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Abstract

Individually and collectively, cells are organized systems with many interacting parts. Math-

ematical models allow us to infer behaviour at one level of organization from information at

another level. In this thesis, I explore two biological questions that are answered through

the development of new mathematical approaches and novel models.

(1) Molecular motors are responsible for transporting material along molecular tracks

(microtubules) in cells. Typically, transport is described by a system of reaction-advection-

diffusion partial differential equations (PDEs). Recently, quasi-steady-state (QSS) methods

have been applied to models with linear reactions to approximate the behaviour of the PDE

system. To understand how nonlinear reactions affect the overall transport process at the

cellular level, I extend the QSS approach to certain nonlinear reaction models, reducing

the full PDE system to a single nonlinear PDE. I find that the approximating PDE is a

conservation law for the total density of motors within the cell, with effective diffusion and

velocity that depend nonlinearly on the motor densities and model parameters. Cell-scale

predictions about the organization and distribution of motors can be drawn from these

effective parameters.

(2) Rho GTPases are a family of protein regulators that modulate cell shape and forces

exerted by cells. Meanwhile, cells sense forces such as tension. The implications of this

two-way feedback on cell behaviour is of interest to biologists. I explore this question by

developing a simple mathematical model for GTPase signalling and cell mechanics. The

model explains a spectrum of behaviours, including relaxed or contracted cells and cells

that oscillate between these extremes. Through bifurcation analysis, I find that changes in

single cell behaviour can be explained by the strength of feedback from tension to signalling.

When such model cells are connected to one another in a row or in a 2D sheet, waves of

contraction/relaxation propagate through the tissue. Model predictions are qualitatively

consistent with developmental-biology observations such as the volume fluctuations in a

cellular monolayer. The model suggests a mechanism for the organization of tissue-scale

behaviours from signalling and mechanics, which could be extended to specific experimental

systems.
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Lay Summary

Cells are complex systems with many interacting parts. Multi-scale mathematical models

are used to explore how organization emerges from constituent parts. I answer two biological

questions by developing a new approximation method and by formulating a novel model.

In order to distribute cellular cargo, cells employ proteins called molecular motors for

transport. The interactions and movement of motors within a cell is described using a

system of partial differential equations. To more easily understand and determine the effect

of nonlinear interactions on the overall transport of cargo, I develop a new approximation

method to reduce the system of equations to a single equation.

Protein signalling is responsible for controlling cell size, and can also be affected by

mechanical tension experienced by a cell. I develop a new model incorporating the two-

way feedback between cell signalling to cell mechanics to explore and explain single and

collective cell behaviours observed in experiments.
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Chapter 1

Introduction

1.1 Multi-scale Modelling in Cellular Systems

The broad question that this thesis aims to address is how biological mechanisms combine

to organize cell behaviours. Biological experiments and observations, allow for us to under-

stand the mechanisms, facts, and theories about how various proteins, molecular motors,

cell signalling molecules, and biophysical structures interact with each other. Multi-scale

modelling and analysis from applied mathematics can serve as a tool for understanding how

cell-scale or tissue-scale organization emerges from the interactions of the many different

constituent parts.

This thesis is divided into two self-contained parts, Chapter 2 and Chapter 3. Each part

describes a different example of multi-scale modelling in cell biology and utilizes different

mathematical approaches. In this introduction, I provide context and background for each

part with respect to the broader field, and preview the main questions, methods, and results.

I end the introduction with a brief description of the thesis contents.

1.2 Intracellular Transport by Molecular Motors

In many cellular scenarios, diffusion alone is insufficient to transport cargo over the distances

required to maintain cellular function. This is especially important when cargo needs to be

transported over long distances, such as in neurons or fungal cells (Figure 1.1(a)). For a

neuron to function, it is necessary to transport cargo over a long distance from the cell body

down the axon to the synapses. In fungi, it is necessary to transport cargo to maintain and

expand the cell wall during growth. Figure 1.1(b)–(c) depicts the distribution of cargo in

both yeast-like and hyphal fungi cells in green against the cell membrane in red. In both

neurons and fungi, the transport of cargo is mediated by proteins called molecular motors.

Molecular motors are proteins that utilize energy in order to transport cargo by “walking”

1



along cellular “tracks”. Molecular motors typically transport cargo in vesicles and move

along protein filaments of the cytoskeleton (as in Figure 1.1(d)). Cytoskeletal filaments

such as microtubules (MTs) or actin filaments give a cell structure and provide roads for

the molecular motors to use [10]. Microtubules and actin filaments are asymmetric filaments

with distinct “plus” and “minus” ends.

Different types of molecular motors such as kinesin, dynein, and myosin motors have

different biophysical properties. For example, kinesin motors, which largely walk towards

the plus ends of polarized MTs can also exist as unbound, cytosolic forms [5]. Dynein

motors walk towards the minus ends of MTs. Motors may also be present in complexes,

where more than one motor of any type can be bound to cargo. Myosin motors walk on

actin filaments instead of MTs, and are mostly associated with muscle contraction. Some

myosin motors are responsible for transporting cellular cargo [86, 101]. The interactions

of many molecular motors, the protein filaments that they move along, and other cellular

factors result in cell-scale distribution of molecular motors (and/or cargo).

Nonetheless, it is difficult to understand how a variation in a particular biophysical pa-

rameter will affect the cell-scale motor distribution in such a complicated system, more so

if nonlinear effects are important. Many mathematical approaches have had success un-

derstanding the transport phenomena at different scales, e.g., several motors attached to

a single cargo [4, 31, 40, 48, 55] or at the cell-scale using stochastic or partial differential

equation approaches [11, 66, 72, 85]. A system of reaction-advection-diffusion partial dif-

ferential equation (PDE) is often used to quantitatively describe transport by molecular

motors within cells [16, 26, 58]. To understand the effect of parameters in such a system,

I develop an approximation method to reduce the dimensionality of the system and reveal

how the effective transport parameters depend on the biophysical parameters of the molecu-

lar motors. The approximation method relies on existence of two separate time-scales in the

system: fast binding, unbinding and other reaction interactions, but slow spatial processes

and conservation of molecular motors. Using methods from asymptotic analysis, I find

a quasi-steady-state PDE, which acts as an approximation to the full reaction-advection-

diffusion system.

The quasi-steady-state (QSS) approximation developed here extends the methods of

Newby and Bressloff [58] and Bressloff and Newby [7], who primarily developed and used

the quasi-steady-state approximation to determine the mean first passage time for molecular

motor intermittent search, i.e., the average time for cargo to be transported to a specific

cellular site by motors. From a PDE transport model for early endosome organization

in fungal hyphae [26] with linear state transitions, Dauvergne and Edelstein-Keshet [16]

utilized quasi-steady-state approximation methods to determine the effective velocity and

effective diffusion parameters which describe the overall transport process. A limitation of

2



Figure 1.1: An overview of how molecular motor based intracellular transport supports
growth in fungi. In (a), the two main growth modes of fungi are shown: yeast-like cells
and filamentous fungi. In (b)–(c), the cell membrane is shown in red, while myosin motors
transporting material necessary for the construction of the cell wall is shown in green. In
(d), the roles of molecular motors and cytoskeleton are illustrated. Molecular motors are
responsible for transporting vesicles containing cargo. Reprinted from Current Opinion
in Microbiology, 14, Gero Steinberg, Motors in fungal morphogenesis: cooperation versus
competition, 660–667, Copyright 2011, with permission from Elsevier.

this approach is that the methodology only applies to linear state transitions. Nonlinear

interactions may be better motivated in some biological situations. For example, rates of

motor binding to microtubules could be limited by competition for binding sites, or could

be cooperative. Mass-action kinetics or other nonlinear interactions, such as “traffic-jam”

cubic nonlinearities could play an important role in the organization of the transport process

[102]. Here, I extend the quasi-steady-state methods from Newby and Bressloff [58] and

Dauvergne and Edelstein-Keshet [16] to a class of models with nonlinear reaction kinetics.

I apply the QSS methodology to three different transport systems. These models consist

3



of (1) a model for kinesin motors with a saturating binding rate, (2) a model for kinesin-

dynein-cargo complexes whose interactions on a microtubule can change the direction of

transport, and (3) a model for unconventional myosin motors that stop moving (stall) upon

encountering other stalled motors. Although the motors move at known speeds, I show

that their interactions with MTs and each other lead to slower overall effective “speed”

(transport rate) as well as spread (similar to diffusion) in their spatial distribution. The

biological contribution is that I am able to relate the effective rate of transport and diffusion

to the details of binding, MT polarity and nonlinear motor interactions. Mathematically,

this manifests through a scalar conservation law for the density of motors within the cell,

parametrized in terms of the density of motors in one of the states, e.g., the freely diffusing

state. In this so-called “QSS PDE”, the flux determines an effective velocity and effective

diffusion coefficient that depend nonlinearly on the biophysical parameters and the motor

density. From the effective velocity and effective diffusion, the overall cell-scale transport

can be understood as a function of the motor-scale model parameters.

In the next section, I provide a short mathematical primer on the ideas behind the

quasi-steady-state approximation.

1.2.1 A Primer on Quasi-steady-state Methods

The main mathematical idea behind the quasi-steady-state approximation is the notion of

separation of time-scales. In a dynamical system, the time-scale associated with one variable

or process may be slower than that of others. Consider, for example, the following ordinary

differential equation (ODE) system for two species u(t) and v(t):

du

dt
= f(u, v), (1.1)

dv

dt
=

1

ε
(v − a), (1.2)

where f is some function describing the rate of change of u, a is the steady-state of species

v, and 0 < ε� 1 is a small parameter so that 1
ε � 1 is large. Provided that the function f

is not small, i.e., f = O(1), then u varies on a time-scale much faster than v. The details

of the contribution of various terms in the dynamical system should be obtained through

careful non-dimensionalization. As such, the quasi-steady-state approximation is

v ≈ a (1.3)

4



since v rapidly relaxes to its steady-state a. From this approximation, it is possible to study

only the reduced system, which has fewer dynamical variables:

du

dt
= f(u, a). (1.4)

Theoretically, the parameter dependence of solutions u(t) on a could be more easily deduced.

This is the main idea behind the derivation of classical Michaelis-Menten kinetics (see [83]

for a careful case study or Chapter 7 of [22] for an overview).

To illustrate the utility of the QSS approximation in a cellular context and to explain the

utility of the approximation, I will discuss a variant of the QSS approximation from Marée

et al. [49]. In this work, the authors use a multi-scale modelling approach to understand

cell polarization and movement. In part of the model, regulatory proteins are found to

bind and unbind from the cytosol onto the cell membrane, and the diffusion coefficients for

proteins in either state are different—membrane bound proteins diffuse more slowly than

in the cytosol. Owing to the fact that switching between the states is rapid, the authors

use a QSS approximation to describe the effective diffusion of the protein. I review part of

their approximation below.

Let GC(x, t) and GM(x, t) be the amounts of regulatory proteins in the cytosolic and

membrane-bound states, respectively, and G(x, t) = GC(x, t) + GM(x, t) the amount at

spatial location x. Suppose that the cytosolic proteins bind to the membrane with rate

coefficient kon and unbind with rate coefficient koff, and that the two classes of proteins

have different diffusion coefficients, DC and DM, respectively. This scenario is illustrated

in Figure 1.2.

For simplicity, consider a 1D geometry, i.e., x ∈ R, with no-flux boundary conditions

at either end of the cell. In this case, the dynamics of the proteins can be captured by the

following reaction-diffusion system of partial differential equations:

∂GM

∂t
= DM

∂2GM

∂x2
+ konGC − koffGM, (1.5)

∂GC

∂t
= DC

∂2GC

∂x2
− konGC + koffGM. (1.6)

Note that the total amount of protein within the entire cell is conserved by these equations,

given no-flux boundary conditions, and that the proteins can only transition between the

membrane bound and cytosolic states. This is a similarity which the models for molecular

motor transport in Chapter 2 share. As this section is a “primer”, I will not proceed formally

and introduce a small parameter ε into this problem; instead, only focus on the idea. Owing

to the separation of time-scales (slow spatial processes and rapid binding and unbinding),

it is possible to think of the terms in the PDE system (1.5) contributing on different time-
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cell membrane

GC

cytosol

kon koff

GM

DCDC

DM

Figure 1.2: Some proteins convert between active, membrane-bound and inactive, freely
diffusing cytosolic states (GM and GC, respectively). Proteins bind to the membrane and
unbind from the membrane with rate coefficients koff and kon respectively. The diffusion
coefficient DM in the cell membrane is typically smaller than in the cytosol DC. The QSS
reduction method can be applied to a system of this type to derive an effective diffusion,
which describes the diffusion of the total amount of protein.

scales. First, at any given spatial location, the amount of cytosolic and membrane-bound

proteins will equilibrate on a short time-scale with essentially no diffusion. Second, on a

slower time-scale, the diffusion will become significant. As such, it is helpful to think of a

short time-scale denoted by τ (versus t), where the protein dynamics are dominated by the

reaction-terms:

dGM

dτ
= konGC − koffGM, (1.7)

dGC

dτ
= −konGC + koffGM. (1.8)

The fact that these equations operate on a fast time-scale means that the variables rapidly

equilibrate. On the short time-scale τ , this motivates the search for the steady-state of this

system of ODEs. The steady-state of this ODE system is given by the linear relationship

GM = kon
koff
GC, hence the amount of membrane-bound proteins can be calculated from the

amount of cytosolic proteins and vice versa. From this, I can make a quasi-steady-state

approximation in the full system:

GM(x, t) ≈ kon

koff
GC(x, t). (1.9)

Using this approximation, I find that G(x, t) = kon+koff
koff

GC(x, t) = kon+koff
kon

GM(x, t) since
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G(x, t) = GM(x, t)+GC(x, t). For the same reason, note that adding the PDE in (1.5) gives

∂G

∂t
= DM

∂2GM

∂x2
+DC

∂2GC

∂x2
. (1.10)

Using the quasi-steady-state approximation G = kon+koff
koff

GC = kon+koff
kon

GM in the PDE for

G, I find that G satisfies a diffusion equation:

∂G

∂t
= DM

kon

kon + koff

∂2G

∂x2
+DC

koff

kon + koff

∂2G

∂x2
(1.11)

=

(
DM

kon

kon + koff
+DC

koff

kon + koff

)
∂2G

∂x2
(1.12)

= Deff
∂2G

∂x2
, (1.13)

where the effective diffusion coefficient, Deff is a combination of the reaction rate coefficients,

kon and koff, and the diffusion coefficients of proteins in either states, DM and DC. Increasing

koff, for example, would increase the contribution of the diffusion in the cytosolic state, to

the overall distribution of proteins. In this case, the effective diffusion coefficient can also

be interpreted as a weighted average of the original diffusion coefficients with the weights

as the mean fraction residence time in either state. To see this, identify τM = 1
koff

as the

mean residence time on the membrane (before unbinding with rate koff) and τC = 1
kon

as the

mean residence time in the cytosol (before binding to the membrane with rate kon). With

these definitions, note that

Deff =
konkoff

kon + koff

(
DM

koff
+
DC

kon

)
(1.14)

=
1

τM + τC
(DMτM +DCτC) (1.15)

= DM
τM

τM + τC
+DC

τC

τM + τC
. (1.16)

This calculation shows that the effective diffusion is a combination of diffusion on the

membrane and diffusion in the cytosol, with the relative importance of each weighted by

the fraction of time spent in the given state. The QSS not only reduces the complexity of

the model but also provides insight into the biophysical processes.

In Chapter 2, the QSS approximation is applied to a model similar to (1.5); however,

instead of a reaction-diffusion model, I will extend the QSS methodology to a class of

three-component reaction-advection-diffusion system with nonlinear state transitions. In

this case, I will show that the quasi-steady-state approximation is a PDE written in terms

of one of the molecular motor states, denoted by α(x, t). The QSS PDE will be a balance
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equation for the total amount of motors in the cell, with effective diffusion and effective

transport terms that depend on the model parameters and on the amount of motors in the

reference state α:
∂

∂t
y(α) = − ∂

∂x

(
V(α)−D(α)

∂α

∂x

)
. (1.17)

In contrast with previous work, the dependence on α can be nonlinear. Here, y(α) is the

total density of the motors in the cell, V(α) is the effective transport term, and D(α) is

the effective diffusion. The QSS PDE is supplemented with no-flux boundary conditions at

either end of the cell.

1.3 The Interplay Between Cell Signalling and Cell
Mechanics

In the second part of the thesis, Chapter 3, instead of studying how sub-cellular interactions

lead to cell-scale organization, I “zoom out” and study how cell-cell interactions can lead

to emergent organization and behaviour at the tissue level.

The Rho-family GTPase proteins are central regulators within signalling networks of eu-

karyotic cells that are largely responsible for coordinating downstream signalling leading to

changes in cell shape mediated by the actin cytoskeleton [73]. GTPases act as switches and

exist in either an active (membrane-bound) or inactive (freely-diffusing cytosolic) state, as

illustrated in Figure 1.3. When activated, GTPases transmit signals to other proteins that

eventually lead to changes in cell behaviour. The activation and deactivation of GTPases

is mediated by other proteins known as GTPase activating proteins (GAPs) and guanine

nucleotide exchange factors (GEFs), respectively. There is a large body of literature ad-

dressing how GTPases spontaneously segregate to the front or back in a cell and how this

can lead to cell polarization and movement [25, 54, 59, 64, 95, 99]. Here, I focus on a

different aspect of GTPase activity and cell behaviour, namely how GTPase activity can

cause a cell to contract or spread [3, 14, 78], and the resulting feedback with tension and

mechanical forces.

Rho GTPases cycle between membrane-bound active forms, and freely-diffusing inactive

forms. Their activation and deactivation is controlled by a large signalling network respon-

sible for coordinating cellular responses to stimuli. The Rho-family GTPases Rac1, RhoA,

and Cdc42 are central regulators of this network. Rac1 and RhoA (henceforth Rac and

Rho) are downstream of cell-surface receptors that are sensitive to many different stimuli,

including mechanical tension [18, 74, 97]. Moreover, there is increasing evidence for the

specific molecular mechanisms and pathways by which Rac and Rho respond to mechanical

signals [37, 62]. Of note is the effect that mechanical tension can have on activating or deac-

tivating GTPase activity [15, 35]. Additionally, the feedback between mechanical signalling
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inactive GTPase

active GTPase

cytosol

effectors

signals

Figure 1.3: GTPases act as switches. They exist in a membrane-bound active or a freely
diffusing inactive state. Activation and deactivation of GTPases are regulated by other
proteins (GAPs and GEFs), which are activated by cellular signals. Once active, GTPases
signal to downstream effectors.

and GTPase behaviour is two-way. While forces such as mechanical tension can influence

GTPase activity, GTPase activity modifies cell shape through downstream signalling, which

will subsequently affect the mechanical forces acting on a cell. This change in forces will

then subsequently affect GTPase activity, and so on. It is this interplay—between signalling

and mechanics—that I seek to understand.

Many recent experimental and modelling studies have provided evidence for the idea

that cell behaviours (such as change in cell shape or polarity) can be explained as emergent

properties of small subsets of large signalling networks [3, 9, 14, 78]. Mechanochemical

interactions have been included in mathematical models of cell behaviour [60, 61, 63], and

models consisting of GTPase modules can explain cell polarization [54], cell shape [33], and

cell migration patterns [34, 65].

Using a minimal model for GTPase activity within a cell, I will explore the implications

of the idea that mechanical tension on the cell is responsible for modifying the GTPase

activation rate on cell behaviour. Specifically, I assume that GTPase can cycle between

inactive and active forms, with some positive feedback upon activation. This is illustrated

in Figure 1.4 with the active GTPase denoted by G and inactive by Gi. I also assume that

active GTPase is responsible for contraction in the cell, and that mechanical tension on the

cell is responsible for increasing the rate of activation of GTPase (purple boxes in Figure 1.4).

Active GTPase leads to cell contraction, while tension is assumed to increase the activation

rate of GTPase. If the cell is initially stretched, high tension will lead to the activation of

GTPase, leading to contraction in turn. Once contracted, the initial stretch will no longer

contribute to increasing the activation rate of GTPase, and the cell will return to rest. To

implement this mechanochemical coupling, I use a mechanical model consisting of springs

and dashpots to model cell length, and I propose and analyze a minimal GTPase-tension

model. The simple two dimensional ODE model describes the dynamics of the GTPase
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contraction

tensionGi

G

Figure 1.4: GTPase cycles between active and inactive forms, G and Gi, respectively, with
positive feedback upon the active state. Active GTPase leads to cell contraction, while
tension is assumed to increase the activation rate of GTPase. If the cell is initially stretched,
high tension will lead to the activation of GTPase, leading to contraction in turn. Once
contracted, the initial stretch will no longer contribute to increasing the activation rate of
GTPase, and the cell will return to rest.

activity and the length of the cell. Thanks to the model simplicity it is possible to study

the solution behaviour easily using numerical bifurcation analysis (as in Chapter 3), or by

studying the phase plane (as illustrated in the next section). In short, the model exhibits

three distinct behaviours dependent on the strength of coupling between tension and the

GTPase activation rate: long, relaxed cells; short, contracted cells; and cells that oscillate

between these two extremes. Building on this understanding, I next consider the dynamics

of the minimal model when many cells are coupled together in a 1D array (representing an

epithelial sheet), and finally using the Cellular Potts model (CPM) (reviewed in the next

section) to explore the dynamics in a 2D epithelial tissue. In this way, the behaviour of the

cell collective or tissue can be understood as emergent behaviour from cell-cell mechanical

coupling and mechanochemical signalling in each cell.

In the next section, I provide a short mathematical primer for the modelling approaches

used in Chapter 3, and draw comparisons to the new model I have developed with the

mechanochemical model from the 1980s by Odell et al. [60].

1.3.1 Dynamical Systems for Cell Signalling and Cell Mechanics

In this section, I provide some preliminary results and explain some of the mathematical

models used in Chapter 3. In particular, I will outline (1) a minimal model for GTPase

activity, (2) compare my results with those of Odell et al. [60], and (3) briefly describe the

Cellular Potts model (CPM).
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A Minimal Model for GTPase Activity

I adapt the minimal GTPase model in Chapter 3 from the modelling work in [33, 34, 54],

but ignore spatial effects and only consider the well-mixed model. The basic form of the

equation is
dG

dt
= (rate of activation)Gi − (rate of inactivation)G, (1.18)

whereG is the amount of active GTPase andGi is the amount of inactive GTPase. Following

previous work, I assume that the total amount of GTPase in the cell is roughly constant

over the timescale of interest, i.e., that GT = G+Gi is constant, and that there is positive

feedback from active GTPase to itself. This leads to an equation of the form

dG

dt
=

(
b+ γ

Gn

1 +Gn

)
(GT −G)−G, (1.19)

where b is the basal rate of activation, and γ gives the amplitude of the positive feedback.

The Hill function Gn

1+Gn is a saturating function of G. When G is much greater than 1,
Gn

1+Gn ≈ 1, but when G is much less than 1, Gn

1+Gn ≈ 0. Note that time has been scaled so

that the rate coefficient of deactivation of GTPase appears to be 1. This model has the

requisite features for GTPase activity: a high-activity and a low-activity steady-state, and

is bistable for a range of parameters. Bistability means that the GTPase activity G could

tend toward the high-activity steady-state or low-activity steady-state depending on initial

conditions. Moreover, the presence of bistability indicates the possibility of hysteresis, i.e.,

history-dependent transitions. Suppose, for example, that a stimuli can increase the GTPase

activity. If the cell is at the low-activity steady-state, then a small, single stimuli would

not automatically cause the cell to jump to the high-activity steady-state. Instead, thanks

to the presence of bistability, the small stimuli would disappear as the cell returns to the

low-activity steady-state. Only if the stimuli is sufficient to push the GTPase activity into

the regime of high-activity will the cell transition away from the low-activity steady-state.

The presence of bistability and hysteresis can also give rise to a relaxation oscillation, where

the behaviour of the system slowly transitions through the low or high-activity steady-state

region before “jumping” to the other (provided the system is coupled to another variable,

such as cell length). Indeed, in Chapter 3, I will modify the activation rate to include a

tension-dependent activation rate (later called f(T )), and the feedback from tension will

drive the system into a low-activity, high-activity, or oscillatory state.

The Mechanical Basis of Morphogenesis

In the 1980s, Odell et al. [60] developed a mechanical model for cells in an epithelium

during morphogenesis (development). The tissue undergoes shape changes as the cells bend
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apical surface 

basal surface 

FIG. 1. Schematic of an epithelial cell layer in cross section showing 
apical junctions. 

insist that the cells adhere to one another laterally; one 
can also allow lateral slippage between cells. The me- 
chanical properties of the cells are the crucial feature 
of the model, which we now state in the form of hy- 
potheses. 

(a) Beneath the apical surface, each cell contains a 
network of contractile fibers (microfilaments) which are 
anchored to the plasma membrane at the lateral pe- 
riphery of the cell (e.g., the zonula adherens, cf. Spooner, 
(1975)). This is shown schematically in Fig. 2a. For the 
purposes of the model, we need not specify the precise 
configuration of these elements; we specify only that 
their contraction shortens the apical circumference of 
the cell and reduces the apical surface area (cf. Fig. 2b). 
Thus, a cell can deform to a trapezoidal cross section 
as a result of the “purse-string” contraction occurring 
in the apical cortex. Whether or not apical constriction 
actually occurs depends on whether the contractile fil- 
aments generate forces large enough to overcome in- 
ternal viscous forces and tractions applied externally 
by neighboring cells. 

(b) We shall assume that, during the contraction 
process, the volume of each cell remains essentially con- 
stant. Thus, the constant volume constraint will induce 
the cell to elongate basally in response to an apical 
contraction. We postpone specifying how the contractile 
fibers and structural reinforcing microtubules are dis- 
tributed elsewhere in the cell. We suppose only that 
their distribution leads to cell boundaries that act like 
passive viscoelastic structures, and bulk interior cyto- 
plasm that acts like a passive viscoelastic solid (cf. 
Marsland, 1956; Taylor and Condelis, 1979). 

(c) The apical contractile filaments constitute an ac- 
tive (i.e., excitable) system as follows. (i) If an apical 
fiber is stretched a small amount, by the drawing apart 
of the apical surface, it acts as an elastic material and 
when released; contracts back to its original length. 
(ii) If, however, the apical bundle is stretched beyond 
a certain point, the contractile system “fires” and an 
active contraction is triggered. This “rapid” contrac- 
tions works to shrink the apical bundle as shown in Fig. 
2b. The system does not return to its original config- 
uration; instead, it remains “frozen” in a new, con- 

tracted state with an apical surface area smaller than 
before. 

The viscoelastic properties of the apical filament bun- 
dle implied by hypothesis (c) are summarized in Fig. 
3. The mathematical model underlying Fig. 3 is given 
in Appendix 1. 

2.2. Description of Mechanical Properties 

The description of the mechanical properties of the 
microfilament bundle described in Fig. 3 can be sche- 
matized as the mechanical model shown in Fig. 4. The 
internal viscoelastic properties of the apical bundle are 
represented by a dashpot with viscosity cc, and a spring 
of elasticity k. The elastic restoring force of the spring 
is a function of the difference between the actual and 
rest lengths, 

F elas = -ML - LJ, (1) 

while the viscous drag force is proportional to the ve- 
locity of contraction, 

F. =- dL wse ’ dt . (2) 

The motion of this mechanical system must obey 
Newton’s laws: 

mass X acceleration = sum of forces. 

That is, 

md2L=F 
dt2 elas + Fvisc + Floadr (3) 

where Fload is the force exerted on the bundle, parallel 
to the bundle by neighboring systems, and m represents 
the net mass moved by a length change of the band. 

A simple argument, sketched in Appendix 2, dem- 
onstrates the following crucial fact. For virtually all 
embryological processes we can completely neglect the 
effects of inertial forces. That is, if we compare the 
magnitude of the acceleration term with the viscous 
term by using the dimensionless ratio 

apical filiment bundle 

(a) lb) 
FIG. 2. (a) Network of contractile filaments in the apical region of 

an epithelial cell. (b) “Purse-string” contraction of the apical circum- 
ference by the apical bundle. 
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we find that R-C 10m5. Therefore, the motion of the fil- load 

ament bundle model is always such that viscous forces k 
exactly balance elastic and external loading forces. 
Thus the equation describing the system is (3) with its -L- 

left-hand side set to zero and Eqs. (1) and (2) substi- FIG. 4. Schematic of viscoelastic unit used to model a filament 
tuted. This can be written as bundle. 

(5) 

That inertial forces are not a factor in morphogenetic 
processes is a crucial and little appreciated fact, and 
leads to some surprising and counterintuitive phenom- 
ena which will be discussed below. 

To complete the description of the model we need to 
describe how the rest length, L+, varies. This can be 
defined by a differential equation specifying how L,, 
varies in time when the spring is stretched: 

L=L, 
L /- 

T2 

TLa 
Lo2 LOI 

FIG. 3. Our postulates concerning the viscoelastic properties of the 
apical circumferential bundle of contractile filaments. The vertical 
axis (L) represents the actual instantaneous length of the cell’s apical 
bundle. The horizontal axis (Lo) represents the equilibrium (rest) 
length of the bundle; i.e., the length it would assume in the absence 
of stretching forces. The apical bundle is stress-free only when the 
actual length equals the equilibrium length: L = &. In the simplest 
case, we shall assume that the apical bundle has only two stable 
equilibrium lengths: long (J&) and short (&). By stable, we mean 
that following a small displacement in the actual length (L), the sys- 
tem returns to the same equilibrium point. For example, a dilation 
of the fiber bundle length from 4, to a point a, returns to 4, along 
a trajectory, Z’i. Separating the two stable equilibria is a “firing 
threshold.” A dilation from 4, to a point b which exceeds the firing 
threshold will not return to Lvl, but will contract along a trajectory 
T2 to the shorter equilibrium length L,,n. It is important to note that 
the trajectories traced out in (&, L) space describe the visoelastic 
response of an isolated bundle of contractile filaments, i.e., one ex- 
periencing no resisting forces other than those generated internally 
by their own deformation. 

$$ = G(L, L,,). 

The exact form of the function G(L,L,J used in our cal- 
culations is given in Appendix 1; however, the results 
depend only on its qualitative features. 

