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Abstract

We developed novel algorithms for monitoring sleep, sleep breathing disorder (SBD)

and instantaneous respiratory rate (IRR) in children using the characterization of

pulse oximetry photoplethysmogram (PPG). To evaluate the algorithms, we recorded

the oxygen saturation (SpO2) and PPG signals from 160 children using a phone-

based oximeter consisting of a microcontroller-based pulse oximeter module inter-

facing a smartphone. This mobile oximeter was further developed to perform all

processing on the smartphone through the audio interface.

We evaluated the relative impact of SBD on sympathetic and parasympathetic

activity in children through the characterization of PPG and concluded that sympa-

thetic activity was higher in 30-second epochs with apnea/hypopnea event(s). We

later characterized the SpO2 pattern in SDB and then combined SpO2 pattern char-

acterization and PPG analysis to design a model with two binary logistic classifiers

to identify the epochs with apnea/hypopnea events.

We developed a novel model for identifying the cycles of random eye move-

ment (REM) and non-REM of the overnight sleep based on the activity of cardiores-

piratory system using the overnight PPG. We extracted the features associated with

pulse rate variability (PRV), respiratory rate (RR), vascular tone and movement

from PPG to build a model with two binary classifiers to identify wakefulness from

sleep (wake/sleep classifier) and REM from non-REM sleep (non-REM/REM clas-

sifier).

We also developed a novel algorithm for extracting the instantaneous respira-

tory rate (IRR) from PPG. The algorithm was performed in three steps: extraction

of three respiratory-induced variation signals from PPG, estimation of IRR from

each extracted respiratory-induced variation signal and fusion of IRR estimates.

iii



A time-frequency transform called synchrosqueezing transform (SST) was used to

extract the respiratory-induced variation signals from PPG. Later, a second SST

was applied to estimate IRR from respiratory-induced variation signals. To fuse

IRR estimates, a novel algorithm was proposed.

This study would expand the functionality of conventional pulse oximetry be-

yond the measurement of heart rate and SpO2 to monitor sleep, to screen SBDs and

measure the respiratory rate continuously and instantly.
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Lay Summary

Sleep apnea is defined as a short pause of breathing during a normal overnight

sleep. Each pause typically lasts from 10 to 90 seconds. In children with sleep ap-

nea syndrome, these pauses can be repeated several times during a night, resulting

in a low level of oxygen in the blood and a low quality of sleep. Untreated sleep

apnea in children can be linked to impairments in memory, attention, learning,

and behavior. Polysomnography, also called a sleep study, is a common test used

to diagnose sleep apnea syndrome. Polysomnography is a very complicated and

expensive test and requires an overnight stay at a very equipped sleep laboratory.

In this study we designed and developed a simple and low cost mobile tech-

nology for screening sleep and sleep apnea in children using a pulse oximeter con-

nected to a smartphone.
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Chapter 1

Introduction

1.1 Sleep
The basic structure of human sleep has three major stages: wakefulness, random

eye movement (REM) and non-REM. Later, non-REM sleep is divided into N1, N2,

and N3 stages, progressing from stage N1 (light sleep) to stage N3 (deep sleep).

non-REM sleep forms about 75 to 80 percent of the total time of sleep and REM

sleep forms the remaining 20 to 25 percent.

In a regular overnight sleep, non-REM and REM occur cyclically (Figure 1.1).

Each cycle, taking about 90 to 120 minutes, starts with stage N1 (light sleep) of

non-REM sleep, progresses to stage N2 and then to stage N3, repeats stages N2

and N3 backward and then proceeds to REM sleep. The first half of an overnight

sleep is dominated by deep sleep (stage N3) while the second half is dominated by

REM sleep.

Polysomnography (PSG) is the gold standard for assessing and scoring sleep.

In an overnight PSG, the brain activity (electroencephalography (EEG)), eye move-

ment (electrooculography (EOG)) and muscle activity (electromyography (EMG))

are recorded according to the recommendation of American Academy of Sleep

Medicine (AASM).

Later the EEG, EOG and EMG recordings are subdivided into 30-epochs. A

sleep stage is assigned to each epoch by a sleep technician according to the AASM

criteria:
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- Stage W represents alert wakefulness to drowsiness. The EEG signal consists

of Alpha waves (8 - 13 Hz), the EOG activity shows irregular peaked eye move-

ments with the frequency of 0.5-2 Hz, and the EMG activity shows normal or high

chin muscle tone.

- Stage N1 forms 5% of total sleep time. The EEG consists of Theta waves (4-7

Hz), the EOG shows slow eye movements, and the EMG is irregular but is often

less variable than wakefulness.

- Stage N2 makes up 50% of total sleep time. The EEG consists of Theta waves

mixed with K-complexes 1 and sleep spindles 2. The EOG recording doesn’t show

significant eye movement. The EMG has variable amplitude, but usually lower

than wakefulness.

- Stage N3 forms 20-25% of total sleep time. The EEG wave consists of a

frequency of a 0.5-3 Hz with high amplitudes (> 75 µV). The EMG has variable

amplitude, often lower than in Stage N2 and sometimes as low as in REM sleep.

- During REM sleep, the EEG consists of low voltage mixed frequency Theta

waves (4-7 Hz). Alpha waves may be present but will be 1-2 Hz slower than Alpha

during wakefulness. The EOG shows the presence of rapid eye movements. The

EMG is significantly reduced compared to non-REM sleep.

For an overnight sleep, PSG provides detailed information about the structure

and pattern of sleep stages, overall sleep time, the time spent in different sleep

stages and timing and structure of cycles. This information is simplified in a graph

called hypnogram (Figure 1.1).

1.2 Sleep Breathing Disorder
sleep breathing disorder (SBD) is characterized by abnormalities of respiration

during sleep. The International Classification of Sleep Disorders, second edition

(ICSD-2) published by the American Academy of Sleep Medicine further catego-

rized SBDs into obstructive sleep apnea/hypopnea syndromes, central sleep apnea

1K-complex consists of a brief negative high-voltage peak, usually greater than 100 µV, followed
by a slower positive complex around 350 and 550 ms and at 900 ms a final negative peak

2A burst of oscillatory brain activity visible on an EEG
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Figure 1.1: Hypnogram, provided by PSG, depicts the structure of an
overnight sleep, organization of cycles and timing of different sleep
stages.

syndromes, sleep related hypoventilation 3/hypoxemia 4 disorders [4]. Some pa-

tients may have a combination of these disorders, particularly many patients have

a combination of obstructive and central sleep apnea.

American Academy of Sleep Medicine (AASM) Manual for the Scoring of

Sleep and Associated Events [5] provides the terminology and scoring rules for

sleep related respiratory events and disorders. It also provides the technical spec-

ification for evaluation of a standard sleep test conducted in a sleep laboratory as

well as home sleep testing.

Apnea is defined as the complete cessation of breathing during sleep while

hypopnea is defined as the reduction in airflow. In sleep apnea/hypopnea disorders,

apnea/hypopnea (A/H) events happen intermittently during an overnight of sleep.

apnea/hypopnea Index (AHI) is estimated as the number of A/H events happen in

one hour of sleep and is used as a metrics of the severity of sleep apnea/hypopnea

syndromes. Based on the AHI, the severity of sleep apnea syndrome in adults is

classified as follows:
3Breathing at an abnormally slow rate
4An abnormally low concentration of oxygen in the blood
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- None/Minimal: AHI < 5

- Mild: AHI ≥ 5, but < 15

- Moderate: AHI ≥ 15, but < 30

- Severe: AHI ≥ 30

Obstructive Sleep Apnea Disorder

In obstructive sleep apnea (OSA) disorder, A/H events are caused by the complete/-

partial closure of upper airway during sleep. In these events, the airflow is com-

pletely ceased or dramatically reduced in the presence of respiratory efforts [51].

According to the definition provided by AASM, A/H events last for a minimum

of 10 s. Most A/H events take 10 s to 30 s. However, some of them may last to

more than one minute. The frequent occurrence of obstructive A/H events may

reduce the blood oxygen saturation which leads to a brief or complete arousal from

sleep to resume respiration. A/H events may occur in different sleep stages but

more frequently happen in stage N1, stage N2, and REM sleep than in stage N3.

Frequent arousals and sleep fragmentations may cause daytime symptoms like ex-

tensive sleepiness and fatigue which affect the quality of life.

In adults, the prevalence of obstructive sleep apnea associated with daytime

sleepiness has been estimated at 3% to 7% for males and 2% to 5% for females.

However, OSA without daytime sleepiness may occur in 24% of adult men and 9%

of adult women. Obesity, enlarged adenotonsillar tissue and structural informality

of upper airway are the main risk factors of OSA in adults. In adult patients, OSA

is a risk factor of development of systematic hypertension and diabetes type 2.

The prevalence of obstructive sleep apnea in children has been estimated at 1%

to 4%. In children younger than 13 years old, the disorder occurs equally among

boys and girls but among adolescents, the provenance is higher in boys. Obesity

and the enlarged tonsils and adenoids are the main cause of obstructive sleep ap-

nea in children. Excessive sleepiness happens more in older children and less in

younger ones. Left untreated, OSA in children may have serious consequences

including developmental, behavioral and learning issues including concentration

problems, hyperactivity and, moodiness [64].

AASM has different criterion for defining obstructive A/H events in adults and

4



Table 1.1: Rules for scoring obstructive apnea/hypopnea events in adults and
children defined by American Academy of Sleep Medicine (AASM)

Adults Children

Obstructive
Apnea

-A drop in airflow by ≥ 90%
of pre-event baseline
-Drop lasts for ≥ 10 s

-A drop in airflow by ≥ 90%
of pre-event baseline
-Drop lasts for ≥ 2 breaths

Obstructive
Hypopnea

-A drop in airflow by ≥ 30%
of pre-event baseline
-Drop lasts for ≥ 10 s
-An oxygen desaturation ≥ 3%
from pre-event baseline or
-the event is associated with an arousal

-A drop in airflow by ≥ 30%
of pre-events
-Drop last for at least 2 breaths
-An oxygen desaturation ≥ 3%
from pre-event baseline or
-the event is associated with an arousal

children summarized in Table 1.1.

Central Sleep Apnea Disorder

Central sleep apnea/hypopnea events are caused by complete or partial reductions

in central neural outflow to the respiratory muscles during sleep that leads to com-

plete or partial cessation of airflow for at least 10 seconds, respectively [10]. In

contrast to obstructive apneas, in which respiratory efforts are observable, no respi-

ratory effort is generated during central apnea/hypopnea events due to the cessation

of respiratory drive. Thus central apneas are distinguished from obstructive apneas

by the absence of respiratory effort.

In the general population, the prevalence of central sleep apnea is less than 1%.

However, central sleep apnea/hypopnea disorder has been reported in 25-40% of

patients with heart failure and in 10% of patients who have had a stroke.

Polysomnography (Sleep Study)

A sleep study or polysomnography (PSG) is currently known as the gold standard

for diagnosis sleep-related disorders, especially SBDs. In an overnight PSG, the

physiological activity of body that occur during sleep are monitored in order to

diagnose a wide range of respiratory and non-respiratory disorders of sleep.
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PSG involves the measurement of several physiologic recordings including the

EEG, EOG, electrocardiogram (ECG), submental and leg EMG, body position,

pulse oximetry, measurements of airflow, and measurements of thoracic and ab-

dominal respiratory effort.

EEG records neural activity from electrodes placed on the patient’s scalp. As

mentioned in the previous section (section 1.1), EEG is performed to identify the

state of wakefulness and sleep and also to determine the different sleep stages, in

addition to recording arousals from sleep that may or may not be associated with

respiratory events. Recording of EOG and submental EMG are also necessary for

distinguishing wakefulness and REM sleep from other sleep stages.

Monitoring the cardiorespiratory activity is essential for the diagnosis of sleep

breathing disorders. One lead-ECG is recommended by AASM to detect cardiac

rhythm and identification of nocturnal arrhythmias. Nasal and oral airflow is mea-

sured using a thermistor and/or a nasal-cannula pressure transducer. The results of

one study showed that the use of a nasal pressure transducer in conjunction with

a thermistor was more sensitive than the thermistor alone in detecting hypopnea

events in adults and children [63]. So it is recommended by AASM to use the pres-

sure transducer and thermistor together for measuring airflow. Beside measuring

nasal/oral airflow measurement, monitoring the respiratory effort is also essential

for assessing SBDs, especially for discrimination between obstructive and central

sleep apnea. In standard PSG, thoracic and abdominal respiratory effort is mea-

sured using the respiratory inductance plethysmography (RIP) belts fasten around

chest and abdomen. Pulse oximetry is used to detect reductions in blood oxygen

saturation as a result of A/H events.

PSG is highly resource-intensive [13] and requires a specialized sleep labo-

ratory, expensive equipment and an overnight stay in the facility, confining PSG

monitoring to centralized specialist facilities. For example, in British Columbia,

all PSG studies in children are performed at the British Columbia Children’s Hos-

pital (BCCH) in Vancouver. This greatly limits access, especially for those who

live in remote locations. The capacity to perform PSG at BCCH is limited to fewer

than 250 cases per year, resulting in a waitlist of six months. Beside the limited

access, the high cost (approximately $800 per night in direct health care costs at

BCCH) of PSG has generated a great interest in alternative techniques to simplify
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the standard procedure.

1.3 Pulse Oximetry
A pulse oximeter is a photoelectric device which non-invasively detects the blood

volume changes, or photoplethysmogram (PPG), by measuring the light reflected

or transmitted through the body tissue (e.g finger, ear, forehead or nose lobe).

A conventional transmitted pulse oximeter sensor has two light-emitting diodes

(LEDs) and a light detector mounted on the opposite side of the LEDs. The LEDs

alternatively emit red and infra-red light through the body and the light detector

captures the amount of transmitted light (Figure 1.2). The light intensity decreases

as the red and infrared beams pass through the body (e.g. skin, bones, tissue, ar-

terial and venous blood). According to the Beer-Lambert low, the light intensity

decreases exponentially with the concentration and length of the light path as ex-

plained by:

I = I0e−lα (1.1)

where I and I0 represent the intensity of transmitted and incident lights, re-

spectively, l is the path length light traveled and α is the absorption coefficient of

blood.

Based on the Beer-Lambert’s law, the density of transmitted light decreases

during systole when the peripheral arterial blood volume is at its maximum value

and increases during diastole when the blood is minimum at the arteries. The PPG

signal generated by the light detector, then, has a pulsatile waveform (AC) whose

peaks and troughs reflect light transmitted through the tissue when blood volume

is minimal and maximal, respectively (Figure 1.3). AC offsets by a large baseline

component (DC) mainly rises because of constant absorption of light travelling

through constant components e.g. skin, bones, and tissues. A small variation ob-

served in DC is mostly due to venous blood variation which changes the intensity

of the light captured by the light detector.
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Figure 1.2: A conventional transmitted pulse oximeter sensor has two light-
emitting diodes (LEDs) and a light detector mounted on the opposite
side of the LEDs (inspired by [75])

Figure 1.3: Light transmitted through the living tissue (inspired by [75])

Estimation of SpO2

The absorption coefficient of oxyhemoglobin (oxy Hb) and deoxyhemoglobin (de-

oxy Hb) is different at different wavelengths. The oxy Hb absorbs more infra-red

light than red light while deoxy Hb absorbs more red light than infra-red light. By

comparing the amount of light absorbed by oxy Hb and deoxy Hb at two different

wavelengths, the pulse oximetry calculates oxygen saturation (SPO2) as explained

by [75]:
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S = 1−R (1.2)

R is called the Ratio of Ratios and is calucated as

R =
ln(AC+DC/DC)|λ1

ln(AC+DC/DC)|λ2
(1.3)

where λ1 and λ2 are the wavelengths of the red (660nm typ.) and infrared

(890nm typ.) light, respectively.

Figure 1.4: Absorption spectra of hemoglobin (from [75])

Phone OximeterTM

To increase the accessibility of pulse oximeter and to take advantage of the preva-

lence of mobile phones, a clinical pulse oximeter sensor can be interfaced to a

mobile phone. The commercially available pulse oximeter sensors have a micro-

controller module featuring low power supply requirements and a communication

unit which are compatible with smart phones.

The researchers in the Electrical & Computer Engineering in Medicine group in

the University of British Columbia, Vancouver, Canada developed a mobile device,

named Phone Oximeter TM, which interfaces a commercial micro controller-based
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pulse oximeter module with a smart phone [39] (Figure 1.5).

Figure 1.5: The Phone OximeterTM interfacing a microcontroller-based pulse
oximeter module with a smartphone.

The use of the smartphone as the pulse oximeter display and power source over-

comes pertinent challenges of distributing the technology. The Phone OximeterTM

improves accessibility of pulse oximetry, enables the acquisition, monitoring and

analysis of vital signs and provides intuitive display of information to health care

providers [62]. Usability studies of the Phone OximeterTM prototype previously

undertaken both in Canada and Uganda have shown overall usability scores of 82%

and 78% respectively, indicating that a smartphone can be a functional oximeter in-

terface [32].

Phone Oximeter TM has been further developed to perform all processing on

the mobile device through the audio interface [62] (Figure 1.6).

For the purpose of this study, Phone Oximeter TM has been used for collecting

the PPG recordings.

1.4 Motivation
In children with sleep apnea/hypopnea syndrome, the frequent cessation of breath-

ing during sleep results in oxygen desaturations (a low level of oxygen in the

blood), frequent arousal from sleep to resume breathing, fragmented sleep cycles
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(a) (b)

Figure 1.6: (a) Sensor and (b) the user interface of iOS App of Kenek O2
Pulse Oximeter

and ultimately sleep deprivation. Untreated sleep apnea in children has been linked

to cognitive and behavioral deficits, growth disorders, metabolic disorders, sys-

temic inflammation, and serious cardiovascular consequences. Thus, it is clear that

sleep apnea has serious developmental consequences for children, highlighting the

importance of prompt diagnosis and treatment.

