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Abstract

We obtain a few existence results for elliptic equations.

We develop in Chapter 2 a new infinite dimensional gluing scheme for frac-

tional elliptic equations in the mildly non-local setting. Here it is applied to the

catenoid. As a consequence of this method, a counter-example to a fractional ana-

logue of De Giorgi conjecture can be obtained [51].

Then, in Chapter 3, we construct singular solutions to the fractional Yamabe

problem using conformal geometry. Fractional order ordinary differential equa-

tions are studied.

Finally, in Chapter 4, we obtain the existence to a suitably perturbed doubly-

critical Hardy–Schrödinger equation in a bounded domain in the hyperbolic space.
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Lay Summary

Jointly with my collaborators we prove that certain equations that involve calculus

do have solutions. We use two methods in finding the solutions — by looking at

energy levels, or by gluing pieces together.
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Preface

All the materials are adapted from the author’s research articles [7] (joint work

with Weiwei Ao, Azahara DelaTorre, Marco A. Fontelos, Maria del Mar González

and Juncheng Wei), [49] (joint work with Yong Liu and Juncheng Wei) and [48]

(joint work with Nassif Ghoussoub, Saikat Mazumdar, Shaya Shakerian and

Luiz Fernando de Oliveira Faria). These works are put on arXiv (respectively

arXiv:1802.07973, arXiv:1711.03215 and arXiv:1710.01271) and are ready for

submission. They are under review and have not yet been accepted by any journal.
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Chapter 1

Introduction

The study of elliptic partial differential equations arises in many subjects includ-

ing notably physics, geometry, biology and applied modeling. Solutions can be

considered as the steady-states in reaction-diffusion systems. From the mathemat-

ical point of view, the fundamental issues are the existence, regularity, uniqueness,

symmetry, and other qualitative properties. In the subsequent chapters we will be

dealing with non-local versions of

• the Allen–Cahn equation

−∆u = u−u3

in phase transitions;

• the Lane–Emden equation

−∆u = up

in astrophysics;

and a local but geometric version of

• the Schrödinger equation

−∆u+Vu = up

in quantum mechanics.
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Non-local equations have attracted a great deal of interest in the last decade.

A non-local diffusion term, usually as a model given by a fractional Laplacian,

accounts for long range interactions. Intrinsic difficulties arise from the fact that

the fractional Laplacian is in fact an integro-differential operator. They are in many

cases, but not always, overcome by the Caffarelli–Silvestre extension [43], an equi-

valent local problem in a space with one extra dimension, where classical tech-

niques may be applied. Since then a huge amount of effort has been made in the

study of fractional order equations.

Posed by E. De Giorgi [64] in 1979, the conjecture that all bounded entire

solutions of the Allen–Cahn equation are one-dimensional at least in dimensions

n ≤ 8, has been almost completely settled: by Ghoussoub–Gui [103] for n = 2,

Ambrosio–Cabré [12] for n = 3, Savin [154] for 4 ≤ n ≤ 8 under a mild limit as-

sumption, and del Pino–Kowalczyk–Wei [67] who constructed a counter-example

for n≥ 9.

Its fractional analogue for s ∈ [1
2 ,1) (having taken into consideration the Γ-

convergence result [157]), namely the one-dimensional symmetry of bounded solu-

tions of

(−∆)su = u−u3 in Rn,

has also received considerable attention in low dimensions. Positive results have

been obtained in low dimensions by Sire–Valdinoci [165] and Cabré–Sire [37] for

n = 2 and s ∈ (0,1), Cabré–Cinti [29, 30] for n = 3 and s ∈ [1
2 ,1), Savin [155, 156]

for 4 ≤ n ≤ 8 and s ∈ [1
2 ,1) again under a limit assumption, and recently Figalli–

Serra [94] for n = 4 and s = 1
2 .

In order to give a counter-example in high dimensions n ≥ 9, in Chapter 2 we

develop a new infinite dimensional gluing method for fractional elliptic equations.

As a model problem, we construct a solution of the fractional Allen–Cahn equation

vanishing on a rotationally symmetric surface which resembles a catenoid and has

sub-linear growth at infinity. The crux of the analysis is the fine expansion of the

fractional Laplacian in Fermi coordinates and the splitting of the inner problem.

Via the argument of Jerison–Monneau [120], this leads to counter-examples to De

Giorgi Conjecture for the fractional Allen–Cahn equation [51], a work that is in

progress.
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The Yamabe problem asks to find a constant curvature metric in a given con-

formal class [180]. This was proved by Trudinger [171] (who also discovered a

critical error in Yamabe’s proof), Aubin [16] and Schoen [162]. The fractional

Yamabe problem, in which a constant fractional curvature is prescribed, takes the

form

(−∆)su = u
n+2s
n−2s in Rn.

We consider in Chapter 3 the problem of constructing solutions that are singular at

a given smooth sub-manifold, for which we establish the classical gluing method

of Mazzeo and Pacard [132] for the scalar curvature in the fractional setting.

From the way infinite dimensional gluing methods were developed, their local

nature is apparent – the tangential and normal variables on the hypersurface are sep-

arated. While similar technical estimates are needed in the localization by cut-off

functions, it is essential to analyze the model linearized operator, where conformal

geometry and non-Euclidean harmonic analysis are used. Moreover, the existence

of a radial fast-decaying solution needs to be established by a blow-up argument

together with a bifurcation method.

The Hardy–Schrödinger operator, whether local or non-local, has a potential

that is homogeneous to the Laplacian. Such operator is already seen as the lin-

earization of the singular solution in the fractional Yamabe problem in Chapter 3,

where the infinitely many complex indicial roots are computed. In fact, variational

problems involving such operator have their own interests.

We study in Chapter 4 the existence of extremals of a non-linear elliptic Hardy–

Schrödinger equation in the hyperbolic space. The loss of compactness due to the

scaling invariance gives rise to interesting concentration phenomena. Inspired by

the recent analysis of Ghoussoub–Robert [105, 106], we obtain sufficient condi-

tions for the attainability of the best constant of Hardy–Sobolev inequalities in

terms of the linear perturbation or the mass of the domain.

The essential observation in this work is that, in the radial setting, solutions

of the hyperbolic Hardy–Sobolev equation are classified explicitly in terms of the

fundamental solutions of the Laplace–Beltrami operator. With this it remains to

generalize [105, 106] to include singular perturbations.

3



To conclude, a strong connection between the fields of partial differential equa-

tions and geometry is seen from the geometric quantities that come into play in all

the above problems. These results point to similar problems in more general set-

tings, or even parabolic equations. Moreover, the gluing method devised opens up

a new area of constructing solutions for non-local equations.
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Chapter 2

Fractional Gluing on the
Catenoid

2.1 Introduction

2.1.1 The Allen–Cahn equation

In this chapter we are concerned with the fractional Allen–Cahn equation, which

takes the form

(−∆)su+ f (u) = 0 in Rn (2.1)

where f (u) = u3− u = W ′(u) is a typical example that W (u) =
(

1−u2

2

)2
is a bi-

stable, balanced double-well potential.

In the classical case when s = 1, such equation arises in the phase transition

phenomenon [11, 45]. Let us consider, in a bounded domain Ω, a rescaled form of

the equation (2.1),

−ε
2
∆uε + f (uε) = 0 in Ω.

This is the Euler–Lagrange equation of the energy functional

Jε(u) =
∫

Ω

(
ε

2
|∇u|2 + 1

ε
W (u)

)
dx.

5



The constant solutions u = ±1 corresponds to the stable phases. For any subset

S ∈Ω, we see that the discontinuous function uS = χS−χΩ\S minimize the poten-

tial energy, the second term in Jε(u). The gradient term, or the kinetic energy, is

inserted to penalize unnecessary forming of the interface ∂S.

Using Γ-convergence, Modica [140] proved that any family of minimizers (uε)

of Jε with uniformly bounded energy has to converge to some uS in certain sense,

where ∂S has minimal perimeter. Caffarelli and Córdoba [39] proved that the level

sets {uε = λ} in fact converge locally uniformly to the interface.

Observing that the scaling vε(x) = uε(εx) solves

−∆vε + f (vε) = 0 in ε
−1

Ω,

which formally tends as ε → 0 to (2.1), the intuition is that vε(x) should resemble

the one-dimensional solution w̃(z) = tanh z√
2

where z is the normal coordinate on

the interface M, an asymptotically flat minimal surface. Indeed, we have that

Jε(vε)≈ Area(M)
∫
R

(
1
2

w̃′(z)2 +W (w̃(z))
)

dz.

Thus a classification of solutions of (2.1) was conjectured by E. De Giorgi [64].

Conjecture 2.1.1. Let s = 1. At least for n ≤ 8, all bounded solutions to (2.1)

monotone in one direction must be one-dimensional, i.e. u(x) = w(x1) up to trans-

lation and rotation.

It has been proven for n = 2 by Ghoussoub and Gui [103], n = 3 by Ambrosio

and Cabré [12], and for 4≤ n≤ 8 under an extra mild assumption by Savin [154].

In higher dimensions n ≥ 9, a counter-example has been constructed by del Pino,

Kowalczyk and Wei [67]. See also [35, 104, 120].

2.1.2 The fractional case and non-local minimal surfaces

While Conjecture 2.1.1 is almost completely settled, a recent and intense interest

arises in the study of the fractional non-local equations. A typical non-local dif-

fusion term is the fractional Laplacian (−∆)s, s ∈ (0,1), which is defined as a

6



pseudo-differential operator with symbol |ξ |2s, or equivalently by a singular integ-

ral formula

(−∆)su(x0) =Cn,sP.V.
∫
Rn

u(x0)−u(x)

|x0− x|n+2s dx, Cn,s =
22ssΓ

(n+2s
2

)
Γ(1− s)π

n
2
,

for locally C2 functions with at most mild growth at infinity. Caffarelli and Sil-

vestre [43] formulated a local extension problem where the fractional Laplacian is

realized as a Dirichlet-to-Neumann map. This extension theorem was generalized

by Chang and González [52] in the setting of conformal geometry. Expositions to

the fractional Laplacian can be found in [2, 28, 73, 109].

In a parallel line of thought, Γ-convergence results have been obtained by Am-

brosio, De Philippis and Martinazzi [13], González [108], and Savin and Valdinoci

[157]. The latter authors also proved the uniform convergence of level sets [160].

Owing to the varying strength of the non-locality, the energy

Jε(u) = ε
2s ‖u‖Hs(Ω)+

∫
Ω

W (u)dx

Γ-converges (under a suitable rescaling) to the classical perimeter functional when

s ∈ [1
2 ,1), and to a non-local perimeter when s ∈ (0, 1

2).

A singularly perturbed version of (2.1) was studied by Millot and Sire [138]

for the critical parameter s = 1
2 , and also by these two authors and Wang [139] in

the case s ∈ (0, 1
2).

In the highly non-local case s ∈ (0, 1
2), the corresponding non-local minimal

surface was first studied by Caffarelli, Roquejoffre and Savin [41].

Concerning regularity, Savin and Valdinoci [159] proved that any non-local

minimal surface is locally C1,α except for a singular set of Hausdorff dimension

n−3. Caffarelli and Valdinoci [44] showed that in the asymptotic case s→ (1/2)−,

in accordance to the classical minimal surface theory, any s-minimal cone is a hy-

perplane for n ≤ 7 and any s-minimal surface is locally a C1,α graph except for a

singular set of codimension at least 8. Recently Cabré, Cinti and Serra [31] classi-

fied stable s-minimal cones in R3 when s is close to (1/2)−. Barrios, Figalli and

Valdinoci [17] improved the regularity of C1,α s-minimal surfaces to C∞. Graphical

7



properties and boundary stickiness behaviors were investigated by Dipierro, Savin

and Valdinoci [79, 80].

Non-trivial examples of such non-local minimal surface were constructed by

Dávila, del Pino and Wei [63] at the limit s→ (1/2)−, as an analog to the catenoid.

Note that the non-local catenoid they constructed is eventually linear, as opposed

to logarithmic, at infinity; a similar effect is seen in the construction in the present

chapter.

Strong interests are also seen in a fractional version of De Giorgi Conjecture.

Conjecture 2.1.2. Bounded monotone entire solutions to (2.1) must be one dimen-

sional, at least for dimensions n≤ 8.

In the rest of this chapter we will focus on the mildly non-local regime s ∈
[1

2 ,1). Positive results have been obtained: n = 2 by Sire and Valdinoci [165]

and by Cabré and Sire [37], n = 3 by Cabré and Cinti [30] (see also Cabré and

Solà-Morales [38]), n = 4 and s = 1
2 by Figalli and Serra [94], and the remaining

cases for n ≤ 8 by Savin [155] under an additional mild assumption. A natural

question is whether or not Savin’s result is optimal. In a forthcoming paper [51],

we will construct global minimizers in dimension 8 and give counter-examples to

Conjecture 2.1.2 for n≥ 9 and s ∈ (1
2 ,1).

Some work related to Conjecture 2.1.2 involving more general operators in-

cludes [27, 34, 81, 90, 158]. For similar results in elliptic systems, the readers are

referred to [20, 21, 74, 87–89, 91, 174, 175] for the local case, and [25, 77, 92, 176]

under the fractional setting.

The construction of solution by gluing for non-local equations is a relatively

new subject. Du, Gui, Sire and Wei [82] proved the existence of multi-layered

solutions of (2.1) when n = 1. Other work involves the fractional Schrödinger

equation [54, 62], the fractional Yamabe problem [15] and non-local Delaunay

surfaces [58].

For general existence theorems for non-local equations, the readers may con-

sult, among others, [53, 55, 95, 96, 116, 141, 143, 145, 146, 167, 170, 177, 178]

as well as the references therein. Related questions on the fractional Allen–Cahn

8



equations, non-local isoperimetric problems and non-local free boundary problems

are also widely studied in [24, 42, 69, 70, 72, 75, 78, 93, 125, 127]. See also the

expository articles [1, 100, 172].

Despite similar appearance, (2.1) for s ∈ (0,1) is different from that for s = 1

in a number of striking ways. Firstly, the non-local nature disallows the use of

local Fermi coordinates. Secondly, the one-dimensional solution w(z) only has an

algebraic decay of order 2s at infinity, in contrast to the exponential decay when

s = 1. Thirdly, the fractional Laplacian is a strongly coupled operator and hence

it is impossible to “integrate by parts” in lower dimensions. Finally the inner-

outer gluing using cut-off functions no longer work due to the nonlocality of the

fractional operator.

The purpose of this chapter is to establish a new gluing approach for fractional

elliptic equations for constructing solutions with a layer over higher-dimensional

sub-manifolds. In particular, in the second part [51] we will apply it to partially

answer Conjecture 2.1.2. To overcome the aforementioned difficulties, the main

tool is an expansion of the fractional Laplacian in the Fermi coordinates, a refine-

ment of the computations already seen in [50], supplemented by technical integral

calculations. This can be considered fractional Fermi coordinates. When applying

an infinite dimensional Lyapunov–Schmidt reduction, the orthogonality condition

is to be expressed in the extension. The essential difference from the classical case

[68] is that the inner problem is subdivided into many pieces of size R = o(ε−1),

where ε is the scaling parameter, so that the manifold is nearly flat on each piece.

In this way, in terms of the Fermi normal coordinates, the equations can be well

approximated by a model problem.

2.1.3 A brief description

We define an approximate solution u∗(x) using the one-dimensional profile in the

tubular neighborhood of Mε = {|xn|= Fε(|x′|)}, namely u∗(x)=w(z) where z is the

normal coordinate and Fε is close to the catenoid ε−1 cosh−1(ε|x′|) near the origin.

In contrast to the classical case we take into account the non-local interactions near

infinity and define u∗(x) = w(z+)+w(z−)+1 where z± are the signed distances to

the upper and lower leaves M±ε = {xn =±Fε(|x′|)}. As hinted in Corollary 2.6.3,

9



Fε(r) ∼ r
2

2s+1 as r→ +∞. The parts of u∗ are glued to the constant solutions ±1

smoothly to the regions where the Fermi coordinates are not well-defined.

We look for a real solution of the form u= u∗+ϕ , where ϕ is small and satisfies

(−∆)s
ϕ + f ′(u∗)ϕ = g. (2.2)

Our new idea is to localize the error in the near interface into many pieces of dia-

meter R = o(ε−1) for another parameter R which is to be taken large. At each

piece the hypersurface is well-approximated by some tangent hyperplane. There-

fore, using Fermi coordinates, it suffices to study the model problem where u∗(x)

is replaced by w(z) in (2.2).

As opposed to the local case s = 1, an integration by parts is not available for

the fractional Laplacian in the z-direction, unless n = 1. So we develop a linear

theory using the Caffarelli–Silvestre local extension [43].

Finally we will solve a non-local, non-linear reduced equation which takes the

form 
H[Fε ] = O(ε2s−1) for 1 < r ≤ r0,

H[Fε ] =
Cε2s−1

F2s
ε

(1+o(1)) for r > r0,

where H[Fε ] denotes the mean curvature of the surface described by Fε . (Note

that the surface is adjusted far away through the nonlocal interactions of the leafs.

A similar phenomenon has been observed in Agudelo, del Pino and Wei [10] for

s = 1 and dimensions ≥ 4.) A solution of the desired form can be obtained using

the contraction mapping principle, justifying the a priori assumptions on Fε .

In this setting, our main result can be stated as follows.

Theorem 2.1.3. Let 1/2 < s < 1 and n = 3. For all sufficiently small ε > 0, there

exists a rotationally symmetric solution u to (2.1) with the zero level set Mε ={
(x′,x3) ∈ R3 : |x3|= Fε(|x′|)

}
, where

Fε(r)∼

ε−1 cosh−1(εr) for r ≤ rε ,

r
2

2s+1 for r ≥ δ0|logε|rε ,
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where rε =
(
|logε|

ε

) 2s−1
2

and δ0 > 0 is a small fixed constant.

In a forthcoming paper [51], together with Juan Dávila and Manuel del Pino,

we will construct similarly a global minimizer on the Simons’ cone. Via the

Jerison–Monneau program [120], this provides counter-examples to the De Giorgi

conjecture for fractional Allen–Cahn equation in dimensions n≥ 9 for s ∈ (1
2 ,1).

Remark 2.1.4. Our approach depends crucially on the assumption s ∈ (1
2 ,1).

Firstly, it is only in this regime that the local mean curvature alone appears in

the error estimate. A related issue is also seen in the choice of those parameters

between 0 and (a factor times) 2s− 1. Secondly, it gives the L2 integrability

of an integral involving the kernel wz in the extension. It will be interesting

to see whether this gluing method will work in the case s = 1
2 under suitable

modifications.

On the other hand, we do not know how to deal with other pseudo-differential

operators which cannot be realized locally.

This chapter is organized as follows. We outline the argument with key results

in Section 2.2. In Section 2.3 we compute the error using an expansion of the

fractional Laplacian in the Fermi coordinates. In Section 2.4 we develop a linear

theory and then the gluing reduction is carried out in Section 2.5. Finally in Section

2.6 we solve the reduced equation.

2.2 Outline of the construction

2.2.1 Notations and the approximate solution

Let

• s ∈ (1
2 ,1), α ∈ (0,2s−1), τ ∈

(
1,1+ α

2s

)
,

• M be an approximation to the catenoid defined by the function F ,

M =
{
(x′,xn) : |xn|= F(

∣∣x′∣∣), ∣∣x′∣∣≥ 1
}
,

11



• ε > 0 be the scaling parameter in

Mε = ε
−1M =

{
xn = Fε(

∣∣x′∣∣) = ε
−1F(ε

∣∣x′∣∣)} ,
• z be the normal coordinate direction in the Fermi coordinates of the rescaled

manifold, i.e. signed distance to the Mε , with z > 0 for xn > F(ε|x′|)> 0,

• y+, z+ be respectively the projection onto and signed distance (increasing in

xn) from the upper leaf

M+
ε =

{
xn = Fε(

∣∣x′∣∣)} ,
• y−, z− be respectively the projection onto and signed distance (decreasing in

xn) to the lower leaf

M−ε =
{

xn =−Fε(
∣∣x′∣∣)} ,

• δ̄ > 0 be a small fixed constant so that the Fermi coordinates near Mε is

defined for |z| ≤ 8δ̄

ε
,

• R̄ > 0 be a large fixed constant,

• R0 be the width of the tubular neighborhood of Mε where Fermi coordinates

are used, see (2.3),

• R1 be the radius of the cylinder from which the main contribution of (−∆)s

is obtained, see Proposition 2.2.1,

• R2 >
4R̄
ε

be the radius of the inner gluing region (i.e. threshold of the end,

see Section 2.2.3),

• u∗o(x) = sign (xn−Fε(|x′|)) for xn > 0 and is extended continuously (i.e.

u∗o(x) = +1 for |x′| ≤ ε−1),

• η : R→ [0,1] be a cut-off with η = 1 on (−∞,1] and η = 0 on [2,+∞),

• χ : R→ [0,1] be a cut-off with χ = 0 on (−∞,0] and χ = 1 on [1,+∞),

• ‖κ‖
α

(0≤ α < 1) be the Hölder norm of the curvature, see Lemma 2.3.6,
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• 〈x〉=
√

1+ |x|2.

Define the approximate solution

u∗(x) = η

(
ε|z|

δ̄R0(|x′|)

)(
w(z)+χ

(∣∣x′∣∣− R̄
ε

)
(w(z+)+w(z−)+1−w(z))

)
+

(
1−η

(
ε|z|

δ̄R0(|x′|)

))
u∗o(x),

(2.3)

where

R0 = R0(
∣∣x′∣∣) = 1+χ

(∣∣x′∣∣− R̄
)(

F2s
ε (
∣∣x′∣∣)−1

)
.

Roughly,

• u∗(x) = +1 for large |z|, small |x′| and large |xn|,

• u∗(x) =−1 for large |z|, large |x′| and small |xn|,

• u∗(x) = w(z) for small |z| and small |x′|,

• u∗(x) = w(z+)+w(z−)+1 for small |z| and large |x′|.

The main contributions of (−∆)s come from the inner region with certain ra-

dius. We choose such radius that joins a small constant times ε−1 to a power of Fε

as |x′| increases. More precisely, let us set

R1 = R1(
∣∣x′∣∣) = η

(∣∣x′∣∣− 2R̄
ε

+2
)

δ̄

ε
+

(
1−η

(∣∣x′∣∣− 2R̄
ε

+2
))

Fτ
ε (
∣∣x′∣∣),

(2.4)

where τ ∈
(
1,1+ α

2s

)
. We remark that the factor 2 is inserted to make sure that

u∗(x) = w(z+) +w(z−)− 1 in the whole ball of radius Fτ
ε (|x′|) where the main

order terms of (−∆)su∗ are obtained.

2.2.2 The error

Denote the error by S(u∗)= (−∆)su∗+(u∗)3−u∗. In a tubular neighborhood where

the Fermi coordinates are well-defined, write x = y+ zν(y) where y = y(|x′|) =
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(|x′|,Fε(|x′|)) ∈Mε and ν(y) = ν(y(|x′|)) = (−DFε(|x′|),1)√
1+ |DFε(|x′|)|2

be the unit normal

pointing up in the upper half space (and down in the lower half).

Proposition 2.2.1. Let x = y+ zν(y) ∈ Rn. If |z| ≤ R1, where R1 as in (2.4), then

we have

S(u∗)(x) =



cH(z)HMε
(y)+O(ε2s), for

1
ε
≤ r ≤ 4R̄

ε
,

cH(z+)HM+
ε
(y+)+ cH(z−)HM−ε (y−)

+3(w(z+)+w(z−))(1+w(z+))(1+w(z−))

+O
(
F−2sτ

ε

)
, for r ≥ 4R̄

ε
.

The proof is given in Section 2.3.

2.2.3 The gluing reduction

We look for a solution of (2.1) of the form u = u∗+ϕ so that

(−∆)s
ϕ + f ′(u∗)ϕ = S(u∗)+N(ϕ) in Rn,

where N(ϕ) = f (u∗+ϕ)− f (u∗)− f ′(u∗)ϕ . Consider the partition of unity

1 = η̃o + η̃++ η̃−+
ī

∑
i=1

η̃i,

where the support of each η̃i is a region of radius R centered at some yi ∈Mε , and

η̃± are supported on a tubular neighborhood of the ends of M±ε respectively. It will

be convenient to denote I = {1, . . . , ī} and J = I ∪{+,−}. For j ∈J , let ζ j

be cut-off functions such that the sets
{

ζ j = 1
}

include supp η̃ j, with comparable

spacing that is to be made precise. We decompose

ϕ = φo +ζ+φ++ζ−φ−+
ī

∑
i=1

ζiφi = φo + ∑
j∈J

ζ jφ j,

in which
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• φo solves for the contribution of the error away from the interface (support

of η̃o),

• φ± solves for that in the far interfaces near M±ε (support of η̃±),

• φi solves for that in a compact region near the manifold (support of η̃i).

In the following we write ∆(y,z) = ∆y +∂zz.We consider the approximate linear op-

erators Lo = (−∆)s +2 for φo,

L = (−∆(y,z))
s + f ′(w) for φ j, j ∈J .

Notice that w is not exactly the approximate solution in the far interface. We re-

arrange the equation as

(−∆)s

(
φo + ∑

j∈J
ζ jφ j

)
+ f ′(u∗)

(
φo + ∑

j∈J
ζ jφ j

)
= S(u∗)+N(ϕ),

Loφo +ζ+Lφ++ζ−Lφ−+
ī

∑
i=1

ζiLφi

=

(
η̃o + η̃++ η̃−+

ī

∑
i=1

η̃i

)

·

(
S(u∗)+N(ϕ)+(2− f ′(u∗))φo− ∑

j∈J
[(−∆(y,z))

s,ζ j]φ j

+ ∑
j∈J

ζ j( f ′(w j)− f ′(u∗))φ j− ∑
j∈J

((−∆x)
s− (−∆(y,z))

s)(ζ jφ j)

)
, (2.5)

where [(−∆(y,z))
s,ζ j]φ j = (−∆(y,z))

s(ζ jφ j)− ζ j(−∆(y,z))
sφ j, and the summands in

the last term means

(−∆x)
s(ζ jφ j)(Yj(y)+ zν(Yj(y)))− (−∆(y,z))

s(η̄ jζ̄ φ̄(y,z))

for ζ j = η̄ j(y)ζ̄ (z) and φ j(Yj(y) + zν(Yj(y))) = φ̄ j(y,z) with a chart y = Yj(y)

of Mε . In fact, for j ∈ I one can parameterize Mε locally by a graph
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over a tangent hyperplane, and for j ∈ {+,−} one uses the natural graph

M±ε = {(y,±Fε(|y|)) : |y| ≥ R2}.
Let us denote the last bracket of the right hand side of (2.5) by G . Since η̃ j =

ζ jη̃ j, we will have solved (2.5) if we get a solution to the system

Loφo = η̃oG for x ∈ Rn,

Lφ̄+ = η̃+G for (y,z) ∈ Rn−1×R,

Lφ̄− = η̃−G for (y,z) ∈ Rn−1×R,

Lφ̄i = η̃iG for (y,z) ∈ Rn−1×R,

for all i ∈I . Except the outer problem with Lo = (−∆)s +2, the linear operator L

in all the other equations has a kernel w′ and so we will use an infinite dimensional

Lyapunov–Schmidt reduction procedure.

From now on we consider the product cut-off functions, defined in the Fermi

coordinates (y,z) where y= Y (y) is given by a chart of Mε ,

η̃ j(x) = η j(y)ζ (z), for j ∈J .

The diameters of ζ (z) and ηi(y) are of order R, a parameter which we choose

to be large (before fixing ε). We may assume, without loss of generality, that

for i ∈ I , ηi(y) is centered at yi ∈ Mε , BR(yi) ⊂ {η̃i = 1} ⊂ supp η̃i ⊂ B2R(yi),

|Dη̃i|= O(R−1), and |yi1−yi2 |
R ≥ c > 0 for any i1, i2 ∈I .

We define the projection orthogonal to the kernels w′(z),

Πg(y,z) = g(y,z)− c(y)w′(z), c(y) =

∫
R

ζ (z̃)g(y, z̃)w′(z̃)dz̃∫
R

ζ (z̃)w′(z̃)2 dz̃
.

Note that in the region of integration |z| ≤ 2R < δ̄ ε−1 the Fermi coordinates are

well-defined, and that the projection is independent of j ∈J .

We define the norm

‖φ‖
µ,σ = sup

(y,z)∈Rn
〈y〉µ 〈z〉σ |φ(y,z)|,
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where 〈y〉=
√

1+ |y|2. Motivated by Proposition 2.2.1 and Lemma 2.4.6, for each

i ∈I we expect the decay

∥∥φ̄i(y,z)
∥∥

µ,σ
≤CRµ+σ 〈yi〉−

4s
2s+1 .

So we define

‖φi‖i,µ,σ = 〈yi〉θ
∥∥φ̄i
∥∥

µ,σ
= 〈yi〉θ sup

(y,z)∈Rn
〈y〉µ 〈z〉σ

∣∣φ̄i(y,z)
∣∣,

with 1 < θ < 1+ 2s−1
2s+1 = 4s

2s+1 < 2s. At the ends M±ε where r ≥ R2 we have, for

µ < 4s
2s+1 −θ , ∥∥φ̄±(y,z)

∥∥
µ,σ
≤CR

−( 4s
2s+1−µ)

2 .

This suggests

‖φ±‖±,µ,σ = Rθ
2
∥∥φ̄±

∥∥
µ,σ

= Rθ
2 sup
(y,z)∈Rn

〈y〉µ 〈z〉σ
∣∣φ̄±(y,z)∣∣,

with 0 < θ < 2s−1
2s+1 −µ . Therefore for j ∈J , we consider the Banach spaces

X j =
{

φ j :
∥∥φ j
∥∥

j,µ,σ < C̃δ

}
,

where, under the constraint R≤ |logε|, δ = δ (R,ε) = Rµ+σ ε
4s

2s+1−θ with 1 < θ <

1+ 2s−1
2s+1 = 4s

2s+1 . For the other parameters we take 0 < µ < 4s
2s+1 − θ < θ suffi-

ciently small and R2 sufficiently large, so that Rµ

2 δ is small and 2−2s<σ < 2s−µ .

The decay of order σ > 2−2s in the z-direction will be required in the orthogonal-

ity condition (2.21). That Rµ

2 δ is small will be used in the inner gluing reduction.

The condition σ +µ < 2s ensures that the contribution of the term (2− f ′(u∗))φo

is small compared to S(u∗).

We will first solve the outer equation for φo. Let us write

Mε,R = {y+ zν(y) : y ∈Mε and |z|< R}

for the tubular neighborhood of Mε with width R.
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Proposition 2.2.2. Consider

‖φo‖θ
= sup

(x′,xn)∈Rn

〈
x′
〉θ 〈dist(x,Mε,R)〉2s |φo(x)|,

Xo =
{

φo : ‖φo‖θ
≤ C̃ε

θ

}
.

If φ j ∈ X j for all j ∈J with sup j∈J
∥∥φ j
∥∥

j,µ,σ ≤ 1, then there exists a unique

solution φo = Φo((φ j) j∈J ) to

Loφo = η̃oG = η̃o

(
S(u∗)+N(ϕ)+(2− f ′(u∗))φo− ∑

j∈J
[(−∆(y,z))

s,ζ j]φ j

+ ∑
j∈J

ζ j( f ′(w j)− f ′(u∗))φ j− ∑
j∈J

((−∆x)
s− (−∆(y,z))

s)(ζ jφ j)

)
in Rn (2.6)

in Xo such that for any pairs (φ j) j∈J and (ψ j) j∈J in the respective X j with

sup j∈J
∥∥φ j
∥∥

j,µ,σ ≤ 1,

∥∥Φo((φ j) j∈J )−Φo((ψ j) j∈J )
∥∥

θ
≤Cε

θ sup
j∈J

∥∥φ j−ψ j
∥∥

j,µ,σ . (2.7)

The proof is carried out in Section 2.5.2.

Then the equations

Lφ̄ j(y,z) = η j(y)ζ (z)G (y,z)

are solved in two steps: (1) eliminating the part of error orthogonal to the kernels,

i.e.

Lφ̄ j(y,z) = η j(y)ζ (z)ΠG (y,z); (2.8)

and (2) adjust Fε(r) such that c(y) = 0, i.e. to solve the reduced equation∫
R

ζ (z)G (y,z)w′(z)dz = 0. (2.9)

Using the linear theory in Section 2.4, step (1) is proved in the following
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Proposition 2.2.3. Suppose µ ≤ θ . Then there exists a unique solution (φ j) j∈J ,

φ j ∈ X j, to the system

Lφ̄ j = η̃ jΠG = η jζ Π

(
S(u∗)+N(ϕ)+(2− f ′(u∗))φo− ∑

j∈J
[(−∆(y,z))

s,ζ j]φ j

+ ∑
j∈J

ζ j( f ′(w j)− f ′(u∗))φ j− ∑
j∈J

((−∆x)
s− (−∆(y,z))

s)(ζ jφ j)

)
(2.10)

for (y,z) ∈ Rn.

The proof is given in Section 2.5.3.

Step (2) is outlined in the next subsection.

2.2.4 Projection of error and the reduced equation

As shown above, the error is to be projected onto w′j weighted with a cut-off func-

tion ζ supported on [−2R,2R]. In fact we have

Proposition 2.2.4 (The reduced equation). In terms of the rescaled function F(r)=

εFε(ε
−1r) and its inverse r =G(z) where G : [0,+∞)→ [1,+∞), (2.9) is equivalent

to the system

HM(G(z),z) =

 G′(z)√
1+G′(z)2

′− 1

G(z)

√
1+G′(z)2

= N1[F ] for 0≤ z≤ z1,

HM(r,F(r)) =
1
r

 rF ′(r)√
1+F ′(r)2

′ = N1[F ] for r1 ≤ r ≤ 4R̄,

F ′′(r)+
F ′(r)

r
− C̄0ε2s−1

F2s(r)
= N2[F ] for r ≥ 4R̄,

(2.11)
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subject to the boundary conditions

G(0) = 1

G′(0) = 0

F(r1) = z1

F ′(r1) =
1

G′(z1)
,

(2.12)

where z1 = F(r1) = O(1), N1[F ] = O(ε2s−1) and N2[F ] = o
(

ε2s−1

F2s
0 (r)

)
, with F0 as

in Corollary 2.6.3. Moreover, N1 and N2 have a Lipschitz dependence on F.

This is proved in Section 2.6.1.

The equation (2.11)–(2.12) is to be solved in a space with weighted Hölder

norms allowing sub-linear growth. More precisely, for any α ∈ (0,1), γ ∈ R we

define the norms

‖φ‖∗ = sup
[r1,+∞)

rγ−2|φ(r)|+ sup
[r1,+∞)

rγ−1∣∣φ ′(r)∣∣+ sup
[r1,+∞)

rγ
∣∣φ ′′(r)∣∣

+ sup
r 6=ρ in [r1,+∞)

min{r,ρ}γ+α |φ ′′(r)−φ ′′(ρ)|
|r−ρ|α

(2.13)

and

‖h‖∗∗ = sup
r∈[1,+∞)

rγ |h(r)|+ sup
r 6=ρ in [1,+∞)

min{r,ρ}γ+α |h(r)−h(ρ)|
|r−ρ|α

. (2.14)

Proposition 2.2.5. There exists a solution to (2.11) in the space

X∗ =

(G,F) ∈C2,α([0,z1])×C2,α
loc ([r1,+∞)) :

‖G‖C2,α ([0,z1])
<+∞,

‖F‖∗ <+∞,

(2.12) holds

 .

The proof is contained in Section 2.6.
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2.3 Computation of the error: Fermi coordinates
expansion

We prove the following

Proposition 2.3.1 (Expansion in Fermi coordinates). Suppose 0 < α < 2s−1 and

Fε ∈C2,α
loc ([1,+∞)). Let x0 = y0+z0ν(y0) where y0 = (x′,Fε(|x′|)) is the projection

of x0 onto Mε , and u0(x) = w(z). Then for any τ ∈
(
1,1+ α

2s

)
and |z0| ≤ R1, we

have

(−∆)su0(x0) = w(z0)−w(z0)
3 + cH(z0)HMε

(y0)+N1[F ]

where

cH(z0) =C1,s

∫
R

w(z0)−w(z)

|z0− z|1+2s (z0− z)dz,

R1 = R1(
∣∣x′∣∣) = η

(∣∣x′∣∣− 2R̄
ε

+2
)

δ̄

ε
+

(
1−η

(∣∣x′∣∣− 2R̄
ε

+2
))

Fτ
ε (
∣∣x′∣∣),

and N1[F ] = O
(
R−2s

1

)
is finite in the norm ‖·‖∗∗.

Remark 2.3.2. cH(z0) is even in z0. Also

cH(z0) =
C1,s

2s−1

∫
R

w′(z)

|z0− z|2s−1 dz∼ 〈z0〉−(2s−1) .

This implies Proposition 2.2.1. A proof is given at the end of this section.

A similar computation gives the decay in r = |x′| away from the interface.

Corollary 2.3.3. Suppose x0 = y0 + z0ν(y0), y0 = (x′0,Fε(r0)) and z0 ≥ cr
2

2s+1
0 .

(−∆)su∗(x0) = O
(

r
− 4s

2s+1
0

)
as r0→+∞.

Proof. Take a ball around x0 of radius of order r
2

2s+1
0 . In the inner region one uses

the closeness to +1 of the approximate solution u∗.

For more general functions one has a less precise expansion. On compact sets,

we have
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Corollary 2.3.4. Let u1(x) = φ(y,z) in a neighborhood of x0 = y0+z0ν(y0) where

|y0|, |z0| ≤ 4R = o(ε−1), and u1 = 0 outside a ball of radius 8R. Then

(−∆x)
su1(x0) = (−∆(y,z))

s
φ(y0,z0) · (1+O(R‖κ‖0))

+O

(
R−2s

1

(
|φ(y0,z0)|+ sup

|(y0−y,z0−z)|≥R1

|φ(y,z)|
))

.

Proof. The lower order terms contain either κi|z0| or κi|y0|, where i = 1 or 2.

At the ends of the catenoidal surface we need the following

Corollary 2.3.5. Let u1(x) = φ(y,z) in a neighborhood of x0 = y0+ z0ν(y0) where

|y0| ≥ R2, |z0| ≤ 4R = o(ε−1), and u1 = 0 when z≥ 8R. Then

(−∆x)
su1(x0) = (−∆(y,z))

s
φ(y0,z0) ·

(
1+O

(
F−(2s−τ)

ε

))
+O

(
F−2sτ

ε

(
|φ(y0,z0)|+ sup

|(y0−y,z0−z)|≥Fτ
ε

|φ(y,z)|
))

.

To prove Proposition 2.3.1, we consider Mε as a graph in a neighborhood of y0

over its tangent hyperplane and use the Fermi coordinates. Suppose (y1,y2,z) is an

orthonormal basis of the tangent plane of Mε at y0. Write

CR1 =
{
(y,z) ∈ R2×R : |y| ≤ R1, |z| ≤ R1

}
.

Then there exists a smooth function g : BR1(0)→R such that, in the (y,z) coordin-

ates,

Mε ∩CR1 =
{
(y,g(y)) ∈ R3 : |y| ≤ R1

}
.

Then g(0) = 0, Dg(0) = 0 and ∆g(0) = 2HMε
(x0). We may also assume

that ∂y1y2g(0) = 0. We denote the principal curvatures at y by κi(y) so that

κi(0) = ∂yiyig(0).

We state a few lemmata whose non-trivial proofs are postponed to the end of

this section.
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Lemma 2.3.6 (Local expansions). Let |y| ≤ R1. For i = 1,2 we have

|κi(y)−κi(0)|. ‖κi‖Cα (B2R1 (|x
′|)) |y|

α .
∥∥F−2s

ε

∥∥
Cα (B1(|x′|))

|y|α

.


ε2s+α |y|α for all |x′| ≤ 2R̄

ε
,

F−2s
ε (|x′|)
|x′|α

|y|α for all |x′| ≥ R̄
ε
.

The quantity ‖Fε‖C2,α (BR1 (|x′|)
.
∥∥F−2s

ε

∥∥
Cα (B1(|x′|))

will be used repeatedly and will

be simply denoted by ‖κ‖
α

, as a function of |x′|, for any 0≤ α < 1. We have

g(y) =
1
2

2

∑
i=1

κi(0)y2
i +O

(
‖κ‖

α
|y|2+α

)
,

Dg(y) · y =
2

∑
i=1

κi(0)y2
i +O

(
‖κ‖

α
|y|2+α

)
,

|Dg(y)|2 = O
(
‖κ‖2

0 |y|
2
)
.

In particular,

g(y)−Dg(y) · y =−1
2

2

∑
i=1

κi(0)y2
i +O

(
‖κ‖

α
|y|2+α

)
= O(‖κ‖0 |y|

2),√
1+ |Dg(y)|2−1 = O

(
‖κ‖2

0 |y|
2
)
,

1− 1√
1+ |Dg(y)|2

= O
(
‖κ‖2

0 |y|
2
)
,

g(y)2 = O
(
‖κ‖2

0 |y|
4
)
.

Lemma 2.3.7 (The change of variable). Let |y|, |z|, |z0| ≤ R1. Under the Fermi

change of variable x = Φ(y,z) = y+ zν(y), the Jacobian determinant

J(y,z) =
√

1+ |Dg(y)|2(1+κ1(y)z)(1+κ2(y)z)
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satisfies

J(y,z) = 1+(κ1(0)+κ2(0))z+O
(
‖κ‖

α
|y|α |z|

)
+O

(
‖κ‖2

0 (|y|
2 + |z|2)

)
,

and the kernel |x0− x|−3−2s has an expansion

|x0− x|−3−2s = |(y,z0− z)|−3−2s

[
1+

3+2s
2

(z0 + z)
2

∑
i=1

κi(0)
y2

i

|(y,z0− z)|2

+O

(
‖κ‖

α
|y|2+α(|z|+ |z0|)
|(y,z0− z)|2

)
+O

(
‖κ‖2

0 |y|
2(|y|2 + |z|2 + |z0|2)
|(y,z0− z)|2

)]
.

Lemma 2.3.8 (Reducing the kernel). There hold

C3,s

∫
R2

1

|(y,z0− z)|3+2s dy =C1,s
1

|z0− z|1+2s ,

C3,s

∫
R2

y2
i

|(y,z0− z)|5+2s dy =
1

3+2s
C1,s

1

|z0− z|1+2s for i = 1,2,

∫
R2

|y|α

|(y,z0− z)|3+2s dy =C
1

|z0− z|1+2s−α
.

Proof of Proposition 2.3.1. The main contribution of the fractional Lapla-

cian comes from the local term which we compute in Fermi coordinates

Φ(y,z) = y+ zν(y),

(−∆)su0(x0) =C3,s

∫
Φ(CR1 )

u0(x0)−u0(x)

|x− x0|3+2s dx+O(R−2s
1 )

=C3,s

∫∫
CR1

w(z0)−w(z)

|Φ(y0,z0)−Φ(y,z)|3+2s J(y,z)dydz+O(R−2s
1 ).

By Lemma 2.3.7 we have

J(y,z) = 1+(κ1(0)+κ2(0))z+O
(
‖κ‖

α
|y|α |z|

)
+O

(
‖κ‖2

0 (|y|
2 + |z|2)

)
,
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1

|Φ(y0,z0)−Φ(y,z)|3+2s

=
1

|(y,z0− z)|3+2s

[
1+

3+2s
2

(z0 + z)
2

∑
i=1

κi(0)
y2

i

|(y,z0− z)|2

+O

(
‖κ‖

α
|y|2+α(|z|+ |z0|)
|(y,z0− z)|2

)
+O

(
‖κ‖2

0 |y|
2(|y|2 + |z|2 + |z0|2)
|(y,z0− z)|2

)]
.

Hence

J(y,z)

|Φ(y0,z0)−Φ(y,z)|3+2s

=
1

|(y,z0− z)|3+2s

·

[
1+(κ1(0)+κ2(0))z+O

(
‖κ‖

α
|y|α |z|

)
+O

(
‖κ‖2

0 (|y|
2 + |z|2)

)]

·

[
1+

3+2s
2

(z0 + z)
2

∑
i=1

κi(0)
y2

i

|(y,z0− z)|2

+O

(
‖κ‖

α
|y|2+α(|z|+ |z0|)
|(y,z0− z)|2

)
+O

(
‖κ‖2

0 |y|
2(|y|2 + |z|2 + |z0|2)
|(y,z0− z)|2

)]

=
1

|(y,z0− z)|3+2s

[
1+(κ1(0)+κ2(0))z+

3+2s
2

(z0 + z)
2

∑
i=1

κi(0)
y2

i

|(y,z0− z)|2

+O
(
‖κ‖

α
|y|α(|z|+ |z0|)

)
+O

(
‖κ‖2

0 (|y|
2 + |z|2 + |z0|2)

)]
.
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We have

(−∆)su0(x0)

=C3,s

∫∫
CR1

w(z0)−w(z)

|Φ(y0,z0)−Φ(y,z)|3+2s J(y,z)dydz+O(R−2s
1 )

=C3,s

∫∫
CR1

w(z0)−w(z)

|(y,z0− z)|3+2s

[
1+(κ1(0)+κ2(0))z

+
3+2s

2
(z0 + z)

2

∑
i=1

κi(0)
y2

i

|(y,z0− z)|2

+O
(
‖κ‖

α
|y|α(|z|+ |z0|)

)
+O

(
‖κ‖2

0 (|y|
2 + |z|2 + |z0|2)

)]
= I1 + I2 + I3 + I4 + I5.

where

I1 =C3,s

∫∫
CR1

w(z0)−w(z)

|(y,z0− z)|3+2s dydz,

I2 =C3,s(κ1(0)+κ2(0))
∫∫

CR1

w(z0)−w(z)

|(y,z0− z)|3+2s zdydz,

I3 =C3,s
3+2s

2

2

∑
i=1

κi(0)
∫∫

CR1

w(z0)−w(z)

|(y,z0− z)|5+2s (z0 + z)y2
i dydz,

I4 = O(‖κ‖
α
)
∫∫

CR1

∣∣∣w(z0)−w(z)−χB1
1(z0)

(z)w′(z0)(z0− z)
∣∣∣

|(y,z0− z)|3+2s |y|α

· (|z|+ |z0|)dydz,

I5 = O
(
‖κ‖2

0

)∫∫
CR1

∣∣∣w(z0)−w(z)−χB1
1(z0)

(z)w′(z0)(z0− z)
∣∣∣

|(y,z0− z)|3+2s

· (|y|2 + |z|2 + |z0|2)dydz.

In the last terms I4 and I5, the linear odd term near the origin has been added to

eliminate the principal value before the integrals are estimated by their absolute

values. One may obtain more explicit expressions by extending the domain and

using Lemma 2.3.8 as follows. I1 resembles the fractional Laplacian of the one-
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dimensional solution.

I1 =C3,s

∫∫
R3

w(z0)−w(z)

|(y,z0− z)|3+2s dydz−C3,s

∫∫
R3\CR1

w(z0)−w(z)

|(y,z0− z)|3+2s dydz

=C3,s

∫
R
(w(z0)−w(z))

∫
R2

1

|(y,z0− z)|3+2s dydz+O
(∫

∞

R1

ρ
−3−2s

ρ
2 dρ

)
=C1,s

∫
R

w(z0)−w(z)

|z0− z|1+2s dz+O
(
R−2s

1

)
= w(z0)−w(z0)

3 +O
(
R−2s

1

)
.

Hereafter ρ =

√
|y|2 + |z0− z|2. I2 and I3 are of the next order where we see the

mean curvature.

I2 =−C3,s

2

∑
i=1

κi(0)
∫∫

CR1

w(z0)−w(z)

|(y,z0− z)|3+2s zdydz

=−C3,s

2

∑
i=1

κi(0)
∫∫

R3

w(z0)−w(z)

|(y,z0− z)|3+2s zdydz

−C3,s

2

∑
i=1

κi(0)
∫∫

R3\CR1

w(z0)−w(z)

|(y,z0− z)|3+2s (z0 +(z− z0))dydz

=−C1,s

2

∑
i=1

κi(0)
∫
R

w(z0)−w(z)

|z0− z|1+2s zdz

+O
(
‖κ‖0 |z0|

∫
∞

R1

1
ρ3+2s ρ

2 dρ

)
+O

(
‖κ‖0

∫
∞

R1

ρ

ρ3+2s ρ
2 dρ

)
=−2

(
C1,s

∫
R

w(z0)−w(z)

|z0− z|1+2s zdz

)
HMε

(y0)+O
(
‖κ‖0 R−2s

1 (|z0|+R1)
)
.

27



Also,

I3 =C3,s
3+2s

2

2

∑
i=1

κi(0)
∫∫

R3

w(z0)−w(z)

|(y,z0− z)|5+2s (z0 + z)y2
i dydz

+O(‖κ‖0)
∫∫

R3\CR1

w(z0)−w(z)

|(y,z0− z)|5+2s (2z0− (z0− z))y2
i dydz

=C1,s
1
2

2

∑
i=1

κi(0)
∫
R

w(z0)−w(z)

|z0− z|1+2s (z0 + z)dz

+O
(
‖κ‖0 |z0|

∫
∞

R1

ρ2

ρ5+2s ρ
2 dρ

)
+O

(
‖κ‖0

∫
∞

R1

ρ3

ρ5+2s ρ
2 dρ

)
=

(
C1,s

∫
R

w(z0)−w(z)

|z0− z|1+2s (z0 + z)dz

)
HMε

(y0)+O
(
‖κ‖0 R−2s

1 (|z0|+R1)
)
.

The remainder terms I4 and I5 are estimated as follows.

I4 = O(‖κ‖
α
)
∫∫

CR1

∣∣∣w(z0)−w(z)−χB1
1(z0)

(z)w′(z0)(z0− z)
∣∣∣

|(y,z0− z)|3+2s |y|α(|z|+ |z0|)dydz

= O(‖κ‖
α
)
∫
R

∣∣∣w(z0)−w(z)+χB1
1(0)

(z)w′(z0)(z0− z)
∣∣∣

·
∫
R2

|y|α(|z0− z|+ |z0|)(
|y|2 + |z0− z|2

) 3+2s
2

dydz

+O
(
‖κ‖

α
(|z|+ |z0|)

∫
∞

R1

ρα

ρ3+2s ρ
2 dρ

)

= O(‖κ‖
α
)

∫
R

∣∣∣w(z0)−w(z)+χB1
1(0)

(z)w′(z0)(z0− z)
∣∣∣

|z0− z|1+2s−α
(|z0− z|+ |z0|)

 dz

+O
(
‖κ‖

α
R−2s+α

1 (|z|+ |z0|)
)

= O
(
‖κ‖

α
(1+R−2s+α

1 (|z|+ |z0|))
)
.
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I5 = O
(
‖κ‖2

0

)∫∫
CR1

∣∣∣w(z0)−w(z)−χB1
1(z0)

(z)w′(z0)(z0− z)
∣∣∣

|(y,z0− z)|3+2s

· (|y|2 + |z|2 + |z0|2)dydz

= O
(
‖κ‖2

0

)(
1+

∫ R1

1

ρ2 + |z0|2

ρ3+2s ρ
2 dρ

)
= O

(
‖κ‖2

0 (1+R2−2s
1 +R−2s

1 |z0|2)
)
.

In conclusion, we have, since |z0| ≤ R1 and α < 2s−1,

(−∆)su0(x0) = w(z0)−w(z0)
3 +

(
C1,s

∫
R

w(z0)−w(z)

|z0− z|1+2s (z0− z)dz

)
HMε

(y0)

+O
(

R−2s
1

(
1+‖κ‖0 R1 +‖κ‖α

R2s
1 +‖κ‖2

0 R2
1

))
= w(z0)−w(z0)

3 + cH(z0)HMε
(y0)+O(R−2s

1 ),

the last line following from the estimate

‖κ‖
α

R2s
1 .


εα for |x′| ≤ 2R̄

ε

F2s(τ−1)
ε

|x′|α
for |x′| ≥ R̄

ε

.


εα for |x′| ≤ 2R̄

ε

εα−2s(τ−1)(ε|x′|)−2s(τ−1)(1− 2
2s+1 ) for |x′| ≥ R̄

ε

. ε
α−2s(τ−1).

The finiteness of the remainder in the norm ‖·‖∗∗ is a tedious but straightforward

computation. As an example, the difference of the exterior error with two radii Fτ
ε

and Gτ
ε is controlled by∣∣∣∣∣

∫
Φ(Cc

Fτ
ε

)

u0(x0)−u0(x)

|x− x0|3+2s dx−
∫

Φ(Cc
Gτ

ε

)

u0(x0)−u0(x)

|x− x0|3+2s dx

∣∣∣∣∣
=

∣∣∣∣∣
∫∫

CGτ
ε
\CFτ

ε

w(z0)−w(z)

|Φ(y0,z0)−Φ(y,z)|3+2s J(y,z)dydz

∣∣∣∣∣.
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Following the computations in the above proof, a typical term would be

O
(
G−2sτ

ε −F−2sτ
ε

)
= O

(
r−

2(2sτ+1)
2s+1 |Fε −Gε |

)
,

which implies Lipschitz continuity with decay in r.

Similarly we prove the expansion at the end.

Proof of Corollary 2.3.5. We recall that a tubular neighborhood of an end of M+
ε

are parameterized by

x = y+ zν(y) = (y,Fε(r))+ z

(
−F ′ε(r)

y
r ,1
)√

1+F ′ε(r)
2

for r = |y|> r0, |z|<
δ̄

ε
,

where r = |y|. In place of Lemma 2.3.7 we have for |z| ≤ Fτ
ε (r) with 1 < τ < 2s+1

2 ,

J(y,z) =
(
1+O

(
F ′ε(r)

2))(1+O
(
F ′′ε (r)F

τ
ε (r)

))2

=
(

1+O
(

F−(2s−1)
ε (r)

))(
1+O

(
F−(2s−τ)

ε (r)
))2

= 1+O
(

F−(2s−τ)
ε (r)

)
,

|x− x0|2 =
(
|y0− y|2 + |z0− z|2

)(
1+O

(
Fτ

ε (r)F
′′

ε (r)
))

=
(
|y0− y|2 + |z0− z|2

)(
1+O

(
F−(2s−τ)

ε

))
.

The result follows by the same proof as in Proposition 2.3.1.

We now give a proof of the error estimate stated in Section 2.2.

Proof of Proposition 2.2.1. Using the Fermi coordinates expansion of the frac-

tional Laplacian (Proposition 2.3.1), we have, in an expanding neighborhood of

Mε , the following estimates on the error:

• For
1
ε
≤ |x′| ≤ 2R̄

ε
and |z| ≤ δ̄

ε
,

S(u∗)(x) = cH(z)HMε
(y)+O

(
ε

2s) .
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• For |x′| ≥ 4R̄
ε

and |z| ≤ Fτ
ε (|x′|),

S(u∗)(x) = (−∆)s(w(z+)+w(z−)+1)+ f (w(z+)+w(z−)−1)

+O
(
F−2sτ

ε

)
= f (w(z+)+w(z−)+1)− f (w(z+))− f (w(z−))

+ cH(z+)HM+
ε
(y+)+ cH(z−)HM−ε (y−)+O

(
F−2sτ

ε

)
= 3(w(z+)+w(z−))(1+w(z+))(1+w(z−))

+ cH(z+)HM+
ε
(y+)+ cH(z−)HM−ε (y−)+O

(
F−2sτ

ε

)
.

