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Abstract

This thesis presents a trajectory generation algorithnon&ral strategy, and a geometric error
compensation methodology for a novel 9-axis micromackirdanter which combines a 3-
axis micromill with a 6 degree of freedom magnetically latéd rotary table. The proposed
trajectory generation algorithm resolves redundant aegoé freedom by numerically solving
for axes positions from desired tool positions and oriéost Differential axes positions are
found while ensuring the stroke limits of the drives are ez$ed and singularities are avoided.
The differential solution is numerically integrated to aintthe axes positions with respect to
displacement. The axes commands are then scheduled inviinile,respecting the velocity,
acceleration, and jerk limits of each of the drives, anddrawg the toolpath as fast as possible.
The experiments showed trajectories that resolved recwmel® avoided singularities, and

respected all physical limits of the drives.

A control strategy which combines the capabilities of thenomill and the rotary table is

introduced. A sliding mode controller with a LuGre frictioompensator is designed to control
the position of the micromill, based on identified physicatgmeters. A lead-lag position
controller with an integrator and a notch filter is designedantrol the rotary table. Since
the translational axes of the micromill and rotary tableiangarallel, the tracking error of the

micromill is sent as a reference command to the rotary ta@bl@pensating the tracking errors
of the micromill with the higher bandwidth of the rotary tablin experiments, the dual stage

control law improved tracking error over the micromill aéon



The geometric errors of the 3-axis micromill is compens#gdsing the precision motion of
the 6 degree of freedom rotary table. The geometric errotkeoB-axis micromill are mea-
sured with a laser interferometer, fit to quintic polynomjalnd incorporated into the forward
kinematic model. The tooltip deviation is found by subtiagtthe ideal tooltip position from
the tooltip position affected by geometric errors. Rotabldacommands, from all 6 axes, that
compensate for these deviations are found using a gradescedt algorithm. Experiments

showed reductions in end effector deviations.



Lay Summary

Technological advances in industries such as the elecs@nd biomedical field has driven
the demand for manufactured parts with high precision feaittypically in the order of one
thousandths of a millimeter. Subsequently there is a denf@nchanufacturing processes
and machine tools capable of generating high precisiorufest A hybrid 9-axis machine
tool, which combines a 3-axis micromilling machine and a grde of freedom magnetically

levitated rotary table has been developed for this purpose.

This thesis presents algorithms to plan the motion, conitvlprecision, and control the ac-
curacy for this 9-axis machine tool. The motion is planne@nsure all 9-axis are used as
efficiently as possible given a predefined path. Furtherrtfttganachine is controlled so the
precision and accuracy of the 3-axis micromill is improvethwhe rotary table. The developed

algorithms can be used with similar machines to manufadtigie precision parts.
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Chapter 1

Introduction

In recent years there has been a decrease in the averagedizeeease in the complexity
of manufactured parts due to technological progress instighs such as the biomedical and
electronics industry. At present, it is common to see mastufad parts with features in the
micrometer scale. Though multiple manufacturing procesgéh micron level precision do
exist, few are capable of producing parts with freeformuezd with precision. Wire electrical
discharge machining (EDM) and photolithography are capablery high precisions but can
only be used to generate 2-D and 2.5-D parts, respectivéigudh micro injection molding
and micro forming are capable of producing high precisiee fiorm parts, a higher precision
manufacturing process must be used to produce the toolingn@e limitations of the above
mentioned manufacturing processes, multi-axis micromnaipis one of the few viable means
for producing freeform parts with micron level precisiorhigwork contributes a development
of novel multi-axis micromachine tool, which combines altt@nal 3-axis micromill with a 6

degrees of freedom (DOF) magnetically actuated rotaretabhbwn in Figl_1./1.

The 6DOF rotary table was originally developed by the Preci®echatronics Laboratory at
the University of British Columbia and has been presented jraftl [2]. The rotary table
consists of a Halbach magnetic array as the mover and agitriit board (PCB) as a stator.
Actuation is achieved by passing current through the coppees in the PCB, which creates
an opposing magnetic field to the Halbach magnetic array®@miover. This configuration

allows for a tetherless mover and a low form factor statoe fidtary table has a full 6 degrees



Figure 1.1: UBC MAL's hybrid 9-axis machine

of freedom with approximately 100 micron stroke limit in they, andz directions, 0.5 degrees

tilt limit about thex andy axis, and unlimited rotation when rotating about thaxis.

By combining a lighter, and subsequently faster, actuatth thie existing 3-axis micromill,
it is possible to increase the precision and accuracy of ¥ieeatl system. However, with this

new configuration, the addition of multiple redundant axeéoduce new research challenges.

Typically, a 5-axis machine is capable of moving a cuttingl to a predefined cutter location
defined by 3 positions and 3 orientations. Since a 5-axis madbol has the necessary de-
grees of freedom, analytic inverse kinematic solutionstezillowing for unique mappings of
machine tool axes positions to cutter locations. Conversiedyhybrid machine tool presented
in this work has 4 more axes than necessary. As a result, @ @ngachine tool axes posi-
tions can correspond to a predefined cutter location. Wgheet to trajectory generation, the

main challenge is selecting axes configurations that resbkredundancies. Furthermore, the



trajectory must also avoid singularities and be scheduledway to avoid the physical limits
of the drives including the stroke, velocity, acceleratiand jerk limits. This thesis presents
a novel trajectory generation algorithm to avoid singtiksiwhile respecting the limits of all

axes.

With the trajectory defined, it is necessary to ensure thehmadool follows these trajectories
as close as possible. This is typically done by applying lbigihdwidth position controllers to
each axis of the machine tool. Though sophisticated maglelid control techniques can be
used to increase the bandwidth to be as high as possible;levable bandwidth is limited by
the stability of the closed loop controller of the axis. lMkse, in the presented configuration,
the 3-axis micromill is controlled with a high performanaandinear controller, but is limited
due to stability issues. Due to its comparatively lightelssmand lack of mechanical contact,
the rotary table is able to achieve a bandwidth that is anrarfiemagnitude higher than the
3-axis micromill. Since the translational axes of the rgptable and micromill run in parallel,
it is possible to use the higher bandwidth of the rotary tableompensate the tracking errors
contributed by the low bandwidth of the micromill. The theepresents a dual stage feed drive

control law that combines the strengths of the micromill estdry table.

In addition to increasing the tracking precision of the maetool, it is possible to improve the
volumetric accuracy of the 3-axis micromill using the 6D@fary table. Though a feed drive
should be constrained to only move in the direction of acbnatlue to errors in assembly it is
possible for the feed drive to deviate slightly in the ortboagl directions, in the translational
and rotational sense. Furthermore, these errors are typima detected since the feed drives
have feedback on the direction of actuation. Though theatievis are small for an individual
axis, when multiple axes in series have assembly errorgnitcorrespond to an end effector

deviation that violates the tolerance of the parts to be mach In this thesis, the rotary table



is used to compensate for the affect of these position degerggtometric errors. The errors
are measured with a laser interforemeter and mapped to faadafdeviations. The trajectory
of the 6DOF rotary table is then modified with a novel algaritho compensate for these

geometric errors.

Henceforth, the thesis is structured as follows: Chaptes@udises previous works reported in
literature specifically with regards to trajectory generafor redundant actuators, dual stage
feed drive control, and geometric error compensation. Inp@eB a novel trajectory genera-
tion algorithm is presented. The trajectory generationrhmetresolves the redundant degrees
of freedom while ensuring that the generated motion commmanel jerk continuous, time op-
timal, and do not violate the stroke, velocity, accelemgtiand jerk limits of the drive. The
modeling, identification and development of the controldawed to control the micromill, ro-
tary table, and the combined efforts of the micromill ané&rgtable are presented in Chapter
4. The higher bandwidth of the rotary table is used to comgterfer the tracking errors from
the lower bandwidth of the micromill. Chapter 5 provides apligation of the rotary table,
where the geometric errors of the micromill are first modatedugh experimental measure-
ments and compensated by modifying the trajectory of tharyatable. Chapterl 6 presents
simulation and experimental results and Chapier 7 concltiieshesis and suggests future

reserach.



Chapter 2

Literature Review

2.1 Overview

The configuration in the work presented is a 9-axis micronmaag) center. Due to its unique
configuration, new trajectory generation algorithms, oaiaws, and accuracy enhancement
techniques must be developed. With regards to trajectamgrgéion, since there are 4 more
degrees of freedom than necessary the main challenge isalvireg these redundant degrees
of freedom. In the presented configuration, the translatiares of the micromill are parallel
with the translational axes of the rotary table. As a resaltitrol laws must be developed that
exploit the strengths of the different actuators, whicHude the long stroke of the micromill
axis and the high bandwidth of the rotary table axis. Finaflg additional degrees of freedom
can also be used to compensate for geometric errors conongtfre 3-axis micromill. As
a result, this literature survey evaluates existing workrajectory generation of redundant
mechanisms, control law design for machine tools and diaglesservomechanisms, and the

modeling, identification, and compensation of geometniorsr

2.2 Trajectory Generation for Redundant Manipulators and Machine tools

Typically, a cutting tool only needs 5 degrees of freedomefne its position and orientation
in space. Furthermore, it is the end effector position amehtation that is typically specified
since itis the element of the overall system that is intémgawith its environment. As a result,
one of the main objectives of trajectory generation, in thietext of redundant manipulators, is

resolving the redundant joints or axes so the end effectsitipp and orientation corresponds

5



to the desired position and orientation. In machine toblsid are typically 5 or less axes, and
as a result an analytic solution for this problem is typicaVailable in the form of inverse
kinematics [3-5]. However, robotic devices typically hawere joints than necessary as seen
in various types of robotics arms. As a result, the same toatyerse kinematic solutions can
not be used for these under constrained configurationstelrature, the earliest work for the
trajectory generation of redundant manipulators come fitwrfield of robotics. This problem
was initially solved by Whitney |6], where given a redundargampulator and specified end
effector velocities, the velocities of the joints are salwesing the Moore-Penrose inverse of
the robot's Jacobian matrix. Since the Moore-Penrose savenly considers the least norm
solution of the redundancy resolution problem, an infiraiege of solution still exists. Leigios
extended this work in [ 7], where the nullspace of the Jagobiatrix is used to minimize some
cost function. By considering the nullspace of the Jacobiatrin) the desired end effector
position is not affected, but the joint configuration is sédel so the predefined cost function is

minimized at each step.

In Leigios’ original work, the cost function is specified deetsolution selects a joint config-
uration that always respects the stroke limits of the joilNsimerous authors have extended
Leigios’ original idea and used the cost function to achiseeondary goals such as the opti-
mization of joint torques [8], minimization of energy comsption 9], or avoidance of singu-
larities [10]. In these solutions, the differential sotutiminimizes the specified cost function
to a local optimal minimum at each solution step. Nakamuthtéanafusa [11] extended these
types of solution to consider global optimality of the castdtion. In [11], Nakamura and
Hanafusa used the example of minimizing manipulabilityrdkie whole toolpath. It should be
noted that due to the recursive nature of these globallyr@tsolution, the computation time
was orders of magnitude higher than with the locally optis@ltion. It should be noted that

the redundancy is resolved at the differential level, ararasult, there is a need to numerically

6



integrate the solution in order to obtain actual motion cands. In [12], the error differences
between the various numerical integration techniques weestigated. It was found that the
4th Order Runge Kutta Method produced the best results. lerdodimprove the numerical
integration result, a closed loop corrective element iseddd [13]. This way, the numerical

drift inherent in the use of numerical integration techmigis corrected at each step.

Though the above methods are able to generate trajectoriesdundant actuators, the resul-
tant trajectories are not time optimal trajectories thatsider the joint velocity, acceleration,
and jerk limits. It should be noted that literature existnirthe robotics field for optimal
trajectory generation [14] [15], but these works do not addrkinematically redundant con-
figurations. Since robotic applications do not require #i®mea productivity demands as man-
ufacturing applications, the need for time optimality i as important and it is sufficient for
a robot to operate under its maximum capacity. In contreggedtory generation algorithms
for machine tools must be as time optimal as possible, at &&=leration continuous, and
respect the physical limits of all the drives. As a resubtjgctory generation techniques in
machine tool literature are focused in fulfilling theseemia in different ways. In [16], Dong et
al. proposed a solution to find a time optimal jerk limitedecory with a bi-directional scan
to optimize the trajectory only for jerk and a secondary Bre¢ion-continuation algorithm
to optimize the trajectory for acceleration. In [17] a sadatis proposed where a tangential
displacement is selected at each servo time step in a wagdhatates one constraint at all
times. The solutions proposed in [16] and [17] are only aregion continuous. In [18] and
[5], similar constraints on velocity, acceleration andkjare used. However, the tangential tool
path is jerk continuous. Due to this added complexity, noadr optimization techniques were
used, where the feedrate is optimized while respecting @hstraints by modifying segment

durations in [18] and the control points of a spline that defithe feedrate profile in [5].



Based on this literature survey it can be seen that theresexigap in literature. At present,
techniques have not been developed where time optimal, thimaied constrained trajectories

can be generated for redundant configurations.

2.3 Control laws for Feed drives and Dual Stage Actuators

Due to the need for high precision positioning, a rich bodyitefature exist in the field of
single axis feed drive control for machine tools beyond tiamaard industrial Proportional-
Integral-Derivative (PID) controllers. Erkorkmaz et alrepented a sophisticated feed drive
controller in [19] which used a combination of zero phas@retracking control [20], pole
placement, Kalman filter, and feed forward friction comims. Altintas et al. [21] devel-
oped a high bandwidth, robust sliding mode controller witudbance compensation showing
similar results as those presented in [19] but with a simpbetrol structure. Okuwdire ex-
tended the work in [22] and included the flexible modes of thk dcrew in the design of the
sliding mode controller. A switching gain scheduling cofier is proposed in [23], which
accommodates for position dependent dynamics and vargitiomass. Hosseinabadi and Al-
tintas [24] used an active damping network to damp the siratimodes of the machine tool
to increase the bandwidth of the sliding mode controllegioally proposed in [19]. In [25],
Kamalzadeh and Erkorkmaz compensated for the axial vibratof the ballscrew drive by
including the first axial mode into the sliding mode contralland showed superior perfor-
mance over the use of a notch filter. Kamalzadeh and Erkorlanambined multiple control
techniques in [26] and [27], where excitation of torsionaldes are avoided with notch fil-
ters, control of rigid body dynamics is achieved with an depsliding mode controller, and
non-linear friction and torque ripple are modeled and camspéed in a feedforward fashion.
It should be noted that the above works represent only a sulalet of literature available in

the field of feed drive controls.



In contrast, due to its relative uniqueness, particularlyhie field of manufacturing, there is
less work for dual stage feed drives. Preliminary work wasedm [28] where the tracking
error of the coarse stage is compensated with the fine stdge wbrk was extended in [29],
where the estimated contouring error of the coarse stagenists the fine stage instead of
the tracking error. In these works, a simple PID or PPI cdietr@are used for the feedback
control. Alfizy et al. [30] proposed a dual stage feed drivéhve magnetic coarse actuation
stage and a piezoelectric driven flexture fine actuatiorestgthis work, the coarse stage is
controlled with a simple PID controller and the fine stage pensates for the tracking error of
the coarse stage. In [31], Choi et al. proposed a dual serge &taUV lithography. Unlike the
configurations presented in [28--30], where the positiohefine actuator is measured relative
to the coarse actuator, the position of the fine actuator isitmm@d with laser interferometer
relative to the machine tool's base coordinate frame. Basethe ability to measure the
fine actuator with a higher precision sensor relative to th&elcoordinate frame, the control
relationship between the coarse and fine actuator is swdf@ral the coarse actuator follows
the tracking error of the fine actuator. Each axis is thenroliet! with a PID controller. It
should be noted that the use of laser interferometer to megmsitions in a CNC milling
machine tool would be impractical due to much larger actgatange resulting in difficulties
in mounting mirrors. In contrast to the multi-axis works ggated above, in 2004, Kim et
al. [32] developed a dual stage actuator and robust coatraf camshaft turning. Given the
repetitive nature of the input signal, the controller isigesd to converge to an optimal design

after a certain amount of time.

