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Abstract

Banks that use the advanced measurement approach to model operational risk may

struggle to develop an internal process that produces stable regulatory capital over

time. Large decreases in regulatory capital are scrutinized by regulators while large

increases may force banks to set aside more assets than necessary. A major source

of this instability arises from the loss severity selection process, especially when

the selected distribution families for severity risk categories change year-to-year. In

this report, we examine the process of selecting severity distributions from a candi-

date distribution list within the guidelines of the advanced measurement approach,

propose useful tools to aid in selecting an appropriate severity distribution, and an-

alyze the effect of selection criteria on regulatory capital. The log sinh-arcsinh dis-

tribution family is added to a list of common candidate severity distributions used

by industry. This 4-parameter family solves issues introduced by the 4-parameter

g-and-h distribution without sacrificing flexibility and shows promise in outper-

forming 2-parameter families, reducing the frequency of severity distribution fam-

ilies changing year-to-year. Distribution parameters are estimated using the maxi-

mum likelihood approach from loss data truncated at a known minimum reporting

threshold. Our severity distribution selection process combines truncation prob-

ability estimates with Akaike Information Criterion (AIC), Bayesian Information

Criterion, modified Anderson-Darling, QQ-plots, and predictive measures such as

the quantile scoring function and out-of-sample AIC, and we discuss some of the

challenges associated with this process. We then simulate operational losses and

calculate regulatory capital, comparing the effect on regulatory capital of selecting

loss severity distributions using AIC versus quantile score. A combination of these

two criteria is recommended when selecting loss severity distributions.
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Lay Summary

Regulatory capital is the minimum amount of capital that a bank must set aside

to cover future operational losses. The advanced measurement approach allows

banks to develop internal models to calculate regulatory capital by estimating loss

frequency and severity distributions from their internal loss data. A bank’s inter-

nal model is updated annually, so that regulatory capital reflects the bank’s current

business environment. Operational loss severity data are often dominated by low

probability, high severity events, and the annual selection of loss severity distribu-

tions is a major source for year-to-year volatility in the regulatory capital calcula-

tion. To mitigate volatility, this thesis analyzes a loss severity distribution selection

process by investigating the log-sinh-arcsinh distribution to model loss severities

and distribution selection criteria that combine relative measures of overall fit with

predictive performance of extreme quantiles.
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Chapter 1

Introduction

According to the Basel II framework (BASEL II) last updated in 2006, Operational

Risk (OR) as defined by the Basel Committee on Banking Supervision (BCBS) is

“the risk of a loss resulting from inadequate or failed internal pro-

cesses, people and systems, or from external events. This definition in-

cludes legal risk but excludes strategic and reputational risk.” [BCBS,

2006]

Thus, OR is the risk arising from execution of a company’s business functions

[Embrechts and Hofert, 2011].

BASEL II provides recommendations on banking regulations which are issued

and updated by BCBS. In this report, we focus on the Advanced Measurement

Approach (AMA) to calculate the minimum capital requirements for operational

risk. BASEL II intentionally grants banks a high degree of flexibility under the AMA

to encourage growth in the discipline [Embrechts and Hofert, 2011]. The minimum

amount of capital that a bank must set aside for one year to mitigate potential

operational losses is called Regulatory Capital (RC) and is calculated each year as

the 99.9%-quantile of the estimated total operational loss distribution. The total

operational loss distribution is commonly estimated using the Loss Distribution

Approach (LDA), which requires a bank to estimate and select distribution functions

for both the loss frequency and severity of each category of operational losses.

A major obstacle facing a bank using the LDA is to develop a procedure that
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calculates stable RC from year-to-year. Since RC must be set aside as a reserve, it

represents assets that cannot be used freely by the bank to generate revenue. Thus,

a bank has a vested interest in minimizing the probability of overestimating opera-

tional risk. Since regulators scrutinize large decreases in a bank’s RC from one year

to the next, a bank may have difficulty correcting an overestimation. Stability in

RC is a common problem faced by industry that is not well covered by operational

risk research.

A large source of RC’s instability is the loss severity distribution selection pro-

cess, which uses historical data to estimate distributions for a list of candidate dis-

tribution families and selects the “best” distribution based on some criteria. This

process is repeated annually for each risk category. When a risk category’s sever-

ity distribution changes from one family to another, the category’s contribution to

total annual operational risk is likely to change dramatically. Thus, we are inter-

ested in finding a flexible distribution family that can outperform other candidates

year-after-year.

This flexible distribution family should be able to capture various tail behaviors

and model the upper and lower tails separately. Two-parameter distribution fam-

ilies, while popular in industry, are not flexible enough to accomplish both goals.

Spliced and mixture distributions can model the two tails separately, but are usu-

ally not able to capture various tail behaviors and are thus susceptible to changing

distribution families. The four-parameter g-and-h distribution [Hoaglin, 1985] is a

highly flexible distribution commonly used in operational risk, but has many chal-

lenges in practice. To maintain the flexibility of a four-parameter family while

alleviating problems of the g-and-h distribution, we investigate the Sinh-arcSinh

Distribution (SAS) [Jones and Pewsey, 2009] as a candidate model for loss severi-

ties.

Besides the list of candidate distribution families, we also analyze criteria for

the loss severity distribution selection process. Since RC is the 99.9%-quantile

of the total annual operational loss distribution, we are interested in criteria that

assess the fit of the extreme right tail. Common estimators such as Akaike’s Infor-

mation Criterion (AIC) [Akaike, 1974] and Bayesian Information Criterion (BIC)

[Schwarz, 1978] use likelihoods that give equal weight to each observation in a

dataset and thus may overweight the central portion of the data. We investigate
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the Quantile Scoring Function (QS) [Gneiting, 2011], which allows us to assess an

estimated distribution’s performance for specified quantiles, truncation probability

estimates, and QQ-plots to aid in the selection of a loss severity distribution.

Banks struggling to calculate stable RC could be a contributing factor to the

move away from the AMA. In the next manifestation of the Basel accords, Basel

III, the AMA is being removed from the regulatory framework.

“The option to use an internal model-based approach for measuring

operational risk - the ‘Advanced Measurement Approaches’ (AMA) -

has been removed from the operational risk framework. BCBS believes

that modeling of operational risk for regulatory capital purposes is un-

duly complex and that the AMA has resulted in excessive variability in

risk-weighted assets and insufficient levels of capital for some banks.”

[BCBS, 2016]

Regardless of regulatory requirements, OR remains a potentially catastrophic

threat to a financial institution. In addition to the direct loss resulting from an op-

erational loss event, financial institutions are likely to suffer further damages due

to the loss of trust of their customers. These additional losses are considered rep-

utational losses and are specifically excluded from OR. Even as regulation moves

away from the AMA, a bank still has plenty of motivation for internal modeling of

their OR as evidenced by recent operational losses.

According to the article, “The Final Bill - financial crime” [Economist, 2016],

there have been 188 settlements since 2009 for criminal and civil prosecutions

against banks costing $219 billion as of August 2016. Eleven firms have paid

penalties in excess of 10% of their market capitalization. For example, Bank of

America has paid the most in both dollars ($77 billion) and as a percentage of its

market capitalization (50%). As a result, banks that saw opportunities for profit

by operating in countries where bribery and suspicious transactions are tolerated

are now finding the cost of operating in these environments exceed profits. More

recently, a March 2018 article in the Wall Street Journal [Strasburg, 2018] reports

that Barclays was ordered to pay $2 billion in civil penalties for fraudulently selling

mortgage securities that contributed to the 2008 financial crisis. Additionally, two

former Barclays executives were considered personally responsible for their role

3



and ordered to pay $2 million. In April 2018, Wells Fargo was fined $1 billion for

the “bank’s failures to catch and prevent problems, including improper charges to

consumers in its mortgage and auto-lending businesses.” [Hayahsi, 2018]. With so

much at stake, we believe it is in a bank’s best interest to continue to assess its OR

exposure using the highly flexible AMA.

This report presents possible modeling procedures within the AMA guidelines

and identifies assumptions and methodologies applied to the RC estimation pro-

cedure that may contribute to the variability in risk-weighted assets cited by the

BCBS. The rest of this report is outlined as follows: Section 2 reviews the LDA un-

der BASEL II and outlines our AMA for estimating the loss severity and frequency

distributions for the various severity risk categories. We also address important

challenges one may encounter when following our procedure. Section 3 presents

a simple, heuristic approach to model estimation and selection of loss severity dis-

tributions using simulated data. We select loss severity models from a candidate

list based on two different criteria, AIC and QS, and compare the impact of the se-

lection criteria on RC. All simulations and numerical analyses use the R software

available at https://www.r-project.org/. Then, we examine the issue of truncation

probability estimates. Section 4 summarizes our conclusions and suggests areas

for future research.
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Chapter 2

Loss Distribution Approach

Under the BASEL II AMA guidelines, bank activities are partitioned into eight busi-

ness lines and operational losses are categorized into seven event types. We call

the occurrence of an operational loss a loss event. Loss events are mapped to an

intersection of business line and event type, so that each loss event falls into one of

56 business line/event type intersections, called a Regulatory Risk Category (RRC).

The eight business lines are corporate finance; trading and sales; retail bank-

ing; commercial banking; payment and settlement; agency services; asset man-

agement; and retail brokerage. The seven event types are internal fraud; external

fraud; employment practices and workplace security; clients, products, and busi-

ness practices; damage to physical assets; business disruption and system failures;

execution, delivery, and process management. As an example, we look at the $2

billion penalty assessed to Barclays [Strasburg, 2018] mentioned in Section 1. The

loss amount is $2 billion occurring in year 2018 for the retail banking business

line/internal fraud event type. A loss event is limited to one event type, but may

affect multiple business lines simultaneously.

The AMA guidelines allow a bank to use another mapping, so long as it is

transparent to third parties, approved by the board of directors, and independently

reviewed. The number of internal event types and business lines may vary for

different banks and usually depends upon the size of the bank and the amount of

data available. Regardless of a bank’s internal mapping, the bank must be able to

map their historical losses to the eight business lines and seven event types outlined
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in BASEL II. A loss event has a time stamp, a loss amount, and an associated RRC.

The time stamp is usually a fiscal quarter or year and the loss amount is a positive

value. The number of loss events that occur in a particular RRC over a given time

period is called the loss frequency. The loss amount for a loss event is called loss

severity.

Throughout this report, we exclusively consider an annual loss frequency which

has many benefits. First, RC is an annual forecast so it is natural to work with

historical data on the same frequency. Secondly, the use of an annual frequency

naturally mitigates some of the reporting biases that were evidenced by the 2004

Loss Data Collection Exercise (LDCE). According to Dutta and Perry [2006], data

collected during the 2004 LDCE show both structural reporting bias and temporal

clustering of losses. Structural reporting bias is evidenced by a clear trend in loss

events over time, most commonly seen as an increase in loss events as a bank’s sys-

tems and processes for identifying operational losses improve. However, improved

systems and processes may also decrease loss events as risk is identified and mit-

igated. Structural reporting bias can also affect loss severity, since earlier systems

are more likely to catch large losses as opposed to smaller losses. The second type

of reporting bias, temporal clustering of losses, commonly manifests as a dispro-

portionate number of losses occurring on the last day of a fiscal quarter or the last

fiscal quarter in a year. Thus, an annual frequency alleviates the temporal cluster-

ing bias and structural reporting bias for data at higher than annual frequencies, but

may not completely address structural reporting bias for annual loss frequencies.

We refer to Chavez-Demoulin et al. [2015] for a promising general solution to this

problem that uses covariates to model trends in a loss frequency, but we do not

incorporate those methods here since our simulated data assume no trend.

Historical loss data are used to estimate the loss frequency distribution and the

loss severity distribution by interpreting the historical loss data as the realizations

of random variables. Using notation adapted from Embrechts and Hofert [2011],

we denote a loss event by

{
Xb,l

t,n
}
, for t = 1,2, ...,T ; b = 1,2, ...,B; l = 1,2, ...,L; n = 1,2, ...,Nb,l

t ; (2.1)

where Xb,l
t,n is a random variable for the loss severity of the nth loss event occurring
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in year t for business line b and event type l, and Nb,l
t is a random variable for the

number of losses occurring in year t for business line b and event type l. Thus, the

total annual operational loss for next fiscal year can be calculated as

ST+1 =
B

∑
b=1

L

∑
l=1

Nb,l
T+1

∑
n=1

Xb,l
T+1,n. (2.2)

The goal of the LDA is to estimate the distribution of ST+1 and calculate the 99.9%

quantile of the distribution of ST+1. This number is the bank’s RC for the next year.

The random variable ST+1 has two sources of randomness, the loss frequency

and the loss severity. The loss frequency, Nb,l
T+1, is a discrete random variable

for the number of losses in year T + 1 in business line b and event type l. The

loss severity, Xb,l
t,n , is a non-negative, continuous random variable as defined in

(2.1). When calculating RC, we follow two common assumptions in operational

risk modeling:

• The loss frequency, Nb,l
T+1, is independent of the loss severity, Xb,l

t,n , for a given

(b, l)

• Loss severities are independent and identically distributed within a RRC

The first assumption does not exclude dependence of loss frequencies or severities

across business lines/event types. The second assumption treats loss severities as

independent and identically distributed through time, so that Xb,l
t,n is independent of

both t and n.

Under an AMA, a bank must have well-documented procedures that justify the

ongoing relevance of the historical loss data included in the RC calculation. The

historical loss data should reflect all current, material activities, risk exposures,

and all relevant losses over a minimum gross loss threshold. For a bank’s internal

losses, BCBS sets the minimum threshold at $10,000. The bank’s internal loss

data must be exclusively used when estimating the loss frequency for each RRC.

When estimating loss severity distributions, however, data often contain too few

observations to reliably estimate a distribution for each RRC. Therefore, a bank

may combine losses across multiple business lines for a given event type to form

a Severity Risk Category (SRC), so long as the bank’s activities across business
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lines for a given loss event type are similar enough to justify the assumption of

a single loss severity distribution and the mapping of each loss to the standard

business line/event type matrix is disclosed. The option for a bank to create SRC’s

is explicitly stated by BCBS Supervisory Guidelines [BCBS, 2011]:

“A bank should determine the optimum balance between granularity

of the classes and volume of historical data for each class.”

While the desired number of loss events for a SRC is not given, research by Grooters

and Reinink [2013] suggests optimal sample sizes between 500 and 10,000.

Even after forming SRC’s, internal data may still be too sparse to estimate loss

severity distributions for each SRC. To address this concern, BASEL II allows a

banks’ internal data to be supplemented by an external database. If the minimum

reporting threshold of the data in the database differ from the bank’s, the higher

threshold is used and applied to all internal and external losses for that SRC. Mini-

mum reporting thresholds and losses measured in different currencies are converted

to a common currency using current exchange rates. Some external datasets in-

clude losses from banks of various sizes located all over the world, so care should

be taken to filter the data so that they are appropriate to a bank’s current business

activities both in size and scope. For example, the ORX Global Database (ORX)

contains more than 500,000 loss events whose loss amount exceeds a threshold

of e20,000. ORX contains loss events whose loss amount may be multiple times

larger than total assets held by a small to medium sized bank and should be ex-

cluded for such banks. Also, international banks may face different sources of risk

that are not relevant to a local bank. If ORX external data are used to supplement

internal SRC data, the higher ORX threshold should be applied to both internal and

external data for that SRC. Since some SRC’s may need to be supplemented by

external data and others may not, a bank may have different minimum reporting

thresholds for different SRC’s.

For the remainder of this section, we discuss a procedure that uses historical

loss data to estimate the loss frequency and severity distributions. When estimating

loss frequency and severity distributions, we use SRC’s instead of RRC’s. To avoid

confusion, a brief discussion of the mapping between RRC’s and SRC’s is presented.

For each loss event type l, a bank may combine losses across one or more
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business lines, bi1 ,bi2 , . . . ,bik , and map the associated loss severities X
bi j ,l
t,n , for

t = 1,2, . . . ,T ;n = 1,2, . . . ,N
bi j ,l
t ; j = 1,2, . . . ,k ≤ B, to one and only one SRC, r.

Thus, loss severities are pooled across time and business lines to create the histori-

cal loss data in SRC r. These pooled loss severities are treated as independent and

identically distributed random variables from some loss severity distribution, Fr.

Loss frequency distributions, however, are estimated separately for each busi-

ness line/event type, (b, l), by pooling the historical loss frequencies across time:

nb,l
1 ,nb,l

2 , . . . ,nb,l
T . From this historical dataset, we estimate each loss frequency dis-

tribution, Fb,l . Thus, the loss frequency for SRC r is a random variable,

Nr
t = N

bi1 ,l
t +N

bi2 ,l
t + · · ·+N

bik ,l
t ;

where N
bi j ,l
t ∼Fbi j ,l . In some instances, such as if N

bi j ,l
t

iid∼ Pois(λ j), the distribution

of Nr
t is easily derived as Pois(λ1 +λ2 + · · ·+λk).

