) if there is an ideal c such that b = ac. We have the following lemma.

Lemma 15([63, Propostion 5.7]): For ideals a, b of OK ,

a | b if and only if b ⊂ a.
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5.5. Algebraic Integers

By Lemma 14, the ring of integers OK is connected to a finite field by the fact that the residue

field OK�p is a finite field if p is prime. Here we start to dig out more concrete descriptions about

this residue field. When p is a prime ideal of OK , it’s easy to verify p ∩ Z is a prime ideal of Z.

Therefore, there must exist a rational prime p such that p ∩ Z = pZ. In this case, we say that p is

above p. We claim that OK�p is a finite extension of Fp. To see this, first construct a projection

map π as

π : OK → OK�p
π(a) = a+ p.

The kernel of π is p. Then we construct a map τ : Z → OK → OK�p. The first arrow is the

canonical embedding of Z into OK and the second arrow is the projection map π. The kernel of τ

is exactly p ∩ Z = pZ. Therefore, there is an injection from Fp = Z�pZ to OK�p. Hence, OK�p is

a finite extension of Fp. The degree of this extension is called the inertial degree and is denoted as

fp = [OK�p : Fp].

On the other hand, since p ∈ p, we know that pOK ⊂ p. Hence, p must be a prime factor of

pOK . We write the factorization of pOK in OK as

pOK =

g∏
i=1

p
epi
i , (5.7)

where epi ∈ Z for all pi and is called the ramification index of pi. The inertial degree and ramification

index are connected via the following lemma.

Lemma 16: Given the factorization pOK =
∏g
i=1 p

ei
i for a prime p ∈ Z and the ring of integers

over the number field K, we have

[K : Q] =

g∑
i=1

fpiepi .

When g = [K : Q], fpi = 1 for all i, we say the prime p splits. We then have the following

corollary.

Corollary 2: Given the factorization pOK =
∏g
i=1 p

ei
i , when the prime p splits, we have

OK�pi ' Fp. (5.8)
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This result is used to construct the map φp in Chapter 5.6.1.

5.6 Construction of Nested Algebraic Lattice Codes

5.6.1 The Construction of φp

Let K be a number field whose signature is (r1, r2), i.e., it has r1 real embeddings and 2r2

complex embeddings. Let σ1, σ2, . . . , σr1 be the real embeddings, and σr1+1, σr2+1, . . . , σrn be the

complex embeddings where σr1+r2+i = σr1+i.

Let OK be the ring of integers of K. The cannonical emebedding σ from OK to the real vector

space of dimension r1 + 2r2 is denoted as

σ : OK 7→ Rr1+2r2

σ(x) = (σ1(x), . . . , σr1(x),Re(σr1+1), Im(σr1+1), . . . ,Re(σr1+r2), Im(σr1+r2)).

For example, the canonical embedding from Z[i] to R2 is σ(a+ bi) = (a, b).

Equipped with this canonical embedding, we can build the map φp from Λ ⊂ Rm to Fnp as

follows. Let p be a prime that splits and p be a prime ideal above p. By Corollary 2, we can find

a projection map π : OK → OK/p ' Fp. Let σ : OK → Rt be the canonical embedding, where

t = r1 + 2r2 and m = tn. Let Λ be the lattice σ(OK) which is in Rnt. By applying the projection

map π element-wisely, we obtain a concrete map φp as

φp : Λ→ Fnp ,

φp (γσ(x1, . . . , xn)) = (π(x1), . . . , π(xn)) ,

where γ is a scaling factor. The kernel Λp = ker(φp) = γσ(p)n and the point in Λp has a Euclidean

norm at least γ
√

t
2p

1
t . Therefore, B

(
γ
√

t
8p

1
t

)
⊂ V(Λp).

For example, we can let K = Q(i),OK = Z[i], t = 2, p = 5 and p = 〈2 + i〉. Let Λ ⊂ R4 be the

base lattice, γ = 1 and λ = (2, 2, 1, 1) ∈ Λ be a lattice point. Clearly, λ = σ(2 + 2i, 1 + 1i) and

φp(λ) = (1, 3) ∈ F2
p. Also, V(Λp) can cover the ball B

(√
5

2

)
. The process is visualized in Fig. 5.1.

The yellow rectangle is V(Λp).
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(2,2)Z[i]/〈1 + 2i〉 ≃ F5

2

10

3

4

φp

Figure 5.1: The visualization of φp when p = 5.

5.6.2 An Example from Z[i]

We select K = Q(i), OK = Z[i] and accordingly t = 2. We also select Λ = γZ2n and build the

map φp : γZ2n 7→ Fnp as described in last section. Accordingly, l = γ
√

n
2 and V(Λp) can cover the

ball B
(
γ
2p

1
2

)
. Then a sufficient condition for the requirements (5.4)-(5.6) is

γ2npn−kc

(
√

2nP − γ
√
n

2 )2nV2n

≤ (1− δ)2n,

(re + γ
√
n

2 )2nV2n

pn−kfV (Λ)
≤ (1− δ)2n,

B
(√

2nP
)
≤ γ

2
p

1
2 .

