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Abstract 

 

Translucency, defined as a jelly-like appearance, is a common clinical feature of basal cell 

carcinoma (BCC), the most common skin cancer. This feature plays an important role in diagnosing 

basal cell carcinoma at an early stage because the translucency can be observed readily in clinical 

examinations with a high specificity.  Therefore, translucency detection is a critical component of 

computer aided systems which aim at early detection of basal cell carcinoma. In this thesis, we 

proposed two deep learning methods to automatically detect translucency.  

First, we develop a convolutional neural network based framework to detect translucency 

of basal cell carcinoma.  Furthermore, a sparse auto-encoder based framework is proposed for 

translucency detection on BCC images. Since currently two types of skin images are mainly used 

for diagnosis of basal cell carcinoma by doctors, which are dermoscopy images and clinical images, 

we evaluate two proposed methods on both types of skin images.  

Our results showed that the two proposed methods yield similar detection performances. 

For detecting translucency in dermoscopy images, both proposed methods achieve comparable 

accuracy results, though the accuracy is not as good as we expected. For detecting translucency in 

clinical images, both methods achieve good performances. Compared the performances in both 

types of images, the proposed deep learning based methods seems more suitable for translucency 

detection in clinical images than in dermoscopy images. 
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Lay Summary 

 

Basal cell carcinoma(BCC) is the most common type of skin cancer. Despite that BCC rarely 

causes mortality, the malignancy will destroy extensively the surrounding tissues and damage the 

skin structure aggressively at advanced stages, causing the high cost of treatment and increasing 

the suffering of patients. Therefore, early detection of BCC is of great importance for disease 

management. Translucency is one of the most important characteristic features of BCC. It can be 

detected in tiny lesions with a high specificity. Therefore, detecting translucency is a key function 

of computer aids systems for automatic diagnosis of BCC at an early stage. In this thesis, we 

develop two deep learning frameworks to detect translucency in BCC automatically, which can be 

used further to help a BCC diagnosis.  
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Chapter 1: Introduction 

Basal cell carcinoma (BCC) is the most common type of skin cancer among the white populations 

in the world [1]. In the United States, more than 4 million patients are diagnosed with skin cancer 

annually and 80% of them are BCC [2, 3]. In UK, over 3,0000 new cases of BCC are estimated per 

year [4]. In German, around 100,000 cases of BCC were reported in 2009 [5]. However, there are 

still over 2 million cases that are under-reported each year estimated by the World Health 

Organization(WHO) [5]. Even though so many people are diagnosed with BCC, the incidence of 

BCC is increasing every year [6-8]. The increasing rate is about 5% in Europe and it is about 2% 

in the United States [7].  

Despite the fact that BCC rarely causes mortality, the malignancy will destroy extensively 

the surrounding tissues and damage the skin structure aggressively at advanced stages [9-11]. 

Therefore, early detection of BCC is important for disease management. However, the diagnosis 

of BCC is complicated. Early recognition of skin cancer heavily relies on visual examination by 

physicians, following by a confirmation diagnosis based on biopsy and a histological examination 

[12]. Due to such a large number of patients, the burden of BCC diagnosis is extremely heavy. 

Therefore, many research studies have been focusing on the development of computer-aided 

systems for detecting skin cancer automatically in order to relieve the pressure caused by the 

increasing rate of skin cancer and limited medical resources. 

The majority of computer-aided systems are image-based systems which include image 

preprocessing, feature extraction, and image classification. These computerized systems have great 

potential for skin cancer detection and may lead to a higher diagnostic accuracy at early stages as 

well. 
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1.1   Images used for BCC diagnosis 

Clinical images and dermoscopy images are the two most common imaging modalities for skin 

cancer diagnosis today. Both types of images are digital images taken from the skin surface. 

 

1.1.1   Dermoscopy images 

Demorscopy, a non-invasive tool for skin cancer detection, enables the visualization of subsurface 

structures and patterns which are unable to be seen by naked eyes [13]. It is a reliable method for 

early detection of skin cancer [14].  

There are two main types of dermoscopy. The first one is fluid immersion which includes 

a magnifier and non-polarized light system [15]. Usually, fluid immersion dermoscopy can achieve 

10 – 20 times magnification [16]. This kind of dermoscopy directly contacts the skin which requires 

a liquid, such as alcohol or mineral oil, in the interface between the skin and the instrument [15]. 

The liquid between the interface is used to reduce the refractive index mismatch between air and 

skin tissues [17]. Therefore, doctors can observe the morphologic structures of skin cancers which 

are not seen by naked eyes.  The other type of dermoscopy is polarized dermoscopy which has no 

need to contact the skin. This type of dermoscopy utilizes the polarized light which helps eliminate 

the skin light reflections to observe the subsurface structure [17]. A typical dermoscopy devices is 

shown in Figure 1.1.  

 

Figure 1.1 A typical device of dermoscopy 
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Dermoscopy can achieve two advantages. First, it can improve the accuracy of clinical 

diagnosis of skin cancer. It has been reported that it could result in a 35% increase in accuracy of 

clinical diagnosis [15]. Also, studies have shown that both the sensitivity and the specificity of 

diagnosis increased as well [18]. Second, dermoscopy can significantly reduce the number of 

patients who would be further referred to do a biopsy because of the increasing confidence of 

diagnosis [19]. However, there is also one limitation of dermoscopy:  Generally, long time training 

and experience are required before a dermatologist can make professional diagnosis using 

dermoscopy. A study shows that a dermatologist who can achieve higher detection rates needs a 

formal training and at least 3 years of experience [19]. Figure 1.2 demonstrated some examples of 

Basal cell carcinoma in dermoscopy images. 

 

Figure 1.2 Examples of dermoscopy images of Basal Cell Carcinoma 
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1.1.2   Clinical images 

However, a study shows that only 23% of dermatologists use dermoscopy for skin cancer diagnosis 

in United State [20].  Clinical images are still the most commonly used modality for skin imaging. 

Clinical images, taken by color digital cameras, are the most convenient method for capturing 

diagnostic features. Doctors can easily record images of a skin cancer surface from any angle and 

any direction without using other devices. Figure1.3 illustrates clinical images of skin cancers.  

 

Figure 1.3 Examples of clinical images of Basal Cell Carcinoma. 

 

1.2   Translucency 

Translucency, defined as a jelly-like appearance, is an important characteristic feature of BCC. It is 

an optical phenomenon generated by the cancerous tumor [21, 22]. Translucency plays an important 

role in the diagnosis of BCC because this feature can be readily observed in clinical examinations 

with a high specificity of 93% [24].  In addition, it can be detected in very tiny BCCs where other 

features have not yet shown up [21, 22].  Therefore, detecting translucency is a key function of 
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computer aided systems aimed at discriminating BCCs from benign skin conditions and other types 

of skin cancers at an early stage.  Figure1.4 illustrates several examples of BCC with translucency 

in dermoscopy images. 

 

Figure 1.4 Example dermoscopy images of BCC with translucency.  

 

1.3   Related work 
 
In recent years, W. V. Stoecker’s group paid close research attention to analyze the translucency 

of BCC. In [22], they analyzed RGB and chromaticity color features from manually marked 

translucent areas of a lesion and measured the corresponding texture properties by a set of intensity 

histograms. Totally, they obtained 6 color features and 6 texture features. Through statistical 

analyses, they concluded that texture features are more important than color features and the most 

significant feature of translucency is smoothness. In [23], a segmentation-based method was 

proposed to detect translucent areas in BCC. Firstly, the smoothness of each image block is 
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analyzed to find the candidates of translucent areas and then the uncorrected candidates are 

eliminated through analyzing the brightness.  