Equations (5) and (6) describe the dynamic behavior 
of a single apical filament bundle. Figure 3 describes 
the qualitative features of the fiber behavior for the 
case where the neighbor forces, (Fload), vanish. 

2.3. Construction of Mechanical Model 

The next step is to construct a mechanical model of 
a cell using the viscoelastic filament model. We do this 
as follows. Figure 5 shows a cross section of a typical 
cuboidal epithelial cell. Each face of the cell is repre- 
sented by one of the viscoelastic elements described 
above. For most of the applications we shall address, 
only the apical element need be active. 

The diagonal elements are required to model the in- 
ternal viscoelastic properties of the cell’s microtubular 
cytoskeleton. Finally, we shall assume that however the 
cell changes its shape, the internal volume remains con- 
stant (cf. Appendix 3). 

If the apical surface of the cell is stretched beyond 
the firing threshold, then the cell will undergo a cycle 
of shape change, as shown in Fig. 6. The shape history 
of each cell is computed by solving a collection of dif- 

Apical Surface 

Basal Surface 

FIG. 5. Cross section of an epithelial cell showing the arrangement 
of viseelastic units modeling the cytoskeleton. In our model, only the 
apical region is mechanically excitable. 

Figure 1.5: The apical filament bundle of an epithelial cell can contract (a)–(b). A viscoelas-
tic element consists of a spring and a dashpot arranged in parallel and is used to model the
apical filament bundle mechanics (right panel). Reprinted from Developmental Biology, 85,
G.M. Odell, G. Oster, P. Alberch, and B. Burnside, The Mechanical Basis of Morphogen-
esis I. Epithelial Folding and Invagination, 446–462, Copyright 1981, with permission from
Elsevier.

and deform themselves in order to undergo morphological processes such as invagination

and neurulation. The main idea was to represent the deformable actin-based cortex of an

epithelial cell as a spring-dashpot system with a rest-length that would depend on a protein

or biochemical signalling. The actin cortex and the mechanical model used by Odell et al.

[60] is illustrated in Figure 1.5. In (a)–(b), the apical filament bundle is illustrated at

the top of an epithelial cell. This apical filament bundle can contract. Odell et al. [60]

hypothesized that when the actin-based cortex is stretched beyond a critical length, the

protein or biochemical signalling would become active and change the rest-length of the

cell, making it smaller. Thus, when one cell is stretched, it will subsequently contract. In

a tissue, when many such cells are coupled together, the contraction of one cell will impose

a stretch on the neighbours and consequently induce size changes in neighbouring cells.

The spring-dashpot system used by Odell et al. [60] is what I adopt as a mechanical

model in Chapter 3 (illustrated in the right panel of Figure 1.5). In such a system, the

length of the cell is governed by the following equation, derived from Hooke’s Law and from

the fact that inertia is negligible in the deformation of cells:

dL

dt
= −k

λ
(L− L0), (1.20)

where L is the cell length, k is the spring constant, λ is the viscous damping coefficient, and

L0 is the rest-length of the spring. Note that µ is used for λ in Figure 1.5. This equation

describes how a stretched or compressed spring will relax back towards its rest-length. Odell
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et al. [60] assume that the baseline rest-length ε is decreased by the presence of a protein

signal, C:

L0 = ε+
1

1 + σCn
(1.21)

where σ and n are model parameters. At the same time, the protein signal C is assumed to

be produced at a rate proportional to the cell length, decays linearly, and is auto-catalytic

(positive feedback):
dC

dt
=

αC2

1 + βC2
− νC + γL. (1.22)

In this equation, the Hill function αC2

1+βC2 describes the auto-catalytic production of the

protein signal C, and −νC and γL describes the decay and production of the signal, re-

spectively.

To understand the dynamics of the two-compartment ODE system above, it is possible

to study the dynamics in the phase-plane (Figure 1.6). In this phase-plane the steady-states

are identified as the intersections of the C and L nullclines (curves for which dC
dt = 0 and

dL
dt = 0, respectively). Using parameters from [60], the system has three steady-states:

(1) a high L low C stable steady-state, (2) a saddle point, and (3) a low L high C stable

steady-state. The key feature of the system is that the stable manifold of the saddle point

(purple curve in Figure 1.6) separates the phase-plane into two regions. Also shown are

trajectories (grey curves) that start with different lengths, but no protein activity C. Only

when the initial conditions are such that the length, L(0) is above the stable manifold, will

the cell “fire” and end in the contracted state (green “firing trajectory”).

In Chapter 3, I use the same spring-dashpot system to model cell mechanics and a

similar rest-length dependence. Instead of an unknown protein signal, C, I consider the

effect of GTPase signalling G on cell length. I also assume that tension, proportional to the

difference of the current length and the rest-length T ∝ L−L0, will increase the activation

rate of the GTPase. As such, I suppose that

dG

dt
=

(
b+ f(T ) + γ

Gn

1 +Gn

)
(GT −G)−G, (1.23)

where f(T ) describes how tension increase the activation rate. Depending on the strength of

the feedback, f(T ), the coupled GTPase-length system can exist in a low-activity, relaxed-

length steady-state; a high-activity, contracted steady-state; or continuously cycle between

these extremes (limit cycle). I illustrate this limit cycle behaviour in Figure 1.7 which shows

the phase-plane for the GTPase-tension model. The L nullcline has essentially the same

shape as in Figure 1.6. For this set of parameters, the GTPase-length system is oscillatory

with all trajectories (grey) converging to the limit cycle (shown in green). In Chapter 3, I

study the effect of feedback strength on the behaviour of the GTPase-tension model.
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Figure 1.6: Phase-plane for the mechanochemical model from Odell et al. [60]. Note the
logarithmic scale for the C-axis. Steady-states are found at the intersections of the C and
L nullclines. Several trajectories are shown starting with various cell lengths L and with no
protein signal C. Only if the cell is sufficiently stretched (above the stable manifold) will
the cell end in the contracted state (high C, small L).
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Figure 1.7: Phase-plane for the GTPase-tension model. For this set of parameters, there is
one unstable steady-state (at the intersection of the G and L nullclines). There is a stable
limit cycle (green trajectory) which corresponds to an oscillatory cell.
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The Cellular Potts Model

The Cellular Potts model (CPM) is a lattice-based model for modelling cell behaviour.

Cells are represented as a collection of lattice sites, which can grow and shrink by adding

or removing sites. I use a freely available implementation of the CPM called CompuCell3D

[90]. In the CPM, the movement of cells is controlled by a total system energy, called a

Hamiltonian, H. To simulate cells of a certain size, for example, a volume-dependent energy

term is added to the Hamiltonian. When cells deviate from the target volume specified, the

volume energy is high. The CPM then uses a Monte-Carlo method to accept changes that

decrease the Hamiltonian, until the energy is minimized. Such changes include invasion or

retreat at the edge of some region consisting of lattice sites that we identify as a cell. To

mimic random fluctuations, even some changes that increase the Hamiltonian are accepted

with some probability that is set by a parameter analogous to thermal energy. In this way,

the cells attain their target volume.

A schematic of a typical CPM is shown in Figure 1.8. Each cell is a collection of lattice

sites. At each step in the Monte-Carlo method (called a Monte-Carlo step (MCS)), one

or more lattice sites are selected to change. If the proposed change decreases the overall

energy of the system, i.e., ∆H < 0, then the change is accepted. If the proposed change

increases the overall energy of the system, i.e., ∆H ≥ 0, then the change is accepted as

a small noise-induced fluctuation with probability exp(−∆H/T ), where T is a numerical

parameter known as the temperature. These changes are accepted to capture the noisy,

stochastic nature of biophysical systems, and to avoid getting “trapped” in local energy

minima of the Hamiltonian H.

Other energies can be added to the Hamiltonian H. For example, in Chapter 3, I will

also include an adhesion energy that describes how cells “stick” together. The idea is that

the adhesion energy depends on cell-cell contacts. For those cells which have large interfaces

with their neighbours have stronger adhesion and therefore lower adhesion energy. In this

way, the cells in the CPM tend to group together and remain contiguous. Additional details

regarding the CPM simulations used in Chapter 3 can be found in Appendix B.

1.4 Thesis Outline

Using these mathematical and computational tools, I discuss two examples of multi-scale

modelling in cell biology in the next chapters. In Chapter 2, I apply quasi-steady-state

methods to models of intracellular transport by molecular motors. This chapter is self-

contained (it has its own introduction and discussion) and is supplemented by Appendix

A, which contains some additional details referenced in the main chapter text. In Chapter

3, I use a dynamical systems approach to explore the interplay between cell signalling and

15



1 1

11

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1 1

11

1

1 1

11

1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 3 3 3 3

2

2

2

Initial cell configuration Proposed change Change accepted

Figure 1.8: A schematic of a typical CPM. Each cell, labelled 1, 2, and 3, is a collection of
lattice sites. A proposed change is accepted if the change reduces the overall energy in the
system or with some small probability if it increases the overall energy.

cell mechanics, and the resulting implications on cell behaviour. Likewise, this chapter is

self-contained and is supplemented by Appendix B, which contains some additional details.

In Chapter 4, I conclude the thesis with a summary of the results, a discussion of the

significance of the work, and present some questions and ideas for future work.
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Chapter 2

Application of Quasi-Steady-State

Methods to Nonlinear Models of

Intracellular Transport

2.1 Intracellular Transport by Molecular Motors

Diffusion is a fast transport mechanism on the length scale of a typical cell, a few tens

of micrometers. However, some specialized cells, including neurons, are up to 1 metre

in length. This length scale imposes dramatic constraints on the transport of structural,

metabolic, and signalling components from the neuronal cell body (the soma) to the ends of

dendrites or axons. Molecular diffusion is extremely inefficient for transport at such length

scales. Fortunately, cells have evolved active transport mechanisms consisting of molecular

motors that bind to microtubule tracks and convey cargo packaged in vesicles across the

cell [10].

Microtubules (MTs) are asymmetric, having distinct “plus” and “minus” ends. The

two major types of molecular motors, kinesin and dynein, walk on microtubules in opposite

directions: kinesin walks towards the plus ends, while dynein walks towards the minus ends

of MTs. Although kinesin motors can also work towards the minus ends and have other

roles within cells, I consider only those kinesin motors which walk towards the plus ends of

MTs. Both motors exist in several states, including unbound, cytoplasmic forms [5], and

MT-bound as well as bound singly or in groups to cargo. The overall transport of motors

across the cell depends on the polarity and configuration of MTs, the rates of binding to

and unbinding from MTs, and the motor speeds while bound. Transport also depends on

molecular diffusion in the cytosol.

One convenient experimental system is Ustilago maydis, a fungus whose long filamentous
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hyphae contain MTs of mixed polarity [23, 80, 81, 86, 87]. Microtubules of mixed polar-

ity also occur in the proximal regions of neuronal dendrites [2, 8, 88]. In these systems,

particularly in the fungal hyphae, motors have been observed to move bidirectionally: first

towards one cell end, and then towards the opposite end. This observation can be explained

in one of two ways. Either multiple motors (dynein and kinesin) bound to the same cargo

can “take turns” pulling the load, or else a single motor, by detaching and binding to a MT

of opposite polarity, would then change its direction of motion.

Modelling Motor-based Transport

An intriguing question is how to approach the multi-scale problem of bridging between

the rates and events at the molecular level (binding, unbinding, and motor speeds) and

the overall cargo distribution and effective transport speed at the cellular level [84]. This

has motivated the development of a number of mathematical models at various levels of

detail. A number of efforts have dealt with the tug-of-war or teamwork of several motors

attached to a single cargo [4, 31, 40, 48, 55]. In many cases, such models mandate stochastic

and computational approaches, that consider multiple states (n,m motors of distinct types

attached to a cargo, etc.). Other approaches simplify the problem to consider only a few

states, and formulate transport equations [85] or derive such PDEs from a master-equation

approach to the stochastic motor behaviour. Examples of such approaches include (1) an

analysis and mean-field approximation of the dynamics of the totally asymmetric simple

exclusion process with Langmuir kinetics [66], (2) a study of the spontaneous formation

of traffic “jams” resulting from transport on two parallel lanes (two parallel microtubule

tracks) [72], (3) the incorporation of a kinetic model for motor stepping dynamics, and

a study of the resulting effects on collective transport [11]. The approach here follows

the novel and elegant linear theory developed by Bressloff and Newby [7, 57] for important

insights into motor function by deriving a quasi-steady-state (QSS) Fokker-Planck equation.

The Fokker-Planck equation describes the overall transport in the system through effective

diffusion and effective velocity, which depend on the model parameters. Although this

linear theory is based on simplifications and assumptions (e.g. that the binding/unbinding

kinetics are fast on the timescale of transport across the cell), it provides a useful way to

gain insight into the role of various parameters in determining the overall functionality of

the transport system.

In recent work, [26] used the PDE approach to model the transport of early endo-

somes (cargo transported by kinesin and dynein) inside Ustilago maydis, arriving at good

agreement with experimental observations, and posing several hypotheses for further ex-

perimental studies. A followup paper [16] applied the methods of [7, 57] to the examples

motivated by [26]. In both these recent works, the models included microtubules of mixed
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polarity, with and without a bias towards one end of the (1D) cell, and linear rates of

binding and unbinding from the MT. Results in [16], for example, demonstrate that the

effective velocity of transport is the average of motor velocities, weighted by the fraction of

time spent in a given state, whereas the effective diffusivity is similarly such an average, but

includes an additional term that represents the variance in velocities of motors in different

states.

Linearity of the binding rates presumes that there is no interaction between groups of

motors, and that binding sites are ample and unlimited. But in many biological situations,

such assumptions are unwarranted. Complicated, possibly nonlinear, features have been

observed in molecular motor traffic jams [44], and exclusion of one motor by others [79].

Another case is the effect of microtubule associated proteins (MAPS) such as tau that mod-

ulate the ability of motors to bind to MTs or to stay bound [19, 53]. MTs can also have

various post-translational modifications that affect the availability or affinity of binding

sites to motors. For example, kinesin-1 binds with higher affinity to MT that have been

modified by acetylation [70]. Considering such effects leads to models in which the bind-

ing or unbinding is nonlinear and saturating, or to models that include mass-action-type

reaction terms. The effect of spatially varying parameters resulting from non-homogeneous

MT polarity, ATP gradients, and MAPS have been investigated in the context of intracel-

lular transport in neuronal cells using quasi-steady-state methodology [57], yet the effect

of nonlinear kinetic terms has been largely unexplored analytically. The need to generalize

previous analysis to include models with such nonlinearities motivates the approach in this

chapter.

The Quasi-steady-state Reduction Method

The main mathematical focus, discussed in detail in §2.3, is to extend the quasi-steady-state

(QSS) reduction method introduced in [57] for reaction–advection–diffusion systems with

linear reaction kinetics to a class of problems where the kinetics are nonlinear, but where

a conservation condition is satisfied. The latter represents the fact that motors transit

between states, but are conserved overall. The QSS method relies on the assumption that

the nonlinear kinetics occur on a faster time-scale than the diffusion and advection processes.

Owing to the conservation condition, in this limit of fast reaction kinetics, a one-parameter

family of quasi-steady-state solutions is obtained from the equilibrium state of the kinetics.

Simply put, this means that it is possible to approximate the solution of the full system

with a single variable that will vary in space and time. When there are no eigenvalues of

the linearization of the kinetics along this one parameter family that lie in the unstable

right half-plane, this quasi-steady-state solution is referred to as a slow solution manifold

for the full reaction–advection–diffusion system. When this condition on the Jacobian of
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the nonlinear kinetics is satisfied, it is possible to use an asymptotic expansion together with

a Fredholm alternative condition to derive a single scalar quasi-steady-state PDE, which

effectively parameterizes the slow solution manifold, and approximates the solutions to the

full system.

In §2.4, the asymptotic formalism of §2.3 is applied to analyze three specific nonlinear

systems for the binding and unbinding of molecular motors. These models are formulated

in §2.2 and consist of (1) a model for a single motor (“kinesin”) transiting between motion

along right-pointing MTs, diffusion in the cytosol, and motion along left-pointing MTs

(with transitions only through the cytoplasmic pool), (2) a model for kinesin-dynein-cargo

complexes moving left or right along MTs or diffusing in the cytosol (interactions on a MT

are assumed to lead to motor swaps that also change the direction of motion), and (3) a

model for motors (“unconventional myosin”) whose encounters with each other on an actin

filament lead to stalling. In all three cases, motors exchange between cytosolic diffusible

states and states bound to a track (MT or actin). Nonlinearity stems from saturated binding

kinetics in (1), mass-action motor interactions leading to swaps in (2), and from stalling in

(3).

Overall, the QSS PDE is used to analyze the behaviour of steady-state solutions of

the full reaction–advection–diffusion system as parameters are varied, and the results are

then interpreted biologically. The main conclusion is that in all three cases studied, the

resulting QSS PDE is a conservation law for the total motor density within the cell, with

effective velocity and effective diffusion that depend nonlinearly on the model parameters

and motor density. Predictions about the full model behaviour are made using the analytical

insight gained through the QSS reduction, and the effective velocity and effective diffusion

functions. To verify the QSS method and analysis, the steady-state and time-dependent

behaviour of both the full models and the QSS PDE are studied numerically.

Summary of Results for the Molecular Motor Models

In the kinesin motor model, the nonlinear interactions depend on the density of cytosolic

motors. The QSS PDE describes the bulk motor distribution through effective velocity and

diffusion coefficients. These effective coefficients are related to the original velocity and

diffusion coefficients weighted by the time spent in the directed-movement and random-

movement states. Moreover, the polarity distribution of MTs affects the bulk motor distri-

bution by changing the sign of the velocity, which can bias the distribution of motors to the

right- or left-end of the cell.

Unlike the kinesin motor model, the nonlinear kinetics in the kinesin-dynein motor

complex model arise due to a mass-action law which describes the rate at which motor

complexes turn in response to motor complexes heading in the other direction. In this
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case, the resulting QSS PDE is again a conservation law for the total density of motor

complexes, with the advection speed dependent on the motor complex speed, the turning

rate, and which motors in the complex are active. In addition to these parameters, the

resulting diffusion coefficient is dependent on the binding affinity of the motor complex to

MTs. A sufficiently high turning rate can reverse the distribution of motor complexes from

one end of the cell to the other, even if the probability of moving to one end of the cell is

high.

In the myosin motor model, two different QSS PDE arise from the nonlinear reaction

kinetics. In the first case, the motors equilibrate between freely diffusing and walking on

MT, without any motors in the stalled state. In the second case, there are some motors in

the stalled state. In the first case, the QSS PDE is linear, with effective diffusion coefficient

and effective velocity mediated by the binding rate of myosin motors. We find that the

asymptotic solution compares favourably with full numerical simulations of the myosin

model. In the second case, the resulting QSS PDE is nonlinear, but is a conservation law

for the total density of myosin motor. The effective transport rate depends on the density

of stalled motors, the velocity of stalled motors due to actin treadmilling, and the stalling

rate. The effective rate of diffusion depends on all model parameters except for the velocity

of stalled motors due to treadmilling. The second QSS is only valid for a range of parameter

space and stalled motor density. Outside of this range, the QSS PDE is ill-posed. A further

novel feature of the myosin model is that the full system always converges to the first QSS,

where there are no stalled motors. Through a boundary layer analysis (§2.5), I determine

that this results from the boundary conditions. I develop an alternate myosin model which

has the same QSS approximations but, depending on initial conditions, can realize either

case.

2.2 Models of Intracellular Transport

I model the cell as a 1D tube of length L0, with its left-end at x = 0. The densities of

motors are described as number per unit cell length, with the cross-sectional area of the

cell assumed to be constant. Molecular motors exist in any number, n, of possible states

within the cell, with pi(x, t) denoting the density of motors in state i.

A reaction–advection–diffusion system describes the evolution of the vector density p ≡
(p1, . . . , pn)T of motors as

∂p

∂t
= M(p) + f(p), (2.1)

where f ≡ (f1, . . . , fn)T describes the state transition rates, and M is a diagonal matrix

of linear differential operators characterizing the advection and diffusion of motors in each

state. For example, a term on the diagonal in row i, Mii = −vi ∂∂x +Di
∂2

∂x2 , would describe
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the advection (vi) and the diffusion (Di) of motors in state fi. We assume that the ends

of the cells are closed, and hence impose an overall zero-flux condition at the cell ends. In

addition, we assume that the motors are exchanged between states in such a way that there

is no net loss or gain of motors, i.e., that

n∑
i=1

fi = 0. (2.2)

These two assumptions result in conservation of the total density of molecular motor in the

cell.

The goal is to develop a theoretical framework to analyze models of the form (2.1) where

the reaction term f is nonlinear and the reactions occur on a time-scale that is fast relative

to the time-scale of the advection and diffusion processes. This theory is then applied to

three specific nonlinear binding mechanisms. In §2.2.1 and §2.4.1 a nonlinear kinesin model

is considered, in §2.2.2 and §2.4.2 a nonlinear kinesin-dynein model is considered, while

a nonlinear myosin model is considered in §2.2.3 and §2.4.3. This analysis extends the

previous analysis for linear reaction models developed in [7, 16, 57] to allow for nonlinear

reaction mechanisms.

2.2.1 Kinesin Model

In hyphae of the fungus, Ustilago maydis, for example, kinesin motors walk along micro-

tubules within the cell or diffuse freely in the cytosol [16, 26, 81, 81, 86]. The density

pR(x, t) (respectively pL(x, t)) represents the population of kinesin bound to right-polarized

(respectively left-polarized) MTs walking toward the end of the cell at x = L0 (respectively

x = 0). The population of freely diffusing cytosolic kinesin is modelled by the density

pU(x, t) (U for unbound). Inside this 1D domain, 0 ≤ x ≤ L0, the density of MTs is con-

stant and nonzero, with the MT distribution described by 0 ≤ P (x) ≤ 1, representing the

fraction of MTs pointing to the right at a point x. Since kinesin always walks towards a

MT plus end, it can reverse its direction of motion only by unbinding from a given MT and

rebinding to a MT of opposite polarity. For this reason, we can assume that, in this model,

motor transitions occur only through the cytosolic state. We describe the spatiotemporal

evolution of the kinesin densities by the transport equations (see the schematic diagram in
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x = 0 x = L0

polarized MT

right-moving kinesin motor

left-moving kinesin motor

diffusing kinesin motor

state transitions

Figure 2.1: A schematic diagram of kinesin-based intracellular transport in a 1D cell of
length L0. Kinesin motors can bind to polarized microtubules (MTs, blue arrows), and
move to the right (purple circles with right-pointing arrows) or to the left (green circles
with left-pointing arrows). While unbound, kinesin motors are free to diffuse in the cell’s
cytoplasm (red circles with right and left-pointing arrows). State transitions (orange dashed
arrows) occur through the freely diffusing cytosolic state.

Figure 2.1):

∂pR

∂t
= −v∂p

R

∂x
+ Pkbg(pU)− kup

R, (2.3a)

∂pL

∂t
= v

∂pL

∂x
+ (1− P )kbg(pU)− kup

L, (2.3b)

∂pU

∂t
= D0

∂2pU

∂x2
− kbg(pU) + kup

R + kup
L. (2.3c)

In Eqs. (2.3), bound kinesin moves to the right or to the left with velocity v, and D0

is the diffusion coefficient for cytosolic kinesin. The unbinding rate constant is ku, while

the binding rate constants for kinesin binding to right-polarized and left-polarized MTs

are kbPg(pU) and kb(1 − P )g(pU), respectively. Here, P = P (x) is the fraction of MTs

polarized towards the right in the cell. Here we have assumed a constant density of MTs

across the cell (absorbed into the constant kb). We discuss a generalization to nonuniform

MT density m(x) in Appendix A.3.1. The function g(pU), possibly nonlinear, describes how

other processes such as competition for binding sites or binding co-operativity are modelled.

For instance, saturated binding due to a limited number of binding sites could be depicted

by a term of the form

g(pU) = gm
pU

K + pU
, (2.4)

for some parameters K > 0 and gm > 0. Forms such as (2.4) are obtained by assumptions

typical of Michaelis-Menten kinetics. Conservation of the kinesin motors within the cell

implies that zero-flux boundary conditions are required to model the impermeable cell
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ends: (
vpR − vpL −D0

∂pU

∂x

)∣∣∣∣
x=0,L0

= 0. (2.5)

The two additional boundary conditions are that there is no right-moving kinesin at the

left endpoint of the cell and no left-moving kinesin at the right endpoint. These boundary

conditions result from the fact that to create a flux of right-moving kinesin at a given point,

there had to be a kinesin bound to a MT to the left of that point—which is impossible at

x = 0, the leftmost point in the cell. A similar argument at the rightmost point in the cell

establishes the right endpoint. Thus, the following two Dirichlet conditions must hold:

vpR(0) = 0 and vpL(L0) = 0. (2.6)

2.2.2 Kinesin-Dynein Model

The three-state kinesin model, formulated in §2.2.1, is a simplification of intracellular cargo

transport. Cargo in fungal hyphae is typically bound to one dynein and four or five kinesin

motors at a time [81]. In this case, the entire kinesin-dynein-cargo complex may be trans-

ported toward or away from the cell tip, depending on which motors are actively involved

in the transport process and the polarity of the MTs to which they are bound. In this

section, I describe a simple model for the organization and transport of cargo bound to a

kinesin-dynein motor complex.

The populations of kinesin-dynein-cargo complexes are divided into right-moving, left-

moving, and freely diffusing sub-classes, regardless of the molecular motors active in the

transport process. In the three-state kinesin model, the nonlinearities are restricted to

binding and unbinding interactions. To explore the effect of nonlinear interactions between

motors in distinct sub-classes, consider linear binding and unbinding interactions, but allow

for nonlinear interaction terms between the right- and left-moving species when they are

in proximity on a MT. Yochelis et al. [101, 102] have recently used a model with a similar

nonlinear interaction to describe the spatial organization and dynamics of unconventional

myosin motors in actin-based cellular protrusions. I ask whether the QSS theory can be

applied to a model of this type.

The population of right-moving (respectively left-) motor complexes walking toward the

end of the cell at x = L0 (respectively x = 0) is described by density pR(x, t) (respectively

pL(x, t)). The population of freely diffusing cytosolic motor complexes is described by

density pU(x, t). Here, a “binding bias” function, Q, represents the probability that when

a free motor complex binds to a MT, it becomes a right-moving motor complex. Then

(assuming no stalled states on the MT) the probability of becoming a left-moving motor

complex, upon binding to a MT, is (1−Q). Since kinesin walks towards the plus ends, while
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dynein walks towards the minus ends of MTs, the function Q(x) actually comprises several

biological quantities, including local MT polarity, ratio of kinesin and dynein molecules

in a complex, as well as respective affinities to MT of these two motors. In Appendix

A.3.2, I discuss how this simplification by a single function can be related to such biological

factors. An important distinction between this and the previous model is that now direction-

switching can take place on a microtubule, and does not require unbinding into the cytosol.

The above simplification allows for the detailed study of a nonlinear interaction between

right- and left-moving populations. One possible interaction between these two populations

is that a direction change results upon an encounter with a motor-complex travelling in the

opposite direction. Assume that when a right-moving complex meets a left-moving complex,

the right-moving complex changes direction with rate coefficient krl. Similarly, when a left-

moving complex meets a right-moving complex, the right-moving complex changes direction

with rate coefficient klr. These direction changes are due to a swap between a motor that

is actively walking, e.g., dynein, and its passive partner motor kinesin, or vice versa, in the

given complex.

Freely diffusing motor complex binds to MTs at rate kb, and diffuses in the cytosol

with diffusion coefficient D0. Bound motor complexes can move to the right (or left) with

velocity vr (or vl) or they can unbind from MTs with rate ku. These assumptions lead to

the following reaction-diffusion-advection system on 0 ≤ x ≤ L0 (see the schematic diagram

in Figure 2.2):

∂pR

∂t
= −vr

∂pR

∂x
+ kbQp

U − kup
R − krlp

RpL + klrp
LpR, (2.7a)

∂pL

∂t
= vl

∂pL

∂x
+ kb(1−Q)pU − kup

L + krlp
RpL − klrp

LpR, (2.7b)

∂pU

∂t
= D0

∂2pU

∂x2
− kbp

U + ku(pR + pL). (2.7c)

With kc ≡ krl − klr, this model can be written as

∂pR

∂t
= −vr

∂pR

∂x
+ kbQp

U − kup
R − kcp

RpL, (2.8a)

∂pL

∂t
= vl

∂pL

∂x
+ kb(1−Q)pU − kup

L + kcp
RpL, (2.8b)

∂pU

∂t
= D0

∂2pU

∂x2
− kbp

U + ku(pR + pL). (2.8c)

As before, conservation of the motor complexes within the cell implies that zero-flux bound-
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x = 0 x = L0

MT

right-moving motor complex

left-moving motor complex

diffusing motor complex

state transitions

Figure 2.2: As in Figure 2.1 but for the kinesin-dynein motor complexes. Color code as
before for MT, and for left-moving, right-moving, or diffusing complexes. A new feature is
that state transitions can also occur through the collision of a left- and right-moving motor
complex (orange dashed arrows, right).

ary conditions are required to model the impermeable cell ends:(
vrp

R − vlp
L −D0

∂pU

∂x

)∣∣∣∣
x=0,L0

= 0. (2.9)

The remaining two boundary conditions are that

vrp
R(0) = 0 and vlp

L(L0) = 0. (2.10)

2.2.3 Myosin Model

Like kinesin and dynein motors, unconventional myosin motors are also responsible for

intracellular transport in actin-based cellular protrusions, such as filopodia and stereocilia

[56]. Filopodia are long, thin cellular protrusions with actin filaments at their core. These

structures are involved in cell motility, adhesion, and communication [51]. Stereocilia are

highly organized protrusions on hair-cells of the inner ear, responsible for hearing [82].

