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Abstract

We investigate the gravitational property of the quantum vacuum by treat-
ing its large energy density predicted by quantum field theory seriously
and assuming that it does gravitate to obey the equivalence principle of
general relativity. We find that the quantum vacuum would gravitate dif-
ferently from what people previously thought. The consequence of this
difference is an accelerating universe with a small Hubble expansion rate

H ∝ Λe−β
√
GΛ → 0 instead of the previous prediction H =

√
8πGρvac/3 ∝√

GΛ2 → ∞ which was unbounded, as the high energy cutoff Λ is taken
to infinity. In this sense, at least the “old” cosmological constant problem
would be resolved. Moreover, it gives the observed slow rate of the acceler-
ating expansion as Λ is taken to be some large value of the order of Planck
energy or higher. This result suggests that there is no necessity to introduce
the cosmological constant, which is required to be fine tuned to an accuracy
of 10−120, or other forms of dark energy, which are required to have pecu-
liar negative pressure, to explain the observed accelerating expansion of the
Universe.
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Lay Summary

Based on two fundamental principles of modern physics — the uncertainty
principle of quantum mechanics and the equivalence principle of general
relativity, this study suggests that the space we live in is not as static as
it appears. It is constantly moving. At each point, it oscillates between
expansion and contraction. As it swings back and forth, the two almost
cancel each other but a very small net effect drives the universe to expand
slowly at an accelerating rate. This process happens at very tiny scales,
billions and billions times smaller even than an electron. This research
proposes an original idea to resolve one of the most important problems in
fundamental physics—the cosmological constant problem and provides an
explanation for the origin of “dark energy” which drives the accelerating
expansion of the universe.
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Preface

This work is a further development with major corrections to the numerical
results from the following publication: [1] Qingdi Wang, Zhen Zhu, and
William G. Unruh, “How the huge energy of quantum vacuum gravitates to
drive the slow accelerating expansion of the Universe”, Phys. Rev. D 95,
103504 (2017).

• Chapter 2 to 9 are basically from the published paper [1] with a lit-
tle bit more details and revisions. In particular, chapter 5.6 and 5.7
contains major corrections to the numerical work, chapter 7 contains
more discussions about different metrics, chapter 9 contains more dis-
cussions about the singularity issue. We also include a different model
model (unsuccessful but still interesting) in chapter 10.

• Sam Cree repeated the numerical simulation in our published work
[1] and found that his numerical result does not match with ours. He
helped identifying the problem, improving the numeric technique and
correcting the old result.

• The original work presented in this thesis was carried out by Qingdi
Wang who also developed the conception and method of this research
with various degrees of conception, methods, consultation and editing
support from William G. Unruh. The numerical part of this research
(Section 5.7 (also part of Section 10.3) and Appendix B) was mainly
conducted by Zhen Zhu who also contributed some method develop-
ment of this research and helped editing part of the manuscript of
[1].
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Chapter 1

Introduction

The two pillars that much of modern physics is based on are Quantum
Mechanics (QM) and General Relativity (GR). QM is the most successful
scientific theory in history, which has never been found to fail in repeti-
tive experiments. GR is also a successful theory which has so far managed
to survive every test [2]. In particular, the last major prediction of GR–
the gravitational waves, has finally been directly detected on Sept 2015 [3].
However, these two theories seem to be incompatible at a fundamental level
(see e.g. [4]). The unification of both theories is a big challenge to modern
theoretical physicists.

While the test of the combination of QM and GR is still difficult in lab,
our Universe already provides one of the biggest confrontations between
both theories: the Cosmological Constant Problem [5]. Quantum field the-
ory (QFT) predicts a huge vacuum energy density from various sources.
Meanwhile, the equivalence principle of GR requires that every form of en-
ergy gravitates in the same way. When combining these concepts together,
it is widely supposed that the vacuum energy gravitates as a cosmological
constant. However, the observed effective cosmological constant λeff is so
small compared with the QFT’s prediction that an unknown bare cosmolog-
ical constant λb (2.7) has to cancel this huge contribution from the vacuum
to better than at least 50 to 120 decimal places! It is an extremely difficult
fine-tuning problem that gets even worse when the higher loop corrections
are included [6].

In 1998, the discovery of the accelerating expansion of the Universe [7,
8] has further strengthened the importance of this problem. Before this,
one only needs to worry about the “old” cosmological constant problem of
explaining why the effective cosmological constant is not large. Now, one
also has to face the challenge of the “new” cosmological constant problem
of explaining why it has such a specific small value from the observation,
which is the same order of magnitude as the present mass density of the
Universe (coincidence problem).

This problem is widely regarded as one of the major obstacles to fur-
ther progress in fundamental physics (for example, see Witten 2001 [9]). Its
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Chapter 1. Introduction

importance has been emphasized by various authors from different aspects.
For example, it has been described as a “veritable crisis” (Weinberg 1989, [5]
p.1), an “unexplained puzzle” (Kolb and Turner 1993 , [10] p.198), “the most
striking problem in contemporary physics” (Dolgov 1997 [11] p.1) and even
“the mother of all physics problems” , “the worst prediction ever”(Susskind
2015 [12] chapter two). While it might be possible that people working on
a particular problem tend to emphasize or even exaggerate its importance,
those authors all agree that this is a problem that needs to be solved, al-
though there is little agreement on what is the right direction to find the
solution [13].

In this thesis, we make a proposal for addressing the cosmological con-
stant problem. We treat the divergent vacuum energy density predicted by
QFT seriously and assume that it does gravitate to obey the equivalence
principle of GR. We notice that the magnitude of the vacuum fluctuation
itself also fluctuates, which leads to a constantly fluctuating and extremely
inhomogeneous vacuum energy density. As a result, the quantum vacuum
gravitates differently from a cosmological constant. Instead, at each spatial
point, the spacetime sourced by the vacuum oscillates alternatively between
expansion and contraction, and the phases of the oscillations at neighboring
points are different. In this manner of vacuum gravitation, although the
gravitational effect produced by the vacuum energy is still huge at suffi-
ciently small scales (Planck scale), its effect at macroscopic scales is largely
canceled. Moreover, due to the weak parametric resonance of those oscilla-
tions, the expansion outweighs contraction a little bit during each oscilla-
tion. This effect accumulates at sufficiently large scales (cosmological scale),
resulting in an observable effect—the slow accelerating expansion of the Uni-
verse. Our proposal harkens back to Wheeler’s spacetime foam [14, 15] and
suggests that it is this foamy structure which leads to the cosmological con-
stant we see today.

This thesis is organized as follows: in chapter 2, we first review several
key steps in formulating the cosmological constant problem; in chapter 3, we
point out that the vacuum energy density is not a constant but is constantly
fluctuating and extremely inhomogeneous; in chapter 4, we investigate the
differences made by the extreme inhomogeneity of the quantum vacuum by
introducing a simple model; in chapter 5, we give the solutions to this model
by solving the Einstein field equations and show how metric fluctuations
leads to the slow accelerating expansion of the Universe; in chapter 6, we
investigate the back reaction effect of the resulting spacetime on the matter
fields propagating on it; in chapter 7, we generalize our results to more
general metrics; in chapter 8 we discuss the role played by vacuum energy in

2



Chapter 1. Introduction

non-gravitational physics and gravitational physics; in chapter 9 we discuss
the singularity issue; in chapter 10 we introduce another unsuccessful but
interesting model.

The units and metric signature are set to be c = ~ = 1 and (−,+,+,+)
throughout except otherwise specified.

3



Chapter 2

The formulation of the
cosmological constant
problem

The cosmological constant problem arises when trying to combine GR and
QFT to investigate the gravitational property of the vacuum:

Gµν + λbgµν = 8πGT vac
µν , (2.1)

where Gµν ≡ Rµν − 1
2Rgµν is the Einstein tensor and the parameter λb is

the bare cosmological constant.
One crucial step in formulating the cosmological constant problem is

assuming that the vacuum energy density is equivalent to a cosmological
constant. First, it is argued that the vacuum is Lorentz invariant and thus
every observer would see the same vacuum. In Minkowski spacetime, ηµν is
the only Lorentz invariant (0, 2) tensor up to a constant. Thus the vacuum
stress-energy tensor must be proportional to ηµν (see, e.g. [16], [13])

T vac
µν (t,x) = −ρvacηµν . (2.2)

The above vacuum equation of state (2.2) is then straightforwardly gen-
eralized from inertial coordinates to arbitrary coordinates by replacing ηµν
with gµν

1,
T vac
µν (t,x) = −ρvacgµν(t,x). (2.3)

Then from the principle of general covariance, it is asserted that T vac
µν

has also to be a constant times gµν when gµν describes a real gravitational
field:

T vac
µν (t,x) = −ρvacgµν(t,x). (2.4)

1Note that the gµν here is still describing flat spacetime. Do not be confused with
the gµν in (2.4), which is describing curved spacetime (with none-zero Riemann curvature
tensor components).

4



Chapter 2. The formulation of the cosmological constant problem

If T vac
µν does take the above form (2.4), the vacuum energy density ρvac has

to be a constant, which is the requirement of the conservation of the stress-
energy tensor

∇µT vac
µν = 0. (2.5)

The effect of a stress-energy tensor of the form (2.4) is equivalent to that
of a cosmological constant, as can be seen by moving the term 8πGT vac

µν in
(2.1) to the left-hand side

Gµν + λeffgµν = 0, (2.6)

where,
λeff = λb + 8πGρvac; (2.7)

Or equivalently by moving the term λbgµν in (2.1) to the right-hand side

Gµν = −8πGρvac
eff gµν , (2.8)

where,

ρvac
eff = ρvac +

λb
8πG

. (2.9)

So anything that contributes to the energy density of the vacuum acts like
a cosmological constant and thus contributes to the effective cosmological
constant. Or equivalently we can say that the bare cosmological constant
acts like a source of vacuum energy and thus contributes to the total effective
vacuum energy density. This equivalence is the origin of the identification
of the cosmological constant with the vacuum energy density.

Following the above formulations, the effective cosmological constant λeff

or the total effective vacuum energy density ρvac
eff are the quantities that can

be constrained and measured through experiments. While solar system and
galactic observations have placed a small upper bound on λeff , large scale
cosmological observations provide the most accurate measurement. It is in-
terpreted as a form of “dark energy”, which drives the observed accelerating
expansion of the Universe [7, 8].

Based on the assumption of homogeneity and isotropy of the Universe,
the metric has the cosmology’s standard FLRW form, which is, for the
spatially flat case,

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (2.10)

Then by applying the equations (2.6) or (2.8) for the above special metric
(2.10), one obtains the contributions to the Hubble expansion rate H = ȧ/a

5



Chapter 2. The formulation of the cosmological constant problem

and the acceleration of the scale factor ä from λeff and/or ρvac
eff are

3H2 = λeff = 8πGρvac
eff , (2.11)

ä =
λeff

3
a =

8πGρvac
eff

3
a. (2.12)

The solution to the dynamic equation (2.12) is

a(t) = a(0)eHt, (2.13)

where H is determined by the initial value constraint equation (2.11).
According to the Lambda-CDM model of the big bang cosmology, the

effective cosmological constant is responsible for the accelerating expansion
of the Universe as shown in (2.12) and contributes about 69% to the current
Hubble expansion rate [17]:

λeff = 3ΩλH
2
0 ≈ 4.32× 10−84(GeV)2, (2.14)

or
ρvac

eff = Ωλρcrit ≈ 2.57× 10−47(GeV)4, (2.15)

where Ωλ = 0.69 is the dark energy density parameter, H0 is the current

observed Hubble constant and ρcrit =
3H2

0
8πG is the critical density.

Unfortunately the predicted energy density of the vacuum from QFT
is much larger than this. It receives contributions from various sources,
including the zero point energies (∼ 1072(GeV)4) of all fundamental quan-
tum fields due to vacuum fluctuations, the phase transitions due to the
spontaneous symmetry breaking of electroweak theory (∼ 109(GeV)4) and
any other known and unknown phase transitions in the early Universe (e.g.
from chiral symmetry breaking in QCD (∼ 10−2(GeV)4), grand unification
(∼ 1064(GeV)4) etc)[13, 18]. Each contribution is larger than the observed
value (2.15) by 50 to 120 orders of magnitude. There is no mechanism in the
standard model which suggests any relations between the individual contri-
butions, so it is customary to assume that the total vacuum energy density
is at least as large as any of the individual contributions [13]. One thus has
to fine tune the unknown bare cosmological constant λb to a precision of at
least 50 decimal places to cancel the excess vacuum energy density.
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Chapter 3

The fluctuating quantum
vacuum energy density

The vacuum energy density is treated as a constant in the usual formulation
of the cosmological constant problem. While this is true for the expectation
value, it is not true for the actual energy density.

That’s because the vacuum is not an eigenstate of the local energy den-
sity operator T00, although it is an eigenstate of the global Hamiltonian
operator H =

∫
d3xT00. This implies that the total vacuum energy all over

the space is constant but its density fluctuates at individual points.
To see this more clearly, consider a quantized real massless scalar field

φ in Minkowski spacetime as an example:

φ(t,x) =

∫
d3k

(2π)3/2

1√
2ω

(
ake
−i(ωt−k·x) + a†ke

+i(ωt−k·x)
)
, (3.1)

where the temporal frequency ω and the spatial frequency k in (3.1) are
related to each other by ω = |k|.

The vacuum state |0〉, which is defined as

ak|0〉 = 0, for all k, (3.2)

is an eigenstate of the Hamiltonian operator

H =

∫
d3xT00 =

1

2

∫
d3k ω

(
aka

†
k + a†kak

)
, (3.3)

where T00 is defined as

T00 =
1

2

(
φ̇2 + (∇φ)2

)
. (3.4)

7



Chapter 3. The fluctuating quantum vacuum energy density

But, |0〉 is not an eigenstate of the energy density operator

T00(t,x) =
1

2

∫
d3kd3k′

(2π)3

1

2

(√
|k||k′|+ k · k′√

|k||k′|

)

·

(
aka

†
k′e
−i[(|k|−|k′|)t−(k−k′)·x] + a†kak′e

+i[(|k|−|k′|)t−(k−k′)·x]

−akak′e−i[(|k|+|k
′|)t−(k+k′)·x] − a†ka

†
k′e

+i[(|k|+|k′|)t−(k+k′)·x]

)
, (3.5)

because of the terms of the form akak′ and a†ka
†
k′ .

Direct calculation shows the magnitude of the fluctuation of the vacuum
energy density diverges as the same order as the energy density itself,〈(

T00 − 〈T00〉
)2〉

=
2

3
〈T00〉2, (3.6)

where

〈T00〉 =
Λ4

16π2
, (3.7)

where Λ is the effective QFT’s high energy cutoff. (For more details on this
calculation, see equation (A.6) in Appendix A.) Thus the energy density
fluctuates as violently as its own magnitude. With such huge fluctuations,
the vacuum energy density ρvac is not a constant in space or time.

Furthermore, the energy density of the vacuum is not only not a constant
in time at a fixed spatial point, it also varies from place to place. In other
words, the energy density of vacuum is varying wildly at every spatial point
and the variation is not in phase for different spatial points. This results
in an extremely inhomogeneous vacuum. The extreme inhomogeneity can
be illustrated by directly calculating the expectation value of the square of
difference between energy density at different spatial points,

∆ρ2 (∆x) =

〈{(
T00 (t,x)− T00 (t,x′)

)2}〉
4
3 〈T00(t,x)〉2

, (3.8)

where ∆x = |x−x′| and we have normalized ∆ρ2 by dividing its asymptotic
value 4

3〈T00〉2 (the curly bracket {} is the symmetrization operator which is
defined by (A.2)). The behavior of ∆ρ2 for the scalar field (3.1) in Minkowski
vacuum is plotted in FIG. 3.1, which shows that the magnitude of the energy
density difference between two spacial points quickly goes up to the order of

8



Chapter 3. The fluctuating quantum vacuum energy density
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Figure 3.1: Plot of the expectation value of the square of the energy density
difference as a function of spacial separation Λ∆x.

〈T00〉 itself as their distance increases by only the order of 1/Λ. (For more
details on the calculations and how the energy density fluctuates all over
the spacetime, see Appendix A.)

As the vacuum is clearly not homogeneous, equation (2.11) is not valid as
it depends on a homogeneous and isotropic matter field and metric. There-
fore a new method of relating vacuum energy density to the observed Hubble
expansion rate is required.
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Chapter 4

Differences made by the
inhomogeneous vacuum—a
simple model

The extreme inhomogeneity of the vacuum means its gravitational effect
cannot be treated perturbatively, so another method is required. As solu-
tions to the fully general Einstein equations are difficult to obtain, we will
first look at a highly simplified model.

4.1 Beyond the FLRW metric

To describe the gravitational property of the inhomogeneous quantum vac-
uum, we must allow inhomogeneity in the metric. This is accomplished by
allowing the scale factor a(t) in the FLRW metric (2.10) to have spatial
dependence,

ds2 = −dt2 + a2(t,x)(dx2 + dy2 + dz2). (4.1)

The full Einstein field equations for the coordinate (4.1) are

G00 = 3

(
ȧ

a

)2

+
1

a2

(
∇a
a

)2

− 2

a2

(
∇2a

a

)
= 8πGT00, (4.2)

Gii = −2aä− ȧ2 −
(
∇a
a

)2

+
∇2a

a
+ 2

(
∂ia

a

)2

− ∂2
i a

a

= 8πGTii, (4.3)

G0i = 2
ȧ

a

∂ia

a
− 2

∂iȧ

a
= 8πGT0i, (4.4)

Gij = 2
∂ia

a

∂ja

a
− ∂i∂ja

a
= 8πGTij , i, j = 1, 2, 3, i 6= j, (4.5)

where ∇ = (∂1, ∂2, ∂3) is the ordinary gradient operator with respect to the
spatial coordinates x, y, z.

10



4.2. The fluctuating spacetime

By choosing the above simplest inhomogeneous metric (4.1), we are as-
suming a mini-superspace type model, and will choose which of these equa-
tions do apply later. This treatment might result in inconsistencies as gen-
eral vacuum fluctuations of the matter fields posses rich structures that they
may not produce spacetime described by the metric (4.1). To fully describe
the resulting inhomogeneous spacetime, one needs a more general metric.
However, as a first approximation, using (4.1) is relatively easy to calculate
and leads to interesting results. We are also going to do the calculations for
more general metrics in chapter 7.

4.2 The fluctuating spacetime

The role played by the value of vacuum energy density in the above equations
(4.2), (4.3), (4.4) and (4.5) is different from (2.11). The value of vacuum
energy density is no longer directly related to the Hubble rate H through
the equation (2.11). This is evident from the 00 component of the Einstein
equation (4.2). The equation (2.11) is only the special case of (4.2) when
the spatial derivatives ∇a and ∇2a are zero, which requires that the mat-
ter distribution is strictly homogeneous and isotropic. However, as shown
in the last section, the quantum vacuum is extremely inhomogeneous and
necessarily anisotropic, which requires ∇a and ∇2a be huge. This can be
seen through the ij component of the Einstein equation (4.5). In fact, due
to symmetry properties of the quantum vacuum, we have the expectation
value of shear stress Tij on the right side of (4.5)

〈Tij〉 = 0, i, j = 1, 2, 3, i 6= j. (4.6)

Meanwhile, Tij must fluctuate since the quantum vacuum is not its eigen-
state either, and the magnitude of the fluctuation is on the same order of
the vacuum energy density 〈

T 2
ij

〉
∼ 〈T00〉2 . (4.7)

This means that the Tij is constantly fluctuating around zero with a huge
magnitude of the order of vacuum energy density. As a result, in (4.5),
the spatial derivatives of a(t,x) must also constantly fluctuate with huge
magnitudes.

More importantly, since the scale factor a(t,x) is spatially dependent, the
physical distance L between two spatial points with comoving coordinates
x1 and x2 is no longer related to their comoving distance ∆x = |x1 − x2|

11



4.2. The fluctuating spacetime

by the simple equation L(t) = a(t)∆x and the observed global Hubble rate
H is no longer equal to the local Hubble rate ȧ/a. Instead, the physical
distance and the global Hubble rate are defined as

L(t) =

∫ x2

x1

√
a2(t,x)dl (4.8)

and

H(t) =
L̇

L
=

∫ x2

x1

ȧ
a(t,x)

√
a2(t,x)dl∫ x2

x1

√
a2(t,x)dl

, (4.9)

where the line element dl =
√
dx2 + dy2 + dz2.

Equation (4.9) shows the key difference between the gravitational behav-
ior of quantum vacuum predicted by the homogeneous FLRW metric (2.10)
and by the inhomogeneous metric (4.1).

For the homogeneous metric (2.10), the scale factor a is spatially inde-
pendent and (4.9) just reduces to

H(t) =
ȧ

a
(t). (4.10)

In this case, there are only two distinct choices for Hubble rates on a spatial
slice t = Const under the initial value constraint equation (2.11)

ȧ

a
= ±

√
8πGρvac

3
, (4.11)

which implies that all points in space have to be simultaneously expand-
ing or contracting at the same constant rate (Here we do not include the
cosmological constant λ).

But for the inhomogeneous metric (4.1), the scale factor a is spatially de-
pendent and there is much more freedom in choosing different local Hubble
rates at different spatial points of the slice t = Const under the correspond-
ing initial value constraint equation (4.2).

In fact, the local Hubble rates must be constantly changing over spatial
directions within very small length scales. This can be seen from the initial
value constraint equations (4.4), which can be rewritten as

∇
(
ȧ

a

)
= −4πGJ, (4.12)
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4.2. The fluctuating spacetime

where J = (T01, T02, T03) is vacuum energy flux2.
The solution to (4.12) or (4.4) is

ȧ

a
(t,x) =

ȧ

a
(t,x0)− 4πG

∫ x

x0

J
(
t,x′

)
· dl′, (4.13)

where dl′ = (dx′, dy′, dz′) and x0 is an arbitrary spatial point. The above
solution (4.13) shows that the difference in the local Hubble rates ȧ/a be-
tween x0 and x1 is determined by the spatial accumulations (integral) of the
vacuum energy flux J. Similar to the shear stress, J has zero expectation
value

〈J〉 = 0 (4.14)

but huge fluctuations

J =
√
〈J2〉 ∼ 〈T00〉 ∼ Λ4 → +∞, (4.15)

which implies that the local Hubble rates differ from point to point due to
the fluctuations. The average of the absolute value of ȧ/a can be estimated
with the constraint equation (4.2)√√√√〈( ȧ

a

)2
〉
∼
√
G 〈T00〉 ∼

√
GΛ2. (4.16)

By using (4.13), we find that the difference in local Hubble rates becomes
comparable with itself for points separated by only a distance of the order
∆x ∼ 1√

GΛ2
as Λ→ +∞:

∆

(
ȧ

a

)
∼ 4πGJ∆x ∼

√
GΛ2 ∼

√√√√〈( ȧ
a

)2
〉
. (4.17)

Up to this point, we have used the equations (4.2), (4.4) and (4.5). These
equations are all initial value constraint equations which do not contain the
scale factor’s second order time derivative ä. To get the information about

2One might notice that (4.12) requires ∇ × J = 0, which means that to produce the
metric of the form (4.1), the energy flux of the matter field needs to be curl free. As
mentioned in the last paragraph of section 4.1, this is not true for general matter fields,
but here as a first approximation we will use (4.12) to estimate the magnitude of change
in ȧ/a.
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4.2. The fluctuating spacetime

the time evolution of a(t,x), we also need to use (4.3). A linear combination
of equations (4.2) and (4.3) gives,

G00 +
1

a2
(G11 +G22 +G33) = −6ä

a
, (4.18)

where all the spatial derivatives of a cancel and only the second order time
derivative left. Therefore we reach the following dynamic evolution equation
for a(t,x):

ä+ Ω2(t,x)a = 0, (4.19)

where

Ω2 =
4πG

3

(
ρ+

3∑
i=1

Pi

)
, ρ = T00, Pi =

1

a2
Tii. (4.20)

(4.19) is just a generalization of the second Friedman equation. Its so-
lution depends on the property of Ω2, especially its sign.