 

1.4   Motivation 
 
As discussed previously, translucency is an important biomarker in BCC diagnosis at an early stage. 

Therefore, translucency detection is considered as a key function for computer aided systems 

towards early diagnosis of BCC. A few papers published the image properties of translucency using 

conventional image analysis methods; however, to the best of my knowledge, there is no fully 

automated computer system on detection of translucency of BCC so far. Therefore, efficient 

methods which can detect translucency automatically are still needed. 

In recent years, deep learning has been reported to achieve excellent performances on 

numerous image analysis tasks [44-46]. Unlike the conventional methods, deep learning methods 

are data-driven methods which can learn high-level features directly from the input data [50]. 

Therefore, there has been an increasing interest in the community in employing deep learning 

methods to solve medical image problems [51].  

Inspired by the success of deep learning methods in numerous medical image analysis tasks, 

the objective of this thesis is to develop deep learning methods for translucency detection of BCC 

automatically. In this thesis, we propose two deep learning frameworks, one is based on the 

convolutional neural network (CNN) and the other is based on the stacked sparse autoencoder 

(SSAE), to achieve the research goal. Both CNN and SSAE are typical deep learning models. 
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1.5   Thesis organization 

The organization of this thesis is as follows: 

Chapter2: Deep learning background. In this chapter, we introduce some basic concepts of deep 

learning methods which will be explored for our work in later chapters. Specifically, we review the 

concepts of ANN, CNN and Autoencoder. 

Chapter3: Proposed methods. In this chapter, two deep learning methods are proposed for 

translucency detection of basal cell carcinoma. One is the CNN-based method and the other is the 

SSAE-based method. The framework and architecture of the proposed methods are described in 

detail in Chapter 3. 

Chapter4: Translucency detection of Basal cell carcinoma in dermoscopy images. In this 

chapter, we detect translucency of basal cell carcinoma in dermoscopy images using the proposed 

methods. We report the results and discuss the limitations of the proposed methods when applied 

to this specific application. 

Chapter5: Translucency detection of Basal cell carcinoma in clinical images. In this chapter, 

two proposed methods are applied to detect translucency of basal cell carcinoma in clinical images. 

The experimental setting and results are reported and the performances of the proposed methods 

are compared. 

Chapter6: Conclusion and future work. In this chapter, we summarize the contributions of this 

thesis and discuss the future direction of this research. 
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Chapter 2: Deep learning background 

The objective of this thesis is to take advantages of deep learning methods to achieve translucency 

detection of basal cell carcinoma automatically. In this chapter, some basic concepts of deep 

learning methods, which will be used in this thesis research, are introduced. In section 2.1, we 

overview the artificial neural network. In section 2.2 and section 2.3, two deep learning models, 

convolution neural network and autoencoder, are introduced respectively. 

 

2.1   Artificial neural network 

Artificial Neural Network (ANN) is a mathematics model which simulates the biological 

neural networks [26]. It is motivated by simulating the human brain to process the information. In 

the current literature, ANN is the foundation of almost all complex neural networks such as 

convolutional neural networks and autoencoders which we will introduce later.  

 

2.1.1   A single neuron 

 

Figure 2.1 A single neuron. 
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Artificial neural networks are based on neurons. Figure 2.1 illustrates a simple neuron. 

The mathematical model of the neuron can be expressed as: 

ℎ",$ 𝑥 = 	𝑓( 𝑊+𝑥+ + 𝑏)	
 

where xi means the ith input,	 	𝑊+ is the weight of xi and 𝑊+𝑥+ is the weighted summation of the 

inputs. b is the bias and f(.) means the activation function. The activation function transfers the 

input to the output in ANN [27]. In the literature, there are three commonly used activation 

functions [28]: 

Sigmoid: It has the output value between 0 and 1 

f z = 	
1

1 + exp	(−𝑧)
 

Tanh: It has the output value between -1 and 1 

f z =
2

1 + 𝑒9:;	 − 1
 

ReLU: It has the output value above 0 

f z = max	(0, z) 

 

2.1.2   Architecture of artificial neural network  

The structure of an artificial neural network simulates biological neural networks [29]. There are 

generally three types of layers in an artificial neural network: the input layer, the hidden layer and 

the output layer. All such layers are composed of neurons.  Nodes in two adjunct layers are 

connected by edges. Each edge has its corresponding weight value.  A simple artificial neural 

network is illustrated in Figure 2.2.  
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Figure 2.2 A simple neural network 

 

The nodes at the input layer are used to receive the input. Also, nodes at hidden layers 

perform computations of the information received from the input layer and transfer the 

computational results to the output layer. Finally, the output nodes give a final result of the network. 

The computational procedure of the network illustrated in Figure 2.2 can be represented by: 

𝑎+ = 𝑓(𝑊+@𝑥+ + 𝑏) 

y = 	𝑓(𝑊+@𝑎+ + 𝑏) 

where Wij is the weight of the connection between the ith node at Ln-1 layer and the jth node at Ln 

layer, 𝑎+ represents the output value of the ith node at the hidden layer, 𝑥+ represents the ith node 

at the input layer, b is the bias and y represents the output value of this neural network.  
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From the above equation we can note that each 𝑎+ is determined by the values of all nodes 

and their corresponding weights at the previous layer. This kind of network is called the 

feedforward neural network in which all information is transferred layer by layer and there is no 

feedback between the interconnected layers. 

 

2.1.3   Backpropagation algorithm 

The backpropagation algorithm is probably the most commonly used algorithm in the current deep 

learning literature. It is widely used to train artificial neural networks [30]. The idea of the 

backpropagation algorithm can be summarized as follows: 

Step-1: The training data are input into the artificial neural network and forward each layer of the 

network. Then the output is calculated. This is the feedforward process of an artificial neural 

network.  

Step-2: Definitely, there is discrepancy between the real output and the estimated output, and thus 

the error is calculated and propagated back to previous layers until the input layer. In the processing 

of backpropagation, the parameters of each node are adjusted according to the error. The steps 

above are iterated until the error convergence. 

The main purpose of the backpropagation algorithm is to minimize the output error. We 

need a cost function to define the error [25]: 

J W, b =
1
2𝑁 ℎ",$ 𝑥 − 𝑦 : 

where ℎ",$ 𝑥  is the output of the neural network and y is the desired output. 
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2.2   Convolutional neural networks 

Convolutional neural network (CNN) is one of the most popular deep neural network models in 

the current literature. It has been shown to perform excellently in numerous image analysis tasks 

such as face recognition and object detection [31, 32]. Besides, CNN became a powerful tool for 

medical image analysis in past few years, e.g., for cancer detection [33].  Therefore, there are 

increasing research focuses on using CNN to solve image analysis problems. 

The structure of a convolutional neural network is similar to that of an original artificial 

neural network. It consists of one input layer, one output layer and several hidden layers. Also, 

each layer is made up of neurons which learn weights and bias through training. However, the 

neurons in CNN are different in the sense that they are organized in three dimensions: height, width, 

depth [28]. In addition, most fully-connected layers in CNN are replaced by convolutional layers. 

Figure 2.3 illustrates the architecture of Alexnet which is a typical CNN model. There are three 

main types of layers in the Alexnet model: convolutional layers, pooling layers, and fully-

connected layers.  

