
TRAJECTORY GENERATION, CONTROL, AND GEOMETRIC ERROR
COMPENSATION FOR A 9-AXIS MICROMACHINING CENTER

by

Alexander Yuen

B.A.Sc., The University of British Columbia, 2011
M.A.Sc., The University of British Columbia, 2013

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Mechanical Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

July 2018

c© Alexander Yuen 2018



The following individuals certify that they have read and recommend to the Faculty of Graduate

and Postdoctoral Studies for acceptance, a thesis/dissertation entitled:

TRAJECTORY GENERATION, CONTROL, AND GEOMETRIC ERROR COMPENSATION

FOR A 9-AXIS MICROMACHINING CENTER

submitted by Alexander Yuen in partial fulfillment of the requirements for the degree of Doctor

of Philosophy in Mechanical Engineering

Supervisory Committee Members:

Yusuf Altintas

Supervisor

Tim Salcudean

Supervisory Committee Member

Xiaodong Lu

Supervisory Committee Member

Elizabeth Croft

Supervisory Committee Member

ii



Abstract

This thesis presents a trajectory generation algorithm, a control strategy, and a geometric error

compensation methodology for a novel 9-axis micromachining center which combines a 3-

axis micromill with a 6 degree of freedom magnetically levitated rotary table. The proposed

trajectory generation algorithm resolves redundant degrees of freedom by numerically solving

for axes positions from desired tool positions and orientations. Differential axes positions are

found while ensuring the stroke limits of the drives are respected and singularities are avoided.

The differential solution is numerically integrated to obtain the axes positions with respect to

displacement. The axes commands are then scheduled in time,while respecting the velocity,

acceleration, and jerk limits of each of the drives, and traversing the toolpath as fast as possible.

The experiments showed trajectories that resolved redundancies, avoided singularities, and

respected all physical limits of the drives.

A control strategy which combines the capabilities of the micromill and the rotary table is

introduced. A sliding mode controller with a LuGre frictioncompensator is designed to control

the position of the micromill, based on identified physical parameters. A lead-lag position

controller with an integrator and a notch filter is designed to control the rotary table. Since

the translational axes of the micromill and rotary table arein parallel, the tracking error of the

micromill is sent as a reference command to the rotary table,compensating the tracking errors

of the micromill with the higher bandwidth of the rotary table. In experiments, the dual stage

control law improved tracking error over the micromill alone.
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The geometric errors of the 3-axis micromill is compensatedby using the precision motion of

the 6 degree of freedom rotary table. The geometric errors ofthe 3-axis micromill are mea-

sured with a laser interferometer, fit to quintic polynomials, and incorporated into the forward

kinematic model. The tooltip deviation is found by subtracting the ideal tooltip position from

the tooltip position affected by geometric errors. Rotary table commands, from all 6 axes, that

compensate for these deviations are found using a gradient descent algorithm. Experiments

showed reductions in end effector deviations.
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Lay Summary

Technological advances in industries such as the electronics and biomedical field has driven

the demand for manufactured parts with high precision features, typically in the order of one

thousandths of a millimeter. Subsequently there is a demandfor manufacturing processes

and machine tools capable of generating high precision features. A hybrid 9-axis machine

tool, which combines a 3-axis micromilling machine and a 6 degree of freedom magnetically

levitated rotary table has been developed for this purpose.

This thesis presents algorithms to plan the motion, controlthe precision, and control the ac-

curacy for this 9-axis machine tool. The motion is planned toensure all 9-axis are used as

efficiently as possible given a predefined path. Furthermorethe machine is controlled so the

precision and accuracy of the 3-axis micromill is improved with the rotary table. The developed

algorithms can be used with similar machines to manufacturehigh precision parts.
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Chapter 1

Introduction

In recent years there has been a decrease in the average size and increase in the complexity

of manufactured parts due to technological progress in industries such as the biomedical and

electronics industry. At present, it is common to see manufactured parts with features in the

micrometer scale. Though multiple manufacturing processes with micron level precision do

exist, few are capable of producing parts with freeform features with precision. Wire electrical

discharge machining (EDM) and photolithography are capable of very high precisions but can

only be used to generate 2-D and 2.5-D parts, respectively. Though micro injection molding

and micro forming are capable of producing high precision free form parts, a higher precision

manufacturing process must be used to produce the tooling. Given the limitations of the above

mentioned manufacturing processes, multi-axis micromachining is one of the few viable means

for producing freeform parts with micron level precision. This work contributes a development

of novel multi-axis micromachine tool, which combines a traditional 3-axis micromill with a 6

degrees of freedom (DOF) magnetically actuated rotary table shown in Fig. 1.1.

The 6DOF rotary table was originally developed by the Precision Mechatronics Laboratory at

the University of British Columbia and has been presented in [1] and [2]. The rotary table

consists of a Halbach magnetic array as the mover and a printed circuit board (PCB) as a stator.

Actuation is achieved by passing current through the coppertraces in the PCB, which creates

an opposing magnetic field to the Halbach magnetic arrays on the mover. This configuration

allows for a tetherless mover and a low form factor stator. The rotary table has a full 6 degrees

1



Figure 1.1: UBC MAL’s hybrid 9-axis machine

of freedom with approximately 100 micron stroke limit in thex, y, andz directions, 0.5 degrees

tilt limit about thex andy axis, and unlimited rotation when rotating about thez-axis.

By combining a lighter, and subsequently faster, actuator with the existing 3-axis micromill,

it is possible to increase the precision and accuracy of the overall system. However, with this

new configuration, the addition of multiple redundant axes introduce new research challenges.

Typically, a 5-axis machine is capable of moving a cutting tool to a predefined cutter location

defined by 3 positions and 3 orientations. Since a 5-axis machine tool has the necessary de-

grees of freedom, analytic inverse kinematic solutions exist, allowing for unique mappings of

machine tool axes positions to cutter locations. Conversely, the hybrid machine tool presented

in this work has 4 more axes than necessary. As a result, a range of machine tool axes posi-

tions can correspond to a predefined cutter location. With respect to trajectory generation, the

main challenge is selecting axes configurations that resolve the redundancies. Furthermore, the

2



trajectory must also avoid singularities and be scheduled in a way to avoid the physical limits

of the drives including the stroke, velocity, acceleration, and jerk limits. This thesis presents

a novel trajectory generation algorithm to avoid singularities while respecting the limits of all

axes.

With the trajectory defined, it is necessary to ensure the machine tool follows these trajectories

as close as possible. This is typically done by applying highbandwidth position controllers to

each axis of the machine tool. Though sophisticated modeling and control techniques can be

used to increase the bandwidth to be as high as possible, the achievable bandwidth is limited by

the stability of the closed loop controller of the axis. Likewise, in the presented configuration,

the 3-axis micromill is controlled with a high performance non-linear controller, but is limited

due to stability issues. Due to its comparatively lighter mass and lack of mechanical contact,

the rotary table is able to achieve a bandwidth that is an order of magnitude higher than the

3-axis micromill. Since the translational axes of the rotary table and micromill run in parallel,

it is possible to use the higher bandwidth of the rotary tableto compensate the tracking errors

contributed by the low bandwidth of the micromill. The thesis presents a dual stage feed drive

control law that combines the strengths of the micromill androtary table.

In addition to increasing the tracking precision of the machine tool, it is possible to improve the

volumetric accuracy of the 3-axis micromill using the 6DOF rotary table. Though a feed drive

should be constrained to only move in the direction of actuation, due to errors in assembly it is

possible for the feed drive to deviate slightly in the orthogonal directions, in the translational

and rotational sense. Furthermore, these errors are typically not detected since the feed drives

have feedback on the direction of actuation. Though the deviations are small for an individual

axis, when multiple axes in series have assembly errors, it can correspond to an end effector

deviation that violates the tolerance of the parts to be machined. In this thesis, the rotary table
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is used to compensate for the affect of these position dependent geometric errors. The errors

are measured with a laser interforemeter and mapped to end effector deviations. The trajectory

of the 6DOF rotary table is then modified with a novel algorithm to compensate for these

geometric errors.

Henceforth, the thesis is structured as follows: Chapter 2 discusses previous works reported in

literature specifically with regards to trajectory generation for redundant actuators, dual stage

feed drive control, and geometric error compensation. In Chapter 3 a novel trajectory genera-

tion algorithm is presented. The trajectory generation method resolves the redundant degrees

of freedom while ensuring that the generated motion commands are jerk continuous, time op-

timal, and do not violate the stroke, velocity, acceleration, and jerk limits of the drive. The

modeling, identification and development of the control laws used to control the micromill, ro-

tary table, and the combined efforts of the micromill and rotary table are presented in Chapter

4. The higher bandwidth of the rotary table is used to compensate for the tracking errors from

the lower bandwidth of the micromill. Chapter 5 provides an application of the rotary table,

where the geometric errors of the micromill are first modeledthrough experimental measure-

ments and compensated by modifying the trajectory of the rotary table. Chapter 6 presents

simulation and experimental results and Chapter 7 concludesthe thesis and suggests future

reserach.
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Chapter 2

Literature Review

2.1 Overview

The configuration in the work presented is a 9-axis micromachining center. Due to its unique

configuration, new trajectory generation algorithms, control laws, and accuracy enhancement

techniques must be developed. With regards to trajectory generation, since there are 4 more

degrees of freedom than necessary the main challenge is in resolving these redundant degrees

of freedom. In the presented configuration, the translational axes of the micromill are parallel

with the translational axes of the rotary table. As a result,control laws must be developed that

exploit the strengths of the different actuators, which include the long stroke of the micromill

axis and the high bandwidth of the rotary table axis. Finally, the additional degrees of freedom

can also be used to compensate for geometric errors coming from the 3-axis micromill. As

a result, this literature survey evaluates existing work intrajectory generation of redundant

mechanisms, control law design for machine tools and dual-stage servomechanisms, and the

modeling, identification, and compensation of geometric errors.

2.2 Trajectory Generation for Redundant Manipulators and Machine tools

Typically, a cutting tool only needs 5 degrees of freedom to define its position and orientation

in space. Furthermore, it is the end effector position and orientation that is typically specified

since it is the element of the overall system that is interacting with its environment. As a result,

one of the main objectives of trajectory generation, in the context of redundant manipulators, is

resolving the redundant joints or axes so the end effector position and orientation corresponds
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to the desired position and orientation. In machine tools, there are typically 5 or less axes, and

as a result an analytic solution for this problem is typically available in the form of inverse

kinematics [3–5]. However, robotic devices typically havemore joints than necessary as seen

in various types of robotics arms. As a result, the same analytic inverse kinematic solutions can

not be used for these under constrained configurations. In literature, the earliest work for the

trajectory generation of redundant manipulators come fromthe field of robotics. This problem

was initially solved by Whitney [6], where given a redundant manipulator and specified end

effector velocities, the velocities of the joints are solved using the Moore-Penrose inverse of

the robot’s Jacobian matrix. Since the Moore-Penrose inverse only considers the least norm

solution of the redundancy resolution problem, an infinite range of solution still exists. Leigios

extended this work in [7], where the nullspace of the Jacobian matrix is used to minimize some

cost function. By considering the nullspace of the Jacobian matrix, the desired end effector

position is not affected, but the joint configuration is selected so the predefined cost function is

minimized at each step.

In Leigios’ original work, the cost function is specified so the solution selects a joint config-

uration that always respects the stroke limits of the joints. Numerous authors have extended

Leigios’ original idea and used the cost function to achievesecondary goals such as the opti-

mization of joint torques [8], minimization of energy consumption [9], or avoidance of singu-

larities [10]. In these solutions, the differential solution minimizes the specified cost function

to a local optimal minimum at each solution step. Nakamura and Hanafusa [11] extended these

types of solution to consider global optimality of the cost function. In [11], Nakamura and

Hanafusa used the example of minimizing manipulability over the whole toolpath. It should be

noted that due to the recursive nature of these globally optimal solution, the computation time

was orders of magnitude higher than with the locally optimalsolution. It should be noted that

the redundancy is resolved at the differential level, and asa result, there is a need to numerically
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integrate the solution in order to obtain actual motion commands. In [12], the error differences

between the various numerical integration techniques wereinvestigated. It was found that the

4th Order Runge Kutta Method produced the best results. In order to improve the numerical

integration result, a closed loop corrective element is added in [13]. This way, the numerical

drift inherent in the use of numerical integration techniques is corrected at each step.

Though the above methods are able to generate trajectories for redundant actuators, the resul-

tant trajectories are not time optimal trajectories that consider the joint velocity, acceleration,

and jerk limits. It should be noted that literature exists from the robotics field for optimal

trajectory generation [14] [15], but these works do not address kinematically redundant con-

figurations. Since robotic applications do not require the same productivity demands as man-

ufacturing applications, the need for time optimality is not as important and it is sufficient for

a robot to operate under its maximum capacity. In contrast, trajectory generation algorithms

for machine tools must be as time optimal as possible, at least acceleration continuous, and

respect the physical limits of all the drives. As a result, trajectory generation techniques in

machine tool literature are focused in fulfilling these criteria in different ways. In [16], Dong et

al. proposed a solution to find a time optimal jerk limited trajectory with a bi-directional scan

to optimize the trajectory only for jerk and a secondary acceleration-continuation algorithm

to optimize the trajectory for acceleration. In [17] a solution is proposed where a tangential

displacement is selected at each servo time step in a way thatsaturates one constraint at all

times. The solutions proposed in [16] and [17] are only acceleration continuous. In [18] and

[5], similar constraints on velocity, acceleration and jerk are used. However, the tangential tool

path is jerk continuous. Due to this added complexity, non-linear optimization techniques were

used, where the feedrate is optimized while respecting the constraints by modifying segment

durations in [18] and the control points of a spline that defines the feedrate profile in [5].
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Based on this literature survey it can be seen that there exists a gap in literature. At present,

techniques have not been developed where time optimal, smooth, and constrained trajectories

can be generated for redundant configurations.

2.3 Control laws for Feed drives and Dual Stage Actuators

Due to the need for high precision positioning, a rich body ofliterature exist in the field of

single axis feed drive control for machine tools beyond the standard industrial Proportional-

Integral-Derivative (PID) controllers. Erkorkmaz et al. presented a sophisticated feed drive

controller in [19] which used a combination of zero phase error tracking control [20], pole

placement, Kalman filter, and feed forward friction compensation. Altintas et al. [21] devel-

oped a high bandwidth, robust sliding mode controller with disturbance compensation showing

similar results as those presented in [19] but with a simplercontrol structure. Okuwdire ex-

tended the work in [22] and included the flexible modes of the ball screw in the design of the

sliding mode controller. A switching gain scheduling controller is proposed in [23], which

accommodates for position dependent dynamics and variations in mass. Hosseinabadi and Al-

tintas [24] used an active damping network to damp the structural modes of the machine tool

to increase the bandwidth of the sliding mode controller originally proposed in [19]. In [25],

Kamalzadeh and Erkorkmaz compensated for the axial vibrations of the ballscrew drive by

including the first axial mode into the sliding mode control law and showed superior perfor-

mance over the use of a notch filter. Kamalzadeh and Erkorkmazcombined multiple control

techniques in [26] and [27], where excitation of torsional modes are avoided with notch fil-

ters, control of rigid body dynamics is achieved with an adaptive sliding mode controller, and

non-linear friction and torque ripple are modeled and compensated in a feedforward fashion.

It should be noted that the above works represent only a smallsubset of literature available in

the field of feed drive controls.
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In contrast, due to its relative uniqueness, particularly in the field of manufacturing, there is

less work for dual stage feed drives. Preliminary work was done in [28] where the tracking

error of the coarse stage is compensated with the fine stage. This work was extended in [29],

where the estimated contouring error of the coarse stage is sent to the fine stage instead of

the tracking error. In these works, a simple PID or PPI controller are used for the feedback

control. Alfizy et al. [30] proposed a dual stage feed drive with a magnetic coarse actuation

stage and a piezoelectric driven flexture fine actuation stage. In this work, the coarse stage is

controlled with a simple PID controller and the fine stage compensates for the tracking error of

the coarse stage. In [31], Choi et al. proposed a dual servo stage for UV lithography. Unlike the

configurations presented in [28–30], where the position of the fine actuator is measured relative

to the coarse actuator, the position of the fine actuator is monitored with laser interferometer

relative to the machine tool’s base coordinate frame. Based on the ability to measure the

fine actuator with a higher precision sensor relative to the base coordinate frame, the control

relationship between the coarse and fine actuator is switched, and the coarse actuator follows

the tracking error of the fine actuator. Each axis is then controlled with a PID controller. It

should be noted that the use of laser interferometer to measure positions in a CNC milling

machine tool would be impractical due to much larger actuating range resulting in difficulties

in mounting mirrors. In contrast to the multi-axis works presented above, in 2004, Kim et

al. [32] developed a dual stage actuator and robust controller for camshaft turning. Given the

repetitive nature of the input signal, the controller is designed to converge to an optimal design

after a certain amount of time.

