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Abstract

In this work, we focus on three problems. First, we give a relationship between
the eigenvalues of the Hodge Laplacian and the eigenvalues of the Jacobi operator
for a free boundary minimal hypersurface of a Euclidean convex body. We then
use this relationship to obtain new index bounds for such minimal hypersurfaces in
terms of their topology. In particular, we show that the index of a free boundary
minimal surface in a convex domain in R? tends to infinity as its genus or the number
of boundary components tends to infinity. Second, we consider the relationship
between the kth normalized eigenvalue of the Dirichlet-to-Neumann map (the kth
Steklov eigenvalue) and the geometry of rotationally symmetric Mobius bands. More
specifically, we look at the problem of finding a metric that maximizes the kth Steklov
eigenvalue among all rotationally symmetric metrics on the Mobius band. We show
that such a metric can always be found and that it is realized by the induced metric
on a free boundary minimal Mobius band in B*. Third, we consider the existence
problem for harmonic maps into CAT(1) spaces. If ¥ is a compact Riemann surface,
X is a compact locally CAT(1) space and ¢ : ¥ — X is a continuous finite energy
map, we use the technique of harmonic replacement to prove that either there exists
a harmonic map u : ¥ — X homotopic to ¢ or there exists a conformal harmonic
map v : S —+ X. To complete the argument, we prove compactness for energy

minimizers and a removable singularity theorem for conformal harmonic maps.
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Lay Summary

A minimal surface is a surface that locally minimizes area. Free boundary minimal
surfaces of a ball are a special class of minimal surfaces that meet the boundary of
the ball orthogonally. A minimal surface may not have the smallest area; the area
could decrease by perturbing the surface in certain directions. First, we relate the
surface’s topology to the number of directions in which perturbations yield decreases
in area.

A Mobius band is constructed by twisting one end of a strip of paper 180° and glu-
ing the ends of the paper together. Second, we construct examples of free boundary
minimal Mobius bands.

The energy of a map between two spaces measures the amount a map stretches
the original space. Third, we show that one can always find a smallest-energy map
between a surface and a space with a notion of distance whose curvature cannot be

too large.
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Preface

This thesis is based on three previous works, two of which have been published in
academic journals, and the other of which is in preparation.

The material presented in Chapter 2 and Appendix A is based on the paper “Index
bounds for free boundary minimal hypersurfaces of convex bodies” [55] appearing in
the journal Proceedings of the American Mathematical Society, Volume 145 (2017),
pages 2467-2480. I chose this problem under the guidance of my supervisor, Ailana
Fraser, and was responsible for all aspects of this work.

The material in Chapter 3 is based on a recent project “Free boundary minimal
Mobius bands in B*”, which is currently in preparation to be submitted to an aca-
demic journal. Again, this problem was chosen under the guidance of my supervisor,
and I was responsible for all aspects of this work.

The material presented in Chapter 4 and Appendix B is based on the paper
“Existence of harmonic maps into CAT(1) spaces” [6] which will appear in the journal
Communications in Analysis and Geometry. This was a joint work with Christine

Breiner, Ailana Fraser, Lan-Hsuan Huang, Chikako Mese and Yingying Zhang.
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Chapter 1
Introduction

This work is devoted to problems related to free boundary minimal surfaces and har-
monic maps. Minimal surfaces are critical points of the area functional and satisfy
certain nonlinear partial differential equations. Examples of minimal surfaces include
soap films, helicoids (the geometric shape of DNA and double-spiral staircases), as
well as catenoids (minimal surfaces obtained by rotating catenaries about their di-
rectrices). While important in geometry, they also have significant applications in
other fields of mathematics and, in fact, played a crucial role in the celebrated proof
of the Poincaré conjecture. In addition, minimal surface theory also has physical ap-
plications in fluid interface problems and deep connections to fundamental questions
in general relativity.

In addition to problems in minimal surface theory, we look at problems concerning
the existence of harmonic maps into singular spaces. A natural notion of energy for a
map between geometric spaces is defined by measuring the total stretch of the map at
each point of the domain and then integrating it over the domain. Harmonic maps are
critical points of the energy functional. They can be seen as both a generalization
of harmonic functions in complex analysis and a higher dimensional analogue of
parameterized geodesics in Riemannian geometry. In the absence of a totally geodesic
map, a harmonic map is perhaps the most natural way to map one given geometric
space into another. The theory of harmonic maps has proven to have important

applications; for example, the existence theory for harmonic two-spheres played a



role in the proof of a generalization of the classical sphere theorem to pointwise
quarter-pinching. Other important applications of harmonic maps include those in
rigidity problems and in Teichmiiller theory amongst others.

More specifically, we focus on three problems: finding index bounds for free
boundary minimal hypersurfaces of convex bodies, constructing free boundary min-
imal Mobius bands in the 4-dimensional Euclidean ball, and proving the existence
of harmonic maps from a compact Riemann surface into a compact locally CAT(1)
space. Here, we outline the problems and state the main results, and outline the

layout of the thesis.

1.1 Index bounds for free boundary minimal hy-

persurfaces of convex bodies

If M is a Riemannian manifold with OM # () and ¥ is a n-dimensional submanifold
with nonempty boundary 0¥ C M, then X is a free boundary minimal submanifold
if it is a critical point for the volume functional among all n-dimensional submanifolds
whose boundary lie in the boundary of M. It is easy to show that X is a free boundary
minimal submanifold of M if and only if it has zero mean curvature and if it meets
the boundary of M orthogonally. In the case when M = B3, the simplest example
of a free boundary minimal surface is the equatorial disk.

Despite their name, minimal submanifolds do not, in general, minimize volume
and instead are saddle points of the volume functional. Roughly speaking, the index
of a minimal submanifold measures the degree to which it does not minimize volume
and intuitively corresponds to the number of independent directions in which one
can perturb the submanifold and decrease its volume.

In [55], we ask whether one can estimate the index of a free boundary minimal
hypersurface of a convex body in terms of the hypersurface’s topology and dimension.
This question, and the approach taken to answer it, was motivated by the work of
Savo who, in [56], gave a lower bound on the index of a minimal hypersurface of

S™*1 in terms of the hypersurface’s topology and dimension. In particular, if M™ is



a minimal hypersurface of S"*! with first Betti number £;(M), Savo showed that

Bi(M)
Ind(M) >
=T

To obtain this result, Savo first found a relationship between the eigenvalues of the

+n + 2.

Jacobi operator J and the eigenvalues of the Hodge Laplacian A; on one-forms.
Namely, if A\;(J) is the jth eigenvalue of the Jacobi operator and A;(A;) is the jth
eigenvalue of the Hodge Laplacian, then Savo showed that

A7) £ Ao (A1) = 20 = 1),
where m(j) = ("}?)(j — 1) + L.

We prove the analogous result for free boundary minimal hypersurfaces of convex
bodies by analyzing the Hodge Laplacian on one-forms. Unlike the case of minimal
hypersurfaces of S"*!, however, here our hypersurfaces have boundary which forces
us to analyze boundary value problems for the Hodge Laplacian. Specifically, we
analyze the relationship between the eigenvalues of the Jacobi operator and the
eigenvalues of the Hodge Laplacian on one-forms with absolute boundary conditions

and obtain the following theorem.

Theorem 1.1.1. Let M™ be an orientable free boundary minimal hypersurface of a
convez body in R™ ! with Jacobi operator J. Then, for all positive integers j, one
has that

Ai(J) < Am) (D),

where m(j) = ("31) (j—1)+1 and Ay (A1) is the m(j)th eigenvalue of the Laplacian

ergenvalue problem with absolute boundary conditions.

We are then able to use this to get a lower bound for the index of free boundary
minimal hypersurfaces of convex bodies in terms of the topology and dimension of
the surface. In particular, if we let 8! = dim H!(M) be the first absolute Betti

number of M, we get the following index estimate.

Theorem 1.1.2. (Index Bound) If M is an orientable free boundary minimal hy-
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persurface of a convex body in R™ !, then

Ind(M) > Vivt((n’zl)) - 1J |

In the special case of a free boundary minimal surface of a convex body in R3

with genus g and k boundary components, this reduces to

() > |25

3

This result provides new index bounds for free boundary minimal surfaces of B3
with large topology. In particular, it shows that Ind(M) > 4 when 2g + k& > 11
and Ind(M) tends to infinity as the genus or the number of boundary components
tends to infinity. This was obtained simultaneously, but independently and through
different methods, by Ambrozio, Carlotto and Sharp [3].

1.2 Free boundary minimal Mébius bands in B*

We are also interested finding explicit constructions of free boundary minimal sub-
manifolds. Here, we focus our attention on constructing free boundary minimal
Mobius bands in B%. Our construction is somewhat indirect and is motivated by the
works of Fraser and Schoen [24, 26] and Fan, Tam and Yu [21].

In [26], Fraser and Schoen provide a connection between metrics that maximize
the kth Steklov eigenvalue on a surface and the geometry of that surface. More
specifically, they show that a metric that maximizes the kth Steklov eigenvalue
arises geometrically as the induced metric on a free boundary minimal surface of
a Euclidean ball by showing that one can construct a conformal minimal immersion
into a ball from the eigenfunctions corresponding to the Steklov eigenvalue. As a
consequence, if one can find the metrics that maximize the Steklov eigenvalues, then
one has existence of free boundary minimal surfaces of balls.

This problem, however, is quite difficult to solve and in general does not yield



explicit solutions. As an alternative, in previous work Fraser and Schoen [24], and
later Fan, Tam and Yu [21], consider the more specialized problem of maximizing
Steklov eigenvalues over all rotationally symmetric metrics on the annulus. In this
more specialized setting, the result of Fraser and Schoen [26] no longer guarantees
that the maximizing metric, if it exists, arises as the metric on a free boundary
minimal surface of a Euclidean ball. However, restricting their attention to this
smaller class of metrics allowed them in [24] to solve the problem explicitly through
the method of separation of variables. Fraser and Schoen showed that there is a
metric that maximizes the first Steklov eigenvalue and that this metric is the induced
metric on the critical catenoid, a free boundary minimal surface of B3. Fan, Tam
and Yu considered the same problem for higher Steklov eigenvalues and showed
that, except in the case of the 2nd Steklov eigenvalue, whose supremum cannot be
achieved, there is a metric that maximizes the kth Steklov eigenvalue and that it
corresponds to the induced metric on a free boundary minimal surface of B or B*.
More specifically, they show that the metrics that maximize the Steklov eigenvalues
are the metrics induced on either the n-critical catenoid or the so-called n-critical
Mobius band. This provided explicit constructions of new free boundary minimal
surfaces in B* and B*. Further, Fan, Tam and Yu conjectured that the supremum of
the 2nd Steklov eigenvalue can never be achieved for any surface.

Motivated by these works, we provide constructions of free boundary minimal
Mobius bands in B* by explicitly finding metrics that maximize Steklov eigenvalues
among all rotationally symmetric metrics on the Mobius band. In particular, we

obtain the following theorem.

Theorem 1.2.1. For all n > 1, the maximum of the nth Steklov eigenvalue among
all rotationally symmetric metrics on the Mobius band is achieved by the metric on

a free boundary minimal Mébius band in B* given explicitly by the immersion

O(t,0) = RL(Qn sinh(t) cos(#), 2n sinh(t) sin(f), cosh(2nt) cos(2nd), cosh(2nt) sin(2nd)),

mn

where R, = \/4712 sinh?(T,,1) + cosh®(2nT,1) and (t,0) € [=T,,1,Tp1] X S/ ~.



In particular, Theorem 1.2.1 shows that the supremum of the 2nd Steklov eigen-

value can be achieved and that the conjecture of Fan, Tam and Yu is false.

1.3 Existence of harmonic maps into singular spaces

Another topic closely related to minimal surfaces is the theory of harmonic maps from
two-dimensional domains. The focus of our third problem is on obtaining existence
results for harmonic maps into singular spaces. In the smooth setting, the celebrated
work of Sacks and Uhlenbeck [53] developed an existence theory for harmonic maps
from surfaces into compact Riemannian manifolds; see also the related works of
Lemaire [44], Sacks-Uhlenbeck [54], and Schoen-Yau [58]. In chapter 4, we extend
the Sacks-Uhlenbeck existence theory to the case where the target is a metric space
with an upper curvature bound.

For some applications, it is important to consider harmonic maps when the
smooth Riemannian target is replaced by a singular space. The seminal works of
Gromov-Schoen [28] and Korevaar-Schoen [40] consider harmonic maps from a Rie-
mannian domain into a non-Riemannian target. In particular, they generalized the
classical notion of the energy of a map in order to define the notion of a harmonic
map. As one can not use variational methods to obtain an Euler-Lagrange equation
for the energy functional in the singular setting, here, a harmonic map is defined to
be a map that is locally energy minimizing. Further exploration of harmonic map
theory in the singular setting includes works of Jost [33], J. Chen [8], Eells-Fuglede
[18] and Daskalopoulos-Mese [12].

The classical notion of curvature also needs to be generalized in the singular set-
ting. In the smooth setting, if M is a Riemannian manifold with sectional curvature
bounded above by k and M, is the model space with constant sectional curvature k,
then Toponogov’s Theorem allows us to compare the lengths of geodesics in geodesic
triangles in M and the corresponding geodesic triangles in M, (see Figure 1.1). In
the singular setting, one uses this idea in reverse to define the notion of a metic space
with curvature bounded above by k.

The above mentioned works all assume non-positivity of curvature (NPC) in the



M M,

Figure 1.1: An illustration of a geodesic triangle in M (left) and a comparison triangle
in the model space M, (right). Toponogov’s Theorem implies that d(P, Rs) <
d(P,, R.).

target space, and this curvature condition is heavily used. Without the assumption
of non-positive curvature, the existence problem for harmonic maps becomes more
complicated and, in general, is not well understood even in the smooth setting.

In chapter 4, we investigate the existence theory for harmonic maps in the case
when the target curvature is bounded above by a constant that is not necessarily 0. In
this direction, we mention the local existence result of Serbinowski [60] for harmonic
maps from Riemannian manifold domains. Our third problem specifically focuses
on obtaining existence results for harmonic maps when the domain is a compact
Riemann surface and the target is a compact locally CAT(1) space, that is, a complete
metric space with curvature bounded above by 1 in the sense outlined above. We

obtain the following theorem.

Theorem 1.3.1. Let ¥ be a compact Riemann surface, X a compact locally CAT(1)
space and p € CONW2(X, X). Then either there exists a harmonic map u : ¥ — X

homotopic to ¢ or a nontrivial conformal harmonic map v : S* — X.

This provides a generalization of the Sacks and Uhlenbeck existence result to
the case of metric space targets. The method used by Sacks and Uhlenbeck is not
accessible in the singular setting as it depends on a priori estimates stemming from

the Euler-Lagrange equation of their perturbed energy functional. In the singular



setting, one can no longer use variational methods to obtain an Euler-Lagrange
equation. To circumnavigate this, we exploit the local convexity of the target CAT(1)

space.

1.4 Layout

The focus of chapter 2 the proof of Theorem 1.1.2. We introduce the problem
by providing an overview of free boundary minimal submanifolds, the Morse index
of a minimal submanifold and the Hodge Laplacian. We also provide all of the
calculations needed to prove Theorem 1.1.2.

In chapter 3, we focus on proving Theorem 1.2.1. We introduce the Dirichlet-to-
Neumann map and the Steklov eigenvalue problem, explicitly calculate the eigenval-
ues and eigenfunctions for rotationally symmetric metrics on the Mobius band, and
prove a series of lemmas to determine which metric maximizes the k-th eigenvalue.
We conclude the chapter by proving Theorem 1.2.1.

Chapter 4 is devoted to proving Theorem 1.3.1. We outline both the definition
of energy and harmonicity for maps into metric spaces and CAT(1) spaces. We
then prove compactness of energy minimizing maps into CAT(1) spaces, and prove a
removable singularity theorem. We then prove Theorem 1.3.1 using a local harmonic
replacement construction.

Appendix A is an appendix to chapter 2. Here, we explicitly calculate the first
absolute Betti number for a surface of genus g with k£ boundary components.

Appendix B is an appendix to chapter 4. Here, we provide all of the details of
the quadrilateral estimates in CAT(1) spaces, local energy convexity, and the local

existence and uniqueness results needed throughout chapter 4.



Chapter 2

Index Bounds for Free Boundary
Minimal Surfaces of Convex
Bodies

2.1 Introduction

In this chapter we look at the problem of obtaining lower bounds on the index of
free boundary minimal surfaces of convex bodies in terms of their topology. Index
estimates for minimal surfaces are generally difficult to obtain, and there are few
minimal surfaces for which the index is explicitly known. However, index bounds
can help in the classification of minimal surfaces, especially when the topology is
explicitly represented in the bounds, and have applications in understanding the re-
lationships between the curvature and topology of Riemannian manifolds. Moreover,
minimal surfaces whose index is known have proven to be useful in other problems;
Urbano’s [68] index characterization of the Clifford torus as being the unique min-
imal surface in S* of index 5 was recently used by Marques and Neves [46] in their
celebrated proof of the longstanding Willmore Conjecture. In [56], Savo was able
to obtain index bounds for minimal hypersurfaces in S™ in terms of their topology

making use of the Laplacian on 1-forms. His work has inspired the approach taken



here.

2.1.1 Free Boundary Minimal Hypersurfaces in Convex Bod-
ies

A submanifold M of a compact Riemannian manifold M with boundary OM C OM

is said to be a free boundary minimal submanifold in M if it is a critical point for

the volume functional among submanifolds with boundary in M. That is, M is a

free boundary minimal submanifold of M if for every admissible variation M, of M,

Vol (My)] o = 0. The first variation formula for a variation M, of M with variation

field V' is given by,

d
—VOl(Mt)‘tZOZ —/ (V, H)dV—i—/ <V,77>dA,
dt M oM

where 7 is the outward unit conormal vector field. It follows that M is a free boundary
minimal submanifold of M if and only if H = 0 and 7 is orthogonal to T(OM), i.e.,
M meets OM orthogonally.

Throughout, we will focus our attention on free boundary minimal hypersurfaces
M™ properly immersed in convex bodies B"*!. Here, a convex body is a smooth,
compact, connected (n + 1)-dimensional submanifold of R™*! for which the scalar
second fundamental form of the boundary satisfies h??(U,U) < 0 (with respect to
the outward pointing normal vector) for all vectors U tangent to 0B.