The actin-based filamentous scaffold that supports these protrusions is known to undergo

turnover. The actin-based scaffold is maintained by the delivery of new actin monomer

subunits to the distal ends of the protrusions, and the disassembly of the actin bundle at its

base [76]. The apparent motion of the actin filament bundle due to continual assembly and

disassembly at opposite ends is called treadmilling. The transport of those monomers and

other material is facilitated by unconventional myosin motors [56]. In [101, 102], a reaction–

advection–diffusion model was employed to describe the self-organization of waves and pulse

trains in myosin motor distribution along cell protrusions. Inspired by this model, I consider

a simplified system with the same nonlinear cross-species interaction term to demonstrate

that the QSS method can be applied.
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Consider three populations of myosin motors: bound (pB), walking (pW), and unbound

(freely diffusing) (pU) in a 1D geometry. Suppose that the base of the protrusion of length

L0 is at x = 0, but assume that the protrusion is self-contained and impose zero total-

flux boundary conditions at both ends. Adapted from [101, 102], the myosin dynamics are

described by the following set of reaction–diffusion–advection equations on 0 ≤ x ≤ L0:

∂pW

∂t
= −vw

∂pW

∂x
− k̂bw

(
pB
)2
pW + k̂bp

U − kup
W, (2.11a)

∂pB

∂t
= vb

∂pB

∂x
+ k̂bw

(
pB
)2
pW − kup

B, (2.11b)

∂pU

∂t
= Df

∂2pU

∂x2
− k̂bp

U + ku(pB + pW). (2.11c)

Due to actin treadmilling, bound (stalled) motors are effectively transported toward the

base of the actin bundle with the treadmiling velocity vb. Bound motors unbind with rate

ku and walking motors can become bound if they encounter a sufficiently high density of

bound motors (k̂bw

(
pB
)2
pW). Walking motors, on the other hand, move to the distal end

of the cell protrusion with velocity vw. Walking motors may also unbind to become freely

diffusing motors. The freely diffusing motors have diffusion coefficient Df, and can reattach

to an actin filament and transition to a walking motor with rate coefficient k̂b.

Assume that the total flux of myosin is zero at either end of the protrusion, which gives

the boundary condition (
vwp

W − vbp
B −Df

∂pU

∂x

)∣∣∣∣
x=0,L0

= 0. (2.12)

As before, there are two additional boundary conditions:

vwp
W(0) = 0 and vbp

B(L0) = 0, (2.13)

which ensures that there is no right-moving and left-moving myosin at the left and right

endpoints, respectively.

2.3 Quasi-steady-state Reduction

The quasi-steady-state (QSS) reduction method, developed in [7] for the case where the

vector f of state transitions is linear, will be extended to allow for nonlinear f . Here, the

nonlinearities can encode nonlinear biological phenomena, such as the affect of saturated

binding due to competition for binding sites or traffic jam-style interactions as mentioned in

§2.2. In this asymptotic approach, the key assumption is that the timescale associated with

transitions between states, represented by binding and unbinding mechanisms, is short
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relative to the time it takes for motors to move across the cell. This is warranted, for

example, in long cells such as fungal hypha. The separation of time scales introduces a

small dimensionless parameter ε ≈ v/(L0k), where v is the motor velocity, L0 is the cell

length, and k is a typical transition rate.

Using the QSS approximation, the aim is to reduce the system of transport equations

to a scalar nonlinear PDE describing the dynamics of the system for small ε. To this end,

consider rescaling space and time so that the non-dimensional length of the cell is 1 and so

that one of the motor subpopulations moves with non-dimensional speed 1, scaling distance

by the cell length, and scaling time by the time it takes for a walking motor to move across

the cell. That is, introduce the new dimensionless variables

x? =
x

L0
, t? =

tvi
L0
. (2.14)

Under this scaling, and with the assumption that the timescale associated with transitions

between states is short, the system (2.1) can be written, upon dropping the stars, as

∂p

∂t
= M(p) +

1

ε
f(p), (2.15)

where f(p) represents the O(1) nonlinear motor state transition kinetics. Here M is the

linear n× n matrix differential operator in the re-scaled coordinates, with zero off-diagonal

entries, so that Mij = 0 for i 6= j, and diagonal entries Mii = −vi∂/∂x + Di∂
2/∂x2 for

i = 1, . . . , n, with vi possibly not all unity if the right- and left-moving motors have different

speeds. Details of the scaling leading to (2.15) for the three specific models are given in

Appendix A.4.

The QSS reduction method exploits the assumed small parameter ε in (2.15). On a

short time scale, where t = O(ε) so that τ = t/ε, (2.15) yields

∂p

∂τ
= f(p) +O(ε). (2.16)

Ignoring O(ε) terms, this nonlinear ODE system describes the spatially-decoupled dynamics

to leading-order on a short time-scale. Define the quasi-steady-state, p0, of (2.15) to be

the steady-state of this system, i.e., f(p0) = 0. For a general nonlinear function f , a

solution to f(p0) = 0 is not guaranteed, and here consider only f such that (2.16) has

a steady-state solution. Due to the conservation (2.2) of motors within the cell, to solve

f1(p0) = ... = fn(p0) = 0, it suffices to solve the under-determined algebraic system

f1(p0) = ... = fn−1(p0) = 0, and automatically find fn(p0) = 0. As such, generically, when

a steady-state exists it can be written parametrically as p0 = p0(α) in terms of some scalar

quantity α = α(x, t). As there may be more than one solution to f(p0) = 0, in order to
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ensure that the system converges to a steady-state, I introduce the following concept of a

slow manifold:

Definition 2.3.1 Let p0(α) be a solution to f1 = . . . = fn−1 = 0. Then p0(α) is a slow

manifold of (2.15) provided that the Jacobian matrix

J = J(α) ≡


f1p1 ... f1pn

...
. . .

...

fnp1 ... fnpn


∣∣∣∣∣∣∣∣
p=p0(α)

, (2.17)

has all eigenvalues satisfying <(λ) ≤ 0 for all α on the range of definition. Moreover, λ = 0

is always an eigenvalue of J for any α, i.e. Jφ = 0 for some φ 6= 0.

To motivate the need for such a criterion, consider the new time-scale τ = t/ε, so that

(2.15) reduces to leading-order to
∂p

∂τ
= f(p). (2.18)

In order for the ODE dynamics (2.18) to have the limiting behavior

lim
τ→∞

p(τ) = p0(α0), (2.19)

at least for initial conditions near the slow manifold p0, where α0 is determined by the

initial condition, the eigenvalues of the Jacobian J(α) must satisfy <(λ) ≤ 0 for all values

of α. By differentiating

f(p0(α)) = 0,

with respect to α, it follows that J must always have a zero eigenvalue, i.e., that

Jφ = 0, where φ =
dp0

dα
(α). (2.20)

The remaining eigevnalues of J(α) must satisfy Re(λ) < 0, which leads to the key assump-

tion on the nonlinearity f .

Assumption 2.3.2 Assume that the vector f of state transitions is such that there is exactly

one solution branch p0(α) to f = 0 for which the condition on the Jacobian J in Definition

2.3.1 holds. Further, assume that the zero eigenvalue of J has multiplicity one for any α

on its range of definition.

With this assumption, it is now possible to derive a nonlinear PDE for the evolution of

α(x, t) in the quasi-steady-state p0(α). To do so, I propose an asymptotic expansion for
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the solution to the full model consisting of correction terms of smaller order about the QSS.

That is, I expand p as a series in ε about the quasi-steady-state as

p = p0(α) + εp1 + · · · . (2.21)

Substituting this expansion into (2.15) gives

p0
t + εp1

t + · · · = 1

ε
f(p0 + εp1) + Mp0 + εMp1 + · · · . (2.22)

With a Taylor expansion for the nonlinear term, together with the fact that f(p0) = 0, the

O(1) terms result in:

Jp1 = p0
t −Mp0. (2.23)

By Assumption 2.3.2, there exists a unique (up to scalar multiple) φ such that Jφ = 0.

Since the eigenvalues of J and JT are identical, λ = 0 is also an eigenvalue of JT of

multiplicity one. This guarantees the existence of a unique (up to scalar multiple) ψ such

that ψTJ = 0T . In fact, the eigenvalue ψ = (1, . . . , 1)T is easily identified, as a result of the

fact that (2.2) holds. From the Fredholm alternative, a solution to (2.23) exists if and only

if ψT (p0
t −Mp0) = 0. This solvability condition yields

ψTp0
t = ψTMp0, (2.24a)

which is a scalar nonlinear PDE for α(x, t). This PDE (2.24a) for α(x, t) is called the

QSS PDE and the boundary conditions for α can be readily obtained from a conservation

condition (see the examples in §2.4.1, §2.4.2, and §2.4.3 below). In terms of α(x, t), the

leading-order asymptotics

p ∼ p0(α(x, t)) +O(ε), (2.24b)

then provides an approximate solution to the full system (2.15) when t = O(1) and away

from any boundary layers near the endpoints x = 0, 1. The system (2.24b) is supplemented

by appropriate boundary conditions (BCs). For the three-component molecular motors

systems of §2.4, appropriate BCs are presented below. A boundary layer analysis for these

models is presented in §2.5.

For the case where f is linear, as studied in [57] and [16], the O(ε) term in (2.24b) can

be calculated explicitly. However, in the extension of the theory to allow for a nonlinear

f , it is in general analytically intractable to calculate this correction term. This difference

results from the nonlinear interactions in the class of models studied here. To highlight the

difference, the geometry of the QSS approximation with both linear and nonlinear reactions

is illustrated in Figure 2.3. Here, p1, p2, and p3 generically reference the three different
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p1

p2

p3

f(p0) = Ap0 = 0

yp0

p w ∼ "w1

(a) Geometry with linear reactions

p1

p2

p3
f(p0) = 0

(p0
1
(α); p0

2
(α); p0

3
(α))

(b) Geometry with nonlinear reactions

Figure 2.3: Geometry of the QSS approximation in the linear and nonlinear cases. In
(a), with linear interactions, the solution to the full model p can be decomposed into a
component satisfying f(p0) = Ap0 = 0, for reaction matrix A into a small correction,
w ∼ εw1. In (b), with nonlinear reactions, the full model converges to the QSS f(p0) = 0
quickly. On the slow manifold, the solution is parametrized by α(x, t).

motor states considered in the models in §2.2. In the linear case (Figure 2.3(a)), the quasi-

steady-state satisfies a linear system of equations f(p0) = Ap0 = 0. Due to conservation,

A has a one-dimensional kernel. As such, the solution p can be decomposed into two

components: one component in the kernel, yp0, and a correction term orthogonal to the

kernel, w. In the linear case, the QSS approximation describes the time evolution of y and

explains how the correction term w = O(ε). In the nonlinear case, this projection method

no longer applies, and the solution to f(p0) = 0 is more complicated. Nonetheless, the QSS

approximation in the nonlinear case suggests that the solution to the full model will quickly

converge to the slow manifold described by f(p0) = 0, and that the slow manifold can be

parametrized (due to conservation) by some scalar quantity α. The QSS approximation,

in the nonlinear case, describes the spatiotemporal evolution of the parameter α(x, t) from

which the distribution of motors among the three states p1, p2, and p3 can be ascertained.

2.4 Examples of the QSS Theory

In this section, the QSS reduction method is appplied to the molecular motor models that

were described in §2.2.
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2.4.1 QSS Reduction: Kinesin Model

As shown in Appendix A.4.1, the kinesin model (2.3) of §2.2.1 can be scaled to a system of

the form (2.15) where

p =

p
R

pL

pU

 , f(p) =

 kaP (x)g(pU)− pR

ka(1− P (x))g(pU)− pL

−kag(pU) + pR + pL

 , M =

−
∂
∂x 0 0

0 ∂
∂x 0

0 0 D ∂2

∂x2

 ,

(2.25)

where D = D0
vL0

, ε = v
L0ku

, and ka = kb
ku

if g is linear and ka = kbgm

kuρ
or ka = kbgm

kuK
if g is

either a Hill or Michaelis-Menten nonlinearity, respectively. For the case of unbiased MT

distribution, with P (x) = 0.5, and linear binding function g, ka = kb/ku. In this case, ka

represents the ratio of time spent in the unbound (diffusive) state to the time spent in the

bound state (directed motor motion on MTs). As shown in (A.16), if g is nonlinear, then

that ratio gets modified by other parameters reflecting the nonlinear interactions.

Following the method described in §2.3, the quasi-steady-state p0(α) is found from the

condition that f = 0. Set f1 = f2 = 0 in (2.25) to get

pR = P (x)kag(pU), pL = (1− P (x)) kag(pU), (2.26)

which are two nonlinear equations in three unknowns. It is convenient to parameterize the

free variable by a scalar, and I set pU = α. This gives the quasi-steady-state solution branch

as

p0(α) =

 P (x)kag(α)

(1− P (x))kag(α)

α

 , (2.27)

where the parameter α = α(x, t) is the unknown cytosolic motor density. A calculation of

the Jacobian J in Definition 2.3.1 shows that J has the eigenvalues

λ = 0, λ = −1, λ = −1− kag
′(α). (2.28)

Therefore, a sufficient condition for p0 to be a slow manifold in the sense of Definition 2.3.1

is that g is a monotonically increasing function. This condition is biologically sensible, and

implies that the rate of motors binding to MT increases with the cytosolic motor concen-

tration: the more motors are in the cytosol, the more binding can take place (increasing,

possibly up to some saturation level).
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To derive the QSS PDE for α(x, t), I use the solvability condition (2.24) to find

(1, 1, 1)
∂

∂t

 P (x)kag(α)

(1− P (x))kag(α)

α

 = (1, 1, 1)M

 P (x)kag(α)

(1− P (x))kag(α)

α

 .

By using (2.25) for the matrix differential operator M, this expression reduces to

∂

∂t
(kag(α) + α) = − ∂

∂x
(P (x)kag(α)) +

∂

∂x
((1− P (x))kag(α)) +D

∂2α

∂x2
,

which yields the QSS PDE

∂

∂t
(kag(α) + α) =

∂

∂x

(
D
∂α

∂x
− (2P (x)− 1)kag(α)

)
. (2.29)

As shown in (2.80) of Appendix 2.5, to determine the boundary conditions for (2.29),

substitute (2.21) into the original boundary conditions (2.5) and retain terms up to O(ε).

This leads to (
D
∂α

∂x
− (2P (x)− 1)kag(α)

)∣∣∣∣
x=0,1

= 0, (2.30)

which are zero-flux boundary conditions for the QSS PDE (2.29). Moreover, by integrating

the PDE (2.29) across the domain, and using the boundary conditions, the QSS PDE can

be recognized as a conservation law for the total density of kinesin motors:

∂

∂t

∫ 1

0
y(x, t) dx =

∂

∂t

∫ 1

0
(kag(α) + α) dx = 0, (2.31)

where, with e ≡ (1, . . . , 1)T , I have defined

y(x, t) ≡ eTp0(α(x, t)) = kag(α(x, t)) + α(x, t), (2.32)

as the total density of kinesin motor in any state at (x, t). Therefore, from (2.31), the total

motor mass satisfies
∫ 1

0 y(x, t) dx =
∫ 1

0 y(x, 0) dx.

The QSS PDE (2.29) describes the bulk behaviour of cytosolic motors, pU = α, through-

out the cell, but away from any boundary layers near the domain endpoints, when ε � 1.

In terms of α, using (2.27) in (2.24b) determines the behaviour of the densities of right- and

left-moving kinesin motors in the bulk region away from any boundary layers near either

x = 0 or x = 1. The boundary-layer analysis, given in Appendix 2.5, and summarized in

(2.85) for the kinesin model, shows that the right-moving and left-moving motors have a

classic boundary layer structure near x = 0 and x = 1, respectively, with a boundary layer
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width of O(ε).

In the case where P (x) = P is constant, the QSS PDE (2.29) reduces to

∂α

∂t
= V(α)

∂α

∂x
+D(α)

∂2α

∂x2
, (2.33a)

where the effective velocity V(α) and effective diffusion coefficients D(α) are defined by

V(α) ≡ (1− 2P )kag
′(α)

kag′(α) + 1
, and D(α) ≡ D

kag′(α) + 1
. (2.33b)

If P (x) is a smooth spatially varying function, then an additional nonlinear source/sink

term in α, proportional to P ′(x), would appear in (2.33a).

For a general g(α), the QSS PDE (2.33) provides an opportunity to make predictions

regarding the bulk behaviour of the molecular motors within the cell. The effective veloc-

ity and effective diffusion coefficients V(α) and D(α) are velocity and diffusion coefficients

weighted by the fraction of time spent in directed (motor) and random (diffusive) mo-

tion, respectively. These effective velocity and diffusion coefficients depend on the model

parameters.

A bias in the MT polarity proportion, P , results in a corresponding bias in the effective

velocity V(α), in such a way that V(α) is positive when P > 1
2 and is negative when P < 1

2 .

Although α represents the density of cytosolic motors, it influences the behavior in the other

states due to the assumption of rapid transitions between states. This bias agrees with the

intuition that in areas where more MTs are biased to the right, more motors will be directed

towards the right end of the cell. When the MT polarity is unbiased, i.e., P = 1
2 , then the

QSS PDE (2.33) reduces, as expected, to a nonlinear diffusion equation with no advection.

In addition, when g(α) is monotone increasing, V(α) is a saturating function of ka

and D(α) is a saturating function of 1/ka. Increasing kb, corresponding to increasing ka,

increases the effective velocity V(α), while decreasing the effective diffusion coefficient D(α).

Similarly, increasing ku, which decreases ka, causes an increase in the effective diffusion,

but decreases the effective velocity. In the molecular motor system, when kb � ku, so that

ka � 1, the expectation is that the advective processes to dominate over diffusion as motors

spend more time being transported on MTs than diffusing in the cytosol. Conversely, when

ku � kb, so that ka � 1, we expect diffusion to dominate over advective processes, as

the motors spend less time walking on MTs than diffusing in the cytosol. The parameter

dependence of V(α) and D(α) on ka in the QSS PDE (2.33) reflects this tradeoff.

In the following subsections, I will explore how specific choices of the interaction function

g(α) and the MT polarity P (x) affects the QSS PDE, and further explore the parameter-

dependencies discussed briefly above.

34



Saturated binding model

Consider the kinesin model with a saturated binding rate:

g(α) ≡ α

1 + cα
. (2.34)

This choice models the basic Michaelis-Menten biochemical kinetics with 1/c representing

the motor density at which the binding rate is 1/2 of its maximal magnitude. This choice

of g represents the idea that binding sites on MTs are limited. As cytosolic motor density

α increases, those MT sites become saturated so that g → 1. When c = 0, the binding rate

is linear and the model reduces to that studied in [16].

From (2.27), the quasi-steady-state p0(α) for this saturated binding kinesin model with

constant polarity P is

p0(α) =


P kaα

(1+cα)

(1− P ) kaα
(1+cα)

α

 . (2.35)

Since g(α) is monotone increasing, the condition in Definition 2.3.1 holds, and p0(α) is a

slow manifold. Therefore, from (2.29), the QSS PDE for α(x, t) reduces to

∂

∂t

(
kaα

(1 + cα)
+ α

)
=

∂

∂x

(
D
∂α

∂x
− (2P − 1)

kaα

(1 + cα)

)
. (2.36)

Using (2.30), and as shown in (2.80) of §2.5, this QSS PDE inherits its zero-flux boundary

conditions from the full system as

D
∂α

∂x
− (2P − 1)

kaα

(1 + cα)
= 0, at x = 0, 1. (2.37)

To compare the QSS approximation with numerical approximations of the full kinesin

model (2.15) with (2.25) and (2.34), the initial condition α(x, 0) = α0 needs to be chosen

such that the total density y is the same for the full system and the QSS PDE. Conservation

of mass with the initial condition pR = 0, pL = 0 and pU = 1 at t = 0 for the full system

implies that ∫ 1

0

(
pR(x, t) + pL(x, t) + pU(x, t)

)
dx = 1, (2.38)

for all t. Recall that the QSS PDE is a conservation law for y(x, t) = kag(α) + α, which is

the total amount of kinesin in the cell. Therefore, one correct initial condition is to choose

α0 to be the unique solution of

y(x, 0) = kag(α0) + α0 = 1. (2.39)
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The steady-state solution α(x) of the QSS PDE (2.36) is the solution to the nonlocal

problem
∂α

∂x
=
ka

D
(2P − 1)g(α),

∫ 1

0
(kag(α) + α) dx = 1, (2.40)

where g(α) is defined in (2.34). There are a few special cases for which explicit solutions to

(2.40) can be found. Explicit solutions can be found if 1
g(α) , P (x), and g(α) are integrable

(using separation of variables to solve the differential equation). In particular, when P = 0.5,

so that α = αc, where αc is a constant, (2.40) reveals that

αc =
1

ka + 1
, (c = 0); αc =

1

2c

(
c− (ka + 1) +

√
(c− (ka + 1))2 + 4c

)
, (c > 0).

(2.41)

For the linear binding case c = 0, where ka = kb/ku, observe that the expression for αc is

αc =

1
kb

1
ku

+ 1
kb

.

which represents the fraction of time spent in the unbound state (kb gives the rate at which

a freely diffusing motor binds to MTs, so 1
kb

gives the mean residence time in the unbound

state). In addition, for linear binding where c = 0 so that g(α) = α, then α(x) = αce
βx

where β ≡ (2P − 1)ka/D. Substituting this form into the nonlocal condition of (2.40) gives

α(x) = αce
βx, where αc =

β

(ka + 1)

1

(eβ − 1)
, β =

(2P − 1)ka

D
. (2.42)

When the MT polarity P 6= 0.5 is also constant across the cell, this case reduces to simple

exponential distributions of all kinesin states; that distribution is biased towards the left

(P < 0.5) or towards the right (P > 0.5), as previously described in [16]. However, in

general, the solution to the nonlocal problem (2.40) must be obtained numerically. As

shown in Appendix A.2, by recasting this nonlocal problem into an initial value problem,

its solution can be computed using a simple numerical shooting procedure.

In Figure 2.4(a-d), numerical approximations of the steady-state solution to the full

transport model (dashed) and the QSS PDE (solid) for both linear binding (c = 0) and

saturated nonlinear binding (c = 1), for two constant values of the MT polarity are shown.

For P = 0.5, and for c = 0 and c = 1, the advection term in (2.33) vanishes, leaving purely

diffusive motion. For P = 0.6, the MT polarity is biased to the right. Consequently, the

distributions of bound and cytosolic motors are also biased towards the right end of the

cell at x = 1. From Figure 2.4(c,d), observe that the saturated binding term with c = 1

slows the rate at which kinesin leaves the cytosolic compartment, causing more kinesin to

be sequestered in the middle of the cell. Further observe that the QSS approximation is not
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Figure 2.4: Effect of nonlinear binding and microtubule polarity. A comparison for P = 0.5
(unbiased MT polarity, left panels) and for P = 0.6 (MT biased to the right, right panels)
of the steady-state cytosolic density pU(x) (dashed curves) of the full model (2.15), (2.25),
and (2.34), with the steady-state α(x) (solid curves) from the QSS PDE (2.36). (a,b) linear
binding (c = 0). (Results in agreement with [16]). (c,d) Saturated nonlinear binding with
c = 1. The parameters are ka = 5/3, ε = 0.02, and D = 0.1. The total mass was initially
fixed at

∫ 1
0 y(x, t) dx = 1, and is preserved in time. Notice the different vertical scales

between (a) and (b), and between (c) and (d). The QSS approximation describes the bulk
behaviour of the system well, but does not capture the boundary behaviour.

valid in thin boundary layers near the two edges of the cell. These boundary layers result

from the reduction of the full three-equation model with four boundary conditions, to a

single PDE with two boundary conditions. The results from the boundary layer analysis

given in (2.85) of §2.5 show that the unbound kinesin motor density pU near the two

boundaries differs from its outer approximation pU ∼ α by an error O(ε/D).

In Figure 2.5, I compare the steady-state solution to the QSS approximation in the

linear binding (c = 0) and saturated binding case (c = 1), for the parameter range where
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Figure 2.5: Effect of the relative magnitudes of binding and unbinding rates kb, ku. Steady-
state solutions y(x) = eTp0(α(x)), obtained from the steady-state α(x) of the QSS PDE
(2.36) with linear binding (c = 0, solid) and saturated binding (c = 1, dashed) when ka < 1
(a) and ka > 1 (b). The other parameters are P = 0.6, and D = 0.1, and the total mass
was

∫ 1
0 y(x) dx = 1. In general, saturated binding results in a shallower gradient of motors

across the cell. The steady-state behavior illustrates the effects of kb and ku. For example,
for large ku (relative to kb) as in (a) where ka = 0.1, the effective velocity, V(α), is much
smaller than the effective diffusion coefficient, D(α). This leads to a comparatively more
uniform density of motors than in (b), where kb is larger than ku, and the advection term
dominates.

ka < 1 (a) and ka > 1 (b) with P = 0.6. In general, saturated binding results in a shallower

gradient of cytosolic motors across the cell. This result agrees with the intuition that

saturated binding restricts the rate of binding for large motor density. This consequently

restricts the total number of motors walking to the right-end of the cell (P = 0.6), and in

turn, saturated binding restricts the total number of motors that accumulate at the cell

end.

Saturated binding with a spatially variable MT polarity

Next, consider a spatially varying MT polarity throughout the cell, P = P (x), in the

corresponding system of transport equations for the case of saturated binding. In this case,

the quasi-steady-state p0(α) is

p0(α) =

 P (x)kag(α)

(1− P (x))kag(α)

α

 , g(α) =
α

1 + cα
. (2.43)
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The QSS PDE, from (2.29), is

∂

∂t

(
kaα

(1 + cα)
+ α

)
=

∂

∂x

(
D
∂α

∂x
− (2P (x)− 1)

kaα

(1 + cα)

)
. (2.44)

Observe that the sign of the advection term depends only on the sign of (2P (x) − 1). If

P (x) < 0.5, then advection is to the left, while if P (x) > 0.5, then advection is to the right.

Biologically, if the MT polarity changes across the cell, the bulk molecular motor behaviour

will change correspondingly. If P (x) > 0.5 on some subinterval, the MT bias is to the right.

This leads to a collection of motors walking to the right in this subinterval. Moreover, if

P (x) < 0.5 on some subinterval, then the bulk movement of motors in this subinterval is to

the left.

To explore the effect of non-constant P (x) on the QSS PDE (2.44), consider two hypo-

thetical MT polarity functions. First, consider

P (x) =
1

2

[
1− tanh

(
x− 1

2

)]
, (2.45)

for which P (0) ≈ 1, P (1) ≈ 0, P (1
2) = 1

2 , and P ′(x) = −1
2 sech2(x − 1

2). For x ∈ [0, 1
2), we

have P (x) > 1
2 , which indicates that the MT polarity is biased to the right in the left part of

the cell. Similarly, for x ∈ (1
2 , 1], P (x) < 1

2 , which indicates that the MT polarity is biased

to the left in the right part of the cell. As a result of this MT polarity bias, the effective

velocity coefficient in the QSS PDE changes signs at x = 1
2 . From this, it is expected that

kinesin will walk toward the centre of the cell and become “trapped” there. In Figure 2.6

(a) depicts an aggregation of kinesin motors in the centre of the cell at steady-state as

predicted by the QSS PDE for both linear (c = 0) and saturated binding (c = 1). The

steady-state problem was solved numerically by the shooting method outlined in Appendix

A.2.

Following [16] and [26], where molecular motor movement in the hyphae of the fungus

Ustilago maydis was studied, the second choice is to consider a MT polarity bias near x = 0

and x = 1 that is polarized towards these cell ends, while the MTs near the cell centre point

to the right and to the left with (roughly) equal probability. As a model of such a polarity

consider

P (x) =
1

2

(
1 + tanh

[
2

(
x− 1

2

)])
. (2.46)

From the numerical computations of the steady-state of the QSS PDE, as shown in Figure

2.6(b), observe that with such a P (x) most of the kinesin motors are pushed towards the

boundaries of the cell for both linear (c = 0) and saturated binding (c = 1). This results

from the highly left-biased region at the left end of the cell and the highly right-biased
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region at the right end of the cell. Moreover, saturated binding sequesters more kinesin

in the cytosolic compartment in the middle of the cell with a non-zero density persisting

throughout the cell at steady-state.
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Figure 2.6: Effects of two spatially dependent MT bias functions, P (x). Steady-states
y(x) = eTp0(α(x)), obtained from the steady-state α(x) of the QSS PDE (2.44) with
spatially varying MT polarity where (a) MT “point towards” the cell center (described
by P (x) in (2.45)) and (b) “point towards” the cell ends (P (x) as given in (2.46)). Both
panels depict linear (c = 0, solid) and saturated binding (c = 1, dashed). In (a), observe an
accumulation of kinesin at the center of the cell whereas in (b) the accumulation is at the
cell ends. Saturated binding sequesters more kinesin motors in the cytosolic compartment,
which results in the shallower, diffusion-dominated, motor distributions in the case c = 1 in
both (a) and (b). Other parameters are ka = 5/3, and D = 0.1. The total mass was fixed
at
∫ 1

0 y(x) dx = 1.

Hill function binding

Next, consider a general Hill function for the binding rate, g(α), given by

g(α) =
αn

Kn + αn
, (2.47)

where n ≥ 1 and K > 0. Hill functions with n ≥ 2 are typically used to model positive

feedback or cooperative binding in biological systems. In this case, suppose that kinesin

motors binding cooperatively to the MTs in such a way that for low densities of motors

the binding rate is slow, at intermediate densities (α ≈ K) binding is rapid, while for

high densities of motors the binding rate saturates to some maximal level. The parameter

K describes the value of α at which g(α) reaches half of its maximum value, while the

parameter n describes the “sharpness” of the switch.

With this choice (2.47) of monotonically increasing g(α), the quasi-steady-state slow
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(c) K = 0.1

Figure 2.7: Effect of the Hill function parameters K and n. Steady-states y(x) =
eTp0(α(x)), obtained from the steady-state α(x) of the QSS PDE (2.44) with a Hill func-
tion binding rate (2.47) for P = 0.6. The parameter K represents the density of motors
pU that leads to g(pU) = 1/2 whereas the Hill coefficient n governs the “sharpness” of the
Hill function. Other parameters are ka = 5/3 and D = 0.1. The total mass was fixed at∫ 1

0 y(x) dx = 1.

manifold is given in terms of g(α) by (2.43). In addition, the QSS PDE is given by (2.29) with

boundary conditions (2.30). Below, I numerically examine the role of the Hill parameters n

and K, and discuss the effects that these parameters have on the bulk-behaviour of kinesin

within the cell.