If still treating the energy density ρ ≡ constant, then to satisfy the
conservation equation (2.5), one must have P = P1 = P2 = P3 = −ρ that 3

Ω2 =
4πG

3
(ρ+ 3P ) = −8πGρ

3
< 0, if ρ > 0. (4.21)

In this case, gravity becomes “repulsive” and the solution to (4.19) is just
the exponential expansion (2.13).

However, when ρ is not a constant, fundamental difference happens—the
sign of Ω2 may change. For example, consider a real massless scalar field φ,
its stress energy tensor for a general spacetime metric gµν is

Tµν = ∇µφ∇νφ−
1

2
gµν∇λφ∇λφ. (4.22)

Direct calculation using the inhomogeneous metric (4.1) gives that

ρ+

3∑
i=1

Pi = 2φ̇2, (4.23)

where all the spatial derivatives and explicit dependence on the metric a are
canceled. Thus we obtain

Ω2 =
8πGφ̇2

3
> 0. (4.24)

3This is easy to understand by considering the matter illustrated in Fig.4.2. The matter
must have negative pressure to be able to do negative work to the environment to maintain
constant energy density.
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4.2. The fluctuating spacetime

 𝐹

 𝐹

𝜌=constant
𝑃 = −𝜌

Figure 4.1: Constant energy density requires negative pressure

In this case, gravity is still attractive 4 as usual and (4.19) describes a
harmonic oscillator with time dependent frequency. The most basic behav-
ior of a harmonic oscillator is that it oscillates back and forth around its
equilibrium point, which implies that the local Hubble rates ȧ/a are period-
ically changing signs over time. By using equation (4.17) you can find that
ȧ/a must also have this periodic sign change in a given spatial direction.

Physically, these fluctuating features of ȧ/a imply that, at any instant
of time, if the space is expanding in a small region, it has to be contracting
in neighboring regions; and at any spatial point, if the space is expanding
now, it has to be contracting later.

These features result in huge cancellations when calculating the aver-
aged H through (4.9). The observable overall net Hubble rate can be small
although the absolute value of the local Hubble rate |ȧ/a| at each individual
point has to be huge to satisfy the constraint equation (4.2). In other words,
while the instantaneous rates of expansion or contraction at a fixed spatial
point can be large, their effects can be canceled in a way that the physical

4This is true if the matter fields satisfy normal energy conditions. We will assume that
Ω2 > 0 even after considering all the contributions from known and unknown fundamental
fields, i.e. gravity is always attractive as usual, no mysteries “dark energy” with peculiar
negative pressure.
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4.3. Methods and assumptions in solving the system

distance (4.8) would not grow 10120 times larger than what is observed.
This picture of fluctuating spacetime is not completely new. It is similar

to the concept of spacetime foam devised by John Wheeler [14, 15] that in a
quantum theory of gravity spacetime would have a foamy, jittery nature and
would consist of many small, ever-changing, regions in which spacetime are
not definite, but fluctuates. His reason for this “foamy” picture is the same
as ours—at sufficiently small scales the energy of vacuum fluctuations would
be large enough to cause significant departures from the smooth spacetime
we see at macroscopic scales.

The solution for a(t,x) will be given by equations (5.4), (5.8) and (5.9)
in the next chapter 5 to describe this foamy structure more precisely.

4.3 Methods and assumptions in solving the
system

In principle, we need a full quantum theory of gravity to solve the evolution
details of this quantum gravitational system. Unfortunately, no satisfactory
theory of quantum gravity exists yet.

In this paper, we are not trying to quantize gravity. Instead, we are
still keeping the spacetime metric a(t,x) as classical, but quantizing the
fields propagating on it. The key difference from the usual semiclassical
gravity is that we go one more step—instead of assuming the semiclassical
Einstein equation, where the curvature of the spacetime is sourced by the
expectation value of the quantum field stress energy tensor, we also take the
huge fluctuations of the stress energy tensor into account. In our method, the
sources of gravity are stochastic classical fields whose stochastic properties
are determined by their quantum fluctuations, i.e. our method is using
stochastic gravity framework [19]. 5

The evolution details of the scale factor a(t,x) described by equation(4.19)
depends on the property of the time dependent frequency Ω(t,x) given by
(4.20). For both simplicity and clarity, in the following chapters we investi-
gate the properties of Ω by considering the contribution from a real massless
scalar field φ, whose stress energy tensor is given by (4.22). (4.24) shows that
Ω2 is not explicitly dependent on the metric a(t,x). However, the resulting
spacetime sourced by this massless scalar field φ does have back reaction
effect on φ itself. This is because φ obeys the equation of motion in curved

5The difference from the usual stochastic gravity framework is that we do not try to
regularize the divergent stress energy tensor.

16



4.3. Methods and assumptions in solving the system

spacetime

∇µ∇µφ =
1√
−g

∂µ
(√
−ggµν∂νφ

)
= 0, (4.25)

which reduces to
∂t
(
a3∂tφ

)
−∇ · (a∇φ) = 0 (4.26)

for the special metric (4.1).
Incorporating the back reaction effect by solving both the Einstein equa-

tions (4.2), (4.3), (4.4), (4.5) for the metric a and the equation of motion
(4.26) for the field φ at the same time is difficult. Fortunately, solving the
system in this way is unnecessary. Physically, the quantum vacuum locally
behaves as a huge energy reservoir, so that the back reaction effect on it
should be small and can be neglected. In our method, we will first assume
that the quantized field φ is still taking the flat spacetime form of (3.1)
for field modes below the effective QFT’s high frequency cutoff Λ. We use
(3.1) to calculate the stochastic property of the time dependent frequency
Ω and then solve (4.19) to get the resulting curved spacetime described by
the metric a(t,x). This will be done in the next chapter 5.

We then investigate the back reaction effect in chapter 6by quantizing
the field φ in the resulting curved spacetime. It turns out that, while the
resulting spacetime is fluctuating, the fluctuation happens at scales which
are much smaller than the length scale 1/Λ. Therefore the corrections to the
field modes with frequencies below the cutoff Λ is quite small and thus the
flat spacetime quantization (3.1) is valid to high precision. (See equations
(6.38) (or (6.69)), (6.39) and (6.41) for quantitatively how high this precision
is.) In this way we justify neglecting the aforementioned back reaction.

Empirically, this must be true since ordinary QFT has achieved great
successes by assuming flat Minkowski background and using the expansion
(3.1). So if our method is correct, (3.1) has to be still valid even the back-
ground spacetime is no longer flat but wildly fluctuating at small scales. In
other words, the resulting spacetime should still looks like Minkowskian for
low frequency field modes. Long wavelength fields ride over the Wheeler’s
foam as if it is not there. This is similar to the behavior of very long wave-
length water waves which do not notice the rapidly fluctuating atomic soup
over which they ride.
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Chapter 5

The solution for a(t,x)

In this chapter we give the solution for the local scale factor a(t,x).

5.1 Parametric resonance

One important feature of a harmonic oscillator with time dependent fre-
quency is that it may exhibit parametric resonance behavior.

If the Ω(t,x) is strictly periodic in time with a period T , the property of
the solutions of (4.19) has been thoroughly studied by Floquet theory [20].
Under certain conditions (for example, the condition (5.28)), the parametric
resonance phenomenan occurs and the general solution of (4.19) is (see e.g.
Eq(27.6) in Chapter V of [21])

a(t,x) = c1e
HxtP1(t,x) + c2e

−HxtP2(t,x), (5.1)

where Hx > 0, c1 and c2 are constants. The P1 and P2 are purely periodic
functions of time with period T . They are in general functions oscillating
around zero. The amplitude of the first term in (5.1) increases exponen-
tially with time while the second term decreases exponentially. Therefore
the first term will become dominant and the solution will approach a pure
exponential evolution

a(t,x) ' eHxtP (t,x), (5.2)

where we have absorbed the constant c1 into P (t,x) by letting P (t,x) =
c1P1(t,x).

Physically, the exponential evolution of the amplitude of a(t,x) is easy
to understand. If Ω is strictly periodic, the system will finally reach a
steady pattern of evolution (when the second term in (5.1) has been highly
suppressed). In this pattern, after each period of evolution of the system, a
increases by a fixed ratio, i.e. a(t + T,x) = µxa(t,x), which results in the
exponential increase since after n cycles, a(t+ nT,x) = µnxa(t,x). Here the
µx is related to the Hx by Hx = lnµx

T .
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5.1. Parametric resonance
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Figure 5.1: Plot of the normalized covariance χ as a function of temporal
separation Λ∆t.

Due to the stochastic nature of quantum fluctuations, the Ω(t,x) in
(4.19) is not strictly periodic. However, its behavior is still similar to a pe-
riodic function. In fact, Ω exhibits quasiperiodic behavior in the sense that
it is always varying around its mean value back and forth on an approxi-
mately fixed time scale. To see this, we calculate the following normalized
covariance:

χ (∆t) = Cov
(
Ω2(t1,x),Ω2(t2,x)

)
(5.3)

=

〈{(
Ω2(t1)−

〈
Ω2(t1)

〉) (
Ω2(t2)−

〈
Ω2(t2)

〉)}〉〈
(Ω2 − 〈Ω2〉)2

〉 ,

where ∆t = t1 − t2 and we have dropped the label x in the second line of
the above definition (5.3) since the final result is independent with x.

Explicit expression for χ as a function of ∆t is given by (A.12), which
is plotted in FIG. 5.1. It describes how Ω2 at different times change around
their mean values together. We say that two Ω2 separated by time difference
∆t are positively (negatively) correlated if χ(∆t) > 0(< 0), since it means
that they are most likely to be at the same (opposite) side of their mean
value 〈Ω2〉.
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5.1. Parametric resonance

FIG. 5.1 and (A.12) show that Ω2 at different times are strongly corre-
lated at close range. Especially, the negative correlation is strongest when
∆t ∼ 2/Λ, which implies that if at t = 0 the Ω2 is above its mean value〈
Ω2
〉
, then at t ∼ 2/Λ, it is most likely below

〈
Ω2
〉
. So basically, Ω2 varies

around its mean value quasiperiodically on the time scale T ∼ 1/Λ.
This quasiperiodic behavior of Ω should also lead to parametric reso-

nance behavior seen in (5.2), instead with a difference in that Hx would
become time dependent, i.e. the solution would take the following form

a(t,x) ' e
∫ t
0 Hx(t′)dt′P (t,x), (5.4)

where P (t,x) here is no longer a strictly periodic function as in (5.2) but
a quasiperiodic function with the same quasiperiod of the order 1/Λ as the
time dependent frequency Ω(t,x). (The solution (5.8) for P (t,x) in the next
section 5.2 reveals this property.)

The physical mechanism is similar. The system will also reach a fi-
nal steady evolution pattern. In this pattern, after each quasiperiod of
evolution of the system, a will increase by an approximately fixed ratio.
Suppose that during the ith cycle of quasiperiod Ti, a increases by a fac-
tor µix, i.e. a(t + Ti,x) = µixa(t,x). Then after the n cycles, we have

a(t +
n∑
i=1

Ti,x) =

(
n∏
i=1

µix

)
a(t,x). Because the quasiperiods Ti and the

factors µix are generally different from each other, the exponent in (5.4)
would need to take the form of integration.

The detailed oscillating behavior of P (t,x) is not observable at macro-

scopic scales. However, the factor of the exponential increase e
∫ t
0 Hx(t′)dt′

can be observed. In fact, inserting (5.4) into (4.8), the observable physical
distance would become

L(t) = L(0)eHt, (5.5)

where

L(0) =

∫ x2

x1

√
P 2(t,x)dl (5.6)

and the global Hubble expansion rate H is

H =
1

t

∫ t

0
Hx(t′)dt′. (5.7)

In the next two sections, we are going to give the solution for P (t,x)
and the global Hubble expansion rate H.
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5.2. The solution for P (t,x)

5.2 The solution for P (t,x)

The magnitude of the time dependent frequency Ω is of the order∼
√
G 〈T00〉 ∼√

GΛ2, while Ω itself varies roughly with a characteristic frequency Λ (this
has been shown by FIG. 5.1). Then according to (4.19), the scale factor a
would oscillate with a period that roughly goes as T = 2π/Ω ∼ 1/

√
GΛ2 �

1/Λ, as Λ → ∞, where 1/Λ is the time scale on which the Ω itself would
change significantly.

So comparing to the oscillating period T of the scale factor a, the vari-
ation of Ω itself is very slow, although the time 1/Λ is already very short
for large Λ. Therefore, during one period of the oscillation of a, Ω is almost
constant since it has not have a chance to change significantly during such
a short time scale. In this sense the time dependent frequency Ω is slowly
varying and the evolution of the scale factor a is an adiabatic process.

The leading order solution of the equation (4.19) for a harmonic oscillator
with the slowly varying frequency Ω can be obtained by a first order WKB
approximation. This adiabatic approximation neglects the small exponential
factor in (5.4). It gives the solution P (t,x) which is describing the oscillating
behavior of a(t,x). The result is,

P (t,x) =
A0√

Ω(t,x)
cos

(∫ t

0
Ω(t′,x)dt′ + θx

)
. (5.8)

The P (t,x) above is a quasiperiodic function with the same quasiperiod of
the order 1/Λ as the time dependent frequency Ω(t,x) just as expected. The
two constants of integration A0 and θx in (5.8) can be determined by the
initial values a(0,x) and ȧ(0,x).

The quantum vacuum is fluctuating everywhere, but its statistical prop-
erty must be still the same everywhere. Correspondingly, the statistical
property of P (t,x) must also be the same everywhere, which requires that
the constant A0 to be independent with respect to the spatial coordinate
x. In addition, the constant A0 can be chosen as any nonzero value since
the scale factor a multiplying by any nonzero constant describes physically
equivalent spacetimes.

The initial phase θx at different places must be dependent on x. In
applying the initial value constraint equation (4.13), neglecting the small
exponential factor in (5.4) and neglecting the relatively small time derivative
terms of the slowly varying frequency Ω, we obtain the result,

tan θx =
Ω(0,x0)

Ω(0,x)
tan θx0 +

4πG

Ω(0,x)

∫ x

x0

J(0,x′) · dl′, (5.9)
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5.3. The global Hubble expansion rate H

where θx0 is the initial phase of the scale factor a at an arbitrary spatial
point x0.

In solutions (5.8) and (5.9) we see the fluctuating nature of spacetime
at very small scales as described in the previous chapter 4.2. In particular,
(5.9) shows that the phases of a(t,x) vary on a given initial Cauchy slice;
some locations contract while others expand. In this new physical picture
the catastrophic vacuum energy density is confined to very small scales.

5.3 The global Hubble expansion rate H

As the system is adiabatic, the parametric resonance effect is weak. The
adiabatic solution (5.8) in the last section does not include the parametric
resonance and thus misses the small exponential factor expected in (5.4). In
this section we go beyond the adiabatic approximation and investigate the
exact strength of the weak parametric resonance.

When considering the weak parametric resonance effect, the constant
A0 in (5.8) would become time and space dependent and take the following
form

A(t,x) = A0e
∫ t
0 Hx(t′)dt′ (5.10)

in order to satisfy (5.4).
To determine how the Hx(t) depends on the spacetime dependent fre-

quency Ω(t,x), we consider the adiabatic invariant of a harmonic oscillator
with time dependent frequency, which is defined as

I(t,x) =
E

Ω
, (5.11)

where

E =
1

2
(ȧ2 + Ω2a2). (5.12)

Replace the constant A0 in (5.8) by A(t,x) and then plug it into the
above expression (5.11) we get that

I(t,x) =
1

2
A2(t,x), (5.13)

where we have neglected the time derivatives of A and Ω in the above equa-
tion (5.13), which are higher order infinitesimals. I is invariant in the first
order adiabatic approximation. When going to higher orders, I will slowly
change with time. Through the relation (5.13) between I and A we can ob-
tain how the A(t,x) changes by investigating how accurately the adiabatic
invariant is preserved and how it changes with time.
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5.3. The global Hubble expansion rate H

It has been proved by Robnik and Romanovski [22, 23] that, in full
generality (no restrictions on the function Ω(t,x)), the final value of the
adiabatic invariant for the average energy Ī = Ē/Ω is always greater or
equal to the initial value I0 = E0/Ω0 (see the references [22, 23] for precise
definition about the average energy). In other words, the average value of
the adiabatic invariant Ī = Ē/Ω for the mean value of the energy never
decreases, which is a kind of irreversibility statement. It is conserved only
for infinitely slow process, i.e. an ideal adiabatic process.

Therefore, in the case of our quasiperiodic frequency Ω(t,x) in (4.19), Ī
will also always increase. Moreover, it will increase by a fixed factor after
each quasiperiod of evolution, which results in an exponentially increasing
Ī. This is in fact evident because of the weak parametric resonance effect.
In the following we investigate this exponential behavior in detail.

First we construct the evolution equation for the adiabatic invariant I.
Do the canonical transformation

a =
√

2I/Ω sinϕ, (5.14)

ȧ =
√

2IΩ cosϕ. (5.15)

Then the evolution equations for a and its conjugate momentum ȧ transfer
to the evolution equation for the new action variable I and the angle variable
ϕ,

dI

dt
= −I Ω̇

Ω
cos 2ϕ, (5.16)

dϕ

dt
= Ω +

Ω̇

2Ω
sin 2ϕ. (5.17)

Integrating (5.16) yields

I(t) = I(0) exp

(
2

∫ t

0
Hx(t′)dt′

)
, (5.18)

where

Hx(t′) = − Ω̇

2Ω
cos 2ϕ. (5.19)

The Hx(t′) in the above equation (5.19) is just the same with the Hx(t′)
defined in (5.4) and (5.10), which can be seen by applying equation (5.13).
Thus equation (5.19) constructed the dependence of Hx(t′) on the time
dependent frequency Ω(t′,x).
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5.3. The global Hubble expansion rate H

The observable global Hubble expansion rate H is the average of Hx(t′)
over time, which was defined by equation (5.7). Plugging (5.19) into (5.7)
gives,

H = Re

(
−1

t

∫ t

0

Ω̇

2Ω
e2iϕdt′

)
. (5.20)

When the slow varying condition (5.35) holds, from equation (5.17) we know
that dϕ/dt is positive, i.e. ϕ is a monotonic function in time. Thus we can
change the integral in (5.20) from the integration over t′ to integration over
ϕ′:

H = Re

(
−1

t

∫ ϕ

ϕ0

Ω̇

2Ω
e2iϕ dt

′

dϕ′
dϕ′

)
, (5.21)

where ϕ0 = ϕ(0) and ϕ = ϕ(t).
To evaluate H, we formally treat ϕ as a complex variable and close the

contour integral in the upper half plane. The integrand in (5.21) has no
singularities for real ϕ if the slow varying condition (5.35) holds. Equation
(5.17) implies that ϕ ∼ Ωt ∼

√
GΛ2t, so the length of the interval ϕ−ϕ0 ∼√

GΛ2t goes to infinity as Λ→ +∞. Hence the principle contribution to the
integral in (5.21) comes from the residue values at singularities ϕ(k) inside
the contour:

H =
1

t
Re

(
2πi

∑
k

Res

(
− Ω̇

2Ω
e2iϕ dt

dϕ
, ϕ(k)

))
. (5.22)

Each term in (5.22) gives a contribution containing a factor exp
(
−2 Imϕ(k)

)
.

So the dominant contribution in (5.22) comes from the singularities near the
real axis, i.e. those with the smallest positive imaginary part. To keep the
calculation simple, we retain only those terms. Since Ω(t) varies quasiperi-
odically with a characteristic time τ ∼ 1/Λ, the number of singularities near
the real axis would roughly be on the order t/τ ∼ Λt. Therefore the H in
(5.22) is roughly

H ∼ Λ exp
(
−2 Imϕ(k)

)
. (5.23)

Let t(k) be the (complex) “instant” corresponding to the singularity ϕ(k):
ϕ(k) = ϕ(t(k)) ∼ Ω t(k). In general, |t(k)| has the same order of magnitude
as the characteristic time τ ∼ 1/Λ of variation of the Ω. Remember that
Ω ∼

√
GΛ2, thus the order of magnitude of the exponent in (5.23) is

Imϕ(k) ∼ Ωτ ∼
√
GΛ. (5.24)
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Therefore, inserting (5.24) into (5.23) gives

H = αΛe−β
√
GΛ, (5.25)

where α and β are two dimensionless constants which depend on the varia-
tion details of the time dependent frequency Ω(t,x). Therefore H becomes
exponentially small in the limit of taking Λ to infinity. This is a manifes-
tation of the well-established result that the error in adiabatic invariant is
exponentially small for analytic Ω [22, 24]. In fact, the technique we used
in deriving (5.25) is very similar to the one used in deriving the error in
adiabatic invariant in the pages “160− 161” of [24].

5.4 A more intuitive explanation

So far we have obtained our key result (5.25) for the global Hubble expansion
rate H. To understand the mechanism of weak parametric resonance better,
we give a more intuitive explanation in this section.

Consider the following simplest parametric oscillator:

ẍ+ ω2(t)x = 0, (5.26)

where
ω2(t) = ω2

0 (1 + h cos γt) . (5.27)

The behavior of the above harmonic oscillator with time dependent fre-
quency has been thoroughly studied (see e.g. eq(27.7) in Chapter V of [21]).
The parametric resonance occurs when the frequency γ with which ω(t)
varies is close to any value 2ω0/n, i.e.