Beyond the field of multi-axis manufacturing machine tools, dual stage configurations are more

commonly found in 1 DOF read heads of hard disk drives. In these setups, a voice coil motor

drives the coarse movement and a piezoelectric actuator drives the fine movement. As a result,

the literature for the control of hard disk drive read heads is prevalent with examples of dual
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stage control. It should be noted that machine tools and readheads of hard disk drives have

different control objectives and configurations. Unlike machine tools, where the axes typically

follow a smooth varying trajectory, read heads are typically given step commands to different

tracks located on the disk. As a result the objective is to react as fast as possible to a step com-

mand, as opposed to following a smooth trajectory as close aspossible. Furthermore, unlike

machine tools, where each individual axis has their own respective feedback sensor, the feed-

back sensor detects the position of the read head, the positional sum of the voice coil motor and

piezoelectric actuator, allowing the closed loop control algorithm to control the actual position

of the end effector. As a result, the control laws developed address the control objectives and

dynamic analysis in a different way. In [33] the authors implemented a linear controller for

the dual-stage system with the use of a zero phase error tracking controller and a feed forward

compensator. Kobayashi et al. proposed a phase-stabilizedservo controller in [34] where the

structural modes of the piezoelectric actuator are used to compensate for errors from windage

disturbance caused by the suspension vibration. Like the setup presented in this thesis, the fine

piezoelectric actuator typically has stroke limits an order of magnitude lower than the coarse

voice coil motor actuator. In [35], Herrmann et al. addressed the problem of fine actuator sat-

uration by implementing an anti-windup scheme. Other authors have implemented state space

based controllers for dual-stage feed drives. In [36] and [37], basic implementations of H∞ and

sliding mode controllers, respectively, were applied to the dual-stage configuration. She et al.

[38], applied the equivalent input disturbance approach toa dual stage feed drive configuration.

In [39] the coarse actuator was driven with an Adaptive Proximate Time Servomechanism and

the fine actuator was controlled by a Composite Nonlinear Feedback controller to reduce the

settling time. In this work the stiffness of the controller of the fine actuator was varied depend-

ing on the read head’s proximity to the target. When the read head approaches the target the

stiffness of the controller of the fine actuator increases, therefore increasing tracking precision.
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Based on this literature survey it can be seen that many control laws exist for single stage feed

drives but few techniques exist for configurations with multi-axis dual stage configurations.

The dual stage configurations and subsequently control lawsthat are found in manufacturing

literature are relatively limited, with no application of more sophisticated control algorithms

on both the coarse and fine stages of actuation. Furthermore,the unique configurations of

the works in multi-axis dual stage configurations do not necessarily apply to the configuration

presented in this work.

2.4 Geometric Error Modeling, Identification, and Compensation

The modeling and identification of geometric errors began inthe literature for the control of

coordinate measuring machines (CMM). Since there are no process forces, software compen-

sation of geometric errors in CMMs was a viable option. In one of the earliest examples of

software compensation, Zhang et al. [40] modified feedback signals with a look up table in

order to compensate for geometric errors. Similar techniques have been extrapolated to 3-axis

CNC machine tools [41] where homogenous transformation matrices are used to map the axes

geometric errors to the tooltip position errors. In [42] a 3Dprobe-ball and spherical test are

developed to measure the link errors in the rotary table of a 5-axis CNC machine tool. The tool

deviations caused by the axes geometric errors are then compensated in real-time by multiply-

ing the inverse Jacobian matrix of the forward kinematic model with the tool deviation to obtain

a compensating trajectory. Huang et al. also takes a similarapproach in [43]. Alternatively, in

[44], a method is proposed in which the trajectories for the Aand C axis are modified to com-

pensate for orientation geometric errors, then the X, Y, andZ axis are modified to compensate

for position geometric error, therefore avoiding the recursive nature of simultaneously solving

for compensation commands on all axes. However this assumesthat moving the translational

axes will not incur any orientation errors, which may not be necessarily true. In [45] the geo-
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metric errors are measured with ball-bar tests. The tooltiperrors are mapped into the errors in

the axes positions then added back to the axes positions to compensate for the errors. In [46],

the geometric errors are first measured with a ball-bar. The positional deviations are corrected

using the geometric error tables built into the CNC machine. However, positional deviations

caused by rotational geometric errors are corrected by modifying the NC code since these er-

rors are not available for compensation in a standard geometric error table in CNC machines.

Xiang et al. [47] modeled the geometric errors of a 5-axis CNC machine tool using screw the-

ory and then compensated them using inverse kinematics. At present, there is ongoing research

on the geometric error compensation in 5-axis machine tools.

As it can be seen, in the above mentioned strategies, the geometric errors are compensated by

modifying the toolpath with respect to the modeled geometric errors. However, comparatively

less work has been done on the compensation of geometric errors with a secondary actuator.

This may be a desirable configuration as there may be scenarios in which the trajectory of

the major actuator cannot be modified. In literature there are a few examples that attempt to

tackle this problem. A secondary magnetic bearing module has been used to compensate for

the straightness errors of a single axis [48]. In another work, a two dimensional PZT actuator

is used to compensate for the straightness error and positioning errors by sending the PZT

actuator the inverted geometric error measured by a laser interferometer [49]. As it can be

seen, the existing geometric error compensation techniques with the use of an external device

are limited to a single axis and limited in general. Furthermore the standard geometric error

compensation techniques mainly deal with configurations with analytic inverse kinematics,

which allow for an analytic inverse differential solution.Since the rotary table has 6 degrees of

freedom to compensate for the 3 translational errors, analytic inverse kinematic equations do

not exist, and as a result, new techniques must be developed.
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Chapter 3

Trajectory Generation for a 9-axis Micromachining Center

3.1 Overview

In robotics literature, the trajectory generation techniques are capable of resolving redundant

degrees of freedom, but at present no works are able to do thisin an optimal way, where

the travel time is minimized while simultaneously respecting the velocity, acceleration, and

jerk limits of the drives. Conversely, machine tool literature consists of trajectory generation

techniques where the travel time is optimal while respecting the physical constraints of all

drives involved, but have not been developed to resolve redundant degrees of freedom. In

this chapter, a trajectory generation technique is presented where the strength of trajectory

generation in robotics and machine tool literature are combined.

Given a computer aided design (CAD) geometry of the part to be manufactured, the computer

aided manufacturing (CAM) system will generate a corresponding toolpath for the tool to fol-

low, which will typically consist of desired tooltip positions and tool orientations at varying

displacement intervals. In the case of the configuration presented, the trajectory generation

algorithm must first decompose the desired tooltip positions and orientation into 9-axis com-

mands which correspond to the desired tooltip position and orientation. Next it must schedule

these commands in such a way that the velocity, acceleration, and jerk limits of all the axes are

not violated while traversing the toolpath as fast as possible.

In order to do this, a forward kinematic model is first developed. Based on this kinematic

model and the desired tooltip position and tool orientations, the redundancies are resolved
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numerically and corresponding axes positions are found at fixed displacement intervals along

the toolpath. These axes positions are then scheduled in time with a feedrate optimizer, to be

as fast as possible without violating the limits of the axes.Finally the feed profile is resampled,

resulting in real-time position commands to be sent to the drives of the machine tool.

3.2 Forward Kinematics of the 9-axis Micromachining Center

Given the position commands of each of the drives it is possible to find the tooltip position and

tool orientation using the forward kinematic model of the machine tool. In order to generate

the forward kinematic model of a machine tool, first, two kinematic chains are formed with

homogenous transformation matrices (HTM) based on the sequence of the drives [50]. In the

configuration presented, the workpiece kinematic chain starts from an arbitrary base coordinate

frame and ends at the workpiece,BTw, and the tool kinematic chain starts from the same

arbitrary base frame and ends at the tool holder,BTt, as shown in Fig. 3.1.

With the kinematic chains defined, the inverse of the workpiece kinematic chain is multiplied

with the tool kinematic chain to obtain the final transformation matrix,wTt, which transforms

positions defined in the tool coordinate into the workpiece coordinate frame. The first kine-

matic chain consists of thex-y table of the micromill and all the axes of the rotary table. Asa

result, based on this sequence, the transformation matrix to transform from the arbitrary base
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Figure 3.1: 9-axis micromachining center and corresponding axes of the machine tool

15



coordinate system to the workpiece coordinate frame is as follows:

BTw,i =








1 0 0 0

0 1 0 yc
0 0 1 Ly,z

0 0 0 1








︸ ︷︷ ︸
BTyc,i








1 0 0 xc

0 1 0 0

0 0 1 Lx,z

0 0 0 1








︸ ︷︷ ︸
ycTxc,i








1 0 0 0

0 1 0 0

0 0 1 Ls

0 0 0 1








︸ ︷︷ ︸
xcTs,i

×








1 0 0 xf

0 1 0 0

0 0 1 0

0 0 0 1








︸ ︷︷ ︸
sTxf ,i








1 0 0 0

0 1 0 yf
0 0 1 0

0 0 0 1








︸ ︷︷ ︸
xfTyf ,i








1 0 0 0

0 1 0 0

0 0 1 zf + zf0
0 0 0 1








︸ ︷︷ ︸
yfTzf ,i

×








1 0 0 0

0 caf −saf 0

0 saf caf 0

0 0 0 1








︸ ︷︷ ︸
zfTaf ,i








cbf 0 sbf 0

0 1 0 0

−sbf 0 cbf 0

0 0 0 1








︸ ︷︷ ︸
afTbf ,i

×








ccf −scf 0 0

scf ccf 0 0

0 0 1 0

0 0 0 1








︸ ︷︷ ︸
bfTcf ,i








1 0 0 0

0 1 0 0

0 0 1 Lr

0 0 0 1








︸ ︷︷ ︸
cfTr,i








1 0 0 0

0 1 0 0

0 0 1 Lw

0 0 0 1








︸ ︷︷ ︸
rTw,i

(3.1)

where cq = cos(q) and sq = sin(q), q is a general axis position, andaTb,i denotes a transfor-

mation matrix from coordinate framea to coordinate frameb and the subscripti indicates an

ideal homogenous transformation. It should be noted that inEq.(3.1), the coordinate framess,

r, andw, denote the stator, rotor, and workpiece coordinate frames, respectively. Furthermore,

xc andyc are the position commands of the micromill,xf , yf , zf , af , bf , andcf are the position

commands of the rotary table,Lx,z is the height of thexc-axis,Ly,z is the height of theyc-axis,

Ls is the height of the stator,Lr is the height of the rotor,Lw is the height of the workpiece,

andzf,0 is the initial floating distance of the rotary table. All the offsets are static and shown in

Fig. 3.1.
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The second kinematic chain consists of thez-axis the micromill and the spindle offsets. As a

result, the tool kinematic chain is defined as:

BTt,i =








1 0 0 0

0 1 0 0

0 0 1 zc + L0,z

0 0 0 1








︸ ︷︷ ︸
BTzc,i








1 0 0 0

0 1 0 Lsp,y

0 0 1 −Lsp,z

0 0 0 1








︸ ︷︷ ︸
zcTt,i

(3.2)

wherezc is thez-axis position command of the micromill,Lsp,y andLsp,z are the linear offset

of the spindle, andL0,z is the initial offset of thez-axis of the micromill from the arbitrary base

coordinate frame. The initial offset,L0,z, can be defined as:

L0,z = Lx,z + Ly,z + Ls + zf,0 + Lr + Lw + zc,0 + Lsp,z + Lt (3.3)

wherezc,0 is the initial position of thez-axis of the micromill andLt is the length of the cutting

tool. With both transformation matrices originating at thearbitrary base coordinate frame, the

transformation matrix from the tool coordinate frame to theworkpiece coordinate frame is

found by multiplying the inverse of Eq. (3.1) with Eq. (3.2) as follows:

wTt,i =
(
BTw,i

)−1 BTt,i (3.4)

If the position of the tooltip is defined in the tool coordinate frame, then it is possible to find

its position relative to the workpiece with the transformation defined in Eq. (3.4). Relative to

the tool coordinate frame, the tooltip position is the exposed length of the cutting tool and the

orientation is always lined up with thez-axis of the tool coordinate frame. As a result, the tool

can be defined in the tool coordinate frame asttp = [0 0 Lt]
T andtto = [0 0 1]T for the tooltip

position and tool orientation, respectively. Given the transformation matrix in Eq. (3.4), the

tooltip position and tool orientation can be transformed into the workpiece coordinate frame as
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follows: 






Px Oi

Py Oj

Pz Ok

1 0







= T

[
ttp

tto

1 0

]

(3.5)

Expanding the matrix equation defined in Eq. (3.5), the forward kinematic model gives the

tooltip position and tool orientation defined as a function of the positions of the 9 drives as

follows:

Px (q) = (−Lsp,y − yc − yf )(caf scf + ccf saf sbf )

+(Lr + Lw + zc,0 + zc − zf )(saf scf − caf ccf sbf ) (3.6)

+cbf ccf (−xc − xf )

Py (q) = (−Lsp,y − yc − yf )(caf ccf − saf sbf scf )

+(Lr + Lw + zc,0 + zc − zf )(ccf saf + caf sbf scf ) (3.7)

+(xc + xf ))cbf scf

Pz (q) = (−xc − xf )sbf − Lwz − Lr

+(Lr + Lw + zc,0 + zc − zf )caf cbf (3.8)

+(Lsp,y + yc + yf ))cbf saf

Oi(q) = saf scf − caf ccf sbf (3.9)

Oj(q) = ccf saf + caf sbf scf (3.10)

Ok(q) = caf cbf (3.11)

whereq = [xc, yc, zc, xf , yf , zf , af , bf , cf ]
T , Px, Py, andPz are thex, y, andz position of the

tooltip in the workpiece coordinate frame, andOi, Oj, andOk are the orientation of the tool

about thex, y, andz axis of the workpiece coordinate frame. In the next section,the Jacobian

of the forward kinematics, as defined in Eq. (3.6) to (3.11), along with the desired toolpath is
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used to resolve the redundant degrees of freedom.

3.3 Redundancy Resolution of the 9-axis Micromachining Center

Typically, machining toolpaths from the CAM system are specified as the tooltip position and

tool orientation with respect to the workpiece, also known as cutter location (CL) data. The CL

data from the CAM system is first fit to a jerk continuous B-splineas a function of tangential

displacement ,s, to preserve third order continuity [51] in order to avoid exciting the structural

modes of the machine tool:

R(s) = [Px(s), Py(s), Pz(s), Oi(s), Oj(s), Ok(s)]
T (3.12)

In traditional 3-axis and 5-axis machine tools, analytic inverse kinematic equations can be used

to find the corresponding axes positions givenR(s). However, since the 9-axis micromachin-

ing center has more axes than necessary, the system is under constrained and analytic inverse

kinematic solutions do not exist. In this work, numerical techniques from robotics literature [6]

[7] are adapted to resolve the under constrained system. In order to generate trajectories that

resolve the redundancy of the micromachining center, axes configurations, which correspond

to the desired tooltip position and tool orientation, at fixed displacement intervals along the

toolpath are first found. With the forward kinematic equations, it is possible to find the Jaco-

bian matrix, which is the differential of the tooltip position and tool orientation with respect to

axes positions:

J =
dR

dq
=







dPx

dxc
· · · dPx

dcf
...

. ..
...

dOk

dxc
· · · dOk

dcf







6×9

(3.13)
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Given differential axes positions, it is possible to find thedifferential tooltip positions and tool

orientations, as follows:

dR = Jdq (3.14)

However, since the objective is to findq fromR(s), the inverse ofJ is required. SinceJ is not

a square matrix it is not possible to simply multipledR with the inverse ofJ . Alternatively, as

originally proposed in [6], the Moore-Penrose inverse, defined as:

J† = JT
(
JJT

)−1
(3.15)

can be used to find the differential axes positions. By multiplying the Moore-Penrose inverse

with a differential tooltip position and tool orientation,it is possible to find the corresponding

differential axes position. Since the spline describing the tooltip position and tool orientation,

R(s), is a function of tangential displacement,s, it can be differentiated with respect tos

and multiplied withJ† to get the axes positions differentiated with respect to displacement as

follows:
dq

ds
= J†dR

ds
(3.16)

It should be noted that an infinite range of differential solutions exist and Eq. (3.16) represents

the least squares solution of the under constrained problem. This corresponds to the solution

with the lowest average axes differential with respect to displacement at each step or more

formally:

minimize

∣
∣
∣
∣

∣
∣
∣
∣

dq

ds

∣
∣
∣
∣

∣
∣
∣
∣

subject to dR = Jdq

(3.17)

However, since our trajectory has requirements beyond the least norm solution, Eq. (3.16) is

augmented to fulfill other requirements such as avoiding stroke limits and singularities. Fur-
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thermore, the differential solution must be numerically integrated at each step in order to obtain

position commands at fixed displacement intervals.