Beyond the field of multi-axis manufacturing machine toolgldstage configurations are more
commonly found in 1 DOF read heads of hard disk drives. Indlsegups, a voice coil motor
drives the coarse movement and a piezoelectric actuat@sdtie fine movement. As a result,

the literature for the control of hard disk drive read headgrevalent with examples of dual
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stage control. It should be noted that machine tools and meads of hard disk drives have
different control objectives and configurations. Unlikeaniae tools, where the axes typically
follow a smooth varying trajectory, read heads are typycgiven step commands to different
tracks located on the disk. As a result the objective is totraafast as possible to a step com-
mand, as opposed to following a smooth trajectory as clogmssible. Furthermore, unlike
machine tools, where each individual axis has their owneaetsge feedback sensor, the feed-
back sensor detects the position of the read head, thegisum of the voice coil motor and
piezoelectric actuator, allowing the closed loop contigbathm to control the actual position
of the end effector. As a result, the control laws developitess the control objectives and
dynamic analysis in a different way. In |33] the authors iempénted a linear controller for
the dual-stage system with the use of a zero phase erroingactntroller and a feed forward
compensator. Kobayashi et al. proposed a phase-stabder®ed controller in'[34] where the
structural modes of the piezoelectric actuator are usedngoensate for errors from windage
disturbance caused by the suspension vibration. Like tiug ggesented in this thesis, the fine
piezoelectric actuator typically has stroke limits an oroemagnitude lower than the coarse
voice coil motor actuator. In [35], Herrmann et al. addresse problem of fine actuator sat-
uration by implementing an anti-windup scheme. Other asthave implemented state space
based controllers for dual-stage feed drives. In [36] afidl [3asic implementations of Hand
sliding mode controllers, respectively, were applied ® dinal-stage configuration. She et al.
[3€], applied the equivalent input disturbance approachdoal stage feed drive configuration.
In [3€] the coarse actuator was driven with an Adaptive Rnate Time Servomechanism and
the fine actuator was controlled by a Composite Nonlinear lf@adcontroller to reduce the
settling time. In this work the stiffness of the controlléitioe fine actuator was varied depend-
ing on the read head’s proximity to the target. When the read la@proaches the target the

stiffness of the controller of the fine actuator increadesdfore increasing tracking precision.
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Based on this literature survey it can be seen that many ddaive exist for single stage feed
drives but few techniques exist for configurations with rrakis dual stage configurations.
The dual stage configurations and subsequently control tlaatsare found in manufacturing
literature are relatively limited, with no application ofone sophisticated control algorithms
on both the coarse and fine stages of actuation. Furtherrttegeynique configurations of
the works in multi-axis dual stage configurations do not seagly apply to the configuration

presented in this work.

2.4 Geometric Error Modeling, Identification, and Compensaton

The modeling and identification of geometric errors begathéliterature for the control of
coordinate measuring machines (CMM). Since there are n@psdorces, software compen-
sation of geometric errors in CMMs was a viable option. In ohéhe earliest examples of
software compensation, Zhang et al. [40] modified feedbagpkass with a look up table in
order to compensate for geometric errors. Similar teclesduave been extrapolated to 3-axis
CNC machine tools [41] where homogenous transformationicestare used to map the axes
geometric errors to the tooltip position errors. In [42] a Bdbe-ball and spherical test are
developed to measure the link errors in the rotary table e&&i$ CNC machine tool. The tool
deviations caused by the axes geometric errors are theneswaged in real-time by multiply-
ing the inverse Jacobian matrix of the forward kinematic et@dth the tool deviation to obtain
a compensating trajectory. Huang et al. also takes a siaplgroach in [43]. Alternatively, in
[44], a method is proposed in which the trajectories for thendl C axis are modified to com-
pensate for orientation geometric errors, then the X, Y, Aadis are modified to compensate
for position geometric error, therefore avoiding the reowg nature of simultaneously solving
for compensation commands on all axes. However this asstiraemoving the translational

axes will not incur any orientation errors, which may not leeessarily true. In [45] the geo-
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metric errors are measured with ball-bar tests. The toeltiprs are mapped into the errors in
the axes positions then added back to the axes positionsiipartsate for the errors. In [46],
the geometric errors are first measured with a ball-bar. Diséipnal deviations are corrected
using the geometric error tables built into the CNC machineweéler, positional deviations
caused by rotational geometric errors are corrected byfyindithe NC code since these er-
rors are not available for compensation in a standard geanegtor table in CNC machines.
Xiang et al. [47] modeled the geometric errors of a 5-axis CN&&Immne tool using screw the-
ory and then compensated them using inverse kinematics.e8épt, there is ongoing research

on the geometric error compensation in 5-axis machine tools

As it can be seen, in the above mentioned strategies, theejgorarrors are compensated by
modifying the toolpath with respect to the modeled georoetniors. However, comparatively
less work has been done on the compensation of geometris @vithh a secondary actuator.
This may be a desirable configuration as there may be scenariwhich the trajectory of
the major actuator cannot be modified. In literature theecaafew examples that attempt to
tackle this problem. A secondary magnetic bearing moduteble®n used to compensate for
the straightness errors of a single axis [48]. In anothekywaitwo dimensional PZT actuator
is used to compensate for the straightness error and pusgjierrors by sending the PZT
actuator the inverted geometric error measured by a laserfenometer [49]. As it can be
seen, the existing geometric error compensation techsigit the use of an external device
are limited to a single axis and limited in general. Furthementhe standard geometric error
compensation techniques mainly deal with configuratiorth &nalytic inverse kinematics,
which allow for an analytic inverse differential solutiddince the rotary table has 6 degrees of
freedom to compensate for the 3 translational errors, @inahwerse kinematic equations do

not exist, and as a result, new techniques must be developed.
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Chapter 3
Trajectory Generation for a 9-axis Micromachining Center

3.1 Overview

In robotics literature, the trajectory generation techieg are capable of resolving redundant
degrees of freedom, but at present no works are able to dantlaa optimal way, where
the travel time is minimized while simultaneously respagtthe velocity, acceleration, and
jerk limits of the drives. Conversely, machine tool liter&wonsists of trajectory generation
techniques where the travel time is optimal while respecthre physical constraints of all
drives involved, but have not been developed to resolvendaiut degrees of freedom. In
this chapter, a trajectory generation technique is presewhere the strength of trajectory

generation in robotics and machine tool literature are doath

Given a computer aided design (CAD) geometry of the part to &eufactured, the computer
aided manufacturing (CAM) system will generate a correspantbolpath for the tool to fol-

low, which will typically consist of desired tooltip positins and tool orientations at varying
displacement intervals. In the case of the configuratioserted, the trajectory generation
algorithm must first decompose the desired tooltip posstiand orientation into 9-axis com-
mands which correspond to the desired tooltip position arehtation. Next it must schedule
these commands in such a way that the velocity, acceleraahjerk limits of all the axes are

not violated while traversing the toolpath as fast as pdssib

In order to do this, a forward kinematic model is first develdp Based on this kinematic

model and the desired tooltip position and tool orientatjothe redundancies are resolved
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numerically and corresponding axes positions are founded filisplacement intervals along
the toolpath. These axes positions are then scheduled envtith a feedrate optimizer, to be
as fast as possible without violating the limits of the ax&sally the feed profile is resampled,

resulting in real-time position commands to be sent to theedrof the machine tool.

3.2 Forward Kinematics of the 9-axis Micromachining Center

Given the position commands of each of the drives it is péssibfind the tooltip position and
tool orientation using the forward kinematic model of thectmae tool. In order to generate
the forward kinematic model of a machine tool, first, two kiregic chains are formed with
homogenous transformation matrices (HTM) based on theeswguof the drives [50]. In the
configuration presented, the workpiece kinematic chantsstieom an arbitrary base coordinate
frame and ends at the workpiec&T,,, and the tool kinematic chain starts from the same

arbitrary base frame and ends at the tool hol8dt,, as shown in Fig. 3/1.

With the kinematic chains defined, the inverse of the wortg@ikinematic chain is multiplied
with the tool kinematic chain to obtain the final transforioatmatrix,“ T, which transforms

positions defined in the tool coordinate into the workpiegerdinate frame. The first kine-
matic chain consists of the-y table of the micromill and all the axes of the rotary table.aAs

result, based on this sequence, the transformation mattranhsform from the arbitrary base
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Figure 3.1: 9-axis micromachining center and correspandies of the machine tool
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coordinate system to the workpiece coordinate frame is|sv®:

100 0 100 = 100 0
pp o |0 10w 010 0 010 0
o 001 L. 001 L,, 00 1 L
000 1 000 1 000 1
B’I“;cﬂ ycrI‘(TCsi J:(;I,‘s,i
100 100 0 100 0
L |01 00 01 0 yf 010 0
001 0 0010 0 0 1 zp+zp
000 1 000 1 000 1
ST T, ST,
10 0 0][e 0s, 0 (3.1)
o |0 Gy =Sy 0 0 1 0 0
Osaf cafO —sbecbe
00 0 1 0 0 0 1
=f if,i “of 'E;fz
C; =S, 00 100 0 100 0
. | S G 000 010 0 010 0
0 0 10 001 L, 00 1 L,
0 0 01 000 1 000 1
bf,;, Cf?rrmr T’fz,u,i

(;f,i

where ¢ = cos(q) and § = sin(q), ¢ is a general axis position, ar', ; denotes a transfor-
mation matrix from coordinate frameto coordinate framé and the subscriptindicates an
ideal homogenous transformation. It should be noted thatif3.1), the coordinate frames
r, andw, denote the stator, rotor, and workpiece coordinate franegpectively. Furthermore,
x. andy, are the position commands of the micromil}, v, z¢, as, by, andc; are the position
commands of the rotary tablé, . is the height of the:.-axis, L, . is the height of they.-axis,
L, is the height of the stato,, is the height of the rotorl.,, is the height of the workpiece,
andzy is the initial floating distance of the rotary table. All thifsets are static and shown in
Fig.[3.1.
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The second kinematic chain consists of thaxis the micromill and the spindle offsets. As a

result, the tool kinematic chain is defined as:

100 0 100 0
pp [0 100 010 Ly, (3.2)
’ 00 1 2z4Lp. | |00 1 —L.
000 1 000 1

~
Ty ;

wherez, is the z-axis position command of the micromill,, , and L, , are the linear offset
of the spindle, and, . is the initial offset of the:-axis of the micromill from the arbitrary base

coordinate frame. The initial offsek,, ., can be defined as:

LO,Z - La:,z + Ly,z + Ls + Zf0 + L’r + Lw + Zc,0 + Lsp,z + Lt (33)

wherez, is the initial position of the:-axis of the micromill and’; is the length of the cutting
tool. With both transformation matrices originating at #reitrary base coordinate frame, the
transformation matrix from the tool coordinate frame to Wix@rkpiece coordinate frame is

found by multiplying the inverse of Eq. (3.1) with Eq. (B8.2) fallows:

oy = (PTy.) " BTy, (3.4)

If the position of the tooltip is defined in the tool coordiedtame, then it is possible to find
its position relative to the workpiece with the transforioatdefined in Eq.[(3]4). Relative to
the tool coordinate frame, the tooltip position is the exqubkength of the cutting tool and the
orientation is always lined up with theaxis of the tool coordinate frame. As a result, the tool
can be defined in the tool coordinate framétgs= [0 0 L;]" and’t, = [00 1]" for the tooltip
position and tool orientation, respectively. Given thensfarmation matrix in Eq.[(3l4), the

tooltip position and tool orientation can be transformed the workpiece coordinate frame as
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follows:

P, O,
P, O; ', 't,

=T| 7 3.5
P. Oy 1 0 (3-3)
10

Expanding the matrix equation defined in EQ._(3.5), the fodAdnematic model gives the
tooltip position and tool orientation defined as a functidrir@ positions of the 9 drives as

follows:

Pr(@) = (—Lspy = Ye — ¥s)(CasSe; + Ce; Sy S, )
+(Ly + L + 2e0 + 2e — 27)(Su;Se; — Ca;Ce; ;) (3.6)
—l—beCCf(—xc —xy)

Py(a) = (=Lspy = Ye — ¥r)(Ca;Cep — Sus Sy, Sc)
+(Lyr + Lo + 2e0 + 2¢ — 2f)(Cc;Say + Ca;Sh,Se;) (3.7)
+(2e + 15))Co, S

P.(q) = (—we—5)8; = L. — Ly
ALy 4 Loy + 20 + 2e — 25)Ca; Gy, (3.8)

+(Lsp,y + Ye + yf))cbfsaf

O”L(q) - SafSCf - CafCCbef (3'9)
O_] (q) - CCfSaf + CafsbeCf (310)
Ok(q) = Cq;Cp,; (311)

whereq = [z¢, Ve, 2e, T1, Yys 21, ay, by, ¢4]*, Py, P,, and P, are ther, y, andz position of the
tooltip in the workpiece coordinate frame, aég, O;, andO,, are the orientation of the tool
about ther, y, andz axis of the workpiece coordinate frame. In the next sectio& Jacobian

of the forward kinematics, as defined in EQ. (3.6)[to (3.1MQn@ with the desired toolpath is

18



used to resolve the redundant degrees of freedom.

3.3 Redundancy Resolution of the 9-axis Micromachining Ceetr

Typically, machining toolpaths from the CAM system are sfiedias the tooltip position and
tool orientation with respect to the workpiece, also knowwatter location (CL) data. The CL
data from the CAM system is first fit to a jerk continuous B-spksea function of tangential
displacements, to preserve third order continuity [51] in order to avoictigxg the structural

modes of the machine tool:

R(s) = [Pa(s), P, (5), P.(s), 0i(s), 05(s), Ox(s)]" (3.12)

In traditional 3-axis and 5-axis machine tools, analytiense kinematic equations can be used
to find the corresponding axes positions gilefs). However, since the 9-axis micromachin-
ing center has more axes than necessary, the system is wntrained and analytic inverse
kinematic solutions do not exist. In this work, numericahpiques from robotics literature [6]
[7] are adapted to resolve the under constrained systemrdbr to generate trajectories that
resolve the redundancy of the micromachining center, a@eBgurations, which correspond
to the desired tooltip position and tool orientation, at dibxdisplacement intervals along the
toolpath are first found. With the forward kinematic equasipit is possible to find the Jaco-
bian matrix, which is the differential of the tooltip positi and tool orientation with respect to

axes positions:

ap, .. dBs
dx. de
dR ‘ !
J = o P e (3.13)
q doy  do
dxc dCf 69
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Given differential axes positions, it is possible to find thigerential tooltip positions and tool
orientations, as follows:

dR = Jdq (3.14)

However, since the objective is to fimdfrom R.(s), the inverse of/ is required. Sincd is not
a square matrix it is not possible to simply multiglR with the inverse of/. Alternatively, as

originally proposed in [6], the Moore-Penrose inverse,rigfias:

Jt=J" (107~ (3.15)

can be used to find the differential axes positions. By myiing the Moore-Penrose inverse
with a differential tooltip position and tool orientatioibjs possible to find the corresponding
differential axes position. Since the spline describingttholtip position and tool orientation,
R(s), is a function of tangential displacement, it can be differentiated with respect to
and multiplied with.J to get the axes positions differentiated with respect tpldiement as

follows:
dq dR
— == 3.16
ds ds ( )

It should be noted that an infinite range of differential siolus exist and Eq (3.16) represents
the least squares solution of the under constrained probldns corresponds to the solution
with the lowest average axes differential with respect gpldicement at each step or more

formally:
dq

minimize ’
S

(3.17)
subjectto dR = Jdq

However, since our trajectory has requirements beyondethst horm solution, Eql_(3.116) is

augmented to fulfill other requirements such as avoidingksttimits and singularities. Fur-
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thermore, the differential solution must be numericallggrated at each step in order to obtain

position commands at fixed displacement intervals.