Figure 2.7 depicts numerical approximations to the steady-state solution of the QSS

PDE for different values of n and K when P is fixed at P = 0.6. In particular, in Figure

2.7(a), steady-state solutions are shown for a fixed K = 1 and for increasing n. At motor

density α = K the binding rate is half-maximal, so that g(α) < 1
2 for α < K. This implies

that the advection term, ka(2P − 1)g(α), remains relatively small for α < K. This makes

sense, since motors hardly bind to MT at that low density. As K decreases from panel (a)

to (c) of Figure 2.7, the switch to rapid binding is made possible wherever α exceeds K.

For α > K, the advection term is near maximal resulting in an aggregation of kinesin motor

at the right-end of the cell. Hence, decreasing K from the value 1 shifts the system from

slow-advection to fast-advection, as seen by a comparison of the bulk distribution of motors

across the cell in panels (a), (b) and (c). The parameter n controls the “sharpness” of the

transition zone near α ≈ K in the Hill function. As n increases, the approximation g(α) ≈ 0

for α < K and g(α) ≈ 1 for α > K improves. In Figure 2.7(b), K = 0.5. As n increases, the

switch from slow-advection to fast-advection becomes shaper. Hence, for large n, in regions

where the cytosolic motor density α is larger than K, advection dominates over diffusion.

Increasing n results in a sharper distribution of motors across the cell in the steady state

solution.
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2.4.2 QSS Reduction: Kinesin-Dynein Model

As shown in Appendix A.4.2, the kinesin-dynein model (2.8) of §2.2.2 can be scaled to a

system of the form (2.15), where

p =

p
R

pL

pU

 , f(p) =

 kaQp
U − pR − kpRpL

ka(1−Q)pU − pL + kpRpL

pR + pL − kap
U

 , M =

−
∂
∂x 0 0

0 v ∂
∂x 0

0 0 D ∂2

∂x2

 .

(2.48)

Here the positive dimensionless parameters v, ka, k, and D, are defined in terms of the

original parameters of (2.8) by

v ≡ vl

vr
, D ≡ D0

vrL0
, ε ≡ vr

kuL0
, ka ≡

kb

ku
, k ≡ kcρ

ku
=

(krl − klr)ρ

ku
. (2.49)

Without loss of generality, assume that krl > klr, so that k > 0, since the cell ends are

interchangeable. It is convenient to parameterize the quasi-steady-state solution in terms of

pL = α. In Appendix A.4.2, I determine that there is a unique quasi-steady-state solution

satisfying f = 0 given by

p0(α) =

p
R

pL

pU

 =


Qα

kα+1−Q
α

1
ka

(
α+ Qα

kα+1−Q

)
 . (2.50)

To determine whether this quasi-steady-state solution is a slow manifold in the sense of

Definition 2.3.1, it is necessary to calculate the eigenvalues λ of the Jacobian of f at p = p0.

The first eigenvalue is λ = 0 and the other two eigenvalues λ± satisfy the quadratic equation

λ2−σ1λ+σ2 = 0; σ1 ≡ −2−ka+k
(
pR − pL

)
, σ2 ≡ 1+ka+k(1+ka)(pL−pR). (2.51)

By using (2.50) for pL and pR, σ1 and σ2 are given explicitly:

σ1 = −2− ka − kαH(Q), σ2 = 1 + ka + kα(1 + ka)H(Q); (2.52)

where H(Q) ≡ 1 − Q
1+kα−Q . A necessary and sufficient condition for Re(λ±) < 0 is that

σ1 < 0 and σ2 > 0 in (2.52). In Appendix A.4.2, I show that these inequalities hold for any

Q on 0 ≤ Q ≤ 1. Therefore, p0 is a slow manifold in the sense of Definition 2.3.1.

Next, to determine the QSS PDE for α(x, t) governing the dynamics on the slow man-

ifold, it is necessary to calculate the terms in the solvability condition (2.24a). This leads
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Figure 2.8: Comparison of the full solution with the QSS solution. Shown are the steady-
state of the full model (2.15) and (2.48) (dashed curve) for ε = 0.02 and the solution of
the QSS PDE (2.53) (solid curve) for pR (a), pL (b), and the total density y at position x.
The parameters are D = 0.1, ka = 2, k = 2, Q = 0.9, and v = 0.5. The total mass in the
cell was fixed at

∫ 1
0 y(x) dx = 1. The QSS approximation agrees well with the full solution

except near the boundary layers at the ends of the cell.

to the QSS PDE for α(x, t), given by

∂

∂t

((
1 +

1

ka

)(
kα+ 1

kα+ 1−Q

)
α

)
=

∂

∂x

(
V(α)α+D(α)

∂α

∂x

)
, (2.53a)

where the “effective transport rate” and the “effective rate of diffusion” are given by

V(α) =

(
v − Q

kα+ 1−Q

)
, D(α) =

D

ka

(
1 +

(1−Q)Q

(kα+ 1−Q)2

)
, (2.53b)

together with the zero-flux boundary conditions (see (2.80) of §2.5)

Vα+D∂α
∂x

= 0, at x = 0, 1. (2.53c)

In Figure 2.8, numerical results for the motor densities pR, pL, and the total density y,

in the steady-state solution of the full transport model [(2.15) and (2.48) with ε = 0.02]

and in the corresponding steady-state of the QSS PDE (2.53) are compared. As shown,

the full solution and the QSS solution agree well in the middle of the cell, but, as before,

the QSS does not capture the boundary layer behavior near the cell ends. §2.5 provides a

qualitative phase-plane analysis of the boundary-layer solutions and, in particular, predicts

that pR ≈ 0.82 at x = 1, which agrees well with the result in Figure 2.8(a).

How do solutions of the QSS PDE (2.53) behave? What is the role of parameters in the

original model in the overall transport process? First observe from (2.50) that the density
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Figure 2.9: The effect of parameters Q, v, ka, k on the total density. The total density is
y(x) = eTp0(α(x)), obtained from the steady-state α(x) of the QSS PDE (2.53). Baseline
parameters are k = 2, ka = 2, D = 0.1, v = 0.5, Q = 0.9. This value of Q biases the bulk
motor distribution to the right (top labelled curve in (a)). In (a), decreasing the binding
bias Q, (probability of binding to the right) results in a shift in right-biased movement to
left-biased movement. In (b), an increase in v (the ratio of the velocites of left-moving
to right-moving complexes) biases net movement towards the left. In (c), an increase in
ka (which represents the ratio of binding to unbinding rates kb/ku) sharpens the interface
between the regions of high- and low-density of motors. In (d), increasing the turning rate
constant, k, also biases the net movement to the left end of the cell. The total mass was
set to

∫ 1
0 y(x) dx = 1.

of freely diffusing motors is a weighted average of the left-moving and right-moving motors

with weight 1/ka (ratio of mean time spent bound to mean time spent freely diffusing).

The density of right-moving motors at QSS, given by Qα
kα+1−Q , saturates up to Q/k, as the

density of left-moving motors, α, increases. From (2.53a) the sign of the effective transport

velocity V in (2.53b) determines the direction of motion, with the motion being to the left
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if this quantity is positive. The net movement is to the left when the density of left-moving

motors, α, exceeds a threshold, i.e., when α > v(Q−1)+Q
vk . For example, with fixed v and

k, changing Q (which is the probability that a freely diffusing motor complex binds into

the right-moving state) will change this condition. Lowering Q increases the probability

that a freely diffusing motor binds into the left-moving state, which should bias the net

advection to the left. The “effective diffusivity” D of the system in (2.53b) is influenced by

the parameters D, ka, k and Q. Increasing ka decreases the effective diffusion coefficient in

(2.53a), which should lead to steeper solution profiles across the cell (as usual, increasing D

has the opposite effect). Increasing the turning parameter k also decreases the diffusivity of

the motors. The binding bias parameter Q appears in the diffusion coefficient in two ways.

First, as Q → 0 or Q → 1, the diffusion coefficient approaches the limiting value D/ka.

Second, there exists a critical Q-value that maximizes the effective rate of diffusion, given

a fixed motor density α and fixed k (this critical Q-value is kα+1
2αk+1).

In Figure 2.9, I plot steady-state solutions to the QSS PDE (2.53) for a range of values

of several parameters. These steady-states are readily calculated numerically by using a

numerical shooting method (see Appendix A.2). The top labelled curve in panel (a) is

produced with a baseline parameter set (k = 2, ka = 2, D = 0.1, v = 0.5, Q = 0.9) to

which parameter variations can be compared. The total mass of kinesin-dynein complex is

fixed as
∫ 1

0 y(x) dx = 1, where y(x) = eTp0(α(x)) and p0 is defined in (2.50). Decreasing

the probability, Q, of binding to the right-moving state (panel (a)) allows for more freely

diffusing motors to bind to the left-moving state, and a shift in right-biased movement to

left-biased movement. Increasing the velocity ratio of left-moving to right-moving motor

complexes v (panel (b)), biases net movement towards the left end of the cell, as expected.

In (c), an increase in ka, which decreases the “effective diffusivity” D, sharpens the interface

between the regions of high- and low-density of stalled motors. In (d), increasing the turning

rate constant, k, also biases the net movement to the left end of the cell. Note that high

values of k are required to shift the behaviour from right-biased to left-biased due to the

high baseline Q-value (Q = 0.9).

2.4.3 QSS Reduction: Myosin Model

Next, I study the QSS reduction of the myosin model given in (A.24). The analysis of this

model will differ from that of the previous two models in that there are two possible quasi-

steady-state solutions. In addition, the boundary-layer behaviour will play a nontrivial role

in the dynamics.

As shown in Appendix A.4.3, the myosin model (2.11) of §2.2.3 can be scaled to a system
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of the form (2.15) by

p =

p
W

pB

pU

 , f(p) =

−kbw

(
pB
)2
pW + kbp

U − pW

kbw

(
pB
)2
pW − pB

pB + pW − kbp
U

 , M =

−
∂
∂x 0 0

0 v ∂
∂x 0

0 0 D ∂2

∂x2

 ,

(2.54)

where the dimensionless parameters v, D, ε, kbw, and kb are defined by

v ≡ vb

vw
, D ≡ Df

vwL0
, ε ≡ vw

kuL0
, kbw ≡

k̂bwρ
2

ku
, kb ≡

k̂b

ku
. (2.55)

Upon setting the nonlinear kinetics in the scaled myosin model (A.24a) and (A.24c) to

zero, one obtains the two equations:

kbw

(
pB
)2
pW − pB = 0, −kbp

U + pB + pW = 0. (2.56)

The two possible solutions to the first equation in (2.56) are pB = 1/
[
kbwp

W
]

and pB = 0.

In the latter case, the motors equilibrate between freely diffusing and walking on MT, with

no motors in the bound, stalled state. In the former case, there is some proportion of motors

that are stalled. I analyze each of these cases in turn.

Type I quasi-steady-states: pB ≡ 0

In the case, with pB ≡ 0, let pU be the free parameter and set pU = β(x, t). This yields the

quasi-steady-state

p0(β) =

p
W

pB

pU

 =

kbβ

0

β

 . (2.57)

For p0, I readily calculate that the eigenvalues λ of the Jacobian of the kinetics f(p) at

p = p0 are λ = 0, λ = −1, and λ = −1 − kb. Therefore, (2.57) is a slow manifold in the

sense of Definition 2.3.1. The QSS PDE for β(x, t) is calculated by expanding the solvability

condition (2.24a). This yields the linear PDE

(kb + 1)
∂β

∂t
=

∂

∂x

[
D
∂β

∂x
− kbβ

]
, 0 < x < 1; D

∂β

∂x
= kbβ, on x = 0, 1. (2.58)

The steady-state solution βs(x) of (2.58) having a unit mass, so that
∫ 1

0 (kb + 1)β dx = 1, is

simply

βs(x) =

(
kb

(kb + 1)D

)
ekb(x−1)/D

1− e−kb/D
, (2.59)
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which determines the steady-state p0[βs(x)] from (2.57).

Moreover, since the time-dependent QSS PDE (2.58) is linear, it is readily solved by

separation of variables as

β(x, t) = βs(x) + ekbx/D
∞∑
n=1

cne
−λnDt/(kb+1)Φn(x), (2.60)

where cn for n ≥ 1 are coefficients defined in terms of the initial data β(x, 0). Here λ =

λn > 0 and Φ = Φn(x) are the positive eigenvalues and eigenfunctions of the Sturm-Liouville

problem

(
w(x)Φ′

)′
+ λw(x)Φ = 0, 0 < x < 1; Φ′(0) = Φ′(1) = 0, w(x) ≡ ekbx/D. (2.61)

Since the myosin model (A.24) is linear when pB ≡ 0, the boundary-layer analysis near

x = 0 and x = 1 is routine for this quasi-steady-state. At steady-state, and with pB = 0

in (A.24), it follows from (2.82) that there is no boundary-layer near x = 1. By solving

the boundary layer equations (2.83) near x = 1, the leading-order uniform steady-state

approximation is

pW = kbA
(
ekbx/D − e−x/ε

)
, pU = Aekbx/D, where A ≡ kb

D(kb + 1)

e−kb/D

1− e−kb/D
.

(2.62)

By (2.62), pU is an exponentially increasing function. By comparison, pW has a rapidly

decaying correction factor (since 1/ε is large in the second exponential), which produces a

small “knee” in its graph, Figure 2.10 (a), close to the origin.

Numerical results reveal that the steady-state (2.62) with pB = 0 is realizable from the

long-time dynamics of the full transport model (A.24) with different initial states for pW,

pB, and pU at t = 0. Figure 2.10 depicts the numerical solution pW and pU to (A.24) at

t = 130 for the parameter values ε = 0.02, kb = 0.3, kbw = 0.5, and D = 0.1, when the

initial densities are spatially uniform and equally-partitioned as pW = pB = pU = 1/3 at

t = 0. The full dynamics quickly drives pB to zero as t increases. From Figure 2.10, note

that at t = 130 the computed motor densities pW and pU from the full model agree well

with the steady-state asymptotic result (2.62).
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Figure 2.10: Full numerical vs. asymptotic solutions to the myosin model. Shown are
steady-state motor densities (solid curves) pW (a) and pU (b) (shown at t = 130) computed
from the full time-dependent myosin transport model (A.24) for ε = 0.02 and with the
spatially uniform initial condition pW = pB = pU = 1/3 at t = 0, so that the total mass is
unity. The parameters are kb = 0.3, kbw = 0.5, and D = 0.1. Although pB > 0 at t = 0, the
dynamics quickly drives pB to zero as t increases. The dashed curves in (a) and (b) are the
asymptotic results (2.62) for the steady-state, which compare favorably with the numerical
results.

Type II quasi-steady-states: pB > 0

It is also possible to let pB 6= 0 be the free parameter, and define pB = α(x, t). Upon solving

(2.56) for pW and pU, the quasi-steady-state solution for (A.24) is given by

p0(α) =

p
W

pB

pU

 =


1

kbwα

α
1
kb

(
α+ 1

kbwα

)
 . (2.63)

The eigenvalues λ of the Jacobian of the kinetics f(p) at p = p0 reveal whether p0 is a

slow manifold in the sense of Definition 2.3.1. One eigenvalue is λ = 0, while the remaining

two eigenvalues λ± satisfy the quadratic equation λ2 − σ1λ+ σ2 = 0, where σ1 and σ2 are

given by

σ1 = −2− kb + 2kbwp
BpW − kbw

(
pB
)2
, (2.64a)

σ2 =
(
1− 2kbwp

BpW
)

(1 + kb + kbw(pB)2) + 2k2
bw(pB)3pW − kb + kb

(
1 + kbw(pB)2

)
,

(2.64b)

with pB and pW as given by the entries in (2.63). Upon using (2.63) for p0, σ1 and σ2 are

σ1 ≡ −kb − α2kbw, σ2 ≡ (kb + 1)
(
α2kbw − 1

)
. (2.65)
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Since σ1 < 0, a necessary and sufficient condition for Re(λ±) < 0 is that σ2 > 0 in

(2.65). From the expression for σ2 in (2.65), it follows that p0 is a slow manifold whenever

kbw > 1/α2.

For kbw > 1/α2, the QSS PDE results from the solvability condition (2.24a). This yields

that

(1, 1, 1)
∂

∂t


1

kbwα

α
α
kb

+ 1
kbkbwα

 = (1, 1, 1)M


1

kbwα

α
α
kb

+ 1
kbkbwα

 . (2.66)

By calculating the various terms in this expression, the following nonlinear QSS PDE is

obtained for α(x, t):

∂

∂t

(
(kb + 1)(kbwα

2 + 1)

kbkbwα

)
=

∂

∂x

(
V(α)α+D(α)

∂α

∂x

)
, (2.67a)

where the “effective transport rate” and the “effective rate of diffusion” are given by

V(α) = vα− 1

kbwα
, D(α) = D

(kbwα
2 − 1)

kbkbwα2
. (2.67b)

From (2.80) of §2.5, the zero-flux boundary conditions for this conservation law are

Vα+D∂α
∂x

= 0, at x = 0, 1, (2.67c)

which are exactly zero-flux boundary conditions for the QSS PDE (2.67). From (2.67b)

we observe that the advection direction depends on the sign of V. In particular, if α <

1/(
√
vkbw), the net movement is to the right. By integrating the QSS PDE over the domain,

and by using (2.67c), we obtain a conservation law for y(x, t) = eTp0[α(x, t)], where p0(α)

is defined in (2.63). For all t > 0, we obtain in terms of α(x, t) that∫ 1

0
y(x, t)dx =

∫ 1

0
y(x, 0) dx , y(x, t) ≡ (kb + 1)

kbkbw

(kbwα
2 + 1)

α
. (2.68)

We remark that on the range kbwα
2 − 1 > 0 for which p0 is a slow manifold for the

dynamics, the QSS PDE (2.67a) is well-posed in that the diffusion coefficient in (2.67a) is

positive. In fact by expanding (2.67a), we obtain that (2.67a) is equivalent to the following

PDE with a constant diffusivity D/(kb + 1),

∂α

∂t
=

D

kb + 1

∂2α

∂x2
+

kbwkb

(kb + 1)(kbwα2 − 1)

((
vα2 +

1

kbw

)
∂α

∂x
+

2D

αkbkbw

(
∂α

∂x

)2
)
. (2.69)

Alongside the transport term involving ∂α
∂x , the source term 2D

αkbkbw

(
∂α
∂x

)2
describes how
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gradients in α can lead to an increase in motor density, especially for low densities (so that

1/α is large).

Steady-state solutions to the QSS PDE (2.67) are solutions to the nonlocal problem

dα

dx
= −kb

D

(
vkbwα

2 − 1
)

kbwα2 − 1
α ,

(kb + 1)

kbkbw

∫ 1

0

(kbwα
2 + 1)

α
dx = 1 , (2.70)

provided that kbwα
2 − 1 > 0 on 0 ≤ x ≤ 1. Here, the total mass has been fixed as∫ 1

0 y(x, 0) dx = 1. It is possible to use the numerical shooting method described in Appendix

A.2 to solve (2.70) and, further, to numerically identify the region in the kbw versus kb

parameter space where kbwα
2 − 1 > 0 on 0 < x < 1. For D = 0.1, this region is shown in

Figure 2.11(a) and in Figure 2.11(b) for v = 0.1 and v = 0.5, respectively.
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Figure 2.11: Region of solution existence (unshaded). Shown are the regions in the kbw

versus kb parameter space where a steady-state to the myosin model Type II QSS PDE
(2.67) for D = 0.1 exists when (a) v = 0.1 and (b) v = 0.5. In the shaded regions, there is
no steady-state to the Type II QSS PDE. On the boundary of these regions α = 1/

√
kbw

at x = 0. The total mass was fixed at
∫ 1

0 y(x, 0) dx = 1. The points marked in the left
and right panel are parameter values corresponding to solutions shown in Figure 2.13 and
Figure 2.12, respectively.

Figure 2.12(a)-(c) depicts the QSS motor-densities pB(x), pW(x), and pU(x), for three

values of kb corresponding to taking a horizontal slice at fixed kbw = 12 through the

parameter plane of Figure 2.11(b) with v = 0.5. In terms of α(x), these densities are given

by (2.63). From Figure 2.12(a)-(b), observe that as kb increases there is an accumulation

of bound myosin motors, with a corresponding decrease in walking myosin motors near the

left end of the cell. From Figure 2.12(c), observe that as kb increases, there is a decrease in

unbound freely diffusing motors in the cytosolic compartment in the middle of the cell.

Figure 2.13(a-c) depicts the QSS motor-densities pB(x), pW(x), and pU(x), for three

values of kbw corresponding to taking a vertical slice at fixed kb = 3.0 through the phase-
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Figure 2.12: Effect of the (scaled) binding rate, kb. The QSS densities pB (a), pW (b), and
pU (c), computed from (2.70) and (2.63), are plotted for three values of kb corresponding to
taking a horizontal slice through the parameter space of Figure 2.11(b) with fixed kbw = 12.
Other parameters are D = 0.1, and v = 0.5. The total mass was fixed at

∫ 1
0 y(x) dx = 1.
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Figure 2.13: Effect of the (scaled) stalling rate, kbw. As in Figure 2.12 but for three values
of kbw corresponding to taking a vertical slice through the parameter space of Figure 2.11(a)
with fixed kb = 3.0.

diagram of Figure 2.11(a) with v = 0.1. Observe from Figure 2.13(a-b) that as the transition

rate kbw between walking to bound motors increases, there is a decrease in walking motors,

with a corresponding increase in bound motors near the left end of the cell.

Finally, Figure 2.14(a,b) depicts the QSS motor densities for v = 0.1 and v = 0.5,

respectively, for the parameters kb = 3, kbw = 20, and D = 0.1. As the treadmilling

speed, v, increases from v = 0.1 to v = 0.5, note that the system switches from right-biased

advection to left-biased advection. This matches the observation that net movement is to

the right if pB ≡ α < 1/
√
vkbw. For small treadmilling velocity v, this condition is more

easily satisfied since the quantity 1/
√
vkbw is large.

Two notable features distinguish the myosin model from previous models discussed

herein. The first is existence of two possible QSS approximations, as shown. A second

feature pertains to the boundary-layer behavior near x = 0 and x = 1. This is analyzed in
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Figure 2.14: Effect of treadmilling speed, v. QSS densities pB, pW, and pU, computed from
(2.70) and (2.63), for (a) v = 0.1 and (b) v = 0.5. As v increases, the system switches from
right-biased advection to left-biased advection. Other parameters are kbw = 20, kb = 3 and
D = 0.1. The total mass is

∫ 1
0 y(x, 0) dx = 1.

detail in §2.5.3 based on the full myosin transport model (A.24) near x = 0. There, using

phase-plane analysis, I explain that it is always possible to insert a boundary layer near

x = 0 to satisfy pW = 0 at x = 0. However, §2.5.3 also shows that there is no steady-state

boundary-layer solution near x = 1 that allows the extra boundary condition pB = 0 at

x = 1 to be satisfied. This difficulty results from the fact that pB = 0 is the slow manifold

for the Type I solutions of §2.4.3. Since no steady-state boundary layer solution exists in

the full model, any non-zero density of stalled motors pB will tend to 0 via a backwards

propagating wave that leaves pB = 0 in its wake. The full myosin model converges to a Type

I QSS (2.57) regardless of the initial condition. An example of this behaviour is shown in

Figure 2.15, where kbw = 25, kb = 3, D = 0.1, v = 0.5, and ε = 0.02. As a result, drawing

conclusions about the behavior of the full system from the QSS PDE becomes difficult.

This leads to the question of which QSS PDE, Type I or Type II, better describes the bulk

system dynamics.

One possible regularization to overcome this problem with the boundary-layer near x = 1

is to add an asymptotically small diffusion term ε1p
B
xx to (A.24), where ε1 = O(ε). This

regularization term does not affect the quasi-steady-states at leading order. The addition

of such a small “regularizing” diffusion term also appears in the traveling-wave analysis of

[102]. The fully scaled model is as in (A.24c), but with the additional small diffusion term
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Figure 2.15: pB(x, t) converges to Type I QSS. The density of bound motors, pB(x, t), tends
to zero behind a wave propagating backwards from x = 1. The full myosin model converges
to a Type I QSS as no non-trivial steady-state solution satisfies the boundary condition
pB(1) = 0. Parameters are kbw = 25, kb = 3, D = 0.1, v = 0.5, and ε = 0.02.

in the pB equation:

∂pW

∂t
= −∂p

W

∂x
+

1

ε

(
−kbw

(
pB
)2
pW + kbp

U − pW
)
, (2.71a)

∂pB

∂t
= ε1

∂2pB

∂x2
+ v

∂pB

∂x
+

1

ε

(
kbw

(
pB
)2
pW − pB

)
, (2.71b)

∂pU

∂t
= D

∂2pU

∂x2
+

1

ε

(
pB + pW − kbp

U
)
. (2.71c)

The boundary conditions are as before, (2.12) and (2.13), but instead of pB(1, t) = 0, it is

necessary to impose that

∂pB

∂x
(0, t) = 0 and

∂pB

∂x
(1, t) = 0, (2.72)

for conservation of mass.

In this case, both Type I and Type II QSS PDE are valid approximations of the full

system, and it is possible to add steady-state boundary layers near x = 0 and x = 1 for

the regularized model (2.71). However, it is intractable anaytically to analyze the global

behavior of time-dependent solutions for (2.71), so as to predict which of the two types of

QSS PDEs will result from an an arbitrary initial state. Figure 2.16(a) depicts that the

full model (2.71) with asymptotically small diffusion term ε1p
B
xx has a steady-state with

non-zero pB, and that solutions can converge to the Type II QSS (as compared with Figure

2.15). In this case, as shown in Figure 2.16(b), solutions to the full myosin model and the

Type II QSS PDE agree as expected.

Due to the existence of two QSS solutions, it is expected that the initial condition for
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(2.71) determines whether the full myosin model converges to the Type I or Type II QSS. To

elucidate this hypothesis, I fix the model parameters kbw = 25, kb = 3, D = 0.1, v = 0.5,

ε = 0.02, and ε1 = 0.005 and numerically determine to which QSS the regularized full

system of PDE’s (2.71) converges for a range of spatially homogenous initial conditions:

pW(x, 0) = c1, pB(x, 0) = c2, with 0 ≤ c2, c2 ≤ 1, c1 + c2 ≤ 1 and pU(x, 0) = 1 − c1 − c2

(to ensure conservation of total mass). In Figure 2.17, the results of this exploration are

shown in a phase-diagram. For a given pair of spatially homogenous initial conditions,

(pB(x, 0), pW(x, 0)), a circle indicates that the model (2.71) converges to a Type I QSS, while

a cross indicates that the model (2.71) converges to a Type II QSS. The line on the phase-

diagram indicates the unstable manifold which emanates from a saddle-point steady-state

in the myosin-model reaction kinetics (the non-spatial myosin-model). For a phase-plane

analysis of the non-spatial model, see §A.4.4. Below this unstable manifold, the solutions

converge to a steady-state with pB = 0, similar to a Type I QSS. Above this unstable

manifold, solutions converge to a steady-state with pB > 0, similar to a Type II QSS. The

discrepancy between the unstable manifold computed from the non-spatial model and the

phase-diagram from the fully-spatial model indicates that the spatial processes enlarge the

region of attraction for Type II QSS with non-zero pB.
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Figure 2.16: Steady-state behaviour of the regularized myosin model. (a) The steady-state
behaviour of the full myosin model with small pB diffusion term. Note that pB > 0 for all x.
(b) A comparison of the total density of myosin in the Type II QSS approximation and in the
full model. Note that this Type II QSS behaviour approximates the full system dynamics
well. Parameters are kbw = 25, kb = 3, D = 0.1, v = 0.5, ε = 0.02, and ε1 = 0.005. The
total mass was fixed at

∫ 1
0 y(x) dx = 1.
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Figure 2.17: Myosin model initial condition dependence. The steady-state behaviour of
the full myosin model with pB diffusion depends on the initial conditions. For a given pair
of spatially homogenous initial conditions,

(
pW(x, 0), pB(x, 0)

)
= (c1, c2), with pU(x, 0) =

1 − c1 − c2, the solution will converge to a Type I steady-state, with
∫ 1

0 p
B(x) dx = 0

(indicated by a circle), or to a Type II steady-state (cross), with
∫ 1

0 p
B(x) dx > 0. The line in

the phase-diagram represents the unstable manifold computed from the non-spatial myosin
model (§A.4.4). In the non-spatial model, the solution converges to a Type I steady-state
(pB = 0) with initial conditions below this unstable manifold, while the solution converges
to a Type II steady-state (pB > 0) with initial conditions above this unstable manifold.
Parameters are kbw = 25, kb = 3, D = 0.1, v = 0.5, ε = 0.02, and ε1 = 0.005. The total
mass was fixed at

∫ 1
0 y(x) dx = 1.

2.5 Boundary Layer Analysis

In this section, the appropriate boundary conditions for the QSS PDEs are determined, and

the boundary layers in the full models near x = 0, 1 are analyzed. In particular, I explain

how the QSS PDE inherits the boundary condition from the full reaction-advection-diffusion

PDE system. Using the method of matched asymptotics, I also analyze the boundary layer

behaviour of solutions to the full PDE system to explain estimate the error in the QSS

approximation.

The discussion begins with general three-component systems on 0 ≤ x ≤ 1 of the form

p1t = −v1p1x +
f1

ε
, p2t = v2p2x +

f2

ε
, p3t = Dp3xx +

f3

ε
, (2.73a)

where v1, v2, D are positive O(1) constants, ε � 1, and the kinetics fj = fj(p1, p2, p3) for
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j = 1, 2, 3, satisfy the conservation condition

f1 + f2 + f3 = 0. (2.73b)

The three models, kinesin, kinesin-dynein, and myosin are systems of PDE of the form

(2.73a). Imposing the mass constraint ∂t
∫ 1

0 (p1 + p2 + p3) dx = 0, and setting p1(0, t) =

p2(1, t) = 0, reveals the following boundary conditions for (2.73a):

Dp3x + v2p2 − v1p1 = 0, at x = 0, 1; p1(0, t) = 0, p2(1, t) = 0. (2.73c)

Matched asymptotic analysis

As in the QSS reduction in the previous sections, assume that there is a unique one-

parameter family p0(α) ≡ (p0
1(α), p0

2(α), p0
3(α))T of solutions to the leading-order problem

f = (f1, f2, f3)T = 0, and that p0 is a slow manifold for (2.73) in the sense of Definition

2.3.1. Then, as was shown in §2.3, α = α(x, t) satisfies the QSS PDE (2.24a), which can be

written as

∂t
(
p0

1 + p0
2 + p0

3

)
= ∂x

(
−v1p

0
1 + v2p

0
2 +D∂xp

0
3

)
. (2.74)

The QSS solution is known as the outer solution, which is valid away from the boundaries

x = 0, 1.