Using SRC’s simplifies our notation so that losses from (2.1) can be rewritten

as

{
X r

t,n
}
, for t = 1,2, ...,T ; r = 1,2, ...,R; n = 1,2, ...,Nr

t , (2.3)

and the total annual operational loss from equation (2.2) can be rewritten as

ST+1 =
R

∑
r=1

Nr
T+1

∑
n=1

X r
T+1,n. (2.4)

2.1 Loss Severity Distributions
A loss severity distribution, modeled respectively for each SRC, has an associated

density function to describe the probability of the loss amount given an operational

loss event occurs. For our LDA procedure, we use nine loss severity distribution

families to model loss amounts for each SRC. These distributions are listed in

Table 2.1. Of these nine candidates, seven are comprised of a single distribution

to describe all loss amounts, and two are piecewise distributions. A piecewise

distribution can potentially handle a situation where loss events in the body and tail
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are driven by two unique processes. The splicing point of a piecewise distribution

is the loss amount that separates the body and tail of the spliced distribution. All

losses exceeding the splicing point fall into the tail and all losses below fall into

the body. The splicing point is treated as an additional parameter that must be

estimated.

The single distribution candidate families are selected to span various tail be-

haviors and include common distributions employed by industry. In a survey pub-

lished in 2009, BCBS reported that 33% of surveyed banks use the lognormal dis-

tribution and 17% use the Weibull distribution when modeling losses by a single

severity distribution. This same survey reported that when modeling the body and

tail distributions separately, 14% use lognormal to model the tail while 31% use

generalized Pareto [BCBS, 2009].

Since operational loss data only include losses whose loss amounts exceed a

minimum threshold, the datasets are incomplete. In particular, since we have no

information about the frequency and severity of losses occurring below the thresh-

old, the data are said to be truncated from below or left-truncated. Note that left-

truncated data differ from left-censored data, because left-censored data include

the number of observations below the minimum threshold.

There are three distinct approaches for handling left-truncated data. The first

approach, commonly referred to as the naive approach, ignores the threshold and

models the dataset as if it were complete. Evidence in the existing literature indi-

cates that this approach may underestimate both the loss frequency and loss sever-

ity simultaneously [Baud et al., 2003, Chernobai et al., 2005, Luo et al., 2007]. As

a result, the naive approach is likely to underestimate RC. The second approach

models the excess loss amount over the minimum threshold. This is referred to as

the shifted approach, since loss amounts are shifted downward by the amount of

the reporting threshold. Luo et al. [2007] states that the shifted approach underes-

timates loss frequency, but overestimates loss severity. The aggregate effect on RC

is thus uncertain. However, Dutta and Perry [2006] use this approach to effectively

produce “realistic” RC estimates using the g-and-h distribution as the loss severity

distribution, where realistic RC estimates are estimates that constitute less than 3%

of a bank’s total assets. Therefore, the shifted approach should not be completely

disregarded especially when data and expert opinion for losses below the threshold
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Distribution Notation Parameters Tail Behavior

Lognormal LGN
location: µ ∈ R

SUBEX
scale: σ > 0

Generalized
GPD

location: µ ∈ R ξ > 0 =⇒ RV

Pareto
scale: θ > 0 ξ = 0 =⇒ Exponential
tail: ξ ∈ R ξ < 0 =⇒ Bounded above

Burr BUR

shape 1: α ∈ R
RVshape 2: γ > 0

scale: θ > 0

Weibull WBL
shape: a > 0 a < 1 =⇒ SUBEX

scale: θ > 0 a > 1 =⇒ SUPEX

Loglogistic LLOG
shape: γ > 0

RV
scale: θ > 0

g-and-h GNH

location: a ∈ R
h > 0 =⇒ RV

scale: b > 0
h = 0 =⇒ SUBEX

skewness: g ∈ R
h < 0 =⇒ SUPEX

elongation: h ∈ R

LSAS

location: a ∈ R
δ ≤ 0.5 =⇒ RV

Log- scale: b > 0
0.5 < δ < 1 =⇒ SUBEX

sinh-arcsinh skewness: ε ∈ R
δ > 1 =⇒ SUPEX

elongation: δ > 0

Lognormal

LGNLGN

location: µb ∈ R

SUBEX
Body

scale: σb > 0

Lognormal
splice point: xs ∈R

Tail
location: µu ∈ R
scale: σu > 0

Lognormal

LGNGPD

location: µb ∈ R
ξ > 0 =⇒ RV

Body scale: σb > 0
ξ = 0 =⇒ Exponential

Pareto splice point: xs ∈R
ξ < 0 =⇒ Bounded above

Tail tail: ξ ∈ R

Table 2.1: Candidate distributions: A distribution has a Regularly Varying
(RV) right tail if its density decreases to 0 at the rate x−b with b > 1,
Subexponential (SUBEX) if its density decreases to 0 slower than e−x, but
faster than RV, or Superexponential (SUPEX) if its density decreases to 0
faster than e−x. For more theoretical definitions, see Foss et al. [2013].
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are unavailable. The third approach, called the conditional approach or truncation

approach, treats operational loss data as left-truncated at the minimum reporting

threshold. The truncation approach assumes the following:

• Losses below and above the minimum threshold belong to the same distri-

bution

• For SRC r, loss frequency, Nr
t , and loss severity, X r

t,n, can be treated as inde-

pendent random variables

• For SRC r, all loss severities, X r
t,n, are independent and identically distributed

random variables from the loss severity distribution, Fr.

While the truncation approach is often favored over the naive approach, see

Chapter 9 of Chernobai et al. [2007], a recent study by Yu and Brazauskas [2017]

shows that the truncation approach often leads to lower RC estimates than both the

naive and shifted approaches. Whether these lower RC estimates are more accurate

or not is still up for debate. We believe that the truncation approach introduces un-

certainty regarding the proportion of operational losses that occur below the trun-

cation point, which may have contributed to the results of Yu and Brazauskas. We

elaborate on this issue in Section 3.4.

The truncation approach estimates the loss severity distribution using only the

observed data above the reporting threshold. For n loss events exceeding the min-

imum threshold in a given SRC, assume loss amounts X1,X2, ...,Xn
iid∼ Fr, for

some loss severity distribution Fr with parameters θ ∈ Θ. For the remainder of

Section 2.1, we drop the superscript r for loss severity distributions. If we let τ

represent the minimum reporting threshold of the given SRC, where τ is always

non-random, then the conditional Cumulative Distribution Function (CDF) for a

loss given that it exceeds τ is defined by

F̃(x;Θ,τ) =
F(x;Θ)−F(τ;Θ)

1−F(τ;Θ)
. (2.5)

The conditional Probability Density Function (PDF) for a loss given that it exceeds

12



τ is

f̃ (x;Θ,τ) =
d
dx

F̃(x;Θ,τ) =
f (x;Θ)

1−F(τ;Θ)
. (2.6)

We can find the estimated unconditional CDF, F(x), and PDF, f (x), by as-

suming a parametric form for F and performing Maximum Likelihood Estima-

tion (MLE) on a sample, x, using the conditional likelihood function,

L̃(Θ;x,τ) =
n

∏
i=1

f̃ (xi;Θ,τ) =
[
1−F(τ;Θ)

]−n
n

∏
i=1

f (xi;Θ). (2.7)

Maximizing L̃(Θ;x,τ) over Θ results in distribution parameter estimates Θ̂.

We define truncation probability as the probability that a loss event’s severity

is less than or equal to the minimum reporting threshold, given a loss event has

occurred. Truncation probability is estimated for each SRC by evaluating the es-

timated unconditional CDF at the minimum reporting threshold, F(τ;Θ̂). When

using the truncation approach to estimate loss severity distributions, this estimate

is used to correct the downward bias of the historical loss event frequency for the

given SRC when simulating losses over the entire SRC distribution. See Section 2.2

for details on estimating the loss frequency.

2.1.1 Estimating Parameters for Single Severity Distribution
Candidates

Seven of the nine candidate distributions assume that all loss amounts above and

below τ in a given SRC can be estimated by a single distribution. This subsec-

tion details the estimation procedure for the unconditional candidate distribution

families: lognormal, generalized Pareto, Burr, Weibull, loglogistic, g-and-h, and

log-SaS. See Appendix A for details on the loss severity distributions and their

parameterizations.

Under the truncation approach, MLE is performed by minimizing the condi-

tional negative log-likelihood function. Given a sample, x, of n loss amounts from

a single SRC, the conditional likelihood function is given by equation (2.7). The
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conditional log-likelihood function is

˜̀(Θ;x,τ) = log
(
L̃(Θ;x,τ)

)
=−n log

(
1−F(τ;Θ)

)
+

n

∑
i=1

log
(

f (xi;Θ)
)
. (2.8)

The estimated parameters, Θ̂, are found by maximizing the conditional log-

likelihood function, or equivalently, minimizing the negative conditional log-likelihood

function, ñ`, defined by

ñ`(Θ;x,τ) =− ˜̀(Θ;x,τ).

Since we perform MLE as the minimization of the negative conditional log-likelihood

function, the maximum likelihood estimates are the solution to the following min-

imization problem,

Θ̂ = argmin
Θ

(
ñ`(Θ;x,τ)

)
, (2.9)

and thus each candidate distribution, F , has an associated estimated distribution,

F(x;Θ̂). From now on, we use likelihood function to refer to the conditional like-

lihood function from equation (2.7), and we use log-likelihood function to refer to

the conditional log-likelihood function from equation (2.8).

2.1.2 Estimating Parameters for Piecewise Severity Distribution
Candidates

In addition to the single loss severity distribution candidates, we consider two

piecewise distributions, Lognormal Body Spliced with Lognormal Tail (LGNLGN)

and Lognormal Body Spliced with Generalized Pareto Tail (LGNGPD). The spliced

distributions assume that the unobservable losses with amounts below τ follow the

distribution of the body. Let X be a non-negative random variable generated from

the piecewise distribution F , which is comprised of one distribution for the body,

Fbody, and another for the tail, Ftail . To derive the conditional PDF of a piecewise

distribution, we first derive the conditional CDF and PDF separately for the body

and the tail. For the derivation, we treat the splicing point as given, but the splicing

point is an additional parameter that must be estimated.
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Given a splicing point xs, minimum reporting threshold τ , where τ < xs, and

parameter vector Θb, the conditional CDF for the body can be written as

F̃body(x;Θb,τ,xs) = P(X ≤ x|τ < X ≤ xs)

=
P
(
τ < X ≤min(x,xs)

)
P(τ < X ≤ xs)

=
Fbody

(
min(x,xs);Θb

)
−Fbody(τ;Θb)

Fbody(xs;Θb)−Fbody(τ;Θb)

=


1 for x > xs

Fbody(x;Θb)−Fbody(τ;Θb)

Fbody(xs;Θb)−Fbody(τ;Θb)
for τ < x≤ xs

0 for x≤ τ,

where the last equality uses the condition x ≤ xs in order for an observation to be

in the body. The conditional PDF for the body follows as usual,

f̃body(x;Θb,τ,xs) =
d
dx

F̃body(x;Θb,τ,xs)

=


1

Fbody(xs;Θb)−Fbody(τ;Θb)
fbody(x;Θb) for τ < x≤ xs

0 otherwise.

The conditional CDF and PDF for the tail are derived in the same manner as

equations (2.5) and (2.6) for the single severity distributions by treating the splicing

point, xs, as the minimum reporting threshold. Treating xs as given and Θu as the

vector of tail distribution parameters, we find the tail CDF and PDF, respectively,

to be

F̃tail(x;Θu,xs) =


Ftail(x;Θu)−Ftail(xs;Θu)

1−Ftail(xs;Θu)
for xs < x

0 otherwise

f̃tail(x;Θu,xs) =


1

1−Ftail(xs;Θu)
ftail(x;Θu) for xs < x

0 otherwise.
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In order to piece the body and tail together, we consider a truncated sample, x,

of n observed loss amounts ordered from smallest to largest,

x(1) ≤ x(2) ≤ ·· · ≤ x(nb) ≤ x(nb+1) ≤ ·· · ≤ x(n),

where nb := max{ j ∈ 1,2, . . . ,n | x( j) ≤ xs}. All sample observations less than or

equal to xs are in the body of the sample, and we define the proportion of the sample

in the body as pb =
nb
n . The remaining nu observations, where nu = n−nb, are in

the tail.

To derive the conditional piecewise PDF, f̃ , we want to make sure f̃ integrates

to 1 over the support of the random loss severities. Let the parameter vector for the

piecewise distribution be Θ = [Θb xs Θu ]. Then, for a,b > 0,∫
∞

0 f̃ (x;Θ,τ) = a
∫

∞

0 f̃body(x;Θb,τ,xs)dx+b
∫

∞

0 f̃tail(x;Θu,xs)dx = a+b = 1,

with constraints ∫ xs

τ

f̃ (x;Θ,τ)dx = pb∫
∞

xs

f̃ (x;Θ,τ)dx = 1− pb.

Thus, we see that a = pb and b = 1− pb. We now have the conditional piece-

wise PDF

f̃ (x;Θ,τ) =

pb f̃body(x;Θb,τ,xs) for τ < x≤ xs

(1− pb) f̃tail(x;Θu,xs) for xs < x

=



pb fbody(x;Θb)

Fbody(xs;Θb)−Fbody(τ;Θb)
for τ < x≤ xs

(1− pb)

1−Ftail(xs;Θu)
ftail(x;Θu) for xs < x.

(2.10)

The conditional body and tail densities are used to find their respective like-

lihood functions. Then, we perform MLE separately on the body and tail of the

sample to find the piecewise distribution that maximizes the sum of the body and

tail likelihood functions. An outline of the MLE approach for each of the two piece-

wise candidate distributions follows.
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The piecewise distribution parameter vector, Θ, includes the parameters for

the body distribution, Θb, the splicing point, xs, and the parameters for the upper

tail distribution Θu. To start the MLE procedure, we restrict the set of possible

estimates of xs to the sample percentiles xp, where p = 0.3,0.32,0.34, ...,0.96, so

that x̂s ∈
{

x0.3,x0.32, . . . ,x0.96
}

. For each p, treat xp as the splicing point. The

sample is then split into a body, xb,p ∈ Rnb , and a tail xu,p ∈ Rnu , where xb,p =

{x ∈ x | x ≤ xp}, xu,p = {x ∈ x | x > xp}, and nb + nu = n. Since this process is

performed for each p, we get 34 possible estimates for the parameter vectors of the

piecewise distribution,

Θ̂p =
[
Θ̂b,p xp Θ̂u,p

]
,

where Θ̂b,p and Θ̂u,p are the estimated parameters for the body and tail distribu-

tions, respectively, given that xp is the splicing point. Finally, the piecewise dis-

tribution is determined by choosing the value of p that minimizes the negative

log-likelihood function. Details are below.

For either the LGNLGN or LGNGPD distribution, the procedure to estimate the

distribution of the body is the same. For each xp, x is separated into a body xb,p and

a tail xu,p, and the estimated parameters for the distribution of the body, denoted

Θ̂b,p, are found by minimizing the negative log-likelihood function for the body,

denoted ñ`b,p. From the conditional piecewise PDF in equation (2.10),

ñ`b,p(Θb;xb,p,τ,xp) = nb log
(
Fbody(xp;Θb)−Fbody(τ;Θb)

)
−nb log(pb)

−
nb

∑
i=1

log
(

fbody(xi;Θb)
)
,

where τ is the minimum reporting threshold determined by the operational loss

sample’s SRC. For each of the 34 estimates of the splicing point, x̂s = xp, we es-

timate the lognormal distribution for the body, Fbody(x;Θ̂b,p), by solving the mini-

mization problem

Θ̂b,p = argmin
Θb

(
ñ`b,p(Θb;xb,p,τ,xp)

)
.

The tail distribution estimation procedure differs for each piecewise candidate.

We start with LGNLGN, as the process to estimate the tail is the same as the body.
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For each xp, the estimated parameters for the distribution of the upper tail, denoted

Θ̂u,p, are found by minimizing the negative log-likelihood function for the tail,

denoted ñ`u,p. From the conditional piecewise PDF in equation (2.10),

ñ`u,p(Θu;xu,p,xp) = nu log
(
1−Ftail(xp;Θu)

)
−nu log(1− pb)

−
nu

∑
i=1

log
(

ftail(xi;Θu)
)
.

Just as for the body, we end up with 34 estimated lognormal distributions for the

tail. For each xp, Ftail(x;Θ̂u,p) is found by solving the minimization problem

Θ̂u,p = argmin
Θu

(
ñ`u,p(Θu;xu,p,xp)

)
.

After estimating the body and tail distributions for each of the 34 splicing point

estimates, we have 34 LGNLGN distributions identified by their parameters

Θ̂p =
[
Θ̂b,p xp Θ̂u,p

]
.

The estimated LGNLGN piecewise distribution parameters are found by solving

Θ̂ = argmin
p

(
ñ`b,p(Θ̂b,p;xb,p,τ,xp)+ ñ`u,p(Θ̂u,p;xu,p,xp)

)
,

where the p that minimizes the above equation also determines the estimate of the

splicing point.

The LGNLGN distribution allows for discontinuity in the PDF at the splicing

point. There are arguments both for and against continuity constraints for spliced

distributions. For example, imposing continuity constraints on a piecewise density

may not lead to a better likelihood measure of fit than allowing for a jump disconti-

nuity. On the other hand, allowing discontinuity seems to favor the fit of the tail as

splicing points tend to be chosen in the lower half of possible values. A discussion

on the decision to impose continuity constraints on a spliced distribution can be

found in Chapter 1 of Peters and Shevchenko [2015].