We will also place some attention on the special case when B = B, the Euclidean
ball, as there are more existence results for free boundary minimal hypersurfaces
of Euclidean balls. Free boundary minimal hypersurfaces of Euclidean balls have
also been shown to have an alternative characterization: in [24], Fraser and Schoen
showed that if ¥* is a properly immersed submanifold of the Euclidean unit ball
Bt then X is a free boundary minimal submanifold if and only if the coordinate
functions of the immersion are (Steklov) eigenfunctions of the Dirichlet-to-Neumann
map with (Steklov) eigenvalue 1. Furthermore, free boundary minimal surfaces in

B! are extremal surfaces for the Steklov eigenvalue problem.

10



2.1.2 The Index of a Minimal Hypersurface

Suppose that M™ C B™"*! is a free boundary minimal hypersurface and that N is a
smooth unit normal vector field. Then, for a normal variation with variation field

uN, the second variation formula is

d2
ﬁvol(Mt)}m:A(nquQ— | Al[*u?) dV+/8MhaB(N,N)u2dA.

Let J denote the Jacobi operator (also called the stability operator),
J=A— Al
and let () denote the associated symmetric bilinear form,

Qu) = /M [IVull = || A|*e?] aV + /aM h?B(N, N)u? dA

:/ u-JudV—l—/ <@+haB(N,N)u)udA.
M om \ON

We say that A(J) is an eigenvalue of J with eigenfunction u € C*°(M) if

Ju=Au on M,
g—Z%—haB(N,N)u =0 on OM.

The (Morse) index of a minimal hypersurface is the maximal dimension of a
subspace of C*°(M) on which the second variation is negative.

A free boundary minimal hypersurface is said to be stable if it has index 0. For
free boundary minimal hypersurfaces in B"*!, there are none which are stable. This

is easy to see since if we use the variation with variation field 1- N, then we get that
Q) = —/ |A|*> dV +/ (04 h?P(N,N)) -1dA < 0.
M oM

Hence, any free boundary minimal hypersurface in B"! has index at least 1.

11



It is well known that the equatorial disk has index 1. Moreover, it is the only
free boundary minimal hypersurface on B"*! to have index 1. To see this, note that,
by the above argument, the index is at least 1. Now, suppose Ind(D) > 1. Then
there is a two-dimensional subspace S of normal variations containing the variation

1 - N on which the second variation of area is negative. Let V € & be a normal

variation orthogonal to 1- N i.e. / (V,N)dxidxs = 0. Then, V has zero average
M

in the sense that / Vdzxridrs = 0. Now, consider the constraint that the surface

must divide the vohjgme of the ball in half. Subject to this additional constraint, any
equatorial disk is area minimizing. However, a variation with zero average preserves
the constraint. Hence, the second variation of area for this variation must be non-
negative, a contradiction.

One can also show that, if M is not the equatorial disk, then Ind(M) > 3 (see
Theorem 3.1 in [26])

2.1.3 Examples and Existence Results

For general convex bodies different from B”, little is known about the existence of free
boundary minimal submanifolds. In [64], Struwe showed the existence of a (possibly
branched) immersed free boundary minimal disk in any domain in R? diffeomorphic
to B*, and Griiter and Jost [30] showed that there is an embedded free boundary
minimal disk in any convex body in R3. Jost [32] was also able to show that any
convex body in R? actually contains at least three embedded free boundary minimal
disks. More recently, Maximo, Nunes and Smith [47] showed that any convex body
in R3 contains a minimal annulus. By the above argument, we know that any free
boundary minimal hypersurface of a convex body has index at least one. However,
little else is known regarding the existence and index of minimal surfaces of greater
topological complexity in convex bodies.

If we focus on free boundary minimal submanifolds of Euclidean balls, then more
is known. The simplest examples of free boundary minimal submanifolds in B!

are the equatorial k-planes D¥ C B™*'. By [50] and [27], any simply connected

12



free boundary minimal surface in B™ must be a flat equatorial disk, and it is well
known that the equatorial disk has index 1 (see p. 3741 in [23]). In fact, it is the
only free boundary minimal surface of B? to have index 1. However, there are now
many examples of free boundary minimal surfaces of different topological type. The
critical catenoid, a minimal surface with genus 0 and 2 boundary components, is an
explicit example of such a surface. In [26], Fraser and Schoen proved the existence
of free boundary minimal surfaces in B*® with genus 0 and & boundary components
for any £ > 0. Using gluing techniques, in [22] Folha, Pacard and Zolotareva gave
an independent construction of free boundary minimal surfaces in B? of genus 0
with k& boundary components for k large. They were also able to use the same
techniques to construct a genus 1 free boundary minimal surface with k£ boundary
components for k large. Examples of free boundary minimal surfaces in B* with
any sufficiently large genus and 3 boundary components have also been constructed.
Specifically, Kapouleas and M. Li [36] constructed such surfaces by using gluing
techniques to glue an equatorial disk to a critical catenoid, and Ketover [39] used
variational methods to construct such surfaces. Furthermore, Kapouleas and Wiygul
[37] used gluing techniques to construct free boundary minimal surfaces with one
boundary component and genus g for sufficiently large g. Less is known about the
index of such surfaces. By the above argument, the equatorial disk has index 1 and
Devyver [15], Smith and Zhou [63] and Tran [67] have independently shown that the
critical catenoid has index 4. If M is not an equatorial disk, then Tran also showed
that Ind(M) > 4.

In this chapter, we give a relationship between the eigenvalues of the Jacobi
operator and the eigenvalues of the Laplacian on 1-forms and, as a corollary, obtain
new index bounds for orientable free boundary minimal hypersurfaces of convex

bodies. More specifically, our first main result is:

Theorem. 1.1.1 Let M™ be an orientable free boundary minimal hypersurface of a
convez body in R™ ! with Jacobi operator J. Then, for all positive integers j, one
has that

A () < Ay (A1),
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where m(j) = ("31) (j—1)+1 and Ay (A1) is the m(j)th eigenvalue of the Laplacian

ergenvalue problem with absolute boundary conditions.

Let 8! = dim H!(M) be the first absolute Betti number of M. Our second main

result is:

Theorem. 1.1.2 (Index Bound) If M is an orientable free boundary minimal hy-

persurface of a convex body in R, then

Ind(M) > V; *éj}il)) — 1J .

Corollary 2.1.1. If M is an orientable free boundary minimal surface of a convex

body in R with genus g and k boundary components, then

Ind(M) > f“—k“J |
3

Corollary 2.1.1 provides new index bounds for free boundary minimal surfaces of
B? with large topology. In particular, it shows that Ind(M) > 4 when 2g + k > 11
and Ind(M) tends to infinity as the genus or the number of boundary components
tends to infinity. Corollary 2.1.1 was obtained simultaneously, but independently,
by Ambrozio, Carlotto and Sharp [3]. In particular, they use different methods to
obtain similar Morse index estimates for free boundary minimal hypersurfaces of
strictly mean convex domains of Euclidean spaces.

The remainder of the chapter is structured as follows: In the second section, we
outline the basic notation and conventions that we will use throughout the chapter
and give a brief introduction to the Hodge Laplacian on p-forms. Here, we define
the Hodge Laplacian on p-forms and then focus on the special case when p = 1.
We also introduce the two main boundary conditions for the eigenvalue problem of
the Laplacian for 1-forms on a manifold with boundary. In the third section, we
provide several preliminary calculations that will ultimately allow us to see how the
Jacobi operator acts on specific test functions, which will be needed to prove our

main results. We give the proofs of our two main results in the fourth section.
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2.2 Notation and Conventions

Let M™ be an orientable free boundary minimally immersed hypersurface in a convex
Euclidean domain B™*! (OM # (). Throughout, we will let N be a unit normal
vector field on M.

Let D denote the Levi-Civita connection on R"™! and V the Levi-Civita connec-
tion on M. We will let A denote the second fundamental form of M C B, and S the
associated shape operator. That is, for X, Y € I'(T'M),

AX,Y) = (DxY)Y = (DxY,N)-N
S(X)=—(DxN)",

so that (A(X,Y), N) = (S(X),Y)
In this setting, the Gauss equation tells us that, for any X,Y, Z, W € T'(TM),

0= Rpns1 (X, Y, Z,W) = (A(X, W), A(Y, Z)) — (A(X, Z), A(Y, W)), (2.1)
and the Codazzi equation tells us that, for any X,Y, Z € I'(T' M),
(VxA)(Y, Z) = (VyA) (X, Z) = (Renn (X,Y) )" =0, (2.2)

where

(VxA)Y, Z) = (DxA(Y, Z))N — A(VxY, Z) — A(Y,Vx Z).

For any parallel vector field V in R™*!, we have the orthogonal decomposition
V=vV+Vv¥

where V' € TM is the orthogonal projection of V onto M and V¥ = (V, N)-N € NM.

Since parallel vector fields on R™*! and their orthogonal projections onto M will be
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used throughout, we introduce the following vector spaces:

P = {parallel vector fields on Rnﬂ}’

P = {vector fields on M which are orthogonal projections of elements of P}.

Throughout, we will let A, denote the Hodge Laplacian on p-forms (though the
p will usually be dropped for convenience) and we will let V*V denote the rough
Laplacian on vector fields. So, if w is a p-form on M and € is a vector field on M,
then

Apw = (dd + dd)w

vve— -3 (Ve Ve = Vw.,06)

J=1

where d is the exterior derivative, ¢ is the codifferential, and {ey, ..., e,} is any local
orthonormal frame of T'M. Recall that a vector field X is dual to a 1-form @ if and
only if (X,Y) =0(Y) for all Y € I'(T'M). If £ is the vector field dual to w, then one
can also define the Hodge Laplacian of &, denoted A&, to be the vector field dual to

the 1-form Ajw. The Bochner formula relates the two Laplacians:
AE = V*VE + Ric(),

where Ric is seen as a symmetric endomorphism of T'M.
To get a bound on the index of M, we will consider the following eigenvalue

problem defined by the absolute boundary conditions:

Jiw =),

*k g% _
Ly = 1" ydw = 0,

where i is the inclusion M — M, ¢, denotes interior multiplication by 7 and J; is
the Jacobi operator on 1-forms defined by J; = A; — ||A]|?. We will often drop the

subscripts for convenience. These absolute boundary conditions are a generalization
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of Neumann boundary conditions for functions. We say that w is tangential on OM
if i*1,w = 0, i.e., w vanishes whenever its argument is normal to the boundary of M.
So, if w satisfies the absolute boundary conditions, then both w and dw are tangential
(dw is tangential whenever one of its arguments is normal to OM).

We define the following space of harmonic 1-forms

Hy (M) = {w € QY(M) | Aw = 0, w satisfies the absolute boundary conditions},

and note that 8! = dim H}(M) = dim H} (M), where H}(M) is the first absolute
cohomology group of M.

2.3 Preliminary Calculations

The calculations done here are analogous to those done by Savo in [56] for the case
of a minimal hypersurface in S**!. In S**!, a hypersurface has two normal vectors
(one tangent to the sphere and one normal to both the sphere and the hypersurface)
whereas a free boundary minimal hypersurface of a convex body B™ just has one. The
absence of a second normal vector simplifies many of the preliminary calculations.
However, a minimal hypersurface in S*™! has no boundary, so the main barrier in
modifying the approach of Savo to this free boundary setting is presence of boundary
terms. To deal with these boundary terms, we extend a result of Ros [52] to arbitrary

dimensions.

Lemma 2.3.1. Let V € P and let V € P be its orthogonal projection onto M. Let
A and S be the second fundamental form and shape operator (respectively) of the
immersion ¢ : M — B™. Then

(a) V(V,N) = —-S(V).

(b) A(V,N) =|S|*(V,N).
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Proof. To show (a), take any X € I'(T'M). Then we have that

since V is parallel. Now, since (N, DxN) = 1 X (||N[|*) = 0 and [X, V] is tangent to
M, we have that

(V,DxN) = (V,N)-(N,DxN) + (V,DxN)
= —(DxV,N)
= —(DyX +[X,V],N)
=—(DyX,N)
= (X, (DyN)").

Hence, V(V,N) = —S(V).
For (b), let {ey,...e,} denote normal coordinate vector fields centred at a point
p € M. Then (at p),
—A(V,N) =Y (V. V(V,N), e)

(Ve (DVN)" e)

M- 117

=1

€i<DVN, €i> - ((DVN)T, vei6i>

I

1
n

)

ei<N7 DV€i>
1

i
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== eN,A(V,e,))

i=1

— zn:weizv, A(V,€;)) + (N, D, A(V, €;)).

i=1

Since D., N has no normal component, and A is symmetric, we have that

A(V,N) = SN, (D Ales, V))™).

=1

Now,

(DeiA(eia V))N

Il
4
=
)
=
+
4
=
£
+
=
=
N
o

and from the Codazzi equation (2.2)

(VeiA)(eiv V) = (VVA)(GZ‘, 67))
= (DVA(ei> ei))N - A(vveia ei) - A(ei, Vvei).

So,
(Do, Ae;, V)Y = (Dy Ales, €)™ — 2A(es, Vie:) + A(Ve, V, ;).
Now
A(e;, Ve,V) = (D, Vye)™,
and, at p,

(De;Vve;, N) = —(Vye;, D.,N)

= (Vie;)(Vee1, D, N) =0

i=1
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Moreover, since M is minimal,

Z (DyvA(e;, e))™ = (DV (Z A(ei,ei)>) = 0.

i=1
Therefore,

A(V.N) = (N (De,Ales, V))™)

i=1
n

- Z(N, AV, V.e))

- Z<N7 A(ei7 vezv)>

= Z<N7 D, Ve, V)

i=1
n

== Z<(DeiN)T7veiv>'

]

Lemma 2.3.2. For any vector field ¢ € T(TM) and any V € P with orthogonal
projection V,

(a) AL =V*VE—5%(E).
(b) V*VV = S2(V), AV = 0.

Proof. Let {e1,...,e,} be local normal coordinate vector fields centred at a point
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p € M. Then, at p,

Ric(¢ Z Ric(g"e;, &

2,7=1
= ZRic(ei,f)e
i=1

- Z RM(ek’a €i, 5) ek)ei

ik=1

Using the minimality of M and the Gauss equation (2.1), we have that

n

ZRM(eka 6i7£76k) = Z(A(€k7ek)7A<ei7£)> - <A(ek7€)>A(eivek)>

k=1

Now

- Z<A(6kv §), Alei, ex)) = — Z(D.ﬁ@k; N) <De¢6k7 N)

== (ex, DeN)(ex, D, N)
k=1

= —((D¢N)", De,N)

= (De,(DeN)", N)

= <D(D§N)T€i [ (DEN)T]a N)
¢i, (DpewyrN)')

ei, S*(£)).

Therefore, Ric(€) = —S?(€), and (a) follows from the Bochner formula.
To see that V*VV = S?(V), we'll first show that V*V N = 0 in the sense that if

{e1,...,e,} are again local normal coordinate vector fields centred at p € M, then,

—
—
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at p,
Z (De.(D..N)T)" = 0.

Since, D, N is tangential,

n n

> (D (DN = 32 (D DN

= Z<DeiDeiN7 6j>6j

1,j=1
n

= Z(ei<DeiN7 €j) = (De,N, Ve,e5))e;

ij=1

= Z ei(N, Dei€j>ej

1,j=1

- _ Z ei(N, A(ej, e:))e;

1,7=1

== ((De,N, Alej,e1)) + (N, D, (Alej. e:))) €

ijl

= — Z (N, D.,(A(ej, €)))e;.

2,7=1

Now, using the Codazzi equation (2.2), we have that

(De,(Alej, €)™ + A(Ve,ej, ) + Alej, Ve,ei)
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Therefore,

>~ (De (DL N))' = - Z (N, D, (Ale,e))e;
= Z (N, De,(Afes e)))es

S i <N, D., (Zn: Ales, 60) > e; =0,

again using the minimality of M.
Now, if we write V' =V — (V, N)N, then we can use this calculation and the fact
that V is parallel to help us calculate V*VV.

VYV = z (DY) = (De(De,((V, NYN))T)"

:_Z e (es((V, NN + (V, N)D.,.N)")"

_ _Z ((V,N) DCZN))

— Z (e:((V, N))D,.N + (V, N\D,, D, .N)"

=1

=— (Zn: ei((V, N})DEZN) —(V,N)V*VN

= - (V.D.N)D,,N
i=1
= zn:@eiv, N)D.,N
i=1
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n

(Dve; + [e;, V],N)D.,N

=1

Z {e;, Dy N)D

= Dp,nN = S*(V).
The fact that AV = 0 now follows from (a). O

Lemma 2.3.3. Let V,W € P and let V,W € P be their orthogonal projections onto
M. Then, for any & € T(TM),

(a) A(V,§) =2(S(V),S(¢)) + (V. A&) — 2(V, N)(S, V§).
(b) (V{V,N), V(W,&)) = —(W, N)(S(V), S(&)) — (W, Vs§)-

(c) AV, NY W, €)) = SV, NHW, &) + 2((W, N)N(S(V), S(€)) + (W, Vs)8))
+(V, N)(2(S(W), S(€)) + (W, Ag) — 2(W, N)(S, VE)).

Proof. Let {ey,...,e,} be local normal coordinate vector fields centred at a point
p € M. Then, at p,

- Z €i€i<V’ 5>
— Z i ((Ve,V, &) + (V,V..€))

==Y (Ve Ve V.8 +2(V., V.V ) + (V. V., Ve.6)

where (VV,V¢) = 3" (V. V,V.&). From Lemma 2.3.2 we have that V*VV =
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S?2(V) and V*VE = A¢ + 5%(€). We also have that

(S*(V),€) = (Dp,nN, &)
= —(N, Dp,n¢§)
= —(N, D¢Dy N + [Dy N, &])
= (DeN, Dy N) = (5(£), S(V)),

and, similarly, (V, S?(€)) = (S(V), S(€)). Therefore,
A{V,§) = 2(5(V), 5()) + (V, AL) = 2(VV, V).
Finally,

(Ve Vi Veik) = (De,V, Vei£)
= (De,(V = (V,N)N), V..€)
= —(V, N{{De; N, Ve, §)
= (V, N)(S(€:), Vi)

Hence, summing over ¢ gives us that
A(V,€) = 2(S(V), S(&)) + (V. Ag) — 2(V, N)(S, V§).