γ ∼ 2ω0

n
, (5.28)

where n is an integer. The strength of the parametric resonance is strongest
if γ is nearly twice ω0, i.e. if n = 1. As n increases to infinity, the strength
of the parametric resonance decreases to zero. This is easy to understand
since as n increases, the varying frequency γ of ω(t) becomes slower com-
pared to the oscillator’s natural frequency ω0 and as n→∞, (5.26) reduces
to an ordinary harmonic oscillator with constant frequency which has no
parametric resonance behavior.

Now let us go back to Eq.(4.19) for a(t,x). The time dependent fre-
quency Ω(t,x) in (4.19) is more complicated than the ω(t) given in our
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Figure 5.2: Plot of the power spectrum density of the varying part of Ω2(t,0)
(except for the constant Ω2

0 part).

example (5.27). However, it can be written in a similar form:

Ω2(t,0) = Ω2
0

(
1 +

∫ 2Λ

0
dγ (f (γ) cos γt+ g (γ) sin γt)

)
, (5.29)

where

Ω2
0 =

〈
Ω2
〉

=
GΛ4

6π
, (5.30)

and f(γ), g(γ) are operator coefficients, whose exact form are given by
(A.15) and (A.16) in Appendix A. The behavior of Ω2(t,x) for an arbitrary
x is the same with Ω2(t,0) except phase differences. The power spectrum
density of the varying part of Ω2(t,0) (except for the constant Ω2

0 part) given
by (A.18) is plotted in FIG. 5.2.

Unlike the case (5.27) where the ω(t) varies with a single frequency γ, the
Ω(t,0) in (5.29) varies with frequencies continuously distributed in the range
(0, 2Λ) with a peak around 1.7Λ (see FIG. 5.2). From (5.30) we have that,
as taking the cutoff frequency Λ to infinity, Ω0 ∼

√
GΛ2 � 2Λ. Because of

the continuity of the spectrum of Ω, we can always find integers n such that
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if

n ≥
√
G

6π
Λ, Λ→ +∞, (5.31)

then
2Ω0

n
∈ (0, 2Λ) . (5.32)

So Ω(t,x) always contains frequencies 2Ω0/n that may excite resonances.
From (5.31) we see that n → ∞ as taking the cutoff Λ to infinity. While
as n increases, the relative magnitude of the resonance frequency 2Ω0/n de-
creases comparing to the a(t,x)’s natural frequency Ω0. Then for reasons
similar to the simplest parametric oscillator (5.26), the strength of the para-
metric resonance of (4.19) would also decrease to zero. This weak parametric
resonance effect leads to the global Hubble expansion rate

H → 0, as Λ→ +∞. (5.33)

5.5 Meaning of our results

It is interesting to notice that both (2.13) and (5.5) give the exponential
evolution and predict an accelerated expanding Universe. However, the
underlying mechanisms are completely different, which leads to opposite
results on the predicted magnitude of the observable Hubble expansion rate
H.

The solution (2.13) is based on the assumption that quantum vacuum
energy density is constant all over the spacetime, which is a necessary re-
quirement if one suppose that vacuum acts as a cosmological constant. This
assumption leads to a huge Hubble expansion rate

H =

√
8πGρvac

3
∝
√
GΛ2 → +∞ (5.34)

as taking the high energy cutoff Λ to infinity.
Our proposal (5.5) is based on the fact that quantum vacuum energy

density is constantly fluctuating and extremely inhomogeneous all over the
whole spacetime. This fact leads to a small Hubble expansion rate given by
(5.25) which goes to zero as taking the high energy cutoff Λ to infinity.

If we can literally take the cutoff Λ in (5.25) to infinity, then H = 0.
In this sense, at least the “old” cosmological constant problem would be
resolved.

In principle, this effective theory is valid only up to a large but finite
cutoff Λ, which leads to a tiny but nonzero H. Since H → 0 as Λ → +∞,
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5.6. The slow varying condition

there always exists a very large cutoff value of Λ such that H =
√

ΩλH0 ≈
1.2 × 10−42 GeV to match the observation, where H0 is current observed
Hubble constant.

So our result suggests that there is no necessity to introduce the cosmo-
logical constant, which is required to be fine tuned to an accuracy of 10−120,
or other forms of dark energy, which are required to have peculiar negative
pressure, to explain the observed accelerating expansion of the Universe.

The exact value of Λ cannot be determined since we do not know the
values of the two dimensionless parameters α and β in (5.25). In principle,
we need the knowledge of all fundamental fields in the Universe to determine
α and β, this deserves further investigations in the future and might provide
some hint on elementary particle physics.

We will use a couple of scalar fields to estimate the order of magnitude
of the parameters α and β in the numerical simulation presented in section
5.7.

5.6 The slow varying condition

The key requirement for our derivation of (5.25) to work is that Ω2 is slowly
varying that the whole process is adiabatic. The mathematical description
of the slow varying condition is (see equation (49.1) in Chapter VII of [24])

∆Ω ∼ TdΩ/dt� Ω, (5.35)

where T ∼ 2π/Ω is the period of the oscillation of a. Then the above
condition can be rewritten as

Ω̇

Ω2
� 1. (5.36)

If there is only one scalar field we have Ω2 = 8πG
3 φ̇2 and

(
dΩ
dt

)2
= 8πG

3 φ̈2.
Using (3.1), we have the expectation values〈

Ω2
〉

=
8πG

3

1

(2π)3

∫
d3k

1

2
ω

=
8πG

3

1

4π2

∫ Λ

0
k3dk =

1

6π
GΛ4, (5.37)

〈(
dΩ

dt

)2
〉

=
8πG

3

1

(2π)3

∫
d3k

1

2
ω3

=
8πG

3

1

4π2

∫ Λ

0
k5dk =

1

9π
GΛ6. (5.38)
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5.6. The slow varying condition

(5.37) just gives 〈Ω2〉 ∼ GΛ4 as expected, (5.38) gives 〈dΩ/dt〉 ∼
√
GΛ3,

therefore, we would have

〈Ω̇〉
〈Ω2〉

∼
√
GΛ3

GΛ4
=

1√
GΛ
� 1, as Λ→ +∞, (5.39)

i.e. the slow varying condition (5.35) is satisfied on average for one scalar
field.

However, the quantum fluctuation of Ω2 is as big as its expectation value,
so there is still possibility that Ω2 = 8πGφ̇2/3 fluctuates to values smaller
than

√
GΛ3 or even close to 0 where the slow varying condition (5.35) is

not satisfied. These extreme points have large contribution to the growth of

the amplitude of a and destroy the key result H = αΛe−β
√
GΛ as Λ→ +∞

(Eq.(5.25)).
To resolve this problem, one has to make sure Ω always satisfy (5.35)

(or at least the probability of violating (5.35) is low enough). This can be
done in two ways: i) increase the number of fields or ii) add a small negative
bare cosmological constant in the Einstein equations. We will discuss this
two solutions in the following.

I). Adding more fields
The real Universe contains many different quantum fields. From central

limit theorem, when more fields are added, the probability distribution for
Ω2 would approach Gaussian. Moreover, the magnitude of the fluctuation
of Ω2 would become relatively smaller compared to its expectation value.
In fact, if we have n fields, the expectation value of Ω2 goes as nGΛ4 while
the magnitude of the fluctuation (standard deviation of Ω2) goes as

√
nGΛ4.

Therefore the probability for Ω2 to fluctuate to values smaller than
√
GΛ3

goes to zero as the number of fields n go to infinity, i.e. the probability for
Ω2 violating (5.35) becomes vanishingly small.

In addition, when more fields are added, the expectation value of Ω2

grows but the time scale of the variation of Ω2 stay the same, this makes
the variation of Ω2 becomes even slower for the same cutoff Λ. So the cutoff
needed to match the observed rate of accelerating expansion is reduced.

II). Adding a small cosmological constant
When a bare cosmological constant λb is included, Ω2 becomes

Ω2 =
4πG

3

(
ρ+

3∑
i=1

Pi

)
− λb

3
, ρ = T00, Pi =

1

a2
Tii. (5.40)

If −λb is greater than
√
GΛ3, then the slow varying condition (5.36) will
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always be satisfied. This can reduce the number of fields needed to achieve
our key result (5.25).

5.7 Numerical verification

In this section, Planck units will be used, so all instances of Newton’s con-
stant are set to unity, G = 1.

The main idea is to rewrite the time dependent frequency Ω(t) in phase
space. (To see more details about this numeric method, please check Ap-
pendix B. Here we only list the most crucial results.) For a real massless
scalar field, we have

Ω2({xk}, {pk}, t) =
8π

3

∫
d3kd3k′

(2π)3
xkxk′ωω

′ sinωt sinω′t

+ pkpk′ cosωt cosω′t− 2xkpk′ω sinωt cosω′t.

(5.41)

This is the Weyl transformation of the operator Ω̂2(t). Here {xk, pk} are
phase space points of a particular field mode with momentum k. Approxi-
mately, for a particular choice of {xk}, {pk}, we can get an classic equation
for a:

ä({xk}, {pk}, t) + Ω2({xk}, {pk}, t)a({xk}, {pk}, t) = 0 (5.42)

The observed value ao(t) is the average of a({xk}, {pk}, t) over the Wigner
pseudo distribution function W ({xk}, {pk}, t), which is based on the wave
function of the quantum field:

ao(t) =

∫ (∏
k

dxkdpk

)
a({xk}, {pk}, t)W ({xk}, {pk}, t). (5.43)

If the quantum field is in its ground state, we have

W ({xk}, {pk}, t) =
∏
k

1

π
e−

p2k
ω
−x2

kω (5.44)

which means {xk}, {pk} are all Gaussian variables. Based on this obser-
vation, our method to simulate this equation is as following: i) at first we
generate a set of random Gaussian numbers for {xk}, {pk} ; ii) we solve the
equation (5.42) for this particular set of numbers; iii) then we repeat the pro-
cess for another set of random numbers until a certain amount of repetitions;
iv) The result ao(t) is the average over all samples we have generated.
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Figure 5.3: Numeric result for log |ao(t)| when one scalar field is present.
The slope represents the Hubble expansion rate H. It shows that as Λ
increases, H also increases. The prediction (5.25) is not applicable in this
case since the slow varying condition is violated when Ω2 fluctuates to values
smaller than ∼ Λ3.

Fig. 5.3 is the result for only one scalar field contributing to Ω2. The
slope represents the Hubble expansion rate H. It shows that as Λ increases,
H also increases. The prediction (5.25) is not applicable in this case since
the probability for the slow varying condition (when Ω2 fluctuates to values
smaller than ∼ Λ3) can not be neglected as explained in the last section.

Fig. 5.4 is the result for one scalar field with a negative bare cosmological
constant −λb ∼ Λ3.5 contributing to Ω2. It shows that as Λ increases, H
decreases. The linear fit log(H/Λ) vs Λ gives the parameter α ∼ e−4.1 ≈
0.017, β ∼ 0.072. In this case, the prediction (5.25) is observed since λb
makes Ω2 always greater than Λ3 and has it be adiabatic.

Fig. 5.5 is the result for five scalar fields with and without a bare cosmo-
logical constant −λb ∼ Λ3.5 contributing to Ω2. In both cases as Λ increases,
H decreases and the prediction (5.25) is observed. The linear fit gives the
parameters α ∼ e−3.8 ≈ 0.022, β ∼ 0.14 for the case without the bare cos-
mological constant and the parameters α ∼ e−4.2 ≈ 0.015, β ∼ 0.28 for the
case with the bare cosmological constant.

Fig. 5.6 is the result for ten scalar fields with and without a bare cosmo-
logical constant −λb ∼ Λ3.5 contributing to Ω2. In both cases as Λ increases,
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Figure 5.4: Numeric result for log |ao(t)| when one scalar field with a negative
bare cosmological constant −λb ∼ Λ3.5 are present. The slope represents the
Hubble expansion rate H. It shows that as Λ increases, H decreases. The
linear fit log(H/Λ) vs Λ gives the parameter α ∼ e−4.1 ≈ 0.017, β ∼ 0.072.
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Figure 5.5: Top: numeric result for five scalar fields without a bare cos-
mological constant and its linear fit log(H/Λ) vs Λ; Bottom: five scalar
fields with a negative bare cosmological constant −λb ∼ Λ3.5 and its linear
fit log(H/Λ) vs Λ. The slope represents the Hubble expansion rate H. In
both cases as Λ increases, H decreases. The linear fit gives the parameters
α ∼ e−3.8 ≈ 0.022, β ∼ 0.14 for five scalar fields without the bare cosmolog-
ical constant and the parameters α ∼ e−4.2 ≈ 0.015, β ∼ 0.28 for five scalar
fields with the bare cosmological constant.
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Figure 5.6: Top: numeric result for ten scalar fields without a bare cosmo-
logical constant and its linear fit log(H/Λ) vs Λ; Bottom: ten scalar fields
with a negative bare cosmological constant −λb ∼ Λ3.5 and its linear fit
log(H/Λ) vs Λ. The slope represents the Hubble expansion rate H. In
both cases as Λ increases, H decreases. The linear fit gives the parameters
α ∼ e−3.7 ≈ 0.025, β ∼ 0.6 for ten scalar fields without the bare cosmolog-
ical constant and the parameters α ∼ e−3.5 ≈ 0.03, β ∼ 0.83 for ten scalar
fields with the bare cosmological constant.

H decreases and the prediction (5.25) is observed. The linear fit gives the
parameters α ∼ e−3.7 ≈ 0.025, β ∼ 0.6 for the case without the bare cosmo-
logical constant and the parameters α ∼ e−3.5 ≈ 0.03, β ∼ 0.83 for the case
with the bare cosmological constant.

Fig. 5.7 is the result for twenty scalar fields with and without a bare
cosmological constant −λb ∼ Λ3.5 contributing to Ω2. In both cases as Λ
increases, H decreases and the prediction (5.25) is observed. The linear fit
gives the parameters α ∼ e−2.6 ≈ 0.074, β ∼ 1.9 for the case without the
bare cosmological constant and the parameters α ∼ e−2.1 ≈ 0.12, β ∼ 2.4
for the case with the bare cosmological constant.

We can see from Fig. 5.5, 5.6 and 5.7 that as more fields are added, the
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Figure 5.7: Top: numeric result for twenty scalar fields without a bare
cosmological constant and its linear fit log(H/Λ) vs Λ; Bottom: twenty
scalar fields with a negative bare cosmological constant −λb ∼ Λ3.5 and
its linear fit log(H/Λ) vs Λ. The slope represents the Hubble expansion
rate H. In both cases as Λ increases, H decreases. The linear fit gives the
parameters α ∼ e−2.6 ≈ 0.074, β ∼ 1.9 for twenty scalar fields without the
bare cosmological constant and the parameters α ∼ e−2.1 ≈ 0.12, β ∼ 2.4
for twenty scalar fields with the bare cosmological constant.
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fitting parameter β increases, which implies that the parametric resonance
effect becomes weaker and the cutoff needed to match the observation is
reduced. The observed H is on the order of 10−61 ∼ e−140, so for five fields
the cutoff needed is about Λ ∼ 140/β ∼ 140/0.14 ∼ 1000, for ten fields the
cutoff needed is about Λ ∼ 140/β ∼ 140/0.6 ∼ 230, for twenty fields the
cutoff needed is about Λ ∼ 140/β ∼ 140/1.9 ∼ 74.

If we also add a negative bare cosmological constant, the cutoff needed
would be further reduced. For a bare cosmological constant on the order of
−λb ∼ Λ3.5, the cutoffs needed are Λ ∼ 140/β ∼ 140/0.28 ∼ 500 for five
fields, Λ ∼ 140/β ∼ 140/0.83 ∼ 168 for ten fields Λ ∼ 140/β ∼ 140/2.4 ∼ 58
for twenty fields.
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Chapter 6

The back reaction

In this chapter, we investigate the back reaction effect by quantizing the
field φ in the resulting curved spacetime to justify our method of using the
quantized field expansion (3.1) in Minkowski spacetime as an approximation.

The standard way to quantize the scalar field φ in a generic curved
spacetime gµν is by first defining the following inner product on a spacelike
hypersurface Σ with induced metric hij and unit normal vector nµ (see e.g.
[16, 25]):

(φ1, φ2) = −i
∫

Σ
(φ1∂µφ

∗
2 − φ∗2∂µφ1)nµ

√
hd3x, (6.1)

where h = dethij and φ1, φ2 are solutions to the equation (4.25). The above
inner product is independent of the choice of Σ.

One then choose a complete set of mode solutions uk of (4.25) which are
orthonormal in the product (6.1):

(uk, uk′) = δ(k− k′), (6.2)

(u∗k, u
∗
k′) = −δ(k− k′), (6.3)

(uk, u
∗
k′) = 0. (6.4)

Then the field φ may be expanded as

φ =
∑
k

(
akuk + a†ku

∗
k

)
. (6.5)

For the flat Minkowski spacetime, i.e. gµν = ηµν , (4.25) reduces to the
usual wave equation

φ̈−∇2φ = 0. (6.6)

In this case, the mode solutions are usually chosen as

uk(t,x) =
1

(2π)3/2

1√
2ω
e−i(ωt−k·x), (6.7)

where ω = |k|. Plugging (6.7) into (6.5) just gives the usual quantum field
expansion (3.1).
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Chapter 6. The back reaction

For our specific metric (4.1), (4.25) reduces to (4.26). In this case, since
the rate of accelerating expansion is extremely small, the back reaction effect
due to the macroscopic expansion of the Universe is only important on large
cosmological time scales. For this reason, we only worry about the back
reaction due to the wildly fluctuating spacetime at small scales. i.e. we
neglect the small exponential factor in (5.4) and use the form of the a based
on the solution (5.8):

a(t,x) =
A0√

Ω(t,x)
cos (Θ(t,x)) , (6.8)

where

Θ(t,x) =

∫ t

0
Ω(t′,x)dt′ + θx. (6.9)

Then (4.26) becomes

A2
0

Ω
cos2 Θφ̈−∇2φ (6.10)

−3A2
0

2

(
Ω̇

Ω2
cos2 Θ + sin 2Θ

)
φ̇+

(
∇Ω

2Ω
+ tan Θ∇Θ

)
· ∇φ = 0.

In order to understand the effect from back reaction, we need to find out
how the mode solutions of the above equation (6.10) in the resulting curved
spacetime change from the mode solutions (6.7) of the equation (6.6) in the
flat Minkowski spacetime.

Physically, the correction to (6.7) should be small for wave modes with
frequencies lower than the cutoff frequency Λ. That is because the wave
length of those field modes is larger than 2π/Λ, while our spacetime fluc-
tuates on the length scale 2π/Ω ∼ 1/(

√
GΛ2) � 2π/Λ. The relatively long

wave length modes should not be sensitive to what is happening on small
scales. This is analogous to the situation of sound waves traveling in the
medium such as air or water or solids. The medium is constantly fluctuating
at atomic scales, but this fluctuation does not affect the propagation of the
sound wave whose wavelength is much larger than the atomic scale. Sim-
ilarly, the propagation of the field modes in the “medium”–the spacetime,
which is constantly fluctuating on scales much smaller than the wavelength
of the field modes, should also not be affected.

Mathematical demonstration will be given in the following sections.
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6.1 A simplified toy model

It is complicated to obtain the mode solutions of (6.10) for a generic stochas-
tic function Θ(t,x) whose stochastic property is determined by the quantum
nature of the field φ. To illustrate the underlying physical mechanism more
clearly, we start with a simplified toy model by restricting the phase angle
Θ(t,x) defined by (6.9) to take the following form:

Θ(t,x) = Ωt+ K · x, (6.11)

where both Ω and K are constants and they have the same order of magni-
tude Ω ∼ |K| ∼

√
GΛ2.

Of course this toy model does not describe the real spacetime sourced
by the quantum vacuum since the Ω is by no means a constant but always
varying, although the varying is slow compared to it own magnitude. How-
ever, this toy model possesses the key property needed — the spacetime is
constantly fluctuating. It will be convenient for visualizing the back reaction
effect from a fluctuating spacetime.

After setting the Ω ≡ Constant and the phase angle Θ(t,x) to be the
form of (6.11), the equation of motion (6.10) for φ becomes

(1 + cos 2 (Ωt+ K · x)) φ̈−∇2φ

−3Ω sin 2 (Ωt+ K · x) φ̇+ tan (Ωt+ K · x) K · ∇φ = 0, (6.12)

where we have set A0 =
√

2Ω such that the average of the coefficient
A2

0
Ω cos2 Θ before φ̈ is 1 for convenience.