3.4 Avoiding Stroke Limits of the Drives

As mentioned, Eq.[(3.16) represents a single solution iménite range of solutions to Eq.
(3.12). As aresult Eq/(3.16) can be augmented to fulfill othniteria by using the nullspace

of the Jacobian matrix in the following way:

dq dR
== Jgt= I1—JJNYVH 3.18
7 (]ds+ﬁ( JINYV (3.18)

where([ — JJT) Is the nullspace of the Jacobiahis a constant gain, anl is a cost function

to be minimized. Any projection onto the nullspace does ffiigice the position of the end
effector, so joint configurations can be selected that mizenthe cost function defined iff
without affecting the end effector’s position. Due to thghly varying stroke limits of each of
the two systems, itis important to ensure that the strokidiaf each of the drives are respected
when the trajectories are generated. In order to constitangenerated axes commands, the
cost function is defined in a way that position commands dio$iee stroke limits of the drives

are penalized:
2 G
H(q) — ¢ 3 + e +

(42 e — 72)

c,max c

(3.19)

(C?c,max - C;)Z

whereq,,.. IS the stroke limit of the respective axis. As it can be sehbm, dost function

approaches infinity as the axes positions approach theeslimks. Equation[(3.18) projects

the gradient off/, which is defined as:

2$3 maxxc 20?‘ maxcf
VH = | — e - (3.20)
(Ic,max - xc) (Cf,maa: - Cf)
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on to the nullspace Jacobian, thereby selecting an axegyocatiion that gives the desired
tooltip position and tool orientation, while respecting stroke limits of the drives. By substi-
tuting Eq. (3.20) into Eq/(3.18), the solution works simiiaa gradient descent optimization,
where the solution selects the configuration that minimibhescost function defined bif . It

should be noted the solution divides its efforts betweesngtting to minimize the norm of the

axes differentials for all the axes and minimizing the cosiction H.

To show this, a trajectory for a circle of radius 4 [mm] on the plane is generated using only
thez-y axis of the micromill and rotary table. Figures|3.2 3.@mhtrajectories generated
by the algorithm without and with the stroke constraintspextively. Figuré 3]4 compares the
norm of the reference commands for the constrained and streamed configurations. As it
can be seen, without the constraint, as shown in[Fig. 3.4jrtkeand coarse actuator have the
same motion profile, resulting in the lowest average axesemewts as shown in the norm of
the motion commands in Fig. 3.4. However this would not besibs as the fine actuators
only have a stroke limit of 100/fm]. When the constraints are included, the fine actuator is
constrained to its stroke limits while the coarse actuaties up the remainder of the trajectory,

as shown in Fig._313, resulting in higher average axes momtaes shown in Fig. 3.4.

The strength of each portion of the solution is dictated leyghing. A larger g results in a

solution that prefers to keep the position commands away tie stroke limits but may not
necessarily have the lowest average axes movement. Colyyarsmallj reduces the average
axes movement but will have configurations that are closénecstroke limits. It should be

noted that ifg is too small, Eq.[(3.18) may result in solutions that violdie stroke limits.
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3.5 Singularity Avoidance with augmentation of Jacobian Matix

Due to the non-Cartesian movements of the 9-axis micromaxchicenter, it is possible to
end up in a singular configuration where the machine toolelosstuation capabilities in a
direction. Mathematically, it results in the Jacobian mxabrecoming degenerate, and as a
result, the Moore-Penrose inverse cannot be found and EXg8)(@ill not have a solution. In
order to avoid this scenario, the Jacobian matrix can be anged by adding a diagonal matrix

of small constants [1.0] so that a solution can always be famidllows:

T = JT(JI" 4 )™ (3.21)

The trade off for guaranteeing a solution is the introducttdan error into the solution, since
the Moore-Penrose inverse has been modified. However, anemnigd solution is only nec-
essary in the vicinity of a singularity. As a result, the Medtenrose inverse is conditionally
modified by varying the magnitude of the small consgairt the following way:

L Lo (1—%)2, if w < wy (3.22)

0, otherwise

wherew = /det(JJT) is manipulability, which corresponds to how close the maetis
to a singular configurationwy is the threshold for manipulability in which the modificatio
constantu starts taking on a non-zero value. Furthermarggcorresponds to the maximum
amount of deviation the solution is allowed to have from thenadified solution. Ifw, and
I, are set too low the solution may still be singular, resgltim a degenerate solution. In
contrast, ifwy andug are too large, then the deviation from the desired path magd&rge,
violating user defined tolerances. The different effectdifiérent sizes ofw, and . can be
seen in Figl_3)5 and Fi@. 3.6, wherg = o = 1in Fig.[3.5 andw, = 1o = 107% in Fig.[3.6.

As a resultwy andyug are tuning parameters which depend on the accuracy cantstrai

25



Z-axis [mm]

Z-axis [mm]

Actual Toolpath
Reference Toolpath

: -20
Y-axis [mm]  _gQ

80 X-axis [mm]

-80  -100

Figure 3.5: Desired toolpath and generated tool path with= ;o = 1

/

Actual Toolpath

Reference Toolpath

0

, -20
Y-axis [mm] .60

X-axis [mm]

-80
-80  -100

Figure 3.6: Desired toolpath and generated tool path with= ;10 = 106

26

20

20



3.6 Numerical Integration of Differential Solution to get Position Commands

Though the solution is capable of avoiding the stroke linfiidoves and singularities, the
solution only outputs a diﬁerentia{f. In order to obtain axes positions, the solution must be

integrated over displacement,as follows:

q(s) = /OS fl—?ds (3.23)

However, the analytic integratio%% is not straightforward and the integration is performed
numerically instead. The length of the whole toolpéthis first found with Simpson’s method
[52], then divided intoN intervals giving us the fixed displacement intervdls = S/N.
Through numerical integration, the axes positigiis| are found at the displacements| =

As x nwheren = 1,2,3,...,N — 1, N. Several works [12] have analyzed various ways to
perform the numerical integration and as expected, the ddeiGRunge Kutta method provided
the best results. Since the initial joint configuration i®wmn, and it is known that there is no
displacement at the beginning of the tool path, the initedles can be set ag0] = q, and

s[0] = 0. With these initial values, the numerical integration carpbrformed in the following

way:
aln+1] = qln]+ (ki + 2ky + 2ks + ky) 32
P dq (s[n], q[n])
. = fabsin)aml)
ds
A A
i (s[n} + 22 gl 7’{7)
ky = o (3.24)
A A
dq (s[n} £ B8 gl + —%)
. 2 9
3 ds
dq (s[n] + As, q[n] + Asks)
ha = ds

which givesN axes positionsg[n|, that correspond to th& desired tool position and orien-

tation R(s[n]) at displacements|n]. Unlike the majority of works in robotics literature that
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employ a similar technique, the commands are generated@gfiect to displacement, allow-
ing for further optimization over time. The 4th Order Rungedtiduntegration is repeated until
the end of the toolpath is reached, resulting in known axestipos at fixed displacement

intervals.

3.7 Closed loop correction of deviations from numerical inégration

Due to the numerical nature of the integration algorithmmels amount of numerical drift
occurs at each step, causing the corresponding tooltigiposind tool orientation from the
axes positiong[n] to deviate from the desired tooltip position and tool oréiun specified by
R(s). As a result, a corrective action is introduced into theedéhtial solution in Eq.[(3.18)
[13]. Given the solved axes positiefin| at a given displacementin], it is possible to find the
resultant tooltip position and tool orientation with theviard kinematics as described in Eq.
(3.6) to [3.11). For brevity, the forward kinematic equaiare grouped into a single vector

function:

)
)
; (3.25)
)
)

As result, the error between the desired tooltip positiot arentation and the result of the

differential solution can be found as follows:

e[n] = R(s[n]) — f(a[n]) (3.26)

Given the errok[n], it is possible to include closed loop corrective actiomiiyg. (3.18) so

axes configurations can be selected to correct the numeeggaltion caused by the numerical

28



integration algorithm as follows:

da_ (Kee[n] i %) 31— J7)VH (3.27)

wherekK, is a scalar gain. As a result, similar to a controller, théedéntial solution seeks to
minimize the error at each subsequent step. It should bel io#t, the size of the scalar gain
is limited by the stability of the solution. Should too highagain be set, the solution will
become unstable. To demonstrate its effectiveness,[F&yarl Fig.[ 3.7 show the errors of
the Runge Kutta numerical integration algorithm, with antheut the closed loop correction

implemented, respectively.

From Fig.3.8 it should be noted that the 4th Order Runge Kuttgration method is able to
keep the numerical errors in the rangel6f '* [mm] and10~!° [rads] which is well below the
tolerance in most machining applications. However, it ipamant to note that since there is
no corrective action for numerical drift, as the toolpathsgenger, numerical errors may be
incurred at each step causing violation at some point oroibipath. From Fig. 318, the closed
loop corrective action corrects for the numerical driftuléieg in a numerical error of0—!3
[mm] and10~!2 [rads], at least an order of magnitude lower than withoutthreective action.
Furthermore, error is not incurred at each step, ensuriatiie algorithm will not violate the

tolerance for longer toolpaths.

3.8 Full Redundancy Resolution Algorithm

The full redundancy resolution algorithm incorporates etwas elements, including cost func-
tions, singularity avoidance, numerical integration, ahosed loop corrective action. For
brevity:

3 (sl aln]) = g (51l aln) (329)
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Algorithm 1: Full kinematic algorithm

1

2

3

4

5

6

10

11

12

13

14

function Kinematicgs, Q);

Input : R(s), S, N

Output: s = [s]0], s[1],...,s[N — 1], s[N]]
Q = [q[0],q[1],...,q[N —1],q[N]]

s[0] = 0;

q[0] = qo;
As = S/N;
n = 0;

forn< 0to N —1do

kv = glaln], sn]);

ks = g(q[n] + k1As/2, s[n] + As/2);

ks = g(q[n] + keAs/2, s[n] + As/2);

ki = g(aln] + Asks, s[n] + As);

qln + 1] = q[n] + (k1 + 2ks + 2ks + k4)As/6;
s[n +1] = s[n] + As;

n=n-+1;

end
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With this definition, all the elements of the redundancy hason algorithm are incorporated

as shown in Algorithm]1.

3.9 Feedrate Optimization with Redundancy Resolution

The redundancy resolution algorithm is able to generateréiftial solutions to the under con-
strained problem with respect to displacement. As a rewuih the numerical integration
algorithm, we have the axes positiongn| ,and axes differentialél%, at displacementgn)].
However, the axes commands have not been scheduled witkctdsptime, and further opti-
mization is required. When scheduling the feed profile, thedilve is to traverse the toolpath
as fast as possible without violating the physical limitshef drives, or more formally:
51
minimize / —ds
o $(s)

subject t0 q < qmax (3 29)

4 < Qmax

d < dmax
wheres(s) is the feedrate defined as a function of the displacenigrii, andq are the axes
velocity, acceleration, and jerk, respectively, apghy, dmax and dmax are the axes velocity
limits, acceleration limits, and jerk limits, respectiyeBy minimizing the reciprocal of the
feed profile over the length of the toolpath, the result isealfprofile that travels the toolpath

as fast as possible. The feedrate is defined as a jerk consgxspline of the form:
(S
$(s) = Nip()P, (3.30)
=0

whereN, ,(¥) are the B-spline basis functions, are the control points} = s/S is the spline
parameter equivalent to the displacement normalized bipthEtoolpath lengthy is the degree

of the spline, an® is the total of number of control points [53]. The number ofitol points
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is selected by considering the speed and accuracy of theniaation algorithm. With more
control points, there are more degrees of freedom allowamgafmore optimal feedrate but
since the optimization algorithm is numerical, the compatel load is higher. The control

points are initialized as follows:

P1 - 0
[P27P37...,P@,2,P@,1] - f/2 (331)
Ps = 0

where f is the initial user defined feedrate. This corresponds tiostary start and stop con-
ditions, with an initialized feedrate of half of the desirfegdrate. It should be noted that the
selection off /2 for the initial feedrate is arbitrary since the optimizatelgorithm will change
the feedrate. The knot vector is uniformly distributed and/h= © + p + 1 knots. Since the
feedrate starts d?, and ends abPg, the first 3 knots of the knot vector are 0 and the last 3 knots
of the knot vector are 1. The remaining- 6 knots are then evenly distributed between 0 and

1. The knot vector can be assigned as follows:

9 =10,0,0, A9, 2A0, ..., (r — 6)AY, 1, 1,1] (3.32)

whereAd = 1/(r—5). Next, the constraints are defined as a function of the fesfilgpand the
output of the kinematic module as described in Algoritim e aixes velocityj, acceleration
q, and jerkd, equations are expressed as a function of the axes diffeleand the feedrate at

the V displacement intervals as follows:

alr) = 2470 3sfn) (339
sz[n] 2 dq(n] ..
q[n] = PRt (s[n]) + s 5(s[n]) (3.34)
] = & d‘i[f] #(s[n)) + 32 d(ign].é(s[n]),é(s[n]) + d‘jli”] 5(s[n]) (3.35)



where the second and third geometric derivative®?l and 247/, can be found be differen-

tiating Eq. (3.2F7). A set of constraint equatio3(s[n]), which correspond to the physical

limits of the drives is found by normalizing[n], ¢[n], andd[n] with the axes limits:

) [l Jafn] [l

. 9 e 9
qmax qmax q max

C(s[n

<1 (3.36)

As a result, in order to ensure the limits of the drives areviolated when traversing the
toolpath, the feed profile must be selected to ensure thaoth&traint equations defined in Eq.
(3.36) are not greater than 1. Since the constraints ardidumscof the feedrate and its time
derivatives, the optimization problem is a non-linear peaiband must be solved with a non-
linear optimizer. In order to do this, the problem must beagkd as a minimization problem

as follows:

S
S 1
minimize / 5 ds
& 0 Dimg Nip(u) b (3.37)
subjectto C(s[n]) <1, n=0,...,N.

The reciprocal of the feedrate of the spline is minimized kpdifying the control pointsp;,
while checking the constraints @t(s[n]). Since the kinematic solution is numerica}, ‘%‘;
andﬁf;’T‘;l are only known at[n| displacements. As a result, the constraints are only eteddua
at the knownN displacements as specified in EQ. (3.37). Since the probkfimeat by Eq.
(3.37) is a constrained non-linear optimization problens gsolved with a non-linear convex
optimization solver found in MATLAB'’s optimization tool boxn this work the Active Set al-
gorithm is selected as the optimization algorithm. Furthetails of this optimization algorithm

can be found in [5].