 

Figure 2.3 The architecture of Alexnet [35]. 
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2.2.1   Convolutional layer 

Convolutional layer is the core layer of a convolutional neural network. The purpose of a 

convolutional layer is to extract specific features from the input image which are used to make the 

final classification. Feature maps, the output of the convolutional layer, are generated from the 

input image which is convolved with filters. Figure 2.4 illustrates a simple example to show how 

convolution works. 

 

Figure 2.4 An example of how convolution works 

 

At a convolutional layer, filters convolve with the receptive field of the input image and 

then slide over the input image until all receptive fields are reached and the output computes 

followed the formula: 

h+ = 𝑓(𝑊H ∗ 𝐼+ + 𝑏) 
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where hi is the ith feature map generated from convolutional layer, f is the activation function, Ii is 

the ith region in input image, Wk is the weight of filter and b is the bias. The number of feature 

maps and the size of the filter are predetermined at network building stage and the optimal value 

is independent for each case.  

There are three parameters that can decide the size of feature maps [28].  

• Depth: decide the number of the outputs generated from the convolutional layer. 

• Stride: decide the size of sliding step of the filter. 

• Zero-padding: add a number of zeros on the border which is convenient to slip the end 

position from the initial position with the step length. 

 

2.2.2   Pooling layer 

Pooling layers are inserted into a CNN periodically followed after convolutional layers. Pooling 

layers downsample the spatial size of feature maps to reduce the number of parameters and amount 

of calculation, which enable network to learn features more effective and control overfitting better 

[28]. The most effective and commonly used pooling method is max pooling, which simply takes 

the max value of feature maps over a pooling window. Figure 2.5 illustrate an example of max pool 

with size of 2´2 and stride 2.  
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Figure 2.5 An example of max pooling 

 

2.2.3   Fully-connected layer 

Fully-connected layer provides a non-linear combination of features so that output layer can use 

these features to classify the input into corresponding class. Neurons in fully connected layers have 

a full connection between two adjacent layers. 

 

2.3   Autoencoder 

Autoencoder is one of the most frequently used unsupervised learning method. It is a neural 

network that aims to reconstruct the input at the output layer [34]. Therefore, an autoencoder 

attempts to find the funtion ℎ",$ 𝑥 ≈ 𝑥 which will reconstruct the input 𝑥 as 𝑥 , where W is the 

weight of each hidden neuron and b is the bias [49]. Autoencoder is mainly composed of an encoder 

and a decoder. Figure2.6 illustrates the architecture of a simple autoencoder. 
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Figure 2.6 The architecture of a simple autoencoder. 

 

There is an encoder at the input layer which encodes the input data. Then the encoded data 

are transfer to the hidden layer, and the hidden layer learns features of the input data. Then through 

the decoder at the output layer, autoencoder can reconstruct the input data.  

By applying a backprobagation algorithm to train the autoencoder, the optimal (W,b) will 

be learned by minimizing the discrepancy between the input x and its reconstruction 𝑥. The cost 

function of training an autoencoder can be expressed as [25]: 

𝐽MN = 	
1
𝑁	 (𝑥+O −	𝑥PO):	

Q

+RS

T

O	RS

 

where N is the number of the input data and H means the number of hidden neurons. 
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Chapter 3: Method 

Previous works [22,23] on translucency of BCC mainly employed conventional methods which 

analyzed features of translucency manually. These methods required comprehensive knowledge of 

translucency to select and analyze the features. In this chapter, we proposed two deep learning 

methods to achieve translucency detection of BCC automatically. One is based on the 

convolutional neural network (CNN) and the other is based on the stacked sparse autoencoder 

(SSAE). Both proposed methods are data-driven methods that can learn features directly from the 

input data.  

 

3.1   Patch strategy 

In this thesis research, we decide to apply patches to our proposed methods. There are three reasons 

for doing this: 

• Patches can provide better presentations of characteristics of translucency and be more 

suitable for detection and localization translucency in BCC. As we mention earlier, translucency is 

a clinical feature and it usually accounts for a small portion of the images. Therefore, using the 

whole image to predict the presence or absence of translucency is unreasonable.  

• Patches will increase the number of data points for the learning process. As we know, 

training A deep neural network needs a large amount of data. Lack of labeled data is the common 

challenge of the medical image analysis problems. Patching is a good way to increase the dataset. 

• Patches will decrease the dimensionality of input data so that the network can be carried 

efficiently.  
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3.2   Method one: A CNN-based framework 

In recent years, CNN becomes the most popular method for computer vision tasks and also achieves 

superior performances for these tasks such as face detection [44], image classification [46] and 

object recognition [45].  Therefore, there is an increasing trend of applying CNN in medical image 

analysis tasks [37, 47-48]. CNN is a data-driven method which can learn distinctive features 

directly from the raw data so that the requirement of domain knowledge can be reduced. In addition, 

according to its special structure, CNN can extract high-level and robust features in layer-by-layer 

manner with a low computational cost. Therefore, we decide to take an advantage of CNN and 

apply a CNN to our study.  

CNN is different from a traditional neural network. CNN contains a special kind of layer, 

convolutional layer, which can extract features directly from the inputs by using a set of 

convolutional filters across over the inputs. These learned features make a contribution to the final 

classification. There are two properties of a convolutional layer: weight sharing and partial 

connectedness [36]. These properties greatly reduced the number of parameters. Another special 

layer of CNN is a pooling layer which down-samples the inputs. It decreases the dimension of the 

inputs, thereby reducing the number of parameters as well. These two kinds of layers make the 

learning of CNN extremely efficient. So, it allows network going deeper with a reasonable 

computational time. Finally, fully-connected layers, which are connected at the end of network, 

provide a combination of features for making the final detection. The details of the proposed CNN 

method will discuss in the following sections. 

 

3.2.1   Overview of the proposed method 

In this study, we proposed a CNN-based framework for detecting translucency automatically. The 

diagram of the proposed method is illustrated in Figure 3.1. From the diagram we can see that a 
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CNN is applied to labeled patches. Patches are labeled as translucent or non-translucent by expert 

dermatologist according to the presence or absence of translucency. Then patches are fed into the 

CNN. The CNN learns high-level features directly from the patches and makes predictions for 

translucent or non-translucent of patches with a softmax function. 

 

Figure 3.1 Diagram of CNN-based framework 
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3.2.2   Architecture of CNN 

 

 

Figure 3.2 Architecture of the designed CNN 

 

The architecture of CNN is shown in Figure 3.2. There are two convolution blocks and a classifier 

block contained in CNN. In each convolutional block, two 3 ´ 3 convolutional layers are stacked 

and a max pooling layer with size of 2 ´ 2 followed at the end of the block. There are 32 feature 

maps and 64 feature maps generated from first and second convolution block separately. Therefore, 

the output of first convolution block is 32 feature maps with size of 15 ´ 15 and 64 feature maps 

with size of 6 ´ 6 are generated from second convolution block. The classifier block consists of 

two fully-connected layers. The first fully-connected layer contains 256 neurons. The last fully-

connected layer is the output layer which equipped with a softmax function as its activation 

function. The number of neurons in the last fully-connected layer is required to be same as the 

number of classes [28]. In our case, it is a binary classification problem, thereby the number of 

neurons is 2.  With the help of the softmax function, the output layer gives the probabilities of two 

classes so that patches can be categorized to be translucent or non-translucent with the highest 
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probability. Totally, there are four convolutional layers, two max-pooling layers and two fully-

connected layers in our CNN.  