In the flat spacetime case (6.6), each mode solution uk in (6.7) contains
only one single frequency. However, for the above fluctuating spacetime case
(6.12), high frequencies mixes with low frequencies and each mode solution
must contain multiple frequencies. In fact, since (6.12) describes a strictly
periodic system with time period π/Ω and spatial period π/|K|, each mode
solution uk must change from (6.7) to the following form:

uk(t,x) = e−i(ωt−k·x)

c0 +

+∞∑
m=−∞
m6=0

cme
i2m(Ωt+K·x)

 , (6.13)

where cm are constants.
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6.1. A simplified toy model

Inserting (6.13) into (6.12) and using the orthogonality of e2im(Ωt+K·x),
we obtain the following infinite system of linear equations:

mth equation:
m−2∑
n=−∞

(−1)m+nK · (k + 2nK) cn

+

[
1

2
(ω − 2 (m− 1) Ω)2 − 3

2
Ω (ω − 2 (m− 1) Ω)

−K · (k + 2 (m− 1) K)

]
cm−1

+
[
(ω − 2mΩ)2 − (k + 2mK)2

]
cm

+

[
1

2
(ω − 2 (m+ 1) Ω)2 +

3

2
Ω (ω − 2 (m+ 1) Ω)

+K · (k + 2 (m+ 1) K)

]
cm+1

+

+∞∑
n=m+2

(−1)m+n+1K · (k + 2nK) cn

= 0, m = 0,±1,±2,±3, . . . (6.14)

In the above calculations, we have used the Fourier series expansion

tanx = −2
+∞∑
n=1

(−1)n sin 2nx (6.15)

to expand the term tan(Ωt+ K · x) in (6.12).
For the equations of m ≤ −1, we successively add the (m+1)th equation

to the mth equation by the order from m = −∞ to m = −1; and for the
equations of m ≥ 1, we successively add the (m − 1)th equation to the
mth equation by the order from m = +∞ to m = 1. Most terms can be
eliminated by these elementary row operations and the above infinite system
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6.1. A simplified toy model

of linear equations (6.14) becomes

if m ≤ −1,
1

2
(ω − 2 (m− 1) Ω) (ω − (2m+ 1) Ω) cm−1

+

[
3

2
(ω − 2mΩ) (ω − (2m+ 1) Ω)− (k + 2mK) · (k + (2m+ 1) K)

]
cm

+

[
3

2
(ω − 2(m+ 1)Ω) (ω − (2m+ 1) Ω)

− (k + 2(m+ 1)K) · (k + (2m+ 1) K)

]
cm+1

+
1

2
(ω − 2 (m+ 2) Ω) (ω − (2m+ 1) Ω) cm+2 = 0;

if m = 0,
−2∑

n=−∞
(−1)nK · (k + 2nK) cn

+

[
1

2
(ω + 2Ω) (ω − Ω)−K · (k− 2K)

]
c−1

+
(
ω2 − k2

)
c0

+

[
1

2
(ω − 2Ω) (ω + Ω) + K · (k + 2K)

]
c1

+
+∞∑
n=2

(−1)n+1K · (k + 2nK) cn = 0;

if m ≥ 1,
1

2
(ω − 2 (m− 2) Ω) (ω − (2m− 1) Ω) cm−2

+

[
3

2
(ω − 2(m− 1)Ω) (ω − (2m− 1) Ω)

− (k + 2(m− 1)K) · (k + (2m− 1) K)

]
cm−1

+

[
3

2
(ω − 2mΩ) (ω − (2m− 1) Ω)− (k + 2mK) · (k + (2m− 1) K)

]
cm

+
1

2
(ω − 2 (m+ 1) Ω) (ω − (2m− 1) Ω) cm+1 = 0. (6.16)
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6.1. A simplified toy model

To characterize the property of the solutions of this system more clearly,
we define the following parameters for convenience:

ε =
ω

Ω
, υ =

|k|
Ω
, δ =

|K|
Ω
, cos γ =

K · k
|K||k|

. (6.17)

As mentioned before that our effective theory has a cutoff Λ such that
only modes with ω, |k| ≤ Λ are relevant, which are much smaller than Ω ∼
|K| ∼

√
GΛ2 as Λ grows large. Therefore, we are only interested in the

solutions of (6.14) or (6.16) when ω, |k| � Ω, i.e. when ε, υ → 0.
Dividing both sides of (6.16) by Ω2 and doing some necessary algebraic
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6.1. A simplified toy model

manipulations, (6.16) can be rewritten as

if m ≤ −1,[
(m− 1)− ε

2

]
cm−1

+

[ (
3− 2δ2

)
m− 3ε

2
− 2mδ2

+∞∑
n=1

(
ε

2m+ 1

)n
− υ

2m+ 1
((4m+ 1) δ cos γ + υ)

+∞∑
n=0

(
ε

2m+ 1

)n ]
cm

+

[ (
3− 2δ2

)
(m+ 1)− 3ε

2
− 2(m+ 1)δ2

+∞∑
n=1

(
ε

2m+ 1

)n
− υ

2m+ 1
((4m+ 3) δ cos γ + υ)

+∞∑
n=0

(
ε

2m+ 1

)n ]
cm+1

+
[
(m+ 2)− ε

2

]
cm+2 = 0;

if m = 0,
−2∑

n=−∞
(−1)n

(
2nδ2 + δυ cos γ

)
cn +

[
−1 + 2δ2 +

ε

2
− δυ cos γ +

ε2

2

]
c−1

+
(
ε2 − υ2

)
c0 (6.18)

+

[
−1 + 2δ2 − ε

2
+ δυ cos γ +

ε2

2

]
c1 +

+∞∑
n=2

(−1)n+1
(
2nδ2 + δυ cos γ

)
cn = 0;

if m ≥ 1,[
(m− 2)− ε

2

]
cm−2

+

[ (
3− 2δ2

)
(m− 1)− 3ε

2
− 2 (m− 1) δ2

+∞∑
n=1

(
ε

2m− 1

)n
− υ

2m− 1
((4m− 3) δ cos γ + υ)

+∞∑
n=0

(
ε

2m− 1

)n ]
cm−1

+

[ (
3− 2δ2

)
m− 3ε

2
− 2mδ2

+∞∑
n=1

(
ε

2m− 1

)n
− υ

2m− 1
((4m− 1) δ cos γ + υ)

+∞∑
n=0

(
ε

2m− 1

)n ]
cm

+
[
(m+ 1)− ε

2

]
cm+1 = 0. 43



6.1. A simplified toy model

As ε, υ → 0, the leading order asymptotic solution for {cn} of the above
system of linear equations (6.18) depends only on the leading order of the co-
efficients before {cn}. By keeping only the leading term for each coefficient,
(6.18) is asymptotic to the following infinite system of linear equations:

BC = 0, (6.19)

where the infinite matrix B is

B =



. . .
...

...
...

...
...

...
... . .

.

· · · −3(3− 2δ2)−2(3− 2δ2) −1 0 0 0 0 · · ·

· · · −3 −2(3− 2δ2)−(3− 2δ2) − ε
2 0 0 0 · · ·

· · · 0 −2 −(3− 2δ2)−3ε
2 − δυ cos γ 1 0 0 · · ·

· · · 6δ2 −4δ2 −1 + 2δ2 ε2 − υ2 −1 + 2δ2 −4δ2 6δ2 · · ·

· · · 0 0 −1 −3ε
2 − δυ cos γ 3− 2δ2 2 0 · · ·

· · · 0 0 0 − ε
2 3− 2δ2 2(3− 2δ2) 3 · · ·

· · · 0 0 0 0 1 2(3− 2δ2) 3(3− 2δ2) · · ·

. .
. ...

...
...

...
...

...
...

. . .


and C = (· · · , c−3, c−2, c−1, c0, c1, c2, c3, · · · )T .

We will denote the matrix elements of B by bmn with −∞ < m,n < +∞.
In order to have a nonzero solution, the determinant of B must be zero. This
gives us the dispersion relation that ε and υ must satisfy in the asymptotic
regime ε, υ → 0.

The determinant can be calculated by Laplace expansion:

det(B) = b00M00 +

+∞∑
n=−∞
n6=0

(−1)nb0nM0n, (6.20)

where M0n is the 0, n minor of B, i.e. the infinite determinant that results
from deleting the 0th row and the nth column of B. Due to the symmetry
property of B, we have that, for each n 6= 0,

b0n = b0,−n, M0n = −M0,−n, (6.21)
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6.1. A simplified toy model

which implies that all the terms inside the summation symbol
∑

of (6.20)
exactly cancel. Therefore, only the first term in (6.20) survive and thus we
have that

det(B) = M00(δ2)
(
ε2 − υ2

)
= 0, (6.22)

which leads to
ε2 = υ2, (6.23)

or equivalently
ω2 = k2. (6.24)

This proves that the usual dispersion relation still holds for low frequency
field modes.

After setting ε2 = υ2, we start solving the infinite system (6.19).
First, we rewrite (6.19) as the following form:

+∞∑
n=−∞
n6=0

bmncn = −bm0c0, m = 0,±1,±2,±3, · · · (6.25)

Notice that the matrix elements of B has the following symmetry properties:

bmn = −b−m,−n, ifm,n 6= 0 (6.26)

bm0 = b−m,0, b0n = b0,−n. (6.27)

The above symmetry properties leads to the following relation

cn = −c−n, n 6= 0, (6.28)

which implies that we only need to solve cn for n > 0 to solve the whole
system.

For convenience, we define the following new variables xn by

cn = εc0xn, n 6= 0. (6.29)

Then using the relation (6.28), the infinite system of linear equations (6.25)
simplifies to the following infinite recurrence equations:(

4− 2δ2
)
x1 + 2x2 =

3

2
+ δ cos γ, (6.30)(

3− 2δ2
)
x1 +

(
3− 2δ2

)
2x2 + 3x3 =

1

2
, (6.31)

(m− 2)xm−2 +
(
3− 2δ2

)
(m− 1)xm−1

+
(
3− 2δ2

)
mxm + (m+ 1)xm+1 = 0, if m ≥ 3, (6.32)
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where the dependence on ε in the equation (6.19) or (6.25) has been elim-
inated by introducing the new variables xn, n 6= 0 through (6.29) and the
solution for xn depends only on δ.

In order to find for the sequence {xm}, we define the following new
variables:

ym = (m− 1)xm−1 +mxm, m ≥ 3. (6.33)

Then the recurrence equations (6.32) become

ym−1 + 2(1− δ2)ym + ym+1 = 0, m ≥ 3. (6.34)

Sequences satisfying (6.34) must take the following form:

ym = D cos (mϑ+ ψ) , m ≥ 3, (6.35)

where D and ψ are two constants and ϑ is determined by

cosϑ = −1 + δ2, sinϑ = δ
√

2− δ2. (6.36)

Combining (6.35) and (6.33), the general formula for xm can be obtained
by iteration

xm =
1

m

(
D

m∑
n=3

(−1)m−n cos(nϑ+ ψ) + (−1)m2x2

)

=
(−1)m

m

(
−D sec(

ϑ

2
) sin

(
(m− 2)ϑ

2
+
mπ

2

)
(6.37)

· sin
(

(m+ 3)ϑ

2
+ ψ +

mπ

2

)
+ 2x2

)
, m ≥ 3.

Replacing the cm in (6.13) by xm through (6.29) we obtain that, as
ε→ 0, the mode solution uk(t,x) is asymptotic to

uk(t,x) = c0e
−i(ωt−k·x)

1 + ε

+∞∑
m=−∞
m 6=0

xme
i2m(Ωt+K·x)

 , (6.38)

where xm is determined by (6.28), (6.29), (6.30), (6.31), (6.32) and (6.37).
Using the orthogonality of ei2m(Ωt+K·x), the relative magnitude of the

correction to uk from the usual plane wave mode e−i(ωt−k·x) in Minkowski
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spacetime can be characterized by applying Parseval’s identity:

|∆uk(t,x)| = ε

 +∞∑
m=−∞
m6=0

x2
m


1
2

. (6.39)

From the solution (6.37) we know that as m→∞,

x2
m ∼

1

m2
. (6.40)

Thus the summation inside the bracket of (6.39) converges and the correc-
tion

|∆uk(t,x)| ∼ ε→ 0, as ε→ 0. (6.41)

Thus we have demonstrated that the low frequency wave modes (ω ≤ Λ) are
almost not affected by the fluctuating spacetime with much higher frequency
(Ω ∼

√
GΛ2).

6.2 General case

The methods used and results obtained in the last section for the particular
simplified toy model (6.12) can be generalized to the generic case (6.10). To
start, we rewrite (6.10) to the following form:

(1 + f1) φ̈−∇2φ− Ω0f2φ̇+K0f3 · ∇φ = 0, (6.42)

where

f1 =
A2

0

Ω
cos2 Θ− 1, (6.43)

f2 =
3A2

0

2

(
Ω̇

Ω2
cos2 Θ + sin 2Θ

)
/Ω0, (6.44)

f3 =

(
∇Ω

2Ω
+ tan Θ∇Θ

)
/K0, (6.45)

Ω0 = 〈Ω〉 , K0 = 〈|∇Θ|〉 . (6.46)

For convenience, we choose the constant A0 such that the average of f1

〈f1(t,x)〉 = 0. (6.47)
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Unlike the toy model (6.12) we used in the last section, (6.42) is not
strictly periodic. However, (6.42) is quasiperiodic and its quasiperiod is
the same as the period of (6.12). This property is reflected in the Fourier
transforms f1(ω,k), f2(ω,k) and f3(ω,k) of the functions f1(t,x), f2(t,x)
and f3(t,x) respectively which are defined by

f1(t,x) =

∫
dωd3k f1(ω,k)ei(ωt+k·x), (6.48)

f2(t,x) =

∫
dωd3k f2(ω,k)ei(ωt+k·x), (6.49)

f3(t,x) =

∫
dωd3k f3(ω,k)ei(ωt+k·x). (6.50)

For the function f1(t,x) defined by (6.43), after setting the constant A0

by (6.47) and considering the slow varying property of Ω(t,x) and Θ(t,x)
in both temporal and spatial directions, its leading order goes as

f1(t,x) ∼ cos 2Θ, (6.51)

which implies that the Fourier transform f1(ω,k) would have two peaks
centered at

ω = ±2Ω0, |k| = 2K0. (6.52)

For the function f2(t,x) defined by (6.44), the second term which in-
cludes the factor sin 2Θ is dominant since the first term which includes the
factor Ω̇/Ω2 goes as ∼ 1/Λ→ 0 due to the slow varying condition described
by (5.37) and (5.38). Thus, its leading order goes as

f2(t,x) ∼ 3 sin 2Θ, (6.53)

which implies that the Fourier transform f2(ω,k) would also have two peaks
centered at

ω = ±2Ω0, |k| = 2K0. (6.54)

Similarly, for the function f3(t,x) defined by (6.45), the second term
which includes the factor tan Θ is dominant since the absolute value of the
first term which includes the factor ∇Ω/(ΩK0) also goes as ∼ 1/Λ→ 0 due
to the slow varying property of Ω in spatial directions. Thus, its leading
order goes as

f3(t,x) ∼ tan Θ
∇Θ

K0
. (6.55)
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Then using the Fourier series expansion (6.15) for tan Θ, we know that the
Fourier transform f3(ω,k) would have infinitely many peaks centered at

ω = ±2nΩ0, |k| = 2nK0, n = 1, 2, 3, · · · . (6.56)

(For a rough calculation of the above Fourier transforms, see Appendix C)
In addition, we have the zero frequency component (see (C.6) in Ap-

pendix C)
fi(ω = 0,k = 0) ∼ 0, i = 1, 2, 3. (6.57)

In summary, the system described by (6.42) is very similar to the system
described by the simplified toy model (6.12). The only difference is that the
Fourier transforms of the coefficients f1, f2, and f3 in (6.42) spread around
center points given by (6.52), (6.54) and (6.56) while the Fourier transforms
of the corresponding coefficients in (6.12) are ideal delta functions exactly
located at same points given by (6.52), (6.54) and (6.56).

Therefore, the mode solution of (6.42) would take the form similar to
(6.13):

uk(t,x) = e−i(ωt−k·x)

c0 +

∫
ω′ 6=0
k′ 6=0

dω′d3k′ uk(ω′,k′)ei(ω
′t+k′·x)

 , (6.58)

where uk(ω′,k′) is non-negligible only when ω′,k′ are taking values around
the centers given by (6.52), (6.54) and (6.56).

Inserting (6.58) into (6.42) and replacing the coefficients f1(t,x), f2(t,x)
and f3(t,x) in (6.42) by the equations (6.48), (6.49) and (6.50) and then
using the orthogonality of ei(ω

′t+k′·x), we obtain the following uncountably
infinite system of linear equations which are similar to (6.14):

(ω′,k′)th equation :[(
ω − ω′

)2 − (k + k′
)2]

uk
(
ω′,k′

)
+

∫
dω′′d3k′′

[ (
ω −

(
ω′ − ω′′

))2
f1

(
ω′′,k′′

)
−iΩ0

(
ω −

(
ω′ − ω′′

))
f2

(
ω′′,k′′

)
(6.59)

−iK0

(
k +

(
k′ − k′′

))
· f3

(
ω′′,k′′

) ]
uk
(
ω′ − ω′′,k′ − k′′

)
= 0,

where we have defined the notation uk(0,0) = c0δ(0,0) for convenience.
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To characterize the property of the solutions of this system more clearly,
we define the following parameters similar to (6.17) for convenience:

ε =
ω

Ω0
, υ =

|k|
Ω0
, δ =

K0

Ω0
, cos γ =

k · k′

|k||k′|
,

cosµ =
k · f3

|k||f3|
, cosµ′ =

k′ · f3

|k′||f3|
, cosµ′′ =

k′′ · f3

|k′′||f3|
.

Dividing both sides of (6.59) by Ω2
0 gives

(ω′,k′)th equation :[(
ε− ω′

Ω0

)2

−
(
υ2 +

k′2

Ω2
0

+ 2υ
|k′|
Ω0

cos γ

)]
uk
(
ω′,k′

)
+

∫
dω′′d3k′′

[(
ε−

(
ω′

Ω0
− ω′′

Ω0

))2

f1

(
ω′′,k′′

)
−i
(
ε−

(
ω′

Ω0
− ω′′

Ω0

))
f2

(
ω′′,k′′

)
(6.60)

−iδ
(
υ cosµ+

(
|k′|
Ω0

cosµ′ − |k
′′|

Ω0
cosµ′′

))
|f3

(
ω′′,k′′

)
|

]
·uk
(
ω′ − ω′′,k′ − k′′

)
= 0.

Similar to the toy model case, as ε, υ → 0, the leading order solution
of (6.60) for uk(ω′,k′) satisfies the following uncountably infinite system of
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6.2. General case

linear equations:

if (ω′,k′) = (0,0) :

(
ε2 − υ2

)
δ (0,0) c0

+

∫
dω′′d3k′′

[(
ω′′

Ω0

)2

f1

(
ω′′,k′′

)
− i
(
ω′′

Ω0

)
f2

(
ω′′,k′′

)
+ iδ

(
|k′′|
Ω0

cosµ′′
)
|f3

(
ω′′,k′′

)
|

]
uk
(
−ω′′,−k′′

)
= 0,

(6.61)

if (ω′,k′) 6= (0,0) :

(
−iεf2(ω′,k′)− iδυ cosµ|f3(ω′,k′)|

)
c0

+

[(
ω′

Ω0

)2

−
(

k′

Ω0

)2
]
uk
(
ω′,k′

)
+

∫
ω′′ 6=ω′
k′′ 6=k′

dω′′d3k′′

[(
ω′

Ω0
− ω′′

Ω0

)2

f1

(
ω′′,k′′

)
+ i

(
ω′

Ω0
− ω′′

Ω0

)
f2

(
ω′′,k′′

)
− iδ

(
|k′|
Ω0

cosµ′ − |k
′′|

Ω0
cosµ′′

)
|f3

(
ω′′,k′′

)
|

]
uk
(
ω′ − ω′′,k′ − k′′

)
= 0,

where we have used the property (6.57) in obtaining (6.61) from (6.60).
The above uncountably infinite system of linear equations (6.61) can also

be written formally in matrix form similar to (6.19). We use similar nota-
tions that denoting the matrix here by B and its elements by b(ω′,k′),(ω′′,k′′)
for convenience.

In order to have nonzero solutions, the determinant of the uncountably
infinite matrix B has to be zero, which gives the dispersion relations that ε
and υ must be satisfied in the asymptotic region ε, υ → 0.

The “determinant” of B can be formally calculated through Laplace
expansion similar to (6.20):

detB = b(0,0),(0,0)M(0,0),(0,0) (6.62)

+

∫
ω′′ 6=0
k′′ 6=0

dω′′d3k′′(−1)(ω′′,k′′)b(0,0),(ω′′,k′′)M(0,0),(ω′′,k′′),

51



6.2. General case

where M(0,0),(ω′′,k′′) is the (0,0), (ω′′,k′′) minor of B, i.e. the ‘determinant’
resulting from deleting the (0,0)th row and (ω′′,k′′)th column of B.

Notice that since f1(t,x), f2(t,x) and f3(t,x) are all real, their Fourier
transforms f1(ω,k), f2(ω,k) and f3(ω,k) defined by (6.48), (6.49) and (6.50)
must satisfy the following relations:

f1(ω,k) = f1(−ω,−k)∗,

f2(ω,k) = f2(−ω,−k)∗,

f3(ω,k) = f3(−ω,−k)∗, (6.63)

where the ∗ means complex conjugate.
The above symmetry property (6.63) leads to

b(0,0),(ω′′,k′′) = b(0,0),(−ω′′,−k′′), (6.64)

M(0,0),(ω′′,k′′) = −M(0,0),(−ω′′,−k′′), if (−ω′′,−k′′) 6= (0,0),

which implies that all the terms inside the integral symbol
∫

of (6.62) exactly
cancel. Therefore, only the first term in (6.62) survives and thus we have

detB = M(0,0),(0,0)(ε
2 − υ2) = 0, (6.65)

which gives again the usual dispersion relation

ε2 = υ2 or ω2 = k2. (6.66)

After setting the dispersion relation (6.66), we only need to solve the
(ω′,k′) 6= (0,0)th equations in (6.61) since detB = 0 implies that the
(ω′,k′) = (0,0)th equation is redundant.

For convenience, we define new variables xk(ω′,k′) similar to the xn
defined in (6.29):

uk(ω′,k′) = εc0xk(ω′,k′), (ω′,k′) 6= (0,0). (6.67)

Then (6.61) can be rewritten as

if (ω′,k′) 6= (0,0) :[(
ω′

Ω0

)2

−
(

k′

Ω0

)2
]
xk
(
ω′,k′

)
+

∫
ω′′ 6=ω′
k′′ 6=k′

dω′′d3k′′

[(
ω′

Ω0
− ω′′

Ω0

)2

f1

(
ω′′,k′′

)
+ i

(
ω′

Ω0
− ω′′

Ω0

)
f2

(
ω′′,k′′

)
−iδ

(
|k′|
Ω0

cosµ′ − |k
′′|

Ω0
cosµ′′

)
|f3

(
ω′′,k′′

)
|

]
xk
(
ω′ − ω′′,k′ − k′′

)
= if2(ω′,k′) + iδ cosµ|f3(ω′,k′)|. (6.68)
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Replacing the uk(ω′,k′) in (6.58) by xk(ω′,k′) through (6.67) we obtain
that, as ε→ 0, the mode solution uk(t,x) is asymptotic to

uk(t,x) = c0e
−i(ωt−k·x)

1 + ε

∫
ω′ 6=0
k′ 6=0

dω′d3k′ xk(ω′,k′)ei(ω
′t+k′·x)

 , (6.69)

where xk(ω′,k′) is determined by (6.68).
Analogous to (6.37) in the simplified toy model, xk(ω′,k′) would also go

as

xk(ω′,k′) ∼ 1

m
, (6.70)

when ω′,k′ taking values around the centers

ω′ ∼ ±2mΩ0, |k′| ∼ 2mK0, m = 1, 2, 3, · · · (6.71)

(xk(ω′,k′) is negligible if ω′,k′ is far away from these centers).
Due to Parseval’s theorem, (6.70) implies that the integral inside the

bracket of (6.69) converges which is similar to (6.39) and thus the correction
to uk(t,x) also goes as ε.

Therefore, when we quantize the scalar field φ in our wildly fluctuating
spacetime by expanding it in terms of the annihilation and creation operators
according to (6.5), the leading order would still be the form of the Minkowski
quantum field expansion (3.1). The correction to the dispersion relation
ω2 = k2 and the plane wave mode e−i(ωt−k·x) are on the order ∼ ε. In
addition, the extra wave modes which mixing in (6.38) or (6.69) are all
modes with frequencies higher than Ω0 ∼

√
GΛ2, which is much larger than

our effective QFT’s cutoff Λ. These extremely high frequency modes beyond
the cutoff are irrelevant to our low energy physics. This also explains why
the ordinary QFT works by assuming fixed Minkowski spacetime. The small
scale structure averages out in its effect on the long wavelength low energy
fields.