For the conditional LGNGPD distribution family, we force the body and tail
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distributions to be equal at the splicing point by imposing the constraint

pb f̃body(xs;Θb,τ,xs) = (1− pb) f̃tail(xs;Θu,xs)

pb fbody(xs;Θb)

Fbody(xs;Θb)−Fbody(τ;Θb)
=

1− pb

θ

[
1+ξ

xs− xs

θ

]−1−1/ξ

θ =
1− pb

pb

Fbody(xs;Θb)−Fbody(τ;Θb)

fbody(xs;Θb)
.

This constraint forces the scale parameter of generalized Pareto tail distribution, θ ,

to be completely determined by the estimated body distribution. As a result, the

scale parameter is not treated as a parameter for the LGNGPD distribution. While

this continuity constraint prevents jumps in the density, it does not require differ-

entiability of the density at the splicing point. One could impose such a constraint

using the derivatives of the conditional body and tail density functions, see Peters

and Shevchenko [2015].

Since the scale parameter for the tail distribution is determined by the log-

normal body distribution, we only need to estimate the tail parameter, ξ . For the

LGNGPD distribution, the losses in the tail of the sample are modeled as the excess

losses over the splicing point. This is the “Peaks-Over-Threshold” method in Ex-

treme Value Theory (EVT). Given this approach, EVT offers alternative approaches

for estimating the splicing point that emphasize the fit of the tail as a generalized

Pareto distribution by the use of mean residual life and parameter stability plots.

For a practical discussion with examples, see Chapter 4 of Coles [2001].

For each xp and associated estimate of the body distribution, Fbody(x;Θ̂b,p), the

estimated scale parameter for the tail distribution is calculated as

θ̂p =
1− pb

pb

Fbody(xs;Θ̂b,p)−Fbody(τ;Θ̂b,p)

fbody(xs;Θ̂b,p)
.

The estimate of the tail parameter, ξ̂ , is found by minimizing the negative log-
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likelihood function for the tail over ξ ,

˜̀u,p(ξ ;xu,p,xp, θ̂p) = nu log{1− pb}−nu log(θ̂p)

−
(

ξ +1
ξ

) nu

∑
i=1

log
(

1+
ξ

θ̂p
(xi− xp)

)
,

and

ξ̂p = argmin
ξ

(
ñ`u,p(ξ ;xu,p,xp, θ̂p)

)
.

For each xp, the estimated LGNGPD distribution has four estimated parameters,

Θ̂p =
[
Θ̂b,p xp ξ̂p

]
,

and the estimated LGNGPD distribution has parameter vector Θ̂, which is found by

solving

Θ̂ = argmin
p

(
ñ`b,p(Θ̂b,p;xb,p,τ,xp)+ ñ`u,p(ξ̂p;xu,p,xp, θ̂p)

)
,

where the p that minimizes the above equation also determines the estimate of the

splicing point.

Finally, to derive the unconditional piecewise CDF, PDF, and quantile func-

tion, we must normalize the conditional piecewise density to integrate to 1. Let

f (x;Θ) be the unconditional piecewise density with unconditional body density

fbody(x;Θb) and unconditional tail density ftail(x;Θu). Then, by letting c be the

normalizing constant,

c
∫

∞

−∞

f̃ (x;Θ,τ)dx = 1,

ca
∫ xs

−∞

f̃body(x;Θb,τ,xs)dx+ cb
∫

∞

xs

f̃tail(x;Θu,xs)dx = 1,

c
∫ xs

−∞

pb fbody(x;Θb)

Fbody(xs;Θb)−Fbody(τ;Θb)
dx+ c

∫
∞

xs

1− pb

1−Ftail(xs;Θu)
ftail(x;Θu)dx = 1,
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c
pb Fbody(xs;Θb)

Fbody(xs;Θb)−Fbody(τ;Θb)
+ c

1− pb

1−Ftail(xs;Θu)

(
1−Ftail(xs;Θu)

)
= 1,

c
pb

Fbody(xs;Θb)−Fbody(τ;Θb)

(
Fbody(xs;Θb)−0

)
+ c (1− pb) = 1,

c
Fbody(xs;Θb)− (1− pb)Fbody(τ;Θb)

Fbody(xs;Θb)−Fbody(τ;Θb)
= 1.

Finally, we arrive at the unconditional piecewise density function by multiplying

the conditional piecewise density by the normalizing constant,

f (x;Θ,τ) =



pb fbody(x;Θb)

Fbody(xs;Θb)− (1− pb)Fbody(τ;Θb)
for x≤ xs

c
(1− pb) ftail(x;Θu)

1−Ftail(xs;Θu)
for x > xs.

2.1.3 Analysis of Estimated Severity Distributions

To assess the estimation of loss severity candidate distributions, we employ quali-

tative metrics outlined by Dutta and Perry [2006]:

1. Good Fit - Statistically, how well does the method fit the data?

2. Realistic - If a method fits well in a statistical sense, does it generate a loss
distribution with a realistic capital estimate?

3. Well-Specified - Are the characteristics of the fitted data similar to the loss
data and logically consistent?

4. Flexible - How well is the method able to reasonably accommodate a wide
variety of empirical loss data tail behavior?

5. Simple - Is the method easy to apply in practice, and is it easy to generate
random numbers for the purposes of loss simulation?

One measure of model performance is Akaike’s Information Criterion (AIC) as
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developed by Akaike [1974]. The AIC is defined as

AIC =−2 ˜̀(Θ̂;x,τ)+2 k, (2.11)

where Θ̂ is the estimated distribution parameter vector as found via MLE and k is

the number of estimated parameters in the distribution. Including the number of

parameters in the AIC is an attempt to prevent selecting a model that overfits the

data. The AIC is a relative performance measure, so while it can pick which model

fits the data better than another, it cannot tell if any model is a good fit. Other

diagnostics, such as QQ-plots and density plots should be consulted for adequacy.

Another measure that compares model performance is the Bayesian Informa-

tion Criterion (BIC) as developed by Schwarz [1978]. Like AIC, the BIC allows for

a comparison across models with different numbers of parameters by incorporating

“a mathematical formula for the principle of parsimony in model building”. The

BIC is defined as

BIC =−2 ˜̀(Θ̂;x,τ)+ k log(n), (2.12)

where Θ̂ is the MLE parameter vector, k is the dimensionality of the parameter

vector, and n is the number of observations in the sample x. Compared to AIC, BIC

favors models with fewer parameters when n ≥ 8, since model dimensionality is

multiplied by log(n) instead of 2.

The final measure of fit we employ is the modified Anderson-Darling test [Sin-

clair et al., 1990], which uses the differences between empirical quantiles and es-

timated quantiles from the candidate distributions while assigning higher weights

to higher quantiles than the standard Anderson-Darling test. The idea is to mea-

sure goodness-of-fit in the tail from each candidate distribution. The modified

Anderson-Darling test statistic is calculated as

ÂD =
n
2
−2

n

∑
i=1

F̃(x(i);Θ̂,τ)−
n

∑
i=1

[
2− 2i−1

n

]
log
[
1− F̃(x(i);Θ̂,τ)

]
,

where n is the number of observations, x(i) is the ith order statistic such that x(1) ≤
x(2) ≤ ·· · ≤ x(n), and F̃(x;Θ̂,τ) is the estimated conditional CDF for the candidate
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distribution. To perform the modified Anderson-Darling test at the 95% confidence

level, we use ÂD to calculate the p-value,

pAD =

[
1+ exp

{
2.31+1.73ÂD+

0.275

ÂD
− 2√

ÂD
− 0.092

ÂD
3/2

}]−1

.

If pAD < 0.05, then the null hypothesis that the data follow the estimated candidate

distribution is rejected at the 95% significance level.

We include the results of the modified Anderson-Darling test, but QQ-plots

are preferred for their simplicity and interpretability. Especially in the case of

model misspecification, the modified Anderson-Darling test may reject a true null

hypothesis as we show in Section 3.2.3.

Forecasting ability for the estimated distributions is measured by the Quantile

Scoring Function (QS) and Out-of-Sample (OOS) AIC. Both make OOS predictions

to gauge forecasting performance. Following Gneiting [2011], let α = 0.999 be

the quantile. For a sample x of n operational losses, let x(−i), for i = 1,2, ...,n,

be the sample with the i-th observation removed. We define q(−i) as the estimated

α-quantile when the ith observation is excluded. Then,

q(−i) = F−1(
α;Θ̂,x(−i)

)
,

where Θ̂ is found by using the MLE approach outlined in Sections 2.1.1 and 2.1.2

for the sample x(−i). The quantile scoring function is defined as

S(q(−i),xi) =
1
n

n

∑
i=1

(
1(q(−i) ≥ xi)−α

) (
q(−i)− xi

)
, (2.13)

which is non-negative with values closer to zero indicating better performance.

When α = 0.999, the quantile scoring function is asymmetric, penalizing more

for severe underestimation than for overestimation. This asymmetric feature should

be particularly appealing to regulators, who want to avoid underestimation of risk.

The QS should also appeal to financial institutions, who face the possibility of ex-

tremely overestimating RC when using candidate distributions capable of modeling

heavy tail behavior, see Dutta and Perry [2006]. Since the 99.9% quantile from an
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SRC’s severity distribution is a good proxy for its contribution to RC, see Sec-

tion 3.3.2, we employ the QS when selecting a candidate distribution and compare

how this affects the RC calculation as opposed to selecting severity distributions by

AIC. Since the QS relies heavily on the MLE process, the pitfalls mentioned in Sec-

tion 2.1.4 become even more important when selecting severity distribution by QS.

This is especially true when the MLE algorithm fails to converge due to boundary

conditions which can greatly impact the tail behavior.

To see the asymmetry of the QS at α = 0.999, we look at a sample of 2500

independent and identically distributed random variables distributed uniformly be-

tween 0 and 1000. The true 0.999-quantile is 999, so the QS is minimized when we

forecast 999. Forecasts below 999 are penalized more than forecasts that exceed

999 by the same amount. Figure 2.1 plots the quantile scoring function when the

0.999-quantile is forecasted to be 899 thru 1299.

OOS AIC, denoted AICOOS, is calculated by excluding each year’s operational

losses, estimating each candidate distribution via MLE on the remaining losses, and

calculating the likelihood for the excluded year’s data. This process is repeated so

that each year’s losses have been excluded exactly once. The excluded-year likeli-

hoods are then summed and AICOOS is calculated as in equation (2.11). These sim-

ple forecasting metrics allow us to assess whether the estimated candidate distri-

bution is well-specified and flexible and when combined with QQ-plots, can gauge

how realistic the quantile estimates are for each estimated candidate distribution

family.

Finally, the truncation probability estimate, F(τ;Θ̂), may provide a simple met-

ric to gauge whether an estimated candidate distribution violates the assumption

that losses above and below the minimum reporting threshold are generated by the

same distribution. In the academic literature, the truncation probability estimate is

seldom mentioned, but we feel it is an easily interpretable signal of the appropriate-

ness of one distribution family over another when using the truncation approach.

As discussed in Section 2.1.4, large truncation probability estimates (greater than

50%) or extremely small truncation probability estimates (less than 1%) may pro-

vide evidence that a candidate distribution family is inappropriate. For example, it

may not be realistic to assume more than half of the operational losses in a given

SRC, or less than 1% of the losses occur below the threshold. Truncation probabil-
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Figure 2.1: Asymmetry of the quantile scoring function at the 0.999 quantile
penalizes underestimates more than overestimates: The solid line is the
0.999-quantile score for a sample of 2500 independent Unif(0,1000) ran-
dom variables with forecasts of integers 899 to 1299. The true quantile is
the dotted vertical line at 999.

ity estimates that are very large provide support for adopting the shifted approach

while estimates near zero provide support for using the naive approach. With-

out more data collection or expert opinion on losses below the threshold, setting

conservative bounds on the truncation probability estimate proves quite useful in

selecting from estimated candidate distributions.

2.1.4 Challenges with Maximum Likelihood Estimation for Loss
Severity Distributions

For particularly flexible distributions such as Burr and log-SaS, their associated

negative log-likelihood functions can be numerically unstable. Additionally, the

large positive skew that characterizes operational loss severity data often creates a

badly-scaled problem, where the value of the parameters differ by orders of mag-

25



nitude. These problems are hard to solve for two reasons. First, different vari-

able magnitudes make it hard to formulate reasonable stopping criteria. Secondly,

functions with variables of different magnitudes usually require more iterations to

converge. As a result, solving the minimization problem numerically may fail to

converge or converge to different local minimums depending upon the parameter

starting values.

To increase stability and alleviate the badly-scaled problem, we run our MLE

algorithm on the log-losses instead of the raw losses, where appropriate. The log-

transform is used for the lognormal, generalized Pareto, log-SaS, lognormal body

spliced with lognormal tail, and lognormal body spliced with generalized Pareto

tail distributions. Even after using log-losses, the badly-scaled problem still exists

for the Burr distribution. This issue can be further reduced through a reparame-

terization of the log transform of a Burr random variable. See Appendix A.3 for

details. To increase our confidence in convergence to a global minimum, a grid

of various starting values is used and the parameter values producing the smallest

negative log-likelihood are chosen for Θ̂.

For a sample of loss severities, x, equation (2.9) tells us that Θ̂ is the value of

Θ that minimizes ñ`(Θ;x,τ). Using log-losses y = log(x), the same Θ̂ minimizes

ñ`
(
Θ;y, log(τ)

)
. For loss severities and log-loss severities, the minimum values

of their negative log-likelihood functions differ by a constant, which is a function

of the losses. Thus, the minimum negative log-likelihood of the log-loss data can

be easily scaled to enable comparisons between candidate distributions estimated

from raw loss severity data and log-loss severity data.

Let X be a random variable for the amount of a loss from a given SRC and let

τ be the minimum reporting threshold for that SRC. Then, the conditional CDF and

PDF for the loss data are F̃X(x;Θ,τ) and f̃X(x;Θ,τ), respectively. Let Y = log(X).

The conditional CDF and PDF of the log-loss data are:

F̃Y
(
y;Θ, log(τ)

)
= F̃X

(
ey;Θ,τ

)
f̃y
(
y;Θ, log(τ)

)
= ey f̃X

(
ey;Θ,τ

)
.

The negative conditional log-likelihood functions for the loss and log-loss data
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are respectively

ñ`(Θ;x,τ) =−
n

∑
i=1

log
(

f̃X(xi;Θ,τ)
)

ñ`
(
Θ;y, log(τ)

)
=−

n

∑
i=1

log
(

f̃X(xi;Θ,τ)
)
−

n

∑
i=1

yi.

Thus, we must add ∑
n
i=1 yi = ∑

n
i=1 log(xi) back to the negative log-likelihood of the

log-loss data to make it comparable to the negative log-likelihood of the loss data.

Despite using a grid of starting values and the log-transform of random vari-

ables, the MLE algorithm still fails to converge when Gumbel-type distributions are

fit to left-truncated data exhibiting regularly varying tail behavior. In these situa-

tions, convergence is artificially stopped as one or more of the distribution’s param-

eters approach their boundaries. This situation often manifests itself in extremely

large truncation probability estimates (> 0.95). We illustrate this phenomenon, we

use asymptotic behavior of order statistics for a specific example.

When a conditional lognormal distribution is estimated by MLE from a sam-

ple that exhibits tails heavier than subexponential, the lognormal distribution can

mimic the heavier-tailed behavior of an inverse power law by sufficiently increas-

ing the truncation point. This phenomenon is exhibited by distributions in the Gum-

bel domain of attraction, which includes the lognormal, Weibull (for 0 < a < 1),

and LGNLGN distributions (see Appendix A for parameterizations). We refer to

distributions in the Gumbel domain of attraction as Gumbel-type.

Using derivations from Section 3.1 of Perline [2005], we first analytically de-

rive an asymptotic approximation to the largest order statistics of Gumbel-type

distributions. Secondly, we explicitly show that the conditional lognormal distri-

bution merely mimics an inverse power law and does not obey a true inverse power

law. Finally, we graphically show that a sample of independently and identically

distributed random variables from a lognormal distribution can mimic an inverse

power law in the upper tail at sufficiently high truncation points by comparing the

log-log plots of truncated lognormal samples to truncated Pareto samples. All ap-

proximations and conclusions are sourced from Perline [2005] unless otherwise

specified.

Let X1,1,X1,2, ...,X1,n be n independent observations drawn from a Pareto dis-
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tribution with CDF

FX(x;α) =

1−
(1

x

)α for x > 1,

0 for x≤ 1.

The order statistics of this sample satisfy

X1,(1) ≥ X1,(2) ≥ ·· · ≥ X1,(n),

and we say a sample satisfies an approximate inverse power law if the order statis-

tics obey

X1,( j) ≈
cn

jβ
,

for j = 1,2, ...,n and β ,cn > 0, where cn depends on n. The plot of the log trans-

form, log
(
X1,( j)

)
= Y1,( j), against log( j), should be approximately linear with in-

tercept cn and slope −β . This is called a log-log plot, and its simplicity motivates

our work with the log transform, Y1,( j), which has an exponential distribution with

rate parameter α . From pages 69–72 of Beirlant et al. [2004], we know the expo-

nential distribution is Gumbel-type.