3.4 Avoiding Stroke Limits of the Drives

As mentioned, Eq. (3.16) represents a single solution in an infinite range of solutions to Eq.

(3.14). As a result Eq. (3.16) can be augmented to fulfill other criteria by using the nullspace

of the Jacobian matrixJ in the following way:

dq

ds
= J†dR

ds
+ β

(
I − JJ†)∇H (3.18)

where
(
I − JJ†) is the nullspace of the Jacobian,β is a constant gain, andH is a cost function

to be minimized. Any projection onto the nullspace does not effect the position of the end

effector, so joint configurations can be selected that minimize the cost function defined inH

without affecting the end effector’s position. Due to the highly varying stroke limits of each of

the two systems, it is important to ensure that the stroke limits of each of the drives are respected

when the trajectories are generated. In order to constraintthe generated axes commands, the

cost function is defined in a way that position commands closeto the stroke limits of the drives

are penalized:

H(q) =
x2
c

(
x2
c,max − x2

c

)2 + · · ·+
c2f

(
c2f,max − c2f

)2 (3.19)

whereqmax is the stroke limit of the respective axis. As it can be seen, the cost function

approaches infinity as the axes positions approach the stroke limits. Equation (3.18) projects

the gradient ofH, which is defined as:

∇H =

[

2x2
c,maxxc

(
x2
c,max − x2

c

)2 , . . . ,
2c2f,maxcf

(
c2f,max − c2f

)2

]

(3.20)
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on to the nullspace Jacobian, thereby selecting an axes configuration that gives the desired

tooltip position and tool orientation, while respecting the stroke limits of the drives. By substi-

tuting Eq. (3.20) into Eq. (3.18), the solution works similar to a gradient descent optimization,

where the solution selects the configuration that minimizesthe cost function defined byH. It

should be noted the solution divides its efforts between attempting to minimize the norm of the

axes differentials for all the axes and minimizing the cost functionH.

To show this, a trajectory for a circle of radius 4 [mm] on thex-y plane is generated using only

thex-y axis of the micromill and rotary table. Figures 3.2 and 3.3 shows trajectories generated

by the algorithm without and with the stroke constraints, respectively. Figure 3.4 compares the

norm of the reference commands for the constrained and unconstrained configurations. As it

can be seen, without the constraint, as shown in Fig. 3.2, thefine and coarse actuator have the

same motion profile, resulting in the lowest average axes movements as shown in the norm of

the motion commands in Fig. 3.4. However this would not be possible as the fine actuators

only have a stroke limit of 100 [µm]. When the constraints are included, the fine actuator is

constrained to its stroke limits while the coarse actuator takes up the remainder of the trajectory,

as shown in Fig. 3.3, resulting in higher average axes movements as shown in Fig. 3.4.

The strength of each portion of the solution is dictated by the gainβ. A largerβ results in a

solution that prefers to keep the position commands away from the stroke limits but may not

necessarily have the lowest average axes movement. Conversely, a smallβ reduces the average

axes movement but will have configurations that are closer tothe stroke limits. It should be

noted that ifβ is too small, Eq. (3.18) may result in solutions that violatethe stroke limits.
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Figure 3.2: Generated trajectories without constraint cost function
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3.5 Singularity Avoidance with augmentation of Jacobian Matrix

Due to the non-Cartesian movements of the 9-axis micromachining center, it is possible to

end up in a singular configuration where the machine tool losses actuation capabilities in a

direction. Mathematically, it results in the Jacobian matrix becoming degenerate, and as a

result, the Moore-Penrose inverse cannot be found and Eq. (3.18) will not have a solution. In

order to avoid this scenario, the Jacobian matrix can be augmented by adding a diagonal matrix

of small constants [10] so that a solution can always be foundas follows:

J∗ = JT
(
JJT + µI

)−1
(3.21)

The trade off for guaranteeing a solution is the introduction of an error into the solution, since

the Moore-Penrose inverse has been modified. However, an augmented solution is only nec-

essary in the vicinity of a singularity. As a result, the Moore-Penrose inverse is conditionally

modified by varying the magnitude of the small constantµ in the following way:

µ =







µ0

(

1− w
w0

)2

, if w < w0

0, otherwise
(3.22)

wherew =
√

det(JJT ) is manipulability, which corresponds to how close the machine is

to a singular configuration.w0 is the threshold for manipulability in which the modification

constantµ starts taking on a non-zero value. Furthermore,µ0 corresponds to the maximum

amount of deviation the solution is allowed to have from the unmodified solution. Ifw0 and

µ0, are set too low the solution may still be singular, resulting in a degenerate solution. In

contrast, ifw0 andµ0 are too large, then the deviation from the desired path may betoo large,

violating user defined tolerances. The different effects ofdifferent sizes ofw0 andµ0 can be

seen in Fig. 3.5 and Fig. 3.6, wherew0 = µ0 = 1 in Fig. 3.5 andw0 = µ0 = 10−6 in Fig. 3.6.

As a resultw0 andµ0 are tuning parameters which depend on the accuracy constraints.
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3.6 Numerical Integration of Differential Solution to get Position Commands

Though the solution is capable of avoiding the stroke limit of drives and singularities, the

solution only outputs a differential,dq
ds

. In order to obtain axes positions, the solution must be

integrated over displacement,s, as follows:

q(s) =

∫ s

0

dq

ds
ds (3.23)

However, the analytic integrationdq
ds

is not straightforward and the integration is performed

numerically instead. The length of the whole toolpath,S, is first found with Simpson’s method

[52], then divided intoN intervals giving us the fixed displacement intervals∆s = S/N .

Through numerical integration, the axes positionsq[n] are found at the displacementss[n] =

∆s × n wheren = 1, 2, 3, . . . , N − 1, N . Several works [12] have analyzed various ways to

perform the numerical integration and as expected, the 4th Order Runge Kutta method provided

the best results. Since the initial joint configuration is known, and it is known that there is no

displacement at the beginning of the tool path, the initial values can be set asq[0] = q0 and

s[0] = 0. With these initial values, the numerical integration can be performed in the following

way:
q[n+ 1] = q[n] + (k1 + 2k2 + 2k3 + k4)

∆s
6

k1 =
dq (s[n],q[n])

ds

k2 =

dq

(

s[n] +
∆s

2
,q[n] +

∆s

2
k1

)

ds

k3 =

dq

(

s[n] +
∆s

2
,q[n] +

∆s

2
k2

)

ds

k4 =
dq (s[n] + ∆s,q[n] + ∆sk3)

ds

(3.24)

which givesN axes positions,q[n], that correspond to theN desired tool position and orien-

tationR(s[n]) at displacementss[n]. Unlike the majority of works in robotics literature that
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employ a similar technique, the commands are generated withrespect to displacement, allow-

ing for further optimization over time. The 4th Order Runge Kutta integration is repeated until

the end of the toolpath is reached, resulting in known axes positions at fixed displacement

intervals.

3.7 Closed loop correction of deviations from numerical integration

Due to the numerical nature of the integration algorithm, a small amount of numerical drift

occurs at each step, causing the corresponding tooltip position and tool orientation from the

axes positionsq[n] to deviate from the desired tooltip position and tool orientation specified by

R(s). As a result, a corrective action is introduced into the differential solution in Eq. (3.18)

[13]. Given the solved axes positionq[n] at a given displacements[n], it is possible to find the

resultant tooltip position and tool orientation with the forward kinematics as described in Eq.

(3.6) to (3.11). For brevity, the forward kinematic equations are grouped into a single vector

function:

f(q[n]) =












Px (q[n])

Py (q[n])

Pz (q[n])

Oi (q[n])

Oj (q[n])

Ok (q[n])












(3.25)

As result, the error between the desired tooltip position and orientation and the result of the

differential solution can be found as follows:

e[n] = R(s[n])− f(q[n]) (3.26)

Given the errore[n], it is possible to include closed loop corrective action into Eq. (3.18) so

axes configurations can be selected to correct the numericaldeviation caused by the numerical
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integration algorithm as follows:

dq

ds
= J∗

(

Kee[n] +
dR

ds

)

+ β(I− J∗J)∇H (3.27)

whereKe is a scalar gain. As a result, similar to a controller, the differential solution seeks to

minimize the error at each subsequent step. It should be noted that, the size of the scalar gain

is limited by the stability of the solution. Should too high of a gain be set, the solution will

become unstable. To demonstrate its effectiveness, Fig. 3.8 and Fig. 3.7 show the errors of

the Runge Kutta numerical integration algorithm, with and without the closed loop correction

implemented, respectively.

From Fig.3.8 it should be noted that the 4th Order Runge Kutta integration method is able to

keep the numerical errors in the range of10−11 [mm] and10−10 [rads] which is well below the

tolerance in most machining applications. However, it is important to note that since there is

no corrective action for numerical drift, as the toolpath gets longer, numerical errors may be

incurred at each step causing violation at some point on the toolpath. From Fig. 3.8, the closed

loop corrective action corrects for the numerical drift resulting in a numerical error of10−13

[mm] and10−12 [rads], at least an order of magnitude lower than without thecorrective action.

Furthermore, error is not incurred at each step, ensuring that the algorithm will not violate the

tolerance for longer toolpaths.

3.8 Full Redundancy Resolution Algorithm

The full redundancy resolution algorithm incorporates numerous elements, including cost func-

tions, singularity avoidance, numerical integration, andclosed loop corrective action. For

brevity:
dq

ds
(s[n],q[n]) = g (s[n],q[n]) (3.28)
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Algorithm 1: Full kinematic algorithm

1 function Kinematics(s,Q);

Input : R(s), S, N

Output: s = [s[0], s[1], . . . , s[N − 1], s[N ]]

Q = [q[0],q[1], . . . ,q[N − 1],q[N ]]

2 s[0] = 0;

3 q[0] = q0;

4 ∆s = S/N ;

5 n = 0;

6 for n← 0 to N − 1 do

7 k1 = g(q[n], s[n]);

8 k2 = g(q[n] + k1∆s/2, s[n] + ∆s/2);

9 k3 = g(q[n] + k2∆s/2, s[n] + ∆s/2);

10 k4 = g(q[n] + ∆sk3, s[n] + ∆s);

11 q[n+ 1] = q[n] + (k1 + 2k2 + 2k3 + k4)∆s/6;

12 s[n+ 1] = s[n] + ∆s;

13 n = n+ 1;

14 end
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With this definition, all the elements of the redundancy resolution algorithm are incorporated

as shown in Algorithm 1.

3.9 Feedrate Optimization with Redundancy Resolution

The redundancy resolution algorithm is able to generate differential solutions to the under con-

strained problem with respect to displacement. As a result,with the numerical integration

algorithm, we have the axes positions ,q[n] ,and axes differentials,dq[n]
ds

, at displacementss[n].

However, the axes commands have not been scheduled with respect to time, and further opti-

mization is required. When scheduling the feed profile, the objective is to traverse the toolpath

as fast as possible without violating the physical limits ofthe drives, or more formally:

minimize
∫ S

0

1

ṡ(s)
ds

subject to q̇ < q̇max

q̈ < q̈max

...
q <

...
qmax

(3.29)

whereṡ(s) is the feedrate defined as a function of the displacement,q̇, q̈, and
...
q are the axes

velocity, acceleration, and jerk, respectively, andq̇max, q̈max, and
...
qmax are the axes velocity

limits, acceleration limits, and jerk limits, respectively. By minimizing the reciprocal of the

feed profile over the length of the toolpath, the result is a feed profile that travels the toolpath

as fast as possible. The feedrate is defined as a jerk continuous B-spline of the form:

ṡ(s) =
Θ∑

i=0

Ni,p(ϑ)Pi (3.30)

whereNi,p(ϑ) are the B-spline basis functions,Pi are the control points,ϑ = s/S is the spline

parameter equivalent to the displacement normalized by thetotal toolpath length,p is the degree

of the spline, andΘ is the total of number of control points [53]. The number of control points
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is selected by considering the speed and accuracy of the optimization algorithm. With more

control points, there are more degrees of freedom allowing for a more optimal feedrate but

since the optimization algorithm is numerical, the computational load is higher. The control

points are initialized as follows:

P1 = 0

[P2, P3, . . . , PΘ−2, PΘ−1] = f/2

PΘ = 0

(3.31)

wheref is the initial user defined feedrate. This corresponds to stationary start and stop con-

ditions, with an initialized feedrate of half of the desiredfeedrate. It should be noted that the

selection off/2 for the initial feedrate is arbitrary since the optimization algorithm will change

the feedrate. The knot vector is uniformly distributed and hasr = Θ + p + 1 knots. Since the

feedrate starts atP1 and ends atPΘ, the first 3 knots of the knot vector are 0 and the last 3 knots

of the knot vector are 1. The remainingr − 6 knots are then evenly distributed between 0 and

1. The knot vector can be assigned as follows:

ϑ = [0, 0, 0,∆ϑ, 2∆ϑ, . . . , (r − 6)∆ϑ, 1, 1, 1] (3.32)

where∆ϑ = 1/(r−5). Next, the constraints are defined as a function of the feed profile and the

output of the kinematic module as described in Algorithm 1. The axes velocitẏq, acceleration

q̈, and jerk
...
q, equations are expressed as a function of the axes differentials and the feedrate at

theN displacement intervals as follows:

q̇[n] =
dq[n]

ds
ṡ(s[n]) (3.33)

q̈[n] =
d2q[n]

ds2
ṡ2(s[n]) +

dq[n]

ds
s̈(s[n]) (3.34)

...
q[n] =

d3q[n]

ds3
ṡ3(s[n]) + 3

d2q[n]

ds2
ṡ(s[n])s̈(s[n]) +

dq[n]

ds

...
s (s[n]) (3.35)
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where the second and third geometric derivatives,d2q[n]
ds2

and d3q[n]
ds3

, can be found be differen-

tiating Eq. (3.27). A set of constraint equations,C(s[n]), which correspond to the physical

limits of the drives is found by normalizinġq[n], q̈[n], and
...
q[n] with the axes limits:

C(s[n]) =

[ |q̇[n]|
q̇max

,
|q̈[n]|
q̈max

,
|...q[n]|
...
qmax

]T

≤ 1 (3.36)

As a result, in order to ensure the limits of the drives are notviolated when traversing the

toolpath, the feed profile must be selected to ensure that theconstraint equations defined in Eq.

(3.36) are not greater than 1. Since the constraints are functions of the feedrate and its time

derivatives, the optimization problem is a non-linear problem and must be solved with a non-

linear optimizer. In order to do this, the problem must be phrased as a minimization problem

as follows:

minimize
Pi

∫ S

0

1
∑Θ

i=0 Ni,p(u)Pi

ds

subject to C(s[n]) ≤ 1, n = 0, . . . , N.

(3.37)

The reciprocal of the feedrate of the spline is minimized by modifying the control points,Pi,

while checking the constraints atC(s[n]). Since the kinematic solution is numerical,dq
ds

, d2q
ds2

and d3q
ds3

are only known ats[n] displacements. As a result, the constraints are only evaluated

at the knownN displacements as specified in Eq. (3.37). Since the problem defined by Eq.

(3.37) is a constrained non-linear optimization problem itis solved with a non-linear convex

optimization solver found in MATLAB’s optimization tool box. In this work the Active Set al-

gorithm is selected as the optimization algorithm. Furtherdetails of this optimization algorithm

can be found in [5].

Once an optimized feed profile is found, displacements are scheduled with respect to time.

Since the feedrate is a function of displacement, the displacements with respect to time are
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found with a Taylor Expansion:

s[k + 1] = s[k] + ṡ(s[k])Ts +
s̈(s[k])

2
T 2
s (3.38)

wherek = 1, 2, . . . , K−1, K whereK is the total number of time steps to traverse the toolpath.