In summary, we have argued that although our spacetime sourced by the
quantum vacuum is highly curved and wildly fluctuating, the back reaction
of the resulting spacetime on the quantum field sitting on it is small. This
justifies our method of neglecting back reaction and using the quantum field
expansion (3.1) in Minkowski spacetime at the beginning.
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Chapter 7

The more general metrics

In previous chapters we assume the simplest inhomogeneous metric (4.1)
to describe the spacetime resulting from the inhomogeneous vacuum. In
this chapter, we try to generalize the result to more general inhomogeneous
metrics.

7.1 The full metric and Einstein equations

We can always choose a spacelike hypersurface and construct the following
general synchronous coordinate (at least locally) (see pages 42-43 of [4]):

ds2 = −dt2 + hab(t,x)dxadxb, a, b = 1, 2, 3. (7.1)

For the above metric (7.1), we employ the initial value formulation of
general relativity. In this formulation, the Einstein equation is equivalent to
six equations for the evolution of the second fundamental form

k̇ab =−R(3)
ab − (trk)kab + 2kack

c
b

+4πGρhab + 8πG

(
Tab −

1

2
habtrT

)
,

(7.2)

plus the usual four constraint equations,

R(3) + (trk)2 − kabkab = 16πGρ, (7.3)

Dak
a
b −Db(trk) = 8πGjb, (7.4)

where kab = 1
2 ḣab, k

ab = hachbdkcd, trk = habkab, ρ = T00, jb = habT0a,

trT = habTab, R
(3) is the 3-dimensional spatial curvature and Da is the

derivative operator associated with hab.
Taking trace on both sides of (7.2) and then combining with (7.3) gives:

habk̇ab − kabkab = −4πG (ρ+ trT ) . (7.5)
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7.2. The Mixmaster-type metric

It is interesting to notice that there are no spatial derivatives included on
the left hand of the above equation (7.5). The key evolution equation (4.19)
for a(t,x) we used in previous chapters is just the special case of the above
equation (7.5).

Direct calculation using the expression (4.22) shows that, the contribu-
tion from a real massless scalar field to the right-hand side of (7.5) is

ρ+ trT = 2φ̇2, (7.6)

where all the spatial derivatives of φ and all the explicit dependence on the
metric gµν in the definition of stress energy tensor (4.22) are canceled. It
is also interesting to notice that the above exact expression (7.6) is exactly
the same with the corresponding expression (4.23) for the simplest inhomo-
geneous metric (4.1) case.

7.2 The Mixmaster-type metric

We first consider the following special case:

hab(t,x) =

a2(t,x) 0 0
0 b2(t,x) 0
0 0 c2(t,x)

 , (7.7)

which is similar to the metric of Mixmaster universe [26].
The spacetime described by the above coordinate (7.7) possesses more

freedoms than (4.1) and thus would exhibit richer structures. In this case,
the expansion rate at the same point becomes directionally dependent.
Along the three principle axes x̂, ŷ and ẑ, which are eigenvectors of the
symmetric matrix hab in (7.7), the expansion rates ȧ/a, ḃ/b and ċ/c can be
different. This means that, at one same point, the space can be expanding
in one or two directions and contracting on the other two or one directions.

Under the coordinate system (7.7), equation (7.5) becomes

ä

a
+
b̈

b
+
c̈

c
= −4πG

(
ρ+

3∑
i=1

Pi

)
, (7.8)

where P1 = T11/a
2, P2 = T22/b

2, P3 = T33/c
2. This equation is a general-

ization of the key evolution equation (4.19) we used in previous chapters.
Let

ä

a
= −Ω2

1(t,x),
b̈

b
= −Ω2

2(t,x),
c̈

c
= −Ω2

3(t,x), (7.9)
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7.2. The Mixmaster-type metric

then (7.8) immediately leads to

Ω2
1(t,x) + Ω2

2(t,x) + Ω2
3(t,x) = 4πG

(
ρ+

3∑
i=1

Pi

)
. (7.10)

Unlike equation (4.19), here the time dependent frequencies Ω2
i (t,x0) do

not necessarily go exactly the same as Ω2 = 4πG
3

(
ρ+

3∑
i=1

Pi

)
. However, as

the functions a, b and c are alternately symmetric, Ω2
1, Ω2

2 and Ω2
3 must have

the same statistical properties. Especially, their expectation values must be
equal 〈

Ω2
i (t,x0)

〉
=

4πG

3

〈(
ρ+

3∑
i=1

Pi

)〉
, i = 1, 2, 3. (7.11)

Moreover, since Ω2 is slowly varying, Ω2
i should also be slowly varying

functions, since otherwise we would have three fast varying functions sum
together and precisely cancel each other to give a slowly varying function,
which is almost impossible in the system with such huge quantum fluctu-
ations (This argument is from probability sense. To prove this, one need
to also investigate other Einstein equations. This needs more study in the
future.). Thus the evolution of a, b and c are also adiabatic processes that
the solutions would be similar to (5.4):

a ' e
∫ t
0 H1x0 (t′)dt′P̃1(t,x0), (7.12)

b ' e
∫ t
0 H2x0 (t′)dt′P̃2(t,x0), (7.13)

c ' e
∫ t
0 H3x0 (t′)dt′P̃3(t,x0), (7.14)

where P̃i are quasiperiodic functions with the same quasiperiods as the time
dependent frequencies Ωi.

Also, on average, we have

Hi = H = αΛe−β
√
GΛ, i = 1, 2, 3, (7.15)

where

Hi =
1

t

∫ t

0
Hix0(t′)dt′. (7.16)

Therefore, the determinant of hab goes as

h(t,x0) = dethab(t,x0) = a2b2c2 ' exp

(
2

3∑
i=1

Hit

)
3∏
i=1

P̃ 2
i , (7.17)
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and the observable physical volume would be,

V (t) =

∫ √
h(t,x)d3x = V (0)e3Ht, (7.18)

which also gives the slow accelerating expansion of the Universe on cosmo-
logical scale.

7.3 An alternative derivation from geodesic
deviation equation

The dynamic equation (7.8) can also be derived from the geodesic deviation
equation. It is easier to understand the physical meaning of (7.8) from this
alternative derivation.

We first review the formalism of geodesic deviation equation. We will
follow the same notation in [4].

Let γs(t) denote a smooth one-parameter family of geodesics, that is, for
each s ∈ R, γs is a geodesic parameterized by the affine parameter t and
the map (t, s) → γs(t) is smooth, one-to-one and has smooth inverse. The
collection of these curves defines a smooth two-dimensional surface. We may
choose (t, s) as coordinates of this surface.

There are two natural vector fields: the tangent vectors to the geodesics
T a =

(
∂
∂t

)a
and the deviation vectors Xa =

(
∂
∂s

)a
which represent the

displacements to infinitesimally nearby geodesics. The quantity

va = T b∇bXa (7.19)

gives the rate of change along a geodesic of the displacement to an infinites-
imally nearby geodesic and may be interpreted as the relative velocity of an
infinitesimally nearby geodesics. The quantity

aa = T c∇cva = T c∇c
(
T b∇bXa

)
(7.20)

may be interpreted as the relative acceleration of an infinitesimally nearby
geodesic in the family.

The curvature of spacetime tells how the geodesics move. It is easy
to derive the following geodesic deviation equation from the definition of
Riemann curvature tensor (see derivation of Eq.(3.3.18) in page 47 of [4])

aa = −RacbdXbT cT d, (7.21)
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7.3. An alternative derivation from geodesic deviation equation

which shows that the relative acceleration between two neighboring geodesics
is proportional to the curvature.

For synchronized coordinates, the curves {γx(t) : x = Constant} are
all geodesics. This is a three-parameter family of geodesics (parameters
x, y, z). To apply the geodesic deviation equation (7.21), we first pick the
sub-family of geodesics: {γx(t) : −∞ < x < +∞, y = y0, z = z0}. For this
one-parameter family of geodesics, we apply (7.21) to the geodesic γx0(t)
which goes through an arbitrary point x = x0 = (x0, y0, z0).

The tangent vector and the deviation vector of γx0(t) expressed in the
coordinate (7.7) are

T a =

(
∂

∂t

)a
= (1, 0, 0, 0), (7.22)

Xa =

(
∂

∂x

)a
= (0, 1, 0, 0). (7.23)

The relative velocity is

va = T b∇bXa

= T b∂bX
a + T bΓabcX

c

= Γa01

=

(
0,
ȧ

a
, 0, 0

)
. (7.24)

The relative acceleration is

aa = T b∇bva

= T b∂bΓ
a
01 + T bΓabcΓ

c
01

= ∂0Γa01 + Γa01Γ1
01

=

(
0,
ä

a
, 0, 0

)
. (7.25)

Also expressing (7.21) in the coordinate (7.7) gives

aa = −Ra010. (7.26)

Comparing (7.25) and (7.26) we obtain that

ä

a
= −R1

010. (7.27)
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7.3. An alternative derivation from geodesic deviation equation

Picking the other two sub-family of geodesics: {γy′(t′) : x′ = x0, y
′ =

Constant, z′ = z0} and {γz′(t′) : x′ = x0, y
′ = y0, z

′ = Constant}, and
following the same procedures we obtain that

b̈

b
= −R2

020, (7.28)

c̈

c
= −R3

030. (7.29)

Summing (7.27), (7.28) and (7.29) together we obtain that

ä

a
+
b̈

b
+
c̈

c
= −Rµ0µ0, (7.30)

where the sum over µ can range over all four coordinates, not just the
three spatial ones, since the symmetries of the Riemann tensor requires that
R0

000 = 0.
The right-hand side of the above equation is just minus the time-time

component of the Ricci tensor

R00 = Rµ0µ0. (7.31)

Einstein equation has an equivalent form which directly relates the Ricci
tensor with matter field stress energy tensor (see e.g. Eq. (4.3.23) in page
72 of [4]):

Rµν = 8πG

(
Tµν −

1

2
gµνT

)
, (7.32)

where T = gµνTµν is the trace of the stress energy tensor. Specially, the
time-time component of (7.32) expressed in the coordinate (7.7) is just

R00 = 4πG

(
ρ+

3∑
i=1

Pi

)
. (7.33)

Therefore, replacing the Rµ0µ0 in the right-hand side of (7.30) by (7.33) we
obtain the same equation as (7.8):

ä

a
+
b̈

b
+
c̈

c
= −4πG

(
ρ+

3∑
i=1

Pi

)
. (7.34)

An interesting fact that needs to be pointed out is that the key dy-
namic equations (4.19), (7.5), (7.8) are all just the time-time component of
Eq.(7.32) expressed in the corresponding coordinates.
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7.4 The physical picture

It is easy to understand the physical meaning of our key dynamic equation
(7.8) from the last section’s derivation. (7.8) describes how the geodesics
γx(t) which are infinitesimally close to γx0(t) move in the wildly fluctuating
spacetime. It shows that the sum of the relative accelerations ä/a, b̈/b, c̈/c
is proportional to the energy density ρ plus the pressures P1, P2, P3 of the
matter fields.

Geometrically, the geodesics γx(t) with |x − x0| sufficiently small form
an infinitesimally small ellipsoid of test particles around x0. The solutions
(7.12), (7.13), (7.14) for a, b, c show that the ellipsoid is alternatively ex-
panding and contracting in the three principal directions x̂, ŷ, ẑ. Moreover,
due to the weak parametric resonance effect, the expansion wins out a little
bit that the average volume of the ellipsoid would gradually increase. This
effect accumulates on the cosmological scale, which gives the slow acceler-
ating expansion of the Universe.

7.5 The Raychaudhuri equation

If hab take the most general form

hab(t,x) =

a2(t,x) d(t,x) e(t,x)
d(t,x) b2(t,x) f(t,x)
e(t,x) f(t,x) c2(t,x)

 , (7.35)

then the dynamic equation (7.5) becomes

a2h∗11

h

ä

a
+
b2h∗22

h

b̈

b
+
c2h∗11

h

c̈

c
(7.36)

+
dh∗12

h

d̈

d
+
eh∗13

h

ë

e
+
fh∗23

h

f̈

f
+ F (hab, ḣab) = −4πG(ρ+ trT ),

where h = det(hab) is the determinant of the matrix (7.35), h∗ab is the ma-
trix’s (a, b) cofactor and F is a nonlinear function of the metric components
hab and their first time derivatives ḣab.

(7.36) is very difficult to handle. However, it is in fact equivalent to
the well known Raychaudhuri equation. Its physical meaning is easier to
understand in this way. In the following we will first review some basics
about Raychaudhuri’s equation (see Section 9.2 of [4] for details).

Consider a general spacetime gab and a smooth congruence of timelike
geodesics which are parameterized by proper time τ . So the vector field, ξa,
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7.5. The Raychaudhuri equation

of tangents is normalized to unit length, ξaξa = −1. One then define the
tensor field Bab, the expansion θ, shear σab, and twist ωab by

Bab = ∇bξa, (7.37)

θ = Babhab, (7.38)

σab = B(ab) −
1

3
θhab, (7.39)

ωab = B[ab], (7.40)

where the spatial metric hab is defined by

hab = gab + ξaξb. (7.41)

Along any geodesic in the congruence, θ measures the average rate of
expansion of the infinitesimally nearby surrounding geodesics; ωab measures
their rotation; and σab measures their shear, i.e. an initial sphere in the
tangent space which is Lie transported along ξa will distort toward an el-
lipsoid with principle axes by the eigenvectors of σab , with rate given by the
eigenvalues of σab .

Raychaudhuri’s equation is a differential equation for the expansion θ:

ξc∇cθ +
1

3
θ2 + σabσ

ab − ωabωab = −Rabξaξb. (7.42)

If the congruence is hypersurface orthogonal, we have ωab = 0 that the above
equation (7.42) becomes

ξc∇cθ +
1

3
θ2 + σabσ

ab = −8π

(
Tab −

1

2
Tgab

)
ξaξb, (7.43)

where we have used the equivalent version of Einstein equation (7.32) to
replace the Ricci tensor Rab.

For synchronized coordinate (4.1) or (7.7) or (7.1), the curves {γx(t) :
x = Constant} are all geodesics and they also form a congruence. Let ξa

be the tangent vectors of them, i.e.

ξa =

(
∂

∂t

)a
, (7.44)

then (7.43) can be expressed in the coordinate (4.1) or (7.7) or (7.1) as

θ̈ +
1

3
θ2 + σabσ

ab = −4πG (ρ+ trT ) . (7.45)
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For the simplest inhomogeneous metric (4.1), we have

σab = 0, (7.46)

and

θ = 3
ȧ

a
, (7.47)

i.e. the average expansion θ is just 3 times the local Hubble expansion rate
ȧ/a; Then (7.45) becomes

θ̈ +
1

3
θ2 = 3

ä

a
= −4πG

(
ρ+

3∑
i=1

Pi

)
, (7.48)

which is just the key equation (4.19) for a time dependent harmonic oscillator
we used in previous chapters.

For the mixmaster-type metric (7.7), we have

θ =
ȧ

a
+
ḃ

b
+
ċ

c
(7.49)

and

θ̈ +
1

3
θ2 + σabσ

ab =
ä

a
+
b̈

b
+
c̈

c
. (7.50)

Then (7.45) becomes

ä

a
+
b̈

b
+
c̈

c
= −4πG

(
ρ+

3∑
i=1

Pi

)
, (7.51)

which is just equation (7.8).
For the most general metric (7.1), (7.45) just becomes (7.36). This case

is difficult to handle. Further investigations are needed in the future.
However, the results we obtained for the mixmaster-type metric (7.7)

suggest that, for the most general case (7.35), the eigenvalues λ2
i (t,x) of the

matrix hab should also evolve adiabatically similar to a2, b2 and c2. In other
words, we expect that the results (7.12), (7.13), (7.14) and (7.15) can be
generalized to λi in the most general case and the physical volume of space
would expand as

V (t) =

∫ √
h(t,x)d3x

=

∫ √
λ2

1λ
2
2λ

2
3d

3x

= V (0)e3Ht, (7.52)

where H is determined by (5.25).
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Chapter 8

Similarity of effects of
vacuum energy in
non-gravitational system and
gravitational system

Vacuum fluctuations and their associated vacuum energies are direct con-
sequences of the Heisenberg’s uncertainty principle of quantum mechanics.
Although it is still controversial [27], various observable effects are often
ascribed to the existence of vacuum energies and have been experimentally
verified, which strongly suggests the reality of vacuum fluctuations. These
vacuum fluctuation effects include the spontaneous emission [28], the Lamb
shift [29], the anomalous magnetic moment of the electron [30, 31] and the
Casimir effect [32–35]. The reality of the vacuum energy associated to the
spontaneous symmetry breaking of electroweak theory has also been con-
firmed by the discovery of the Higgs boson at the LHC [36, 37].

If we assume that the vacuum fluctuations do exist as evidenced by the
above listed observable effects, then according to the equivalence principle,
the associated vacuum energies would gravitate as well as all other forms
of energy. This has been experimentally demonstrated by, for example, the
gravitational test of Lamb shift energy [38–40]. The gravitational property
of Casimir energy has not been tested experimentally, but has been demon-
strated theoretically with the conclusion that it does gravitate according to
equivalence principle [41–44].

However, in the literature, the value of vacuum energy density is usu-
ally thought to play a different role in non-gravitational systems and in
gravitational systems. The actual value of the vacuum energy density is
generally regarded as irrelevant in non-gravitational contexts based on the
argument that only energy differences from the vacuum are measurable;
while when gravity is present, the actual value of the energy matters, not
just the differences, since the source for the gravitational field is the entire
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8.1. Value of vacuum energy is relevant in Casimir effect

energy momentum tensor that its large value may be potentially disastrous.
We argue differently in this section with the following points: (i) the

value of vacuum energy density can also be relevant in non-gravitational
contexts; (ii) the huge value of vacuum energy density is not a direct ob-
servable and that it is not disastrous in a theory of gravity. Moreover,
there is essentially no difference between the roles played by vacuum energy
in non-gravitational systems and in gravitational systems. In other words,
although technically more complicated when gravity is included, the gravi-
tational effect of the vacuum energy on spacetime metric is intrinsically the
same as its effect on material bodies when gravity is excluded.

8.1 Value of vacuum energy is relevant in
Casimir effect

Let us first consider the Casimir effect. The Casimir force is usually derived
by calculating the change in vacuum energy due to the presence of the
conducting plates, which acts as mirrors to reflect electromagnetic waves (We
will call them mirrors in the following). This derivation is straightforward,
but loses some important physical details about what is going on in the
system [45, 46]. Due to quantum fluctuations, the zero point fields constantly
impinge on both sides of the mirror and then reflect back, which transmit
momentum to the mirror and thus result in forces on both sides of the mirror.
The Casimir stress (force per unit area) is just the difference between the
pressure exerted by the electromagnetic field vacuum from inside and outside

S(t, x, y) = T inside
zz − T outside

zz , (8.1)

where we have set that the two parallel mirrors are normal to the z axis.
Since the vacuum fluctuations between the two mirrors are different from the
vacuum fluctuations outside, the expectation values of T inside

zz and T outside
zz

would be different and thus gives a net average force. Although both T inside
zz

and T outside
zz are divergent, this average force is finite since the quartic diver-

gent Minkowski zero point fluctuations are canceled after the subtraction in
(8.1) and one obtains the well known Casimir stress [46]

〈S〉 = − π2

240d4
. (8.2)

Thus the effect of the value of zero point energy disappears in the calcu-
lations. It is for this reason that although the Casimir effect is usually
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8.1. Value of vacuum energy is relevant in Casimir effect

regarded as evidence of the reality of zero point energy, the actual value of
its energy density is thought to be irrelevant in this effect.

However, the value of zero point energy density does have an effect. Note
that (8.2) only gives the expectation value of the Casimir stress S, but S is
never a constant, it fluctuates. That’s because the amount of momentum
carried by the zero point fields which impinge on both sides of the mirror is
constantly fluctuating due to the fact that the vacuum is not an eigenstate
of the zz component of the stress energy tensor Tzz. The magnitude of the
fluctuation of each Tzz is large and diverges as the same order of the vacuum
energy density 〈T00〉. For a perfect mirror, since the fields on the two sides
fluctuate independently of each other, the mean-squared stresses on the two
sides simply add, resulting in the magnitude of the fluctuation of the net
stress also diverges as〈

∆S2
〉

=
〈
(S − 〈S〉)2

〉
∼ 〈T00〉2 →∞. (8.3)

For more realistic imperfect mirrors which become transparent for frequen-
cies higher than its plasma frequency Λ, the 〈T00〉 in (8.3) contains contri-
butions only from field modes of frequencies lower than Λ and the mean
squared value of the net stress S goes as〈

∆S2
〉
∼ 〈T00〉2 ∼ Λ8. (8.4)

The plasma frequency Λ in (8.4) acts as an effective cutoff which depends on
the microstructure of the mirror. It is similar but distinct from the effective
QFT’s cutoff Λ in (5.25), which depends on the microstructure of spacetime.

Therefore, the value of zero point energy density is still physically signif-
icant even in non-gravitational system. Its value appears in (8.3) and (8.4)
to characterize the strength of Casimir stress fluctuation, which implies that
the net Casimir stress is constantly fluctuating with huge magnitudes around
its small mean value (8.2). Due to this huge fluctuation, at almost any in-
stant, the magnitude of the stress at each single point of the mirror is as
large as the value of the zero point energy density.

However, this effect is strong only at small scales. Its measurable effect
becomes small at larger scales. In practice, the measurements must be taken
over some finite time interval T and some finite surface area of order l2. More
precisely, what the force detector measures is the time and surface average

S̄ =

∫
dtdxdyf(t, x, y)S(t, x, y), (8.5)

where the averaging function f satisfies∫
dtdxdyf(t, x, y) = 1. (8.6)
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8.2. Effect of vacuum energy on the motion of mirrors

The exact shape of the averaging function depends on the measuring appa-
ratus. On physical grounds one can choose f to be a single peak over a time
interval T comparable to the experimental resolving time and over a spa-
tial region of area l2 comparable to the resolution of the measuring device.
Although the magnitude of the fluctuations of the net stress S is formally
infinite as shown in (8.3), the magnitude of the measurable fluctuations of
its average S̄ is finite. This is because the effect of the vacuum fluctuations
at small scales is significantly weakened when averaging over larger scales.
The calculations have been done by G Barton in [47] with the conclusion
that, for the realistic case where l� cT , the mean squared deviation〈

∆S̄2
〉

=
〈(
S̄ −

〈
S̄
〉)2〉

=
constant

T 8
, (8.7)

where the “constant” here is a pure number as could have been foreseen
on dimensional grounds. The above equation (8.7) shows that

〈
∆S̄2

〉
in-

creases as T decreases, which means that the better the measuring device,
the stronger fluctuation due to the effect of the value of the zero point energy
density can be measured. And in principle, using a perfect instantaneous
measuring device (T → 0), one can measure the infinite fluctuations of the
Casimir stress on a perfect mirror due to the infinite value of zero point
energy density. In practice, however,

〈
∆S̄2

〉
is too small to be measured for

a real force detector whose resolving time T is too large [47].