To determine an appropriate boundary condition for (2.74) as x → 0+, I analyze the

boundary layer structure for (2.73) near the left endpoint x = 0. As x → 0+, then it is

expected that the solution to the full system will agree with the outer solution (from the

QSS PDE) with errors that depend on x:

p1 = p0
10 +O(x), p2 = p0

20 +O(x), p3 → p0
30 + x

dp0
3

dx

∣∣
x=0

+ · · · , (2.75)

where p0
j0 ≡ p0

j (α(0, t)) denotes the QSS solution evaluated at x = 0. for j = 1, 2, 3. Since

the cell-ends are interchangeable, only an analysis of the boundary layer near x = 0 is

presented—a similar analysis can be done near x = 1.

To determine the width of the boundary layer, consider the dominant balances in the

full system. For t = O(1) the two possible balances for the spatial derivatives in (2.73a)

near x = 0 are x = O(
√
ε) and x = O(ε) (considering the presence of a first-order and a

second-order spatial dertivatives and the 1
ε multiplying the nonlinear function f). On the
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wider scale, use the change of variables ξ = x/
√
ε to obtain from (2.73a) that

p1t = − v1√
ε
p1ξ +

f1

ε
, p2t =

v2√
ε
p2ξ +

f2

ε
, p3t =

D

ε
p3ξξ +

f3

ε
. (2.76)

In this case, for ε� 1, the leading-order contributions are from those terms with factor 1
ε .

At leading order, f1 = f2 = 0 (from the first two equations in (2.76)). This implies that

f3 = 0 thanks to conservation (2.73b). Since the QSS solution satisfies f1 = f2 = f3 = 0,

it follows that on this wide-scale that p1 ∼ p0
10, p2 ∼ p0

20, and p3 ∼ p0
30 for x = O(

√
ε). In

other words, the QSS approximation is still valid on this wide-scale when x = O(
√
ε).

The other dominant balance for spatial derivatives in (2.73a) is x = O(ε). To study this

region, introduce η ≡ x/ε, and obtain from (2.73a) that

εp1t = −v1p1η + f1, εp2t = v2p2η + f2, εp3t =
D

ε
p3ηη + f3. (2.77a)

From (2.73c), the boundary conditions for this system are

D

ε
p3η + v2p2 − v1p1 = 0, at η = 0; p1(0, t) = 0, (2.77b)

while the asymptotic matching conditions, as obtained from (2.75), are that

p1 ∼ p0
10, p2 ∼ p0

20, p3 ∼ p0
30 + εη

dp0
3

dx

∣∣
x=0

, as η →∞. (2.77c)

For t = O(1), neglect the asymptotically negligible left-hand sides of (2.77a) to obtain

− v1p1η = −f1, v2p2η = −f2,
D

ε
p3ηη = −f3. (2.78)

By adding the equations in (2.78), using the conservation condition (2.73b), and after

integrating in η, for all η > 0,

D

ε
p3η − v1p1 + v2p2 = A, (2.79)

where A is independent of η. Evaluating this expression at η = 0, (2.77b) yields that A = 0.

With A = 0, evaluating (2.79) as η →∞ by using the matching condition (2.77c) yields

D
dp0

3

dx
− v1p

0
1 + v2p

0
2 = 0, at x = 0. (2.80a)

This key result shows that to obtain the boundary condition at x = 0 for the QSS PDE

for α(x, t), it is possible to substitute the outer approximation p1 = p0
1(α), p2 = p0

2(α), and
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p3 = p0
3(α), into the first condition of (2.73c). In this sense, the QSS PDE inherits the

no-flux boundary condition (2.73c) at x = 0. Note that a similar analysis can be done near

x = 1, with the analogous result that

D
dp0

3

dx
− v1p

0
1 + v2p

0
2 = 0, at x = 1. (2.80b)

Next, to fully characterize the beahviour of the boundary layer and to estimate the error

made with the QSS approximation, I complete the boundary layer analysis near x = 0 by

asymptotically expanding:

p3 = p0
30 +

ε

D
P3 + · · · , (2.81)

and obtain from the first two equations in (2.78), together with (2.79) with A = 0, the

following boundary-layer problem on 0 < η <∞:

v1p1η = f1

(
p1, p2, p

0
30

)
; p1(0) = 0, p1 → p0

10 as η →∞, (2.82a)

v2p1η = −f2

(
p1, p2, p

0
30

)
; p2 → p0

20 as η →∞, (2.82b)

P3η = v1p1 − v2p2; P3η ∼ D
dp0

3

dx

∣∣
x=0

as η →∞. (2.82c)

Here, the first two equations result from the dynamics of the full model in the region where

x = O(ε), i.e., with spatial coordinate η. Boundary conditions for these equations result

from the fact that p1(0) = 0, and that both p1 and p2 should match with the outer solution

(from the QSS) as η →∞. Finally, the boundary conditions at x = 0 (2.79) imply that the

correction term P3 must satisfy the P3η = v1p1 − v2p2, with the derivative matching the

derivative of the outer solution as η →∞.

Although the first two equations for p1 and p2 are uncoupled from P3, in general it is

not possible to calculate p1 and p2 analytically when f1 and f2 are nonlinear in p1 and p2.

However, the system for p1 and p2 can be readily studied qualitatively in the phase-plane.

A similar boundary layer analysis can be done near x = 1. To study this boundary

layer, define η = (1− x)/ε to find, in place of (2.82a) and (2.82b), that

v1p1η = −f1

(
p1, p2, p

0
31

)
; p1 → p0

11 as η →∞, (2.83a)

v2p1η = f2

(
p1, p2, p

0
31

)
; p2(0) = 0, p2 → p0

21 as η →∞. (2.83b)

Here p0
j1 ≡ p0

j (α(1, t)), for j = 1, 2, 3.

Next, I will study the phase-plane behaviour of the boundary layer solution for the

kinesin, kinesin-dynein, and the myosin models.
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2.5.1 The Kinesin Model

For the kinesin model (2.25) of §2.4.1, the boundary layer system (2.82) can be solved

explicitly. With the QSS approximation p0, as given in (2.27), note that v1 = v2 = 1,

p1 = pR, p2 = pL, and p3 = pU. From the QSS for the kinesin model, (2.27), the outer

solution gives p0
10 = kaP (0)g(α0), p0

20 = ka [1− P (0)] g(α0), and p0
30 = α0, where α0 ≡

α(0, t). Therefore, using the reaction kinetics in (2.25), the boundary layer problem (2.82)

becomes

p1η = p0
10 − p1, p2η = −p0

20 + p2, P3η = p1 − p2. (2.84)

The solution with p1(0) = 0, p1 → p0
10 and p2 → p0

20 as η →∞, is simply p1 = p0
10(1− e−η),

and p2 = p0
20. Then, P3 is obtained up to a constant by integrating the last equation in

(2.84). In this way, the boundary layer solution for x = O(ε) is that

pR ∼ p0
10

(
1− e−x/ε

)
, pL ∼ p0

20, pU = p0
30 +

ε

D

(
ηD

dα

dx

∣∣
x=0

+ p0
10e
−η +B

)
,

(2.85)

where the constant B can only be determined from a two-term outer QSS solution, that

is intractable analytically. This analysis shows two key features. First, the right-moving

motors have a classic boundary-layer behaviour when x = O(ε). Second, for x = O(ε) the

unbound kinesin motor density pU differs from its outer approximation only by an error

O(ε/D). A similar calculation can be done for the boundary layer near x = 1 using (2.83).

2.5.2 The Kinesin-Dynein Model

For the kinesin-dynein model (2.48), I study the boundary-layers equations (2.82) for the

layer near x = 0 qualitatively in the phase-plane. Using f in (2.48), and setting v1 = 1 and

v2 = v, (2.82a) and (2.82b) on 0 < η <∞ become

p1η = −p1 − kp1p2 + kaQp
0
30, p1(0) = 0, p1 → p0

10 ≡
Qα0

kα0 + 1−Q
as η →∞,

(2.86a)

p2η = −1

v

[
ka(1−Q)p0

30 − p2 + kp1p2

]
, p2 → α0 as η →∞, (2.86b)

where p0
30 = (kα0 + 1)α0/[ka(kα0 + 1−Q)]. To analyze (2.86) in the phase-plane, it is

convenient to introduce new variables q1(η) and q2(η) defined by

p1 =
r2

k
q1, p2 =

r1

k
q2, where r1 = kα0, r2 ≡

Qr1

r1 + 1−Q
. (2.87)
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In terms of q1 and q2, (2.86) transforms to the two-component dynamical system

q1η = g1(q1, q2) ≡ (1− q1) + r1(1− q1q2), q1(0) = 0, q1 → 1 as η →∞,

(2.88a)

q2η = g2(q1, q2) ≡ −1

v
[1− q2 + r2(q1q2 − 1)] , q2 → 1 as η →∞. (2.88b)

This system for q1 and q2 is more easily studied qualitatively, as it has a equilibrium solution

at q1 = q2 = 1, and the asymptotic matching conditions require that q1 and q2 tend 1 as

η → ∞, to match with the outer solution. Moreover, the initial condition requires that

q1(0) = 0. As such, in the phase-plane, I seek to show the existence of a trajectory from

the q2 axis for η = 0 that converges to q1 = q2 = 1. Below, I will argue that the equilbrium

(1, 1) is a saddle point for the dynamics and demonstrate that such a trajectory does exist.

This trajectory will correspond to the boundary layer solution after changing coordinates

back to p1 and p2.

Note that r2 depends on r1. With r2 considered as a function of r1: r2 = 0 when

r1 = 0; r2 → Q < 1 as r1 → ∞; and r2 is monotone increasing in r1 since dr2/dr1 =

[Q(1−Q)]/(r1 + 1−Q)2 > 0 holds for 0 < Q < 1. It follows that 0 < r2 < 1 for any

r1 > 0.

The determininant of the Jacobian Jg of g1 and g2 at the equilibrium state q1 = q2 = 1

is

det(Jg) = − 1

v (kα0 + 1−Q)

[
(1−Q)(1 + 2kα0) + kα2

0

]
< 0,

revealing that q1 = q2 = 1 is a saddle point for the dynamics. In Figure 2.18(a), I plot

the phase portrait q2 versus q1 and nullclines for (2.88) for representative values r1 = 2,

r2 = 0.5, and v = 0.5. The q2 nullcline intersects the q2 axis at q2 = 1 − r2 ∈ (0, 1) since

0 < r2 < 1. This plot indicates the existence of a unique value q2(0) = q0
2 > 1 − r2 for

which (2.88) has a solution with (q1, q2) → (1, 1) as η → ∞. This solution corresponds to

the stable manifold of the saddle point, which intesects the q2-axis so that q1(0) = 0. The

solution is the boundary-layer solution after returning to the original variables p1 and p2.

This qualitative analysis confirms the existence of a boundary-layer solution near x = 0 for

the kinesin-dynein model for a range of parameters.

A similar phase-plane analysis can be done to analyze the boundary-layer system (2.83)
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Figure 2.18: Qualitative analysis of boundary layer behaviour of the kinesin-dynein model.
Phase portraits of q2 versus q1 for boundary layer solutions of the kinesin-dynein model
near x = 0 (a) and near x = 1 (b) from (2.88) and (2.89), respectively. In (a) there is a
unique value q2 = q0

2 at q1 = 0 for which (2.88) has a solution with (q1, q2) → (1, 1) as
η → +∞. In (b) there is a unique value q1 = q0

1 at q2 = 0 for which (2.89) has a solution
with (q1, q2) → (1, 1) as η → ∞. The parameter values r1, r2, and v for (b) are those
consistent with Figure 2.8.

near x = 1. In place of (2.88), the boundary-layer system is now

q1η = −g1(q1, q2) ≡ − [(1− q1) + r1(1− q1q2)] , q1 → 1 as η →∞, (2.89a)

q2η = −g2(q1, q2) ≡ 1

v
[1− q2 + r2(q1q2 − 1)] , q2(0) = 0 q2 → 1 as η →∞,

(2.89b)

where, in place of (2.87), r1 and r2 are now defined by r1 = kα1 and r2 ≡ Qr1/(r1 + 1−Q),

and α1 = α at x = 1. Also note that the asymptotic matching conditions for η → ∞ are

different. Here, the solution must satisfy q2(0) = 0. As such, I seek a solution that intersects

the q1 axis and converges to (1, 1). Figure 2.18(b) depicts the phase portrait and nullclines

for (2.89) for r1 = 1.69, r2 = 0.85, and v = 0.5. This corresponds to the parameter values

used in Figure 2.8. The phase portrait shows the existence of a unique value q1(0) = q0
1

for which (2.89) has a solution with (q1, q2) → (1, 1) as η → ∞. As before, the solution

corresponds to the stable manifold of the saddle point, and yields q0
1 ≈ 1.95. In terms of

the original variables this yields p1 ≈ 0.83 at x = 1 (from (2.87)), which agrees with the

numerical approximations in Figure 2.8.
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2.5.3 The Myosin Model

For the full myosin transport model (A.24), the boundary-layer equations (2.82a)–(2.82b)

can be studied qualitatively. In this section, I will explain that a boundary layer solution

exists near x = 0, however, there is no boundary-layer solution for the myosin model near

x = 1. This result will explain why the Type II QSS is not realized by numerical solutions

to the full myosin model as in §2.4.

The boundary-layer near x = 0 can also be studied qualitatively in the phase-plane.

Upon setting v1 = 1 and v2 = v, (2.82a) and (2.82b) on 0 < η <∞ become

p1η = −kbwp1p
2
2 − p1 + kbp

0
30, p1(0) = 0, p1 → p0

10 ≡
1

kbwα0
, as η →∞,

(2.90a)

p2η = −1

v

(
kbwp1p

2
2 − p2

)
, p2 → α0 as η →∞, (2.90b)

where p0
30 = (α0 + 1/[kbwα0]) /kb and α0 = α(0, t). As before, introduce new variables q1

and q2 defined by

p1 =
1

kbwα0
q1, p2 = α0q2, (2.91)

so that in terms of r ≡ kbwα
2
0, (2.90) becomes

q1η = g1(q1, q2) ≡ −r
(
q1q

2
2 − 1

)
+ 1− q1, q1(0) = 0, q1 → 1 as η →∞,

(2.92a)

q2η = g2(q1, q2) ≡ −1

v

(
q1q

2
2 − q2

)
, q2 → 1 as η →∞. (2.92b)

As in the last section, the equilibrium is a saddle point and the boundary layer solution

corresponds to the stable manifold of the saddle point. At the equilibrium state q1 = q2 =

1, the determinant of the Jacobian Jg of g1 and g2 is det(Jg) = (1− r)/v. Therefore,

det(Jg) < 0 and q1 = q2 = 1 is a saddle-point if r ≡ kbwα
2
0 > 1. Figure 2.19(a) depicts

phase portrait of q2 versus q1 and nullclines for (2.92) for the representative values r = 5

and v = 0.5. Observe that there is a unique value q2(0) = q0
2 for which (2.92) has a solution

with (q1, q2) → (1, 1) as η → ∞. As such, there is always a boundary-layer solution near

x = 0 for the myosin model.

A similar boundary-layer system near x = 1 can be obtained from (2.83) for the myosin
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Figure 2.19: Qualitative analysis of boundary layer behaviour of the myosin model. Phase
portraits of q2 versus q1 for boundary layer solutions of the myosin model near x = 0 (a) and
near x = 1 (b) from (2.92) and (2.93), respectively. In (a) there is a unique value q2 = q0

2

at q1 = 0 for which (2.92) has a solution with (q1, q2) → (1, 1) as η → +∞. However, for
the right boundary-layer, the phase-plane in (b) there is no value q1 = q0

1 > 0 at q2 = 0 for
which (q1, q2)→ (1, 1) as η →∞.

model. In place of (2.92), the system is

q1η = −g1(q1, q2) ≡ r
(
q1q

2
2 − 1

)
− 1 + q1, q1 → 1 as η →∞, (2.93a)

q2η = −g2(q1, q2) ≡ 1

v

(
q1q

2
2 − q2

)
, q2(0) = 0 q2 → 1 as η →∞, (2.93b)

where r is now defined by r = kbwα
2
1 with α1 = α(1, t). Although the equilibrium point

q1 = q2 = 1 is a saddle point of (2.93) whenever r > 1, the phase portrait in the q2 versus

q1 plane in Figure 2.19(b) shows that there is no value q1(0) = q0
1 > 0 on q2 = 0 for which

(q1, q2)→ (1, 1) as η →∞.

As such, for the Type II QSS approximation (2.63) in the myosin model there is no

steady-state boundary-layer solution near x = 1 that allows the extra boundary condition

pB = 0 at x = 1 to be satisfied.

2.6 Discussion

The quasi-steady-state reduction method for molecular motor transport was introduced in

[57] for reaction–advection–diffusion systems with linear reaction kinetics. Here, I have

generalized this method to a class of problems where the kinetics are nonlinear, but where

a conservation condition is satisfied. The QSS method relies on the assumption that the
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nonlinear kinetics occur on a faster time-scale than the diffusion and advection processes.

In this limit of fast reaction kinetics, and under a condition on the eigenvalues of the

Jacobian of the kinetics, the full system dynamics were shown to be well-approximated by

the dynamics on a slow solution manifold, which consists of a single scalar quasi-steady-

state PDE. This asymptotic formalism was used to analyze three specific nonlinear models

for the binding and unbinding of molecular motors.

Three models I used as case-studies contained two distinct types of nonlinear reaction.

(1) The kinesin model has a nonlinearity in the binding rate of motors to MT (due to

saturation, with and without binding cooperativity). This model reduces (with parameter

c = 0) to the linear binding case considered in a previous study [16], and is used here as

a basic “control” to validate our method. Typical nonlinear responses such as Michaelis-

Menten or Hill function kinetics were used to describe the dependence of binding rate on

the free motor density (represented by the increasing and saturating function g). Here the

nonlinearity was a function of a single state-variable. (2) In the second class of models,

nonlinearity stemmed from interaction between motors in different states, such as collisions

that lead to direction changes or stalling while bound to a MT. Both the kinesin-dynein

complex model and the myosin motor model shared such aspects.

Each model satisfied a conservation law, namely the total density of motors was fixed in

the cell (the total density was fixed at 1 for numerics throughout, as discussed in Appendix

A.4). This constraint served an important purpose, as it was used to reduce the system

from n to n − 1 states (where n = 3 for all our models). In each case, the population

of motors in various states was defined in terms of one reference state (denoted by α(x)).

The choice for that reference state was merely a matter of convenience of calculations, and

specific to each case.

Many elements of the linear QSS theory carry over to the nonlinear analysis here. How-

ever, the geometry of projections in the linear case (as developed in [7, 57]) no longer holds,

suggesting that obtaining higher order terms in asymptotic solutions is no longer tractable.

Obtaining expressions for such correction terms remains an open problem. Moreover, in

many cases, the diffusion coefficient in the unbound state is taken to be O(ε). If this is the

case, in those particular cases where the drift term vanishes, our QSS PDE would simply

reduce to a conservation law for the total density of motors, and fail to describe the dy-

namics of the system. To avoid this, it is necessary to assume that the diffusion coefficient

in the unbound state is O(1).

For all such models, the QSS reduction of (2.15) leads to new scalar nonlinear PDEs,

are not easily amenable to analytical solution techniques. Although it was still necessary to

solve these QSS PDEs numerically, the QSS reduction does effectively eliminate the small

parameter ε from the full model and avoids the more challenging numerical task of having

64



to compute solutions to the full nonlinear vector system (2.15) of PDEs at each small ε.

The QSS analysis permits the formulation of conclusions about the overall rate of trans-

port (advection velocity) of the system that results from the combination of motors walking

on MT, diffusing while unbound, and kinetics of binding, unbinding, switching directions,

and/or stalling. Additionally, the QSS PDE was shown to provide insight into the be-

haviour of the steady-state solutions as parameters are varied. This insight was used to

interpret cell-level behaviours resulting from various specific molecular-motor-level assump-

tions. I now summarize some of the major conclusions and their implications for each of

the case-studies.

Kinesin model

Here the cytosolic motor state was used as the reference state α, and a Fokker-Planck (FP)

equation (2.29) was derived for the total motor density. In the special case of spatially

constant microtubule bias, this reduced further to the FP equation (2.33a) for the cytosolic

state from which we can draw several conclusions. (a) The overall transport direction

depends on the sign of (1−2P ). (b) When (1−2P ) 6= 0 (which means that more MTs point

to one end of the cell than to the other), I predict an exponential spatial motor distribution

corresponding to MTs bias. (c) Both the effective diffusion and the effective transport

rates are (essentially) averages of the diffusion and transport rates in the underlying states,

weighted by the fraction of time spent in each of those states. These conclusions are

consistent with results of the linear models in [16]. (d) When MT polarity bias P (x) is

spatially nonuniform, there arises the possibility for motors to pile up either at cell ends

or in the middle of the cell, as shown in Figure 2.6. This reflects the earlier results for

the QSS reduction of a model with spatially varying parameters. In this case, the resulting

QSS PDE had spatially dependent effective diffusion and velocity [58]. (e) The overall effect

of nonlinear binding in this case is that more kinesin motors are sequestered in the freely

diffusing class, which results in a shallower motor density across the cell. The shallower

solution profile results from the fact that the binding rate is limited in both the saturated

binding and Hill function binding cases. (f) Hill function binding (which could represent

cooperative motor binding interactions) creates ‘kinks’ and inflection points in the spatial

motor distribution, since the Hill function turns binding on or off more sharply than does

Michaelis-Menten kinetics.

Kinesin-Dynein model

Here the nonlinearity involves a product of two state variables (left and right moving com-

plexes), a composite left-right bias function Q(x), and possibly distinct velocities when

moving right or left (see Appendix A.3.2 for the relationship of the function Q to the un-
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derlying biological details). Here the left-moving motor variable was used as reference state

α. Both the effective transport rate and effective diffusion rate are “density dependent”

functions of α. The effective transport rate depends intuitively on the model parameters.

Increasing the velocity of left-moving complexes, decreasing the probability of binding to

the right-moving state, or increasing the right-to-left turning rate all result in biasing trans-

port towards the left-end of the cell. The effective diffusion rate is scaled by 1/ka (ka is the

association constant), which intuitively modulates how many molecular motor complexes

remain in the cytosolic vs. bound states. The effective diffusion rate is further increased

from baseline through the “tug-of-war” that the motor complex exerts on its cargo. This

increase results from the product (1−Q)Q, which gives the probability of binding into the

left-moving and right-moving state. Although a motor cannot simultaneously bind into the

left-moving and right-moving state, I find that the competition between right-moving and

left-moving states increases the effective diffusion of the system—this makes sense, as any

rapid switching between right- and left-moving states is similar to a diffusive mechanism.

Myosin model

The motor interference was assumed to cause stalling with a higher-degree nonlinearity

((pB)2pW) than in the kinesin-dynein motor complex model, which was inspired by the

nonlinear interactions in a model for myosin aggregations [101, 102]. Moreover, the stalled

and walking myosin motors have different velocities, with the stalled motors being trans-

ported due to actin treadmilling. Interestingly, this higher-degree nonlinearity gave rise to

two distinct QSS solutions, one of which was characterized by the absence of stalled motors

(pB = 0, “Type I QSS”). In this case, the QSS PDE is linear and the steady-state solution

was found explicitly. For the second QSS solution with pB 6= 0, I identified a nonlinear

FP equation with diffusivity D/(1 + kb), a density-dependent effective transport term, and

an additional term proportional to (∂α/∂x)2. The latter (“Type II QSS”) exists only for

a subset of parameters (Figure 2.11). Moreover, solutions to the full system converge to

the Type I solution, unless the full model is corrected by an asymptotically small diffusion

term for the stalled motors. Interestingly, such a term had been included in the model in

[101, 102]. There, the inclusion of this small diffusion term was justified physically as a small

random motion of stalled motors, yet the analysis here reveals a mathematical justification.

This peculiar effect stems from an issue with the boundary layer at the cell end x = 1.

The small diffusive correction term changes the pB equation from hyperbolic to parabolic,

allowing the model to be consistent with boundary conditions that the uncorrected model

cannot satisfy. In this case, the existence of two QSS solutions suggested further investiga-

tion of the behaviour of the full myosin model. Through extensive numerical simulations, it

was possible to determine which QSS PDE would better describe the dynamics of the full
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system (Figure 2.17). In the end, a phase-plane analysis of the non-spatial kinetic model

largely suggested which QSS PDE would be valid for a given set of spatially homogenous

initial conditions.

All in all, the QSS analysis is generalizable to nonlinear models for molecular motors.

That said, the examples discussed herein are simplified prototypes and caricatures of actual

molecular motor behaviour. For example, a caveat of the kinesin model (2.3) is that the

nonlinear binding function, g(pU), may not accurately describe biological effects such as

competition for binding sites on a single MT. As formulated with a saturating function

for g(pU), the model implies that crowding in a region of the cell is responsible for limiting

the binding rate of motors to MTs, rather than explicit competition for binding sites. In

the kinesin model, it is necessary to interpret the saturated binding rate as a result of

competition or crowding for binding sites on a single MT.

In reality, many more states and interactions between states could occur, making the

biological system more realistic and interesting, but also much more complicated to analyze

mathematically. In this analysis, I have not considered the cases of heterogenous multi-

motor complexes composed of a distribution of motor types, nor the additional interactions

with cargo such as vesicles or early endosomes. It remains unclear at present whether

similar methods would lead to insights in more realistic and complex models. The QSS

methodology has also been extended to 2-dimensional models in the context of a searcher

alternating between ballistic and diffusive movement phases [6] with linear kinetics. The

method presented here for 1D nonlinear models, should extend to two dimensional nonlinear

models, provided the conditions on the kinetic terms are met, although it remains an open

problem for which classes of nonlinear kinetics and in which spatial dimensions it is possible

to analytically find an approximating QSS PDE.
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Chapter 3

Coupling Mechanical Tension and

GTPase Signalling to Generate

Cell and Tissue Dynamics

3.1 Introduction

The Rho-family GTPase proteins are central regulators within signalling networks of eukary-

otic cells. While their effects extend to nearly all cell functions, a primary well established

role is to control the actin cytoskeleton, actomyosin assembly and myosin contraction [73].

This fact makes Rho GTPases important in regulating cell shape in single cells and in

epithelia. Rac1 promotes cell spreading by activating downstream signalling that leads to

actin polymerization and cellular protrusions such as lamellipodia. RhoA activates different

downstream signalling that in turn activates myosin-induced cell contraction. Hence, while

Rac1 promotes cell spreading, RhoA counteracts this by stimulating cell contraction. While

previous studies have addressed how GTPases spontaneously segregate to front or back in

a cell [54, 64, 95, 99], and how this leads to cell polarization and motility [25, 59], here I

focus primarily on the effect of GTPase activity on cell contraction or spreading, and on

their interplay with tension and mechanical forces experienced by cells.

Rho GTPases cycle between active and inactive forms: they are activated by guanine

nucleotide-exchange factors (GEFs), and inactivated by GTPase-activating proteins (GAPs)

[73]. GTPases signalling proteins are interconnected, with crosstalk via a host of proteins.

The proteins Rac1, RhoA and Cdc42 are central regulators, downstream of cell-surface re-

ceptors that sense a host of stimuli, including small ligand gradients [74], adhesion molecules,

extracellular matrix (ECM), substrate stiffness [18], as well as forces and mechanical tension

[97].
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It has been known for many years that mechanical tension can stimulate cells and

lead to signal transduction, but details of the connections were poorly understood. More

recently, techniques for measuring forces felt by cells [20, 77] have been used in coordination

with methods for observing activity of GTPases [68]. This kind of experimental work has

revealed a direct connection between mechanical tension and GTPase activity in cells. For

example, Weiner and coworkers [35] showed that the aspiration (which increases tension)

of a neutrophil membrane by a micropipette directly inhibits Rac1 activity. When tension

is released, Rac1 activity resumes in the cell. Compressing cells was shown to activate

RhoA [30] in a rapid and reversible way. Isotropic stretching of vascular smooth muscle

cells on an elastic substrate was shown to inhibit Rac (timescale of 5 minutes, recovery over

45 minutes) in [37]. The authors also quantified Rac activity versus % stetch, showing a

decrease by about 50% in response to a 15% stretch (Figure 2B in [37]) How cells sense

mechanical forces is reviewed in [20, 97], and the identity of multiple Rho GEFs and two

GAPs involved in mechanotransduction is summarized in [62].

Cells have diverse mechanosensory mechanisms, and the molecular details of the link

between mechanical tension and GTPase activities are still emerging. Specific examples of

mechanosensory mechanisms include Rap1 as a tension-sensor and its effect on Rac1 [24] or

tension-sensitive calcium ion channels that produce signals to the Rho GTPases [30]. Cel-

lular adhesions and related structures (integrins, vinculin, and talin) act as mechanosensors

that funnel signals to central regulators [41, 69]. Membrane tension is known to affect actin

assembly directly by limiting polymerization and through a signalling pathway that inhibits

actin nucleation via a protein called WAVE2 [21]. Cell-substrate and cell-cell adhesion, cy-

toskeleton, and their effects on Rho proteins is reviewed in [62]. Other proteins, such as

merlin, can act as a mechanochemical transducer by localizing to cortical cell-cell junctions

when pulling forces are transmitted from cell to cell in epithelial tissue [15]. Focal adhesion

kinase (FAK), for example, inhibits RhoA and activates it in response to tension-dependent

integrin reorganization, facilitating cyclic activation of RhoA and Rac1 [91]. Finally, specific

proteins for sensing cell membrane curvature can also regulate the cycles of cell protrusion

and retraction by controlling Rac1 through GAPs [92].