PSG is the commonly used technique for sleep apnea diagnosis. Using PSG

data, sleep technicians visually identify apnea/hypopnea events, associated oxy-

hemoglobin desaturations and arousals to estimate the sleep apnea severity. The

sleep states, sleep quality, sleep quantity and the number of non-REM-related and

REM-related A/H events are also measured.

PSG is highly resource-intensive [13] and requires an overnight stay at a highly

equipped sleep laboratory with an overnight attending sleep technician. This com-

plexity confines the PSG test to the centralized facilities. For example, in British

Columbia, all PSG studies in children are performed at the British Columbia Chil-
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dren’s Hospital (BCCH) in Vancouver. This greatly limits access, especially for

those who live in remote locations. The capacity to perform PSG at BCCH is

limited to fewer than 250 cases per year, resulting in a waitlist of six months. In

recently developed clinical practice guidelines for the diagnosis and management

of SDB in children and adolescents [52], the American Academy of Pediatrics

concluded that all children/adolescents should be screened for snoring and OSA

symptoms (defined in the guidelines [52]) and PSG should be performed in those

with regular snoring and signs of OSA.

The complexity and cost of PSG (approximately $800 per night in direct health

care costs at BC Children Hospital) [53] and limited access of PSG have generated

a great interest in alternative techniques to simplify the standard procedure.

The ultimate goal of this study was to develop a simple mobile screening tool

for sleep and SBD in children using the Phone Oximeter TM . The characterization

of the SpO2 and PPG signals both obtained by the Phone Oximeter TM were used

to detect the A/H epochs, different sleep stages and respiratory rate during sleep.

1.5 Objectives
The objectives of this study are defined as:

- to investigate the relative impact of SBD on sympathetic and parasympathetic

activity in children through spectral analysis and detrended fluctuation analysis

(DFA) of pulse rate variability (PRV) extracted from PPG.

- to develop a novel method for extracting the instantaneous respiratory rate

(IRR) from PPG.

- to extract the different states of the overnight sleep based on the activity of

cardiorespiratory system using the pulse oximeter PPG.

- to propose a model to use the SpO2 pattern characterization and PPG analysis

to identify the epochs with A/H events using the Phone OximeterTM .

1.6 Contribution
We have made three significant contributions to the field:

-To estimate the instantaneous respiratory rate (IRR) during sleep, we pro-

posed and developed a novel algorithm for extracting the (IRR) from the PPG. The
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method extracts the three respiratory-induced variation signals from PPG and esti-

mates the IRR from them using a time-frequency transform called synchrosqueez-

ing transform (SST). A novel algorithm, called peak-conditioned fusion, is pro-

posed to fuse the IRR estimates and produce the final estimate of IRR. The novelty

mostly was in designing and developing the peak-conditioned fusion algorithm.

The details are described in Chapter 3.

-To measure the sleep staging and to be able to determine the REM-related

and non-REM-related A/H epochs, we designed and develop a novel model for

identifying the cycles of REM and non-REM of the overnight sleep based on the

activity of cardiorespiratory system using the overnight PPG signals. We build a

multivariate model with two binary classifiers to identify wakefulness from sleep

(wake/sleep classifier) and REM from non-REM sleep (non-REM/REM classifier).

The developed classifiers were assessed epoch-by-epoch for each subject individ-

ually and provided a detailed epoch-by-epoch sleep analysis, similar to the hypno-

gram provided by PSG. The novelty was to use the characterization of PPG for

identifying sleep from wakefulness and furthermore, detecting the REM and non-

REM stages of sleep. The details are presented in Chapter 4.

- To screen apnea/hypopnea syndrome, we combined the SpO2 pattern charac-

terization and PPG analysis to design and develop a model with two binary mul-

tivariante logistic classifiers to automatically reject the 30-s PPG epochs contam-

inated with the artifact and later identify the epochs with the A/H events. The

developded model was assessed epoche-by-epoch for each subject and provided a

detailed epoch-by-epoch A/H monitoring, similar to the one provided by PSC. The

novelty was to combine the characterization of PPG and SpO2 for training two dif-

ferent models for detecting the A/H events and rejecting aftifact. The details were

presented in Chapter 5.

1.7 Organization of the Dissertation
This dissertation is organized in 6 chapters (Figure 1.7).

Chapter 1 provides an introduction to sleep, sleep breathing disorders and the

technology of the pulse oximetry.

Chapter 2 discusses how the analysis of PPG can be used to assess the cardiac
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Figure 1.7: Organization of the Dissertation.

modulation in children in response to sleep breathing disorders in different sleep

stages.

Chapter 3 presents a novel approach for extracting instantaneous respiratory

rate from PPG using the synchrosqueezing transform (SST)

Chapter 4 discusses the application of PGG analysis for identifying different

sleep stages and presents a novel method for extracting sleep structure using the

PPG features.

Chapter 5 discusses the design and development a stand-alone tool for moni-

toring and screening sleep breathing disorders at home using the Phone OximeterTM

Chapter 6 concludes the dissertation and presents suggestions for future work

in monitoring sleep and sleep breathing disorders.
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Chapter 2

Evaluation of Cardiac
Modulation in Children in
Response to Apnea/Hypopnea

2.1 Introduction
The autonomic nervous system (ANS) and circulating hormones play a signifi-

cant role in regulating cardiovascular function. Regulation of heart rate is driven

mainly by interaction between the sympathetic and parasympathetic branches of

the ANS. To increase heart rate, the ANS increases sympathetic outflow to the

sinoatrial (SA) node, and concurrently reduces parasympathetic tone. Depression

of parasympathetic activity is necessary for the sympathetic nerves to increase heart

rate because parasympathetic activity reduces the action of sympathetic nerve ac-

tivity [44]. Since the regulation of heart rate is mainly controlled by the ANS, heart

rate variability (HRV) has received significant attention as a promising non-invasive

indicator of cardiac autonomic function.

HRV is defined as the variation in the inter-beat intervals (RRIs) conventionally

obtained from an electrocardiogram (ECG). RRIs time series are typically non-

stationary and exhibit short and long-range fluctuations that occur in irregular and

complex patterns, even during rest [59], [60], [33]. Short-range fluctuations cor-
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respond to fast changes of heartbeat intervals associated with breathing and the

regulation of blood pressure, whereas long-range fluctuations correspond to slow

changes of heartbeat intervals and reflect the effort of the ANS to limit heart rate

[60].

Power spectral analysis of HRV has been extensively used to study the fre-

quency distribution of heart rate. Measured in short segments of RRIs time series,

the power in the frequency range of 0.15 to 0.4 Hz, referred to as the high fre-

quency power (HF), is commonly utilized to quantify parasympathetic activity.

The power of HRV in the frequency range of 0.04 to 0.15 Hz, referred to as the low

frequency power (LF), can be related to both sympathetic and parasympathetic ac-

tivity. The ratio of LF to HF (LF/HF ratio) is defined as an index that represents the

sympathetic/parasympathetic balance; a higher LF/HF ratio implies a shift toward

sympathetic activity [33].

Power spectral analysis assumes that the studied signal is stationary, and may

produce inaccurate results when applied to non-stationary signals. This makes

power spectral analysis inappropriate for quantifying the long-range fluctuation of

heart rate. To overcome this limitation, Peng et al introduced the Detrended Fluctu-

ation Analysis (DFA)[59]. DFA determines the short- and long-range correlations

in a time series, expressed as scaling exponents. Peng et al showed that it is possi-

ble to distinguish healthy subjects from those with severe heart failure by looking

at the short and long-range correlations in heartbeat intervals [60]. Later, Penzel

et al. investigated the short- and long-range correlation of heart rate intervals mea-

sured by DFA in individuals with SDB in different sleep stages and found that DFA

improved sleep apnea severity rating compared to spectral analysis [61].

Traditionally, HRV is measured from the RRIs of the ECG. However, it is

possible to use pulse rate variability (PRV) extracted from the photoplethysmogra-

phy signal (PPG) as an alternative measurement of HRV. More recent studies have

shown that in stationary conditions PRV could be used as an estimate of HRV [18],

[43]. During non-stationary conditions, Gil et al[29] reported that there was a pos-

itive bias, due to pulse time transit variability, in the estimation of PRV, especially

in respiratory band. They showed that these differences were sufficiently small to

allow the use of PRV as an alternative measurement of HRV.

In individuals with SDB, intermittent sleep fragmentation and disturbance in
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normal respiration and oxygenation that accompany most apnea/hypopnea events

cause changes in cardiac autonomic regulation [36]. These changes are reflected by

reduced parasympathetic activity and enhanced sympathetic activity that persists

during wakefulness [36]. Previous studies based on HRV analysis have demon-

strated cardiac autonomic modulation due to SDB, and have shown that both the

LF power and the LF/HF ratio are more pronounced in subjects with SDB, while

the HF power is reduced [57], [74]. Cardiac sympathetic and parasympathetic

modulation in response to apnea/hypopnea has been well studied in adults, but is

less extensively studied in children.

In this study, we investigated the relative impact of SDB on sympathetic and

parasympathetic activity in children through spectral analysis and DFA of PRV. We

estimated PRV from the pulse-to-pulse intervals of the PPG signal. The PPG sig-

nals were recorded from 160 children using the Phone OximeterTM in the standard

setting of overnight polysomnography (PSG).

2.2 Materials and methods

2.2.1 Participants

Following approval by the University of British Columbia Clinic Research Ethics

Board (H11-01769) and informed parental consent, 160 children were recruited

for this study. The children were suspected of having SDB and had been referred

to the British Columbia Children’s Hospital for overnight PSG. Children with a

cardiac arrhythmia or abnormal hemoglobin were excluded from the study. The

recordings of 14 subjects were removed from the dataset due to inadequate length

of sleep (less than 3 hours). The children were divided into two groups using the

PSG outcomes and diagnostic report of the respiratory specialist: subjects with an

AHI greater than 5 apnea/hour (SDB group) and children with an AHI less than 5

apnea/hour (non-SDB group) (table 2.1).

2.2.2 Data collection

Standard PSG recordings were performed with the Embla Sandman S4500 (Em-

bla Systems, ON, Canada) and included overnight measurements of ECG, elec-
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Table 2.1: Demographics and AHI index of studied population expressed as
mean ± standard deviation.
In this table: 1Rapid Eye Movement; 2Body Mass Index; 3Total Sleep
Time; 4Total Bed Time; ∗p < 0.001; ∗∗p < 0.0001 comparing SDB and
non-SDB; †p-value < 0.001 comparing AHI in REM and non-REM sleep
stages

Dataset SDB non-SDB

Number 56 (18, 38) 90 (41, 49)
Age (y) 8.8 ± 4.6 9.3 ± 4
AHI 19.7 ± 19.5∗∗ 1.4 ± 1.1
AHI in REM1 † 34.8 ± 27.8∗∗ 4.4 ± 5.1
AHI in non-REM 15.8 ± 22.8∗∗ 0.8 ± 1.0
BMI2 (kg/m2) 23.2 ± 8.3∗ 19.6 ± 6.6
Sleep efficiency (%) 75.1 ± 16.2 76.6 ± 15.3
TST3 (min) 362.1 ± 82.6 368.0 ± 73.8
TBT4 (min) 479.9 ± 40 481.4 ± 24.1
non-REM (%) 78.7 ± 9.3 81.7 ± 7.6
REM (%) 20.2 ± 8 18.2 ± 6.1
Awakenings 21.2 ± 10.6 18.6 ± 9.3
Respiratory arousals 13.6 ± 13.9∗∗ 1.0 ± 0.9

troencephalography (EEG), oxygen saturation (SpO2), PPG, chest and abdominal

movement, nasal and oral airflow, left and right electrooculography (EOG), elec-

tromyography (EMG) and video capture. The PSG was later annotated by a sleep

technician with sleep phases and events (apneas, hypopneas, and arousal).

In addition to PSG, PPG, heart rate, and SpO2 were recorded simultaneously

with the Phone OximeterTM . The SpO2 and PPG signals were sampled at 1 Hz

and 62.5 Hz, respectively, with 32-bit resolution.

2.2.3 Pre-processing

After baseline removal and smoothing with a Savitzky-Golay FIR filter (order 3,

frame size 11 samples), all PPG signals recorded using the Phone OximeterTM

were divided into one-minute segments with a 30-second shift. These one-minute

segments were used to assess autonomic cardiac modulation during the A/H events
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for each subject with SDB (intra-individual event analyses). In addition, the PPG

signals were divided into five-minute segments with 30 seconds shift and used

to assess autonomic cardiac modulation in subjects with and without SDB (inter-

groups analyses).

Each segment was assigned a signal quality index between 0 and 100 based on a

cross correlation method [40] and segments with low signal quality index (less than

50) were excluded from further analysis even if a very small part of segment was

contaminated by artifact. In order to obtain the PPIs time series, a peak detection

algorithm based on zero-crossing was used to locate the pulse peaks in the PPG

signal, and the intervals between successive peaks were computed. PPIs shorter

than 0.33 s and greater than 1.5 s were considered artifacts [61] and consequently

deleted from the time series.

2.2.4 Sleep and apnea analysis

All segments were scored as wakefulness, REm or non-REM based on the labels in

the PSG event log file. Segments with any sleep state transition containing multiple

sleep state labels were removed from the data set.

One-minute segments with any period of SDB, such as obstructive or central

sleep apnea were labelled as A/H. According to the AASM 2012 standard criteria

[5], obstructive apneas in children are defined as complete cessation of airflow (on

airflow cannula) in the presence of respiratory effort lasting for more than 10 s.

When respiratory effort partially or totally ceased, apneas were scored as mixed

apnea or central apnea, respectively. Hypopneas were defined as a 30% airflow

reduction for the duration of two breaths (Table 1.1).

2.2.5 Parameter extraction

Time-domain parameters

Three time domain parameters were extracted from the PPIs time series, including

the mean of the PPIs (meanPP), the standard deviation of the PPIs (SDPP) and the

root mean square of difference of the successive PPIs (RMSSD).
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Power spectral analysis

PPIs were resampled into the equivalent, uniformly spaced time series (so called

PRV) at a sampling rate of 4 Hz using the Berger algorithm [8]. PRV was char-

acterized in the spectral domain using power spectral density (PSD). To provide a

better frequency resolution a parametric power spectral estimation was performed

through an autoregressive modeling with 1024 points and an order of 16. The

power in each of the following frequency bands was computed by determining the

area under the PSD curve bounded by the band of interest: Very Low Frequency

(VLF; 0.01-0.04 Hz), Low Frequency (LF; 0.04-0.15 Hz) and High Frequency (HF;

0.15-0.4 Hz). Normalized LF (nLF) and normalized HF (nHF) powers were deter-

mined by dividing LF and HF powers by the total spectral power of PRV between

0.04 and 0.4 Hz, respectively. The ratio of low-to-high frequency power (LF/HF

ratio) was also computed.

Detrended Fluctuation Analysis (DFA)

To quantify the short and long-range fluctuation of heart rate, we applied DFA to

the PPIs time series. DFA detects the internal correlation of signal expressed by

scaling properties. To calculate DFA, we followed a four-step procedure [60]:

Step 1: An integrated version of the original PPIs time series was calculated as

y(k) =
k

∑
i=1

[PPI(i)−PPIavg] (2.1)

where PPI(i) was the ith PPIs, PPIavg was the mean of PPIs and k = 1,...,N. N was

the total number of pulses.

Step 2: The time series y(k) was divided into equally spaced Nn = int(N/n)

non-overlapping windows with length n (number of pulses in each window).

Step 3: For each window, the local trend yn(k) was separately calculated by a

quadratic least-squares fit. Then the variance was determined for each window by

σ
2
n (v) =

1
n

n

∑
k=1

[y((v−1)∗n+ k)− yn(k)]2 (2.2)

where v=1,...,Nn.
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Step 4: Finally, to obtain F(n), the fluctuation function, the root-mean-square

of all variances was calculated by

F(n) =

√
1

Nn

Nn

∑
v=1

σ2
n (v) (2.3)

In order to determine how F(n) depends on the time scale n, the process was re-

peated for several time scales n. Typically, F(n) increases as a power law when n

increases,

F(n)∼ nα (2.4)

In a double logarithmic plot, the scaling exponent α shows the slope of a line that

fits log(F(n)) to log(n) (Figure 2.1). An α = 0.5 corresponds to an uncorrelated

time series. 0 < α < 0.5 is indicative of anti-correlation time series, which means

that short and large intervals are more likely to alternate. 0.5 < α < 1 represents

correlation in the time series which means short intervals are more likely to be

followed by short intervals and vice versa [60].

In short-range correlations, α differs from 0.5 for small ns but will approach

0.5 for large ns. In long-range correlations α is greater than 0.5 and less than 1 for

large ns.

To determine the short and long-range correlation in PPIs sequences, we de-

fined αS and αL respectively, as the slopes of log(F(n)) as a function of log(n) for

the range 10 < n < 40 and for the range 70 < n < 200 [61].

2.2.6 Data analysis

The Lilliefors test showed that the extracted parameters were not normally dis-

tributed. The Wilcoxon Signed Rank test was therefore performed to evaluate the

differences between the the segments with and without A/H events. The Wilcoxon

Sum Rank test was also used to assess the differenced between the parameters of

the two groups with and without SDB. A probability of p < 0.05 was considered

significant and no multiple-comparison correction method was used.

To distinguish children with and without SDB during the entire sleep, a logistic

regression model was fitted to the data set. Least absolute Shrinkage and Selection

Operator (LASSO) method was used to select the significant features [35]. λ was
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Figure 2.1: In double logarithmic plot, the fluctuation function of PPIs, F(n),
is plotted as a function of n (the number of pulses) for a child without
SDB during non-REM (blue squares) and REM sleep (red stars). The
slopes of the curves correspond to the fluctuation scaling exponent α .
For n > 100, the fluctuation function of PPI during REM and non-REM
are distinguishable.

tuned by stratified 10-fold cross validation; significant features were selected based

on the chosen λ . The LASSO model predicted the probability of having SDB for

each subject. To classify subjects into SDB and non-SDB groups based on the

predicted probabilities, instead of using a default threshold of 0.5, we calculated a

risk threshold based on the maximum weighted classification score [67].