• For
2R̄
ε
≤ |x′| ≤ 4R̄

ε
, xn > 0 and |z| ≤ R1(|x′|),

S(u∗)(x) = (−∆)sw(z+)+(−∆)s
((

1−η

(∣∣x′∣∣− R̄
ε

)
(w(z−)+1)

))
+ f

(
w(z+)+

(
1−η

(∣∣x′∣∣− R̄
ε

)
(w(z−)+1)

))
= cH(z+)HMε

(y+)+O(ε2s).

Here the second term is small because of the smallness of the cut-off error

up to two derivatives.

• For
2R̄
ε
≤ |x′| ≤ 4R̄

ε
, xn < 0 and |z| ≤ R1(|x′|), we have similarly

S(u∗)(x) = cH(z−)HMε
(y−)+O(ε2s).

This completes the proof.

31



Proof of Lemma 2.3.7. Referring to Lemma 2.3.6 and keeping in mind that
‖κ‖0 R1 = o(1), for the Jacobian determinant we have

J(y,z) = 1+(κ1(0)+κ2(0))z+((κ1 +κ2)(y)− (κ1 +κ2)(0))z

+

(√
1+ |Dg(y)|2−1

)
(1+(κ1(y)+κ2(y))z+κ1(y)κ2(y)z2)

= 1+(κ1(0)+κ2(0))z+O
(
‖κ‖

α
|y|α |z|

)
+O

(
‖κ‖2

0 |z|
2
)

+O
(
‖κ‖2

0 |y|
2
)
(1+O(‖κ‖0 |z|))

2

= 1+(κ1(0)+κ2(0))z+O
(
‖κ‖

α
|y|α |z|

)
+O

(
‖κ‖2

0 (|y|
2 + |z|2)

)
.

To expand the kernel we first consider

x0− x = (y,g(y))− (0,z0)+ z
(−Dg(y),1)√
1+ |Dg(y)|2

,

|x0− x|2

= |y|2 +g(y)2 + z2 + z2
0−

2zz0√
1+ |Dg(y)|2

+
2z(g(y)−Dg(y) · y)√

1+Dg(y)2
−2z0g(y)

= |y|2 + |z0− z|2 +2z(g(y)−Dg(y) · y)−2z0g(y)

+g(y)2 +(2zz0−2z(g(y)−Dg(y) · y))

1− 1√
1+ |Dg(y)|2


= |(y,z0− z)|2− (z0 + z)

2

∑
i=1

κi(0)y2
i +O

(
‖κ‖

α
|y|2+α(|z|+ |z0|)

)
+O

(
‖κ‖2

0 |y|
4
)
+O

(
‖κ‖2

0 |y|
2|z|
(
|z0|+‖κ‖0 |y|

2
))

= |(y,z0− z)|2− (z0 + z)
2

∑
i=1

κi(0)y2
i

+O
(
‖κ‖

α
|y|2+α(|z|+ |z0|)

)
+O

(
‖κ‖2

0 |y|
2(|y|2 + |z||z0|)

)
.
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By binomial theorem,

|x0− x|−3−2s

= |(y,z0− z)|−3−2s

[
1+

3+2s
2

(z0 + z)
2

∑
i=1

κi(0)
y2

i

|(y,z0− z)|2

+O

(
‖κ‖

α
|y|2+α(|z|+ |z0|)
|(y,z0− z)|2

)
+O

(
‖κ‖2

0 |y|
2(|y|2 + |z||z0|)
|(y,z0− z)|2

)

+O

(
‖κ‖2

0 |y|
4(|z0|2 + |z|2)

|(y,z0− z)|4

)]

= |(y,z0− z)|−3−2s

[
1+

3+2s
2

(z0 + z)
2

∑
i=1

κi(0)
y2

i

|(y,z0− z)|2

+O

(
‖κ‖

α
|y|2+α(|z|+ |z0|)
|(y,z0− z)|2

)
+O

(
‖κ‖2

0 |y|
2(|y|2 + |z|2 + |z0|2)
|(y,z0− z)|2

)]
.

Proof of Lemma 2.3.8. The first and third equalities follow by the change of vari-

able y = |z0− z|ỹ. To prove the second one, we have

∫
R2

y2
i

|(y,z0− z)|5+2s dy

=
1
2

∫
R2

(
|y|2 + |z0− z|2

)
−|z0− z|2(

|y|2 + |z0− z|2
) 5+2s

2
dy

=
1
2

∫
R2

dy(
|y|2 + |z0− z|2

) 3+2s
2
− 1

2
|z0− z|2

∫
R2

dy(
|y|2 + |z0− z|2

) 5+2s
2

=
1
2

C1,s

C3,s

1

|z0− z|1+2s −
1
2

C3,s

C5,s

|z0− z|2

|z0− z|3+2s

=
1
2

C1,s

C3,s

(
1−

C2
3,s

C1,sC5,s

)
1

|z0− z|1+2s .
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Recalling that

Cn,s =
22ss

Γ(1− s)
Γ
(n+2s

2

)
π

n
2

,

we have

1−
C2

3,s

C1,sC5,s
= 1−

Γ
(3+2s

2

)2

Γ
(1+2s

2

)
Γ
(5+2s

2

) = 1− 1+2s
3+2s

=
2

3+2s

and hence ∫
R2

y2
i

|(y,z0− z)|5+2s dy =
1

3+2s
C1,s

C3,s

1

|z0− z|1+2s .

2.4 Linear theory
In this section we use a different notation. We write w = w(z, t) for the layer in the

extension and w(z) for its trace.

2.4.1 Non-degeneracy of one-dimensional solution

Consider the linearized equation of (−∆)su+ f (u) = 0 at w, the one-dimensional

solution, namely

(−∆)s
φ + f ′(w)φ = 0 for (y,z) ∈ Rn, (2.15)

or the equivalent extension problem (here a = 1−2s)∇ · (ta∇φ) = 0 for (y,z, t) ∈ Rn+1
+

ta ∂φ

∂ν
+ f ′(w)φ = 0 for (y,z) ∈ Rn.

(2.16)

Given ξ ∈ Rn−1, we define on

X = H1(R2
+, t

a)
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the bilinear form

(u,v)X =
∫
R2
+

ta
(

∇u ·∇v+ |ξ |2uv
)

dzdt +
∫
R

f ′(w)uvdz.

Lemma 2.4.1 (An inner product). Suppose ξ 6= 0. Then (·, ·)X defines an inner

product on X.

Proof. Clearly (u,u)X < ∞ for any u ∈ X . For R > 0, denote B+
R = BR(0)∩R2

+ and

its boundary in R2
+ by ∂B+

R . It suffices to prove that

∫
B+

R

ta|∇u|2 dzdt +
∫

∂B+
R

f ′(w)u2 dz =
∫

B+
R

taw2
z

∣∣∣∣∇( u
wz

)∣∣∣∣2 dzdt. (2.17)

Since the right hand side is non-negative, the result follows as we take R→ +∞.

To check the above equality, we compute

∫
B+

R

taw2
z

∣∣∣∣∇( u
wz

)∣∣∣∣2 dzdt

=
∫

B+
R

ta
∣∣∣∣∇u− u

wz
∇wz

∣∣∣∣2 dzdt

=
∫

B+
R

ta|∇u|2 dzdt +
∫

B+
R

ta u2

w2
z
|∇wz|2 dzdt−

∫
B+

R

ta
∇(u2) · ∇wz

wz
dzdt.

Since ∇ · (ta∇wz) = 0 in R2
+, we can integrate the last integral by parts as

−
∫

B+
R

ta
∇(u2) · ∇wz

wz
dzdt =−

∫
∂B+

R

u2 ta∂νwz

wz
dz+

∫
B+

R

u2
∇ ·
(

ta ∇wz

wz

)
dzdt

=
∫

∂B+
R

u2 f ′(w)wz

wz
dz+

∫
B+

R

tau2
∇wz ·∇ ·

1
wz

dzdt

=
∫

∂B+
R

f ′(w)u2 dz−
∫

B+
R

ta u2

w2
z
|∇wz|2 dzdt.

Therefore, (2.17) holds and the proof is complete.
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Lemma 2.4.2 (Solvability of the linear equation). Suppose ξ 6= 0. For any g ∈
C∞

c (R2
+) and h ∈C∞

c (R), there exists a unique u ∈ X of−∇ · (ta∇u)+ ta|ξ |2u = g in R2
+

ta ∂u
∂ν

+ f ′(w)u = h on ∂R2
+.

(2.18)

Proof. This equation has the weak formulation

(u,v)X =
∫
R2
+

ta
(

∇u ·∇v+ |ξ |2uv
)

dzdt +
∫
R

f ′(w)uvdz

=
∫
R2
+

gvdzdt +
∫
R

hvdz.

By Riesz representation theorem, there is a unique solution u ∈ X .

Lemma 2.4.3 (Non-degeneracy in one dimension [82, Lemma 4.2]). Let w(z) be

the unique increasing solution of

(−∂zz)
sw+ f (w) = 0 in R.

If φ(z) is a bounded solution of

(−∂zz)
s
φ + f ′(w)φ = 0 in R,

then φ(z) =Cw′(z).

Lemma 2.4.4 (Non-degeneracy in higher dimensions). Let φ(y,z, t) be a bounded

solution of
∇(y,z,t) · (ta∇(y,z,t)φ) = ta

(
∂tt +

a
t

∂t +∂zz +∆y

)
φ = 0 in Rn+1

+

ta ∂φ

∂ν
+ f ′(w)φ = 0 on ∂Rn+1

+ ,
(2.19)
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where w(z, t) is the one-dimensional solution so that
∇(z,t) · (ta∇(z,t)wz) = ta

(
∂tt +

a
t

∂t +∂zz

)
wz = 0 in R2

+

ta ∂wz

∂ν
+ f ′(w)wz = 0 on ∂R2

+.

Then φ(y,z, t) = cwz(z, t) for some constant c.

Proof. For each (z, t)∈R2
+, let ψ(ξ ,z, t) be a smooth function in ξ rapidly decreas-

ing as |ξ | → +∞. The Fourier transform φ̂(ξ ,z, t) of φ(y,z, t) in the y-variable,

which is the distribution defined by

〈φ̂(·,z, t),µ〉Rn−1 = 〈φ(·,z, t), µ̂〉Rn−1 =
∫
Rn−1

φ(ξ ,z, t)µ̂(ξ )dξ

for any smooth rapidly decreasing function µ , satisfies

∫
Rn+1
+

(
−∇ · (ta

∇ψ)+ ta|ξ |2ψ

)
φ̂(ξ ,z, t)dξ dzdt

=
∫
Rn

(
− f ′(w)ψ + ta

ψt |t=0
)

φ̂(ξ ,z,0)dξ dz.

Let µ ∈C∞
c (Rn−1), ϕ+ ∈C∞

c (R2
+) and ϕ0 ∈C∞

c (R) such that

0 /∈ supp(µ).

By Lemma 2.4.2, for any ξ 6= 0 we can solve the equation−∇ · (ta∇ψ)+ ta|ξ |2ψ = µ(ξ )ϕ+(z, t) in R2
+

ta ∂ψ

∂ν
+ f ′(w)ψ = µ(ξ )ϕ0(z) on ∂R2

+

uniquely for ψ(ξ , ·, ·) ∈ X such that

ψ(ξ ,z, t) = 0 if ξ /∈ supp(µ).
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In particular, ψ(·,z, t) is rapidly decreasing for any (z, t) ∈ R2
+. This implies∫

R2
+

〈φ̂(·,z, t),µ〉Rn−1ϕ+(z, t)dzdt =
∫
R
〈φ̂(·,z,0),µ〉Rn−1ϕ0(z)dz

for any ϕ+ ∈C∞
c (R2

+) and ϕ0 ∈C∞
c (R). In other words, whenever 0 /∈ supp(µ), we

have

〈φ̂(·,z, t),µ〉Rn−1 = 0 for all (z, t) ∈ R2
+.

Such distribution with supp(φ̂(·,z, t)) ⊂ {0} is characterized as a linear combina-

tion of derivatives up to a finite order of Dirac masses at zero, namely

φ̂(ξ ,z, t) =
N

∑
j=0

a j(z, t)δ
( j)
0 (ξ ),

for some integer N ≥ 0. Taking inverse Fourier transform, we see that φ(y,z, t) is a

polynomial in y with coefficients depending on (z, t). Since we assumed that φ is

bounded, it is a zeroth order polynomial, i.e. φ is independent of y. Now the trace

φ(z,0) solves

(−∆)s
φ + f ′(w)φ = 0 in R.

By Lemma 2.4.3,

φ(z, t) =Cwz(z, t)

for some constant C ∈ R. This completes the proof.

2.4.2 A priori estimates

Consider the equation

(−∆)s
φ(y,z)+ f ′(w(z))φ(y,z) = g(y,z) for (y,z) ∈ Rn. (2.20)

Let 〈y〉=
√

1+ |y|2 and define the norm

‖φ‖
µ,σ = sup

(y,z)∈Rn
〈y〉µ 〈z〉σ |φ(y,z)|

for 0≤ µ < n−1+2s and 2−2s < σ < 1+2s such that µ +σ < n+2s.
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Lemma 2.4.5 (Decay in z). Let φ ∈ L∞(Rn) and ‖g‖0,σ <+∞. Then we have

‖φ‖0,σ ≤C.

With the decay established, the following orthogonality condition (2.21) is

well-defined.

Lemma 2.4.6 (A priori estimate in y,z). Let φ ∈ L∞(Rn) and ‖g‖
µ,σ <+∞. If the

s-harmonic extension φ(t,y,z) is orthogonal to wz(t,z) in Rn+1
+ , namely,∫∫

R2
+

ta
φwz dtdz = 0, (2.21)

then we have

‖φ‖
µ,σ ≤C‖g‖

µ,σ .

Before we give the proof, we estimate some integrals which arise from the

product rule

(−∆)s(uv)(x0) = u(x0)(−∆)sv(x0)+Cn,s

∫
Rn

u(x0)−u(x)

|x0− x|n+2s v(x)dx

= u(x0)(−∆)sv(x0)+ v(x0)(−∆)su(x0)− (u,v)s(x0),

where

(u,v)s(x0) =Cn,s

∫
Rn

(u(x0)−u(x))(v(x0)− v(x))

|x0− x|n+2s dx.

Lemma 2.4.7 (Decay estimates). Suppose φ(y,z) is a bounded function.

1. As |y| →+∞,

(−∆)s 〈y〉−µ = O
(
〈y〉−2s−min{µ,n−1}

)
,

(φ ,〈y〉−µ)s = O
(
〈y〉−2s−min{µ,n−1}

)
.

2. As |z| →+∞,

(−∆)s 〈z〉−σ = O
(
〈z〉−2s−min{σ ,1}

)
,

(φ ,〈z〉−σ )s = O
(
〈z〉−2s−min{σ ,1}

)
.

39



3. As min{|y|, |z|} →+∞,

(〈y〉−µ ,〈z〉−σ )s = O
(
|(y,z)|−n−2s(|y|n−1−µ +1)(|z|1−σ +1)

)
+O

(
|y|−n−2s(|y|n−1−µ +1)|z|−σ−2 min{|y|, |z|}3

)
+O

(
|y|−µ−2|z|−n−2s(|z|1−σ +1)min{|y|, |z|}n+1

)
+O

(
|z|−σ (|y|+ |z|)−(n−1+2s) (|y|n−1−µ +1)

)
+O

(
|y|−µ (|y|+ |z|)−1−2s (|z|1−σ +1)

)
+O

(
|y|−µ |z|−σ (|y|+ |z|)−2s

)
.

In particular, if µ < n−1+2s and σ < 1+2s, then

(〈y〉−µ ,〈z〉−σ )s = o
(
|y|−µ |z|−σ

)
as min{|y|, |z|} →+∞.

4. Suppose µ < n−1+2s and σ < 1+2s. As min{|y|, |z|} →+∞,

(−∆)s (〈y〉−µ 〈z〉−σ
)
= o

(
|y|−µ |z|−σ

)
,

(φ ,〈y〉−µ 〈z〉−σ )s = o
(
|y|−µ |z|−σ

)
.

5. Suppose ηR(y) = η

(
|y|
R

)
where η is a smooth cut-off function as in (2.25),

and φ(y,z)≤C 〈z〉−σ . For all sufficiently large R> 0, we have

|[(−∆)s,ηR]φ(y,z)| ≤C
(
〈z〉−1 + 〈z〉−σ

)
max{|y|,R}−2s . (2.22)

Let us assume the validity of Lemma 2.4.7 for the moment.

Proof of Lemma 2.4.5. It follows from Lemma 2.4.7(2) and a maximum principle

[50].

Proof of Lemma 2.4.6. We will first establish the a priori estimate assuming that
‖φ‖

µ,σ < +∞. We use a blow-up argument. Suppose on the contrary that there

40



exist a sequence φm(y,z) and hm(y,z) such that

(−∆)s
φm + f ′(w)φm = gm for (y,z) ∈ Rn

and
‖φm‖µ,σ = 1 and ‖gm‖µ,σ → 0 as m→+∞.

Then there exist a sequence of points (ym,zm) ∈ Rn such that

φm(ym,zm)〈ym〉µ 〈zm〉σ ≥
1
2
. (2.23)

We consider four cases.

1. ym, zm bounded:

Since φm is bounded and gm→ 0 in L∞(Rn), by elliptic estimates and passing

to a subsequence, we may assume that φm converges uniformly in compact

subsets of Rn to a function φ0 which satisfies

(−∆)s
φ0 + f ′(w)φ0 = 0, in Rn

and, by (2.21), ∫∫
R2
+

ta
φ0wz dtdz = 0.

By the non-degeneracy of w′ (Lemma 2.4.4), we necessarily have φ0(y,z) =

Cw′(z). However, the orthogonality condition yields C = 0, i.e. φ0 ≡ 0. This

contradicts (2.23).

2. ym bounded, |zm| → ∞:

We consider φ̃m(y,z) = 〈zm + z〉σ φm(y,zm + z), which satisfies in Rn

〈zm + z〉−σ (−∆)s
φ̃m(y,z)+ φ̃m(y,z)(−∆)s 〈zm + z〉−σ

−
(
φ̃m(y,z),〈zm + z〉σ

)
s

+ f ′(w(zm + z))〈zm + z〉−σ
φ̃m(y,z) = gm(y,zm + z),
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or

(−∆)s
φ̃m +

(
f ′(w(zm + z))+

(−∆)s 〈zm + z〉−σ

〈zm + z〉−σ

)
φ̃m

= gm +

(
φ̃m(y,z),〈zm + z〉σ

)
s

〈zm + z〉−σ
.

Using Lemma 2.4.7(2), the limiting equation is

(−∆)s
φ̃0 +2φ̃0 = 0 in Rn.

Thus φ̃0 = 0, contradicting (2.23).

3. |ym| → ∞, zm bounded:

We define φ̃m(y,z) = 〈ym + y〉µ φm(ym + y,z), which satisfies

(−∆)s
φ̃m(y,z)+

(
f ′(w(z))+

(−∆)s
(
〈ym + y〉−µ

)
〈ym + y〉−µ

)
φ̃m(y,z)

= gm(ym + y,z)+

(
φ̃m(y,z),〈ym + y〉−µ

)
s

〈ym + y〉−µ
in Rn.

By Lemma 2.4.7(1), the subsequential limit φ̃0 satisfies

(−∆)s
φ̃0 + f ′(w)φ̃0 = 0 in Rn.

This leads to a contradiction as in case (1).

4. |ym|, |zm| → ∞:

This is similar to case (2). In fact for φ̃m(y,z) = 〈ym + y〉µ 〈zm + z〉σ φm(ym +
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y,zm + z), we have

(−∆)s
φ̃m(y,z)

+

(
f ′(w(zm + z))+

(−∆)s
(
〈ym + y〉−µ 〈zm + z〉−σ

)
〈ym + y〉−µ 〈zm + z〉−σ

)
φ̃m(y,z)

= gm(ym + y,zm + z)+

(
φ̃m(y,z),〈ym + y〉−µ 〈zm + z〉σ

)
s

〈ym + y〉−µ 〈zm + z〉−σ
in Rn.

In the limiting situation φ̃m→ φ̃0, by Lemma 2.4.7(4),

(−∆)s
φ̃0 +2φ̃0 = 0 in Rn,

forcing φ̃0 = 0 which contradicts (2.23).

We conclude that

‖φ‖
µ,σ ≤C‖g‖

µ,σ provided ‖φ‖
µ,σ <+∞. (2.24)

Now we will remove the condition ‖φ‖
µ,σ <+∞. By Lemma 2.4.5, we know

that ‖φ‖0,σ <+∞. Let η : [0,+∞)→ [0,1] be a smooth cut-off function such that

η = 1 on [0,1] and η = 0 on [2,+∞). (2.25)

Write ηR(y) = η

(
|y|
R

)
. We apply the above derived a priori estimate to ψ(y,z) =

ηR(y)φ(y,z), which satisfies

(−∆)s
ψ + f ′(w)ψ = ηRg+φ(−∆)s

ηR− (ηR,φ)s. (2.26)

It is clear that ‖ηRg‖
µ,σ ≤ ‖g‖µ,σ and ‖φ(−∆)sηR‖µ,σ ≤ CR−2s because of the

estimate (−∆)sη(|y|)≤C 〈y〉−(n−1+2s). By Lemma 2.4.7(5),

|[(−∆)s,ηR]φ(y0,z0)| ≤C
(
|z0|−1 + |z0|−σ

)
max{|y0|,R}−2s .
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For σ < 1 and 0≤ µ < 2s, this yields

‖[(−∆)s,ηR]φ‖µ,σ ≤CR−(2s−µ).

Therefore, (2.24) and (2.26) give

‖ηRφ‖
µ,σ ≤C‖g‖

µ,σ +CR−2s +CR−(2s−µ).

Letting R→+∞, we arrive at

‖φ‖
µ,σ ≤C‖g‖

µ,σ ,

as desired.

Proof of Lemma 2.4.7. We will only prove the statements regarding the fractional

Laplacian of the explicit function. The associated assertion concerning the inner

product with φ will follow from the same proof using its boundedness, since all the

terms are estimated in absolute value.

1. We have

(−∆(y,z))
s(〈y〉−µ)|y=y0 = (−∆y)

s 〈y〉µ |y=y0

=Cn−1,s

∫
Rn−1

〈y0〉−µ −〈y〉−µ

|y0− y|n−1+2s dy

≡ I1 + I2 + I3 + I4,
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where

I1 =Cn−1,s

∫
B |y0|

2

(y0)

〈y0〉−µ −〈y〉−µ −D〈y〉−µ |y=y0(y0− y)

|y0− y|n−1+2s dy,

I2 =Cn−1,s

∫
B1(0)

〈y0〉−µ −〈y〉−µ

|y0− y|n−1+2s dy,

I3 =Cn−1,s

∫
B |y0|

2

(0)\B1(0)

〈y0〉−µ −〈y〉−µ

|y0− y|n−1+2s dy,

I4 =Cn−1,s

∫
Rn−1\

(
B |y0|

2

(y0)∪B |y0|
2

(0)

) 〈y0〉−µ −〈y〉−µ

|y0− y|n−1+2s dy.
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If |y0| ≤ 1, it is simple to get boundedness since 〈y〉−µ is smooth and

bounded. For |y0| ≥ 1, we compute

|I1|.
∫

B |y0|
2

(y0)

∣∣D2 〈y〉−µ |y=y0 [y0− y]2
∣∣

|y0− y|n−1+2s dy

. |y0|−µ−2
∫ |y0|

2

0

ρ2

ρ1+2s dρ

. |y0|−(µ+2s),

|I2|.
∫

B1(0)

1

|y0|n−1+2s dy

. |y0|−(n−1+2s),

|I3|. |y0|−(n−1+2s)
∫

B |y0|
2

(0)\B1(0)

(
〈y0〉−µ + |y|−µ

)
dy

. |y0|−(n−1+2s)
∫ |y0|

2

1

(
〈y0〉−µ +ρ

−µ
)

ρ
n−2 dρ

. |y0|−(n−1+2s)
(
〈y0〉−µ (|y0|n−1−1)+ |y0|−µ+n−1−1

)
. |y0|−(µ+2s)+ |y0|−(n−1+2s),

|I4|. |y0|−µ

∫
Rn−1\

(
B |y0|

2

(y0)∪B |y0|
2

(0)

) 1

|y0− y|n−1+2s dy

. |y0|−µ

∫
∞

|y0|
2

1
ρ1+2s dρ

. |y0|−(µ+2s).

2. This follows from the same proof as (1).

3. We divide Rn−1×R into 14 regions in terms of the relative size of |y|, |z|with

respect to |y0|, |z0| which tend to infinity. We will consider such distance

“small” if |y| < 1 and “intermediate” if 1 < |y| < |y0|
2 , similarly for z. Once

the non-decaying part of 〈y〉−µ ,〈z〉−σ are excluded, the remaining parts can

be either treated radially where we consider (y0,z0) as the origin, or reduced
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to the one-dimensional case. More precisely, we write

(〈y〉−µ ,〈z〉−σ )s(y0,z0) =Cn,s

∫∫
Rn

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz

≡ ∑
1≤i, j≤4

min{i, j}≤2

Ii j + Ising + Irest ,

where

I11 =Cn,s

∫∫
|y|<1, |z|<1

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

I12 =Cn,s

∫∫
|y|<1,1<|z|< |z0|

2

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

I13 =Cn,s

∫∫
|y|<1, |z−z0|<

|z0|
2

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

I14 =Cn,s

∫∫
|y|<1,min{|z|,|z−z0|}>

|z0|
2

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

I21 =Cn,s

∫∫
1<|y|< |y0|

2 , |z|<1

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

I22 =Cn,s

∫∫
1<|y|< |y0|

2 ,1<|z|< |z0|
2

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

I23 =Cn,s

∫∫
1<|y|< |y0|

2 , |z−z0|<
|z0|

2

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

I24 =Cn,s

∫∫
1<|y|< |y0|

2 ,min{|z|,|z−z0|}>
|z0|

2(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,
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I31 =Cn,s

∫∫
|y−y0|<

|y0|
2 , |z|<1

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

I32 =Cn,s

∫∫
|y−y0|<

|y0|
2 ,1<|z|< |z0|

2

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

I41 =Cn,s

∫∫
min{|y|,|y−y0|}>

|y0|
2 , |z|<1

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

I42 =Cn,s

∫∫
min{|y|,|y−y0|}>

|y0|
2 ,1<|z|< |z0|

2(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

Ising =Cn,s

∫∫
|y|> |y0|

2 , |z|> |z0|
2 , |(y−y0,z−z0)|<

|y0|+|z0|
2(

〈y〉−µ −〈y0〉−µ
)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

Irest =Cn,s

∫∫
|y|> |y0|

2 , |z|> |z0|
2 , |(y−y0,z−z0)|>

|y0|+|z0|
2(

〈y〉−µ −〈y0〉−µ
)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz.

We will estimate these integrals one by one. In the unit cylinder we have

|I11|.
1

|(y0,z0)|n+2s

∫∫
|y|<1, |z|<1

dydz

. |(y0,z0)|−n−2s.

On a thin strip near the origin,

|I12|.
1

|(y0,z0)|n+2s

∫∫
|y|<1,1<|z|< |z0|

2

(
|z|−σ + 〈z0〉−σ

)
dydz

. |(y0,z0)|−n−2s
(
|z0|1−σ +1

)
.

Similarly

|I21|.
1

|(y0,z0)|n+2s

∫∫
1<|y|< |y0|

2 , |z|<1

(
|y|−µ + 〈y0〉−µ

)
dydz

. |(y0,z0)|−n−2s
(
|y0|n−1−µ +1

)
,
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and in the intermediate rectangle,

|I22|.
∫∫

1<|y|< |y0|
2 ,1<|z|< |z0|

2

(
|y|−µ + 〈y0〉−µ

)(
|z|−σ + 〈z0〉−σ

)
dydz

. |(y0,z0)|−n−2s
(
|y0|n−1−µ +1

)(
|z0|1−σ +1

)
.

The integral on a thin strip afar is more involved. We first integrate the z

variable by a change of variable z = z0 + |y0− y|ζ .

I13 =Cn,s

∫∫
|y|<1, |z−z0|<

|z0|
2

(
〈y〉−µ −〈y0〉−µ

)
|(y− y0,z− z0)|n+2s(

〈z〉−σ −〈z0〉−σ −D〈z〉−σ |z0(z− z0)
)

dydz

=Cn,s

∫∫
|y|<1, |z−z0|<

|z0|
2

(
〈y〉−µ −〈y0〉−µ

)
|(y− y0,z− z0)|n+2s

(z− z0)
2
(∫ 1

0
(1− t)D2 〈z〉−σ |z0+t(z−z0) dt

)
dydz

=Cn,s

∫
|y|<1

〈y〉−µ −〈y0〉−µ

|y− y0|n−3+2s∫
|ζ |< |z0|

2|y−y0|

(∫ 1

0
(1− t)D2 〈z〉−σ |z0+t|y−y0|ζ dt

)
ζ 2 dζ

(1+ζ 2)
n+2s

2
dy.

Observing that in this regime |y− y0| ∼ |y0| and that

∫ T

0

t2

(1+ t2)
n+2s

2
dt .min

{
T 3,1

}
,

we have

|I13|.
∫
|y|<1

1

|y− y0|n−3+2s |z0|−σ−2 min

{(
|z0|
|y− y0|

)3

,1

}
dy

. |y0|−n−2s|z0|−σ−2 min{|y0|, |z0|}3 .
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Similarly, changing y = y0 + |z− z0|η , we have

I31 =Cn,s

∫∫
|y−y0|<

|y0|
2 , |z|<1

(
〈y〉−µ −〈y0〉−µ −D〈y〉−µ |y0 · (y− y0)

)
|(y− y0,z− z0)|n+2s(

〈z〉−σ −〈z0〉−σ
)

dydz

=Cn,s

∫∫
|y−y0|<

|y0|
2 , |z|<1

(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s

·

(
n−1

∑
i, j=1

∫ 1

0
(1− t)∂i j 〈y〉−µ |y0+t(y−y0) dt

)
(y− y0)i(y− y0) j dydz

=
n−1

∑
i, j=1

∫
|z|<1

〈z〉−σ −〈z0〉−σ

|z− z0|2s−1∫
|η |< |y0|

2|z−z0|

(∫ 1

0
(1− t)∂i j 〈y〉−µ |y0+t|z−z0|η dt

)
ηiη j dη

|(η ,1)|n+2s dz.

The t-integral is controlled by 〈y0〉−µ−2 since
∣∣y0 + t|z− z0|η

∣∣ < |y0|
2 . Then

using

∫
|η |<η0

|ηi|
∣∣η j
∣∣(

|η |2 +1
) n+2s

2
dη .

∫
η0

0

ρ2ρn−2

(ρ2 +1)
n+2s

2
dρ

.min
{

η
n+1
0 ,1

}
,

(noting that here we again require s > 1/2) we have

|I31|.
n−1

∑
i, j=1

∫
|z|<1

1

|z− z0|2s−1 〈y0〉−µ−2 min

{(
|y0|
|z− z0|

)n+1

,1

}
dz

. |z0|−n−2s 〈y0〉−µ−2 min{|y0|, |z0|}n+1 .

Next we deal with the y-intermediate, z-far regions, namely I23. The treat-

ment is similar to that of I13 except that we need to integrate in y. We have,
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as above,

I23 =Cn,s

∫∫
1<|y|< |y0|

2 , |z−z0|<
|z0|

2

(
〈y〉−µ −〈y0〉−µ

)
|(y− y0,z− z0)|n+2s(

〈z〉−σ −〈z0〉−σ −D〈z〉−σ |z0(z− z0)
)

dydz

=Cn,s

∫
1<|y|< |y0|

2

〈y〉−µ −〈y0〉−µ

|y− y0|n−3+2s∫
|ζ |< |z0|

2|y−y0|

(∫ 1

0
(1− t)D2 〈z〉−σ |z0+t|y−y0|ζ dt

)
ζ 2 dζ

(1+ζ 2)
n+2s

2
dy.

Hence

|I23|.
∫

1<|y|< |y0|
2

|y|−µ + 〈y0〉−µ

|y− y0|n−3+2s |z0|−σ−2 min

{(
|z0|
|y− y0|

)3

,1

}
dy

. |y0|−n−2s|z0|−σ−2 min{|y0|, |z0|}3
∫

1<|y|< |y0|
2

(
|y|−µ + 〈y0〉−µ

)
dy

. |y0|−n−2s|z0|−σ−2 min{|y0|, |z0|}3
(
|y0|n−1−µ +1

)
.

Similarly, we estimate

I32 =Cn,s

∫∫
|y−y0|<

|y0|
2 ,1<|z|< |z0|

2

(
〈y〉−µ −〈y0〉−µ −D〈y〉−µ |y0 · (y− y0)

)
|(y− y0,z− z0)|n+2s(

〈z〉−σ −〈z0〉−σ
)

dydz

=
n−1

∑
i, j=1

∫
1<|z|< |z0|

2

〈z〉−σ −〈z0〉−σ

|z− z0|2s−1∫
|η |< |y0|

2|z−z0|

(∫ 1

0
(1− t)∂i j 〈y〉−µ |y0+t|z−z0|η dt

)
ηiη j dη

|(η ,1)|n+2s dz,
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which yields

|I32|.
n−1

∑
i, j=1

∫
1<|z|< |z0|

2

|z|−σ + 〈z0〉−σ

|z− z0|2s−1 〈y0〉−µ−2 min

{(
|y0|
|z− z0|

)n+1

,1

}
dz

. |z0|−n−2s|y0|−µ−2 min{|y0|, |z0|}n+1
∫

1<|z|< |z0|
2

(
|z|−σ + 〈z0〉−σ

)
dz

. |z0|−n−2s|y0|−µ−2 min{|y0|, |z0|}n+1
(
|z0|1−σ +1

)
.

We consider the remaining part of the small strip, namely I14 and I41. Using

the change of variable z = z0 + |y0|ζ , we have

I14 =Cn,s

∫∫
|y|<1,min{|z|,|z−z0|}>

|z0|
2

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

|I14|. 〈z0〉−σ

∫∫
|y|<1,min{|z|,|z−z0|}>

|z0|
2

1

|(y0,z− z0)|n+2s dydz

. 〈z0〉−σ

∫
min{|z|,|z−z0|}>

|z0|
2

1

|(y0,z− z0)|n+2s dz

. 〈z0〉−σ 1

|y0|n−1+2s

∫
|ζ |> |z0|

2|y0|
,

∣∣∣∣ζ− z0
|y0|

∣∣∣∣> |z0|
2|y0|

1

|(1,ζ )|n+2s dζ

. 〈z0〉−σ |y0|−(n−1+2s)
∫

∞

|z0|
2|y0|

dζ

(1+ζ 2)
n+2s

2

. 〈z0〉−σ |y0|−(n−1+2s) min

{
1,
(
|z0|
|y0|

)−(n−1+2s)
}

. 〈z0〉−σ min
{
|y0|−(n−1+2s), |z0|−(n−1+2s)

}
. 〈z0〉−σ (|y0|+ |z0|)−(n−1+2s) .

Similarly, with y = y0 + |z0|η ,

I41 =Cn,s

∫∫
min{|y|,|y−y0|}>

|y0|
2 , |z|<1

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

52



|I41|. 〈y0〉−µ

∫∫
min{|y|,|y−y0|}>

|y0|
2 , |z|<1

1

|(y− y0,z0)|n+2s dydz

. 〈y0〉−µ |z0|−(1+2s)
∫
|η |> |y0|

2|z0|

dη

(|η |2 +1)
n+2s

2

. 〈y0〉−µ |z0|−(1+2s)
∫

∞

|y0|
2|z0|

ρn−2

(ρ2 +1)
n+2s

2
dρ

. 〈y0〉−µ |z0|−(1+2s) min

{(
|y0|
2|z0|

)−(1+2s)

,1

}
. 〈y0〉−µ (|y0|+ |z0|)−(1+2s) .

In the remaining intermediate region, we first “integrate” in z by the change

of variable z = z0 + |y− y0|ζ as follows.

I24 =Cn,s

∫∫
1<|y|< |y0|

2 ,min{|z|,|z−z0|}>
|z0|

2(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

|I24|. 〈z0〉−σ

∫∫
1<|y|< |y0|

2 ,min{|z|,|z−z0|}>
|z0|

2

|y|−µ + 〈y0〉−µ

|(y− y0,z− z0)|n+2s dydz

. 〈z0〉−σ

∫
1<|y|< |y0|

2

|y|−µ + 〈y0〉−µ

|y− y0|n−1+2s∫
|ζ |> |z0|

2|y−y0|
,

∣∣∣∣ζ− z0
|y−y0|

∣∣∣∣> |z0|
2|y−y0|

dζ

(1+ζ 2)
n+2s

2
dy

. 〈z0〉−σ

∫
1<|y|< |y0|

2

|y|−µ + 〈y0〉−µ

|y− y0|n−1+2s

min

{
1,
(
|z0|
|y− y0|

)−(n−1+2s)
}

dy

. 〈z0〉−σ

∫
1<|y|< |y0|

2

(
|y|−µ + 〈y0〉−µ

)
(|y− y0|+ |z0|)−(n−1+2s) dy

. 〈z0〉−σ (|y0|+ |z0|)−(n−1+2s)
∫

1<|y|< |y0|
2

(
|y|−µ + 〈y0〉−µ

)
dy

. |y|n−1−µ 〈z0〉−σ (|y0|+ |z0|)−(n−1+2s) .
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Similarly,

I42 =Cn,s

∫∫
min{|y|,|y−y0|}>

|y0|
2 ,1<|z|< |z0|

2(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz,

|I42|. 〈y0〉−µ

∫∫
min{|y|,|y−y0|}>

|y0|
2 ,1<|z|< |z0|

2

|z|−σ + 〈z0〉−σ

|(y− y0,z− z0)|n+2s dydz

. 〈y0〉−µ

∫
1<|z|< |z0|

2

|z|−σ + 〈z0〉−σ

|z− z0|1+2s

∫
|η |> |y0|

2|z−z0|

dη

(|η |2 +1)
n+2s

2
dz

. 〈y0〉−µ

∫
1<|z|< |z0|

2

|z|−σ + 〈z0〉−σ

|z− z0|1+2s min

{(
|y0|

2|z− z0|

)−1−2s

,1

}
dz

. 〈y0〉−µ |z0|1−σ (|y0|+ |z0|)−(1+2s) .

Now we estimate the singular part Ising. The only concern is that if, say,
|y0|� |z0|, then the line segment joining z0 and z may intersect the y-axis. To

fix the idea we suppose that |y0| ≥ |z0|. Having all estimates for the integrals

in a neighborhood of the axes, one can factor out the decay 〈z〉−σ −〈z0〉−σ

and obtain integrability by expanding the bracket with y to second order, as

follows. For simplicity let us write

Ωsing =

{
(y,z) ∈ Rn : |y|> |y0|

2
, |z|> |z0|

2
, |(y− y0,z− z0)|<

|y0|+ |z0|
2

}
.

Then

Ising =Cn,s

∫∫
Ωsing

(
〈y〉−µ −〈y0〉−µ

)(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s dydz

=Cn,s

∫∫
Ωsing

(
〈z〉−σ −〈z0〉−σ

)
|(y− y0,z− z0)|n+2s

·

(
n−1

∑
i, j=1

∫ 1

0
(1− t)∂i j 〈y〉−µ |y0+t(y−y0) dt

)
(y− y0)i(y− y0) j dydz.

54



Thus

∣∣Ising
∣∣. 〈z0〉−σ 〈y0〉−µ−2

∫∫
Ωsing

|y− y0|2

|(y− y0,z− z0)|n+2s dydz

. 〈z0〉−σ 〈y0〉−µ−2
∫ |y0|+|z0|

2

0

ρ2

ρ1+2s dρ

. 〈y0〉−µ−2s 〈z0〉−σ .

The same argument implies that if |z0| ≥ |y0| then

∣∣Ising
∣∣. 〈y0〉−µ 〈z0〉−σ−2s .

Therefore, we have in general∣∣Ising
∣∣. 〈y0〉−µ 〈z0〉−σ max{|y0|, |z0|}−2s

. 〈y0〉−µ 〈z0〉−σ (|y0|+ |z0|)−2s .

Finally, the remaining exterior integral is controlled by

∣∣Irest
∣∣. 〈y0〉−µ 〈z0〉−σ

∫∫
|y|> |y0|

2 , |z|> |z0|
2 , |(y−y0,z−z0)|<

|y0|+|z0|
2

1

|(y− y0,z− z0)|n+2s dydz

. 〈y0〉−µ 〈z0〉−σ

∫
∞

|y0|+|z0|
2

dρ

ρ1+2s

. 〈y0〉−µ 〈z0〉−σ (|y0|+ |z0|)−2s .

4. This follows from the product rule

(−∆)s (〈y〉−µ 〈z〉−σ
)

= 〈y〉−µ (−∆)s 〈z〉−σ + 〈z〉−σ (−∆)s 〈y〉−µ − (〈y〉−µ ,〈z〉−σ )s

= 〈y〉−µ 〈z〉−σ
(

O(〈y〉−2s)+O(〈z〉−2s)+o(1)
)
.
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5. The s-inner product is computed as follows. We may assume that 1≤ |z0| ≤
R
2 . When |y0| ≥ 3R,

|[(−∆)s,ηR]φ(y0,z0)|

≤C
∫
Rn

|−ηR(y)| 〈z〉−σ

|(y0,z0)− (y,z)|n+2s dydz

≤C
∫
R

∫
|y|≤2R

〈z〉−σ

|(y0,z0)− (y,z)|n+2s dydz

≤CRn−1
∫
R

〈z〉−σ(
|y0|2 + |z0− z|2

) n+2s
2

dz

≤CRn−1

(∫
|z|≥ |z0|

2

〈z0〉−σ(
|y0|2 + |z0− z|2

) n+2s
2

dz

+
∫
|z|≤ |z0|

2

〈z〉−σ(
|y0|2 + |z0|2

) n+2s
2

dz

)

≤CRn−1
(
|z0|−σ |y0|−(n−1+2s)+(1+ |z0|1−σ )|(y0,z0)|−n−2s

)
≤C

(
|z0|−σ |y0|−2s +(|z0|−1 + |z0|−σ )|(y0,z0)|−2s

)
≤C

(
|z0|−1 + |z0|−σ

)
|y0|−2s.
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When |y0| ≤ R
2 ,

|[(−∆)s,ηR]φ(y0,z0)|

≤C
∫
Rn

(1−ηR(y))〈z〉−σ

|(y0,z0)− (y,z)|n+2s dydz

≤C
∫
R

∫
|y|≥R

〈z〉−σ

|(y0,z0)− (y,z)|n+2s dydz

≤C
∫
R

∫
|y|≥ R

2

〈z〉−σ(
|y|2 + |z0− z|2

) n+2s
2

dydz

≤C
∫
R

〈z〉−σ

|z0− z|1+2s

∫
|ỹ|≥ R

2|z0−z|

dỹ(
|ỹ|2 +1

) n+2s
2

dz

≤C
∫
R

〈z〉−σ

|z0− z|1+2s min

{
1,
(
|z0− z|

R

)1+2s
}

dz

≤C

(∫ z0+R

z0−R
〈z〉−σ R−1−2s dz+

∫
|z0−z|>R

〈z〉−σ

|z0− z|1+2s dz

)
≤C

(
R−1−2s(1+R1−σ )+R−σR−2s)

≤C
(
R−1−2s +R−σ−2s) .

When R
2 ≤ |y0| ≤ 3R, we have

∂yiy j ηR =
1
R2 η

′′
( y
R

) yiy j

|y|2
+

1
R|y|

η
′
( y
R

)(
δi j−

yiy j

|y|2

)
,
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which implies that
∥∥D2ηR

∥∥
L∞([y0,y])

≤ CR−2 for |y0− y| ≤ y0
2 , where [y0,y]

denotes the line segment joining y0 and y. Thus

|[(−∆)s,ηR]φ(y0,z0)|

≤C
∫
Rn

∣∣ηR(y0)−ηR(y)+χ{|y−y0|<1}DηR(y0) · (y− y0)
∣∣〈z〉−σ

|(y0,z0)− (y,z)|n+2s dydz

≤C

( ∫
Rn−1

∫
|z|≤ |z0|

2

∣∣ηR(y0)−ηR(y)+χ{|y−y0|<1}DηR(y0) · (y− y0)
∣∣(

|y0− y|2 + |z0|2
) n+2s

2

〈z〉−σ dydz

+
∫

Rn−1

∫
|z|≥ |z0|

2

∣∣ηR(y0)−ηR(y)+χ{|y−y0|<1}DηR(y0) · (y− y0)
∣∣〈z0〉−σ(

|y0− y|2 + |z0− z|2
) n+2s

2
dydz

)

≤C

(
(1+ |z0|1−σ )

∫
Rn−1

∣∣ηR(y0)−ηR(y)+χ{|y−y0|<1}DηR(y0) · (y− y0)
∣∣(

|y0− y|2 + |z0|2
) n+2s

2
dy

+ |z0|σ
∫

Rn−1

∣∣ηR(y0)−ηR(y)+χ{|y−y0|<1}DηR(y0) · (y− y0)
∣∣

|y0− y|n−1+2s dy

)

≤C
(
|z0|−1 + |z0|−σ

)( ∫
|y0−y|≥ y0

2

dy

|y0− y|n−1+2s

+
∫

|y0−y|≤ y0
2

∥∥D2ηR

∥∥
L∞([y0,y])

|y0− y|2

|y0− y|n−1+2s dy

)

≤C
(
|z0|−1 + |z0|−σ

)(
|y0|−2s +R−2|y0|2−2s

)
≤C

(
|z0|−1 + |z0|−σ

)
|y0|−2s.

This completes the proof of (2.22).
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2.4.3 Existence

In order to solve the linearized equation

(−∆)s
φ + f ′(w)φ = g for (y,z) ∈ Rn,

we consider the equivalent problem in the Caffarelli–Slivestre extension [43],−∇ · (ta∇φ) = 0 for (t,y,z) ∈ Rn+1
+

ta ∂φ

∂ν
+ f ′(w)φ = g for (y,z) ∈ ∂Rn+1

+ .
(2.27)

We will prove the following

Proposition 2.4.8. Let µ,σ > 0 be small. For any g with ‖g‖
µ,σ <+∞ satisfying

∫
R

g(y,z)w′(z)dz = 0, (2.28)

there exists a unique solution φ ∈ H1(Rn+1
+ , ta) of (2.27) satisfying∫∫

R2
+

ta
φ(t,y,z)wz(t,z)dtdz = 0 for all y ∈ Rn−1, (2.29)

such that the trace φ(0,y,z) satisfies ‖φ‖
µ,σ <+∞. Moreover,

‖φ‖
µ,σ ≤C‖g‖

µ,σ . (2.30)

Let us recall the corresponding known result [82] in one dimension.

Lemma 2.4.9. Let n = 1. For any g with
∫
R gw′ dz = 0, there exists a unique

solution φ to (2.27) satisfying
∫∫

R2
+

taφwz dtdz = 0 such that

‖φ‖0,σ ≤C‖g‖0,σ .

Proof. This is Proposition 4.1 in [82]. In their notations, take m = 1, ξ1 = 0 and

µ = σ .
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Proof of Proposition 2.4.8. 1. We first assume that g∈C∞
c (Rn). Taking Fourier

transform in y, we solve for each ξ ∈ Rn−1 a solution φ̂(t,ξ ,z) to
−∇ · (ta∇φ̂)+ |ξ |2taφ̂ = 0 for (t,z) ∈ R2

+,

ta ∂ φ̂

∂ν
+ f ′(w)φ̂ = ĝ for z ∈ ∂R2

+,

with orthogonality condition∫∫
R2
+

ta
φ̂(t,ξ ,z)wz(t,z)dtdz = 0 for all ξ ∈ Rn−1

corresponding to (2.29). One can then obtain a solution for ξ = 0 by Lemma

2.4.9 and for ξ 6= 0 by Lemma 2.4.2. From the embedding H1(R2
+, t

a) ↪→
Hs(R) [36], we have the estimate

∥∥φ̂(·,ξ , ·)
∥∥

H1(R2
+,ta)
≤C(ξ )‖ĝ(ξ , ·)‖L2(R) .

We claim that the constant can be taken independent of ξ , i.e.

∥∥φ̂(·,ξ , ·)
∥∥

H1(R2
+,ta)
≤C‖ĝ(ξ , ·)‖L2(R) . (2.31)

If this were not true, there would exist sequences ξm→ 0 (the case |ξm| →
+∞ is similar), φ̂m and ĝm such that

∥∥φ̂m(·,ξm, ·)
∥∥

H1(R2
+,ta)

= 1, ‖ĝm(ξm, ·)‖L2(R) = 0, (2.32)


−∇ · (ta∇φ̂m)+ |ξm|2taφ̂m = 0 for (t,z) ∈ R2

+,

ta ∂ φ̂m

∂ν
+ f ′(w)φ̂m = ĝm for z ∈ ∂R2

+,

and ∫∫
R2
+

ta
φ̂m(t,ξm,z)wz(t,z)dtdz = 0.
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Elliptic regularity implies that a subsequence of φ̂m(t,ξm,z) converges loc-

ally uniformly in R2
+ to some φ̂0(t,z), which solves weakly
−∇ · (ta∇φ̂0) = 0 for (t,z) ∈ R2

+

ta ∂ φ̂0

∂ν
+ f ′(w)φ̂0 = 0 for z ∈ ∂R2

+.

and ∫∫
R2
+

ta
φ̂0(t,z)wz(t,z)dtdz = 0 for all ξ ∈ Rn−1.

By Lemma 2.4.4, we conclude that φ̂0 = 0, contradicting (2.32). This proves

(2.31).

Integrating over ξ ∈Rn−1 and using Plancherel’s theorem, we obtain a solu-

tion φ satisfying
‖φ‖H1(Rn+1

+ ,ta) ≤C‖g‖L2(Rn) .

Higher regularity yields, in particular, φ ∈ L∞(Rn). Then (2.30) follows from

Lemma 2.4.6.

2. In the general case, we solve (2.27) with g replaced by gm ∈C∞
c (Rn) which

converges uniformly to g. Then the solution φm is controlled by

‖φm‖µ,σ ≤C‖gm‖µ,σ ≤C‖g‖
µ,σ .

By passing to a subsequence, φm converges to some φ uniformly on compact

subsets of Rn, which also satisfies (2.30).

3. The uniqueness follows from the non-degeneracy of w′ and the orthogonality

condition (2.29).

2.4.4 The positive operator

We conclude this section by stating a standard estimate for the operator (−∆)s +2.
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Lemma 2.4.10. Consider the equation

(−∆)su+2u = g in Rn.

and |g(x)| ≤C 〈x′〉−θ for all x ∈Rn and g(x) = 0 for x in Mε,R, a tubular neighbor-

hood of Mε of width R. Then the unique solution u = ((−∆)s +2)−1g satisfies the

decay estimate

|u(x)| ≤C
〈
x′
〉−θ 〈dist(x,Mε,R)〉−2s .

Proof. The decay in x′ follows from a maximum principle; that in the interface

is seen from the Green’s function for (−∆)s + 2 which has a decay |x|−(n+2s) at

infinity [62].

2.5 Fractional gluing system

2.5.1 Preliminary estimates

We have the following

Lemma 2.5.1 (Some non-local estimates). For φ j ∈X j, j ∈J , the following holds

true.

1. (commutator at the near interface)

∣∣[(−∆(y,z))
s, η̄ ζ̄ ]φ̄i(y,z)

∣∣≤C‖φi‖i,µ,σ 〈yi〉−θ Rn(R+ |(y,z)|)−n−2s.

As a result,

∑
i∈I

∣∣[(−∆(y,z))
s,ζi]φi(x)

∣∣
≤Cr−θ sup

i∈I
‖φi‖i,µ,σ

(
R+dist

(
x,supp ∑

i∈I
ζi

))−2s

.

2. (commutator at the end)

∣∣[(−∆(y,z))
s, η̄+ζ̄ ]φ+(y,z)

∣∣≤C‖φ+‖+,µ,σ R−θ

2 〈y〉
−µ 〈z〉−1−2s ,
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and similarly for φ−.

3. (linearization at u∗)

∑
j∈J

∣∣ζ j( f ′(w j)− f ′(u∗))φ j
∣∣

≤C sup
j∈J

∥∥φ j
∥∥

j,µ,σ

(
∑

i∈I
ζiRµ+σ 〈yi〉−θ− 4s

2s+1 +(ζ++ζ−)R−θ

2 〈y〉
−µ

)
.

4. (change of coordinates around the near interface)

∑
i∈I

∣∣((−∆x)
s− (−∆(y,z))

s)(ζiφi)(x)
∣∣

≤CRn+1+µ+σ
ε
∥∥φ̄i
∥∥

i,µ,σ∑
i∈I

ζi 〈yi〉−θ + ε
θ

〈
dist

(
x,supp ∑

i∈I
ζi

)〉−2s
 .

5. (change of coordinates around the end)

∣∣((−∆x)
s− (−∆(y,z))

s)(ζ+φ+)(x)
∣∣

≤Cr−
2(2s−τ)

2s+1
∥∥φ̄+

∥∥
+,µ,σ

R−θ

2 〈y〉
−µ 〈z〉−1−2s ,

and similarly for φ−.

In particular, all these terms are dominated by S(u∗).

Proof of Lemma 2.5.1. 1. (a) Since φi ∈ Xi, we have for |(y0,z0)| ≥ 3R,∣∣[(−∆(y,z))
s, η̄ ζ̄ ]φ̄i(y0,z0)

∣∣
≤C‖φi‖i,µ,σ

∣∣∣∣∣
∫
|(y,z)|≤2R

−η̄(y)ζ̄ (z)

|(y0,z0)|n+2s Rµ+σ 〈yi〉−θ 〈y〉−µ 〈z〉−σ dydz

∣∣∣∣∣
≤C‖φi‖i,µ,σ Rµ+σ 〈yi〉−θ |(y0,z0)|−n−2s

∫
|(y,z)|≤2R

〈y〉−µ 〈z〉−σ dydz

≤C‖φi‖i,µ,σ Rµ+σ (1+R1−σ )(1+Rn−1−µ)〈yi〉−θ |(y0,z0)|−n−2s

≤CRn|(y0,z0)|−n−2s ‖φi‖i,µ,σ 〈yi〉−θ for σ < 1, µ < n−1.
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(b) For R
2 ≤ |(y0,z0)| ≤ 3R,∣∣[(−∆(y,z))

s, η̄ ζ̄ ]φ̄i(y0,z0)
∣∣

≤C
∫
|y0−y|< R

4

∫
|z0−z|< R

4

R−2
(
|y0− y|2 + |z0− z|2

)
(
|y0− y|2 + |z0− z|2

) n+2s
2

Rµ+σ ‖φi‖i,µ,σ 〈yi〉−θ 〈y〉−µ 〈z〉−σ dydz

+C
∫
|y0−y|> R

4

∫
|z0−z|> R

4

1(
|y0− y|2 + |z0− z|2

) n+2s
2

Rµ+σ ‖φi‖i,µ,σ 〈yi〉−θ 〈y〉−µ 〈z〉−σ dydz

≤CR−2s ‖φi‖i,µ,σ 〈yi〉−θ .