As we know, different tasks require different architectures of CNN. The choice of the 

architecture of CNN in our study depends on the number of images in our dataset and their sizes. 

Because we do not have a large amount of data point, we cannot choose an overly deep architecture 

of CNN which may cause the overfitting. Since the size of our images is only 32 x 32, we choose 

a small filter size. Moreover, the final decision of the architecture is based largely on the experiment 

results in our preliminary work. 

 

3.3   Method two: A SSAE-based framework 

In method one, we proposed a CNN-based method to detect the translucency of basal cell 

carcinoma. CNN is a supervised model which is training by a set of labeled data. Nowadays, the 

amount of labeled medical images in general is far from the needs of scientific research. Therefore, 

the unsupervised learning methods gradually attract people’s attention. Stacked sparse autoencoder 

(SSAE) is one of the most common used unsupervised learning methods. It is a type of deep neural 

network which can learn high-level features through reconstruct the input at output layer [52]. 

SSAE can be trained by a large number of unlabeled data and learns features directly from the raw 

data. Thus, in method two, we proposed a framework based on SSAE in order to take its advantage 

for our study. Unlike CNN which is a partial connected network, SSAE is a fully-connected neural 

network where an encoder represents the original image at the input layer and a decoder reconstruct 

the original image at the output layer [38]. And high-level features are learned through the hidden 

layers. 
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In this study, the proposed method can learn the high-level features directly from a set of 

unlabeled images by SSAE and fed the learned features into a classifier to make a translucency 

detection. The details of the proposed SSAE-based method will discuss in the following sections. 

 

3.3.1   Overview of the proposed method 

In this study, we proposed a SSAE-based framework for automatic translucency detection. The 

diagram of proposed method is shown in Figure 3.3. From the diagram we can see that SSAE are 

applied by patches. SSAE learned high-level features directly in an unsupervised manner from the 

input patches. The features are then fed into a softmax classifier, which, however, run in a 

supervised manner. Softmax classifier provides the probability of each class where the patch 

belongs to and categorizes patches into one of the label classes with the highest probabilities. Then 

method predicts each patch is translucent or non-translucent in a framework combining both 

unsupervised and supervised learning. 

 

Figure 3.3 Diagram of SSAE-based framework 
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3.3.2   Sparse autoencoder 

As describe in Chapter 2.3, autoencoder is a deep learning method which can learn high-level 

features in an unsupervised manner. It reconstructs the input data at the output layer in order to 

discovery a hidden feature representation of the input data [34]. Therefore, the autoencoder 

attempts to find the function hU,V x ≈ x which will reconstruct the input x as x , where W is the 

weight of each hidden neuron and b is the bias [49]. A sparse autoencoder is a type of autoencoder 

with a sparsity constraint which will be discussed below. The same as the autoencoder, using a 

back propagation algorithm to train the sparse autoencoder, the optimal (W,b) will be learned by 

minimizing the discrepancy between the input x and its reconstruction x. The cost function of 

training a sparse autoencoder is [25]: 

JWXY = 	
1
N	 (x[\ −	x]\):	

^

[RS

_

\	RS

+ 	h||W||: + 	b KL(r||rc)
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dRS
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where the first term is the mean square error term which describes the error between the input data 

and its reconstruction. N is the number of the input data and the H is the number of hidden neurons. 

The second term is a weight decay term which aims to decrease the magnitude of the overall neuron 

weight in order to avoid overfitting. h is the attenuation coefficient of the weigh decay. The third 

term is the sparsity constraint term which constrains the average activation value of each hidden 

neuron to be close to zero. r is the desired activation, a free sparsity parameter, which determines 

the proportion of neurons being active and r’ is the average activation of jth hidden neuron. The 

aim of sparse constrain is to minimize rj using Kullback-Leibler (KL) divergence, KL(r||rd), 

between ρj and ρ. KL measures the difference of two distributions with the formulation: KL(r||rd) 

= rlog r

rh
+ 1 − r log S9r

S9rh
 . b controls the weight of this penalty term. 
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3.3.3   High-level features learning through SSAE 

A stacked sparse autoencoder is a neural network consisting of multiple layers of sparse 

autoencoders in which features are learned layer-by-layer [39]. The output of each layer is wired 

to the input of the successive layer [39]. For the purpose of detecting translucency from BCC we 

considered to use a two-layer sparse autoencoder. The architecture of the translucency detection 

framework is demonstrated in Figure 3.4. 

As Figure 3.4 shows, the color input patches (32 x 32 x 3) are fed into the first layer that 

are transformed to the feature representations h1 as the result of first layer training. Then the second 

layer is fed with the new feature representations to learn the high-level features h2. Finally, the 

high-level features learned from SSAE acts as the input to the softmax classifier for translucency 

detection. 

 

Figure 3.4 The proposed framework of the stacked sparse autoencoder and softmax classifier for detecting 

translucency 
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3.3.4   Translucency detection through softmax classifier 

Softmax classifier is a supervised learning method which is a generalization of logistic regression 

[39]. Softmax categorizes the newly learned features into one of the label classes which has the 

highest probabilities. For instance, the classifier produces the probability of the presence of 

translucency in an input patch t=1 as follows: 

P t = 1 z = 	
1

1 + e9k	 

where z is the learned high-level feature.  

And the softmax classifier is trained by minimizing the cross-entropy between the estimated 

class q and the true class p: 

H =	
1
N p[dlogq[d + (1 − p[d)

n

[RS

log
_

dRS

1 − q[d , 

where N is the total number of inputs and C is the number of classes. In our study, it is a binary 

classification problem, thus, C is 2. 

For training the softmax classifier, the high-level features learned from SSAE, which regard 

as the input, are fed into the classifier with the associate labels since softmax learns in supervised 

manner. Then softmax classifier will ready for detecting translucency according to the calculated 

probability of patches contain translucency. 

 

3.4   Conclusion 

In this chapter, we proposed two deep learning frameworks in order to achieve translucency 

detection of BCC automatically. The first one is CNN-based framework and the other one is SSAE-

based framework. Both methods are applied to patches. For CNN-based framework, CNN learns 

the high-level features directly from the patches and with the help of the softmax function to make 
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predictions for presence or absence of translucency in patches. For SSAE-based framework, the 

high-level features learned from SSAE and are fed into a softmax classifer. Then the softmax 

classifier categorizes the newly learned features into translucency or non-translucency which has 

the highest probabilities. 
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Chapter 4: Translucency detection of Basal cell carcinoma in Dermoscopy 

images 

Previous works [22, 23] related to translucency of BCC mainly examined image properties of 

translucent area in BCC that towards to discriminate BCC from other skin cancers. In [22], six 

color features and six texture features were analyzed from manually selected translucent areas and 

the features were used to classify BCC. In [23], a texture-based segmentation method is proposed 

which based on the manually selected features of translucency. Both works rely handcrafted 

features. In this chapter, two proposed frameworks which based on deep learning methods attempt 

to detect translucency of basal cell carcinoma in dermoscopy images automatically. Both methods 

are data-driven methods which can learn high-level features directly from input data. 

 

4.1   Dataset  

In this study, the dataset consists of 200 dermoscopy images of basal cell carcinoma from the 

University of Missouri. The size of images is 1024´728 pixels. The diagnoses of the lesions are 

included with the skin images. Figure 4.1 illustrates examples of dermoscopic BCC images. 
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Figure 4.1 Examples of dermoscopy basal cell carcinoma images 

 

4.2   Patching and Labeling 

In this research, we decided to use a patching strategy to detect translucency of BCC automatically. 