2.3 Results
In the following subsections, the estimation of different parameters during A/H

events for the individual children with SDB (intra-individual event analyses) and

also in groups with and without SDB (inter-groups analysis) have been presented.
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2.3.1 Intra-individual event analysis

For the whole group, totalling 70856 one minute segments, 32574 were included in

the analysis, with 38282 excluded due to artifacts. Of a total of 5040 segments la-

belled as apnea/hypopnea, 3267 were included in the analysis, with 1377 excluded

for artifacts and 326 excluded due to multiple sleep labels.

Based on Wilcoxon Signed Rank test, spectral domain parameters differed sig-

nificantly (p-value < 0.0001) in apnea/hypopnea events.

For the duration of the entire sleep, the nLF increased in apnea/hypopnea events

for 96% of the children with SDB. Similarly, the LF/HF ratio increased in ap-

nea/hypopnea events for 96% of the children with SDB, while nHF decreased in

94% of children with SDB during apnea/hypopnea events(Figure 2.2).

During non-REM sleep, for 95% of children with SDB, higher nLF, higher

LF/HF ratio, and lower nHF were recognized in segments with apnea/hypopnea

events compared to segments without SDB (Figure 2.3).

During REM sleep, for 73% of the children with SDB, the nLF and LF/HF

ratio increased in apnea/hypopnea events. In addition, for 68% of the children with

SDB, nHF decreased in the apnea/hypopnea events (Figure 2.4).

The VLF increased during apnea/hypopnea events for almost 90% of the chil-

dren with SDB during non-REM sleep and REM sleep (Figure 2.3 and Figure 2.4).

Time domain parameters differed in apnea/hypopnea events but the differences

were not statistically significant.

2.3.2 Inter-groups analysis

The meanPPIs were significantly shorter in children with SDB during whole sleep,

non-REM and REM sleep. SDPP and RMSSD did not vary significantly between

the two groups (Table 2.2, Table 2.3 and Table 2.4).

The VLF was higher in children with SDB compared to the group without

SDB. The differences were greater during non-REM sleep. Compared to children

without SDB, in the SDB group, the nLF and LF/HF ratio were significantly higher

during non-REM sleep, but did not differ significantly during REM sleep. The nHF

was lower in children with SDB relative to children without. This difference was

greater during non-REM sleep compared to REM sleep (Figure 2.5, Table 2.2,
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Figure 2.2: Comparison of spectral parameters in segments with and without
apnea/hypopnea events for children with SDB (AHI > 5) during the
entire period of sleep. Blue (thin) and red (thick) lines show the mean
increase and decrease of parameters, respectively. The nLF parameter
increased in apnea/hypopnea events for 96% of the children with SDB
(Blue lines). The LF/HF ratio increased in apnea/hypopnea events for
96% of the children with SDB (Blue lines), while nHF decreased in
94% of children with SDB during apnea/hypopnea events (Blue lines).
The VLF parameter increased during apnea/hypopnea events for almost
92% of the children with SDB (Blue lines).

Table 2.3 and Table 2.4).

In a double logarithmic representation, the function F(n) in the range of 10 < n

< 200, was clearly distinct between the SDB group and the non-SDB group, during

non-REM sleep (Figure 2.6). However, during REM sleep these two functions

were not clearly demarcated (Figure 2.7).

Greater αS and αL values were observed for children with SDB compared to

children without. However, αL varied much more significantly than αS and the
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Figure 2.3: Comparison of spectral parameters in segments with and with-
out apnea/hypopnea events for children with SDB (AHI > 5) during
the non-REM sleep. Blue (thin) and red (thick) lines show the mean
increase and decrease of parameters, respectively. For 95% of children
with SDB, higher nLF, higher LF/HF ratio, and lower nHF were recog-
nized in segments with apnea/hypopnea events compared to segments
without SDB. The VLF parameter increased during apnea/hypopnea
events for almost 90% of the children with SDB.

differences were greater during non-REM sleep (Figure 2.8).

By applying the LASSO method to the data set to classify children with and

without SDB during the entire sleep, a model with three significant features (meanPPIs,

VLF, and αL) was selected. Based on a calculated risk threshold of 0.36, an AUC

of 78% was obtained for this model, providing accuracy, sensitivity and specificity

of 71%, 76% and 68%, respectively.
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Figure 2.4: Comparison of spectral parameters in segments with and with-
out apnea/hypopnea events for children with SDB (AHI > 5) during the
REM sleep. Blue (thin) and red (thick) lines show the mean increase
and decrease of parameters respectively. During REM sleep, for 73%
of the children with SDB, the nLF and LF/HF ratio increased in ap-
nea/hypopnea events. In addition, for 68% of the children with SDB,
nHF decreased in the apnea/hypopnea events. The VLF parameter in-
creased during apnea/hypopnea events for almost 90% of the children
with SDB.

2.4 Discussion
The results of this study showed that the cardiac sympathetic indices of PRV were

higher during A/H events for more than 95% of children with SDB (AHI > 5).

These indices were also higher in children with SDB compared to children without.

In addition, heart rate was higher and the short- and long-range fluctuations of

heart rate were more strongly correlated in children with SDB. Also, we found that

cardiac sympathetic indices were modulated by sleep stages.

Although many studies have been conducted in adults, few studies have in-
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Table 2.2: Descriptive results (median) of estimated parameters for children
with and without SDB during the entire sleep period

mean 95% CI
non-SDB SDB differences (Low, High) p-value

meanPPIs 0.800 0.710 0.070 (0.012 , 0.124) 0.005
SDPP 0.050 0.054 0.007 (-0.004, 0.017) 0.100
RMSSD 0.052 0.052 0.004 (-0.008, 0.014) 0.29
VLF 0.100 0.190 0.083 (0.024 , 0.145) 0.0001
nLF 0.280 0.340 0.050 (0.005 , 0.098) 0.001
nHF 0.710 0.650 0.050 (0.004 , 0.098) 0.001
Ratio 0.443 0.560 0.130 (0.022 , 0.258) 0.010
αS 0.700 0.820 0.090 (0.015 , 0.164) 0.010
αL 0.600 0.680 0.078 (0.032 , 0.122) 0.0005

Table 2.3: Descriptive results (median) of estimated parameters for children
with and without SDB during non-REM sleep

mean 95 % CI
non-SDB SDB differences (Low, High) p-value

meanPPIs 0.819 0.715 0.072 (0.011 , 0.126) 0.005
SDPP 0.046 0.050 0.007 (-0.003, 0.017) 0.10
RMSSD 0.049 0.054 0.004 (-0.007, 0.015) 0.23
VLF 0.089 0.174 0.067 (0.012 , 0.120) 0.005
nLF 0.251 0.314 0.041 (0.000 , 0.091) 0.050
nHF 0.749 0.685 0.041 (0.000 , 0.091) 0.050
Ratio 0.394 0.542 0.100 (0.000 , 0.220) 0.040
αS 0.688 0.777 0.077 (-0.007, 0.153) 0.030
αL 0.539 0.621 0.065 (0.022 , 0.108) 0.005

vestigated the effects of SDB on the autonomic cardiac regulation in children. In

particular, few studies have examined autonomic function in children through the

analysis of the PPG obtained from a pulse oximeter, and none have used a mobile

device for this purpose. In the rest of this section, we compare our findings with

the results of studies based on HRV.

Gil et al showed that during non-stationary conditions there were some small

differences between HRV and PRV, mainly in the respiratory band, which were
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Table 2.4: Descriptive results (median) of estimated parameters for children
with and without SDB during REM sleep

mean 95% CI
non-SDB SDB differences (Low, High) p-value

meanPPIs 0.761 0.697 0.070 (0.017 , 0.120) 0.005
SDPP 0.049 0.059 0.004 (-0.005, 0.015) 0.21
RMSSD 0.047 0.044 0.002 (-0.008, 0.012) 0.35
VLF 0.233 0.338 0.048 (-0.044, 0.144) 0.14
nLF 0.408 0.430 0.026 (-0.035, 0.087) 0.2
nHF 0.591 0.569 0.026 (-0.035, 0.087) 0.2
Ratio 0.704 0.874 0.096 (-0.086, 0.301) 0.15
αS 0.884 0.96 0.044 (-0.053, 0.134) 0.18
αL 0.817 0.873 0.032 (-0.043, 0.105) 0.18

related to the pulse transit time variability [29]. However, they concluded that

these differences were sufficiently small to suggest the use of PRV as an alternative

measurement of HRV.

2.4.1 Intra-individual event analysis

During non-REM sleep, the segments with apnea/hypopnea events were character-

ized by higher values of the nLF and LF/HF ratio and lower values of nHF for 95%

of children with SDB. This may show that sympathetic modulation was predomi-

nant during apnea/hypopnea events while parasympathetic activity was diminished.

During REM sleep, we found that for 73% of SDB children, the nLF and

LF/HF ratios increased in apnea/hypopnea events and for 68% of children, the

nHF power decreased in the apnea/hypopnea events. These results indicate that

the predominance of sympathetic activity (increase in the nLF and LF/HF ratios)

in apnea/hypopnea events is suppressed by cardiac sympathetic modulation during

REM sleep.

The VLF was higher in apnea/hypopnea events for 90% of the children with

SDB, during non-REM, consistent with an increase in the slow regulation of car-

diac function [36]. However, longer signal segments (>1-minute) are required to

further validate these results.
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Figure 2.5: Frequency domain parameters in children with and without SDB
during (a) the entire sleep period, (b) non-REM sleep and (c) REM
sleep. Significant differences between the SDB and non-SDB groups
are marked by one star (*) when p-value < 0.05 and by two stars (**)
when p-value < 0.01. Quartile values are displayed as the bottom, mid-
dle and top horizontal line of the boxes. Whiskers are used to represent
the most extreme values within 1.5 times the interquartile range from
the median. Outliers (data with values beyond the ends of the whiskers)
are displayed as (+).

Bahavaret et al employed HRV spectral analysis to assess autonomic cardiac

regulation in children with SDB in overnight sleep studies [6]. They also found

that epochs containing obstructive sleep apneas had higher values of the nLF and

LF/HF ratios and lower nHF than the epochs without the respiratory events.
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Figure 2.6: The fluctuation function F(n) during non-REM sleep for children
with SDB children (blue squares) and non-SDB children (red stars)

.

2.4.2 Inter-groups analysis

During both REM and non-REM sleep, the PPIs appeared shorter in children with

SDB (decreased meanPPIs). Since the meanPPIs did not significantly vary in ap-

nea/hypopnea events, we would argue that heart rate was generally higher in chil-

dren with SDB compared to those without, which may indicate higher sympathetic

modulation in children with SDB. Khandoker et al who investigated PPIs during

sleep apnea in adults also reported a significant higher heart rate [43].

During non-REM sleep, we found that the nLF and LF/HF ratios were signifi-

cantly higher and nHF was lower in the SDB group, relative to the non-SDB group.

The same trend was observed in children with SDB during REM sleep, although

these differences were not statistically significant. These findings showed an en-

hanced sympathetic activity and a diminished parasympathetic activity in children

with SDB in response to sleep apnea. However, during REM sleep, this cardiac

modulation was also provoked by the sleep state. Furthermore, we discovered that
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Figure 2.7: The fluctuation function F(n) during REM sleep for children with
SDB children (blue squares) and non-SDB children (red stars)

.

the decrease in the nHF in children with SDB was more significant than the in-

crease in the nLF. This may indicate that children with SDB exhibit a stronger

decrease of parasympathetic activity rather than an increase of sympathetic activ-

ity, as confirmed by Chouchou et al [14].

Baharavet et al also showed that the nLF and LF/HF ratios were higher for

children with SDB during non-REM and REM sleep [6]. They reported statistically

significant differences in nHF and LF/HF ratios during non-REM sleep between

two groups, in agreement with our findings.

Our findings from DFA analysis suggest that the short- and long-range fluctu-

ation of heart rate are more strongly correlated in children with SDB compared to

children without SDB. We found that in children with SDB, both αS and αL were

larger, relative to the children without SDB, during both non-REM and REM sleep

stages. Since the short-range correlation is associated with the effects of breath-

ing on heart rate, this large αS value may indicate that the control of heart rate in

the range of respiratory related time scales (10 < n < 40) is much tighter in chil-
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Figure 2.8: αS and αL in children with and without SDB during (a) entire
sleep period, (b) non-REM sleep and (c) REM sleep. Significant differ-
ences between SDB and non-SDB group are represented by one star (*)
when p-value < 0.05 and by two stars (**) when p-value < 0.01.
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dren with SDB. Furthermore, as mentioned by Khoo et al [36], in subjects with

SDB respiratory modulation is not limited to the high frequency band (0.15 - 0.4

Hz). In SDB, respiratory modulation of heart rate takes the form of a large cyclical

variation that correlates with episodic apnea or hypopnea and mostly elevates the

components of VLF band. These results, showing greater values of αL in children

with SDB, are consistent with an elevated VLF band.

Penzel et al investigated the short and long range correlations of heart rate

intervals measured by DFA in adults during different sleep stages [61]. They found

αS = 1.00 and αL = 0.67 for adults without SDB (age = 33.0 ± 6.4 years) during

the whole sleep. These values are larger than our values calculated for children

without SDB (age = 9.1± 4.2 years). This suggests that the fluctuation in the RRIs

of adults without SDB is more strongly correlated than the fluctuation in PPIs of

children without SDB.

We analysed the different features of PRV in different sleep stages. We found

that in non-REM sleep, the features of PRV varied significantly in apnea/hypopnea

events. However, during REM sleep, the same features extracted from segments

with apnea/hypopnea events were not distinguishable from segments without ap-

nea/hypopnea events. Nevertheless, the results obtained from the PRV analysis ap-

plied to the whole sleep recording, showed that even without considering the stage

of sleep, PRV features were significantly different in segments with apnea/hypop-

nea events. This means that even when the sleep stage information is not available,

it is possible to distinguish apnea/hypopnea events through PRV.

To classify children with and without SDB based on only the PRV features

across the entire sleep, we achieved an accuracy of 71% using a fitted model with

the three selected features (meanPPIs, VLF, and αL). This is comparable to the

results of a study by Penzel et al [61] which showed an accuracy of 72.9% classi-

fying adults based on their apnea severity using eight spectral and DFA features of

HRV.

In intra-individual event and inter-group analyses we characterized PRV using

1- and 5-minute sliding windows respectively, to answer two different questions. In

the intra-individual event analysis we compared the extracted temporal and spec-

tral parameters between the segments with and without apnea/hypopnea events.

We considered 1-minute segments to ensure that the segments are small enough
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to contain only the apnea/hypopnea event(s) and/or the arousal(s) accompanying

them. In the inter-individual analysis, to assess the cardiac modulation in SDB,

we divided the children into two groups; those with and without SDB. According

to a study by Penzel et al [61], the DFA parameters extracted from segments with

a duration of 5 minutes or more are more distinguishable between children with

and without SDB in different sleep stages (Figure 2.1). So, we estimated PPIs and

extracted parameters for each group using a 5-minute sliding window.

2.4.3 Limitations and future work

We found that A/H events induced cardiac modulation; however, we did not inves-

tigate whether this modulation was influenced by arousal, hypoxia or the duration

of A/H events.

In this study, we considered the AHI >= 5 as the criteria for SDB. However,

there is no discrete definition of SDB based on AHI alone, but rather a continuum

from normal to abnormal. We recognize that some studies consider an AHI >= 2

as mild SDB. Therefore, we will further investigate the characterization of PRV for

monitoring children with SDB based on different AHI thresholds (AHI >= 1, AHI

>= 2).

In this study, to characterize PRV in intra-individual event and inter-group anal-

yses, we chose two sliding windows with different lengths, which may be consid-

ered as a study limitation.

2.4.4 Clinical relevance

The findings of this study confirm that SDB affects the regulation of cardiac func-

tion, suggesting that it would be possible to use the effects of SDB on cardiac

modulation to detect apnea/hypopnoea events in children. Furthermore, we have

previously shown that the characterization of overnight SpO2 pattern measured by

the Phone OximeterTM successfully identifies children with significant SDB [25].

Hence, combining the characterization of SpO2 and PRV, both recorded by Phone

OximeterTM holds promise as a low-cost approach to automatically assess SDB at

home [26]. This can greatly increase the accessibility to sleep apnea screening and

improve the quality of life for the many children currently affected by SDB related
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disorders.
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Chapter 3

Extracting Instantaneous
Respiratory Rate from
Photoplethysmogram

3.1 Introduction
Respiratory rate (RR), along with other vital signs like heart rate and blood pres-

sure, is monitored for primary or continuous assessment of patient wellness. There

is significant evidence that an abnormal respiratory rate is an important predictor

of serious illness. For example, in children aged 1-5 years old, an elevated RR (>

40 breaths/min) is an important criterion for the diagnosis of pneumonia [76]. Fur-

thermore, Fieselmann et al analyzed the measurements of vital signs during the 72

hours prior to cardiac arrest and showed that a high respiratory rate (> 27 breath-

s/min) was a significant predictor of cardiac arrest in hospitals [22]. In addition,

Subbe et al showed that relative changes in respiratory rate are much more signif-

icant than changes in heart rate or systolic blood pressure in unstable patients and

therefore the respiratory rate is more likely to be a better predictor for identifying

the patient at risk [69].

RR can be measured by a nurse counting the number of times the chest rises in

one minute [47]. Continuous monitoring of RR, though, needs a monitoring device
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and can be performed using capnography, transthoracic impedance pneumogra-

phy, nasal/oral pressure transducers and abdominal/thoracic respiratory inductance

plethysmography belts, among others. However, recent studies have found that

neither the nurses nor the monitoring devices provide accurate and reliable mea-

surements of RR [47]. Therefore, there is a clear need for a robust, automatic,

reliable and non-invasive measure of RR for performing a spot-check and for con-

tinuous monitoring.