(c) For 0≤ |(y0,z0)| ≤ R
2 ,∣∣[(−∆(y,z))

s, η̄ ζ̄ ]φ̄i(y0,z0)
∣∣

≤C‖φi‖i,µ,σ

∫
|(y,z)|≥R

1− η̄(y)ζ̄ (z)

|(y− y0,z− z0)|n+2s

Rµ+σ 〈yi〉−θ 〈y〉−µ 〈z〉−σ dydz

≤CR−2s ‖φi‖i,µ,σ 〈yi〉−θ .

2. We consider different cases according to the values of the cut-off functions

η̄+(y) and ζ̄ (z).
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(a) When η̄+(y0)ζ̄ (z0) = 0 with |y0| ≥ 2R2 and |z0| ≥ 3R,∣∣[(−∆(y,z))
s, η̄+ζ̄ ]φ+(y0,z0)

∣∣
≤C

∥∥φ̄+

∥∥
+,µ,σ

R−θ

2

∫
|y|>R2

∫
|z|<2R

〈y〉−µ 〈z〉−σ

|(y0,z0)− (y,z)|n+2s dydz

≤C
∥∥φ̄+

∥∥
+,µ,σ

R−θ

2 (1+R1−σ )
∫
|y|>R2

〈y〉−µ(
|y0− y|2 + |z0|2

) n+2s
2

dy

≤C
∥∥φ̄+

∥∥
+,µ,σ

R−θ

2 (1+R1−σ )

(∫
R2<|y|≤

|y0|
2

〈y〉−µ(
|y0|2 + |z0|2

) n+2s
2

dy

+
∫
|y|≥ |y0|

2

〈y0〉−µ(
|y0− y|2 + |z0|2

) n+2s
2

dy

)

≤C
∥∥φ̄+

∥∥
+,µ,σ

R−θ

2 (1+R1−σ )

(
|y0|n−1−µ

|(y0,z0)|n+2s +
〈y0〉−µ

|z0|1+2s

)
≤C

∥∥φ̄+

∥∥
+,µ,σ

R−θ

2 (1+R1−σ )〈y0〉−µ 〈z0〉−1−2s .

(b) When η̄+(y0)ζ̄ (z0) = 0 with |y0| ≤ 2R2 and |z0| ≥ 3R,∣∣[(−∆(y,z))
s, η̄+ζ̄ ]φ+(y0,z0)

∣∣
≤C

∥∥φ̄+

∥∥
+,µ,σ

R−θ−µ

2 (1+R1−σ )
∫
|y|>R2

dy(
|y0− y|2 + |z0|2

) n+2s
2

≤C
∥∥φ̄+

∥∥
+,µ,σ

R−θ−µ

2 (1+R1−σ )|z0|−1−2s.

(c) When η̄+(y0)ζ̄ (z0) = 0 with |y0| ≤ R2−2R,∣∣[(−∆(y,z))
s, η̄+ζ̄ ]φ+(y0,z0)

∣∣
≤C

∥∥φ̄+

∥∥
+,µ,σ

R−θ

2

∫
|y|>R2

∫
|z|<2R

〈y〉−µ 〈z〉−σ

|(y0,z0)− (y,z)|n+2s dydz

≤C
∥∥φ̄+

∥∥
+,µ,σ

R−θ−µ

2

∫
|z|<2R

〈z〉−σ min

{
1

|z0− z|1+2s ,
1

R1+2s

}
dz

≤C
∥∥φ̄+

∥∥
+,µ,σ

R−θ−µ

2 (1+R1−σ )〈z0〉−1−2s .
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(d) When 0≤ η̄+(y0)ζ̄ (z0)≤ 1 with |y0| ≥ R2−2R and 0≤ |z0| ≤ 3R,∣∣[(−∆(y,z))
s, η̄+ζ̄ ]φ+(y0,z0)

∣∣
≤C

∫
|y0−y|<R

∫
|z0−z|<R

R−2
(
|y0− y|2 + |z0− z|2

)
(
|y0− y|2 + |z0− z|2

) n+2s
2∥∥φ̄+

∥∥
+,µ,σ

R−θ

2 〈y〉
−µ 〈z〉−σ dydz

+C
∫
|y0−y|>R

∫
|z0−z|>R

1(
|y0− y|2 + |z0− z|2

) n+2s
2∥∥φ̄+

∥∥
+,µ,σ

R−θ

2 〈y〉
−µ 〈z〉−σ dydz

≤CR−2s
∥∥φ̄+

∥∥
+,µ,σ

R−θ

2 〈y0〉−µ

+C
∥∥φ̄+

∥∥
+,µ,σ

R−θ

2

∫
|y0−y|>R

〈y〉−µ

|y0− y|n−1+2s dy

≤C
∥∥φ̄+

∥∥
+,µ,σ

R−θ

2 |y0|−µ .

3. For the localized inner terms,

∑
i∈I

∣∣ζi( f ′(w)− f ′(u∗))φi
∣∣≤C‖φi‖i,µ,σ ζiF2s

ε Rµ+σ 〈yi〉−θ

≤C‖φi‖i,µ,σ ∑
i∈I

ζiRµ+σ 〈yi〉−θ− 4s
2s+1 .

The two terms at the ends are controlled by

∣∣ζ±( f ′(w)− f ′(u∗))φ±
∣∣≤C‖φ±‖±,µ,σ ζ±Rσ R−(θ−µ)

2 〈y〉−µ .

By summing up we obtain the desired estimate.
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4. By using Corollary 2.3.4 and (2.10), we have in the Fermi coordinates,∣∣((−∆x)
s− (−∆(y,z))

s)(ζiφi)(x)
∣∣

≤CRε
∣∣(−∆(y,z))

s(η̄ ζ̄ φ̄i)(y,z)
∣∣+Cε

2s
∣∣(η̄ ζ̄ φ̄i)(y,z)

∣∣
≤CRε

(
η̄(y)ζ̄ (z)

∣∣(−∆(y,z))
s
φ̄i(y,z)

∣∣+ ∣∣[(−∆(y,z))
s, η̄ ζ̄ ]φ̄i(y,z)

∣∣)
+Cε

2s(η̄ ζ̄ φ̄i)(y,z)

≤CRε

(
η̄(y)ζ̄ (z)Rµ+σ

∥∥φ̄i
∥∥

i,µ,σ 〈yi〉−θ 〈y〉−µ 〈z〉−σ

+
∥∥φ̄i
∥∥

i,µ,σ 〈yi〉−θ Rn(R+ |(y,z)|)−n−2s
)

≤CRn+1+µ+σ
ε
∥∥φ̄i
∥∥

i,µ,σ 〈yi〉−θ
(
η̄(y)ζ̄ (z)+(R+ |(y,z)|)−n−2s) .

Going back to the x-coordinates and summing up over i ∈I , we have

∑
i∈I

∣∣((−∆x)
s− (−∆(y,z))

s)(ζiφi)(x)
∣∣

≤CRn+1+µ+σ
ε
∥∥φ̄i
∥∥

i,µ,σ

·

∑
i∈I

ζi 〈yi〉−θ + ε
θ

〈
dist

(
x,supp ∑

i∈I
ζi

)〉−2s
 .

5. Similarly, using Corollary 2.3.5 and (2.10),∣∣((−∆x)
s− (−∆(y,z))

s)(ζ+φ+)(x)
∣∣

≤Cr−
2(2s−τ)

2s+1
∣∣(−∆(y,z))

s(η̄+ζ̄ φ̄+)(y,z)
∣∣+Cr−

4sτ

2s+1
∣∣(η̄+ζ̄ φ̄+)(y,z)

∣∣
≤Cr−

2(2s−τ)
2s+1

(
η̄+(y)ζ̄ (z)

∣∣(−∆(y,z))
s
φ̄+(y,z)

∣∣+ ∣∣[(−∆(y,z))
s, η̄+ζ̄ ]φ̄+(y,z)

∣∣)
+Cr−

4sτ

2s+1 (η̄+ζ̄ φ̄+)(y,z)

≤Cr−
2(2s−τ)

2s+1

(
η̄+(y)ζ̄ (z)

∥∥φ̄+

∥∥
+,µ,σ

R−θ

2 〈y〉
−µ

+
∥∥φ̄+

∥∥
+,µ,σ

R−θ

2 〈y〉
−µ 〈z〉−1−2s

)
≤Cr−

2(2s−τ)
2s+1

∥∥φ̄+

∥∥
+,µ,σ

R−θ

2 〈y〉
−µ 〈z〉−1−2s .
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2.5.2 The outer problem: Proof of Proposition 2.2.2

We give a proof of Proposition 2.2.2 and solve φo in terms of (φ j) j∈J .

Proof of Proposition 2.2.2. We solve it by a fixed point argument. By Corollary

2.3.3 and Lemma 2.5.1, the right hand side go = go(φo) of (2.6) satisfies go = 0 in

Mε,R and

‖go‖θ
≤Cε

θ +‖η̃oN(ϕ)‖
θ
+
∥∥η̃o(2− f ′(u∗))φo

∥∥
θ

≤Cε
θ +‖φo‖L∞(Rn) ‖φo‖θ

+CR−2s ‖φo‖θ
,

so that by Lemma 2.4.10,

∥∥((−∆)s +2)−1go
∥∥

θ
≤
(

C+C̃2
ε

θ +C̃R−2s
)

ε
θ ≤ C̃ε

θ .

Next we check that for φo,ψo ∈ Xo, go(φo)−go(ψo) = 0 in Mε,R as well as

‖go(φo)−go(ψo)‖θ
≤

∥∥∥∥∥N

(
φo + ∑

j∈J
ζ jφ j

)
−N

(
ψo + ∑

j∈J
ζ jφ j

)∥∥∥∥∥
θ

+
∥∥η̃o(2− f ′(u∗))(φo−ψo)

∥∥
θ

≤C(εθ +R−2s)‖φo−ψo‖θ
.

Hence

∥∥((−∆)s +2)−1 (go(φo)−go(ψo))
∥∥

θ
≤C(εθ +R−2s)‖φo−ψo‖θ

.

By contraction mapping principle, there is a unique solution φo = Φo((φ j) j∈J ).

The Lipschitz continuity of Φo with respect to (φ j) j∈J can be obtained by taking

a difference.

2.5.3 The inner problem: Proof of Proposition 2.2.3

Here we solve the inner problem for (φ j) j∈J , with the solution of the outer prob-

lem φo = Φo((φ j) j∈J ) plugged in.
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Proof of Proposition 2.2.3. Let us denote the right hand side of (2.10) by g j. We

notice that the norms can can be estimated without the projection (up to a constant).

Indeed, for any function h̄ with
∥∥h̄
∥∥

µ,σ
<+∞,

∥∥∥∥(∫ 2R

−2R
ζ̄ (t)h̄(y, t)w′(t)dt

)
w′(z)

∥∥∥∥
µ,σ

≤C
∥∥h̄
∥∥

µ,σ
sup
z∈R
〈z〉−1−2s+σ

≤C
∥∥h̄
∥∥

µ,σ
.

Then, keeping in mind that a barred function denotes the corresponding one in

Fermi coordinates, we have

‖η̃iS(u∗)‖i,µ,σ ≤ 〈yi〉θ sup
|y|,|z|≤2R

〈y〉µ 〈z〉σ · 〈yi〉−
4s

2s+1 〈z〉−(2s−1)

≤CRµ 〈yi〉−(
4s

2s+1−θ)

≤Cδ ,

∥∥η̃i(2− f ′(u∗))Φo((φ j) j∈J )
∥∥

i,µ,σ

≤
∥∥η̃iΦo((φ j) j∈J )

∥∥
i,µ,σ

≤ 〈yi〉θ sup
|y|,|z|≤2R

〈y〉µ 〈z〉σ ·
∣∣∣Φo((φ j) j∈J )(y,z)

∣∣∣
≤ 〈yi〉θ sup

|y|,|z|≤2R
〈y〉µ 〈z〉σ · 〈yi〉−θ

∥∥∥Φo((φ j) j∈J )
∥∥∥

θ

≤CRµ+σ
ε

θ sup
j∈J

∥∥φ j
∥∥

j,µ,σ

≤CRµ+σ
ε

θC̃δ ,
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and ∥∥∥∥∥η̃iN

(
Φo((φ j) j∈J )+ ∑

j∈J
ζ jφ j

)∥∥∥∥∥
i,µ,σ

≤C 〈yi〉θ sup
|y|,|z|≤2R

〈y〉µ 〈z〉σ

∣∣∣∣∣∣∣∣Φo((φ j) j∈J )(y,z)+ ∑
j∈J

supp η̃i∩suppζ j 6= /0

η̄ jζ̄ φ̄ j(y,z)

∣∣∣∣∣∣∣∣
2

≤CRµ+σ 〈yi〉θ sup
|y|,|z|≤2R

〈yi〉−2θ

(
sup
j∈J

∥∥φ j
∥∥

j,µ,σ

)2

+ ∑
j∈J

supp η̃i∩suppζ j 6= /0

〈
y j
〉−2θ

(
sup
j∈J

∥∥φ j
∥∥

j,µ,σ

)2


≤CRµ+σ 〈yi〉−θ C̃δ sup

j∈J

∥∥φ j
∥∥

j,µ,σ

≤CRµ+σ
ε

θC̃2
δ

2.

Using Lemma 2.5.1 and estimating as in the proof of Proposition 2.2.2, we have

for all i ∈I ,

‖gi‖i,µ,σ ≤Cδ (1+Rµ+σ
ε

θC̃+Rµ+σ
ε

θC̃δ +o(1)).

Now we estimate the functions φ± at the ends. We have similarly

‖η̃+S(u∗)‖+,µ,σ ≤CRθ
2 sup

y≥R2,z≤2R
〈y〉µ 〈z〉σ 〈y〉−

4s
2s+1 〈z〉−(2s−1)

≤CR
−( 4s

2s+1−µ−θ)
2

≤Cδ for R2 chosen large enough,
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∥∥η̃+(2− f ′(u∗))Φo((φ j) j∈J )
∥∥
+,µ,σ

≤CRθ
2 sup

y≥R2,z≤2R
〈y〉µ 〈z〉σ

∣∣∣Φo((φ j) j∈J )(y,z)
∣∣∣

≤CRσ Rθ
2 sup

y≥R2,z≤2R
〈y〉µ · 〈y〉−θ

ε
θ sup

j∈J

∥∥φ j
∥∥

j,µ,σ

≤CRµ

2 ε
θC̃δ (since µ ≤ θ)

≤CC̃ε
θ

2 δ for µ chosen small enough,

and ∥∥∥∥∥η̃+N

(
Φo((φ j) j∈J )+ ∑

j∈J
ζ jφ j

)∥∥∥∥∥
+,µ,σ

≤CRθ
2 sup

y≥R2,z≤2R
〈y〉µ 〈z〉σ

∣∣∣∣∣∣∣∣Φo((φ j) j∈J )(y,z)+ ∑
j∈J

supp η̃+∩suppζ j 6= /0

η̄ jζ̄ φ̄ j(y,z)

∣∣∣∣∣∣∣∣
2

≤CRσ sup
y≥R2,z≤2R

〈y〉µ

〈y〉−2θ

(
sup
j∈J

∥∥φ j
∥∥

j,µ,σ

)2

+ ∑
j∈J

supp η̃+∩suppζ j 6= /0

〈
y j
〉−2θ

η̄ j

(
sup
j∈J

∥∥φ j
∥∥

j,µ,σ

)2



≤CRσ

R−θ

2 + ∑
j∈J

supp η̃+∩suppζ j 6= /0

〈
y j
〉−θ


(

sup
j∈J

∥∥φ j
∥∥

j,µ,σ

)2

≤CRσ
ε

θC̃δ

(
sup
j∈J

∥∥φ j
∥∥

j,µ,σ

)
≤CRσ

ε
θC̃2

δ
2.
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Putting together these estimates together with the non-local terms yields, using the

linear theory (Proposition 2.4.8 and Lemma 2.4.6),

sup
j∈J

∥∥L−1g j
∥∥

j,µ,σ ≤C sup
j∈J

∥∥g j
∥∥

j,µ,σ

≤Cδ (1+o(1))

≤ C̃δ .

It suffices to check the Lipschitz continuity with respect to φ j ∈ X j. Suppose

φ j,ψ j ∈ X j. Using (2.7), we have for instance

〈yi〉θ sup
|y|,|z|≤2R

〈y〉µ 〈z〉σ

∣∣∣Φo((φ j) j∈J )(y,z)−Φo((ψ j) j∈J )(y,z)
∣∣∣

+N

(
Φo((φ j) j∈J )+ ∑

j∈J
ζ jφ j

)
−N

(
Φo((ψ j) j∈J )+ ∑

j∈J
ζ jψ j

)

≤CRµ+σ sup
|y|,|z|≤2R

(1+δ )
∥∥∥Φo((φ j) j∈J )(y,z)−Φo((ψ j) j∈J )(y,z)

∥∥∥
θ

+δ 〈yi〉θ ∑
j∈J

supp η̃i∩suppζ j 6= /0

η̄ jζ̄
∣∣φ̄ j− ψ̄ j

∣∣(y,z)


≤CRµ+σ
δ sup

j∈J

∥∥φ j−ψ j
∥∥

j,µ,σ ,

72



and

Rθ
2 sup
|y|≥R2, |z|≤2R

〈y〉µ 〈z〉σ

∣∣∣Φo((φ j) j∈J )(y,z)−Φo((ψ j) j∈J )(y,z)
∣∣∣

+N

(
Φo((φ j) j∈J )+ ∑

j∈J
ζ jφ j

)
−N

(
Φo((ψ j) j∈J )+ ∑

j∈J
ζ jψ j

)
≤CRσ Rθ

2

sup
|y|≥R2, |z|≤2R

(1+δ )〈y〉µ−θ

∥∥∥Φo((φ j) j∈J )(y,z)−Φo((ψ j) j∈J )(y,z)
∥∥∥

θ

+δ 〈y〉µ ∑
j∈J

supp η̃i∩suppζ j 6= /0

η̄ jζ̄
∣∣φ̄ j− ψ̄ j

∣∣(y,z)


≤CRσ Rµ

2 δ sup
j∈J

∥∥φ j−ψ j
∥∥

j,µ,σ .

Therefore

sup
j∈J

∥∥L−1g j((φ j) j∈J )−L−1g j((ψ j) j∈J )
∥∥

j,µ,σ ≤ o(1) sup
j∈J

∥∥φ j−ψ j
∥∥

j,µ,σ

and (φk)k∈J 7→ L−1g j((φk)k∈J ) defines a contraction mapping on the product

space endowed with the supremum norm for suitably chosen parameters R,R2 large

and ε,µ small. This concludes the proof.
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2.6 The reduced equation

2.6.1 Form of the equation: Proof of Proposition 2.2.4

Proof of Proposition 2.2.4. Recalling Proposition 2.2.1, in the near and intermedi-

ate regions r ∈
[

1
ε
, 4R̄

ε

]
,

ΠS(u∗)(r) = C̄HMε
(r)+O(ε2s),

where

C̄ =
∫ 2R

−2R
cH(z)ζ (z)w′(z)dz.

For the far region r ≥ 4R̄
ε

, let us assume that xn > 0 to fix the idea. Denote by

Π± the projections onto the kernels w′±(z) of the upper and lower leaves respect-

ively, where w±(z) = w(z±). Then z− = −2Fε(r)(1+ o(1))− z+ and so from the

asymptotic behavior w(z)∼z→+∞ 1− cw
z2s , we have

Π+3(w(z+)+w(z−))(1+w(z+))(1+w(z−))(r)

=
∫ 2R

−2R
3(w(z)+w(−2Fε(r)(1+o(1))− z))

· (1+w(z))(1+w(−2Fε(r)(1+o(1))− z))ζ (z)w′(z)dz

=− C̄±
F2s

ε (r)
(1+o(1)),

where

C̄± =
∫ 2R

−2R
3cw(1−w(z)2)ζ (z)w′(z)dz.

Similarly this is also true for the projection onto w′−(z) with the same coefficient

C̄±(r),

Π−3(w(z+)+w(z−))(1+w(z+))(1+w(z−))(r) =−
C̄±(r)
F2s

ε (r)
(1+o(1)).
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The other projections are estimated as follows.

Π+cH(z+)HMε
(y+) =

∫ 2R

−2R
cH(z)ζ (z)w′(z)dz ·HMε

(y+) = C̄HMε
(y+),

Π+cH(z−)HMε
(y−)(r) =

∫ 2R

−2R
cH(2Fε(r)(1+o(1))− z)ζ (z)w′(z)dz ·HMε

(y−)

= O
(

F−(2s−1)
ε ·F−2s

ε

)
= O

(
F−(4s−1)

ε

)
,

Π−cH(z−)HMε
(y−) = C̄HMε

(y−),

Π−cH(z+)HMε
(y+) = O

(
F−(4s−1)

ε

)
.

We conclude that for r ≥ 4R̄
ε

,

Π±S(u∗)(r) = C̄HMε
(y)− C̄±(r)

F2s
ε (r)

(1+o(1)).

Taking into account the quadratically small term and the solution of the outer prob-

lem, the reduced equation reads
C̄H[Fε ](r) = O(ε2s) for

1
ε
≤ r ≤ 4R̄

ε
,

C̄H[Fε ](r) =
C̄±

F2s
ε (r)

(1+o(1)) for r ≥ 4R̄
ε
.

By a scaling Fε(r) = ε−1F(εr), it suffices to solve

1
r

 rF ′(r)√
1+F ′(r)2

′ = O(ε2s−1) for 1≤ r ≤ 4R̄,

1
r

 rF ′(r)√
1+F ′(r)2

′ = C̄0ε2s−1

F2s(r)
(1+o(1)) for r ≥ 4R̄.
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For large enough r one may approximate the mean curvature by ∆F = 1
r (rF ′)′.

Hence, we arrive at
1
r

 rF ′(r)√
1+F ′(r)2

′ = O(ε2s−1) for 1≤ r ≤ 4R̄,

F ′′(r)+
F ′(r)

r
=

C̄0ε2s−1

F2s(r)
(1+o(1)) for r ≥ 4R̄.

Then the inverse G of F is introduced to deal with the singularity at r = 1 in the

usual coordinates. Finally, the Lipschitz dependence of the error follows directly

from the previously involved computations.

2.6.2 Initial approximation

In this section we study an ODE which is similar to the one in [63]. The reduced

equation for Fε : [ε−1,+∞)→ [0,+∞) can be approximated by

F ′′ε (r)+
F ′ε(r)

r
=

1
F2s

ε (r)
, for all r large.

Under the scaling Fε(r) = ε−1F(εr), the equation for F : [1,+∞)→ [0,+∞) is

F ′′(r)+
F ′(r)

r
=

ε2s−1

F2s(r)
, for all r large.

For r small, we approximate F by the catenoid. More precisely, let fC(r) = log(r+
√

r2−1), r = |x′| ≥ 1, rε =
(
|logε|

ε

) 2s−1
2

, and consider the Cauchy problem


f ′′ε +

f ′ε
r
=

ε2s−1

f 2s
ε

for r > rε ,

fε(rε) = fC (rε) =
2s−1

2
(|logε|+ log|logε|)+ log2+O

(
r−2

ε

)
,

f ′ε (rε) = fC (rε) = r−1
ε

(
1+O

(
r−2

ε

))
.

Then an approximation F0 to F can be defined by

F0(r) = fC(r)+χ (r− rε)( fε(r)− fC(r)), r ≥ 1,
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where χ : R→ [0,1] is a smooth cut-off function with

χ = 0 on (−∞,0] and χ = 1 on [1,+∞). (2.33)

Note that f ′ε(r)≥ 0 for all r ≥ rε .

Lemma 2.6.1 (Estimates near initial value). For rε ≤ r ≤ |logε|rε , we have

1
2
|logε| ≤ fε(r)≤C|logε|,

f ′ε(r)≤Cr−1
ε ,∣∣ f ′′ε (r)∣∣≤ 1

r2 +
C

|logε|r2
ε

.

In fact the last inequality holds for all r ≥ rε .

Proof. It is more convenient to write

fε(r) = |logε| f̃ε

(
r−1

ε r
)

so that f̃ε satisfies

f̃ ′′ε +
f̃ ′ε
r
=

1
|logε| f̃ 2s

ε

, for r > 1,

f̃ε(1) =
2s−1

2
+

2s−1
2

log|logε|
|logε|

+
log2
|logε|

+O

(
ε2s−1

|logε|2s

)
,

f̃ ′ε(1) =
1
|logε|

+O

(
ε2s−1

|logε|2s

)
.

To obtain a bound for the first derivative, we integrate once to obtain

r f̃ ′ε(r)− f̃ ′ε(1) =
1

|logε|2
∫ r

1

r̃
f̃ε(r̃)2s

dr̃ for r ≥ 1.
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By the monotonicity of fε , hence f̃ε , we have

f̃ ′ε(r)≤
1
r

(
f̃ ′ε(1)+

1

2|logε|2 f̃ε(1)2s
r2

)

≤ 1
r|logε|

+
Cr

|logε|2

for r ≥ 1. In particular,

f̃ ′ε(r)≤
C
|logε|

for 1≤ r ≤ |logε|.

This also implies

f̃ε(r)≤C for 1≤ r ≤ |logε|.

From the equation we obtain an estimate for f̃ ′′ε by

∣∣ f̃ ′′ε (r)∣∣≤ 1
r

f̃ ′ε(r)+
1

|logε|2 f̃ 2s
ε

≤ 1
r2|logε|

+
C

|logε|2
,

for all r ≥ 1.

To study the behavior of fε(r) near infinity, we write

fε(r) = |logε|gε

(
r

|logε|rε

)
.

Then gε(r) satisfies

g′′ε +
g′ε
r

=
1

g2s
ε

, for r ≥ 1
|logε|

,

gε

(
1
|logε|

)
=

2s−1
2

+
2s−1

2
log|logε|
|logε|

+
log2
|logε|

+O

(
ε2s−1

|logε|2s

)
,

g′ε

(
1
|logε|

)
= 1+O

(
ε2s−1

|logε|2s

)
.

(2.34)
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Lemma 2.6.2 (Long-term behavior). For any fixed δ0 > 0, there exists C > 0 such

that for all r ≥ δ0, ∣∣∣gε(r)− r
2

2s+1

∣∣∣≤Cr−
2s−1
2s+1 ,∣∣∣∣g′ε(r)− 2

2s+1
r−

2s−1
2s+1

∣∣∣∣≤Cr−
4s

2s+1 ,∣∣g′′ε (r)∣∣≤Cr−
4s

2s+1 .

Proof. Consider the change of variable of Emden–Fowler type,

gε(r) = r
2

2s+1 h̃ε(t), t = logr ≥− log|logε|.

Then h̃ε(t)> 0 solves

h̃′′ε +2
2

2s+1
h̃′ε +

(
2

2s+1

)2

h̃ε =
1

h̃2s
ε

for t ≥− log|logε|.

The function hε defined by h̃ε(t) =
(2s+1

2

) 2
2s+1 hε

( 2
2s+1 t

)
satisfies

h′′ε +2h′ε +hε =
1

h2s
ε

for t ≥−2s+1
2

log|logε|. (2.35)

We will first prove a uniform bound for hε with its derivative using a Hamilto-

nian

Gε(t) =
1
2
(h′ε)

2 +
1
2
(
h2

ε −1
)
+

1
2s−1

(
1

h(2s−1)
ε

−1

)
,

which satisfies

G′ε(t) =−2(h′ε)
2 ≤ 0. (2.36)

By Lemma 2.6.1, we have

hε(0) = O(h̃ε(0)) = O(gε(1)) = O(1),

h′ε(0) = O(h̃′ε(0)) = O
(

g′ε(1)−
2

2s+1
gε(1)

)
= O(1).
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Therefore, Gε(0) = O(1) as ε→ 0 and by (2.36), Gε(t)≤C for all t ≥ 0 and ε > 0

small. This implies that for some uniform constant C1 > 0,

0 <C−1
1 ≤ hε(t)≤C1 <+∞ and

∣∣h′ε(t)∣∣≤C1, for all t ≥ 0. (2.37)

In fact, (2.36) implies∫ t

0
h′ε(t̃)

2 dt̃ = 2Gε(0)−2Gε(t)≤ 2Gε(0)≤C,

with C independent of ε and t, hence∫
∞

0
h′ε(t̃)

2 dt̃ ≤C,

uniform in small ε > 0. In particular, |h′ε(t)| → 0 as t → ∞. We claim that the

convergence is uniform and exponential. Indeed, let us define the Hamiltonian

G1,ε =
1
2
(h′′ε )

2 +
1
2
(h′ε)

2
(

1+
2s

h2s+1
ε

)
for the linearized equation

h′′′ε +2h′′ε +
(

1+
2s

h2s+1
ε

)
h′ε = 0.

We have

G′1,ε =−2(h′′ε )
2− s(2s+1)

h′3ε
h2s+2

ε

.

By the uniform bounds in (2.37), if we choose 2C2 = s(2s + 1)C2s+3
1 + 1, then

G̃ε =C2Gε +G1,ε satisfies

G̃′ε ≤−(h′′ε )2− (h′ε)
2.

80



Using (2.37) and the vanishing of the zeroth order term together with its derivative

at hε = 1, we have

G̃ε =C2

(
1
2
(h′ε)

2 +
1
2
(
h2

ε −1
)
+

1
2s−1

(
1

h2s−1
ε

−1
))

+
1
2
(h′′ε )

2 +
1
2
(h′ε)

2
(

1+
2s

h2s+1
ε

)
≤C

(
(h′′ε )

2 +(h′ε)
2 +

(
hε −

1
h2s

ε

)2
)

≤−CG̃′ε .

It follows that for some constants C,δ0 > 0 independent of ε > 0 small,

G̃ε(t)≤Ce−δ0t for all t ≥ 0

and, in particular,

|hε(t)−1|+
∣∣h′ε(t)∣∣≤Ce−

δ0
2 t , for all t ≥ 0.

This implies that after a fixed t1 independent of ε , the point (hε(t1),h′ε(t1)) is suf-

ficiently close to (1,0). Let

v1 = hε

v2 = h′ε +hε .

Then (2.35) is equivalent to (
v1

v2

)′
=

(
−v1 + v2

v−2s
1 − v2

)
. (2.38)

For t1 large the point (v1(t1),v2(t1)) is sufficiently close to (1,1) which is a hyper-

bolic equilibrium point of (2.38). Now the linearization of (2.38), namely(
v1

v2

)′
=

(
−1 1

−2s −1

)(
v1−1

v2−1

)
,
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has eigenvalues −1± i
√

2s. By applying a C1 conjugacy we obtain

|(v1(t),v2(t))− (1,1)| ≤Ce−t for all t ≥ t1.

This implies in turn

|hε(t)−1|+
∣∣h′ε(t)∣∣≤Ce−t for all t ≥ 0,

∣∣h̃ε(t)−1
∣∣+ ∣∣h̃′ε(t)∣∣≤Ce−t for all t ≥ 0,

and for any fixed r0 > 0, there exists C > 0 such that for all r ≥ r0,∣∣∣gε(r)− r
2

2s+1

∣∣∣≤Cr−
2s−1
2s+1 and

∣∣∣∣g′ε(r)− 2
2s+1

r−
2s−1
2s+1

∣∣∣∣≤Cr−
4s

2s+1

and, in view of (2.34), ∣∣g′′ε (r)∣∣≤Cr−
4s

2s+1 .

Corollary 2.6.3 (Properties of the initial approximation). We have the following

properties of F0.

• For 1≤ r ≤ rε , F0(r) = fC(r) = log(r+
√

r2−1) and

F0(r) = log(2r)+O(r−2),

F ′0(r) =
1√

r2−1
=

1
r
+O(r−3),

F ′′0 (r) =−
1
r2 +O(r−4),

F ′′′0 (r) =
2
r3 +O(r−5).
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• For rε ≤ r ≤ δ0|logε|rε where δ0 > 0 is fixed,

1
2
|logε| ≤ F0(r)≤C|logε|,

F ′0(r)≤Cr−1
ε ,∣∣F ′′0 (r)∣∣≤C
(

1
r2 +

1
|logε|r2

ε

)
,

∣∣F ′′′0 (r)
∣∣≤Cr−1

ε

(
1
r2 +

1
|logε|r2

ε

)
.

• For r ≥ δ0|logε|rε , F0(r) = fε(r) and

F0(r) = ε
2s−1
2s+1 r

2
2s+1 +O

(
ε
− (2s−1)2

2(2s+1) |logε|
2s+1

2 r−
2s−1
2s+1

)
,

F ′0(r) =
2

2s+1
ε

2s−1
2s+1 r−

2s−1
2s+1 +O

(
ε
− (2s−1)2

2(2s+1) |logε|
2s+1

2 r−
4s

2s+1

)
,

F ′′0 (r) = O
(

ε
2s−1
2s+1 r−

4s
2s+1

)
,

F ′′′0 (r) = O
(

ε
2s−1
2s+1 r−

6s+1
2s+1

)
.

Proof. They follow from Lemmata 2.6.1 and 2.6.2. For the third derivative, we

differentiate the equation and use the estimates for the lower order derivatives.

2.6.3 The linearization

Now we build a right inverse for the linearized operator

L0(φ)(r) = (1−χε(r))
1
r

(
rφ ′

(1+F ′0(r)2)
3
2

)′
+χε(r)

(
φ
′′+

φ ′

r
+

2sε2s−1

F0(r)2s+1 φ

)
,

where χε is any family of smooth cut-off functions with χε(r) = 0 for 1 ≤ r ≤ rε

and χε(r) = 1 for r ≥ δ0|logε|rε where δ0 > 0 is a sufficiently small number. The

goal is to solve

L0(φ)(r) = h(r) for r ≥ 1, (2.39)

in a weighted function space which allows the expected sub-linear growth. Let us

recall the norms ‖·‖∗ and ‖·‖∗∗ defined in (2.13) and (2.14).
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Proposition 2.6.4. Let γ ≤ 2 + 2s−1
2s+1 . For all sufficiently small δ0,ε > 0, there

exists C > 0 such that for all h with ‖h‖∗∗ <+∞, there exists a solution φ = T (h)

of (2.39) with ‖φ‖∗ <+∞ that defines a linear operator T of h such that

‖φ‖∗ ≤C‖h‖∗∗

and φ(1) = 0.

We start with an estimate of the kernels of the linearized equation in the far

region, namely

Z′′+
Z′

r
+

2sε2s−1

fε(r)2s+1 Z = 0, for r ≥ δ0|logε|rε . (2.40)

Lemma 2.6.5. There are two linearly independent solutions Z1, Z2 of (2.40) so

that for i = 1,2, we have

|Zi(r)| ≤C
(

r
rε |logε|

)− 2s−1
2s+1

and
∣∣Z′i(r)∣∣≤ C

rε |logε|

(
r

rε |logε|

)− 2s−1
2s+1

for r ≥ δ0|logε|rε where δ0 > 0 is fixed and rε =
(
|logε|

ε

) 2s−1
2

.

Proof. We will show that the elements Z̃i of the kernel of the linearization around

gε , which solve

Z̃′′+
Z̃′

r
+

2s
gε(r)2s+1 Z̃ = 0 for r ≥ 1

|logε|
, (2.41)

satisfies

∣∣Z̃i(r)
∣∣≤Cr−

2s−1
2s+1 and

∣∣Z̃′i(r)∣∣≤Cr−
2s−1
2s+1 for all r ≥ δ0

for i = 1,2; the result then follows by setting Zi(r) = Z̃i

(
r

rε |logε|

)
.

A first kernel Z̃1 can be obtained from the scaling invariance gε,λ (r) =

λ
− 2

2s+1 gε(λ r) of (2.34), giving

Z̃1(r) = rg′ε(r)−
2

2s+1
gε(r).
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Then for Z̃2 we solve (2.41) with the initial conditions

Z̃2(δ0) =−
Z̃′1(δ0)

δ0
(
Z̃1(δ0)2 + Z̃′1(δ0)2

) , Z̃′2(δ0) =
Z̃1(δ0)

δ0
(
Z̃1(δ0)2 + Z̃′1(δ0)2

)
for a fixed δ0 > 0. In particular the Wrońskian W̃ = Z̃1Z̃′2− Z̃′1Z̃2 is computed

exactly as

W̃ (r) =
δ0W̃ (δ0)

r
=

1
r

for all r >
1
|logε|

. (2.42)

As in the proof of Lemma 2.6.2, we write t = logr and consider the Emden–

Fowler change of variable Z̃(r) = r
2

2s+1 ṽ(t) followed by a re-normalization ṽ(t) =( 2
2s+1

)− 2
2s+1 v

( 2
2s+1 t

)
which yield respectively

ṽ′′+2
2

2s+1
ṽ′+

((
2

2s+1

)2

+
2s

h̃2s+1
ε

)
ṽ = 0, for t ≥− log|logε|,

v′′+2v′+(1+2s)v = 2s
(

1− 1
h2s+1

ε

)
v, for t ≥−2s+1

2
log|logε|.

From this point we may express v2(t), and hence Z̃2(r), as a perturbation of the

linear combination of the kernels

e−t cos(
√

2st) and e−t sin(
√

2st).

Now we show the existence of the right inverse.

Proof of Proposition 2.6.4. We sketch the argument by obtaining a solution in a

weighted L∞ space. The general case follows similarly.

1. Note that we will need to control φ up to two derivatives in the intermediate

region. For this purpose, for any γ ∈ R and any interval I ⊆ [r1,+∞) we

define the norm

‖φ‖
γ,I = sup

I
rγ−2|φ(r)|+ sup

I
rγ−1∣∣φ ′(r)∣∣+ sup

I
rγ
∣∣φ ′′(r)∣∣.
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By solving the linearized mean curvature equation in the inner region using

the variation of parameters formula, we obtain the estimate

‖φ‖
γ,[r1,rε ]

≤C‖rγh‖L∞([1,+∞)) ,

which in particular gives a bound for φ together with its derivatives at rε .

2. In the intermediate region we write the equation as

φ
′′+

φ ′

r
= h− h̃, rε ≤ r ≤ r̃ε ,

where

r̃ε = δ0|logε|rε ,

and

h̃(r) = χε(r)
2sε2s−1

F ′0(r)2s+1 φ(r)

+(1−χε(r))

((
1− 1

(1+F ′0(r)2)
3
2

)(
φ
′′+

φ ′

r

)
+

3F ′0(r)F
′′

0 (r)

(1+F ′0(r)2)
3
2

φ
′

)

is small. Again we integrate to obtain

φ(r) = φ(rε)+ rεφ
′(rε) log

r
rε

+
∫ r

rε

1
t

∫ t

rε

τ(h(t)− h̃(t))dτ dt,

φ
′(r) =

rεφ ′(rε)

r
+

1
r

∫ r

rε

t(h(t)− h̃(t))dt,

φ
′′(r) =−rεφ ′(rε)

r2 +h(r)− h̃(r)− 1
r2

∫ r

rε

t(h(t)− h̃(t))dt.
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Using Corollary 2.6.3 we have, for small enough δ0 and ε ,

∥∥rγ h̃
∥∥

L∞([rε ,r̃ε ])
≤C

ε2s−1

|logε|2s+1 r2 ‖φ‖
γ,[rε ,r̃ε ]

+C
(

ε

|logε|

)2s−1

‖φ‖
γ,[rε ,r̃ε ]

+C
(

ε

|logε|

) 2s−1
2
(

1
r2 +

ε2s−1

|logε|2s

)
r‖φ‖

γ,[rε ,r̃ε ]

≤C

(
δ0

2 +δ0

(
ε

|logε|

) 2s−1
2

|logε|
)
‖φ‖

γ,[rε ,r̃ε ]

≤ δ0 ‖φ‖γ,[rε ,r̃ε ]
.

This implies

‖φ‖
γ,[rε ,r̃ε ]

≤C‖rγh‖L∞([1,+∞))+δ0 ‖φ‖γ,[rε ,r̃ε ]
,

or
‖φ‖

γ,[rε ,r̃ε ]
≤C‖rγh‖L∞([1,+∞)) (2.43)

which is the desired estimate.

3. In the outer region, we need to solve

φ
′′+

φ ′

r
+

2sε2s−1

f 2s+1
ε

φ = h, r > r̃ε .

In terms of the kernels Zi given in Lemma 2.6.5, the Wrońskian W = Z1Z′2−
Z′1Z2 is given by

W (r) =
1

rε |logε|
W̃
(

r
rε |logε|

)
=

1
r

(2.44)

using (2.42). Using the variation of parameters formula, we may write

φ(r) = c1Z1(r)+ c2Z2(r)+φ0(r),
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where

φ0(r) =−Z1(r)
∫ r

r̃ε

ρZ2(ρ)h(ρ)dρ +Z2(r)
∫ r

r̃ε

ρZ1(ρ)h(ρ)dρ

and the constants ci are determined by

φ(r̃ε) = c1Z1(r̃ε)+ c2Z2(r̃ε),

φ
′(r̃ε) = c1Z′1(r̃ε)+ c2Z′2(r̃ε).

By Lemma 2.6.5, (2.44) and (2.43), we readily check that for i = 1,2,

|φ0(r)| ≤C
(

r
r̃ε

)− 2s−1
2s+1

∫ r

r̃ε

ρ

(
ρ

r̃ε

)− 2s−1
2s+1

ρ
−γ ‖rγh‖L∞([1,+∞)) dρ

≤Cr2−γ ‖rγh‖L∞([1,+∞)) ,

|ci| ≤Cr1

(
C
r1

r2−γ ‖rγh‖L∞([1,+∞))+Cr1−γ

1 ‖rγh‖L∞([1,+∞))

)
≤Cr̃2−γ

ε ‖rγh‖L∞([1,+∞)) ,

|ci||Zi(r)| ≤C
(

r
r̃ε

)− 2s−1
2s+1−(2−γ)

r2−γ ‖rγh‖L∞([1,+∞))

≤Cr2−γ ‖rγh‖L∞([1,+∞)) since γ ≤ 2+
2s−1
2s+1

,

from which we conclude

∥∥rγ−2
φ
∥∥

L∞([r̃ε ,+∞))
≤C‖rγh‖L∞([1,+∞)) .

2.6.4 The perturbation argument: Proof of Proposition 2.2.5

We solve the reduced equation

L (F) = N1[F ] for r ≥ 1, (2.45)
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using the knowledge of the initial approximation F0 and the linearized operator

L0 at F0 obtained in Sections 2.6.2 and 2.6.3 respectively. We look for a solution

F = F0 +φ . Then φ satisfies

L0φ = A[φ ] = N1[F0 +φ ]−L (F0)−N2[φ ],

where N2[φ ] = L (F0 + φ)−L (F0)−L ′(F0)φ and φ(0) = 0. In terms of the

operator T defined in Proposition 2.6.4, we can write it in the form

φ = T (A[φ ]) . (2.46)

We apply a standard argument using contraction mapping principle as in [63]. First

we note that the approximation L (F0) is small and compactly supported in the

intermediate region. The non-linear terms in A[φ ] are also small in the norm ‖·‖∗∗.
Hence T (A[φ ]) defines a contraction mapping in the space X∗. The details are left

to the interested readers.
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Chapter 3

Fractional Yamabe Problem

3.1 Introduction
We construct singular solutions to the following non-local semilinear problem

(−∆Rn)γu = up in Rn, u > 0, (3.1)

for γ ∈ (0,1), n≥ 2, where the fractional Laplacian is defined by

(−∆Rn)γu(z) = kn,γP.V.
∫
Rn

u(z)−u(z̃)
|z− z̃|n+2γ

dz̃, for kn,γ = π
−n/222γ

Γ
(n

2 + γ
)

Γ(1− γ)
γ.

(3.2)

Equation (3.1) for the critical power p= n+2γ

n−2γ
corresponds to the fractional Yamabe

problem in conformal geometry, which asks to find a constant fractional curvature

metric in a given conformal class (see [86, 111, 112, 122, 129]). In particular, for

γ = 1 the fractional curvature coincides with the scalar curvature modulo a mul-

tiplicative constant, so (3.1) reduces to the classical Yamabe problem. However,

classical methods for local equations do not generally work here and one needs to

develop new ideas.

Non-local equations have attracted a great deal of interest in the community

since they are of central importance in many fields, from the points of view of

both pure analysis and applied modeling. By the substantial effort made in the past

decade by many authors, we have learned that non-local elliptic equations do enjoy
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good PDE properties such as uniqueness, regularity and maximum principle. How-

ever, not so much is known when it comes to the study of an integro-differential

equation such as (3.1) from an ODE perspective since most of the ODE theory

relies on local properties and phase-plane analysis; our first achievement is the de-

velopment of a suitable theory for the fractional order ODE (3.6), that arises when

studying radial singular solutions to (3.1).

On the one hand, we construct singular radial solutions for (3.1) directly with

a completely different argument. On the other hand, using ideas from conformal

geometry and scattering theory we replace phase-plane analysis by a global study

to obtain that solutions of the nonlocal ODE (3.6) do have a behavior similar in

spirit to a classical second-order autonomous ODE, and initiate the study of a non-

local phase portrait. In particular, we show that a linear non-local ODE has a

two-dimensional kernel. This is surprising since this non-local ODE has an infinite

number of indicial roots at the origin and at infinity, which is very different from the

local case where the solution to a homogeneous linear second order problem can be

written as a linear combination of two particular solutions and thus, its asymptotic

behavior is governed by two pairs of indicial roots.

Then, with these tools at hand, we arrive at our second accomplishment: to

develop a Mazzeo-Pacard gluing program [132] for the construction of singular

solutions to (3.1) in the non-local setting. This gluing method is indeed local by

definition; so one needs to rethink the theory from a fresh perspective in order

to adapt it for such non-local equation. More precisely, the program relies on

the fact that the linearization to (3.1) has good properties. In the classical case,

this linearization has been well studied applying microlocal analysis (see [130],

for instance), and it reduces to the understanding of a second order ODE with two

regular singular points. In the fractional case this is obviously not possible. Instead,

we use conformal geometry, complex analysis and some non-Euclidean harmonic

analysis coming from representation theory in order to provide a new proof.

Thus conformal geometry is the central core in this chapter, but we provide an

interdisciplinary approach in order to approach the following analytical problem:

Theorem 3.1.1. Let Σ =
⋃K

i=1 Σi be a disjoint union of smooth, compact sub-

manifolds Σi without boundary of dimensions ki, i = 1, . . . ,K. Assume, in addition
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to n− ki ≥ 2, that
n− ki

n− ki−2γ
< p <

n− ki +2γ

n− ki−2γ
,

or equivalently,

n− 2pγ +2γ

p−1
< ki < n− 2pγ

p−1

for all i = 1, . . . ,K. Then there exists a positive solution for the problem

(−∆Rn)γu = up in Rn \Σ (3.3)

that blows up exactly at Σ.

As a consequence of the previous theorem we obtain:

Corollary 3.1.2. Assume that the dimensions ki satisfy

0 < ki <
n−2γ

2
. (3.4)

Then there exists a positive solution to the fractional Yamabe equation

(−∆Rn)γu = u
n+2γ

n−2γ in Rn \Σ (3.5)

that blows up exactly at Σ.

The dimension estimate (3.4) is sharp in some sense. Indeed, it was proved by

González, Mazzeo and Sire [110] that, if such u blows up at a smooth sub-manifold

of dimension k and is polyharmonic, then k must satisfy the restriction

Γ

(
n
4
− k

2
+

γ

2

)/
Γ

(
n
4
− k

2
− γ

2

)
> 0,

which in particular, includes (3.4). Here, and for the rest of the chapter, Γ denotes

the Gamma function. In addition, the asymptotic behavior of solutions to (3.5)

when the singular set has fractional capacity zero has been considered in [121].

Let us describe our methods in detail. First, note that it is enough to let Σ be a

single sub-manifold of dimension k, and we will restrict to this case for the rest of

the chapter. We denote N = n− k.
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The first step is to construct the building block, i.e, a solution to (3.3) in Rn \
Rk that blows up exactly at Rk. For this, we write Rn \Rk = (RN \ {0})×Rk,

parameterized with coordinates z = (x,y), x ∈ RN \ {0}, y ∈ Rk, and construct a

solution u1 that only depends on the radial variable r = |x|. Then u1 is also a radial

solution to

(−∆RN )γu = AN,p,γup in RN \{0}, u > 0.

We write u = r−
2γ

p−1 v, r = e−t . Then, in the radially symmetric case, this equation

can be written as the integro-differential ODE

P.V.
∫
R

K(t− t ′)[v(t)− v(t ′)]dt ′+AN,p,γv(t) = AN,p,γvp in R, v > 0, (3.6)

where the kernel K is given precisely in (3.80). However, in addition to having the

right blow up rate at the origin, u1 must decay fast as r→∞ in order to perform the

Mazzeo-Pacard gluing argument later. The existence of such fast-decaying singular

solutions in the case of γ = 1 is an easy consequence of phase-plane analysis as

(3.6) is reduced to a second order autonomous ODE (see Proposition 1 of [132]).

The analogue in the fractional case turns out to be quite non-trivial. To show the

existence, we first use Kelvin transform to reduce our problem for entire solutions

to a supercritical one (3.13). Then we consider an auxiliary non-local problem

(3.14), for which we show that the minimal solution wλ is unique using Schaaf’s

argument as in [83] and a fractional Pohožaev identity [149]. A blow up argument,

together with a Crandall-Rabinowitz bifurcation scheme yields the existence of this

u1. This is the content of Section 3.2.

Then, in Section 3.3, we exploit the conformal properties of the equation to

produce a geometric interpretation for (3.3) in terms of scattering theory and con-

formally covariant operators. Singular solutions for the standard fractional Lapla-

cian in Rn \Rk can be better understood by considering the conformal metric gk

from (3.45), that is the product of a sphere SN−1 and a half-space Hk+1. Inspired

by the arguments by DelaTorre and González [66], our point of view is to rewrite

the well known extension problem in Rn+1
+ for the fractional Laplacian in Rn due

to [43], as a different, but equivalent, extension problem and to consider the corres-

ponding Dirichlet-to-Neumann operator Pgk
γ , defined in SN−1×Hk+1. Here Rn+1

+

is replaced by anti-de Sitter (AdS) space, but the arguments run in parallel.
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This Pgk
γ turns out to be a conjugate operator for (−∆Rn)γ , (see (3.46)), and

behaves well when the nonlinearity in (3.3) is the conformal power. However,

the problem (3.3) is not conformal for a general p, so we need to perform a further

conjugation (3.57) and to consider the new operator P̃gk
γ . Then the original equation

(3.3) in Rn \Rk is equivalent to

P̃gk
γ (v) = vp in SN−1×Hk+1, v = r

2γ

p−1 u, v > 0 and smooth. (3.7)

Rather miraculously, both Pgk
γ and P̃gk

γ diagonalize under the spherical harmonic

decomposition of SN−1. In fact, they can be understood as pseudo-differential

operators on hyperbolic space Hk+1, and we calculate their symbols in Theorem

3.3.5 and Proposition 3.3.6, respectively, under the Fourier-Helgason transform

(to be denoted by ·̂ ) on the hyperbolic space understood as the symmetric space

M = G/K for G = SO(1,k+ 1) and K = SO(k+ 1) (see the Appendix for a short

introduction to the subject). This is an original approach that yields new results

even in the classical case γ = 1, simplifying some of the arguments in [132]. The

precise knowledge of their symbols allows, as a consequence, for the development

of the linear theory for our problem, as we will comment below.

Section 3.4 collects these ideas in order to develop new methods for the study

of the non-local ODE (3.6), which is precisely the projection of equation (3.7) for

k = 0, n = N, over the zero-eigenspace when projecting over spherical harmonics

of SN−1. The advantage of shifting from u to v is that we obtain a new equation

that behaves very similarly to a second order autonomous ODE. This includes the

existence of a Hamiltonian quantity along trajectories.

Moreover, one can take the spherical harmonic decomposition of SN−1 and

consider all projections m= 0,1, . . .. In Proposition 3.4.2 we are able to write every

projected equation as an integro-differential equation very similar to the m = 0

projection (3.6). This formulation immediately yields regularity and maximum

principles for the solution of (3.7) following the arguments in [65].

Now, to continue with the proof of Theorem 3.1.1, one takes the fast decaying

solution in Rn \Rk we have just constructed and, after some rescaling by ε , glues it

to the background Euclidean space in order to have a global approximate solution

ūε in Rn \Σ. Even though the fractional Laplacian is a non-local operator, one is
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able to perform this gluing just by carefully estimating the tail terms that appear in

the integrals after localizaton. This is done in Section 3.5.1 and, more precisely,

Lemma 3.5.7, where we show that the error we generate when approximating a

true solution by ūε , given by

fε := (−∆Rn)γ ūε − ūp
ε ,

is indeed small in suitable weighted Hölder spaces.

Once we have an approximate solution, we define the linearized operator

around it,

Lεφ := (−∆Rn)γ
φ − pūp−1

ε φ .

The general scheme of Mazzeo-Pacard’s method is to set u = ūε + φ for an un-

known perturbation φ and to rewrite equation (3.3) as

Lε(φ)+Qε(φ)+ fε = 0,

where Qε contains the remaining nonlinear terms. If Lε is invertible, then we can

write

φ = (Lε)
−1(−Qε(φ)− fε),

and a standard fixed point argument for small ε will yield the existence of such φ ,

thus completing the proof of Theorem 3.1.1 (see Section 3.9).

Thus, a central argument here is the study of the linear theory for Lε and, in

particular, the analysis of its indicial roots, injectivity and Fredholm properties.

However, while the behaviour of a second order ODE is governed by two boundary

conditions (or behavior at the singular points using Frobenius method), this may

not be true in general for a non-local operator.

We first consider the model operator L1 defined in (3.124) for an isolated sin-

gularity at the origin. Near the singularity L1 behaves like

(−∆RN )γ − κ

r2γ
(3.8)

or, after conjugation, like Pg0
γ −κ , which is a fractional Laplacian operator with a

Hardy potential of critical type.
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The central core of the linear theory deals with the operator (3.8). In Section

3.6 we perform a delicate study of the Green’s function by inverting its Fourier

symbol Θm
γ (see (3.38)). This requires a very careful analysis of the poles of the

symbol, in both the stable and unstable cases. Contrary to the local case γ = 1,

in which there are only two indicial roots for each projection m, here we find an

infinite sequence for each m. But in any case, these are controlled. It is also

interesting to observe that, even though we have a non-local operator, the first

pair of indicial roots governs the asymptotic behavior of the operator and thus, its

kernel is two-dimensional in some sense (see, for instance, Proposition 3.6.10 for

a precise statement).

Then, in Section 3.7 we complete the calculation of the indicial roots (see

Lemma 3.7.1). Next, we show the injectivity for L1 in weighted Hölder spaces,

and an a priori estimate (Lemma 3.7.4) yields the injectivity for Lε .