8.2 Effect of vacuum energy on the motion of
mirrors

The value of zero point energy density also has effects on the dynamic motion
of small material bodies. Imagine that we place a single mirror of very small
size in the vacuum and then release it. The mirror would experience a
fluctuating force exerted by the quantum field vacuum and starts to move.
The equation of motion of the mirror, which is called quantum Langevin
equation, can be generally described by

Ẍ = F
(
t,X, Ẋ, φ, φ̇, . . .

)
, (8.8)

where X is the mirror’s position, φ represents the field interacting with the
mirror which is usually taken to be a scalar field for simplicity and we have
set the mirror’s mass M = 1 for convenience. The average force in this case
would be zero because of symmetry

〈F 〉 = 0, (8.9)
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and similar to the Casimir stress fluctuation (8.3), the force here also un-
dergoes wild fluctuations with a magnitude〈

F 2
〉
∝ 〈T00〉2 →∞. (8.10)

The mathematically infinite fluctuating force F gives infinite instanta-
neous accelerations of the mirror through (8.8). Similar to the case of infinite
Casimir stress fluctuation (8.3), this infinite fluctuating force and infinite in-
stantaneous acceleration make sense since they are also only significant at
very small scales and will not result in infinite fluctuation of the mirror’s
position at observable larger scales. In fact, the mirror would oscillate back
and forth with very high speeds, but its range of motion is still small [48–52].

More precisely, suppose that the mirror is initially located at X(0) = 0
with velocity Ẋ(0) = 0 and is then released at t = 0. The magnitude
of its acceleration Ẍ(t) and velocity Ẋ(t), which can be characterized by

the quantity
〈
Ẍ2(t)

〉
and

〈
Ẋ2(t)

〉
, is large. But, the magnitude of the

range of the mirror’s fluctuating motion, which can be characterized by the
observable mean squared displacement

〈
X2(t)

〉
, is still small.

In this sense, the value of vacuum energy density is still relevant even
in non-gravitational physics. This value appears in the equation (8.10) to
characterize the strength of the force fluctuations acting on the mirror at
small scales and it may have small observable effects at larger scales such as
diffusions predicted in [50–52].

8.3 Analogies between the motion of mirror and
the motion of a(t,x)

Although technically more complicated in gravity, the basic dynamic equa-
tion of motion (4.19) satisfied by the scale factor a(t,x) is in fact very similar
to the equation of motion (8.8) satisfied by the mirror’s position X(t). Con-
sider only the contribution from the massless scalar field φ, (4.19) is just the
following same form as the equation (8.8)

ä = F
(
a, φ̇
)
, (8.11)

where

F
(
a, φ̇
)

= −8πG

3
φ̇2a. (8.12)

Also, the average of the fluctuating force F
(
a, φ̇
)

is zero due to symmetry〈
F
(
a, φ̇
)〉

= 0, (8.13)
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8.3. Analogies between the motion of mirror and the motion of a(t,x)

and its magnitude of fluctuation〈
F 2
(
a, φ̇
)〉
∝ 〈T00〉2 →∞. (8.14)

The above two statistical properties (8.13) and (8.14) satisfied by the “force”
driving the “motion” of the scale factor a are the same with the statistical
properties (8.9) and (8.10) satisfied by the force driving the motion of the
mirror. In this sense, the role played by the value of the vacuum energy
density in gravitational system is similar to its role in non-gravitational
system.

Concretely speaking, the vacuum energy density results in large instan-
taneous acceleration Ẍ and velocity Ẋ of the mirror, but the observable
position fluctuations of the mirror, which can be characterized by the quan-
tity

〈
X2
〉
, is not large. Analogously, the vacuum energy density results in

the large instantaneous “acceleration” ä and “velocity” ȧ of the scale fac-
tor, but the observable physical distance defined by (4.8), whose value is
determined by the quantity

〈
a2
〉
, is also not large. These properties about

a(t,x) are evident from the solutions (5.4), (5.8) and (5.25), from which we
can see that the quantities

〈
ä2
〉

and
〈
ȧ2
〉

are as large as 〈T00〉2 and 〈T00〉
respectively, while the magnitude of the quantity

〈
a2
〉

is on the order 1.
In this sense, the role played by vacuum energy in gravitational system

is similar to its role in the non-gravitational mirror systems—it appears
both at (8.10) and (8.14) to show the strongness of vacuum fluctuations at
microscopic scales (for mirrors, microscopic means atomic scale; for gravity,
microscopic means Planck scale) and their observable effects are both small
at macroscopic scales.

By this same kind of mechanism, the violent gravitational effect produced
by the vacuum energy density is confined to Planck scales, and its effect
at macroscopic scales—the accelerating expansion of the Universe, due to
the weak parametric resonance is so small that, it is only observable after
accumulations on the largest scale—the cosmological scale.
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Chapter 9

The singularities at a(t,x) = 0

In our way of vacuum gravitating, the space is alternatively expanding and
contracting at each spatial point, and, during each such cycle, the expansion
outweighs the contraction a little bit due to the weak parametric resonance
effect. This process gives a slowly increasing amplitude A(t,x) of the scale
factor a(t,x), whose observable effect is just the accelerating expansion of
our Universe.

Probably one of the biggest concerns about this physical picture is the
appearance of singularities at points a(t,x) = 0—according to the solution
(5.8), the scale factor a(t,x) must go through zero whenever the space at x
switches from contraction phase to expansion phase. In this section, we are
going to discuss this issue of singularities.

9.1 Is singularity an end or a new beginning?

Singularities are a generic feature of the solution of Einstein field equations
under rather general energy conditions (e.g. strong, weak, dominant etc.),
which is guaranteed by Penrose-Hawking singularity theorems [53–58]. In
this paper, since we investigate the gravitational property of quantum vac-
uum without modifying either QFT or GR, the appearance of singularities
is inevitable—QFT predicts a huge vacuum energy, and according to GR,
huge energy must collapse to form singularity.

The Raychaudhuri equation (7.42) serves as a fundamental lemma for
the Penrose-Hawking singularity theorems. This lemma says that if the
strong energy condition is satisfied, the expansion θ, which is defined by
(7.38), must satisfy the following inequality:

1

θ
≥ 1

θ0
+
τ

3
, (9.1)

where θ0 is the initial value of θ. If θ0 is negative, then (9.1) implies that
1/θ must pass through zero, i.e. θ → −∞, within a proper time τ ≤ 3/|θ0|.
This usually signals an encounter with a curvature singularity (although not
necessarily) and in our case it is indeed a singularity.

69



9.2. Resolving singularity by multiplying a

It is usually thought that the Einstein field equations break down at sin-
gularities and thus the spacetime evolution will stop once the singularity is
formed. However, it is not the case for our solution to the key dynamic evo-
lution equation (4.19), which describes the oscillating motion of a harmonic
oscillator. It is natural for a harmonic oscillator to pass its equilibrium
point a(t,x) = 0 at maximum speed without stopping. From the calcula-
tion (7.47) we know that θ is just 3ȧ/a that as a → 0+, θ → −∞ and as
time goes on, a quickly passes 0 and θ jumps discontinuously from −∞ to
+∞ and the spacetime evolution start again. In this process, the metric a
is still continuous, although the expansion θ is not.

So in our solution, the singularity immediately disappears after it forms
and the spacetime continues to evolve without stopping. Singularities are
not endings but new beginnings. They serve as the turning points at which
the space switches from contraction phase to expansion phase.

9.2 Resolving singularity by multiplying a

In order to understand better why in our solution the singularity is not the
end of spacetime evolution, it is helpful to review one crucial step in deriving
(4.19) from (4.18). Rigorously speaking, we can only obtain the following
equation from (4.18):

− ä
a

= Ω2(t,x), (9.2)

which is not equivalent to (4.19). To get (4.19), we need one more step—
multiply both sides of (9.2) by a.

Mathematically, a is not allowed to be zero in (9.2) since it is in the
denominator. In fact, when writing down the Einstein field equations (4.2),
(4.3), (4.4) and (4.5), it has been presumed that a 6= 0 since if a = 0, the
metric would become degenerate (g = det(gµν) = −a6 = 0), the curvature
would become infinite and the Einstein tensor are simply not defined there.

But, after the inequivalent algebraic manipulation of multiplying both
sides of (9.2) by a, a is allowed to evolve to zero in the resulting equation
(4.19) since there is nothing wrong for a harmonic oscillator to go through
its equilibrium point. In this sense, we have smoothly extended the solu-
tion beyond the singularity by the mathematical operation of multiplying
both sides of (9.2) by a (or more generally by some power of the metric
determinant).

The idea of resolving a singularity by mulptiplying Einstein equations
with some power of the determinant of the metric is not new. Einstein him-

70



9.3. Singularities do not cause problems

self had proposed this idea with his collaborator Rosen in 1935 (for which
they credited this idea to Mayer) [59]. Ashtekar used a similar trick in his
method of “new variables” to develop an equivalent Hamiltonian formula-
tion of GR [60]. It is also proposed by Stoica that the equations obtained
after multiplying the usual Einstein equations by some power of the metric
determinant are actually more fundamental than the usual Einstein equa-
tions [61–69]. In this sense, we argue that our spacetime with singularities
due to the metric becoming degenerate (a = 0) is a legitimate solution of
GR.

9.3 Singularities do not cause problems

While singularities are natural and inevitable in solutions to Einstein’s equa-
tions, we must discuss the consequences they bring to this calculation.

Will the singularities cause serious problems? At least in our case we do
not feel they cause problems.

To see this, we investigate how the singularities affect the propagation
of the field modes in our toy model (6.12).

In this toy model, the spacetime have singularities at the hypersurfaces

Θ = Ωt+ K · x = (n+
1

2
)π, n = 0,±1,±2,±3, · · · (9.3)

Using the relation xm = −x−m, which is evident from (6.28) and (6.29), the
asymptotic mode solution (6.38) becomes

uk(t,x) = c0e
−i(ωt−k·x)

(
1 + 2iε

+∞∑
m=1

xm sin 2mΘ

)
. (9.4)

At the singularities (9.3), the correction terms sin 2mΘ of (9.4) are all zero
and thus we have

uk(t,x) = c0e
−i(ωt−k·x) (9.5)

So the value of uk is normal at singularities.
However, the stress energy tensor (4.22) for the field φ, which sources the

Einstein field equations (4.2), (4.3), (4.4) and (4.5), mainly contains time
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and spatial derivatives of φ:

3

(
ȧ

a

)2

+
1

a2

(
∇a
a

)2

− 2

a2

(
∇2a

a

)
= 4πG

(
φ̇2 +

1

a2
(∇φ)2

)
(9.6)

−2aä− ȧ2 −
(
∇a
a

)2

+
∇2a

a
+ 2

(
∂ia

a

)2

− ∂2
i a

a

= 8πG

(
(∂iφ)2 +

1

2

(
a2φ̇2 − (∇φ)2

))
, (9.7)

2
ȧ

a

∂ia

a
− 2

∂iȧ

a
= 8πGφ̇∂iφ, (9.8)

2
∂ia

a

∂ja

a
− ∂i∂ja

a
= 8πG∂iφ∂jφ, i, j = 1, 2, 3, i 6= j. (9.9)

Especially, the Ω2 in our key dynamic equation (4.19) is (see Eq.(4.24))

Ω2 =
8πG

3
φ̇2. (9.10)

Therefore, one has to investigate how the derivatives of φ behave at the
singularities to assess the influence of the singularities on our calculations.
To do this, we plot the correction function

f(Θ) =

+∞∑
m=1

xm sin 2mΘ (9.11)

to the mode solution uk defined by (9.4) and its derivative around the sin-
gularity at Θ = π/2. The sum in the plots are from m = 1 to m = 20000.
The result are shown in FIG. 9.1 and FIG. 9.2.

It can be seen from FIG. 9.1 and FIG. 9.2 that the derivative of f(Θ)
is almost constant except suddenly goes to infinity when approaching the
spacetime singularity at Θ = π/2. Therefore, the property of Ω2 does not
change beyond the singularity. It suddenly goes to infinity as a→ 0.

This sudden change at the singularity should not alter the dynamics of
our key equation (4.19) for the two following reasons: i) a passes through
0 within an extremely short period ∆t since a harmonic oscillator reaches
maximum speed at the equilibrium point. So the change in the momentum
of the oscillator due to the singularity ∆P = F∆t = −Ω2a∆t as a→ 0 will
be small (Ω2 → +∞ but a→ 0 so F does not necessarily blow up); ii) From
FIG. 9.1 we see that the correction to Ω2 around a = 0 is symmetric that
the effect of F should be canceled that ∆P → 0.
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Figure 9.1: Plot of the correction function f(Θ) =
+∞∑
m=1

xm sin 2mΘ around

the spacetime singularity at Θ = Ωt + K · k = π/2, where the sum in the
plot is from m = 1 to m = 20000.
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Figure 9.2: Plot of the derivative of the correction function df(Θ)
dΘ =

+∞∑
m=1

2mxm cos 2mΘ around the spacetime singularity at Θ = Ωt+K·k = π/2,

where the sum in the plot is from m = 1 to m = 20000.
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So we have argued that a goes through 0 is not a problem for the key
equation (4.19) we used. But is it a problem for other Einstein equations
(9.6), (9.7), (9.8) and(9.9)? If we stick the solution (5.8) for a into these
equations, the left-hand side would blow up at a = 0, which requires that
the time and spatial derivatives of φ on the right-hand side must also blow
up (see eq. (9.8), (9.9)). As we can see from the plot of the correction to the
mode solution uk of φ in FIG. 9.1, φ̇ and ∇φ do blow up at a = 0, so our
solution (5.8) for a is also consistent with these other Einstein equations.

The blow up of φ̇ at a = 0 seems invalidated our calculation at first
glance since we have implicitly assumed that Ω2 behaves normal all the
time to be able to vary slowly, which is the key property we used to solve
(4.19). However, because of the two reasons we have argued, this should not
alter the dynamics of (4.19).
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Chapter 10

A different model with a
large bare cosmological
constant (unsuccesful)

In this chapter we introduce a different model with a large negative bare
cosmological constant. This model was motivated to cure the original model
published in [1] after the mistakes in the numerical calculation were found.
In this model, instead of discarding the bare cosmological constant λb and
taking the high energy cutoff Λ to infinity, we keep the bare constant λb
and take it to negative infinity with Λ fixed. This model does have some
advantages over the original one, but unfortunately a fatal flaw was founded.
We include this model here since even unsuccessful attempt could still be
valuable in scientific research.

10.1 The formulation of the cosmological
constant problem is destroyed by density
fluctuations of quantum vacuum

Consider a new model6 in which we keep the bare cosmological constant λb:

ds2 = −dt2 + a2(t,x)(dx2 + dy2 + dz2). (10.1)

6See chapter 4 for more details about this model.
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G00 = 3

(
ȧ

a

)2

+
1

a2

(
∇a
a

)2

− 2

a2

(
∇2a

a

)
= 8πGT00 + λb, (10.2)

Gii = −2aä− ȧ2 −
(
∇a
a

)2

+
∇2a

a
+ 2

(
∂ia

a

)2

− ∂2
i a

a

= 8πGTii − λba2, (10.3)

G0i = 2
ȧ

a

∂ia

a
− 2

∂iȧ

a
= 8πGT0i, (10.4)

Gij = 2
∂ia

a

∂ja

a
− ∂i∂ja

a
= 8πGTij , i, j = 1, 2, 3, i 6= j, (10.5)

where ∇ = (∂1, ∂2, ∂3) is the ordinary gradient operator with respect to the
spatial coordinates x, y, z.

A linear combination of equations (10.2) and (10.3) gives,

G00 +
1

a2
(G11 +G22 +G33) = −6ä

a
, (10.6)

where all the spatial derivatives of a cancel and only the second order time
derivative left. Therefore we reach the following dynamic evolution equation
for a(t,x):

ä+ Ω2(t,x)a = 0, (10.7)

where

Ω2 =
4πG

3

(
ρ+

3∑
i=1

Pi

)
− λb

3
, ρ = T00, Pi =

1

a2
Tii. (10.8)

(10.7) is just a generalization of the second Friedman equation (2.12). In
the usual renormalization approach, λb is chosen very precisely to cancel the
expectation value of the first term ρ +

∑3
i=1 Pi in (10.8). Suppose that we

have successfully fine-tuned λb to an accuracy of 10−122 that the expectation
value of the Ω2 in (10.8)

〈Ω2〉 = −λeff/3 = −1.86× 10−122 (10.9)

in Planck units. Because of the huge fluctuations in ρ+
∑3

i=1 Pi, Ω2 would
have large chances to fluctuate to both large negative and positive values.
When Ω2 fluctuates to negative values, a roughly grows exponentially

a ∼ e|Ω|t ∼ e
√
GΛ2t ∼ eEP t � e10−61EP t, (10.10)

where EP is Planck energy, the high energy cutoff Λ ∼ EP has been taken to
be Planck energy in the above estimation and 10−61 is the current order of
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magnitude of Hubble expansion rate in Planck units. When Ω2 fluctuates to
a positive value, (10.7) becomes a harmonic oscillator with time dependent
frequency and parametric resonance 7 would happen that a would roughly
go as

a ∼ eH̃tP, (10.11)

where P is a quasiperiodic function oscillating around 0. In this case, Ω ∼√
GΛ2 while the varying frequency of Ω itself is roughly Λ. As taking Λ ∼

EP , the two frequency closes to each other that the parametric resonance
would be strong.

Therefore, the density fluctuations would cause large deviations from
(2.13) and the universe would still explode even one has successfully fine-
tuned λb to an accuracy of 10−122. Moreover, the relation (2.7) which de-
scribes the dependence of the observed effective cosmological constant λeff

on the bare cosmological constant λb is destroyed by these fluctuations. A
new relation between λeff and λb is needed.

10.2 New relation between λeff and λb

Since the matter fields 8 in (10.8) go as

4πG

3

(
ρ+

3∑
i=1

Pi

)
∼ (±)GΛ4, (10.12)

the time dependent frequency Ω2 would average around

〈Ω2〉 ∼ −λb
3
±GΛ4. (10.13)

Something interesting happens if −λb is taken to the range −λb � Λ2 ≥
GΛ4, assuming Λ ≤ EP (see FIG. 10.1). In this limit, i) the probability
that Ω2 fluctuates to negative values goes to zero; ii) the strength of the
parametric resonance goes to zero. Thus the Hubble expansion rate H → 0
and then the effective cosmological constant λeff = 3H2 → 0 as −λb → +∞.
In the following we give an expression for the dependence of λeff on λb in
this regime.

7See chapter 5.1 for more detailed explanation about the parametric resonance effect.
8The sign of (10.12) is not known. In principle all known and unknown fundamental

fields in nature would contribute. Boson fields give positive signs to ρ but Fermion fields
give negative signs to ρ. Sine we do not have the knowledge about all of them, the sign
can not be determined.
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Figure 10.1: An illustration of the probability density distribution P (Ω2).
The shape of the graph is obtained from the histogram of a sample of Ω2(t)
we used in the numerical simulation 10.3. This is for one boson and one
fermion field. The tails fall as e−κ|Ω

2+λb/3| (as shown in FIG. 10.2) for large
argument where κ is some constant.
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which shows the tail of P (Ω2) falls as

e−κ|Ω
2+λb/3| for large argument where κ is some constant.
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10.2. New relation between λeff and λb

Due to quantum fluctuation, we assume that Ω2 can possibly fluctuate
to any values. Different values of Ω2 give different dynamics of the equa-
tion(10.7). All possible values of Ω2 can be divided into two cases: i) Ω2 < 0
or Ω ∼ Λ; ii) Ω� Λ.

Case I: Ω2 < 0 or Ω ∼ Λ. The probability that Ω2 fluctuates to these

values is exponentially suppressed, since ρ +

3∑
i=1

Pi approximately obeys

chi-square distributions. In fact, a free quantum field may be viewed as a
collection of decoupled, time-independent, harmonic oscillators. At ground
state, each oscillator satisfies Gaussian distribution, and the sum of Gaussian

distributions are still Gaussian distributions. Since ρ +

3∑
i=1

Pi is in general

contains squares of the time and spatial derivatives of the fields, it would
approximately obey chi-square distributions. The probability density func-
tion f(x) of a chi-square distribution roughly goes as ∼ e−κx as x large (as
shown in FIG. 10.2), where κ is some constant. Therefore, the contribution
to the growth of a from this case is proportional to

H ∝ e−β̃(−λb
3
− 4πG

3
〈ρ+

∑3
i=1 Pi〉) ∝ eβ̃λb , as − λb � Λ2 ≥ GΛ4, (10.14)

where we have absorbed the numerical factor 1/3 into the constant β̃. FIG.
10.4 shows that β̃ = 6.09 for the matter fields used in the numerical simu-
lation 10.3.

Case II: Ω� Λ. In this case, since Ω itself varies on the time scale 1/Λ,
which is much longer than the time scale 1/Ω of the oscillation of a, this
process is basically adiabatic 9. It has been well-established that the error
in adiabatic invariant is exponentially small [22, 24]. Thus we would expect
that in this case the strength of the parametric resonance would also be
exponentially suppressed. To obtain more detailed estimation, we only need
to follow exactly the same steps of Chapter 5.3 with Ω ∼

√
GΛ2 replaced by

Ω ∼
√

4πG
3 〈ρ+

∑3
i=1 Pi〉 − λb/3 ∼

√
±GΛ4 − λb/3. Then the contribution

to the growth of a from this case is proportional to

H ∝ Λe−β
√
±GΛ4−λb/3

Λ ∼ Λe−β
√
−λb
Λ , as − λb � Λ2 ≥ GΛ4, (10.15)

where we have absorbed the numerical factor into β.

9See chapter 5.2 for detailed analysis about this process.

80



10.3. Numerical simulation

When |λb| is large, the contribution to H from (10.14) drops faster than
the contribution from (10.15). So (10.15) is dominant:

H = αΛe−β
√
−λb
Λ , as − λb � Λ2 ≥ GΛ4, (10.16)

where α, β > 0 are two dimensionless constants. This gives a different
relation between the observed effective cosmological constant λeff and the
bare cosmological constant λb:

λeff = 3H2 = α2Λ2e−2β

√
−λb
Λ , as − λb � Λ2 ≥ GΛ4. (10.17)

10.3 Numerical simulation

We follow the same numerical method as described in chapter 5.7 and ap-
pendix B. The difference is that the source of gravity is taken to be one
Boson field and one Fermion field. The contribution to 〈Ω2〉 from the Boson
field is set to be GΛ4/6π and from the Fermion field is set to be −GΛ4/6π,
i.e. we set 〈ρ+

∑3
i=1 Pi〉 = 0 in the simulation.