Analysis of the PPG recorded using a pulse oximeter could offer an alternative

method for monitoring RR. The PPG waveform contains information about a wide

range of physiological parameters such as heart rate (HR), heart rate variability

(HRV), oxygen saturation (SpO2), vascular tone, blood pressure, cardiac output

and respiration [65]. However, most conventional pulse oximeters only provide

HR and SpO2. In this study, we present a novel algorithm for robust estimation

of instantaneous respiratory rate (IRR) from PPG with the aim of developing a

portable solution based on pulse oximetry, suitable for both continuous monitoring

and spot-check applications.

3.1.1 Background

Respiration may induce variation in PPG in three different ways [54] (Figure 3.1):

1) respiratory-induced intensity variation (RIIV): Changes in venous return due

to changes in intra-thoracic pressure throughout the respiratory cycle cause a base-

line (DC) modulation of the PPG signal. During inspiration, decreases in intra-

thoracic pressure result in a small decrease in central venous pressure increasing

venous return. The opposite occurs during expiration. As the venous bed at probing

site cyclically fills and drains, the baseline is modulated accordingly.

2) respiratory-induced amplitude variation (RIAV): During inspiration, left ven-

tricular stroke volume decreases due to changes in intra-thoracic pressure leading

to the decreased pulse amplitude. The opposite happens during expiration.

3) respiratory-induced frequency variation (RIFV): Heart rate varies throughout

the respiratory cycle; heart rate increases during inspiration and decreases during

expiration. This phenomenon well-known as respiratory sinus arrhythmia (RSA)

is mainly due to the autonomic regulation of heart rate during respiration.
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Figure 3.1: From top, PPG with no modulation, Respiratory-Induced In-
tensity Variation (RIIV), Respiratory-Induced Amplitude Variation
(RIAV), and Respiratory-Induced Frequency Variation (RIFV)

Respiration may induce variation in PPG differently among different individu-

als in health and disease. For instance, RIFV, as an indicator of autonomic activity,

may be affected by diseases and disorders (e.g. myocardial infarction, diabetic

neuropathy or sleep breathing disorders [20]). RIAV and RIIV are also very sen-

sitive to dehydration and hypovolemia. In addition, respiratory-induced variations

are different for women and men (For men, when the respiratory rate was not more

than 10 breaths/min, the frequency variation has the strongest correlation to the res-

piratory signal; whereas up to or above 15 breaths/min, in the sitting position, the

intensity variation has the strongest correlation to the respiratory signal and in the

supine position, amplitude variation has the strongest. For women, the frequency

variation correlates with respiration more strongly than the other variations, nearly

independent of the respiratory rate or posture)[34]. As such, estimation of IRR

by combining the information from three respiratory-induce waveform variations,

improves the algorithm performance and increases the robustness of results [41].

Many algorithms have been proposed to estimate RR from PPG. Auto-regression
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[71], Fourier transform analysis [41], correntropy spectral density [26], digital fil-

ters [56] and empirical mode decomposition [24] were successfully used, among

others. These algorithms have mostly focused on estimating average RR from a

PPG segment. For example, [41] and [26] estimated RR every second using 16,

32, 64-second segments of PPG data.

Few algorithms, however, have proposed to estimate RR instantaneously, mostly

performed by time-frequency approaches based on a continuous wavelet [3] , [16],

variable frequency complex demodulation methods (VFCDM) [42] and short-time

Fourier analysis (STFT) [66].

In this study, we have proposed a novel method for extracting IRR from PPG.

The method is performed in three main steps: extraction of RIIV, RIAV and RIFV

signals from PPG, estimation of IRR from each extracted respiratory-induced vari-

ation signals and fusion of IRR estimates. A time-frequency transform called

synchrosqueezing transform (SST) [17] is used to extract RIIV, RIAV and RIFV

from PPG. Later, a second SST is applied to estimate IIR from respiratory-induced

variation in signals [2]. To fuse IRR estimates corresponding to each respiratory-

induced variation signal, a novel method, called peak-conditioned fusion algorithm

is proposed.

3.2 Algorithm Description

3.2.1 Instantaneous Frequency (IF)

The instantaneous frequency is the frequency at a given time. Consider a multi-

component signal f that can be modelled as

f (t) =
K

∑
k=1

fk(t) =
K

∑
k=1

Ak(t)cos(2πφk(t)) (3.1)

where Ak(t) and φk(t) are the time-varying amplitude and phase of kth fre-

quency component, respectively.

The instantaneous frequency (IF) is defined as the derivative of the phase func-
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tion with respect to time as

IFf = {φ ′k(t)}1≤k≤K (3.2)

3.2.2 Synchrosqueezing Transform (SST)

The SST was first introduced by Daubechies et al. [17] in 1996 and then imple-

mented by Thakur et al. [70]. SST is a combination of wavelet analysis and a

reallocation method which sharpens a time-frequency representation by allocating

its points to another locations in the time-frequency plane. SST can provide an

accurate estimation of IF.

As defined in [17], SST involves three steps:

Step 1: Estimation of the continuous wavelet transform (CWT)

The CWT of f is calculated as

Wf (a,b) =
∫

f (t)a
−1/2ψ(

t−b
a

)dt (3.3)

where ψ is a wavelet with ψ̂(ξ ) = 0 for ξ ≤ 0 and a and b are scale and

location variables, respectively. ψ(ξ ) is the complex conjugate of ψ(ξ ) and ψ̂(ξ )

is the Fourier transform of ψ(ξ ) estimated as

ψ̂(ξ ) =
∫

ψ(ξ )e−i(2πξ )tdt (3.4)

Step 2: Estimation of the instantaneous frequency

If ψ̂(ξ ) is concentrated around ξ = ω0, then Wf (a,b) will be spread out around

the horizontal line a = ω0/ω on the time-scale presentation for a given frequency of

ω . However, Daubechies et al. [17] showed that the oscillation of Wf (a,b) around

b tends to the original frequency ω , irrespective of the value of a. Therefore, for

any (a,b) where Wf (a,b) 6= 0, the instantaneous frequency ω f (a,b) for signal f

can be defined as

ω f (a,b) =−
i

2π
((Wf (a,b))−1 ∂

∂b
Wf (a,b)) (3.5)

Step 3: Transfer to the time-frequency plane
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In this step, each point on the time-scale plane is allocated to a point on the

time-frequency plane using the map (a,b)→ (ω f (a,b),b). The frequency variable

ω and the scale variable a are both binned: Wf (a,b) is computed only at discrete

values ak, with ak−ak−1 = (∆a)k and its SST, Tf (ω,b) is estimated only at the cen-

ters ωl of the successive bins [ωl− 1
2 ,ωl +

1
2 ], with ωl−ωl−1 = ∆ω , by summing

different points:

Tf (ωl,b) = (∆ω)−1
∑

ak:|ω(ak,b)−ωl |≤ ∆ω

2

Wf (ak,b)a
−3
2

k (∆a)k. (3.6)

3.3 Material and Methods

3.3.1 Data sets

Capnobase data set

The Capnobase contains test and calibration data sets [38]. The test data set con-

tains forty-two 8-min segments of recordings obtained from 29 pediatric and 13

adults receiving general anesthesia at the British Columbia Childrens Hospital and

St. Pauls Hospital, Vancouver, BC, respectively. Calibration data set contains one

hundred twenty-four 2-min segments of recordings used for tuning the parameters

of the proposed algorithm.

In both data sets , the recordings included ECG, capnometry, and PPG (sampled

at 300 Hz, 300 Hz and 100 Hz, respectively) obtained with S/5 collect software

(Datex-Ohmeda, Finland). The capnography waveform was used as the reference

gold standard recording for RR. A research assistant manually labelled each breath

in the capnogram. The beginning and end of all artifacts in the PPG waveforms

were also manually labelled. Both datasets can be downloaded from the on-line

database, CapnoBase.org.

Sleep data set

The Sleep database contains forty-three 20-min segments of recording from 43

children referred to the British Columbia Children’s Hospital for overnight stan-
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dard polysomnography (PSG). The children had been recruited following approval

by the University of British Columbia Clinic Research Ethics Board (H11-01769)

and informed parental consent. Children with a cardiac arrhythmia or abnormal

hemoglobin were excluded from the study.

Standard PSG recordings included overnight measurements of ECG, electroen-

cephalography (EEG), oxygen saturation (SpO2), PPG, chest and abdominal move-

ment, nasal and oral airflow, left and right electrooculography (EOG), electromyo-

graphy (EMG) and video capture. The PSG recordings were performed with the

Embla Sandman S4500 (Embla Systems, ON, Canada).

In addition to PSG, the PPG was recorded simultaneously using the Phone

OximeterTM sampled at 62.5 Hz with 32-bit resolution.

The nasal/oral airflow waveform was used as the reference gold standard record-

ing for RR. Two expert manually labelled each breath in nasal/oral airflow wave-

form. The beginning and end of all artifacts in the oral/nasal waveforms were also

manually labelled.

3.3.2 Estimation of IRR from PPG

To perform IRR estimation, after a preprocessing stage, a first SST was applied

to PPG to extract RIIV, RIAV and RIFV. Later, a second SST was performed to

estimate IIR from the respiratory-induced variation signals. The peak-conditioned

fusion algorithm was then used to fuse simultaneous IRR estimates. This pro-

cedure, inspired by the method known as secondary wavelet feature decoupling

(SWFD) [2], involves the following steps (Figure 3.2):

1) The first SST is applied to the PPG signal.

2) In the STT surface plot, two components are identified: a strong cardiac

component in the cardiac band (0.5-3 Hz, 30-180 beats/minute) and a respiratory

component in the respiratory band (0.14-0.9 Hz, 8-54 breaths/minute) (Figure 3.3).

In this study, reference ranges of cardiac and respiratory bands were extracted

from a review of observational studies that used HR from 143,346 children and

RR data from 3,881 children (from 6 months to 18 years old) [22]. Based on 99th

and 1st centiles for children and young adults, the HR could range from 30 to 180

beats/min (0.50 to 3 Hz, respectively) and RR from 8 to 54 breaths/min (0.14 to

42



Figure 3.2: To extract IRR from PPG, the first SST was applied to PPG to
extract RIIV, RIAV and RIFV. Later, the second SST was performed
to estimate IIR from a respiratory-induced variation signals. The peak-
conditioned fusion algorithm was then used to fuse simultaneous IRR
estimates

0.9 Hz, respectively). The range in adults is much more restricted, thus it would be

included in this range.

3) The respiratory component in the SST surface plot shows RIIV and its ridge

in the frequency-time plane represents RIIV-derived IRR (IRRriiv) (Figure 3.3).

4) The ridge of the cardiac component is followed either in the amplitude-

time plane to get RIAV or in the frequency-time plane to get RIFV. This is done

by projecting the cardiac ridge points onto the amplitude-time or frequency-time

planes, respectively.

5) The second SST applied to RIAV results in a dominant single component

in the respiratory band (0.14-0.9 Hz, 8-54 breaths/minute) whose ridge represents

RIAV-derived IRR (IRRriav)

6) A second SST is applied to the RIFV signal as well to get a dominant sin-

gle component in the respiratory band whose ridge represents RIFV-derived IRR

(IRRri f v).

7) Estimation of final IRR (IRRppg) is performed using a proposed peak fre-

quency tracking method (so-called peak-conditioning fusion) which combines the

instantaneous frequency information from (IRRriiv), (IRRriav) and (IRRri f v).
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Figure 3.3: In the STT surface of PPG, two components are identified: a
strong cardiac component in the cardiac band (0.5-3 Hz, 30-180 beat-
s/minute) and a respiratory component in the respiratory band (0.14-0.9
Hz, 8-54 breaths/minute)

Preprocessing

The PPG signals were lowpass filtered by a lowpass Chebyshev Type I IIR filter of

order 8 and down sampled to 10 Hz.

Estimation of IRRriiv

Consider a PPG signal as a vector ppg ∈ Rn, n = 2L+1 where L is a nonnegative

integer. The CWT of ppg, Wppg, was calculated using the Morlet wavelet, ψ , where

its Fourier transform was concentrated around 1.25 Hz. The Wppg was sampled at

the location (a j,b), where a j = 2 j/nv , j = 1, ...,Lnv, nv = 32 and b = 1, ...,n. The

result is a Lnv×n matrix denoted W̃ppg.

When W̃ppg > 0, ω̃ppg was implemented as follow
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ω̃ppg =−
i

2π
DbW̃ppg(a j,b)W̃ppg(a j,b)−1 (3.7)

where DbW̃ppg was the finite differences of W̃ppg with respect to b.

Then frequency variable, ω , was binned into frequency division ωl = 2l4ωω ,

l = 0, ...,Lnv− 1, where 4ω = 1
Lnv−1 log2(

n
2), ω = 1

n4t and ω̄ = 1
24t . ω̄ and ω ,

were maximum and minimum frequencies respectively and were chosen based on

Nyquist sampling theorem.

The SST of PPG was calculated as

Tppg(ωl,b) = ∑
a j:|ω(a j,b)−ωl |≤ ∆ω

2

log2
Lnv

W̃ppg(a j,b)a
−1
2

j . (3.8)

Tppg over time shows both cardiac and respiratory bands (Figure 3.3).

A ridge fitting the dominant area of Tppg in the respiratory band (0.14 Hz - 1

Hz) represented IRRriiv and was extracted by tracking the local maximum values

in this region.

Estimation of IRRriav

Consider RIAV as a vector riav∈Rn, where n is the length of ppg. In the amplitude-

time plane of Tppg, riav estimated as a ridge fitting the dominant area of Tppg in the

cardiac band (0.5 Hz - 3 Hz, 30 - 180 beats/minute). The ridge extracted by finding

the local maximum values which minimize the following cost function [1]:

Cost =
n

∑
b=1

[−|Tppg(riav(b),b)|2 + |riav(b)− riav(b−1)|2] (3.9)

The SST of riav, Triav was calculated using the same implementation described

in the previous section, .

A ridge fitting the dominant area of Triav in the respiratory band (0.14 Hz - 1

Hz) represented the RIAV-derived IRR (IRRriav) and can be extracted by tracking

the local maximum values in this region.
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Estimation of IRRri f v

Consider RIFV as a vector ri f v∈Rn, where n is the length of ppg. In the frequency-

time plane of Tppg, rifv estimated as a ridge fitting the dominant area of Tppg in the

cardiac band (0.5 Hz - 3 Hz, 30 - 180 beats/minute). The ridge extracted by finding

the local maximum values which minimize the following cost function [1]:

Cost =
n

∑
b=1

[−|Tppg(ri f v(b),b)|2 + |ri f v(b)− ri f v(b−1)|2] (3.10)

The SST of riav, Triav was calculated using the same implementation described

in the section 3.3.2.

A ridge fitting the dominant area of Triav in the respiratory band (0.14 Hz - 1

Hz) represented the RIFV-derived IRR (IRRrifv) and can be extracted by tracking

the local maximum values in this region.

Peak-Conditioned Fusion

The peak-conditioned fusion method, inspired by [45], was proposed to combine

the IRR estimates from three respiratory-induced variations to provide the final

IRRppg.

The calculated Tppg, Triav and Trifv are two-dimensional matrices ∈ RLnvn, n =

2L+1 where L is a nonnegative integer and nv = 32. Each column of Tppg, Triav and

Trifv matrices shows the frequency distribution of PPG, RIAV and RIFV signals at

each time instance, respectively. To reduce the variance, each matrix is averaged

in time dimension using a moving window of length Tm = 16s every ts = 5 s. The

averaged matrix is denoted as T̂k, where k refers to ppg, riav or rifv (Figure 3.4).

At instant b, the location of the largest peak in respiratory band of each T̂k(:,b)

column (for k = ppg, riav or rifv) is detected and denoted as irI
k(b). Then, a refer-

ence frequency interval, Ωk(b), was defined as

Ωk(b) = [ f (b−1)−δ , f (b−1)+2δ ] (3.11)

where (b−1) was a respiratory rate reference estimated from the b−1 previ-

ous step.

All peaks larger than 85% of irI
k(b) inside Ω(b) were detected and irII

k (b) was
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chosen as the nearest to f(b−1). By reaching to this point, irII
riiv(b), irII

riav(b) and

irII
rifv(b) were available simultaneously.

The final respiratory peak at instant b, IIRppg((b)), was then chosen among

irII
riiv(b), irII

riav(b) and irII
rifv(b) estimates with the largest Pk. Pk is a measure of the

peakness and was defined as the ratio of power contained in an interval centred

around the largest peak to the power of Ωk(b). P mathematically calculated as

pk(b) =
∑

min{i f II
k (b)+0.6δ , f (b)+2δ}

max{i f II
k (b)−0.6δ , f (b)−δ}

ˆTk(:,b)

∑
f (b)+2δ

f (b)−δ
T̂k(:,b)

(3.12)

Estimation of respiratory rate as the largest peak in the respiratory band would

increase the risk of choosing the location of false peaks. To decrease this risk, the

search for the largest peak was limited to the reference frequency interval, Ωk(b)

[45]. This is an asymmetric interval of 3δ centred around a reference frequency.

At each step the respiratory rate reference was updated using

f (b+1) = β ∗ f (b)+(1−β )∗ IRRppg(b) (3.13)

where f (b) = arg max(T̂k(:,1)) in the frequency band of [0.2Hz,0.7Hz].

Value of δ was set as 0.1 and the value of a was tuned as 0.6 over the calibration

data set.

3.3.3 Algorithm Evaluation

To evaluate the performance of SST-based algorithms, agreement between refer-

ence IRR and estimated IRR (using peak-conditioned fusion, simple fusion, single

respiratory-induce variation) was assessed using the limits of agreement (LOA)

technique. The bias and 95% LOA were estimated using the Bland-Altman plot.