Once an optimized feed profile is found, displacements anedided with respect to time.

Since the feedrate is a function of displacement, the disptents with respect to time are
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found with a Taylor Expansion:

S(slk
slk 4+ 1] = slk] + s(s[k])T, + 5(82[ DTf (3.38)
wherek = 1,2, ..., K—1, K whereK is the total number of time steps to traverse the toolpath.

Equation [(3.3B) gives the desired tool path displaceméghisat timek x T, based upon the
feedrate from the optimization algorithm. However, thesgpesitionsy are still only known at
uniformly spaced intervalg\.s based on Eq[ (3.24). To get a jerk continuous representation
the axes positions as a function of displacement, the jasitions are interpolated with septic

polynomials:

an(s) = Ans” + B,s® + C,s° + D,s* + E,s* + F, s> + G,s + H, (3.39)

where the subscript indicates a polynomial connecting the joint positions|at to the joint
positions ats[n + 1]. Septic polynomials are selected since there are 8 bourntengitions
including the position, velocity, acceleration, and jeakshe start and stop points of the poly-
nomial. Since the positions and derivatives are known poissible to solve for all coefficients

of each polynomial analytically using the boundary cordis:

[0 0 0 0 o 0 o0 1][A,] qln]
As” Asb As® Ast As® As? As 1 B, q[n + 1]

0 0 0 0 o 0o 1 0]|]|cC, o
TAs®  6As®  HAs'  4As® 3As* 2As 10 D, | dq[gj”

0 0 0 0 o 2 o0 o0||E, | | L
1205 30As’ 20As® 12As2 6As 2 0 0| | F, Caln il

0 0 0 0 6 0 0 0]]G, afn
| 210As* 120As® 60As® 24As 6 0 0 0| | H, Caln ]

(3740)

which has a trivial solution. The result is a piecewise polyiel function,q(s) that connects

the joint positions generated by Algorithm 1 in a jerk contins way. By substituting|£] into
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Figure 3.9: Real-time trajectory generation command from risult of feed optimization

algorithm and 9-axis kinematic module
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theq(s), itis possible to gety[k], which results in axes position commands for each of the axes

at the controller sample period as illustrated in Fig] 3.9.
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Chapter 4

Control Design for Micromill Feed Drives, High Precision Rotary Table, and Dual Stage

Feed Drives

4.1 Overview

On the presented configuration there are 9 individual axesrtrol, with 3 from the micromill
and 6 from the rotary table. Due to their differing dynamieiccteristics, different approaches
are used to identify and control the different systems. Remhicromill, a sliding mode con-
troller with a LuGre friction compensator are designed facteof the axes. It was found that
each of the axes was able to achieve a bandwidth of about 38fdrebthere were issues of
stability. For the rotary table, linear lead-lag contridlevere designed to control the positions.
In order to push the bandwidth higher, notch filters were uséitter out resonant frequencies
coming from the flexibilities of the rotary table setup. Witte lead lag controllers and notch
filters, the axes of the rotary table were able to have bantiwidf about 250Hz. Since the
rotary table is able to achieve approximately 10 times theliaedth of the micromill, and the
translational degrees of freedom are redundant with theamiidl, the rotary table is used to
compensate for the tracking errors of the micromill. As ailiecertain axes on the 9-axis
micromachining center are able to have the long stroke ofrtleeomill axes with the high

bandwidth of the rotary table.
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4.2 Modeling and Control Design of the Micromill
4.2.1 Identification of Rigid Body Dynamics

In order to design a control law for the axes of the micronallmodel for the feed drive
must be developed and its corresponding parameters musubd.f The approach outlined
in [54] is adapted for the configuration in this work. In thigtimodology, the inertia, viscous
friction, and Coulomb friction are found using linear regries. Based on these parameters,
a pole placement controller and a Kalman Filter, as outline8Section 4.2.2, is designed to
identify non-linear friction characteristics. Using theaxis as an example, the micromill can
be modeled in frequency domain as a rigid body:

KK, Fy(s)
IL'(S) = 77’L32——|—b$ (U(S) — KaKt) (41)

where K, is the amplifier gain; is the motor gainm is the mass of the feed drivejs the
viscous frictionu(s) is the input signal, and}(s) is the disturbance force. By considering the

disturbance force as an equivalent disturbance input:

d(s) = L% (4.2)

and defining the gai&, = K;K,/m and the poleo, = —b/m, the feed drive velocityy(s)

can be expressed in terms of the control inpys,), and disturbance inpud/s):

o(s) = — [u(s) — d(s)] 4.3)

S — Pu

Since the feed drive is controlled with a digital real-tinmatroller, the controller sees the plant

defined in Eql(4.3) as a plant discretized by the zero ordier ho

o(k) = 2 k) — dk) (4.4)

Z — Pud
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where

Koa= —2(1— ™) (4.5)

Pod = " (4.6)
From the discrete transfer function Eq.(4.4), the follogvitifference equation can be found:
v(k) = ppav(k — 1) + Kyqu(k — 1) — Kyqd(k — 1) 4.7)

In the case of a linear feed drive, and in the absence of pgdoeses, the major source of

disturbance comes from velocity dependent Coulomb friotvbich can be modeled as:

;

0 ifv=0
Fy(v)=q Ft, ifo>0 (4.8)
Fou fv<0

\

which must be modeled as an equivalent disturbance anddiedlinto the difference equa-

tion asd(k). The equivalent disturbances, corresponding to the Couloietion, is found as

follows:
F+
d-‘r — coul 4.9
FTRE, (4.9)
— Fc?)ul
— —coul 4.1
d; KK (4.10)

Based on the friction model in EQ.(4.8) and the equivalentdimnces in Ed.(4.9) and Eq.(4.10),

the disturbance from the Coulomb friction is defined as fodow

de(v(k)) = PV (v(k)) - d}r + NV (v(k)) - dy (4.11)
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where PV (v(k)) and NV (v(k)) are the positive and negative velocity functions defined as

follows:

co(v(k)) - (140 (v(k))) (4.12)

DO | —

NV(v(k)) = =5 -0 (v(k)) - (1 = (v(k))) (4.13)

and wherer is a deadband function to ensure encoder noise does nat tieicentification:

;

0 if o <V,

o, Vo) =41 ifv>V (4.14)

\—1 if v < —Vy

whereV/; is the limit in which the measured velocity is consideredeéambn-zero. This ensures
that noise from the velocity measurement is not mistakeratbunal movement, which may
potentially affect the identification results. With the eglent disturbance defined in Eq.

(4.11), the difference equation can be rewritten as:

0(k) = poav(k — 1) + Kpqu(k — 1) = [Koad} PV (0(k — 1)) + Kpad; NV (v(k — 1))] (4.15)

A frequency rich signalu, as shown in Fig/_4l1 is sent to the machine and the velocity is
measured. This type of signal is selected in order to exiegesystem at as many frequencies
as possible, resulting in better fitting results. Since tleaity, v, is measured by the encoder,

it also defines the speed dependent sign functitnsv) and NV (v). The only unknowns in

Eq. (4.15) are the coefficientsy, K.q, d;, andd; . The problem can be redefined as a matrix
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Figure 4.1: Frequency rich signal for rigid body identifioat

problem as follows:

v(2) v(1) u(1) PV (1) NV(1) Pod
v(3) v(2) u(2) PV (2) NV (2) K,q
A : : : : Kdr | 41O
v(N) v(N—-1) u(N—-1) PV(N-1) NV(N-1) Kyad,
T ) b v

whereN is the total number of measurements in the identificatiomergents. The objective is
to find coefficients irf that model the relationship as accurately as possible eSris known,
and ® is known, the coefficients id are found in order to minimize the error between the

predicted and measured value, which can be phrased in tbeiiog minimization problem:

min%(Y — ®0)T(Y — ©0) (4.17)

42



Table 4.1: Identified rigid body parameters of the micromill
Parameter =« Y z

m [kg] 21.19 | 59.17 | 17.61
b[kg/s] | 325.91| 346.01| 179.10
Fi,IN] | 6.29 | 19.98 | 17.47
Fo,IN] | -6.094 | -18.93| -18.28

which can be minimized by settirtgas follows:

6= (0Td) o7y (4.18)

Fromé the estimated values for masg)( viscous friction §), and coulomb friction E+/ n

coul

can be found as follows:
(ﬁvd - 1)KtKaTs

i = Pod — DA (4.19)

K’L}d hl(p'ud)

N 1 — Poa) K K,
p— L= Pua) Ky (4.20)
de

) Koudt
e | 4.21
coul de ( )

) Koad;
- =7 4.22
coul de ( )

From these tests, the corresponding mass, viscous frictioth coulomb friction values for
each axis are found and outlined in Tab.]14.1. Based upon tessds the friction model is

improved as outlined in the following section.

4.2.2 ldentification of Friction Characteristics

In addition to the Coulomb friction modeled and identified ec8on[4.2.1, feed drives have

additional non-linear friction phenomenon, which mustdientified and compensated in order
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to improve tracking performance. To identify this non-lndriction characteristic, a Kalman
filter is designed to observe the disturbance when the ajmyged back and forth at vari-
ous speeds. In the absence of process forces, the distegbabserved by the Kalman filter
corresponds to non-linear friction phenomena. A simple pihcement controller is first de-
signed, based on the rigid body parameters found in theqars\section, allowing the axis to
be jogged at different speeds. It should be noted that treegdatement controller is used for

identification purposes, and a more sophisticated slidingercontroller is developed in the

following section.

In order to design the Kalman filter, the feed drive must be etexdl in discrete state space
form, with disturbance as one of the states while considethie measurement and input noise.

With the axis velocity defined in Eq._(4.3), the axis positaam be found as follows:

2(s) = 25 1u(s) — d(s)] (4.23)

55— Dy

which gives the following state space model:

w?) ] (4.24)

whereA . andB, are the transition and input matrices defined as:

A, = [O ! ] (4.25)
0 po
0 0

B, = 4.26

From this state space model, the discrete time state is found

_ (k) u(k)
NI uan
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whereA ,; andB, are the discrete transition and input matrices defined as:

Ay =T (4.28)

Ts
B, = / eArdN - B, (4.29)
0

In order to design a Kalman filter that can estimate distucbarnn the presence of noise, the

discrete state space model in E£q.(4.27) is augmented irobog/fng way:

x(k+1) z(k) ) (k)
o(b+1) | =A | v(k) | +B[ulk) |+ W i . ] (4.30)
d(k+ 1) d(k) ‘ wa(k)
z(k) | i
(k) | _ o #(k) ]
—Cl k) |+V]|* (4.31)
[ vm(k d(k) | o(k)

whereu(k) is the input noisef (k) is the feedback position nois&(k) is the velocity feedback

noise, andu, (k) is the disturbance noise. The matrices in the augmenteglsgiate model are

defined as:

A, _B B 10 0 0 10
A= | M ilBg=|P| c= wo | Bl ve

00 1 0 010 o 01

(4.32)

The augmented state space model treats the disturbanceads,aaBowing the Kalman filter

to observe it. Next, the noise of the feedback and input meistdmsidered in order to select
optimal gains for the Kalman filter. The position of the feetvels are measured with a linear
encoder with a resolution ofz = 40 [nm], which introduces an error in measurement due

to quantization. As a result, the error between the actudlnagasured position is uniformly
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distributed with a zero mean and values between /2 and —jz/2. The variance can be
computed as:

Rz = E|(Z — E[7]) = E[7%] = /_OO p (%) #%dx = /_i/; Pdi = % (4.33)

Since the noise is the digitally differentiated encodenalgthen the resolution & = 40/T

[nm/s] resulting in a variance of:

_ (0v)* _ (9¢/To)°
Ry =1 =0 (4.34)

Similar to the feedback, quantization of the input signal c#roduce additional noise into
the system. The current amplifier is controlled with a PWM oairdignal with a frequency of
50kHz. The real-time controller of dSpace is capable of vayyhe the PWM with a resolution
of 50ns. As a result, within a duty cycle, it is possible to én@00 unique values. Since
the amplifier has a saturation limit at5[V'] then the resolution of the input signal ds =

10/400[V] = 0.025[V], which, similar to the feedback, givesariance of:

(4.35)

Unlike the covariance®;, R;, andR;, R,,, is a tuning parameter that adjusts the performance
of the Kalman filter with respect to predicting disturbanéehigher covariance results in a
Kalman filter that converges faster but outputs noisierltesund vice versa for lower covari-
ance. It was found the following values resulted in the batdrce between performance and
noise:

Ry, =1x107° (4.36)

46



Given these parameters, the Kalman filter takes the form:

2(k) Bk — 1) oo (8

(k) | = 0—KepC)A | 0(k—1) | = (I-KopC)B [ u(k —1) ]+Kobs g ]

d(k) d(k — 1) fm
(4.37)

wherei(k), o(k), andd(k) are the estimated position, velocity, and disturbanc@eesvely,

at time stepk, Kopsis the Kalman filter gain matrix and,, (k) andv,, (k) are the measured axis
position and velocity, respectively. Based on these systmanpeters and noise variances, the
Kalman observer gain matri¥,ps, is found [55] [19], giving us the following observer gains

for thez, y, andz axis as follows:

0.2227  2.8518E — 6
Kopse = | 285.1827  0.0061 (4.38)
~73.5388  —0.0020
0.1880  1.9796E — 6 |
Kobsy = | 197.9680  0.0034 (4.39)
~76.1335  —0.0017

0.1993  2.2430E — 6 |
Kops: = | 224.3086  0.0042 (4.40)
753177 —0.0018

With these Kalman filters, the axes are jogged back and farthigmm/s], 3 [mm/s], £5
[mm/s], 10 [mm/s], 420 [mm/s], =30 [mm/s], 40 [mm/s], =50 [mm/s], 75 [mm/s], +100
[mm/s],+£125 [mm/s], andt-150 [mm/s] and the disturbance is measured over the whole stroke
of the feed drive. An example of the disturbance predictiditOdmm/s] can be seen in Fig. 4.2.
The disturbance over the whole stroke of the feed drive isa@esl, resulting in a disturbance

estimate at each corresponding velocity as shown inFig. 4.3
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Figure 4.3: Average disturbance estimation#paxis at all test speeds
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From the velocity based disturbance data a Stribeck friati@del of the form:

F’;tﬁrﬂe_“/ﬂ1+ + FF

coul

<1 —e_”/Q’j) +bv, forv>0

Fr(v) = (4.41)

Fs?ale_v/gl_ + Fg,

coul

(1 — e‘”/95> +bv, forv<0

is fit. In Eq.[4.41)F 4, and F, are the static frictions in the positive and negative dipext
respectively,F , and F_, are the Coulomb frictions in the positive and negative dioest

respectively, and);, Q;, 5, and(;, are exponential coefficients which determine the rate

in which the static friction converges to the Coulomb friatio

Since the Kalman observer is based on the parameters iddntifihe rigid body model the
disturbance should consist of only the non-linear fricjidrenomenon. However, it is possible
that the viscous friction), from the openloop rigid body identification may be inactera
Should this be the case, the disturbance will exhibit lineaiation at the higher speeds, where
the disturbance should only be defined by a constant Couloittiofr. An example of this
can be seen in Fid. 4.3, where the observed friction has ainegiope at higher velocities,
indicating a viscous friction that is higher than one obgdirirom the identification. If this
is the case, the originally identified viscous friction damént is adjusted by first identifying
the slopes in the disturbance estimate in the positiMe,;, and negative directio\b~, using

linear regression. An average slope is found:

— + -
Ab= w (4.42)
and the original viscous friction is updated as follows:
V=b+Ab (4.43)

From Fig.[4.3, it can be seen that the slopes at higher videate removed once the viscous

friction has been corrected. Once corrected, the viscautsofn in the Kalman filter is updated
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Table 4.2: Identified friction parameters of the micromill
Parameter| =« Y z

b [ka/s] 25.05| 20.55 102.9
FtIN] 36.38 | 43.2902| 30.6853
Fgae[N] | -29.03| -29.2014| -33.9802
Fi, IN] | 39.74 | 47.9513| 23.6214
FoouIN] | -26.74| -35.5574| -23.5320

Qf [mm/s]| 1.31 | 8.81 6.2
Q; [mm/s]| -0.34 | -0.74 -6.8
QJ [mm/s]| 1.79 10 4.2
Q, [mm/s]| -0.45 | -0.74 4.1

and the velocity tests are ran so the non-linear frictiompeaters can be identified more accu-
rately. The disturbance with the corrected viscous fritctian be seen in Fig. 4.4. In order to
fit the parameters in the Stribeck modEl;,, and F, are first selected as the disturbance force
at the lowest velocities in the positive and negative dioectrespectively. Since the non-linear
friction affects associated with static friction go to zehigh velocities, the Coulomb fric-
tion, £}, and F,, is selected as the average disturbance force of the fohesigelocities.