For the purpose of training, all patches were labeled. However, labeling patches one by one is 

extremely hard and time consuming. Therefore, we first segmented translucency manually from 

images and then divided them into patches.  

In our dataset, all images were manually segmented by an expert dermatologist. Examples 

of segmentation results are shown in Figure 4.2. The area within the red border is translucent and 

the area outside the red border is non-translucent. Then we divided the images into non-overlapped 

32 ´ 32 patches from the top-left corner of an image. If the patch contained any translucent pixel, 

it was labeled as 1 which is a translucent patch. If the patch was entired from the non-translucent 

area, it was labeled by 0 which is a non-translucent patch. The examples of patches are shown in 

Figure 4.3. 
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Figure 4.2 Examples of translucency segmentation in dermoscopy images by doctor 

 

4.3   Training and testing set preparation  

Totally we have 200 images. 160 images in the dataset were randomly selected as the training set 

which accounts for 80% of the images in the dataset. The rest 40 images were grouped into the 

testing set. 

All images, both in the training set and testing set, were divided into non-overlapped 

patches of size 32´32 pixels which the size is large enough to present the features of translucency 

and small enough for localization later. The procedure of patch generation is followed Chapter 4.2. 

In the training set, the total number of patches was 25016 that 8141 patches were translucent and 

16875 patches were non-translucent. In the testing set, 1740 patches were labeled as translucent 

and 4191 patches were labeled as non-translucent.  
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Figure 4.3 Examples of translucent(left) and non-translucent patches(right) of dermoscopy images 

 

4.4   Study one: Automatic detection of translucency via a Convolutional neural network 

In this study, the CNN-based framework which described in Chapter 3.2 was applied. First, 

dermoscopy images were divided into patches with associate labels. Then the patches were fed into 

the designed CNN. The CNN learned the features of translucency from the patches directly and 

made decisions whether the patches were translucent or not. The details of experiments are 

described as followed sections.  

 

4.4.1   Experimental setting 

For all experiments, the initial weights of the CNN were randomly generated with a uniform 

distribution. The dropout ratio of 0.25 was used for each convolution block and the value of 0.5 

was used for the fully-connected layer. The model was trained for 80 epochs because the 
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convergence can be seen with 80 epochs.  The model loss of CNN method is shown in Figure 4.4. 

The batch size was 16 and momentum was 0.9. 

All experiments were implemented on Keras framework using a tensorflow backend and 

ran on a PC with an Intel core i7 processor, 16GB of RAM and a GeForce GTX NVIDIA Graphics 

Processor Unit.  

 

Figure 4.4 The model loss of CNN method 

 

4.4.2   Experiment result 

We used a metrics, which includes sensitivity, specificity, PPV, NPV, and accuracy, to evaluate 

the performance of the proposed method. The result is shown in Table 4.1 and the Receiver 

Operating Characteristic Curve (ROC) of the proposed method is shown in Figure 4.5. From Table 

4.1 we can see that the proposed method achieved the accuracy of 77.8%. The sensitivity and PPV 
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were only 51.8% and 65.6%, respectively. From Figure 4.6, The Area Under the Curve (AUC) was 

74.3%.  

 

 Sensitivity Specificity PPV NPV Accuracy 

CNN method 0.518 0.888 0.656 0.814 0.778 

 

Table 4.1 The quantitative result of translucency detection in dermoscopy images using CNN-based method 

 

 

Figure 4.5 The ROC curve for translucency detection in dermoscopy images using CNN-based method 

 

The experiment showed that CNN could be a fair translucency detector for BCC using 

dermoscopy images. Although the accuracy of the proposed method was almost 80%, the 

sensitivity and PPV were low. Sensitivity is the proportion of translucency detected among all true 

translucent patches. In this result, it means that a large number of translucent patches, about 48.2%, 
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was not detected. PPV is the proportion of the truly translucency detection among all detected 

results. In our case, only 65.6% of detected translucent patches were true positives.  However, 

specificity and NPV were high at 88% and 82%, respectively. 

 

4.5   Study two: Automatic detection of translucency via a SSAE-based framework 

In study one, we used the CNN-based framework to detect translucency. However, the result was 

less than our expectations. Therefore, in this study, the SSAE-based framework, which described 

in Chapter 3.3, was attempted to detect translucency in dermoscopy BCC images again. Also, the 

patches, generated from the dermoscopy images, were applied to the SSAE network. The SSAE 

learned high-level features through reconstructing the patches, from the input layer, at output layer. 

Then the learned features from SSAE were fed into a softmax classifier to make a final detection 

of translucency. 

 

4.5.1   Experimental setting 

In the experiment, patch size was chosen as 32 ´ 32 pixels. The input size for the SSAE was, thus, 

32 ´ 32 ´ 3 = 3072, because all the images are RGB color images. All three color channels are 

inputted to the network simultaneously. For the successive layers of SSAE, the number of hidden 

nodes in first and second layer were chosen as h1 = 625 and h2 = 225. For two control parameters, 

the sparsity parameter b was set to 4 and the weight decay parameter h was set to 0.001. r which 

is the desired activation parameter was set to 0.05. Initialization of bias and the weight of each 

neuron were random at the beginning of training. All experiments were performed on a PC with an 

Intel core i7 processor, 16GB of RAM and a Geforce GTX NVIDIA Graphics processor Unit.  
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4.5.2   Experiment result 

The result is shown in Table 4.2 and the Receiver Operating Characteristic Curve (ROC) of the 

proposed method is shown in Figure 4.6. From Table 4.2 we can see that the proposed method just 

achieved the accuracy of 78.6%. The sensitivity and PPV were only 52.0% and 70.1% respectively.  

 

 Sensitivity Specificity PPV NPV Accuracy 

CNN method 0.520 0.902 0.701 0.810 0.786 

 

Table 4.2 The quantitative result of translucency detection in dermoscopy images using SSAE-based method 

 

 

Figure 4.6 The ROC curve for translucency detection in dermoscopy images using SSAE-based method 

From the results, the performance of the SSAE-based framework was also unexpected. The 

low value of sensitivity means only 52% translucent patches were detected. Also, only 70.1% of 
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detected translucent patches were correct detection according to the value of PPV. We cannot say 

the method achieved an excellent performance on translucency detection of BCC in dermoscopy 

images as well. However, the specificity and NPV were high. 

 

4.6   Discussion 

In this study, we use two proposed deep learning methods to detect translucency of BCC in 

dermoscopy images. However, both results were not satisfactory. In this section, we will discuss 

the possible reasons for unexpected results. From analyzing the failure cases, we could summarize 

four possible reasons. 

Firstly, we find the translucency detection failed in pigmented BCCs. Figure 4.7 illustrates 

some of the failure cases.  
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Figure 4.7 Examples of translucency detection in pigmented BCC. 
Top: Original dermoscopy image. Middle: Manually segmented translucency in dermoscopy images. Bottom: 
Translucency detected results on dermoscopy images. The yellow blocks are the detected translucent patches by our 
proposed method. 
 