If we have a sample of n independent and identically distributed random vari-

ables from a Gumbel-type distribution with CDF, FY (y;Θ), then for some fixed j

such that j� n, there exist two sequences of standardizing constants an and bn

such that,

lim
n→∞

P

{
Y(i)−an

bn

}
= exp(−e−y)

i−1

∑
k=0

1
Γ(k+1)

e−ky,

for 1≤ i≤ j. The limiting first moment convergence [Polfeldt, 1970] is

lim
n→∞

E

[
Y(i)−an

bn

]
=

γEC−∑
i−1
k=1

1
k for i > 1,

γEC for i = 1,
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for 1 ≤ i ≤ j and where γEC is Euler’s constant, limn→∞

(
∑

n
k=1

1
k − logn

)
. There-

fore, we can approximate the expected value of the largest order statistics for

Gumbel-type distributions where n is large and i = 1,2, . . . , j such that j� n, as

E(Y(i))≈

an +bnγEC−bn ∑
i−1
k=1

1
k for i > 1,

an +bnγEC for i = 1.

To find an and bn, we use Proposition 1.19 from Resnick [1987] which gives

us the equations

F(an) = 1− 1
n

; bn =
1−F(an)

f (an)
.

For exponential distribution F with rate α , we find the standardizing sequence an

as

1− e−αan = 1− 1
n

an =
1
α

log(n).

Standardizing sequence bn for the exponential distribution is

bn =
1−F

( 1
α

log(n)
)

f
( 1

α
log(n)

) =
exp
{ logn

α

}
α exp

{ logn
α

} =
1
α
.

Thus for the exponential distribution, we can approximate the first j order statistics

with the formula

E(Y(i))≈
( 1

α
log(n)+

1
α

γEC

)
− 1

α

i−1

∑
k=1

1
k
.

Since 1
α

(
γEC−∑

i−1
k=1

1
k

)
≈ − log(i), the log-log plot of the largest order statistics

of X1,(i) is approximately linear with slope − 1
α

.

Now let X2,1,X2,2, . . . ,X2,n be n independent observations drawn from a lognor-

mal distribution with parameterization given in Appendix A.1. Again, we let the
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order statistics of this sample satisfy

X2,(1) ≥ X2,(2) ≥ ·· · ≥ X2,(n).

The log transform of the jth order statistic, Y2,( j), is normally distributed with lo-

cation parameter µ and scale parameter σ . From Beirlant et al. [2004], we know

the normal distribution is Gumbel-type, so all of the above results hold, except we

need to derive the standardizing sequences an and bn for the normal distribution.

From Embrechts et al. [1997], we get

an = µ +σ
√

2logn−σ
log logn+ log4π

2
√

2logn
,

bn =
σ√

2logn
.

The most important feature is the approximate slope of the log-log plots be-

tween the Pareto and lognormal samples. While the Pareto sample has a constant

slope in the log-log plot of − 1
α

, the lognormal slope in the log-log plot, σ√
2logn

depends on sample size n and is of order O
(
1/
√

logn
)
. Thus, the largest order

statistics of the lognormal only mimic a power law.

To show this graphically, we generate 4 different samples from a Pareto dis-

tribution with parameter α = 1 of sizes n1 = 100,n2 = 400,n3 = 10,000,n4 =

100,000. The samples are then truncated at the 10%, 75%, 99%, and 99.9% quan-

tiles. Similarly, we perform the same process for 4 different samples from a lognor-

mal distribution with parameters µ =−8 and σ = 4.5. The results are presented in

Figure 2.2.

The final issue with the MLE approach is specific to the candidate g-and-h dis-

tribution family since it is the only candidate distribution family with support on

the real numbers. As a result, simulating from the estimated unconditional g-and-h

distribution can result in negative loss severities. To prevent negative losses, we

instead simulate from the g-and-h distribution truncated at zero using the uncondi-

tional MLE parameters. If selecting a g-and-h candidate distribution for a SRC, we

must be sure that the probability of a negative observation is very low. Otherwise,

the g-and-h distribution truncated at zero will overestimate the probability of an

extreme observation.

30



Figure 2.2: Power law mimicking behavior of a lognormal distribution with
sufficiently high truncation as seen from a log-log plot: The left-hand
plot shows 4 truncated samples of 100, 400, 10,000, and 100,000 in-
dependent lognormal random variables with parameters µ = −8 and
σ = 4.5, truncated at the 10%,75%,99%, and 99.9% quantiles, respec-
tively. The right-hand plot shows 4 truncated trunated samples 100, 400,
10,000, and 100,000 independent Pareto random variables with param-
eter α = 1, truncated at the 10%, 75%, 99%, and 99.9% quantiles, re-
spectively. The lognormal samples resemble the constant slope of the
Pareto samples when truncation is high enough.

While we did not encounter large probabilities of negative values in our sim-

ulations, it is not an unusual situation. In fact, such a scenario is easily created

by simulating from a Burr(α = 0.065,γ = 15,θ = 1.226) distribution, truncating

the sample at the 2.5% quantile, and fitting a g-and-h distribution to the truncated

sample using MLE. The estimated parameter vector, Θ̂mle, creates a g-and-h dis-

tribution that is nearly symmetric with extremely fat tails. The problem is that the

probability of a negative observation, F(0; Θ̂mle) is approximately 0.27. Thus, if

we use the parameter vector Θ̂mle to simulate from a g-and-h distribution truncated

at zero, the density on the positive real numbers is shifted upwards by 1
1−F(0;Θ̂mle)

,

31



which over estimates the probability of experiencing an extreme loss.

Since we know that operational loss data are almost always positively skewed,

it is reasonable to want a skewness parameter to reflect this. If we simply restrict

the skewness parameter space to avoid low positive skew, the MLE algorithm arti-

ficially stops when it hits this boundary and thus does not converge. The resulting

estimated distribution may not accurately represent the sample due to this prema-

ture stopping condition. A much more effective approach is Penalized Maximum

Likelihood Estimation (PMLE). For example, the PMLE approach that adds 1 to the

negative log-likelihood function for each percent of the distribution that falls below

zero is a minimization of the form

Θ̂pmle = argmin
Θ

(
ñ`(Θ;x,τ)+100 ·F(0;Θ)

)
,

which is modified from equation (2.9). Minimizing this function results in a dis-

tribution that is almost identical to the MLE distribution for the right tail, but has

a higher probability of experiencing a loss around the mode. This is a desirable

result, since simulating from the zero-truncated g-and-h distribution using the pa-

rameter vector Θ̂pmle has almost the same probability of an extreme loss as the

unconditional g-and-h distribution with parameters Θ̂mle. In other words, using

PMLE in this situation has a similar effect as simulating from the unconditional

g-and-h distribution with parameter vector Θ̂mle, but shifting most of the negative

probability to the mode and changing the tail very little. Results are shown in

Table 2.2 and Figure 2.3.

This is an important point, since the g-and-h distribution estimated using MLE

is essentially useless for our operational risk modeling procedure as we cannot

use it for simulations. Using PMLE leads to a more practical distribution while

maintaining the salient properties of the data. While we did not conduct specific

research into the best penalty term or criteria to penalize, it is worth noting that

methods similar to those presented here can be adopted to easily solve a rather

frustrating problem.
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Table 2.2: Proportion of distribution below zero, estimated parameters, and the
minimized negative log-likelihood when fitting the g-and-h distribution to a
left-truncated sample using MLE and PMLE.

Figure 2.3: Plot of the truncated sample density and the estimated densities un-
der the MLE and PMLE approaches on the log scale. The PMLE parame-
ters produce a right-tail that is almost identical to the MLE distribution, but
places a higher probability of a loss occurring around the mode instead of
the probability of negative losses estimated by the MLE approach.
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2.2 Loss Frequency Distributions
The estimated loss frequency distribution is used to simulate the number of loss

events that may occur next year for each business line/event type intersection cor-

responding to a given SRC. When modeling loss frequency for the LDA, only in-

ternal losses are used. Since most databases only include operational loss events

whose loss amount exceeds a minimum threshold, loss frequencies based on his-

torical data are biased downwards. Loss events with a loss severity below this

threshold occur, but are not reported in the dataset. Failure to acknowledge these

losses would underestimate loss frequency but overestimate loss severity, leading

to an uncertain impact on RC [Luo et al., 2007].

Under our AMA procedure, we estimate these smaller losses by treating the

historical data as a truncated sample, estimating the non-truncated severity distri-

bution, and estimating the truncation probability by evaluating the estimated sever-

ity distribution function at the minimum reporting threshold. Thus, we are able

to estimate the proportion of operational loss events that go unreported due to the

minimum reporting threshold. This proportion is then used to increase the loss

event frequency proportionally.

According to BCBS, the two most popular distributions for loss frequency

are Poisson followed by negative binomial [BCBS, 2011]. Trends in the annual

number of loss events can be modeled via covariates as demonstrated by Chavez-

Demoulin et al. [2015] and used for forecasting. Strictly monotone trends can also

be detected by the simple Mann-Kendall trend test [Gilbert, 1987, p. 208-217] and

exponential smoothing can be used to forecast loss events. If assuming the simplest

distribution, Poisson, for the loss frequency, the estimated Poisson rate parameter,

λ̂ , is the mean number of observable annual losses. Since this mean number of loss

events only includes losses that exceed the minimum reporting threshold, we can

derive the estimate of the Poisson rate parameter for loss events both above and

below the threshold as

λ̂
∗ =

λ̂

1−F(τ;Θ̂)
. (2.14)
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2.3 Total Annual Loss and Regulatory Capital
Estimation

BASEL II defines RC as the 99.9%-quantile of the total annual loss distribution. The

total annual loss, ST+1, given by equation (2.4) is restated below,

ST+1 =
R

∑
r=1

Nr
T+1

∑
n=1

X r
T+1,n,

where Nr
T+1 is the number of loss events in SRC r, and X r

T+1,n is the nth loss severity

in SRC r. Equation (2.4) requires forecasts of the number of loss events for SRC r

in year T +1, Nr
T+1, and each loss event’s severity, X r

T+1,n, for n = 1,2, . . . ,Nr
T+1.

Using the relevant historical loss severity data pooled across years for SRC

r, loss severity distributions are estimated for each candidate distribution family.

One of the nine estimated candidate distributions is chosen as the loss severity

distribution for SRC r. Let Fr(x;Θ̂) be the estimated loss severity distribution for

SRC r. If we assume the loss frequency distribution for observable losses in SRC

r is Poisson with estimated rate parameter, λ̂r, then the loss frequency distribution

for all loss events in SRC r is Poisson with estimated rate parameter

λ̂
∗
r =

λ̂r

1−Fr(x;Θ̂)
.

To find the loss distribution of ST+1, we use simulation. We can write the total

annual operational loss for SRC r as the sum

ST+1,r =
Nr

T+1

∑
n=1

X r
T+1,n,

and we rewrite the total annual loss as

ST+1 =
R

∑
r=1

ST+1,r.

We create N∗ simulations of ST+1,r by first simulating a sequence of indepen-

dent Poisson
(

λ̂ ∗r

)
random variables Pr

1 ,P
r
2 , ...,P

r
N∗ . For each Pr

i , we generate a
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sequence of independent and identically distributed loss severities,

X r
T+1,1,X

r
T+1,2, ...,X

r
T+1,Pr

i

i.i.d.∼ Fr(x;Θ̂).

Summing these loss severities creates N∗ simulations of annual operational losses

for SRC r, and we denote the ith simulation of SRC r’s annual loss as S(i)T+1,r. If we

rank each S(i)T+1,r from lowest to highest as 1,2, ...,N∗, we can derive the empirical

marginal distribution of ST+1,r by dividing the rank of each annual loss by N∗+1.

Repeating this process for each SRC, we can derive the R marginal distributions

for the annual operational loss from each SRC. We denote the empirical marginal

distribution of ST+1,r as FSr .

To sum across SRC’s and arrive at simulations of the total annual operational

loss, ST+1, we must account for any dependence of losses across SRC’s. This is

done by t-copulas as presented by McNeil et al. [2015]. We simulate M∗ ran-

dom vectors of dimensionality R from a multivariate t-distribution. By Sklar’s

Theorem, we can transform the t-distributed random vectors into uniform random

vectors by applying the inverse of the t-distribution function. We derive the in-

verse of each SRC’s marginal distribution, denoted F−1
Sr

, numerically using the R

function pchip() from the signal package and apply this inverse to the uni-

form random vectors. The pchip() function performs piecewise cubic Hermite

(monotone) interpolation. Finally, by summing the values of each vector we arrive

at M∗ simulations of ST+1. The 99.9%-quantile estimate of these M∗ simulations

is our estimate of RC.

36



Chapter 3

Simulation Studies

In this section, operational loss data both above and below a reporting threshold

are simulated for three unique SRC’s for the fourteen years 2004 – 2017. Each of

the SRC samples are truncated at their true distribution’s respective 2.5% quantile,

which are treated as known. The frequency and severity distributions are given in

Table 3.1.

The loss severity distributions for SRC 1 and SRC 2 are chosen from the best

candidate distributions as measured by AIC for actual operational loss data given to

the authors. For anonymity, the data are scaled before estimation was performed,

so the parameters and selected distributions are for the scaled data, but maintain the

salient properties of tail behavior, skewness, and overall shape. Finally, loss sever-

ities for SRC 3 are generated from a mixture model to examine the performance of

our estimation approach under model misspecification.

For each SRC, we look at the density plots, goodness-of-fit and prediction

statistics, the estimated truncation probability, and QQ-plots for each candidate

loss severity distribution. Severity distribution parameters are estimated using MLE

following the truncation approach. Section 3.2 presents a heuristic procedure us-

ing this information to select a loss severity distribution for each SRC. Assuming

a Poisson frequency distribution, we then calculate RC for years 2014 - 2018 in

Section 3.3.2 and compare the impact on RC when choosing loss severity distribu-

tions by AIC versus quantile score. Finally, we briefly revisit the issue of estimated

truncation probabilities.
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SRC Truncation Frequency Frequency Severity Severity
Point Distribution Parameters Distribution Parameters

1 τ = 1.167 Poisson λ = 100 Burr
α = 0.065
γ = 15
θ = 1.226

2 τ = 3.147 Poisson λ = 100 log-SaS

a = 1.06
b = 0.37
ε = 1.65
δ = 0.97

3 τ = 1.133 Poisson λ = 100

X ∼ βX1
β = 0.3

+(1−β )X2

X1 ∼ LGN
µ = 0.4
σ = 0.16

X2 ∼ Burr
α = 0.065
γ = 15
θ = 1.226

Table 3.1: Table of frequency and severity distributions used to simulate op-
erational losses for three SRC’s for fourteen years spanning 2004 - 2017.
The frequency distribution is the same for each SRC, Pois(λ = 100). The
loss severity distributions for SRC 1, SRC 2, and SRC 3 are Burr, log-SaS,
and a mixture model where component 1 is simulated from lognormal
and component 2 is simulated from Burr.

3.1 Exploratory Data Analysis
To create truncation in our data, we truncate each SRC at their known 2.5% quantile

and only use the truncated sample for the remainder of this section. Summary

statistics for the truncated SRC’s are given below in Table 3.2. As is common in

operational loss data, the data exhibit extreme right-skewness as evidenced by the

mean > median and the maximum value� the 75% quantile.

Time series plots of the annual number of observable loss events are presented

in Figure 3.1. Since all loss frequencies were simulated from a Pois(λ = 100) dis-

tribution and then truncated at the each loss severity’s 2.5% quantile, we know that

the true Poisson rate for observable losses is 97.5. We assume the loss frequency

distribution is Poisson with no trend, so any perceived trend in the loss events is

disregarded. Under each plot is the mean and variance of the number of observable
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Table 3.2: Summary Statistics for each simulated SRC named SRC 1, SRC 2,
and SRC 3, respectively. From left to right, the columns show the name of
the SRC, sample size, minimum observable loss, 25th percentile, median,
mean, 75th percentile, and maximum loss.

losses from 2004-2017.

Figure 3.1: Number of observable annual losses from 2004 - 2017 for each
SRC with the mean and variance under each plot

Figure 3.2 presents the sample densities for log-losses in the top row and the

histogram of smallest 75% of the raw losses. Since the data exhibit extreme skew-

ness, sample densities of the log-losses better highlight the differences between the

SRC’s. The histograms allow us to see whether there is a clear mode in the raw

data or if the mode may fall below the truncation point for an underlying unimodal

distribution.

For each SRC, we create 30 evenly spaced buckets ranging from the minimum

loss in each SRC to its 75% empirical quantile. Some subjectivity is needed to
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Figure 3.2: Top Row: Sample densities of the log-losses for each SRC;
Second Row: Histogram for the smallest 75% of raw losses

interpret the histograms, as modes may arise out of the number of buckets used

and not necessarily from the data. Viewing these same histograms with 25 and

20 buckets may appear to yield different stories. One thing that this visualization

can tell us is that any turn in the densities for SRC’s 1 and 2 must be sharp, since

the mode appears in the first few buckets and losses cannot be negative. If we

assume the underlying severity distribution is unimodal, we expect to have a very

low truncation point between zero and the first bucket. See Section 3.4 for further

analysis of the issues with truncation probability estimation and how one may use

these histograms in practice.