Equation (3.38) gives the desired tool path displacementss[k] at timek × Ts, based upon the

feedrate from the optimization algorithm. However, the axes positionsq are still only known at

uniformly spaced intervals△s based on Eq. (3.24). To get a jerk continuous representationof

the axes positions as a function of displacement, the joint positions are interpolated with septic

polynomials:

qn(s) = Ans
7 +Bns

6 +Cns
5 +Dns

4 + Ens
3 + Fns

2 +Gns+Hn (3.39)

where the subscriptn indicates a polynomial connecting the joint positions ats[n] to the joint

positions ats[n + 1]. Septic polynomials are selected since there are 8 boundaryconditions

including the position, velocity, acceleration, and jerksat the start and stop points of the poly-

nomial. Since the positions and derivatives are known, it ispossible to solve for all coefficients

of each polynomial analytically using the boundary conditions:
















0 0 0 0 0 0 0 1

∆s7 ∆s6 ∆s5 ∆s4 ∆s3 ∆s2 ∆s 1

0 0 0 0 0 0 1 0

7∆s6 6∆s5 5∆s4 4∆s3 3∆s2 2∆s 1 0

0 0 0 0 0 2 0 0

42∆s5 30∆s4 20∆s3 12∆s2 6∆s 2 0 0

0 0 0 0 6 0 0 0

210∆s4 120∆s3 60∆s2 24∆s 6 0 0 0

































An

Bn

Cn

Dn

En

Fn

Gn

Hn

















=


















q[n]

q[n+ 1]
dq[n]
ds

dq[n+1]
ds

d2q[n]
ds2

d2q[n+1]
ds2

d3q[n]
ds3

d3q[n+1]
ds3


















(3.40)

which has a trivial solution. The result is a piecewise polynomial function,q(s) that connects

the joint positions generated by Algorithm 1 in a jerk continuous way. By substitutings[k] into
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Figure 3.9: Real-time trajectory generation command from the result of feed optimization

algorithm and 9-axis kinematic module
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theq(s), it is possible to getq[k], which results in axes position commands for each of the axes

at the controller sample period as illustrated in Fig. 3.9.
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Chapter 4

Control Design for Micromill Feed Drives, High Precision Rotary Table, and Dual Stage

Feed Drives

4.1 Overview

On the presented configuration there are 9 individual axes tocontrol, with 3 from the micromill

and 6 from the rotary table. Due to their differing dynamic characteristics, different approaches

are used to identify and control the different systems. For the micromill, a sliding mode con-

troller with a LuGre friction compensator are designed for each of the axes. It was found that

each of the axes was able to achieve a bandwidth of about 30Hz before there were issues of

stability. For the rotary table, linear lead-lag controllers were designed to control the positions.

In order to push the bandwidth higher, notch filters were usedto filter out resonant frequencies

coming from the flexibilities of the rotary table setup. Withthe lead lag controllers and notch

filters, the axes of the rotary table were able to have bandwidths of about 250Hz. Since the

rotary table is able to achieve approximately 10 times the bandwidth of the micromill, and the

translational degrees of freedom are redundant with the micromill, the rotary table is used to

compensate for the tracking errors of the micromill. As a result, certain axes on the 9-axis

micromachining center are able to have the long stroke of themicromill axes with the high

bandwidth of the rotary table.
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4.2 Modeling and Control Design of the Micromill

4.2.1 Identification of Rigid Body Dynamics

In order to design a control law for the axes of the micromill,a model for the feed drive

must be developed and its corresponding parameters must be found. The approach outlined

in [54] is adapted for the configuration in this work. In this methodology, the inertia, viscous

friction, and Coulomb friction are found using linear regression. Based on these parameters,

a pole placement controller and a Kalman Filter, as outlinedin Section 4.2.2, is designed to

identify non-linear friction characteristics. Using thex-axis as an example, the micromill can

be modeled in frequency domain as a rigid body:

x(s) =
KaKt

ms2 + bs

(

u(s)− Fd(s)

KaKt

)

(4.1)

whereKa is the amplifier gain,Kt is the motor gain,m is the mass of the feed drive,b is the

viscous friction,u(s) is the input signal, andFd(s) is the disturbance force. By considering the

disturbance force as an equivalent disturbance input:

d(s) =
Fd(s)

KaKt

(4.2)

and defining the gainKv = KtKa/m and the polepv = −b/m, the feed drive velocity,v(s)

can be expressed in terms of the control input,u(s), and disturbance input,d(s):

v(s) =
Kv

s− pv
[u(s)− d(s)] (4.3)

Since the feed drive is controlled with a digital real-time controller, the controller sees the plant

defined in Eq.(4.3) as a plant discretized by the zero order hold:

v(k) =
Kvd

z − pvd
[u(k)− d(k)] (4.4)
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where

Kvd =
Kv

−pv
(1− epvTs) (4.5)

pvd = epvTs (4.6)

From the discrete transfer function Eq.(4.4), the following difference equation can be found:

v(k) = pvdv(k − 1) +Kvdu(k − 1)−Kvdd(k − 1) (4.7)

In the case of a linear feed drive, and in the absence of process forces, the major source of

disturbance comes from velocity dependent Coulomb frictionwhich can be modeled as:

Ff (v) =







0 if v = 0

F+
coul if v > 0

F−
coul if v < 0

(4.8)

which must be modeled as an equivalent disturbance and included into the difference equa-

tion asd(k). The equivalent disturbances, corresponding to the Coulombfriction, is found as

follows:

d+f =
F+

coul

KaKt

(4.9)

d−f =
F−

coul

KaKt

(4.10)

Based on the friction model in Eq.(4.8) and the equivalent disturbances in Eq.(4.9) and Eq.(4.10),

the disturbance from the Coulomb friction is defined as follows:

df (v(k)) = PV (v(k)) · d+f +NV (v(k)) · d−f (4.11)
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wherePV (v(k)) andNV (v(k)) are the positive and negative velocity functions defined as

follows:

PV (v(k)) =
1

2
· σ (v(k)) · (1 + σ (v(k))) (4.12)

NV (v(k)) = −1

2
· σ (v(k)) · (1− σ (v(k))) (4.13)

and whereσ is a deadband function to ensure encoder noise does not affect the identification:

σ (v, Vd) =







0 if |v| ≤ Vd

1 if v > Vd

−1 if v < −Vd

(4.14)

whereVd is the limit in which the measured velocity is considered to be non-zero. This ensures

that noise from the velocity measurement is not mistaken foractual movement, which may

potentially affect the identification results. With the equivalent disturbance defined in Eq.

(4.11), the difference equation can be rewritten as:

v(k) = pvdv(k − 1) +Kvdu(k − 1)− [Kvdd
+
f PV (v(k − 1)) +Kvdd

−
f NV (v(k − 1))] (4.15)

A frequency rich signal,u, as shown in Fig. 4.1 is sent to the machine and the velocity is

measured. This type of signal is selected in order to excite the system at as many frequencies

as possible, resulting in better fitting results. Since the velocity,v, is measured by the encoder,

it also defines the speed dependent sign functions,PV (v) andNV (v). The only unknowns in

Eq. (4.15) are the coefficientspvd, Kvd, d
+
f , andd−f . The problem can be redefined as a matrix
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Figure 4.1: Frequency rich signal for rigid body identification

problem as follows:








v(2)

v(3)
...

v(N)








︸ ︷︷ ︸

Y

=








v(1) u(1) PV (1) NV (1)

v(2) u(2) PV (2) NV (2)
...

...
...

...
v(N − 1) u(N − 1) PV (N − 1) NV (N − 1)








︸ ︷︷ ︸

Φ








pvd
Kvd

Kvdd
+
f

Kvdd
−
f








︸ ︷︷ ︸

θ

(4.16)

whereN is the total number of measurements in the identification experiments. The objective is

to find coefficients inθ that model the relationship as accurately as possible. SinceY is known,

andΦ is known, the coefficients inθ are found in order to minimize the error between the

predicted and measured value, which can be phrased in the following minimization problem:

min
1

2
(Y − Φθ)T (Y − Φθ) (4.17)
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Table 4.1: Identified rigid body parameters of the micromill
Parameter x y z

m̂ [kg] 21.19 59.17 17.61

b̂ [kg/s] 325.91 346.01 179.10
F̂+

coul [N] 6.29 19.98 17.47
F̂−

coul [N] -6.094 -18.93 -18.28

which can be minimized by settingθ as follows:

θ̂ = (ΦTΦ)−1ΦTY (4.18)

From θ the estimated values for mass (m̂), viscous friction (̂b), and coulomb friction (̂F+/−
coul )

can be found as follows:

m̂ =
(p̂vd − 1)KtKaTs

K̂vd ln(p̂vd)
(4.19)

b̂ =
(1− p̂vd)KtKa

K̂vd

(4.20)

F̂+
coul =

ˆKvdd
+
f

K̂vd

(4.21)

F̂−
coul =

ˆKvdd
−
f

K̂vd

(4.22)

From these tests, the corresponding mass, viscous friction, and coulomb friction values for

each axis are found and outlined in Tab. 4.1. Based upon these results the friction model is

improved as outlined in the following section.

4.2.2 Identification of Friction Characteristics

In addition to the Coulomb friction modeled and identified in Section 4.2.1, feed drives have

additional non-linear friction phenomenon, which must be identified and compensated in order
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to improve tracking performance. To identify this non-linear friction characteristic, a Kalman

filter is designed to observe the disturbance when the axis isjogged back and forth at vari-

ous speeds. In the absence of process forces, the disturbances observed by the Kalman filter

corresponds to non-linear friction phenomena. A simple pole placement controller is first de-

signed, based on the rigid body parameters found in the previous section, allowing the axis to

be jogged at different speeds. It should be noted that the pole placement controller is used for

identification purposes, and a more sophisticated sliding mode controller is developed in the

following section.

In order to design the Kalman filter, the feed drive must be modeled in discrete state space

form, with disturbance as one of the states while considering the measurement and input noise.

With the axis velocity defined in Eq. (4.3), the axis positioncan be found as follows:

x(s) =
1

s

Kv

s− pv
[u(s)− d(s)] (4.23)

which gives the following state space model:
[

ẋ(t)

v̇(t)

]

= Ac

[

x(t)

v(t)

]

+Bc

[

u(t)

d(t)

]

(4.24)

whereAc andBc are the transition and input matrices defined as:

Ac =

[

0 1

0 pv

]

(4.25)

Bc =

[

0 0

Kv −Kv

]

(4.26)

From this state space model, the discrete time state is found:
[

x(k + 1)

v(k + 1)

]

= Ad

[

x(k)

v(k)

]

+Bd

[

u(k)

d(k)

]

(4.27)
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whereAd andBd are the discrete transition and input matrices defined as:

Ad = eAcTs (4.28)

Bd =

∫ Ts

0

eAcλdλ ·Bc (4.29)

In order to design a Kalman filter that can estimate disturbances in the presence of noise, the

discrete state space model in Eq.(4.27) is augmented in the following way:





x(k + 1)

v(k + 1)

d(k + 1)




 = A






x(k)

v(k)

d(k)




+B

[

u(k)
]

+W

[

ũ(k)

wd(k)

]

(4.30)

[

xm(k)

vm(k)

]

= C






x(k)

v(k)

d(k)




+V

[

x̃(k)

ṽ(k)

]

(4.31)

whereũ(k) is the input noise,̃x(k) is the feedback position noise,ṽ(k) is the velocity feedback

noise, andwd(k) is the disturbance noise. The matrices in the augmented state space model are

defined as:

A =

[

Ad −Bd

0 0 1

]

B =

[

Bd

0

]

C =

[

1 0 0

0 1 0

]

W =






Bd

0

0

0 1




 V =

[

1 0

0 1

]

(4.32)

The augmented state space model treats the disturbance as a state, allowing the Kalman filter

to observe it. Next, the noise of the feedback and input must be considered in order to select

optimal gains for the Kalman filter. The position of the feed drives are measured with a linear

encoder with a resolution ofδx = 40 [nm], which introduces an error in measurement due

to quantization. As a result, the error between the actual and measured position is uniformly

45



distributed with a zero mean and values between+δx/2 and−δx/2. The variance can be

computed as:

Rx̃ = E[(x̃− E[x̃]) = E[x̃2] =

∫ ∞

−∞
p (x̃) · x̃2dx̃ =

∫ δx/2

−δx/2

x̃2dx̃ =
(δx)2

12
(4.33)

Since the noise is the digitally differentiated encoder signal, then the resolution isδv = 40/Ts

[nm/s] resulting in a variance of:

Rṽ =
(δv)2

12
=

(δx/Ts)
2

12
(4.34)

Similar to the feedback, quantization of the input signal can introduce additional noise into

the system. The current amplifier is controlled with a PWM control signal with a frequency of

50kHz. The real-time controller of dSpace is capable of varying the the PWM with a resolution

of 50ns. As a result, within a duty cycle, it is possible to have 400 unique values. Since

the amplifier has a saturation limit of±5[V ] then the resolution of the input signal isδu =

10/400[V] = 0.025[V], which, similar to the feedback, givesa variance of:

Rũ =
(δu)2

12
(4.35)

Unlike the covariancesRx̃, Rṽ, andRũ, Rwd
is a tuning parameter that adjusts the performance

of the Kalman filter with respect to predicting disturbance.A higher covariance results in a

Kalman filter that converges faster but outputs noisier results and vice versa for lower covari-

ance. It was found the following values resulted in the best balance between performance and

noise:

Rwd
= 1× 10−6 (4.36)
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Given these parameters, the Kalman filter takes the form:





x̂(k)

v̂(k)

d̂(k)




 = (I−KobsC)A






x̂(k − 1)

v̂(k − 1)

d̂(k − 1)




 = (I−KobsC)B

[

u(k − 1)
]

+Kobs

[

xm(k)

vm(k)

]

(4.37)

wherex̂(k), v̂(k), andd̂(k) are the estimated position, velocity, and disturbance, respectively,

at time stepk,Kobs is the Kalman filter gain matrix andxm(k) andvm(k) are the measured axis

position and velocity, respectively. Based on these system parameters and noise variances, the

Kalman observer gain matrix,Kobs, is found [55] [19], giving us the following observer gains

for thex, y, andz axis as follows:

Kobs,x =






0.2227 2.8518E− 6

285.1827 0.0061

−73.5388 −0.0020




 (4.38)

Kobs,y =






0.1880 1.9796E− 6

197.9680 0.0034

−76.1335 −0.0017




 (4.39)

Kobs,z =






0.1993 2.2430E− 6

224.3086 0.0042

−75.3177 −0.0018




 (4.40)

With these Kalman filters, the axes are jogged back and forth at ±1 [mm/s],±3 [mm/s],±5

[mm/s],±10 [mm/s],±20 [mm/s],±30 [mm/s],±40 [mm/s],±50 [mm/s],±75 [mm/s],±100

[mm/s],±125 [mm/s], and±150 [mm/s] and the disturbance is measured over the whole stroke

of the feed drive. An example of the disturbance prediction at 10 [mm/s] can be seen in Fig. 4.2.

The disturbance over the whole stroke of the feed drive is averaged, resulting in a disturbance

estimate at each corresponding velocity as shown in Fig. 4.3.
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Figure 4.2: Disturbance estimation forxc-axis at 10 [mm/s]
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Figure 4.3: Average disturbance estimation forxc-axis at all test speeds
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From the velocity based disturbance data a Stribeck friction model of the form:

Ff (v) =







F+
state

−v/Ω+
1 + F+

coul

(

1− e−v/Ω+
2

)

+ bv, for v > 0

F−
state

−v/Ω−

1 + F−
coul

(

1− e−v/Ω−

2

)

+ bv, for v < 0

(4.41)

is fit. In Eq.(4.41)F+
stat andF−

stat are the static frictions in the positive and negative directions

respectively,F+
coul andF−

coul are the Coulomb frictions in the positive and negative directions

respectively, andΩ+
1 , Ω−

1 , Ω+
2 , andΩ−

2 , are exponential coefficients which determine the rate

in which the static friction converges to the Coulomb friction.

Since the Kalman observer is based on the parameters identified in the rigid body model the

disturbance should consist of only the non-linear frictionphenomenon. However, it is possible

that the viscous friction,b, from the openloop rigid body identification may be inaccurate.

Should this be the case, the disturbance will exhibit linearvariation at the higher speeds, where

the disturbance should only be defined by a constant Coulomb friction. An example of this

can be seen in Fig. 4.3, where the observed friction has a negative slope at higher velocities,

indicating a viscous friction that is higher than one obtained from the identification. If this

is the case, the originally identified viscous friction coefficient is adjusted by first identifying

the slopes in the disturbance estimate in the positive,△b+, and negative direction,△b−, using

linear regression. An average slope is found:

△b̄ =
△b+ +△b−

2
(4.42)

and the original viscous friction is updated as follows:

b̂′ = b̂+△b̄ (4.43)

From Fig. 4.3, it can be seen that the slopes at higher velocities are removed once the viscous

friction has been corrected. Once corrected, the viscous friction in the Kalman filter is updated
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Table 4.2: Identified friction parameters of the micromill
Parameter x y z

b [kg/s] 25.05 20.55 102.9
F+

stat [N] 36.38 43.2902 30.6853
F−

stat [N] -29.03 -29.2014 -33.9802
F+

coul [N] 39.74 47.9513 23.6214
F−

coul [N] -26.74 -35.5574 -23.5320
Ω+

1 [mm/s] 1.31 8.81 6.2
Ω−

1 [mm/s] -0.34 -0.74 -6.8
Ω+

2 [mm/s] 1.79 10 4.2
Ω−

2 [mm/s] -0.45 -0.74 -4.1

and the velocity tests are ran so the non-linear friction parameters can be identified more accu-

rately. The disturbance with the corrected viscous friction can be seen in Fig. 4.4. In order to

fit the parameters in the Stribeck model,F+
stat andF−

stat are first selected as the disturbance force

at the lowest velocities in the positive and negative direction, respectively. Since the non-linear

friction affects associated with static friction go to zeroat high velocities, the Coulomb fric-

tion, F+
coul andF−

coul, is selected as the average disturbance force of the four highest velocities.