Since for each subject multiple measurement were observed, the Bland-Altman

method for multiple observations per individual [79] was used instead of the stan-

dard Bland-Altman method. The bias was calculated as mean of IRRest - IRRre f

and the 95% LOAs as mean bias 1.95 standard deviations. Two standard devia-

tions (2SD) were also estimated in the purpose of ranking the proposed algorithm

in this study based on the statistical analysis reported by [11].
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Figure 3.4: The peak-conditioned fusion method combined the IRR estimates
from three respiratory-induced variations to provide the final IRR

The coverage probability (CP2) was also reported as the probability of mea-

surement error falling within pre-defined bounds, set as 2 breaths per minute (bpm)

in this study [7].

3.4 Results

3.4.1 Capnobase data base

IRR extracted from the capnography waveform (IRRCO2) was used as the reference

gold standard. The distribution of the respiratory rates contained 3542 data points

estimated every 5 second from IRRCO2 for the 16 second moving windows over the

whole dataset (Figure 3.5). The respiratory rates ranged from the lowest value of

3.6521 bpm to the highest value of 44.22 bpm. The mean rate was 15.02 bpm with
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Figure 3.5: Distribution of respiratory rates extracted from the capnography
waveform (IRRCO2) in the capnobase data set. The respiratory rates
ranged from the lowest value of 3.6521 bpm to the highest value of
44.22 bpm. The mean rate was 15.02 bpm with standard deviation of
7.66 bpm.

standard deviation of 7.66 bpm. About 7.7% of the data points were excluded from

the further analysis due to to poor signal quality of the capnography signals.

For each algorithm, the measures of agreement between the estimated IRR

from PPG (IRRest) and IRRCO2 were estimated (Table 3.1). For peak selection

algorithm, bias was estimated as 0.28 bpm with the 95% LOAs from -3.62 to 4.17

(Figure 3.7). The value of 2SD was estimated as 3.97 bpm.

The values of 2SD of the other algorithms ranged from 8.32 bpm to 16.00 bpm.
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Figure 3.6: Distribution of the respiratory rates extracted from the nasal/oral
airflow waveform (IRRnas) in the sleep data set. The respiratory rates
ranged from the lowest value of 9.561 bpm to the highest value of 50.85
bpm. The mean rate was 18.64 bpm with standard deviation of 5.66
bpm.

3.4.2 Sleep database

IRR extracted from the nasal/oral airflow waveform (IRRnas) was used as the ref-

erence gold standard in the sleep dataset. The distribution of the respiratory rates

contained 10553 data points estimated every 5 second from IRRnas over the 16 sec-

ond moving window for all subjects. The respiratory rates ranged from the lowest

value of 9.561 bpm to the highest value of 50.85 bpm. The mean rate was 18.64

bpm with standard deviation of 5.66 bpm. About 0.66% of the data points were

excluded from the further analysis due to to poor signal quality of the nasal/oral

airflow signals (Figure 3.6).

The measures of agreement between the estimated IRR from PPG (IRRest) and
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Table 3.1: The performance of different method for estimation IRR from PPG

Different IRR Proportion
of windows with

estimation Method 2SD Bias 95% LOA CP2 IRR estimate (%)

RIIV 8.80 0.35 -8.29 to 8.98 88 100
RIAV 16.00 1.27 -14.47 to 16.89 60 100

Capnobase RIFV 9.22 0.04 -9.00 to 9.10 74 100
dataset Simple Fusion 8.32 0.55 -7.62 to 8.69 63 100

Peak-Conditioned Fusion 3.97 0.28 -3.62 to 4.17 89 100

RIIV 11.00 0.66 -10.11 to 11.42 80 100
RIAV 21.34 5.56 -15.36 to 26.49 31 100

Sleep RIFV 8.44 -0.11 -8.40 to 8.16 79 100
dataset Simple Fusion 9.51 2.03 -7.29 to 11.35 41 100

Peak-Conditioned Fusion 5.90 0.04 -5.74 to 5.82 85 100

Figure 3.7: Bland-Altman plot for comparison of IRRCO2 to IRRre f for all
subjects. The bias and 95% LOA are shown as solid lines. The bias was
0.28 and the limits of agreement -3.62 to 4.17
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Figure 3.8: Bland-Altman plot for comparison of IRRnas to IRRre f for all sub-
jects. The bias and 95% LOA are shown as solid lines. The bias was
0.04 and the limits of agreement -5.74 to 5.82

IRRnas were estimated for each algorithm (Table 3.1). For peak selection algorithm,

bias was estimated as 0.04 bpm with the 95% LOAs from -5.74 to 5.82 (Figure 3.8).

The value of 2SD was estimated as 5.90 bpm.

The values of 2SD of the other algorithms ranged from 8.32 bpm to 16.00 bpm.

3.5 Discussion and Conclusion
In this study, we presented an algorithm to extract IRR from PPG. We extracted

RIIV, RIAV and RIFV from PPG using SST, a sharpening time-frequency method

which provides instantaneous frequency rate. The peak-conditioned fusion was

proposed to combine the extracted information from three respiratory induced vari-

ations waveforms to estimate respiratory rate at each instance. We validated the

implemented method with capnography and nasal/oral airflow as the reference RR.

Compared to simple fusion and single respiratory-induced variation estimations,

peak-conditioned fusion shows better performance (Table 3.1). It provided a bias
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of 0.28 bpm with the 95% LOAs ranging from -3.62 to 4.17, validated against

capnography (in the Capnobase dataset) (Figure 3.7) and a bias of 0.04 bpm with

the 95% LOAs ranging from -5.74 to 5.82, validated against nasal/oral airflow (in

the Sleep dataset) (Figure 3.8).

In this study, the proposed method estimated IRR from three sources of respiratory-

induced variation and fused the estimated rates to measure the final IRR. Our find-

ings showed that fusion of estimation rates would increase the accuracy and ro-

bustness of RR estimation. Even the simple fusion compared to single respiratory-

induced variation estimations showed higher rank (narrower 2SD and greater CP2).

It is consistent with the findings of [34] that respiratory activity may induce vari-

ation in PPG differently in different individuals. As discussed by [41], ventilatory

conditions (spontaneous or mechanical ventilation) can change the behaviour of

respiratory induced variations.

In this study, we applied the proposed algorithm to two different data sets to

include a broad range of subjects into the study. The Capnobase data set includes

children adults, under controlled ventilation or spontaneously breathing over a

wide RR range. The subjects were under general anesthesia and were continuously

monitored. The sleep data set includes children from 1-month to 17 years old spon-

taneously breathing during two hours of overnight sleeping in a sleep lab. During

recording, respiratory rates might change significantly while sleep progressed dur-

ing different stages of light sleep, deep sleep or REM sleep. Some of the children

may have experienced periods of breathing cessation, or obstructive sleep apnea,

as well. Relate the finding to those of similar studies

A recent study [11] represented a very comprehensive assessment of RR esti-

mation using PPG. A wide range of available techniques for estimation of respiratory-

induced variations from PPG, estimation of RR from respiratory-induced varia-

tions, and fusion of RR estimates were identified and then more than 300 algo-

rithms were implemented by assembling all possible combinations of available

techniques. The algorithms were ranked based on 2SD. The first ten top ranked

algorithms had the 2SD values ranging from to 6.2 to 7.9. Compared to the ten

top ranked algorithms, our proposed method showed the best performance with the

2SD values of 3.9 and 5.9 for Capnobase and Sleep datasets, respectively. In ad-

dition, for the top ranked algorithms, the value of CP2 was reported as 71.5 while
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we obtained a CP2 of 88 applying our proposed algorithm.

It is important to note that all top ranked algorithm reported in [11] estimated

RR using 32-second windows while our method can estimate RR instantaneously.

It suggests that our algorithm shows better performance compared to methods that

extract IRR based on time-frequency analysis [3], [34].

In the [11], the methods for extracting RR from ECG were assessed as well.

The findings of that study showed that algorithms performed better when using

ECG than PPG. The best algorithm had 95% LOAs of 4.7 to 4.7 bpm and a bias of

0.0 bpm when using the ECG.

In the [11], the performance of thoracic Impedance Pneumography(IP) were

assessed as well providing a bias of 0.2 bpm with 95% LOAs of 5.6 to 5.2 bpm.

Thoracic IP is a commonly-used technique for continuous monitoring of RR that

measures changes in the electrical impedance of the persons chest during respira-

tion. Our results showed that the performance of our algorithm is comparable with

the performance of thoracic IP.

Several studies based on the continuous wavelet transform (CWT) [3], [16],

the short-time Fourier transform (STFT) [66], and empirical mode decomposition

(EMD) [26] have been proposed to detect RR from PPG. The results of a study

conducted by Thakur et al [70] to compare SST to CWT, STFT and EMD showed

the superior precision of SST at identifying components of complicated oscillatory

signals. Moreover, the study showed that time-varying instantaneous frequencies

could be clearly distinguished in the SST while there is much more smearing and

distortion in the CWT and STFT.

This study introduces a new method to estimate IRR from pulse oximetry. This

would expand the functionality of a conventional pulse oximetry beyond the mea-

surement of HR and SpO2 to measure the respiratory rate continuously and in-

stantly in the clinical setting and at home. Importantly, these are all achievable

with a simple, cheap, single-sensor solution.
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Chapter 4

Extracting the Pediatric
Hypnogram from
Photoplethysmogram

4.1 Introduction
As was mentioned in chapter 1 , sleep is divided into REM and non-REM sleep. A

regular overnight sleep occurs in cycles of non-REM and REM, usually four or five

such cycles per night. The hypnogram is a graph which depicts the basic structure

of an overnight sleep (Figure 1.4)).

The brain activity, eye movements and muscle tensions change during non-

REM and REM stages. Also, sleep staging induces variation in heart rate, blood

pressure, respiration and vascular tone, mainly regulated by sympathetic and parasym-

pathetic branches of the autonomic nervous system. The activity of the sympathetic

nervous system decreases during non-REM sleep compared to wakefulness which

results in a reduction in heart rate, blood pressure, respiratory rate and vascular

tone. However, there might be some brief increase in heart rate and blood pres-

sure due to respiratory events, arousals or body movements. Compared to the

non-REM, during REM sleep, there is a rise in the activity of sympathetic nervous

system which leads to faster changes in heart rate, blood pressure, and respiratory
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rate.

As mentioned before, PSG is the gold standard for assessing sleep. In PSG,

the recordings of brain activity (EEG), eye movement (EOG) and muscle activity

(EMG) during sleep are used for sleep scoring. PSG requires an overnight stay of

patients in the sleep laboratory with specialized equipment and all night attending

sleep technicians. The high cost and complicated procedure confine the PSG test to

specialized sleep centres, and it can rarely be used at any ambulatory environments

when the several days of monitoring of sleep behavior and circadian rhythm are

needed. Besides, the complex set-up and overnight stay in the hospital may affect

sleep structure, resulting in inaccurate outcomes. As such, a less complex and less

expensive ambulatory solution has been explored extensively.

In recent years, activity of the cardiorespiratory system has been monitored for

sleep staging. HR, HRV and respiration have recently been used as the reliable

tools for identifying sleep and wake in adults [9], [61], [46], [37]. Penzel et al

investigated different linear and non-linear features of HRV in subjects with and

without sleep apnea [61] in various sleep stages. Lisenby et al classied REM and

non-REM states by analyzing heart rate in time and frequency domain [46]. Karlen

et al used spectral analysis of ECG and respiratory signals recorded by a wearable

sensor to classify sleep from wakefulness [37]. These studies showed that sleep

classification by monitoring the variation of heart and respiratory rate could attain

results similar to sleep scoring achieved by the technicians using PSG recordings.

The purpose of this study is to extract the cycles of non-REM and REM of the

overnight sleep based on the activity of cardiorespiratory system using the pulse

oximeter PPG. We extracted the relevant features associated with PRV, RR, vascu-

lar tone and movement from the PPG signal to build a multivariate model with a

minimum set of features to identify wakefulness from REM and non-REM sleep.

The PPG signals were recorded by Phone OximeterTM.
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4.2 Background

4.2.1 Pulse Rate Variability

PRV shows the variation of heart rate extracted from the pulse-to-pulse time inter-

vals of PPG. Heart rate is mainly regulated by the inputs from the sympathetic and

parasympathetic nervous systems. As such, power spectrum analysis of HRV has

been extremely used to verify the activity of the autonomic nervous system. In our

previous studies, presented in chapter 2, we have assessed PRV as an estimate of

HRV during wakefulness, non-REM, and REM sleep. The results showed that the

temporal and spectral features of PRV were significantly different in wakefulness,

non-REM and REM sleep [20].

4.2.2 Vascular tone

The arterial vessels experience a level of contraction that determines their diame-

ter, and therefore their tone [72]. The vascular tone can influence the morphology

of the PPG signal remarkably, involving the amplitude and area of each pulse; the

amplitude of the PPG pulse is directly proportional to the vascular tone [65]. Dur-

ing vasoconstriction, the pulse amplitude decreases, while during vasodilatation,

the amplitude increases. Some studies show that non-REM sleep is associated

with a decrease in sympathetic vascular tone and as a result a peripheral vasodila-

tion while this condition is reversed in REM sleep. In this study, to identify REM

from non-REM sleep, we measured the amplitude, width, and other characteristics

of pulse shape as the features of vascular tone induced variation during different

sleep stages.

4.2.3 Respiratory rate

As was mentioned in chapter 3, respiration may modulate the PPG in three dif-

ferent ways: 1) Respiratory-Induced Intensive Variation (RIIV), 2) Respiratory

Induced Amplitude Variation (RIAV), and 3) Respiratory Induced Frequency Vari-

ation (RIFV).

Since the respiratory rate changes during non-REM and REM, in this study,

we estimated RIIV, RIAV and RIFV from the PPG signal and then estimated the
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respiratory rates from respiratory-induced variation signals and used them as the

features for sleep staging.

4.2.4 Movement

In actigraphy, the gross motor activity involved in movement and coordination of

the arms, legs, and other large body parts is monitored to determine the sleep pat-

terns. The PPG signal is usually corrupted very easily by motion artifacts due to

movement during data recording. In this study, in the absence of body accelera-

tion measures, we used the motion artifacts in the PPG signal as the signs of body

movement and being restless. We estimated the degree of signal corruption to lo-

cate the motion artifact in the PPG signal using a signal quality index measure.

Also, in most cases of movement, the cardiac synchronous pulsatile component

of arterial blood is corrupted by the random fluctuation of arterial blood, which

induces changes in the morphology of PPG. Therefore, we also computed some

randomness measures of the PPG such as skewness and kurtosis, as important fea-

tures of the PPG signal contaminated by motion artifact.

4.3 Materials and Methods

4.3.1 PPG Preprocessing

The same data set deployed for evaluation of cardiac modulation in children in

response to apnea/hypopnea was used for this study (2.2.1). After baseline removal

and smoothing with a Savitzky-Golay FIR filter (order 3, frame size 11 samples),

all PPG signals recorded using the Phone Oximeter were divided into 30-second

epochs. A peak detection algorithm based on zero-crossing was used to locate the

pulse peaks in the PPG signal segments. The accuracy of the peak detector was

estimated at approximately 99.2%. No attempt was made to distinguish normal

pulses from others.

4.3.2 Sleep Labelling

All epochs were scored as wakefulness, REM or non-REM, based on the labels in

the PSG event log file. The REM and non-REM epochs were scored as sleep as
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well.

4.3.3 Feature extraction

For each 30-second epoch of the PPG signal, the following features have been

extracted (Table 4.1):

PRV Features

The pulse-to-pulse intervals time series (PPIs) were computed as the intervals be-

tween successive peaks. In the time domain, three parameters were extracted from

the PPIs time series, including the mean of the PPIs (meanPP), the standard devia-

tion of the PPIs (SDPP) and the root mean square of the difference of the successive

PPIs (RMSSD).

The PPIs were resampled into the equivalent, uniformly spaced time series (so-

called PRV) at a sampling rate of 4 Hz using the Berger algorithm [8]. Then the

power spectral density of PRV was estimated using a parametric autoregressive

model with 1024 points and an order of 7. The power in each of the following

frequency bands was computed by determining the area under the power spectral

density curve bounded by the band of interest: Very Low Frequency (VLF; 0.01-

0.04 Hz), Low Frequency (LF; 0.04-0.15 Hz) and High Frequency (HF; 0.15-1

Hz). Normalized LF (nLF) and normalized HF (nHF) powers were determined by

dividing LF and HF powers by the total spectral power of PRV between 0.04 and

0.4 Hz, respectively. The ratio of low-to-high frequency power (LF/HF ratio) was

also computed.

Vascular tone features

Several morphology features were extracted from each PPG pulse to characterize

the vascular tone during different sleep stages.

-meanAmp and stdAmp: the amplitude of each pulse was measured as the

difference between the maximum of a pulse (peak) and the previous minimum

(trough). meanAmp and stdAmp were calculated as the average and standard de-

viation of the amplitude of all pulses within the epoch, respectively.

-meanWidthhal f and stdWidthhal f : the widthhal f of each pulse was calculated
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as the width at 50% of pulse height; later, meanWidthhal f and stdWidthhal f were

calculated as the average and standard deviation of widthhal f of all pulses within

the epoch, respectively.

-meanWidth and stdWidth: the widthpulse of each pulse was calculated as

the width at 10% of pulse height; later, meanWidth and stdWidth were calculated

as the average and standard deviation of widthpulse of all pulses within the epoch,

respectively.

-meanTimerising and stdTimerising: the mean and standard deviation of Timerising

(the time for a pulse takes to reach its peak) of all pulses within the epoch were

computed.

-meanTime f alling and stdTime f alling: the mean and standard deviation of Time f alling

(the time for a pulse takes to reach its trough) of all pulses within the epoch were

computed.

-meanSlope and stdSlope: the mean and standard deviation of rising slope of

all pulses within the epoch

-pwv: For each epoch, pulse wave variability (pwv) was estimated as:

pwv =
max(amp)−min(amp)

(max(amp)+min(amp))/2
(4.1)

Respiratory rate

First, three respiratory-induced variations (RIAV, RIIV and RIFV) were estimated

from each 30-second epoch of PPG and then the respiratory rates were estimated as

the maximum value peak frequencies in respiratory bands of the power spectrum

of RIAV, RIIV and RIFV (0.15-1 Hz).