From Lemma 2.3.1(a) we know that V(V,N) = —S(V), so we just need to
calculate V(W, £). First, notice that for any vector field X on M, since W is parallel,

VxW = (Dx(W — (W,N)N))"
— — (X({(W,N))N + (W, N)DxN)" = (W, N)S(X)

Hence,

(V(W,€), X) = X((W,€§)) = (VxW, &) + (W, Vx¢)
= (W, N)(S(X),€) + (W, Vx¢).
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So, for X = —S(V) (= V(V, N)), we have that

(V(V,N),V(W,£)) = —(W,N)(S*(V), &) — (W, Vs)8)
= —(W,N){(S(V), S(€)) — (W, Vs1)§).

Now (c) follows from (a) and (b) and Lemma 2.3.1(b). O
Let U = {V € P | ||[V] = 1}. Then U can naturally be identified with S™ if we
endow it with the measure y = ngrsln)dvsn.

Lemma 2.3.4. For any X,Y € R*1,

JiuesliaeXisoay)
u

The proof of Lemma 2.3.4 follows from a direct, but tedious, calculation after
changing to spherical coordinates and repeatedly applying the integral identity

) 1 .. m—1 e
sin™xdr = ——sin™ tzcosz + —— [ sin™ ?xdx.
m m

The following lemma was originally proved by Ros [52] for free boundary minimal
surfaces in a smooth domain in R®. Here, we extend his proof to obtain the analogous

result for free boundary minimal hypersurfaces in smooth domains in R".

Lemma 2.3.5. Suppose £ is a vector field on M dual to a 1-form w which satisfies
the absolute boundary conditions. Then, at a point p € OM

(V4€,€) = h2P(N, N) €[>

Proof. Let n be the (outward pointing) conormal vector along dM. Then, since w

satisfies the absolute boundary conditions on OM, at p we have that

w(n) =0,
dw(n,t) = n(w(t)) —twn)) —w(ln,t]) =0,
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for any vector ¢ € T,(0M). In particular, if £ is the vector field dual to w, then the
first condition implies that &, € T,(0M), and so the second condition implies that
dw(n,&) =0 at p. Now,

(€, V&) = n(&, &) = (€6, V&) = (Vyw)(§),
and we claim that (V,w)(§) = (Vew)(n). To see this, note that, by definition,
(Vew)(n) = (Vyw)(€) = &(w(n)) —w(Ven) —n(w(§)) + w(Vyl).

However,

w(Ven) = w(Vys) = w(Ven = V&) = w([&, 1)),

and, since dw(n, &) = 0, w([n,&]) = n(w()) — £(w(n)). Therefore
(Vew)(n) = (Vyw)(€) = &(w(®n)) — n(w(§)) +w(ln, &) = 0.

So,
(&, V&) = (Vyw)(§) = (Vew)(n).

Now, since ¢ is tangent to OM and w(n) = 0 on OM,

(Vew)(n) = &(w(n) — w(Ven) = (Ve&,m) = h7P(€,€).

Hence,

(V€. €) = (€, V) = hP(€,€) = WP (N, N)[l€]I*.

2.4 Proofs of Main Theorems

2.4.1 Eigenvalue Relationship

Theorem. 1.1.1 Let M"™ be an orientable free boundary minimal hypersurface of a
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convex body in R™ with Jacobi operator J. Then, for all positive integers j, one
has that
A () < Amiy (An),

where m(j) = ("51) (—1)+1 and Ay (A1) is the m(j)th eigenvalue of the Laplacian

ergenvalue problem with absolute boundary conditions.

Lemma 2.4.1. For V,W € P, let
Xyw = (V,N)YW — (W,N)V.
Let & be any vector field on M and consider the function uw = (Xyw,&). Then
Ju = (Xyw, Af) + 2v,
where v s the smooth function
v={Vsm)& W) = (Vsan&, V).

Proof of Lemma 2.4.1. Since u = (Xyw,&) = (V, NY{W, &) — (W, NV, &), from

part (c) of Lemma 2.3.3, (after some cancellations) we get that
AU = |S|2U + <XV,W7 Af> + 2’0,

and so Ju = (Xyw, AE) + 2v. O

Proof of Theorem 1.1.1. Let {¢1, s, ..., } be an orthonormal basis for L*(M) given
by eigenfunctions of .J, where ¢; is an eigenfunction associated to A;(J). Let V™(A;) =
|, Eﬁ\f(Al), where Ef\\j(Al) is the space of eigenforms of A; associated with A;(A;)
with absolute boundary conditions. We want to find w € V™(A;), w # 0, for which

/ (Xvw, §)d:idV =0, (2.3)
M
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fori = 1,...,7 — 1 and for all V,W € P, where ¢ is the vector field dual to
w. Since Xy is a skew-symmetric bilinear function of V, W, and since dimP =

dim R = n + 1, there are ("') equations that need to be satisfied in (2.3) for

each i, and therefore ("H) (j — 1) homogeneous linear equations in total. So, if
m(j) = ("5')(j —1)+1, then were guaranteed that there is a w € V™0 (A}), w £ 0,
whose dual vector field satisfies (2.3) for all VW and for i = 1,...j — 1. From the

min-max principle and Lemma 2.4.1 we have that,

Mﬂ/u%Vﬁ/mMW%/‘C%+W%NM)uM
M M on

_ | op
—/Mu<XV7W,A§)dV+2/MuvdV+/ (877+h (N,N)u )udA.
(2.4)

In addition,

= (V,D,N){(W,¢&) + N(DW
— (W, D,N){V, €> + (W, N) ((Dy

®<W%m
V,&) +(V,D,g)) .

We'll now use an integration technique that exploits Lemma 2.3.4 to help us sim-
plify (2.4). We'll then apply Lemma 2.3.5 to get the claimed eigenvalue relationship.
Using the product metric on I x U, Lemma 2.3.4 implies that (pointwise)

/ 2 AV = 2| €|,
Uxi

U<XV,W7 A€> dVdW = 2<€’ A§>7

wo dVdW =0,

:‘\5‘\
&

xU
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u(V, D, NY(W &) dVdW = 0,

N
N

X

V. N)(. D, VAW = (. D) = el

(2.4) over U x U yields

Ny

Therefore, integratin

a

2,(J) /M €l dv <2 /M (6. AE) dV + / (€I + 205N, V) €]) dA

From Lemma 2.3.5 we know that n(||¢]|?) = 2h%B(N, N)||€]|? on OM, since £ is the
dual vector field of a 1-form satisfying the absolute boundary conditions. Moreover,
since £ is the dual vector field to a linear combination of eigenforms of A;, it now
follows that

2,(7) /M €12 AV < 20,0(A) /M €2 av +4 LMhan,N)Hg“sz.

Since h?B(U,U) < 0 for any vector tangent to B, we get that

2,07) [ eIV < 20m20) [ el av.
M M
Now, since w # 0, we can divide both sides by the L*(M)-norm of £ to get
Aj(J) < Ay (Aa)-

O

Remark 2.4.2. We note that when m(j) < dimH) (M), i.e. when w is a linear
combination of harmonic forms and therefore a harmonic form itself, we actually get
the strict inequality A;(J) < Apm)(A1) = 0. This follows from the fact that w # 0
implies that w|gar Z 0 (see Theorem 3.4.4 on p.131 of [59]), and so we get the strict
inequality 4 [, h?M(N,N)|[£|]> dA < 0.
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2.4.2 Index Bound

Theorem. 1.1.2 (Index Bound) If M is an orientable free boundary minimal hy-

persurface of a convex body in R, then

o 22501

Proof. Suppose j is such that m(j) < dimH} (M) := Si. Then \;(J) < A (Q) =
1 n+1
0, so Ind(M) > j. Now, m(j) = ("} —1)+1< 8L s0j < {%J Hence,

Tnd(M) > {%J | 0

Corollary. 2.1.1 If M s an orientable free boundary minimal surface in a convex

body in R® with genus g and k boundary components, then

Ind(M) > V“—’““J |

3

Proof. Since 3} = 2g + k — 1 for a surface (see Appendix A), this follows directly
from Theorem 1.1.2. [

Remark 2.4.3. We note that Corollary 2.1.1 can also be obtained by using the work
of Ros. In [52], Ros shows that if w is a harmonic 1-form and ¢ is its dual vector
field, then

A& +||A|%€ = 2(Vw, AN

and, if w satisfies the absolute boundary conditions, then
<v77€7 §> - haB(N7 N)||§||2

So, for £ = (&1, &2, &3), if we use the notation Q(&,§) = Z?:l Q(&;, &) and assume
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w# 0,

Qé,€) = - /M (A€ + | A%, )V + / (V6. €) + BB (N, N)[€]*)dA

oM

_ 2/ BP(N, N)||€[2dA < 0.
oM

Hence Q(X, X) < 0, and we get that dim HY (M) —3-Ind(M) = (29 +k —1) — 3~

Ind(M) <0, or Ind(M) > [(29+3k—1)1 _ ng+3k+1J‘
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Chapter 3

Constructing Free Boundary
Minimal M&bius Bands in B*

3.1 Introduction

In this chapter we look at the problem of constructing free boundary minimal M&bius
bands in B* by solving an extremal eigenvalue problem. Though there are some ex-
istence results (see 2.1.3 for an outline of currently known examples) for free bound-
ary minimal surfaces in B?, explicit constructions are less common. As mentioned
in 2.1.3, extremal eigenvalue techniques, gluing techniques and min-max techniques
have been used to successfully construct free boundary minimal surfaces with specific
topology in B?. Here we take the approach inspired by the work of Fraser and Schoen
[24, 26], and Fan, Tam and Yu [21] in which we use eigenfunctions that maximize
the Steklov eigenvalues for rotationally symmetric metrics to construct immersed

free boundary minimal Mobius bands in B*.
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3.1.1 The Dirichlet-to-Neumann Map and Steklov Eigen-

value Problem

In [25], Fraser and Schoen showed that there is a connection between Steklov eigen-
value problems on surfaces with boundary and free boundary minimal surfaces in
the unit ball. In particular, they showed that metrics that maximize the kth Steklov
eigenvalue on surfaces with boundary arise from the metrics on free boundary min-
imal surfaces in a Euclidean ball. If (X, g) is a compact Riemannian manifold with

boundary, the Steklov eigenvalue problem is:

Ajgu=0 onX
g—“ =ou on 0%,
"

where 7 is the outward unit normal vector to 9%, o € R, and u € C*(X). Steklov
eigenvalues are eigenvalues of the Dirichlet-to-Neumann map, which sends a given
smooth function on the boundary to the normal derivative of its harmonic extension
to the interior. That is, if u € C*°(9%) and if u € C*°(X) is its harmonic extension,
then the Dirichlet-to-Neumann map is the map L : C*°(9¥) — C*°(X) defined by

_ou

L(u) = o

The Dirichlet-to-Neumann map is a non-negative, self-adjoint operator with discrete
spectrum

oo=0<01 <09 <.

The first nonzero Steklov eigenvalue of L can be characterized variationally as

Vul?d
o1 = inf —fz | Z| 2
Jos u=0 faz U d’UaE
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and in general,

Vul2d
ak:inf{W : / u¢j:()forj:O?l,Z,...,k—l.},
gy, U AVsY )

where ¢; is an eigenfunction corresponding to the eigenvalue o;, for j = 1,2,..., k—1.

3.1.2 Extremal Steklov Eigenvalue Problem and Free Bound-

ary Minimal Surfaces

A classical result by Weinstock [69] shows that, on a simply-connected planar domain,
the maximum of the first normalized Steklov eigenvalue is achieved by the round
disk in the Euclidean plane. In [26] Fraser and Schoen proved the existence of a
metric that maximizes the first normalized eigenvalue on any surface of genus zero,
and showed that it is realized by the induced metric on a free boundary minimal
surface in B3. In the case of the annulus, the surface of genus zero with 2 boundary
components, they characterized the maximizing metric as the induced metric on
the critical catenoid. They also proved the existence of a maximizing metric on the
Mobius band, and characterized it as the induced metric on the critical Mobius band,

the surface obtained by suitably scaling the embedding
o(t,0) = (2sinh(t) cos(#), 2 sinh(t) sin(), cosh(2t) cos(26), cosh(2t) sin(26))

to lie in the unit ball, where (t,0) € [Ty, Tp] x S! and T is the unique positive
solution of coth(t) = 2 tanh(2t).

In the special case of rotationally symmetric metrics on the annulus and M&bius
band, in [24, 26|, Fraser and Schoen explicitly calculated the eigenvalues and eigen-
functions of the Dirichlet-to-Neumann map and showed that the critical catenoid and
critical Mobius band maximize the first normalized eigenvalue among all rotationally
symmetric metrics. Motivated by the work of Fraser and Schoen, in [21], Fan, Tam
and Yu considered the problem of maximizing the kth normalized Steklov eigenvalue

over all rotationally symmetric metrics on a cylinder. They showed that, except for
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the 2nd normalized Steklov eigenvalue, the maximum is achieved by either the n-
critical catenoid or the so-called n-Mobius band. However, they also showed that the
supremum of the 2nd normalized Steklov eigenvalue can not be achieved. Girouard
and Polterovich proved that for simply-connected planar domains, the supremum of
the second normalized Steklov eigenvalue is 47 and can not be achieved. This led
Fan, Tam and Yu to conjecture that the supremum of the second normalized Steklov
eigenvalue can never be achieved.

In this chapter, we consider the problem of maximizing the kth normalized Steklov
eigenvalue on the Mobius band over all rotationally symmetric metrics. In particular,
we show that this problem is solvable for all k, i.e. for each k, among all rotationally
symmetric metrics on the Mobius band, there is a metric that maximizes the kth
normalized Steklov eigenvalue and it is achieved by a free boundary minimal M&bius

band in B%. Specifically, our main result is:

Theorem. 1.2.1 For all n > 1, the mazimum of the nth Steklov eigenvalue among
all rotationally symmetric metrics on the Mobius band is achieved by the metric on

a free boundary minimal Mébius band in B* given explicitly by the immersion

O(t,0) = Ri (nsinh(t) cos(8), nsinh(t) sin(@), cosh(nt) cos(nh), cosh(nt) sin(nd)),

n

where R, = \/n2 sinh?(T,1) + cosh*(nTy1) and (t,0) € [~T,1, Tpa] x S/ ~.

In particular, this provides a counterexample to Fan, Tam and Yu’s conjecture.

In [38], Karpukhin et al. showed that, for &£ > 1, the supremum of the kth normal-
ized eigenvalue of the Laplacian on a sphere cannot be achieved. This, together with
the result of Girouard and Polterovich, could suggest that, in general, the supremum
of higher normalized Steklov eigenvalues might not be achievable. The results of
chapter 3, which show that the supremum of the kth normalized Steklov eigenvalue
among rotationally symmetric metrics on the Mobius band is achievable, are inter-
esting in that they could suggest that, for the Mobius band, the supremum of the
kth normalized Steklov eigenvalue among all metrics might actually be achievable.

Based on the case when £ = 1, one might expect that when maximizing metrics
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exist, the maximizing metrics are rotationally symmetric.

The remainder of the chapter is structured as follows: In the second section, we
introduce the Steklov eigenvalue problem for rotationally symmetric metrics on the
Mobius band. Here, we prove a series of lemmas needed to find the rotationally
symmetric metric on the Mobius band that maximizes the kth normalized Steklov
eigenvalue. In the third section we prove that there is a metric that maximizes the
kth normalized Steklov eigenvalue, and we use the corresponding eigenfunctions to

construct a free boundary minimal surface and prove the main theorem.

3.2 The Steklov eigenvalue problem for rotation-

ally symmetric metrics on the Mobius band

Let X be a Mobius band, i.e. ¥ = [-T,T] x S/ ~, where (t,0) ~ (t',0") if t' = —t
and 0 = 6 + w. From [26] we know that the critical Mébius band maximizes the
first normalized Steklov eigenvalue over all smooth metrics on the Mobius band.
In general, from [25] we know that a metric on ¥ that maximizes the kth Steklov
eigenvalue among all smooth metrics on ¥ arises as the induced metric on a free
boundary minimal Mébius band in B*. However, solving this optimization problem
is, in general, quite difficult. Here we investigate the simpler problem of finding a
rotationally symmetric metric on ¥ that maximizes the kth Steklov eigenvalue among

all rotationally symmetric metrics on Y. That is, we consider metrics of the form
g = f(t)*(dt* + do?),
where f: [-T,T] — R is a smooth function satisfying f(¢) = f(—t). Let n = ﬁ%
be the outward unit conormal on 0¥. Our goal is to maximize the kth nonzero
normalized eigenvalues &5,(T) = o4 (T)Ly(02) = 2n f(T)ow(T).
If u(t,0) is Steklov eigenfunction on X, u(t,0) is a harmonic map (with respect

to the flat metric) satisfying the boundary conditions u(t,6) = u(—t,0 + 7) and

is an eigenfunction of the Dirichlet-to-Neumann map. We may use the method of
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separation of variables to get u(t,) = «a(t)B(0), with a(t) = «a(—t) and 5(0) =
B(6 + ) and
o) B0,
a(t) p(0) '

If kK =0, then a(t) = A+ Bt and f(t) = C + Df. Since «a(t) = a(—t) and
B(0) = (64 m), we must have that 2Bt =0 and C' = C'+ Dm, so B = D = 0. Thus,
a(t) = A and B(0) = C, so u is constant. However, since u is an eigenfunction of the

Dirichlet-to-Neumann map, on 0%

d L =0«
== F° (T) = oa(T)5(0),

so o = 0.

If & # 0, then it is easy to show that
a(t) = Agsinh(kt) + By cosh(kt) and [(0) = Csin(kf) + Dy cos(k6).
So, since a(t)3(0) = a(—t)B(0 + ),

(A sinh(kt) 4+ By cosh(kt)) (Cg sin(k@) + Dy cos(kf))
= (—Ag sinh(kt) + By cosh(kt)) (C sin(k@) cos(km) + Dy cos(kf) cos(km))
= (— Ay sinh(kt) + By, cosh(kt)) (Cy sin(k6)(—1)* + Dy, cos(k6)(—1)*)

So,

A sinh(kt)(1 + (=1)%) (Cy sin(k0) + Dy cos(k6))
+ By cosh(kt) (1 — (=1)%) (Cy sin(kf) + Dy, cos(k6)) = 0.