Let p be the smallest prime larger than n1+η which statisfies p mod 4 = 1. By Lemma 6, we can

write p = µn1+η where µ is a bounded constant. Let γ = n−
1
3
η. We then assign

kc =

n
1− 2 log2(

√
2Pn

1
3
η − 1

2) + log2((1− δ)nV
1
n

2n)

log2 p

 ,
kf =

n
1−

2 log2(
√

1
nr

2
en

1
3
η + 1

2) + log2( 1
1−δnV

1
n

2n)

log2 p


 .

It’s easy to verify that the rate of the scheme is

lim
n→∞

kf − kc
2n

log2 p =
1

2
log2

(
2P

r2
e

)
=

1

2
log2

(
1 + P/N

1 + ε

)
,

where ε can be made arbitrarily small.
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Chapter 6

Conclusions

In this thesis, we first adopt the unified approach to handle the proofs related to nested lin-

ear/lattice code. As a result, the achievability proof of nested lattice code is more accessible. We

then extend the unified approach to the case of nested algebraic lattice codes constructed using the

algebraic number theory and show they can achieve the AWGN channel capacity. This extension is

the first step towards achieving the fading channel capacity under lattice encoding and decoding.

Potential future work includes achieving the ergodic fading channel capacity using algebraic

lattice codes, optimizing the exponent of the growth rate of the prime p as a function of n, removing

the spherical shaping technique.
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Appendix A

Entropy

We briefly introduce various definitions related to entropy.

Entropy. Let X be a discrete random variable with probability mass function (pmf) p(x). The

“uncertainty” about the outcome of X is measured by its entropy

H(X) = −EX(log p(X)).

Conditional entropy. Let X,Y be two discrete random variables. Since p(y|x) is a pmf, we can

define H(Y |X = x) for every x. The conditional entropy is the average of H(Y |X = x) over every

X, i.e.,

H(Y |X) =
∑
x

H(Y |x)p(x) = −EX,Y (log(p(Y |X))).

Joint entropy. Let (X,Y ) be a pair of discrete random variables with pmf p(x, y). The joint

entropy is

H(X,Y ) = −E(log p(X,Y )).

Mutual information. The mutual information between X and Y is

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
.

It can be shown

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y ).
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Appendix B

Typical Sequences

Here we present basics about typical sequences.

Let X be a discrete alphabet. For a vector x = (x1, x2, . . . , xn) ∈ X n, we define its empirical

pmf as

π(x | x) =
|{i : xi = x}|

n
for x ∈ X .

For X ∈ X ∼ pX(xi) and ε ∈ (0, 1), define the set of ε-typical n-sequences x ∈ X n (or the typical

set in short) as

T (n)
ε (X) = {x : |π(x | x)− pX(x)| ≤ εpX(x) for all x ∈ X}.

Let X = (X1, X2, . . . , Xn) be a random vector in X n whose elements are i.i.d. random variables

with each element xi ∼ pX(xi), i ∈ [1, n]. Then by weak law of large numbers, for each x ∈ X ,

π(x |X)→ pX(x) in probability.

Hence,

lim
n→∞

P(X ∈ T (n)
ε (X)) = 1.

Intuitively, for any x ∈ T (n)
ε (X), the empirical average 1

n

∑n
i=1 xi should be close to the expectation

E(X). In fact, we have a more general result as follows.

Lemma 17(Typical average lemma): Let x ∈ T (n)
ε (X). Then for any non-negative function g(·)

on X ,

(1− ε)E(g(X)) ≤ 1

n

n∑
i=1

g(xi) ≤ (1 + ε)E(g(X)).

The proof is direct by noting 1
n

∑n
i=1 g(xi) =

∑
x∈X π(x | x)g(x). Let g(x) = − log pX(x) and
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note that E(− log pX(x)) = H(X), we obtain

2−n(1+ε)H(X) ≤ pX(x) ≤ 2−n(1−ε)H(X).

Equipped with this, we can bound the size of T (n)
ε (X). Note that the

∑
x∈T (n)

ε (X)
pX(x) ≤ 1, we

obtain

|T (n)
ε (X)| ≤ 2n(1+ε)H(X).

Also note that by the law of large numbers,

lim
n→∞

P(X ∈ T (n)
ε (X)) = 1.

That is to say when n is sufficiently large, P(X ∈ T (n)
ε (X)) ≥ 1− ε. Hence,

|T (n)
ε (X)| ≥ (1− ε)2n(1−ε)H(X).

The notion of typical set can be extended to multiple random variables. For (x,y) ∈ X n × Yn,

define their joint empirical pmf as

π(x, y | x,y) =
|{i : (xi, yi) = (x, y)}|

n
for (x, y) ∈ X × Y.

Let (X,Y ) ∼ pX,Y (x, y). The set of jointly ε-typical n-sequences is defined as

T (n)
ε (X,Y ) = {(x,y) : |π(x, y | x,y)− pX,Y (x, y)| ≤ εpX,Y (x, y) for all (x, y) ∈ X × Y}.

Also define the set of conditionally ε-typical n-sequences as

T (n)
ε (X | y) = {x : (x,y) ∈ T (n)

ε (X,Y )}.

It can be shown that for sufficiently large n,

∀y ∈ Yn : |T (n)
ε (X | y)| ≤ 2n(1+ε)H(X|Y ). (B.1)
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