Finally, the exponential coefficients are found by minimizing the cost function:

V =
1

2

N2∑

k=N1

[δF (k)]2 (4.44)

whereδF (k) is the difference between the measured disturbance and predicted disturbance:

δF (k) = δF [v(k)] = F ′
f [v(k)]− F̂

+/−
stat e−v/Ω

+/−
1 + F̂

+/−
coul

(

1− e−v/Ω
+/−
2

)

(4.45)

Due to the non-linear and discrete nature of Eq. (4.45) the cost function is minimized in a brute

force way. All permutations between 0 and 10 for are tested atincrements of 0.1 [mm/s]. Based

upon this friction identification methodology, the parameters shown in Tab. 4.2 are found.
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Figure 4.4: Disturbance estimation forxc-axis with corrected viscous friction and the fitted

friction curve

With the above coefficients, the friction behaviour, as described by the model, can be seen in

Fig. 4.4. Using the identified mass, corrected viscous friction, and non-linear friction param-

eters, a sliding mode controller and a feedfoward friction compensator, based on the LuGre

model, is developed.

4.2.3 Sliding Mode Position Controller

Unlike conventional ballscrews, where the pitch of the ballscrew reduces the reflected distur-

bance on the motor, a linear feed drive experiences a disturbance force completely. As a result,

a controller must be selected which has good disturbance rejection properties. Furthermore,

specific to the micromill in this work, the friction properties have significant variation over the

length of the travel. As a result, the sliding mode controller [56] was selected as the position

controller for the feed drives of the micromill. The design of the controller is based on work
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presented in [21] but has been extended to linear feed drives. From Eq. (4.1) the corresponding

time domain state space model can be found:
[

ẋ

ẍ

]

=

[

0 1

0 −be/me

]

·
[

x

ẋ

]

+

[

0

1/me

]

· u−
[

0

1/me

]

· d (4.46)

whereme = m/(KaKt) and be = b/(KaKt) and the indication for function of time(t) is

dropped for brevity. Since the goal of the feed drive is to follow a trajectory, a sliding surface

is designed to bring the tracking error to zero:

σ = (ẋr − ẋ) + λ (xr − x) = [λ 1]
︸︷︷︸

S

·
([

xr

ẋr

]

−
[

x

ẋ

])

= 0 (4.47)

whereλ is analogous to the bandwidth of the sliding mode controller, x andẋ are the position

and velocity of the axis, respectively, andxr and ẋr are the reference position and reference

velocity of the axis respectively. The objective in slidingmode control is to bring the system

onto the sliding surfaceσ = 0, which then brings the tracking error to zero. In order to design

a control law that drives the system to the sliding surface and is stable, a candidate Lyapunov

function is first selected as a function of the sliding surface and a disturbance estimator as

follows:

V (t) =
1

2
meσ

2 +

(

d− d̂
)2

2ρ
(4.48)

whered is the actual disturbance,̂d is the disturbance estimator, andρ is the adaption gain of

the disturbance estimator. The disturbance estimator actssimilar to an integrator and is defined

as a function of the sliding surface:

d̂[k + 1] = d̂[k] + ρκσTs (4.49)
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Ts is the sample time, andκ is a flag to ensure the disturbance estimator does not go beyond

the predetermined disturbance bound as follows:

κ =







0, if d̂ ≤ d− andσ ≤ 0

0, if d̂ ≥ d+ andσ ≥ 0

1, otherwise







(4.50)

As it can be seen the Lyapunov function is directly proportional to the size of sliding surface

and the error in disturbance estimation. If the control law is selected so that the time derivative

of the Lyapunov function is less than zero, the sliding surface and error in disturbance estima-

tion will be guaranteed to converge to zero. In order to do this, we take the time derivative of

Eq. (4.48) and set the derivative to be less than 0:

dV (t)

dt
= meσσ̇ +

(

d− d̂
)

ρ
˙̂
d < 0 (4.51)

The derivative of the sliding surface and disturbance estimate is found as follows:

σ̇ = [λ 1]
︸︷︷︸

S

·
([

ẋr

ẍr

]

−
[

ẋ

ẍ

])

(4.52)

˙̂
d = ρκσ (4.53)

Substituting Eq. (4.46) into Eq. (4.52) into , the derivative of the sliding mode can be redefined

as a function of the rigid body model:

σ̇ = [λ 1]
︸︷︷︸

S

·
([

ẋr

ẍr

]

−
[

0 1

0 −be/me

]

·
[

x

ẋ

]

+

[

0

1/me

]

· u−
[

0

1/me

]

· d
)

(4.54)

Then by substituting the sliding surface (Eq. (4.47)), the disturbance estimate (Eq. 4.49), and

their respective derivatives (Eq.(4.54) and Eq. (4.53)) into Eq. (4.51), the derivative of the

Lyapunov equation can be redefined as a function of known system parameters:

dV (t)

dt
= meσ(λ (ẋr − ẋ) + ẍr)− σ (u− d− beẋ)− σκ(d− d̂) (4.55)
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If Eq. (4.55) is always less than 0 then the sliding mode controller will be asymptotically

stable. In Eq. (4.55),σd − σκ(d − d̂) can be set toσd̂ + σ(d − d̂)(1 − κ). Given the bounds

set in Eq. (4.50), then the conditionσ(d − d̂)(1 − κ) ≤ 0 is always guaranteed. To ensure

asymptotic stability for the remainder of the Lyapunov equation, the following criteria is set:

meσ(λ (ẋr − ẋ) + ẍr)− σ
(

u− beẋ− d̂
)

= −Ksσ
2 (4.56)

Since Eq. (4.56) is the criteria for asymptotic stability ofthe sliding mode controller, the

control signalu can be found that corresponds to this criteria. In order to dothis Eq. (4.56) is

rearranged to findu as follows:

usmc = me [λ (ẋr − ẋ) + ẍr] + beẋ+ d̂+Ksσ (4.57)

which ensures that the system will converge to the sliding surface, and subsequently bring

tracking error to 0.

4.2.4 LuGre Feedforward Friction Compensator

Though the sliding mode controller is capable of rejecting disturbance, it is only capable of

doing so after some error has been incurred. Due to the non-linear friction phenomenon, at

points where the velocity switches signs a disturbance occurs which causes a tracking error.

Since this non-linear friction phenomenon can be modeled with relative accuracy, it is possible

to compensate for its effects before the occur. In this work,the LuGre friction model [57]

is used to model the non-linear friction effects. The LuGre friction model is an extension of

the traditional Stribeck friction model, as defined in Eq. (4.41), which is able to capture the

hysteretic effects of friction. Unlike the Coulomb or Stribeck friction model, the LuGre friction

model does not treat the non-linear friction phenomenon as discontinuous force changes at

points of velocity switching. Instead, it captures the friction dynamics in the stiction region,
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Figure 4.5: Graphical representation of LuGre friction model

which come from the deflection,ǫ(t), of micro structures between surfaces, before the static,

Coulomb, and viscous friction affect become dominant. The microstructures are analogous to

bristles andǫ(t) can be seen as the average deflections of these bristles as shown in Fig.4.5.

Based upon this model, the deflections ofǫ(t) are governed with the following differential

equation:
dǫ(t)

dt
= ẋ(t)− σ0

g(ẋ(t))
ǫ(t) |ẋ(t)| (4.58)

whereσ0 is analogous to the stiffness constant for the microstructures, which is found experi-

mentally [58], and the speed dependent function,g(ẋ(t)) is expressed as:

g(ẋ(t)) = Fc + Fse
ẋ(t)
Ωs (4.59)

whereFC is coulomb friction,FS is the velocity (̇x(t)) dependent static friction, andΩs is the

velocity in which the effect of static friction decays to 0. Equation (4.59) can be seen as a
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simplified, averaged of Eq. (4.41), and as a result, the Stribeck friction effects are incorporated

into the LuGre model through Eq. (4.59). The constants are found using the results of the

friction identification experiments in Section 4.2.2 as follows:

Fs =
1

2

(
F+

stat+ |F−
stat|
)

(4.60)

Fc =
1

2

(
F+

coul + |F−
coul|
)

(4.61)

andΩs is found by minimizing Eq. (4.45) using Eq. (4.59). With the microstructure deflections

modeled in Eq. (4.58), the instantaneous friction force,Ff (t), can be modeled as follows:

Ff (t) = σ0ǫ(t) + σ1
dǫ(t)

dt
+ bẋ(t) (4.62)

whereσ1 is analogous to the damping constant [58] of the microstructures. The stiffness and

damping of the microstructures,σ0 andσ1 respectively, are first approximated with the ap-

proach outlined in [58]. Forσ0, a very small stepxss, assumed to be in the stiction region, can

be given to the feed drive and the constant can be approximated as:

σ0 = Fcsgn(ẋ(t))/xss (4.63)

In the stiction region, the dynamics of the system can be modeled as:

mẍ+ (b+ σ1 + σ2) ẋ+ σ0x = u(t) (4.64)

andσ1 can be calculated as:

σ1 = 2
√
mσ0 − b− σ2 (4.65)
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With the constants defined in Eq. (4.63) and Eq. (4.65), the values were tuned in tracking

experiments to achieve the best performance. Since the sliding mode controller is able to sup-

press errors contributed by viscous friction, the feed forward friction compensator only has to

compensate for the forces contributed by static friction, Coulomb friction, and microstructure

deflectionǫ(t). As a result, the feed forward compensator has the followingstructure:

uff =
1

KaKt

(

σ0ǫ(t) + σ1
dǫ(t)

dt

)

(4.66)

which represents the LuGre friction modeled with the viscous friction removed and normalized

by the axis amplifier and motor gain. The deflectionǫ(t) is found by numerically solving Eq.

4.58 using the Forward Euler Approximation:

ẋ[0] = 0 ǫ[0] = 0
dǫ[0]

dt
= 0

dǫ[t]

dt
= ẋ[k]− σ0

g(ẋ[k])
ǫ[k − 1] |ẋ[k]|

ǫ[k] = ǫ[k − 1] +
dǫ[k]

dt
Ts

(4.67)

The full control law is the sum of sliding mode (Eq. 4.57) and feed forward compensator (Eq.

4.66) commands:

u(k) = usmc(k) + uff (k)

= me [λ (ẋr(k)− ẋ(k)) + ẍr(k)] + beẋ(k) + d̂(k)

+Ksσ(k) +
1

KaKt
[σ0ǫ(k) + σ1dǫ(k)]

(4.68)

The block diagram of the full micromill control law is shown in Fig. 4.6. With the tuned

LuGre friction parameters, the sliding mode controller is tuned to achieve as high a bandwidth

as possible before instabilities occurred and the control parameters are shown in Tab. 4.3.
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Figure 4.6: Block diagram of the sliding mode controller and LuGre friction compensator for

the micromill

Table 4.3: Micromill parameters
Axis xc yc zc

Ka [A/V] 1 1 1
Kt [N/A] 45.4 72.5 26.17

Ks [Vs/mm] 0.05 0.25 0.08
λ [1/s] 200 230 180

ρ[V/mm] 50 50 50
σ0 [N/mm] 900 900 1500
σ1 [Ns/mm] 1.5 2.5 7.5

Fc [N] 26.67 31.26 24.67
Fs [N] 29.15 34.11 32.35

Ωs [mm/s] 24.3 26.4 44.8
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4.3 Modeling and Control Design of the Rotary Table

4.3.1 Lead-lag Position Controller

Unlike the feed drive, the rotary table is non-contact. As a result, the traditional rigid body

model for linear feed drives can be simplified by eliminatingthe viscous friction. This elimi-

nates the need for sophisticated identification techniques, as it is possible to obtain the mass of

the rotary table by simply weighing it. It was found that the mass of the rotary table was 2.3kg

and as a result the mass in the translational axes can be defined as:

Jx = Jy = Jz = 2.3[kg] (4.69)

The rotational inertia about thex, y, andz axis were found based on the solid model of the

rotary table [59]:

Ja = Jb = 20878[kg ·mm2] (4.70)

Jc = 40508[kg ·mm2] (4.71)

Since the rotary table is a free floating mass, the nominal transfer function for each axis of the

rotary table can be modeled as follows:

Gf (s) =
1

Jqs2
← q ∈ [x, y, z, a, b, c] (4.72)

Due to its relatively simple dynamics, lead-lag controllers were selected to control the position

of the rotary table which take the form:

Cf (s) = Kf
1 + αTs

1 + Ts
(4.73)
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whereα is selected to add a desired phase,T is selected to add the phase at a specific location,

andKf is selected soCf (s)Gf (s) crosses the 0dB line at a desired frequency. In order to do

this, the parameters are calculated as follows:

α = 1+sinφm

1−sinφm
T = 1

ωm
√
α

Kf = 1

| 1+αTωmj
1+Tωmj

||Gf (ωm)| (4.74)

whereωm is the desired crossover frequency of the openloop transferfunction, which corre-

sponds approximately to the bandwidth of the closed loop transfer function, andφm is the

phase to be added. An integrator of the form:

CI(s) = 1 +
Ki

s
(4.75)

with Ki = ωm/10 is added to the control loop to reduce the steady state error.However, it

was found that unlike the nominal models in Eq. (4.72), the rotary table was not completely

rigid, hence its flexibility had to be considered while designing the controller. The resonance

peaks caused by the flexibilities of the rotary table createdunstable conditions when the design

bandwidth was set to 250Hz. As a result the gain is attenuatedat the frequency of the resonance

peaks with notch filters so that the control action does not excite the low damped dynamics and

its dynamic characteristics match the nominal model, as shown in Fig. 4.7.

4.3.2 Notch Filter

While designing the lead-lag controllers for the various axes of the rotary table, it was found

that the nominal transfer function defined in Eq.(4.72) did not fully capture all the dynamics

of the rotary table. At high enough frequencies, the rotary table was not completely rigid and

exhibited flexible characteristics. An example of this is shown in Fig. 4.7 where the rigid

nominal model is compared with the actual frequency sweep oftheaf -axis.
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Figure 4.7: FRF of theaf -axis including the nominal FRF and experimental FRFs with and

without the notch filter

As it can be seen, though the experimental frequency response function (FRF) follows the nom-

inal model at lower and higher frequencies, in between 1000 [rad/s] and 2000 [rad/s] resonant

modes from the flexibilities of the rotary table can be seen. With the increased magnitude at

approximately 1700 [rad/s], when the cross over frequency of the open loop transfer function

was selected to be too high, the peak is pushed close to the 0dBreducing the gain margin

and introducing oscillatory behaviour and potential instabilities. As a result, notch filters were

implemented to remove the frequencies in the control signalthat correspond to these resonant

frequencies. The notch filters take the following form:

Na(s) =
s2 + 2ωaζa,1 + ω2

a

s2 + 2ωaζa,2 + ω2
a

Nb(s) =
s2 + 2ωbζb,1 + ω2

b

s2 + 2ωbζb,2 + ω2
b

N(s) = Na(s)Nb(s)

(4.76)

whereNa andNb are the notch filters to remove the peak and valley, respectively, caused by the

resonant mode. In the notch filtersNa andNb, ωa, ωb are the resonance frequencies, selected

based on peaks of the FRF, and (ζ1, ζ2) are the damping ratios, which are tuning parameters
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Figure 4.8: Block diagram of rotary table controller

Table 4.4: Rotary table parameters
Axis xf yf zf af bf cf
Jq 2.3[kg] 20878[kg/mm2] 40508 [kg/mm2]

ωm [rad/s] 1570.8
Kf 5.95E5 6.60E5 8.14E5 3.32E3 2.24E3 6.53E3
α 1.31E2 1.31E2 1.31E2 1.31E2 1.31E2 3.75E2
T 5.57E-5 5.57E-5 5.57E-5 5.57E-5 5.57E-5 2.73E-5
Ki 157.1

ωa [rad/s] - - 1992 1705 1429 2582
ζa,1 - - 0.02 0.03 0.03 0.08
ζa,2 - - 0.3 0.3 0.2 0.02

ωb [rad/s] - - 1740 1533 1300 2421
ζb,1 - - 0.3 0.3 0.2 0.05
ζb,2 - - 0.02 0.04 0.03 0.2
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Figure 4.9: Dual stage feed drive controller

to achieve a desirable open loop transfer function. The fullblock diagram for the closed loop

controller of the rotary table with the lead-lag compensator and notch filter is given in Fig. 4.8

and the parameters of the lead lag controllers and notch filters are shown in Tab. 4.4.