If k£ is even, then we have that

2 Ay sinh(kt) (Cy sin(kf) + Dy cos(kf)) = 0,
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so either Ay = 0 or C, = Dy = 0. However, if Cy, = Dy = 0, then 3(f) = 0. This
means that u = 0, which is not possible since u is an eigenfunction. Thus, Ay = 0

and the eigenfunctions are
u(t,0) = cosh(kt) (Cy sin(k@) + Dy, cos(k0)) .

for some constants Cy, D,. Now, since u is an eigenfunction of the Dirichlet-to-

Neumann map, on 0%, a%u = opu, and so

! i i = 0}, COS sin L COS
f(T>ksmh(kT) (Cy sin(kl) + Dy cos(kf)) = oy cosh(kt) (Cy, sin(kf) + Dy cos(k0)) .
Hence,
or(T) = r tanh(kT)
T |

If £ is odd, then we have that
2B, cosh(kt) (C sin(kf) + Dy, cos(kf)) = 0,

so, similarly to the previous case, we conclude that By = 0. Thus, the eigenfunctions

are

u(t,0) = sinh(kt) (Cy sin(k0) + Dy, cos(k6)) .

for some constants Cy, D,. Now, again, since u is an eigenfunction of the Dirichlet-

to-Neumann map, on 9% we get that

1 .
mk cosh(kT') = oy sinh(kT),

SO

op(T) = coth(kT).

k
f(T)
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Thus, the nonzero eigenvalues of the Dirichlet-to-Neumann map are

2k (2k —1)
Me(T) = ——=tanh(2kT), and jpui(T)=-——=——=coth((2k —1)T),
k=1,2,..., and the normalized eigenvalues are

Me(T) = 4mk tanh(2kT), and  fig(T) = 27 (2k — 1) coth((2k — 1)T),

—1,2,....
Lemma 3.2.1. Let k,l > 1. Then

(i) A < S\kﬂ, [y < fiyp1. Furthermore, \, < fins1 for n > 1, and each \e and [y

has multiplicity 2.

(ii) A(T) is monotone increasing in T and [iy(T) is monotone decreasing in T

(ii) Ap(00) := lim M\y(T) = 4wk and ju(c0) == lim ju(T) = 2n(20 — 1).
T—o00 T—o0

Proof. First, (i) and (iii) are clear by direct calculation. Now, (ii) follows from the

fact that

dX dji
ok = 8rk’sec’(2KT) > 0 and d—’; — —2m(20 — 1)%esch?((21 — 1)T) < 0.

UJ
Lemma 3.2.2. There exists T > 0 such that \y(T) = ju(T) if and only if | < k.

Moreover, T is unique if it exists.

Proof. Let Fyy(T) = M(T) — fuy(T) = 2 (2k tanh(2kT) — (21 — 1) coth (21 — 1)T)).

Then Fj;(T') is continuous on (0, 00) and

lim Fj,;(T) = —oco and lim Fj (T) = 27w (2k — (2 — 1)).
T—0 T—00

Thus 7lim Fi.,(T) > 0if and only if [ < k. Furthermore, Fj;(7") is monotone increas-
—00

ing on (0, 00) since \;(T) is monotone increasing and ji;(T) is monotone decreasing.
Hence there exists a unique 7' > 0 for which A\, (T) = ji,(T) if and only if [ < k. O
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Definition 3.2.3. For [ < k let T}; be the unique positive number such that

Ae(Tha) = fu(Tha)-
Lemma 3.2.4. Forl <k, T}, is decreasing in k and increasing in l.

Proof. Since Ap(T) < Aps1(T), we have that

i(Tet) = Me(Tra) < Megr (Tr).

Hence, Fji1:(Tk;) > 0, where Fj; is as in the proof of Lemma 3.2.2, and, again,
%in% Fy14(T) = —o0. Hence Ty41,; < Tjy. Similarly, if I +1 < k,
—

Me(Thp) = fu(Thy) < fusr(Thy),
and so Fy41(Tk,) < 0. Since tlim Fi141(T) > 0, it follows that T, < Ty 1. O]
—00

For fixed k& > 0, let s = L%J By Lemma 3.2.4, if £ > 2, we see that we can
decompose (0, 00) as
(0,00) = (0, Ty—11) U (U[Tk—j—f—l,j—laTk—j,j)) U [Th—s,5,00).
j=2

Note that if £ =1, then s = 0 and we do not decompose (0, c0).

Lemma 3.2.5. For k > 1,

(

Me(Tio1) if T €(0,Th11)
i i M1 (Temj ) if T € [Thjirg1,Thjj), 2<j<s
UQk_1<T) _ O-Qk(T) S ) Jj+ J+17 J+1J J5J ]
Ai/2(00) if T € [Th—ss,00), s = %, k even
\:\(k+1)/2(T(k+1)/2,(k+1)/2) if T € [Thoss,00), s = "5, k odd

Proof. First suppose T € (0,Ty_1,1). Then, since A\y_;(T) is increasing in T and
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fi1(T) is decreasing in T' by Lemma 3.2.1, we have that
5\kq(T) < S\kq(qu,l) = 1 (Ti—11) < (7).

Since each \,(T") and each fi,,(T') have multiplicity two, either Gop_1(T") = Fax(T) =
S\k(T) or og,—1(T) = 691 (T) = f11(T). Now, since T} is decreasing in k by Lemma
324, 0< T]ﬁl < Tk*l,l- SO, T < Tk,la

M(T) < Me(Tin) = fir(Tiea) < jun(T)

and 80 Gog_1(T) = Gox(T) = M(T') < S\k(Tk,l). Otherwise, Tj,; < T < Tj_11, s0

and Go,—1(T) = Gox(T) = (T) < fuu(Tk1) = M(Tk1). Hence, in either case,
Gop—1(T) = 21 (T) < N(Ty1)-
NOW, if 2 S] S sand T € [Tk—j+1,j—17Tk—j,j)7 then

M1 (T) > M jirt (Thmjn jo1) = fijo1(Tojyrj—r) > g1 (T)

and

Ne—j (T) < Aeej(Th—jg) = 15 (Ti—jij) < i5(T).
SO, either 5’2k_1(T) = 5'2k<T) = S\k—j-&-l(T) or 5’2k_1(T) = 5’2k(T> = /:LJ(T) Again,
since Tj; is decreasing in k and increasing in [ by Lemma 3.2.4, Tj_ji1,;1 <
Th—jy1j < Th—jj- S0, i Tpji1jo1 < T < Tp—jyr,j, then

/N\k—j—l-l(T) < 5\k—j+1(Tk—j+1,j) = [;(Th—j1,5) < f;(T)

and so 5‘2k_1(T) = 52k(T) = S\k_j+1(T) S S\k_j+1(Tk_j+17j). Otherwise Tk—j+1,j <
T < Tk—j,j7 S0

Nemg1(T) > Nejir (Timjrng) = 15(Thmgng) > iy(T)
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and Gop 1 (T) = Go1(T) = fi;(T) < Me_jy1(Thj+14). Hence, in either case, Gop_1(T) =

T e [T ss 00),s= % k even (Ty—s.s = Tij2,k/2), then

Mes2(T) > Mjo(Tiansa) = finy2(Thjansz) = fiya(T).
Furthermore, T} /2 1/241 is undefined by Lemma 3.2.2, so

Meja(T) < figs2i1(T) ¥ T > 0.

Hence, &Qkfl(T) = 5’2k(T) = S\k/g( ) )\ ( )
Finally, ifT e [Tk_&s, OO), s = k‘ Odd (Tk 5,8 = T(kJrl)/Q (k—1 /2) then

A1) /2(T) > Norny 2 (T2, e-)y2) = figee)y2(Tihsn) /2, e-1)/2) > fige—1y/2(T).

Furthermore, T(x_1)/2,(k+1)/2 is undefined by Lemma 3.2.2, so

)\(k_l)/g(T) < ﬂ(k+1)/2<T) VT > 0.

SO, either (~72k_1(T) = (~Tzk(T) = S\(k+1)/2(T) or 5‘2k_1(T) = 5‘2k(T) = ﬂ(kJrl)/g(T).
NOW, T(k+1)/2,(k+1)/2 is defined by Lemma 3.2.2 and T(k+1)/2,(k—1)/2 < T(k+1)/2,(k+1)/2
by Lemma 3.2.4. If T(k_;’_l)/Q’(k_l)/Q <T< T(k+1)/2’(k+1)/27 then

Ner1/2(T) < Nerny2(Tiesnyj2,ern)/2) = figeny/2(Toern 2 terny/2) < figerny2(T)

and so 5’2k,1(T) = &2k(T> = 5\(k+1)/2(T) S /N\ k+1)/2(T(k:+1)/2 (k+1) /2> Otherwise T' >

T(k+1)/2,(k+1)/2 and
5\k+1/2(T) > 5\(k+1)/z(T(k+1)/2,(k;+1)/2) = [ihs1)/2(Tlhr1) /2, 041)2) > Bipgry/2(T).

So, Gop—1(T) = 0ok(T) = figk+1)2(T) < figirr)/2(T(hs1)/2,(641)/2) and
Pt /2(T 1) /2,641)/2) = Aet1)/2(T (k1) /2,(k+1)/2)- Thus, in either case, Gop—1(1) =
Gok(T) < figes1y/2(Trg1) /2,064 1)/2) - O
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Lemma 3.2.6. Let

f(t) = sinh(¢) cosh(t) —t and g¢g(t) = sinh(?) C;Sh(t> — t.

Then f(t) > 0 and ¢'(t) > 0 for all t > 0.

Proof. We have that

f'(t) = cosh®(t) + sinh?(t) — 1
= 2sinh*()

which is positive for ¢t > 0. Since f(0) = 0, it follows that f(¢) > 0 for ¢t > 0.

Now

) ()2 = 2tf(t)  2t(sinh?(¢) + 1) — 2sinh(¢) cosh(t)
g (t) = 4 = 3
_ 2 cosh?(t) — 2sinh(t) cosh(t)

t3

Since cosh®(t) = 1(e* + 2+ e~?) and cosh(t) sinh(t) = 1(e* — e7?), we get that

P

(2t — 2)e? + (2t +2)e™2 + 4t
413

g'(t) =

1 <, (20)%! o (2)%H
e [2 (Z (2h)! ) _4< m) A

k=0 (




Since all of the coefficients are positive, it follows that ¢/(¢) > 0 for ¢ > 0.

Lemma 3.2.7. Let x(a,b) be the unique positive solution of
atanh(ax) = bcoth(bz)

fora>b>0. Let
u(a,b) = atanh(az(a,b)).

Then u(a,b) < u(a+c,b—c) fora>b>c>0.

Proof. Differentiating the first equation with respect to a yields

Ox Ox
h h2 i — _ 2 2 e
tanh(ax) + asech”(ax) (a: + a(‘?a) b csch? (bx) %
and so
Or  —tanh(ax) — awsech’®(ax)
g 5 5 < 0.
da  a’sech”(ax) + b2csch”(bx)
Similarly,
dx _ coth(br) — bresch®(br) sinh(bz) cosh(bz) — bz

Ob  a2sech?(ax) + b2csch?(bx)  sinh?(bx)(a2sech?(ax) + b2csch?(bx))

where we have used Lemma 3.2.6 to conclude its sign.
Now, since u(a, b) = bcoth(bz(a,b)) and 2 < 0,
Ox

—b*csch?(ba) - Phe 0.

ou _
da
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Similarly,

ou 2 2 ox
%—asech (ax)-%>0,
Hence,
(24) _ b*(sinh(ax) cosh(az) + ax) - b*(sinh(az) cosh(ax) — azx) -
(2¢)  a?(sinh(bx) cosh(bx) — bx) ~ a?(sinh(bz) cosh(bx) — bx) —

by Lemma 3.2.6 since a > b. Note that the inequality is strict when a > b. Thus,
for f(t) =u(a+1t,b—1),

ou Ou
/ = —_————
and so f'(t) > 0 for t > 0. Hence u(a,b) < u(a+¢,b—c) fora >b>c > 0. O

Corollary 3.2.1. For k > 1> ¢ > 0 we have that

Me(Thot) < Mete(Thge—c)-

Proof. By Lemma 3.2.7, for k > [ > ¢ > 0 we have that u(2k,2] — 1) < u(2k +
2¢,2] — 1 — 2¢). Hence S\k(Tm) < S\HC(THC,Z,C). O]

In particular, this tells us that
Mt (Timgang) < Me(Tin),

for 2 < j < s and, when k is odd,

A1) /2Ty 2,641 /2) < Ak(Thn)-

So, when k is odd, by Lemma 3.2.5 we have that dor_1(T") = Gox(T) < S\k(Tm), and
when k is even, a1 (T) = 624(T") < max(Ag/2(00), A(Th1))-

Lemma 3.2.8. For k > 2 even,

S\k/2<OO) < /N\k(TkJ)
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Proof. First note that A /s(00) = 2k and A\g(Tj,1) = 4k tanh(2kTy ), so, if we let
k = 2n with n > 1, then we need to show that 8mn tanh(4nTs, 1) > 4mn. Now

et — g=anT 1 log(3)
tanh(4n1) = ————— = — T = .
an ( n ) e4nT _|_674nT 2 A &n

Since 27 coth(Tyy, 1) = 8mn tanh(4nTh, 1), if coth <1°g7(l3)> > 2n = 4ntanh (4n%>,

then it would follow that 27 coth(Ts,1) = 8mntanh(4nTs, ) > 4wn. By direct
calculation, we have that

coth log(3) = 3%+ 31/% = 3V 41
&n, gi/én _ _1 3l/4n _ 1’

31/8n

so coth (1°§£3)> > 2n is equivalent to

31/4n +1 ) 31/4n +1 |
T > & — 0 > L
gi/in —1 7 T o (31 — )
Let 12
341
f(n) =

2n (314 — 1)

Then, thinking of n as a positive real number,

<—13§1(23) . 31/4n> 5 (2’/1 . (31/4n _ 1)) _ (31/4n + 1) 3 <2 (31/4n _ 1) + m <_% . 31/411))
4n? (31/4n — 1)
log .gl/2n 105(3) .3l/An _ 9 . gl/2n 4 9 4 105(3) .31/ log . 31/4n
4n? (31/4n — 1)?
log( ) 31/4n +92. (1 _ 31/2n)
4n? (31/4n — 1)°

Since the denominator is always positive, we will focus on the numerator. Using
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Taylor series we have that

: : i%(bff»‘“)-z(im?)’“)
(i": % 105(3))’”1) - (Z 2’:1 log )

_ (,ﬁ; (kill)! (loif))k> - (kz 2k+!1 (log )) )
B : ((k il Nl 2:1) ' <10i<13>)k

So, since ﬁ = QI;—TI for kK = 1,2, and ﬁ < ZI;C—TI for all £ > 3, it follows that
f'(n) <0 for all n > 0 and so f(n) is monotone decreasing.
Now,
31/4n -1 __log(3) . 31/4n 1 3
lim 2n - (3% — 1) = lim = = lim — 22 ° 08(3)

SO

lim f(n) A > 1

im f(n) = :

n—00 log(B)

Thus, f(n) is bounded below by 1 and so

log(3) 3t/ 41

Therefore, 8mn tanh(4nTy, 1) = 27 coth(Ts, 1) > 47n, and so S\k/g(oo) < S\k(Tkyl). O]

3.3 Free boundary minimal Mo6bius bands in B*

Here, using the results from the previous section, we first show that we can always
find a rotationally symmetric metric that maximizes the kth Steklov eigenvalue. We

then use the eigenfunctions corresponding to these maximal Steklov eigenvalues to

48



get constructions of free boundary minimal Mobius bands in B*.

Theorem 3.3.1. Let k > 1 and My, = sup(64(T)). Then Map_y = Moy = Me(Ti1),
>0
and is attained precisely when T' = Tj, ;.

Proof. This follows directly from Lemma 3.2.1 and Lemma 3.2.8. [

Consider the immersed surface in R* given by

;

x(t,0) = 2n sinh(t) cos(d)
y(t,0) = 2nsinh(t) sin(0)
z(t,0) = cosh(2nt) cos(2n0)
w(t, ) = cosh(2nt) sin(2nd)

\

for t € [=T,1,T,1]. Now, since the coordinate functions are Steklov eigenfunctions,
they are harmonic extensions of their restriction to 0¥. Furthermore, if we let
®(t,0) = (x(t,0),y(t,0), 2(t, 0), w(t, 0)), then

%—(f = (ncosh(t) cos(6), n cosh(t) sin(#), n sinh(nt) cos(nd), n sinh(nt) sin(nh)) ,
aa—(z = (—nsinh(¢) sin(0), n sinh(t) cos(0), —n cosh(nt) sin(n#), n cosh(nt) cos(nd)) .
o0® 00 oe| |o®| 5 ., 9
It follows that Frlier i 0 and 5| = 30| =" (sinh®(¢) 4 cosh?(nt)). Hence,

® is also conformal and so we see that the immersion defined by the coordinate
functions is a minimal immersion. Moreover, since |®| is constant on 0%, it follows

from the maximum principle that ® defines a surface contained in a ball centred

at the origin of radius \/ 4n2 sinh*(T,, 1) + cosh®(2nT},1). To obtain a free boundary
minimal Mobius band in B, we scale the portion of this immersed surface inside
the ball centred at the origin of radius \/ 4n? sinh®(T,, 1) + cosh?®(2nT},1) to lie in B*.
This yields the following:

Theorem. 1.2.1 For all n > 1, the maximum of the nth Steklov eigenvalue among

all rotationally symmetric metrics on the Mobius band is achieved by the metric on
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a free boundary minimal Mébius band in B* given explicitly by the immersion

O(t,0) = P%(Qn sinh(t) cos(#), 2n sinh(t) sin(f), cosh(2nt) cos(2nd), cosh(2nt) sin(2nd)),

mn

where R, = \/4n2 sinh®(T,,1) + cosh®(2nT,1) and (t,0) € [~T,,1,Tp1] x S/ ~.
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Chapter 4

Existence of Harmonic Maps into
CAT(1) Spaces

4.1 Introduction

In this chapter we prove an existence result for harmonic maps from compact Rie-
mann surfaces into complete metric spaces with an upper curvature bound. The
theory of harmonic maps has proven to have important applications; for example,
the existence theory for harmonic two-spheres of Sacks and Uhlenbeck [53] was ex-
tended by Micallef and Moore [49] and used to prove a generalization of the classical
sphere theorem to pointwise quarter-pinching. Other important applications of har-
monic maps include those in rigidity problems (for example, [62], [10], [28]) and in
Teichmiiller theory (for example, [70], [16], [14]) amongst others.