In addition, in Section 3.8 we work with weighted Hilbert spaces and we prove

Fredholm properties for Lε in the spirit of the results by Mazzeo [130, 131] for edge

type operators by constructing a suitable parametrix with compact remainder. The

difficulty lies precisely in the fact that we are working with a non-local operator,

so the localization with a cut-off is the non-trivial step. However, by working with

suitable weighted spaces we are able to localize the problem near the singularity;

indeed, the tail terms are small. Then we conclude that Lε must be surjective by

purely functional analysis reasoning. Finally, we construct a right inverse for Lε ,

with norm uniformly bounded independently of ε , and this concludes the proof of

Theorem 3.1.1.

The Appendix contains some well known results on special functions and the

Fourier-Helgason transform.

As a byproduct of the proof of Theorem 3.1.1, we will obtain the existence of

solutions with isolated singularities in the subcritical regime (note the shift from n

to N in the spatial dimension, which will fit better our purposes).

Theorem 3.1.3. Let γ ∈ (0,1), N ≥ 2 and

N
N−2γ

< p <
N +2γ

N−2γ
. (3.9)
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Let Σ be a finite number of points, Σ = {q1, . . . ,qK}. Then equation

(−∆RN )γu = AN,p,γup in RN \Σ

has positive solutions that blow up exactly at Σ.

Remark 3.1.4. The constant AN,p,γ is chosen so that the model function uγ(x) =

|x|−
2γ

p−1 is a singular solution to (3.3) that blows up exactly at the origin. In partic-

ular,

AN,p,γ = Λ
(N−2γ

2 − 2γ

p−1

)
for Λ(α) = 22γ

Γ(N+2γ+2α

4 )Γ(N+2γ−2α

4 )

Γ(N−2γ−2α

4 )Γ(N−2γ+2α

4 )
. (3.10)

Note that, for the critical exponent p = N+2γ

N−2γ
, the constant AN,p,γ coincides with

ΛN,γ =Λ(0), the sharp constant in the fractional Hardy inequality in RN . Its precise

value is given in (3.44).

Let us make some comments on the bibliography. First, the problem of unique-

ness and non-degeneracy for some fractional ODE has been considered in [61, 97,

98], for instance.

The construction of singular solutions in the range of exponents for which the

problem is stable, i.e., N
N−2γ

< p < p1 for p1 <
N+2γ

N−2γ
defined in (3.12), was stud-

ied in the previous paper by Ao, the author, González and Wei [8]. In addition,

for the critical case p = N+2γ

N−2γ
, solutions with a finite number of isolated singular-

ities were obtained in the article by Ao, DelaTorre, González and Wei [9] using

a gluing method. The difficulty there was the presence of a non-trivial kernel for

the linearized operator. With all these results, together with Theorem 3.1.1, we

have successfully developed a complete fractional Mazzeo-Pacard program for the

construction of singular solutions of the fractional Yamabe problem.

Gluing methods for fractional problems are starting to be developed. A finite

dimensional reduction has been applied in [62] to construct standing-wave solu-

tions to a fractional nonlinear Schrödinger equation and in [82] to construct layered

solutions for a fractional inhomogeneous Allen-Cahn equation.

The next development came in [9] for the fractional Yamabe problem with

isolated singularities, that we have just mentioned. There the model for an isolated
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singularity is a Delaunay-type metric (see also [134, 135, 164] for the construction

of constant mean curvature surfaces with Delaunay ends and [133, 136] for the

scalar curvature case). However, in order to have enough freedom parameters at the

perturbation step, for the non-local gluing in [9] the authors replace the Delaunay-

type solution by a bubble tower (an infinite, but countable, sum of bubbles). As a

consequence, the reduction method becomes infinite dimensional. Nevertheless, it

can still be treated with the tools available in the finite dimensional case and one

reduces the PDE to an infinite dimensional Toda type system. The most recent

works related to gluing are [49, 51] for the construction of counterexamples to the

fractional De Giorgi conjecture. This reduction is fully infinite dimensional.

For the fractional De Giorgi conjecture with γ ∈ [1
2 ,1) we refer to [30, 38, 155]

and the most recent striking paper [94]. Related to this conjecture, in the case

γ ∈ (0, 1
2) there exists a notion of non-local mean curvature for hypersurfaces in Rn,

see [41] and the survey [172]. Much effort has been made regarding regularity [17,

31, 44] and various qualitative properties [79, 80]. More recent work on stability

of non-local minimal surfaces can be found in [56]. Delaunay surfaces for this

curvature have been constructed in [32, 33]. After the appearance of [58], Cabré

has pointed out that this paper also constructs Delaunay surfaces with constant

nonlocal mean curvature.

3.2 The fast decaying solution
We aim to construct a fast-decay singular solution to the fractional Lane–Emden

equation

(−∆RN )γu = AN,p,γup in RN \{0}. (3.11)

for γ ∈ (0,1) and p in the range (3.9).

We consider the exponent p1 = p1(N,γ) ∈ ( N
N−2γ

, N+2γ

N−2γ
) defined below by

(3.12) such that the singular solution uγ(x) = |x|−
2γ

p−1 is stable if and only if
N

N−2γ
< p < p1. In the notation of Remark 3.1.4, p1 as defined as the root of

pAN,p,γ = Λ(0). (3.12)

The main result in this section is:
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Proposition 3.2.1. For any ε ∈ (0,∞) there exists a fast-decay entire singular solu-

tion uε of (3.11) such that

uε(x)∼

O
(
|x|−

2γ

p−1

)
as |x| → 0,

ε|x|−(N−2γ) as |x| → ∞.

The proof in the stable case N
N−2γ

< p < p1 <
N+2γ

N−2γ
is already contained in the

paper [8], so we will assume for the rest of the section that we are in the unstable

regime
N

N−2γ
< p1 ≤ p <

N +2γ

N−2γ
.

We first prove uniqueness of minimal solutions for the non-local problem

(3.14) using Schaaf’s argument and a fractional Pohožaev identity obtained by

Ros-Oton and Serra (Proposition 3.2.2 below). Then we perform a blow-up

argument on an unbounded bifurcation branch. An application of Kelvin’s

transform yields an entire solution of the Lane–Emden equation with the desired

asymptotics.

Set A = AN,p,γ . Note that the Kelvin transform w(x) = |x|−(N−2γ)u
(

x
|x|2

)
of u

satisfies

(−∆)γw(x) = A|x|β wp(x), (3.13)

where β =: p(N−2γ)− (N +2γ) ∈ (−2γ,0).

Consider the following non-local Dirichlet problem in the unit ball B1 =

B1(0)⊂ RN , (−∆)γw(x) = λ |x|β A(1+w(x))p in B1,

w = 0 in RN \B1.
(3.14)

Since (−∆)γ |x|β+2γ = c0|x|β and (−∆)γ(1−|x|2)γ

+ = c1 for some positive constants

c0 and c1, we have that |x|β+2γ +(1−|x|2)γ

+ is a positive super-solution for small λ .

Thus there exists a minimal radial solution wλ (r). Moreover, it is bounded, radially

non-increasing for fixed λ ∈ (0,λ ∗) and non-decreasing in λ . We will show that

wλ is the unique solution of (3.14) for all small λ .
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Proposition 3.2.2. There exists a small λ0 > 0 depending only on N ≥ 2 and γ ∈
(0,1) such that for any 0 < λ < λ0, wλ is the unique solution to (3.14) among the

class

C̃ 2
γ (RN) =

{
w ∈ C 2(RN) :

∫
RN

|w(x)|
(1+ |x|)N+2γ

dx < ∞

}
.

The idea of the proof follows from [83] and similar arguments can be found in

[161], [117] and [118].

3.2.1 Useful inequalities

The first ingredient is the Pohožaev identity for the fractional Laplacian. Such iden-

tities for integro-differential operators have been recently studied in [149], [151]

and [114].

Theorem 3.2.3 (Proposition 1.12 in [149]). Let Ω be a bounded C 1,1 domain,

f ∈ C 0,1
loc (Ω×R), u be a bounded solution of(−∆)γu = f (x,u) in Ω,

u = 0 in RN \Ω,
(3.15)

and δ (x) = dist(x,∂Ω). Then

u/δ
γ |Ω∈ C α(Ω) for some α ∈ (0,1),

and there holds

∫
Ω

(
F(x,u)+

1
N

x ·∇xF(x,u)− N−2γ

2N
u f (x,u)

)
dx

=
Γ(1+ γ)2

2N

∫
∂Ω

( u
δ γ

)2
(x ·ν)dσ

where F(x, t) =
∫ t

0 f (x,τ)dτ and ν is the unit outward normal to ∂Ω at x.

Using integration by parts (see, for instance, (1.5) in [149]), it is clear that∫
Ω

u f (x,u)dx =
∫
RN

∣∣∣(−∆)
γ

2 u
∣∣∣2 dx,
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which yields our fundamental inequality:

Corollary 3.2.4. Under the assumptions of Theorem 3.2.3, we have for any star-

shaped domain Ω and any σ ∈ R,

∫
Ω

(
F(x,u)+

1
N

x ·∇xF(x,u)−σu f (x,u)
)

dx≥
(

N−2γ

2N
−σ

)∫
RN

∣∣∣(−∆)
γ

2 u
∣∣∣2 dx

(3.16)

The second ingredient is the fractional Hardy–Sobolev inequality which, via

Hölder inequality, is an interpolation of fractional Hardy inequality and fractional

Sobolev inequality:

Theorem 3.2.5 (Lemma 2.1 in [107]). Assume that 0≤α < 2γ <min{2,N}. Then

there exists a constant c such that

c
∫
RN

∣∣∣(−∆)
γ

2 u
∣∣∣2 dx≥

(∫
RN
|x|−α |u|

2(N−α)
N−2γ

)N−2γ

N−α

. (3.17)

3.2.2 Proof of Proposition 3.2.2

We are now in a position to prove the uniqueness of solutions of (3.14) with small

parameter.

Proof. Suppose w and wλ are solutions to (3.14). Then u = w−wλ is a positive

solution to the Dirichlet problem(−∆)γu = λA|x|β gλ (x,u) in B1(0),

u = 0 in RN \B1(0),

where gλ (x,u) = (1+wλ (x)+u)p− (1+wλ (x))p ≥ 0 for u≥ 0. Denoting

Gλ (x,u) =
∫ u

0
gλ (x, t)dt,
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we apply (3.16) with f (x,u) = λA|x|β gλ (x,u) over Ω = B1 to obtain(
N−2γ

2N
−σ

)∫
RN

∣∣∣(−∆)
γ

2 u
∣∣∣2 dx

≤ λA
∫

B1

(
|x|β Gλ (x,u)+

1
N

x ·∇x

(
|x|β Gλ (x,u)

)
−σ |x|β ugλ (x,u)

)
dx

= λA
∫

B1

|x|β
((

1+
β

N

)
Gλ (x,u)+

1
N

x ·∇xGλ (x,u)−σugλ (x,u)
)

dx.

(3.18)

Note that

Gλ (x,u) = u2
∫ 1

0

∫ 1

0
pt(1+wλ (x)+ τtu)p−1 dτdt (3.19)

and

∇xGλ (x,u) = u2
∫ 1

0

∫ 1

0
p(p−1)t(1+wλ (x)+ τtu)p−2 dτdt ·∇wλ (x).

Since wλ is radially decreasing, x ·∇wλ (x)≤ 0 and hence x ·∇xGλ (x,u)≤ 0. Then

(3.18) becomes(
N−2γ

2N
−σ

)∫
RN

∣∣∣(−∆)
γ

2 u
∣∣∣2 dx

≤ λA
∫

B1

|x|β
((

1+
β

N

)
Gλ (x,u)−σugλ (x,u)

)
dx.

(3.20)

Now, since for any λ ∈
[
0, λ ∗

2

]
and any x ∈ B1,

lim
t→∞

Gλ (x, t)
tgλ (x, t)

= lim
t→∞

1
p+1

(
(1+wλ (x)+ t)p+1− (1+wλ (x))p+1

)
− (1+wλ (x))pt

t ((1+wλ (x)+ t)p− (1+wλ (x))p)

=
1

p+1
,

we deduce that for any ε > 0 there exists an M = M(ε)> 0 such that

Gλ (x, t)≤
1+ ε

p+1
ugλ (x, t)
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whenever t ≥M. From this we estimate the tail of the right hand side of (3.20) as

∫
B1∩{u≥M}

|x|β
((

1+
β

N

)
Gλ (x,u)−σugλ (x,u)

)
dx

≤
∫

B1∩{u≥M}
|x|β

((
1+

β

N

)
1+ ε

p+1
−σ

)
ugλ (x,u)dx.

We wish to choose ε and σ such that(
1+

β

N

)
1+ ε

p+1
< σ <

N−2γ

2N
,

so that the above integral is non-positive. Indeed we observe that(
N +β

N

)
1

p+1
− N−2γ

2N
=

2(p(N−2γ)−2γ)− (N−2γ)(p+1)
2N(p+1)

=
(p−1)(N−2γ)−4γ

2N(p+1)

< 0

as p−1 ∈
(

2γ

N−2γ
, 4γ

N−2γ

)
. Then there exists a small ε > 0 such that

(
1+

β

N

)
1+ ε

p+1
<

N−2γ

2N
,

from which the existence of such σ follows. With this choice of ε and σ , (3.20)

gives (
N−2γ

2N
−σ

)∫
RN

∣∣∣(−∆)
γ

2 u
∣∣∣2 dx

≤ λA
∫

B1∩{u<M}
|x|β

((
1+

β

N

)
Gλ (x,u)−σugλ (x,u)

)
dx

≤ λA
(

1+
β

N

)∫
B1∩{u<M}

|x|β Gλ (x,u)dx.

Recalling the expression (3.19) for Gλ (x,u), we have(
1
2
− σ

N

)∫
RN

∣∣∣(−∆)
γ

2 u
∣∣∣2 dx≤ λACM

∫
B1∩{u<M}

|x|β u2 dx,
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where

CM =
p
2

(
1+w λ∗

2
(0)+M

)p−1
(3.21)

by the monotonicity properties of wλ .

On the other hand, since p > N
N−2γ

,

−β =−p(N−2γ)+(N +2γ) = 2γ− (N−2γ)

(
p− N

N−2γ

)
< 2γ,

and thus the fractional Hardy–Sobolev inequality (3.17) implies

c
∫
RN

∣∣∣(−∆)
γ

2 u
∣∣∣2 dx≥

(∫
RN
|x|β u2η dx

) 1
η

=

(∫
B1

|x|β u2η dx
) 1

η

,

where

η =
N +β

N−2γ
=

p(N−2γ)−2γ

N−2γ
= 1+

(
p− N

N−2γ

)
> 1.

Hence, (∫
B1

|x|β u2γ dx
) 1

γ

≤ 2N
N−2γ

cCMλA
∫

B1

|x|β u2 dx.

However, by Hölder’s inequality, we have

∫
B1

|x|β u2 dx =
∫

B1

|x|
β

η u2 · |x|β(1− 1
η ) dx≤

(∫
B1

|x|β u2η dx
) 1

η
(∫

B1

|x|β dx
)1− 1

η

≤ (N +β )
−N+2γ

N+β

(∫
B1

|x|β u2η dx
) 1

η

.

Therefore, we have(∫
B1

|x|β u2η dx
) 1

η

≤ 2NcACM

(N−2γ)(N +β )
N+2γ

N+β

λ

(∫
B1

|x|β u2η dx
) 1

η

,

which forces u≡ 0 for any

λ < λ0 =

(
2NcACM

(N−2γ)(N +β )
N+2γ

N+β

)−1

. (3.22)
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3.2.3 Existence of a fast-decay singular solution

Consider the space of twice differentiable, positive and radially decreasing func-

tions supported in the unit ball,

E =
{

w ∈ C 2(Rn) : w(x) = w̃(|x|), w̃′ ≤ 0, w > 0 in B1 and w≡ 0 in RN \B1
}
.

We begin with an a priori estimate followed by a generic existence result for the

non-local ODE (3.14), from which a bifurcation argument follows.

Lemma 3.2.6 (Uniform bound). There exists a universal constant C0 =

C0(N,γ, p,λ ∗) such that for any function w ∈ E solving (3.14) and for any

x ∈ B1/2(0)\{0},

w(x)≤C0|x|−
β+2γ

p−1 =C0|x|−
p(N−2γ)−N

p−1 .

Proof. Using the Green’s function for the Dirichlet problem in the unit ball ([148]),

we have

w(x) =
∫

B1

G(x,y)λA|y|β (1+w(y))p dy,

where

G(x,y) =C(N,γ)
1

|x− y|N−2γ

∫ r0(x,y)

0

rγ−1

(r+1)
N
2

dr

with

r0(x,y) =
(1−|x|2)(1−|y|2)

|x− y|2
.

Here C(N,γ) is some normalizing constant. Let

y ∈ B |x|
4

(
3x
4

)
⊂ B |x|

2
(x)∩B|x|(0)⊂ B1(0).

From y ∈ B |x|
2
(x), we have

|x− y| ≤ |x|
2
≤ 1

4
and |y| ≤ 3|x|

2
≤ 3

4
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and so

r0(x,y)≥
(
1− 1

4

)(
1− 9

16

)
1
16

≥ 21
4

> 5.

On the other hand, since y ∈ B|x|(0) and u is radially non-increasing, we have

|y|β ≥ |x|β and u(y)≥ u(x).

Therefore, we may conclude

G(x,y)≥C(N,γ)

(
2
|x|

)N−2γ ∫ 5

0

rγ−1

(r+1)
N
2

dr

and

w(x)≥ A
∫

B |x|
4
( 3x

4 )
C(N,γ)

2N−2γ

|x|N−2γ

(∫ 5

0

rγ−1

(r+1)
N
2

dr

)
λ0|x|β w(x)p dy

≥C(N,γ)A2N−2γ

(∫ 5

0

rγ−1

(r+1)
N
2

dr

)
λ0 ·

|x|β

|x|N−2γ
w(x)p · |B1|

(
|x|
4

)N

≥C−(p−1)
0 |x|β+2γw(x)p,

where

C−(p−1)
0 =

C(N,γ)|B1|Aλ0

2N+2γ

∫ 5

0

rγ−1

(r+1)
N
2

dr.

The inequality clearly rearranges to

w(x)≤C0|x|−
β+2γ

p−1 ,

as desired. The dependence of the constant C0 follows from (3.22) and (3.21).

Lemma 3.2.7 (Existence). For any λ ∈ (0,+∞) the non-local Dirichlet problem

(3.14) has a positive solution.

Proof. We use Schauder fixed point theorem. Let us denote the Gagliardo norm by

[u]2Hγ (RN) =
∫
RN

∫
RN

|u(x)−u(y)|2

|x− y|N+2γ
dxdy.
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Define the operator T by

Tw(x) =


∫

B1(0)
G(x,y)λA|y|β (1+w(y))p dy for x ∈ B1(0)

0 for x ∈ RN \B1(0),

where G is the Green’s function as in the proof of Lemma 3.2.6.

Suppose that w ∈ L2(B1(0)). We first observe that the right hand side of (3.14)

is in L
2N

N+2γ (B1(0)), where 2N
N+2γ

is the conjugate of the critical Sobolev exponent

2∗(N,γ) = 2N
N−2γ

. Indeed, by Lemma 3.2.6, we have

|x|β (1+wp)≤ |x|β + |x|−2γw≤ |x|−N+ 2γ

p−1

and the integrability follows from(
−N +

2γ

p−1

)
2N

N +2γ
+N =

N(N−2γ)

(p−1)(N +2γ)

(
4γ

N−2γ
− (p−1)

)
> 0.

Using Hölder inequality and fractional Sobolev inequality (see, for instance, [73]),

we have

C1(N,γ)−1 ‖Tw‖2
L2∗(N,γ)(B1(0)) ≤ [Tw]2Hγ (RN) =

∫
RN

Tw(x)(−∆)γTw(x)dx

=
∫

B1(0)
Tw(x) ·λA|x|β (1+w(x))p dx

≤C2(N,γ, p,λ )‖Tw‖L2∗(N,γ)(B1(0))

≤C3(N,γ, p,λ )[Tw]Hγ (RN).

This implies the existence of C̄ > 0 such that

‖Tw‖L2(B1(0)) ≤ C̄,

i.e. T : B→B with

B =
{

u ∈ L2(B1(0)) : ‖u‖L2(B1(0)) ≤ C̄
}
,
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as well as

[Tw]Hγ (B1(0)) ≤ [Tw]Hγ (RN) ≤ C̄,

hence the compactness of T via the Sobolev embedding. By Schauder fixed point

theorem, there exists a weak solution w ∈ L2(B1(0)). It remains to apply elliptic

regularity.

Lemma 3.2.8 (Bifurcation). There exists a sequence of solutions (λ j,w j) of (3.14)

in (0,λ ∗]×E such that

lim
j→∞

λ j = λ∞ ∈ [λ0,λ
∗] and lim

t→∞

∥∥w j
∥∥

L∞ = ∞,

where λ0 is given in Proposition 3.2.2.

Proof. Consider the continuation

C = {(λ (t),w(t)) : t ≥ 0}

of the branch of minimal solutions {(λ ,wλ ) : 0≤ λ < λ ∗}, where (λ (0),w(0)) =

(0,0). By Proposition 3.2.2, we see that C ⊂ (λ0,λ
∗]×E. Moreover, since wλ > 0

in B1, we also have w > 0 in B1 for any (λ ,w) ∈ C . If C were bounded, then

Lemma 3.2.7 would give a contradiction around limt→∞(λ (t),w(t)). Therefore, C

is unbounded and the existence of the desired sequence of pairs (λ j,w j) follows.

We are ready to establish the existence of a fast-decay singular solution.

Proof of Proposition 3.2.1. Let (λ j,w j) be as in Lemma 3.2.8. By Lemma 3.2.6,

w j(x)≤C0|x|−
β+2γ

p−1 .

Define

m j =
∥∥w j

∥∥
L∞(B1)

= w j(0) and R j = m
p−1

β+2γ

j = m
p−1

p(N−2γ)−N
j

so that m j, R j→ ∞ as j→ ∞. Set also

Wj(x) = λ
1

p−1 m−1
j wλ j

( x
R j

)
.
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Then 0≤Wj ≤ 1 and Wj is a bounded solution to(−∆)γWj = mp−1
j R−β−2γ

j A|x|β
(

λ

1
p−1
j m−1

j +Wj

)p

in BR j(0),

Wj = 0 in RN \BR j(0),

that is, (−∆)γWj = A|x|β
(

λ

1
p−1
j m−1

j +Wj

)p

in BR j(0),

Wj = 0 in RN \BR j(0).

In BR j(0), Wj(x) has the upper bound

Wj(x)≤ λ
1

p−1 m−1
j ·C0

(
x

R j

)− β+2γ

p−1

≤C0

(
λ

1
p−1

0 +(λ ∗)
1

p−1

)
|x|−

β+2γ

p−1

=C1|x|−
β+2γ

p−1 =C1|x|
2γ

p−1−(N−2γ).

(3.23)

Note that |x|β ∈ Lq(BR j(0)) for any N
2γ

< q < N
−β

. Hence, for such q, by the regu-

larity result in [150], Wj ∈ C η

loc(R
N) for η = min

{
γ,2γ− N

q

}
∈ (0,1). Therefore,

by passing to a subsequence, Wj converges uniformly on compact sets of RN to a

radially symmetric and non-increasing function w which satisfies
(−∆)γw = A|x|β wp in RN ,

w(0) = 1,

w(x)≤C1|x|
2γ

p−1−(n−2γ),

in view of (3.23).

Now the family of rescaled solutions wε(x) = εw
(

ε
p−1

β+2γ x
)

solves


(−∆)γwε = A|x|β wp

ε in RN ,

wε(0) = ε,

wε(x)≤C1|x|
2γ

p−1−(N−2γ) in RN \{0} .
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Finally, its Kelvin transform uε(x) = |x|−(N−2γ)wε

(
x
|x|2

)
satisfies


(−∆)γuε = Aup

ε in RN \{0} ,

uε(x)≤C1|x|−
2γ

p−1 in RN \{0} ,

uε(x)∼ ε|x|−(N−2γ) as |x| → ∞,

as desired.

3.3 The conformal fractional Laplacian in the presence
of k-dimensional singularities

3.3.1 A quick review on the conformal fractional Laplacian

Here we review some basic facts on the conformal fractional Laplacian that will be

needed in the next sections (see [52, 109] for the precise definitions and details).

If (X ,g+) is a (n + 1)-dimensional conformally compact Einstein mani-

fold (which, in particular, includes the hyperbolic space), one can define a

one-parameter family of operators Pγ of order 2γ on its conformal infinity

Mn = ∂∞Xn+1. Pγ is known as the conformal fractional Laplacian and it can be

understood as a Dirichlet-to-Neumann operator on M. In the particular case that

X is the hyperbolic space Hn+1, whose conformal infinity is M = Rn with the

Euclidean metric, Pγ coincides with the standard fractional Laplacian (−∆Rn)γ .

Let us explain this definition in detail. It is known that, having fixed a metric

g0 in the conformal infinity M, it is possible to write the metric g+ in the normal

form g+ = ρ−2(dρ2 + gρ) in a tubular neighborhood M× (0,δ ]. Here gρ is a

one-parameter family of metrics on M satisfying gρ |ρ=0 = g0 and ρ is a defining

function in X for the boundary M (i.e., ρ is a non-degenerate function such that

ρ > 0 in X and ρ = 0 on M).

Fix γ ∈ (0,n/2) not an integer such that n/2+ γ does not belong to the set of

L2-eigenvalues of −∆g+ . Assume also that the first eigenvalue for −∆g+ satisfies

λ1(−∆g+) > n2/4− γ2. It is well known from scattering theory [113, 115] that,
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given w ∈ C ∞(M), the eigenvalue problem

−∆g+W −
(n2

2 − γ
2)W = 0 in X , (3.24)

has a unique solution with the asymptotic expansion

W = W1ρ
n
2−γ +W2ρ

n
2+γ , W1,W2 ∈ C ∞(X) (3.25)

and Dirichlet condition on M

W1|ρ=0 = w. (3.26)

The conformal fractional Laplacian (or scattering operator, depending on the nor-

malization constant) on (M,g0) is defined taking the Neumann data

Pg0
γ w = dγW2|ρ=0, where dγ = 22γ Γ(γ)

Γ(−γ)
, (3.27)

and the fractional curvature as Qg0
γ := Pg0

γ (1).

Pg0
γ is a self-adjoint pseudodifferential operator of order 2γ on M with the same

principal symbol as (−∆M)γ . In the case that the order of the operator is an even

integer we recover the conformally invariant GJMS operators on M. In addition,

for any γ ∈ (0, n
2), the operator is conformal. Indeed,

Pgw
γ f = w−

n+2γ

n−2γ Pg0
γ (w f ), ∀ f ∈ C ∞(M), (3.28)

for a change of metric

gw := w
4

n−2γ g0, w > 0.

Moreover, (3.28) yields the Qγ curvature equation

Pg0
γ (w) = w

n+2γ

n−2γ Qgw
γ .

Explicit formulas for Pγ are not known in general. The formula for the cylinder

will be given in Section 3.3.2, and it is one of the main ingredients for the linear

theory arguments of Section 3.7.
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The extension (3.24) takes a more familiar form under a conformal change of

metric.

Proposition 3.3.1 ([52]). Fix γ ∈ (0,1) and ḡ = ρ2g+. Let W be the solution

to the scattering problem (3.24)-(3.25) with Dirichlet data (3.26) set to w. Then

W = ρ−n/2+γW is the unique solution to the extension problem −div
(
ρ1−2γ∇W

)
+Eḡ(ρ)W = 0 in (X , ḡ),

W |ρ=0= w on M,
(3.29)

where the derivatives are taken with respect to the metric ḡ, and the zero-th order

term is given by

Eḡ(ρ) =−∆ḡ(ρ
1−2γ

2 )ρ
1−2γ

2 +
(
γ

2− 1
4

)
ρ
−(1+2γ)+ n−1

4n Rḡρ
1−2γ

= ρ
− n

2−γ−1
{
−∆g+−

(n2

4 − γ
2)}(

ρ
n
2−γ
)
.

(3.30)

Moreover, we recover the conformal fractional Laplacian as

Pg0
γ w =−d̃γ lim

ρ→0
ρ

1−2γ
∂ρW,

where

d̃γ =−
dγ

2γ
=−22γ−1Γ(γ)

γΓ(−γ)
. (3.31)

We also recall the following result, which allows us to rewrite (3.29) as a pure

divergence equation with no zeroth order term. The more general statement can be

found in Lemma 3.3.7, and it will be useful in the calculation of the Hamiltonian

from Section 3.4.2.

Proposition 3.3.2 ([47, 52]). Fix γ ∈ (0,1). Let W 0 be the solution to (3.24)-(3.25)

with Dirichlet data (3.26) given by w ≡ 1, and set ρ∗ = (W 0)
1

n/2−γ . The function

ρ∗ is a defining function of M in X such that, if we define the metric ḡ∗ = (ρ∗)2g+,

then Eḡ∗(ρ
∗)≡ 0. Moreover, ρ∗ has the asymptotic expansion near the conformal

infinity

ρ
∗(ρ) = ρ

[
1+

Qg0
γ

(n/2− γ)dγ

ρ
2γ +O(ρ2)

]
.
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By construction, if W ∗ is the solution to −div
(
(ρ∗)1−2γ∇W ∗

)
= 0 in (X , ḡ∗),

W ∗= w on (M,g0),

with respect to the metric ḡ∗, then

Pg0
γ w =−d̃γ lim

ρ∗→0
(ρ∗)1−2γ

∂ρ∗W ∗+wQg0
γ .

Remark 3.3.3. In the particular case that X = Rn+1
+ = {(x, `) : x ∈ Rn, ` > 0} is

hyperbolic space Hn+1 with the metric g+ = d`2+|dx|2
`2 and M = Rn, this is just

the construction for the fractional Laplacian (−∆Rn)γ as a Dirichlet-to-Neumann

operator for a degenerate elliptic extension problem from [43]. Indeed, let U be

the solution to 
∂``U +

1−2γ

`
∂`U +∆RnU = 0 in Rn+1

+ ,

U |`=0= u on Rn,

(3.32)

then

(−∆Rn)γu =−d̃γ lim
`→0

`1−2γ
∂`U. (3.33)

From now on, (X ,g+) will be fixed to be hyperbolic space with its standard metric.

Our point of view in this chapter is to rewrite this extension problem (3.32)-(3.33)

using different coordinates for the hyperbolic metric in X , such as (3.39).

3.3.2 An isolated singularity

Before we go to the general problem, let us look at positive solutions to

(−∆RN )γu = ΛN,γu
N+2γ

N−2γ in RN \{0} (3.34)

that have an isolated singularity at the origin. It is known ([40]) that such solutions

have the asymptotic behavior near the origin like r−
N−2γ

2 , for r = |x|. Thus it is

natural to write

u = r−
N−2γ

2 w. (3.35)
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Note that the power of the nonlinearity in the right hand side of (3.34) is chosen

so that the equation has good conformal properties. Indeed, let r = e−t and θ ∈
SN−1 and write the Euclidean metric in RN as

|dx|2 = dr2 + r2gSN−1

in polar coordinates. We use conformal geometry to rewrite equation (3.34). For

this, consider the conformal change

g0 :=
1
r2 |dx|2 = dt2 +gSN−1 ,

which is a complete metric defined on the cylinder M0 :=R×SN−1. The advantage

of using g0 as a background metric instead of the Euclidean one on RN is the

following: since the two metrics are conformally related, any conformal change

may be rewritten as

g̃ = u
4

N−2γ |dx|2 = w
4

N−2γ g0,

where we have used relation (3.35). Then, looking at the conformal transformation

property (3.28) for the conformal fractional Laplacian Pγ , it is clear that

Pg0
γ (w) = r

N+2γ

2 P|dx|2
γ (r−

N−2γ

2 w) = r
N+2γ

2 (−∆RN )γu, (3.36)

and thus equation (3.34) is equivalent to

Pg0
γ (w) = ΛN,γw

N+2γ

N−2γ in R×SN−1.

The operator Pg0
γ on R× SN−1 is explicit. Indeed, in [66] the authors calculate

its principal symbol using the spherical harmonic decomposition for SN−1. With

some abuse of notation, let µm, m = 0,1,2, . . . be the eigenvalues of ∆SN−1 , re-

peated according to multiplicity (this is, µ0 = 0, µ1, . . . ,µN = N−1,. . . ). Then any

function on R×SN−1 may be decomposed as ∑m wm(t)Em, where {Em(θ)} is the

corresponding basis of eigenfunctions. The operator Pg0
γ diagonalizes under such

eigenspace decomposition, and moreover, it is possible to calculate the Fourier
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symbol of each projection. Let

ŵ(ξ ) =
1√
2π

∫
R

e−iξ ·tw(t)dt (3.37)

be our normalization for the one-dimensional Fourier transform.

Proposition 3.3.4 ([66]). Fix γ ∈ (0, N
2 ) and let Pm

γ be the projection of the operator

Pg0
γ over each eigenspace 〈Em〉. Then

P̂m
γ (wm) = Θ

m
γ (ξ ) ŵm,

and this Fourier symbol is given by

Θ
m
γ (ξ ) = 22γ

∣∣∣Γ(1
2 +

γ

2 +
1
2

√
(N

2 −1)2 +µm + ξ

2 i
)∣∣∣2∣∣∣Γ(1

2 −
γ

2 +
1
2

√
(N

2 −1)2 +µm + ξ

2 i
)∣∣∣2 . (3.38)

Proof. Let us give some ideas in the proof because they will be needed in the next

subsections. It is inspired in the calculation of the Fourier symbol for the con-

formal fractional Laplacian on the sphere Sn (see the survey [109], for instance).

The method is, using spherical harmonics, to reduce the scattering equation (3.24)

to an ODE. For this, we go back to the scattering theory definition for the frac-

tional Laplacian and use different coordinates for the hyperbolic metric g+. More

precisely,

g+ = ρ
−2
{

ρ
2 +
(

1+ ρ2

4

)2
dt2 +

(
1− ρ2

4

)2
gSN−1

}
, ḡ = ρ

2g+, (3.39)

where ρ ∈ (0,2), t ∈ R. The conformal infinity {ρ = 0} is precisely the cylinder

(R×SN−1,g0). Actually, for the particular calculation here it is better to use the

new variable σ =− log(ρ/2), and write

g+ = dσ
2 +(coshσ)2dt2 +(sinhσ)2gSN−1 . (3.40)

115



Using this metric, the scattering equation (3.24) is

∂σσW +R(σ)∂σW +(coshσ)−2
∂ttW +(sinhσ)−2

∆SN−1W +
(N2

4 − γ
2)W = 0,

(3.41)

where W = W (σ , t,θ), σ ∈ (0,∞), t ∈ R, θ ∈ SN−1, and

R(σ) =
∂σ

(
coshσ sinhN−1

σ
)

coshσ sinhN−1
σ

.

After projection over spherical harmonics, and Fourier transform in t, the solution

to equation (3.41) maybe written as

Ŵm = ŵm ϕ(τ),

where we have used the change of variable τ = tanh(σ) and ϕ := ϕ(m) is a solution

to the boundary value problem
(1− τ2)∂ττϕ +

(N−1
τ
− τ
)

∂τϕ +
[
−µm

1
τ2 +(n2

4 − γ2) 1
1−τ2 −ξ 2

]
ϕ = 0,

has the expansion (3.25) with w≡ 1 near the conformal infinity {τ = 1} ,

ϕ is regular at τ = 0.

This is an ODE that can be explicitly solved in terms of hypergeometric functions,

and indeed,

ϕ(τ) = (1+ τ)
N
4 −

γ

2 (1− τ)
N
4 −

γ

2 τ
1−N

2 +

√(N
2 −1
)2

+µm

· 2F1(a,b;a+b− c+1;1− τ
2)

+S(1+ τ)
N
4 +

γ

2 (1− τ)
N
4 +

γ

2 τ
1−N

2 +

√(N
2 −1
)2

+µm

· 2F1(c−a,c−b;c−a−b+1;1− τ
2),

(3.42)

where

S(ξ ) =
Γ(−γ)

Γ(γ)

∣∣∣Γ(1
2 +

γ

2 +
1
2

√
(N

2 −1)2 +µm + ξ

2 i
)∣∣∣2∣∣∣Γ(1

2 −
γ

2 +
1
2

√
(N

2 −1)2 +µm + ξ

2 i
)∣∣∣2 ,
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and

a = −γ

2 + 1
2 +

1
2

√
(N

2 −1)2 +µm + i ξ

2 ,

b = −γ

2 + 1
2 +

1
2

√
(N

2 −1)2 +µm− i ξ

2 ,

c = 1+
√
(N

2 −1)2 +µm.

The Proposition follows by looking at the Neumann condition in the expansion

(3.25).

The interest of this proposition will become clear in Section 3.7, where we cal-

culate the indicial roots for the linearized problem. It is also the crucial ingredient

in the calculation of the Green’s function for the fractional Laplacian with Hardy

potential in Section 3.6.

We finally recall the fractional Hardy’s inequality in RN ([18, 99, 124, 179])

∫
RN

u(−∆RN )γudx≥ ΛN,γ

∫
RN

u2

r2γ
dx, (3.43)

where ΛN,γ is the Hardy constant given by

ΛN,γ = 22γ
Γ2(N+2γ

4 )

Γ2(N−2γ

4 )
= Θ

0
γ(0). (3.44)

Under the conjugation (3.35), inequality (3.43) is written as∫
R×SN−1

wPg0
γ wdtdθ ≥ ΛN,γ

∫
R×SN−1

w2 dtdθ .

3.3.3 The full symbol

Now we consider the singular Yamabe problem (3.5) in Rn \Rk. This particular

case is important because it is the model for a general higher dimensional singular-

ity (see [121]).

As in the introduction, set N := n− k. We define the coordinates z = (x,y),

x ∈ RN , y ∈ Rk in the product space Rn \Rk = (Rn−k \{0})×Rk. Sometimes we
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will consider polar coordinates for x, which are

r = |x|= dist(·,Rk) ∈ R+, θ ∈ SN−1.

We write the Euclidean metric in Rn as

|dz|2 = |dx|2 + |dy|2 = dr2 + r2gSN−1 + |dy|2.

Our model manifold M is going to be given by the conformal change

gk :=
1
r2 |dz|2 = gSN−1 +

dr2 + |dy|2

r2 = gSN−1 +gHk+1 , (3.45)

which is a complete metric, singular along Rk. In particular, M := SN−1×Hk+1.

As in the previous case, any conformal change may be rewritten as

g̃ = u
4

n−2γ |dz|2 = w
4

n−2γ gk,

where we have used relation

u = r−
n−2γ

2 w,

so we may just use gk as our background metric. As a consequence, arguing as

in the previous subsection, the conformal transformation property (3.28) for the

conformal fractional Laplacian yields that

Pgk
γ (w) = r

n+2γ

2 P|dz|2
γ (r−

n−2γ

2 w) = r
n+2γ

2 (−∆Rn)γu, (3.46)

and thus the original Yamabe problem (3.5) is equivalent to the following:

Pgk
γ (w) = Λn,γw

n+2γ

n−2γ on M.

Moreover, the expression for Pgk
γ in the metric gk (with respect to the standard

extension to hyperbolic space X = Hn+1) is explicit, and this is the statement of

the following theorem. For our purposes, it will be more convenient to write the
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standard hyperbolic metric as

g+ = ρ
−2
{

dρ
2 +
(
1+ ρ2

4

)2gHk+1 +
(
1− ρ2

4

)2gSN−1

}
, (3.47)

for ρ ∈ (0,2), so its conformal infinity {ρ = 0} is precisely (M,gk).

Consider the spherical harmonic decomposition for SN−1 as in Section 3.3.2.

Then any function w on M may be decomposed as w = ∑m wmEm, where wm =

wm(ζ ) for ζ ∈ Hk+1. We show that the operator Pgk
γ diagonalizes under such ei-

genspace decomposition, and moreover, it is possible to calculate the Fourier sym-

bol for each projection. Let ·̂ denote the Fourier-Helgason transform on Hk+1, as

described in the Appendix (section 3.11).

Theorem 3.3.5. Fix γ ∈ (0, n
2) and let Pm

γ be the projection of the operator Pgk
γ over

each eigenspace 〈Em〉. Then

P̂m
γ (wm) = Θ

m
γ (ξ ) ŵm,

and this Fourier symbol is given by

Θ
m
γ (λ ) = 22γ

∣∣∣Γ(1
2 +

γ

2 +
1
2

√
(N

2 −1)2 +µm + λ

2 i
)∣∣∣2∣∣∣Γ(1

2 −
γ

2 +
1
2

√
(N

2 −1)2 +µm + λ

2 i
)∣∣∣2 . (3.48)

Proof. We follow the arguments in Proposition 3.3.4, however, the additional in-

gredient here is to use Fourier-Helgason transform to handle the extra term ∆Hk+1

that will appear.

For the calculations below it is better to use the new variable

σ =− log(ρ/2), ρ ∈ (0,2),

and to rewrite the hyperbolic metric in Hn+1 from (3.47) as

g+ = dσ
2 +(coshσ)2gHk+1 +(sinhσ)2gSN−1 ,
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for the variables σ ∈ (0,∞), ζ ∈ Hk+1 and θ ∈ SN−1. The conformal infinity is

now {σ =+∞} and the scattering equation (3.24) is written as

∂σσW +R(σ)∂σW +(coshσ)−2
∆Hk+1W +(sinhσ)−2

∆SN−1W +
(n2

4 −γ
2)W = 0,

(3.49)

where W = W (σ ,ζ ,θ), and

R(σ) =
∂σ

(
(coshσ)k+1(sinhσ)N−1

)
(coshσ)k+1(sinhσ)N−1 .

The change of variable

τ = tanh(σ), (3.50)

transforms equation (3.49) into

(1− τ
2)2

∂ττW +
(n−k−1

τ
+(k−1)τ

)
(1− τ

2)∂τW +(1− τ
2)∆Hk+1W

+
( 1

τ2 −1
)

∆SN−1W +
(n2

4 − γ
2)W = 0.

Now we project onto spherical harmonics. This is, let Wm(τ,ζ ) be the projection

of W over the eigenspace 〈Em〉. Then each Wm satisfies

(1−τ
2)∂ττWm+

(n−k−1
τ

+(k−1)τ
)

∂τWm+∆Hk+1Wm−µm
1
τ2 Wm+

n2

4 −γ2

1−τ2 Wm = 0.

(3.51)

Taking the Fourier-Helgason transform in Hk+1 we obtain

(1− τ
2)∂ττŴm +

(n−k−1
τ

+(k−1)τ
)

∂τŴm

+
[
−µm

1
τ2 +(n2

4 − γ
2) 1

1−τ2 − (λ 2 + k2

4 )
]
Ŵm = 0

for Ŵm = Ŵm(λ ,ω). Fixed m = 0,1, . . ., λ ∈ R and ω ∈ Sk, we know that

Ŵm = ŵm ϕ
λ
k (τ),
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where ϕ := ϕλ
k (τ) is the solution to the following boundary value problem:

(1− τ2)∂ττϕ +
(n−k−1

τ
+(k−1)τ

)
∂τϕ +

[
−µm

1
τ2

+(n2

4 − γ2) 1
1−τ2 − (λ 2 + k2

4 )
]
ϕ = 0,

has the expansion (3.25) with w≡ 1 near the conformal infinity {τ = 1} ,

ϕ is regular at τ = 0.
(3.52)

This is an ODE in τ that has only regular singular points, and can be explicitly

solved. Indeed, from the first equation in (3.52) we obtain

ϕ(τ) =A(1− τ
2)

n
4−

γ

2 τ
1− n

2+
k
2+

√
(

n−k
2 −1)2+µm

2F1(a,b;c;τ
2)

+B(1− τ
2)

n
4−

γ

2 τ
1− n

2−
√

(
n−k

2 −1)2+µm
2F1(ã, b̃; c̃; ,τ2),

(3.53)

for any real constants A,B, where

a = −γ

2 + 1
2 +

1
2

√
(n−k

2 −1)2 +µm + i λ

2 ,

ã = −γ

2 + 1
2 −

1
2

√
(n−k

2 −1)2 +µm + i λ

2 ,

b = −γ

2 + 1
2 +

1
2

√
(n−k

2 −1)2 +µm− i λ

2 ,

b̃ = −γ

2 + 1
2 −

1
2

√
(n−k

2 −1)2 +µm− i λ

2 ,

c = 1+
√
(n−k

2 −1)2 +µm,

c̃ = 1−
√

(n−k
2 −1)2 +µm,

and 2F1 denotes the standard hypergeometric function described in Lemma 3.10.1.

Note that we can write λ instead of |λ | in the arguments of the hypergeometric

functions because a = b, ã = b̃ and property (3.163).

121



The regularity at the origin τ = 0 implies B = 0 in (3.53). Moreover, using

(3.162) we can write

ϕ(τ) = A
[

α(1− τ
2)

n
4−

γ

2 τ
1− n

2+
k
2+

√
(

n−k
2 −1)2+µm

2F1(a,b;a+b− c+1;1− τ
2)

+β (1− τ
2)

n
4+

γ

2 τ
1− n

2+
k
2+

√
(

n−k
2 −1)2+µm

2F1(c−a,c−b;c−a−b+1;1− τ
2)
]
,

where

α =
Γ

(
1+
√

(
n−k

2 −1)2+µm

)
Γ(γ)

Γ

(
1
2+

γ

2+
1
2

√
(

n−k
2 −1)2+µm−i λ

2

)
Γ

(
1
2+

γ

2+
1
2

√
(

n−k
2 −1)2+µm+i λ

2

) ,
β =

Γ

(
1+
√

(
n−k

2 −1)2+µm

)
Γ(−γ)

Γ

(
1
2−

γ

2+
1
2

√
(

n−k
2 −1)2+µm+i λ

2

)
Γ

(
1
2−

γ

2+
1
2

√
(

n−k
2 −1)2+µm−i λ

2

) .

Note that our changes of variable give

τ = tanh(σ) =
4−ρ2

4+ρ2 = 1− 1
2

ρ
2 + · · · , (3.54)

which yields, as ρ → 0,

ϕ(ρ)∼ A
[
αρ

n
2−γ +βρ

n
2+γ + . . .

]
.

Here we have used (3.161) for the hypergeometric function.

Looking at the expansion for the scattering solution (3.25) and the definition of

the conformal fractional Laplacian (3.27), we must have

A = α
−1, and Θ

m
γ (λ ) = dγβα

−1. (3.55)

Property (3.165) yields (3.48) and completes the proof of Theorem 3.3.5.

3.3.4 Conjugation

We now go back to the discussion in Section 3.3.2 for an isolated singularity but

we allow any subcritical power p ∈ ( N
N−2γ

, N+2γ

N−2γ
) in the right hand side of (3.34);
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this is,

(−∆RN )γu = AN,p,γup in RN \{0}. (3.56)

This equation does not have good conformal properties. But, given u ∈ C ∞(RN \
{0}), we can consider

u = r−
N−2γ

2 w = r−
2γ

p−1 v, r = e−t ,

and define the conjugate operator

P̃g0
γ (v) := r−

N−2γ

2 + 2γ

p−1 Pg0
γ

(
r

N−2γ

2 −
2γ

p−1 v
)
= r

2γ

p−1 p(−∆RN )γu. (3.57)

Then problem (3.56) is equivalent to

P̃g0
γ (v) = AN,p,γvp in R×SN−1,

for some v = v(t,θ) smooth, t ∈ R, θ ∈ SN−1.

This P̃gk
γ can then be seen from the perspective of scattering theory, and thus be

characterized as a Dirichlet-to-Neumann operator for a special extension problem

in Proposition 3.3.9, as inspired by the paper of Chang and González [52]. Note

the Neumann condition (3.76), which differs from the one of the standard fractional

Laplacian.

In the notation of Section 3.3.2, we set X = HN+1 with the metric given by

(3.39). Its conformal infinity is M = R×SN−1 with the metric g0. We would like

to repeat the arguments of Section 3.3 for the conjugate operator P̃g0
γ . But this

operator does not have good conformal properties. In any case, we are able to

define a new eigenvalue problem that replaces (3.24)-(3.25).

More precisely, let W be the unique solution to the scattering problem (3.24)-

(3.25) with Dirichlet data (3.26) set to w. We define the function V by the following

relation

rQ0W = V , Q0 :=−N−2γ

2 + 2γ

p−1 , (3.58)

Substituting into (3.24), the new scattering problem is

−∆g+V +
(

4+ρ2

4ρ

)−2 [
−2Q0 ∂tV −Q2

0V
]
−
(N4

2 − γ
2)V = 0 in X , (3.59)
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Moreover, if we set

V = ρ
N
2 −γV1 +ρ

N
2 +γV2, (3.60)

the Dirichlet condition (3.26) will turn into

V1|ρ=0 = v, (3.61)

and the Neumann one (3.27) into

dγV2|ρ=0 = P̃g0
γ (v). (3.62)

The following proposition is the analogous to Proposition 3.3.4 for P̃g0
γ :

Proposition 3.3.6. Fix γ ∈ (0, n
2) and let P̃m

γ be the projection of the operator P̃g0
γ

over each eigenspace 〈Em〉. Then

˜̂Pm
γ (vm) = Θ̃

m
γ (ξ ) v̂m,

and this Fourier symbol is given by

Θ̃
m
γ (ξ ) = 22γ

Γ

(1
2
+

γ

2
+

√
(N

2 −1)2 +µm

2
+

1
2
(Q0 +ξ i)

)
·Γ
(1

2
+

γ

2
+

√
(N

2 −1)2 +µm

2
− 1

2
(Q0 +ξ i)

)
·Γ
(1

2
− γ

2
+

√
(N

2 −1)2 +µm

2
+

1
2
(Q0 +ξ i)

)−1

·Γ
(1

2
− γ

2
+

√
(N

2 −1)2 +µm

2
− 1

2
(Q0 +ξ i)

)−1
.

(3.63)

Proof. We write the hyperbolic metric as (3.40) using the change of variable σ =

− log(ρ/2). The scattering equation for W is (3.49) in the particular case k = 0,

n = N, and thus, we follow the arguments in the proof of Theorem 3.3.5. Set

r = e−t and project over spherical harmonics as in (3.51), which yields

∂σσWm +R(σ)∂σWm +(coshσ)−2
∂ttWm− (sinhσ)−2

µmWm +
(N2

4 − γ
2)Wm = 0

(3.64)
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for

R(σ) =
∂σ (coshσ sinhN−1

σ)

coshσ sinhN−1
σ

.

Recall the relation (3.58) and rewrite the extension equation (3.64) in terms of each

projection Vm of V . This gives

∂σσVm +R(σ)∂σVm +(coshσ)−2 {∂ttVm +2Q0∂tVm +Q2
0Vm

}
−(sinhσ)−2

µmVm +
(N2

4 − γ
2)Vm = 0.

(3.65)

Now we use the change of variable (3.50), and take Fourier transform (3.37) with

respect to the variable t. Then

(1− τ
2)∂ττ V̂m +

(N−1
τ
− τ
)

∂τ V̂m +
[
−µm

1
τ2

+
(N2

4 − γ
2) 1

1−τ2 − (ξ − iQ0)
2
]
V̂m = 0. (3.66)

The Fourier symbol (3.63) is obtained following the same steps as in the proof of

Theorem 3.3.5. Note that the only difference is the coefficient of V̂m in (3.66).

We note here than an alternative way to calculate the symbol is by taking Four-

ier transform in relation P̃g0
γ (v) = e−Q0tPg0

γ (w), as follows:

˜̂Pm
γ vm(t) = P̂m

γ wm(ξ − iQ0) = Θ
m
γ (ξ − iQ0)ŵm(ξ − iQ0) = Θ

m
γ (ξ − iQ0)v̂m(ξ ).

Thus Θ̃m
γ (ξ ) = Θm

γ (ξ − iQ0), as desired.

Now we turn to Proposition 3.3.2, and we show that there exists a very special

defining function adapted to V .

Lemma 3.3.7. Let γ ∈ (0,1). There exists a new defining function ρ∗ such that, if

we define the metric ḡ∗ = (ρ∗)2g+, then

Eḡ∗(ρ
∗) = (ρ∗)−(1+2γ)

( 4ρ

4+ρ2

)2Q2
0,

where Eḡ∗(ρ
∗) is defined in (3.30). The precise expression for ρ∗ is

ρ
∗(ρ) =

[
α
−1( 4ρ

4+ρ2

)N−2γ

2 2F1

(
γ

p−1 ,
N−2γ

2 − γ

p−1 ; N
2 ;
(4−ρ2

4+ρ2

)2
)]2/(N−2γ)

, (3.67)

125



ρ ∈ (0,2), where

α =
Γ(N

2 )Γ(γ)

Γ
(
γ + γ

p−1

)
Γ
(N

2 −
γ

p−1

) .
The function ρ∗ is strictly monotone with respect to ρ , and in particular, ρ∗ ∈
(0,ρ∗0 ) for

ρ
∗
0 := ρ

∗(2) = α
−2

N−2γ . (3.68)

Moreover, it has the asymptotic expansion near the conformal infinity

ρ
∗(ρ) = ρ

[
1+O(ρ2γ)+O(ρ2)

]
. (3.69)

Proof. The proof follows Lemma 4.5 in [52]. The scattering equation (3.24) for

W is modified to (3.59) when we substitute (3.58), but the additional terms do not

affect the overall result. Then we know that, given v≡ 1 on M, (3.59) has a unique

solution V 0 with the asymptotic expansion

V 0 = V 0
1 ρ

N
2 −γ +V 0

2 ρ
N
2 +γ , V 0

1 ,V 0
2 ∈ C ∞(X)

and Dirichlet condition on M = R×SN−1

V 0
1 |ρ=0 = 1. (3.70)

Actually, from the proof of Proposition 3.3.6 and the modifications of Proposition

3.3.4 we do obtain an explicit formula for such V 0. Indeed, from (3.53) and (3.55)

for k = 0, n = N, m = 0, replacing iλ by Q0, we arrive at

V 0(τ) = ϕ(τ) = α
−1(1− τ

2)
N
4 −

γ

2 2F1

(
γ

p−1 ,
N−2γ

2 − γ

p−1 ; N
2 ;τ

2
)
.

Finally, substitute in the relation between τ and ρ from (3.54) and set

ρ
∗(ρ) = (V 0)

1
N/2−γ (ρ). (3.71)

Then, recalling (3.30), for this ρ∗ we have

Eḡ∗(ρ
∗) = (ρ∗)−

N
2 −γ−1

{
−∆g+−

(N2

4 − γ
2)}(V 0) = (ρ∗)−(1+2γ)

( 4ρ

4+ρ2

)2Q2
0,
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as desired. Here we have used the scattering equation for V 0 from (3.59) and the

fact that V 0 does not depend on the variable t.