Finally, the exponential coefficients are found by minimgthe cost function:

1 Qe

V=35 ) F(k)? (4.44)

k=N1

whered F'(k) is the difference between the measured disturbance antt{@edisturbance:

SF (k) = 6Fu(k)] = Fylu(k)] — Fade /™ + X (1 - e-v/ﬂz“’) (4.45)

coul

Due to the non-linear and discrete nature of [£q. (4.45) thefaaction is minimized in a brute
force way. All permutations between 0 and 10 for are testattaements of 0.1 [mm/s]. Based

upon this friction identification methodology, the paraerstshown in Tah. 4.2 are found.
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Figure 4.4: Disturbance estimation for-axis with corrected viscous friction and the fitted

friction curve

With the above coefficients, the friction behaviour, as dbesd by the model, can be seen in
Fig.[4.4. Using the identified mass, corrected viscousidmctand non-linear friction param-
eters, a sliding mode controller and a feedfoward frictiompensator, based on the LuGre

model, is developed.

4.2.3 Sliding Mode Position Controller

Unlike conventional ballscrews, where the pitch of the batew reduces the reflected distur-
bance on the motor, a linear feed drive experiences a dastaebforce completely. As a result,
a controller must be selected which has good disturbaneetien properties. Furthermore,
specific to the micromill in this work, the friction propegs have significant variation over the
length of the travel. As a result, the sliding mode contrd#€] was selected as the position

controller for the feed drives of the micromill. The desigrtlze controller is based on work
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presented in [21] but has been extended to linear feed difvesn Eq. [(4.11) the corresponding

time domain state space model can be found:

HEE!

wherem, = m/(K,K;) andb. = b/(K,K;) and the indication for function of timé) is

X

+

T 1/m, 1/m,

0 ]_[ 0 ].d (.46

dropped for brevity. Since the goal of the feed drive is téolela trajectory, a sliding surface
is designed to bring the tracking error to zero:
. ) Ty T
az(xr—x)%—)\(xr—x):[)\l]-([. ]—[_]):O (4.47)
~—~ Ly x
S
where) is analogous to the bandwidth of the sliding mode contrall@ndz are the position
and velocity of the axis, respectively, amd andz, are the reference position and reference
velocity of the axis respectively. The objective in slidimgpde control is to bring the system
onto the sliding surface = 0, which then brings the tracking error to zero. In order tagles
a control law that drives the system to the sliding surfackiarstable, a candidate Lyapunov
function is first selected as a function of the sliding suefand a disturbance estimator as

follows:

A 2
. (d - d)
V(t) = §m602 T (4.48)

whered is the actual disturbancé,is the disturbance estimator, apds the adaption gain of
the disturbance estimator. The disturbance estimatosantkr to an integrator and is defined

as a function of the sliding surface:

d[k + 1] = d[k] + proT, (4.49)
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T, is the sample time, ang is a flag to ensure the disturbance estimator does not go deyon

the predetermined disturbance bound as follows:

0, ifd<d ands <0

k=< 0, ifd>d"ande >0 (4.50)

1, otherwise
As it can be seen the Lyapunov function is directly propoiao the size of sliding surface
and the error in disturbance estimation. If the control lawelected so that the time derivative
of the Lyapunov function is less than zero, the sliding stefand error in disturbance estima-
tion will be guaranteed to converge to zero. In order to ds, thie take the time derivative of

Eqg. (4.48) and set the derivative to be less than 0:

d—d) .
dV_(t) = m.oo + ( >d< 0 (4.51)
dt p

The derivative of the sliding surface and disturbance edens found as follows:
<'7=[A1]-<[:.”.’"]—[75.]> (4.52)
—— Ty xr
S
d = pro (4.53)

Substituting Eq.[(4.46) into Ed. (4.52) into , the derivatof the sliding mode can be redefined
as a function of the rigid body model:

":wqi ] - [8 e ] | " ] A [ " ] 'd> (459
S

Then by substituting the sliding surface (EQ. (4.47)), tletubance estimate (EQ. 4149), and
their respective derivatives (Elq.(4154) and Eg. (4.53)) iBg. [4.51), the derivative of the

T
+

T

Lyapunov equation can be redefined as a function of knowmsyparameters:
dv(t)

— = Mmoo\ (@ = &) + ) — 0 (= d = beir) — ori(d — d) (4.55)

53



If Eq. (4.55) is always less than 0 then the sliding mode adletr will be asymptotically
stable. In Eq.[(4.85)7d — ok(d — d) can be setted + o(d — d)(1 — «). Given the bounds
set in Eq. [(4.50), then the conditior(d — d)(1 — x) < 0 is always guaranteed. To ensure

asymptotic stability for the remainder of the Lyapunov d@urg the following criteria is set:

meo (A (&, — ) + &) — 0 (u — bt — ci) =—K,0? (4.56)

Since Eq. [(4.56) is the criteria for asymptotic stabilitytbé sliding mode controller, the
control signak: can be found that corresponds to this criteria. In order tthdoEq. (4.56) is

rearranged to find as follows:

Usme = e [N (& — &) + &) + beit + d + Ko (4.57)

which ensures that the system will converge to the slidingase, and subsequently bring

tracking error to 0.

4.2.4 LuGre Feedforward Friction Compensator

Though the sliding mode controller is capable of rejectimgiutbance, it is only capable of
doing so after some error has been incurred. Due to the neaslifriction phenomenon, at
points where the velocity switches signs a disturbancersocahich causes a tracking error.
Since this non-linear friction phenomenon can be modeléa rgiative accuracy, it is possible
to compensate for its effects before the occur. In this wirk, LuGre friction model [£7]

is used to model the non-linear friction effects. The LuGrtetibn model is an extension of
the traditional Stribeck friction model, as defined in Eq.4#, which is able to capture the
hysteretic effects of friction. Unlike the Coulomb or Stridriction model, the LuGre friction

model does not treat the non-linear friction phenomenonissdtinuous force changes at

points of velocity switching. Instead, it captures thetfan dynamics in the stiction region,
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Figure 4.5: Graphical representation of LuGre friction ralod

which come from the deflection(t), of micro structures between surfaces, before the static,
Coulomb, and viscous friction affect become dominant. Therositructures are analogous to

bristles andt(¢) can be seen as the average deflections of these bristlesvas ishieigl4.5.

Based upon this model, the deflectionsef) are governed with the following differential

equation:

€(t)|z(t)] (4.58)

whereo is analogous to the stiffness constant for the microstrastuvhich is found experi-

mentally [58], and the speed dependent functigri(t)) is expressed as:

&(t)

g(x(t)) = F. + Fse® (4.59)

whereF is coulomb friction,Fs is the velocity (t)) dependent static friction, arfd is the

velocity in which the effect of static friction decays to 0guation (4.50) can be seen as a
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simplified, averaged of Eq. (4.41), and as a result, the &tkilfriction effects are incorporated
into the LuGre model through Eq[ _(4159). The constants anaedausing the results of the
friction identification experiments in Section 4.2.2 addols:

1 _

Fy = 5 (Fstat"i_ ‘Fstat’) (4-60)
1 _

F.= 5 (F(jc_)ul + |Fcoul|) (4.61)

and(), is found by minimizing Eq.[(4.45) using Eq. (4159). With thecrostructure deflections

modeled in Eq.[(4.58), the instantaneous friction forcgz), can be modeled as follows:

de(t)

Fe(t) = t
$(t) = o0€(t) + o1 7

+ bi(t) (4.62)

whereo; is analogous to the damping constant [58] of the microatrest The stiffness and
damping of the microstructures, and o, respectively, are first approximated with the ap-
proach outlined in [58]. Fo#, a very small step,,, assumed to be in the stiction region, can

be given to the feed drive and the constant can be approxinaate

oo = F.sgn@(t))/zss (4.63)

In the stiction region, the dynamics of the system can be heddes:

mi + (b+ o1 + 02) & + opr = u(t) (4.64)

ando; can be calculated as:

01:2\/m00—b—02 (465)
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With the constants defined in Eq._(4.63) and Eq. (4.65), theegawere tuned in tracking
experiments to achieve the best performance. Since thagldode controller is able to sup-
press errors contributed by viscous friction, the feed &riction compensator only has to
compensate for the forces contributed by static frictionylGmb friction, and microstructure
deflectione(t). As a result, the feed forward compensator has the followtngrture:

(aoe(t) oy d;(f)) (4.66)

upf = KK,

which represents the LuGre friction modeled with the viscfriction removed and normalized
by the axis amplifier and motor gain. The deflectigt) is found by numerically solving Eq.

4.58 using the Forward Euler Approximation:

#[0] =0 €0] = d;[to] =0

de[t] . oo .

— = zlk] — g(fi[k[%e[k: — 1] |[K]] (4.67)
elk] = ek — 1] + ;t T,

The full control law is the sum of sliding mode (Eq. 4.57) ardd forward compensator (Eqg.
4.66) commands:
u(k) = ugme(k) +uysp(k)
= me [\ (@ (k) — 2(k)) + &,(k)] + bei:(k) + d(k) (4.68)
+Ko(k)+ ﬁ [o0€(k) + o1de(k)]

The block diagram of the full micromill control law is shown Fig. [4.6. With the tuned
LuGre friction parameters, the sliding mode controllewisdd to achieve as high a bandwidth

as possible before instabilities occurred and the conadmeters are shown in Tab. 14.3.
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Figure 4.6: Block diagram of the sliding mode controller and3te friction compensator for

the micromill

Table 4.3: Micromill parameters
AXis T Ye Ze
K, [AIV] 1 1 1
K, [N/A] 454 | 72.5 | 26.17
K, [Vs/mm] | 0.05 | 0.25 | 0.08
A [1/s] 200 | 230 | 180
p[VImm] 50 50 50
oo [N/mm] | 900 | 900 | 1500
o1 [Ns/mm] | 1.5 2.5 7.5
F.[N] 26.67| 31.26| 24.67
F, [N] 29.15| 34.11| 32.35
Qs [mm/s] | 24.3 | 26.4 | 44.8

58



4.3 Modeling and Control Design of the Rotary Table
4.3.1 Lead-lag Position Controller

Unlike the feed drive, the rotary table is non-contact. Agsuit, the traditional rigid body
model for linear feed drives can be simplified by eliminatihg viscous friction. This elimi-
nates the need for sophisticated identification technicages is possible to obtain the mass of
the rotary table by simply weighing it. It was found that thags of the rotary table was 2.3kg

and as a result the mass in the translational axes can bedlagne

Jp = J, =J. =23k (4.69)

The rotational inertia about the y, andz axis were found based on the solid model of the
rotary table [59]:
J, = J, = 20878[kg - mn] (4.70)

J, = 40508[kg - mn?] (4.71)

Since the rotary table is a free floating mass, the nominastea function for each axis of the

rotary table can be modeled as follows:

Gy(s) =

75 —q€lr,y,zab,C (4.72)

Due to its relatively simple dynamics, lead-lag contralerere selected to control the position
of the rotary table which take the form:

B 1+aTls
- 14+Ts

Cy(s) (4.73)
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wherea is selected to add a desired phaBés selected to add the phase at a specific location,
and K is selected s@’;(s)G(s) crosses the 0dB line at a desired frequency. In order to do

this, the parameters are calculated as follows:

O T N N g p— (4.74)

1—sin ¢m wmv/a | Tt |Gy (wm)

wherew,, is the desired crossover frequency of the openloop tramfsfetion, which corre-
sponds approximately to the bandwidth of the closed loopstea function, andy,, is the
phase to be added. An integrator of the form:

Cr(s) =1+ o (4.75)

with K; = w,,/10 is added to the control loop to reduce the steady state drtowever, it
was found that unlike the nominal models in EQ. (4.72), thamotable was not completely
rigid, hence its flexibility had to be considered while desngy the controller. The resonance
peaks caused by the flexibilities of the rotary table createsiable conditions when the design
bandwidth was set to 250Hz. As a result the gain is attenwtibe frequency of the resonance
peaks with notch filters so that the control action does notexhe low damped dynamics and

its dynamic characteristics match the nominal model, a&sho Fig.[4.7.

4.3.2 Notch Filter

While designing the lead-lag controllers for the varioussagkthe rotary table, it was found
that the nominal transfer function defined in E£q.(4.72) did fully capture all the dynamics
of the rotary table. At high enough frequencies, the rotabje was not completely rigid and
exhibited flexible characteristics. An example of this i®wh in Fig. [4.7 where the rigid

nominal model is compared with the actual frequency sweépeof-axis.
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Figure 4.7: FRF of the:s-axis including the nominal FRF and experimental FRFs with and

without the notch filter

As it can be seen, though the experimental frequency resganstion (FRF) follows the nom-
inal model at lower and higher frequencies, in between 188d/$] and 2000 [rad/s] resonant
modes from the flexibilities of the rotary table can be seeith\te increased magnitude at
approximately 1700 [rad/s], when the cross over frequericiieoopen loop transfer function
was selected to be too high, the peak is pushed close to thedtti®ing the gain margin
and introducing oscillatory behaviour and potential ibgiges. As a result, notch filters were
implemented to remove the frequencies in the control sitrelcorrespond to these resonant

frequencies. The notch filters take the following form:

Ny(s) = S Zealur e
¢ 82 + QWaCa,Q + wg
82 -+ 2wab71 + w,f (476)
$2 + 2wpCpo + Wy

N(s) = Nu(s)Ny(s)

whereN, and N, are the notch filters to remove the peak and valley, respygtivaused by the
resonant mode. In the notch filteds, and NV, w,, w, are the resonance frequencies, selected

based on peaks of the FRF, ard, (>) are the damping ratios, which are tuning parameters
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Figure 4.8: Block diagram of rotary table controller

Table 4.4: Rotary table parameters

AXis Tf ‘ Ys ‘ 2f ay ‘ by cy
Jy 2.3[kg] 20878[kg/mm] | 40508 [kg/mmi]
Wy, [rad/s] 1570.8
Ky 5.95E5| 6.60E5| 8.14E5| 3.32E3 | 2.24E3 6.53E3
« 1.31E2| 1.31E2| 1.31E2| 1.31E2| 1.31E2 3.75E2
T 5.57E-5| 5.57E-5| 5.57E-5| 5.57E-5| 5.57E-5 2.73E-5
K; 157.1
w, [radis] | - - 1992 | 1705 | 1429 2582
Cal - - 0.02 0.03 0.03 0.08
Ca,2 - - 0.3 0.3 0.2 0.02
wy [rad/s] - - 1740 1533 1300 2421
Cha - - 0.3 0.3 0.2 0.05
Ch.2 - - 0.02 0.04 0.03 0.2
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Figure 4.9: Dual stage feed drive controller

to achieve a desirable open loop transfer function. Thebloltk diagram for the closed loop
controller of the rotary table with the lead-lag compensatal notch filter is given in Fig. 4.8

and the parameters of the lead lag controllers and notchsfdi@ shown in Talb. 4.4.