4.4 Dual-stage Feed Drive Control

Based on the above control designs, the achievable bandwidthof the micromill is 30Hz while

the rotary table is 250Hz. Since the translational axes of the micromill and rotary table are

parallel, the rotary table can be used to compensate for tracking errors coming from the lower

bandwidth of the closed loop controller of the micromill. Asa result, in addition to its own

trajectory command, an additional input to the rotary tableis the tracking error of the micromill

as shown in Fig. 4.9.

In this configuration, the summation of the two parallel drives has the bandwidth of the rotary

table, resulting in the long stroke of the micromill with thehigher precision of the rotary table.

The summation of the two drives gives the following transferfunctions:

x = xc + xf (4.77)

63



Based on the block diagram shown in Figure 4.9, Eq. (4.77) can be expressed as a function of

the reference input as follows:

x = xr
CcGc

(1 + CcGc)
︸ ︷︷ ︸

Gc,cl

+xr
1

(1 + CcGc)
︸ ︷︷ ︸

Sc,cl

CfGf

(1 + CfGf )
︸ ︷︷ ︸

Gf,cl

(4.78)

wherexr is the reference command to the micromill feeddrive. As a result, as long asGc,cl,

Sc,cl, andGf,cl are stable thenx will be stable. Since the micromill,Gc,cl is stable, its tracking

errors, which are used as input to the rotary table,Gf,cl, will be bounded and stable. Further-

more, the sensitivity transfer function of the coarse closed loop transfer functionSc,cl will also

be stable sinceGc,cl is designed to be stable. The two actuators are independently controlled

and stable, and as a result the dual stage controller is also stable. The transfer function of the

coupled system can also be expressed as follows:

x

xr

=
CcGc + CfGf + CcGcCfGf

(1 + CfGf )(1 + CcGc)
(4.79)

At frequencies below the closed loop bandwidth of the micromill, ωc, and rotary table,ωf ,

|GcCc| ≫ 1 and|GfCf | ≫ 1. As a result the dual stage system has a closed loop gain of unity.

However at frequencies greater thanωc but belowωf , |GcCc| ≤ 1 and|GfCf | ≫ 1 and as a

result the closed loop dynamics of the summed response is as follows:

x ≈ GfCf

1 +GfCf

xr (4.80)

As a result, at frequencies above the design bandwidth of theclosed loop controller for the

micromill, the closed loop dynamics of the summed response adopts the closed loop dynamics

of the rotary table. As a result, the summed system is able to have the stroke of the micromill

but the precision of the rotary table. This can be seen in Fig.4.10.
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Figure 4.10: Simulated frequency response functions of micromill, rotary table, and micromill

with tracking error compensated with rotary table.
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When the rotary table is used to compensate for the tracking errors of the micromill, the transfer

function of the axes adopts the bandwidth of the higher bandwidth controller. As a result, the

dual stage feed drive system achieves the stroke of the micromill but with the high precision -

high bandwidth control of the rotary table.
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Chapter 5

Geometric Error Modeling for a 3-axis Micromill and Compensation with a 6 Degree of

Freedom Rotary Table

5.1 Overview

Often in the discussion of the effectiveness of a manufacturing process, the major focus is on

the precision of machine tool performing the manufacturingprocess. However, what is often

less discussed is the accuracy of the manufacturing process. In most literature, it is assumed

that accuracy follows precision. However this is typicallynot the case and additional methods

must be implemented in order to increase the accuracy of the machine tool to a sufficient level,

even at sufficient levels of precision. The source of the problem lies in the fact that most

feedback servomechanisms are only capable of detecting errors in the direction of actuation.

As a result, errors that are in directions orthogonal to the direction of travel can go undetected.

These errors can originate from assembly errors, deflectioncaused by loading, or deviations

caused by thermal expansion. Though these errors only create minimal problems for single axis

of actuation, when multiple servomechanisms are combined and non-Cartesian movements are

included, the geometric errors could result in large deviations from the desired end effector

position and orientation when the whole kinematic model is considered.

In this chapter, the fine movements of the rotary table are used to compensate for tooltip errors

caused by the assembly errors. Due to the invariant nature oferrors caused by loading or

thermal expansion, the rotary table would not be suitable for this task as these errors would

change with operating parameters or environmental conditions. The ideal kinematic model
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from Chapter 3, is modified in Section 5.2 to include the effectof the geometric errors of each

of the axis. Since the geometric errors originate from assembly errors of the axes, it changes

consistently over the full actuating range of the axis. In Section 5.3, the geometric error is

measured, then fit to a polynomial function of position. Finally, with the geometric errors

known, a compensation algorithm is proposed in Section 5.4,where the rotary table position

commands are modified to compensate for tooltip position errors.

5.2 Kinematic Model with Errors

x

y

z
�x(q)

�y(q)

εz(q)

εy(q)

εx(q)

�z(q)

Figure 5.1: Geometric errors of a general axisq

A single axis has a total of 6 geometric errors, which includeone positioning error, two straight-

ness errors, a roll error, a pitch error, and a yaw error. These errors can be seen on a general
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axis,q, in Fig. 5.1.

The positioning error is typically caused by inaccuracies in the metrology system, while the

other geometric errors are caused by assembly errors. Though the errors are small in mag-

nitude, with multiple axes stacked and rotational errors being amplified with linear offsets, it

is possible to have large resultant errors at the end effector. In order to demonstrate this, the

kinematic model defined in Eq. (3.6) to (3.8), is modified to include the geometric errors [41].

The general error matrix is defined as follows:

Eq =








1 −εz(q) εy(q) δx(q)

εz(q) 1 −εx(q) δy(q)

−εy(q) εx(q) 1 δz(q)

0 0 0 1








(5.1)

whereεx(q), εy(q), andεz(q) are the rotations about thex, y, andz axis of the current coordi-

nate frame, respectively, andδx(q), δy(q), andδz(q) are displacements in thex, y, andz axis of

the current coordinate frame, respectively, as shown in Fig. 5.1. It should be noted that Eq.(5.1)

uses the small angle approximation for the cosine and sine ofthe rotational errors,ε, since the

rotational errors are typically sufficiently small. By multiplying Eq.(5.1) with the ideal HTM, it

is possible to project the effect of errors in one axis onto the next axis, and subsequently, to the

tooltip. For example, transforming from base coordinate frame to they-axis of the micromill

has an ideal transformation as follows:

BTyc,i =








1 0 0 0

0 1 0 yc
0 0 1 Ly,z

0 0 0 1








(5.2)
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However, when the error matrices are multiplied, the actualtransformation becomes as follows:

BTyc,a = BTyc,iEyc

=








1 −εz(yc) εy(yc) δx(yc) + yc
εz(yc) 1 −εx(yc) δy(yc)

−εy(yc) εx(yc) 1 δz(yc) + Ly,z

0 0 0 1








(5.3)

As a result, in order to model the effect of the geometric errors of each axis on the position

of the tooltip, the ideal transformation matrices are multiplied with their respective error trans-

formation matrices, making changes to the two kinematic chains in Eq.(3.1) and Eq.(3.2) as

follows:
BTw,a = BTyc,iEyc

ycTxc,iExc
xcTs,i

sTxf ,i

×sTxf ,iExf

xfTyf ,iEyf
yfTzf ,iEzf

×zfTaf ,iEaf
afTbf ,iEbf

bfTcf ,iEcf

×cfTr,i
rTw,i

(5.4)

BTt,a = BTzc,iEzc
zcTt,i (5.5)

which will give the actual HTM from the tool coordinate frameto the workpiece coordinate

frame:

Ta =
(
BTw,a

)−1 BTt,a (5.6)

With the actual kinematic transformation defined in Eq.(5.6), the tooltip position with the effect

of error is transformed to a position that is with respect to the workpiece with a method similar

to Eq.(3.5):







Px,a

Py,a

Pz,a

1







= Ta

[
T tp

1

]

(5.7)
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which gives the actual tooltip position,Pa (q) = [Px,a (q) , Py,a (q) , Pz,a (q)]
T . The result of

the matrix multiplication in Eq. (5.7), with second order and higher terms error grouped as

O(ε2, δ2, εδ), can be found in Appendix A. The forward kinematic model now also includes

the effect of the geometric errors on the tooltip as a function of axes positions. In this work,

the forward kinematic equations consists of 9-axis commands and 18 position dependent error

terms. As a result, the equations can become very long, and subsequently, unmanageable and

computationally expensive. In order to overcome this problem, the second order or higher

terms involving geometric errors are approximated as follows:

O(ε2, δ2, εδ) ≈ 0 for ε, δ → 0 (5.8)

since the geometric errors are very small relative to the position commands and offsets. Given

this approximation, the forward kinematic equations can besimplified and approximated by

including only the zero and first order terms of geometric errors in the forward kinematic

equations. With the kinematic equations modified to includethe geometric errors, the position

dependent error equations must be identified through experimentation.

5.3 Error Modeling

From Eq. (A.1), Eq. (A.2), and Eq. (A.3), it can be seen that the geometric errors play a strong

role in determining the resultant position of the tooltip position. As a result these errors must be

measured and fit to a function of position in order to be incorporated into the kinematic model.

In order to do this, the errors of the machine tool are first measured with a laser interferom-

eter using various mirror configurations to get geometric errors in different directions. Since

generated trajectories are on average jerk continuous [51], a quintic polynomial is selected as

the function to be fit to the error data in order to maintain thesame jerk continuity. For each

geometric error, there should beNǫ ×Mǫ corresponding error measurements,ǫ, whereNǫ is
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the total number of measurement points on the axis andMǫ is the number of repeated mea-

surements at each position. In this work, the errors are measured 6 times, every 1[mm] and the

measurementǫ can take the form of a displacement error,δ, or a rotational errorε. The objec-

tive is to find a quintic polynomial that best fits this data. First theMǫ repeated measurements

atNǫ locations are averaged:

ǫ∗nǫ
=

ǫ1,nǫ + ǫ2,nǫ + · · ·+ ǫMǫ,nǫ

Mǫ

(5.9)

wherenǫ = 1, 2, . . . , Nǫ. With the averaged errors, the objective is to fit a quintic polynomial

to the data points with as little error as possible. The quintic polynomial fitting problem can be

phrased as follows:











ǫ∗1
ǫ∗2
...

ǫ∗Nǫ−1

ǫ∗Nǫ











︸ ︷︷ ︸

Yǫ

=











q51 q41 q31 q21 q1 1

q52 q42 q32 q22 q2 1
...

. ..
...

q5Nǫ−1 q4Nǫ−1 q3Nǫ−1 q2Nǫ−1 qNǫ−1 1

q5Nǫ
q4Nǫ

q3Nǫ
q2Nǫ

qNǫ 1











︸ ︷︷ ︸

Φǫ












ϕA

ϕB

ϕC

ϕD

ϕE

ϕF












︸ ︷︷ ︸

θǫ

(5.10)

whereYǫ is a vector of averaged measured geometric errors,Φǫ is a matrix of the axis positions

where the laser measurements took place, andθǫ is a vector of coefficients for the fitting poly-

nomial . The objective is to find the coefficients inθǫ that minimizes the mean squared error

between the predicted geometric error and actual measured geometric error or more formally:

min
1

2
(Yǫ − Φǫθǫ)

T (Yǫ − Φǫθǫ) (5.11)

This is done in a least squares fashion in the following way:

θǫ = (ΦT
ǫ Φǫ)

−1ΦT
ǫ Yǫ (5.12)
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Figure 5.2:zc-axis positioning errors and the resultant quintic polynomial fit

and as a result the equation of error becomes

ǫ̂ (q) = ϕAq
5 + ϕBq

4 + ϕCq
3 + ϕDq

2 + ϕEq
1 + ϕF (5.13)

whereǫ̂ indicates the approximated geometric error. This process is repeated for all 6 errors

on each of the major axes giving a total of up to 18 quintic polynomial functions. An example

of this process can be seen in Fig. 5.2 where the positioning errors of thezc-axis are fit to a

quintic polynomial.

Once all the geometric errors are measured and fitted, the errors can be included into Eq. (A.1),

Eq. (A.2), and Eq. (A.3). As a result, the actual tooltip position is known and its errors can be

compensated.
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5.4 Geometric error compensation

Once the geometric errors of each of the three axes are known,the actual tooltip position is

known. Subsequently it is possible to find the error of the tooltip position from the desired

tooltip position by subtracting the actual tooltip position from the desired tooltip position as

follows:

∆P (q) = |Pi −Pa(q)| (5.14)

The ideal tooltip positionPi can be provided from a computer aided manufacturing (CAM)

toolpath. Alternatively, if only the axes positions are known Pi can also be the result of the

ideal forward kinematic model defined in Eq. (3.6) to Eq. (3.8), prior to the reference command

modifications performed for geometric error compensation.The objective is to find rotary table

reference commands,qf = [xf , yf , zf , af , bf , cf ]
T , that will reduce the geometric error to an

acceptable minimum. In order to do this, two challenges exist. First, similar to the trajectory

generation of 9-axis machine tool, there are more degrees offreedom available than necessary.

Since only the tooltip position is defined with 3 degrees of freedom and the rotary table has 6

degrees of freedom, there are 3 redundant degrees of freedom. As a result, redundancies must

be resolved with the proposed geometric error compensationtechnique. Second, due to the

non-Cartesian kinematics of the overall 9-axis configuration, the compensation of geometric

errors is non-trivial and numerical techniques are necessary. To overcome these challenges, an

iterative gradient descent algorithm which exploits the Jacobian matrix of the rotary table is

proposed.

5.4.1 Gradient Descent Optimization Algorithm Background

The gradient descent optimization algorithm is a first orderiterative optimization algorithm

that is used for finding the minimum of a function. The algorithm iterates by selecting function
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variables that are proportional to the negative of the gradient of the function at the current point.

This process is repeated until the gradient is sufficiently small, which corresponds to a local

minimum of the function. If the variables to be modified are defined asη and the differentiable

multivariable cost function is defined asΨ(η) then the cost decreases fastest ifη goes in the

direction of the negative gradient of the cost function as follows:

ηj+1 = ηj − γ∇Ψ(ηj) (5.15)

wherej is the current number of iteration for the gradient descent algorithm. For sufficiently

smallγ the cost will decrease at each iteration. As a result, starting with a guess ofη0 the cost

will decrease as follows:

Ψ(η0) ≥ Ψ(η1) ≥ Ψ(η2) ≥ . . . (5.16)

5.4.2 Geometric Error Compensation using Gradient Descent Optimization Algorithm

With respect to geometric error compensation, the gradientdescent algorithm is used to modify

the rotary table commands,qf , so that the tooltip position errors∆P (qf ) are decreased to an

acceptable minimum. As a result the variables to be modified are qf and the cost function is

defined to penalize tooltip errors as follows:

Ψ(qf ) =
1

2
∆P (qf )

T ∆P (qf ) (5.17)

When applied to the problem of geometric error compensation,the gradient descent algorithm

can be phrased as follows:

qf,j+1 = qf,j −∇Ψ(qf,j) (5.18)
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whereγ is set to 1,j is the number of iterations of the gradient descent algorithm and the

gradient of the cost functionΨ is:

∇Ψ(qf ) =
dqf

dPa

∆P (qf ) (5.19)

Since,∆P (qf ) is known from Eq. (5.14), the differential termdqf

dPa
must be defined in order to

obtain the gradient. Since there are more degrees of freedomthan necessary, an infinite range

of joint configurations are possible, or more formally,dqf

dPa
is non unique.