To show monotonicity, denote η :=
(4−ρ2

4+ρ2

)2 for η ∈ (0,1). It is enough to

check that

f (η) := (1−η)
N−2γ

4 2F1

(
γ

p−1 ,
N−2γ

2 − γ

p−1 ; N
2 ;η

)
is monotone with respect to η . From properties (3.163) and (3.164) of the Hyper-

geometric function and the possible values for p in (3.9) we can assert that

d
dη

f (η)

=
d

dη

(
(1−η)−

N−2γ

4 + γ

p−1 (1−η)
N−2γ

2 −
γ

p−1 2F1
(N−2γ

2 − γ

p−1 ,
γ

p−1 ; N
2 ;η

))
=
(

N−2γ

4 − γ

p−1

)
(1−η)−

N−2γ

4 + γ

p−1−1(1−η)
N−2γ

2 −
γ

p−1

· 2F1
(N−2γ

2 − γ

p−1 ,
γ

p−1 ; N
2 ;η

)
− 2

N

(
N−2γ

2 − γ

p−1

)(
N
2 −

γ

p−1

)
(1−η)

N−2γ

2 −
γ

p−1−1

2F1
(N−2γ

2 − γ

p−1 +1, γ

p−1 ; N
2 +1;η

)
< 0.

Remark 3.3.8. For the Neumann condition, note that, by construction,

P̃g0
γ (1) = dγV

0
2 |ρ=0, (3.72)

while from (3.57) and the definition of AN,p,γ from (3.10),

P̃g0
γ (1) = r

2γ

p−1 p(−∆RN )γ(r−
2γ

p−1 ) = AN,p,γ .

The last result in this section shows that the scattering problem for V (3.59) can

be transformed into a new extension problem as in Proposition 3.3.2, and whose

Dirichlet-to-Neumann operator is precisely P̃g0
γ . For this we will introduce the new

metric on RN \{0}
ḡ∗ = (ρ∗)2g+, (3.73)

127



where ρ∗ is the defining function defined in (3.67), and let us denote

V ∗ = (ρ∗)−(N/2−γ)V . (3.74)

Proposition 3.3.9. Let v be a smooth function on M = R×SN−1. The extension

problem
−divḡ∗((ρ

∗)1−2γ∇ḡ∗V ∗)− (ρ∗)−(1+2γ)
(

4ρ

4+ρ2

)2
2Q0 ∂tV ∗= 0 in (X , ḡ∗),

V ∗|ρ=0= v on (M,g0),

(3.75)

has a unique solution V ∗. Moreover, for its Neumann data,

P̃g0
γ (v) =−d̃γ lim

ρ∗→0
(ρ∗)1−2γ

∂ρ∗(V ∗)+AN,p,γv. (3.76)

Proof. The original scattering equation (3.24)-(3.25) was rewritten in terms of V

(recall (3.58)) as (3.59)-(3.60) with Dirichlet condition V1|ρ=0 = v. Let us rewrite

this equation into the more familiar form of Proposition 3.3.2. We follow the argu-

ments in [52]; the difference comes from some additional terms that appear when

changing to V .

First use the definition of the classical conformal Laplacian for g+ (that has

constant scalar curvature Rg+ =−N(N +1)),

Pg+
1 =−∆g+− N2−1

4 ,

and the conformal property of this operator (3.28) to assure that

Pg+
1 (V ) = (ρ∗)

N+3
2 Pḡ

1 ((ρ
∗)−

N−1
2 V ).

Using (3.74) we can rewrite equation (3.59) in terms of V ∗ as

Pḡ
1 ((ρ

∗)
1−2γ

2 V ∗)+(ρ∗)
−3−2γ

2

{(
4+ρ2

4ρ

)−2 (
−2Q0 ∂tV ∗−Q2

0V ∗
)
+
(
γ

2− 1
4

)
V ∗
}
= 0
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or, equivalently, using that for ρ := ρ
1−2γ

2 ,

ρ∆ḡ∗(ρV ) = divḡ∗(ρ
2
∇ḡ∗V )+ρV ∆ḡ∗(ρ),

we have

−divḡ∗((ρ
∗)1−2γ

∇ḡ∗V ∗)+Eḡ∗(ρ
∗)V ∗

+(ρ∗)−(1+2γ)
(

4+ρ2

2ρ

)−2 (
−2Q0 ∂tV ∗−Q2

0V ∗
)
= 0,

with Eḡ∗(ρ
∗) defined as in (3.30). Finally, note that the defining function ρ∗ was

chosen as in Lemma 3.3.7. This yields (3.75).

For the boundary conditions, let us recall the asymptotics (3.69). The Dirich-

let condition follows directly from (3.26) and the asymptotics. For the Neumann

condition, we recall the definition of ρ∗ from (3.71), so

V ∗ = (ρ∗)−
N
2 +γV =

V

V 0 =
V1 +ρ2γV2

V 0
1 +ρ2γV 0

2
,

and thus

−d̃γ lim
ρ→0

ρ
1−2γ

∂ρV ∗ = dγ

(
V2V

0
1 −V1V

0
2
)∣∣

ρ=0 = P̃g0
γ v−AN,p,γv,

where we have used (3.61) and (3.62) for V , and (3.70) and (3.72) for V 0. This

completes the proof of the Proposition.

3.4 New ODE methods for non-local equations
In this section we use the conformal properties developed in the previous section

to study positive singular solutions to equation

(−∆RN )γu = AN,p,γup in RN \{0}. (3.77)

The first idea is, in the notation of Section 3.3.4, to set v = r
2γ

p−1 u and rewrite this

equation as

P̃g0
γ (v) = AN,p,γvp, in R×SN−1, (3.78)
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and to consider the projection over spherical harmonics in SN−1,

P̃m
γ (vm) = AN,p,γ(vm)

p, for v = v(t),

While in Proposition 3.3.6 we calculated the Fourier symbol for P̃m
γ , now we will

write it as an integro-differential operator for a well behaved convolution kernel.

The advantage of this formulation is that immediately yields regularity for vm as in

[65].

Now we look at the m = 0 projection, which corresponds to finding radially

symmetric singular solutions to (3.77). This is a non-local ODE for u= u(r). In the

second part of the section we define a suitable Hamiltonian quantity in conformal

coordinates in the spirit a classical second order ODE.

3.4.1 The kernel

We consider first the projection m= 0. Following the argument in [65], one can use

polar coordinates to rewrite P̃0
γ as an integro-differential operator with a new con-

volution kernel. Indeed, polar coordinates x = (r,θ) and x̄ = (r̄, θ̄) in the definition

of the fractional Laplacian (3.2) give

(−∆RN )γu(x) = kN,γP.V.
∫

∞

0

∫
SN−1

r−
2γ

p−1 v(r)− r̄−
2γ

p−1 v(r̄)

|r2 + r̄2 +2rr̄〈θ , θ̄〉|
N+2γ

2

r̄N−1 dr̄ dθ̄ .

After the substitutions r̄ = rs and v(r) = (1− s−
2γ

p−1 )v(r)+ s−
2γ

p−1 v(r), and recalling

the definition for P̃0
γ from (3.57) we have

P̃0
γ (v) = kN,γP.V.

∫
∞

0

∫
SN−1

s−
2γ

p−1+N−1(v(r)− v(rs))

|1+ s2−2s〈θ , θ̄〉|
N+2γ

2

dsdθ̄ +Cv(r),

where

C = kN,γP.V.
∫

∞

0

∫
SN−1

(1− s−
2γ

p−1 )sN−1

|1+ s2−2s〈θ , θ̄〉|
N+2γ

2

dsdθ̄ .
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Using the fact that v≡ 1 is a solution, one gets that C = AN,p,γ . Finally, the change

of variables r = e−t , r̄ = e−t ′ yields

P̃0
γ (v)(t) = P.V.

∫
R

˜K0(t− t ′)[v(t)− v(t ′)]dt ′+AN,p,γv(t) (3.79)

for the convolution kernel

˜K0(t) =
∫
SN−1

kN,γe−(
2γ

p−1−N)t

|1+ e2t −2et〈θ , θ̄〉|
N+2γ

2

dθ̄

= ce−(
2γ

p−1−
N−2γ

2 )t
∫

π

0

(sinφ1)
N−2

(cosh t− cosφ1)
N+2γ

2

dφ1,

where φ1 is the angle between θ and θ̄ in spherical coordinates, and c is a positive

constant that only depends on N and γ . From here we have the explicit expression

˜K0(t) = ce−(
2γ p
p−1 )t 2F1

(N+2γ

2 ,1+ γ; N
2 ;e−2t), (3.80)

for a different constant c.

As in [65], one can calculate its asymptotic behavior, and we refer to this paper

for details:

Lemma 3.4.1. The kernel ˜K0(t) is decaying as t→±∞. More precisely,

˜K0(t)∼


|t|−1−2γ as |t| → 0,

e−(N−
2γ

p−1 )|t| as t→−∞,

e−
2pγ

p−1 |t| as t→+∞.

The main result in this section is that one obtains a formula analogous to (3.79)

for any projection P̃m
γ . However, we have not been able to use the previous argu-

ment and instead, we develop a new approach using conformal geometry and the

special defining function ρ∗ from Proposition 3.3.2.

Set Q0 =
2γ

p−1 −
N−2γ

2 . In the notation of Proposition 3.3.6 we have:
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Proposition 3.4.2. For the m-th projection of the operator P̃g0
γ we have the expres-

sion

P̃m
γ (vm)(t) =

∫
R

˜Km(t− t ′)[vm(t)− vm(t ′)]dt ′+AN,p,γvm(t),

for a convolution kernel ˜Km on R with the asymptotic behavior

˜Km(t)∼


|t|−1−2γ as |t| → 0,

e−
(

1+γ+
√

(N−2
2 )2+µm+Q0

)
t as t→+∞,

e
(

1+γ+
√

(N−2
2 )2+µm−Q0

)
t as t→−∞.

Proof. We first consider the case that p = N+2γ

N−2γ
so that Q0 = 0, and look at the

operator Pg0
γ (w) from Proposition 3.3.4. Let ρ∗ be the new defining function from

Proposition 3.3.2 and write a new extension problem for w in the corresponding

metric ḡ∗. In this particular case, we can use (3.67) to write

ρ
∗(ρ) =

[
α
−1( 4ρ

4+ρ2

)N−2γ

2
2F1

(
N−2γ

4 , N−2γ

4 , N
2 ,
(4−ρ2

4+ρ2

)2
)] 2

N−2γ

, α =
Γ(N

2 )Γ(γ)

Γ(N
4 + γ

2)
2
.

The extension problem for ḡ∗ is−divḡ∗((ρ
∗)1−2γ∇ḡ∗W ∗)= 0 in (X , ḡ∗),

W ∗|ρ=0= w on (M,g0);

notice that it does not have a zero-th order term. Moreover, for the Neumann data,

Pg0
γ (w) =−d̃γ lim

ρ∗→0
(ρ∗)1−2γ

∂ρ∗(W ∗)+ΛN,γw.

From the proof of Proposition 3.3.2 we know that W ∗ = (ρ∗)−(N/2−γ)W , where

W is the solution to (3.41). Taking the projection over spherical harmonics, and

arguing as in the proof of Proposition 3.3.4, we have that Ŵm(τ,ξ ) = ŵm(ξ )ϕ(τ),

and ϕ = ϕ
(m)
ξ

is given in (3.42). Let us undo all the changes of variable, but let us

keep the notation ϕ(ρ∗) = ϕ
(m)
ξ

(τ).
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Taking the inverse Fourier transform, we obtain a Poisson formula

W ∗m(ρ
∗, t) =

∫
R

Pm(ρ
∗, t− t ′)wm(t ′)dt ′,

where

Pm(ρ
∗, t) =

1√
2π

∫
R
(ρ∗)−(N/2−γ)

ϕ(ρ∗)eiξ t dξ .

Note that, by construction,
∫
RPm(ρ

∗, t)dt = 1 for all ρ∗. Now we calculate

lim
ρ∗→0

(ρ∗)1−2γ
∂ρ∗(W ∗m) = lim

ρ∗→0
(ρ∗)1−2γ W ∗m(ρ

∗, t)−W ∗m(0, t)
ρ∗

= lim
ρ∗→0

(ρ∗)1−2γ

∫
R

Pm(ρ
∗, t− t ′)

ρ∗
[wm(t ′)−wm(t)]dt ′.

This implies that

Pm
γ (wm)(t) =

∫
R

Km(t− t ′)[wm(t)−wm(t ′)]dt ′+ΛN,γwm(t), (3.81)

where the convolution kernel is defined as

Km(t) = d̃γ lim
ρ∗→0

(ρ∗)1−2γ Pm(ρ
∗, t)

ρ∗
.

If we calculate this limit, the precise expression for ϕ from (3.42) yields that

Km(t) =
1√
2π

∫
R
(Θm

γ (ξ )−ΛN,γ)eiξ t dξ , Km(−t) = Km(t).

which, of course, agrees with Proposition 3.3.4.

The asymptotic behavior for the kernel follows from the arguments in Section

3.6, for instance. In particular, the limit as t → 0 is an easy calculation since

Stirling’s formula implies that Θm
γ (ξ ) ∼ |ξ |2γ as ξ → ∞. For the limit as |t| → ∞

we use that the first pole of the symbol happens at ±i(1+ γ +
√

(N−2
2 )2 +µm) so

it extends analytically to a strip that contains the real axis. We have:

Km(t)∼

|t|−1−2γ as |t| → 0,

e−
(

1+γ+
√

(N−2
2 )2+µm

)
|t| as t→±∞.
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Now we move on to P̃g0
γ (v), whose symbol is calculated in Proposition 3.3.6.

Recall that under the change w(t) = r−Q0v(t), we have

P̃g0
γ (v) = e−Q0tPg0

γ (eQ0tv).

From (3.81), if we split eQ0tvm(t) = (eQ0t − eQ0t ′)vm(t)+ eQ0t ′vm(t), then

P̃g0
γ (v)(t) =Cv(t)+

∫
R

˜Km(t− t ′)(vm(t)− vm(t ′))dt ′

for the kernel

˜Km(t) = Km(t)e−Q0t =
1√
2π

e−Q0t
∫
R
(Θm

γ (ξ )−ΛN,γ)eiξ t dξ ,

and the constant

C = ΛN,γ +
∫
R

Km(t− t ′)(1− eQ0(t ′−t))dt ′.

We have not attempted a direct calculation for the constant C. Instead, by noting

that v ≡ 1 is an exact solution to the equation P̃g0
γ (v) = AN,p,γvp, we have that

C = AN,p,γ , and this completes the proof of the proposition.

3.4.2 The Hamiltonian along trajectories

Now we concentrate on positive radial solutions to (3.78). These satisfy

P̃0
γ (v) = AN,p,γvp, v = v(t). (3.82)

We prove the existence of a Hamiltonian type quantity for (3.82), decreasing along

trajectories when p is in the subcritical range, while this Hamiltonian remains con-

stant in t for critical p. Monotonicity formulas for non-local equations in the form

of a Hamiltonian have been known for some time ([36, 38, 98]). Our main innova-

tion is that our formula (3.83) gives a precise analogue of the ODE local case (see

Proposition 1 in [132], and the notes [163]), and hints what the phase portrait for v

should be in the non-local setting. We hope to return to this problem elsewhere.
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Theorem 3.4.3. Fix γ ∈ (0,1) and p ∈ ( N
N−2γ

, N+2γ

N−2γ
). Let v = v(t) be a solution

to (3.82) and set V ∗ its extension from Proposition 3.3.9. Then, the Hamiltonian

quantity

H∗γ (t) =
AN,p,γ

d̃γ

(
−1

2
v2 +

1
p+1

vp+1
)

+
1
2

∫
ρ∗0

0
(ρ∗)1−2γ

{
−e∗1(∂ρ∗V ∗)2 + e∗2(∂tV ∗)2} dρ

∗

= : H1(t)+H2(t)

(3.83)

is decreasing with respect to t. In addition, if p = N+2γ

N−2γ
, then H∗γ (t) is constant

along trajectories.

Here we write, using Lemma 3.3.7, ρ as a function of ρ∗, and

e∗ =
(

ρ∗

ρ

)2(
1+ ρ2

4

)(
1− ρ2

4

)N−1
,

e∗1 =
(

ρ∗

ρ

)−2
e∗,

e∗2 =
(

ρ∗

ρ

)−2(
1+ ρ2

4

)−2
e∗.

(3.84)

The constants AN,p,γ and d̃γ are given in (3.10) and (3.31), respectively.

Proof. In the notation of Proposition 3.3.9, let v be a function on M = R×SN−1

only depending on the variable t ∈ R, and let V ∗ be the corresponding solution to

the extension problem (3.75). Then V ∗ =V ∗(ρ, t). Use that

divḡ∗((ρ
∗)1−2γ

∇ḡ∗V ∗) =
1
e∗

∂ρ∗

(
e∗(ρ∗)−(1+2γ)

ρ
2
∂ρ∗V ∗

)
+(ρ∗)1−2γ

(
ρ∗

ρ

)−2(
1+ ρ2

4

)−2
∂ttV ∗,

where e∗ = |
√

ḡ∗| is given in (3.84), so equation (3.75) reads

−∂ρ∗

(
e∗ρ2(ρ∗)−(1+2γ)

∂ρ∗V ∗
)
− (ρ∗)1−2γe∗

(
ρ∗

ρ

)−2(
1+ ρ2

4

)−2
∂ttV ∗

− (ρ∗)−(1+2γ)e∗
(

4+ρ2

4ρ

)−2
2
(
−N−2γ

2 + 2γ

p−1

)
∂tV ∗ = 0.
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We follow the same steps as in [66]: multiply this equation by ∂tV ∗ and integrate

with respect to ρ∗ ∈ (0,ρ∗0 ), where ρ∗0 is given in (3.68). Using integration by

parts in the first term, the regularity of the function V ∗ at ρ∗0 , and the fact that
1
2 ∂t
[
(∂tV ∗)2

]
= ∂ttV ∗∂tV ∗ and 1

2 ∂t
[
(∂ρ∗V ∗)2

]
= ∂tρ∗(V ∗)∂ρ∗V ∗, it holds

lim
ρ∗→0

(
∂t(V ∗)e∗(ρ∗)−(1+2γ)

ρ
2
∂ρ∗V ∗

)
+
∫

ρ∗0

0

[
1
2 e∗(ρ∗)−(1+2γ)

ρ
2
∂t
[
(∂ρ∗V ∗)2]] dρ

∗

−
∫

ρ∗0

0

[
1
2(ρ

∗)1−2γe∗
(

ρ

ρ∗

)2(
1+ ρ2

4

)−2
∂t
[
(∂tV ∗)2]] dρ

∗

−
∫

ρ∗0

0

[
(ρ∗)−(1+2γ)e∗

(
4ρ

4+ρ2

)2
2
(
−N−2γ

2 + 2γ

p−1

)
[∂tV ∗]

2
]

dρ
∗

= 0.

But, for the limit as ρ∗→ 0, we may use (3.76) and (3.82) to obtain

d̃γ lim
ρ∗→0

(
(ρ∗)−(1+2γ)

ρ
2e∗∂tV ∗∂ρ∗V ∗

)
=
[
−P̃g0

γ v+AN,p,γv
]

∂tv = AN,p,γ(v− vp)∂tv

= AN,p,γ∂t

(
1
2 v2− 1

p+1 vp+1
)
.

Then, for H(t) defined as in (3.83), we have

∂t [H(t)]

=−2
∫

ρ∗0

0

[
(ρ∗)1−2γe∗

(
ρ

ρ∗

)−2(
1+ ρ2

4

)−2(
−N−2γ

2 + 2γ

p−1

)
[∂tV ∗]

2
]

dρ
∗

≤ 0,

which proves the result.
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3.5 The approximate solution

3.5.1 Function spaces

In this section we define the weighted Hölder space C 2,α
µ,ν (Rn \Σ) tailored for this

problem, following the notations and definitions in Section 3 of [133]. Intuitively,

these spaces consist of functions which are products of powers of the distance to Σ

with functions whose Hölder norms are invariant under homothetic transformations

centered at an arbitrary point on Σ.

Despite the non-local setting, the local Fermi coordinates are still in use around

each component Σi of Σ. When Σi is a point, these are simply polar coordinates

around it. In case Σi is a higher dimensional sub-manifold, let T i
σ be the tubular

neighbourhood of radius σ around Σi. It is well known that T i
σ is a disk bundle

over Σi; more precisely, it is diffeomorphic to the bundle of radius σ in the normal

bundle N Σi. The Fermi coordinates will be constructed as coordinates in the

normal bundle transferred to T i
σ via such diffeomorphism. Let r be the distance

to Σi, which is well defined and smooth away from Σi for small σ . Let also y be

a local coordinate system on Σi and θ the angular variable on the sphere in each

normal space NyΣi. We denote by BN
σ the ball of radius σ in NyΣi. Finally we let

x denote the rectangular coordinate in these normal spaces, so that r = |x|, θ = x
|x| .

Let u be a function in this tubular neighbourhood and define

‖u‖T
i

σ

0,α,0 = sup
z∈T i

σ

|u|+ sup
z,z̃∈T i

σ

(r+ r̃)α |u(z)−u(z̃)|
|r− r̃|α + |y− ỹ|α +(r+ r̃)α |θ − θ̃ |α

,

where z, z̃ are two points in T i
σ and (r,θ ,y),(r̃, θ̃ , ỹ) are their Fermi coordinates.

We fix a R > 0 be large enough such that Σ⊂ B R
2
(0) in Rn. Hereafter the letter

z is reserved to denote a point in Rn \Σ. For notational convenience let us also fix

a positive function ρ ∈ C ∞(Rn \Σ) that is equal to the polar distance r in each T i
σ ,

and to |z| in Rn \BR(0).
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Definition 3.5.1. The space C l,α
0 (Rn\Σ) is defined to be the set of all u∈C l,α(Rn\

Σ) for which the norm

‖u‖l,α,0 = ‖u‖C l,α (Σc
σ/2)

+
K

∑
i=1

l

∑
j=0
‖∇ ju‖C 0,α (T i

σ )

is finite. Here Σc
σ/2 = Rn \

⋃K
i=1 T i

σ/2.

Let us define a weighted Hölder space for functions having different behaviors

near Σ and at ∞. With R > 0 fixed, for any µ,ν ∈ R we set

C l,α
µ (BR \Σ) = {u = ρ

µ ū : ū ∈ C l,α
0 (BR \Σ)},

C l,α
ν (Rn \BR) = {u = ρ

ν ū : ū ∈ C l,α
0 (Rn \BR)},

and thus we can define:

Definition 3.5.2. The space C l,α
µ,ν(Rn \Σ) consists of all functions u for which the

norm

‖u‖
C l,α

µ,ν
= sup

BR\Σ
‖ρ−µu‖l,α,0 + sup

Rn\BR

‖ρ−νu‖l,α,0

is finite. The spaces C l,α
µ,ν(RN \ {0}) and C l,α

µ,ν(Rn \Rk) are defined similarly, in

terms of the (global) Fermi coordinates (r,θ) or (r,θ ,y) and the weights rµ , rν .

Remark 3.5.3. From the definition of C l,α
µ,ν , functions in this space are allowed to

blow up like ρµ near Σi and decay like ρν at ∞. Moreover, near Σi, their derivatives

with respect to up to l-fold products of the vector fields r∂r,r∂y,∂θ blow up no

faster than ρµ while at ∞, their derivatives with respect to up to l-fold products of

the vector fields |z|∂i decay at least like ρν .

Remark 3.5.4. As it is customary in the analysis of fractional order operators, we

write many times, with some abuse of notation, C 2γ+α

µ,ν .

3.5.2 Approximate solution with isolated singularities

Let Σ = {q1, · · · ,qK} be a prescribed set of singular points. In the next paragraphs

we construct an approximate solution to

(−∆RN )γu = AN,p,γup in RN \Σ,
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and check that it is indeed a good approximation in certain weighted spaces.

Let u1 be the fast decaying solution to (3.77) that we constructed in Proposition

3.2.1. Now consider the following rescaling

uε(x) = ε
− 2γ

p−1 u1

( x
ε

)
in RN \{0}. (3.85)

Choose χd to be a smooth cut-off function such that χd = 1 if |x| ≤ d and

χd(x) = 0 for |x| ≥ 2d, where d > 0 is a positive constant such that d < d0 =

infi 6= j{dist(qi,q j)/2}. Let ε̄ = {ε1, · · · ,εK} be a K-tuple of dilation parameters

satisfying cε ≤ εi ≤ ε < 1 for i = 1, . . . ,K. Now define our approximate solution

by

ūε(x) =
K

∑
i=1

χd(x−qi)uεi(x−qi).

Set also

fε := (−∆x)
γ ūε −AN,p,γ ūp

ε . (3.86)

For the rest of the section, we consider the spaces C 0,α
µ̃,ν̃ , where

− 2γ

p−1
< µ̃ < 2γ and − (n−2γ)< ν̃ . (3.87)

Lemma 3.5.5. There exists a constant C, depending on d, µ̃, ν̃ only, such that

‖ fε‖C 0,α
µ̃−2γ,ν̃−2γ

≤Cε
N− 2pγ

p−1 . (3.88)

Proof. Using the definition of (−∆)γ in RN , one has

(−∆x)
γ(χiuεi)(x−qi)

= kN,γP.V.
∫
RN

χi(x−qi)uεi(x−qi)−χi(x̃−qi)uεi(x̃−qi)

|x− x̃|N+2γ
dx̃

= χi(x−qi)(−∆x)
γuεi(x−qi)

+ kN,γP.V.
∫
RN

(χi(x−qi)−χi(x̃−qi))uεi(x̃−qi)

|x− x̃|N+2γ
dx̃
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for each i = 1, . . . ,K. Using the equation (3.11) satisfied by uεi we have

fε(x) = AN,p,γ

K

∑
i=1

(χi−χ
p
i )u

p
εi(x−qi)

+ kN,γ

K

∑
i=1

P.V.
∫
RN

(χi(x−qi)−χi(x̃−qi))uεi(x̃−qi)

|x− x̃|N+2γ
dx̃

=: I1 + kN,γ I2.

Let us look first at the term I1. It vanishes unless |x− qi| ∈ [d,2d] for some i =

1, . . . ,K. But then, one knows from the asymptotic behaviour of uεi that

uεi(x) = O
(

ε
− 2γ

p−1
i

∣∣∣x−qi

εi

∣∣∣−(N−2γ))
= O(εN−2γ− 2γ

p−1 )|x−qi|−(N−2γ),

so one has

I1(x)≤Cε
N−2γ− 2γ

p−1 if |x−qi| ∈ [d,2d].

For the second term I2 = I2(x), we fix i = 1, . . . ,K, and divide it into three

cases: x ∈ Bd/2(qi), x ∈ B2d(qi) \Bd/2(qi) and x ∈ RN \B2d(qi). In the first case,

x ∈ Bd/2(qi), without loss of generality, assume that qi = 0, so

I2(x) = P.V.
∫
RN

(χi(x)−χi(x̃))uεi(x̃)
|x− x̃|N+2γ

dx̃

= P.V
[∫

Bd(0)
· · ·+

∫
B2d\Bd(0)

· · ·+
∫
RN\B2d(0)

· · ·
]

.
∫
{d<|x̃|<2d}

uεi(x̃)
|x− x̃|N+2γ−2 dx̃+

∫
{|x̃|>2d}

uεi(x̃)
|x− x̃|N+2γ

dx̃.

Hereafter “· · ·” carries its obvious meaning, replacing the previously written integ-

rand. Using that |x− x̃| ≥ 1
2 |x̃| for |x̃|> 2d when |x|< d

2 we easily estimate

I2(x)≤ O(εN− 2pγ

p−1 )+
∫

∞

2d

uεi(r)
r1+2γ

dr = O(εN− 2pγ

p−1 ).
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Next, if x ∈ B2d(qi)\Bd/2(qi),

I2(x) = P.V.
[∫

Bd/4(qi)
· · ·+

∫
B2d(qi)\Bd/4(qi)

· · ·+
∫
RN\B2d(qi)

· · ·
]

= O
(∫ d

4ε

0
ε

N− 2pγ

p−1 u1(x̃)dx̃
)
+O

(∫
B2d(qi)\Bd/4(qi)

ε
N− 2pγ

p−1

|x− x̃|N+2γ−2 dx̃
)

+O
(∫

RN\B2d(qi)

uεi(x̃)
|x̃|N+2γ

dx̃
)

= O(εN− 2pγ

p−1 ).

Finally, if x ∈ RN \B2d(qi),

I2(x) = P.V.
[∫

Bd(qi)
· · ·+

∫
B2d\Bd(qi)

· · ·+
∫
RN\B2d(qi)

· · ·
]

= O(εN− 2pγ

p−1 |x|−(N+2γ)).

Combining all the estimates above we get a C 0
µ̃−2γ,ν̃−2γ

bound for a pair of weights

satisfying (3.87). But passing to C 0,α
µ̃−2γ,ν̃−2γ

is analogous and thus we obtain (3.88).

3.5.3 Approximate solution in general case

First note that our ODE argument for u1 also yields a fast decaying positive solution

to the general problem

(−∆Rn)γu = AN,p,γup in Rn \Rk. (3.89)

that is singular along Rk. Recall that we have set N = n− k.

Indeed, define ũ1(x,y) := u1(x), where z = (x,y) ∈ Rn−k ×Rk, and use the

Lemma below. For this reason, many times we will use indistinctly the notations

u1(z) and u1(x). Moreover, after a straightforward rescaling, the constant AN,p,γ

may be taken to be one.

Lemma 3.5.6. If u is defined on RN and we set ũ(z) := u(x) in Rn in the notation

above, then

(−∆Rn)γ ũ = (−∆RN )γu.

141



Proof. We compute, first evaluating the y-integral,

(−∆Rn)γ ũ(z) = kn,γP.V.
∫
Rn

ũ(z)− ũ(z̃)
|z− z̃|n+2γ

dz̃

= kn,γP.V.
∫
Rk

∫
RN

u(x)−u(x̃)

[|x− x̃|2 + |y− ỹ|2]
n+2γ

2

dx̃dỹ

= kn,γP.V.
∫
RN

u(x)−u(x̃)
|x− x̃|N+2γ

dx̃
∫
Rk

1

(1+ |ỹ|2)
n+2γ

2

dỹ

= (−∆RN )γu(x).

Here we have used

kn,γ

∫
Rk

1

(1+ |ỹ|2)
n+2γ

2

dỹ = kN,γ . (3.90)

(See Lemma A.1 and Corollary A.1 in [50]).

Now we turn to the construction of an approximate solution for (3.3). Let Σ be a

k-dimensional compact sub-manifold in Rn. We shall use local Fermi coordinates

around Σ, as defined in Section 3.5.1. Let Tσ be the tubular neighbourhood of

radius σ around Σ. For a point z ∈ Tσ , denote it by z = (x,y) ∈N Σ×Σ where

N Σ is the normal bundle of Σ. Let B a ball in N Σ. We identify Tσ with B×Σ.

In these coordinates, the Euclidean metric is written as (see, for instance, [137])

|dz|2 =

(
|dx|2 O(r)

O(r) gΣ +O(r)

)
,

where |dx|2 is the standard flat metric in B and gΣ the metric in Σ. The volume

form reduces to

dz = dx
√

detgΣ +O(r).

In the ball B we use standard polar coordinates r > 0, θ ∈ SN−1. In addition,

near each q ∈ Σ, we will consider normal coordinates for gΣ centered at q. A

neighborhood of Σ 3 q is then identified with a neighborhood of Rk 3 0 with the

metric

gΣ = |dy|2 +O(|y|2),
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which yields the volume form

dz = dxdy(1+O(r)+O(|y|2)). (3.91)

Note that Σ is compact, so we can cover it by a finite number of small balls B.

As in the isolated singularity case, we define an approximate solution as fol-

lows:

ūε(x,y) = χd(x)uε(x)

where χR is a cut-off function such that χd = 1 if |x| ≤ d and χd(x) = 0 for |x| ≥ 2d.

In the following we always assume d < σ

2 . Let

fε := (−∆Rn)γ ūε − ūp
ε .

Lemma 3.5.7. Assume, in addition to (3.87), that − 2γ

p−1 < µ̃ < min{γ− 2γ

p−1 ,
1
2 −

2γ

p−1}. Then there exists a positive constant C depending only on d, µ̃, ν̃ but inde-

pendent of ε such that for ε � 1,

‖ fε‖C 0,α
µ̃−2γ,ν̃−2γ

≤Cε
q, (3.92)

where q = min{ (p−3)γ
p−1 − µ̃, 1

2 − γ + (p−3)γ
p−1 − µ̃,N− 2pγ

p−1}> 0.

Proof. Let us fix a point z = (x,y) ∈ Tσ , i.e. |x| < σ . By the definition of the

fractional Laplacian,

(−∆z)
γ ūε(z) = kn,γP.V.

∫
Rn

ūε(z)− ūε(z̃)
|z− z̃|n+2γ

dz̃

= kn,γ

[
P.V.

∫
Tσ

· · ·+
∫

T c
σ

· · ·
]
=: I1 + I2.

Note that in this neighborhood we can write ūε(z) := ūε(x).

For I2, since ūε(x̃) = 0 when z̃ = (x̃, ỹ) ∈T c
σ , one has

I2 = kn,γ

∫
T c

σ

ūε(x)− ūε(x̃)
|z− z̃|n+2γ

dz̃ = ūε(x)kn,γ

∫
T c

σ

1
|z− z̃|n+2γ

dz̃≤Cūε(x),
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so I2 = O(1)ūε(x) (the precise constant depends on σ ). Next, for I1, use normal

coordinates ỹ in Σ centered at y in a neighborhood {|y− ỹ|< σ1} for some σ1 small

but fixed. The constants will also depend on this σ1. We have

I1 = kn,γP.V.
∫

Tσ

ūε(x)− ūε(x̃)
|z− z̃|n+2γ

dz̃

= kn,γP.V.
[∫
{|y−ỹ|≤|x|β }∩Tσ

· · ·+
∫
{σ1>|y−ỹ|>|x|β }∩Tσ

· · ·+
∫
{|y−ỹ|>σ1}∩Tσ

· · ·
]

=: kn,γ [I11 + I12 + I13],

where β ∈ (0,1) is to be determined later. The main term will be I11; let us calculate

the other two. First, for I12 we recall the expansion of the volume form (3.91),

and approximate |z− z̃|2 = |x− x̃|2 + |y− ỹ|2 and dz̃ = dx̃dỹ modulo lower order

perturbations. Then

I12 =
∫
{σ1>|y−ỹ|>|x|β }∩Tσ

ūε(x)− ūε(x̃)
|z− z̃|n+2γ

dz̃

=
∫
{σ1>|y−ỹ|>|x|β }

∫
{|x−x̃|≤|x|β }∩Tσ

· · ·+
∫
{σ1>|y−ỹ|>|x|β }

∫
{|x−x̃|>|x|β }∩Tσ

· · ·

.
∫
{|x−x̃|≤|x|β }

(ūε(x)− ūε(x̃))
(∫
{σ1>|y−ỹ|>|x|β }

1
|z− z̃|n+2γ

dỹ
)

dx̃

+
∫
{|x−x̃|>|x|β }

ūε(x)− ūε(x̃)
|x− x̃|N+2γ

(∫{
|ŷ|> |x|β

|x−x̃|

} 1

(1+ |ŷ|2)
n+2γ

2

dŷ
)

dx̃.

We estimate the above integrals in dỹ. For instance, for the first term, we have used

that ∫
{σ1>|y−ỹ|>|x|β }

1
|z− z̃|n+2γ

dỹ≤
∫
{σ1>|y−ỹ|>|x|β }

1
|y− ỹ|n+2γ

dỹ

.
∫
{|y|≥|x|β }

1
|y|n+2γ

dy

.
∫

∞

|x|β

rk−1

rn+2γ
dr . |x|−β (N+2γ),

which yields,

I12 .
∫
{|x−x̃|≤|x|β }

(ūε(x)− ūε(x̃))|x|−β (N+2γ) dx̃+
∫
{|x−x̃|>|x|β }

ūε(x)− ūε(x̃)
|x− x̃|N+2γ

dx̃.
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Now, since |x− x̃|> |x|β implies that |x̃|> c0|x|β and |x− x̃| ∼ |x̃| for some c0 > 0

independent of |x| small,

I12 . |x|−2βγ ūε(x)+ |x|−β (N+2γ)
∫
{|x−x̃|≤|x|β }

ūε(x̃)dx̃+
∫
{|x̃|>c0|x|β }

ūε(x̃)
|x̃|N+2γ

dx̃

+
∫
{|x̃|≥c0|x|β }

ūε(x)
|x̃|N+2γ

.

We conclude, using the definition of ūε and the rescaling (3.85), that

I12 . |x|−2βγ ūε(x)+ ε
N− 2γ

p−1 |x|−β (N+2γ)
∫{
|x̃|≤ |x|

β

ε

} u1(x̃)dx̃

+ ε
− 2pγ

p−1

∫{
|x̃|> |x|

β

ε

} u1(x̃)
|x̃|N+2γ

dx̃+ |x|−2γβ ūε(x).

For I13, one has

I13 ≤C
∫

Tσ

|ūε(x)|+ |ūε(x̃)|dx̃≤C(ūε(x)+ ε
N− 2pγ

p−1 (1+ |x|)−(N−2γ)).

We look now into the main term I11, for which we need to be more precise,

I11 = P.V.
∫
{|y−ỹ|≤|x|β }

∫
{|x̃|<σ}

ūε(x)− ūε(x̃)
|z− z̃|n+2γ

dz̃

= P.V.
[∫
{|y−ỹ|≤|x|β }

∫
{|x−x̃|≤|x|β }∩{|x̃|<σ}

· · ·

+
∫
{|y−ỹ|≤|x|β }

∫
{|x−x̃|>|x|β }∩{|x̃|<σ}

· · ·
]

=: I111 + I112.
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Let us estimate these two integrals. First, since for |x| small, |x− x̃|< |x|β implies

that |x̃|< σ , we have

kn,γ I111 = kn,γ P.V.
∫
{|y−ỹ|≤|x|β }

∫
{|x−x̃|≤|x|β }

ūε(x)− ūε(x̃)
|z− z̃|n+2γ

dz̃

= kn,γ P.V.
∫
{|y−ỹ|≤|x|β }

∫
{|x−x̃|≤|x|β }

ūε(x)− ūε(x̃)

[|x− x̃|2 + |y− ỹ|2]
n+2γ

2

· (1+O(|x̃|)+O(|y− ỹ|))dx̃dỹ

= (1+O(|x|β ))kn,γ P.V.
∫
{|x−x̃|≤|x|β }

ūε(x)− ūε(x̃)
|x− x̃|N+2γ

·
∫
{|y|≤ |x|

β

|x−x̃|}

1

(1+ |y|2)
n+2γ

2

dydx̃

= (1+O(|x|β ))kn,γ P.V.
∫{
|x−x̃|≤|x|β

} ūε(x)− ūε(x̃)
|x− x̃|N+2γ

·
[∫

Rk

1

(1+ |y|2)
n+2γ

2

dy−
∫{
|y|> |x|β

|x−x̃|

} 1

(1+ |y|2)
n+2γ

2

dy
]

dx̃.

Recall relation (3.90), then

kn,γ I111 = (1+O(|x|β ))kN,γP.V.
∫
{|x−x̃|≤|x|β }

ūε(x)− ūε(x̃)
|x− x̃|N+2γ

dx̃

+O(1)
∫
{|x−x̃|≤|x|β }

ūε(x)− ūε(x̃)
|x− x̃|N+2γ

( |x|β
|x− x̃|

)−(N+2γ)
dx̃

= (1+O(|x|β ))kN,γP.V.
∫
RN

ūε(x)− ūε(x̃)
|x− x̃|N+2γ

dx̃

+O(1)
∫
{|x−x̃|>|x|β }

ūε(x)− ūε(x̃)
|x− x̃|N+2γ

dx̃

+O(1)
∫
{|x−x̃|≤|x|β }

ūε(x)− ūε(x̃)
|x− x̃|N+2γ

( |x|β
|x− x̃|

)−(N+2γ)
dx̃.
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Using the definition of the fractional Laplacian in RN ,

kn,γ I111 = (1+O(|x|β ))(−∆x)
γ ūε(x)

+O(1)
∫
{|x−x̃|>|x|β }

ūε(x)− ūε(x̃)
|x− x̃|N+2γ

dx̃

+O(1)|x|−β (N+2γ)
∫
{|x−x̃|≤|x|β }

(ūε(x)− ūε(x̃))dx̃.

Now we use a similar argument to that of I12, which yields

∫
{|x−x̃|>|x|β }

ūε(x)− ūε(x̃)
|x− x̃|N+2γ

dx̃.
∫
{|x̃|>|x|β }

ūε(x)
|x̃|N+2γ

dx̃+
∫
{|x̃|>|x|β }

ūε(x̃)
|x̃|N+2γ

dx̃

. |x|−2βγ ūε(x)+ ε
− 2pγ

p−1

∫{
|x|β

ε
<|x̃|< σ

ε

} u1(x̃)
|x̃|N+2γ

dx̃

and also,

|x|−β (N+2γ)
∫
{|x−x̃|≤|x|β }

(ūε(x)− ūε(x̃))dx̃

. |x|−β (N+2γ)
[
|x|βN ūε(x)+ ε

N− 2γ

p−1

∫
{|x̃|≤ |x|

β

ε
}

u1(x̃)dx̃
]

. |x|−2βγ ūε(x)+ ε
N− 2γ

p−1 |x|−β (N+2γ)
∫
{|x̃|≤ |x|

β

ε
}

u1(x̃)dx̃.

In conclusion, one has

kn,γ I111 = (1+O(|x|β ))(−∆x)
γ ūε(x)+O(1)

[
|x|−2βγ ūε(x)

+ ε
− 2pγ

p−1

∫
{ |x|

β

ε
≤|x̃|< σ

ε
}

u1(x̃)
|x̃|N+2γ

dx̃+ ε
N− 2γ

p−1 |x|−β (N+2γ)
∫
{|x̃|≤ |x|

β

ε
}

u1(x̃)dx̃
]
.
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Next, for I112 we calculate similarly

I112 .
∫
{|y−ỹ|≤|x|β }

∫
{|x−x̃|>|x|β }

ūε(x)− ūε(x̃)

[|x− x̃|2 + |y− ỹ|2]
n+2γ

2

dx̃dỹ

=
∫
{|x−x̃|>|x|β }

ūε(x)− ūε(x̃)
|x− x̃|N+2γ

∫
{|y|≤ |x|

β

|x−x̃|}

1

(1+ |y|2)
n+2γ

2

dydx̃

=
∫
{|x−x̃|>|x|β }

ūε(x)− ūε(x̃)
|x− x̃|N+2γ

( |x|β
|x− x̃|

)k
dx̃

= |x|−2βγ ūε(x)+ ε
−k− 2pγ

p−1 |x|βk
∫
{|x̃|> |x|

β

ε
}

u1(x̃)
|x̃|n+2γ

dx̃.

Combining the estimates for I111, I112 and I12, I13 we obtain

(−∆z)
γ ūε(x)

= (1+O(|x|β ))(−∆x)
γ ūε(x)+O(1)

[
|x|−2βγ ūε(x)

+ ε
− 2pγ

p−1

∫
{ |x|

β

ε
<|x̃|< σ

ε
}

u1(x̃)
|x̃|N+2γ

dx̃+ ε
N− 2γ

p−1 |x|−β (N+2γ)
∫
{|x̃|< |x|

β

ε
}

u1(x̃)dx̃

+ ε
−k− 2pγ

p−1 |x|βk
∫
{|x̃|> |x|

β

ε
}

u1(x̃)
|x̃|n+2γ

dx̃+O(εN− 2pγ

p−1 (1+ |x|)−(N−2γ))
]

= (1+O(|x|β ))(−∆x)
γ ūε(x)+O(1)|x|−2βγ ūε(x)+R1.

In order to estimate R1 we use the asymptotic behavior of u1(x) at 0 and ∞. By

direct computation one sees that

R1(x) =

|x|
−β

2pγ

p−1 , if |x|β < ε,

ε
N− 2pγ

p−1 |x|−βN , if |x|β > ε.

The choice β = 1
2 yields that R1 = O(|x|−γ)ūε(x), and thus

(−∆z)
γ ūε(z) = (1+O(|x|β ))(−∆x)

γ ūε(x)+O(1)|x|−γ ūε(x).

Finally, recall that ūε(x) = χd(x)uε(x), then by the estimates in the previous sub-

section (3.88), one has

| fε(z)|. |x|
1
2 |(−∆x)

γ ūε(x)|+ |x|−γ ūε(x)+E , (3.93)
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where the weighted norm of E can be bounded by ε
N− 2pγ

p−1 .

For z∈Rn \T σ

2
, the estimate is similar to the isolated singularity case, we omit

the details here. Then we may conclude

‖ fε‖C 0,α
µ̃−2γ,ν̃−2γ

≤Cε
q,

where q = min
{ (p−3)γ

p−1 − µ̃, 1
2 − γ + (p−3)γ

p−1 − µ̃,N − 2pγ

p−1

}
, and it is positive if

− 2γ

p−1 < µ̃ < min
{

γ− 2γ

p−1 ,
1
2 −

2γ

p−1

}
.

Remark 3.5.8. In general, in terms of the local Fermi coordinates (x,y) around a

fixed z0 = (0,0) ∈ Σ, for u ∈ C α+2γ

µ̃,ν̃ (Rn \Σ), one has the following estimate:

(−∆)γu = (−∆Rn\Rk)γu(x,y)+ |x|τ‖u‖∗

for |x| � 1, |y| � 1, and some τ > µ̃ − 2γ . Indeed, similar to the estimates in

Lemma 3.5.7, except the main term in I111, in the estimates, it suffices to control

the terms u(x̃) by ‖u‖∗|x|µ̃ .

3.6 Hardy type operators with fractional Laplacian
Here we give a formula for the Green’s function for the Hardy type operator in RN ,

Lφ := (−∆RN )γ
φ − κ

r2γ
φ , (3.94)

where κ ∈R. In the notation of Section 3.3.2, after the conjugation (3.36) we may

study the equivalent operator

L̃ w := e−
N+2γ

2 tL (e
N−2γ

2 tw) = Pg0
γ w−κw on R×SN−1

for φ = e
N−2γ

2 w. Consider the projections over spherical harmonics: for m= 0,1 . . .,

let wm be a solution to

L̃mw := Pm
γ wm−κwm = hm on R. (3.95)
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Recall Proposition 3.3.4. Then, in Fourier variables, equation (3.95) simply be-

comes

(Θm
γ (ξ )−κ)ŵm = ĥm.

The behavior of this equation depends on the zeroes of the symbol Θm
γ (ξ )−κ . In

any case, we can formally write

wm(t) =
∫
R

1
Θm

γ (ξ )−κ
ĥm(ξ )eiξ t dξ =

∫
R

hm(s)Gm(t− t ′)dt ′, (3.96)

where the Green’s function for the problem is given by

Gm(t) =
∫
R

eiξ t 1
Θm

γ (ξ )−κ
dξ .

Let us make this statement rigorous in the stable case (this is, below the Hardy

constant (3.44)):

Theorem 3.6.1. Let 0≤ κ < ΛN,γ and fix m = 0,1, . . .. Assume that the right hand

side hm in (3.95) satisfies

hm(t) =

O(e−δ t) as t→+∞,

O(eδ0t) as t→−∞,
(3.97)

for some real constants δ ,δ0. It holds:

i. The function 1
Θm

γ (z)−κ
is meromorphic in z∈C. Its poles are located at points

of the form τ j± iσ j and −τ j± iσ j, for j = 0,1, . . .. In addition, τ0 = 0, and

τ j = 0 for j large enough. For such j, σ j is an increasing sequence with no

accumulation points.

ii. If δ > 0 and δ0 ≥ 0, then a particular solution of (3.95) can be written as

wm(t) =
∫
R

hm(t ′)Gm(t− t ′)dt ′ (3.98)

where

Gm(t) = d0e−σ0|t|+
∞

∑
j=1

d je−σ j|t| cos(τ j|t|) (3.99)
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for some constants d j, j = 0,1, . . .. Moreover, Gm is an even C ∞ function

when t 6= 0 and

wm(t) = O(e−δ t) as t→+∞, wm(t) = O(eδ0t) as t→−∞.

(3.100)

iii. Now assume only that δ +δ0 ≥ 0. If σJ < δ < σJ+1 (and thus δ0 >−σJ+1),

then a particular solution is

wm(t) =
∫
R

hm(t ′)G̃m(t− t ′)dt ′

where

G̃m(t) =
∞

∑
j=J+1

d je−σ j|t| cos(τ j|t|). (3.101)

Moreover, G̃m is an even C ∞ function when t 6= 0 and the same conclusion

as in (3.100) holds.

Remark 3.6.2. All solutions of the homogeneous problem L̃mw= 0 are of the form

w(t) =C−0 e−σ0t +C+
0

∞

∑
j=1

C−j e−σ jt cosτ jt +
∞

∑
j=1

C+
j e+σ jt cosτ jt

for some real constants C−j ,C
+
j , j = 0,1, . . .. Thus we can see that the only solution

to (3.95), in both the cases ii. and iii., with decay as in (3.100) is precisely wm.

We also look at the case when κ leaves the stability regime. In order to simplify

the presentation, we only consider the projection m = 0 and the equation

L̃0w = h. (3.102)

In addition, we assume that only the first pole leaves the stability regime, which

happens if ΛN,γ < κ < Λ′N,γ for some Λ′N,γ . Then, in addition to the poles above,

we will have two real poles τ0 and −τ0. Some study regarding Λ′N,γ will be given

in the next section but we are not interested in its explicit formula.

Proposition 3.6.3. Let ΛN,γ < κ < Λ′N,γ . Assume that h decays like O(e−δ t) as

t→ ∞, and O(eδ0t) as t→−∞ for some real constants δ ,δ0. It holds:
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i. The function 1
Θ0

γ (z)−κ
is meromorphic in z ∈C. Its poles are located at points

of the form τ j± iσ j and −τ j± iσ j, for j = 0,1, . . .. In addition, σ0 = 0, and

τ j = 0 for j large enough. For such j, σ j is an increasing sequence with no

accumulation points.

ii. If δ > 0, δ0 ≥ 0, then a solution of (3.102) can be written as

w0(t) =
∫
R

h(t ′)G0(t− t ′)dt ′, (3.103)

where

G0(t) = d0 sin(τ0t)χ(−∞,0)(t)+
∞

∑
j=1

d je−σ j|t| cos(τ jt)

for some constants d j, j = 0,1, . . .. Moreover, G0 is an even C ∞ function

when t 6= 0 and we have the same decay as in (3.100).

iii. The analogous statements to Theorem 3.6.1, iii., and Remark 3.6.2 hold.

Further study of fractional non-linear equations with critical Hardy potential

has been done in [3, 76], for instance.

Define

Am = 1
2 +

γ

2 +
1
2

√(N
2 −1

)2
+µm, Bm = 1

2 −
γ

2 +
1
2

√(N
2 −1

)2
+µm. (3.104)

and observe that the symbol

Θ
m
γ (ξ ) = 22γ

∣∣Γ(Am + ξ

2 i
)∣∣2∣∣Γ(Bm + ξ

2 i
)∣∣2 = 22γ

Γ
(
Am + ξ

2 i
)
Γ
(
Am− ξ

2 i
)

Γ
(
Bm + ξ

2 i
)
Γ
(
Bm− ξ

2 i
)

can be extended meromorphically to the complex plane, which will be denoted by

Θm(z) := 22γ
Γ
(
Am + z

2 i
)
Γ
(
Am− z

2 i
)

Γ
(
Bm + z

2 i
)
Γ
(
Bm− z

2 i
) ,

for z ∈ C.

Remark 3.6.4. It is interesting to observe that

Θm(z) = Θm(−z).
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Moreover, thanks to Stirling formula (expression 6.1.37 in [4])

Γ(z)∼ e−zzz− 1
2 (2π)

1
2 , as |z| → ∞ in |arg z|< π, (3.105)

one may check that for ξ ∈ R,

Θm(ξ )∼ |m+ξ i|2γ , as |ξ | → ∞, (3.106)

and this limit is uniform in m. Here the symbol ∼ means that one can bound one

quantity, above and below, by constant times the other. This also shows that, for

fixed m, the behavior at infinity is the same as the one for the standard fractional

Laplacian (−∆)γ .

The following proposition uses this idea to study the behavior as |t| → 0. Re-

call that the Green’s function for the fractional Laplacian (−∆R)
γ in one space

dimension is precisely

G(t) = |t|−(1−2γ).

We will prove that Gm has a similar behavior.

Proposition 3.6.5. Let γ ∈ (0,1/2). Then

lim
|t|→0

Gm(t)
|t|−(1−2γ)

= c

for some positive constant c.

Proof. Indeed, recalling (3.106), we have

lim
|t|→0

∫
R

1
Θm(ξ )−λ

eiξ t dξ

|t|−(1−2γ)
= lim
|t|→0

∫
R

1

|t|2γ
[
Θm(

ζ

t )−λ
]eiζ dζ

= lim
t→0

[∫
{|ζ |>tδ }

. . .+
∫
{|ζ |≤tδ }

. . .

]
=: lim

t→0
[I1 + I2]

for some 2γ < δ < 1.

For I1, we use Stirling’s formula (3.105) to estimate

I1 ∼
∫
{|ζ |>tδ }

cos(ζ )
|ζ |2γ

dζ → c as t→ 0,
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while for I2,

|I2| ≤
∫
{|ζ |≤tδ }

1
|t|2γ

[
Θm(0)−λ

] dζ → 0 as t→ 0,

as desired.

Lemma 3.6.6. Define the function Φ(x,ξ ) = 22γ

∣∣Γ(Am+x+
ξ

2 i
)∣∣2∣∣Γ(Bm+x+

ξ

2 i
)∣∣2 . Then:

i. Fixed x > Bm, Ψ(x,ξ ) is a (strictly) increasing function of ξ > 0.

ii. Ψ(x,0) is a (strictly) increasing function of x > 0.

Proof. As in [66], section 7, one calculates using (3.169),

∂ξ (logΘm(ξ )) = Im
{

ψ

(
Bm + x+ ξ

2 i)
)
−ψ

(
Am + x+ ξ

2 i
)}

= c Im
∞

∑
l=0

(
1

l +Am + x+ ξ

2 i
− 1

l +Bm + x+ ξ

2 i

)
> 0,

as claimed. A similar argument yields the monotonicity in x.

Now we give the proof of Theorem 3.6.1. Before we consider the general case,

let us study first when κ = 0, for which Gm can be computed almost explicitly. Fix

m = 0,1, . . .. The poles of the function 1
Θm(z)

happen at points z ∈ C such that

± z
2

i+Bm =− j, for j ∈ N∪{0},

i.e, at points {±iσ j} for

σ j := 2(Bm + j), j = 0,1, . . . . (3.107)

Then the integral in (3.101) can be computed in terms of the usual residue formula.

Define the region in the complex plane

Ω = {z ∈ C : |z|< R, Imz > 0}. (3.108)
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A standard contour integration along ∂Ω gives, as R→ ∞, that

Gm(t) = 2πi
∞

∑
j=0

Res
(

eizt 1
Θm(z)

, iσ j

)
= 2πi

∞

∑
j=0

e−σ jtc j, (3.109)

where c j = c j(m) is the residue of the function 1
Θm(z)

at the pole iσ j. This argument

is valid as long as the integral in the upper semicircle tends to zero as R→∞. This

happens when t > 0 since |eizt |= e−t Imz. For t < 0, we need to modify the contour

of integration to Ω = {z ∈ C : |z|< R, Imz < 0}, and we have that, for t < 0,

Gm(t) = 2πi
∞

∑
j=0

c jeσ jt ,

which of course gives that Gm is an even function in t. In any case Gm is exponen-

tially decaying as |t| → ∞ with speed given by the first pole |σ0|= 2Bm.