3.2 Loss Severity Distribution Estimation and Selection
In this section, we use all of the historical truncated loss data to estimate and select

distributions for each SRC. This process is somewhat subjective, since one must

use their own judgement to gauge whether a distribution seems reasonable.
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3.2.1 SRC 1

To generate losses for SRC 1, we first simulate 14 independent and identically

distributed Pois(λ = 100) random variables, one for each of the 14 years encom-

passing 2004 - 2017, inclusive. The loss frequencies for SRC 1 can be represented

as a time series {N1
t }, where N1

t
iid∼ Pois(λ = 100) for t = 2004,2005, . . . ,2017.

For each simulated loss frequency nt , we generate nt independent and identically

distributed loss severities from a Burr(α = 0.065,γ = 15,θ = 1.226) distribution

and assign them to year t. Finally, all loss severities are then truncated at τ = 1.167,

the 2.5% quantile from the true loss severity distribution.

We perform MLE on the truncated sample as outlined in Section 2.1. Figure 3.3

plots the sample density log-losses against the densities for the true loss severity

distribution and each estimated candidate distribution on the log scale. The densi-

ties shown are conditional densities to emphasize fit to the truncated sample. The

plot of the true underlying distribution against the sample gives us a good indica-

tion of how representative the sample is of its generating process. Density plots

are a good sanity check to make sure the MLE algorithm is producing reasonable

results.
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Figure 3.3: The sample density plotted against the true severity model and each estimated candi-
date distribution for SRC 1 on the log scale. The number of observations in SRC 1 is 1368,
and the smoothing bandwidth is 0.1709.
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The density plots do not rule out any candidate distributions since all esti-

mated densities seem to fit the data, but the lognormal, generalized Pareto, Weibull

and loglogistic distributions are unable to capture the mode of the sample density.

These are all 2-parameter distribution families and are typically not able to accom-

modate lower and upper tail behaviors. This is indicative of a high truncation point.

Also, the density plots do not tell us much about the fit in the extreme right tail, a

portion of the distribution that is of much interest for OR modeling, and cannot be

used to compare fit or predictive ability across models. Table 3.3 gives the trun-

cation probability estimate, BIC, AIC, modified Anderson-Darling test at the 95%

confidence level, quantile score, out-of-sample AIC, and estimated 99.9% quantile

for each estimated candidate distribution. Values from the underlying true model

are given in the first row, and all subsequent rows are sorted from best to worst AIC.

The number in parentheses in the other columns shows the rank from best to worst

within a given column. The rank for the 99.9% quantile estimate is by distance to

the true model’s 99.9% quantile. Tables 3.4 and 3.5 are analogous to Table 3.3 for

SRC’s 2 and 3, respectively.

The Burr distribution has the best fit based on AIC and BIC, passes the

modified Anderson-Daring test, a reasonable truncation probability, and the best

99.9% quantile estimate. We consider “reasonable” truncation probabilities to

be 0.01≤ F(τ;Θ̂)≤ 0.5 and excludes the lognormal, generalized Pareto, Weibull,

and loglogistic distributions. The Burr distribution also dominates the predictive

measures of the QS and out-of-sample AIC. A logical choice for the loss severity

distribution of SRC 1 is Burr.

Finally, QQ-plots give a good visualization of the fit in the right-tail and are

presented in Figure 3.4. Like the density plots, we show the QQ-plots for the true

model as well as the estimated candidate distributions. The sample quantiles are

given on the x-axis while the estimated quantiles are given on the y-axis. Thus,

points below the diagonal line indicate quantiles that are underestimated by the

candidate distribution. The QQ-plots inform us that all candidate distributions sig-

nificantly underestimate the two largest observations.
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Table 3.3: SRC 1 selection critera from left to right: truncation probability esti-
mate, BIC, AIC, modified Anderson-Darling test at the 95% confidence level,
QS, out-of-sample AIC, and estimated 99.9% quantile. Values from the true
model are given in the first row, and subsequent rows are sorted by AIC from
best to worst. Ranks from best (1) to worst (9) are presented for other criteria.
The rank for the 99.9% quantile estimate is by distance to the true quantile.
Lgn/Lgn and Lgn/Gpd refer to the spliced distributions.

3.2.2 SRC 2

To generate losses for SRC 2, we again simulate 14 independent and identically

distributed Pois(λ = 100) random variables. For each simulated loss frequency

nt , we generate nt independent and identically distributed loss severities from a

log-SaS(a = 1.06,b = 0.37,ε = 1.65,δ = 0.97) distribution and assign them to

year t. Finally, all loss severities are then truncated at τ = 3.147, the 2.5% quantile

from the true loss severity distribution.

Figure 3.5 plots the sample density log-losses against the densities for the true

loss severity distribution and each estimated candidate distribution on the log scale.

All distributions fit the data, but we note that the lognormal, generalized Pareto,

Weibull, and loglogistic distributions are not able to capture the mode seen in the

sample density. Therefore, their estimated truncation probabilities are going to be

high.
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Figure 3.4: QQ-Plots for the true model and each estimated candidate dis-
tribution for SRC 1. Estimated quantiles are given on the vertical axis
with empirical quantiles along the horizontal. Points below the 45◦ line
indicate underestimates the empirical quantile.
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Figure 3.5: The sample density plotted against the true severity model and each estimated candi-
date distribution for SRC 2 on the log scale. The number of observations in SRC 2 is 1342,
and the smoothing bandwidth is 0.2209.
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From Table 3.4, Both the g-and-h and log-SaS distributions are appropriate

for modeling SRC 2. We give a slight edge to log-SaS due to its superior quan-

tile score. An important observation is that the Weibull distribution has the best

QS even though it has the worst fit based on AIC. The QQ-plots in Figure 3.6

can help explain this. Remember that the quantile score at the 99.9% quantile is

very asymmetric and penalizes more for underestimating the quantile than overes-

timating. From the QQ-plots below, we see that the Weibull distribution can get

relatively close to the extreme quantiles, but the distribution is likely to underesti-

mate the extreme right tail. However, all other distributions overestimate the 99.9%

quantile by so much that it overcomes the QS’s asymmetry. This is an important

feature of the quantile score from the bank’s perspective, accurately estimating the

right-tail without the extreme overestimation seen in literature. Finally, the Weibull

distribution would not be selected for its QS due to its extremely high truncation

probability. The MLE parameters presented in Appendix B.2 show the Weibull

distribution’s scale parameter is hitting the boundary condition θ > 0.

Table 3.4: SRC 2 selection critera from left to right: truncation probability esti-
mate, BIC, AIC, modified Anderson-Darling test at the 95% confidence level,
QS, out-of-sample AIC, and estimated 99.9% quantile. Values from the true
model are given in the first row, and subsequent rows are sorted by AIC from
best to worst. Ranks from best (1) to worst (9) are presented for other criteria.
The rank for the 99.9% quantile estimate is by distance to the true quantile.
Lgn/Lgn and Lgn/Gpd refer to the spliced distributions.
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Figure 3.6: QQ-Plots for the true model and each estimated candidate dis-
tribution for SRC 2. Estimated quantiles are given on the vertical axis
with empirical quantiles along the horizontal. Points below the 45◦ line
indicate underestimates the empirical quantile.

3.2.3 SRC 3

To generate losses for SRC 3, we again simulate 14 independent and identically dis-

tributed Pois(λ = 100) random variables. For each simulated loss frequency nt , we

generate nt independent and identically distributed loss severities from a mixture

distribution, F(x;Θ) = βF1(x;Θ1)+(1−β )F2(x;Θ2); where β = 0.3, F1(x;Θ1) is

LN(µ = 0.16,σ = 0.4), and F2(x;Θ2) is Burr(α = 0.065,γ = 15,θ = 1.226). The

loss severities are assigned to year t. Finally, all loss severities are then truncated

at τ = 1.133, the 2.5% quantile from the true loss severity distribution.

Figure 3.7 plots the sample density log-losses against the densities for the true

loss severity distribution and each estimated candidate distribution on the log scale.
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All distributions fit the data, but we note that the lognormal, generalized Pareto,

Weibull, and loglogistic distributions are not able to capture the mode seen in the

sample density.
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Figure 3.7: The sample density plotted against the true severity model and each estimated candi-
date distribution for SRC 3 on the log scale. The number of observations in SRC 3 is 1365,
and the smoothing bandwidth is 0.1479.
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Table 3.5 gives the truncation probability estimate, BIC, AIC, modified

Anderson-Darling test at the 95% confidence level, QS, out-of-sample AIC, and

estimated 99.9% quantile for each estimated candidate distribution. Values from

the underlying true model are given in the first row, and all subsequent rows are

sorted from best to worst AIC.

Table 3.5: SRC 3 selection critera from left to right: truncation probability esti-
mate, BIC, AIC, modified Anderson-Darling test at the 95% confidence level,
QS, out-of-sample AIC, and estimated 99.9% quantile. Values from the true
model are given in the first row, and subsequent rows are sorted by AIC from
best to worst. Ranks from best (1) to worst (9) are presented for other criteria.
The rank for the 99.9% quantile estimate is by distance to the true quantile.
Lgn/Lgn and Lgn/Gpd refer to the spliced distributions.

The results of LGNLGN (denoted Lgn/Lgn in Table 3.5) distribution in Table 3.5

should be scrutinized. Due to the high truncation probability estimate for the sin-

gle lognormal distribution, it is likely the case that the lognormal body spliced with

lognormal tail distribution is unable to converge for the tail distribution’s MLE. A

quick investigation into the estimated parameters presented in Appendix B.3 an-

swers this question for us. The estimated splicing point for the Lgn/Lgn distribu-

tion is 1.8977. Remember from Section 2.1.3 that the lognormal tail is treated as a

truncated distribution with a truncation point equal to the splicing point. The log-

normal upper tail parameters are µu =−7.477 and σu = 3.1516, and the truncation
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probability of the lognormal tail is 0.995. This is a boundary condition in the MLE

algorithm and indicates that the Lgn/Lgn distribution results cannot be used.

Additionally, one may wonder why the modified Anderson-Darling test is re-

jecting the Burr distribution when Burr has the best QS, and we know the true tail

behavior is Burr. Since losses for SRC 3 are generated from a mixture distribu-

tion with distinct components, the estimated Burr parameters are affected by the

body of the losses generated by the lognormal component resulting in an under-

estimated 99.9% quantile. Thus, the estimated Burr distribution may have a tail

that behaves differently from the mixture distribution’s Burr component. Another

issue is caused by the weights used in calculating the test statistic. Since 30% of

the distribution is generated by a lognormal distribution, the weighting function

should assign more weight to the tail than our calculation. More importantly, this

shows the effectiveness of using the QS and QQ-plots for assessing a distribution’s

ability to model tail behavior over the modified Anderson-Darling test.

Finally, we observe the effect of using AIC and BIC that focus on the central

portion of the distribution when trying to estimate the 99.9% quantile. The Burr

distribution, which is the true tail behavior for SRC 3, is unable to capture the tail

behavior due to the mode of the losses occurring in the body of the distribution

most of which are generated from lognormal. This scenario of model misspecifi-

cation, which is likely to occur when working from a candidate distribution list,

demonstrates the importance of combining criteria that focus on overall fit, such as

AIC, with performance at extreme quantiles, such as QS.

3.3 Loss Severity Selection Criteria and Regulatory
Capital

In this section, we calculate RC for the years 2014,2015, . . . ,2018 under real-

world conditions faced by a bank using AMA. To calculate RC for year T + 1,

for T +1 = 2014,2015, . . . ,2018, we remove all of the operational losses for the

years T +1,T +2, . . . ,2018. This recreates the challenge of estimating a forward-

looking RC. Since we know the true value of RC, we are able to compare each

year’s calculation to the true value. All estimated parameters are available in Ap-

pendices A.2, A.3, and A.4 for SRC 1, 2, and 3, respectively.
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Figure 3.8: QQ-Plots for the true model and each estimated candidate dis-
tribution for SRC 3. Estimated quantiles are given on the vertical axis
with empirical quantiles along the horizontal. Points below the 45◦ line
indicate underestimates the empirical quantile.

All historical losses for the years 2004,2005, . . . ,T are used to estimate param-

eters for the candidate severity distributions using the MLE approach. Loss severity

distribution selection for each SRC is performed using two separate objective crite-

ria. First, we use lowest AIC and truncation probability estimate less than 0.5. The

selected loss severity distributions are then used to derive the Poisson rate param-

eter for all losses. Then, we can empirically derive the marginal distributions for

total annual operational loss from each SRC, denoted FSr , see Section 2.3. Finally,

we use t-copulas with 10 degrees of freedom and correlation parameters 0 and 0.1,

respectively, to find the distribution for the total annual operational loss. From this

distribution, we calculate RC as the 99.9% quantile. The process is then repeated

using quantile score instead of AIC.
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3.3.1 Marginal Distributions

For each SRC, Figures 3.9, 3.10, and 3.11 show side-by-side plots of the 99.9%

quantile from the best loss severity distribution each year based on AIC and quantile

score and the 99.9% quantile of the SRC’s marginal distribution for total annual

loss. An important observations from these plots is that the loss severity quantile

can be used as a proxy for the total annual loss quantile.

For SRC 1, the plots are given in Figure 3.9. The Burr distribution wins every

year based on AIC and all but one year when using QS. In 2015, the g-and-h

distribution had the best QS. We observe that changes in the winning distribution

can cause drastic changes in the extreme quantiles. The underestimation of the

g-and-h distribution in 2015 is due to the QS selecting a distribution based only on

the 99.9% quantle. Thus, we see that the rest of the distribution may contribute

a lot to the total annual risk for SRC 1, and measures of overall fit should also be

considered when selecting a distribution.

For SRC 2, the plots are given in Figure 3.10. When selecting the best dis-

tribution by AIC, log-SaS wins in 2014 and 2015, but is then beat by g-and-h for

the remaining years. When selecting the loss severity distribution based on QS,

log-SaS wins every year.

For SRC 3, the plots are given in Figure 3.11. When selecting the best distri-

bution by AIC, the lognormal body spliced with generalized Pareto tail wins every

year. When using QS, the Burr distribution wins. SRC 3 creates the model misspec-

ification scenario and yields the most interesting results.

Using AIC alone may lead to selecting a severity distribution that drastically

overestimates risk, which is a deterrent from the bank’s perspective. We see this

demonstrated in Figure 3.11 for the earlier years in the simulation. The QS selection

criteria, however, chooses distributions that consistently underestimate the 99.9%

quantile of the distribution of SRC 3. This scenario is also seen when analyzing

SRC 1. Selecting severity distributions by the best QS can severely underestimate

risk. This signals that the other 99% of the distribution has considerable impact on

the annual losses for SRC 3.

If we believe that model misspecification is likely to occur, then these results

promote the use of AIC and BIC together with the QS, truncation probability esti-
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Figure 3.9: The top plot shows the log of the 99.9% quantile from SRC 1’s loss
severity distribution as selected by AIC and QS. The shorthand name for loss
severity distribution shows each year’s selection. The bottom plot shows the
log of the 99.9% quantile for SRC 1’s total annual loss marginal distribution.
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Figure 3.10: The top plot shows the log of the 99.9% quantile from SRC 2’s loss
severity distribution as selected by AIC and QS. The shorthand name for loss
severity distribution shows each year’s selection. The bottom plot shows the
log of the 99.9% quantile for SRC 2’s total annual loss marginal distribution.
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mates, and graphical tools like QQ-plots and density plots to get a full picture of

the loss severity data.

3.3.2 Regulatory Capital

We use the loss severity distributions from the previous section to compare RC

when selecting severity distribution using AIC versus QS. Since there are no data

to assess the dependence across SRC’s, we use t-copulas with 10 degrees of free-

dom and correlation parameters 0 and 0.1 when combining losses for total annual

operational loss. Using these two separate correlation parameters, we see that RC

barely changes, as presented in Figure 3.12, suggesting little sensitivity to changes

in the dependence between SRC’s. This analysis is limited, however, and using var-

ious degrees of freedom with different correlation parameters can provide a better

picture of sensitivity.

We see a similar story as told by the marginal distribution quantile plots,

namely that the quantile score calculates RC consistently below that of the true

value and RC calculated by choosing loss severity distributions by AIC. This seems

to suggest that accurate RC calculations should consider more than just the 99.9%

quantile.

3.4 Challenges of Truncation Probabilities
Without any data collection or expert opinion of the operational loss severities be-

low an SRC’s minimum reporting threshold, it is difficult to set a general interval

of reasonable truncation probability estimates. While we can set conservatively

wide ranges, such as (0.01,0.5), it may be possible that the actual proportion of

an SRC’s losses below the threshold fall outside this interval. This problem of

truncation probabilities exists throughout the industry with no consensus on how

to handle it [AMA Group, 2013]. Using either the naive approach or the shifted

approach avoids truncation probabilities altogether, but they have their own detrac-

tions as discussed in Section 2.1.