 

Pigmented BCC accounts for around 8% of all BCCs [40]. In our dataset, there are 25 

pigmented BCC with translucency. The pigmented BCC is greatly different from the other types 

of BCC like size, color, and structure of the lesion [41]. The translucency in pigmented BCCs is 
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highly pigmentation which is different from the translucency in non-pigmented BCCs. Figure 4.8 

illustrates the features of translucency extracted from pigmented BCCs, non-pigmented BCCs and 

both kinds of BCCs by using SSAE. All the features are selected from the learned features in the 

first hidden layer of SSAE. From the Figure 4.8 we can see that the features of translucency are 

extremely different between pigmented BCCs and non-pigmented BCCs. Therefore, it is hard to 

find the common features which could detect translucency in both kinds of BCCs. From Figure 4.8 

we can see that the common features of translucency which extract from both pigmented BCC and 

non-pigmented BCC are more similar to the translucent features extract from non-pigmented BCC 

rather than the features extract from pigmented BCC. Therefore, it is hard to detect translucency in 

pigmented BCC using common features of translucency. 

 

Figure 4.8 Features of translucency extracted from pigmented BCC(middle), non-pigmented BCC(left) and 
both types of BCC(right) 
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Secondly, we find translucency detection depends on the presence of vessels. Some 

examples of such results of translucency detection in dermoscopy images are shown in Figure 4.9. 

  

Figure 4.9 Examples of translucency detection in dermoscopy images 
Top: Original dermoscopic images. Middle: Manually segmented translucency in dermoscopy images. Bottom: 
Translucency detected results. The yellow blocks are the detected translucent patches by our proposed method.  
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The detection results in Figure 4.9 are not bad. However, we find that the majority of 

detected translucent patches includes vessels but the missing patches did not include vessels. Blood 

vessels is one of the most important dermoscopy features of BCC [43]. Dermoscopy enables us to 

observe the structure of vessels which is unable to be seen by naked eyes, and translucency makes 

the skin become transparent so that vessels are easier to be observed. Near 80% translucent patches 

contain vessels. As a powerful biomarker, vessels may be seen as an important characteristic of 

translucency by proposed methods which select the translucency features automatically. Thereby, 

translucent patches are easier to detect when they contain vessels. However, not all translucent 

patches include vessels and the missed detection of these patches influences the performance. The 

examples of vessels present within and without translucent patches are shown in Figure 4.10 

 

Figure 4.10 Examples of translucent patches with and without vessels 
Left: Translucent patches contain vessels. Right: Translucent patches do not contain vessels. 
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Thirdly, we find that the translucent area which near the edge of a lesion are harder to be 

detected. Some examples are shown in Figure 4.11. From the Figure 4.11 we can see that the 

majority of detected translucency are near the center of the lesion and the most translucency which 

are not detected are in surrounding area of the lesion. Patches near the edge of the translucent area 

may contain both translucent and non-translucent features so that the detection of this kind of 

patches are difficult. 

 

Figure 4.11 Examples of translucency detection in dermoscopy images 
Top: Original dermoscopic images. Middle: Manually segmented translucency in dermoscopy images. Bottom: 
Translucency detected results. The yellow blocks are the detected translucent patches by our proposed method.  
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Finally, the presence of artifacts will affect the performance of translucency detection. The 

main artifacts of dermoscopy images are immersion oil bubbles and hairs [42]. The detection by 

our methods is based on the automatic learned features of translucency. Obviously, the presence of 

artifacts on the translucent area influences the features extraction and recognition on translucent 

area so that the detection accuracy will be affected. Figure 4.12 illustrates the poor results of 

translucency detection in two dermoscopy images where the immersion oil bubbles and hairs are 

present. 
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Figure 4.12 Examples of translucency detection in dermoscopy images with artifacts such as bubbles and hairs. 
Top: Original dermoscopy images. Middle: Manually segmented translucency in dermoscopy images. Bottom: 
Translucency detected results. The yellow blocks are the detected translucent patches by our proposed method.  
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4.7   Conclusion 

In this chapter, two proposed methods were used to detect translucency of BCC in dermoscopy 

images. One was based on CNN and the other one was based on SSAE. However, both results were 

disappointing. Therefore, we analyzed the failure cases and found four possible reasons for fair 

performance. First, translucency detection failed in pigmented BCC. Second, translucency 

detection of BCC is affected by other features of BCC such as vessels. Third, the translucent 

patches near the edge of lesion is hard to be detected. Finally, the presence of artifacts in BCC 

influenced the accuracy of translucency detection. 
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Chapter 5: Translucency detection of Basal cell carcinoma in clinical images  

Previous works in automatic detection of translucency in BCC have been done by using 

dermoscopy images. However, the results were not as good as our expectation. Clinical images, 

taken by color digital cameras, are another type of images used for diagnosis of BCC. Unlike 

dermoscopy, which is often pressed against a skin lesion and leads to distortion of the skin surface 

and color appearance, clinical images are captured free from skin contact, and, hence, free of 

distortion of the translucency feature. Thus, the performance of translucency detection in clinical 

images should potentially be better than the performance in dermoscopy images. 

In this chapter, we apply the two proposed methods for detecting translucency of BCC in 

clinical images. 

 

5.1   Dataset and pre-processing 

The dataset we used consists of 32 clinical images of basal cell carcinoma collected from 32 

patients in Vancouver Skin Care Centre. Figure 5.1 illustrates examples of clinical basal cell 

carcinoma images. The size of images is 3008 ´ 2000 pixels. The targeted lesion is near the center 

of the image and each lesion has a different magnification. All cases were confirmed by 

histopathological examinations. 

 

 

Figure 5.1 Examples of clinical basal cell carcinoma images 
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5.1.1   Generating of ROIs 

From the examples of clinical basal cell carcinoma images shown in Figure5.1, we can see that the 

lesion accounts for a small portion of the image, which surrounded by many irrelevant structures 

like hair, nose, eyes and so on. A large number of irrelevant data would affect the accuracy of the 

detection result. Therefore, we focused on region of interests (ROIs), which were created by 

bounding boxes. The ROIs contain the target lesion with the surrounding skin. The size of each 

ROI depends on the size of targeted lesion in original clinical image. Three examples were shown 

in Figure 5.2. The size of ROI image on the left is 704 ´ 800 pixels, the size of ROI image in the 

middle is 1120 ´ 1216 pixels and the size of ROI image on the right is 1120 ´ 1248 pixels. 

 

 

Figure 5.2 Examples of ROIs generating 
Top: Images are original clinical basal cell carcinoma images with the bounding box. Bottom: ROI images 

 

5.1.2   Patching and Labeling 

As well, in clinical images, we still use the same patching strategy to detect translucency as 

described in Chapter 4. The translucent areas in clinical images were first segmented manually by 
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an expert dermatologist. Examples of translucency segmentation are shown in Figure 5.3. The area 

within the red border was translucent and the area outside the red border was non-translucent. Then 

we divided the images into non-overlapped patches starting from the top-left corner. If a patch 

contained any translucent pixel, it was labeled to 1, indicating a translucent patch. If a patch 

contained entirely non-translucent piexles, it was labeled as 0 which was a non-translucent patch. 

  

Figure 5.3 Examples of translucency segmentation in clinical images by doctor 

 

The total number of patches were 4401; there were 797 translucent patches and 3604 non-

translucent patches. Figure 5.4 shows the examples of translucency and non-translucency patches 

generated from clinical images.  
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Figure 5.4 Examples of translucent patches and non-translucent patches of clinical images 
Left: Translucent patches. Right: Non-translucent patches. 
 