For some of the above mentioned applications, it has been necessary to consider
harmonic maps when the smooth Riemannian target is replaced by a singular space.
The seminal works of Gromov-Schoen [28] and Korevaar-Schoen [40] consider har-
monic maps from a Riemannian domain into a non-Riemannian target. Further
exploration of harmonic map theory in the singular setting includes works of Jost
[33], J. Chen [8], Eells-Fuglede [18] and Daskalopoulos-Mese [12]. However, all of

the above mentioned works assume non-positivity of curvature (NPC) in the target
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space.

When the curvature of the target space is allowed to be positive, the existence
problem for harmonic maps becomes more complicated, and in many ways, more
interesting. Although the general problem is not well understood, a breakthrough
was achieved in the case of two-dimensional domains by Sacks and Uhlenbeck [53].
Indeed, they discovered a “bubbling phenomena” for harmonic maps; more specifi-
cally, they prove the following dichotomy: given a finite energy map from a Riemann
surface into a compact Riemannian manifold, either there exists a harmonic map
homotopic to the given map or there exists a branched minimal immersion of the
2-sphere. We also mention the related works of Lemaire [44], Sacks-Uhlenbeck [54],
and Schoen-Yau [58].

The goal of this chapter is to provide a generalization of the Sacks and Uhlenbeck
existence result to the case of metric space targets. We specifically look at the setting
in which the target is a CAT(1) space, i.e. a complete metric space with curvature
bounded above by 1 in the sense of Alexandrov. The method used by Sacks and
Uhlenbeck is not accessible in the singular setting as it depends on a priori estimates
stemming from the Euler-Lagrange equation of their perturbed energy functional
and, in the singular setting, one can no longer use variational methods to obtain
an Euler-Lagrange equation. Here, we develop an alternative method that instead
exploits the local convexity of the target CAT(1) space.

Our original motivation for considering the existence problem in the singular
setting was to develop an approach to the non-smooth uniformization problem of
finding a conformal (or more generally, a quasisymmetric) parameterization of a
metric space homeomorphic to the 2-sphere, via harmonic map methods. We expect
to able to use an application of our theorem to solve the non-smooth uniformization
problem in the special case when the metric space in question has an additional
property that it is locally CAT(1).

Before stating our result precisely, we first describe the setting of our problem in

more detail by outlining harmonic maps with singular targets and CAT(1) spaces.
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4.1.1 Harmonic maps

Let (M™,g) and (N™, h) be two Riemannian manifolds, and let u : M — N. Then
there is a natural notion of the energy of u, E(u), which roughly measures the amount
the map w stretches M. More precisely, if {e;}7*, is a local orthonormal frame for
T,.M, then the energy density at x € M is

and the energy of u is defined to be

B(w) = [ |duPdy,
M

A harmonic map is then a critical point of the energy functional.

When the target space is no longer a smooth manifold but simply a complete
metric space, Gromov and Schoen [28] and Korevaar and Schoen [40] developed a
Sobolev space theory for maps into metric spaces and harmonic maps theory into
complete metric spaces with non-positive curvature in the sense of Alexandrov. If
(©,¢9) is a Riemannian domain and (X,d) is a complete metric space, then a map
u:Q— X isin L*(Q, X) if u is a Borel measurable function with separable range

and for some P € X,
/ d*(u(x), P)dp, < oo.
Q

To define the Sobolev space Wh2(Q2, X) C L*(£2, X ), we need to define the energy
of a map u : Q@ — X when X is a complete metric space. We first define the
e-approzimate energy density el : 3 — R by

Y

Wi d*(u(z),u(y)) dow.(y)
el(x) /S(m,e)

B €2 en—1
where 0, . is the induced measure on the e-sphere S(z,¢€) centred at xz. The e-
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approximating energy EY : C.(2) — R is then
'B20) = [ oetdn,
Q

We will often suppress the superscript d when the context is clear. An L? map

u: ) — X is said to have finite energy if

E(u) = sup lim sup E¥(¢) < oo,
$EC(Q), 0<¢<1 =0

and the Sobolev space W2(Q2, X) is defined to the be the subset of L?(2, X') con-
sisting of finite energy maps. In the case that u has finite energy, there is an energy

density function |Vu|?(z) such that
ec(w)dpg — [Vul*(z)dpg.

For u € W?(Q, X) and a smooth vector field V' € T'(2), there is a directional energy
density function |u.(V)|*(x) € L*(€2) such that

s (V)2 (2) = lim 02D U(exPo(€V))

for a.e. x € €,
e—0 62

the energy density is given by

1
/ (V)P (@)do,
Wn—1 Jsn-1cT,.0Q

[Vul*(x) =
and the energy of u is
E(u) = / |Vul*dp.
Q

Given two finite energy maps u and v, the distance d(u,v) : Q@ — RT between
them belongs to the Sobolev space W2(2). Therefore one can make the following
definition: u = v on 9 if d(u,v) € W;?(Q). A finite energy map u : Q — X is
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energy minimizing if

E(u) = inf{E(v) : v € W"*(Q, X), v = u on 99Q}.
Given h € W2(Q, X), we define

W2, X) = {f e W"(Q,X) : h=f on dQ}.

Definition 4.1.1. We say that a map u : 2 — X is harmonic if it is locally energy
minimizing with locally finite energy; precisely, for every p € €1, there exist r > 0,
p > 0 and P € X such that h = U g ()
among all maps in W,"*(B,(p), B,(P)), where B,(p) is the geodesic ball in © of

has finite energy and minimizes energy

radius r centred at p and B,(P) is the geodesic ball in X of radius p centred at P.

We refer the reader to [40] for further details and background.

4.1.2 CAT(1) Spaces

Roughly speaking, a CAT(1) space is a complete metric space with curvature bounded
above by 1 in the sense of triangle comparison.

A complete metric space (X,d), is a geodesic space if for each P,Q € X, there
exists a curve ypg such that the length of ypg is exactly d(P,Q). We call ypg a
geodesic between P and Q).

Remark 4.1.2. For ease of notation, we will often denote d(P, Q) by dpg.

We determine a weak notion of an upper sectional curvature bound on X by using
comparison triangles. Given any three points P,Q, R € X such that dpg + dgr +
drs < 2w, the geodesic triangle APQR is the triangle in X with sides given by the
geodesics Yp@, YQRr: VRS-

Let APQR denote a geodesic triangle on the standard sphere S? such that
dpq = dpg, dor = dgp and drp = dgp. We call APQR a comparison triangle
for the geodesic triangle APQR. Note that a comparison triangle is convex since

the perimeter of the geodesic triangle is less than 27.
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Given a geodesic space (X, d) and a geodesic ypg with dpg < 7, for 7 € [0, 1] let
(1 —7)P + 7Q denote the point on ypg at distance 7dpg from P. That is,

d(1—=71)P+71Q,P) = 1dpg.

Definition 4.1.3. Let (X,d) be a complete geodesic space. Then X is a CAT(1)
space if, given any geodesic triangle APQR (with perimeter less than 27) and a
comparison triangle APQR in S2,

dPtRs S dptRS (41)

where

P=(1-t)P+1tQ, Ry = (1 - s)R +sQ,

Figure 4.1: An illustration of a triangle in a geodesic space (X, d) (left) and a com-
parison triangle in S? (right). If the geodesics connecting the sides of the triangle in
(X, d) are shorter than the corresponding geodesics for the comparison triangle in

S?, then (X, d) is called a CAT(1) space.

The simplest examples of CAT(1) spaces are the complete Riemannian manifolds
with curvature bounded above by 1. In particular, S? is a CAT(1) space. However,
there are many examples of CAT(1) spaces other than Riemannian manifolds.

A metric space (X, d) is said to be locally CAT(1) if every point of X has a
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geodesically convex CAT(1) neighbourhood. Note that for a compact locally CAT(1)
space, there exists a radius r(X) > 0 such that for all y € X, B,(x)(y) is a compact
CAT(1) space. We refer the reader to Section 2.2 of [7] for further background on

CAT(1) spaces.

4.1.3 Main results and outline

The goal of this chapter is to prove a result analogous to the existence result of Sacks
and Uhlenbeck when the target space is a compact CAT(1) space. More specifically,

we obtain the following theorem.

Theorem. 1.3.1 Let 3 be a compact Riemann surface, X a compact locally CAT(1)
space and p € CONW2(X, X). Then either there exists a harmonic map u : ¥ — X

homotopic to ¢ or a nontrivial conformal harmonic map v : S* — X.

Sacks and Uhlenbeck used the perturbed energy method in the proof of Theorem
1.3.1 for Riemannian manifolds. In doing so, they rely heavily on a priori estimates
procured from the Euler-Lagrange equation of the perturbed energy functional. One
of the difficulties in working in the singular setting is that, because of the lack of
local coordinates, one does not have a P.D.E. derived from a variational principle
(e.g. harmonic map equation). In order to prove results in the singular setting, we
cannot rely on P.D.E. methods. To this end, we use a 2-dimensional generalization
of the Birkhoff curve shortening method [4], [5]. This local replacement process
can be thought of as a discrete gradient flow. This idea was used by Jost [33] to
give an alternative proof of the Sacks-Uhlenbeck theorem in the smooth setting.
More recently, in studying width and proving finite time extinction of the Ricci flow,
Colding-Minicozzi 9] further developed the local replacement argument and proved
a new convexity result for harmonic maps and continuity of harmonic replacement.
However, even these arguments rely on the harmonic map equation and hence do not
translate to our case. The main accomplishment of our method is to eliminate the
need for a P.D.E. by using the local convexity properties of the target CAT(1) space.
(The necessary convexity properties of a CAT(1) space are given in Appendix B.)
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For clarity, we provide a brief outline of the harmonic replacement construction.
Given ¢ : ¥ — X, we set ¢ = u and inductively construct a sequence of energy
decreasing maps u!, where n € NU{0}, 1 € {0,..., A}, and A depends on the geometry
of ¥. The sequence is constructed inductively as follows. Given the map u?, we
determine the largest radius, r,, in the domain on which we can apply the existence
and regularity of Dirichlet solutions (see Lemma 4.2.1) for this map. Given a suitable
cover of 3 by balls of this radius, we consider A subsets of this cover such that every
subset consists of non-intersecting balls. The maps v}, : ¥ — X, 1 € {1,...,A} are
determined by replacing u’! by its Dirichlet solution on balls in the I-th subset of the
covering and leaving the remainder of the map unchanged. We then set ud_, := u? to
continue by induction. There are now two possibilities, depending on lim infr, = r.
If » > 0, we demonstrate that the sequence we constructed is equicontinuous and
has a unique limit that is necessarily homotopic to ¢. Compactness for minimizers
(Lemma 4.2.2) then implies that the limit map is harmonic. If r = 0, then bubbling
occurs. That is, after an appropriate rescaling of the original sequence, the new
sequence is an equicontinuous family of harmonic maps from domains exhausting C.
As in the previous case, this sequence converges on compact sets to a limit harmonic
map from C to X. We extend this map to S? by a removable singularity theorem
developed in section 4.3.

We now give an outline of the chapter. In section 4.2, we introduce some notation
and provide the results that are necessary in order to perform harmonic replacement
and obtain a harmonic limit map. In particular, we state the existence and reg-
ularity results for Dirichlet solutions and prove compactness of energy minimizing
maps into a CAT(1) space. In section 4.3, we prove our removable singularity theo-
rem. Namely, in Theorem 4.3.6 we prove that any conformal harmonic map from a
punctured surface into a CAT(1) space extends as a locally Lipschitz harmonic map
on the surface. This theorem extends to CAT(1) spaces the removable singularity
theorem of Sacks-Uhlenbeck [53] for a finite energy harmonic map into a Riemannian
manifold, provided the map is conformal. The proof relies on two key ideas. First, for
harmonic maps ug and u; into a CAT(1) space, while d?(ug, u;) is not subharmonic, a

more complicated weak differential inequality holds if the maps are into a sufficiently
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small ball (Theorem B.2.4 in Appendix B.2, [60]). Using this inequality, we prove a
local removable singularity theorem for harmonic maps into a small ball. The second
key idea, Theorem 4.3.4, is a monotonicity of the area in extrinsic balls in the target
space, for conformal harmonic maps from a surface to a CAT(1) space. This theorem
extends the classical monotonicity of area for minimal surfaces in Riemannian mani-
folds to metric space targets. The proof relies on the fact that the distance function
from a point in a CAT(1) space is almost convex on a small ball. In application, the
monotonicity is used to show that a conformal harmonic map defined on ¥\{p} is
continuous across p. Then the local removable singularity theorem can be applied
at some small scale. Section 4.4 contains the harmonic replacement construction
outlined above and the proof of the main theorem, Theorem 1.3.1. Note that we give
complete proofs of several difficult estimates for quadrilaterals in a CAT(1) space
in Appendix B.1. The estimates are stated in the unpublished thesis [60] without
proof. We apply these estimates in Appendix B.2 to give complete proofs of some
energy convexity, existence, uniqueness, and subharmonicity results (also stated in
[60]) that are used throughout this chapter.

4.2 Preliminary results

Throughout this chapter we let (€2, g) denote a Lipschitz Riemannian domain and
(X,d) a locally CAT(1) space. We denote a geodesic ball in €2 of radius r centred
at p € Q by B,(p) and a geodesic ball in X of radius p centred at P € X by B,(P).

The following results will be used in the proof of the main theorem, Theorem 1.3.1.

Lemma 4.2.1 (Existence, Uniqueness and Regularity of the Dirichlet solution). For
any finite energy map h : Q — B,(P) C X, where p € (0, min{r(X), 1), the Dirich-
let solution exists. That is, there exists a unique element P"h € W;’Q(Q,W)
that minimizes energy among all maps in W;’Q(Q,m). Moreover, if PTh(09) C
B,(P) for some o € (0,p), then PTh(Q) C B,(P). Finally, the solution P"h is lo-

cally Lipschitz continuous with Lipschitz constant depending only on the total energy

of the map and the metric on the domain.
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For further details see Lemma B.2.2 in Appendix B.2, [60], and [7].

Lemma 4.2.2 (Compactness for minimizers into CAT(1) space). Let (X,d) be a
CAT(1) space and B, C Q a geodesic (and topological) ball of radius r > 0 where
(Q, g) is a Riemannian manifold. Let u; : B, — X be a sequence of energy minimizers
with E“[B,] < A for some A > 0.

Suppose that u; converges uniformly to w on B, and that there exists P € X such
that w(B,) C B,)2(P) where p is as in Lemma 4.2.1. Then u is energy minimizing
on B, z.

Proof. We will follow the ideas of the proof of Theorem 3.11 [41]. Rather than prove
the bridge principle for CAT(1) spaces, we will modify the argument and appeal
directly to the bridge principle for NPC spaces (see Lemma 3.12 [41]).

Since u; — u uniformly and u(B,) C B,/2(P), there exists I large such that for
all i > I, u;(B,) C B,(P). By Lemma 4.2.1, there exists ¢ > 0 depending only on
A and g such that for all i > I, u,|p,, /5 1s Lipschitz with Lipschitz constant c. It
follows that for ¢ > 0 small, there exists C' > 0 depending on ¢ and the dimension of
(2 such that

E" B, 5\B;j2—] < Ct. (4.2)

For € > 0, increase [ if necessary so that for all 7 > I and all x € Bs, 4,
d?(ug(x), u(z)) < e. (4.3)

For notational ease, let U; := B,/ Let w; : Uy — X denote the energy
minimizer w; := P"uly, € W2 (U, X), with existence guaranteed by Lemma 4.2.1.
Following the argument in the proof of Theorem 3.11 [41], (4.2) and the lower semi-
continuity of the energy imply that lim,_,o £**[U;] = E"°[B, 5]. Observe that by the

lower semi-continuity of energy, Theorem 1.6.1 [40],

"B, ) < liminf “E"[B, o).

1—00
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Thus, it will be enough to show that

limsup “E"'[B, 2] < “E™[B, ).
1—00
Let v, : By, — X be the map such that v;|y, = w; and Ut‘Br/z\Ut = u. Given
0 > 0, choose t > 0 sufficiently small so that

BB, o) < “E"°[B,jo] + 0. (4.4)

Since v; is not a competitor for u; (i.e. v|op, ,, 18 not necessarily equal to uilon, /2),
for each 7 we want to bridge from v; to u; for values near 9B, ;. Since we want to
exploit a bridging lemma into NPC spaces, rather than bridge between v; and u;, we
will bridge between their lifted maps in the cone C(X).

Let C(X) := (X x [0,00)/X x {0}, D) where
D*([P, 2], [Q,y]) = 2* + y* — 2xy cosmin(d(P, Q), 7).

Then C(X) is an NPC space and we can identify X with X x {1} € C(X). For any
map f: B, — X, welet f: B, — X x {1} such that f(x) = [f(z),1]. Note that for
f € WH(B,,B,(Q)), since

Lo DAIPALIQY) 201 = cos(d(P.Q))
P—Q dz(P, Q) P—Q dQ(P, Q)

=1,

it follows that PES[Q] = ¢E/[Q) for Q C B,.
For each 7 > I, and a fixed s, p > 0 to be chosen later, define the map

v; : OUg x [0, p] = C(X)
such that

vi(,2) = (1 - %) Tu(x) + %ﬂi(x).