The connection between mechanical forces and intracellular signalling is a two-way

street. On one hand, mechanical tension can influence GTPase activity. On the other hand,

GTPases lead to cell deformation (spreading or contraction) that exerts pulling, stretching,

or contractile forces on the cell, the local extracellular matrix, and/or neighboring cells.

This two-way feedback between chemical and mechanical signalling merits investigation,

which is the main focus of this chapter. While mechanochemical interactions have been

considered in previous mathematical models for cell behaviours [34, 60, 61, 63, 65], to my

knowledge, this is the first instance that mechanochemical interactions are applied to a
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GTPase signalling cell and tissue dynamical system.

Rho GTPase are embedded in complex signalling networks, with many effectors, in-

terconnections, and inputs, but proteins such as Rac1, RhoA and Cdc42 play a central

regulatory role. Moreover, the details of such networks vary from one cell type to another,

and adapt to cell state and environment. Several recent experimental and modelling stud-

ies have provided evidence for the hypothesis that certain cell behaviours can be explained

as emergent properties of relatively small subsets of these networks, consisting of GTPase

modules. Examples of these simple modules include the bistability and hysteresis of cell

shape [3, 14, 78] and cell motility behaviour [9], as well as diverse motility phenotypes in

melanoma cells on patterned adhesion surfaces [34, 65]. Using simple underlying models for

GTPase “circuits” guides the approach here. Instead of attempting to describe the com-

plexity of a large signalling network, which may vary from cell to cell, I restrict attention to

a minimal GTPase signalling model and a simplified physical model for cell tension. From

this simple, conceptual model, a range of emergent behaviour can be explained. Further

fine-tuning and adaptations to specific cells and experimental systems is left to the next

modelling step, when mechanistic mathematical models can be studied in conjunction with

experiments.

The first step is to consider a single GTPase, such as RhoA, associated with actomyosin

contraction. I present a minimal model for RhoA activity, capable of bistable dynamics

and link it to feedback from mechanical tension. High RhoA activity leads the cell to

contract, which generically results in the reduction of tension from any applied stretch (I

do not assume a specific biophysical tension-sensing mechanism). I study this conceptual

mechanochemical model in a single cell, without spatial effects. I characterize high or low

GTPase activities and transitions between these, and the coupled dynamics of cell tension.

Owing to the simplicity of this two ordinary differential equation model, it is possible fully

characterize parameter-dependence and delineate regimes of behaviour through numerical

bifurcation analysis. In a the “single-cell GTPase-tension model”, there exist regimes of

(1) high and (2) low RhoA (corresponding to contracted or relaxed cells) separated by (3)

regimes of spontaneous, persistent cycling between these states which correspond to cycles

of contraction and relaxation in the cell.

I then consider the dynamics of the minimal model when many cells are coupled together

mechanically in a 1D role or in a 2D epithelial sheet. In a collective, when one cell changes

shape, forces are transmitted to neighbouring cells which are then transduced into GTPase

signalling. Despite the simplicity of the conceptual model, multicellular systems exhibit a

variety of interesting behaviour. Tissues can contract or oscillate as a whole, or waves and

spatially correlated dynamical patterns of activity and size can emerge in large 1D or 2D

tissues.
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In the final step, I also consider a related GTPase circuit consisting of both Rac1 and

RhoA (henceforth Rac and Rho) and mechanical tension. Mutual inhibition between these

has been found in a number of cell types [46, 75] and highlighted in recent biological lit-

erature for both normal and malignant cells [9, 28, 65, 67, 78]. The effect of such GTPase

interactions on cell shape has been explored theoretically [34, 49], but the two-way feedback

between cell mechanics and cell signalling is the main theme that motivates the work herein.

3.2 Minimal Model for a Single Mechanochemical Cell

First consider the simplest case, where the mechanosensitivity of a single cell affects its

GTPase activity (Figure 3.1(A)), which, in turn, affects a contractile actomyosin meshwork

in the cell. The minimal model tracks the activity of a GTPase such as RhoA over time in

a single cell. (While RhoA is known to redistribute intracellularly, I ignore spatial varia-

tions within a cell, so as to build a first working multicellular model.) RhoA acts through

Rho-associated protein kinase (ROCK) to phosphorylate myosin light chain, leading to ac-

tomyosin contraction. Consequently, to capture the mechanical contraction, associate a

mechanical Kelvin-Voigt element (spring-dashpot system) with the cell size. In one dimen-

sion, cell size is represented by a length, L (Figure 3.1(C)). A cell at mechanical equilibrium

has some constant “rest-length”, L = L0 (Figure 3.1(B)). To couple the signalling with the

mechanical tension, assume that cell tension, T , proportional to (L− L0), enhances RhoA

activation. Thus, if a resting cell is temporarily stretched, RhoA activity increases. In

turn, active RhoA results in contraction of the cell (I assume that active RhoA decreases

the rest-length of the cell). As the cell contracts towards its rest-length, the effect of the

temporary increase in length is removed (resolving the tension). This reduces the GTPase

activity to a lower level. The overall paradigm of the model is shown as a cycle through

states following the purple arrows in Figure 3.1(B).

3.2.1 Model Equations and Definitions

For the activity of the GTPase, I adopt the generic equation

dG

dt
= (Tension-dependent rate of activation)Gi − (Rate of inactivation)G, (3.1)

where Gi is the level of inactive GTPase. Ignoring spatial variation, and assuming that

the total GTPase GT is roughly constant over the timescale of interest (GT = G + Gi =

constant), leads to a single equation, (3.1), with Gi = GT − G. This equation is a direct

adaptation of the 1-GTPase spatially-uniform version of the model in [33], with the addition

of the mechanical coupling.

In the case of a linear equation (3.1), that is, if terms in braces are constant, no interest-
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Figure 3.1: The minimal model for coupled GTPase activity and cellular-tension. (A)
Schematic of our minimal model for a GTPase “mechanochemical cell”. Typical GTPase
cycling between active (G, orange) and inactive (Gi, blue) forms. Black arrows denote inter-
conversion (solid), and positive feedback (dashed) from the active GTPase and from tension
to GTPase activation. Purple elements (in (A) and (B)) represent mechanical effects. We
assume that Gi = GT −G by conservation. Active RhoA results in cell contraction, which
reduces tension. Tension is assumed to increase the activation rate of RhoA. (B) A rest-
ing cell (rest length L0, top left) is stretched by an external force to length L (bottom
left); the “spring” schematic represents contractile actomyosin). Tension T ∝ (L − L0)
in the stretched cell activates RhoA (inset, lower right, color scheme as in (A)), leading
to a coupled mechanochemical system. RhoA activity results in actomyosin-powered cell
contraction, which eventually reduces cell tension as the cell approaches its new contracted
rest-length. As RhoA is inactivated by the loss of tension (upper right), the cell relaxes.
(C) Mechanical representation of the actomyosin cell cortex as a Kelvin-Voigt element.

ing behaviour is found. Some feedback is needed to obtain the nonlinearities that generate

bistability and allow for non-trivial dynamics. It is typical to assume positive feedback from

active GTPase to its own activation [33, 54] (see [36] for the equivalence of other assump-

tions). Furthermore, based on the prevalence of GEF-associated mechanotransduction [62],

I include the tension-dependent feedback f(T ) in the activation rate. This leads to a model

equation of the form

dG

dt
=

(
b+ f(T ) + γ

Gn

1 +Gn

)
(GT −G)−G. (3.2a)

where b is basal activation rate (in the absence of feedback from mechanics) scaled by the

constant inactivation rate, and γ is a similarly scaled rate of feedback activation. (Details

of the scaling are provided in the Appendix.) In this model, cell tension depends on the

“size” L of the cell relative to its concurrent rest-length L0. I considered several forms of
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f(T ), as described in the Appendix; however, I concentrate on the case that

f(T ) = β
1

1 + exp[−αT ]
, where T = L− L0. (3.2b)

The parameter β governs the strength of feedback from tension to GTPase activation. The

so-called squashing function in (3.2b) means that the mechanical input has no effect if L�
L0, but builds up to a maximal level of β for L� L0. Consequently, the model GTPase, G,

is sensitive to a pulling force, but not to a squeezing or contractile force. It is straightforward

to generalize this minimal assumption to other mechanosensory mechanisms, but I only

consider the effect of tension here. The parameter α governs the sharpness of the GTPase

activation response to cell stretching. It is worth remarking that this form of mechanical

model (3.2a) with (3.2b) bears a close resemblance to the equation proposed in [30] for

the dynamics of active RhoA in human fibrosarcoma cells that are exposed to mechanical

tension. The squashing function has the same basic property of switch-like activation as

the Hill-function dependence on T in [30].

For the mechanical coupling, assume that GTPase activity (e.g. RhoA activating ROCK,

which activates myosin light chain) effectively shortens the rest length of the “cortical

actomyosin spring” promoting contraction. This is described through the following equation

for the cell size L:

dL

dt
= −ε(L− L0), where L0 = `0 − φ

Gp

Gph +Gp
, (3.2c)

and ε = 2k/λ is the rate of contraction. This model assumes that the cell acts as an

over-damped elastic spring with Hookian spring constant k, and viscous coupling to a fixed

substrate (viscosity λ). The rest length, L0, is assumed to decrease from a fixed rest length,

`0, depending on the amount of active GTPase within the cell, G. The dependence on G is

represented by a Hill function with amplitude φ, half-maximum GTPase activity Gh, and

power p. For large GTPase activity G, the rest length approaches L0 ≈ `0 − φ, while for

low GTPase activity, the rest length remains near `0. A switch occurs close to the activity

level G = Gh. The larger p, the sharper the transition between small and large L0 values.

Equation (3.2c) presumes the over-damped regime, where inertial forces are negligible, as

appropriate for modelling cell-scale behaviour. Equation (3.2c) follows from a force balance

at the two cell ends:

λ
dx1

dt
= k(L− L0) and λ

dx2

dt
= −k(L− L0), where L = x2 − x1, (3.3)

for x1, x2 positions of the left and right cell boundaries (in 1D), and from dL
dt = dx2

dt −
dx1
dt .
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Figure 3.2: Bifurcation diagrams for the minimal model (3.2). (a) On its own the GTPase
model (3.2a) (with f(T ) = 0) exhibits bistability with respect to the activation rate b.
(Other parameters: γ = 1.75, n = 4, GT = 2). Mechanical tension affects the GTPase
activation rate, leading to the possibility of a relaxation oscillator (hysteresis loop) shown
in this diagram. (b) Bifurcation diagram for the coupled GTPase-tension minimal model
Equation (3.2), showing how cell length L varies with the strength of coupling (β) of tension
to GTPase activation. L can be long (small β, solid blue line), oscillatory (middle values of
β, magenta line), or short (large β, solid yellow line). In both, red points are saddle node
bifurcations, and the black point corresponds to a Hopf bifurcation (after which stable
oscillations emerge). Other parameters are b = 0.1, γ = 1.5, GT = 2, φ = 0.75, Gh = 0.3,
ε = 0.1, α = 10, `0 = 1, and n = p = 4.

3.2.2 Results

The single GTPase model on its own (with β = 0), is bistable for a range of parameters.

As the basal activation rate b increases, the system transitions from a monostable state

with low GTPase activity, through a bistable regime, and finally to a monostable state with

high GTPase activity (Figure 3.2(a) and [33, 34]). With mechanical feedback (β 6= 0) as

described in Section 3.2.1, there are three regimes of behaviour: (1) for small β, the cell

remains relaxed with low GTPase activity, (2) for large β, the cell becomes contracted with

high GTPase activity, and (3) for intermediate β, the cell dynamics tends to a stable limit

cycle with GTPase activity cycling between low and high levels. The bifurcation diagram

of Figure 3.2(b) shows these three regimes of behavior, displaying steady state cell length,

L, as a function of the coupling feedback strength, β. For this choice of parameters, the

three regimes of behavior occur for different intervals of β; however, for different parameter

values, it is possible that the limit cycle and contracted steady-state can both be stable for

the same value of β.
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Figure 3.3: Dynamics of the minimal model for a single cell with one GTPase (“RhoA”) and
feedback from tension to GTPase activation, Equation (3.2). In (a), the feedback strength
from tension (β = 0.05) is weak, and the cell remains relaxed. In (b), the feedback (β = 0.1)
is of intermediate strength, and limit cycle oscillations arise. In (c), the coupling is so strong
that GTPase activity is always high, and the cell stays in a contracted state. Parameters
are b = 0.1, α = 10, γ = 1.5, n = p = 4, GT = 2, φ = 0.75, Gh = 0.3, ε = 0.1 and
`0 = 1. When the GTPase activity level is close to G = Gh, the cell rest length changes
sharply from L0 ≈ `0 to L0 ≈ `0−φ (green dash-dotted), resulting in the dramatic changes
in cell length seen in (B). Some lag stem from the slower dynamics of L, due to the slow
mechanical response (small parameter ε).

The dynamics of the cell size (L, solid), rest-length (L0, dash-dotted curve) and GTPase

activity (G, dashed curve) is shown in Figure 3.3 for each of these regimes. When the

feedback from tension upon GTPase activation is small, (a) β = 0.05, the cell remains

relaxed. As the feedback parameter increases, (b) β = 0.2, the cell oscillates, or (c) for

β = 0.3, the cell contracts and maintains a small length.

The results can be understood based on known dynamical systems behaviour of a

bistable system (the GTPase activity) with slow negative feedback (the mechanical con-

traction). The coupling can constrain the bistable system to either its low or its high

steady state levels, or, for intermediate coupling, lead to a trajectory around a hysteresis

loop. In the latter case, the system behaves as a relaxation oscillator due the separation

of time scales between fast G and slow L (note the small parameter ε in the L ODE). As

shown by the hysteresis loop in Figure 3.2(a), the activation rate is increased when the cell

is stretched, eventually leading to a transition from low to high GTPase activity. At this

point, the GTPase activity leads to cell contraction, effectively decreasing the rest length

L0. As the cell contracts, L approaches L0, and tension decreases, reducing GTPase acti-

vation rate and transiting to the low GTPase state. This resets the rest-length to a larger

value. With the appropriate relative timescales of mechanics and chemical signalling, this

cycle repeats, setting up the limit cycle oscillations.
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Figure 3.4: Cell interactions in a 1D array of “model cells”. (A) The contraction-relaxation
of each cell affects the force of pulling on its neighbours. Each cell has its own internal
GTPase signalling. (B) The array behaves much like a system of over-damped springs in
series. The GTPase signalling affects the rest-lengths of the springs Lj , and the dynamics
then moves the nodes xj that represent cell borders.

3.3 Mechanical Coupling in a 1D Array of Cells

Having characterized the minimal “model cell”, next consider the behaviour of a coupled

array of such cells. As a first step, consider coupled cells mechanically in one spatial

dimension (1D), as shown in Figure 3.4. Here the lengths of the cortical actomyosin Kelvin

elements are simply the distances Lj = xj+1 − xj , j = 1, . . . , N − 1 between “nodes”

(edges of cells along a 1D axis). Each cell has its own internal GTPase signalling, following

Equation (3.2a), and only responds to neighbouring cells through mechanical force. Hence,

the motion of the cell ends, xj , is prescribed by the following system of ODE:

λ
dx1

dt
= k(L1 − L1,0), (3.4a)

λ
dxj
dt

= −k(Lj−1 − Lj−1,0) + k(Lj − Lj,0), (3.4b)

λ
dxN
dt

= −k(LN−1 − LN−1,0), (3.4c)

with j = 2, . . . , N − 1 giving the index j of the N − 1 cells. The rest-length in each cell,

Lj,0, is coupled to GTPase signalling according to Equation (3.2c).

3.3.1 Tissue Dynamics in 1D Depend on Mechanical Feedback Strength

When many cells are coupled together, new tissue-level behaviours emerge. For example, as

one cell is displaced or contracts, its neighbours are stretched or squeezed. This change in

76



length then affects tension, T , and ultimately the GTPase activity, G of the neighbour(s),

that can similarly affect their neighbours, and so on. The emergent behaviour depends on

the signalling parameters of the individual cells. For example, if the strength of feedback

from mechanics to GTPase activity, β, is sufficiently small or sufficiently large everywhere,

the entire tissue will be relaxed (and long) or highly contracted (and short), respectively.

Examples of these behaviours are shown in Figure 3.5(a) and (c).

For β in the single-cell oscillatory regime (β = 0.2, as in Figure 3.3(b)) a small array

of cells (N = 10) can exhibit synchronous oscillations, as shown in Figure 3.5(b). In this

case, as each cell expands or contracts, the force exerted on its nearest neighbours induces

a change in the chemical signalling, which results in the coordination of the entire group

(possibly excluding the cells at either end). This shows up as coherent bands of colour in

Figure 3.5(b) while the total length of the array (vertical dimension in Figure 3.5) oscillates.

I next asked whether a propagating wave of contraction, similar to that obtained in the

work of Odell et al. [61] (as discussed in Chapter 1), could be obtained with this model.

To explore this, I set up a simulation in which each cell would sit in the relaxed-length

steady-state, but provide an initial GTPase perturbation to one or more cells at the end of

a tissue. I was unable to reproduce a wave of contraction in this way. However, using a

modification of the model with linear feedback (instead of the squashing and hill functions)

between GTPase signalling and tension, I was able to produce wave-like behaviour. The

specific parameters and feedback functions for this linear-feedback model are collected in

Section B.3. The wave of contraction behaviour is shown in Figure 3.5(d) where two cells

at the right end of the row are initially “stimulated” with high GTPase activity, while

the rest of the cells are at their relaxed steady-state. Contraction of the stimulated cells

stretches their immediate neighbours to the left, which activates new GTPase signalling in

those neighbours and subsequent contraction. In this way, a unidirectional wave of GTPase

activity and contraction sweeps across the entire row of cells. As discussed later, this wave

of contraction resembles a wave associated with zippering in the neural tube closure of an

ascidian embryo [29].

As the number of cells increases, the spatial extent of the mechanical force transduction

can no longer span the entire “tissue”, and appears to become localized to some neighbour-

hoods. Then, patches of contraction and relaxation emerge; these can propagate throughout

the tissue as waves of contraction-relaxation. Typical examples for 50 and 100 cells in such

1D arrays are shown in Figure 3.5(e) and (f). In such large arrays, GTPase activity is also

seen to form wave patterns that sweep back and forth across the 1D domain. This leads

to the slanted bands of colour in Figure 3.5(e) and (f). Even though the GTPase activity

is not directly coupled between cells, the mechanical coupling effectively leads to GTPase

coordination on some spatial and temporal scale.
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(a) β = 0.05, 10 cells (b) β = 0.2, 10 cells

(c) β = 0.3, 10 cells (d) Wave of contraction, 14 cells

(e) β = 0.2, 50 cells (f) β = 0.2, 100 cells

Figure 3.5: 1D tissue dynamics result from mechanochemical interactions. Kymographs
show the 1D position of cell edges (vertical axis, black curves; suppressed for clarity in (e),
(f)) with colour indicating the GTPase activity within each cell. Parameters as in Figure
3.3(b), except in (d). For a small number of cells (N = 10), the tissue can be (a) relaxed,
(b) oscillatory, or (c) contracted. (d) An initial perturbation of GTPase activity at one end
of the row can propagate a wave of GTPase activity and contraction throughout the whole
row of cells. Larger number of cells: (e) N = 50, (f) N = 100: waves of contraction and
relaxation propagate across the tissue and model details in Section B.3.
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I did not explore all possible behaviours of this 1D cell collective, and an analytical or

numerical analysis of the behaviour of the cell collective is warranted to delineate possible

regimes of behaviour. Nonetheless, the examples provided in this section illustrate an

interesting range of behaviour. A limitation of the 1D approach is that each cell only

interacts with 2 neighbours and cell shape does not play a role. As such, in the next

section, I study a realization of the GTPase-tension model in a 2D setting.

3.4 Cell shape and cell-cell interactions in 2D epithelial
sheets

3.4.1 Adapting the Model

In order to describe cell expansion and/or contraction in 2D, I modified the model to

represent changes in projected cell area, A, rather than cell length. Generalizing from the

1D model, assign a “resting cell area” A0 to the cell, and assume that positive (A − A0)

corresponds to an average cell-stretching tension that has an effect in 2D similar to (L−L0)

in the 1D model cell. This assumption could be modified, scaled according to A ≈ cL2,

or adapted to experimental data. In the context of the simple conceptual model, the main

effect, preserved by these assumptions, is that GTPase activity and mechanical tension

switch one another on or off.

To simulate cell shape and intracellular chemistry, I worked with Dhananjay Bhaskar to

use a publicly available software package, CompuCell3D, that represents cell shapes using

the Cellular Potts model (CPM) formalism [90] as introduced in Chapter 1. Briefly, the

pixel-based motion of a cell edge outwards (expansion) or inwards (contraction) is governed

by a Hamiltonian, H, describing the total energy in the system. The Hamiltonian includes

adhesion energies, and volume constraints (area constraint in 2D). At each time step (called

a Monte-Carlo step (MCS)) in the simulation, several small changes are introduced, called

pixel-copy or spin-copy attempts. The CPM algorithm accepts such changes if this decreases

the Hamiltonian (overall energy of the system), or accepts it randomly otherwise as a small

noise-induced fluctuation. While CPM does not explicitly track forces, it has recently

been shown to be consistent with other simulations where forces are made explicit [47], for

example, vertex-based cell models.

Several aspects of the simulations were adapted to the technical requirements of the

Cellular Potts model (CPM). The timescale τ and notion of a “target area”, AT , was

introduced. The actual cell area A and the GTPase-governed target cell area AT are tracked

in each CPM cell. The target area for a cell is determined by a system of ODEs that couple

sub-cellular biochemistry (assuming that the cell is well-mixed) to cell mechanics. This
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leads the following model equations for the GTPase activity G and target area AT :

1

τ

dG

dt
=

(
b+ f(T ) + γ

Gn

1 +Gn

)
(GT −G)−G, (3.5a)

1

τ

dAT
dt

= −ε(AT −A0(G)), where A0(G) = a0

(
1− φ Gp

Gph +Gp

)
. (3.5b)

Here, a0 is the constant baseline cell area. The target area AT approaches A0 on the

timescale τ that can be controlled to increase or decrease the speed of the feedback. Note

that cell area A does not approach target area AT instantaneously, but through the addition

or removal of lattice sites over several MCS. That is, A, is updated stochastically to approach

the target area AT by the CPM. Here, I also assumed

f(T ) = β
Am

AmT +Am
, where T = A−AT . (3.5c)

Tension is defined as T = A−AT , which is a “delayed” form of A−A0. In turn, the function

f(T ), describes the feedback on GTPase activation from tension. This Hill function has the

property that as m increases, its shape is fundamentally similar to that of the squashing

function used in the 1D GTPase model (Equation (3.2b)). For this exploration, I again

assume that GTPase activity is uniform inside a given cell through variable across the

entire collection of cells. Stochasticity in the CPM leads to interesting behaviour (e.g.,

stochastic switching) which is not observed in deterministic numerical solutions.

As before, assume that increasing tension (represented as the difference between target

area and actual cell area), can increase GTPase activity via Equation (3.5c). To appropri-

ately calibrate the CPM to observe the same oscillatory dynamics as in the one-cell single

GTPase model, it is necessary to choose the timescale and the time step for numerically

integrating the ODEs, τ and ∆t, respectively, so that each MCS is τ∆t = 2000 · 0.001 = 2

units of time t. In the next section, I consider the GTPase-tension model in a single 2-

dimensional cell, and later consider the coupling between interconnected cells.

3.4.2 Single Cell Dynamics

With appropriate calibration, the 2D Cellular Potts model (CPM) implementation recapitu-

lates the behaviour found in the single cell model. As shown in Figure 3.6(a) and Appendix

Figure B.10, a parameter set corresponding to 1D cell oscillations also led to single-cell

oscillations in the 2D CPM cell. The CPM also produces relaxed cells and contracted cells

for corresponding parameter sets in the 1D model, see Appendix Figure B.8 and B.9 for

relaxed cells.

Cellular Potts model simulations have inherently stochastic behaviour due to the al-
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(a) Single cell oscillations, β = 0.2.

(b) Single cell, stochastic oscillations, β = 0.5

Figure 3.6: Single cell oscillations in 2D cells simulated with the Cellular Potts model (CPM)
CompuCell 3D software [90]. In (a) and (b), cell color represents a (spatially uniform)
GTPase activity level from low (blue) to high (yellow and orange), as shown in the color
bar. Cell shape changes over time as indicated by the progression of snapshots numbered by
the Monte-Carlo step (MCS) of the CPM (MCS increase left to right and top to bottom).
Cell target area (green) and actual area (blue) as well as GTPase activity is plotted over
250 MCS of the CPM. In (a), β = 0.2 results in a single oscillatory cell. In (b), the cell
stochastically switches between high GTPase steady state (corresponding to β = 0.5) and
a large amplitude limit cycle. Other parameters were: τ = 2000, b = 0.1, m = 10, γ = 1.5,
n = p = 4, GT = 2, ε = 0.1, a0 = 400, φ = 0.75, and Gh = 0.3.
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lowable random fluctuations mentioned above. As a result, I found new behaviour that

was not found in the deterministic 1D cell simulations, namely that spontaneous cycles

of high to low GTPase level (and low to high cell areas) could occur, even in parameter

sets consistent with monostable states. An example of this type is shown in Figure 3.6(b).

Here, parameter values were set to the stable small-size single-cell regime in the 1D model

(β = 0.5). The cell was in a contracted state for some time, but displayed two cycles of

contraction-relaxation, at MCS 100 and 150, before returning to its quasi-quiescent state.

In Appendix Figure B.11, there is an example of cells switching between small and large

limit cycle oscillations for β = 0.175.

3.4.3 Coupling CPM Cells in 2D

What happens when there are multiple cells in the 2D simulation? To answer this question,

consider two types of situations in which N cells are present, where each cell is governed

by its own set of 2D equations (see Apppendix) with the same set of parameters but with

random initial conditions. As shown in Appendix Figure B.2 for N = 9 cells, the first

implementation was of cells that have no direct mechanical coupling. As expected, in this

case, cells behave independently with distinct and uncorrelated copies of the dynamics. The

Rho GTPase levels inside such cells (top, Appendix Figure B.3) remain unsynchronized,

as detected by the Kuramoto order parameter and the variance in the phase (details in

Appendix Section B.5).

Next, consider cells that were contiguous and can interact via adhesion terms in the CPM

Hamiltonian (details in Appendix Section B.4). Essentially, cells that have larger interfaces

with their neighbours have stronger adhesion (and lower adhesion energy). An example of

such simulations are shown in Appendix Figure B.4. As a cell changes size, neighbouring

cells are affected through cell-cell adhesion. As one cell area contracts, its neighbours are

stretched, causing their tension, proportional to (A − AT ), to increase. This promotes a

neighbour’s GTPase activity, and leads it to contract. In this way, mechanical forces are

propagated throughout the tissue and affect GTPase signaling in each cell. As seen in

Appendix Figure B.5, GTPase activities rapidly synchronize in the entire group of 9 cells,

with a few small fluctuations in phase seen occasionally. In collaboration with Dhananjay

Bhaskar, we used the Kuramoto order parameter to quantify the degree of synchronization

between the 9 cells. The Kuramoto order parameter is a complex number whose magnitude

measures the phase-coherence of oscillators and can vary between 0 and 1. When oscillators

are close in phase, the Kuramoto order parameter is closer to 1 ([42], [89] for a review).

The larger Kuramoto order parameter and lower variance in the phase (note scaling on the

vertical axis) as compared with simulation for independent cells (Appendix Figure B.3) also

confirms this synchronization.
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The strength of cell-cell adhesion can affect the results. As shown in the sequence

of Appendix Figure B.5-B.7, as cells become more adhesive to one another (“low cell-cell

adhesion energy”) than to the surrounding “medium”, the mechanical coupling is stronger,

and the synchronization of cell oscillations is more regular.

3.4.4 Waves of Contraction and GTPase Activities in 2D Model Tissue

Next, again with Dhananjay Bhaskar, we asked how larger numbers of cells, also in 2D CPM,

would behave when coupled mechanically through their adhesion. To probe this question,

consider a simulation with a circular tissue composed of 373 contiguous cells with initial

areas randomly chosen. As before, parameters of each cell are in the oscillatory single-cell

regime. Results are shown in Figure 3.7 for the case of intermediate adhesion, in Figure 3.8

for the case of strong adhesion, and in Appendix Figure B.12 for the case of weak adhesion.

Here the 2D tissue is much larger than a few cell diameters. Figures 3.7 and 3.8 show two

views of the same “tissue”, one (a) indicating cell area on a colour scheme of blue (small)

to yellow (large), and a second (b) representing the concurrent GTPase activity level from

low (blue) to high (orange).

In contrast to the case of few cells, where synchronized oscillations were observed over

the entire population, synchronization is limited to patches in larger tissues. Moreover,

waves of contraction/relaxation and GTPase activity propagate throughout the tissue. This

behaviour can be seen in the successive snapshots in Figure 3.7(a) and (b) for the case of

intermediate cell-cell adhesion. Bands of highly contracted cells (dark blue) are noteworthy

in several panels in Figure 3.7 (a), and coincide with interfaces between zones of high and

low GTPase activity in Figure 3.7 (b).

The strength of cell-cell adhesion affects the strength of coupling and extent of synchro-

nization. In the case of weak cell-cell adhesion (Appendix Figure B.12(a) and (b)) relatively

small patches are seen, and cells tend to detach from the periphery of the tissue. Waves of

contraction and expansion are observed. As cell-cell adhesion is increased from the baseline

simulation in Figure 3.7, cells are more likely to favour adhering to each other. They then

experience larger changes in area as one of their neighbours shrinks or grows. This results

in nearly the entire tissue of cells expanding and contracting, though we still tend to see a

wave of synchronization spreading from the centre to the edge of the tissue, as in Figure 3.8.

This leads to the conjecture that the patch size (number of cells in a group with coordinated

behaviour) increases with the strength of cell-cell adhesion.

In the final CPM experiment, consider the case that cells are heterogeneous, with a

range of values of the feedback parameter β coupling mechanics to the GTPase activation.