The numerical simulation for the regime |λb| is small is shown in FIG.
10.3 and FIG. 10.4. FIG. 10.3 shows that the Hubble expansion rate H
decreases as −λb increases. FIG. 10.4 shows that this decrease is exponential
as predicted by (10.14) and the parameter β̃ there is around 6 in this setting.
Note that the red line (λb = 0) in FIG 10.3 represents the case 〈ρvac〉 =
0 (or λeff has been tuned to zero in the usual sense). It clearly shows
that the universe is exploding instead of stay still because of the density
fluctuation of quantum vacuum, i.e. even if one has successfully fine-tuned
the cosmological constant to the usually required accuracy of 10−122, the
problem of rapid exponential expansion of the universe driven by the large
vacuum energy is still not resolved.

The numerical simulation for the regime |λb| is large is shown in FIG.
10.5 and FIG. 10.6. FIG. 10.5 shows that the Hubble expansion rate H
decreases as −λb increases. FIG. 10.6 shows that this decrease is exponential
as predicted by (10.16) and the parameters α ∼ e18, β ∼ 14 in this setting.
The error bar for the slope of the lines in FIG. 10.5 is big that the fitting
parameters α and β obtained in FIG. 10.6 may not be accurate. These
parameters would also depend on the matter fields we used. But FIG. 10.6
at least gives an estimation that α is somewhere between e10 to e20 and β
is somewhere between 10 to 20. These values are not accurate but it is not
important for our model to work as explained in the next subsection.
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Figure 10.3: Numerical result for the dependence of log |a| on the bare
cosmological constant λb as |λb| is small. The cutoff Λ = 1. 100 samples
are averaged for each line. Planck units are used for convenience. The
matter fields are one Boson field and one Fermion field. The magnitude of
〈ρ+

∑3
i=1 Pi〉 for both fields are set equal but with opposite sign, i.e. we set

〈ρ +
∑3

i=1 Pi〉 = 0 in the simulation. It shows that the Hubble expansion
rate decreases as −λb increases.
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Figure 10.4: Plot of logH over |λb| when |λb| is small. The fitting result
shows that β̃ ∼ 6. Planck units are used for convenience.
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Figure 10.5: Numerical result for the dependence of log |a| on the bare
cosmological constant λb as |λb| is large. The cutoff Λ = 1. 400 samples
are averaged for each line. Planck units are used for convenience. The
matter fields are one Boson field and one Fermion field. The magnitude of
〈ρ+

∑3
i=1 Pi〉 for both fields are set equal but with opposite sign, i.e. we set

〈ρ +
∑3

i=1 Pi〉 = 0 in the simulation. It shows that the Hubble expansion
rate decreases as −λb increases. For larger −λb the slope of log |a| grows too
slow that the numerical rounding errors seem to dominant.
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shows that α ∼ e18, β ∼ 14. Planck units are used for convenience. The
cutoff Λ = 1.
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10.4 Meaning of the results

In this section we use Planck units for convenience.
The usual relation between λeff and λb which missed the important effect

from the large density fluctuation of quantum vacuum is given by

λeff = λb + 8πρvac, (10.18)

Since ρvac (∼ 1 if take the cutoff Λ = 1) is larger than λeff = 5.6 × 10−122

(Planck units is used here) by 50 to 122 orders of magnitude depending on
the cutoff energy scale Λ, λb has to be extremely fine-tuned to a precision
of at least 50 decimal places.

However, once the effect of the density fluctuation is included, the quan-
tum vacuum gravitates in a different way that the relation between λeff and
λb becomes the equation (10.17). Rewrite (10.17) as

− Λ

2β
log(λeff) =

√
−λb −

Λ

2β
log(α2Λ). (10.19)

The numerical simulation in 10.3 gives an estimation that α is somewhere
between e10 to e20 and β is somewhere between 10 to 20, for one Boson field
and one Fermion field. If we take Λ = 1, i.e. the Planck energy, we would
have

− Λ

2β
log(λeff) ∼ 10,

Λ

2β
log(α2Λ) ∼ 1. (10.20)

In this case, since the term − Λ
2β log(λeff) is only different from the term

Λ
2β log(α2Λ) by 1 order of magnitude, the term

√
−λb only need to be tuned

to an accuracy of 10−1 or λb only need to be tuned to an accuracy of 10−2

to satisfy (10.19).
In general, the difference in the order of magnitude between the two

terms − Λ
2β log(λeff) and Λ

2β log(α2Λ) in (10.19) is mainly determined by the
value of α. α cannot be precisely determined because of the limitation of
numerical simulation and the lack of the knowledge about the contribution to
ρ+
∑3

i=1 Pi from all fundamental fields in nature. But this does not matter.
Even if α could take values in the range from 1 to e100, we would have log(α2)
in the range from 0 to 200. This is different from the term − log(λeff) = 279
by at most the order of 102. Then

√
−λb at most needs to be tuned to

an accuracy of 10−2 and λb at most needs to be tuned to an accuracy of
10−4. Therefore, the extreme fine-tuning of the bare cosmological constant
to match the observation is no long needed.
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10.5 Problem of this model

In this model, we still presumed that the inhomogeneous “spatially flat”
FLRW metric of the form (10.1). Unfortunately, it turns out that Einstein
equations with a large negative bare cosmological constant cannot be fitted
in this metric.

In fact, since we require that −λb � Λ2 ≥ GΛ4, i.e. the cosmologi-
cal constant is dominant over the zero point fluctuations. Therefore, the
solution to the Einstein equations must be a small perturbation from the
solution of vacuum Einstein equations in which the only term in the stress-
energy tensor is a negative cosmological constant term, which is well known
to be the anti-de Sitter space.

Let us derive the solution in detail. We start with the Einstein field
equations without matter fields but with a bare cosmological constant:

Gµν + λbgµν = 0. (10.21)

Then we have the homogeneous FLRW metric

ds2 = −dt2 + a2(t)dΣ2, (10.22)

where

dΣ2 =
1

1− kr2
dr2 + r2(dθ2 + sin θ2dϕ2), (10.23)

where k is a constant representing the curvature of the space.
The Einstein equations are

G00 = 3

(
ȧ

a

)2

+
3k

a2
= λb, (10.24)

G11 =
1

1− kr2

(
−2aä− ȧ2 − k

)
= − λba

2

1− kr2
, (10.25)

G22 = r2
(
−2aä− ȧ2 − k

)
= −r2λba

2, (10.26)

G33 = r2 sin2 θ
(
−2aä− ȧ2 − k

)
= −r2 sin2 θλba

2, (10.27)

G0i = Gij = 0, i, j = 1, 2, 3 = r, θ, ϕ, i 6= j. (10.28)

Since λb is negative, k must also be negative according to (10.24).
Equations (10.25), (10.26) and (10.27) are the same. A Linear combina-

tion of (10.24), (10.25), (10.26) and (10.27) gives

G00 +

3∑
i=1

giiGii = −6ä

a
= −2λb. (10.29)
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10.5. Problem of this model

Therefore, we have

ä− λb
3
a = 0. (10.30)

For a negative bare cosmological constant λb, the solution to (10.30) under
the constraint equation (10.24) are

a(t) =

√
3k

λb
cos

(√
−λb

3
t+ γ

)
, (10.31)

where λb, k < 0, γ is an arbitrary phase constant. This gives the solution to
the full Einstein equations (10.24), (10.25), (10.26), (10.27) and (10.28).

Next let us add fluctuating matter fields to the Einstein equations:

Gµν + λbgµν = 8πGTµν . (10.32)

Assuming the metric takes the following form to account for the inhomo-
geneities produced by quantum fluctuations:

ds2 = −dt2 + a2(t, r, θ, ϕ)dΣ2, (10.33)

Then the Einstein equations becomes

G00 = 3

(
ȧ

a

)2

+
3k

a2
+

4kr∂ra

a3
+

(∇a)2

a4
− 2∇2a

a3
= λb + 8πGT00, (10.34)

G11 =
1

1− kr2

(
− 2aä− ȧ2 − k − (∇a)2

a2
+
∇2a

a
+ 2(1− kr2)

(∂ra)2

a2

−(1− kr2)
∂2
ra

a
− kr∂ra

a

)

= − λba
2

1− kr2
+ 8πGT11, (10.35)

G22 = r2

(
−2aä− ȧ2 − k − (∇a)2

a2
+
∇2a

a
+

2(∂θa)2

r2a2
−
∂2
θa

r2a
− (

1

r
+ kr)

∂ra

a

)
= −r2λba

2 + 8πGT22, (10.36)

G33 = r2 sin2 θ

(
− 2aä− ȧ2 − k − (∇a)2

a2
+
∇2a

a
+

2(∂ϕa)2

r2 sin2 θa2

−
∂2
ϕa

r2 sin2 θa
− ∂θa

r2 tan θa
− ∂ra

ra
− kr∂ra

a

)
= −r2 sin2 θλba

2 + 8πGT33, (10.37)
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10.5. Problem of this model

G0i = −2∂i

(
ȧ

a

)
= 8πGT0i, i = 1, 2, 3 = r, θ, ϕ, (10.38)

G12 =
∂θa

ra
+

2∂θa∂ra

a2
− ∂r∂θa

a
= 8πGT12, (10.39)

G13 =
∂ϕa

ra
+

2∂ϕa∂ra

a2
− ∂r∂ϕa

a
= 8πGT13, (10.40)

G23 =
∂ϕa

tan θa
+

2∂ϕa∂θa

a2
− ∂θ∂ϕa

a
= 8πGT23, (10.41)

where

(∇a)2 = g̃ij∂ia∂ja

= (1− kr2)(∂ra)2 +
1

r2
(∂θa)2 +

1

r2 sin2 θ
(∂ϕa)2, (10.42)

∇2a =
1√
|g̃|
∂i

(√
|g̃|g̃ij∂ja

)
= (1− kr2)∂2

ra+

(
2

r
− kr

)
∂ra+

1

r2
∂2
θa

+
1

r2 tan θ
∂θa+

1

r2 sin2 θ
∂2
ϕa, (10.43)

and g̃ is the metric components of dΣ2 defined by (10.23). The linear com-
bination like (10.29) also gives

G00 +

3∑
i=1

giiGii = −6ä

a
(10.44)

= −2λb + 8πG

(
ρ+

3∑
i=1

Pi

)
,

where all the spatial derivatives of a cancel and ρ = T00, Pi = giiTii (no
summation for i here). Therefore we obtain

ä+ Ω2(t, r, θ, ϕ)a = 0, (10.45)

where

Ω2 =
4πG

3

(
ρ+

3∑
i=1

Pi

)
− λb

3
. (10.46)

Since we have −λb � Λ2 ≥ GΛ4 ∼ Tµν (assuming Λ ≤ EP ), the solution
to the new inhomogeneous Einstein equations would just be a small pertur-
bation around (10.31), which can be obtained by WKB approximation and
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the weak parametric resonance effect described in section 5.1:

a(t, r, θ, ϕ) = e
∫ t
0 H(t′,r,θ,ϕ)dt′

√
3kΩ(0, r, θ, ϕ)

λbΩ(t, r, θ, ϕ)

· cos

(∫ t

0
Ω(t′, r, θ, ϕ)dt′ + γ(r, θ, ϕ)

)
. (10.47)

The phase γ(r, θ, ϕ) is different from point to point. In fact, plugging (10.47)
into (10.38) gives

Ω(0, r, θ, ϕ) tan γ(r, θ, ϕ) = Ω(0, r0, θ0, ϕ0) tan γ(r0, θ0, ϕ0)

+ 4πG

∫ r,θ,ϕ

r0,θ0,ϕ0

J(0, r′, θ′, ϕ′) · dl′,(10.48)

where J = (T01, T02, T03) is the energy flux and we have neglected the small
exponential factor and the relatively small time derivative terms of the slowly
varying frequency Ω in the calculation.

Solution (10.47) for a looks good but unfortunately the large negative
λb actually requires large negative k, which means that the spatial curva-
tures have to become large everywhere. Then the spatial slice would have
hyperboloid geometry with large curvature, which can not be average out to
get flat space. This destroys the argument that the spatial averaging done
by long wavelength fields would produce a flat spatial spacetime which has
been shown in chapter 6. For this reason, this model does not work well.
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Chapter 11

Conclusions

Starting from two fundamental principles of modern physics — the uncer-
tainty principle of quantum mechanics and the equivalence principle of gen-
eral relativity, we have shown that quantum vacuum would gravitate in a
completely different way from what people previously thought. The gravi-
tational effect produced by the huge vacuum stress energy is still huge, but
confined to Planck scales. At each Planck size region, the spacetime oscil-
lates between expansion and contraction. As it swings back and forth, the
two almost cancel each other but the expansion wins out a little bit.

This physical picture might look crazy at first glance, but it is just the
prediction of applying quantum mechanics and general relativity together
to the quantum vacuum. In fact, this physical picture should be natural.
Our approach is very much along Wheeler’s idea of spacetime foam—metric
on small (Planck) scale is all higgledy-piggledy.

Due to this mechanism, the universe would expand with a small Hubble

expansion rate H ∝ Λe−β
√
GΛ → 0 instead of the previous prediction H =√

8πGρvac/3 ∝
√
GΛ2 →∞ which was unbounded, as the high energy cutoff

Λ is taken to infinity. In this sense, at least the “old” cosmological constant
problem would be resolved. Moreover, it gives the observed slow rate of the
accelerating expansion as Λ is taken to be some large value of the order of
Planck energy or higher. This result suggests that there is no necessity to
introduce the cosmological constant, which is required to be fine tuned to an
accuracy of 10−120, or other forms of dark energy, which are required to have
peculiar negative pressure, to explain the observed accelerating expansion
of the Universe.

91



Bibliography

[1] Qingdi Wang, Zhen Zhu, and William G. Unruh. How the huge energy
of quantum vacuum gravitates to drive the slow accelerating expansion
of the universe. Phys. Rev. D, 95:103504, May 2017.

[2] Clifford M. Will. The confrontation between general relativity and
experiment. Living Reviews in Relativity, 9(3), 2006.

[3] B. P Abbott et al. Observation of Gravitational Waves from a Binary
Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.

[4] Robert M. Wald. General Relativity. 1984.

[5] Steven Weinberg. The cosmological constant problem. Rev. Mod. Phys.,
61:1–23, Jan 1989.

[6] Antonio Padilla. Lectures on the Cosmological Constant Problem. 2015.

[7] Adam G. Riess, Alexei V. Filippenko, Peter Challis, Alejandro Cloc-
chiatti, Alan Diercks, Peter M. Garnavich, Ron L. Gilliland, Craig J.
Hogan, Saurabh Jha, Robert P. Kirshner, B. Leibundgut, M. M.
Phillips, David Reiss, Brian P. Schmidt, Robert A. Schommer, R. Chris
Smith, J. Spyromilio, Christopher Stubbs, Nicholas B. Suntzeff, and
John Tonry. Observational evidence from supernovae for an accelerat-
ing universe and a cosmological constant. The Astronomical Journal,
116(3):1009, 1998.

[8] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G.
Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook,
A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Penny-
packer, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon,
P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filip-
penko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg,
W. J. Couch, and The Supernova Cosmology Project. Measurements
of and from 42 high-redshift supernovae. The Astrophysical Journal,
517(2):565, 1999.

92



Bibliography

[9] Edward Witten. The cosmological constant from the viewpoint of string
theory. In DavidB. Cline, editor, Sources and Detection of Dark Matter
and Dark Energy in the Universe, pages 27–36. Springer Berlin Heidel-
berg, 2001.

[10] Edward Kolb and Michael Turner. The Early Universe. 1993.

[11] A. D. Dolgov. The Problem of vacuum energy and cosmology. In Phase
transitions in cosmology. Proceedings, 4th Cosmology Colloquium, Eu-
roconference, Paris, France, June 4-9, 1997, 1997.

[12] Leonard Susskind. The Cosmic Landscape : String Theory and the
Illusion of Intelligent Design. Little, Brown, December 2005.

[13] Svend E. Rugh and Henrik Zinkernagel. The quantum vacuum and the
cosmological constant problem, 2001.

[14] John A. Wheeler. On the Nature of quantum geometrodynamics. An-
nals Phys., 2:604–614, 1957.

[15] C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. W. H.
Freeman, 1973.

[16] S.M. Carroll. Spacetime and Geometry: An Introduction to General
Relativity. Addison Wesley, 2004.

[17] P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters.
2015.

[18] Sean M. Carroll. The Cosmological constant. Living Rev. Rel., 4:1,
2001.

[19] B. L. Hu and E. Verdaguer. Stochastic Gravity: Theory and Applica-
tions. Living Rev. Rel., 11:3, 2008.

[20] G. Teschl. Ordinary Differential Equations and Dynamical Systems.
Graduate studies in mathematics. American Mathematical Soc.

[21] L.D. LANDAU and E.M. LIFSHITZ. {CHAPTER} v - {SMALL}
{OSCILLATIONS}. In L.D. LANDAU and E.M. LIFSHITZ, editors,
Mechanics (Third Edition), pages 58 – 95. Butterworth-Heinemann,
Oxford, third edition edition, 1976.

93



Bibliography

[22] Marko Robnik and Valery G. Romanovski. Energy evolution in time-
dependent harmonic oscillator. Open Systems and Information Dynam-
ics, 13(02):197–222, 2006.

[23] Marko Robnik and Valery G Romanovski. Exact analysis of adia-
batic invariants in the time-dependent harmonic oscillator. Journal
of Physics A: Mathematical and General, 39(1):L35, 2006.

[24] L.D. LANDAU and E.M. LIFSHITZ. {CHAPTER} {VII} - {THE}
{CANONICAL} equations. In L.D. LANDAU and E.M. LIFSHITZ,
editors, Mechanics (Third Edition), pages 131 – 167. Butterworth-
Heinemann, Oxford, third edition edition, 1976.

[25] N. D. Birrell and P. C. W. Davies. Quantum Fields in Curved Space.
Cambridge University Press, 1982. Cambridge Books Online.

[26] Charles W. Misner. Mixmaster universe. Phys. Rev. Lett., 22:1071–
1074, May 1969.

[27] R. L. Jaffe. Casimir effect and the quantum vacuum. Phys. Rev. D,
72:021301, Jul 2005.

[28] M.O. Scully and M.S. Zubairy. Quantum Optics. Cambridge University
Press, 1997.

[29] Willis E. Lamb and Robert C. Retherford. Fine structure of the hy-
drogen atom by a microwave method. Phys. Rev., 72:241–243, Aug
1947.

[30] Julian Schwinger. On quantum-electrodynamics and the magnetic mo-
ment of the electron. Phys. Rev., 73:416–417, Feb 1948.

[31] D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse. Cavity control
of a single-electron quantum cyclotron: Measuring the electron mag-
netic moment. Phys. Rev. A, 83:052122, May 2011.

[32] H.B.G. Casimir. On the Attraction Between Two Perfectly Conducting
Plates. Indag.Math., 10:261–263, 1948.

[33] S. K. Lamoreaux. Demonstration of the casimir force in the 0.6 to 6µm
range. Phys. Rev. Lett., 78:5–8, Jan 1997.

[34] U. Mohideen and Anushree Roy. Precision measurement of the casimir
force from 0.1 to 0.9µm. Phys. Rev. Lett., 81:4549–4552, Nov 1998.

94



Bibliography

[35] G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso. Measurement of
the casimir force between parallel metallic surfaces. Phys. Rev. Lett.,
88:041804, Jan 2002.

[36] G. Aad et al. Observation of a new particle in the search for the stan-
dard model higgs boson with the {ATLAS} detector at the {LHC}.
Physics Letters B, 716(1):1 – 29, 2012.

[37] S. Chatrchyan et al. Observation of a new boson at a mass of 125 gev
with the {CMS} experiment at the {LHC}. Physics Letters B, 716(1):30
– 61, 2012.

[38] Joseph Polchinski. The Cosmological Constant and the String Land-
scape. In The Quantum Structure of Space and Time, pages 216–236,
2006.

[39] Eduard Masso. The Weight of Vacuum Fluctuations. Phys. Lett.,
B679:433–435, 2009.

[40] V. B. Braginskii and V. I. Panov. Verification of equivalence of inertial
and gravitational masses. Sov. Phys. JETP, 34:463–466, 1972. [Zh.
Eksp. Teor. Fiz.61,873(1971)].

[41] Stephen A. Fulling, Kimball A. Milton, Prachi Parashar, August
Romeo, K. V. Shajesh, and Jef Wagner. How Does Casimir Energy
Fall? Phys. Rev., D76:025004, 2007.

[42] Kimball A. Milton, Prachi Parashar, K. V. Shajesh, and Jef Wagner.
How does Casimir energy fall? II. Gravitational acceleration of quan-
tum vacuum energy. J. Phys., A40:10935–10943, 2007.

[43] Kimball A. Milton, Stephen A. Fulling, Prachi Parashar, August
Romeo, K. V. Shajesh, and Jeffrey A. Wagner. Gravitational and iner-
tial mass of Casimir energy. J. Phys., A41:164052, 2008.

[44] K. A. Milton, P. Parashar, J. Wagner, K. V. Shajesh, A. Romeo, and
S. Fulling. How Does Quantum Vacuum Energy Accelerate? In Proceed-
ings, 34th International Conference on High Energy Physics (ICHEP
2008), 2008.

[45] Agustn E. Gonzlez. On casimir pressure, the lorentz force and black
body radiation. Physica A: Statistical Mechanics and its Applications,
131(1):228 – 236, 1985.

95



Bibliography

[46] P. W. Milonni, R. J. Cook, and M. E. Goggin. Radiation pressure from
the vacuum: Physical interpretation of the casimir force. Phys. Rev. A,
38:1621–1623, Aug 1988.

[47] G Barton. On the fluctuations of the casimir force. Journal of Physics
A: Mathematical and General, 24(5):991, 1991.

[48] Qingdi Wang and William G. Unruh. Motion of a mirror under infinitely
fluctuating quantum vacuum stress. Phys. Rev. D, 89:085009, Apr 2014.

[49] Qingdi Wang and William G. Unruh. Mirror moving in quantum vac-
uum of a massive scalar field. Phys. Rev. D, 92:063520, Sep 2015.

[50] Gilad Gour and L. Sriramkumar. Will small particles exhibit Brownian
motion in the quantum vacuum? Found. Phys., 29:1917–1949, 1999.

[51] Marc-Thierry Jaekel and Serge Reynaud. Quantum fluctuations of po-
sition of a mirror in vacuum. J. Phys. I(France), 3:1, 1993.