-Respiratory Rate from RIAV (RRriav): To extract RIAV from the PPG sig-

nal, the pulse amplitude time series were resampled into the equivalent, uniformly

spaced time series at a sampling rate of 4 Hz using the linear interpolation method.

The power spectral density of RIAV was computed using a parametric autoregres-

sive model with 1024 points and an order of 7. RRriav was estimated as the max-

imum value peak frequency in the respiratory band of the RIAV power spectrum

(0.15-1 Hz)

-HFriav: the power within the respiratory band (0.15-1 Hz) of the RIAV power
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spectrum.

-Respiratory Rate from RIIV (RRriiv): for each epoch, first the intensity time

series were estimated as the trend which connects the peaks of consequent pulses.

The intensity time series were resampled into the equivalent, uniformly spaced

time series at a sampling rate of 4 Hz to get RIIV. The power spectral density

of RIIV was computed using a parametric autoregressive model with 1024 points

and an order of 7. RRriiv was estimated as maximum value peak frequency in the

respiratory band of the RIIV power spectrum (0.15-1 Hz).

- HFriiv: the power within the respiratory band (0.15-1 Hz) of the RIIV power

spectrum.

-Respiratory Rate from RIFV (RRri f v): RRri f v was estimated as maximum

value peak frequency in the respiratory band of the RIFV power spectrum (0.15-1

Hz).

-HFri f v: the power within the respiratory band (0.15-1 Hz) of the RIFV power

spectrum.

-RRmean: the mean of RRriav, RRriiv and RRri f v

Movement Features

-artifactepoch: for each pulse of PPG, a signal quality index (SQI) was estimated

using the cross-correlation of consecutive pulses [40], ranging from 0 to 100 (from

low to high quality). Later, artifactepoch feature was assigned to each epoch ac-

cording the following rules:

artifactepoch = 0, if all pulses of the epoch have an SQI higher than 80.

artifactepoch = 1, if less that four pulses of the epoch have an SQI lower than 80

(less than four pulses of the epoch contaminated with artifact).

artifactepoch = 2, if more than four pulses of the epoch have an SQI lower than

80 (more than four pulses of the epoch contaminated with artifact).

-bRatioepoch: in each epoch, PPIs shorter than 0.33 s and greater than 1.5 s

were considered artifacts and labelled as the abnormal intervals. bRatioepoch was

estimated as the ratio of the number of normal intervals over the number of all

intervals.

-skewepoch: a measure of the symmetry of each PPG epoch (or the lack of it)
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around the mean, defined as:

skewepoch = µ3/σ3/2 (4.2)

where µ3 and σ are the third central moment and the standard deviation of each

PPG epoch.

-kurtosisepoch: a measure of the peakedness (or flatness) of each PPG epoch

distribution, relative to the normal distribution, defined by:

kurtosisepoch = µ4/σ4−3 (4.3)

where µ4 and σ are the forth central moment and the standard deviation of each

PPG epoch.

4.4 Statistical Learning

4.4.1 Introduction

Least absolute shrinkage and selection operator (LASSO)

Linear regression is a method for modelling the relationship between a response

variable Y and one or more predictor variable(s), X . Linear regression assumes

that there is approximately a linear relationship between X and Y, mathematically,

modelled as

Y = β0 +β1X1 +β2X2 + · · ·+βpXp + ε, (4.4)

where X j shows the jth predictor, p represents the number of predictors and β j

is a constant quantifying the association between the predictor X j and the response

Y [35].

β values, known as the model coefficients, are estimated using least square

fitting over the training data set. Consider ŷi = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂pxp be

the prediction for Y based on the ith value of X. Then ei = yi− ŷi represents the ith

residual which is the difference between the ith observed response value and the ith

response value that is predicted by the linear model. The residual sum of squares
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Table 4.1: Description of the features extracted from PPG

Feature Description
Pulse Rate Variability

meanPP The mean of the PPIs
SDPP The standard deviation of the PPIs
RMSSD The root mean square of the difference of the successive PPIs
powprv Total spectral power of PRV
VLF Power of PRV in very low frequency band (0.01-0.04 Hz)
nLF Normalized power of PRV in low frequency (0.04-0.15 Hz)
nHF Normalized power of PRV in high frequency (0.15-1 Hz)
LF/HF The ratio of low-to-high frequency power (nLF/nHF ratio)

Vascular Tone
meanAmp The average of the amplitude of all pulses within the epoch
stdAmp The standard deviation of the amplitude of all pulses within the epoch
meanWidthhal f The average of the width at 50% of height of all pulses within the epoch
stdWidthhal f The standard deviation of the width at 50% of height of all pulses within the epoch
meanWidth The average of the width at 10% of height of all pulses within the epoch
stdWidth The standard deviation of the width at 10% of height of all pulses within the epoch
meanTimerising The mean of Timerising (the time for a pulse takes to reach its peak)
stdTimerising The standard deviation of Timerising (the time for a pulse takes to reach its peak)
meanTime f alling The mean of Timefalling (the time for a pulse takes to reach its trough
stdTime f alling The standard deviation of Timefalling (the time for a pulse takes to reach its trough
meanSlope The mean of the rising slope of all pulses within the epoch
stdSlope The standard deviation of the rising slope of all pulses within the epoch
PWV Pulse Wave Variability

Respiratory Rate
RRriav Respiratory rate obtained from respiratory-induced amplitude variation (RIAV)
RRriiv Respiratory rate obtained from respiratory-induced intensity variation (RIIV)
RRri f v Respiratory rate obtained from respiratory-induced frequency variation (RIFV)
RRmean The mean of RRriav, RRriiv and RRri f v

HFriiv The power within the respiratory band (0.15-1 Hz) of the RIIV power spectrum
HFriav The power within the respiratory band (0.15-1 Hz) of the RIAV power spectrum

Movement
artifactepoch artifactepoch = 0, if all pulses of the epoch have an SQI higher than 80

artifactepoch = 1, if less than four pulses of the epoch have an SQI lower than 80
artifactepoch = 2, if more than four pulses of the epoch have an SQI lower than 80

bRatioepoch The ratio of the number of normal intervals over the number
of all intervals within each epoch

skewepoch The measure of the symmetry of each PPG epoch (or the lack of it) around the mean
kurtosisepoch The measure of the peakedness of each PPG epoch relative to the normal distribution
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(RSS) is define as

RSS =
n

∑
i=1

e2
i =

n

∑
i=1

(yi− ŷi)
2 (4.5)

or

RSS =
n

∑
i=1

(yi−β0−β1xi1−β2xi2−·· ·−βpxip)
2 =

n

∑
i=1

(yi−β0−
p

∑
j=1

β jxi j)
2 (4.6)

where p is the number of the predictors and n is the number of the labelled

samples used for training the model.

The least squares approach chooses β0,β1, . . . ,βp to minimize RSS.

Often it happens that in a regression model, some of the p predictors are ir-

relevant. It means that they are not associated with the response. Including such

predictors leads to unnecessary complexity in the resulting model. To obtain a

model that is more easily interpreted, it is required to exclude the irrelevant pre-

dictors from the final model. In shrinkage (or regularization) approach a model

is fitted involving all p predictors using least squares but later the coefficient of

irrelevant predictors are estimated as zero.

Least Absolute Shrinkage and Selection Operator (LASSO) is a shrinkage

method that estimates the coefficients, β , by minimizing

n

∑
i=1

(yi−β0−
p

∑
j=1

β jxi j)
2 +λ

p

∑
j=1
|β j|= RSS+λ

p

∑
j=1
|β j| (4.7)

where λ ≥ 0 is a tuning parameter needed to be estimated separately [35].

LASSO uses the least squares fit to estimates the coefficients to get smaller RSS.

The second term, λ ∑
p
j=1 |β j|, known as LASSO penalty, is small when some of

β js are zero. When λ = 0, the penalty term has no effect, and LASSO regression

will produce the least squares estimates. When λ > 0 the impact of the penalty

grows, and some of the coefficients will be estimated as zero to reduce the effect

of penalty term on RSS.

For each value of λ , LASSO regression will produce a different set of coeffi-

cients. So it is essential to tune λ sufficiently.
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Logistic regression

Logistic regression is a specific type of regression where the response variable, Y , is

a categorical variable falling into one of two classes, 1 or 0, for instance. Logistic

regression models the probability that Y belongs to a particular class, using the

logistic function:

p(X) =
eβ0+β1X1+β2X2+···+βpXp

1+ eβ0+β1X1+β2X2+···+βpXp
, (4.8)

where p(X) = Pr(Y = 1|X).

Generally, a logistic regression model is fitted using a method called Maximum

likelihood based on the available training data. In this method, β coefficients are

estimated such that the predicted probability p(xi) of xi corresponds as closely as

possible to the observed yi. Maximum likelihood is mathematically formalized as:

l(β0,β1,β2, . . . ,βp) = ∏
i:yi=1

p(xi) ∏
i′:yi′=0

(1− p(xi′)) (4.9)

The estimates of β0,β1,β2, . . . ,βp are chosen to maximize this likelihood func-

tion.

Decision threshold estimation

As mentioned in the previous section, Logistic regression estimated the probability

that Y belongs to a specific class. Later, the estimated probability is tested against

a decision threshold, τ , to assign Y into one of two classes, 0 or 1 (negative or

positive). The sensitivity, specificity, and accuracy of the model depend on the

threshold τ .

For a given decision threshold, the performance of a classifier can be summa-

rized by a 2 × 2 confusion matrix (Table 4.2). For each decision threshold, the

sensitivity, specificity, and accuracy are estimated as

SN(τ) =
T P(τ)

n1
(4.10)

SP(τ) =
T N(τ)

n0
(4.11)
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Table 4.2: The performance of a binary classifier is summarized by a 2 × 2
confusion matrix for a given decision threshold τ . TN: number of true
negative, FP: number of false positive, FN: number of false negative, TP:
number of true positive, PN: number of predicted negative, PP: number
of predicted positive

Predicted Predicted total
0 1

True 0 TN(τ) FP(τ) n0
True 1 FN(τ) TP(τ) n1

Total PN(τ) PP(τ) n

ACC(τ) =
T P(τ)+T N(τ)

n0 +n1
(4.12)

where n0 denotes the number of 0 samples (negative samples) and n1 denotes

the number of 1 samples (positive samples). TP(τ) and TN(τ) are the numbers of

correct predictions for the 1 and 0 samples, respectively.

The default value of the decision threshold is 0.5. When the class sample sizes

(n0 and n1) are almost equal, a classifier using the default threshold provides an

unbiased estimate of the sensitivity, specificity, and accuracy. But, when the class

sizes are different, a classifier using the default threshold may provide an unac-

ceptably low sensitivity (or specificity). So it is essential to estimate the decision

threshold for each classifier properly.

4.4.2 Multivariate model development and validation

Model development

Subjects were randomly divided into training and test sets. The epochs correspond-

ing to the subjects in the training set were used to train the classifiers, and the

epochs corresponding to each subject in the test set were fed to the trained models

to the validate the performance of classifiers.

In the training phase, to classify each epoch into one of the three classes of

awake, REM and non-REM (known as multi-class classification problem), a hier-

archical binary classifier with two nodes was developed (Figure 4.1). Each node
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Figure 4.1: The multi-class classifier has two binary classifiers: sleep/wake
classifier and non-REM/REM classifier. The epochs corresponding to
the subjects in the training set were used to train these two classifiers,
and the epochs corresponding to each subject in the test set were fed to
the trained models.

corresponding to a binary multivariate logistic regression classifier trained using

the training set: 1) the wake/sleep classifier to determine whether an epoch would

be scored as sleep or wake, and 2) the non-REM/REM classifier to determine the

sleep epoch whether would be scored as REM or non-REM.

LASSO was employed to select the relevant features and to develop the final

wake/sleep and non-REM/REM classifiers (using the glmnet R package). The tun-

ing parameter was adjusted through a stratied 10-fold cross validation. For each

epoch, the final models estimated the probability of belonging to a certain class.

Decision threshold determination

The decision thresholds were separately chosen for two classifiers to maximize a

weighted classification score defined as (TP(τ) + TN(τ)). The weighted classifica-

tion score was computed for various previously established ratios of false positive

cases to false negative cases (3:1, 5:1 and 10:1).

Model classification performance

In the validation phase, all the epochs of a subject from the test dataset were first

fed to the wake/sleep classifier. Later, the epochs scored as sleep by wake/sleep
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classifier were fed to the REM/non-REM classifier to distinguish between REM

and non-REM epochs (Figure 4.1). By combining the results from sleep/wake and

REM/non-REM classifiers, each epoch of individual subject in the testing dataset

was scored as wake, REM and non-REM. The scored epochs were aligned together

to predict a hypnogram for each subject.

To validate the performance of wake/sleep and REM/non-REM classifiers, the

accuracy, sensitivity and specificity measures were calculated. In addition, the

predicted hypnogram for each subject was compared with the hypnogram extracted

from PSG event log file and an individual accuracy measure was calculated for

each subject as the percentage of true classifications of wake, REM and non-REM

of total epochs according to:

accuracyindividual =
true wake+ true REM+ true non−REM

totalwake+ totalsleep
(4.13)

The general performance of the model was then assessed using the distribution

of the accuracy individual of all subjects in the testing dataset through the mean and

95% confidence intervals (CI) of the median. These estimations were performed

using the bootstrap method; 100 bootstrap samples were generated using the orig-

inal accuracy, sensitivity, and specificity data through sampling with replacing.

4.5 Results
The data set of 146 subjects was randomly divided into the training and test data

sets with 46 and 100 subjects, respectively.

4.5.1 Wake/sleep classifier

The wake/sleep classifier was trained using the training set including 38,098 epochs

scored as sleep (27,885) and wake (10,213) based on the PSG event log file.

For each epoch, 31 features were extracted from the PPG signal (Table 4.1);

among them, 15 features were selected as significant by LASSO method based on

λ = 9.408e-05 (Table 4.3). To choose the best λ , the cross-validation error for

each value of λ was estimated.We then selected the λ value for which the cross-
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Table 4.3: Estimated coefficient and error for 15 features selected with
LASSO as the significant features for wake/sleep model

Estimated Estimated
Model Feature Coefficient Error p-value

w
ake/sleep

M
odel

(Intercept) -6.70 1.28 1.80e-07
meanTime f alling 0.15 0.03 8.96e-06
stdWidthhal f -0.10 0.01 7.34e-12
pwv -0.41 0.10 4.82e-05
HFriav -0.64 0.11 1.03e-08
nHF 3.90 0.22 < 2e-16
meanWidthhal f 0.16 0.01 < 2e-16
RMSSD -6.87 1.71 5.68e-05
stdRRI 10.01 2.50 6.10e-05
meanTimerising 0.07 0.03 0.01
meanRRI -3.36 1.63 0.04
skewepoch 0.11 0.04 0.003
RRri f v -0.04 0.004 < 2e-16
HFriiv 0.93 0.12 5.39e-14
RRriiv -0.03 0.005 2.33e-12
stdTime f alling -0.06 0.016 0.000266

validation error was smallest.

This model presented an AUC of 0.85 wih the 95% confidence interval from

0.84 to 0.87 (Figure 5.2a).

The decision threshold was estimated as τ = 0.725. The accuracy, sensitivity

and specificity values were estimated 0.82, 0.85 and 0.79, respectively, in training

data set for estimated τ .

The accuracy, sensitivity and specificity values were estimated 0.77, 0.77 and

0.79, respectively, in test data set for τ = 0.725.

4.5.2 non-REM/REM classifier

The training data set contained 27,885 epochs scored as sleep. Among these

epochs, 22,590 and 5,295 entries were scored as non-REM and non-REM, respec-

tively, based on the PSG event log file.

Each epoch contains 31 features extracted from the PPG signal (Table 4.1).
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(a)

(b)

Figure 4.2: The area under the curve (AUC) of the receiver operating char-
acteristic (ROC) curve of a) the wake/sleep classifier and b) the non-
REM/REM classifier

The REM/non-REM classifier selected 16 significant features (Table 4.4).

This model presented an AUC of 0.77 wih the 95% confidence interval from
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Table 4.4: Estimated coefficient and error for 16 features selected with
LASSO as the significant features for non-REM/REM model

Estimated Estimated
Model Feature Coefficient Error p-value

non-R
E

M
/R

E
M

M
odel

(Intercept) 5.04 0.8 1.77e-09
meanTime f alling -0.03 0.004 1.26e-12
HFriiv -0.31 0.006 3.18e-06
RRmean -0.02 0.008 0.000254
meanWidthhal f 0.02 0.005 1.33e-06
stdTime f alling -0.02 0.01 0.049398
HFriiv -1.70 0.11 < 2e-16
bRatioepoch -4.50 0.81 3.50e-08
meanAmp -11.20 3.58 0.000948
meanSlope 94.26 30.10 0.002171
pwv 0.78 0.06 < 2e-16
kurtosisepoch -0.02 0.005 0.000168
RRriiv 0.02 0.005 8.58e-05
skewepoch 0.1 0.03 0.0004
HFriav 0.22 0.06 0.0013
stdWidthhal f 0.05 0.01 9.17e-06
stdWidth -0.12 0.011 < 2e-16

0.74 to 0.79 (Figure 5.2b).

The decision threshold was estimated as τ = 0.19. The accuracy, sensitivity

and specificity values were estimated 0.72, 0.70 and 0.73, respectively, in training

data set for estimated τ .

The accuracy, sensitivity, and specificity values were estimated 0.73, 0.71 and

0.73, respectively, in test data set for τ = 0.19.

4.6 Discussion and Conclusion
The results of this study show that extracting the pediatric hypnogram, similar to

the one provided by PSG, based on the characterization of cardiovascular activity

performed using the overnight Phone Oximeter PPG will be practical, achievable

and reliable.