4.4 Dual-stage Feed Drive Control

Based on the above control designs, the achievable bandwofithie micromill is 30Hz while

the rotary table is 250Hz. Since the translational axes ®fticromill and rotary table are
parallel, the rotary table can be used to compensate fdditrgqerrors coming from the lower
bandwidth of the closed loop controller of the micromill. Agesult, in addition to its own
trajectory command, an additional input to the rotary tabtae tracking error of the micromill

as shown in Fig. 419.

In this configuration, the summation of the two parallel de\has the bandwidth of the rotary
table, resulting in the long stroke of the micromill with thigher precision of the rotary table.

The summation of the two drives gives the following transierctions:

T =T+ xf (4.77)
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Based on the block diagram shown in Figure 4.9, Eq. (4.77) eaxpressed as a function of

the reference input as follows:

C.G, 1 el

_ ) 4.78

TEh GG T 1 GG (11 G (4.78)
G:cl S:cl G}Tcl

wherez, is the reference command to the micromill feeddrive. As alteas long as7. .,
Se.q, andGy , are stable them will be stable. Since the micromilz. . is stable, its tracking
errors, which are used as input to the rotary table,;, will be bounded and stable. Further-
more, the sensitivity transfer function of the coarse aldsep transfer functiory, ., will also
be stable sincé€/,. ., is designed to be stable. The two actuators are indepegdsnttrolled
and stable, and as a result the dual stage controller is @btes The transfer function of the
coupled system can also be expressed as follows:

r C.G.+ Cfo + CCGCCfo

. (1+C;GH(1+C.G,) (4.79)

At frequencies below the closed loop bandwidth of the migliprw,, and rotary tablew;,
|G.C.| > 1land|G;C¢| > 1. As aresult the dual stage system has a closed loop gaintgf uni
However at frequencies greater thanbut belowwy, |G.C.| < 1 and|G;C;| > 1 and as a
result the closed loop dynamics of the summed response idlaws:

GiCy

SR i B 4.80
Tivae” (4.80)

As a result, at frequencies above the design bandwidth oflteed loop controller for the
micromill, the closed loop dynamics of the summed respodseia the closed loop dynamics
of the rotary table. As a result, the summed system is ablave the stroke of the micromill

but the precision of the rotary table. This can be seen in£&i{.
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Figure 4.10: Simulated frequency response functions ofamdl, rotary table, and micromill

with tracking error compensated with rotary table.

65



When the rotary table is used to compensate for the trackmgsasf the micromill, the transfer
function of the axes adopts the bandwidth of the higher baditiveontroller. As a result, the
dual stage feed drive system achieves the stroke of the milktaut with the high precision -

high bandwidth control of the rotary table.

66



Chapter 5

Geometric Error Modeling for a 3-axis Micromill and Compensation with a 6 Degree of

Freedom Rotary Table

5.1 Overview

Often in the discussion of the effectiveness of a manufaysrocess, the major focus is on
the precision of machine tool performing the manufactupngcess. However, what is often
less discussed is the accuracy of the manufacturing protessost literature, it is assumed
that accuracy follows precision. However this is typicaityt the case and additional methods
must be implemented in order to increase the accuracy of dudime tool to a sufficient level,
even at sufficient levels of precision. The source of the lgroblies in the fact that most
feedback servomechanisms are only capable of detectingserr the direction of actuation.
As aresult, errors that are in directions orthogonal to ihection of travel can go undetected.
These errors can originate from assembly errors, deflechoised by loading, or deviations
caused by thermal expansion. Though these errors onlyear@aimal problems for single axis
of actuation, when multiple servomechanisms are combinddan-Cartesian movements are
included, the geometric errors could result in large demmst from the desired end effector

position and orientation when the whole kinematic modebissidered.

In this chapter, the fine movements of the rotary table ard tsseompensate for tooltip errors
caused by the assembly errors. Due to the invariant natuegrofs caused by loading or
thermal expansion, the rotary table would not be suitablé¢His task as these errors would

change with operating parameters or environmental camgiti The ideal kinematic model
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from Chaptel B, is modified in Section 5.2 to include the efté¢he geometric errors of each
of the axis. Since the geometric errors originate from abbemrrors of the axes, it changes
consistently over the full actuating range of the axis. lot®a[5.3, the geometric error is
measured, then fit to a polynomial function of position. Hinawvith the geometric errors

known, a compensation algorithm is proposed in Sectionveere the rotary table position

commands are modified to compensate for tooltip positicorerr

5.2 Kinematic Model with Errors

5,(q)
A

41> £,(q)

£(q) /W/l /7
)~ x]?

7 ¢

| —
W
6,(q)

Figure 5.1: Geometric errors of a general axis

A single axis has a total of 6 geometric errors, which inclode positioning error, two straight-

ness errors, a roll error, a pitch error, and a yaw error. @lgesors can be seen on a general
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axis,q, in Fig.[5.1.

The positioning error is typically caused by inaccuracreshe metrology system, while the
other geometric errors are caused by assembly errors. Thibxggerrors are small in mag-
nitude, with multiple axes stacked and rotational erroigadpamplified with linear offsets, it

is possible to have large resultant errors at the end effebioorder to demonstrate this, the
kinematic model defined in Ed. (3.6) {0 (B.8), is modified tdie the geometric errors [41].

The general error matrix is defined as follows:

1 —e.(q) gy(q) 6.(q)
] e(g) 1 —e(q) 0y(q)
P = —e,(q)  c.(q) 1 4.9 &
0 0 0 1

wheree,(q), €,(¢q), ande.(¢) are the rotations about the y, andz axis of the current coordi-
nate frame, respectively, angd(q), J,(q), ando.(q) are displacements in the y, andz axis of
the current coordinate frame, respectively, as shown in%:ty It should be noted that Eqg.(5.1)
uses the small angle approximation for the cosine and sitteeatational errors;, since the
rotational errors are typically sufficiently small. By mplifing Eq.[5.1) with the ideal HTM, it

is possible to project the effect of errors in one axis oneortbxt axis, and subsequently, to the
tooltip. For example, transforming from base coordinasente to they-axis of the micromill

has an ideal transformation as follows:

1 00
010 y
BT, = ‘ 5.2
ver 00 1 L,, (5.2)
000 1
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However, when the error matrices are multiplied, the adtaakformation becomes as follows:

B _ B
T?Jma - TZ/CaiEyC

1 —&:(Ye) €y<y6) 0z (Ye) + Yo
_ 52(90) 1 _51:(%) 6y<yc) (-3)
_Ey(y6> € yc) 1 5Z(yc) + Ly,z
0 0 0 1

As a result, in order to model the effect of the geometricrsrad each axis on the position
of the tooltip, the ideal transformation matrices are npligd with their respective error trans-
formation matrices, making changes to the two kinematiénshim Eq.(3.1) and Ed.(3.2) as

follows:
BT'wa(l = BT?/C7iEycyCTiUc»iEJJCzCTSviSTZ'f:i

Ty, 1B, #1 Ty, By T, B,

. gy (5.4)
X ‘fTaf,iEaf 'fbe,iEbf fTCf,iECf
chTr,iTTw,i

BTt,a = BTzC,iEzCZCTt,i (5.5)

which will give the actual HTM from the tool coordinate frarteethe workpiece coordinate
frame:

T, = (BTw,a)_l BTt,a (56)

With the actual kinematic transformation defined in Eql3l&e tooltip position with the effect

of error is transformed to a position that is with respech@sworkpiece with a method similar

to Eq.[3.5):

Px,a
P, Tt

=T, [ 5.7
P.. 1 ] (5.7)
1
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which gives the actual tooltip positio®,, (q) = [P, (q), Py. (4), P.o (@)]7. The result of
the matrix multiplication in Eq. [(5/7), with second orderamigher terms error grouped as
O(e%,4%,¢6), can be found in Appendix]A. The forward kinematic model ndgoancludes
the effect of the geometric errors on the tooltip as a fumctibaxes positions. In this work,
the forward kinematic equations consists of 9-axis commamdl 18 position dependent error
terms. As a result, the equations can become very long, @skquently, unmanageable and
computationally expensive. In order to overcome this mohlthe second order or higher

terms involving geometric errors are approximated as\to

O(e%,6%,ed) ~0 for £, —0 (5.8)

since the geometric errors are very small relative to thé&iposcommands and offsets. Given
this approximation, the forward kinematic equations carsingplified and approximated by
including only the zero and first order terms of geometrioestin the forward kinematic

equations. With the kinematic equations modified to inclireegeometric errors, the position

dependent error equations must be identified through expetation.

5.3 Error Modeling

From Eq. [(A.1), Eq.[(A.R), and Eq. (A.3), it can be seen thatghometric errors play a strong
role in determining the resultant position of the tooltigsp@n. As a result these errors must be
measured and fit to a function of position in order to be inoaaped into the kinematic model.
In order to do this, the errors of the machine tool are firstsnead with a laser interferom-
eter using various mirror configurations to get geometmorsrin different directions. Since
generated trajectories are on average jerk continuous §djintic polynomial is selected as
the function to be fit to the error data in order to maintainghene jerk continuity. For each

geometric error, there should Bé x M, corresponding error measurementsyherenN, is
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the total number of measurement points on the axis ®pds the number of repeated mea-
surements at each position. In this work, the errors are uned$ times, every 1[mm] and the
measuremert can take the form of a displacement eriror a rotational errot. The objec-

tive is to find a quintic polynomial that best fits this datarsEthe M, repeated measurements

at N, locations are averaged:

€Elne T €20+ + €rm
E* — yIle yIte €y/te 59
s ]\46 ( )

wheren, = 1,2, ..., N.. With the averaged errors, the objective is to fit a quintitypomial
to the data points with as little error as possible. The gulynomial fitting problem can be

phrased as follows:

€ ¢ 4 ¢ ¢ o 1]
& G ¢ @ & ¢ 1|7
S |7 (5.10)
* YD
€N -1 q?\fe—l Q?ve—l Q?v€—1 QJQVG—I dN.—1 0
€ . v, 4N, dN. 4w (pE
L € s € € € © —_ L F

0c

whereY. is a vector of averaged measured geometric erfigrs a matrix of the axis positions
where the laser measurements took place famgla vector of coefficients for the fitting poly-
nomial . The objective is to find the coefficientsdnthat minimizes the mean squared error

between the predicted geometric error and actual measedegric error or more formally:

min%(Ye —®0)" (Y. — @0,) (5.11)

This is done in a least squares fashion in the following way:

6= (d7D,) 2T, (5.12)
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Figure 5.2:z.-axis positioning errors and the resultant quintic polyradrfit

and as a result the equation of error becomes
€(q) = oad’ + 84" + vcd® + opd’ + ¢rq' + ¢r (5.13)

wheree indicates the approximated geometric error. This processpeated for all 6 errors
on each of the major axes giving a total of up to 18 quintic polyial functions. An example
of this process can be seen in Fig.15.2 where the positionmimgseof thez.-axis are fit to a

quintic polynomial.

Once all the geometric errors are measured and fitted, thesexan be included into Eq. (A.1),
Eqg. (A.2), and Eq.[(A]3). As a result, the actual tooltip piosi is known and its errors can be

compensated.
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5.4 Geometric error compensation

Once the geometric errors of each of the three axes are krtbergctual tooltip position is

known. Subsequently it is possible to find the error of thdtipgosition from the desired

tooltip position by subtracting the actual tooltip posititom the desired tooltip position as
follows:

AP (q) = |[Pi — Pu(q)| (5.14)

The ideal tooltip positiorP; can be provided from a computer aided manufacturing (CAM)
toolpath. Alternatively, if only the axes positions are WwmoP; can also be the result of the
ideal forward kinematic model defined in EQ. (3.6) to Eq. )(;3p8ior to the reference command
modifications performed for geometric error compensatidre objective is to find rotary table
reference commands, = [zy,y;, 2, ay, by, cs]", that will reduce the geometric error to an
acceptable minimum. In order to do this, two challengestekisst, similar to the trajectory
generation of 9-axis machine tool, there are more degreesexfom available than necessary.
Since only the tooltip position is defined with 3 degrees eéffom and the rotary table has 6
degrees of freedom, there are 3 redundant degrees of freedaresult, redundancies must
be resolved with the proposed geometric error compensgitimique. Second, due to the
non-Cartesian kinematics of the overall 9-axis configurattbe compensation of geometric
errors is non-trivial and numerical techniques are necgs$a overcome these challenges, an
iterative gradient descent algorithm which exploits theollgan matrix of the rotary table is

proposed.

5.4.1 Gradient Descent Optimization Algorithm Background

The gradient descent optimization algorithm is a first olitenative optimization algorithm

that is used for finding the minimum of a function. The aldumtiterates by selecting function
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variables that are proportional to the negative of the gatdhf the function at the current point.
This process is repeated until the gradient is sufficientbal§ which corresponds to a local
minimum of the function. If the variables to be modified arémed as) and the differentiable
multivariable cost function is defined dgr7) then the cost decreases fastesi goes in the

direction of the negative gradient of the cost function dleves:
Nj+1=1n; —YV¥(n;) (5.15)

wherej is the current number of iteration for the gradient descegarahm. For sufficiently
small~ the cost will decrease at each iteration. As a result, statith a guess of, the cost
will decrease as follows:

U(no) = W(m) = V(n2) > ... (5.16)

5.4.2 Geometric Error Compensation using Gradient Descent @timization Algorithm

With respect to geometric error compensation, the gradiestent algorithm is used to modify
the rotary table commandgy, so that the tooltip position errorSP (q;) are decreased to an
acceptable minimum. As a result the variables to be modifiedjaand the cost function is

defined to penalize tooltip errors as follows:

¥(ay) = ;AP (q))" AP (q) (5.17)

When applied to the problem of geometric error compensatiengradient descent algorithm

can be phrased as follows:

Aj+1 =9dz; — VY (qr,;) (5.18)
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where~ is set to 1,5 is the number of iterations of the gradient descent algoriind the

gradient of the cost functiowr is:

VU (a) = S AP () (5.19)

Since, AP (qy) is known from Eq.[(5.14), the differential ter%ia must be defined in order to
obtain the gradient. Since there are more degrees of fredtmmmnecessary, an infinite range

of joint configurations are possible, or more formaﬂ%{— IS non unique.