[52] D. Jaffino Stargen, Dawood A. Kothawala, and L. Sriramkumar. Mov-
ing mirrors and the fluctuation-dissipation theorem. 2016.

[53] Roger Penrose. Gravitational collapse and space-time singularities.
Phys. Rev. Lett., 14:57–59, Jan 1965.

[54] S. W. Hawking. The occurrence of singularities in cosmology. Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 294(1439):511–521, 1966.

[55] S. W. Hawking. The occurrence of singularities in cosmology. ii. Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 295(1443):490–493, 1966.

[56] S. W. Hawking. The occurrence of singularities in cosmology. iii. causal-
ity and singularities. Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 300(1461):187–201,
1967.

[57] S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space-
Time. Cambridge Monographs on Mathematical Physics. Cambridge
University Press, 2011.

[58] S. W. Hawking and R. Penrose. The Singularities of gravitational col-
lapse and cosmology. Proc. Roy. Soc. Lond., A314:529–548, 1970.

96



[59] A. Einstein and N. Rosen. The particle problem in the general theory
of relativity. Phys. Rev., 48:73–77, Jul 1935.

[60] Abhay Ashtekar. New hamiltonian formulation of general relativity.
Phys. Rev. D, 36:1587–1602, Sep 1987.

[61] Ovidiu Cristinel Stoica. Singular Semi-Riemannian Geometry and Sin-
gular General Relativity. PhD thesis, Bucharest, Polytechnic Inst.,
2013.

[62] O. C. Stoica. On singular semi-riemannian manifolds. International
Journal of Geometric Methods in Modern Physics, 11(05):1450041,
2014.

[63] Ovidiu-Cristinel Stoica. Einstein equation at singularities. Central Eur.
J. Phys., 12:123–131, 2014.

[64] Ovidiu-Cristinel Stoica. Beyond the Friedmann-Lemaitre-Robertson-
Walker Big Bang singularity. Commun. Theor. Phys., 58:613–616, 2012.

[65] Ovidiu Cristinel Stoica. The Friedmann-Lematre-Robertson-Walker
Big Bang Singularities are Well Behaved. Int. J. Theor. Phys., 55(1):71–
80, 2016.

[66] Ovidiu-Cristinel Stoica. Schwarzschild’s Singularity is Semi-
Regularizable. Eur. Phys. J. Plus, 127:83, 2012.

[67] Ovidiu Cristinel Stoica. The Geometry of Black Hole singularities. Adv.
High Energy Phys., 2014:907518, 2014.

[68] Ovidiu Cristinel Stoica. The geometry of singularities and the black
hole information paradox. In Proceedings, 7th International Workshop
: Spacetime - Matter - Quantum Mechanics. (DICE2014): Castiglion-
cello, Tuscany, Italy, September 15-19, 2014, 2015.

[69] Ovidiu Cristinel Stoica. Causal Structure and Spacetime Singularities.
2015.

[70] G.N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge
University Press, 1995.

97



Appendix A

Real Massless Scalar Field

In this appendix we give the calculation details about how the quantum
vacuum fluctuates all over the spacetime by using the massless scalar field
(3.1) as an example.

We first define the covariance of the energy density operator at two
spacetime points x = (t,x) and x′ = (t′,x′)

Cov
(
T00(x), T00(x′)

)
= 〈

{(
T00(x)− 〈T00(x)〉

)(
T00(x′)−

〈
T00(x′)

〉 )}
〉, (A.1)

where the curly bracket {} in (A.1) is the symmetrization operator which is
defined as, for any two operators A and B,

{AB} =
1

2
(AB +BA) . (A.2)

Inserting (3.1) and (3.4) into (A.1) gives the following result

Cov
(
T00(x), T00(x′)

)
=

1

2

∫
d3kd3k′

(2π)6

(ωω′ + k · k′)2

2ω2ω′

· cos
(

(ω + ω′)∆t− (k + k′) ·∆x
)
,

(A.3)

where ∆t = t − t′ and ∆x = x− x′ are time and space separation of the
two spacetime points x and x′.

If x and x′ are timelikely separated, we can find a reference frame to set
∆x = |∆x| = 0. In this case, evaluation of the integral in (A.3) for a high
frequency cutoff |k| = Λ gives

Cov
(
T00(x), T00(x′)

)
(A.4)

=
1

24π4∆t8

([
−(Λ∆t)6 + 21(Λ∆t)4 − 72(Λ∆t)2 + 36

]
cos(2Λ∆t)

+6
[
(Λ∆t)5 − 8(Λ∆t)3 + 12Λ∆t

]
sin(2Λ∆t)

+12
[
(Λ∆t)3 − 6Λ∆t

]
sin(Λ∆t) + 36

[
(Λ∆t)2 − 2

]
cos(Λ∆t) + 36

)
.
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Appendix A. Real Massless Scalar Field

If x and x′ are spacelikely separated, we can find a reference frame to set
∆t = 0. In this case, evaluation of the integral in (A.11) for a high frequency
cutoff |k| = Λ gives

Cov
(
T00(x), T00(x′)

)
=

1

32π4∆x8

([
2(Λ∆x)4 − 34(Λ∆x)2 + 33

]
cos(2Λ∆x)

−
[
12(Λ∆x)3 − 50Λ∆x

]
sin(2Λ∆x)

+16
[
(Λ∆x)2 − 6

]
cos(Λ∆x)− 64Λ∆x sin(Λ∆x) + 63

)
(A.5)

As ∆t and ∆x goes to 0, both (A.4) and (A.5) reduces to the variance
of the energy density,〈(

T00 − 〈T00〉
)2〉

=
2

3

(
Λ4

16π2

)2

=
2

3
〈T00〉2 (A.6)

We then investigate the Pearson product-moment correlation coefficient

ρx,x′ =
Cov

(
T00(x), T00(x′)

)
σxσx′

, (A.7)

where

σx =

√〈
(T00(x)− 〈T00(x)〉)2

〉
. (A.8)

The correlation coefficient ρx,x′ shows by its magnitude the strength of
correlation between two random variables. ρx,x′ is positive if the energy den-
sity T00 at x and x′ are most possibly lying on the same side of the vacuum
expectation value 〈T00〉 = Λ4/(16π2). Thus a positive correlation coeffi-
cient ρx,x′ implies the energy density at x and x′ tend to be simultaneously
greater than, or simultaneously less than the expectation value. Similarly,
a negative ρx,x′ implies the energy density tend to lie on opposite sides of
the expectation value. We will call the energy density T00 at x and x′ are
positively correlated if ρx,x′ > 0 or negatively correlated (anticorrelation) if
ρx,x′ < 0.

Because of transnational invariance, ρx,x′ is only dependent on the tem-
poral and spatial separation ∆t = t− t′,∆x = x− x′. For the real massless
scalar field (3.1), the behavior of the correlation coefficient ρx,x′ as a func-
tion of temporal separation Λ∆t for the case of ∆x = 0 and as a function of
spatial separation Λ∆x for the case of ∆t = 0 are plotted in FIG. A.1 and
A.2 respectively.
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Figure A.1: Plot of correlation coefficient ρx,x′ as a function of time sepa-
ration Λ∆t in the case ∆x = 0.
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Figure A.2: Plot of correlation coefficient ρx,x′ as a function of spatial
separation Λ∆x in the case ∆t = 0.
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In the temporal direction, i.e. the case of ∆x = 0 (Fig. A.1), the
correlation coefficient goes quickly from 1 down to around −0.9 in a time
scale around ∆t = 1.9/Λ and then goes up to 0.7 in a time scale around
∆t = 3.8/Λ and then goes down and up alternatively from positive val-
ues to negative values with decreasing amplitudes. It roughly oscillates as
− cos(2Λ∆t)/(Λ∆t)2 with a period π/Λ as ∆t is large. Thus at the ex-
tremely small time scales ∆t ∼ 1.9/Λ, (Λ → +∞), the energy density are
strongly anticorrelated. In other words, if at some time the value of the en-
ergy density is larger than its expectation value, for example, by an amount
of 0.82 〈T00〉, after a short time ∆t = 1.9/Λ, its value is most likely to be
smaller than the expectation value, for example, by an amount of 0.74 〈T00〉.
The difference is 1.56 〈T00〉 only after such a short time.

In the spatial direction, i.e. the case of ∆t = 0 (Fig. A.2), the correla-
tion coefficient goes quickly from 1 down to around −0.14 in a length scale
around ∆x = 3.24/Λ and then goes up to 0.03 in a length scale around
∆x = 5.4/Λ and then goes down and up alternatively from positive values
to negative values with decreasing amplitudes. Compared to the temporal
direction, the decay in the oscillation amplitude of the correlation coefficient
is faster in spatial direction. It roughly oscillates as 2 cos(2Λ∆x)/(Λ∆x)4

with a period π/Λ as ∆x is large. These properties show that the strength
of the correlation between energy densities at close range in spatial direction
is not as strong as in the temporal direction. For larger spatial separations,
ρx,x′ approaches zero and the vacuum energy density T00 at different x and
x′ fluctuate independently. These properties result in extreme spatial in-
homogeneities of the quantum vacuum which can be characterized by the
quantity ∆ρ2 defined by (3.8) in chapter 3.

The quantity ∆ρ2 is related to ρx,x′ by

∆ρ2 = 1− ρx,x′ . (A.9)

The behavior of ∆ρ2 has been plotted in FIG. 3.1.
Next we calculate the χ(∆t) defined by (5.3) in section 5.1. Wick ex-

pansion of (5.3) gives

χ(∆t) =

〈
φ̇(t1,x)φ̇(t2,x)

〉2
+
〈
φ̇(t2,x)φ̇(t1,x)

〉2

2
〈
φ̇2(t,x)

〉2 , (A.10)

where the correlation function can be calculated directly by inserting (3.1)〈
φ̇(t1,x)φ̇(t2,x)

〉
=

1

4π2

∫ Λ

0
k3e−ik∆tdk. (A.11)
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Plugging (A.11) into (A.10) gives the following result

χ(∆t) =
16

Λ8∆t8

(
36
(
−2 + Λ2∆t2

)
cos(Λ∆t)

+
(
36− 72Λ2∆t2 + 21Λ4∆t4 − Λ6∆t6

)
cos(2Λ∆t)

+ 6
(
6 + 2Λ∆t

(
−6 + Λ2∆t2

)
sin(Λ∆t)

+ Λ∆t
(
12− 8Λ2∆t2 + Λ4∆t4

)
sin(2Λ∆t)

))
. (A.12)

The behavior of χ(∆t) has been plotted in FIG. 5.1. It is closely related
to the correlation coefficient ρx,x′ as a function of time difference ∆t in the
case ∆x = 0 (FIG. A.1).

Next we derive the equation (5.29) in section 5.1. First, Ω2(t,0) can be
expanded as

Ω2(t,0) =
8πG

3

∫
ω,ω′≤Λ

d3kd3k′

(2π)3

√
ωω′

2
(A.13)

·
[(
aka

†
k′ + a†kak′

)
cos
(
ω − ω′

)
t+ i

(
−aka†k′ + a†kak′

)
sin
(
ω − ω′

)
t

+
(
−akak′ − a†ka

†
k′

)
cos
(
ω + ω′

)
t+ i

(
akak′ − a†ka

†
k′

)
sin
(
ω + ω′

)
t

]
.

Specially, the vacuum state |0〉 is an eigenstate of the operator coefficients of
the first two terms in the above expression (A.13). If k 6= k′, the eigenvalues
of the operator coefficients of the first two terms are zero. Thus in this case,
the first two terms have to both take zero values. If k = k′, the second term
is zero since in this case ω = ω′ and thus the factor sin(ω − ω′)t = 0. So
only the first term survives and gives the expectation value of Ω2(t,0):

Ω2
0 =

〈
Ω2
〉

=
8πG

3

∫
ω≤Λ

d3k

(2π)3

ω

2
=
GΛ4

6π
. (A.14)

For the operator coefficients of the last two terms in the expression
(A.13), the vacuum state |0〉 is not an eigenstate. So the last two terms
are constantly fluctuating, and the time varying of Ω2 comes from these two
terms.

After some algebraic manipulations, (A.13) can be rewritten as the form
of (5.29) for the vacuum state |0〉, where

f(γ)dγ =
16π2

Λ4

∫
γ≤ω+ω′≤γ+dγ

d3kd3k′

(2π)3

√
ωω′

2

(
−akak′ − a†ka

†
k′

)
, (A.15)
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g(γ)dγ =
16π2

Λ4

∫
γ≤ω+ω′≤γ+dγ

d3kd3k′

(2π)3

√
ωω′

2
i
(
akak′ − a†ka

†
k′

)
. (A.16)

Evaluating the above integrals gives the expectation values

〈f(γ)dγ〉 = 〈g(γ)dγ〉 = 0, (A.17)

and their fluctuations〈
(f(γ)dγ)2

〉
=
〈

(g(γ)dγ)2
〉

(A.18)

=

{
4
35

( γ
Λ

)7 dγ
2Λ , if 0 ≤ γ ≥ Λ,

− 4
35

(
40− 140 γΛ + 168

( γ
Λ

)2 − 70
( γ

Λ

)3
+
( γ

Λ

)7) dγ
2Λ , if Λ ≤ γ ≥ 2Λ.

The above expression (A.18) gives the power spectrum density of the varying
part of Ω2(t,0) (except the constant Ω2

0 part), which has been plotted in FIG.
5.2.
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Appendix B

Wigner-Weyl Description of
Quantum Mechanics and
Numeric simulations

This chapter explain the principle of the numeric calculations in the main
text. Same as the numeric part in the main text, we set G = 1 in this chap-
ter. Wigner functions and Weyl transforms of operators offer a formulation
of quantum mechanics that is equivalent to the standard approach given
by the Schrödinger equation. The Wigner distribution function is a quasi
distribution function in the phase space. For a particular quantum wave
function ψ(x), its Wigner function is defined as

W (x, p) =

∫
dye−ipyψ(x+

y

2
)ψ∗(x− y

2
) (B.1)

The Weyl transform of an quantum operator Â is defined as

A(x, p) =

∫
dye−ipy〈x+

y

2
|Â|x− y

2
〉 (B.2)

Then the expectation value of the operator Â under the state ψ(x) can be
written as

〈Â〉 =

∫ ∫
dxdpW (x, p)A(x, p) (B.3)

These two transformations give the Wigner-Weyl discription for quantum
mechanics. The expectation values of physical quantities are obtained by
averaging their Weyl transforms over phase space.

For a harmonic oscillator with frequency ω and m = 1, the ground state
Wigner function is a Gaussian distribution function for both x and p

W0(x, p) =
1

π
e−

p2

ω
−x2ω (B.4)

We can easily check that the Weyl transform of an operator H(x̂) ( or H(p̂))
is simply replaced the operator x̂ by x (or p̂ by p). Other than that, another
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particular transform we are going to use in this write-up is

x̂p̂→ xp+
i

2
; p̂x̂→ xp− i

2
(B.5)

We can see that the transform of the product does not necessarily equal to
the product of transforms. In the following part we are going to get the
general expression for the transform of the product.

Before that we notice that Weyl transform can be used to construct the
original operator , i.e.

〈x|Â|y〉 =
1

2π

∫
dpA(

x+ y

2
, p)eip(x−y) (B.6)

Using this formula we can construct the transform of product of two states:

∫
dy〈x+

y

2
|ÂB̂|x− y

2
〉e−ipy

=

∫
dzdy〈x+

y

2
|Â|z〉〈z|B̂|x− y

2
〉e−ipy

=
1

4π2

∫
dzdydp1dp2e

ip1(x+ y
2
−z)e−ip2(x− y

2
−z)e−ipy

·A(
x+ y/2 + z

2
, p1)B(

x− y/2 + z

2
, p2)

=
1

4π2

∫
dz1dz2dp1dp2e

iz1(p2−p)eiz2(p−p1)

·A(x+
z1

2
, p1)B(x+

z2

2
, p2)

(B.7)

Here we define

z1 =
y

2
+ z − x (B.8)

z2 = −y
2

+ z − x (B.9)

We Taylor-expand A(x+ z1
2 , p1) and B(x+ z2

2 , p2) around x and have

A(x+
z1

2
, p1) =

∞∑
n=0

1

n!
A(n)(x, p1)(z1/2)n (B.10)

B(x+
z2

2
, p2) =

∞∑
n=0

1

n!
B(n)(x, p2)(z2/2)n (B.11)
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and use the facts
1

2π

∫
dxxneixy = (−i)nδ(n)(y) (B.12)

and ∫
dyδ(n)(y)f(y) = (−1)nf (n)(0) (B.13)

Therefore, we can write the Weyl transform of operator ÂB̂ as∑
n,m

in(−i)m

2n+mn!m!
A(n,m)(x, p)B(m,n)(x, p) (B.14)

The generalized FRW scale factor a satisfies the equation

ä+ Ω2(t)a = 0 (B.15)

in which

Ω2(t) =
8π

3
φ̇2(t) (B.16)

Now we replace all the quantities by operators, assuming that operators still
satisfy the previous equation

¨̂a+ Ω̂(t)2â = 0 (B.17)

with

Ω̂2(t) =
8π

3
˙̂
φ2(t) (B.18)

For a massless real scalar field, we can write it as

φ̂ =

∫
d3k

(2π)3/2
(x̂k cos(ωkt) +

1

ωk
p̂k sin(ωkt)) (B.19)

in which

x̂k =

√
1

2ωk
(b†k + bk) (B.20)

p̂k = i

√
ωk
2

(b†k − bk) (B.21)

are the generalized x̂ p̂ operators for each field modes.
We can write the Weyl transformation of the Ω̂(t)

Ω({xk}, {pk}, t)2 =
8π

3

∫∫
d3kd3k′

(2π)3
xkxk′ωkωk′ sinωkt sinωk′t

+ pkpk′ cosωkt cosωk′t− 2xkpk′ωk sinωkt cosωk′t

(B.22)
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This expression is quadratic in xk and pk, so if we apply it to (B.14), only
m + n ≤ 2 terms survive. Assuming a({xk}, {pk}, t) is the Weyl transform
of operator â, we have the equation for a as

ä+ Ω2a+
i

2

∑
k

(
∂Ω2

∂xk

∂a

∂pk
− ∂Ω2

∂pk

∂a

∂xk

)
(B.23)

−1

8

∑
k,k′

(
∂2Ω2

∂xk∂xk′

∂2a

∂pk∂pk′
+

∂2Ω2

∂pk∂pk′

∂2a

∂xk∂xk′
− 2

∂2Ω2

∂xk∂pk′

∂2a

∂pk∂xk′

)
= 0

The observed value a is the average over Wigner function W ({xk}, {pk}, t)

ao(t) =

∫ (∏
k

dxkdpk

)
a({xk}, {pk}, t)W ({xk}, {pk}, t) (B.24)

If the quantum field is in the ground state, then by (B.6)

W ({xk}, {pk}, t) =
∏
k

1

π
e
− p

2
k
ωk
−x2

kωk (B.25)

Local approximation Generally the equation (B.23) depends on not only
the value of Ω and a on a particular phase space point (x, p), but also on the
neighboring values (i.e. derivatives). If our solution a is ”smooth” enough
in the phase space then we can neglect the last two derivative terms in the
(B.23). It can be simplified to

ä+ Ω2a = 0. (B.26)

Assuming the length of the Universe is L. We can replace the integral by
summations. For simplicity, we define

t̃ → 2πt

L
(B.27)

x̃n →
√

2ω 2πn
L
x 2πn

L
(B.28)

p̃n →
√

2

ω 2πn
L

p 2πn
L

(B.29)

The equation can be written as

ä+
2

3L2
Ω(t̃)2a = 0 (B.30)
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with

Ω(t̃)2 =
∑
~n, ~n′

√
nn′
(
x̃~nx̃~n′ sinnt̃ sinn′t̃

+ p̃~np̃~n′ cosnt̃ cosn′t̃

− x̃~np̃~n′ sinnt̃ cosn′t̃)
)

=

[∑
~n

√
n(x̃~n sinnt̃− p̃~n cosnt̃)

]2

(B.31)

Here ~n = (n1, n2, n3), n1,2,3 ∈ Z and n = |~n|. {x̃~n} {p̃~n} are random Gaus-
sian variables with unit standard deviation. We can solve the equation for
a randomly generated set of {x̃~n} and {p̃~n}, and repeat. The result ao(t) is
the average over all solutions as long as our sample size is big enough.
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Appendix C

Fourier transforms of the
coefficients in (6.42)

In this appendix, we demonstrate the property of the spectrum of the co-
efficients in (6.42) given by (6.52), (6.54) and (6.56). Observing that the
cos 2Θ, sin 2Θ and tan Θ in (6.51), (6.53) and (6.55) respectively can all be
decomposed as Fourier series sum of the form ei2nΘ, where n = ±1,±2, · · · ,
we only need to analyze the spectrum of ei2nΘ.

For simplicity, we only analyze the time component Fourier transform
of ei2nΘ. The spatial part has similar property. The phase angle Θ is
determined by Ω through (6.9) while Ω is determined by (5.29). The power
spectrum of Ω2 is given by (A.18) (illustrated in FIG. 5.2).

Calculation of the Fourier transform of ei2nΘ exactly based on (5.29) is
complicated. For simplicity, we assume that Ω taking the following simple
form which is similar to (5.27)

Ω = Ω0(1 + h cos γt), (C.1)

where γ take the peak value of the power spectrum (A.18) which is around
∼ 1.7Λ (see FIG. 5.2) and h < 1 to make sure that Ω > 0.

Then we have

Θ = Ω0t+
hΩ0

γ
sin γt. (C.2)

Using the Jacobi-Anger expansion we have

ei2nΘ =

+∞∑
m=−∞

Jm(
2nhΩ0

γ
)ei(2nΩ0+mγ)t, (C.3)

where Jm is the mth Bessel function of the first kind.
As |m| → ∞, we have

|Jm(
2nhΩ0

γ
)| ∼ 1

m!

(
nhΩ0

γ

)|m|
, (C.4)
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which drops faster than the exponential. Therefore, the Fourier transform
of ei2nΘ is centered around 2nΩ0.

To estimate the magnitude of the Fourier coefficients of ei2nΘ around
zero frequency, we evaluate the Bessel function for

m ∼ −2nΩ0/γ ∼
√
GΛ→∞. (C.5)

In this case, the zero component Fourier coefficient is asymptotic to (see
[70])

|Jm(−hm)| ∼ e−(ν−tanh ν)|m|√
2π|m| tanh ν

→ 0, (C.6)

since ν is determined by h = sech ν < 1 that we always have ν− tanh ν > 0.
When calculating the Fourier transform of ei2nΘ exactly based on (5.29),

the spectrum becomes continuous instead of discrete. But the distribution
of the spectrum should be similar.
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