Similar to the redundancy resolution technique presented in Chapter 3, the Moore-Penrose

inverse is used to resolve the redundancies. Since the geometric error compensation only uses

the rotary table commands, the Jacobian used for compensation will only consider the effect

of the rotary table commands on the tooltip position and toolorientation. Furthermore, the

Jacobian will also incorporate the geometric errors in the forward kinematics equation. As a

result, the compensating Jacobian is defined as follows:

J c =
dPa

dqf

=






dPx,a

dxf
. . . dPx,a

dcf
dPy,a

dxf
. . . dPy,a

dcf
dPz,a

dxf
. . . dPz,a

dcf






3×6

(5.20)

where the superscriptc differentiates the Jacobian defined in Eq. (5.20) from the Jacobian

defined in Eq. (3.13). With the compensating Jacobian,J c, a Moore-Penrose inverse can be

found as a possible solution todqf

dPa

J c† =
J cT

J cJ cT
(5.21)

As a result, the gradient of the objective function can be redefined as follows:

∇Ψ(qf,j) = J c†∆P (qf,j) (5.22)
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However, in addition to minimizing the error between the desired tooltip position and the actual

tooltip position, the algorithm must ensure that the generated compensation commands do not

violate the stroke limits of the rotary table. Similar to thetrajectory generation algorithm

presented in Chapter 3, an additional constraint can be projected onto the nullspace ofJ c†. The

cost function which constraints the magnitude of the strokelimits is considered as follows:

Hc (qf ) =
x2
f

(
x2
f,max − x2

f

)2 + · · ·+
c2f

(
c2f,max − c2f

)2 (5.23)

By projecting the gradient of this cost function:

∇Hc (qf ) =

[

2x2
f,maxxf

(
x2
f,max − x2

f

)2 , . . . ,
2c2f,maxcf

(
c2f,max − c2f

)2

]

(5.24)

onto the nullspace ofJ c†, it is ensured that the solutions for∇Ψ(qf ) will not violate the stroke

limits of the rotary table. It should be noted that the constraint equation, Eq. (5.23), and its

gradient, Eq. (5.24), only consider the limits of the rotarytable. Since only the reference

commands of the rotary table are being modified, it is suffice to only consider the rotary table

position commands. The gradient of the cost function is extended to consider this additional

constraint in the following way:

∇Ψ(qf ) = J c†∆P (qf ) +
(
I − J c†J c

)
βc∇Hc (qf ) (5.25)

whereβc determines the strength of the stroke limit constraint defined inHc. The gradient

descent formulation can be redefined as follows:

qf,j+1 = qf,j − J c†∆P (qf,j)−
(
I − J c†J c

)
βc∇Hc (qf,j) (5.26)

Since the the cost,Ψ(qf,j), decreases the fastest when the rotary table commands,qf,j+1, are

recalculated in the direction of−∇Ψ(qf,j) then every iteration will minimize the cost. As a
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result, Eq.(5.26) is iterated until the following condition is met:

∆P
(
q∗
f

)
< ν (5.27)

Algorithm 2: Full compensation algorithm

1 function Compensation(q);

Input : Q = [q[0],q[1], . . . ,q[K − 1],q[K]]

Output: Q∗ = [q∗
f [0],q

∗
f [1], . . . ,q

∗
f [K − 1],q∗

f [K]]

2 k = 0;

3 j = 0;

4 for k ← 0 to K − 1 do

5 ∆P = |Pi(q[k]0)−Pa(q[k]0)| ;

6 while ∆P (q[k]j) > e do

7 q[k]j+1 = q[k]j − J c† (q[k]j)∆P (q[k]j)−
(
I − J c†J c

)
βc∇Hc (qj) ;

8 ∆P = |Pi(q[k]0)−Pa(q[k]j+1)| ;

9 j = j + 1

10 end

11 q∗[k] = q[k]j

12 j = 0

13 k = k + 1

14 end

whereq∗
f is the rotary table commands that reduce the geometric errors to an acceptable limit

defined byν. Compensation commands are calculated for every point,q[k], which is known

from the trajectory algorithm. The full algorithm can be summarized in Algorithm 2.
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Figure 5.3: Tooltip errors with and without compensation for a circle on thex-y plane of radius

1

Simulation results using this method can be seen in Fig. 5.3,where the algorithm eliminates

the tooltip errors caused by the geometric errors of the machine tool when drawing a circle of

radius 1 [mm] on thex-y plane.
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Chapter 6

Simulation and Experimental Results

6.1 Overview

Experiments were performed to validate the trajectory generation algorithm, dual stage feed

drive tracking control law, and geometric error compensation method presented in this thesis.

All experiments were performed on the machine presented in the Introduction.

6.2 Trajectory Generation Experimental Results

In order to validate the trajectory generation algorithm, two experiments were performed to

ensure that the generated trajectories were able to resolveredundancies, avoid singularities,

respect the prescribed limits, and follow the desired end effector trajectory. First, the trajectory

generation algorithm is used to generate axes commands for aspiral toolpath as shown in Fig.

6.1

The position commands for the spiral toolpath and the time derivatives toolpath are shown in

Fig. 6.2, Fig. 6.3, Fig. 6.4, and Fig. 6.5. As it can be seen, the position commands respect the

stroke limits of all the drives, demonstrating the ability of the redundancy resolution component

of the trajectory generation algorithm to select axes configurations that respect the stroke limits

of the machine tool. In addition to this it can be seen that thegenerated axes commands

respect the prescribed velocity, acceleration, and jerk limits of all the axes showing successful

integration of the redundancy resolution algorithm with the feed optimization algorithm. It

should also be noted that at certain portions of the trajectory, the velocity of theyc is saturated
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Figure 6.3: Velocity of reference commands for spiral trajectory
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Figure 6.4: Acceleration of reference commands for spiral trajectory

at its limits, and for portions of the trajectory where the velocity is not saturated, the jerk of the

other axes are close to being saturated. This demonstrates the ability of the feed optimization

algorithm to use all the kinematic limits of the feed drive totraverse the toolpath.

In addition to respecting the limits of the axes, the generated axes commands should result in

a toolpath that follows the desired toolpath. In the case of the trajectory generation algorithm

presented, the numerical nature of the trajectory generation algorithm and singularity avoid-

ance components can cause the toolpath from the axes commands to deviate from the desired

toolpath. As a result, the desired tooltip position and toolorientation are compared with the

tooltip position and tool orientation from applying forward kinematics on the generated axes

position commands. The tool deviations for the spiral toolpath were shown earlier in Fig. 3.7

showing negligible deviation, and as a result, successful implementation of the a higher order
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Figure 6.5: Jerk of reference commands for spiral trajectory
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Figure 6.6: Sinusoidal freeform surface

numerical integration algorithm and closed loop corrective action.

Next the trajectory generation algorithm is used to generate reference commands to machine

the freeform surface shown in Fig. 6.6.

The freeform surface is a sinusoidal surface with a peak to peak amplitude of 500 microns and

a working surface area of 10 [mm] x 10 [mm]. This surface was cut with a 1/64” (397[µm])

Mitsubishi Carbide 2-fluted ball endmill. The finishing pass was done with a feedrate of 10

[mm/s] with a spindle speed of 170000 [rev/min]. To avoid theploughing affect from the zero

cutting velocity from the tip of the ball end mill, the tool iscommanded to have a constant tilt

of 0.15 degrees using the magnetically levitate table’s sixdegrees of freedom. Since this was a

finishing operation, the limitation of the feedrate will also come from the process itself, which

was set at 10 [mm/s], in addition to the axes limits. The freeform surface was cut with a zig-
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Figure 6.10: Velocity, acceleration, and jerk profile of thetranslational axes for the freeform

surface

zag toolpath with a depth of cut of 100 [µm] and a step over of 10 [µm]. The planned feedrate

is shown in Fig. 6.7 and as it can be seen, the feedrate is capped at 10 [mm/s]. However, at

portions where the tool path must slow down and speed up, the limitation comes from the axes.

This can be seen in the velocity, acceleration, and jerk of the reference commands in Fig. 6.8

and Fig. 6.9 for the translational and rotational axes respectively

Furthermore, it should be noted that when zoomed in, the velocity and acceleration profiles are

smooth and continuous as shown in Fig. 6.10 and Fig. 6.11 for the translational and rotational

axes respectively

The manufactured surface can be seen in Fig. 6.12. As it can beseen, the produced part

matches the desired surface, showing the kinematic model iscorrect. Due to the finite step

89



0 2 4 Ó Ô 10

ÕÖ×Ø

0

Ö×Ø

V
e

lo
c
it
y
 [

ra
d

/s
]

aÙ
bÙ
cÙ

0 2 Ú Ó 8 10

ÛÜÝÞ ßàá

0

20

ÚÖ

â
ã
ã
ä
åä
æç
èé
ê
ë
ìæ
ç
í
îï

2
]

Figure 6.11: Velocity, acceleration, and jerk profile of therotational axes for the freeform

surface
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Figure 6.12: Machined freeform surface
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Table 6.1: Circular contouring results
Error SMC DSFD

Mean| x-axis Tracking| [mm] 2.14E-4 1.98E-4
Mean| y-axis Tracking| [mm] 1.06E-4 4.94E-5

Mean Contour [mm] 1.58E-4 1.21E-4
Max | x-axis Tracking| [mm] 2.67E-3 1.28E-3
Max | y-axis Tracking| [mm] 1.72E-3 3.77E-4

Max Contour [mm] 2.67E-3 8.58E-4

Table 6.2: Square contouring results
Error SMC DSFD

Mean| x-axis Tracking| [mm] 2.58E-4 1.69E-4
Mean| y-axis Tracking| [mm] 8.81E-5 7.18E-5

Mean Contour [mm] 7.92E-5 9.93E-5
Max | x-axis Tracking| [mm] 5.43E-3 2.26E-3
Max | y-axis Tracking| [mm] 1.54E-3 5.56E-4

Max Contour [mm] 7.59E-4 8.62E-4

over length it can be seen that there are surface marks left bythe scallop heights in between

passes of the zig-zag toolpath.

From the above experiments, it can be said that the presentedtrajectory generation algorithm

is able to fulfill all of its goals which include redundancy resolution, singularity avoidance, and

optimization

6.3 Dual Stage Feed Drive Tracking Control Results

To verify that the dual stage feed drive controller improvestracking error performance, the dual

stage feed drive controller is used to follow contours. In this set of experiments, the parameters

used for the micromill and rotary table are as shown in Tab. 4.3 and Tab. 4.4.
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With these parameters, the micromill has a design bandwidthof 30Hz and the rotary table has

a design bandwidth of 250Hz. By having a bandwidth that is approximately 10 times higher

than micromill, it is expected that the rotary table will compensate the tracking errors caused

by the low bandwidth of the micromill. Two experiments are performed where a circle, as

shown in Figure 6.13, and a square, as shown in Figure 6.14, are tracked with thex-y axes

of micromachining center. In these experimentsxc andyc are commanded with the trajectory

commands whilexf andyf compensate for the tracking errors ofxc andyc respectively. The

results can be seen in Fig. 6.13 and Fig. 6.14 and are summarized in Tab. 6.1 and Tab. 6.2,

respectively

From Tab. 6.1 and Tab. 6.2, it can be seen that the sliding modecontroller is able to keep errors

under 3[µm]. The rotary table assists in reducing all tracking errorsas shown in Tab. 6.1 and

Tab. 6.2. Most notably, the higher bandwidth eliminates friction induced error peaks in the

circular contouring where the velocity reversals occur leading to improved contouring perfor-

mance as shown in Figure 6.13 a) and Figure 6.13 b). Furthermore the dual stage configuration

sees improvement in reducing fluctuations around zero tracking error. The fluctuations occur

due to quantization noise in the control action. Since thesefluctuations occur at frequencies

higher than the bandwidth of the rotary table, they are unable to be completely compensated

for.

It should be noted that in the case of the square contouring results, as shown in Tab. 6.2, there

is a slight increase in contour error. Unlike a circular contour, for a square contour, one of the

axis is stationary at all times. While stationary, the axis error will converge to as close to zero

as possible since there is an integrator and very low level ofdisturbance. Since the rotary table

has its own oscillatory movement caused by its own feedback noise, this will be added to the

stationary coarse actuator resulting in precision that is worse than just the coarse actuator alone.
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Table 6.3: Geometric errors with and without compensation

Error
Mean Mean Max Max

Uncompensated Compensated Uncompensated Compensated
dx (xc) [µm] 0.549 0.168 1.07 0.443
dy (xc) [µm] 0.2 0.0571 0.629 0.265
dz (xc) [µm] 0.396 0.162 1.1 0.37
dx (yc) [µm] 1.16 0.222 3.06 0.626
dy (yc) [µm] 1.65 0.44 4.18 0.883
dz (yc) [µm] 0.19 0.0791 0.693 0.358
dx (zc) [µm] 3.91 0.844 7.48 2.4
dy (zc) [µm] 0.251 0.197 0.9 0.636
dz (zc) [µm] 0.337 0.115 0.976 0.498

As a result, for a trajectories where the coarse actuator already achieves very high precision on

its own, the rotary table may not increase contouring performance. In contrast, for toolpaths

where multiple axes are moving there is a performance increase with respect to contouring

error as it can be seen from the circular contouring results.

Based on these experiments, it can be concluded that the strength of the dual stage feed drive

configuration lies in disturbance rejection for freeform toolpaths. It should be noted that the

addition of the rotary table is complementary to any controlstrategies used on the micromill.

Though the sliding mode controller alone has good position tracking properties, the addition of

the rotary table increases the overall precision on the respective axis particularly with regards

to disturbances. Should a different control strategy, besides the sliding mode controller be used

on the micromill, the addition of the rotary table would still be complementary to the overall

precision on the respective axis.

6.4 Geometric Error Compensation Results
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Figure 6.15: Geometric Errors forxc-axis positions -40mm to 40mm

96



-40 -30 -20 -10 0 10 20 30 40
-5

0

5

d
y (

y c) 
[u

m
]

-40 -30 -20 -10 0 10 20 30 40
-5

0

5

d
x (

y c) 
[u

m
]

-40 -30 -20 -10 0 10 20 30 40
y

c
 [mm]

-0.5

0

0.5

1

d
z (

y c) 
[u

m
]

Quintic Polynomial Fit to 
Compensated Average Data

Interferometer Average 
Compensated Data

Interferometer Average 
Uncompensated Data Quintic Polynomial Fit to 

Uncompensated Average Data

Figure 6.16: Geometric Errors foryc-axis positions -40mm to 40mm

97



0 10 20 30 40 50 60 70
-5

0

5

10

d
z (

z c) 
[u

m
]

0 10 20 30 40 50 60 70
-1

0

1

d
x (

z c) 
[u

m
]

0 10 20 30 40 50 60 70
z

c
 [mm]

-1

0

1

2

d
y (

z c) 
[u

m
] Quintic Polynomial Fit to 

Uncompensated Average DataInterferometer Average 
Uncompensated Data

Quintic Polynomial Fit to 
Compensated Average Data

Interferometer Average 
Compensated Data

Figure 6.17: Geometric Errors forzc-axis positions -4mm to 76mm
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In addition experiments for the trajectory generation algorithm and dual stage feed drive con-

trol, experiments were performed to verify the geometric error compensation algorithm. In

these experiments, geometric errors of the 3-axis machine tool are compensated using the high

precision stroke of the 6DOF rotary table. First, geometricerror measurements were performed

with a laser interferometer. It should be noted that due to the inability of the laser interferom-

eter to measure roll errors along an axis, this error was set to 0 in the kinematic model. The

measured errors are fit to quintic polynomials then includedinto the kinematic model, which is

used with the gradient descent algorithm to calculate compensating commands for the 6DOF

rotary table. To demonstrate the capabilities of the geometric error compensation algorithm,

single axis displacement errors are measured with a laser interferometer then compensated with

the rotary table with reference commands generated by the algorithm. The objective of these

experiments is to demonstrate that positional errors are compensated as the combined effort of

multiple axes of the rotary table. The displacement errors,meant to mimic tooltip deviations,

are measured with the laser interferometer with and withoutthe compensating action of the

rotary table. The results are summarized in Figs. 6.15 to 6.17 and Table 6.3

Based on the results shown in Table 6.3 there is a 64% and 60% improvement in the mean

and max geometric error respectively, demonstrating the ability of the algorithm to reduce

geometric errors. Furthermore, Figs. 6.15 to 6.17 show consistent improvement of geometric

error across the entire actuating range of each of the axis.

To look at the results of the algorithm in greater detail, Fig. 6.18 show the rotary table com-

mands used to compensate for the errors when actuating on thezc-axis. As it can be seen, the

algorithm favors the tilt commands of the rotary table to compensate for the straightness errors

in thex andy direction when actuating thezc-axis. The reason for this is that it is possible to

make large displacement corrections with relatively smalltilts of the rotary table. Finally, it
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Figure 6.18: Compensating position commands when moving only zc axis

should be noted that the error is compensated as the combinedeffort of multiple axes, showing

effective use of the compensation Jacobian.

Based upon the single axis experimental results and 2-axis simulation results shown in Fig.

5.3 it can be seen that the tooltip error caused by the geometric errors is relatively small, in the

sub-micron range. Due to the inconsistent nature of the cutting process itself, errors originating

from the cutting process would be the dominant source of error in the final machined piece.