 

5.2   Study one: Automatic detection of translucency using a Convolutional neural network 

In study one, the same proposed CNN was used for translucency detection in clinical images. The 

details of the method are described in Chapter 3.2. The patches generated from BCC clinical images 

were fed into the CNN and it learned high-level features from the input patches and made the final 

classification with the help of a softmax function. In following sections, we present the experiments 

and discuss the results. 

 

5.2.1   Experimental setting 

For all experiments, the initial weights of the CNN were randomly assigned by values with a 

uniform distribution. The dropout ratio of 0.25 was used for each convolution block and the value 

of 0.5 was used for fully-connected layer. The model was trained for 50 epochs since the error 
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convergence will be seen within 50 epochs. The model loss of CNN method is shown in Figure 

5.5. The batch size was 32 and momentum was 0.9. 

All experiments were implemented based on a Keras framework using a tensorflow 

backend and ran on a PC with an Intel core i7 processor, 16GB of RAM and a GeForce GTX 

NVIDIA Graphics Processor Unit.  

 

Figure 5.5 The model loss of CNN method 

 

5.2.2   Experiment result 

Applying the proposed convolutional neural network with a five-fold cross-validation to the 

patches, the result of translucency detection is illustrated in Table 5.1. From the Table1 we can see 

the method achieved an accuracy of 0.931, a sensitivity of 0.757, a specificity of 0.99, a PPV of 

0.945 and a NPV of 0.937.  
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 Sensitivity Specificity PPV NPV Accuracy 

CNN method 0.757 0.990 0.945 0.937 0.931 

 

Table 5.1：Results of translucency detection in clinical images using CNN-based method 

 

The results of translucency localization in clinical images are shown in Figure 5.6. The 

translucency localization is based on the detection results which used the patch strategy. Thus, the 

localization works for patches as well. First, we divided a test image into patches and predicted 

each patch was translucent or not. If the patch was translucent, we marked the patch as a yellow 

mask. Therefore, the part of the test image that is highlighted by a yellow block was the detected 

location of translucency. The lesions used in the localization analysis were randomly selected from 

different type of basal cell carcinoma.  
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Figure 5.6 Translucency localization results of Basal cell carcinoma in clinical images using CNN-based 
method 
Top: Original clinical basal cell carcinoma images. Middle: Manually segmented translucency in clinical images. 
Bottom: Translucent patches localization of basal cell carcinoma in original clinical image. The yellow blocks are the 
detected translucent patches by CNN method. 
 
 

From the experiment results, we demonstrated that the convolutional neural network works 

well in detecting translucency of clinical images. Also, the experiment results demonstrated the 

proposed convolutional neural network enable to localize the translucency in clinical image based 

on the detection results. 
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5.3   Study two: Automatic detection of translucency using a SSAE-based method 

In study one, the proposed CNN method achieved an outstanding performance. In this study, we 

applied the SSAE-based method, described in Chapter 3.3, to detect translucency of BCC in clinical 

images. First, the clinical images were divided into patches. The patches were applied to the SSAE. 

The SSAE method learned high-level features directly from pixel-level from the patches in an 

unsupervised manner; then the learned features were fed into a softmax classifier to make a final 

detection. In following section, we present the experiments and discuss the results.  

 

5.3.1   Experimental setting 

In the experiment, the input size of the deep network was 32 ´ 32 ´ 3 = 3072. Because all the 

images were RGB, all three color channels were inputted to the network simultaneously. For 

successive layers of SSAE, the number of hidden nodes in first and second layer were chosen h1 = 

225 and h2 = 100. For two control parameters, the sparsity parameter b was set to 4 and the weight 

decay parameter h was set to 0.001. r which is the desired activation parameter was set to 0.05. 

Initialization of bias and the weight of each neuron were randomly assigned at the beginning of 

training. All experiments were performed on a PC with an Intel core i7 processor, 16GB of RAM 

and a Geforce GTX NVIDIA Graphics processor Unit.  

 

5.3.2   Experimental results 

We applied the proposed SSAE-based method with a five-fold cross-validation to the patches 

generated from the dataset. The result of translucency detection is illustrated in Table 5.2. The 

SSAE-based method achieved an accuracy of 0.93, a sensitivity of 0.770, a specificity of 0.971, 

PPV of 0.873 and NPV of 0.942. The Receiver Operating Characteristic Curve (ROC) of the 
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proposed method is shown in Figure 5.7. 

 

 Sensitivity Specificity PPV NPV Accuracy 

SSAE+SMC 0.770 0.971 0.873 0.942 0.930 

 

Table 5.2 Results of translucency detection in clinical images use SSAE-based method 

 

 

 

Figure 5.7: the ROC curve for translucency detection of SSAE-based method 

 

5.3.3   Discussion 

In this study, we proposed a SSAE-based framework to detect translucency in BCC. There were 

two key points affecting the performance of the proposed method. The first one was the number of 



 53 

nodes in each hidden layer of SSAE and the other one was the size of patches. To achieve the best 

performance, we performed many experiments to evaluate different combinations. 

The number of hidden nodes: In this study, we used two layers of SSAE so that we needed 

to decide the number of nodes for each hidden layer. To find the proper combination of the nodes 

number for two layers, we attempted three combinations: First, we set 625 nodes in first hidden 

layer and 225 nodes in second hidden layer. Second, we set 400 nodes in first hidden layer and 100 

nodes in second hidden layer. Finally, we set 225 nodes in first hidden layer and 100 nodes in 

second hidden layer. The comparison of the quantitative performance of these three combinations 

of the number of hidden nodes is shown in Table 5.3. From Table 5.3 we can see that the 

performance of three combinations were almost the same. Only the combination that there are 225 

nodes in the first hidden layer and 100 nodes in the second hidden layer achieved a slightly higher 

accuracy. Therefore, for our study, we set 225 nodes in first hidden layer and 100 nodes in second 

hidden layer. 

 

 Sensitivity Specificity PPV NPV Accuracy 

625-225 0.743 0.973 0.880 0.939 0.928 

400-100 0.754 0.970 0.867 0.941 0.928 

225-100 0.770 0.971 0.873 0.942 0.930 

 

Table 5.3 The quantitative performance comparison of three different combinations of nodes numbers 

 

The patch size: In this study, we used a patch strategy to detect translucency in BCC. 

Therefore, the size of patches was very an important factor. To tune the patch size, we tried three 

different sizes of patches: 8×8, 16×16, 32×32 pixels. The comparison of the performance of three 
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different sizes is shown in Table 5.4. From Table 5.4 we can see that the performance of the size 

8´8 was inferior than the other two. For size 16´16 and size 32´32, they achieved almost the same 

accuracy but the former had a higher specificity and PPV and the latter had a higher sensitivity and 

NPV. In my opinion, when accuracy is the same, the sensitivity is the most important evaluation 

indicator. Because our purpose is to detect translucency in BCC, sensitivity is the proportion of 

correctly detected translucent patches for all translucent patches; a higher sensitive indicates the 

ability to detect higher percentage of translucent patches [39]. Therefore, for our study, we select 

32´32 as the size of patches which has the highest sensitivity value. 

 

 Sensitivity Specificity PPV NPV Accuracy 

8×8 0.687 0.964 0.856 0.920 0.928 

16×16 0.739 0.980 0.91 0.937 0.928 

32×32 0.770 0.971 0.873 0.942 0.930 

 

Table 5.4 The quantitative performance comparison of three different sizes of patches 

 

5.4   Comparison of two proposed methods 

5.4.1   The quantitative performance comparison 

The quantitative performance of the two proposed methods are shown in Table 5.5. It can be seen 

in Table 5.5, the accuracy of two proposed methods are almost the same. Therefore, to compare 

two methods, the other two statistical indicators are significant that are sensitivity and PPV. 