Similar to the redundancy resolution technique presente@hapter_B, the Moore-Penrose
inverse is used to resolve the redundancies. Since the geoereor compensation only uses
the rotary table commands, the Jacobian used for compensaili only consider the effect

of the rotary table commands on the tooltip position and to@ntation. Furthermore, the
Jacobian will also incorporate the geometric errors in trevard kinematics equation. As a

result, the compensating Jacobian is defined as follows:

dPy.a dPy.a
d:pf o dCf
Je — ap, | dPya dPy . (5.20)
- - dx o de '
d s 1
as dP;., dP; 4
dey  °77 dey 3x6

where the superscript differentiates the Jacobian defined in Eq._(5.20) from thedian
defined in Eq. [(3.13). With the compensating Jacobikna Moore-Penrose inverse can be

found as a possible solution g@ia

: JcT
= 5.21
J JchT ( )
As a result, the gradient of the objective function can befiedd as follows:

VU (q5;) = JTAP (qy,) (5.22)
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However, in addition to minimizing the error between theibstooltip position and the actual
tooltip position, the algorithm must ensure that the geteeraompensation commands do not
violate the stroke limits of the rotary table. Similar to ttrajectory generation algorithm
presented in Chapter 3, an additional constraint can begiegj@nto the nullspace off. The

cost function which constraints the magnitude of the stitwkés is considered as follows:

i
T A (5.23)
(C?,mar - C?”)2

2
Ly

('T?’,max - x?’)Q

H(qf) =

By projecting the gradient of this cost function:

VH (qf) = E L, — (5.24)

(‘r%max - I;)Q’ (C?‘,maa: - C?)2

onto the nullspace of1, it is ensured that the solutions for¥ (q ) will not violate the stroke

limits of the rotary table. It should be noted that the camistrequation, Eq.[(5.23), and its
gradient, Eq. [(5.24), only consider the limits of the rotéaple. Since only the reference
commands of the rotary table are being modified, it is sufficently consider the rotary table
position commands. The gradient of the cost function isredee to consider this additional

constraint in the following way:

VU (qy) = JTAP (qp) + (I — JTJ°) B°VH (qy) (5.25)

where 5¢ determines the strength of the stroke limit constraint @éefim /7¢. The gradient

descent formulation can be redefined as follows:
apj+1 = qy; — JTAP (qp;) — (I — JVJ) BVH (qy,) (5.26)

Since the the costl (q;,;), decreases the fastest when the rotary table commanpgls,, are

recalculated in the direction of V¥ (qy,;) then every iteration will minimize the cost. As a
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result, Eql(5.26) is iterated until the following conditis met:

AP (q}) < v (5.27)

Algorithm 2: Full compensation algorithm

1 function Compensatiofy);
Input : Q = [q[0], q[1],...,q[K — 1], q[K]]
Output: Q" = [q}[0], a}[1], ..., q}[K — 1], q}[K]]
2 k=0

37=0;

4 fork«+0to K —1do

5 | AP = |P;(q[klo) — Pal(q[klo)| ;
6 | while AP (q[k];) > edo

7 alklj1 = alk]; — J (alk];) AP (alk];) — (1 = J1J¢) B°VH (q;) ;
8 AP = [P;(a[k]o) — Pa(alk]j+1)|;

9 Jj=7+1

10 end

n | Q[ = alk],

12 j =
13 k=k+1
14 end

whereq} is the rotary table commands that reduce the geometricseiwan acceptable limit
defined byr. Compensation commands are calculated for every pqiht, which is known

from the trajectory algorithm. The full algorithm can be suarized in Algorithm 2.
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Figure 5.3: Tooltip errors with and without compensationdaircle on thec-y plane of radius

1

Simulation results using this method can be seen in[Fid. vBhgre the algorithm eliminates

the tooltip errors caused by the geometric errors of the madiool when drawing a circle of

radius 1 [mm] on the:-y plane.
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Chapter 6

Simulation and Experimental Results

6.1 Overview

Experiments were performed to validate the trajectory geiren algorithm, dual stage feed
drive tracking control law, and geometric error compemsathethod presented in this thesis.

All experiments were performed on the machine presentdueimntroduction.

6.2 Trajectory Generation Experimental Results

In order to validate the trajectory generation algorithmo experiments were performed to
ensure that the generated trajectories were able to ressivmdancies, avoid singularities,
respect the prescribed limits, and follow the desired efetadr trajectory. First, the trajectory
generation algorithm is used to generate axes commandssforad toolpath as shown in Fig.

6.1

The position commands for the spiral toolpath and the timevaléves toolpath are shown in

Fig.[6.2, Fig[ 6.8, Fig. 6l4, and Fig. 6.5. As it can be seempitsition commands respect the
stroke limits of all the drives, demonstrating the abilifyite redundancy resolution component
of the trajectory generation algorithm to select axes condigons that respect the stroke limits
of the machine tool. In addition to this it can be seen thatgbeerated axes commands
respect the prescribed velocity, acceleration, and jenkdiof all the axes showing successful
integration of the redundancy resolution algorithm witle fieed optimization algorithm. It

should also be noted that at certain portions of the trajgctioe velocity of they. is saturated
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Figure 6.1: Spiral toolpath
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at its limits, and for portions of the trajectory where théoegy is not saturated, the jerk of the
other axes are close to being saturated. This demonsthetedility of the feed optimization

algorithm to use all the kinematic limits of the feed driveraverse the toolpath.

In addition to respecting the limits of the axes, the gemeraixes commands should result in
a toolpath that follows the desired toolpath. In the caséeittajectory generation algorithm
presented, the numerical nature of the trajectory gemeratigorithm and singularity avoid-
ance components can cause the toolpath from the axes corarttadeviate from the desired
toolpath. As a result, the desired tooltip position and waéntation are compared with the
tooltip position and tool orientation from applying forwdakinematics on the generated axes
position commands. The tool deviations for the spiral tathpvere shown earlier in Fig. 3.7

showing negligible deviation, and as a result, successfplementation of the a higher order
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Figure 6.6: Sinusoidal freeform surface

numerical integration algorithm and closed loop correctetion.

Next the trajectory generation algorithm is used to geeergference commands to machine

the freeform surface shown in Fig. 6.6.

The freeform surface is a sinusoidal surface with a peak as penplitude of 500 microns and
a working surface area of 10 [mm] x 10 [mm]. This surface waswith a 1/64” (397.m])
Mitsubishi Carbide 2-fluted ball endmill. The finishing pasaswone with a feedrate of 10
[mm/s] with a spindle speed of 170000 [rev/min]. To avoid pih@ughing affect from the zero
cutting velocity from the tip of the ball end mill, the toolecemmanded to have a constant tilt
of 0.15 degrees using the magnetically levitate table'slsprees of freedom. Since this was a
finishing operation, the limitation of the feedrate will@lsome from the process itself, which

was set at 10 [mm/s], in addition to the axes limits. The we®f surface was cut with a zig-
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zag toolpath with a depth of cut of 100r] and a step over of 1Q:;m]. The planned feedrate
is shown in Fig.[ 6.7 and as it can be seen, the feedrate is dagigd [mm/s]. However, at
portions where the tool path must slow down and speed upintit@tion comes from the axes.

This can be seen in the velocity, acceleration, and jerk@féference commands in Fig. 6.8

and Fig/[ 6.9 for the translational and rotational axes rethay

Furthermore, it should be noted that when zoomed in, thecitgland acceleration profiles are

smooth and continuous as shown in Fig. 6.10 and[Fig.] 6.1 héotrainslational and rotational

axes respectively

The manufactured surface can be seen in FFig. 16.12. As it casede, the produced part

matches the desired surface, showing the kinematic modmrigect. Due to the finite step

89



o
()]
1

Velocity [rad/s]
o
a o
| !
\

o

10

IS
o
1

N
o
1

o
|

Acceleration [rad/sz]

o

Figure 6.11: Velocity, acceleration, and jerk profile of lmeational axes for the freeform

surface

4 6 8

| | |

4 6 8
Time [s]

90




Figure 6.12: Machined freeform surface
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Table 6.1: Circular contouring results

Error SMC DSFD
Mean| z-axis Tracking [mm] | 2.14E-4| 1.98E-4
Mean| y-axis Tracking| [mm] | 1.06E-4| 4.94E-5
Mean Contour [mm] 1.58E-4| 1.21E-4
Max | z-axis Tracking [mm] | 2.67E-3| 1.28E-3
Max | y-axis Tracking [mm] | 1.72E-3| 3.77E-4
Max Contour [mm] 2.67E-3| 8.58E-4

Table 6.2: Square contouring results

Error SMC DSFD
Mean| z-axis Tracking [mm] | 2.58E-4| 1.69E-4
Mean| y-axis Tracking| [mm] | 8.81E-5| 7.18E-5
Mean Contour [mm] 7.92E-5| 9.93E-5
Max | z-axis Tracking [mm] | 5.43E-3| 2.26E-3
Max | y-axis Tracking| [mm] | 1.54E-3| 5.56E-4
Max Contour [mm] 7.59E-4| 8.62E-4

over length it can be seen that there are surface marks ldftdogcallop heights in between

passes of the zig-zag toolpath.

From the above experiments, it can be said that the prestmajedtory generation algorithm
is able to fulfill all of its goals which include redundancyodution, singularity avoidance, and

optimization

6.3 Dual Stage Feed Drive Tracking Control Results

To verify that the dual stage feed drive controller improrasking error performance, the dual
stage feed drive controller is used to follow contours. ia et of experiments, the parameters

used for the micromill and rotary table are as shown in Ta®a#d Tabl 4)4.
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With these parameters, the micromill has a design bandwidB®Hz and the rotary table has
a design bandwidth of 250Hz. By having a bandwidth that is @yaprately 10 times higher
than micromill, it is expected that the rotary table will coemsate the tracking errors caused
by the low bandwidth of the micromill. Two experiments arefpamed where a circle, as
shown in Figuré 6.13, and a square, as shown in Figure 6.g4racked with ther-y axes

of micromachining center. In these experimentandy,. are commanded with the trajectory
commands whiler; andy,; compensate for the tracking errorsxgfandy. respectively. The
results can be seen in Fig. 6.13 and Fig. 6.14 and are sunedanzlab. 6.1 and Tal. 6.2,

respectively

From Tab[ 6.1 and Tab. 6.2, it can be seen that the sliding rmakeoller is able to keep errors
under 3:m]. The rotary table assists in reducing all tracking eresshown in Tak. 6.1 and
Tab. [6.2. Most notably, the higher bandwidth eliminatestivh induced error peaks in the
circular contouring where the velocity reversals occudieg to improved contouring perfor-
mance as shown in Figure 6113 a) and Figurel6.13 b). Furthrerthe dual stage configuration
sees improvement in reducing fluctuations around zeroitigakrror. The fluctuations occur
due to quantization noise in the control action. Since tHkemtuations occur at frequencies
higher than the bandwidth of the rotary table, they are wnabbe completely compensated

for.

It should be noted that in the case of the square contoursgtse as shown in Tab. 6.2, there
is a slight increase in contour error. Unlike a circular camf for a square contour, one of the
axis is stationary at all times. While stationary, the axi®ewill converge to as close to zero
as possible since there is an integrator and very low leveistfirbance. Since the rotary table
has its own oscillatory movement caused by its own feedbadenthis will be added to the

stationary coarse actuator resulting in precision thabisse/than just the coarse actuator alone.

94



Table 6.3: Geometric errors with and without compensation

Mean Mean Max Max
Error Uncompensated Compensated Uncompensated Compensated

d, (x.) [ppm] 0.549 0.168 1.07 0.443
dy () [pem] 0.2 0.0571 0.629 0.265
d, (x.) [pm] 0.396 0.162 1.1 0.37
d. (ye) [pm] 1.16 0.222 3.06 0.626
dy (ye) [pem] 1.65 0.44 4.18 0.883
d, (ye) [pm] 0.19 0.0791 0.693 0.358
dy (2z¢) [m] 3.91 0.844 7.48 2.4
dy (2.) [ppm] 0.251 0.197 0.9 0.636
d, (z¢) [um] 0.337 0.115 0.976 0.498

As a result, for a trajectories where the coarse actuateadyr achieves very high precision on
its own, the rotary table may not increase contouring peréorce. In contrast, for toolpaths
where multiple axes are moving there is a performance iser@ath respect to contouring

error as it can be seen from the circular contouring results.

Based on these experiments, it can be concluded that thgttreithe dual stage feed drive
configuration lies in disturbance rejection for freeformlfaths. It should be noted that the
addition of the rotary table is complementary to any congtategies used on the micromill.
Though the sliding mode controller alone has good positiacking properties, the addition of
the rotary table increases the overall precision on theatye axis particularly with regards
to disturbances. Should a different control strategy,dessihe sliding mode controller be used
on the micromill, the addition of the rotary table would Ishié complementary to the overall

precision on the respective axis.

6.4 Geometric Error Compensation Results
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In addition experiments for the trajectory generation atgm and dual stage feed drive con-
trol, experiments were performed to verify the geometriorecompensation algorithm. In
these experiments, geometric errors of the 3-axis macholate compensated using the high
precision stroke of the 6DOF rotary table. First, geomerior measurements were performed
with a laser interferometer. It should be noted that due e¢artability of the laser interferom-
eter to measure roll errors along an axis, this error wasosetin the kinematic model. The
measured errors are fit to quintic polynomials then includezithe kinematic model, which is
used with the gradient descent algorithm to calculate cosgigng commands for the 6DOF
rotary table. To demonstrate the capabilities of the genmetror compensation algorithm,
single axis displacement errors are measured with a latseférometer then compensated with
the rotary table with reference commands generated by gogitdm. The objective of these
experiments is to demonstrate that positional errors argensated as the combined effort of
multiple axes of the rotary table. The displacement ermoesant to mimic tooltip deviations,
are measured with the laser interferometer with and withloeitcompensating action of the

rotary table. The results are summarized in Figs.16.15 {6 &t Tablé 6.3

Based on the results shown in Table|6.3 there is a 64% and 60%\B1pent in the mean
and max geometric error respectively, demonstrating thityabf the algorithm to reduce
geometric errors. Furthermore, Figs. 6.15 to 65.17 showistamg improvement of geometric

error across the entire actuating range of each of the axis.

To look at the results of the algorithm in greater detail,. F6gL8 show the rotary table com-
mands used to compensate for the errors when actuating ap-&éxés. As it can be seen, the
algorithm favors the tilt commands of the rotary table to pemsate for the straightness errors
in the x andy direction when actuating the-axis. The reason for this is that it is possible to

make large displacement corrections with relatively srtidl of the rotary table. Finally, it
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should be noted that the error is compensated as the comédiloetof multiple axes, showing

effective use of the compensation Jacobian.

Based upon the single axis experimental results and 2-axiglation results shown in Fig.
5.3 it can be seen that the tooltip error caused by the gemneetors is relatively small, in the
sub-micron range. Due to the inconsistent nature of thénguprocess itself, errors originating
from the cutting process would be the dominant source ofr enrthe final machined piece.
Measurements of a slot cut with a coordinate measuring madbund variations in the error
of nearly 30 microns. Furthermore, the configuration of thatgy type milling machine did

not allow for the use of a commercial ball bar, which would éh@ilowed measurement of

combined errors, independent of process forces.

As an alternative, the full multi-axis compensation cajiiés are demonstrated virtually. In

order to do this, all 21 geometric errors of a three dimeraitoolpath are modeled and the
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Table 6.4: Mean and maximum tooltip errors with and withaunpensation for a multi-axis

trajectory
Mean Mean Max Max
Error Uncompensated Compensated Uncompensated Compensated
|AP,| [pm] 0.97 0.19 6.5 3.7
|AP,| [pm] 0.79 0.31 6.5 7.1
|AP,| [pm] 5.2 3.8 65.4 81.8
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compensation commands are generated. The compensationacws are then used by the
machine as reference commands. The encoder readings an¢oféige kinematic model with
errors then compared with the ideal kinematic model. Indh®geriments, a spiral toolpath

as shown in Fig. 61 is used as the original toolpath for tla&i8-micromill.