The most discriminant features for sleep staging were automatically selected
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by a shrinking method, LASSO, which forces the coefficient estimates to be ex-

actly equal to zero. During training, two different sets were selected with 15 and

16 discriminant features out of 33 features, for wake/sleep and non-REM/REM

classifiers, respectively (Table 4.3 and Table 4.4). These two models were validated

separately: the classification of sleep from wake showed the mean accuracy of 73%

while the non-REM/REM model reached the mean accuracy of 69%. Later, these

two classifiers were combined together as a hierarchy model to classify epochs into

three classes of wake, REM and non-REM. In the validation phase, all the epochs

were first fed to the wake/sleep classifier and then, the epochs scored as sleep were

fed to the REM/non-REM classifier. It implies that the misclassified epochs would

transfer from wake/sleep classifier to the non-REM/REM classifier, which would

degrade the overall performance of the model.

About 38 of children participated in this study were diagnosed with SBDs with

the AHI more than five. In our previous study performed on the same dataset, we

showed that SBD modulates the sympathetic cardiac activity in both REM and non-

REM sleep. However, our results indicate that the predominance of sympathetic

activity in A/H events is suppressed by cardiac sympathetic modulation during

REM sleep. Besides, the children with SBD are more prone to frequent arousals,

most of the time associated with movement, which affects the cardiac regulation of

the autonomic nervous system. These all cause sleep staging more challenging in

children with SBD.

Our results, obtained with the Phone OximeterTM, are comparable with previ-

ous studies with more sophisticated approaches or devices for sleep staging based

on monitoring the activity of the cardiorespiratory system. In a recent study, Ucar

et al [73] extracted 86 features from PPG recorded from 10 adult patients and used

k-nearest neighbors classification and support vector machines to identify sleep

from wakefulness. The accuracy, sensitivity, and specificity of trained model were

reported as 73.36 %, 0.81% and 0.77%, respectively.

Yilmaz et al [77] successfully extracted the hypnogram for 17 adult individuals

with SBD using the features extracted from ECG. The total accuracy of 73% was

reported for the one-vs-rest approach whose classifiers trained by the support vec-

tor machines. However, in this study, a separate model has been trained for each

subject, which reduces the feasibility of this approach in real clinical applications.
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4.6.1 Limitation of study and future work

The most challenging part of classification was choosing the decision thresholds

for wake/sleep and non-REM/REM classifiers. The decision thresholds were cal-

culated to maximize the accuracy of classifiers based on the percentage of the

epochs scored as wake, REM and non-REM in the training dataset. During val-

idation, the same decision threshold used for all subjects. Since each subject has

a unique pattern of sleep with the different shares of the wake, REM and non-

REM stages, using the same threshold for all subjects decreases the performance

of classification. Therefore, we will further investigate the possibility of estimating

a separate risk threshold for each subject based on the quality and patterns of their

sleep by measuring sleep latency, sleep duration, habitual sleep efficiency, sleep

disturbances through self-assessment questionnaires.
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Chapter 5

Development of a Monitoring
Tool for Sleep Disordered
Breathing in Children Using the
Phone Oximeter

5.1 Introduction
As mentioned in chapter 1, the high prevalence of A/H syndrome among chil-

dren and adolescents and the compexity and hight cost of PSG have generated

a great interest in alternative techniques to simplify the standard procedure. Al-

ready part of the standard PSG, pulse oximetry is a simple non-invasive method

of measuring SpO2 and recording PPG. Numerous groups have studied the use of

overnight oximetry as a potential standalone method to diagnose SDB. Nixon et

al. developed a severity scoring system using overnight oximetry and validated the

score as a tool to prioritize adenotonsillectomy surgeries [31], [58]. Álvarez et al.

demonstrated that the characterization of overnight oximetry provided significant

information to identify adults [49], [50] with significant OSA. Both studies focused

on SpO2 alone; however, there are some SDB events that occur in the absence of

SpO2 desaturation [78]. It has been reported that SDB affects the normal variation
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of heart rate [55], [14], [20] suggesting that combining SpO2 and HRV analysis

might provide a more robust SDB detector. Based on this concept, Heneghan et al.

proposed a portable, automated OSA assessment tool with a Holter-Oximeter [30],

[12].

In our previous research, we showed that the characterization of overnight

SpO2 pattern, measured by the Phone OximeterTM , successfully identifies chil-

dren with significant SDB [25]. We also investigated the influence of SpO2 resolu-

tion (0.1%, 1%) on the SpO2 pattern characterization and demonstrated that it had

a great influence in regularity measurements and therefore should be considered

when studying SDB [27]. In addition, we calculated PRV from the Phone Oxime-

ter’s PPG and compared it with HRV computed from simultaneous electrocardio-

gram (ECG) [18], [20]. In the time domain, PRV provided accurate estimates of

HRV, while some differences were found in the frequency domain. Gil et al. also

showed that during non-stationary conditions there are some small differences be-

tween HRV and PRV, mainly in the respiratory band, which were related to the

pulse transit time variability [29]. However, they also concluded that these differ-

ences are sufficiently small to suggest the use of PRV as an alternative measure of

HRV. We also conducted an additional investigation of the effects of SDB on PRV

during different sleep stages and concluded that the modulation of PRV might be

helpful in improving the assessment of SDB in children [19].

In our recent study, therefore, we combined the SpO2 pattern characteriza-

tion and PRV analysis to identify the epochs with A/H events using the Phone

OximeterTM [28]. We recorded overnight SpO2 and PPG using the Phone OximeterTM

, simultaneously with standard PSG from 160 children at the British Columbia

Childrens hospital. The sleep technician manually scored all apnea/hypoapnea

events during the PSG study. Based on these scores we labeled each epoch as

A/H epochs or non-A/H epochs. We randomly divided the subjects into training

data, used to develop the model applying the LASSO method, and the test data,

used to validate the model. The developed model was assessed epoch-by-epoch

for each subject. The model provided a median accuracy of 74%, sensitivity of

75%, and specificity of 73% when using a risk threshold similar to the percentage

of A/H epochs.

However, we realized that more than 32% of epochs from the original database
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had been excluded from the further analysis due to the poor quality of SpO2 or

PPG. Among the total number of 134389 epochs labelled by a sleep technician,

more than 30% had the low-quality PPG while only less than 2% had the low-

quality SpO2. The purpose of study, presented in this chapter, is then to reduce

the number of the excluded epochs. To reach this goal, we propose a method for

identifying the A/H epochs based on two trained models: one model is trained to

identify A/H epochs using the combined characteristic of SpO2 and PPG where

both PPG and SpO2 epochs have high quality and the second model uses the SpO2

characteristics for epochs with the low-quality PPG but the high-quality SpO2. The

results of these two models in predicting the A/H epochs would be combined to get

the final prediction.

5.2 Materials and Methods

5.2.1 Apnea/Hypopnea Labelling

The same data set described in Chapter 2 (2.2.1) was used for this study. A sleep

technician visually scored the PSG in 30-second epochs according to AASM 2007

standard criteria [5]. Hypnograms were differentiated into rapid eye movement

(REM) and non-REM sleep. According to the standard criteria, obstructive apneas

were defined as complete cessation of airflow in the presence of respiratory effort

lasting seconds. Hypopneas were defined as a airflow reduction relative to the 2

preceding breaths. Blood oxygen desaturations were defined as a decrease in arte-

rial oxygen saturation. When respiratory effort partially or totally ceased, apneas

were scored as mixed or central sleep apnea, respectively. The number of A/H

events was counted hourly to compute the average apneas/hypopnea index (AHI),

which was specified also for REM and non-REM (NREM) sleep stages. The total

bed time (TBT), total sleep time (TST) and the percentage of time spent in the

different sleep stages were also analyzed (Table 2.1).

The Phone OximeterTM recordings (SpO2 and PPG signals) were segmented

into epochs of 30-seconds duration. All epochs were labelled as the A/H or non-

A/H epochs using the scores performed by the sleep technician based on the PSG

study.
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5.2.2 PPG Features Extraction

For each 30-second epoch of the PPG signals, the following features were extracted

(Table 5.1):

Signal Quality Index of PPG

A simple peak detection algorithm based on zero-crossing was applied the PPG

signals to locate the pulse peaks. The peak locations were used to segment the

PPG into the pulses. An algorithm iteratively calculated a signal quality index

(SQI) ranging from 0 to 100 for each pulse. Cross-correlation of consecutive pulse

segments is used to estimate signal quality. In the presence of artifacts and irregular

signal morphology, the algorithm outputs a low SQI number.

If all pulses of an epoch have an SQI higher than 80, the feature artppg was set

as 0. If less than four pulses of the epoch have an SQI lower than 80, the artppg

was set as 1 and if more than four pulses of the epoch have an SQI lower than 80,

the artppg was set as 2 (Table 5.1).

PRV Features

To analyze PRV, in each epoch, the pulse-to-pulse intervals time series (PPIs) were

computed as the intervals between successive peaks. In the time domain, three

features were extracted from the PPIs time series:

-meanPP: the mean of the PPIs

-SDPP: the standard deviation of the PPIs,

-RMSSD: the root mean square of the difference of the successive PPIs

to get PRV, the PPIs were resampled into the equivalent, uniformly spaced

time series at a sampling rate of 4 Hz using the Berger algorithm [8]. Then the

power spectral density of PRV was estimated using a parametric autoregressive

model with 1024 points and an order of 7. The power in each frequency band was

computed by calculating the area under the PSD curve bounded by the band of

interest and the following features were extracted:

-Pow: the total spectral power of the PRV

-VLF: power in the very low frequency (0.01-0.04 Hz)

-nLF: the LF power was estimated as the power in the low frequency band
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(0.04-0.15 Hz). Later, normalized LF (nLF) was calculated by dividing LF power

by the total spectral power of PRV between 0.04 and 0.4 Hz.

-nHF: the HF power was estimated as the power in the high frequency band

(0.15-1 Hz). Later, normalized HF (nHF) was calculated by dividing HF power by

the total spectral power of PRV between 0.04 and 0.4 Hz.

-LF/HF: the ratio of low-to-high frequency power

Vascular Tone Features

Several morphology features were extracted from each PPG pulse to characterize

the vascular tone in epochs with and without A/H events.

-meanAmp and stdAmp: the amplitude of each pulse was measured as the

difference between the maximum of a pulse (peak) and the previous minimum

(trough). meanAmp and stdAmp were calculated as the average and standard de-

viation of the amplitude of all pulses within the epoch, respectively.

-meanWidthhal f and stdWidthhal f : the widthhal f of each pulse was calculated

as the width at 50% of pulse height; later, meanWidthhal f and stdWidthhal f were

calculated as the average and standard deviation of widthhal f of all pulses within

the epoch, respectively.

-meanWidth and stdWidth: the widthpulse of each pulse was calculated as

the width at 10% of pulse height; later, meanWidth and stdWidth were calculated

as the average and standard deviation of widthpulse of all pulses within the epoch,

respectively.

-meanTimerising and stdTimerising: the mean and standard deviation of Timerising

(the time for a pulse takes to reach its peak) of all pulses within the epoch were

computed.

-meanTime f alling and stdTime f alling: the mean and standard deviation of Time f alling

(the time for a pulse takes to reach its trough) of all pulses within the epoch were

computed.

-meanSlope and stdSlope: the mean and standard deviation of rising slope of

all pulses within the epoch

-pwv: For each epoch, pulse wave variability (pwv) was estimated as:
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pwv =
max(amp)−min(amp)

(max(amp)+min(amp))/2
(5.1)

5.2.3 SpO2 Features Extraction

For each 30-second epoch of the SpO2 signals, the following features were ex-

tracted (Table 5.2):

SQI of SpO2

All SpO2 values below 50% and above 100%, and the SpO2 changes between

consecutive sampling intervals greater than 4%, were considered as artifacts. The

feature artspo2 was set as 0 if less than 50% of the SpO2 epoch is contaminated

by artifacts. The artspo2 was set as 1 if more than 50% of the SpO2 epoch was

contaminated by artifacts.

Time Domain Features

Several oximetry indices proposed in previous studies to assess SpO2 dynamics in

the time domain, were computed here [25]:

-Tr2: the number of SpO2 desaturations greater than 2% below baseline

-Tr3: the number of SpO2 desaturations greater than 3% below baseline

-ind96: the cumulative time spent below an SpO2 of 96%

-ind94 the cumulative time spent below an SpO2 of 94%

-Delta: the Delta index quantifies SpO2 variability and was computed as the

average of absolute differences of the mean oxygen saturation between successive

12-sec intervals.

-SDSpO2: the standard deviation of the SpO2 within each epoch

-IQR: the interquartile range of the SpO2 within each epoch

-CTM: the Central Tendency Measure is a non-linear method that provides

quantitative variability information was also applied to SpO2 epochs [48]
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Spectral Domain Features

The SpO2 signal was characterized in the spectral domain using power spectral

density (PSD). To provide better frequency resolution, a parametric PSD was per-

formed approximating the SpO2 signal through an autoregressive model using:

SpO2 =−
p

∑
k=1

ak.SpO2(n− k)+ e(n) (5.2)

where e(n) denotes zero-mean white noise with variance σ2
e , ak the autoregres-

sive coefficients and p the model order. Once the autoregressive coefficients and

the variance was estimated, the PSD of the autoregressive model was computed by:

PSD( f ) =
σ2

e

|1+∑
p
k=1 ak.e− j2π f kT |2

(5.3)

with 1/T as the sampling frequency.

The sleep apnea events happen in a pseudo periodic pattern, which modulates

the SpO2 signal and provokes a modulation frequency peak at very low frequency

band. A significant power increase in a frequency band ranging from 0.014 to

0.033 Hz was previously documented in subjects suffering from sleep apnea, due

to the modulation provoked by continuous oxygen desaturations [50]. Therefore,

the following features were extracted from the PSD:

-powSpO2: total spectral power of SpO2

-modPow: the total power in modulation band (0.005 Hz to 0.12 Hz)

-meanPow: the mean power in modulation band (0.005 Hz to 0.12 Hz)

-PRatio: the ratio between the power frequency band from 0.005 to 0.12 and

total power

-powDiscr: the power in the discriminant frequency band, defined as a fre-

quency interval (0.02 Hz) centered on the modulation frequency peak detected in

modulation band

-SEfreq: the Shannon entropy of the power spectrum density SpO2
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Table 5.1: Description of the features extracted from PPG

Feature Description
SQI

artppg artppg = 0, if all pulses of the epoch have an SQI higher than 80
artppg = 1, if less than four pulses of the epoch have an SQI lower than 80
artppg = 2, if more than four pulses of the epoch have an SQI lower than 80

Pulse Rate Variability
meanPP The mean of the PPIs
SDPP The standard deviation of the PPIs
RMSSD The root mean square of the difference of the successive PPIs
pow Total spectral power of PRV
VLF Power of PRV in very low frequency band (0.01-0.04 Hz)
nLF Normalized power of PRV in low frequency (0.04-0.15 Hz)
nHF Normalized power of PRV in high frequency (0.15-1 Hz)
LF/HF The ratio of low-to-high frequency power (nLF/nHF ratio)

Vascular Tone
meanAmppulse The average of the amplitude of all pulses within the epoch
stdAmppulse The standard deviation of the amplitude of all pulses within the epoch
meanWidthhal f The average of the width at 50% of height of all pulses within the epoch
stdWidthhal f The standard deviation of the width at 50% of height of all pulses within the epoch
meanWidthpulse The average of the width at 10% of height of all pulses within the epoch
stdWidthpulse The standard deviation of the width at 10% of height of all pulses within the epoch
meanTimerising The mean of Timerising (the time for a pulse takes to reach its peak)
stdTimerising The standard deviation of Timerising (the time for a pulse takes to reach its peak)
meanTime f alling The mean of Timefalling (the time for a pulse takes to reach its trough
stdTime f alling The standard deviation of Timefalling (the time for a pulse takes to reach its trough
meanSlope The mean of the rising slope of all pulses within the epoch
stdSlope The standard deviation of the rising slope of all pulses within the epoch
PWV Pulse Wave Variability
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Table 5.2: Description of the features extracted from SpO2

Feature Description
SQI

artspo2 artspo2 = 0, if less than 50% of the SpO2 epoch is contaminated by artifacts
artspo2 = 1, if more than 50% of the SpO2 epoch is contaminated by artifacts
All SpO2 values below 50% and above 100%, and the SpO2 changes between
consecutive sampling intervals greater than 4% are considered as artifacts

Time domain features
SDSpO2 The standard deviation of SpO2 within each epoch
IQR The interquartile range of SpO2 within each epoch
Delta the average of absolute differences of the mean oxygen saturation

between successive 12-sec intervals
ind96 The cumulative time spent below an SpO2 of 96%
ind94 The cumulative time spent below an SpO2 of 94%
Tr2 The number of SpO2 desaturations greater than 2% below baseline
Tr3 The number of SpO2 desaturations greater than 3% below baseline
CTM Central tendency measure

Spectral domain features
powSpO2 Total spectral power of SpO2
modPow The total power in modulation band (0.005 Hz to 0.12 Hz)
meanPow The mean power in modulation band (0.005 Hz to 0.12 Hz)
PRatio The ratio between the power frequency band from 0.005 to 0.12 and total power
powDiscr The power in the discriminant frequency band,defined as a frequency interval (0.02 Hz)

centered on the modulation frequency peak detected in modulation band
SEfreq The Shannon entropy of the power spectrum density SpO2

5.2.4 Data Analysis

Univariate Analysis

All the epochs with low-quality SpO2(artspo2 = 1) were excluded from the origi-

nal database and further analysis. For the rest of the epochs, the relationship be-

tween each feature and the presence of A/H event(s) was assessed by comparing

the median value of the feature in the A/H and non-A/H epochs and also through

univariate logistic regression using the OR (95% CI).
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Multivariate Model Development

Subject were randomly divided into training and test sets. The epochs correspond-

ing to the subjects in the training set were used to train the classifiers, and the

epochs corresponding to each subject in the test set were fed to the trained models

to validate the performance of classifiers.