Consider a large simulated tissue with values of β assigned randomly to each cell. Results

are shown in Figure 3.9. With the range of values of β, individual cells could be either
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contracted, oscillatory, or relaxed. Due to the presence of some oscillatory cells in the tissue,

those cells which would normally be quiescent at either relaxed or contracted steady-states,

undergo oscillations due to pulling by oscillatory neighbours. Patches of activity in the

tissue persist, though with a heterogenous GTPase activity. These forced oscillations are

suggestive of a mechanism by which tissue dynamics can be driven by a few pace-maker cells,

whose phenotype is oscillatory. I discuss how these model predictions relate to epithelial

dynamics in biological systems in §3.6.

3.5 Rac and Rho GTPase Model

In this section, I determine whether some of the lessons learned from the single-GTPase

model would carry over to similar conclusions in a slightly expanded Rac-Rho GTPase

circuit. It is well-known that Rac1 and RhoA are mutually inhibitory under many situations

[9, 67, 78]. Here, the analysis starts from the well-mixed variants of the Rac-Rho model

described in [33], and in the melanoma-based modelling of [34]. In the latter case, coupling

of front and rear compartments of a cell (through extracellular matrix signalling) was found

to lead to the possibility of distinct behavioural regimes, including stable high Rho or Rac,

or cycling between those levels. Here the mechanical coupling has an effect similar to the

ECM coupling in that paper.

In the mutually inhibitory Rac-Rho model, the total level of Rac (Rho) GTPase, RT

(ρT ) is assumed to be roughly constant over the timescale of interest. Hence only the active

forms of the GTPases need to be tracked. Assuming that each of Rho and Rac inhibits the

activation of the other, consider the set of equations

dR

dt
=

bR
1 + ρn

(RT −R)− δR, (3.6a)

dρ

dt
= (bρ + f(T ))

1

1 +Rn
(ρT − ρ)− ρ, (3.6b)

where f(T ) represents the activation of Rho GTPase by tension T as in (3.2b). As before,

Rho GTPase activity decreases the rest-length of the cell:

dL

dt
= −ε (L− L0) , where L0 = `0 − φ

ρp

ρph + ρp
. (3.6c)

Note that while Rac is a candidate for mechanosensory inputs and also has an affect on cell

size, I initially assume that only Rho is affected by tension and has an affect on cell length.

On its own, without feedback from mechanics, the minimal Rac-Rho mutual inhibition

model has a region of bistability, as shown in Figure 3.10(a). As either the basal activation

rates, bρ or bR, increase, the system transitions from a monostable state with either species
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(a) Cell area in a 2D tissue over time.

(b) GTPase activity in the same 2D tissue over time.

Figure 3.7: Simulation of a 2D “tissue” (N = 373 cells) in the intermediate adhesion scenario
using CompuCell3D [90]. Individual cells satisfy the minimal GTPase-tension model, with
T ∝ (A − AT ), where A is cell area, and AT is the target area. Cell-medium adhesion
energy (80) is equal to cell-cell adhesion energy (80) in the Hamiltonian, H. In (a), cells
are coloured based on their current cell area, while in (b), cells are coloured based on the
uniform level of GTPase activity within each cell. Cells with smallest area (dark blue in
(a)) are correlated with an interface between high (orange) and low (blue) GTPase activity
in (b). Waves of contracting cells and relaxing cells are observed throughout patches in the
tissue. Parameters listed in Appendix Section B.4 and B.6.
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(a) Cell area in a 2D tissue over time.

(b) GTPase activity in the same 2D tissue over time.

Figure 3.8: As in Figure 3.7 but for the strong adhesion scenario. Cell-medium adhesion
energy (80) is greater than cell-cell adhesion energy (30) in the Hamiltonian, H. The entire
tissue is synchronized. In (b), cells are coloured by area, while in (b), cells are coloured by
GTPase activity. Notice that cells at the outer edge are first to expand/contract as they are
less constrained by neighbours, so that expansion/contraction is ‘outside-in’. Parameters
are the same as in Figure 3.7, and are listed in Appendix Section B.4 and B.6.

at a high steady-state (and the other at a low steady-state) or from a coexistence state, into

the bistable regime. Assume, as before, that stretching a cell would increase the activation

rate of RhoA. With that assumption, the same regimes of behaviour as in the single GTPase

model (Section 3.2.1) occur in the Rac-Rho model. These three regimes of behaviour depend

on the strength of feedback from tension to Rho activation (a parameter denoted γρ). The

dependence is shown in the bifurcation diagram in Figure 3.10(b). For small γρ, the cell

remains long and relaxed, with high levels of Rac activity and low levels of Rho activity
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Figure 3.9: As in Figure 3.7 (b), but with the parameter β (feedback strength from tension
to GTPase activation) initially randomly chosen for each cell. Cells are coloured by GTPase
activity. Cells in steady state are forced to oscillate due to mechanical coupling with cells
that are in the limit cycle regime. In this case, the baseline area parameter is increased
a0 = 600 (resulting in larger variation in cell area), and temperature parameter of Potts
model T = 15 is decreased from baseline. In the Hamiltonian, H, cell-cell adhesion energy
is 60, and cell-medium adhesion energy is 80. Other parameters are as in Appendix B.4
and B.6.

(Figure 3.11(a)). For large γρ, the cell is contracted, (small L) with low levels of Rac activity

and high levels of Rho activity (Figure 3.11(c). For intermediate γρ, limit cycle oscillations

arise (Figure 3.11(b)). There is a regime of parameter space where a stable limit cycle and

stable steady-state coexist (approximately 12.29 ≤ γρ ≤ 15.61). In this parameter regime,

depending on initial conditions, the cell may either end up in the oscillatory regime, or at

the contracted cell state.

In the above Rac-Rho model, I considered only coupling between mechanical tension

and Rho activity, ignoring possible direct effects of mechanosensing on Rac activity. Rac is

known to cause cell spreading via actin assembly, an effect that I had similarly omitted. To

check the possible outcomes of such additional factors, I briefly explored several variants

of the above default Rac-Rho-tension model. Specifically, I experimented with inclusion

of (1) the effects of compression (as opposed to tension) sensing with feedback to Rac

activation and (2) the effect of Rac activity on cell size, modelled as an increase in the

rest-length L0. Feedback from mechanics to Rac activation can be interpreted as a change

in bR in Figure 3.10(a). This can push the underlying Rac-Rho signalling model into a
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Figure 3.10: Bifurcation diagrams for the minimal Rac-Rho model of Equations (3.6). (a)
On its own, the Rac-Rho model (with β = 0) exhibits bistability (inside red-bordered
region) with respect to the activation rates bR and bρ. Mechanical tension affects the Rho
GTPase activation rate, leading to the possibility of a relaxation oscillator by traversing
the bistable region (grey arrows). (b) Bifurcation diagram for the coupled Rac-Rho-tension
minimal model (3.6), showing how cell length L varies with the strength of coupling (γρ)
of tension to Rho activation. L can be long (small γρ, solid black line), oscillatory (middle
values of γρ, magenta curve), or short (large γρ, solid black line). As opposed to the single
GTPase-tension model, it is possible for a stable limit cycle to coexist alongside a stable
steady-state (for 12.29 ≤ γρ ≤ 15.61). Here, the red points correspond to saddle node (fold)
bifurcations, and the black point to a Hopf bifurcation. Other parameters are bR = 15,
bρ = 5, RT = ρT = 4, δ = 1, n = p = 3, γL = 0.75, ε = 0.1, α = 10, ρh = 1 and `0 = 1.

regime of different behaviour—high Rac, bistability, coexistence, or low Rac—and alter the

resulting cell behaviour accordingly (in a mechanical feedback-dependent manner). In these

additional numerical experiments, behaviour similar to Figure 3.11 arises; albeit with Rac

activity increasing the cell length and the relaxation oscillation arising from compression

instead of tension.

Aside from the above complementary Rac-feedback-only model, I guided an undergrad-

uate advisee, Jim Shaw, to experiment with mixed Rac and Rho feedbacks and antagonistic

effects on cell size. With Jim Shaw, I also considered feedback from tension and/or com-

pression to GAPs as well as GEFs (inactivation versus activation terms in the GTPase

equations). Overall, similar regimes of behaviour can be found in many such examples,

within smaller or larger regions of parameter space. Cases of specific interest should hence-

forth be linked to specific biological examples where the mechanical coupling to known

GEFs or GAPs is of interest.
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Figure 3.11: Dynamics of the model (3.6) for a single cell with two GTPases (“Rac1” and
“RhoA”) and feedback from tension to Rho activation. In (a), the feedback from tension
(γρ = 10) is weak, and the cell remains large and relaxed (L ≈ 1) with high Rac and low
Rho activities. In (b), the feedback (γρ = 14) is of intermediate strength, and limit cycle
oscillations arise, provided that the initial conditions send the system to the stable limit
cycle, instead of the contracted-cell steady-state (see Figure 3.10). In (c), the coupling is
so strong (γρ = 18) that RhoA activity is always high, Rac is low, and the cell stays in a
contracted state (L� 1). Parameters are as in Figure 3.10.

3.6 Discussion

Feedback between biochemical signalling and mechanical forces plays a vital role in devel-

opmental biology and morphogenesis. Given the increasing biological evidence for the role

that mechanical forces play in signalling networks, such as GTPases, mathematical and

computational approaches are relevant and important to elucidate behaviours and suggest

hypotheses. For example, a recent review [27] highlights how diffusion-driven patterns,

differential adhesion, buckling instabilities in growing layers, and flows in active materials

(cytoskeleton and motor proteins) lead to patterning. Following the experimental work of

[35], a single-cell model was also developed to describe the inhibition of cell polarization by

membrane tension [98]. The authors used a more sophisticated spatio-temporal model of

the GTPases in a 2D cell (based on the idea of wave-pining [54]), its downstream effect on

actin, and a cell boundary represented using the phase-field method. The model was able

to account for observations on how build-up of tension in a neutrophil (by aspiration into

a micropipette) and sudden release of tension (by severing a long cellular protrusion) affect

the level and distribution of GTPase activity.

While the effect of tension on GTPase activity was studied previously [30, 35], this is the

first model that links GTPase-induced cell contraction to tension-induced GTPase activity

in single cells and in a 1D and 2D tissue. Interestingly, a model based on mechanochem-

ical coupling of some (indeterminate) signalling chemical and cell length that was studied

mathematically and computationally decades ago [60] bears resemblance to the model pre-

sented here. That previous model was aimed at understanding folding and invagination
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of epithelia, for example in the process of gastrulation [61, 63]. It was shown then that

a localized stimulus in one cell could result in active localized contraction in some neigh-

bourhood, creating the first fold in an early embryo. As GTPases and their effects were

yet to be characterized, this early modelling work was theoretical and speculative. Now,

such work has additional relevance within the context of mechanical tension and GTPase

signalling and illustrated herein. More recently, single and collective cellular oscillations

were accounted for by a generic oscillator model for turnover of force-producing material

(such as myosin motors) contracting against an elastic element [17]. Similar to the results

here, varying the mechanical and kinetic properties of the system can transition the cell

behaviour from relaxed cell, to oscillatory, or to contracted cell length and collective cell

behaviour from unsynchronized to synchronized oscillations [17].

Through coupling a simple GTPase bistable model without spatially distributed activity

within a cell to a simple elastic (Kelvin-Voigt element) cell, I found three distinct regimes

of behaviour, including high and low GTPase activity, with coordinated cell tension, and

persistent periodic cycling between those states. Here the dynamic pattern of contractile

activity stems exclusively from cell size fluctuations, amplified by tension-dependent GT-

Pase activity. I did not include chemical diffusion (each cell is assumed to hold a uniform

GTPase level), nor explicit cytoskeletal flows.

Since actual signalling networks are incredibly complex and intricate, it is a significant

challenge to understand how cell behaviour can emerge from underlying components and

properties. Nonetheless, large networks have been studied theoretically, e.g., by [32, 39, 50].

For example, Boolean models of cell signalling including tens of interacting species have been

used to show oscillatory activity of Rac and Rho GTPases [32]. Given this level of detail, it

is easy to understand specific biological mechanisms yet difficult to explain the connections

between network features and parameters on one hand, and emergent cell behaviour on the

other. For this reason, stripped-down conceptual models that concentrate on key topologies

and regulators have a role to play in the theoretical understanding of cell behaviour [93].

This principle motivates the analysis of small models for the GTPases.

Assumptions made for the purpose of simplification can be modified substantially with-

out changing the overall conclusions. For example, while our equation for Rho activation

resembles that of [30], the authors’ assumption about the Hill function-dependence on ten-

sion can be modified to another switch-like function that turns on at some critical force

magnitude. Furthermore, while there is so far evidence for the multiplicity of GEFs involved

in mechanotransduction (relative to GAPs; see [62] Table 1), the model works equally well

with GAP-sensitive responses as with the GEF-based GTPase response assumed here.

One of the key findings is that simple coupling between GTPase activity and tension is

consistent with a range of biologically-relevant cell behaviour. The simplest model already
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produces contracted or relaxed cells as well as cyclic fluctuations between these states.

In the Rac-Rho circuit, such dynamic oscillatory regimes can coexist with static steady

states in the same parameter range, highlighting the dependence on stimuli and/or initial

conditions. Oscillations in cell size are observed under laboratory conditions in epithelial

monolayers [103, 104]. While the link between tension and GTPases may be just one factor

operating in such systems, the model suggests experiments that could be used to test the

connection. In particular, inhibitors of ROCK that would abrogate the connection between

RhoA and actomyosin contraction, or of Rac that would inhibit the antagonism of Rac to

Rho could be used to test the effect on the presence, frequency, and synchrony of cell volume

oscillations.

Hashimoto el al. investigated the “zippering” in the neural/epidermal boundary of the

sea squirt (Ciona intestinalis) embryo, part of the process that sets up neurulation over

a time frame of about 2 hours [29]. Zippering involves successive shortening of cellular

junctions, one after the other, in a unidirectional wave of contractions up the zippering axis.

The contraction was shown to be powered by the localization of active myosin, along the

boundary, and to be dependent on Rho GTPase activity [29]. Furthermore, their paper was

accompanied by kinematic simulations that reproduced the sequence of contractions, based

on assigned tensions (for pre- and post-contraction cells) and assigned time intervals. Here,

I propose a simple model that aims at closing the gap between kinematics and dynamics.

Briefly, instead of the manual assignment of forces and time intervals, a closed-loop chemical-

mechanical system can give rise to the wave-like pattern of sequential cell contractions. As

shown in Figure 3.5(d), under suitable conditions, a unidirectional wave of Rho activation

contraction is supported by the minimal model. That said, while the conceptual model here

can account for the formation of wave, it is clear that other factors such as communication

between cells reaching across the “zipper” sides play vital roles not considered here (Edwin

Munro, personal communication).

In other organisms, such as Drosophila, Rac GTPase is known to have multiple roles

in early morphogenesis [100]. During Drosophila dorsal closure, over- and under-expressing

Rac results in the excess assembly of lamellipodia or disrupts the assembly of an actin cable

(and subsequent zippering) and cell protrusions. While GTPases such as Rac regulate cell

behaviour during these morphogenetic processes, it is likely that cell and tissue mechanics

also play an important role. Upstream mechanical signalling to Rho GTPases may occur

as cells move and forces are transmitted, or as cell-cell junctions are rearranged. In the

case of zippering in sea squirt embryos, or in Drosophila dorsal closure, further validation

of the mechanisms and/or completion of other essential elements remains as a future step.

Nonetheless, with these mechanosensing assumptions, it is possible that feedback between

signalling and mechanics can account for diverse single and collective cell behaviour in
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these morphogenetic processes. Extending the conceptual model here to specific organisms

by connecting to GTPase signalling and cell mechanics to data from experiments remains

a direction for future work.

I focused on cell size (expanded or contracted), but it is also of interest to consider

how cell polarization is affected by mechanical cues in isolated cells and in cell collectives.

See [43] for some theoretical background and review. Importantly, the results point to

parameter regimes in which cells oscillate between compression and relaxation (in the case

of a single Rho-like GTPase), or compression and stretching (for Rac-Rho). But it is known

that such cyclic stretching can itself change the properties of cells, reorganizing stress-fibers,

for example in a Rho-dependent manner in endothelial cells [38]. It would be of interest

to explore such polarity and directionality in future 2D models of this type, as well as to

consider how the feedback between GTPases and tension operate in collective cell migration

[71]. There is evidence that GTPases also affect the cell-cell adhesion [52, 96] and tight-

junctions [105], which would affect the coupling of mechanical transduction between cells

in a tissue. This could be of interest in future models.
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Chapter 4

Conclusions

Broadly, this thesis has addressed how biological mechanisms combine to organize cell be-

haviours using models and techniques from applied mathematics. It is possible to gain an

understanding of mechanisms, facts and theories about how a host of biological players

interact with each other from biological experiments and observations. Building on these

observations, multi-scale modelling and analysis can serve as a platform for understanding

how cell-scale and tissue-scale organization emerges from the interactions of the many bi-

ological players. Along these lines, I have discussed two examples in this thesis. As the

first example, I extended asymptotic quasi-steady-state (QSS) reduction methods to a class

of nonlinear reaction-advection-diffusion PDE systems satisfying a conservation condition

which describe molecular motor transport within cells. As the second example, I developed

a model to explore the interplay between GTPase signalling and cell mechanics, which could

generate a wide range of single and collective cell behaviour.

In this section, instead of summarizing the results from each part (results are summarized

and discussed in sections 2.6 and 3.6, respectively), I will comment on the significance,

broader contributions, and future applications of each part.

Intracellular Transport by Molecular Motors

The contribution of the work in Chapter 2 was the extension of existing QSS methods

for molecular motor transport to include nonlinear reaction kinetics. These methods were

previously limited to models with linear reaction kinetics, but were successfully applied

to understand molecular motor based transport in neurons [57] and in fungal hyphae [16].

Here, I have illustrated that even with the incorporation of nonlinear reactions, which may

better represent biological interactions, the QSS approximation methodology can serve as a

bridge between molecular events, interactions, and motor speeds and the overall transport

at the cell scale. Biological insight into the effective transport and effective diffusion rates
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is obtained through the QSS methodology. For example, in the kinesin-dynein model, the

QSS PDE revealed that changes in any number of parameters could switch the distribution

of motors within the cell from one cell end to the other (see Figure 2.9). The biological

significance of this finding is that a mutation or other change in one of the biophysical

properties of the molecular motors can drastically alter the overall, cell-scale, distribution

of motors. Such a mutation would have a detrimental impact on the normal function of the

transport process.

The three-case studies illustrated the generality of the QSS approximation method to

a variety of nonlinear interactions; however, it remains an open question whether the QSS

approximation is possible for more realistic models with a greater number of motor states;

or in models with higher degree nonlinearities. Moreover, the QSS approximation relies on

the assumption that there is a separation of time-scales between binding/unbinding and

motion across the cell.

Recent work by Ciocanel et al. [12] has estimated biophysical motor parameters from

active transport data and a PDE approximation method for a system of transport equations

with linear reactions. Future work should use data from specific experimental systems

to validate the QSS approximation. Although the biological systems considered here are

truly three-dimensional (in space), the 1D models considered here are a sufficiently good

approximation for fungal hyphae (or neurons) which are long thin cells. Nonetheless, it

would be interesting to extend the QSS approximation to higher spatial dimensions with

nonlinear reactions (the QSS approximation method has been studied in the context of

models in two spatial dimensions with linear reactions [6]). A final interesting direction

is the open question of what happens in systems with multiple quasi-steady-states, as in

the myosin model in Chapter 2. Of particular interest is a system with three quasi-steady-

states in a bistable arrangement (two stable, with an unstable state in between). In such a

model, the first questions are to determine which QSS better approximates solutions to the

full PDE system, especially if the system is attracted to different QSS in different spatial

regions within the cell.

The Interplay Between Cell Signalling and Cell Mechanics

The contribution of the work in Chapter 3 was the first exploration of the interplay between

GTPase-induced cell contraction and tension-induced GTPase activity in single cells and in a

1D and 2D tissue. The main biological result is that a wide variety of cell behaviour emerges

from this signalling feedback: contracted cells, relaxed cells, oscillatory cells, synchronized

contractile tissue, and waves of contraction in a large tissue. This behaviour is consistent

with a range of biologically relevant cell behaviours. Although many models have looked

at the implications of GTPase signalling for cell behaviour [33, 49] and many others have
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sought to understand the implications of mechanochemical interactions for cell behaviours

[17, 34, 60], the work here stands as one of the first steps to understanding the interplay

between GTPase signalling and cell mechanics within a mathematical model.

The successes of the GTPase-tension modelling work are (1) the emergence of a variety

of cell behaviour from the interplay of signalling and mechanics (2) the theoretical under-

standing possible from the use of a stripped-down, conceptual model and (3) the possible,

immediate, extensions to a variety of specific experimental systems such as Dropsophila

dorsal closure or “zippering” in the neural/epidermal boundary in the Ciona intestinalis

embryo. The simplicity of the two ODE model allowed for numerical bifurcation analysis to

characterize the solutions to the single cell model, but this was limited to the single cell sys-

tem and could be extended to the multi-cell system. Using the Cellular Potts model (CPM)

revealed the implications of 2D neighbour interactions in the GTPase-tension model, but

leaves the question of how to translate between a Monte-Carlo step and a unit of time t.

As future work, I can suggest the following projects.

• Extending the specific GTPase-tension system to specific, data-driven, systems (as

mentioned above) to explore the interplay between signalling and mechanics in regu-

lating morphogenetic processes.

• Obtaining a continuum limit partial differential equation of the 1D multi-cellular

system to understand the transition between synchronization and waves of contraction

as a bifurcation in mechanical or signalling parameters (as in [17]).

• Utilizing coarse-graining methods to derive partial differential equation models that

approximate the behaviour of the 2D CPM. This could provide a link to the sub-

cellular signalling and the population-level outcomes. For example, Alber et al. [1],

Lushnikov et al. [45], Turner et al. [94] have used coarse-graining methods to derive

PDE descriptions of cell behaviour from cellular Potts models of cell migration, cell

adhesion and chemotaxis. In these examples, numerical simulations of the PDE model

match the CPM simulations, and the coefficients of the PDE are derived from the CPM

parameters.

• Determining how cell polarity and directionality in 2D cell migration models are af-

fected by mechanical signalling and GTPase signalling.

Multi-scale Modelling in Cell Biology

Upon reflecting on the conclusions, significance, and contribution of the results in thesis,

it is evident that multi-scale mathematical modelling is useful for explaining qualitative

behaviour and suggesting plausible hypotheses for experimentally observed phenomena. To
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illustrate, consider the following examples. First, from the QSS methods in Chapter 2,

the effective transport and effective diffusion rates were found to depend on the biophys-

ical properties of the molecular motors. In an experiment where the overall, cell-scale,

distribution of motors or cargo is observed the quantitative measures would describe the

effective transport and diffusion rates instead of specific molecular motor behaviours. From

such data (and further experiments to alter or inhibit different players in the transport

process) it would be possible to obtain a realistic biophysical understanding of the motors

and interactions that control transport. Second, a result from Chapter 3 is the emergence

of oscillations of cell size in a large epithelial tissue. Such oscillations are also observed in

epithelial monolayers [103, 104]. Experimental manipulations to increase or decrease the

adhesions of cells (through drugs that target integrins, focal adhesions, or other cell-cell

junctions, for example) and quantitative analysis of the resulting behaviour could test the

hypothesis that increasing adhesion leads to increased synchronization within the mono-

layer.

Nonetheless, conceptual multi-scale models such as those in this thesis can have limita-

tions. A few limitations of the work here are the (1) lack of connections to specific experi-

mental data, (2) the usage of deterministic models, (3) over-simplification of cell signalling,

(4) assuming that cells are homogenous internally, and (5) the myriad of other biological

factors that I have ignored. When coupled to data, model parameters can be estimated,

models can test hypotheses and suggest new experiments (as suggested above). Noise, which

is inherent to may biophysical systems, has largely been ignored in this thesis. Although

the reaction-advection-diffusion PDE systems studied in Chapter 2 can be understood as

averages or approximations of the noisy agent-based behaviour of many molecular motors,

and the Cellular Potts model (CPM) revealed additional single cell behaviour (stochas-

tic switching between steady-states) in Chapter 3, a more careful treatment of the noisy

biological processes may be helpful in a more mechanistic modelling approach.

Even with the simplifications, assumptions, and limitations of the specific models, it is

apparent that a wide variety of organization can be understood from interactions at different

levels. In Chapter 2, I illustrated how, from sub-cellular interactions, quasi-steady-state

methods can serve as a tool understand cell-scale distribution of molecular motors and the

effects that particular biophysical parameters have on the resulting motor distributions. In

Chapter 3, I connected signalling and mechanics at the cell scale to generate and understand

cellular and multi-cellular behaviours.
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Appendix A

Supporting Materials for the

Application of Quasi-Steady-State

Methods to Nonlinear Models of

Intracellular Transport

A.1 Convergence of the Kinesin Model to the QSS for ε→ 0

As discussed in §2.6, one advantage of the QSS methodology is that it is not necessary to per-

form the possibly numerically expensive task of computing time-dependent or steady-state

solutions to the full PDE system for each small value of the parameter ε. Computational

savings would be amplified if the methodology was extended to 2 or 3 dimensions or the

methodology was required in an experimental context or being fit to data. Since numerical

computations for the full models and the QSS PDEs herein require approximately the same

amount of computational time, there is hardly a computational advantage to using the

QSS PDE as a proxy for the full model. Nonetheless, repeated time-dependent numerical

simulations of the regularized myosin model for the creation of Figure 2.17 did require a

significant amount of computational time. The need for repeated numerical simulations

for different initial conditions or for different parameters is suggestive of the computational

advantages of the QSS approximation.

Using the QSS as a proxy for the full PDE system does incur errors that depend on the

size of ε. To illustrate this, I compare the steady-state solution of the QSS PDE (2.29) and

(2.30) with corresponding steady-state results computed from the full model (2.15) with

(2.25) for a few values of ε in Figure A.1. These results show that as ε decreases the QSS

PDE accurately predicts the steady-state of the full model.
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Figure A.1: The steady-state solution to the full nonlinear model (2.15) with (2.25)
converges to the steady-state of the QSS PDE (2.29) with (2.30) as ε → 0. Here
g(α) = α/(1 + α), P = 0.6, kb = 0.5, ku = 0.3, and D = 0.01.

A.2 Numerical Methods for the QSS

In this appendix, I show how to numerically compute the steady-state solution of the QSS

PDEs by recasting the nonlocal problem into an initial-boundary value problem (IBVP),

which is amenable to a numerical shooting method.

For the QSS PDE associated with the kinesin model (2.29) of §2.4.1, the steady-state

problem is
dα

dx
=
ka

D
[2P (x)− 1] g(α),

∫ 1

0
(kag(α) + α) dx = 1, (A.1)

where g(α) is either the saturated binding model (2.34) or the Hill function (2.47). To

reformulate (A.1), define N(x) by

N(x) ≡
∫ x

0
(kag[α(η)] + α(η)) dη − 1. (A.2)

Then, (A.1) is equivalent to the ODE system

dα

dx
=
ka

D
[2P (x)− 1] g(α),

dN

dx
= kag(α) + α, (A.3)

with N(0) = −1. In order to find a solution α(x) that satisfies (A.1), it is necessary to

find α(0) such that when the initial value problem (IVP) for α(x) is solved, N(1) = 0.

Specify α(0) = β, where β is a value to be determined. Next, solve the IBVPs (A.3) for

various values of β and output the quantity N(1;β). In this numerical shooting procedure,

Newton’s method on β is then used to satisfy the required terminal constraint N(1;β) = 0.

Once this β is found, the steady-state solution α(x) can be calculated by solving the IVP

with the initial condition α(0) = β.
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A similar approach can be used to compute steady-state solutions of the QSS PDE (2.53)

for the kinesin-dynein model of §2.4.2 subject to the total mass constraint
∫ 1

0 y(x) dx = 1.

In place of (A.3), obtain

dα

dx
= −ka

D

[v(kα+ 1−Q)−Q]

(kα+ 1−Q)2 +Q(1−Q)
(kα+ 1−Q)α,

dN

dx
=

(
1 +

1

ka

)
(kα+ 1)α

kα+ 1−Q
,

(A.4)

with N(0) = −1 and α(0) = β. As before, β is a shooting parameter determined numerically

by satisfying the terminal constraint N(1;β) = 0.

Finally, we consider steady-state solutions of the QSS PDE (2.67a) for the myosin

model of §2.4.3 subject to the total mass constraint
∫ 1

0 y(x) dx = 1. In place of (A.3),

obtain
dα

dx
= −kb

D

(
vkbwα

2 − 1
)

kbwα2 − 1
α,

dN

dx
=

(kb + 1)

kbkbw

(kbwα
2 + 1)

α
, (A.5)

with N(0) = −1 and α(0) = β, again where β is computed numerically to satisfy the

constraint N(1;β) = 0. A steady-state solution exists only when kbwα
2 > 1 on 0 ≤ x ≤ 1.

To numerically determine the boundary in parameter space where kbwα
2 > 1 holds on

0 ≤ x ≤ 1 for the steady-state when 0 < v < 1, it is convenient to reformulate (A.5). Define

A(x) ≡
√
kbwα(x) to transform (A.5) to

dA

dx
= −c1

(
vA2 − 1

)
A2 − 1

A ,
dN

dx
= c2

(
A2 + 1

)
A

, where c1 ≡
kb

D
, c2 ≡

kb + 1

kb

√
kbw

.