The map v; is a bridge between 7|y, and @, |y, in the NPC space C(X). That is,
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we are interpolating along geodesics connecting v:(x), u;(x) in the NPC space C(X)
and not along geodesics in X. By [41] (Lemma 3.12) and the equivalence of the

energies for a map f and its lift f,

PE" U, x [0,p]) < £ <DE“ U]+ PE" [8Us]> 2 [ D2 1), s, 1))do
2 P Jou,

Ut Ug 1
= P (B oU) + “E"[0U) + = | D*([ve. 1], [us, 1])do
2 P Jou,
By (4.2), and since v; = u on B, »\Uy, for s € [2t/3, 3t/4] the average values of the
tangential energies of v; and u; on QU are bounded above by Ct/(3t/4—2t/3) = 12C.
Moreover, since u;(B,/2), v¢(By/2) C B,(P), (4.3) implies that for all x € B, 5\Uy,

D?(uy(x),0(x)) = 2(1 — cos d(u;(x), vi(7))) < d*(ui(z), v:(7)) < €. (4.5)
Thus, there exists C’ > 0 depending only on g such that for every s € [2t/3, 3t/4],

D?([vg, 1], [ug, 1])do < C'e.
U,
Note that for each ¢ > 0, the bound above depends on I but not on ¢. Now, we
first choose an s € (2t/3,3t/4) such that ‘E”[0U,] + ¢E"'[0U,] < 24C. Next, pick
0 < p < 1 such that [s, s+ put] C [2t/3,3t/4] and 12Cut < §/2. For this t, u, decrease

e if necessary (by increasing I) such that

PEM AU, x [0, ] = 1 (“E™[0U,] +“E™[0UL]) + = [ D 1) s, 1])de
2 nt Jou,
< 24Cut)2 + C'e /(ut)

< 0.

Now, define ©; : B,/ — C(X) such that on Uj, ¥; is the conformally dilated map of v;
so that 0;|au,,,, = Utlov,- On Ug\Usy e, let 0; be the bridging map v;, reparametrized
in the second factor from [0, ut] to [s, s + pt]. Finally, on B, 2\Us, let ©; = @;. Then,
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for all + > I,
PEY([B, /o] < “E"[B,jo] 4+ 0 + *E“[B,;s\Uy). (4.6)

While the map 9; agrees with %; on 0B, 5, it is not a competitor for u; into X
since ¥; maps into C(X). However, by defining v, : B,/» — X such that ¢;(z) =
[v,(x), h(x)], v; is a competitor. Note that for all x € dUs, (4.5) implies that h(x) >
1—+/e. Therefore, on the bridging strip we may estimate the change in energy under

the projection map by first observing the pointwise bound

( )
(y)* = 2h(x)h(y) cos(d(v; (), v;(y)))
= (h(z) = h(y))* + 2h(x)h(y)(1 — cos(d(v;(x), v;(y))))

Therefore,
TE%[B, 5] = PE®"Y[B, 5] < (1 - V2) " PE"[B, ). (4.7)

Since v; is a competitor for u; on B, /s, (4.7), (4.6), (4.4), and (4.2) imply that

TE"[Byja) < (1—vE) > PE™[B,j) < (1= v2) > (“E"™[B,s] + 26 + Ct)

Since for any ,6 > 0, by choosing t > 0 sufficiently small and I € N large enough,

the previous estimate holds for all ¢ > I, the inequality
lim sSup dEui [Br/2] < dEwO [BT/Q]
—+00

then implies the result.
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4.3 Monotonicity and removable singularity theo-

rem

We first show the removable singularity theorem for harmonic maps into small balls.
Note that the first theorem of this section is true for domains of dimension n > 2,

but all other results require the domain dimension n = 2.

Theorem 4.3.1. Let u : B,(p) \ {p} — B,(P) C X be a finite energy harmonic
map, where p is as in Lemma 4.2.1 and dim(B,(p)) = n. Then u can be extended on

B.(p) as the unique energy minimizer among all maps in W,-*(B,(p), B,(P)).

Proof. Let v € W 2(B,(p), B,(P)) minimize the energy. It suffices to show that
u=wvon B.(p)\{p}. Since u is harmonic, there exists a locally finite countable open
cover {U;} of B,.(p) \ {p}, and p; > 0, P, € B,(P) such that u|y, minimizes energy
among all maps in W22(U;, B,,(P;)). Let

1 —cosd
F=y— 27
cos R* cos RV
where d(z) = d(u(z),v(z)) and R* = d(u, P), R* = d(v, P). By Theorem B.2.4,
div(cos R* cos R*VF) > 0

holds weakly on each U;. Therefore, for a partition of unity {¢;} subordinate to the
cover {U;} and for any test function n € C°(B,(p) \ {p}),

- / V- (cos R* cos R'VF) dp, = — Z/ V(ein) - (cos R* cos R°VF') du, > 0,
Br(p)\{r} . JU

(4.8)

where we use ), ¢; =1and >, Vi, =0.
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Using polar coordinates in B,.(p) centered at p, for 0 < € < 1, we define

0 r < e
log r—log €2
Pe = BLES €<r<e .
—loge
1 e<r

Letting w,,_1 denote the volume of the unit (n — 1)-dimensional sphere, note that

Wn—1 ‘ _
Vo |*du, = /r" Sdr +o(e) =0 ase— 0.
/Br(p) | | ! (loge)? Je (€

Therefore, for n € C°(B,(p)),

- / ®Vn - (cos R* cos R'V F) dy,
Br(p)
=— / V(n¢e) - (cos R* cos R°VF) dp, + / NV - (cos R cos R°V F) dp,
Br( ) Br(p)

> / nV¢. - (cos R cos R*VF) dyu, (by (4.8))
Br(p)\{p}

} }
> — (/ |v¢€|2d,ug> (/ n?| cos R" cos RV F|? dpg) ,
Br(p)\{p} Br(p)\{p}

by Hélder’s inequality. The last line converges to zero as ¢ — 0 because d, R*, R” are

bounded by the compactness of B,(P) and [ Bonipy | VE |? dp, is bounded by energy

convexity. We conclude that

- Vn - (cos R* cos R'VF) dpy, = —lim ¢V - (cos R* cos RV F) dyu, > 0,
B (p) 0B, ()

and hence div(cos R* cos R"VF') > 0 holds weakly on B,(p).
Since d(u(x),v(x)) = 0 on 0B,(p), by the maximum principle d(u(x),v(x)) = 0
in B,.(p). This implies that u = v is the unique energy minimizer.
[

Remark 4.3.2. Note that Theorem 4.3.1 implies that if u : Q — B,(P) is harmonic,
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then u is energy minimizing.

From this point on we assume our domain is of dimension 2. Recall the con-
struction in [40] and [7] of a continuous, symmetric, bilinear, non-negative tensorial
operator

T T(TQ) x T(TQ) — LY(Q) (4.9)

associated with a Wh2-map u : Q — X where I'(TQ) is the space of Lipschitz vector
fields on €2 defined by

. 1 1
T(2,W) = J|u(Z + WP = Zfu(Z = W)

where |u,(Z)|? is the directional energy density function (cf. [40, Section 1.8]). This
generalizes the notion of the pullback metric for maps into a Riemannian manifold,

and hence we shall refer to m = 7" also as the pullback metric for w.

Definition 4.3.3. If X is a Riemann surface, then u € W'%(3, X) is (weakly) con-

formal if
2 2N (9O a2 2y
or, Oz, ) Oxy’ Oxs dxy Oxy)

where z = x1 + ix9 is a local complex coordinate on X.

For a conformal harmonic map u : ¥ — X with conformal factor A = 1|Vul|?,
and any open sets S C ¥ and O C X, define

A(u(S)N0O) = / A dyg,

u—1(0)NS
where dy, is the area element of (X, g).

Theorem 4.3.4 (Monotonicity). There exist constants ¢, C' such that if u : ¥ —
X is a non-constant conformal harmonic map from a Riemann surface ¥ into a
compact locally CAT(1) space (X,d), then for any p € ¥ and 0 < 0 < 0y =
min{p, d(u(p), w(0%))}, the following function is increasing:

e A(u(2) N By (u(p)))

g
02 ’
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and

A(u(X) N By (u(p))) > Co?.

Proof. Since ¥ is locally conformally Euclidean and the energy is conformally in-
variant, without loss of generality, we may assume that the domain is Euclidean.
Fix p € ¥ and let R(z) = d(u(x),u(p)). Since u is continuous and locally energy
minimizing, by [60, Proposition 1.17], [7, Lemma 4.3] we have that the following
differential inequality holds weakly on u™!(B,(u(p))):

%ARQ > (1— O(R)|Vaul. (4.10)

Let ¢ : RT — RT be any smooth nonincreasing function such that ((¢) = 0 for
t > 1, and let ¢, (t) = ¢(£). By (4.10), for o < 0o we have

—/ZVRZ-V(Q,(R))da:lde > 2/Z(U(R)(l—O(RQ))|VU\2dx1d:c2

= 4/ CU(R) (]_ - O(RQ)) /\dlEldIQ.

Therefore,

=

2/ ((R) (1 — O(R*)) Ndzydxy < — VR-V(((R))dridxy

‘VR|2 dl’ldIQ

Y

IA
|
— T — i

&= s

D 9 l=

|Vul? doyda,

N—
N |

A d[L‘ldIQ

Y

| 9l 9l
Y
TN TN

SHE=EES)
~

= /EO' (CU(R ) )\dl’1dl’2

= ai/CU(R) Adzydxs,
do »

where in the second inequality we have used that ¢’ < 0 and |[VR[* < 1[Vul?, since
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u is conformal. Set f(0) = [; (-(R) Adzidxs. We have shown that

2(1-0(c*) f(o) < af'(0).
Integrating this, we conclude that there exist ¢ > 0 such that the function

2
e f(o)
is increasing for all 0 < o < gg. Approximating the characteristic function of [—1, 1],
and letting ¢ be the restriction to R™, it then follows that

e A(u(S) N B, (u(p)))

2

o
is increasing in ¢ for 0 < o < 0y.
Since A = §|Vu|? € LY(Z,R),
)\dl’ldﬁg
lim oo 5 = \z), ac €Y (4.12)
r—0 wr

by the Lebesgue-Besicovitch Differentiation Theorem. Since u is conformal, for every
weSt,

d? t
Az = lim L@ F ) u(@) ey (4.13)
t—0 t2
([40, Theorem 1.9.6 and Theorem 2.3.2]). Since u is locally Lipschitz [7, Theorem

1.2], by an argument as in the proof of Rademacher’s Theorem ([20, p. 83-84)),

(@) — tim C0(0).1(2)

voe |y —x|?

(4.14)

for almost every x € ¥. To see this, choose {wy}32, to be a countable, dense subset
of S'. Set

exists, and is equal to\/A(x)}
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for k=1,2,... and let
S = Np2,Sk.

Observe that H*(X \ S) = 0. Fix z € S, and let ¢ > 0. Choose N sufficiently large
such that if w € S* then

£
o=l < )
for some k € {1,..., N}. Since
lim d(u(x + twy), u(z)) — 0

t—0 t

for k =1,..., N, there exists 0 > 0 such that if || < § then

NG <§

'd(u(x + twy), u(x))
t

for k = 1,...,N. Consequently, for each w € S! there exists k € {1,..., N} such
that

‘d(u(x +tw),u(z)) o)
t
< ‘d(u(z + twg) u(z)) )| + ‘d(u(x +iw),u(@))  du(z + twg), u(z)) ‘
- t t t
< ‘d(u(z + twy), u(z)) Na)| + ‘d(u(w + tw), u(x + twy)) ’
B t t
< 5+ Lip(u)w —
<é€

Therefore the limit in (4.14) exists, and (4.14) holds, for almost every x € X.
The zero set of A is of Hausdorff dimension zero by [48]. At points where A(z) # 0
and (4.14) holds, we have that for any ¢ > 0

u(B o (7)) Cu(E) N By (u(z))
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if o is sufficiently small. Therefore by (4.12),

o0) i iy AV VB (@)

o—0 7TO'2 ’

a.e. v € X. (4.15)

By the monotonicity of (4.11), ©(x) exists for every z € 3, and ©(x) is upper
semicontinuous since it is a limit of continuous functions (the density at a given
radius is a continuous function of x). Therefore, ©(z) > 1 for every z € ¥. Together
with the monotonicity of (4.11), it follows that

A(u(¥) N B, (u(p))) > Co®

for 0 < o < 0y. O

Remark 4.3.5. Note that if w : M — B,(P) is a harmonic map from a compact
Riemannian manifold M, then u must be constant. This follows from the maximum

principle, since equation (4.10) implies that R*(z) = d*(u(z), P) is subharmonic.

For a conformal harmonic map from a surface into a Riemannian manifold, con-
tinuity follows easily using monotonicity ([57, Theorem 10.4], [29], [33, Theorem
9.3.2]). By Theorem 4.3.4, using this idea we can prove the following removable

singularity result for conformal harmonic maps into a CAT(1) space.

Theorem 4.3.6 (Removable singularity). If u : ¥\ {p} — X is a conformal har-
monic map of finite energy from a Riemann surface 2 into a compact locally CAT(1)

space (X, d), then u extends to a locally Lipschitz harmonic map u : ¥ — X.

Proof. Let B, denote B,.(p), the geodesic ball of radius r centered at the point p in
Y, and let C,. = 9B, denote the circle of radius r centered at p. By the Courant-

Lebesgue Lemma, there exists a sequence r; N\, 0 so that
L; = L(u(C,))) == / VAdsy — 0
Cr,

as i — 00, where ds, denotes the induced measure on C,, = 0B,, from the metric

g on . Since E(u) < oo, A = 1|Vu|? is an L' function and, by the Dominated
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Convergence Theorem,

A= A(B N\ () = [ Aduy >0
Br;\{r}
as ¢ — 00.
First we claim that there exists P € X such that u(C,,) — P with respect to
the Hausdorff distance as i — oo. Let d;; = d(u(C,,),u(C,,)). Suppose i < j so
ri > 1, and choose Q € u(B,, \ B,,) such that d(Q,u(C;,) Uu(C,,)) > d;;/2. For

o = min{ dgj, £}, by monotonicity (Theorem 4.3.4),

A(u(By, \ Brj) NB,(Q)) > Co*.

Since A(u(By, \ B;,) NB,(Q)) < A(u(B,, \ {p})) = 4, it follows that o < cy/4; — 0
as 1 — 00, and we must have d; ; — 0. Therefore any sequence of points P; € u(C,,)

is a Cauchy sequence since
d(P;, Pj) < dj; + Li+L; =0

as i, 7 — oo. Hence, there exists P € X independent of the sequence, such that
P, — P.

Finally, we claim that lim,_,, u(z) = P. It follows from this that we may extend
u continuously to ¥ by defining u(p) = P. To prove the claim, consider a sequence
x; € X\ {p} such that z; — p. We want to show that u(x;) — P. Suppose
xi € By, \ Br,,,, for some j(i), and let d; = d(u(z;),u(C,, ) Uu(C,,,.,)). For
o = min{%, £}, by monotonicity (Theorem 4.3.4),

A(u(Br, ;) \ B )N By (u(x;))) > Co?.

Tj(i)+1
Therefore, o < ¢\/Ajs — 0 as i — oo, and we must have d(u(z;),u(Cy,
w(Cry 1

We may now apply Theorem 4.3.1 to show that u is energy minimizing at p.

Since u is continuous, there exists § > 0 such that u(Bs) C B,(Q) C X. By Theorem

) U
)) — 0. It follows that u(z;) — P and u extends continuously to X.
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4.3.1, w is the unique energy minimizer in W, ?(Bs, B,(Q)). Hence u is locally energy

minimizing on 3 and by [7, Theorem 1.2], u is locally Lipschitz on X. O

The following is derived using only domain variations as in [57, Lemma 1.1] (using
[40, Theorem 2.3.2] to justify the computations involving change of variables) and
is independent of the curvature of the target space (see for example, [28, (2.3) page
193]).

Lemma 4.3.7. Let u : ¥ — X be a harmonic map from a Riemann surface into a

locally CAT(1) space. The Hopf differential

B o 0 o 0 (0 0 )
(I)(Z) = |:7T (a—xl,a—xl) — T (8_31:2’8_352> — (8_33178_1‘2)] dz s

where z = x1 + 1x9 1S a local complex coordinate on Y and m 1s the pull-back inner

product, is holomorphic.

Corollary 4.3.1. Let u: C — X be a harmonic map of finite energy and (X, d) be a

compact locally CAT(1) space. Then u extends to a locally Lipschitz harmonic map
u:S?— X,

Proof. Let p : S*\ {n} — R? be stereographic projection from the north pole n € S%.
Set &t =uop:S*\ {n} - X. We will show that n is a removable singularity.
Let ¢ = W(a%l, 3%1) - ﬂ(a%g, 8%2) - 2i77(aim>aix2)' By Lemma 4.3.7, the Hopf

differential ®(z) = ¢(z)dz? is holomorphic on C. By assumption,

0 d
= [ (Gl + (I ) dodes < o0

and therefore
/ lo| dridry < 2E(u) < 0.
R2

Thus |p| € L}(C,R) and is subharmonic, and hence ¢ = 0 and u is conformal. Then
by Theorem 4.3.6, u extends to a locally Lipschitz harmonic map u : S? — X. O
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4.4 Harmonic Replacement Construction

In this section we prove the main theorem:

Theorem. 1.3.1 Let ¥ be a compact Riemann surface, X a compact locally CAT(1)
space and p € CONW2(X, X). Then either there exists a harmonic map u : ¥ — X

homotopic to ¢ or a nontrivial conformal harmonic map v : S* — X.