In addition, recalling the formula for the residues of the Gamma function from

(3.168), we have that

c j =
1

22γ

Γ(2Bm + j)
Γ(Am−Bm− j)Γ(Am +Bm + j)

lim
z→iσ j

Γ(Bm + z
2 i)(z− iσ j)

=
2

22γ

Γ
(
1− γ +

√
(n

2 −1)2 + j
)

Γ(γ− j)Γ(
(
γ +
√
(n

2 −1)2 + j
)−i(−1) j

j!

for j ≥ 1, which yields the (uniform) convergence of the series (3.99) by Stirling’s

formula (3.105).

Now take a general 0 < κ < Λn,γ . The function eizt 1
Θm(z)−κ

is meromorphic in

the complex plane C. Moreover, if z is a root of Θm(z) = κ , so are −z, z̄ and −z̄.

Let us check then that there are no poles on the real line. Indeed, the first

statement in Lemma 3.6.6 implies that is enough to show that

Θm(0)−κ > 0.

But again, from the second statement of the lemma, Θm(0) > Θ0(0), so we only

need to look at the case m = 0. Finally, just note that Θ0(0) = ΛN,γ > κ .
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Next, we look for poles on the imaginary axis. For σ > 0, Θm(iσ) = Ψ(−σ ,0)

and this function is (strictly) decreasing in σ . Moreover, Ψ(0,0)=Θm(0)=ΛN,γ >

κ . Let σ0 ∈ (0,+∞] be the first point where Θm(iσ0) = κ . Then ±iσ0 are poles on

the imaginary axis. Moreover, the first statement of Lemma 3.6.6 shows that there

are no other poles in the strip {z : | Im(z)| ≤ σ0}.

Denote the rest of the poles by z j := τ j + iσ j, τ j− iσ j,−τ j + iσ j and−τ j− iσ j,

j = 1,2, . . .. Here we take σ j >σ0 > 0, τ j ≥ 0. A detailed study of the poles is given

in the Section 3.6.4. In particular, for large j, all poles lie there on the imaginary

axis, and their asymptotic behavior is similar to that of (3.107).

Now we can complete the proof of statement ii. of Theorem 3.6.1. Since we

have shown that there is a spectral gap σ0 from the real line, it is possible to modify

the contour of integration in (3.109) to prove a similar residue formula: for t > 0,

Gm(t)

= 2πiRes
(

eizt 1
Θm(z)−κ

, iσ0

)
+2πi

∞

∑
j=1

[
Res

(
eizt 1

Θm(z)−κ
,τ j + iσ j

)
+Res

(
eizt 1

Θm(z)−κ
,−τ j + iσ j

)]
= 2πic0e−σ0t +4πi

∞

∑
j=1

c je−σ jt cos(τ jt),

and for t < 0 it is defined evenly. Here c j = c j(m) is the residue of the function
1

Θm(z)−κ
at the point τ j + iσ j; it can be easily shown that c j is purely imaginary.

Moreover, the asymptotic behavior for this residue is calculated in (3.121); indeed,

c j ∼C j−2γ . The convergence of the series is guaranteed.

Next, we turn to the proof the decay statement (3.100). The main idea is to

control the asymptotic behavior of a multipole expansion according to the location

of the poles. We start with a simple lemma:

Lemma 3.6.7. If f1(t) = O(e−a|t|) as t → ∞, f2(t) = O(e−a+t) as t → +∞ and

f2(t) = O(ea−t) as t→−∞ for some a,a+ > 0, a− >−a, then

f1 ∗ f2(t) = O(e−min{a,a+}t) as t→+∞.
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Proof. Indeed, for t > 0,

| f1∗ f2(t)|=
∣∣∣∫

R
f1(t− t ′) f2(t ′)dt ′

∣∣∣
.
∫ 0

−∞

e−a(t−t ′)ea−t ′ dt ′+
∫ t

0
e−a(t−t ′)e−a+t ′ ds+

∫ +∞

t
ea(t−t ′)e−a+t ′ dt ′.

The lemma follows by straightforward computations.

Remark 3.6.8. It is interesting to observe that a− is not involved in the decay as

t → +∞. Moreover, by reversing the role of t and −t, it is possible to obtain the

analogous statement for t→−∞ with the obvious modifications.

Assume that δ0 ≥ 0 and that σJ < δ ≤ σJ+1 for some J ≥ 0. Let us use the

previous lemma to estimate, for t > 0,

∣∣∣∫
R

[
Gm(t− t ′)−

J

∑
j=0

d je−σ j|t−t ′| cos(τ j(t− t ′))
]
h(t ′)dt ′

∣∣∣
≤
∫
R

O(e−σJ+1|t−t ′|)|h(t ′)|dt ′ = O(e−δ t).

(3.110)

Let us now look at the term e−σ j|t−t ′| cos(τ j(t−t ′)), j = 0, . . . ,J, inside the integral.

Lemma (3.6.7) would yield an asymptotic behavior e−σ jt as t → +∞. We will

provide an additional argument to improve this behavior, by showing a further

cancelation. Indeed, calculate

ϕ j(t)

: =
∫
R

e−σ j|t−t ′| cos(τ j(t− t ′))h(t ′)dt ′

=
∫ t

−∞

e−σ j(t−t ′) cos(τ j(t− t ′))h(t ′)dt ′+
∫ +∞

t
eσ j(t−t ′) cos(τ j(t− t ′))h(t ′)dt ′.

(3.111)

The first integral in the right hand side above can be rewritten using that, by Fred-

holm theory, the following compatibility condition must be satisfied:

0 =
∫
R

eσ jt ′ cos(τ j(t− t ′))h(t ′)dt ′ =
∫ t

−∞

. . .+
∫ +∞

t
. . . , (3.112)
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and this is rigorous because our growth assumptions on h. Thus (3.111) is reduced

to

ϕ j(t) =
∫ +∞

t

[
−e−σ j(t−t ′)+ eσ j(t−t ′)

]
cos(τ j(t− t ′))h(t ′)dt ′.

This is the standard variation of constants formula to produce a particular solution

for the second order ODE

ϕ
′′
j (t) = σ

2
j ϕ j(t)−2σ jh(t),

and in particular shows that ϕ j(t) decays like h(t) as t→+∞, which is O(e−δ t).

In addition, for the case 0 < δ ≤ σ0,∣∣∣∫
R

Gm(t− t ′)h(t ′)dt ′
∣∣∣≤ ∫

R
O(e−σ0|t−t ′|)|h(t ′)|dt ′ = O(e−δ t).

Finally, reversing t→+∞ and t→−∞ yields the proof of statement ii. in Theorem

3.6.1.

Now we give the proof of statement iii., which is similar to the above, but with

weaker assumptions on δ0. Fix m= 0,1, . . ., and drop the subindex m for simplicity.

Assume, as in the previous case, that σJ < δ < σJ+1. Here we only have that

δ0 ≥ −σJ+1. Then the integrals in (3.112) are not finite and the argument for

j = 0, . . . ,J does not work. Instead, we change our Fourier transform to integrate

on a different horizontal line R+ iϑ . This is, for w = w(t), set

w̃(ζ ) =
1√
2π

∫
R+iϑ

e−iζ t w(t)dt =
1√
2π

∫
R

e−i(ξ+iϑ)t w(t)dt = ŵ(ξ + iϑ),

whose inverse Fourier transform is

w(t) =
1√
2π

∫
R+iϑ

eiζ t w̃(ζ )dζ ,

Moreover, in the new variable ζ = ξ + iϑ we have that

h̃(ζ ) = P̃(m)(w)(ζ ) = (Θm(ζ )−κ)w̃(ζ ).
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Inverting this symbol we obtain a particular solution

w(t) =
∫
R+iϑ

1
Θm(ζ )−κ

h̃(ζ )eiζ t dζ =
∫
R+iϑ

h(t ′)G̃ (t− t ′)dt ′,

for

G̃ (t) =
∫
R+iϑ

eiζ t 1
Θm(ζ )−κ

dζ .

Replacing the contour of integration from (3.108) to ∂Ωρ for

Ωρ = {z ∈ C : |z|< R, Imz > ρ}

yields, as R→ ∞, that

G̃ (t) = 2πi
∞

∑
j=J+1

Res
(

eizt 1
Θm(z)−κ

, iσ j

)
= 2πi

∞

∑
j=J+1

e−σ jtc j,

where, as above, c j is the residue of the function 1
Θm(z)−κ

at the pole τ j + iσ j.

Assume that δ + δ0 > 0, and take ϑ ∈ (−δ0,δ ). Then the growth hypothesis

on h from (3.97) imply that h̃(ζ ) is well defined. If δ0 +δ = 0, taking ϑ = δ , we

can still justify this argument by understanding the Fourier transform in terms of

distributions. Moreover, we have the expansion as t→+∞,∣∣∣∫
R

G̃ (t− t ′)h(t ′)dt ′
∣∣∣≤ ∫

R
O(e−σJ+1|t−t ′|)|h(t ′)|dt ′ = O(e−δ t).

That is, the problematic terms in (3.110) do not appear any longer, and we have

found a different particular solution wm.

This completes the proof of Theorem 3.6.1.

3.6.1 Beyond the stability regime

Now we look at the proof of Proposition 3.6.3. As we have mentioned, in order

to simplify the presentation, we only consider the projection m = 0. Let ΛN,γ <

κ < Λ′N,γ be the region where we have exactly two real poles at τ0 and −τ0, for

τ > 0. For this, just note that, for real ξ > 0, Lemma 3.6.6 shows that Θ0(ξ ) is
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an increasing function in ξ , and it is even. Denote the rest of the poles as in the

previous subsection, for j = 1,2, . . ..

We proceed as in the proof of Theorem 3.6.1 and write

w0(t) =
∫
R

1
Θ0(ξ )−κ

ĥ(ξ )eiξ t dξ =
∫
R

h(t ′)G0(t− t ′)dt ′. (3.113)

In this case we can still invert the operator, but one needs to regularize the contour

integration in order to account for the real poles in order to give sense to the integral

in (3.113). Indeed, for ε > 0 small, let us calculate

G ε
0 (t) =

∫
R

eiξ t 1
Θ0(ξ − εi)−κ

dξ .

The poles are now τ0 + εi and τ0− εi. Define the region Ω = {z ∈ C : |z− (τ +

εi)|< R,Rez > 0}. A standard contour integration along ∂Ω gives, as R→∞, that

for t > 0,

G ε
0 (t) = 2πicε

0ei(τ0+εi)t +4πi
∞

∑
j=1

e−σ ε
j t cos(τε

j t)cε
j ,

where

cε
0 = Res

( 1
Θ0(z− εi)−κ

,τ0 + εi
)
.

Taking the limit ε → 0,

G ε
0 (t)→ G0(t) = 2πic0eiτ0t +4πi

∞

∑
j=1

c je−σ jt cos(τ jt),

for t > 0, and extended evenly to the real line.

Let us simplify this formula. Using Fredholm theory, to have a solution of

equation (3.102), h must satisfy the compatibility condition

0 = e−iτ0t
∫
R

h(t ′)eiτ0t ′ dt ′ =
∫
R

h(t− t ′)e−iτ0t ′ dt ′

=
∫ +∞

0
h(t− t ′)e−iτ0t ′ dt ′+

∫ 0

−∞

h(t− t ′)e−iτ0t ′ dt ′.
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Substitute this expression into the formula below

∫ +∞

0
h(t− t ′)e−iτ0t ′ dt ′+

∫ 0

−∞

h(t− t ′)eiτ0t ′ dt ′

=
∫ 0

−∞

h(t− t ′)e−iτ0t ′ −
∫ 0

−∞

h(t− t ′)eiτ0t ′ dt ′

=
∫ +∞

t
h(t ′)sin(τ0(t− t ′))dt ′.

Arguing as in the proof of Theorem 3.6.1 we obtain ii. The only difference with

the stable case is that the j = 0 term in the summation in formula (3.110) needs to

be replaced by ∫ +∞

t
sin(τ0(t− t ′))h(t ′)dt ′.

A similar argument yields iii. too.

3.6.2 A-priori estimates in weighted Sobolev spaces

For s > 0, we define the norm in R×SN−1 given by

‖w‖2
s =

∞

∑
m=0

∫
R
(1+ξ

2 +m2)2s|ŵm(ξ )|2 dξ . (3.114)

These are homogeneous norms in the variable r = e−t , and formulate the Sobolev

counterpart to the Hölder norms in RN \ {0} from Section 3.5.1. That is, for

w∗(r) := w(t) and s integer we have

‖w‖2
0 =

∞

∑
m=0

∫
∞

0
|w̃∗m|2r−1 dr,

‖w‖2
1 =

∞

∑
m=0

∫
∞

0
(|w̃∗m|2 + |∂rw̃∗m|2r2)r−1 dr,

‖w‖2
2 =

∞

∑
m=0

∫
∞

0
(|w̃∗m|2 + |∂rw̃∗m|2r2 + |∂rrw̃∗m|r4)r−1 dr.

161



One may also give the corresponding weighted norms, for a weight of the type

r−ϑ = eϑ t . Indeed, one just needs to modify the norm (3.114) to

‖w‖2
s,ϑ =

∞

∑
m=0

∫
R+iϑ

(1+ξ
2 +m2)2s|ŵm(ξ )|2 dξ .

For instance, in the particular case s = 1, this is

‖w‖2
1,ϑ =

∞

∑
m=0

∫
∞

0
(|w∗m|2r−2ϑ + |∂rw∗m|2r2−2ϑ )r−1 dr.

Proposition 3.6.9. Let s ≥ 2γ , and fix ϑ ∈ R such that the horizontal line R+ iϑ

does not cross any pole τ
(m)
j ± iσ (m)

j , j = 0,1, . . ., m = 0,1, . . .. If w is a solution to

L̃ w = h in R×SN−1

of the form (3.98), then

‖w‖s,ϑ ≤C‖h‖s−2γ,ϑ

for some constant C > 0.

Proof. We project over spherical harmonics w = ∑m wmEm, where wm is a solution

to L̃mwm = hm. Assume, without loss of generality, that ϑ = 0, otherwise replace

the Fourier transform ·̂ by ·̃ on a different horizontal line. In particular, ŵm(ξ ) =

(Θm(ξ )−κ)−1ĥm(ξ ), and we simply estimate

‖w‖2
s =

∞

∑
m=0

∫
R

(1+ |ξ |2 +m2)2s

|Θm(ξ )−κ|2
|ĥm(ξ )|2 dξ

≤C
∞

∑
m=0

∫
R
(1+ |ξ |2 +m2)2s−4γ |ĥm(ξ )|2 dξ

=C‖h‖2
s−2γ ,

where we have used that

(1+ |ξ |2 +m2)2s

|Θm(ξ )−κ|2
≤C(1+ |ξ |2 +m2)2s−4γ ,

which follows from (3.106).
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3.6.3 An application to a non-local ODE

The following result is not needed in the proof of the main theorem, but we have

decided to include it here because it showcases a classical ODE type behavior for

a non-local equation, and it motivates the arguments in Section 3.7.

Assume that we are in the unstable case, i.e., the setting of Proposition 3.6.3.

Proposition 3.6.10. Let q> 0 and fix a potential on R with the asymptotic behavior

V (t) =

κ +O(e−qt) as t→+∞,

O(1) as t→−∞,

for r = e−t . Then the space of radial solutions to equation

(−∆)γu− V
r2γ

u = 0 in RN (3.115)

that have a bound of the form |u(r)| ≤Cr−
n−2γ

2 is two-dimensional.

Proof. Let u be one of such solutions, and write w = ur
N−2γ

2 , w = w(t). By assump-

tion, w is bounded on R. Moreover, w satisfies the equation P(0)w−V w = 0, which

will be written as

L̃0w = h, for h := (V −κ)w.

Then we have the bounds for h

h(t) =

O(e−qt) as t→+∞,

O(1) as t→−∞,

so we take δ = q > 0, δ0 = 0, and apply Proposition 3.6.3. Then w must be of the

form

w(t) = w0(t)+C1
0 sin(τ0t)+C2

0 cos(τ0t)

+
∞

∑
j=1

e−σ jt
[
C1

j sin(τ jt)+C2
j cos(τ jt)

]
+

∞

∑
j=1

eσ jt
[
D1

j sin(τ jt)+D2
j cos(τ jt)

]
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for some real constants C1
0 ,C

2
0 ,C

1
j ,C

2
j ,D

1
j ,D

2
j , j = 1,2, . . ., and w0 is given by

(3.103). The same proposition yields that w0 is decaying as O(e−δ t) when t→+∞,

so we must have D1
j ,D

2
j = 0 for j = 1,2, . . .. Moreover, as t→−∞, v0 is bounded,

which implies that only C1
0 and C2

0 survive. Note also that the behavior as t→+∞

implies that this combination is nontrivial, so this yields a two-dimensional family

of bounded solutions.

This argument also implies that any other solution must decay exponentially

as O(e−δ t) for t → +∞ (this is, C1
0 = C2

0 = 0). Then we can iterate statement iii.

with δ = lq, l = 2,3, . . . and δ0 = 0, to show that w decays faster than any O(e−δ t),

δ > 0, as t → +∞, which gives that u(r) decays faster than any polynomial, this

is |u(r)| = o(|r|a) for every a ∈ N. Next, we use a unique continuation result for

equation (3.115) to show that u ≡ 0. In the stable case, unique continuation was

proved in [84] using a monotonicity formula, while in the stable case it follows

from [152], where Carleman estimates were the crucial ingredient.

Finally we remark that if, in addition, the potential satisfies a monotonicity

condition, one can give a direct proof of unique continuation using Theorem 1

from [98]. Note that, however, in [98] the potential is assumed to be smooth at the

origin. But one can check that the lack of regularity of the potential at the origin

can be handled by the higher order of vanishing of u.

3.6.4 Technical results

Here we give a more precise calculation of the poles of the function 1
Θm(z)−κ

. For

this, given κ ∈ R, we aim to solve the equation

Γ(α + iz)Γ(α− iz)
Γ(β + iz)Γ(β − iz)

−κ = 0 (3.116)

with |α−β |< 1 and β < α .

Lemma 3.6.11. Let

z = iR+ζ

with |z|> R0 and R0 sufficiently large. Then the solutions to (3.116) are contained

in balls of radius Cκ sin((α−β )π)

N 2(α−β ) around the points z = (N +β )i, with N = [R] and

C depending solely on α and β .
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Proof. First we note, by using the identity Γ(s)Γ(1− s) = π/sin(πs), that

Γ(α−R+ iζ )
Γ(β −R+ iζ )

=
Γ(1−β +R− iζ )
Γ(1−α +R− iζ )

sin(π(β −R+ iζ ))
sin(π(α−R+ iζ ))

=
Γ(1−β +R− iζ )
Γ(1−α +R− iζ )

sin(π(β −δ + iζ ))
sin(π(α−δ + iζ ))

,

where we have denoted

δ = R− [R] .

Then, Stirling’s formula (3.105) yields

|Γ(1+ z)| ∼ |z|Rez e−(Imz)arg(z)e−Rez
√

2π |z|
1
2 ,

which implies∣∣∣∣Γ(1−β +R− iζ )Γ(α +R− iζ )
Γ(1−α +R− iζ )Γ(β +R− iζ )

∣∣∣∣
∼ (R2 +ζ

2)α−β eζ

(
arctan ζ

1−β+R+arctan ζ

α+R−arctan ζ

1−α+R−arctan ζ

β+R

)
e−2(α−β ).

Since

arctan
ζ

1−β +R
+ arctan

ζ

α +R
− arctan

ζ

1−α +R
− arctan

ζ

β +R

= arctan
ζ

1−β+R −
ζ

1−α+R

1+ ζ

1−β+R
ζ

1−α+R

+ arctan
ζ

α+R −
ζ

β+R

1+ ζ

α+R
ζ

β+R

∼−2arctan
(α−β )ζ

R2 +ζ 2 ∼−2
(α−β )ζ

R2 +ζ 2 ,

we can estimate, for R2 +ζ 2 sufficiently large,∣∣∣∣Γ(1−β +R− iζ )Γ(α +R− iζ )
Γ(1−α +R− iζ )Γ(β +R− iζ )

∣∣∣∣∼ (R2 +ζ
2)α−β e

−2 (α−β )ζ 2

R2+ζ 2 e−2(α−β ).

Therefore, for R2 +ζ 2 > R2
0 with R0 sufficiently large, we have the bound

C−1(R2 +ζ
2)α−β ≤

∣∣∣∣Γ(1−β +R− iζ )Γ(α +R− iζ )
Γ(1−α +R− iζ )Γ(β +R− iζ )

∣∣∣∣≤C(R2 +ζ
2)α−β ,

165



where C depends only on α and β . Hence,

κ

C(R2 +ζ 2)α−β
≤
∣∣∣∣ sin(π(β −δ + iζ ))
sin(π(α−δ + iζ ))

∣∣∣∣≤ κ

C−1(R2 +ζ 2)α−β
,

and by writing

δ − iζ = β + z̃,

we conclude that necessarily

|z̃| ≤ Cκ sin((α−β )π)

R2(α−β )
,

which implies that solutions to (3.116) lie at

z = iR+ζ = i [R]+ iβ + iz̃ = [R]+β +O

(
Cκ sin((α−β )π)

[R]2 (α−β )

)
,

and this proves the Lemma.

Next we write

z = i(β +N )+ z̃

with N sufficiently large (according to the previous lemma) natural number, and

equation (3.116) reads

Γ(α−β −N + iz̃)Γ(α +β +N − iz̃)
Γ(−N + iz̃)Γ(2β +N − iz̃)

−κ = 0. (3.117)

Since

Γ(−N + iz̃) = (−1)N −1 Γ(−iz̃)Γ(1+ iz̃)
Γ(N +1− iz̃)

and

Γ(α−β −N + iz̃) = (−1)N −1 Γ(β −α− iz̃)Γ(1+α−β + iz̃)
Γ(N +1−α +β − iz̃)

,
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we can write

Γ(α−β −N + iz̃)Γ(α +β +N − iz̃)
Γ(−N + iz̃)Γ(2β +N − iz̃)

=
Γ(N +1− iz̃)Γ(α +β +N − iz̃)

Γ(N +1−α +β − iz̃)Γ(2β +N − iz̃)
Γ(β −α− iz̃)Γ(1+α−β + iz̃)

Γ(1+ iz̃)Γ(−iz̃)
.

Using that

Γ(β −α− iz̃)Γ(1+α−β + iz̃)
Γ(1+ iz̃)Γ(−iz̃)

=
sin(−πiz̃)

sin(π(β −α− iz̃))
,

as well as Stirling’s formula (3.105) to estimate

Γ(N +1− iz̃)Γ(α +β +N − iz̃)
Γ(N +1−α +β − iz̃)Γ(2β +N − iz̃)

∼ (N − iz̃)N −iz̃(α +β +N −1− iz̃)α+β+N −1−iz̃

(N −α +β − iz̃)N −α+β−iz̃(2β −1+N − iz̃)2β−1+N −iz̃

· e−2(α−β )

√
(N − iz̃)(α +β +N −1− iz̃)

(N −α +β − iz̃)(2β −1+N − iz̃)

∼N 2(α−β )e−2i(α−β )z̃e−2(α−β ),

we arrive at the relation

sin(−πiz̃)
sin(π(β −α− iz̃))

e−2i(α−β )z̃ ∼ κ

N 2(α−β )e−2(α−β )
,

which implies

z̃∼ i
π

κ sin(π(β −α))

N 2(α−β )e−2(α−β )
.

In fact, it is easy to see from (3.117) and the estimates above that a purely imaginary

solution z̃ does exist and a standard fixed point argument in each of the balls in the

previous lemma would show that it is unique.

Finally, the half-ball of radius R0 around the origin in the upper half-plane is

a compact set. Since the function at the left hand side of (3.116) is meromorphic,

there cannot exist accumulation points of zeros and this necessarily implies that the

number of zeros in that half-ball is finite.
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We conclude then that the set of solutions to (3.116) consists of a finite number

of solutions in a half ball of radius R0 around the origin in the upper half-plane

together with an infinite sequence of roots at the imaginary axis located at

zN = i(β +N )+O
(

κ sin(π(β −α))

N 2(α−β )e−2(α−β )

)
for N > R0, (3.118)

as desired.

Now we consider the asymptotics for the residues. We define

g(z) :=
Γ(α + iz)Γ(α− iz)
Γ(β + iz)Γ(β − iz)

−κ.

We will estimate the residue of the function 1
g(z) at the poles zN when N is suf-

ficiently large. Given the fact that the poles are simple and the function 1/g(z) is

analytic outside its poles, we have

Res
( 1

g(z)
,zN

)
= lim

z→zN

(
(z− zN )

1
g(z)

)
=

1
g′(zN )

.

Hence

g′(z) =
d
dz

(
Γ(α + iz)Γ(α− iz)
Γ(β + iz)Γ(β − iz)

)
=−i

Γ′(β + iz)
Γ2(β + iz)

(
Γ(α + iz)Γ(α− iz)

Γ(β − iz)

)
+

1
Γ(β + iz)

(
Γ(α + iz)Γ(α− iz)

Γ(β − iz)

)′
=: S1 +S2.

Notice that g(zN ) = 0 implies that

Γ(β + izN ) =
Γ(α + izN )Γ(α− izN )

κΓ(β − izN )
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and therefore,

S1 =−i
Γ′(β + izN )

Γ2(β + izN )

(
Γ(α + izN )Γ(α− izN )

Γ(β − izN )

)
=−iκ

Γ′(β + izN )

Γ(β + izN )

=−iκψ(β + izN ),

where ψ(z) is the digamma function. We recall the expansion (3.169),

ψ(z) =−γ +
∞

∑
l=0

( 1
l+1 −

1
l+z

)
.

In this section, γ denotes the Euler constant. Then

S1 = iκ

(
γ +

∞

∑
l=0

(
1

l +β + izN
− 1

l +1

))
=

πe−2(α−β )

isin(π(α−β ))
N 2(α−β )+O(1),

(3.119)

where we have used the asymptotics of l + β + izN when l = N from (3.118).

Next, using again (3.118) we estimate

S2 =
1

Γ(β + iz)

(
Γ(α + iz)Γ(α− iz)

Γ(β − iz)

)′∣∣∣∣
z=zN

= κi
(

Γ′(α + iz)
Γ(α + iz)

− Γ′(α− iz)
Γ(α− iz)

+
Γ′(β − iz)
Γ(β − iz)

)
= κi

(
ψ(α−β −N +O(N −2(α−β )))−ψ(α +β +N +O(N −2(α−β )))

+ψ(2β +N +O(N −2(α−β )))
)
.

By using the relations

ψ(1− z)−ψ(z) = π cot(πz)

ψ(z)∼ ln(z− γ)+2γ , as |z| → ∞, Rez > 0,
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we conclude, as N → ∞,

ψ(α−β −N +O(N −2(α−β )))

= ψ(1−α +β +N +O(N −2(α−β )))

+π cot(π(1−α +β +N +O(N −2(α−β ))))

= ln(N )+O(1),

and hence

S2 = iκ lnN +O(1). (3.120)

Putting together (3.119) and (3.120) we find

S1 +S2 =
πe−2(α−β )

isin(π(α−β ))
N 2(α−β )+ iκ lnN +O(1),

and hence

Res
( 1

g(z)
,zN

)
=

i
πe−2(α−β )

sin(π(α−β ))N
2(α−β )−κ lnN +O(1)

= i
sin(π(α−β ))e2(α−β )

π
N −2(α−β )+O

(
lnN

N 4(α−β )

) (3.121)

as N → ∞.

3.7 Linear theory - injectivity
Let ūε be the approximate solution from the Section 3.5.1. In this section we

consider the linearized operator

Lεφ := (−∆Rn)γ
φ − pūp−1

ε φ , in Rn \Σ, (3.122)

where Σ is a sub-manifold of dimension k (or a disjoint union of smooth

k-dimensional manifolds), and

Lεφ := (−∆RN )γ
φ − pAN,p,γ ūp−1

ε φ , in RN \{q1, . . . ,qK}. (3.123)
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For this, we first need to study the model linearization

L1φ := (−∆RN )γ
φ − pAN,p,γup−1

1 φ = 0 in RN \{0}. (3.124)

We will show that any solution (in suitable weighted spaces) to this equation must

vanish everywhere (from which injectivity in Rn \Rk follows easily), and then we

will prove injectivity for the operator Lε .

Let us rewrite (3.124) using conformal properties and the conjugation (3.36).

If we define

w = r
N−2γ

2 φ , (3.125)

then this equation is equivalent to

Pg0
γ (w)−V w = 0, (3.126)

for the radial potential

V =V (r) = r2γ pAN,p,γup−1
1 . (3.127)

The asymptotic behavior of this potential is easily calculated using Proposition

3.2.1 and, indeed, for r = e−t ,

V (t) =

pAN,p,γ +O(e−q1t) as t→+∞,

O(etq0) as t→−∞,
(3.128)

for q0 = (N−2γ)(p−1)−2γ > 0.

Let γ ∈ (0,1). By the well known extension theorem for the fractional Lapla-

cian (3.32)-(3.33), equation (3.124) is equivalent to the boundary reaction problem
∂``Φ+

1−2γ

`
∂`Φ+∆RN Φ= 0 in RN+1

+ ,

−d̃γ lim
`→0

`1−2γ∂`Φ= pAN,p,γup−1
1 Φ on RN \{0},

where d̃γ is defined in (3.31) and Φ|`=0 = φ .
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Keeping the notations of Section 3.3.2 for the spherical harmonic decomposi-

tion of SN−1, by µm we denote the m-th eigenvalue for −∆SN−1 , repeated according

to multiplicity, and by Em(θ) the corresponding eigenfunction. Then we can write

Φ = ∑
∞
m=0 Φm(r, `)Em(θ), where Φm satisfies the following:

∂``Φm +
1−2γ

`
∂`Φm +∆RN Φm−

µm

r2 Φm= 0 in RN+1
+ ,

−d̃γ lim
`→0

`1−2γ∂`Φm= pAN,p,γup−1
1 Φm on RN \{0},

(3.129)

or equivalently, from (3.126),

Pm
γ (w)−V w = 0, (3.130)

for w = wm = r
N−2γ

2 φm, φm = Φm(·,0).

3.7.1 Indicial roots

Let us calculate the indicial roots for the model linearized operator defined in

(3.124) as r → 0 and as r → ∞. Recalling (3.128), L1 behaves like the Hardy

operator (3.94) with κ = pAN,p,γ as r → 0 and κ = 0 as r → ∞. Moreover, we

can characterize very precisely the location of the poles in Theorem 3.6.1 and

Proposition (3.6.3).

Here we find a crucial difference from the local case γ = 1, where the Fourier

symbol for the m-th projection Θm(ξ )− κ is quadratic in ξ , implying that there

are only two poles. In contrast, in the non-local case, we have just seen that there

exist infinitely many poles. Surprisingly, even though L1 is a non-local operator,

its behavior is controlled by just four indicial roots, so we obtain results analogous

to the local case.

For the statement of the next result, recall the shift (3.125).

Lemma 3.7.1. For the operator L1 we have that, for each fixed mode m = 0,1, . . . ,

i. At r = ∞, there exist two sequences of indicial roots

{σ̃ (m)
j ± iτ̃(m)

j −
N−2γ

2 }
∞
j=0 and {−σ̃

(m)
j ± iτ̃(m)

j −
N−2γ

2 }
∞
j=0.
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Moreover,

γ̃
±
m :=±σ̃

(m)
0 − N−2γ

2 =−N−2γ

2 ±
[

1− γ +
√
(N−2

2 )2 +µm

]
, m = 0,1, . . . ,

and γ̃+m is an increasing sequence (except for multiplicity repetitions).

ii. At r = 0, there exist two sequences of indicial roots

{σ (m)
j ± iτ(m)

j −
N−2γ

2 }
∞
j=0 and {−σ

(m)
j ± iτ(m)

j −
N−2γ

2 }
∞
j=0.

Moreover,

a) For the mode m = 0, there exists p1 with N
N−2γ

< p1 < N+2γ

N−2γ
(and it

is given by (3.12)), such that for N
N−2γ

< p < p1 (the stable case), the

indicial roots γ
±
0 :=±σ

(0)
0 −

N−2γ

2 are real with

− 2γ

p−1 < γ
−
0 <−N−2γ

2 < γ
+
0 ,

while if p1 < p < N+2γ

N−2γ
(the unstable case), then γ

±
0 are a pair of com-

plex conjugates with real part −N−2γ

2 and imaginary part ±τ
(0)
0 .

b) In addition, for all j ≥ 1,

σ
(0)
j > N−2γ

2 .

c) For the mode m = 1,

γ
−
1 :=−σ

(1)
0 −

N−2γ

2 =− 2γ

p−1 −1.

Proof. First we consider statement ii. and calculate the indicial roots at r = 0. Re-

calling the shift (3.125), let L1 act on the function r−
N−2γ

2 +δ , and consider instead

the operator in (3.126). Because of Proposition 3.3.4, for each m = 0,1, . . ., the

indicial root γm :=−N−2γ

2 +δ satisfies

22γ
Γ
(
Am + δ

2

)
Γ
(
Am− δ

2

)
Γ
(
Bm + δ

2

)
Γ
(
Bm− δ

2

) = pAN,p,γ , (3.131)
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where Am,Bm are defined in (3.104).

Note that if δ ∈ C is a solution, then −δ and ±δ are also solutions. Let us

write δ

2 = α + iβ , and denote

Φm(α,β ) = 22γ
Γ
(
Am + δ

2

)
Γ
(
Am− δ

2

)
Γ
(
Bm + δ

2

)
Γ
(
Bm− δ

2

) .
From the expression, one can see that Φm(α,0) and Φm(0,β ) are real functions.

We first claim that on the αβ -plane, provided that |α| ≤ Bm, any solution of

(3.131) must satisfy α = 0 or β = 0, i.e., δ must be real or purely imaginary.

Observing that the right hand side of (3.131) is real and so is Φm(0,β ) for β 6= 0,

the claim follows from the strict monotonicity of the imaginary part with respect

to α , namely

∂

∂α
Im(Φm(α,β ))

=− i
2

∂

∂α

[
Φm(α,β )−Φm(α,−β )

]
=

∞

∑
j=0

Im
[

1
j+Am+α−iβ + 1

j+Am−α−iβ + 1
j+Bm+α+iβ + 1

j+Bm−α+iβ

]
= β

∞

∑
j=0

[
1

( j+Am+α)2+β 2 +
1

( j+Am−α)2+β 2 − 1
( j+Bm+α)2+β 2 − 1

( j+Bm−α)2+β 2

]
,

(3.132)

the summands being strictly negative since Am > Bm. If β 6= 0 and |α| ≤ Bm, it is

easy to see that the above expression is not zero. This yields the proof of the claim.

Moreover, Φm(α,0) and Φm(0,β ) are even functions in α,β , respectively. Us-

ing the properties of the digamma function again, one can check that

∂Φm(α,0)
∂α

< 0 for α > 0 (3.133)

and
∂Φm(0,β )

∂β
> 0 for β > 0. (3.134)
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Let us consider now the case m = 0. Using the explicit expression for AN,p,γ

from (3.10), then δ must be a solution of

Γ
(N

4 + γ

2 +
δ

2

)
Γ
(N

4 + γ

2 −
δ

2

)
Γ
(N

4 −
γ

2 +
δ

2

)
Γ
(N

4 −
γ

2 −
δ

2

) = p
Γ
(N

2 −
γ

p−1

)
Γ
(

γ

p−1 + γ
)

Γ
(

γ

p−1

)
Γ
(N

2 − γ− γ

p−1

) =: λ (p). (3.135)

From the arguments in [8] (see also the definition of p1 in (3.12)), there exists a

unique p1 satisfying N
N−2γ

< p1 <
N+2γ

N−2γ
such that Φ0(0,0) = λ (p1), and Φ0(0,0)>

λ (p) when N
N−2γ

< p < p1, and Φ0(0,0)< λ (p) when p1 < p < N+2γ

N−2γ
.

Assume first that N
N−2γ

< p < p1 (the stable case). Then from (3.134), we

know that there are no indicial roots on the imaginary axis. Next we consider the

real axis. Since Φ0(B0,0) = 0, by (3.133), there exists an unique root α∗ ∈ (0,B0)

such that Φ0(±α∗,0) = λ (p). We now show that α∗ ∈ (0, 2γ

p−1 −
N−2γ

2 ). Note that

Φ0
( 2γ

p−1 −
N−2γ

2 ,0
)
= (1− p)

Γ
(N

2 −
γ

p−1

)
Γ
(

γ

p−1 + γ
)

Γ
(

γ

p−1

)
Γ
(N

2 − γ− γ

p−1

) < 0.

We conclude using the monotonicity of Φ0(α,0) in α .

Now we consider the unstable case, i.e., for p > p1. First by (3.133), there

are no indicial roots on the real axis. Then by (3.132), in the region |α| ≤ B0,

if a solution exists, then δ must stay in the imaginary axis. Since Φ0(0,β ) is

increasing in β and limβ→∞ Φ0(0,β ) = +∞, we get an unique β ∗ > 0 such that

Φ0(0,±β ∗) = λ (p).

In the notation of Section 3.6, we denote all the solutions to (3.135) to be

σ
(0)
j ± iτ(0)

j and −σ
(0)
j ± iτ(0)

j , such that σ j is increasing sequence, then from the

above argument, one has the following properties: σ
(0)
0 ∈

(
0, 2γ

p−1 −
N−2γ

2

)
, τ

(0)
0 = 0, for N

N−2γ
< p < p1,

σ
(0)
0 = 0, τ

(0)
0 ∈ (0,∞), for p1 ≤ p < N+2γ

N−2γ
,

and

σ
(0)
j > 2B0 =

N−2γ

2 for j ≥ 1.
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For the next mode m = 1, one can check by direct calculation that α1 =
2γ

p−1 +

1− N−2γ

2 is a solution to (3.131). By the monotonicity (3.133), there are no other

real solutions in (0,α1). This also implies that Φ1(0,0) > λ (p), by (3.134), there

are no solutions in the imaginary axis.

Moreover, using the fact that Φm(α,0) is increasing in m, and Φm(±Bm,0) = 0,

we get a sequence of real solutions αm ∈ (0,Bm) for m ≥ 1 that is increasing.

Moreover, from (3.132), one also has that in the region |α| ≤ Bm, all the solutions

to (3.131) are real.

Then, denoting the solutions to (3.131) by σ
(m)
j ± iτ(m)

j and −σ
(m)
j ± iτ(m)

j for

m≥ 1, we conclude that:

σ
(1)
0 = 2γ

p−1 +1− N−2γ

2 , {σ (m)
0 } is increasing, τ

(m)
0 = 0.

We finally consider statement i. in the Lemma and look for the indicial roots

of L1 at r =+∞. In this case, δ will satisfy the following equation:

22γ

∣∣∣Γ(1
2 +

γ

2 +
1
2

√(N
2 −1

)2
+µm + δ

2

)∣∣∣2∣∣∣Γ(1
2 −

γ

2 +
1
2

√(N
2 −1

)2
+µm + δ

2

)∣∣∣2 = 0.

For each fixed m = 0,1, . . ., the indicial roots occur when

1
2 −

γ

2 +
1
2

√(N
2 −1

)2
+µm±

δ

2
= j, for j = 0,−1,−2, . . . ,−∞,

or

±δ = (1− γ)+
√

(N
2 −1)2 +µm +2 j, j = 0,1,2, . . . .

Thus, the indicial roots for L1 at r =+∞ are given by

−N−2γ

2 ±
{
(1− γ)+

√
(N

2 −1)2 +µm

}
±2 j, j = 0,1, . . . .

This finishes the proof of the Lemma.
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3.7.2 Injectivity of L1 in the weighted space C 2γ+α

µ,ν1

The arguments in this section rely heavily on the results from Section 3.6. We fix

µ > Re(γ+0 )≥−N−2γ

2
, ν1 ≤min{0,µ}. (3.136)

Proposition 3.7.2. Under the hypothesis (3.136), the only solution φ ∈
C 2γ+α

µ,ν1 (RN \{0}) of the equation L1φ = 0 is the trivial solution φ ≡ 0.

Proof. We would like to classify solutions to the following equation:

(−∆RN )γ
φ = pAN,p,γup−1

1 φ in RN \{0},

or equivalently, (3.129) or (3.130) for each m = 0,1, . . ..

Step 1: the mode m = 0. Define the constant τ = pAN,p,γ and rewrite equation

(3.126) as

P0
γ (w)− τw = (V − τ)w =: h (3.137)

for some w = w(t), h = h(t). We use (3.128) and the definition of w to estimate the

right hand side,

h(t) =

O(e−(q1+µ+N−2γ

2 )t) as t→+∞,

O(e−(ν1+
N−2γ

2 )t) as t→−∞.

We use Theorem 3.6.1 and Proposition 3.6.3. There could be solutions to the homo-

geneous problem of the form e(σ j±iτ j)t , e(−σ j±iτ j)t . But these are not allowed by the

choice of weights µ , ν1 from (3.136) since µ + N−2γ

2 > σ
(0)
0 and ν1 +

N−2γ

2 < σ
(0)
1

(for this, recall statements a) and b) in Lemma 3.7.1).

Now we apply iii. of Theorem 3.6.1 (or Proposition 3.6.3) with δ = q1 +

ν + N−2γ

2 > Re(γ+0 + N−2γ

2 ) = σ
(0)
0 and δ0 = −(ν1 +

N−2γ

2 ) > −σ
(0)
0 . Obviously,

δ +δ0 > 0. Assume that σJ < δ < σJ+1. Then we can find a particular solution w0

(depending on J) such that

w0(t) = (e−δ t), as t→+∞,
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so w will have the same decay.

Now, by the definition of h in (3.137), we can iterate this process with δ =

lq1 +ν + N−2γ

2 , l ≥ 2, and the same δ0, to obtain better decay when t→+∞. As a

consequence, we have that w decays faster than any e−δ t as t → +∞, which when

translated to φ means that φ = o(ra) as r→ 0 for every a ∈ N. The strong unique

continuation result of [84] (stable case) and [152] (unstable case) for the operator

P0
γ −V implies that φ must vanish everywhere.

Step 2: the modes m = 1, . . . ,N. Differentiating the equation (3.11) we get

L1
∂u1

∂xm
= 0.

Since u1 only depends on r, we have ∂u1
∂xm

= u′1(r)Em, where Em = xm
|x| . Using the

fact that −∆SN−1Em = µmEm, the extension for u′1(r) to RN+1
+ solves (3.129) with

eigenvalue N−1, and w1 := r
N−2γ

2 u′1 satisfies Pm
γ w−V w = 0. Note that u′1 decays

like r−(N+1−2γ) as r→ ∞ and blows up like r−
2γ

p−1−1 as r→ 0.

We know that also φm solves (3.130). Assume it decays like r−(N+1−2γ) as

r→ ∞ and blows up like rγ+m as r→ 0. Then we can find a non-trivial combination

of u′1 and φm that decays faster than r−(N+1−2γ) at infinity. Since their singularities

at 0 cannot cancel, this combination is non-trivial.

Now we claim that no solution to (3.130) can decay faster than r−(N+1−2γ) at

∞, which is a contradiction and yields that φm = 0 for m = 1, . . . ,N.

To show this claim we argue as in Step 1, using the indicial roots at infinity

(namely −(N + 1− 2γ) and 1) and interchanging the role of +∞ and −∞ in the

decay estimate. Using the facts that the solution decays like rσ for some σ <

−(N−2γ +1), i.e. σ + N−2γ

2 < −N−2γ

2 − 1 = −σ
(1)
0 and Re(γ+m )+ N−2γ

2 < σ
(1)
1 ,

one can show that the solution is identically zero.

Step 3: the remaining modes m≥N +1. We use an integral estimate involving

the first mode which has a sign, as in [59, 60]. We note that, in particular, φ1(r) =

−u′1(r) > 0, which also implies that its extension Φ1 is positive. In general, the
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γ-harmonic extension Φm of φm satisfies
div(`1−2γ∇Φm)= µm

`1−2γ

r2 Φm in RN+1
+ ,

−d̃γ lim
`→0

`1−2γ∂`Φm= pup−1
1 φm on RN+1

+ .

We multiply this equation by Φ1 and the one with m = 1 by Φm. Their difference

gives the equality

(µm−µ1)
`1−2γ

r2 ΦmΦ1 = Φ1 div(`1−2γ
∇Φm)−Φm div(`1−2γ

∇Φ1)

= div(`1−2γ(Φ1∇Φm−Φm∇Φ1)).

Let us integrate over the region where Φm > 0. The functions are regular enough

near x = 0 by the restriction (3.136). The boundary ∂ {Φm > 0} is decomposed

into a disjoint union of ∂ 0 {Φm > 0} and ∂+ {Φm > 0}, on which `= 0 and ` > 0,

respectively. Hence

0≤ d̃γ(µm−µ1)
∫
{Φm>0}

ΦmΦ1

r2 dxd`

=
∫

∂ 0{Φm>0}

(
φ1 lim

`→0
`1−2γ ∂Φm

∂ν
−φm lim

`→0
`1−2γ ∂Φ1

∂ν

)
dx

+
∫

∂+{Φm>0}
`1−2γ

(
Φ1

∂Φm

∂ν
−Φm

∂Φ1

∂ν

)
dxd`.

The first integral on the right hand side vanishes due to the equations Φ1 and Φm

satisfy. Then we observe that on ∂+ {Φm > 0}, one has Φ1 > 0,
∂Φm

∂ν
≤ 0 and

Φm = 0. This forces (using µm > µ1)∫
{Φm>0}

ΦmΦ1

r2 dxd`= 0,

which in turn implies Φm ≤ 0. Similarly Φm ≥ 0 and, therefore, Φm ≡ 0 for m ≥
N +1. This completes the proof of the Proposition 3.7.2.
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3.7.3 Injectivity of L1 on C 2γ+α

µ,ν1

In the following, we set N = n− k and consider more general equation (3.89). Set

L1 = (−∆Rn)γ − pAN,p,γup−1
1 in Rn \Rk.

Proposition 3.7.3. Choose the weights µ,ν1 as in Proposition 3.7.2. The only solu-

tion φ ∈ C 2γ+α

µ,ν1 (Rn \Rk) of the linearized equation L1φ = 0 is the trivial solution

φ ≡ 0.

Proof. The idea is to use the results from Section 3.3.3 to reduce L1 to the simpler

L1, taking into account that u1 only depends on the variable r but not on z. In the

notation of Proposition 3.3.4, define w = r−
N−2γ

2 φ , and wm its m-th projection over

spherical harmonics. Set ŵm(λ ,ω), λ ∈ R, ω ∈ Sk to denote its Fourier-Helgason

transform. By observing that the full symbol (3.48), for each fixed ω , coincides

with the symbol (3.38), we have reduced our problem to that of Proposition 3.7.2.

This completes the proof.

3.7.4 A priori estimates

Now we go back to the linearized operator Lε from (3.123) for the point singularity

case RN \{q1, . . . ,qK}, or (3.122) for the general Rn \Σ, and consider the equation

Lεφ = h. (3.138)

For simplicity, we use the following notation for the weighted norms

‖φ‖∗ = ‖φ‖C 2γ+α

µ,ν
, ‖h‖∗∗ = ‖h‖C 0,α

µ−2γ,ν−2γ

. (3.139)

Moreover, for this subsection, we assume that µ,ν satisfy

Re(γ+0 )< µ ≤ 0, −(n−2γ)< ν .

For this choice of weights we have the following a priori estimate:
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Lemma 3.7.4. Given h with ‖h‖∗∗ < ∞, suppose that φ be a solution of (3.138),

then there exists a constant C independent of ε such that

‖φ‖∗ ≤C‖h‖∗∗.

Proof. We will argue by contradiction. Assume that there exists ε j → 0, and a

sequence of solutions {φ j} to Lε j φ j = h j such that

‖φ j‖∗ = 1, and ‖h j‖∗∗→ 0 as j→ ∞.

In the following we will drop the index j without confusion.

We first consider the point singularity case RN \Σ for Σ = {q1, . . . ,qK}. By

Green’s representation formula one has

φ(x) =
∫
RN

G(x, x̃)[h+ pAN,p,γ ūp−1
ε φ ]dx̃ =: I1 + I2,

where G is the Green’s function for the fractional Laplacian (−∆RN )γ given by

G(x, x̃) =CN,γ |x− x̃|−(N−2γ) for some normalization constant CN,γ . In the first step,

let x ∈ RN \
⋃

i Bσ (qi). In this case

I1 .
∫
RN
|x− x̃|−(N−2γ)h(x̃)dx̃

=
∫
{dist(x̃,Σ)< σ

2 }
· · ·+

∫
{ σ

2 <dist(x̃,Σ)< |x|2 }
· · ·

+
∫
{ |x|2 <dist(x̃,Σ)<2|x|}

· · ·+
∫
{dist(x̃,Σ)>2|x|}

· · ·

≤C‖h‖∗∗(|x|−(N−2γ)+ |x|ν)

≤C‖h‖∗∗|x|ν ,

because of our restriction of ν . Moreover,

I2 =
∫

G(x, x̃)pūε(x̃)p−1
φ(x̃)dx̃

=
∫
{dist(x̃,Σ)<ε}

· · ·+
∫
{ σ

2 >dist(x̃,Σ)>ε}
· · ·+

∫
{dist(x̃,Σ)> σ

2 }
· · ·=: I21 + I22 + I23.
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Calculate

I21 ≤
∫
{dist(x̃,Σ)<ε}

|x− x̃|−(N−2γ)
ρ(x̃)−2γ

φ

≤ ‖φ‖∗
∫
{dist(x̃,Σ)<ε}

|x− x̃|−(N−2γ)
ρ(x̃)µ−2γ dx̃,

≤Cε
N+µ−2γ‖φ‖∗ρ(x)−(N−2γ),

where ρ is the weight function defined in Section 3.5.1, and

I22 =
∫
{dist(x̃,Σ)> σ

2 }
|x− x̃|−(N−2γ)

ε
N(p−1)−2pγ

ρ(x̃)−(N−2γ)(p−1)
φ dx̃

≤ ‖φ‖∗
∫
{R>dist(x̃,Σ)> σ

2 }
|x− x̃|−(N−2γ)

ε
N(p−1)−2pγ

ρ(x̃)µ−(N−2γ)(p−1) dx̃

+‖φ‖∗
∫
{dist(x̃,Σ)>R}

|x− x̃|−(N−2γ)
ε

N(p−1)−2pγ
ρ(x̃)ν−(N−2γ)(p−1)

]
dx̃

. ε
N(p−1)−2pγ

ρ(x)−(N−2γ)‖φ‖∗.

Next for I23,

I23 .
∫
{ε<dist(x̃,Σ)< σ

2 }
|x− x̃|−(N−2γ)

ε
N(p−1)−2pγ

ρ(x̃)−(N−2γ)(p−1)
φ dx̃

≤ ε
N(p−1)−2pγ

ρ(x)−(N−2γ)‖φ‖∗
∫
{ε<|x̃|< σ

2 }
|x̃|µ−(N−2γ)(p−1) dx̃

. (εN(p−1)−2pγ + ε
µ−2γ+N)‖φ‖∗ρ(x)−(N−2γ).

Combining the above estimates, one has

I2 ≤C(εN(p−1)−2pγ + ε
µ−2γ+N)ρ(x)−(N−2γ)‖φ‖∗

. (εN(p−1)−2pγ + ε
µ−2γ+N)ρ(x)ν‖φ‖∗,

and thus

sup
{dist(x,Σ)>σ}

{ρ(x)−ν |φ |} ≤C(‖h‖∗∗+o(1)‖φ‖∗),
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which implies, because our initial assumptions on φ , that there exists qi such that

sup
{|x−qi|<σ}

|x−qi|−µ |φ | ≥ 1
2
. (3.140)

In the second step we study the region |x−qi|< σ . Without loss of generality,

assume qi = 0. Recall that we are writing φ = I1 + I2. On the one hand,

I1 =
∫
RN

G(x, x̃)h(x̃)dx̃

=
∫
{|x̃|>2σ}

· · ·+
∫
{|x̃|< |x|2 }

· · ·+
∫
{ |x|2 <|x̃|<2|x|}

· · ·+
∫
{2|x|<|x̃|<2σ}

· · ·

≤ c‖h‖∗∗
[∫
{|x̃|>2σ}

|x− x̃|−(N−2γ)|x̃|ν−2γ dx̃

+
∫
{|x̃|< |x|2 }

|x− x̃|−(N−2γ)|x̃|µ−2γ dx̃

+
∫
{ |x|2 <|x̃|<2|x|}

|x− x̃|−(N−2γ)|x̃|µ−2γ dx̃

+
∫
{2|x|<|x̃|<2σ}

|x− x̃|−(N−2γ)|x̃|µ−2γ dx̃
]

≤C‖h‖∗∗|x|µ .

On the other hand, for I2, recall that φ is a solution to

(−∆RN )γ
φ − pAN,p,γ ūp−1

ε φ = h.

Define φ̄(x̃) = ε−µφ(ε x̃), then φ̄ satisfies

(−∆RN )γ
φ̄ − pAN,p,γup−1

1 φ̄ = ε
2γ−µh(ε x̃).

By the assumption that ‖h‖∗∗ → 0, one has that the right hand side tends to 0

as j→ ∞. Since |φ̄(x̃)| ≤ C‖φ‖∗|x̃|µ locally uniformly, and by regularity theory,

φ̄ ∈ C η

loc(R
N \ {0}) for some η ∈ (0,1), thus passing to a subsequence, φ̄ → φ∞

locally uniformly in any compact set, where φ∞ ∈ C α+2γ

µ,µ (RN \ {0}) is a solution

of

(−∆RN )γ
φ∞− pAN,p,γup−1

1 φ∞ = 0 in RN \{0} (3.141)
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(to handle the non-locality we may pass to the extension in a standard way). Since

µ ≤ 0, it satisfies the condition in Proposition 3.7.2, from which we get that φ∞≡ 0,

so φ̄ → 0.

Now we go back to the calculation of I2. Here we use the change of variable

x = εx1.

I2 =
∫
{|x̃|<σ}

p|x− x̃|−(N−2γ)ūp−1
ε φ dx̃ = ε

µ

∫
{|x̃|< σ

ε
}
|x1− x̃|−(N−2γ)up−1

1 (x̃)φ̄(x̃)dx̃

= ε
µ

[∫
{|x̃|< 1

R }
· · ·+

∫
{ 1

R<|x̃|<R}
· · ·+

∫
{R<|x̃|< σ

ε
}
· · ·
]
=: J1 + J2 + J3,

for some positive constant R large enough to be determined later. For J1, fix x,

when ε → 0 one has

J1 = ε
µ

∫
{|x̃|< 1

R}
|x1− x̃|−(N−2γ)up−1

1 (x̃)φ̄(x̃)dx̃

≤ ε
µ‖φ‖∗|x1|−(N−2γ)

∫
{|x̃|< 1

R }
|x̃|µ−2γ dx̃

≤CR−(N−2γ+µ)‖φ‖∗|x|µ .