In addition to the challenges directly associated with estimating truncation

probability, a study by Yu and Brazauskas [2017] analyzed the differences in RC
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Figure 3.11: The top plot shows the log of the 99.9% quantile from SRC 3’s loss
severity distribution as selected by AIC and quantile score. The shorthand
name for loss severity distribution shows each year’s selection. The bot-
tom plot shows the log of the 99.9% quantile for SRC 3’s total annual loss
marginal distribution.
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Figure 3.12: The top plot shows the log of RC as the 99.9% quantile for total an-
nual operational loss when using a t-copula with 10 degrees of freedom and
correlation parameter of 0 to combine losses across SRC’s. The bottom plot
shows the log of RC with a correlation parameter of 0.1. In both plots, the
true RC is the solid line, the dashed line is RC using estimated distributions
selected by AIC, and the dotted line shows RC using estimated distributions
selected by QS.
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estimates between the three approaches and concluded that the truncation approach

provides the lowest RC (called VaR by Yu and Brazauskas) estimates when using

LDA:

“We demonstrate that for a fixed probability distribution, the choice

of the truncation approach yields lowest VaR estimates, which may

be viewed as beneficial to the bank, whilst the naive and shifted ap-

proaches lead to higher estimates of VaR.”

The uncertainty surrounding the truncation probability estimate may be an expla-

nation for the phenomenon of RC estimates being systematically lower when using

the truncation approach. If the truncation probability estimate is too high, then too

many of the simulated losses may be too small.

To investigate this idea further, we simulate losses in a scenario where we have

more information than in reality. We assume a known distribution and 1000 inde-

pendent samples each of size 2500 from the same Burr distribution used to generate

SRC 1. We then truncate each sample at the actual 2.5%, 5%, 10%, 20%, and 40%

quantiles and estimate the truncation probability assuming the Burr distribution.

Figure 3.13 shows the distribution of truncation probability estimates under the

known model for different truncation points.

As expected, when the truncation point is small, the distribution of trunca-

tion probability estimates is very positively skewed. As the truncation point is in-

creased, we see larger standard errors. With a truncation point at the 20% quantile,

we have a bimodal distribution with many estimates far exceeding the actual value.

Without any knowledge of the losses below the truncation point, we acknowledge

that truncation probability estimates introduce more uncertainty in calculating RC.

In light of the challenges in estimating truncation probability, we propose a

simple alternative. The purpose of the truncation approach is to estimate an entire

distribution over which we can simulate losses for each SRC when using the LDA.

Using the histograms presented in Figure 3.2, we can make reasonable assumptions

about the number of losses below the truncation point. For example, the histograms

for SRC 1 and SRC 3 seem to be indicating a mode for the losses around the 2nd or

3rd bucket. Under the assumptions of the truncation approach combined with our

list of candidate distributions, it would be reasonable to assume that the number
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Figure 3.13: Distribution of truncation probability estimates for 1000 trun-
cated samples of size 2500 at the 2.5%, 5%, 10%, 20%, and 40%
quantiles. Maximum likelihood estimation is performed using the Burr
distribution. Even under these optimal conditions, there is a lot of un-
certainty in the truncation probability estimate.

of losses for each bucket below the truncation point can be bounded above by

the mode of the observable losses. Under this assumption, we could eliminate

candidate distributions that do not have a truncation probability below this “worst

case” scenario. Unfortunately, this would not help us with losses exhibited by an

SRC that does not show a clear mode in the histogram and whose mode might lie

below the truncation point. Any data collection for losses below the threshold, even

in aggregate, improves the truncation approach by setting bounds on the truncation

probability estimates.

As mentioned in Section 2.1.4, the truncation probability is a useful tool for

eliminating inappropriate distributions that seek to mimic tail behavior by increas-

ing the truncation probability. Using the same 1000 Burr samples used to generate
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Figure 3.13, estimating the truncation probably using the lognormal distribution

produces no estimates below 0.9. These high estimates would lead to extremely

high Poisson rates for the loss frequencies when simulating losses. Therefore, the

speed and efficiency of using the truncation approach to select a loss severity dis-

tribution is increased by considering the truncation probability estimate.
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Chapter 4

Conclusion

While both regulators and financial institutions share the main objective to measure

OR as accurately as possible, they have diametrically opposing priorities. Regula-

tors want to minimize a bank’s exposure to financial ruin from an operational loss

and thus want operational risk modeled as accurately as possible while minimizing

underestimation. Since a bank must set aside assets equal to RC to cover poten-

tial losses, the bank wants to accurately model operational risk while minimizing

overestimation. While we do not pose a solution to this problem, the research pre-

sented supports the quantile score as a function that considers the priorities of both

stakeholders.

Since the 99.9% quantile of a loss severity distribution is a good proxy of a

SRC’s total annual loss, selecting distributions based on the quantile score is in-

tuitive and easily interpretable. The asymmetry of the quantile score at the 99.9%

quantile penalizes underestimation more than overestimation which aligns with the

priorities of regulators. However, the quantile score also penalizes overestimation,

and severe overestimation is a concern for banks that is also seen in operational

risk research [Dutta and Perry, 2006]. Thus, the quantile score accounts for both

the regulator’s and the bank’s priorities.

A concern when using the quantile score at the 99.9% quantile to select a sever-

ity distribution is that it ignores the rest of the distribution, which can make up a

significant portion of a SRC’s total annual loss. One way to address this issue is to

calculate the quantile score at multiple quantiles. Since we are most concerned with
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the right-tail of the loss severity distributions, we suggest using the “letter values”

presented in Hoaglin [1985] which are comprised of the quantiles
(
1− (1/2)n

)
for

n = 2,3, . . . ,8. If the focus is on achieving the best quantile score in the right-

tail, however, then the maximum likelihood approach may not provide parameters

that minimize the quantile score objective function, equation (2.13). Minimizing

equation (2.13) is a computationally taxing process, so due diligence to eliminate

inappropriate distributions such as those with unrealistically high truncation prob-

abilities would be prudent.

The quantile score should be complemented with estimators such as AIC and

BIC, which consider the entire distribution with a focus around the mode, and some

combination of these estimators should provide better distribution selection than

only using one. We noticed in the SRC 3 simulation that AIC and quantile score

picked very different distributions, and this may be a signal that loss severities are

generated from separate processes in the body and the tail, so combining these

measures is especially important when there is model misspecification. A single

distribution may dominate the quantile score, but is unable to capture the true loss

generating process if it is a mixture model or some other combination of distribu-

tions. The opposite is also true. A distribution that dominates in AIC may fail to

accurately capture the extreme right tail of the loss generating process and lead to

drastic over or underestimations.

The log-SaS distribution is a highly flexible distribution that performs well

when modeling loss severities generated from different processes when using max-

imum likelihood estimation. Log-SaS solves the problems of the g-and-h distribu-

tion by having a support on the positive real numbers, a monotonic transformation

over the entire parameter space, and an analytical inverse. The log-SaS distribu-

tion offers these advantages while maintaining the flexibility to capture various tail

behaviors and shapes. Another benefit of the log-SaS severity distribution is that

the parameters can be estimated using a log-transform of the loss severity data,

aiding in the convergence of numerical algorithms and mitigating the badly-scaled

problem.

Issues with maximum likelihood estimation and truncation probability esti-

mates should be included in the loss severity distribution selection process, as

they can quickly eliminate inappropriate distributions. When using the truncation
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approach, extremely high truncation probabilities are often the result of a non-

converging maximum likelihood algorithm due to a lighter-tailed distribution’s ef-

fort to mimic heavier-tailed behavior. Even if the algorithm is converging, high

truncation probabilities may simply be unrealistic and more data collection and/or

expert opinion is desired for losses below the minimum reporting threshold. For

the g-and-h distribution specifically, care must be taken to analyze the results of

maximum likelihood to avoid situations where too much of the distribution lies

below zero.

This report has laid the groundwork for future work in loss severity distribu-

tion selection that incorporates both regulators’ and banks’ preferences to opera-

tional risk modeling. Inclusion of the quantile score shows promise in capturing

the right-tail of loss severity data, and future work may provide optimal quantiles

to incorporate and the effectiveness of estimating distribution parameters using

the quantile score in equation (2.13) as the objective function. We also present

a new perspective to maximum likelihood estimation for the g-and-h distribution

that includes penalties to the portion of the distribution below zero. This penalized

likelihood approach can be improved by assessing the optimal penalty term and

the weight given to the penalty and may also be applied to other distributions to

eliminate power tail mimicking of Gumbel-type distributions. We also stress that

the truncation approach can benefit from additional data collection for losses below

the reporting threshold and encourage banks to start this collection process.
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Appendix A

Loss Severity Distributions

A.1 Lognormal Distribution
Let Y be a normally distributed random variable with location parameter µ and

scale parameter σ . Since Y ∼ N(µ,σ2), then X = eY is lognormally distributed

with location parameter µ and scale parameter σ , denoted LN(µ,σ2). To derive

the lognormal distribution, let Z ∼ N(0,1). Then Y = µ +σZ and

FX(x) = P(X ≤ x) = P
(
eY ≤ x

)
= P

(
µ +σZ ≤ log(x)

)
= P

(
Z ≤ log(x)−µ

σ

)

= Φ

(
log(x)−µ

σ

)
,

where Φ is the standard normal CDF. Let φ be the standard normal density function.

Then for Θ = [ µ σ ], where µ ∈ R and σ > 0,

FX(x;Θ) =

Φ

(
log(x)−µ

σ

)
for x > 0,

0 for x≤ 0;

fX(x;Θ) =


1

σx φ

(
log(x)−µ

σ

)
for x > 0,

0 for x≤ 0;
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F−1
X (p;Θ) = exp

{
µ +σΦ

−1(p)
}

for 0 < p < 1.

The conditional CDF and PDF for a lognormally distributed random variable

with minimum threshold τ are derived from equations (2.5) and (2.6), respectively.

The quantile function is found by setting F̃(x;Θ,τ) = p, for 0 < p < 1, and solving

for x:

F̃(x;Θ,τ) =


Φ

[(
log(x)−µ

)
/σ

]
−Φ

[(
log(τ)−µ

)
/σ

]
1−Φ

[(
log(τ)−µ

)
/σ

] for x > τ,

0 for x≤ τ;

f̃ (x;Θ,τ) =


φ

[(
log(x)−µ

)
/σ

]
σx

[
1−Φ

[(
log(τ)−µ

)
/σ

]] for x > τ,

0 for x≤ τ;

F̃−1(p;Θ,τ) = exp

{
µ +σΦ

−1

[
(1− p)Φ

(
log(τ)−µ

σ

)
+ p

]}
for 0 < p < 1.

From equation (2.7), we derive the conditional likelihood function as

L̃(Θ;x,τ) =

[
σ −σ Φ

(
log(τ)−µ

σ

)]−n n

∏
i=1

1
xi

φ

(
log(xi)−µ

σ

)
.

From equation (2.8), the conditional log-likelihood function is

˜̀(Θ;x,τ) =−n log(σ)−n log

[
1−Φ

(
log(τ)−µ

σ

)]

+
n

∑
i=1

log

[
φ

(
log(xi)−µ

σ

)]
−

n

∑
i=1

log(xi).

A.2 Generalized Pareto Distribution
As presented in Coles [2001], for a sequence of random variables,

X1,X2, . . . ,Xn
iid∼ H, let
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Mn = max{X1, ...,Xn}.

Suppose that there exist sequences of constants {an > 0} and {bn} such that

H(bn +anz) = P{(Mn−bn)/an ≤ z}→ G(z) as n→ ∞

for a non-degenerate distribution function G. Then, G is a member of the general-

ized extreme value (GEV) family,

G(z) = exp
{
−
[
1+ξ

(
1+

z−µ

σ

)]−1/ξ}
,

defined on
{

z : 1+ξ (z−µ)/σ > 0
}

, where µ,σ > 0 and µ,ξ ∈ R. For large n,

P{(Mn−bn)/an ≤ z} ≈ G(z)

P{Mn ≤ z} ≈ G(bn +anz)

= G∗(z),

where G∗ is another distribution from the GEV family.

Finally, for large enough u > µ and θ = σ +ξ (u−µ), the distribution function

of (X−u) conditioned on X > u is approximately

F(x) =

1−
[
1+ ξ

θ
(x−u)

]−1/ξ

for ξ 6= 0,

1− exp
{
− x−u

θ

}
for ξ = 0,

defined for x > u when ξ > 0 and u < x < u− θ/ξ when ξ < 0, and ξ = 0 in-

terpreted as ξ → 0 leading to an exponential distribution for the excess x−u with

parameter 1/θ . This is called the GPD! (GPD!) family.

For our purposes, we work exclusively with the GPD! where ξ > 0, so all

functions for the remainder of Appendix A.2 assume tail parameter ξ > 0. The

CDF, PDF, and quantile function for the GPD! family with parameter vector Θ =

[ ξ θ ], where ξ > 0 is the tail parameter, θ > 0 the scale parameter, and u is the

treshold, are
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F(x;Θ,u) =

1−
(

1+ ξ

θ
(x−u)

)−1/ξ

for x > u,

0 for x≤ u;

f (x;Θ,u) =


1
θ

(
1+ ξ

θ
(x−u)

)− 1+ξ

ξ for x > u,

0 for x≤ u;

F−1(p;Θ,u) = u+
θ

ξ

(
(1− p)−ξ −1

)
for 0 < p < 1.

For single severity candidate distributions, the threshold u = 0 is not a param-

eter and thus is not included in the parameter vector. When estimating the pa-

rameters for the GPD! family assuming a single severity distribution, operational

loss amounts are treated as excesses over 0. Since our data are from a truncated

sample with minimum reporting threshold τ , we calculate the conditional CDF and

PDF for a generalized Pareto distributed random variable using equations (2.5) and

(2.6), respectively. The quantile function is found by setting F̃(x;Θ,τ) = p and

solving for x. Assuming τ > u, the conditional CDF, PDF, and quantile functions

are

F̃(x;Θ,u,τ) =

1−
(

θ+ξ (x−u)
θ+ξ (τ−u)

)−1/ξ

for x > τ,

0 for x≤ τ;

f̃ (x;Θ,u,τ) =


1

θ+ξ (τ−u)

(
θ+ξ (x−u)
θ+ξ (τ−u)

)− 1+ξ

ξ for x > τ,

0 for x≤ τ;

F̃−1(p;Θ,u,τ) = u+
(1− p)−ξ

(
θ +ξ (τ−u)

)
−θ

ξ
for 0 < p < 1.

For the LGNGPD distribution, the tail distribution is the unconditional GPD! with

the threshold equal to the splicing point, u = xs.

Using equation (2.7), the conditional likelihood function for the single severity

generalized Pareto candidate distribution is
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L̃(Θ;x,u,τ) =
[
θ +ξ (τ−u)

]n/ξ
∏

n
i=1
[
θ +ξ (xi−u)

]− 1+ξ

ξ ,

and from equation (2.8), the conditional log-likelihood function for the single

severity generalized Pareto candidate distribution is

˜̀(Θ;x,u,τ) = n
ξ

log
{

θ +ξ (τ−u)
}
−
(

1+ξ

ξ

)
∑

n
i=1 log

{
θ +ξ (xi−u)

}
.

To aid in the convergence of the MLE algorithm as mentioned in Sec-

tion 2.1.4, we fit the log-transform of a generalized Pareto random variable. Let

X ∼ GPD(ξ ,θ) with threshold u, and let Y = log(X). The CDF and PDF for Y are

derived, respectively, as

FY
(
y;Θ, log(u)

)
= F(ey;Θ,u) (A.1)

fY
(
y;Θ, log(u)

)
= ey f (ey;Θ,u) (A.2)

Then Y is called the exponentiated generalized Pareto distribution [Lee and Kim,

2018], and the CDF and PDF for Y , using equations (A.1) and (A.2) are

FY
(
y;Θ, log(u)

)
=

1−
(

1+ ξ

θ

(
ey−u

))−1/ξ

for y > log(u),

0 for y≤ log(u);

fY
(
y;Θ, log(u)

)
=


ey

θ

(
1+ ξ

θ

(
ey−u

))− 1+ξ

ξ for y > log(u),

0 for y≤ log(u).

Assuming τ > u≥ 0, the conditional CDF and PDF are

F̃Y
(
y;Θ, log(u), log(τ)

)
=

1−
(

θ+ξ (ey−u)
θ+ξ (τ−u)

)−1/ξ

for y > log(τ),

0 for y≤ log(τ);

f̃Y
(
y;Θ, log(u), log(τ)

)
=


ey

θ+ξ (τ−u)

(
θ+ξ (ey−u)
θ+ξ (τ−u)

)− 1+ξ

ξ for y > log(τ),

0 for y≤ log(τ).
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By letting y = log(x) and using equation (2.7), the conditional likelihood function

for the log-losses is

L̃(Θ;y,u,τ) =
[
θ +ξ (τ−u)

]n/ξ exp
{

∑
n
i=1 yi

}
∏

n
i=1
[
θ +ξ (eyi−u)

]− 1+ξ

ξ ,

and from equation (2.8), the conditional log-likelihood function for the log-losses

is

˜̀(Θ;y,u,τ) = n
ξ

log
{

θ +ξ (τ−u)
}
+∑

n
i=1 yi−

(
1+ξ

ξ

)
∑

n
i=1 log

{
θ +ξ (eyi−u)

}
.