Lemma 4.4.1 (Jost’s covering lemma, [33] Lemma 9.2.6). For a compact Rieman-
nian manifold 3, there exists A = A(X) € N with the following property: for any

COveEring

Y C O B,(x;)

i=1
by open balls, there exists a partition I*,...I" of the integers {1,... ,m} such that
for any 1l € {1,..., A} and two distinct elements iy, iy of I',

BQr<xil) N BQr(xig) = @
Definition 4.4.2. For each k =0,1,2,..., we fix a covering
Oy, = {By-r (1) i

of ¥ by balls of radius 27%. Furthermore, let I}, ... I} be the disjoint subsets of
{1,...,mg} as in Lemma 4.4.1; in other words, for everyl € {1,...,A},

Bk (xk’,il) N By—k+1 (l’k7i2) = @, Viq, 19 € [li, 1 7é 1. (416)
By the Vitali Covering Lemma, we can ensure that
By—x-3 (ka) N Bg—k—s(xk,iz) = @, V1,19 € {1, e ,mk}, 11 7& 19. (4.17)

Let ¥ be a compact Riemann surface. By uniformization, we can endow X with
a Riemannian metric of constant Gaussian curvature +1, 0 or —1. Let A = A(X) be

as in Lemma 4.4.1 and p = p(X) > 0 be as in Lemma 4.2.1. We inductively define
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a sequence of numbers
{r,}c2M={1,271272 ...}
and a sequence of finite energy maps
{ul ¥ = X}
forl=0,...,A,n=1,...,00 as follows:

INITIAL STEP 0: Fix k¢ € N such that By-«,(x) is homeomorphic to a disk for
all z € ¥. Let u) := o € CO'NWH(X, X), and let

ro =sup{r > 0:Vz € £,3P € X such that u(Bs(z)) C Bs-s,(P)}

and k{, > 0 be such that
27h0 < < 27kt

Define
ro = 27F0 = min{2 %0 27x0},

and let

mko

Ok‘o = {BTO (xko,i)}izl and [Iioa SR 7[]?0

be as in Definition 4.4.2. For [ € {1,...,A} inductively define u} : ¥ — X from u}*
by setting
l { W S\ Uy Bon ()

Uy =
0 .
Dir, -1 : : l
uy - in Boyy(w, i), 0 € I

where Pyt is the unique Dirichlet solution in Wil;l (Bary (Tkyi), Bo(P)) of Lemma
4.2.1. Here there are two things to check related to the definition of the Dirichlet solu-
tion. First, since Boyy(Troi; ) N Borg (Thois) = 0, Viv,ip € I} with iy # iy (cf. (4.16)),
there is no issue of interaction between solutions at a single step so the map is well-
defined if it exists. Second, we claim that uy ' (Bay (ko)) C Bs-ara-1,(P) C B,(P)
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for some P € X and thus the Dirichlet solution exists and is unique by Lemma 4.2.1.
To verify the claim, first note that for each i = 1,...,my, there exists P € X such
that uf(Bar (Tro,i)) C Ba-a+1,(P). Indeed, if Boy (o) VBarg(Tr,;) = O forall j € I}
then uf = uf on Boy(Tk,:) and s0 uf(Bary (ki) = u)(Bary(Tkyi)) C Ba-a,(P) for
some P. On the other hand, if By (2ky,i) N Bary(Tr,,;) 7 @ for one or more j € I}, ,
then since w)(Bay, (Tky,i)) C Bs-a,(P) for some P and uy(Bayy (k) C Bs-a,(P;) for
some P; with Bs-a,(P) N By-a,(P;) # 0, it follows that uj(Bay,(Txy ) C Bs-as+1,(P).
Inductively, we may show that for each i = 1,... ,my, and [ € {1,... A} there exists
P € X such that u " (Bay, (k1)) C Bg-a+a-1,(P), as claimed.

INDUCTIVE STEP n: Having defined

-N
7'0,---,7’”7162 )
and
0 1 A —
Uy, Uy, ... U, 20— X, v=0,1,...,n—1,
we set u® = u® | and define
rn €2 N and wl, ... ud

as follows. Let
r, =sup{r > 0:Vaz € X,3P € X such that u, (B, (x)) C Bs-a,(P)}

and k], € N be such that

27 <yl < 27kt

Define

Tn = 271{" = min{27k£l, 27'%}.

Let
Okn = {Brn (kal)}zikf a'nd Ié,ﬂ R 7]]?”
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be as in Definition 4.4.2. Having defined %, ... ul-1, we now define u!, : ¥ — X by

9 n Y

setting
! Uy, in X\ Uiepr Bar, (2h,.4)
u, = . n
" D”ufjl in BQTn (.’J‘kai>, 1€ []l%
where P"y!~1 is the unique Dirichlet solution in W;l’%1<327«n (zg,.1), B,(P)) for some

P of Lemma 4.2.1.

This completes the inductive construction of the sequence {u’}. Note that

Thus, there exists Ey such that

lim E(ul) = Fy,, VI=0,...,A. (4.18)

n—o0

We consider the following two cases separately:
CASE 1: liminf,_,. 7, > 0.

CASE 2: liminf,_,o 7, = 0.

For CASE 1, we prove that there exists a harmonic map u : ¥ — X homotopic to

¢ = u). We will need the following two claims.
Claim 4.4.3. For any [ € {0,...A — 1},
A

lim [|d(u, )] 2(sy = 0.
n—oo

Proof. Fix 1 € {0,...,A—1}. Forne N, A e {{+1,...,A} and i € I}, , we apply
_ A
= un‘BQTn(xkn,i)

Theorem B.2.1 with vy = u;\fl‘B2 (. ) and Q = By, (7, ). Let
N S W |

w : 3 — X be the map defined as w = u;, = u;~" outside Uie[@ B, (v, ) and the
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map corresponding to w in Theorem B.2.1 in each By, (2, ;). Then

(cos® p) /
Boay, (%, i)

1
<z / ]Vuﬁ‘”%lu—l—/ |Vur|*dp —/ |Vw|?dp.
2 Bory, (T, i) Bor, (g, i) Bory, (T, i)

Summing over i, using that w = u), = u)~" outside J, 1 Bor,(zy,), and applying

2

tan 2d(uv) 1, w}

cos R

\Y

the Poincaré inequality, we obtain

[ e an < o (3B + 3B - Bw)

where here and henceforth C' is a constant independent of n. Since u) is harmonic
in UZ.GI? Bo,., (w1, 1), we have E(u)}) < E(w). Hence

[ et i< e (3E0 - SEw).
)

Thus,
A 2
[otoheatian < [ (3 i) a
= = \a=i+1
A
< (-0 Y [P
A=l417
A
< 03 (B - Bw)
A=l+1

= C(B(uy) — B(uy))

This proves the claim since lim, o (E(ul) — E(u4)) = 0 by (4.18). O

Claim 4.4.4. Let € > 0 such that 3™%¢ < p, € {1,...,A} and n € N be given. If

7



0 € (0,ry,) is such that

8 L (ug) —A
— 2 <3 4.19
logd—2 — © (4.19)

then

!
Ve U U B,, (xy,:), 3P € X such that uln(B(;A(:c)) C Bs (P).

A=liery
In particular, for | = A, Vz € 3, 3P € X such that u’(Bsa(x)) C Bs(P).

Proof. Fix €, I, n and let § be as in (4.19). For z € |J'\_, Uie[,j B,, (z, i), there
exists A € {1,...,1} such that € B, (xy, ) for some ¢ € I} and hence

BT‘n ('CC) C BQT‘TL (Ikrui) .

A

Since

is harmonic in By, (2, ), it is harmonic in B, (z). By the Courant-

Lebesgue Lemma, there exists
Rl(x) S (5276)

such that
Up (OB, ) (x)) C Bs-a(P,) for some P, € X.

A
n

Since u is a Dirichlet solution and 37*¢ < p, by Lemma 4.2.1
U::L(Btﬂ(x)) C uz(BRMa:)(x)) - 83_A6(P1)'
Next, by the Courant-Lebesgue Lemma, there exists

Ry(z) € (6°,6%)

such that
Up T (OBRy(2) (7)) C Ba-a(Py) for some Py € X. (4.20)
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There are two cases to consider:

Case a. Bp,(x)N Uiel’i\+1 By, (x1,:) = 0. In this case, up™ = u), in Bp,(z).

Since u; is harmonic on this ball,

Uy (Bry(a) (%)) = tp(Bry(w) (7)) C p(Bg2(2)) C Byac(P1)-

n

In this case we let P, = P,.

Case b. Bpry)(z) N Ui612+1 Boy, (w1,:) # 0. In this case, u)™ is only piecewise

n

harmonic on Bg,(;)(z). The regions of harmonicity are of two types. On the re-

gion Q = BRz(x)(x)\Uiel,j“ Bo,, (Tr,.4), we have u)™' = u}. As in Case a, we

conclude that the image of this region is contained in Bz-a.(P;). All other regions,
which we index €2;, have two smooth boundary components, one on the interior of
Bp, () (), which we label v;, and one on 0B, (), which we label 3;. By construc-
A1 A

= u, on ~y;, thus

tion u;, "

up ™ () C Byad(P).
Moreover, u)1(8;) C By-a.(Py) by (4.20). Notice that in this case,
Bs-ac(Py) N Bs-a () # 0.

Thus, by the triangle inequality there exists P» € X such that

n

u/\—H(UieI;‘“ 8QZ) C BngHE(Pg).

A+1

Since u;,

is harmonic on each €2;,
u7>;+1(UZ-€II?+1Qi) C By-as1(F2).
Since B, (z) = QU Uiep+ Q,

Uf\l—’—l(BRQ(I)(ZL')) C 837A+16(P2).
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Thus, we have shown that in either Case a or Case b,

u2+1 (B(;Zi (l’)) C uﬁ“ (BRZ(QE) (l‘)) C Bg—A+1€(P2).

A+2 l

After iterating this argument for u;, ™, ... u,,

X such that

we conclude that there exists P,_ 1 €

U;(B(;A (33)) C U;(B(;l—/\-ﬂ (x)) C B3—A+Z—A6(B_)\+1) C B3e(Pl—>\+1)-

Letting P = P,_,,1, we obtain the assertion of Claim 4.4.4. O

Since liminf,, ., r, > 0, there exist £ € N and an increasing sequence {nj};?‘;l -

N such that r,; = 27 (or equivalently kn, = k). In particular, the covering used for

STEP n; in the inductive construction of u?l]_, ... ud is the same forall j =1,2,....

Y nj

Thus, we can use the following notation for simplicity:
O =0y, I'=1;, B;= B,, (vy,,) and tB; = By, (y, ;) for t € RT.

With this notation, Claim 4.4.4 implies that for a fixed [ € {1,..., A},

I
{u;]} is an equicontinuous family of maps on B! := U U B;. (4.21)
A=1ielA

In particular, {uﬁ%} is an equicontinuous family of maps in ¥. By taking a further

subsequence if necessary, we can assume that
Ju € C°(X, X) such that uﬁj = u. (4.22)
We claim that for every [ € {1,..., A},
uy,, = u on B where u is as in (4.22). (4.23)

Indeed, if (4.23) is not true, consider a subsequence of {uilj} that does not converge
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to u. By (4.21), we can assume (by taking a further subsequence if necessary) that
Jv : B' = X such that uflj = v # ulp.
Combining this with (4.22) and Claim 4.4.3, we conclude that
|d(v, u)l|L2py = jh_{go Hd(ufljauﬁj)ﬂm(gl) < jlggo lld(us,,. U%)HLQ(E) =0

which in turn implies that « = v. This contradiction proves (4.23).

Finally, we are ready to prove the harmonicity of u. For an arbitrary point
x € X, there exists [ € {1,...,A} and i € I' such that = € B;. Since u;j is energy
minimizing in B; and uﬁlj = win B; by (4.23), Lemma 4.2.2 implies that u is energy
minimizing in %BZ-.

The map wu is homotopic to ¢ since it is a uniform limit of uﬁj each of which is
homotopic to ¢. This completes the proof for CASE 1 as u is the desired harmonic

map homotopic to .

For CASE 2, we prove that there exists a non-constant harmonic map v : S? — X.

Recall that we have endowed ¥ with a metric g of constant Gaussian curvature
that is identically +1, 0 or —1. Fix

Y €2
and a local conformal chart
7:UCC—7nU)=Bi(y.) CX

such that
m(0) = .
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and the metric g = (g;;) of X expressed with respect to this local coordinates satisfies
9i;(0) = 6i;. (4.24)
For each n, the definition of 7, implies that we can find y,, v/, € ¥ with
2rn < dy(yn, yp) < 4rn
where d, is the distance function on X induced by the metric g, and
d(up(yn), 1 (y,)) = 37"p.

Since X is a compact Riemannian surface of constant Gaussian curvature, there exists

an isometry ¢, : ¥ — 3 such that ¢,,(y.) = y,. Define the conformal coordinate chart
U CC—m(U) = Bi(y,) C %, Tn(2) == tp o m(2).

Thus,
7Tn<0) = Yn-
Define the dilatation map
U,:C—C, V,(2) =7,z
and set Q,, := V1 or 1(B;(y,)) C C and
i Q. = X, a=uom oW,

Since liminf,,_,., r, = 0, there exists a subsequence

{rn,} such that jli_)rgo Tn; = 0. (4.25)
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Thus, Q,,  C. Furthermore, (4.24) implies that

li =1
= [ ()]
Hence, for z, = ¥, o, (yl,),
2 < lim |z, | <4 (4.26)
j—o0
and
d(ty, (z0;), @y, (0)) = d(uy (vt (yn;) = 37", (4.27)

Additionally, by the conformal invariance of energy, we have that
Ew):ﬂ%h%ﬂgm@y (4.28)

For R > 0, let
Dr:={z€C:|z| < R}.

Since harmonicity is invariant under conformal transformations of the domain, we
can follow CASE 1 (cf. (??7), (?7) and (4.22)) and prove that

(@ _y, @ )| r2(pg) — 0,

~ A7 oo . . . .
{t, }ol,,, is an equicontinuous family in Dy

for some ng, and
dugr : D — X such that ﬁﬁ = up in Dpg. (4.29)

Below, we will prove harmonicity of 4z by following a similar proof to CASE 1. We

first need the following lemma.

Lemma 4.4.5. Let Oy, be as in Definition 4.4.2. For a fived R > 0, there exists M
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independent of n such that for every n € N,
{i : Bo-tn (21,.) O (mn © W (D)) # 0} < M.

Proof. By (4.24),

. V01(7Tn o \Iln(DQR)) _
e P R
and
lim VO].(B27kn—3($n7i>) —1

n—oo 7T2_2kn_6
where Vol is the volume in 3. Let J C {1,...,mg, } be such that

J ={i: By-rn(xp, ) N (7 0V, (Dpg)) # 0}.
By (4.17), we have that for sufficiently large k,,

| J[w272 6 < 2y " NVol(By-su-s(, 1))
icJ

< 2Vol(m, o U, (Dsp))
< 167 R*27 %,

Hence |J| < R?2™ and { By, (4, i) }ics covers Dg. O

For each By-i. (2, i) € O, , let

B?’L,i = \I/_l © 7T1:1<B27kn (mk'llui))

n

and

QBn,i = \Ifgl o 71';1(32—1@”4—1(%%72'))
for notational simplicity. After renumbering, Lemma 4.4.5 implies that there exists
M = M(R) such that

M
DR C Uénﬂ

i=1
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If we write
L (Ry={iel, :i<M} Vi=1,...,A,
then
A
Dgr C U U Bn,i~
I=lier} (R)

Choose a subsequence of (4.25), which we will denote again by {n,}, such that

Ulorm l(xknj,i) —7; Vie{l,...,M}

and such that for each [ =1,..., A, the sets
I'=1I (Ry={iel, :i<M}

are equal for all k,,;. Unlike CASE 1, where Brnj (a:knj ) 1s the same ball B; for all j,
the sets By, i, Bn, ., - .. are not necessarily the same. Since the component functions
of the pullback metric W7, g converge uniformly to those of the standard Euclidean
metric go on C by (4.24) and B, ; with respect to ¥} g is a ball of radius 1, B, ;
with respect to gy is close to being a ball of radius 1 in the following sense: for all
e > 0, there exists J large enough such that for all j > J, By_(%;) C Bgnjﬂ- for
i=1,...,M. Choose ¢ > 0 sufficiently small such that Dp C Uf\il Bi1_(Z;). Then

choose J as above. Set

Bi = m anﬂ' D) Bl—e(fi) and t.éz = m tBn]-,i fort € R+.
j=J jzJ

Then . R
prclB=lJ U B (4.30)
=1 =1

i€I'(R)
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Using (4.30), we can now follow CASE 1 (cf. (4.23)) to prove that for I € {1,..., A},

l
it, = iip on | J | J B; where iip is as in (4.29). (4.31)

A=14efA

Let # € Dg. There exists [ € {1,...,A} and i € I' such that = € B; by (4.30).
I

nj

is a energy minimizing on 2B, ;. Since B; C B,,; C 2B, ; and ﬁil], = ug on B;

Since harmonicity is invariant under conformal transformations of the domain, u

by (4.31), Lemma 4.2.2 implies that @ is energy minimizing on %Bl Since z is an

arbitrary point in Dg, we have shown that 4y is harmonic on Dp.

n

Finally, by the conformal invariance of energy, E(il) = E (UH By )) < E(u)).

By the lower semicontinuity of energy and (4.28), we have
E(ig) < E(up). (4.32)

By considering a compact exhaustion {Dym }°°_; of C and a diagonalization pro-

cedure, we prove the existence of a harmonic map @ : C — X. By (4.32),
E(a) < E(ug).

It follows from (4.26) and (4.27) that @ is nonconstant. Thus, CASE 2 is complete
by applying the removable singularity result Corollary 4.3.1.
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Appendix A

The Dimension of the Space of
Harmonic 1-Forms with Dirichlet

Boundary Condition

It is well-known, we believe, that if M is a surface with boundary OM # (), genus g
and k boundary components, then dim HL (M) = 2g + k — 1, but this result seems
difficult to find in the literature. We give a proof here for completeness. When M is
a surface, it follows from Lefschetz duality that dim H}, (M) = dim H% (M), where
H5L (M) is the space of harmonic 1-forms on M which satisfy the relative boundary
conditions:

*w = i*6w = 0,

where i : M < M is the inclusion. So, to prove that dim H (M) =29 +k — 1, we
will show that dim H, (M) =29 + k — 1.

Lemma A.0.6. Let M be an orientable surface of genus g with k boundary compo-
nents. Then dimH},(M) =29+ k — 1.

Proof. Let EH},(M) denote the subspace of harmonic fields with Dirichlet boundary

conditions which are exact. Then,
Hip(M) = EHB(M) @ (EH(M))",
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and dim H}, (M) = dim EH, (M) +dim (EH}:)(M))L. We claim that dim EH} (M) =
k —1 and dim (cﬁ'?—[}:)(M))L = 2g.