For J2 we use the fact that in this region φ̄ → 0, so

J2 = ε
µ

∫
{ 1

R<|x̃|<R}
|x1− x̃|−(N−2γ)up−1

1 (x̃)φ̄(x̃)dx̃

= o(1)εµ

∫
{ 1

R<|x̃|<R}

1
|x1− x̃|N−2γ

dx̃ = o(1)εµ |x1|−(N−2γ) = o(1)|x|µ ,

and finally,

J3 = ε
µ

∫
{R<|x̃|< σ

ε
}
|x1− x̃|−(N−2γ)up−1

1 (x̃)φ̄(x̃)dx̃

= ε
µ‖φ‖∗

[∫
{R<|x̃|< |x1 |

2 }
|x1− x̃|−(N−2γ)|x̃|µup−1

1 dx̃

+
∫
{ |x1 |

2 <|x̃|<2|x1|}
|x1− x̃|−(N−2γ)up−1

1 |x̃|µ dx̃

+
∫
{2|x1|<|x̃|< σ

ε
}
|x1− x̃|−(N−2γ)up−1

1 |x̃|µ dx̃
]

≤Cε
µ |x1|µ‖φ‖∗|x1|−τ ≤ o(1)‖φ‖∗|x|µ
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for some τ > 0.

Combining all the above estimates, one has

||x|−µ I1| ≤ o(1)(‖φ‖∗+1),

which implies

‖φ‖∗ ≤ o(1)‖φ‖∗+o(1)+‖h‖∗∗ = o(1).

This is a contradiction with (3.140).

For the more general case Rn \ Σ when Σ is a smooth k-dimensional sub-

manifold, the argument is similar as above, the only difference is that one arrives

to the analogous to (3.141) in the estimate for I2 near Σ:

(−∆Rn)γ
φ∞− pup−1

1 φ∞ = 0 in Rn \Rk.

After the obvious rescaling by the constant AN,p,γ , where N = n− k, one uses Re-

mark 3.5.8 and the injectivity result in Proposition 3.7.3 instead of the one in Pro-

position 3.7.2. This completes the proof of Lemma 3.7.4.

3.8 Fredholm properties - surjectivity
Our analysis here follows closely the one in [142] for the local case. These lecture

notes are available online but, unfortunately, yet to be published.

For the rest of the chapter, we will take the pair of dual weights µ, µ̃ such that

µ + µ̃ =−(N−2γ) and ν + ν̃ =−(n−2γ) satisfying

− 2γ

p−1
< µ̃ < Re(γ−0 )≤−N−2γ

2
≤ Re(γ−0 )< µ < 0,

− (n−2γ)< ν̃ < 0.
(3.142)

In order to consider the invertibility of the linear operators (3.122) and (3.123),

defined in the spaces

Lε : C 2γ+α

µ̃,ν̃ → C 0,α
µ̃−2γ,ν̃−2γ

,
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it is simpler to consider the conjugate operator

L̃ε(w) := f−1
1 Lε( f2w), L̃ε : C 2α+γ

µ̃+N−2γ

2 ,ν̃+ n−2γ

2
→ C 2α+γ

µ̃+N−2γ

2 ,ν̃+ n−2γ

2
, (3.143)

where f2 is a weight ρ−
n−2γ

2 near infinity, and ρ−
N−2γ

2 near the singular set Σ, while

f1 is ρ−
n+2γ

2 near infinity, and ρ−
N+2γ

2 near the singular set. Recall that ρ is defined

in Section 3.5.1. This conjugate operator is better behaved in weighted Hilbert

spaces and simplifies the notation in the proof of Fredholm properties.

3.8.1 Fredholm properties

Fredholm properties for extension problems related to this type of operators were

considered in [130, 131].

In the notation of Section 3.5.1, and following the paper [132], we define the

weighted Lebesgue space L2
δ ,ϑ (R

n \ Σ). These are L2
loc functions for which the

norm

‖φ‖2
L2

δ ,ϑ (Rn\Σ) =
∫
Rn\BR

|φ |2ρ
−2γ−2ϑ dz+

∫
BR\Tσ

|φ |2 dz

+
∫

Tσ

|φ |2ρ
N−1−2γ−2δ drdydθ (3.144)

is finite. Here drdydθ denotes the corresponding measure in Fermi coordinates

r > 0, y ∈ Σ, θ ∈ SN−1. One defines accordingly, for γ > 0, weighted Sobolev

spaces W 2γ,2
δ ,ϑ with respect to the vector fields from Remark 3.5.3 (see [130] for the

precise definitions).

The seemingly unusual normalization in the integrals in (3.144) is explained

by the change of variable w = f2φ . Indeed,

‖w‖2
L2

δ ,ϑ
=
∫ − logR

−∞

∫
Sn−1
|w|2e2ϑ t dt̃dθ̃dr+

∫
{dist(·,Σ)>σ ,|z|<R}

|w|2 dz

+
∫ +∞

− logσ

∫
Σ

∫
SN−1
|w|2e2δ t dtdydθ .

We have
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Lemma 3.8.1. For the choice of parameters

−δ < µ̃ + N−2γ

2 , −ϑ > ν̃ + n−2γ

2 ,

we have the continuous inclusions

C 2γ+α

µ̃,ν̃ (Rn \Σ) ↪→ L2
−δ ,−ϑ

(Rn \Σ).

The spaces L2
δ ,ϑ and L2

−δ ,−ϑ
are dual with respect to the natural pairing

〈φ1,φ2〉∗ =
∫
Rn

φ1φ2,

for φ1 ∈ L2
δ ,ϑ , φ2 ∈ L2

−δ ,−ϑ
. Now, let L̃ε be the operator defined in (3.143). It is a

densely defined, closed graph operator (this is a consequence of elliptic estimates).

Then, relative to this pairing, the adjoint of

L̃ε : L2
−δ ,−ϑ

→ L2
−δ−2γ,−ϑ−2γ

(3.145)

is precisely

(L̃ε)
∗ = L̃ε : L2

δ+2γ,ϑ+2γ
→ L2

δ ,ϑ . (3.146)

Now we fix µ , µ̃ , ν , ν̃ as in (3.142), and choose −δ < 0 slightly smaller than

µ̃ + N−2γ

2 and −ϑ < 0 just slightly larger than ν̃ + n−2γ

2 so that, in particular,

− 2γ

p−1 +
N−2γ

2 <−δ < µ̃ + N−2γ

2 < 0 < µ + N−2γ

2 < δ < N−2γ

2 ,

− n−2γ

2 < ν̃ + n−2γ

2 <−ϑ < 0 < ϑ < n−2γ

2 ,
(3.147)

and we have the inclusions from Lemma 3.8.1. In addition, we can choose δ ,ϑ dif-

ferent from the corresponding indicial roots. Higher order regularity is guaranteed

by the results in Section 3.6.2. We will show:

Proposition 3.8.2. Let δ ∈ (−N+2γ

2 − 2γ, N−2γ

2 ) and ϑ ∈ (−n−2γ

2 , n−2γ

2 ) be real

numbers satisfying (3.147).

Assume that w ∈ L2
δ ,ϑ is a solution to

L̃εw = h̃ on Rn \Σ
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for h̃ ∈ L2
δ ,ϑ . Then we have the a priori estimate

‖w‖L2
δ ,ϑ
. ‖h̃‖L2

δ ,ϑ
+‖w‖L2(K ), (3.148)

where K is a compact set in Rn \Σ. Translating back to the original operator Lε ,

if φ is a solution to Lεφ = h in R\Σ, then (3.148) is rewritten as

‖φ‖L2
δ+2γ,ϑ+2γ

. ‖h‖L2
δ ,ϑ

+‖φ‖L2(K ). (3.149)

As a consequence, Lε has good Fredholm properties. The same is true for the

linear operators from (3.145) and (3.146).

Proof. The proof here goes by subtracting suitable parametrices near Σ and near

infinity thanks to Theorem 3.6.1. Then the remainder is a compact operator. For

simplicity we set ε = 1.

We first consider the point singularity case, i.e., k = 0, n = N.

Step 1: (Localization) Let us study how the operator L1 : L2
δ+2γ,ϑ+2γ

→ L2
δ ,ϑ is

affected by localization, so that it is enough to work with functions supported near

infinity and near the singular set.

In the first step, assume that the singularity happens only at r = ∞ (but not at

r = 0). We would like to patch a suitable parametrix at r = ∞. Let χ be a cut-off

function such that χ = 1 in RN \BR, χ = 0 in BR/2. Let K = B2R, and set

h1 := L1(χφ) = χL1φ +[L1,χ]φ ,

where [·, ·] denotes the commutator operator. Contrary to the local case, the com-

mutator term does not have compact support, but can still give good estimates in

weighted Lebesgue spaces by carefully controlling the the tail terms. Let

I(x) := [L1,χ]φ(x) = (−∆RN )γ(χφ)(x)−χ(x)(−∆RN )γ
φ(x)

= kN,γ

∫
RN

χ(x)−χ(x̃)
|x− x̃|N+2γ

φ(x̃)dx̃.

Let us bound this integral in L2
δ ,ϑ .
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We first consider the case |x| � 1. Note that

I(x) =
∫

B2R\BR/2

χ(x)−χ(x̃)
|x− x̃|N+2γ

φ(x̃)dx̃+
∫
RN\B2R

φ(x̃)
|x− x̃|N+2γ

dx̃

≤CR
2ϑ+2γ−N

2 ‖φ‖L2
δ+2γ,ϑ+2γ

+‖φ‖L2(K ).

We have that ‖I‖L2
δ
(B1)

can be bounded by o(1)‖φ‖L2
δ+2γ,ϑ+2γ

+ ‖φ‖L2(K ) for large

R if ϑ < N−2γ

2 and δ < N−2γ

2 .

Next, for |x| ≥ 2R, we need to add the weight at infinity and calculate

‖I‖L2
ϑ
(RN\B2R)

. But

I(x) =
∫

BR/2

φ(x̃)
|x− x̃|N+2γ

dx̃+
∫

B2R\BR/2

χ(x)−χ(x̃)
|x− x̃|N+2γ

φ(x̃)dx̃

≤C‖φ‖L2
δ+2γ,ϑ+2γ

R
2ϑ+6γ+N

2 |x|−(N+2γ) if δ >−N+2γ

2 −2γ.

One has that ‖I‖L2
ϑ
(RN\BR)

= o(1)‖φ‖L2
δ+2γ,ϑ+2γ

if ϑ >−N+2γ

2 −2γ .

Now let 1≤ |x|< 2R, and calculate ‖I‖L2(B2R\B1). Again, we split

I(x) =
∫

BR/2

χ(x)φ(x̃)
|x− x̃|N+2γ

dx̃+
∫

B2R\BR/2

χ(x)−χ(x̃)
|x− x̃|N+2γ

φ(x̃)dx̃

+
∫
RN\B2R

(χ(x)−1)φ(x̃)
|x− x̃|N+2γ

dx̃

=: I21 + I22 + I23.

Similar to the above estimates, we can get that the L2 norm can be bounded by

‖φ‖L2(K )+o(1)‖φ‖L2
δ+2γ,ϑ+2γ

if ϑ < N−2γ

2 . Thus we have shown that

‖h1‖L2
δ ,ϑ
. ‖h‖L2

δ ,ϑ
+‖φ‖L2(K )+o(1)‖φ‖L2

δ+2γ,ϑ+2γ

,

so localization does not worsen estimate (3.149).
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In addition, the localization at r = 0 is similar. One just needs to interchange

the role of r and 1/r, and ϑ by δ . Similar to the estimates in Step 5 below, one

can get that the error caused by the localization can be bounded by ‖φ‖L2(K ) +

o(1)‖φ‖L2
δ+2γ,ϑ+2γ

if −N+2γ

2 −2γ < ϑ < N−2γ

2 , −N+2γ

2 −2γ < δ < N−2γ

2 .

Step 2: (The model operator) After localization around one of the singular

points, say q1 = 0, the operator L1 can be approximated by the model operator L1

from (3.124), or by its conjugate given in (3.126). Moreover, recalling the notation

(3.127) for the potential term and its asymptotics (3.128), it is enough to show that

‖w‖L2
δ

. ‖h̃‖L2
δ

, (3.150)

if w = w(t,θ) is a solution of

Pg0
γ w−κw = h̃, t ∈ R, θ ∈ SN−1, (3.151)

that has compact support in t ∈ (0,∞). Here we have denoted κ = pAN,p,γ .

Now project over spherical harmonics, so that w = ∑m wm(t)Em(θ), and wm

satisfies

Pm
γ wm−κwm = hm, t ∈ R.

Our choice of weights (3.147) implies that there are no additional solutions to

the homogeneous problem and that we can simply write our solution as (3.96), in

Fourier variables. Then∫
R

e2δ t |wm(t)|2 dt =
∫
R
|wm(ξ +δ i)|2 dξ =

∫
R

1
|Θm

γ (ξ +δ i)−κ|2
|ĥm(ξ +δ i)|2 dξ

≤C
∫
R
|ĥm(ξ +δ i)|2 dξ =

∫
R

e2δ t |hm(t)|2 dt,

(3.152)

where we have used (3.106). (note that there are no poles on the R+ δ i line).

Estimate (3.150) follows after taking sum in m and the fact that {Em} is an or-

thonormal basis.

For the estimate near infinity, we proceed in a similar manner, just approxim-

ating the potential by τ = 0.
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Step 3: (Compactness) Let {w j} be a sequence of solutions to L̃1w j = h̃ j with

h̃ j ∈ L2
δ ,ϑ . Assume that we have the uniform bound ‖w j‖L2

δ ,ϑ
≤C. Then there exists

a subsequence, still denoted by {w j}, that is convergent in L2
δ ,ϑ norm. Indeed, by

the regularity properties of the equation, ‖w j‖W 2γ,2
δ ,ϑ
≤C, which in particular, implies

a uniform W 2γ,2 in every compact set K . But this is enough to conclude that {w j}
has a convergent subsequence in W 2γ,2(K ). Finally, estimate (3.148) implies that

this convergence is also true in L2
δ ,ϑ , as we claimed.

Step 4: (Fredholm properties for L̃1) This is a rather standard argument. First,

assume that the kernel is infinite dimensional, and take an orthonormal basis {w j}
for this kernel. Then, by the claim in Step 3, we can find a Cauchy subsequence.

But, for this,

‖w j−w j′‖2 = ‖w j‖2 +‖w j′‖2 = 2,

a contradiction.

Second, we show that the operator has closed range. Let {w j}, {h̃ j} be two

sequences such that

L̃1w j = h̃ j and h̃ j→ h in L2
δ ,ϑ . (3.153)

Since Ker L̃1 is closed, we can use the projection theorem to write w j = w0
j +w1

j

for w0
j ∈ Ker L̃1 and w1

j ∈ (Ker L̃1)
⊥. We have that L̃1w1

j = h̃ j.

Now we claim that this sequence is uniformly bounded, i.e., ‖w1
j‖L2

δ ,ϑ
≤C for

every j. By contradiction, assume that ‖w1
j‖L2

δ ,ϑ
→ ∞ as j→ ∞, and rescale

w̃ j =
w1

j

‖w1
j‖L2

δ ,ϑ

so that the new sequence has norm one in L2
δ ,ϑ . From the previous remark, there is

a convergent subsequence, still denoted by {w̃ j}, i.e., w̃ j → w̃ in L2
δ ,ϑ . Moreover,

we know that L̃1w̃ = 0. However, by assumption we have that w1
j ∈ (Ker L̃1)

⊥,

therefore so does w̃. We conclude that w̃ must vanish identically, which is a con-

tradiction with the fact that ‖w1
j‖L2

δ ,ϑ
= 1. The claim is proved.
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Now, using the remark in Step 3 again, we know that there exists a convergent

subsequence w1
j → w1 in L2

δ ,ϑ . This w1 must be regular, so we can pass to the limit

in (3.153) to conclude that L̃1(w1) = h, as desired.

Step 5. Now we consider the case that Σ is a sub-manifold of dimension k, and

study the localization near a point in z0 ∈ Σ. In Fermi coordinates z = (x,y), this is

a similar estimate to that of (3.92).

First let χ be a cut-off function such that χ(r)= 1 for r≤ d and χ(r)= 0 for r≥
2d. Define χ̃(z) = χ(dist(z,Σ)), and consider φ̃ = χ̃φ . Using Fermi coordinates

near Σ and around a point z0 ∈ Σ, that can be taken to be z0 = (0,0) without loss of

generality, then, for z = (x,y) satisfying |x| � 1, |y| � 1, by checking the estimates

in the proof of Lemma 3.5.7, one can get that

(−∆z)
γ
φ̃(z) = (1+ |x|

1
2 )(−∆Rn\Rk)γ

φ̃(x,y)+ |x|−γ
φ̃ +R2 (3.154)

where

R2 =
∫

Σ

∫
{|x|β<|x̃|<2d}

φ̃

|x̃|N+2γ
dx̃dy+ |x|−β (N+2γ)

∫
Σ

∫
{|x̃|<|x|β }

φ̃ dx̃dy

+ |x|βk
∫

Σ

∫
{|x|β<|x̃|<2d}

φ̃

|x̃|n+2γ
dx̃dy

≤ ‖φ̃‖L2
δ+2γ

|x|−
1
4 (N−2γ−2δ ),

where we have used Hölder inequality and that β = 1
2 . Here ‖φ̃‖L2

δ+2γ

is the

weighted norm near Σ. One can easily check that the L2
δ

norm of R2 and |x|−γ φ̃

are bounded by o(1)‖φ‖Lδ+2γ,ϑ+2γ
for small d if δ < N−2γ

2 .

Next we consider the effect of the localization. Let

I1(z) = [L1, χ̃]φ = kn,γ

∫
Rn

χ̃(z)− χ̃(z̃)
|z− z̃|n+2γ

φ(z̃)dz̃.

For |z| � 1, one has

I1(z). |z|−(n+2γ)
∫

T2d

φ(z̃)dz̃. dδ+N
2 +3γ‖φ‖L2

δ+2γ,ϑ+2γ

|z|−(n+2γ).
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Adding the weight at infinity we get that ‖I1‖L2
ϑ
(Rn\BR)

can be bounded by

o(1)‖φ‖L2
δ+2γ,ϑ+2γ

for d small and R large whenever δ > −N+2γ

2 − 2γ, ϑ >

−n+2γ

2 −2γ .

For |x| � 1, one has

I1(z).
∫

T2d\Td

φ

|z− z̃|n+2γ
dz̃+

∫
T c

2d

φ

|z− z̃|n+2γ
dz̃.

One can check that the L2
δ

term can be bounded by

‖I1‖L2
δ

≤C[‖φ‖L2(K )+R
−n+2γ+2ϑ

2 ‖φ‖L2
ϑ+2γ

(Bc
R)
]

≤C[‖φ‖L2(K )+o(1)‖φ‖L2
δ+2γ,ϑ+2γ

]

for d small and R large if δ < N−2γ

2 , ϑ < n−2γ

2 .

For z ∈K , the estimate goes similarly for δ >−N+2γ

2 −2γ . In conclusion, we

have

‖I1‖L2
δ ,ϑ
≤C

[
‖φ‖L2(K )+o(1)‖φ‖L2

δ+2γ,ϑ+2γ

]
. (3.155)

Note that this estimate only uses the values of the function φ when |y|� 1. Indeed,

by checking the arguments in Lemma 5.7, the main term of the expansion for the

fractional Laplacian in (3.154) comes from I11, i.e. for |y| � 1. The contribution

when |y| > |x|β is included in the remainder term |x|γ φ̃ +R2. The localization

around the point z0 = (0,0) is now complete.

Step 6. Next, after localization, we can replace (3.151) by

Pgk
γ w− τw = h̃, in SN−1×Hk+1,

and w is supported only near a point z0 ∈ ∂Hk+1, that can be taken arbitrarily. We

first consider the spherical harmonic decomposition for SN−1 and recall the symbol

for each projection from Theorem 3.3.5.

The L2
δ

estimate follows similarly as in the case of points, but one uses the

Fourier-Helgason transform on hyperbolic space instead of the usual Fourier trans-

form as in Theorem 3.3.5. Note, however, that the hyperbolic metric in (3.45) is

written in half-space coordinates as dr2+|dy|2
r2 = dt2 + e2t |dy|2, so in order to ac-
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count for a weight of the form rδ one would need to use this transform written

in rectangular coordinates. This is well known and comes Kontorovich-Lebedev

formulas ([169]). Nevertheless, for our purposes it is more suitable to use this

transform in geodesic polar coordinates as it is described in Section 3.11. To ac-

count for the weight, we just recall the following relation between two different

models for hyperbolic space Hk+1, the half space model with metrics dr2+|dy|2
r2 and

the hyperboloid model with metric ds2 + sinhsgSk in geodesic polar coordinates:

coshs = 1+
|y|2 +(r−2)2

4r
.

Since we are working locally near a point z0 ∈ ∂Hk+1, we can choose y = 0 in this

relation, which yields that e−δ t = rδ = 2δ e−δ s. Thus we can use a weight of the

form e−δ s in replacement for e−δ t .

One could redo the theory of Section 3.6 using the Fourier-Helgason transform

instead. Indeed, after projection over spherical harmonics, and following (3.174),

we can write for ζ ∈Hk+1,

wm(ζ ) =
∫
Hk+1

G (ζ ,ζ ′)h̄(ζ ′)dζ
′,

where the Green’s function is given by

G (ζ ,ζ ′) =
∫ +∞

−∞

1
Θm

γ (λ )− τ
kλ (ζ ,ζ

′)dλ .

The poles of 1
Θm

γ (λ )−τ
are well characterized; in fact, they coincide with those in the

point singularity case.

But instead, we can take one further reduction and consider the projection over

spherical harmonics in Sk. That is, in geodesic polar coordinates ζ = (s,ς), s > 0,

ς ∈ Sk, we can write wm(s,ς) = ∑ j wm, j(s)E
(k)
j (ς), where E(k)

j are the eigenfunc-

tions for −∆Sk . Moreover, note that the symbol (3.48) is radial, so it commutes

with this additional projection.

Now we can redo the estimate (3.152), just by taking into account the following

facts: first, one also has a simple Plancherel formula (3.171). Second, for a radially

symmetric function, the Fourier-Helgason transform takes the form of a simple
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spherical transform (3.172). Third, the spherical function Φλ satisfies (3.173) and

we are taking a weight of the form eδ s. Finally, the expression for the symbol

(3.48) is the same as in the point singularity case (3.38).

This yields estimate (3.148) from which Fredholm properties follow immedi-

ately.

Remark 3.8.3. We do not claim that our restrictions on δ ,ϑ in Proposition 3.8.2

are the sharpest possible (indeed, we chose them in the injectivity region for sim-

plicity), but these are enough for our purposes.

Gathering all restrictions on the weights we obtain:

Corollary 3.8.4. The operator in (3.146) is injective, both in RN \{q1, . . . ,qK} and

Rn \
⋃

Σi. As a consequence, its adjoint (L̃∗ε)
∗ = L̃ε given in (3.145) is surjective.

Proof. Lemma 3.7.4 shows that, after performing the conjugation, L̃ε is injective

in C 2γ+α

µ̃+N−2γ

2 ,ν̃+ n−2γ

2
. By regularity estimates and our choice of δ ,ϑ from (3.147), we

immediately obtain injectivity for (3.146). Since, thanks to the Fredholm proper-

ties,

Ker(L̃∗ε)
⊥ = Rg(L̃ε),

the Corollary follows.

3.8.2 Uniform estimates

Now we return to the operator Lε defined in (3.123), the adjoint of

Lε : L2
−δ ,−ϑ

→ L2
−δ−2γ,−ϑ−2γ

is just

L∗ε : L2
δ+2γ,ϑ+2γ

→ L2
δ ,ϑ .

From the above results, one knows that L∗ε is injective and Lε is surjective.

Fixing the isomorphisms

π2δ ,2ϑ : L2
−δ ,−ϑ

→ L2
δ ,ϑ ,
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we may identify the adjoint L∗ε as

L∗ε = π−2δ ,−2ϑ ◦Lε ◦π2δ ,2ϑ : L2
−δ+2γ,−ϑ+2γ

→ L2
−δ ,−ϑ

.

Now we have a new operator

Lε = Lε ◦L∗ε : Lε ◦π−2δ ,−2ϑ ◦Lε ◦π2δ ,2ϑ : L2
−δ+2γ,−ϑ+2γ

→ L2
−δ−2γ,−ϑ−2γ

.

This map is an isomorphism. Hence there exists a bounded two sided inverse

Gε : L2
−δ−2γ,−ϑ−2γ

→ L2
−δ+2γ,−ϑ+2γ

.

Moreover, Gε = L∗ε ◦Gε is right inverse of Lε which map into the range of L∗ε . We

will fix our inverse to be this one.

From Corollary 3.8.4

Gε : C 0,α
µ̃−2γ,ν̃−2γ

→ C 4γ+α

µ̃+2γ,ν̃+2γ

and

Gε : C 0,α
µ̃−2γ,ν̃−2γ

→ C 2γ+α

µ̃,ν̃

are bounded.

We are now in the position to prove uniform surjectivity. It is a consequence of

the following two results:

Lemma 3.8.5. If u∈C 2γ+α

µ̃,ν̃ and v∈C 4γ+α

µ̃+2γ,ν̃+2γ
solve equations Lεu = 0, u = L∗εv,

then u≡ v≡ 0.

Proof. Suppose u,v satisfy the given system, then one has LεL∗εv = 0. Consider

w̃ = π2δ ,2ϑ v. Multiply the equation by w; integration by parts in Rn yields

0 =
∫

wLε ◦π−2δ ,−2ϑ ◦Lεw =
∫

π−2δ ,−2ϑ |Lεw|2.

Thus Lεw= 0. Moreover, since v∈C 4γ+α

µ̃+2γ,ν̃+2γ
, one has w∈C 2γ+α

µ̃+2γ+2δµ̃ ,ν̃+2γ+2δν̃
↪→

C 2γ+α

µ ′,ν ′ for some µ ′ > Re(γ+0 ),ν ′ >−(n−2γ) , thus by the injectivity property, one

has w≡ 0. We conclude then that u≡ v≡ 0.
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Lemma 3.8.6. Let Gε be the bounded inverse of Lε introduced above, then for

ε small, Gε is uniformly bounded, i.e. for h ∈ C 0,α
µ̃−2γ,ν̃−2γ

, if u ∈ C 2γ+α

µ̃,ν̃ ,v ∈
C 4γ+α

µ̃+2γ,ν̃+2γ
solve the system Lεu = h and L∗εv = u, then one has

‖u‖
C 2γ+α

µ̃,ν̃ (Rn\Σ) ≤C‖h‖
C 0,α

µ̃−2γ,ν̃−2γ
(Rn\Σ)

for some C > 0 independent of ε small.

Proof. The proof is similar to the proof of Lemma 3.7.4. So we just sketch the

proof here and point out the differences. It is by contradiction argument. Assume

that there exists {ε(n)}→ 0 and a sequence of functions {h(n)} and solutions {u(n)},
{v(n)} such that

‖u‖
C 2γ+α

µ̃,ν̃ (Rn\Σ) = 1, ‖h‖
C 0,α

µ̃−2γ,ν̃−2γ
(Rn\Σ)→ 0,

and solve the equation

Lεu = h, L∗εv = u.

Here note that, for simplicity, we have dropped the superindex (n). Then using the

Green’s representation formula, following the argument in Proposition 3.7.4, one

can show that

sup
{dist(x,Σ)>σ}

{ρ(x)−ν̃ |u|} ≤C(‖h‖
C 0,α

µ̃−2γ,ν̃−2γ

+o(1)‖u‖
C 2γ+α

µ̃,ν̃
),

which implies that there exists qi such that

sup
{|x−qi|<σ}

|x−qi|−µ̃ |u| ≥ 1
2
. (3.156)

In the second step we study the region {|x−qi|< σ}. Without loss of general-

ity, assume qi = 0. Define the rescaled function as ū = ε−µ̃u(εx) and similarly for

v̄ and h̄. Similarly to the argument in 3.7.4, ū will tend to a limit u∞ that solves

(−∆)γu∞− pAN,p,γup−1
1 u∞ = 0 in RN .
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If we show that this limit vanishes identically, u∞ ≡ 0, then we will reach a contra-

diction with (3.156).

For this, we wish to show that v̄ also tends to a limit. If

‖v‖
C 4γ+α

µ̃+2γ,ν̃+2γ

≤C0‖u‖C 2γ+α

µ̃,ν̃
, (3.157)

then it is true that the limit exists. If not, we can use the same contradiction argu-

ment to show that after some scaling, v̄ will tend to a limit v∞ ∈ C 4γ+α

µ̃+2γ,µ̃+2γ
which

solves

L∗1v∞ = 0.

This implies that v≡ 0. This will give a contradiction and yield that (3.157) holds

for some constant C0.

By the above analysis we arrive at the limit problem, in which u∞,v∞ solve

L1u∞ = 0, L∗1v∞ = u∞ in RN .

Thus L1L∗1v∞ = 0. Multiply the equation by v∞ and integrate, one has L∗1v∞ = 0,

which implies that v∞ ≡ 0. So also u∞ ≡ 0. Then, following the argument in

Lemma 3.7.4, one can get a contradiction. So the uniform surjectivity holds for all

ε small.

3.9 Conclusion of the proof
If φ is a solution to

(−∆Rn)γ(ūε +φ) = |ūε +φ |p in Rn \Σ,

we first show that ūε +φ is positive in Rn \Σ.

Indeed, for z near Σ, there exists R > 0 such that if ρ(z)< Rε , then

c1ρ(z)−
2γ

p−1 < ūε < c2ρ(z)−
2γ

p−1

for some c1,c2 > 0. Since φ ∈ C 2,α
µ̃,ν̃ , we have |φ | ≤ cρ(z)µ̃ . But µ̃ > − 2γ

p−1 , so

it follows that ūε +φ > 0 near Σ. Since ūε +φ → 0 as |z| → ∞, by the maximum
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principle (see for example Lemma 4.13 of [36]), we see that ūε +φ > 0 in Rn \Σ,

so it is a positive solution and it is singular at all points of Σ.

Next we will prove the existence of such φ . For this, we take an additional

restriction on ν̃

−(n−2γ)< ν̃ <− 2γ

p−1
.

3.9.1 Solution with isolated singularities (RN \{q1, . . . ,qK})

We first treat the case where Σ is a finite number of points. Recall that equation

(−∆RN )γ(ūε +φ) = AN,p,γ |ūε +φ |p in RN \{q1, . . . ,qK}

is equivalent to the following:

Lε(φ)+Qε(φ)+ fε = 0, (3.158)

where fε is defined in (3.86), Lε is the linearized operator from (3.122) and Qε

contains the remaining higher order terms. Because of Lemma 3.8.6, it is possible

to construct a right inverse for Lε with norm bounded independently of ε . Define

F(φ) := Gε [−Qε(φ)− fε ], (3.159)

then equation (3.158) is reduced to

φ = F(φ).

Our objective is to show that F(φ) is a contraction mapping from B to B, where

B = {φ ∈ C 2γ+α

µ̃,ν̃ (Rn \Σ) : ‖φ‖∗ ≤ βε
N− 2pγ

p−1 }

for some large positive β .

In this section, ‖ · ‖∗ is the C 2γ+α

µ̃,ν̃ norm, and ‖ · ‖∗∗ is the C 0,α
µ̃−2γ,ν̃−2γ

norm

where µ̃, ν̃ are taken as in the surjectivity section.

First we have the following lemma:
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Lemma 3.9.1. We have that, independently of ε small,

‖Qε(φ1)−Qε(φ2)‖∗∗ ≤
1

2l0
‖φ1−φ2‖∗

for all φ1, φ2 ∈B, where l0 = sup‖Gε‖.

Proof. The estimates here are similar to Lemma 9 in [133]. For completeness, we

give here the proof.

With some abuse of notation, in the following paragraphs the notation ‖·‖∗ and

‖ · ‖∗∗ will denote the weighted C 0 norms and not the weighted C α norms (for the

same weights) that was defined in (3.139).

First we show that there exists τ > 0 such that for φ ∈B, we have

|φ(x)| ≤ 1
4

ūε(x) for all x ∈
k⋃

i=1

B(qi,τ).

Indeed, from the asymptotic behaviour of u1 in Proposition 3.2.1 we know that

c1|x|−
2γ

p−1 < uεi(x)< c2|x|−
2γ

p−1 if |x|< Rεi,

c1ε
N− 2pγ

p−1
i |x|−(N−2γ) < uεi(x)< c2ε

N− 2pγ

p−1
i |x|−(N−2γ) if Rεi ≤ |x|< τ.

The claim follows because φ ∈B implies that

|φ(x)|< cβε
N− 2pγ

p−1 ρ(x)µ̃ .

Next, since | φ

ūε
| ≤ 1

4 in B(qi,τ), by Taylor’ expansion,

|Qε(φ1)−Qε(φ2)| ≤ c|ūε |p−2(|φ1|+ |φ2|)|φ1−φ2|.

Thus for x ∈ B(qi,τ), we have

ρ(x)2γ−µ̃ |Qε(φ1)−Qε(φ2)| ≤ cρ(x)µ̃+ 2γ

p−1 (‖φ1‖∗+‖φ2‖∗)‖φ1−φ2‖∗

≤ cτ
µ̃+ 2γ

p−1 βε
N− 2γ

p−1 ‖φ1−φ2‖∗.
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The coefficient in front can be taken as small as desired by choosing ε small. Out-

side the union of the balls B(qi,τ) we use the estimates

ūε(x)≤ cε
N− 2pγ

p−1 |x|−(N−2γ) and |φ | ≤ cε
N− 2pγ

p−1 |x|ν̃ ,

where c depends on τ but not on ε nor φ .

For ρ ≥ τ and |x| ≤ R, we can neglect all factors involving ρ(x), so

|Qε(φ1)−Qε(φ2)| ≤ c(|ūε |p−1 + |φ |p−1)|φ1−φ2| ≤ cε
(p−1)(N− 2pγ

p−1 )|φ1−φ2|

≤ cε
p(N−2γ)−N‖φ1−φ2‖∗,

for which the coefficient can be as small as desired since p > N
N−2γ

.

Lastly, for |x| ≥ R, in this region ūε = 0, so

ρ(x)2γ−ν̃ |Qε(φ1)−Qε(φ2)| ≤ cρ(x)2γ−ν̃(φ p−1
1 +φ

p−1
2 )|φ1−φ2|

≤ cρ(x)2γ−ν̃+pν̃
ε

N(p−1)−2pγ‖φ1−φ2‖∗,

and here the coefficient can be also chosen as small as we wish because ν̃ <− 2γ

p−1

implies that 2γ− ν̃ + pν̃ < 0.

Combining all the above estimates, one has

‖Qε(φ1)−Qε(φ2)‖∗∗ ≤
1

2l0
‖φ1−φ2‖∗

as desired.

Now we go back to the original definition of the norms ‖ · ‖∗, ‖ · ‖∗∗ from

(3.139). For this, we need to estimate the Hölder norm of Qε(φ1)−Qε(φ2). First

in each B(qi,τ),

∇Qε(φ) = p
(
(ūε +φ)p−1− ūp−1

ε − (p−1)ūp−1
ε φ

)
∇ūε

+ p((ūε +φ)p−1− ūp−1
ε )∇φ ,

and similarly as before, we can get that

ρ(x)2γ+1−µ̃ |∇(Qε(φ1)−Qε(φ2))| ≤ cε
N− 2pγ

p−1 ‖φ1−φ2‖∗.
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Moreover, for τ < ρ(x)< R,

|∇(Qε(φ1)−Qε(φ2))| ≤ cε
p(N−2γ)−N‖φ1−φ2‖∗.

Lastly, for ρ(x)> R,

∇Qε(φ1−φ2) = pφ
p−1
1 ∇(φ1−φ2)+ p∇φ2(φ

p−1
1 −φ

p−1
2 ),

which yields

ρ
−ν̃+2γ+1|∇Qε(φ1−φ2)|

≤ ρ
2γ+1−ν̃

[
(‖φ1‖∗+‖φ2‖∗)p−1

ρ
(p−1)(ν̃−2γ)‖φ1−φ2‖∗ρ ν̃−2γ−1

+‖φ2‖∗ρ ν̃−2γ−1‖φ p−1
1 −φ

p−1
2 ‖∗

]
≤ cε

N− 2pγ

p−1 ‖φ1−φ2‖∗.

This completes the desired estimate for Qε(φ1)−Qε(φ2) and concludes the proof

of the lemma.

Recall that ‖ fε‖∗∗ ≤C0ε
N− 2pγ

p−1 for some C0 > 0 from (3.88). Then the lemma

above gives an estimate for the map (3.159). Indeed,

‖F(φ)‖∗ ≤ l0[‖Qε(φ)‖∗∗+‖ fε‖∗∗]≤ l0‖Qε(φ)‖∗∗+ l0C0ε
N− 2pγ

p−1

≤ 1
2
‖φ‖∗+ l0C0ε

N− 2pγ

p−1 ≤ βε
N− 2pγ

p−1 ,

and

‖F(φ1)−F(φ2)‖∗ ≤ l0‖Qε(φ1)−Qε(φ2)‖∗∗ ≤
1
2
‖φ1−φ2‖∗

if we choose β > 2l0C0. So F(φ) is a contraction mapping from B to B. This

implies the existence of a solution φ to (3.158).
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3.9.2 The general case Rn \Σ, Σ a sub-manifold of dimension k

For the more general case, only minor changes need to be made in the above argu-

ment. The most important one comes from Lemma 3.5.7 and it says that the weight

parameter µ must now lie in the smaller interval:

− 2γ

p−1
< µ̃ < min

{
γ− 2γ

p−1 ,
1
2 −

2γ

p−1 ,Re(γ−0 )
}
. (3.160)

In this case, we only need to replace the exponent N − 2pγ

p−1 in the above ar-

gument by q = min{ (p−3)γ
p−1 − µ̃, 1

2 − γ + (p−3)γ
p−1 − µ̃}, then q > 0 if µ̃ is chosen

to satisfy (3.160). We get a solution to (3.158), and this concludes the proof of

Theorem 3.1.1.

3.10 Some known results on special functions
Lemma 3.10.1. [4, 166] Let z ∈ C. The hypergeometric function is defined for

|z|< 1 by the power series

2F1(a,b;c;z) =
∞

∑
n=0

(a)n(b)n

(c)n

zn

n!
=

Γ(c)
Γ(a)Γ(b)

∞

∑
n=0

Γ(a+n)Γ(b+n)
Γ(c+n)

zn

n!
.

It is undefined (or infinite) if c equals a non-positive integer. Some properties are

i. The hypergeometric function evaluated at z = 0 satisfies

2F1(a+ j,b− j;c;0) = 1; j =±1,±2, ... (3.161)

ii. If |arg(1− z)|< π , then

2F1(a,b;c;z) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) 2F1 (a,b;a+b− c+1;1− z)

+(1− z)c−a−b Γ(c)Γ(a+b− c)
Γ(a)Γ(b) 2F1(c−a,c−b;c−a−b+1;1− z).

(3.162)
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iii. The hypergeometric function is symmetric with respect to first and second

arguments, i.e

2F1(a,b;c;z) = 2F1(b,a;c;z). (3.163)

iv. Let m ∈ N. The m-derivative of the hypergeometric function is given by

dm

dzm

[
(1− z)a+m−1

2F1(a,b;c;z)
]

= (−1)m(a)m(c−b)m
(c)m

(1− z)a−1
2F1(a+m,b;c+m;z). (3.164)

Lemma 3.10.2. [4, 166] Let z ∈ C. Some well known properties of the Gamma

function Γ(z) are

Γ(z̄) = Γ(z), (3.165)

Γ(z+1) = zΓ(z), (3.166)

Γ(z)Γ
(
z+ 1

2

)
= 21−2z√

π Γ(2z). (3.167)

It is a meromorphic function in z ∈ C and its residue at each poles is given by

Res(Γ(z),− j) =
(−1)n

j!
, j = 0,1, . . . . (3.168)

Let ψ(z) denote the Digamma function defined by

ψ(z) =
d lnΓ(z)

dz
=

Γ′(z)
Γ(z)

.

This function has the expansion

ψ(z) = ψ(1)+
∞

∑
l=0

(
1

l +1
− 1

l + z

)
. (3.169)

Let B(z1,z2) denote the Beta function defined by

B(z1,z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
.
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If z2 is a fixed number and z1 > 0 is big enough, then this function behaves

B(z1,z2)∼ Γ(z2)(z1)
−z2 .

3.11 A review of the Fourier-Helgason transform on
Hyperbolic space

Consider hyperbolic space Hk+1, parameterized with coordinates ζ . It can be writ-

ten as a symmetric space of rank one as the quotient Hk+1 ≈ SO(1,k+1)
SO(k+1) . Fourier

transform on hyperbolic space is a particular case of the Helgason-Fourier trans-

form on symmetric spaces. Some standard references are [26, 119, 168]; we mostly

follow the exposition of Chapter 8 in [102].

Hyperbolic space Hk+1 may be defined as the upper branch of a hyperboloid in

Rk+2 with the metric induced by the Lorentzian metric in Rk+2 given by −dζ 2
0 +

dζ 2
1 + . . .+ dζ 2

k+1, i.e., Hk+1 = {(ζ0, . . . ,ζk+1) ∈ Rk+2 : ζ 2
0 − ζ 2

1 − . . .− ζ 2
k+1 =

1, ζ0 > 0}, which in polar coordinates may be parameterized as

Hk+1 = {ζ ∈ Rk+2 : ζ = (coshs,ς sinhs), s≥ 0, ς ∈ Sk},

with the metric gHk+1 = ds2 + sinh2 sgSk . Under these definitions the Laplace-

Beltrami operator is given by

∆Hk+1 = ∂ss + k
coshs
sinhs

∂s +
1

sinh2 s
∆Sk ,

and the volume element is

dµζ = sinhk s dsdς .

We denote by [·, ·] the internal product induced by the Lorentzian metric, i.e.,

[ζ ,ζ ′] = ζ0ζ
′
0−ζ1ζ

′
1− . . .−ζk+1ζ

′
k+1.
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The hyperbolic distance between two arbitrary points is given by dist(ζ ,ζ ′) =

cosh−1([ζ ,ζ ′]), and in the particular case that ζ = (coshs,ς sinhs), ζ ′ = O,

dist(ζ ,O) = s.

The unit sphere SN−1 is identified with the subset {ζ ∈ Rk+2 : [ζ ,ζ ] = 0,ζ0 = 1}
via the map b(ς) = (1,ς) for ς ∈ Sk.

Given λ ∈ R and ω ∈ Sk, let hλ ,ω(ζ ) be the generalized eigenfunctions of the

Laplace-Beltrami operator. This is,

∆Hk+1hλ ,ω =−
(

λ
2 + k2

4

)
hλ ,ω .

These may be explicitly written as

hλ ,ω(ζ ) = [ζ ,b(ω)]iλ−
k
2 = (coshs− sinhs〈ς ,ω〉)iλ− k

2 , ζ ∈Hk+1.

In analogy to the Euclidean space, the Fourier transform on Hk+1 is defined by

û(λ ,ω) =
∫
Hk+1

u(ζ )hλ ,ω(ζ )dµζ .

Moreover, the following inversion formula holds:

u(ζ ) =
∫

∞

−∞

∫
Sk

h̄λ ,ω(ζ )û(λ ,ω)
dω dλ

|c(λ )|2
, (3.170)

where c(λ ) is the Harish-Chandra coefficient:

1
|c(λ )|2

=
1

2(2π)k+1

|Γ(iλ +( k
2)|

2

|Γ(iλ )|2
.

There is also a Plancherel formula:∫
Hk+1
|u(ζ )|2 dµζ =

∫
R×SN−1

|û(λ ,ω)|2 dω dλ

|c(λ )|2
, (3.171)

which implies that the Fourier transform extends to an isometry between the Hilbert

spaces L2(Hk+1) and L2(R+×Sk, |c(λ )|−2dλ dω).
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If u is a radial function, then û is also radial, and the above formulas simplify.

In this setting, it is customary to normalize the measure of Sk to one in order not

to account for multiplicative constants. Thus one defines the spherical Fourier

transform as

û(λ ) =
∫
Hk+1

u(ζ )Φ−λ (ζ )dµζ , (3.172)

where

Φλ (ζ ) =
∫
Sk

h−λ ,ω(ζ )dω

is known as the elementary spherical function. In addition, (3.170) reduces to

u(ζ ) =
∫

∞

−∞

û(λ )Φλ (ζ )
dλ

|c(λ )|2
.

There are many explicit formulas for Φλ (ζ ) (we also write Φλ (s), since it is a

radial function). In particular, Φ−λ (s) = Φλ (s) = Φλ (−s), which yields regularity

at the origin s = 0. Here we are interested in its asymptotic behavior. Indeed,

Φλ (s)∼ e(iλ−
k
2 )s as s→+∞. (3.173)

It is also interesting to observe that

∆̂Hk+1u =−
(

λ
2 + k2

4

)
û.

We define the convolution operator as

u∗ v(ζ ) =
∫
Hk+1

u(ζ ′)v(τ−1
ζ

ζ
′)dµζ ′ ,

where τζ : Hk+1→Hk+1 is an isometry that takes ζ into O. If v is a radial function,

then the convolution may be written as

u∗ v(ζ ) =
∫
Hk+1

u(ζ ′)v(dist(ζ ,ζ ′))dµζ ′ ,

and we have the property

û∗ v = û v̂,

in analogy to the usual Fourier transform.
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On hyperbolic space there is a well developed theory of Fourier multipliers. In

L2 spaces everything may be written out explicitly. For instance, let m(λ ) be a mul-

tiplier in Fourier variables. A function û(λ ,ω) = m̂(λ )u0(λ ,ω), by the inversion

formula for the Fourier transform (3.170) and expression (3.11), may be written as

u(x) =
∫

∞

−∞

∫
Sk

m(λ )û0(λ ,ω)h̄λ ,ω(ζ )
dω dλ

|c(λ )|2

=
∫

∞

−∞

∫
Hk+1

m(λ )u0(ζ
′)kλ (ζ ,ζ

′)dµζ ′ dλ ,

(3.174)

where we have denoted

kλ (ζ ,ζ
′) =

1
|c(λ )|2

∫
Sk

h̄λ ,ω(ζ )hλ ,ω(ζ
′)dω.

It is known that kλ is invariant under isometries, i.e.,

kλ (ζ ,ζ
′) = kλ (τζ ,τζ

′),

for all τ ∈ SO(1,k+1), and in particular,

kλ (ζ ,ζ
′) = kλ (dist(ζ ,ζ ′)),

so many times we will simply write kλ (ρ) for ρ = dist(ζ ,ζ ′). We recall the fol-

lowing formulas for kλ :

Lemma 3.11.1 ([102]). For k+1≥ 3 odd,

kλ (ρ) = ck

(
∂ρ

sinhρ

) k
2

(cosλρ),

and for k+1≥ 2 even,

kλ (ρ) = ck

∫
∞

ρ

sinh ρ̃√
cosh ρ̃− coshρ

(
∂ρ̃

sinh ρ̃

) k+1
2

(cosλρ̃)dρ̃.

208



Chapter 4

Extremals for Hyperbolic
Hardy–Schrödinger Operators

4.1 Introduction
Hardy–Schrödinger operators on manifolds are of the form ∆g−V , where ∆g is the

Laplace–Beltrami operator and V is a potential that has a quadratic singularity at

some point of the manifold. For hyperbolic spaces, Carron [46] showed that, just

like in the Euclidean case and with the same best constant, the following inequality

holds on any Cartan–Hadamard manifold M,

(n−2)2

4

∫
M

u2

dg(o,x)2 dvg ≤
∫

M
|∇gu|2 dvg for all u ∈C∞

c (M),

where dg(o,x) denotes the geodesic distance to a fixed point o∈M. There are many

other works identifying suitable Hardy potentials, their relationship with the elliptic

operator on hand, as well as corresponding energy inequalities [6, 57, 71, 123, 126,

181? ]. In the Euclidean case, the Hardy potential V (x) = 1
|x|2 is distinguished by

the fact that u2

|x|2 has the same homogeneity as |∇u|2, but also u2∗(s)

|x|s , where 2∗(s) =

2(n−s)
n−2 and 0 ≤ s < 2. In other words, the integrals

∫
Rn

u2

|x|2
dx,

∫
Rn
|∇u|2 dx and∫

Rn

u2∗(s)

|x|s
dx are invariant under the scaling u(x) 7→ λ

n−2
2 u(λx), λ > 0, which makes

209



corresponding minimization problem non-compact, hence giving rise to interesting

concentration phenomena. In [5], Adimurthi and Sekar use the fundamental solu-

tion of a general second order elliptic operator to generate natural candidates and

derive Hardy-type inequalities. They also extended their arguments to Riemannian

manifolds using the fundamental solution of the p-Laplacian. In [71], Devyver,

Fraas and Pinchover study the case of a general linear second order differential op-

erator P on non-compact manifolds. They find a relation between positive super-

solutions of the equation Pu = 0, Hardy-type inequalities involving P and a weight

W , as well as some properties of the spectrum of a corresponding weighted oper-

ator.

In this paper, we shall focus on the Poincaré ball model of the hyperbolic space

Bn, n ≥ 3, that is the Euclidean unit ball B1(0) := {x ∈ Rn : |x| < 1} endowed

with the metric gBn =
(

2
1−|x|2

)2
gEucl . This framework has the added feature of

radial symmetry, which plays an important role and contributes to the richness

of the structure. In this direction, Sandeep and Tintarev [153] recently came up

with several integral inequalities involving weights on Bn that are invariant under

scaling, once restricted to the class of radial functions (see also Li and Wang [126]).

As described below, this scaling is given in terms of the fundamental solution of

the hyperbolic Laplacian ∆Bnu = divBn(∇Bnu). Indeed, let

f (r) :=
(1− r2)n−2

rn−1 and G(r) :=
∫ 1

r
f (t)dt, (4.1)

where r =
√

∑
n
i=1 x2

i denotes the Euclidean distance of a point x ∈ B1(0) to the

origin. It is known that 1
nωn−1

G(r) is a fundamental solution of the hyperbolic

Laplacian ∆Bn . As usual, the Sobolev space H1(Bn) is defined as the completion

of C∞
c (Bn) with respect to the norm ‖u‖2

H1(Bn)
=
∫
Bn
|∇Bnu|2dvgBn . We denote by

H1
r (Bn) the subspace of radially symmetric functions. For functions u ∈ H1

r (Bn),

we consider the scaling

uλ (r) = λ
− 1

2 u
(
G−1(λG(r))

)
, λ > 0. (4.2)
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In [153], Sandeep–Tintarev have noted that for any u ∈H1
r (Bn) and p≥ 1, one has

the following invariance property:∫
Bn
|∇Bnuλ |2 dvgBn =

∫
Bn
|∇Bnu|2 dvgBn and

∫
Bn

Vp|uλ |p dvgBn =
∫
Bn

Vp|u|p dvgBn ,

where

Vp(r) :=
f (r)2(1− r2)2

4(n−2)2G(r)
p+2

2

. (4.3)

In other words, the hyperbolic scaling r 7→ G−1(λG(r)) is quite analogous to

the Euclidean scaling. Indeed, in that case, by taking G(ρ) = ρ2−n, we see that

G−1
(λG(ρ)) = λ = λ

1
2−n for ρ = |x| in Rn. Also, note that G is –up to a constant–

the fundamental solution of the Euclidean Laplacian ∆ in Rn. The weights Vp have

the following asymptotic behaviors, for n≥ 3 and p > 1,

Vp(r) =


c0(n, p)

rn(1−p/2∗) (1+o(1)) as r→ 0,
c1(n, p)

(1− r)(n−1)(p−2)/2 (1+o(1)) as r→ 1.

In particular, for n≥ 3, the weight V2(r) = 1
4(n−2)2

(
f (r)(1−r2)

G(r)

)2
∼r→0

1
4r2 , and

at r = 1 has a finite positive value. In other words, the weight V2 is qualitatively

similar to the Euclidean Hardy weight, and Sandeep–Tintarev have indeed estab-

lished the following Hardy inequality on the hyperbolic space Bn (Theorem 3.4 of

[153]). Also, see [71] where they deal with similar Hardy weights.

(n−2)2

4

∫
Bn

V2|u|2 dvgBn ≤
∫
Bn
|∇Bnu|2 dvgBn for any u ∈ H1(Bn).

They also show in the same paper the following Sobolev inequality, i.e., for some

constant C > 0.(∫
Bn

V2∗ |u|2
∗
dvgBn

)2/2∗

≤C
∫
Bn
|∇Bnu|2 dvgBn for any u ∈ H1(Bn),
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where 2∗= 2n
(n−2) . By interpolating between these two inequalities taking 0≤ s≤ 2,

one easily obtain the following Hardy–Sobolev inequality.

Lemma 4.1.1. If γ < (n−2)2

4 , then there exists a constant C > 0 such that, for any

u ∈ H1(Bn),

C
(∫

Bn
V2∗(s)|u|2

∗(s) dvgBn

)2/2∗(s)

≤
∫
Bn
|∇Bnu|2 dvgBn − γ

∫
Bn

V2|u|2 dvgBn ,

where 2∗(s) := 2(n−s)
(n−2) .

Note that, up to a positive constant, we have V2∗(s) ∼r→0
1
rs , adding to the ana-

logy with the Euclidean case, where we have for any u ∈ H1(Rn),

C

(∫
Rn

|u|2
∗(s)

|x|s
dx

)2/2∗(s)

≤
∫
Rn
|∇u|2 dx− γ

∫
Rn

|u|2

|x|2
dx.

Motivated by the recent progress on the Euclidean Hardy–Schrödinger equation

(See for example Ghoussoub–Robert [105, 106], and the references therein), we

shall consider the problem of existence of extremals for the corresponding best

constant, that is

µγ,λ (Ω) := inf
u∈H1

0 (Ω)\{0}

∫
Ω

|∇Bnu|2 dvgBn − γ

∫
Ω

V2|u|2 dvgBn −λ

∫
Ω

|u|2 dvgBn(∫
Ω

V2∗(s)|u|2
∗(s) dvgBn

)2/2∗(s) ,

(4.4)

where H1
0 (Ω) is the completion of C∞

c (Ω) with respect to the norm ‖u‖ =√∫
Ω

|∇u|2 dvgBn . Similarly to the Euclidean case, and once restricted to radial

functions, the general Hardy–Sobolev inequality for the hyperbolic Hardy–

Schrödinger operator is invariant under hyperbolic scaling described in (4.2), This

invariance makes the corresponding variational problem non-compact and the

problem of existence of minimizers quite interesting.

In Proposition 4.3.3, we start by showing that the extremals for the minimiza-

tion problem (4.4) in the class of radial functions H1
r (Bn) can be written explicitly
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as:

U(r) = c
(

G(r)−
2−s
n−2 α−(γ)+G(r)−

2−s
n−2 α+(γ)

)− n−2
2−s

,

where c is a positive constant and α±(γ) satisfy

α±(γ) =
1
2
±

√
1
4
− γ

(n−2)2 .