A.3 Burr Distribution
The parameterization of the candidate Burr Distribution is a generalized three-

parameter version of the Pareto distribution derived from Chapter 6 of Chernobai

et al. [2007]. This parameterization allows for greater flexibility due to an addi-

tional shape parameter and is derived as

F(x) = 1−

(
β

β + xγ

)α

= 1−

(
β + xγ

β

)−α

= 1−

(
1+

xγ

β

)−α

= 1−

(
1+
( x

θ

)γ

)−α

,

where θ = β 1/γ . This parameterization of the Burr distribution has shape param-

eters α, γ > 0 and scale parameter θ > 0. The flexibility of this parameterization

is in its ability to capture both Pareto and loglogistic distributions. When γ = 1,

the Burr distribution reduces to the Pareto distrbution with power tail x−α . When

α ≤ 1, we have a very heavy-tailed distribution with infinite mean and variance.

When α = 1, the Burr distribution reduces to the loglogistic distribution.

The CDF, PDF, and quantile function for the Burr distribution with parameter

vector Θ = [α γ θ ] are

F(x;Θ) =

1−
[
1+
( x

θ

)γ
]−α

for x > 0,

0 for x≤ 0;
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f (x;Θ) =


αγx−1

(
x
θ

)γ(
1+
(

x
θ

)γ
)1+α for x > 0,

0 for x≤ 0;

F−1(p;Θ) = θ
(
(1− p)−1/α −1

)1/γ for 0 < p < 1.

The conditional CDF and PDF for a Burr distributed random variable with

minimum threshold τ are derived from equations (2.5) and (2.6), respectively. The

quantile function is found by setting F̃(x;τ) = p and solving for x:

F̃(x;Θ,τ) =

1−
(

θ γ+τγ

θ γ+xγ

)α

for x > τ,

0 for x≤ τ;

f̃ (x;Θ,τ) =

αγ xγ−1
[
θ γ + τγ

]α [
θ γ + xγ

]−α−1 for x > τ,

0 for x≤ τ;

F̃−1(p;Θ,τ) =
[
(1− p)−1/α

[
θ

γ + τ
γ
]
−θ

γ

]1/γ

for 0 < p < 1.

Using equation (2.7), the conditional likelihood function for the Burr candidate

distribution is

L̃(Θ;x,τ) = (αγ)n[
θ

γ + τ
γ
]nα

n

∏
i=1

xγ−1
i

[
θ

γ + xγ

i

]−α−1
.

From equation (2.8), the conditional log-likelihood function for the Burr can-

didate distribution is

˜̀(Θ;x,τ) = n log(αγ)+nα log
[
θ

γ + τ
γ
]
+(γ−1)

n

∑
i=1

log(xi)

− (α +1)
n

∑
i=1

log
[
θ

γ + xγ

i

]
.

MLE for the Burr distribution is performed on the log-loss data. Unfortunately,

the log-losses do not eliminate the badly-scaled problem discussed in Section 2.1.4.

To address this, we again reparameterize the Burr distribution. Making the follow-
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ing substitutions,

α
∗ = αγ, ζ = γ, η = θ ,

the Burr CDF becomes

F(x;Θ) = 1−

(
1+
( x

η

)ζ

)−α∗/ζ

,

where * is used to differentiate the new α∗ parameter from the original parameter-

ization. In this parameterization, α∗ is a tail parameter, and ζ is a shape parameter

that can affect the lower tail. The Burr distribution is unimodal when ζ > 1.

Now, let X ∼ Burr(α,γ,θ) and let Y = log(X). Y is said to have a generalized

logistic distribution, since the parameterization can be used to model both logis-

tic and exponentiated Pareto random variables. Using equations (A.1) and (A.2),

the CDF, PDF, and quantile function for the generalized logistic distribution with

parameter vector Θ = [α∗ ζ η ] where α∗ ∈ R and ζ ,η > 0 are

FY (y;Θ) = 1−

[
1+
(ey

η

)ζ

]−α∗/ζ

for y ∈ R;

fY (y;Θ) =
α∗
(
ey/η

)ζ[
1+
(
ey/η

)ζ
]α∗/ζ+1

for y ∈ R;

F−1
Y (p;Θ) = log(η)+

1
ζ

log
{(

1− p
)−ζ/α∗−1

}
for 0 < p < 1.

The conditional CDF and PDF for a generalized logistic distributed random

variable with minimum threshold log(τ) are derived from equations (2.5) and (2.6).

The quantile function is found by setting F̃Y
(
(y;Θ, log(τ)

)
= p and solving for y:

F̃Y
(
y;Θ, log(τ)

)
=

1−
[(

ηζ + eζ τ
)
/
(
ηζ + eζ y

)]α∗/ζ

for y > log(τ),

0 for y≤ log(τ);
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f̃Y
(
y;Θ, log(τ)

)
=


(
α∗eζ y

)(
ηζ + eζ τ

)
/
(
ηζ + eζ y

)α∗/ζ+1 for y > log(τ),

0 for y≤ log(τ);

F−1
Y

(
p;Θ, log(τ)

)
= log(η)+

1
ζ

log

{
1+
(

eτ/η

)ζ ∗

(1− p)ζ/α∗
−1

}
for 0 < p < 1.

All estimated parameters are converted back to the original Burr(α,γ,θ) distribu-

tion throughout the report.

By letting y = log(x) and using equation (2.7), the conditional likelihood func-

tion for the generalized logistic candidate distribution is

L̃
(
Θ;y, log(τ)

)
= α

∗n
(

η
ζ + exp

{
ζ τ
})nα∗/ζ n

∏
i=1

exp
{

ζ yi
}[

ηζ + exp
{

ζ yi
}]α∗/ζ+1

.

From equation (2.8), the conditional log-likelihood function for the generalized

logistic candidate distribution is

˜̀(Θ;y, log(τ)
)
=n log(α∗)+

nα∗

ζ
log
(
η

ζ + eζ τ
)
+ζ

n

∑
i=1

yi

−
(

α∗

ζ
+1
) n

∑
i=1

log
(
η

ζ + eζ yi
)
.

A.4 Weibull Distribution
The Weibull Distribution is one of three limiting distributions in Extreme Value

Theory (EVT), see Coles [2001]. In EVT, the Weibull distribution is the GEV dis-

tribution with negative shape parameter ξ < 0. The Weibull distribution is similar

to the shape of a lognormal distribution, but with a thinner tail. This distribution is

widely used as the distribution of the lifetime of some object, particularly when the

“weakest link” model is appropriate [Ross, 2010]. For parameter vector Θ = [ a θ ],

with shape parameter a > 0 and scale parameter θ > 0, the CDF, PDF, and quantile

function for the Weibull distribution are
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F(x;Θ) =

1− exp
{
−
[ x

θ

]a} for x > 0,

0 for x≤ 0;

f (x;Θ) =


a
θ

[ x
θ

]a−1 exp
{
−
[ x

θ

]a} for x > 0,

0 for x≤ 0;

F−1(p;Θ) = θ
[
− log(1− p)

]1/a for p ∈ (0,1).

The conditional CDF and PDF for a Weibull distributed random variable with

minimum threshold τ > 0 are derived from equations (2.5) and (2.6), respectively.

The quantile function is found by setting F̃(x;Θ,τ) = p and solving for x.

F̃(x;Θ,τ) =

1− exp
{(

τ

θ

)a−
( x

θ

)a
}

for x > τ,

0 for x≤ τ;

f̃ (x;Θ,τ) =


a
θ

[ x
θ

]a−1 exp
{(

τ

θ

)a−
( x

θ

)a
}

for x > τ,

0 for x≤ τ;

F̃−1(p;Θ,τ) =
{
(1− p)−1/α

[
θ

γ + τ
γ
]
−θ

γ

}1/γ

for 0 < p < 1.

Using equation (2.7), the conditional likelihood function for the Weibull can-

didate distribution given a sample x ∈ Rn is

L̃(Θ;x,τ) = an
θ
−na exp

{
n(τ/θ)a

} n

∏
i=1

xa−1
i exp

{
−
(
xi/θ

)a}
,

and from equation (2.8), the conditional log-likelihood function for the Weibull

candidate distribution is

˜̀(Θ;x,τ) = n log(a)−na log(θ)+n
(

τ

θ

)a
+(a−1)

n

∑
i=1

log(xi)−
n

∑
i=1

(xi

θ

)a
.
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A.5 Loglogistic Distribution
Like Weibull distribution, the loglogistic distribution is similar in shape to the

lognormal distribution, but with a heavier right-tail than both the lognormal and

Weibull. From [Panjer, 2006, p. 62], the loglogistic distribution has shape param-

eter γ > 0 and scale parameter θ > 0. The CDF, PDF, and quantile function for the

loglogistic distribution are

F(x;Θ) =


[
1+
(
x/θ
)−γ
]−1

for x > 0,

0 for x≤ 0;

f (x;Θ) =


γ

(
x/θ

)γ

x
[

1+
(

x/θ

)γ]2 for x > 0,

0 for x≤ 0;

F−1(p;Θ) = θ

(
1− p

p

)−1/γ

for 0 < p < 1.

The conditional CDF and PDF for a loglogistic distributed random variable with

minimum threshold τ > 0 are derived from equations (2.5) and (2.6), respectively.

The quantile function is found by setting F̃(x;Θ,τ) = p and solving for x.

F̃(x;Θ,τ) =


[
xγ − τγ

]
/
[
θ γ + xγ

]
for x > τ,

0 for x≤ τ;

f̃ (x;Θ,τ) =

γ xγ−1 [θ γ + τγ ]/[θ γ + xγ ]2 for x > τ,

0 for x≤ τ;

F̃−1(p;Θ,τ) =

[
pθ γ + τγ

1− p

]−1/γ

for 0 < p < 1.

Using equation (2.7), the conditional likelihood function for the loglogistic
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candidate distribution given a sample x ∈ Rn is

L̃(Θ;x,τ) = γ
n [θ γ + τ

γ ]n
n

∏
i=1

{
xγ−1

i /[θ γ + xγ

i ]
2
}
,

and from equation (2.8), the conditional log-likelihood function for the loglogistic

candidate distribution is

˜̀(Θ;x,τ) = n log(γ)+n log[θ γ + τγ ]+ (γ−1)∑
n
i=1 log(xi)−2∑

n
i=1 log[θ γ + xγ

i ].

A.6 g-and-h Distribution
The g-and-h distribution, as presented by Hoaglin [1985], is a four-parameter gen-

eralization of the lognormal distribution resulting from a transformation of a stan-

dard normal random variable. The transformational nature of the g-and-h distri-

bution allows one to use the quantiles of sample data relative to the quantiles of

the standard normal distribution to estimate the parameters. This method, called

the percentile method, allows for the skewness and elongation parameters, g and h

respectively, to be estimated as functions of the standard normal percentiles, g(zp)

and h(zp) for percentile p, leading to an extremely flexible distribution. This flex-

ibility enables the g-and-h distribution to model fatter or thinner tails and positive

or negative skewness when compared to the lognormal distribution. Full details are

available in Hoaglin [1985].

Let Z ∼ N(0,1). Then the random variable X∗ such that

X∗ = Ag,h(Z) =

(
egZ−1

g

)
ehZ2/2,

is said to have a standard g-and-h distribution with skewness parameter g and elon-

gation parameter h. We refer to X∗ as “standard” since the g-and-h location and

scale parameters are 0 and 1, respectively. When g = 0, there is no skewness. This

can be seen by writing the Taylor expansion of egz,

egz = 1+gz+
(gz)2

2!
+

(gz)3

3!
+ ...

egz−1
g

= z+g
z2

2!
+g2 z3

3!
+ ...,
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and letting g = 0 in the right-hand side of the last equation. To further generalize,

let a ∈ R be a location parameter and b > 0 be a scale parameter. Then random

variable X , where

X = a+b ·Ag,h(Z) = a+b
(

egZ−1
g

)
ehZ2/2,

is said to have a g-and-h distribution.

For our purposes, estimating parameters using the percentile method has major

drawbacks. First, the percentile method allows the elongation and skewness param-

eters to change unsystematically, which can cause Ag,h(Z) to be non-monotonic in

Z with potentially multiple turning points. Also, h may take on negative values

which also causes non-monotonicity in Ag,h(Z). While non-monotonicity is not a

problem, per se, multiple turning points cause the g-and-h PDF to become unwieldy

when calculating likelihoods for MLE, AIC, and BIC. More importantly, however,

non-monotonicity in Ag,h(Z) may lead to undefined regions, where some observa-

tions from the sample do not have a defined inverse. When this occurs, there is no

way to calculate a likelihood for these observations. The undefined regions tend to

include the largest observations, which we are most concerned with when model-

ing OR. Thus, the observations with the highest impact on operational losses are

the ones that we are least able to model.

The second drawback of the percentile method occurs as the number of statis-

tically significant parameters increase. When g and h are allowed to be functions,

the percentile method can easily result in 5 or more significant parameters, leading

to the phenomenon known as overfitting the data [James et al., 2013]. As a result,

the model suffers prediction accuracy which is the goal of the AMA. Also, while

g(zp) and h(zp) are assumed to be polynomials, there is no clear consensus on how

to estimate the degree of the polynomials and their coefficients.

Finally, the selection of which percentiles to use when estimating parameters

g and h by the percentile method is subjective and can greatly affect the estimates.

There is little research done in picking the optimal percentiles for various scenarios.

Hoaglin suggests using the “letter values”, the 3
4 ,

7
8 ,

15
16 ,

31
32 ,

63
64 ,

127
128 ,

255
256 percentiles.

This allows the upper tail of the distribution to be measured with some precision

relative to other areas of the distribution. Once the percentiles have been selected,

the second drawback still exists to estimate g(zp) and h(zp). Hoaglin assumes a

81



linear form, but selects the model visually. For these reasons, the percentile method

is better used as an exploratory data analysis technique to gauge the systematic and

unsystematic properties of the sample data than as an estimation procedure.

Given the drawbacks associated with the percentile method and to compare

the estimated g-and-h distribution to the other candidate distributions, the maxi-

mum likelihood approach is used when estimating the g-and-h distribution for loss

severity. The maximum likelihood approach requires that Ag,h(Z) be monotonic,

so we restrict both g and h to be constant, with h > 0. As shown by Degen et al.

[2007], this restriction forces the g-and-h distribution to have regularly varying

tails with index −1/h.

The skewness parameter, g, signifies both the direction and magnitude of skew-

ness. Positive g signifies positive skewness and larger g signifies more skewness.

When g= 0 and h> 0, the distribution is symmetric with fatter tails than the normal

distribution. If g = 1 and h = 0, we have a shifted lognormal distribution. In the

context of positively skewed distributions, the lognormal distribution is assumed

to have “neutral elongation”. As a result, restricting the elongation parameter to

positive values is not unreasonable when the tail is fatter than lognormal. The lim-

itation of a constant g may not be optimal, but is the same restriction imposed on

the other candidate distributions used to model operational loss severities.

Let A−1
g,h

(X−a
b

)
be the inverse standard g-and-h transformation which does not

have an analytical form, and let A
′
g,h(Z) be the derivative of the standard g-and-

h transformation. Also, let Φ(z) and φ(z) be the standard normal CDF and PDF,

respectively. Let Φ−1(p) be the standard normal quantile function for 0 < p < 1.

Then, for parameter vector Θ = [ a b g h ] with a,b,g,h ∈ R and b,h > 0,

F(x;Θ) = Φ

[
A−1

g,h

(x−a
b

)]
for x ∈ R;

f (x;Θ) =
φ
[
A−1

g,h

( x−a
b

)]
b A′g,h

[
A−1

g,h

( x−a
b

)] for x ∈ R;

F−1(p;Θ) = a+b Ag,h
(
Φ
−1(p)

)
for 0 < p < 1.
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The g-and-h distribution has support on the real number line, so the g-and-h

loss severity distribution can lead to negative losses when performing simulations.

To avoid this, simulations are performed from the conditional g-and-h distribution

with minimum threshold τ = 0. Using the conditional distribution for simulations

is reasonable when the estimated truncation probability is sufficiently small. See

Section 2.1.4 for details.

The conditional CDF and PDF for a g-and-h distributed random variable with

minimum threshold τ are derived from equations (2.5) and (2.6), respectively. The

quantile function is found by setting F̃(x;Θ,τ) = p and solving for x.

F̃(x;Θ,τ) =


Φ

[
A−1

g,h

(
(x−a)/b

)]
−Φ

[
A−1

g,h

(
(τ−a)/b

)]
1−Φ

[
A−1

g,h

(
(τ−a)/b

)] for x > τ,

0 for x≤ τ;

f̃ (x;Θ,τ) =


1

1−Φ

[
A−1

g,h

(
(τ−a)/b

)] φ

[
A−1

g,h

(
(x−a)/b

)]
b A′g,h

[
A−1

g,h

(
(x−a)/b

)] for x > τ,

0 for x≤ τ;

F̃−1(p;Θ,τ) = a+bAg,h

{
Φ
−1
[
(1− p) Φ

[
A−1

g,h

(
τ−a

b

)]
+ p
]}

for 0 < p < 1.