Sensitivity is the proportion of correct detection of translucent patches for all translucent patches. 

PPV is the ability of correctly detecting the translucency patch [39]. The greater the values of 

sensitivity, the more translucent patches are detected. In other word, there will be less missing cases. 
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Therefore, to address the detection problem which prefers a higher detection rate, and thus the 

higher sensitivity. PPV is the probability of truly translucent patches for detected translucent 

patches. PPV tells us the portion of detected translucent patches is true positives. The higher value 

of PPV means the better precision of translucency detection. For localization of translucency which 

is based on the results of translucency detection, the more accurate of detection, the better work 

can be done. Thus, for localization problem, performance is better when the value of PPV is higher. 

From Table 5.5 we can see that the SSAE-based method has a slightly higher value of sensitivity, 

which may imply that the technique would work a little better than the proposed CNN method for 

detecting the translucency of basal cell carcinoma in clinical images. On the other hand, for the 

localization of translucency of basal cell carcinoma in clinical images, the proposed CNN method 

may have a small edge than the SSAE-based method. 

 

 Sensitivity Specificity PPV NPV Accuracy 

CNN method 0.757 0.990 0.945 0.937 0.931 

SSAE+SMC 0.770 0.971 0.873 0.942 0.930 

 

Table 5.5 The quantitative performance comparison of proposed methods in clinical images 

 

5.4.2   The localization performance comparison 

The comparison of localization performance of two proposed methods are shown in Figure 5.7. 

From the Figure 5.8, we can obviously see that CNN-based method achieved better performance 

on translucency localization of BCC. 



 56 

 

Figure 5.8 Localization results comparison between two proposed methods in clinical images. 
Top one: Original clinical images. Top two: Manually segmented translucency in clinical images. Bottom two: 
Localization results using the CNN-based method. Bottom one: Localization results using the SSAE-based method. 
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5.4.3   Feature Visualization 

Both proposed methods are feature learning networks which feed the learned features into a 

classifier to predict the presence or absence of translucency in a basal cell carcinoma. Therefore, 

all detections of translucency are based on the knowledge of learned features. Visualizing the 

features which are learned from the CNN and SSAE can help us understand what features methods 

learned and how methods understood the images. Figure 5.9 illustrated some examples of features 

learned from proposed methods. Left image in Figure 5.9 shows a set of features learned from the 

proposed CNN approach and the right one shows some examples of features learned from the 

proposed SSAE framework. The examples of the features, which were learned from CNN, are 

selected from the second convolution block that were the high-level features are fed into a softmax 

classifier to make a final decision. As well, the examples of features, which were learned from 

SSAE, are selected from the second hidden layer where the high-level features are generated. From 

Figure 5.9 we can see, features learned from the SSAE framework provide a good visual feeling of 

the translucency such as the color of the lesion and the brightness of the tumor.  Whereas, the 

features learned through proposed CNN are abstract but the learned features still keep some local 

specification of translucency. 
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Figure 5.9 Examples of features learned from proposed methods. 
Left: A set of features learned from proposed CNN. Right: A set of features learned from proposed SSAE 
framework. 
 
 

5.5   Conclusion 

In this chapter, two proposed methods were applied to detect translucency of BCC in clinical 

images. The performances of the two proposed methods are similar; both methods achieved 

superior accuracy where the CNN-based method achieved an accuracy of 93.1% and the SSAE-

based method achieved an accuracy of 93%.  
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Chapter 6: Conclusion and Future work 

6.1   Conclusion and Contribution 

In this thesis, we proposed two deep learning based frameworks for detecting translucency of basal 

cell carcinoma (BCC) automatically. One framework is based on a designed convolutional neural 

network (CNN) and the other is based on a stacked sparse autoencoder (SSAE). Since the two 

common imaging modalities for skin cancer diagnosisare dermoscopy images and clinical images, 

we evaluated the proposed methods on both types of images. We note from our experimental results 

that the detection performances of the two proposed methods were similar. For detecting 

translucency in demoscopy images, both proposed methods achieved comparable, but not so 

promising, accuracy results. For detecting translucency in clinical images, both proposed methods 

could achieve a promising performance.  

In chapter 3, we developed two deep learning frameworks which aim to detect translucency 

of BCC automatically. The first one was based on a specical-designed CNN. The architecture of 

the CNN was composed of four convolution layers, two max-pooling layers and two fully-

connected layers. The other deep network was based on the SSAE framework, which contained 

two stacked layers of sparse autoecoders. 

In chapter 4, both proposed frameworks were applied to dermoscopy images. The 

performance results of the proposed frameworks were similar. The CNN-based framework 

achieved an accuracy of 77.8% and the SSAE-based framework achieved an accuracy of 78.6%. 

Both accuracy results were acceptable but did not meet our expectations. We discussed four 

possible reasons that might lead to the unexpected results. First, translucency detection seems failed 

in pigmented BCCs. Second, translucency detection of BCC is affected by other features of BCC 
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such as vessels. Third, the patches near the edge of a lesion is hard to be detected. Finally, the 

presence of artifacts in BCCs could influence the accuracy of translucency detection. 

In chapter 5, we evaluated the proposed methods on clinical images. Unlike the 

performances in dermoscopy images, both proposed methods could achieve superior accuracy of 

translucency detection in clinical images. The CNN-based framework achieved an accuracy of 93.1% 

and the SSAE-based framework achieved an accuracy of 93.0%.  

From our study, for translucency detection of BCC, I recommended to use clinical images 

rather than dermoscopy images. Dermoscopy enables the visualization of subsurface structures of 

BCC [40]. Especially some internal structures of BCC, which are not easily seen by naked eyes, 

could become clear in translucent areas under dermoscopy. These structures could complicate the 

translucency detection. However, in clinical images, subsurface structures of BCC are not visible 

so that translucency detection will be not affected. In addition, dermoscopy are often directly 

pressed against skin lesions. Such a contact action will likely cause distortion of skin surface and 

color appearance. It could affect the performance of translucency detection as well. For clinical 

images, which are taken by digital camera in a contact free manner, and, hence, free of distortion 

of translucency features. Moreover, translucency is the feature which can be seen by naked eyes. 

Therefore, there is no need to use another device such as a dermoscope to magnify the lesion along 

with its internal structures. To sum up, I think translucency detection of BCC is more suitable in 

clinical images than in dermoscopy images. 

 

6.2   Future works 

In recent years, transfer learning has been a powerful technique in image analysis tasks. It transfers 

prior knowledge of related tasks in the source domain to the new task in the target domain in order 

to achieve better performance. In this thesis, the proposed methods achieve superior performance 
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for translucency detection of BCC in clinical images but less promising performance in 

dermoscopy images. In the future, we can consider exploring transfer learning to transfer the 

knowledge of translucency learned in clinical images (the source domain) to dermoscopy images 

(the target domain) so that it may help achieve better performance in dermoscopy images. 

In this thesis, we focus on translucency detection of BCC, since it is a key function of 

computer aids systems that aim to achieve accurate diagnosis of BCC at an early stage. By using 

clinical images, our proposed methods can achieve excellent performance. Therefore, in the future, 

we will incorporate our methods into the BCC diagnosis system in clinical images by integrating 

it with or without other feature detection functions. 
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