In other words, we show that

µ
rad
γ,0 (Bn) := inf

u∈H1
r (Bn)\{0}

∫
Bn
|∇Bnu|2 dvgBn − γ

∫
Bn

V2|u|2 dvgBn(∫
Bn

V2∗(s)|u|2
∗(s) dvgBn

)2/2∗(s) (4.5)

is attained by U .

Note that the radial function Gα(r) is a solution of −∆Bnu− γV2u = 0 on Bn \
{0} if and only if α = α±(γ). These solutions have the following asymptotic

behavior

G(r)α±(γ) ∼ c(n,γ)r−β±(γ) as r→ 0,

where

β±(γ) =
n−2

2
±
√

(n−2)2

4
− γ.

These then yield positive solutions to the equation

−∆Bnu− γV2u =V2∗(s)u
2∗(s)−1 in Bn.

We point out the paper [128] (also see [22, 23, 101]), where the authors considered

the counterpart of the Brezis–Nirenberg problem on Bn (n≥ 3), and discuss issues

of existence and non-existence for the equation

−∆Bnu−λu = u2∗−1 in Bn,

in the absence of a Hardy potential.
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Next, we consider the attainability of µγ,λ (Ω) in subdomains of Bn without

necessarily any symmetry. In other words, we will search for positive solutions for

the equation 
−∆Bnu− γV2u−λu =V2∗(s)u2∗(s)−1 in Ω

u≥ 0 in Ω

u = 0 on ∂Ω,

(4.6)

where Ω is a compact smooth subdomain of Bn such that 0 ∈ Ω, but Ω does not

touch the boundary of Bn and λ ∈ R. Note that the metric is then smooth on

such Ω, and the only singularity we will be dealing with will be coming from the

Hardy-type potential V2 and the Hardy–Sobolev weight V2∗(s), which behaves like
1
r2 (resp., 1

rs ) at the origin. This is analogous to the Euclidean problem on bounded

domains considered by Ghoussoub–Robert [105, 106]. We shall therefore rely

heavily on their work, at least in dimensions n ≥ 5. Actually, once we perform a

conformal transformation, the equation above reduces to the study of the following

type of problems on bounded domains in Rn:
−∆v−

(
γ

|x|2 +hγ,λ (x)
)

v = b(x) v2∗(s)−1

|x|s in Ω

v≥ 0 in Ω

v = 0 on ∂Ω,

where b(x) is a positive C0(Ω) function with

b(0) =
(n−2)

n−s
n−2

22−s , (4.7)

hγ,λ (x) = γa(x)+
4λ −n(n−2)
(1−|x|2)2 ,
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a(x) = a(r) =



4
r +8+g3(r) when n = 3,

8log 1
r −4+g4(r) when n = 4,

4(n−2)
n−4 + rgn(r) when n≥ 5.

(4.8)

with gn(0) = 0, for all n≥ 3. Ghoussoub–Robert [106] have recently tackled such

an equation, but in the case where h(x) and b(x) are constants. We shall explore

here the extent of which their techniques could be extended to this setting. To start

with, the following regularity result will then follow immediately.

Theorem 4.1.2 (Regularity). Let Ω b Bn, n ≥ 3, and γ < (n−2)2

4 . If u 6≡ 0 is a

non-negative weak solution of the equation (4.6) in the hyperbolic Sobolev space

H1(Ω), then

lim
|x|→0

u(x)
G(|x|)α−

= K > 0.

We also need to define a notion of mass of a domain associated to the operator

−∆Bn− γV2−λ . We therefore show the following.

Theorem 4.1.3 (The hyperbolic Hardy-singular mass of Ωb Bn). Let 0 ∈Ωb Bn,

n ≥ 3, and γ < (n−2)2

4 . Let λ ∈ R be such that the operator −∆Bn − γV2− λ is

coercive. Then, there exists a solution KΩ ∈C∞
(
Ω\{0}

)
to the linear problem,

−∆BnKΩ− γV2KΩ−λKΩ = 0 in Ω

KΩ ≥ 0 in Ω

KΩ = 0 on ∂Ω,

(4.9)

such that KΩ(x)'|x|→0 c G(|x|)α+ for some positive constant c. Furthermore,

1. If K′
Ω
∈C∞

(
Ω\{0}

)
is another solution of the above linear equation, then

there exists a C > 0 such that K′
Ω
=CKΩ.

2. If γ > max
{

n(n−4)
4 ,0

}
, then there exists mH

γ,λ (Ω) ∈ R such that

KΩ(x) = G(|x|)α+ +mH
γ,λ (Ω)G(|x|)α−+o(G(|x|)α−) as x→ 0. (4.10)
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The constant mH
γ,λ (Ω) will be referred to as the hyperbolic mass of the do-

main Ω associated with the operator −∆Bn− γV2−λ .

And just like the Euclidean case, solutions exist in high dimensions, while

the positivity of the “hyperbolic mass”will be needed for low dimensions. More

precisely,

Theorem 4.1.4. Let ΩbBn (n≥ 3) be a smooth domain with 0∈Ω, 0≤ γ < (n−2)2

4

and let λ ∈R be such that the operator −∆Bn− γV2−λ is coercive. Then, the best

constant µγ,λ (Ω) is attained under the following conditions:

1. n≥ 5, γ ≤ n(n−4)
4

and λ >
n−2
n−4

(
n(n−4)

4
− γ

)
.

2. n = 4, γ = 0 and λ > 2.

3. n = 3, γ = 0 and λ >
3
4

.

4. n≥ 3, max
{

n(n−4)
4

,0
}
< γ <

(n−2)2

4
and mH

γ,λ (Ω)> 0.

As mentioned above, the above theorem will be proved by using a conformal trans-

formation that reduces the problem to the Euclidean case, already considered by

Ghoussoub–Robert [106]. Actually, this leads to the following variation of the

problem they considered, where the perturbation can be singular but not as much

as the Hardy potential.

Theorem 4.1.5. Let Ω be a bounded smooth domain in Rn, n≥ 3, with 0 ∈Ω and

0≤ γ < (n−2)2

4 . Let h ∈C1(Ω\{0}) be such that

h(x) =−C1|x|−θ log |x|+ h̃(x) where lim
x→0
|x|θ h̃(x) = C2, (4.11)

for some 0≤ θ < 2 and C1,C2 ∈ R, and the operator −∆−
(

γ

|x|2 +h(x)
)

is coer-

cive. Also, assume that b(x) is a non-negative function in C0(Ω) with b(0) > 0.
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Then the best constant

µγ,h(Ω) := inf
u∈H1

0 (Ω)\{0}

∫
Ω

(
|∇u|2−

(
γ

|x|2
+h(x)

)
u2
)

dx(∫
Ω

b(x)
|u|2∗(s)

|x|s
dx

)2/2∗(s) (4.12)

is attained if one of the following two conditions is satisfied:

1. γ ≤ (n−2)2

4 − (2−θ)2

4 and, either C1 > 0 or {C1 = 0, C2 > 0};

2. (n−2)2

4 − (2−θ)2

4 < γ < (n−2)2

4 and mγ,h(Ω)> 0, where mγ,h(Ω) is the mass of

the domain Ω associated to the operator −∆−
(

γ

|x|2 +h(x)
)

.

The paper is organized as follows. In Section 2, we introduce the Hardy–

Sobolev type inequalities in hyperbolic space. In Section 3, we find the explicit

solutions for Hardy–Sobolev equations corresponding to (4.5) on Bn. In section 4,

we show that our main equation (4.6) can be transformed into the Hardy–Sobolev

type equations in Euclidean space under a conformal transformation. Section 5 is

then devoted to establish the existence results for (4.6) on compact submanifolds

of Bn by studying the transformed equations in Euclidean space.

4.2 Hardy–Sobolev type inequalities in hyperbolic space
The starting point of the study of existence of weak solutions of the above problems

are the following inequalities which will guarantee that functionals (4.4) and (4.5)

are well defined and bounded below on the right function spaces. The Sobolev

inequality for hyperbolic space [153] asserts that for n≥ 3, there exists a constant

C > 0 such that(∫
Bn

V2∗ |u|2
∗
dvgBn

)2/2∗

≤C
∫
Bn
|∇Bnu|2 dvgBn for all u ∈ H1(Bn),

where 2∗ = 2n
n−2 and V2∗ is defined in (4.3). The Hardy inequality on Bn [153]

states:

(n−2)2

4

∫
Bn

V2|u|2 dvgBn ≤
∫
Bn
|∇Bnu|2 dvgBn for all u ∈ H1(Bn).
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Moreover, just like the Euclidean case, (n−2)2

4 is the best Hardy constant in the

above inequality on Bn, i.e.,

γH :=
(n−2)2

4
= inf

u∈H1(Bn)\{0}

∫
Bn
|∇Bnu|2 dvgBn∫

Bn
V2|u|2 dvgBn

.

By interpolating these inequalities via Hölder’s inequality, one gets the following

Hardy–Sobolev inequalities in hyperbolic space.

Lemma 4.2.1. Let 2∗(s) = 2(n−s)
n−2 where 0 ≤ s ≤ 2. Then, there exist a positive

constant C such that

C
(∫

Bn
V2∗(s)|u|2

∗(s) dvgBn

)2/2∗(s)

≤
∫
Bn
|∇Bnu|2 dvgBn (4.13)

for all u ∈ H1(Bn). If γ < γH := (n−2)2

4 , then there exists Cγ > 0 such that

Cγ

(∫
Bn

V2∗(s)|u|2
∗(s) dvgBn

)2/2∗(s)

≤
∫
Bn
|∇Bnu|2 dvgBn − γ

∫
Bn

V2|u|2 dvgBn (4.14)

for all u ∈ H1(Bn).

Proof. Note that for s= 0 (resp., s= 2) the first inequality is just the Sobolev (resp.,

the Hardy) inequality in hyperbolic space. We therefore have to only consider the

case where 0 < s < 2 where 2∗(s)> 2. Note that 2∗(s) =
( s

2

)
2+
(

2− s
2

)
2∗, and

so

V2∗(s) =
f (r)2(1− r)2

4(n−2)2G(r)

(
1√
G(r)

)2∗(s)

=

(
f (r)2(1− r)2

4(n−2)2G(r)

) s
2+

2−s
2
(

1√
G(r)

)( s
2 )2+( 2−s

2 )2∗

=

 f (r)2(1− r)2

4(n−2)2G(r)

(
1√
G(r)

)2
 s

2
 f (r)2(1− r)2

4(n−2)2G(r)

(
1√
G(r)

)2∗
 2−s

2

=V
s
2

2 V
2−s

2
2∗ .
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Applying Hölder’s inequality with conjugate exponents 2
s and 2

2−s , we obtain

∫
Bn

V2∗(s)|u|2
∗(s) dvgBn =

∫
Bn

(
|u|2
) s

2
V

s
2

2 ·
(
|u|2

∗
) 2−s

2
V

2−s
2

2∗ dvgBn

≤
(∫

Bn
V2|u|2 dvgBn

) s
2
(∫

Bn
V2∗ |u|2

∗
dvgBn

) 2−s
2

≤C−1
(∫

Bn
|∇Bnu|2 dvgBn

) s
2
(∫

Bn
|∇Bnu|2 dvgBn

) 2∗
2

2−s
2

=C−1
(∫

Bn
|∇Bnu|2 dvgBn

) 2∗(s)
2

.

It follows that for all u ∈ H1(Bn),∫
Bn
|∇Bnu|2 dvgBn − γ

∫
Bn

V2|u|2 dvgBn(∫
Bn

V2∗(s)|u|2
∗(s) dvgBn

)2/2∗(s) ≥
(

1− γ

γH

) ∫
Bn
|∇Bnu|2 dvgBn(∫

Bn
V2∗(s)|u|2

∗(s) dvgBn

)2/2∗(s) .

Hence, (4.13) implies (4.14) whenever γ < γH := (n−2)2

4 .

The best constant µγ(Bn) in inequality (4.14) can therefore be written as:

µγ(Bn) = inf
u∈H1(Bn)\{0}

∫
Bn
|∇Bnu|2 dvgBn − γ

∫
Bn

V2|u|2 dvgBn(∫
Bn

V2∗(s)|u|2
∗(s) dvBn

)2/2∗(s) .

Thus, any minimizer of µγ(Bn) satisfies –up to a Lagrange multiplier– the follow-

ing Euler–Lagrange equation

−∆Bnu− γV2u =V2∗(s)|u|2
∗(s)−2u, (4.15)

where 0≤ s < 2 and 2∗(s) = 2(n−s)
n−2 .
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4.3 The explicit solutions for Hardy–Sobolev equations
on Bn

We first find the fundamental solutions associated to the Hardy–Schrödinger oper-

ator on Bn, that is the solutions for the equation −∆Bnu− γV2u = 0.

Lemma 4.3.1. Assume γ < γH := (n−2)2

4 . The fundamental solutions of

−∆Bnu− γV2u = 0

are given by

u±(r) = G(r)α±(γ) ∼


(

1
n−2

r2−n
)α±(γ)

as r→ 0,(
2n−2

n−1
(1− r)n−1

)α±(γ)

as r→ 1,

where

α±(γ) =
β±(γ)

n−2
and β±(γ) =

n−2
2
±
√

(n−2)2

4
− γ. (4.16)

Proof. We look for solutions of the form u(r) = G(r)−α . To this end we perform

a change of variable σ = G(r), v(σ) = u(r) to arrive at the Euler-type equation

(n−2)2v′′(σ)+ γσ
−2v(σ) = 0 in (0,∞).

It is easy to see that the two solutions are given by v(σ)=σ±, or u(r)= c(n,γ)r−β±

where α± and β± are as in (4.16).

Remark 4.3.2. We point out that u±(r)∼ c(n,γ)r−β±(γ) as r→ 0.

Proposition 4.3.3. Let −∞ < γ < (n−2)2

4 . The equation

−∆Bnu− γV2u =V2∗(s)u
2∗(s)−1 in Bn, (4.17)
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has a family of positive radial solutions which are given by

U(G(r)) = c
(

G(r)−
2−s
n−2 α−(γ)+G(r)−

2−s
n−2 α+(γ)

)− n−2
2−s

= c
(

G(r)
− 2−s

(n−2)2
β−(γ)

+G(r)
− 2−s

(n−2)2
β+(γ)

)− n−2
2−s

,

where c is a positive constant and α±(γ) and β±(γ) satisfy (4.16).

Proof. With the same change of variable σ = G(r) and v(σ) = u(r) we have

(n−2)2v′′(σ)+ γσ
−2v(σ)+σ

− 2∗(s)+2
2 v2∗(s)−1(σ) = 0 in (0,∞).

Now, set σ = τ2−n and w(τ) = v(σ)

τ
1−n(τn−1w′(τ))′+ γτ

−2w(τ)+w(τ)2∗(s)−1 = 0 on (0,∞).

The latter has an explicit solution

w(τ) = c
(

τ
2−s
n−2 β−(γ)+ τ

2−s
n−2 β+(γ)

)− n−2
2−s

,

where c is a positive constant. This translates to the explicit formula

u(r) = c
(

G(r)−
2−s
n−2 α−(γ)+G(r)−

2−s
n−2 α+(γ)

)− n−2
2−s

= c
(

G(r)
− 2−s

(n−2)2
β−(γ)

+G(r)
− 2−s

(n−2)2
β+(γ)

)− n−2
2−s

.

Remark 4.3.4. We remark that, in the special case γ = 0 and s = 0, Sandeep–

Tintarev [153] proved that the following minimization problem

µ0(Bn) = inf
u∈H1

r (Bn)\{0}

∫
Bn
|∇Bnu|2 dvgBn∫

Bn
V2∗ |u|2

∗
dvgBn

is attained.
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Remark 4.3.5. The change of variable σ = G(r) offers a nice way of viewing the

radial aspect of hyperbolic space Bn in parallel to the one in Rn in the following

sense.

• The scaling r 7→ G−1(λG(r)) for r = |x| in Bn corresponds to σ 7→ λσ in

(0,∞), which in turn corresponds to ρ 7→ λρ = G−1
(λG(ρ)) for ρ = |x| in

Rn, once we set G(ρ) = ρ2−n and λ = λ
1

2−n ;

• One has a similar correspondence with the scaling-invariant equations: if u

solves

−∆Bnu− γV2u =V2∗(s)u
2∗(s)−1 in Bn,

then

1. as an ODE, and once we set v(σ) = u(r), σ = G(r), it is equivalent to

−(n−2)2v′′(σ)− γσ
−2v(σ) = σ

− 2∗(s)+2
2 v(σ)2∗(s)−1 on (0,∞);

(4.18)

2. as a PDE on Rn, and by setting v(σ) = u(ρ), σ = G(ρ), it is in turn

equivalent to

−∆v− γ

|x|2
v =

1
|x|s

v2∗(s)−1 in Rn.

This also confirm that the potentials V2∗(s) are the “correct” ones associated

to the power |x|−s.

• The explicit solution u on Bn is related to the explicit solution w on Rn in the

following way:

u(r) = w
(

G(r)−
1

n−2

)
.

222



• Under the above setting, it is also easy to see the following integral identities:∫
Bn
|∇Bnu|2 dvgn

B
=
∫

∞

0
v′(σ)2 dσ∫

Bn
V2u2 dvgn

B
=

1
(n−2)2

∫
∞

0

v2(σ)

σ2 dσ∫
Bn

Vpup dvgn
B
=

1
(n−2)2

∫
∞

0

vp(σ)

σ
p+2

2

dσ ,

which, in the same way as above, equal to the corresponding Euclidean in-

tegrals.

4.4 The corresponding perturbed Hardy–Schrödinger
operator on Euclidean space

We shall see in the next section that after a conformal transformation, the equation

(4.6) is transformed into the Euclidean equation
−∆u−

(
γ

|x|2 +h(x)
)

u = b(x)u2∗(s)−1

|x|s in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(4.19)

where Ω is a bounded domain in Rn, n≥ 3, h ∈C1(Ω\{0}) with lim
|x|→0
|x|2h(x) = 0

is such that the operator −∆−
(

γ

|x|2 +h(x)
)

is coercive and b(x) ∈C0(Ω) is non-

negative with b(0) > 0. The equation (4.19) is the Euler–Lagrange equation for

following energy functional on D1,2(Ω),

JΩ
γ,h(u) :=

∫
Ω

(
|∇u|2−

(
γ

|x|2
+h(x)

)
u2
)

dx( ∫
Ω

b(x)
|u|2∗(s)

|x|s
dx

)2/2∗(s) .
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Here D1,2(Ω) – or H1
0 (Ω) if the domain is bounded – is the completion of C∞

c (Ω)

with respect to the norm given by ||u||2 =
∫
Ω

|∇u|2 dx. We let

µγ,h(Ω) := inf
u∈D1,2(Ω)\{0}

JΩ
γ,h(u)

A standard approach to find minimizers is to compare µγ,h(Ω) with µγ,0(Rn). It is

know that µγ,0(Rn) is attained when γ ≥ 0, and minimizers are explicit and take

the form

Uε(x) := cγ,s(n) · ε−
n−2

2 U
( x

ε

)
= cγ,s(n) ·

(
ε

2−s
n−2 ·

β+(γ)−β−(γ)
2

ε
2−s
n−2 ·(β+(γ)−β−(γ))|x|

(2−s)β−(γ)
n−2 + |x|

(2−s)β+(γ)
n−2

) n−2
2−s

for x ∈ Rn \ {0}, where ε > 0, cγ,s(n) > 0, and β±(γ) are defined in (4.16), see

[105]. In particular, there exists χ > 0 such that

−∆Uε −
γ

|x|2
Uε = χ

U2∗(s)−1
ε

|x|s
in Rn \{0}. (4.20)

We shall start by analyzing the singular solutions and then define the mass of a

domain associated to the operator −∆−
(

γ

|x|2 +h(x)
)

.

Proposition 4.4.1. Let Ω be a smooth bounded domain in Rn such that 0 ∈Ω and

γ < (n−2)2

4 . Let h ∈C1(Ω \ {0}) be such that lim
|x|→0
|x|τh(x) exists and is finite, for

some 0≤ τ < 2, and that the operator −∆− γ

|x|2 −h(x) is coercive. Then

1. There exists a solution K ∈C∞(Ω\{0}) for the linear problem
−∆K−

(
γ

|x|2 +h(x)
)

K = 0 in Ω\{0}
K > 0 in Ω\{0}
K = 0 on ∂Ω,

(4.21)
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such that for some c > 0,

K(x)'x→0
c

|x|β+(γ)
. (4.22)

Moreover, if K′ ∈ C∞(Ω \ {0}) is another solution for the above equation,

then there exists λ > 0 such that K′ = λK.

2. Let θ = inf{θ ′ ∈ [0,2) : lim
|x|→0
|x|θ ′h(x) exists and is finite}. If γ > (n−2)2

4 −

(2−θ)2

4 , then there exists c1,c2 ∈ R with c1 > 0 such that

K(x) =
c1

|x|β+(γ)
+

c2

|x|β−(γ)
+o
(

1
|x|β−(γ)

)
as x→ 0. (4.23)

The ratio c2
c1

is independent of the choice of K. We can therefore define the

mass of Ω with respect to the operator−∆−
(

γ

|x|2 +h(x)
)

as mγ,h(Ω) :=
c2

c1
.

3. The mass mγ,h(Ω) satisfies the following properties:

• mγ,0(Ω)< 0,

• If h≤ h′ and h 6≡ h′, then mγ,h(Ω)< mγ,h′(Ω),

• If Ω′ ⊂Ω, then mγ,h(Ω
′)< mγ,h(Ω).

Proof. The proof of (1) and (3) is similar to Proposition 2 and 4 in [106] with only

a minor change that accounts for the singularity of h. To illustrate the role of this

extra singularity we prove (2). For that, we let η ∈C∞
c (Ω) be such that η(x) ≡ 1

around 0. Our first objective is to write K(x) := η(x)
|x|β+(γ) + f (x) for some f ∈H1

0 (Ω).

Note that γ > (n−2)2

4 − (2−θ)2

4 ⇐⇒ β+−β−< 2−θ ⇐⇒ 2β+ < n−θ . Fix θ ′ such

that θ < θ ′ < min
{2+θ

2 ,2− (β+(γ)−β−(γ))
}

. Then lim
|x|→0
|x|θ ′h(x) exists and is

finite.

Consider the function

g(x) =−
(
−∆−

(
γ

|x|2
+h(x)

))
(η |x|−β+(γ)) in Ω\{0}.
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Since η(x)≡ 1 around 0, we have that

|g(x)| ≤
∣∣∣∣ h(x)
|x|β+(γ)

∣∣∣∣≤C|x|−(β+(γ)+θ ′) as x→ 0. (4.24)

Therefore g ∈ L
2n

n+2 (Ω) if 2β+(γ)+ 2θ ′ < n+ 2, and this holds since by our as-

sumption 2β+ < n− θ and 2θ ′ < 2+ θ . Since L
2n

n+2 (Ω) = L
2n

n−2 (Ω)′ ⊂ H1
0 (Ω)′,

there exists f ∈ H1
0 (Ω) such that

−∆ f −
(

γ

|x|2
+h(x)

)
f = g in H1

0 (Ω).

By regularity theory, we have that f ∈C2(Ω\{0}). We now show that

|x|β−(γ) f (x) has a finite limit as x→ 0. (4.25)

Define K(x) = η(x)
|x|β+(γ) + f (x) for all x ∈Ω\{0}, and note that K ∈C2(Ω\{0}) and

is a solution to

−∆K−
(

γ

|x|2
+h(x)

)
K = 0.

Write g+(x) := max{g(x),0} and g−(x) := max{−g(x),0} so that g = g+− g−,

and let f1, f2 ∈ H1
0 (Ω) be weak solutions to

−∆ f1−
(

γ

|x|2
+h(x)

)
f1 = g+ and −∆ f2−

(
γ

|x|2
+h(x)

)
f2 = g− in H1

0 (Ω).

(4.26)

In particular, uniqueness, coercivity and the maximum principle yield f = f1− f2

and f1, f2 ≥ 0. Assume that f1 6≡ 0 so that f1 > 0 in Ω \ {0}, fix α > β+(γ) and

µ > 0. Define u−(x) := |x|−β−(γ)+ µ|x|−α for all x 6= 0. We then get that there
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exists a small δ > 0 such that(
−∆−

(
γ

|x|2
+h(x)

))
u−(x)

= µ

(
−∆− γ

|x|2

)
|x|−α −µh(x)|x|−α −h(x)|x|−β−(γ)

=
−µ (α−β+(γ))(α−β−(γ))−|x|2h(x)

(
|x|α−β−(γ)+µ

)
|x|α+2

< 0 for x ∈ Bδ (0)\{0},

(4.27)

This implies that u−(x) is a sub-solution on Bδ (0)\{0}. Let C > 0 be such that f1≥
Cu− on ∂Bδ (0). Since f1 and Cu− ∈ H1

0 (Ω) are respectively super-solutions and

sub-solutions to
(
−∆−

(
γ

|x|2 +h(x)
))

u(x) = 0, it follows from the comparison

principle (via coercivity) that f1 >Cu−>C|x|−β−(γ) on Bδ (0)\{0}. It then follows

from (4.24) that

g+(x)≤ |g(x)| ≤C|x|−(β+(γ)+θ ′) ≤C1|x|(2−θ ′)−(β+(γ)−β−(γ)) f1

|x|2
.

Then rewriting (4.26) as

−∆ f1−
(

γ

|x|2
+h(x)+

g+
f1

)
f1 = 0

yields

−∆ f1−

γ +O
(
|x|(2−θ ′)−(β+(γ)−β−(γ))

)
|x|2

 f1 = 0.

With our choice of θ ′ we can then conclude by the optimal regularity result in [106,

Theorem 8] that |x|β−(γ) f1 has a finite limit as x→ 0. Similarly one also obtains that

|x|β−(γ) f2 has a finite limit as x→ 0, and therefore (4.25) is verified.

It follows that there exists c2 ∈ R such that

K(x) =
1

|x|β+(γ)
+

c2

|x|β−(γ)
+o
(

1
|x|β−(γ)

)
as x→ 0,
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which proves the existence of a solution K to the problem with the relevant asymp-

totic behavior. The uniqueness result yields the conclusion.

We now proceed with the proof of the existence results, following again [106].

We shall use the following standard sufficient condition for attainability.

Lemma 4.4.2. Under the assumptions of Theorem 4.1.5, if

µγ,h(Ω) := inf
u∈H1

0 (Ω)\{0}

∫
Ω

(
|∇u|2−

(
γ

|x|2
+h(x)

)
u2
)

dx( ∫
Ω

b(x)
|u|2∗(s)

|x|s
dx

)2/2∗(s) <
µγ,0(Rn)

b(0)2/2∗(s) ,

then the infimum µγ,s(Ω) is achieved and equation (4.19) has a solution.

Proof of Theorem 4.1.5: We will construct a minimizing sequence uε in H1
0 (Ω)\

{0} for the functional JΩ
γ,h in such a way that µγ,h(Ω) < b(0)−2/2∗(s)µγ,0(Rn). As

mentioned above, when γ ≥ 0 the infimum µγ,0(Rn) is achieved, up to a constant,

by the function

U(x) :=
1(

|x|
(2−s)β−(γ)

n−2 + |x|
(2−s)β+(γ)

n−2

) n−2
2−s

for x ∈ Rn \{0}.

In particular, there exists χ > 0 such that

−∆U− γ

|x|2
U = χ

U2∗(s)−1

|x|s
in Rn \{0}. (4.28)

Define a scaled version of U by

Uε(x) := ε
− n−2

2 U
( x

ε

)
=

(
ε

2−s
n−2 ·

β+(γ)−β−(γ)
2

ε
2−s
n−2 ·(β+(γ)−β−(γ))|x|

(2−s)β−(γ)
n−2 + |x|

(2−s)β+(γ)
n−2

) n−2
2−s

(4.29)

for x ∈ Rn \{0}. β±(γ) are defined in (4.16). In the sequel, we write β+ := β+(γ)

and β− := β−(γ). Consider a cut-off function η ∈C∞
c (Ω) such that η(x) ≡ 1 in a

neighborhood of 0 contained in Ω.

228



Case 1: Test-functions for the case when γ ≤ (n−2)2

4
− (2−θ)2

4
.

For ε > 0, we consider the test functions uε ∈ D1,2(Ω) defined by uε(x) :=

η(x)Uε(x) for x ∈Ω\{0}. To estimate JΩ
γ,h(uε), we use the bounds on Uε to obtain

∫
Ω

b(x)
u2∗(s)

ε

|x|s
dx =

∫
Bδ (0)

b(x)
U2∗(s)

ε

|x|s
dx+

∫
Ω\Bδ (0)

b(x)
u2∗(s)

ε

|x|s
dx

=
∫

B
ε−1δ

(0)
b(εx)

U2∗(s)

|x|s
dx+

∫
B

ε−1δ
(0)

b(εx)η(εx)2∗(s)U
2∗(s)

|x|s
dx

= b(0)
∫
Rn

U2∗(s)

|x|s
dx+O

(
ε

2∗(s)
2 (β+−β−)

)
.

Similarly, one also has

∫
Ω

(
|∇uε |2−

γ

|x|2
u2

ε

)
dx

=
∫

Bδ (0)

(
|∇Uε |2−

γ

|x|2
U2

ε

)
dx+

∫
Ω\Bδ (0)

(
|∇uε |2−

γ

|x|2
u2

ε

)
dx

=
∫

B
ε−1δ

(0)

(
|∇U |2− γ

|x|2
U2
)

dx+O
(

ε
β+−β−

)
=
∫
Rn

(
|∇U |2− γ

|x|2
U2
)

dx+O
(

ε
β+−β−

)
= χ

∫
Rn

U2∗(s)

|x|s
dx+O

(
ε

β+−β−
)
.

Estimating the lower order terms as ε → 0 gives

∫
Ω

h̃(x)u2
ε dx =



ε2−θ

[
C2

∫
Rn

U2

|x|θ
dx+o(1)

]
if β+−β− > 2−θ ,

ε2−θ log
(

1
ε

)
[C2ωn−1 +o(1)] if β+−β− = 2−θ ,

O
(
εβ+−β−

)
if β+−β− < 2−θ .
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And

−C1

∫
Ω

log |x|
|x|θ

u2
ε dx =



C1ε2−θ log
( 1

ε

)[ ∫
Rn

U2

|x|θ
dx+o(1)

]
if β+−β− > 2−θ ,

C1ε2−θ

(
log
(

1
ε

))2 [
ωn−1

2
+o(1)

]
if β+−β− = 2−θ ,

O
(
εβ+−β−

)
if β+−β− < 2−θ .

Note that β+−β− ≥ 2−θ if and only if γ ≤ (n−2)2

4 − (2−θ)2

4 . Therefore,

∫
Ω

h(x)u2
ε dx =



ε2−θ

∫
Rn

U2

|x|θ
dx
[

C1 log
(

1
ε

)
(1+o(1))+C2 +o(1)

]
if γ < (n−2)2

4 − (2−θ)2

4 ,

ε
2−θ log

(
1
ε

)
ωn−1

2

[
C1 log

(
1
ε

)
(1+o(1))+2C2 +o(1)

]
if γ = (n−2)2

4 − (2−θ)2

4 .
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Combining the above estimates, we obtain as ε → 0,

JΩ
γ,h(uε)

=

∫
Ω

(
|∇uε |2− γ

u2
ε

|x|2 −h(x)u2
ε

)
dx( ∫

Ω
b(x) |uε |2∗(s)

|x|s dx
)2/2∗(s)

=
µγ,0(Rn)

b(0)2/2∗(s) −



(∫
Rn

U2

|x|θ
dx
)

ε2−θ(
b(0)

∫
Rn

U2∗(s)
|x|s dx

)2/2∗(s)

[
C1 log

( 1
ε

)
(1+o(1))+C2 +o(1)

]
if γ < (n−2)2

4 − (2−θ)2

4 ,

ωn−1ε2−θ log( 1
ε )

2
(

b(0)
∫
Rn

U2∗(s)
|x|s dx

)2/2∗(s)

[
C1 log

( 1
ε

)
(1+o(1))+2C2 +o(1)

]
if γ = (n−2)2

4 − (2−θ)2

4 ,

as long as β+− β− ≥ 2− θ . Thus, for ε sufficiently small, the assumption that

either C1 > 0 or C1 = 0, C2 > 0 guarantees that

µγ,h(Ω)≤ JΩ
γ,h(uε)<

µγ,0(Rn)

b(0)2/2∗(s) .

It then follows from Lemma 4.4.2 that µγ,h(Ω) is attained.

Case 2: Test-functions for the case when
(n−2)2

4
− (2−θ)2

4
< γ <

(n−2)2

4
.

Here h(x) and θ given by (4.11) satisfy the hypothesis of Proposition (4.4.1). Since

γ > (n−2)2

4 − (2−θ)2

4 , it follows from (4.23) that there exists β ∈ D1,2(Ω) such that

β (x)'x→0
mγ,h(Ω)

|x|β−
. (4.30)

The function K(x) := η(x)
|x|β+ +β (x) for x ∈Ω\{0} satisfies the equation:


−∆K−

(
γ

|x|2 +h(x)
)

K = 0 in Ω\{0}
K > 0 in Ω\{0}
K = 0 on ∂Ω.

(4.31)
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Define the test functions

uε(x) := η(x)Uε + ε
β+−β−

2 β (x) for x ∈Ω\{0}

The functions uε ∈ D1,2(Ω) for all ε > 0. We estimate JΩ
γ,h(uε).

Step 1: Estimates for
∫

Ω

(
|∇uε |2−

(
γ

|x|2
+h(x)

)
u2

ε

)
dx.

Take δ > 0 small enough such that η(x) = 1 in Bδ (0) ⊂ Ω. We decompose the

integral as

∫
Ω

(
|∇uε |2−

(
γ

|x|2
+h(x)

)
u2

ε

)
dx

=
∫

Bδ (0)

(
|∇uε |2−

(
γ

|x|2
+h(x)

)
u2

ε

)
dx

+
∫

Ω\Bδ (0)

(
|∇uε |2−

(
γ

|x|2
+h(x)

)
u2

ε

)
dx.

By standard elliptic estimates, it follows that limε→0
uε

ε

β+−β−
2

= K in C2
loc(Ω\{0}).

Hence

lim
ε→0

∫
Ω\Bδ (0)

(
|∇uε |2−

(
γ

|x|2
+h(x)

)
u2

ε

)
dx

εβ+−β−

=
∫

Ω\Bδ (0)

(
|∇K|2−

(
γ

|x|2
+h(x)

)
K2
)

dx

=
∫

Ω\Bδ (0)

(
−∆K−

(
γ

|x|2
+h(x)

)
K
)

K dx+
∫

∂ (Ω\Bδ (0))
K∂νK dσ

=
∫

∂ (Ω\Bδ (0))
K∂νK dσ =−

∫
∂Bδ (0)

K∂νK dσ .

Since β++β− = n−2, using elliptic estimates, and the definition of K gives us

K∂νK =− β+

|x|1+2β+
− (n−2)

mγ,h(Ω)

|x|n−1 +o
(

1
|x|n−1

)
as x→ 0.
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Therefore,

∫
Ω\Bδ (0)

(
|∇uε |2−

(
γ

|x|2
+h(x)

)
u2

ε

)
dx

= ε
β+−β−ωn−1

(
β+

δ β+−β−
+(n−2)mγ,h(Ω)+oδ (1)

)

Now, we estimate the term
∫

Bδ (0)

(
|∇uε |2−

(
γ

|x|2
+h(x)

)
u2

ε

)
dx.

First, uε(x) = Uε(x) + ε
β+−β−

2 β (x) for x ∈ Bδ (0), therefore after integration by

parts, we obtain

∫
Bδ (0)

(
|∇uε |2−

(
γ

|x|2
+h(x)

)
u2

ε

)
dx

=
∫

Bδ (0)

(
|∇Uε |2−

(
γ

|x|2
+h(x)

)
U2

ε

)
dx

+2ε
β+−β−

2

∫
Bδ (0)

(
∇Uε ·∇β −

(
γ

|x|2
+h(x)

)
Uεβ

)
dx

+ ε
β+−β−

∫
Bδ (0)

(
|∇β |2−

(
γ

|x|2
+h(x)

)
β

2
)

dx

=
∫

Bδ (0)

(
−∆Uε −

γ

|x|2
Uε

)
Uε dx+

∫
∂Bδ (0)

Uε∂νUε dσ

−
∫

Bδ (0)
h(x)U2

ε dx+2ε
β+−β−

2

∫
Bδ (0)

(
−∆Uε dx− γ

|x|2
Uε

)
β dx

−2ε
β+−β−

2

∫
Bδ (0)

h(x)Uεβ dx+2ε
β+−β−

2

∫
∂Bδ (0)

β∂νUε dσ

+ ε
β+−β−

∫
Bδ (0)

(
|∇β |2−

(
γ

|x|2
+h(x)

)
β

2
)

dx.

We now estimate each of the above terms. First, using equation (4.20) and the

expression for Uε defined as in (4.29), we obtain

∫
Bδ (0)

(
−∆Uε −

γ

|x|2
Uε

)
Uε dx = χ

∫
Bδ (0)

U2∗(s)
ε

|x|s
dx

= χ

∫
Rn

U2∗(s)

|x|s
dx+O

(
ε

2∗(s)
2 (β+−β−)

)
,
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and ∫
∂Bδ (0)

Uε∂νUε dσ =−β+ωn−1
εβ+−β−

δ β+−β−
+oδ

(
ε

β+−β−
)

as ε → 0.

Note that

β+−β− < 2−θ ⇐⇒ γ >
(n−2)2

4
− (2−θ)2

4
=⇒ 2β++θ < n.

Therefore,∫
Bδ (0)

h(x)U2
ε dx = O

(
ε

β+−β−

∫
Bδ (0)

1
|x|2β++θ

dx
)
= oδ

(
ε

β+−β−
)

as ε → 0.

Again from equation (4.20) and the expression for U and β , we get that

∫
Bδ (0)

(
−∆Uε dx− γ

|x|2
Uε

)
β dx

= ε
β++β−

2

∫
B

ε−1δ
(0)

(
−∆U dx− γ

|x|2
U
)

β (εx) dx

= mγ,h(Ω)ε
β+−β−

2

∫
B

ε−1δ
(0)

(
−∆U dx− γ

|x|2
U
)
|x|−β− dx+oδ

(
ε

β+−β−
2

)
= mγ,h(Ω)ε

β+−β−
2

∫
B

ε−1δ
(0)

(
−∆|x|−β− dx− γ

|x|2
|x|−β−

)
U dx

−mγ,h(Ω)ε
β+−β−

2

∫
∂B

ε−1δ
(0)

∂νU
|x|β−

dσ +oδ

(
ε

β+−β−
2

)
= β+mγ,h(Ω)ωn−1ε

β+−β−
2 +oδ

(
ε

β+−β−
2

)
.

Similarly,∫
∂Bδ (0)

β∂νUε dσ =−β+mγ,h(Ω)ωn−1ε
β+−β−

2 +oδ

(
ε

β+−β−
2

)
.
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Since β++β−+θ = n− (2−θ)< n, we have

∫
Bδ (0)

h(x)Uεβ dx = O
(

ε
β+−β−

2

∫
Bδ (0)

1
|x|β++β−+θ

dx
)

= oδ

(
ε

β+−β−
2

)
.

And, finally

ε
β+−β−

∫
Bδ (0)

(
|∇β |2−

(
γ

|x|2
+h(x)

)
β

2
)

dx = oδ (ε
β+−β−).

Combining all the estimates, we get

∫
Bδ (0)

(
|∇uε |2−

(
γ

|x|2
+h(x)

)
u2

ε

)
dx

= χ

∫
Rn

U2∗(s)

|x|s
dx−β+ωn−1

εβ+−β−

δ β+−β−
+oδ (ε

β+−β−).

So,

∫
Ω

(
|∇uε |2−

(
γ

|x|2
+h(x)

)
u2

ε

)
dx

= χ

∫
Rn

U2∗(s)

|x|s
dx+ωn−1(n−2)mγ,h(Ω)εβ+−β−+oδ (ε

β+−β−).

Step 2: Estimating
∫

Ω

b(x)
u2∗(s)

ε

|x|s
dx.
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One has for δ > 0 small

∫
Ω

b(x)
u2∗(s)

ε

|x|s
dx

=
∫

Bδ (0)
b(x)

u2∗(s)
ε

|x|s
dx+

∫
Ω\Bδ (0)

b(x)
u2∗(s)

ε

|x|s
dx

=
∫

Bδ (0)
b(x)

(
Uε(x)+ ε

β+−β−
2 β (x)

)2∗(s)

|x|s
dx+o(εβ+−β−)

=
∫

Bδ (0)
b(x)

U2∗(s)
ε

|x|s
dx+ ε

β+−β−
2 2∗(s)

∫
Bδ (0)

b(x)
U2∗(s)−1

ε

|x|s
β dx

+o(εβ+−β−)

=
∫

Bδ (0)
b(x)

U2∗(s)
ε

|x|s
dx+ ε

β+−β−
2

2∗(s)
χ

∫
Bδ (0)

b(x)
(
−∆Uε dx− γ

|x|2
Uε

)
β dx

+o(εβ+−β−)

= b(0)
∫
Rn

U2∗(s)

|x|s
dx+

2∗(s)
χ

b(0)β+mγ,λ ,a(Ω)ωn−1ε
β+−β−+o(εβ+−β−).

So, we obtain

JΩ

γ,λ ,a(uε) (4.32)

=

∫
Ω

(
|∇uε |2− γ

u2
ε

|x|2
−h(x)u2

ε

)
dx( ∫

Ω

b(x)
|uε |2

∗(s)

|x|s
dx

)2/2∗(s)

=
µγ,0(Rn)

b(0)2/2∗(s) −mγ,h(Ω)
ωn−1(β+−β−)(

b(0)
∫
Rn

U2∗(s)

|x|s
dx

)2/2∗(s) ε
β+−β−+o(εβ+−β−).

(4.33)

Therefore, if mγ,h(Ω)> 0, we get for ε sufficiently small

µγ,h(Ω)≤ JΩ
γ,h(uε)<

µγ,0(Rn)

b(0)2/2∗(s) .
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Then, from Lemma 4.4.2 it follows that µγ,h(Ω) is attained. �

Remark 4.4.3. Assume for simplicity that h(x) = λ |x|−θ where 0≤ θ < 2. There is

a threshold λ ∗(Ω)≥ 0 beyond which the infimum µγ,λ (Ω) is achieved, and below

which, it is not. In fact,

λ
∗(Ω) := sup{λ : µγ,λ (Ω) = µγ,0(Rn)}.

Performing a blow-up analysis like in [106] one can obtain the following sharp

results:

• In high dimensions, that is for γ ≤ (n−2)2

4 − (2−θ)2

4 one has λ ∗(Ω) = 0 and

the infimum µγ,λ (Ω) is achieved if and only if λ > λ ∗(Ω).

• In low dimensions, that is for (n−2)2

4 − (2−θ)2

4 < γ , one has λ ∗(Ω) > 0 and

µγ,λ (Ω) is not achieved for λ < λ ∗(Ω) and µγ,λ (Ω) is achieved for λ >

λ ∗(Ω). Moreover under the assumption µγ,λ ∗(Ω) is not achieved, we have

that mγ,λ ∗(Ω) = 0, and λ ∗(Ω) = sup{λ : mγ,λ (Ω)≤ 0}.

4.5 Existence results for compact submanifolds of Bn

Consider the following Dirichlet boundary value problem in hyperbolic space. Let

Ω b Bn (n ≥ 3) be a bounded smooth domain such that 0 ∈ Ω. We consider the

Dirichlet boundary value problem:
−∆Bnu− γV2u−λu =V2∗(s)u2∗(s)−1 in Ω

u≥ 0 in Ω

u = 0 on ∂Ω,

(4.34)

where λ ∈ R, 0 < s < 2 and γ < γH := (n−2)2

4 .

We shall use the conformal transformation gBn = ϕ
4

n−2 gEucl, where

ϕ =
(

2
1−r2

) n−2
2

to map the problem into Rn. We start by considering the
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general equation :

−∆Bnu− γV2u−λu = F(x,u) in Ωb Bn, (4.35)

where F(x,u) is a Carathéodory function such that

|F(x,u)| ≤C|u|

(
1+
|u|2∗(s)−2

rs

)
for all x ∈Ω.

If u satisfies (4.35), then v := ϕu satisfies the equation:

−∆v− γ

(
2

1− r2

)2

V2v−
[

λ − n(n−2)
4

](
2

1− r2

)2

v = ϕ
n+2
n−2 f

(
x,

v
ϕ

)
in Ω.

On the other hand, we have the following expansion for
(

2
1−r2

)2
V2 :

(
2

1− r2

)2

V2(x) =
1

(n−2)2

(
f (r)
G(r)

)2

where f (r) and G(r) are given by (4.1). We then obtain that

(
2

1− r2

)2

V2(x) =



1
r2 +

4
r +8+g3(r) when n = 3,

1
r2 +8log 1

r −4+g4(r) when n = 4,

1
r2 +

4(n−2)
n−4 + rgn(r) when n≥ 5.

(4.36)

where for all n≥ 3, gn(0) = 0 and gn is C0([0,δ ]) for δ < 1.

This implies that v := ϕu is a solution to

−∆v− γ

r2 v−

[
γa(x)+

(
λ − n(n−2)

4

)(
2

1− r2

)2
]

v = ϕ
n+2
n−2 f

(
x,

v
ϕ

)
.

where a(x) is defined in (4.8). We can therefore state the following lemma:

238



Lemma 4.5.1. A non-negative function u ∈ H1
0 (Ω) solves (4.34) if and only if

v := ϕu ∈ H1
0 (Ω) satisfies
−∆v−

(
γ

|x|2 +hγ,λ (x)
)

v = b(x) v2∗(s)−1

|x|s in Ω

v≥ 0 in Ω

v = 0 on ∂Ω,

(4.37)

where

hγ,λ (x) = γa(x)+
4λ −n(n−2)
(1−|x|2)2 ,

a(x) is defined in (4.8), and b(x) is a positive function in C0(Ω) with b(0) =
(n−2)

n−s
n−2

22−s . Moreover, the hyperbolic operator LBn

γ :=−∆Bn − γV2−λ is coercive

if and only if the corresponding Euclidean operator LRn

γ,h :=−∆−
(

γ

|x|2
+hγ,λ (x)

)
is coercive.

Proof. Note that one has in particular

hγ,λ (x) = hγ,λ (r) =



4γ

r +8γ + 4λ−3
(1−r2)2 + γg3(r) when n = 3,

[
8γ log 1

r −4γ +4λ −8
]

+γg4(r)+(4λ −8) r2(2−r2)
(1−r2)2 when n = 4,

4(n−2)
n−4

[
n−4
n−2 λ + γ− n(n−4)

4

]
+γrgn(r)+(4λ −n(n−2)) r2(2−r2)

(1−r2)2 when n≥ 5,

(4.38)

with gn(0) = 0 and gn is C0([0,δ ]) for δ < 1, for all n≥ 3.

Let F(x,u) = V2∗(s)u2∗(s)−1 in (4.35). The above remarks show that v := ϕu is

a solution to (4.37).

For the second part, we first note that the following identities hold:

∫
Ω

(
|∇Bnu|2− n(n−2)

4
u2
)

dvgBn =
∫

Ω

|∇v|2 dx
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and ∫
Ω

u2dvgBn =
∫

Ω

v2
(

2
1− r2

)2

dx.

If the operator LBn

γ is coercive, then for any u ∈ C∞(Ω), we have 〈LBn

γ u,u〉 ≥
C‖u‖2

H1
0 (Ω)

, which means

∫
Ω

(
|∇Bnu|2− γV2u2)dvgBn ≥C

∫
Ω

(
|∇Bnu|2 +u2)dvgBn .

The latter then holds if and only if

〈LRn

γ,φ u,u〉=
∫

Ω

(
|∇v|2−

(
2

1− r2

)2(
γV2−

n(n−2)
4

)
v2

)
dx

≥C
∫

Ω

(
|∇v|2 +

(
2

1− r2

)2(n(n−2)
4

+1
)

v2

)
dx

≥C′
∫

Ω

(
|∇v|2 + v2)dx≥ c‖u‖2

H1
0 (Ω),

where v = ϕu is in C∞(Ω). This completes the proof.

At this point, the proof of Theorems 4.1.2 and 4.1.3 follows verbatim as in the

Euclidean case.

One can then use the results obtained in the last section to prove Theorem 4.1.4

stated in the introduction for the hyperbolic space. Indeed, it suffices to consider

equation (4.37), where b is a positive function in C1(Ω) satisfying (4.7) and hγ,λ is

given by (4.38).

If n ≥ 5, then lim
|x|→0

hγ,λ (x) =
4(n−2)

n−4

[
n−4
n−2 λ + γ− n(n−4)

4

]
, which is positive

provided

λ >
n−2
n−4

(
n(n−4)

4
− γ

)
.

Moreover, since in this case θ = 0, the first alternative in Theorem 4.1.5 holds

when γ ≤ (n−2)2

4 − 1 = n(n−4)
4 . For (n−2)2

4 − 1 < γ < (n−2)2

4 , the existence of the

extremal is guaranteed by the positivity of the hyperbolic mass mH
γ,λ (Ω) associated

to the operator LBn

γ , which is a positive multiple of the mass of the corresponding

Euclidean operator.
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When n = 4, we can use the first option in Theorem 4.1.5 using the logarithmic

perturbation if

lim
|x|→0

(
log

1
|x|

)−1

hγ,λ (x) = 8γ > 0

and, since θ = 0,

γ ≤ (4−2)2

4
−1 = 0.

This is impossible. In the absence of the dominating term with log 1
|x| , i.e. when

γ = 0, we get existence of the extremal if λ > 4(4−2)
4 = 2. Otherwise, we require

the positivity of the hyperbolic mass mH
γ,λ .

Similarly, if n = 3, the threshold for γ with the singular perturbation 1
|x| (i.e.

θ = 1) is γ ≤ (3−2)2

4 − 1
4 = 0. In order to use the first option in Theorem 4.1.5, we

have to resort to the next term 4λ − 3, which is positive when λ > 3
4 , in the case

γ = 0. When γ > 0 or λ ≤ 3
4 , one needs that mH

γ,λ > 0.
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Poincaré Anal. Non Linéaire 31 (2014), no. 1, 23–53. → pages
60, 134, 199
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3, 449–475. → page 209

[58] J. Dávila, M. del Pino, S. Dipierro, E. Valdinoci. Nonlocal Delaunay
surfaces. Nonlinear Anal. 137 (2016), 357–380. → pages 8, 98

[59] J. Dávila, M. del Pino, M. Musso. The supercritical Lane-Emden-Fowler
equation in exterior domains. Comm. Partial Differential Equations 32
(2007), no. 7-9, 1225–1254. → page 178

[60] J. Dávila, M. del Pino, M. Musso, J. Wei. Fast and slow decay solutions for
supercritical elliptic problems in exterior domains. Calc. Var. Partial
Differential Equations 32 (2008), no. 4, 453–480. → page 178

[61] J. Dávila, M. del Pino, Y. Sire. Non degeneracy of the bubble in the critical
case for non local equations. Proc. Amer. Math. Soc. 141 (2013),
3865–3870. → page 97

[62] J. Dávila, M. del Pino, J. Wei. Concentrating standing waves for the
fractional nonlinear Schrödinger equation. J. Differential Equations 256
(2014), no. 2, 858–892. → pages 8, 62, 97

[63] J. Dávila, M. del Pino, J. Wei. Nonlocal s-minimal surfaces and Lawson
cones. J. Differential Geom., to appear. → pages 8, 76, 89

[64] E. De Giorgi. Convergence problems for functionals and operators.
Proceedings of the International Meeting on Recent Methods in Nonlinear
Analysis (Rome, 1978), 131–188, Pitagora, Bologna (1979). → pages 2, 6

[65] A. DelaTorre, M. del Pino, M. d. M. González, J. Wei. Delaunay-type
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Linéaire 29 (2012), no. 3, 335–367. → page 9

[70] D. De Silva, O. Savin. Regularity of Lipschitz free boundaries for the thin
one-phase problem. J. Eur. Math. Soc. (JEMS) 17 (2015), no. 6,
1293–1326. → page 9

[71] B. Devyver, M. Fraas, Y. Pinchover: Optimal Hardy weight for
second-order elliptic operator: an answer to a problem of Agmon. J. Funct.
Anal. 266 (2014), no. 7, 4422–4489. → pages 209, 210, 211

[72] A. Di Castro, M. Novaga, B. Ruffini, E. Valdinoci. Nonlocal quantitative
isoperimetric inequalities. Calc. Var. Partial Differential Equations 54
(2015), no. 3, 2421–2464. → page 9

[73] E. Di Nezza, G. Palatucci, E. Valdinoci. Hitchhiker’s guide to the fractional
Sobolev spaces. Bull. Sci. Math. 136 (2012), no. 5, 521–573. → pages
7, 107

[74] S. Dipierro. Geometric inequalities and symmetry results for elliptic
systems. Discrete Contin. Dyn. Syst. 33 (2013), no. 8, 3473–3496. → page
8

[75] S. Dipierro, A. Figalli, G. Palatucci, E. Valdinoci. Asymptotics of the
s-perimeter as s↘ 0. Discrete Contin. Dyn. Syst. 33 (2013), no. 7,
2777–2790. → page 9

[76] S. Dipierro, L. Montoro, I. Peral, B. Sciunzi. Qualitative properties of
positive solutions to non-local critical problems involving the Hardy-Leray
potential. Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 99,
29 pp. → page 152

[77] S. Dipierro, A. Pinamonti. A geometric inequality and a symmetry result
for elliptic systems involving the fractional Laplacian. J. Differential
Equations 255 (2013), no. 1, 85–119. → page 8

[78] S. Dipierro, O. Savin, E. Valdinoci. A nonlocal free boundary problem.
SIAM J. Math. Anal. 47 (2015), no. 6, 4559–4605. → page 9

248



[79] S. Dipierro, O. Savin, E. Valdinoci. Graph properties for nonlocal minimal
surfaces. Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 86,
25 pp. → pages 8, 98

[80] S. Dipierro, O. Savin, E. Valdinoci. Boundary behavior of nonlocal
minimal surfaces. J. Funct. Anal. 272 (2017), no. 5, 1791–1851. → pages
8, 98

[81] S. Dipierro, J. Serra, E. Valdinoci. Improvement of flatness for nonlocal
phase transitions. Preprint (2016), arXiv:1611.10105. → page 8

[82] Z. Du, C. Gui, Y. Sire, J. Wei. Layered solutions for a fractional
inhomogeneous Allen-Cahn equation. NoDEA Nonlinear Differential
Equations Appl. 23 (2016), no. 3, Art. 29, 26 pp. → pages 8, 36, 59, 97

[83] P. Esposito, N. Ghoussoub, Uniqueness of solutions for an elliptic equation
modeling MEMS. Methods Appl. Anal. 15 (2008), no. 3, 341–353. →
pages 93, 100

[84] M. Fall, V. Felli. Unique continuation property and local asymptotics of
solutions to fractional elliptic equations. Comm. Partial Differential
Equations 39 (2014), no. 2, 354–397. → pages 164, 178

[85] M.M. Fall, T. Weth. Nonexistence results for a class of fractional elliptic
boundary value problems. J. Funct. Anal. 263 (2012), no. 8, 2205–2227.
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