In the training phase, all epochs of the training set were organized into two

separate databases: 1) database1 including all epochs with high-quality PPG (artppg

= 0 or artppg = 1) and high-quality SpO2 (artspo2 = 0) and 2) database2 including

all epochs with low-quality PPG (artppg = 2) and high-quality SpO2 (artspo2 = 0).

For the epochs in database1, both sets of the PPG and SpO2 features were

extracted while for epochs in database2 only the SpO2 features were estimated.

To classify each epoch into two classes of A/H and non-A/H a model with two

binary multivariate logistic regression classifiers was developed (Figure 5.1). The

first classifier was trained over the datbase1 and the second classifier was trained

over the database2.

LASSO was employed to select the relevant features and to develop the classi-

fiers (using the glmnet R package). The tuning parameter was adjusted through a

stratified 10-fold cross-validation. For each epoch, the final models estimated the

probability of belonging to a certain class.

Model Classification Performance

The validation of the model was then performed for each subject within the test

dataset, epoch-by-epoch. Individual classification results were represented using

the area under the receiver operating characteristic (ROC) curve (AUC), accuracy,

sensitivity and specificity classifying epochs with and without A/H event(s). The

general performance of the model was then assessed using the distribution of the

AUC, accuracy, sensitivity and specificity, for the subjects in the testing dataset

through the mean and 95% confidence intervals (CI) of the quartiles (25, 50 [me-

dian] and 75 percentile). These estimations were performed using the bootstrap

method; 100 bootstrap samples were generated using the original AUC, accuracy,

sensitivity and specificity data, through random sampling with replacement.
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Figure 5.1: The proposed model has two binary classifiers. The epochs cor-
responding to the subjects in the training set were used to train these
two classifiers, and the epochs corresponding to each subject in the test
set were fed to the trained classifiers.
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5.3 Results
Fourteen children were excluded from analysis based on having a total sleep dura-

tion, or signal data duration (from PSG or the smartphone-based pulse oximeter)

shorter than 3 hours. The original dataset then included the total of 134389 epochs.

The number of 1602 (about 1.1%) of epochs had a very low-quality SpO2 (artspo2

= 1) and were excluded from the further analysis.

5.3.1 Univariate Analysis

For the number of 99,736 epochs with high-quality PPG and SpO2, all the PPG and

SpO2 features were extracted. PPG and SpO2 derived features were significantly

different in epochs with A/H event(S) compared to those without A/H epochs (Ta-

ble 5.3).

For the number of 33,051 epochs with low-quality PPG and high-quality SpO2,

the SpO2 features were extracted. SpO2 derived features were significantly differ-

ent in epochs with A/H event(S) compared to those without A/H epochs (Table

5.4).

5.3.2 Multivariate Model Validation

The LASSO method has a tuning parameter (lambda) controlling the degree of

overfitting. This parameter was determined by minimizing the 10-fold cross-validated

prediction error of the model, created using only the training data. The significant

features were then selected based on the chosen lambda. The final logistic regres-

sion model selected 12 PPG and SpO2 features for the first A/H classifier (Table

5.5). All the selected features had p-values < 0.0001. This model presented an

AUC of 0.85 (95% CI: 0.82 - 0.87) (Figure 5.2 a). For the second A/H classifier,

5 SpO2 features were chosen (Table 5.6). All the selected features had p-values <

0.0001 except for Tr2 that had a p-value of 0.05. This model presented an AUC of

0.77 (95% CI: 0.75 - 0.79) (Figure 5.2 b).

By combing the results from two A/H classifiers, each epoch of individual sub-

ject in the test dataset was assigned with the probability of containing the A/H

event(s). To optimize the sensitivity detecting epochs with A/H based on the pre-

dicted probabilities, we used a decision threshold of 0.035, which was similar to
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Table 5.3: Distribution of features extracted from PPG and SpO2 for A/H and
non-A/H epochs

Features A/H epochs non-A/H epochs p-value OR
Pulse Rate Variability
meanPP 0.71 0.74 < 2e-16 0.40
SDPP 0.08 0.05 < 2e-16 14.83
RMSSD 0.07 0.06 < 2e-16 27.12
pow 1.43 0.66 < 2e-16 1.15
VLF 0.10 0.02 < 2e-16 5.20
nLF 0.34 0.15 < 2e-16 13.51
nHF 0.65 0.85 < 2e-16 0.07
LF/HF Ratio 0.53 0.17 < 2e-16 1.17
Vascular Tone
meanAmppulse 0.008 0.009 2e-06 99.66
stdAmppulse 0.002 0.001 < 2e-16 86.8
meanWidthhal f 23.83 23.50 3e-08 1.01
stdWidthhal f 5.81 4.15 < 2e-16 1.1
meanWidthpulse 38.6 40.49 < 2e-16 0.98
stdWidthpulse 6.38 4.20 < 2e-16 1.08
meanTimerising 11.54 10.67 < 2e-16 1.09
stdTimerising 2.50 0.87 < 2e-16 1.06
meanTime f alling 35.03 37.02 < 2e-16 0.98
stdTime f alling 5.96 3.98 < 2e-16 1.08
meanSlope 0 0 2e-14 3.64
stdSlope 0 0 < 2e-16 4.40
PWV 1.12 0.73 < 2e-16 3.62
SpO2

RRatio 0.54 0.44 < 2e-16 8.74
modPow 0.14 0.02 < 2e-16 1.00
powSpO2 0.28 0.04 < 2e-16 1.001
SEfreq 7.03 7.37 < 2e-16 0.69
meanPow 0.004 0 < 2e-16 1.01
SDSpO2 0.64 0.25 < 2e-16 3.20
IQR 0.88 0.32 < 2e-16 2.047
Delta 0.26 0.09 < 2e-16 5.34
ind96 2 0 < 2e-16 1.04
CTM3 0.96 1 < 2e-16 0.004
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Table 5.4: Distribution of features extracted from SpO2 for A/H and non-A/H
epochs

Features A/H epochs non-A/H epochs p-value OR
SpO2

RRatio 0.55 0.42 < 2e-16 23.43
modPow 0.16 0.02 < 2e-16 1.03
powSpO2 0.38 0.04 < 2e-16 1.04
SEfreq 6.98 7.42 < 2e-16 0.54
meanPow 0.004 0.00 < 2e-16 2.23
SDSpO2 0.70 0.25 < 2e-16 2.73
IQR 0.97 0.32 < 2e-16 1.77
Delta 0.27 0.09 < 2e-16 4.50
ind96 1 0 < 2e-16 1.05
CTM3 0.92 1 < 2e-16 0.005

the percentage of A/H epochs in our training data. The median AUC was 75% and

using the selected risk threshold, the accuracy, sensitivity and specificity values

obtained for the subjects in the testing dataset were around 74%; even the subjects

at lowest quartile of the accuracy, sensitivity and specificity provided values above

65% (Table 5.7).

The model performed well identifying A/H epochs (Figure 5.3 a). However,

some subjects showed unbalanced sensitivity-specificity values, with too low speci-

ficity values (Figure 5.3 b and Figure 5.3 c), as a result of prioritizing model’s sen-

sitivity. The most challenging cases corresponded to subjects containing low A/H

events per night.

5.4 Discussion and Conclusion
This study showed that combining the SpO2 pattern characterization and PPG anal-

ysis performed using the Phone Oximeter’s measurements (SpO2 and PPG), im-

proved the Phone Oximeter’s performance as a possible SDB screening tool. In

addition, having another model trained based on the SpO2 features alone would in-

clude the epochs whose PPG signal was contaminated with the artifact while their

SpO2 signals was still reliable (about 30% of the epochs in our database).
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Table 5.5: Estimated coefficient and error for 12 features selected with
LASSO as the significant features for A/H model trained over database1
(including PPG and SpO2 features)

Estimated Estimated
Model Feature Coefficient Error p-value

A
/H

M
odel

(Intercept) -5.392e+00 2.981e-01 < 2e-16
SDPP -1.187e+01 9.425e-01 <2e-16
nLF 1.119e+00 1.169e-01 < 2e-16
stdAmppulse -3.235e+01 5.344e+00 1.42e-09
meanWidthhal f 4.098e-02 3.829e-03 < 2e-16
stdWidthhal f -1.979e-02 9.165e-03 0.03080
PWV 1.092e+00 7.145e-02 < 2e-16
RRatio 1.120e+00 1.202e-01 < 2e-16
SDSpO2 1.272e-01 4.285e-02 0.00300
IQR 1.272e-01 4.285e-02 0.00300
ind96 1.692e-02 2.332e-03 3.94e-13
Tr2 2.311e-01 7.764e-02 0.00292
CTM3 -1.186e+00 2.602e-01 5.14e-06

Table 5.6: Estimated coefficient and error for 5 features selected with LASSO
as the significant features for A/H model trained over database2 (includ-
ing SpO2 features)

Estimated Estimated
Model Feature Coefficient Error p-value

A
/H

M
odel

(Intercept) -3.67 0.41 < 2e-16
RRatio 2.17 0.18 < 2e-16
SDSpO2 2.17 0.182343 < 2e-16
ind96 0.017 0.002 3.94e-13
Tr2 0.23 0.13 0.067
CTM3 -1.00 0.41 0.014
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Table 5.7: Classification results from test set represented by the mean and
95% CI of the quartiles of Accuracy(Acc), Sensitivity (Sn), Speci-
ficity(Sp)and the area of the ROC curve (AUC)

Validation
(Test set) Acc(%) Sn(%) Sp(%) AUC(%)
25 Percentile 69 [66, 72] 65 [60, 70] 66 [63, 70] 73 [71, 76]
50 Percentile 76 [73, 78] 72 [67, 78] 75 [72, 80] 77 [72, 81]
75 Percentile 81 [79, 84] 84 [78, 89] 80 [76, 84] 80 [77, 83]

The most discriminating features identifying epochs with A/H event(s) were

automatically selected by LASSO. The selected features were related mainly to the

spectral analysis of PRV, PPG pulse amplitude and width variability, SpO2 variabil-

ity and modulation represented in the spectral domain. This reflects the significant

effect of intermittent apnea events and respiratory arousals in the sympathetic and

parasympathetic activity, and the recurrent desaturations in the SpO2 pattern vari-

ability. The validation results, obtained for each subject within the testing dataset,

provided a median AUC of 77% identifying epochs with sleep A/H event(s).

Our results, obtained with the Phone OximeterTM , are comparable with previ-

ous studies with more sophisticated approaches or devices. Heneghan et al. pro-

posed a combined Holter-Oximeter as a portable home-based device to automati-

cally assess OSA in adults with signs of SDB [30], [12]. Their system provided

an automatic epoch-by-epoch estimate of OSA occurrence and calculated an AHI

for each subject. Overall the system correctly identified 85.3% of all 1-minute

epochs. Chung et al. reported that oxygen desaturation index (ODI), calculated

from nocturnal oximetry, was a good predictor of AHI in adult surgical patients

[15]. An ODI provided an accuracy of 87%, sensitivity of 96.3% and specificity

of 67.3% identifying adults with an AHI . In this study, we focused on identifying

A/H epochs in children, which is more challenging than in their adult counterparts.

Yet, the Phone OximeterTM alone provided similar accuracies, maintaining a good

sensitivity-specificity balance.

Considering the population under 14 years old (16% of 4,609,946 [68]) in

British Columbia, in conjunction with SDB prevalence [64] of 2%, around 14,750

children would suffer from SDB. In this study, 38% of children with signs of SDB
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referred to BCCH for a PSG, were diagnosed with SDB upon analysis of a full

PSG. Therefore, approximately 38,815 children with signs of SDB may require a

PSG at BCCH, where only 250 PSGs can be performed per year. The availabil-

ity of PSG does not meet the demand requirements and results in long waitlists.

The results of this study show that using the Phone OximeterTM as a screening tool

prior to PSG could reduce the number of PSGs required, while effectively studying

the same number of children which would result in increased coverage of medical

services to children in British Columbia with signs of SDB, reducing wait times

and optimizing usage of hospital resources.
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(a)

(b)

Figure 5.2: The area under the curve (AUC) of the receiver operating charac-
teristic (ROC) curve of a) A/H classifier (PPG + SpO2 features) and b)
A/H classifier (SpO2 features)
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Figure 5.3: The estimated and observed A/H epochs for a subject with (a)
high accuracy (79%), (b)low specificity with low number A/H events,
and (c) low specificity with high number A/H events.
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Chapter 6

Conclusion and Future Work

We evaluated the relative impact of SDB on sympathetic and parasympathetic ac-

tivity in children through the characterization of PPG and we concluded that sym-

patetic activity during sleep was higher in children with SDB sleep and also during

30-second epochs when apnea/hypopnea events happen. We later characterized

the SpO2 pattern in SDB and then combined SpO2 pattern characterization and

PPG analysis to design and develop a method with two binary multivariate logis-

tic models to automatically identify 30-s epochs with apnea/hypoeponea events.

We extracted the cycles of non-REM and REM of the overnight sleep based on

the activity of cardiorespiratory system using the overnight PPG signals. We ex-

tracted the relevant features associated with PRV, RR, vascular tone and movement

from the PPG signal to build a multivariate model with a minimum set of features

to identify wakefulness from REM and non-REM sleep. To develop and evalu-

ate the proposed models, we recorded the SpO2 and PPG from 160 children using

the Phone OximeterTM in the standard setting of overnight PSG in BC Children’s

hospital in Vancouver.

The Phone OximeterTM provides the perfect platform to create an SDB screen-

ing prototype, permitting overnight pulse oximetry recordings and allowing imple-

mentation of the algorithm on a smartphone. In addition, it can wirelessly commu-

nicate information (raw data, results etc.). More sophisticated analysis approaches

such as the correntropy spectral density [21], [23], could be applied to the SpO2

for a more robust spectral analysis that includes nonlinear information. However,
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simpler algorithms are preferred so that they can be easily implemented on a smart-

phone with low computational load. By using the low cost version of the Phone

OximeterTM , which interfaces the sensor directly with the phone via the audio jack

[62], the cost to monitor SDB with the phone will be reduced to that of the finger

probe alone. The offline SpO2 and PPG analysis for the overnight study of each

subject takes between 1 to 2 seconds. Real time performance is not required, since

we aim to provide a final screening result after the overnight recording.

6.1 Future Work
In the remainder of this final chapter, we propose future work that may be per-

formed to further develop an integrated solution for monitoring sleep and sleep

breathing disorders.

6.1.1 Sleep Solution

The ultimate goal of this research is to develop a stand-alone solution for moni-

toring sleep and SDB at home using the Phone OximeterTM . After an overnight

recording at home, the 30-s will be classified into the wakefulness, non-REM and

REM states using the sleep model described in chapter 4. Later the epochs with

A/H events would be identified using the A/H model presented in chapter 5. The

results of these two models would be integrated into one report to offer valuable

information about the quality of sleep, variation of heart rate and oxygen saturation

during sleep (Figure 6.1).

6.2 Limitation of the research
The pediatric population of this study includes children with a higher likelihood

of SDB than the general population, having already been referred to the BC chil-

dren’ hospital for a PSG. Although our target population for the SDB screening

tool is children with signs of SDB, the utility of the Phone Oximeter in a general

population with a lower prevalence of SDB is presently unproven.

The database was used to evaluate the proposed models and algorithms study

was collected performed in a hospital sleep laboratory at the BC children’ hospital.
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Sleep Report 
User Information     
Patient ID:                                Gender :                                         Age:                                                    BMI (kg/cm2): 
Study date:                              Start:                                               End: 

 

 

 

 

 

 
Time (hour) 

 

Pulse Rate (BPM) 

Mean  77 
Lowest  72 
Highest  83 

 

Sleep Summary 

Total Time in Bed  8 h 22  m  

Total Sleep Time  8 h 3    m   96% 

Wake  19  m     4% 

NREM 7 h 30  m   93% 

REM  32  m     7% 

 

Sleep Efficiency 

96% 

6 

Disruptions 

 

Motion Artifact:        0.16%     Error Signal: 22.43% 

Sleep Oximetry * 

SpO2 < 88 < 80 

Duration  - - 

Sleep % - - 
   
SpO2 Baseline (%) **  

Highest         97.1 

Lowest     94.6 

Drift    2.5 

Awake SpO2    97.2 
   
Respiratory Disturbance *** 

Oxygen Desaturation Events  - 

Oxygen Desaturation Index (ODI) - 

Apnea/Hypopnea Epochs - 

Apnea/Hypopnea Epoch Index  - 
  

 

Figure 6.1: Sleep report provides the valuable information about the qual-
ity of sleep, variation of heart rate and oxygen saturation during an
overnight sleep
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At-home screening is our goal for the next study. During recordings performed at

home, we expect artifacts caused by sensor displacement to be more severe, which

could degrade the performance of the Phone Oximeter as an SDB screening tool.

Therefore, the implementation of an accurate artifact detection technique for the

PPG and SpO2 signals, directly on the phone, is one of our main future challenges.

Previous studies suggest that the indication for SDB treatment, primarily ade-

notonsillectomy, is an AHI (from PSG)>5, which coincides with the current prac-

tice at BC Children’s hospotal. Therefore, in this research we considered children

with an AHI as positive for SDB. However, there is no discrete definition of OSA

based on AHI alone, but rather a continuum from normal to abnormal. We rec-

ognize that some studies consider an AHI as abnormal or mild obstructive sleep

apnea (OSA). For example, The Childhood Adenotonsillectomy Trial (CHAT), de-

signed to evaluate the efficacy of early adenotonsillectomy versus watchful waiting

with supportive care, defined OSA as an AHI score 2. Surgical treatment did not

significantly improve attention or executive function in these patients, but did re-

duce OSA symptoms. However, the population in the CHAT study primarily had

mild cases of OSA, reflected by the AHI interquartile range (2.5 to 8.9) in the OSA

positive group, which may have affected their assessment of treatment efficacy.

Therefore, we will further investigate the Phone Oximeter’s performance identify-

ing children with SDB based on different AHI thresholds (AHI >= 1 , AHI >= 2

), using different classifiers. An AHI will result in a recommendation for at-home

monitoring, and an AHI will result in a referral to BC Children’s hospital for a

PSG.
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