(A.6)

A steady-state solution to the QSS PDE exists only when A(x) > 1 on 0 ≤ x ≤ 1. Since

(A.6) implies that A(x) is monotonic in x whenever A > 1, then it is possible that A→ 1+

only for x→ 0+ or x→ 1−. However, since A→ 1/
√
v > 1 on the infinite line as x→∞, it

follows that A→ 1+ as x→ 0+. To determine the local behaviour as A→ 1+ and x→ 0+,

note that (A.6) implies dA/dx ∼ c1(1− v)/[2(A− 1)] and dN/dx ∼ 2c2. This yields the

local behaviour

A ∼ 1 +
√
c1(1− v)x, N ∼ −1 + 2c2x, as x→ 0+. (A.7)

For a fixed v and D > 0, with 0 < v < 1, the region in the parameter space kbw versus

kb where A(x) > 1 on 0 ≤ x ≤ 1, is determined as follows. Fix c1 in (A.6), numerically

integrate the IBVPs (A.6) with the local behavior (A.7) imposed at some x = δ, with

0 < δ � 1, and numerically shoot on the value of c2 for which N(1; c2) = 0. From (A.6),

this determines kb and kbw as kb = c1D and kbw = [(kb + 1)/(kbc2)]2.
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A.3 Microtubule Density and Binding by Motor Complexes

A.3.1 Kinesin Model with Nonuniform MT Density

To explicitly incorporate the possibility that MT density, m(x) (as well as fraction of MT

pointing to the right, P (x)) varies across the cell, it is possible to write the kinesin-model

equations as

∂pR

∂t
= −v∂p

R

∂x
+ P (x)kbmm(x)g(pU)− kup

R, (A.8a)

∂pL

∂t
= v

∂pL

∂x
+ (1− P (x))kbmm(x)g(pU)− kup

L, (A.8b)

∂pU

∂t
= D0

∂2pU

∂x2
− kbmm(x)g(pU) + kup

R + kup
L. (A.8c)

This modification of the model introduces another factor into coefficients that are already

spatially-dependent, but otherwise leaves the model structure unchanged. Hence, the tech-

niques in the paper apply as before with kbmm(x) replacing the parameter kb.

For the purposes of the proof-of-concept QSS reduction, now restrict attention to uni-

form MT density so that m(x) ≡ m0 is a constant. Then the model for kinesin is given by

(A.9) as below, with the assignment

kb = kbmm0.

That is, the binding constant kb is understood to represent the net rate of binding, which

includes both the per-MT-binding rate and the MT density.

A.3.2 Kinesin-Dynein Model and the Function Q(x)

The kinesin-dynein model simplifies the binding of free motor complexes into states that

move right with probability Q(x), and left with probability 1−Q(x). I consider the case of

motor complexes that all have nk kinesin and nd dynein components (the case of complexes

with a variety of motor numbers can be handled by considering the mean composition of

a complex or the mean ratio between the two motor types). Also define the parameters

kbd and kbk as the binding rates for a (single) dynein and for a (single) kinesin to a MT,

and consider m(x) as the local MT density. Then the quantity kbQ in the model can be

decomposed as follows:

kbQ(x) = m(x) [P (x)nkkbk + (1− P (x))ndkbd] .
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This relates the aggregate binding rate to the probability that a kinesin binds to right-

pointing MT and that dynein binds to left-pointing MT. Similarly,

kb(1−Q(x)) = m(x) [(1− P (x))nkkbk + P (x)ndkbd] .

Since such details merely substitute one spatially-dependent function for another, the QSS

analysis previously described carries over as before.

A.4 Scaling the QSS Models

In this section, details of the scaling of the molecular motor transport models is presented.

A.4.1 The Kinesin Model

Consider the kinesin model with uniform MT density. This system is

∂pR

∂t
= −v∂p

R

∂x
+ Pkbg(pU)− kup

R, (A.9a)

∂pL

∂t
= v

∂pL

∂x
+ (1− P )kbg(pU)− kup

L, (A.9b)

∂pU

∂t
= D0

∂2pU

∂x2
− kbg(pU) + kup

R + kup
L. (A.9c)

Define T to the total amount of motors inside the cell:

T ≡
∫ L0

0

(
pR(x) + pL(x) + pU(x)

)
dx ≡

∫ L0

0
y(x) dx,

and ρ = T/L0 to be the average density of motors in the cell.

Scale space, time, and densities as follows:

x? =
x

L0
, t? =

tv

L0
, pJ? =

pJ

ρ
, y? =

y

ρ

where y? = pR?+pL?+pU? is the total scaled density. Here, distance has been scaled by the

cell length and time by the time that a motor takes to walk across the cell. The densities

of motors in each state is scaled by the average motor density across the cell.

With this scaling, the total amount of motors is

T =

∫ 1

0

(
ρpR?(x?) + ρpL?(x?) + ρpU?(x?)

)
d(L0x

?).
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Taking out the constant factor of ρL0 ≡ T from the integral results in

T = ρL0

∫ 1

0

(
pR?(x?) + pL?(x?) + pU?(x?)

)
dx?,

which leads to ∫ 1

0
y?dx? =

∫ 1

0

(
pR?(x?) + pL?(x?) + pU?(x?)

)
dx? = 1.

With this scaling, the integral of the total scaled density is unity, which is assumed through-

out the numerical computations above.

Substituting the scaled variables into the PDE system (A.9) leads to

v

L0

∂(ρpR?)

∂t?
=
−v
L0

∂(ρpR?)

∂x?
+ ku

(
P (x)

kb

ku
g(ρpU?)− (ρpR?)

)
, (A.10a)

v

L0

∂(ρpL?)

∂t?
=

v

L0

∂(ρpL?)

∂x?
+ ku

(
(1− P (x))

kb

ku
g(ρpU?)− (ρpL?)

)
, (A.10b)

v

L0

∂(ρpU?)

∂t?
=
D0

L2
0

∂2(ρpU?)

∂x?2 + ku

(
ρpR? + ρpL? − kb

ku
g(ρpU?)

)
. (A.10c)

This leads to two cases, depending on whether the function g is linear or not.

Case I: g is linear. In this case, it is possible to eliminate the factor ρ from every

term. Dividing each term in the equations by vρ/L0 and dropping the stars leads to

∂pR

∂t
= −∂p

R

∂x
+

1

ε

(
P (x)kap

U − pR
)
, (A.11a)

∂pL

∂t
=
∂pL

∂x
+

1

ε

(
(1− P (x))kap

U − pL
)
, (A.11b)

∂pU

∂t
= D

∂2pU

∂x2
+

1

ε

(
pR + pL − kap

U
)
, (A.11c)

where D, ε, and ka are defined by

D ≡ D0

vL0
, ε ≡ v

L0ku
, ka ≡

kb

ku
. (A.12)

In this case, these dimensionless parameters represent, respectively, the ratio of (time to be

transported : time to diffuse) across the cell (D), the ratio of (time spent unbound : time

to walk) across the cell (ε), and the ratio of (time spent unbound : time spent bound) (ka).

Case II: g is Michaelian or Hill. In this case,

g(p) = gm
pn

Kn + pn
, n = 1, 2, . . . .
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Then, (A.10) becomes

v

L0

∂(ρpR?)

∂t?
=
−v
L0

∂(ρpR?)

∂x?
+ ku

(
P (x)

kb

ku

gm(ρpU?)n

[Kn + (ρpU?)n]
− (ρpR?)

)
, (A.13a)

v

L0

∂(ρpL?)

∂t?
=

v

L0

∂(ρpL?)

∂x?
+ ku

(
(1− P (x))

kb

ku

gm(ρpU?)n

[Kn + (ρpU?)n]
− (ρpL?)

)
, (A.13b)

v

L0

∂(ρpU?)

∂t?
=
D0

L2
0

∂2(ρpU?)

∂x?2 + ku

(
ρpR? + ρpL? − kb

ku

gm(ρpU?)n

[Kn + (ρpU?)n]

)
. (A.13c)

Define a new constant A ≡ K/ρ. This constant is the ratio of the motor concentration at

which the binding rate is half-maximal to the average motor density in the cell. Divide

numerator and denominator of the Hill function by ρn. Further, divide every term in the

equations by vρ/L0 as before. After rearranging and dropping the starred notation, obtain

∂pR

∂t
= −∂p

R

∂x
+

1

ε

(
P (x)ka

(pU)n

[An + (pU)n]
− pR

)
, (A.14a)

∂pL

∂t
=
∂pL

∂x
+

1

ε

(
(1− P (x))ka

(pU)n

[An + (pU)n]
− pL

)
, (A.14b)

∂pU

∂t
= D

∂2pU

∂x2
+

1

ε

(
pR + pL − ka

(pU)n

[An + (pU)n]

)
, (A.14c)

where D and ε are as before, but ka now depends on whether g is a Michaelis-Menten or

a Hill function. This holds for any Hill coefficient n. Note that, in particular, for the case

n = 1, which is the Michaelian case considered,

∂pR

∂t
= −∂p

R

∂x
+

1

ε

(
P (x)ka

pU

[1 + cpU]
− pR

)
, (A.15a)

∂pL

∂t
=
∂pL

∂x
+

1

ε

(
(1− P (x))ka

pU

[1 + cpU]
− pL

)
, (A.15b)

∂pU

∂t
= D

∂2pU

∂x2
+

1

ε

(
pR + pL − ka

pU

[1 + cpU]

)
, (A.15c)

where c ≡ 1/A = ρ/K. In (A.14) and (A.15) ka is defined by

ka ≡
kbgm

kuρ
(Hill), ka ≡

kbgm

kuK
, (Michaelis-Menten). (A.16)

In either case, the parameter ka describes the ratio of time spent bound to the time spent

unbound, mediated by the nonlinear binding kinetics.
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Finally, scale the boundary conditions in (2.5) to get(
pR − pL −D∂p

U

∂x

)∣∣∣∣
x=0,1

= 0, (A.17)

together with

pR(0, t) = 0 and pL(1, t) = 0. (A.18)

A.4.2 Kinesin-Dynein Model Scaling

Define kc ≡ krl − klr. Then the model can be written as

∂pR

∂t
= −vr

∂pR

∂x
+ kbQp

U − kup
R − kcp

RpL, (A.19a)

∂pL

∂t
= vl

∂pL

∂x
+ kb(1−Q)pU − kup

L + kcp
RpL, (A.19b)

∂pU

∂t
= D0

∂2pU

∂x2
− kbp

U + ku(pR + pL). (A.19c)

Scale all variables as before. Then terms of the form (kc/ku)pRpL will lead to the form

(kc/ku)ρpR?ρpL?, so that what remains, after canceling out a factor of vrρ/L0 from every

term in each equation, and dropping the starred quantities, is

∂pR

∂t
= −∂p

R

∂x
+

1

ε

(
kaQp

U − pR − kpRpL
)
, (A.20a)

∂pL

∂t
= v

∂pL

∂x
+

1

ε

(
ka(1−Q)pU − pL + kpRpL

)
, (A.20b)

∂pU

∂t
= D

∂2pU

∂x2
+

1

ε

(
pR + pL − kap

U
)
, (A.20c)

where the parameters are

v ≡ vl

vr
, D ≡ D0

vrL0
, ε ≡ vr

kuL0
, ka ≡

kb

ku
, k ≡ kcρ

ku
=

(krl − klr)ρ

ku
. (A.21)

Here ρ is the average density of motors inside the cell. These dimensionless parameters

represent, respectively, the (left:right) walking speed ratio (v), the ratio of (time to be

transported : time to diffuse) across the cell (D), the ratio of (time spent unbound : time

to walk) across the cell (ε), the ratio of (time spent unbound : time spent bound) (ka),

and the turning parameter k, which represents the ratio of (net right-left direction switches

: unbinding rate). Note that the average density of motors ρ enters into the turning rate

parameter due to the nonlinearity of the model with respect to the turning of motors when
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they collide on a MT.

Details of QSS Reduction of Kinesin-Dynein Model

This section provides some details of the QSS reduction of the kinesin-dynein model. Upon

setting f2 = f3 = 0 in (2.48), obtain the two equations

kpRpL = pL − ka(1−Q)pU, −kap
U + pR + pL = 0. (A.22)

It is convenient to let pL be the free variable and parameterize the quasi-steady-state in

terms of pL = α. By solving (A.22) for pR and pU, the quasi-steady-state solution p0 as

given in (2.50). The non-zero eigenvalues λ± of the Jacobian of the kinetics satisfy the

quadratic equation given in (2.51) and (2.52). A necessary and sufficient condition for

Re(λ±) < 0 is that σ1 < 0 and σ2 > 0 in (2.52). To establish this result, consider some

properties of H(Q) defined in (2.52). First observe that H(0) = 1, so that trivially σ1 < 0

and σ2 > 0 when Q = 0. Then, since H ′(Q) = −(1 + kα)/(1 + kα−Q)2 < 0, it follows

that σ1 < 0 and σ2 > 0 on 0 ≤ Q ≤ 1 provided that σ1 < 0 and σ2 > 0 when Q = 1.

These inequalities do hold at Q = 1, since by using H(1) = (kα− 1)/(kα), one finds that

σ1 = −1 − ka − kα and σ2 = kα(1 + ka) > 0 when Q = 1. This proves that Re(λ±) < 0

for any Q in 0 ≤ Q ≤ 1. As a result, p0 defined in (2.50) is a slow manifold in the sense

of Definition (2.3.1) for any Q in 0 ≤ Q ≤ 1. Finally, by using p0 and the operator M , as

defined in (2.48), in the solvability condition (2.24), the QSS PDE can be derived (2.53).

A.4.3 Myosin Model Scaling

The myosin model is

∂pW

∂t
= −vw

∂pW

∂x
− k̂bw

(
pB
)2
pW + k̂bp

U − kup
W, (A.23a)

∂pB

∂t
= vb

∂pB

∂x
+ k̂bw

(
pB
)2
pW − kup

B, (A.23b)

∂pU

∂t
= Df

∂2pU

∂x2
− k̂bp

U + ku(pB + pW). (A.23c)

Using the scaling as before, the terms
(
pB
)2
pW will lead to the forms

(
ρpB?

)2
(ρpW?

). This

will result in a constant factor ρ2 that remains after canceling out ρ from all terms in the
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equation. As a result, upon dropping the starred quantities,

∂pW

∂t
= −∂p

W

∂x
+

1

ε

(
−kbw

(
pB
)2
pW + kbp

U − pW
)
, (A.24a)

∂pB

∂t
= v

∂pB

∂x
+

1

ε

(
kbw

(
pB
)2
pW − pB

)
, (A.24b)

∂pU

∂t
= D

∂2pU

∂x2
+

1

ε

(
pB + pW − kbp

U
)
, (A.24c)

where the dimensionless parameters v, D, ε, kbw, and kb are defined by

v ≡ vb

vw
, D ≡ Df

vwL0
, ε ≡ vw

kuL0
, kbw ≡

k̂bwρ
2

ku
, kb ≡

k̂b

ku
. (A.25)

Recall that ρ is the average density of motors inside the cell. These dimensionless parameters

represent, respectively, the bound:walking motor speed ratio (v), the ratio of (time to be

transported : time to diffuse) across the cell (D), the ratio of (time spent unbound : time to

walk) across the cell (ε), the interaction parameter kbw, which represents the ratio of (net

rate of collisions that result in direction change : unbinding rate), and the ratio of (time

spent unbound : time spent bound) (kb). Note that the average density of motors ρ enters

into the interaction rate parameter due to the nonlinearity of the model with motor-motor

interaction.

A.4.4 Non-spatial Myosin Model

In §2.4.3, I seek to determine whether the Type I or Type II QSS PDE better approximates

the behaviour of the full myosin system. To understand the behaviour, I study the non-

spatial myosin model kinetics through a phase-plane analysis, where the advection and

diffusive processes in (A.24) are neglected.

The non-spatial myosin model kinetics are described by the following system of ODEs:

dpW

dt
= −kbw

(
pB
)2
pW+kbp

U−pW ,
dpB

dt
= kbw

(
pB
)2
pW−pB ,

dpU

dt
= pB+pW−kbp

U ,

(A.26)

where time has been scaled to remove the ε-dependence. Due to conservation of mass, it is

possible to write pU = 1 − pW − pB. This facilitates the reduction of this system of three

equations to a system of two equations:

dpW

dt
= −kbw

(
pB
)2
pW + kb

(
1− pW − pB

)
− pW, (A.27a)

dpB

dt
= kbw

(
pB
)2
pW − pB. (A.27b)
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With kbw = 25 and kb = 3, a phase-plane analysis (see Figure A.2) reveals the existence of an

unstable manifold which divides the (pW, pB) plane into two regions. For initial conditions

below this unstable manifold, the system converges to a steady-state with pB = 0, but

pW > 0, as in Type I QSS. For initial conditions above this unstable manifold, the system

converges to a steady-state with pB > 0, as in Type II QSS.

Figure A.2: A phase-plane analysis of the non-spatial myosin model (A.27) reveals the
existence of an unstable manifold that divides (pW, pB) space into two regions. For initial
conditions below the unstable manifold, the system tends to a steady-state with pB = 0,
but for initial conditions above the unstable manifold, the system tends to a steady-state
with pB > 0.
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Appendix B

Supporting Materials for Coupling

Mechanical Tension and GTPase

Signalling to Generate Cell and

Tissue Dynamics

B.1 Numerical Methods

Numerical integration of the single cell models and bifurcation analysis was preformed

using PyDSTool [13]. Numerical integration of the single-cell and multicellular models was

preformed using MATLAB 2017a (The MathWorks, Inc. Natick, Massachusetts, United

States). Cellular Potts model simulations were produced with CompuCell3D [90].

B.2 Scaling the GTPase Model

The dynamics of active GTPase are governed by the following differential equation:

dG

dt
=

(
b̂+ γ̂

Gn

Gn0 +Gn

)
(GT −G)− δG. (B.1)

Here, b̂ is a basal activation rate, γ̂ gives the magnitude of the positive feedback upon the

activation rate, and G0 describes the concentration of GTPase at which positive feedback

reaches its half-maximal effect. GT −G gives the total concentration of inactive GTPase.

To reduce the size of parameter space, scale GTPase concentration by the half-max

quantity G0, and scale time by the active GTPase residence time 1/δ, respectively. The
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equations become
dG

dt
=

(
b+ γ

Gn

1 +Gn

)
(GT −G)−G. (B.2)

The mechanical stimulus term f(T ) was added to the activation rate, i.e., I assumed that it

operates via a GEF. I considered several forms of mechanical feedback from cell deformation

to GTPase activity. Based on the idea that the difference between the current cell “length”

L and the current cell “rest-length” L0 creates the tension that stimulates mechanosensitive

pathways, express the feedback in terms of L and L0. Consequently, I experimented with

each of the following forms:

f0(L) = β(L− L0), Linear case;

f1(L) = β
Lm

Lm0 + Lm
, Hill function;

f2(L) = β
1

1 + exp[α(L− L0)]
, Squashing function;

f3(L) = β
1

1 + exp
[
α (L−L0)

L0

] , Strain-dependent squashing function.

All four cases share the property that GTPase activation is amplified if L � L0. The

linear function f0 has the property that both stretching (L > L0) and compression (L < L0)

affect GTPase activation, albeit in opposite ways (stretching increases while compression

decreases the GTPase activation rate.) The squashing function f2 is predominately unidi-

rectional, i.e., only L > L0 has a significant effect, so stretching, but not compressing a cell

affects its signalling. This function was used in the minimal model and has the advantage

of specifically tracking tension. At the same time, f1 has a similar effect as f2, and was

to a large extent indistinguishable in the dynamical results obtained (see Appendix Figure

B.1(b) for a bifurcation diagram of the single-cell model with the Hill function response

f1). The noticeable difference occurs in the synchronization of large tissue simulations.

Compare, for example, the simulation with the squashing function f2 in Figure 3.5(e) and

the simulation with the strain-dependent squashing function f3 in Appendix Figure B.1(c).

The Hill function and strain-dependent squashing function, f1 and f3 have a similar

shape for all L and L0 and are approximately equal for the parameters used herein. The

change that f1 and f3 can affect in the GTPase activation rate is relative to the current

rest-length of the cell L0. This is different from the squashing function f2, which assumes a

mechanosensing mechanism by which tension can activate GTPase signalling regardless of

the current rest length, L0.

The Rac-Rho mutual inhibition model in Section 3.5 Equation (3.6), is the scaled model.

Details of this scaling are similar to scaling for the single GTPase model. The reader is
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referred to [33, 34].

B.3 1D Methods: Multicellular Simulations

Equations (3.4) and (3.2a) were implemented in a collection of cells in 1D. Each cell has

its own GTPase activity Gj , which is described by Equation (3.2a), with lengths given by

Lj = xj+1 − xj . Numerical integration was done using MATLAB 2017a (The MathWorks,

Inc. Natick, Massachusetts, United States) for all 1D multicellular simulations.

For Figure 3.5(a)-(c), (e), and (f), and B.1(a) and (c), GTPase activity in each cell, Gj ,

affects the rest length through

Lj,0 = `0 − φ
Gpj

Gph +Gpj
. (B.3)

Tension is assumed to affect the GTPase activation rate through the squashing function

response to tension (f2 above, also Equation 3.2b). Parameter values for these simulations

are b = 0.1, γ = 1.5, n = p = 4, GT = 2, α = 10, `0 = 1, φ = 0.75, Gh = 0.3, k = 1, λ = 10,

and β varies. Initial conditions are Lj(0) = 0.7 and Gj(0) = 1 for the N = 10 simulations,

and random initial lengths with Gj(0) = 1 for all the simulations with N > 10 and for

the N = 10 case with one oscillatory cell, Figure B.1. Instead of the squashing function

response to tension (f2), the strain-dependent squashing function (f3) was used in Figure

B.1(c).

For Figure 3.5(d), we simulated N = 14 cells, and assumed linear responses for both

GTPase-activation from tension (f0) and for rest-length from GTPase activity:

Lj,0 = `0 − φGj . (B.4)

Initial conditions for this simulation were Lj(0) = 0.68, Gj(0) = 0.45 for all j with the

exception of Gj(0) = 1.2 for j = 13, 14. Other parameters were b = 0.3, β = 0.35, φ = 0.7,

n = 4, GT = 1.75, `0 = 1, k = 1, and λ = 10.

B.4 2D Methods: Cellular Potts Model

CompuCell3D, an open-source implementation of the cellular Potts model, is used for 2D

simulations of the GTPase-tension model [90]. The cellular Potts model is an individual

cell-based model where each cell occupies one or more discrete lattice sites. Cells can expand

outwards or contract inwards by adding or removing lattice sites at the cell perimeter.

The dynamics of each “cell” is governed by a Hamiltonian energy function, H. The

Hamiltonian for the 2D simulation consists of an area constraint term (also called volume
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(a) All 10 cells have β = 0.3
except for one randomly chosen
oscillatory cell with β = 0.2.

0.0 0.1 0.2 0.3 0.4

β

0.2

0.4

0.6

0.8

L

(b) Single cell bifurcation di-
agram with Hill function re-
sponse from tension f1(T )

(c) β = 0.2, 50 cells, with
GTPase activation rate f(T ) =
f3(T ).

Figure B.1: Additional 1D tissue dynamics result from mechanochemical interactions. Ky-
mographs show the 1D position of each cell (vertical axis) with color indicating the GTPase
activity within each cell. In (a), a single oscillatory cell with β = 0.2 can induce tissue-level
oscillations among a population of contracted cells with β = 0.3. In (b), single cell dynamics
with the Hill function response from tension, f1(T ), qualitatively resemble the dynamics
with the squashing function f2(T ). In (c), waves of contraction propagate through the tissue
of 50 oscillatory cells with the strain-dependent feedback, f3. See also SI Movies 10 and 11,
for (a) and (c) respectively.

deformation term in a general 3D context) and an adhesion energy term. The area constraint

is implemented in terms of a (time-varying) target area. Target area represents the area

(number of lattice sites) that each cell would occupy in an optimal lattice configuration.

The adhesion energies specify the interactions between different cells and the surrounding

medium (extra-cellular space, or “medium”). Additionally, a connectivity constraint is

imposed that penalizes the Hamiltonian if lattice sites for each cell do not form a connected

domain. This avoids fragmentation of the “cells”.

Lattice sites are added or removed from cells in “spin-copy attempts”. A spin-copy

attempt is accepted if it decreases the overall energy of the system, as defined by the

Hamiltonian. A spin-copy attempt is also accepted with a non-zero probability if it results

in a small increase in the Hamiltonian. The temperature parameter in the Boltzmann dis-

tribution of accepted unfavourable spin-copies controls the degree of exploration of energet-

ically unfavourable lattice configurations. Given N lattice sites, a collection of N spin-copy

attempts constitutes one Monte-Carlo step (MCS) of the simulation. The Metropolis algo-

rithm is used to determine the quasi-deterministic kinetics of lattice configurations evolving

under the Hamiltonian. While CPM does not explicitly track forces, it has recently been

shown to correspond to other vertex-based simulations where forces are made explicit [47].

In the case of single cells, the model parameters are τ = 2000, b = 0.1, m = 10, γ = 1.5,

n = p = 4, GT = 2, ε = 0.1, a0 = 400, φ = 0.75, and Gh = 0.3. Single cell simulations

ran for 250 MCS, with temperature parameter 30. The cell-cell and cell-medium adhesion
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energies are set to 0.1 and 80 in the Hamiltonian H, respectively, and I did not impose a

perimeter (surface) constraint. The area constraint parameter in the Hamiltonian H was

set to: λA = 1 and initial conditions were set as G(0) = 1, AT (0) = 320, and A(0) = 320.

B.5 2D Methods: Patch Size and Synchronization

To explore the idea that adhesion strength could affect the extent of synchrony among

the cells in the tissue, I varied the adhesion energy in the Hamiltonian H among a small

tissue of 9 cells, with each cell in the oscillatory regime. Treating the tissue as a system of

coupled oscillators and it is possible to numerically quantify the level of synchrony using

the Kuramoto order parameter and the variance in the distribution of phase angles of

the oscillators. The Kuramoto order parameter describes the degree of synchronization

in a collection of coupled oscillators (see [42], or [89] for a review). As adhesion-strength

increases, the oscillators are more synchronized, with an apparent increase in the Kuramoto

order parameter, and a decrease in variance in the distribution of phase angles. See Figure

B.3 and B.5-B.7.

To determine the Kuramoto order parameter for the small tissue, the dominant fre-

quency of each oscillating cell (i.e., frequency with highest magnitude) is determined over

time using a sliding window with the real-valued Fourier transform (RFFT). The fixed

size window contains time series data roughly equivalent to 3 periods of oscillation. The

Kuramoto order parameter and variance in phase is calculated by determining the phase

corresponding to the dominant frequency for all nine oscillators.

Model parameters are as in Section B.4, except the initial conditions for cell areas are

randomly chosen, initial conditions for GTPase are randomly chosen between 0 and 1 and

initial target area is also randomly chosen between 350 and 450.

B.6 2D Methods: Large-Tissue Simulations

A circular tissue consisting of 373 cells with randomly chosen area (and β = 0.2, corre-

sponding to the oscillatory regime) is used as the initial lattice configuration. Initial target

area was set to the initial cell area for each cell. The simulation was carried out for 2000

MCS. Initial target area is set equal to the initial area. Initial GTPase concentration is

randomly chosen between 0 and 1. The remaining model parameters are as in Section B.4.

B.7 Additional 2D Results

In this section, some additional 2D CPM simulation results are presented. Model parameters

are as before, outlined in Section B.4. Each figure shows 8 snapshots of the cell behaviour,

with the colour indicating the GTPase activity. Also shown are the cell area, target area,
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Figure B.2: CPM initial lattice configuration for 9 oscillating cells with no mechanical
coupling or adhesion and randomly chosen initial cell area and GTPase activity.

and the GTPase activity over time. These results include:

1. Figure B.8: a single relaxed cell with large constant area and low GTPase activity

with β = 0.05.

2. Figure B.9: damped oscillations occur for β = 0.1.

3. Figure B.10: a small amplitude limit cycle with β = 0.15.

4. Figure B.11: stochastic switching between a low amplitude limit cycle and high am-

plitude limit cycle with β = 0.175.

Also, a large tissue simulation similar to Figure 3.7 and 3.8 but with weak adhesion is

shown in Figure B.12.
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Figure B.3: Time series of GTPase activity, Kuramoto order parameter and variance in
phase for 9 independent oscillators shown Figure B.2. Note that initial cell area is equal to
initial cell target area, hence initial conditions are not fully randomized. Variance increases
with time due to the stochastic nature of spin copy attempts that offset the initial conditions.
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Figure B.4: CPM initial lattice configuration for 9 oscillating mechanically coupled cells
with randomly chosen initial cell area and GTPase activity. Each lattice site can only
be occupied by one cell and overlap is not allowed. Cell-cell and cell-medium adhesion
parameters govern the mechanical interactions of the cells. Strength of adhesion between
cells is higher if cell-cell adhesion energy is lower compared to cell-medium adhesion energy,
and vice-versa.
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Figure B.5: Synchronized oscillations in the low adhesion regime in a simulation as in Figure
B.4 over 1000 Monte Carlo “time steps”. Cell-medium adhesion energy (40) is less than
cell-cell adhesion energy (80) in the Hamlitonian H. Adhesion strength is low, which implies
less entrainment/synchrony.
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Figure B.6: Synchronization in the intermediate adhesion regime. Cell-medium adhesion
energy (80) is equal to cell-cell adhesion energy (80) in the Hamlitonian H.

127



Figure B.7: Synchronization in the high adhesion regime. Cell-cell adhesion energy (60) is
less than cell-medium adhesion energy (80) in the Hamlitonian H. This implies high degree
of adhesion strength between cells, leading to entrainment.

Figure B.8: Relaxed cell with low Rho GTPase activity, β = 0.05. Cells are coloured by
GTPase activity. Cell area, target area, and GTPase activity are plotted over time.
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Figure B.9: Damped oscillations for β = 0.1. Cells are coloured by GTPase activity. Cell
area, target area, and GTPase activity are plotted over time.

Figure B.10: Small amplitude limit cycle, β = 0.15. Cells are coloured by GTPase activity.
Cell area, target area, and GTPase activity are plotted over time.

Figure B.11: Stochastic switching between low amplitude limit cycle and high amplitude
limit cycle, β = 0.175. Cells are coloured by GTPase activity. Cell area, target area, and
GTPase activity are plotted over time.
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(a) Cell area in a 2D tissue over time.

(b) GTPase activity in the same 2D tissue over time.

Figure B.12: As in Figure 3.7, but in the weak adhesion scenario. In (A), cells are coloured
based on their current cell area, while in (B), cells are coloured based on the uniform level
of GTPase activity within each cell. In the Hamiltonian, H, cell-medium adhesion energy
(60) is less than cell-cell adhesion energy (80). Notice that some cells detach from the tissue
due to low adhesion strength. Patches of synchronized cell oscillations are still observed.
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