Measurements of a slot cut with a coordinate measuring machine found variations in the error

of nearly 30 microns. Furthermore, the configuration of the gantry type milling machine did

not allow for the use of a commercial ball bar, which would have allowed measurement of

combined errors, independent of process forces.

As an alternative, the full multi-axis compensation capabilities are demonstrated virtually. In

order to do this, all 21 geometric errors of a three dimensional toolpath are modeled and the
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Figure 6.19: Tooltip errors with and without compensation

Table 6.4: Mean and maximum tooltip errors with and without compensation for a multi-axis

trajectory

Error
Mean Mean Max Max

Uncompensated Compensated Uncompensated Compensated
|∆Px| [µm] 0.97 0.19 6.5 3.7
|∆Py| [µm] 0.79 0.31 6.5 7.1
|∆Pz| [µm] 5.2 3.8 65.4 81.8
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compensation commands are generated. The compensation commands are then used by the

machine as reference commands. The encoder readings are fedinto the kinematic model with

errors then compared with the ideal kinematic model. In these experiments, a spiral toolpath

as shown in Fig. 6.1 is used as the original toolpath for the 3-axis micromill.

Based on the results shown in Tab. 6.4 and Fig. 6.19 there is a 56% and 3% improvement

in the mean and max geometric error respectively, demonstrating the ability of the algorithm

to reduce geometric errors in multi-axis trajectories. Dueto the presence of a tracking error

peak at approximately 3.5 seconds this causes the maximum tooltip error be large. Since the

compensation algorithm only addresses geometric errors, tracking errors are not accounted for

and can appear in the error results. This problem is further demonstrated in thezc-axis, where

there is noisier error behavior than the other axes. This originates from the poor quantization

of the control signal of thezc-axis. Due to the limited number of digital-to-analog converters

(DAC) on the dSPACE DS1103, thezc-axis is controlled with a PWM signal that is converted

into voltage signal by a Axiomatic Universal Signal Converter. With the lower resolution of the

PWM signal, approximately 9-bits, and further noise and distortion introduced by the universal

signal converter, the fluctuations of the tracking error will be higher than the other axes on the

machine tool. However, on average, as shown in Tab. 6.4 and Fig. 6.19 the tooltip errors which

originate from the geometric errors are compensated for quite well.
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Chapter 7

Conclusions

7.1 Conclusions

In this thesis, a trajectory generation algorithm, controls strategy, and geometric error com-

pensation technique have been developed for a novel 9 degreeof freedom micromachining

center. The hybrid micro-machine tool combines a conventional 3-axis gantry type micromill

and a 6DOF high-bandwidth, short stroke magnetic rotary table. Due to its unique 9-axis con-

figuration, new CNC strategies have been developed in the thesis. A 9-axis novel trajectory

generation algorithm, which can handle the four redundant drives while respecting the drive

limits, have been developed. In order to increase the precision on the translational axes, a con-

trol strategy is proposed which combines the high bandwidthand precision of the rotary table

and the long stroke of the micromill. Finally, the rotary table is used to compensate for tooltip

errors caused by the geometric errors of the machine tool. The contributions are summarized

as follows:

The proposed trajectory generation algorithm was developed in order to overcome the chal-

lenges associated with generating trajectories for a configuration that has more degrees of free-

dom than necessary. The position and orientation of a typical cutting tool can be defined by

6 degrees of freedom and achieved by 5 degrees of freedom on a conventional 5-axis CNC

machine. Since the developed micro-machine tool has 9 degrees of freedom, 4 more degrees

of freedom than necessary, traditional inverse kinematicsand feed planning algorithms were

not applicable. In this thesis, a methodology was developedto overcome these challenges. A
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forward kinematic model of the machine tool is first developed, which maps the 9-axis posi-

tions to the the tooltip position and tool orientation with respect to the workpiece. A numerical

technique is developed, which resolves the redundancies atthe differential level with respect

to displacement, using the Moore-Penrose inverse of the Jacobian of the forward kinematic

model. The proposed differential solution ensures that singularities are avoided and the gen-

erated trajectory does not violate the stroke limits of the axes. A corrective 4th Order Runge

Kutta numerical integration algorithm is used to extract the position commands from the dif-

ferential solution, giving axes position commands that correspond to desired tool positions and

orientations at fixed displacement intervals along the toolpath. The position commands are

then scheduled with respect to time, using a non-linear optimization algorithm to ensure that

the toolpath is traversed as fast as possible without violating the velocity, acceleration, and jerk

constraints.

In addition to a trajectory generation algorithm, a controlstrategy was developed which com-

bines the long stroke of the 3-axis micromill with the high bandwidth tracking capabilities

of the 6DOF rotary table. Prior to the control design, the rigid body dynamics of the mi-

cromill were identified using a linear regression technique. The model is further refined, par-

ticularly the non-linear friction characteristics, usingdisturbance observations with a Kalman

filter. Based upon the rigid body model, a sliding mode controller with a bandwidth of approx-

imately 30Hz was designed for position tracking. In order toimprove tracking performance,

a feedforward friction compensator, based on the LuGre friction model, is implemented. Due

to its comparatively simpler dynamics, sophisticated identification was not necessary for the

rotary table. Instead, the position controller was designed around a nominal model of the rotary

table, which consisted only of a free floating mass. To control position, a lead-lag controller

was selected, cascaded with an integrator to remove steady state error. However, it was found

that unmodeled flexibilities were limiting the potential bandwidth of the rotary table. Fre-
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quency sweeps of the plant found resonance peaks at higher frequencies and notch filters on

each axis were implemented, resulting in an achievable bandwidth of approximately 250Hz. In

order to combine the long stroke capabilities of the micromill with the high bandwidth track-

ing capabilities of the rotary table, the tracking error of the micromill is sent as the reference

command of the rotary table. Analysis of the transfer function showed that this configuration

allowed the axis to adopt the bandwidth of the rotary table. Furthermore, results showed that

the rotary table successfully compensated for tracking errors caused by the lower bandwidth of

the micromill’s three Cartesian drives.

Finally, the rotary table was used to compensate for geometric errors of the machine tool. In

order to do this, the effect of the geometric errors of the 3-axis machine tool on the tooltip

position had to be modeled. The ideal transformation matrixof each moving axis is augmented

to account for the effect of six geometric errors, includingpositioning error, two straightness

errors, roll error, pitch error, and yaw error. The errors are measured with a laser interferometer

and fit to a quintic polynomial function of position to preserve jerk continuity, which are then

incorporated into the error augmented transformation matrices. The original forward kinematic

model is reconstructed with the error augmented transformation matrices, resulting in a tooltip

position that accounts for the geometric errors of the 3-axis of the machine tool. By subtracting

the result of this forward kinematic model with the originalideal forward kinematic model, it

is possible to model the tooltip deviations. Next, rotary table commands are generated to

compensate for these tooltip deviations. Due to the non-Cartesian kinematics of rotational

errors and the presence of more degrees of freedom than necessary, a non-linear technique was

developed in order to generate compensating commands for the rotary table. A gradient descent

optimization scheme was developed where the goal was the minimization of tooltip deviations.

Since there were more degrees of freedom than necessary, theMoore-Penrose inverse was

used again. However, since only the rotary table commands were modified, the Jacobian in

105



this case only accounted for differential changes in tooltip position with respect to changes in

rotary table positions. Furthermore, the solution is augmented to ensure the stroke limits of the

rotary table were not violated. Single axis laser interferometer experiments showed significant

reductions in geometric errors as the combined effort of all6 axes of the rotary table. Multi-axis

simulations results also showed that tooltip deviations were minimized for multi-axis free-form

toolpaths.

In summary, the thesis presents a novel 9-axis CNC micro machine tool with a new trajectory

generation algorithm, dual axis control algorithm and geometric error compensation strategy.

The proposed models can be applied to other multi-axes machine tools with redundant axes.

7.2 Future Research Directions

In regards to the trajectory algorithm presented, further work can be done to select configu-

rations that take advantage of the redundant degrees of freedom. At present, the trajectory

generation algorithm only uses the nullspace of the Jacobian to select joint configurations that

avoid stroke limits. In reality, it may be possible to achieve multiple goals simultaneously,

particularly with so many redundant degrees of freedom. Thealgorithm presented could be

extended to fulfill multiple goals. To name a few, minimization of energy consumption or joint

torques can be considered. Specific to the machining process, if it is possible to model the

relative stiffness between the tool and the workpiece as a function of the axes positions, then

given an analytic gradient, it would be possible to select axes configurations in which the the

stiffness is maximized. With the presence of multiple goals, it should be noted that additional

strategies need to be developed in prioritizing the goals. With respect to the main redundancy

resolution aspect of the trajectory generation algorithm,the Moore-Penrose inverse is used,

which consequently minimizes the axes differential with respect to displacement locally. It has

been shown in literature that higher order versions of the presented solutions minimize the axes
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differential at the respective orders. By performing the redundancy resolution at higher order it

may be possible to achieve more desirable acceleration and jerk responses when scheduling the

commands with respect to time. Finally, globally optimal variations of the presented solution

have also been shown in literature and may be an interesting area of research and application

for the configuration presented in this work. However it should be noted that due to the glob-

ally optimal criteria, even short toolpaths require unrealistic computation time, and optimizing

for a real free-form CNC toolpath may be outside the realm of practicality.

Due to its relatively unique configuration, many research directions in the field of controls

could be pursued. In a gantry machine tool, one of the lowest frequency structural modes

is from the structure of thez-axis itself. The rotary table could be used to provide active

damping for this structural mode, increasing the dynamic stiffness between the work piece

and the tool. Unlike traditional active damping devices, the rotary table could actively damp

structural modes in multiple directions simultaneously. It should be noted that the dual stage

feed drive control algorithm presented considers the micromill and rotary table as two separate

rigid bodies. This is particularly true for the rotary tableacting on the heavier feed drive.

In reality, there may be flexibilities that when considered,could increase the precision of the

overall system. As a result, state-space control laws whichconsider the dynamic coupling

between the coarse and fine actuator, with the purpose of increasing performance or robustness

would be interesting to consider. With respect to geometricerror compensation, there would be

value in verifying the compensation algorithm for multi-axis trajectories. Though the algorithm

has shown effectiveness for single axis experimental results and multi-axis simulation results,

verification via a ball-bar would be a possible research direction. Furthermore, the rotary

table can also be used for compensation of errors beyond geometric error. If it is possible

to model errors caused by thermal expansion or process forces, the tooltip deviations can be

modeled. These deviations can be incorporated into the compensation algorithm presented,
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resulting in rotary table commands that compensate for the above mentioned sources of error.

Alternatively, a simpler experimental approach could be taken. A part could be machined and

the tooltip deviations could be measured with a CMM. These deviations could be sent to the

same compensation algorithm which would generate compensating commands based on CMM

measurements. This would require no modeling but a large amount of experimental data.

Finally, in addition to further developing the presented algorithms, further research can be done

by applying the presented algorithms to different configurations. Since robotic arms typically

have more degrees of freedom than necessary, application ofthe trajectory generation algorithm

presented in this work to a different configuration could be considered novel. Furthermore,

since the presented algorithm has an optimization aspect, it would make the most sense to apply

this algorithm to robotic milling arms. Likewise, the dual stage feed drive control algorithms

can be applied to more coarse/fine actuator configurations found in manufacturing literature.

In contrast to using the rotary table as an actuation device,it may be interesting to use the

rotary table as a sensing device. If the rotary table is commanded to be held stationary, then the

output current to hold the rotary table would be proportional to the cutting force. If the same

configuration is used to machine a part, the feedrate of the overall system could be controlled

to ensure a constant cutting force is held at all times, usingthe rotary table as force feedback.
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Appendix A

Foward Kinematic Equation with Geometric Errors

The actual tooltip position,Pa (q) = [Px,a (q) , Py,a (q) , Pz,a (q)]
T are shown detail in the

following equations:

Px,a (q) = −εx(xc)((L+ Lx,z)(caf scf + ccf saf sbf )
+(Lsp,y − yc)(saf scf − caf ccf sbf ))
+εx(zc)((Lsp,z + Lt)(caf scf + ccf saf sbf )
+Lsp,y(saf scf − caf ccf sbf ))
+εy(xc)((L+ Lx,z)cbf ccf + xc(caf ccf sbf − saf scf ))
+εy(yc)((L)cbf ccf )
+εz(xc)((Lsp,y − yc)cbf ccf + xc(caf scf + ccf saf sbf ))
−εy(zc)((Lsp,z + Lt)cbf ccf )
−εx(yc)(L(caf scf + ccf saf sbf )
+(Lsp,y − yc)(saf scf − caf ccf sbf ))
+εz(yc)((Lsp,y − yc)cbf ccf )
+(−δy(xc)− δy(yc) + δy(zc))(caf scf + ccf saf sbf )
+(−δz(xc)− δz(yc) + δz(zc))(saf scf − caf ccf sbf )
+(Lsp,y − yc − yf )caf scf
+(−δx(xc)− δx(yc) + δx(zc)

−xc − xf − Lsp,yεz(zc))cbf ccf
+(−L− Ls − Lx,z − zf − zf,0)saf scf
+(L+ Ls + Lx,z + zf + zf,0)caf ccf sbf
+(Lsp,y − yc − yf )ccf saf sbf
−γx,zc((−L+ Ly,z)(caf scf + ccf saf sbf )
+Lsp,y(caf ccf sbf − saf scf ))
+γy,zc((−L+ Ly,z)cbf ccf )
+γz,xc((Lsp,y − yc)cbf ccf )
+O(ε2, δ2, εδ)

(A.1)
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Py,a (q) = εx(xc)((L+ Lx,z)(saf sbf scf − caf ccf )
+(−Lsp,y + yc)(ccf saf + caf sbf scf ))
+εx(zc)((Lsp,z + Lt)(caf ccf − saf sbf scf )
+Lsp,y(ccf saf + caf sbf scf ))
+εx(yc)(L(saf sbf scf − caf ccf )
+(−Lsp,y + yc)(ccf saf + caf sbf scf ))
−εz(xc)((Lsp,y − yc)cbf scf + xc(saf sbf scf − caf ccf ))
+εy(zc)((Lsp,z + Lt)cbf scf )
−εy(yc)(Lcbf scf )
−εy(xc)((L+ Lx,z)cbf scf + xc(ccf saf + caf sbf scf ))
−εz(yc)((Lsp,y − yc)cbf scf )
+(−δy(xc)− δy(yc) + δy(zc))(caf ccf − saf sbf scf )
+(−δz(xc)− δz(yc) + δz(zc))(ccf saf + caf sbf scf )
+(Lsp,y − yc − yf )caf ccf
+(−L− Ls − Lx,z − zf − zf,0)ccf saf
+(δx(xc) + δx(yc)− δx(zc)

+xc + xf + Lsp,yεz(zc))cbf scf
+(−L− Ls − Lx,z − zf − zf,0)caf sbf scf
+(−Lsp,y + yc + yf )saf sbf scf
−γz,xc((Lsp,y − yc)cbf scf )
−γy,zc((−L+ Ly,z)cbf scf )
+γx,zc((L− Ly,z)(caf ccf − saf sbf scf )
+Lsp,y(ccf saf + caf sbf scf ))
+O(ε2, δ2, εδ)

(A.2)
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Pz,a (q) = εx(yc)(Lcbf saf + (−Lsp,y + yc)caf cbf )
−Lw − εy(zc)(Lsp,zsbf + Ltsbf )
−Lr + εz(yc)(Lsp,ysbf − ycsbf )
+εx(xc)((L+ Lx,z)cbf saf + (−Lsp,y + yc)caf cbf )
+(−δx(xc)− δx(yc) + δx(zc)− Lsp,yεz(zc))sbf
+(−xc − xf )sbf
+εy(xc)((L+ Lx,z)sbf − xccaf cbf )
−εz(xc)((yc − Lsp,y)sbf + xccbf saf )
+εy(yc)((L)sbf )
−εx(zc)((Lsp,z + Lt)cbf saf − Lsp,ycaf cbf )
+(−L− Ls − Lx,z − δz(xc)− δz(yc)

+δz(zc)− zf − zf,0)caf cbf
+(−Lsp,y + δy(xc) + δy(yc)

−δy(zc) + yc + yf )cbf saf
+γz,xc((Lsp,y − yc)sbf )
+γy,zc((−L+ Ly,z)sbf )
+γx,zc(Lsp,ycaf cbf + (−L+ Ly,z)cbf saf )
+O(ε2, δ2, εδ)

(A.3)

whereL = Lsp,z − L0,z + Lt + Lx,z − zc andO(ε2, δ2, εδ) are the second order and higher

order error terms.
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