The R function pchip() from the signal package is used to numerically

derive the inverse function, A−1
g,h

( x−a
b

)
. The pchip() function performs piecewise

cubic Hermite (monotone) interpolation.

Using equation (2.7), the conditional likelihood function for the single severity

g-and-h candidate distribution given a sample x ∈ Rn is

L̃(Θ;x,τ) = b−n
[
1−Φ

(
A−1

g,h

(
(τ−a)/b

))]−n n

∏
i=1

φ

[
A−1

g,h

(
(xi−a)/b

)]
A′g,h
[
A−1

g,h

(
(xi−a)/b

)] ,
and from equation (2.8), the conditional log-likelihood function for the single
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severity g-and-h candidate distribution is

˜̀(Θ;x,τ) =−n log(b)−n log
{

1−Φ

[
A−1

g,h

(
(τ−a)/b

)]}
+

n

∑
i=1

log
{

φ

[
A−1

g,h

(
(xi−a)/b

)]}
−

n

∑
i=1

log
{

A
′
g,h

[
A−1

g,h

(
(xi−a)/b

)]}
.

A.7 log-SaS Distribution
The Sinh-arcSinh Distribution (SAS) distribution introduced by Jones and Pewsey

[2009] is a four parameter distribution resulting from a transformation of a standard

normal random variable, similar to the g-and-h distribution. The SAS distribution

uses a monotonic transformation with an analytical inverse giving it two major

advantages over g-and-h when calculating likelihoods.

Let Z ∼ N(0,1) and ε,δ ∈ R with δ > 0. Also, let sinh(·) be the hyperbolic

sine function and sinh−1(·) be the inverse hyperbolic sine function (arcsinh). Then

the random variable Y ∗, such that

Y ∗ = Aε,δ (Z) = sinh
{sinh−1(Z)+ ε

δ

}
,

is said to have a standard SaS distribution with skewness parameter ε and tailweight

parameter δ . We consider Y ∗ a “standard” SaS random variable since it assumes a

location parameter of 0 and scale parameter of 1. To further generalize, let a,b∈R
be the location and scale parameters, respectively, with b > 0. Then,

Y = a+b ·Aε,δ (Z) = a+b sinh
{sinh−1(Z)+ ε

δ

}
,

where Y ∼ SaS(a,b,ε,δ ).

We note that the generalized SAS transformation, a+b Aε,δ (·), has a closed-

form inverse given by

A−1
ε,δ

(y−a
b

)
= sinh

[
δ · sinh−1

(y−a
b

)
− ε

]
.

To calculate the density function of a SAS random variable, we need the derivative
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of the inverse given by

d
dy

A−1
ε,δ

(y−a
b

)
= cosh

[
δ · sinh−1

(y−a
b

)
− ε

]
δ

b
√
( y−a

b )2 +1
dy,

where cosh(·) is the hyperbolic cosine function.

As pointed out by Jones and Pewsey [2009], ε gives both the magnitude and

direction of skewness. A positively skewed distribution will have parameter value

ε > 0, with larger ε indicating more skewness. The tailweight parameter, δ , has

a negative relation to the thickness of the tails. As the value of δ approaches zero

from the right, the tail behavior becomes heavier. For example, distributions with

heavier tails than the normal distribution have a tailweight parameter 0 < δ < 1. A

tailweight parameter greater than 1 indicates thinner tails than the normal distribu-

tion.

Let Φ(·) represent the standard normal CDF and Φ−1(·) be the standard normal

quantile function. Then, for parameter vector Θ = [ a b ε δ ] with a,b,ε,δ ∈ R and

b,δ > 0,

FY (y;Θ) = Φ

[
A−1

ε,δ

(y−a
b

)]
for y ∈ R;

fY (y;Θ) = φ

[
A−1

ε,δ

(y−a
b

)] ( d
dy

A−1
ε,δ

(y−a
b

))
for y ∈ R;

F−1
Y (p;Θ) = a+b Aε,δ

(
Φ
−1(p)

)
for 0 < p < 1.

The conditional CDF and PDF for a SaS distributed random variable with min-

imum threshold τ∗ are derived from equations (2.5) and (2.6), respectively. The

quantile function is found by setting F̃Y (y;Θ,τ∗) = p and solving for y.

F̃Y (y;Θ,τ∗) =


Φ

[
A−1

ε,δ

(
(y−a)/b

)]
−Φ

[
A−1

ε,δ

(
(τ∗−a)/b

)]
1−Φ

[
A−1

ε,δ

(
(τ∗−a)/b

)] for y > τ∗,

0 for y≤ τ∗;
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f̃y(x;Θ,τ∗) =


1

1−Φ

[
A−1

ε,δ

(
τ∗−a

b

)] φ

[
A−1

ε,δ

(
y−a

b

)] (
d
dy A−1

ε,δ

(
y−a

b

))
for y > τ∗,

0 for y≤ τ∗;

F̃−1
Y (p;Θ,τ∗) = a+bAε,δ

{
Φ
−1

[
(1− p) Φ

[
A−1

ε,δ

(
τ∗−a

b

)]
+ p

]}
,

for 0 < p < 1.

Using equation (2.7), the conditional likelihood function for the SaS candidate

distribution is

L̃(Θ;x,τ∗) =
1{

1−Φ
[
A−1

ε,δ

(
τ∗−a

b

)]}n

n

∏
i=1

{
φ

[
A−1

ε,δ

(yi−a
b

)] d
dy

A−1
ε,δ

(yi−a
b

)}
.

From equation (2.8), the conditional log-likelihood function for the single severity

SaS candidate distribution is

˜̀(Θ;x,τ∗) = n log(δ )−n log(b)−n log
{

1−Φ

[
A−1

ε,δ

(
τ∗−a

b

)]}
+

n

∑
i=1

log
{

cosh
[
δ · sinh−1

(yi−a
b

)
− ε

]}
+

n

∑
i=1

log
{

φ

[
A−1

ε,δ

(yi−a
b

)]}
− 1

2

n

∑
i=1

log

{(yi−a
b

)2
+1

}
.

When attempting to fit the SAS distribution to actual operational loss data, we

find that MLE suffers from the badly-scaled problem from Section 2.1.4. To al-

leviate this issue, we treat losses as log sinh-arcsinh Distribution (LSAS) random

variables.

If Y ∼ SaS(a,b,ε,δ ), then X = eY has a LSAS distribution with parameter vec-

tor Θ = [ a b ε δ ], denoted by X ∼ lsas(a,b,ε,δ ). Using the log-SaS distribution

solves another problem of the g-and-h distribution since the support for the log-

SaS distribution is only the positive real numbers. Thus, the log-SaS distribution

solves the problems associated with the g-and-h distribution without sacrificing

the flexibility of a four parameter distribution and proves to be an incredibly useful
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distribution for modeling loss severities.

Let X = eY . We can find the CDF and PDF of X using the formulas

F(x;Θ) = FY
(

log(x);Θ
)
;

f (x;Θ) =
1
x

fY
(

log(x);Θ
)
.

Then, the CDF, PDF, and quantile function for the LSAS distribution are

F(x;Θ) =

Φ

[
A−1

ε,δ

(
log(x)−a

b

)]
for x > 0,

0 for x≤ 0;

f (x;Θ) =


1
x φ

[
A−1

ε,δ

(
log(x)−a

b

)] (
d
dx A−1

ε,δ

(
log(x)−a

b

))
for x > 0,

0 for x≤ 0;

F−1(p;Θ) = exp
{

a+b Aε,δ

(
Φ
−1(p)

)}
for 0 < p < 1.

To derive the conditional CDF, PDF, and quantile function, let the loss data have

minimum reporting threshold τ = exp
{

τ∗
}

. The functions are written in terms of

the functions for Y = log(X) for brevity.

F̃(x;Θ,τ) = F̃Y
(

log(x);Θ,τ∗
)

for x > 0;

f̃ (x;Θ,τ) = f̃y
(

log(x);Θ,τ∗
)

for x > 0;

F̃−1(p;Θ) = exp
{

F̃−1
Y (p;Θ,τ∗)

}
for 0 < p < 1.

Since we use the log-loss data to estimate the distribution parameters, the condi-

tional likelihood and log-likelihood function for the SAS distribution are used on

the log transform of the log-loss data.
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A.8 Lognormal Spliced Lognormal Distribution
Using the derivation from Section 2.1.2, we can calculate the unconditional CDF,

PDF, and quantile function for the piecewise LGNLGN distribution. For ease of

notation, let

D1(Θ,τ) = Fbody(xs;Θb)− (1− pb)Fbody(τ;Θb);

D2(Θ,τ) =
1− pb

D1(Θ,τ)

Fbody(xs;Θb)−Fbody(τ;Θb)

1−Ftail(xs;Θu)
,

where

Fbody(x;Θb) = Φ

[
log(x)−µb

σb

]
; Ftail(x;Θu) = Φ

[
log(x)−µu

σu

]
,

and Θ = [Θb xs Θu ], Θb = [ µb σb ] and Θu = [ µu σu ]. Also, let

fbody(x;Θb) =
1

σbx
φ

[
log(x)−µb

σb

]
; ftail(x;Θu) =

1
σux

φ

[
log(x)−µu

σu

]
,

where Φ(·) and φ(·) are the standard normal CDF and PDF, respectively.

Then, the CDF, PDF, and quantile function for the LGNLGN distribution are

F(x;Θ) =



pb

D1(Θ,τ)
Fbody(x;Θb) for 0 < x≤ xs,

pb

D1(Θ,τ)
Fbody(xs;Θb)

+ D2(Θ,τ)
[
Ftail(x;Θu)−Ftail(xs;Θu)

]
for x > xs,

0 otherwise;
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f (x;Θ) =



pb

D1(Θ,τ)
fbody(x;Θb) for 0 < x≤ xs,

D2(Θ,τ) ftail(x;Θu) for x > xs,

0 otherwise;

F−1(p;Θ) =



exp

{
µb +σb Φ−1

[
p
pb

D1(Θ,τ)

]}
for 0 < p≤ ps,

exp

{
µu +σu Φ−1

[
Ftail(xs;Θu)+

p− ps

D2(Θ,τ)

]}
for ps < p < 1,

where ps =
pb

D1(Θ,τ)
Fbody(xs;Θb), and Φ−1(·) is the standard normal quantile

function.

The conditional CDF, PDF, and quantile function follow directly from the

derivation in Section 2.1.2.

F̃(x;Θ,τ) =



pb
Fbody(x;Θb)−Fbody(τ;Θb)

Fbody(xs;Θb)−Fbody(τ;Θb)
for τ < x≤ xs,

pb +(1− pb)
Ftail(x;Θu)−Ftail(xs;Θu)

1−Ftail(xs;Θu)
for x > xs,

0 for x≤ τ;
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f̃ (x;Θ) =



pb fbody(x;Θb)

Fbody(xs;Θb)−Fbody(τ;Θb)
for τ < x≤ xs,

(1− pb)
ftail(x;Θu)

1−Ftail(xs;Θu)
for x > xs,

0 otherwise;

F̃−1(p;Θ) =



exp

{
µb +σb Φ−1

[
p
pb

Fbody(xs;Θb)

+
pb− p

pb
Fbody(τ;Θb)

]}
for 0 < p≤ pb,

exp

{
µu +σu Φ−1

[
Ftail(xs;Θu)+

p− pb

1− pb

− p− pb

1− pb
Ftail(xs;Θu)

]}
for pb < p < 1.

For the conditional log-likelihood functions of the body and tail, let nb be the

number of observations in the body of the sample and nu be the number of the

observations in the tail of the sample. The conditional log-likelihood for the body

is

˜̀b(Θb,xb,τ,xs) = nb log(pb)−nb log(σb)−
nb

∑
i=1

xi +
nb

∑
i=1

log

{
φ

(
log(xi)−µb

σb

)}

−nb log

{
Φ

(
log(xs)−µb

σb

)
−Φ

(
log(τ)−µb

σb

)}
.
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Likewise, the conditional log-likelihood function for the upper tail is

˜̀u(Θu,xu,xs) = nu log{1− pb}−nu log(σu)−
nu

∑
i=1

xi +
nu

∑
i=1

log

{
φ

(
log(xi)−µu

σu

)}

−nu log

{
1−Φ

(
log(xs)−µu

σu

)}
.

A.9 Lognormal Spliced Generalized Pareto Distribution
Using the derivation from Section 2.1.2, we can calculate the unconditional CDF,

PDF, and quantile function for the piecewise lgn/gpd distribution. For ease of

notation, let

D1(Θ,τ) = Fbody(xs;Θb)− (1− pb)Fbody(τ;Θb);

D2(Θ,τ) =
1− pb

D1(Θ,τ)

Fbody(xs;Θb)−Fbody(τ;Θb)

1−Ftail(xs;Θu)
,

where

Fbody(x;Θb) = Φ

(
log(x)−µb

σb

)
;

Ftail(x;ξ , θ̂ ,xs) = 1−
(

1+
ξ

θ̂
(x− xs)

)−1/ξ

,

and Θ = [Θb xs ξ ], Θb = [ µb σb ], and θ̂ = 1−pb
pb

Fbody(xs;Θb)−Fbody(τ;Θb)
fbody(xs;Θb)

. Also, let

fbody(x;Θb) =
1

σbx
φ

[
log(x)−µb

σb

]
,

where Φ(·) and φ(·) are the standard normal CDF and PDF, respectively.
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Then, the CDF, PDF, and quantile function for the LGNGPD distribution are

F(x;Θ) =



pb

D1(Θb,τ)
Fbody(x,Θb) for 0 < x≤ xs,

pb

D1(Θb,τ)
Fbody(xs,Θb)

+D2(Θ,τ)
[
1−
{

1+ ξ

θ̂
(x− xs)

}]
for x > xs,

0 otherwise;

f (x;Θ) =



pb

D1(Θ,τ)
fbody(x,Θb) for 0 < x≤ xs,

D2(Θ,τ)

θ̂

(
1+

ξ

θ̂
(x− xs)

)−1−1/ξ

for x > xs,

0 otherwise;

F−1(p;Θ) =



exp

{
µb +σb Φ−1

[
D1(Θ,τ)

pb
p

]}
for 0 < p≤ ps,

xs +
θ̂

ξ

[(
1− p− ps

D2(Θ,τ)

)−ξ

−1

]
for ps < p < 1,

where ps =
pb

D1(Θ,τ)
Φ

[
log(xs)−µb

σb

]
.

The conditional CDF, PDF, and quantile function follow directly from the

92



derivation in Section 2.1.2.

F̃(x;Θ,τ) =



pb
Fbody(x,Θb)−Fbody(τ,Θb)

Fbody(xs,Θb)−Fbody(τ,Θb)
for τ < x≤ xs,

pb +(1− pb)

[
1−

(
1+

ξ

θ̂
(x− xs)

)−1/ξ]
for x > xs,

0 for x≤ τ;

f̃ (x;Θ) =



pb Fbody(x,Θb)

Fbody(xs,Θb)−Fbody(τ,Θb)
for τ < x≤ xs,

1− pb

θ̂

(
1+

ξ

θ̂
(x− xs)

)−1−1/ξ

for x > xs,

0 otherwise;

F̃−1(p;Θ) =



exp

{
µb +σb Φ−1

[
p
pb

Fbody(xs;Θb)

+
pb− p

pb
Fbody(τ;Θb)

]}
for 0 < p≤ pb,

xs +
θ̂

ξ

[(
1− pb

1− p

)ξ

−1

]
for pb < p < 1.

For the conditional log-likelihood functions of the body and tail, let nb be the

number of observations in the body of the sample and nu be the number of the

observations in the tail of the sample. The conditional log-likelihood for the body
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is

˜̀b(Θb,xb,τ,xs) = nb log(pb)−nb log(σb)−
nb

∑
i=1

xi +
nb

∑
i=1

log

{
φ

(
log(xi)−µb

σb

)}

−nb log

{
Φ

(
log(xs)−µb

σb

)
−Φ

(
log(τ)−µb

σb

)}
.

Likewise, the conditional log-likelihood function for the upper tail is

˜̀u(ξ ;xuθ̂ ,xs) = nu log{1− pb}−nu log(θ̂)−
(

ξ +1
ξ

) nu

∑
i=1

log
(

1+
ξ

θ
(xi− xs)

)
.
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Appendix B

MLE Results
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B.1 MLE Results for SRC 1

Figure B.1: SRC 1 MLE parameters for each candidate distribution when including all loss data
before each row’s designated year. The last row uses all simulated data. Lgn/Lgn and
Lgn/Gpd refer to LGNLGN and LGNGPD, respectively.
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B.2 MLE Results for SRC 2

Figure B.2: SRC 2 MLE parameters for each candidate distribution when including all loss data
before each row’s designated year. The last row uses all simulated data. Lgn/Lgn and
Lgn/Gpd refer to LGNLGN and LGNGPD, respectively.
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B.3 MLE Results for SRC 3

Figure B.3: SRC 3 MLE parameters for each candidate distribution when including all loss data
before each row’s designated year. The last row uses all simulated data. Lgn/Lgn and
Lgn/Gpd refer to LGNLGN and LGNGPD, respectively.
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