Based on the results shown in Tdb. 6.4 and Fig. |6.19 there i¢@ad@l 3% improvement
in the mean and max geometric error respectively, demdirggrthe ability of the algorithm
to reduce geometric errors in multi-axis trajectories. Du¢he presence of a tracking error
peak at approximately 3.5 seconds this causes the maximuitipterror be large. Since the
compensation algorithm only addresses geometric erraxking errors are not accounted for
and can appear in the error results. This problem is furtBerahstrated in the.-axis, where
there is noisier error behavior than the other axes. Thgrates from the poor quantization
of the control signal of the.-axis. Due to the limited number of digital-to-analog comnges
(DAC) on the dSPACE DS1103, theg-axis is controlled with a PWM signal that is converted
into voltage signal by a Axiomatic Universal Signal Converwith the lower resolution of the
PWM signal, approximately 9-bits, and further noise andodigin introduced by the universal
signal converter, the fluctuations of the tracking errof taél higher than the other axes on the
machine tool. However, on average, as shown in Tab. 6.4 an®H9 the tooltip errors which

originate from the geometric errors are compensated fae quell.
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Chapter 7

Conclusions

7.1 Conclusions

In this thesis, a trajectory generation algorithm, costistkategy, and geometric error com-
pensation technique have been developed for a novel 9 defjifeeedom micromachining
center. The hybrid micro-machine tool combines a conveati@-axis gantry type micromill
and a 6DOF high-bandwidth, short stroke magnetic rotarketdbue to its unique 9-axis con-
figuration, new CNC strategies have been developed in thésthAs9-axis novel trajectory
generation algorithm, which can handle the four redundamesl while respecting the drive
limits, have been developed. In order to increase the poects the translational axes, a con-
trol strategy is proposed which combines the high bandwadih precision of the rotary table
and the long stroke of the micromill. Finally, the rotaryl&ls used to compensate for tooltip
errors caused by the geometric errors of the machine toda. cohtributions are summarized

as follows:

The proposed trajectory generation algorithm was develaperder to overcome the chal-
lenges associated with generating trajectories for a cardigpn that has more degrees of free-
dom than necessary. The position and orientation of a typitéing tool can be defined by
6 degrees of freedom and achieved by 5 degrees of freedom onvartional 5-axis CNC
machine. Since the developed micro-machine tool has 9 degrfefreedom, 4 more degrees
of freedom than necessary, traditional inverse kinemaiiatfeed planning algorithms were

not applicable. In this thesis, a methodology was develdpeercome these challenges. A
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forward kinematic model of the machine tool is first develbp&hich maps the 9-axis posi-
tions to the the tooltip position and tool orientation widspect to the workpiece. A numerical
technique is developed, which resolves the redundanciie atifferential level with respect
to displacement, using the Moore-Penrose inverse of thebat of the forward kinematic
model. The proposed differential solution ensures thajudarities are avoided and the gen-
erated trajectory does not violate the stroke limits of tkesa A corrective 4th Order Runge
Kutta numerical integration algorithm is used to extrae position commands from the dif-
ferential solution, giving axes position commands thatespond to desired tool positions and
orientations at fixed displacement intervals along thepathl. The position commands are
then scheduled with respect to time, using a non-lineanopétion algorithm to ensure that
the toolpath is traversed as fast as possible without ving/dhe velocity, acceleration, and jerk

constraints.

In addition to a trajectory generation algorithm, a consttohtegy was developed which com-
bines the long stroke of the 3-axis micromill with the higmbwidth tracking capabilities
of the 6DOF rotary table. Prior to the control design, thedrigody dynamics of the mi-
cromill were identified using a linear regression techniqliee model is further refined, par-
ticularly the non-linear friction characteristics, usidigturbance observations with a Kalman
filter. Based upon the rigid body model, a sliding mode coteratith a bandwidth of approx-
imately 30Hz was designed for position tracking. In ordemiprove tracking performance,
a feedforward friction compensator, based on the LuGré&idnanodel, is implemented. Due
to its comparatively simpler dynamics, sophisticated fifieation was not necessary for the
rotary table. Instead, the position controller was desigareund a nominal model of the rotary
table, which consisted only of a free floating mass. To comosition, a lead-lag controller
was selected, cascaded with an integrator to remove stéatgyesror. However, it was found

that unmodeled flexibilities were limiting the potentialnolavidth of the rotary table. Fre-
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quency sweeps of the plant found resonance peaks at higdtgrefincies and notch filters on
each axis were implemented, resulting in an achievablevoialtidl of approximately 250Hz. In

order to combine the long stroke capabilities of the mictbwith the high bandwidth track-

ing capabilities of the rotary table, the tracking errorlué tnicromill is sent as the reference
command of the rotary table. Analysis of the transfer fuorthowed that this configuration
allowed the axis to adopt the bandwidth of the rotary tablerttfermore, results showed that
the rotary table successfully compensated for trackingrewaused by the lower bandwidth of

the micromill's three Cartesian drives.

Finally, the rotary table was used to compensate for gederatrors of the machine tool. In
order to do this, the effect of the geometric errors of thexi3-anachine tool on the tooltip
position had to be modeled. The ideal transformation mafreach moving axis is augmented
to account for the effect of six geometric errors, includpagitioning error, two straightness
errors, roll error, pitch error, and yaw error. The erroesmeasured with a laser interferometer
and fit to a quintic polynomial function of position to pregeljerk continuity, which are then
incorporated into the error augmented transformationioer The original forward kinematic
model is reconstructed with the error augmented transfibomanatrices, resulting in a tooltip
position that accounts for the geometric errors of the 3-akthe machine tool. By subtracting
the result of this forward kinematic model with the origindéal forward kinematic model, it
is possible to model the tooltip deviations. Next, rotargléacommands are generated to
compensate for these tooltip deviations. Due to the noneSiar kinematics of rotational
errors and the presence of more degrees of freedom tharsaegesnon-linear technique was
developed in order to generate compensating commandsfootéry table. A gradient descent
optimization scheme was developed where the goal was thenmation of tooltip deviations.
Since there were more degrees of freedom than necessary)abee-Penrose inverse was

used again. However, since only the rotary table commandes medified, the Jacobian in
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this case only accounted for differential changes in tpgitisition with respect to changes in
rotary table positions. Furthermore, the solution is augge@to ensure the stroke limits of the
rotary table were not violated. Single axis laser intenfegter experiments showed significant
reductions in geometric errors as the combined effort & akkes of the rotary table. Multi-axis
simulations results also showed that tooltip deviationsaweinimized for multi-axis free-form

toolpaths.

In summary, the thesis presents a novel 9-axis CNC micro meac¢hbl with a new trajectory
generation algorithm, dual axis control algorithm and getsio error compensation strategy.

The proposed models can be applied to other multi-axes mad¢bhols with redundant axes.

7.2 Future Research Directions

In regards to the trajectory algorithm presented, furtherkncan be done to select configu-
rations that take advantage of the redundant degrees afdinee At present, the trajectory
generation algorithm only uses the nullspace of the Jandbiaelect joint configurations that
avoid stroke limits. In reality, it may be possible to acl@ewultiple goals simultaneously,
particularly with so many redundant degrees of freedom. diferithm presented could be
extended to fulfill multiple goals. To name a few, minimipatiof energy consumption or joint
torques can be considered. Specific to the machining proifasss possible to model the
relative stiffness between the tool and the workpiece asetifon of the axes positions, then
given an analytic gradient, it would be possible to seleetsaconfigurations in which the the
stiffness is maximized. With the presence of multiple goialshould be noted that additional
strategies need to be developed in prioritizing the goalsh Yéspect to the main redundancy
resolution aspect of the trajectory generation algorittime, Moore-Penrose inverse is used,
which consequently minimizes the axes differential witkpect to displacement locally. It has

been shown in literature that higher order versions of tesgmted solutions minimize the axes
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differential at the respective orders. By performing theurethncy resolution at higher order it
may be possible to achieve more desirable acceleratioreakdgsponses when scheduling the
commands with respect to time. Finally, globally optimatigaons of the presented solution
have also been shown in literature and may be an interestéayad research and application
for the configuration presented in this work. However it dddae noted that due to the glob-
ally optimal criteria, even short toolpaths require unisga computation time, and optimizing

for a real free-form CNC toolpath may be outside the realm atticality.

Due to its relatively unique configuration, many researaledlions in the field of controls
could be pursued. In a gantry machine tool, one of the lowestuency structural modes
is from the structure of the-axis itself. The rotary table could be used to provide &ctiv
damping for this structural mode, increasing the dynaniftness between the work piece
and the tool. Unlike traditional active damping device® tatary table could actively damp
structural modes in multiple directions simultaneoustyshould be noted that the dual stage
feed drive control algorithm presented considers the midi@and rotary table as two separate
rigid bodies. This is particularly true for the rotary taldeting on the heavier feed drive.
In reality, there may be flexibilities that when considerealld increase the precision of the
overall system. As a result, state-space control laws wbatsider the dynamic coupling
between the coarse and fine actuator, with the purpose @asitrg performance or robustness
would be interesting to consider. With respect to geometriar compensation, there would be
value in verifying the compensation algorithm for multiiattajectories. Though the algorithm
has shown effectiveness for single axis experimental teanld multi-axis simulation results,
verification via a ball-bar would be a possible researchctiva. Furthermore, the rotary
table can also be used for compensation of errors beyond ejgorerror. If it is possible
to model errors caused by thermal expansion or processsfoifoe tooltip deviations can be

modeled. These deviations can be incorporated into the epsapion algorithm presented,
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resulting in rotary table commands that compensate forllogeamentioned sources of error.
Alternatively, a simpler experimental approach could lketa A part could be machined and
the tooltip deviations could be measured with a CMM. Theseatiews could be sent to the
same compensation algorithm which would generate compegsammmands based on CMM

measurements. This would require no modeling but a largeuatad experimental data.

Finally, in addition to further developing the presentegbaithms, further research can be done
by applying the presented algorithms to different configares. Since robotic arms typically
have more degrees of freedom than necessary, applicatibe whjectory generation algorithm
presented in this work to a different configuration could basidered novel. Furthermore,
since the presented algorithm has an optimization asp&aiuid make the most sense to apply
this algorithm to robotic milling arms. Likewise, the dudhge feed drive control algorithms
can be applied to more coarse/fine actuator configuratiamsdfan manufacturing literature.
In contrast to using the rotary table as an actuation dewiceay be interesting to use the
rotary table as a sensing device. If the rotary table is contied to be held stationary, then the
output current to hold the rotary table would be proportidodahe cutting force. If the same
configuration is used to machine a part, the feedrate of theathsystem could be controlled

to ensure a constant cutting force is held at all times, usiagotary table as force feedback.
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Appendix A
Foward Kinematic Equation with Geometric Errors

The actual tooltip positionP, (q) = [Pr.(q), Py (q), P.q(q)]” are shown detail in the

following equations:

Pra(q) = —eu(xe)((L+ La2)(CaySey + CopSa,Sy)
+(Lspy — Ye) (SuySep — CayCe;Soy))
+ea(2e) (Lop,z + Lt)( CasSe; + CeySusShy)
+Lsp,y(SuySe; — CayCeySyy))

+5y( )((L+ L 2)CppCcp + e(CayCopSop — SuySey))

y(yc)((L>be Cf)

+e:(2e) (Lspy — Ye)Co;Cep + Te(CaySey + CeySuy Sy )

—&y(2e) (Lsp,z + Lt)Cy, Cc; )

—&a(ye)(L(CqyS:, + ccfsafsbf)

+(Lspy — Ye)(SaySep — CayCe;Spy))

€5 (Ye) ((Lspy — yC)beCCf)

+(=0y(we) — dy(ye) + 0y(2e))(CaySe; + Ccy Sy S, )

+(—0.(we) = 02(ye) + 0:(2c)) (Su; Sy — CayCe; ;)

+(Lspy — Ye — Y£)Ca;Se;

+(=0u(20) = 00 (ye) + 62(2e)

—Te—Typ — Lsmsz(zc))cbfccf

(=L = Ls— Laz — 2f — 2£,0)S0,S;

+(L 4 Ls + Ly o + 25 + 24,0)Ca;Ce, S,

+(Lspy — Ye — Y5)Ce;Sa, S,

Ve (=L + Ly )(CaySe; + Ce;Su; )

+Lsp,y(CasCe;Shy — Su,Se;))

Yy (L + Ly 2)Cy, Cc) )

+731$c((LSPay - yC)beCCf)

+0(e?, 6%, ¢6)

(A.1)
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Pya(a) = ex(xe)(L+ Lo2)(Su; ;S — CasCey)
+(=Lepy + Ye) (CeSup + Cap S, Sep))
+e0(2e)((Lsp,z + Li)(CayCop — Su; S, Sc)
A Ligpy(Ce;Say + Cay S, Se;))
+€2(Ye) (L(Sa; S, Se; — CayCey)
+(=Lspy + Ye)(CeySuy + Cay S, Sc;))
—:(%e) ((Lapy — Ye)Co;Se; + Te(Sa; 8,8, — CasCe;))
Fey(2e) (Lop,z + Li)Co, S, )
5y(y0)(Lbescf)
—ey(@e) (L + Ly.2)Co, Sy + Te(CepSuy + CaySh,Sey))
)((Lsz%y - yC)beSCf)
+(=0y () = 0y(ye) + 0y(2c))(CayCcp — Suy Sy, Sey)
+(=02(2e) = 02(ye) + 02(2c))(CeySuy + CaySh,Se;)
+(Lopy — Ye — yf)cafc
(=L — Ly — Ly — 2§ — 2£,0)Cc; S,
+((Sa:(xc) + (Sx(yc) - 693(20)
+2e+ 2 f + Lopyea(2))Ch, S
H(=L = Ly = Loz — 2p — 2£0)Ca; Sy, S
(= Lspy + Ye + Yr)Su; S, S,
ez ((Lspy — Ye)Cb,Se; )
_'Yy,zc((—L + Ly:Z)beSCf)
Ve, (L = Ly,2)(CapCop — Su;S,Sc;)
+Lspy(Ce;Say + CayS,Se))
+0(g2, 6%, ¢9)

_5z( Ye

(A.2)
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P..(q)

whereL = Lg,, — Lo, + Ly + L, .

order error terms.

€x(Ye) (LCh;Say + (—Lipy + Ye)CayCo, )
— Ly — ey (2e) (Lsp =S, + LiSy,)
—Ly 4 e2(Ye) (LspySo; — YeSo;)
+e0(2e) (L + Ly,2)C;Say + (—Lipy + Ye)Cay G, )
H(—02(we) = 62(Ye) + 02(2e) — LSp,ygz(ZC))Sbf
+(—$c l’f)Sbf
+ey(ze) (L + Lx )y, — TcCa,Cy,)
—5z($c)(( Lipy)S; + 2cCh;Say)
5QJ(ZC)((Lsp z + Lt)cbfsaf Lsp,ycafcbf) .
+( L — Ls_sz_é (ch) _5z(yc)
+5z( ) Zf — ZfO)Cabef
+(—Lopy + y(zc) + 0y (ye)
—0y(2e) + Ye + Y5 )C,Suy
+7z,wc((LSP1y - yC)Sbf)
+'7y,zc(<_L + Ly,z)sbf)
e,z (LspyCa;Cop + (=L + Ly 2)Cp;Sa;)
+0(e?, 6%, ¢6)
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