For the first claim, if w € EH} (M), then there is a function u € C*°(M) for
which w = du. Since w is a harmonic field with Dirichlet boundary conditions, it
follows that w is a harmonic function and is constant on the boundary. If we write
the boundary as a disjoint union of k curves, OM =Ty U--- U T, then we get that

ulp, = ¢;, for some constant ¢;, i = 1,...k. Now, the Dirichlet problem

Au =10
Ujr; = Ci,
has a unique solution for each choice of (cy,...,cx) (see pg. 307 of [66]). Let

k
F = {UEC’OO(M) ‘ AuzO,u|pi:ci,izl...k,Zci:O}.
i=1

It easy to see that the differential d|r : F — EHL(M) is linear and bijective, and so
dimEHL(M) = dim F =k — 1.

Let M be a smooth Riemannian manifold obtained from M by gluing a disk into
each of its boundary curves I';. To prove the second claim, we will construct an
isomorphism between (EHp,(M ))L and H'(M). The result will then follow from the
fact that there are 2g cohomology classes of closed forms on M.

Let § € Q(M) be a closed form. We'll first show that there is a closed form
© € Q(M) supported on M which is cohomologous to #. To see this, let D;, i =
1,...,k, be a disk slightly larger than and containing D;, and let ¢; be a smooth
cut-off function for which ¢;|p, = 1 and ¢i|M\ p, = 0. Since D; is simply-connected,
0|, = df; for some smooth functions f;. Let © = 0 — S d(¢if;). Then &|p, = 0
and do = 0, so @ is a closed form in Q(M) with compact support. Since Zle d(¢; f;)
is exact, it follows that # and @ are cohomologous. For simplicity, we will suppress
the restriction notation and write @|y; by @. Now, we claim that any closed form

@ € Q(M) with compact support is cohomologous to a form wy € (EHp(M))*t. To
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see this, let u be a solution to the Poisson problem

and define w = W+du. Then, w is harmonic, since Aw = Av+Adu = ddw+0—dAu =
0. Moreover, i*w = i*© + d(i*u) = 0, so w satisfies the Dirichlet boundary condition.
Now, w = wp + dv for some wy € (EHp(M))* and dv € EHp(M). Hence, wy is
cohomologous to w, and therefore @ and 6. Note that wy is unique, i.e., for any
closed form 6 € Q(M), there is a unique wy € (EHp(M))* for which wy ~ 6. If
wg,wg € (EHL(M))* are two such forms, then w} ~ 6 ~ w2. Hence, w — wi = d(,
for some smooth function ¢. However, wl — w? € (EHP(M))t C (EQ(M))* and
d¢ € EQ(M), so it follows that w} = w?.

Let £ : H' (M) — (EH},(M))* be the map [f] — wy (as above). Note that it
follows from the uniqueness of wy that £ is well-defined and linear.

Now, L is also injective. If L([0;]) = L([02]), then 61 + du; = 0 + dus, for some
smooth functions uy, ue, which yields 6; ~ 6,.

Finally, £ is surjective. Suppose wg € (gHb(M))L. Then, since i*wy = 0,

/ Wo = 07
oM

and it follows that wy is exact in a neighbourhood of each boundary curve, i.e.,
wg = d1; in a neighbourhood of T';. Since we can extend each 1; smoothly over D,
we can extend wy to a closed form 6 € M. It follows from the well-definedness of £
that £ does not depend on the choice of D; or ¢;, i = 1,...k. Hence, £([f]) = wp. O

96



Appendix B

Quadrilateral Estimates and

Energy Convexity

B.1 Quadrilateral estimates

In this section, we include several estimates for quadrilaterals in a CAT(1) space. The
estimates are stated in the unpublished thesis [60] without proof. As the calculations
were not obvious, we include our proofs for the convenience of the reader. References
to the location of each estimate in [60] are also included.

The first lemma is a result of Reshetnyak which will be essential in later estimates.
Lemma B.1.1 ([51, Lemma 2]). Let OPQRS be a quadrilateral in X. Then the

sum of the length of diagonals in OOPQRS can be estimated as follows:

1 1
COS dPR -+ cos dQS 2 —Q(d%Q + d2RS) + 1(1 -+ cos dpg)(dQR — dps)2 (B 1)

—+ cos dQR -+ cos dps + Cub (dpQ, dRS; dQR — dgp) .

Proof. Tt suffices to prove the inequality holds for a quadrilateral OPQRS in S?. By

viewing S? as a unit sphere in R3, the points P, Q, R, S determine a quadrilateral in
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R3. Applying the identity for the quadrilateral in R? (cf. [40, Corollary 2.1.3]),
e e S, S e B T
PR 4+ QS <PQ +QR +RS +SP —(SP—-QR)
where AB denotes the Euclidean distance between A and B in R®. To prove this,
consider the vectors A=Q —-P,B=R—-Q,C=S—R,D=P—S5. Then
S S — 1
PR +QS = 5 ([A+ B +|C+ DI +[B+CP + D+ AP)
= AP+ |BP+|C*+|DP+(A-B+C-B+D-A+D-C)

= |A]* + B> +|C|* + |D|* — |B+ DJ?* since A+ B+C+ D =0
< [AP+ B +|C* +|D]> = |B| - |D||".

Note that E2 =2 — 2cosdyp, we obtain

cosdpr + cosdgs = —2 + cosdpg + cosdprs + cosdgr + cosdpg

1

2
—|—§ <\/2—2cosdQR— \/2—2COSdSP) )

The lemma follows from the following Taylor expansion:

1 1
—2 + cosdpg + cosdrs = —§d3»@ — §d§5 + O(dgpg + dpg)

2 ind 2
(\/2_2605%1%—\/2—200861313) = (\/%(dQR_dSP)‘FO((dQR_dSP>2)>

1+ cosdpg

= T(dQR — dsp)2 + O ((dQR - dSP)g) :

]

Lemma B.1.2 ([60, Estimate I, Page 11]). Let OPQRS be a quadrilateral in the
CAT(1) space X. Let P% be the mid-point between P and S, and let Q% be the
mad-point between ) and R. Then

d
o () 0y 7y

1
2 (dZPQ + dfg) — Z(dQR — dpg)?

1
2
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+ Cub (dpq, dns, d(Py, Qy), dr — dsp)

1
2

Proof. As a direct consequence of the law of cosines (see Figure B.1), we have the

following inequalities

cosd(Q%,P%) >« (COSd(Q%,S) + COSd(Q%,P))
Ccos d(Q%, S) > B (cosdprs + cosdgs)
oS d(Q%, P) > B (cosdrp + cosdgp)
where
a= L — and (= 1d
2cos (52) 2 cos %)
@
Q ‘ R
P P S

Figure B.1: An illustration of the quadrilateral JPQRS from Lemma B.1.2.
Combining the above inequalities yields

cos d(Q%, P%) > aff (cosdrs + cosdgs + cosdrp + cosdgp) -

We apply (B.1) for the sum of diagonals cos dgs + cos dgp and Taylor expansion for
cosdps and cosdgp. It yields

1
cos d(Q%, P%) > af (2 — (d%Q + d%e) + 1(1 + cos dps)(dgr — dps)? + cos dgr -+ cos dps)

+ Cub (dpQ, dRS; dQR — dsp)
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1
=af (2 + cos dQR + cosdpg + Z(l + cos dps)(dQR — dp5)2>

— Oéﬁ(d?aQ —+ d?%S) + CUb (dpQ, dRS; dQR — dsp) .
Note that

1
2+ cos dQR -+ cos dps + Z(l -+ cos dps)<dQR — dpg)2

d d 1 d
= 2(cos? % + cos? %S) + = cos? %S(dQR — dpg)?

2
d dps '\’ d dps 1 ,d
=2 (COS% —COS%S) +4COS%COS%S+§COS2%S(CZQR—CZPS)2
1 d d d 1 d
=3 sin? %S(dQR —dpg)? + 4cos % cos %S + 5 cos? %S(dQR — dpg)?

+ O(ldgr — dps|”)

1 d d
= é(dQR —dps)* + 4608% cos% + O(ldgr — dps|?).

Since a8 = o* + O(|dgr — dps|), we have
1
COS d(Q%, P%) > 1-— 042(d12DQ + d%{S) + §Oé2(dQR — dpg>2 + Cub (dpQ, dRS7 dQR — dsp) .

The lemma follows as

d?(Q1, P
TR 0wy )

cosd(Qy, P1) =1-
O

Definition B.1.3. Given a metric space (X, d) and a geodesic ypg with dpg < T,
for 7 € [0,1] let (1 — 7)P + 7Q denote the point on ypg at distance T7dpg from P.
That is

d(1—=71)P+7Q,P) = 1dpg.

Lemma B.1.4 (cf. [60, Estimate II, Page 13]). Let APQS be a triangle in the
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CAT(1) space X. For a pair of numbers 0 < n,n <1 define

Py=(0-7)P+nQ
Sn = (1 - 77)5+77Q-

Then

sin*((1 — n)dgs)
Sin2 dQS
+ ((1 = n)(dgs — dop) + (1 —n)dgs)” + Cub (dps, dgs — dop.n — 1) .

d*(Py, 8y) < (dbs — (dgs — dor)?)

Proof. Again we prove the inequality for a quadrilateral on S?. Denote z = dgs and

y = dgp. Denote

 sin(ndgs) _ sin(nx) 5, = sin(n'dop)  sin(n'y)
sindgs sinx g sindgp siny

Q s, S

Figure B.2: An illustration of the triangle APQ.S, and the points S, and P, from
Lemma B.1.4.

By the law of cosines on the sphere (see Figure B.2),

cosdpg = cosx cosy + sinzsiny cos § = cos(x — y) + sinxsiny(cosf — 1)
cosd(Py, S,) > cos((1 —n)z) cos((1 —n')y) + sin((1 — n)x) sin((1 — n")y) cos
= cos((1 —n)z — (1 —n)y) +sin((1 — n)z) sin((1 — 7')y)(cos § — 1),

where 6 denotes the angle ZPQS on S%. Substituting the term (cos — 1) of the
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second inequality with the one in the first identity, we obtain

cosd(Py, S,) > cos((1 —n)z — (1 —n')y) + a1—,f1—y (cos dps — cos(z — y))
cos (1 =n)(z —y)+ (0 =z + (f —n)(y —z))
+ a2

_y(cosdps — cos(z — y))

+ a1 (B1—y — a1-y)(cos dps — cos(z — y)).

Using the Taylor expansion cosa = 1 — % +O(a*) and (B1—y — a1—y) = O(I — ]+

|x —y|), we derive

(A=nE -y + O -—nz)?  , dps | (x—y)*
cosd(Py,S,) >1— 5 +a? <_ 25 4 - )

+ CUb(W - T]|7 |‘T - y|7dPS) :

It implies that

d*(Py, Sy) < i, (dps — (2 = y)*) + (L = n)(x —y) + (n —n)x)?
+ Cub (I = nl, |z —yl. dps) -

]

Corollary B.1.1. Let u: Q — B,(Q) be a finite energy map and n € CF (£, [0,1]).
Define 0 : Q — B,(Q) as

W(z) = (1= n(z))ulz) +n(z)Q.
Then @ has finite energy, and for any smooth vector field W € T'(2) we have

sin(1 —n)R"
sin R¥

@ (W) < ( ) (WP = [V B*2) + [V (1 — )R]

where R*(x) = d(u(x), Q).
Note that every error term that appeared in Lemma B.1.4 will converge to the
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product of an L! function and a term that goes to zero. So all error terms vanish

when taking limits.

Lemma B.1.5 (cf. [60, Estimate III, page 19]). Let OPQRS be a quadrilateral in
a CAT(1) space X. Forn',n € [0,1] define

Qy=0-7)Q+nR, P,=(1-n)P+nS.
Then

dz(Qn’v Pn) + dZ(Ql—n’a Pl—n)
1
< (1 + 2ndps tan<§dps)) (d?aQ + d%s)
2 2

+2(2n = 1)(0 = n)dps(dor — dps)
+ n*Quad(dpg, drs, dor — dps) + Cub (dgr — dps, dpg, drs,n — 1)

1 1
— 27] (1 + —dps tan(—dps)) (dQR — dp5)2

Proof. For notation simplicity, we denote

sin(nz) 5, = sin(n'y)
sing ’ ! siny

xr = dps, Yy = dgr. ap =

Apply [60, Definition 1.6] to each of the blue, red, and yellow triangles in Figure B.3
below.
We derive

cosd(Q1—y, Pi—y) > aycosd(Qi_y,S) + cn_ycosd(Qi_,y, P)

> ay(By cosdgp + Pr_y cosdsg) + a1y (By cosdpr + Bi_y cosdpg).

Compute similarly for d(Q,,, P,) for the highlighted triangles below:
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P

Figure B.3: An illustration of the quadrilateral OPQRS, and the points P,, P;_,,
Q. and @1,y from Lemma B.1.5.

R

We derive

cos d(Q,y, P,) > ayycosd(Qyy, P) + ay—pycosd(Qyy, S)

> oy (By cosdpg + Bi_y cosdpr) + a1—p(By cosdsg + S1—yy cosdsr).
Adding the above two inequalities, we obtain

cos d(Q1—y, Pi—y) + cosd(Q,y, P,)

> (ayBy + a1—yBi_sy)(cosdpg + cosdsr) + (ayBi_y + 1By )(cosdpr + cosdsg).
(B.2)

Applying (B.1) to the term cosdpgr + cosdgq and using Taylor expansion, the
inequality (B.2) becomes

@_C@_R)

cosd(Q1—y, Pi—y) + cos d(Qy, ) = (B + c1—pBi—ry) (2 Ty 9
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+ (apBriy + a1y By) <_%

+ (B + 1y Byy) (cos dgr + cos dps)
+ Cub (dpQ, dRS; dQR — dgp) .

1
(d?:)Q + d%R) + 1(1 —+ cos dps)(dQR — dps)Q)

Hence,

cosd(Qi—wy, Pi_y) + cosd(Q,y, P,)
1
> _5(0417517’ + a1y Sy + apbiy + O‘I—nﬁn’xd%@ + d%R) (B.3)

+ 2(0‘77577’ + al—nﬁl—n’) + (B + al_nﬁn/)(cos dqr + cos dps)
(B.4)

1
+ Z(aﬂﬁlfﬁ’ + al—nﬁn/)(l -+ cos dps)(dQR — dp5)2 (B5)

+ Cub (dPQ, ng, dQR — dsp) .

We need the following elementary trigonometric identities to compute (B.3),
(B.4), (B.5):

_sin(n — Dazsin(y’ — 1)y cos(n — 3)zcos(n’ — 1)y
By + 11y = 2sin 1o sin 1 i 2 1 1
5 5Y COS 5 COS 5
__sinfn— besinty ~ 3y cosln — Hhweosty ~ By
Od??ﬁl*ﬁ' + O‘lfnﬁn’ = - 5 sin Lz sin L + 5 T T
3 SY COS 3T COS 5

cos(n — 3)z ? 1 9
———— | =1+2nztan-z+ O(n°).
COS 5% 2

Noting that

3)zcos(n — 3)y

1 1
COS 5T COS 5 Y

cos(n —

anﬁn’ + 041—7751—7]’ + 047751—17’ + al—nﬁn’ =

1

_ (wf +O(n =1 + |z — yl)

COS 5?E
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1
= L+ 20z tan(5) + O’ + |n = n'| + |z = yl),
we obtain for (B.3)

1
- Q(O‘nﬁn’ + 1By + apbiy + O‘I—nﬁn’)(d%’Q + d%R)

1 1
=75 (1 + 2nz tan(éx)) (d%’Q +dép) + O ((772 +n—nl+]z - y|)<d§3Q + d%R)) :
Lemma B.1.6. We can compute (B.4) as follows:

2(a By + O‘I—nﬂl—n’) + (O‘nﬂl—n’ + al—nﬁn’)(cos T + cosy)

. (<n—§><y—x>+<n'—n>x)2+

cos?(n — 3)x

sin®(n — )z

2 2
cos (zx)(xr —
4 Si]i2 % ( )( y)

2

1
Tood L S (Go) (@ = 9)* + Oz =yl (e =yl + 1 = n))).
2

Proof.

2(ay By + a1—y iy ) + (0 B1—yy + @1_p By ) (cos x + cosy)
B sin(n — %)x sin(n’ — %)y
= 1 (
EZL' S1n iy
cos(n — %)x cos(n' — %)y(
1

1
2 cos 5 cos 3y

: 2 — cosx — cosy)
2sin

/

2 + cosx + cosy).

Note that

2 — 2(sin 22 + 2(sin Ly)? = 2 (25in Swsin Ly + (sin 2z — sin 2)?
COS T COSYy = S1n 2.1: S1n 2y = S1n 2[13' S1n 2y Sin 21’ Sin 2y

1 1 1 1
= 4sin 5% sin JY + §(cos §x)2(x — )%+ O(Jx — y|*)

1, 1, 11 1 1,
2 + cosx + cosy = 2(cos §x) + 2(cos §y) =2 2cos ST cos oy + (cos 5% — cos §y)

1 1 1 1
= 4 cos 57 €08 5y + é(sin 533)2(:6 —)*+O0(jz —y)?),
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where we apply Taylor expansion in the last equality. Hence we have

2(0 By 4+ a1—y iy ) + (yBi—y + 1By ) (cos T + cosy)

. 1 . 1 1 1
=2 (sm(n — 5)1) sin(n’ — §)y + cos(n — =)z cos(n’ — §)y>

2
sin?(n — Lz 1 cos?(n — Hx 1
2 2 2 2 : 2 2
4 sin? %x (cos o) (w —y)"+ 4 cos? %x (sin 5:1:) (v =)

+ O(|z — y*(|lz — y| + 0" —nl)).

Here we use the estimates

sin(n — 3)z sin(n

1
2sm2

I l) in2(n — L

y sin®(n— 3)x
2= — ———— 72— =0(n—1|+ |z —y|)
rsin 5y 2sin” sx

2

and
!

cos(n — 3)zcos(n' — 3)y B cos?(n — 3)x

=O(ln—7'| + |z — y|).
2cos 2z cos 3y 2 cos? 1 (In =l + [z —yl)

Observe that

1 1 1 1
GmW—§ﬁ$M#—§M+f%w—§ﬁﬂﬂﬂ—§w>

ZC%<m—%ﬂy—@+%#—nﬂ+ﬁf—mw—x0

and use cosa = 1 — < + O(a*). O

Lemma B.1.7. Adding the terms in the previous computational lemma that contain

(x —y)? to (B.5), we have the following estimate:

A By + a1_yBy)(1 + cos ) (x — y)?
1

4
1, ,  sin*(np—3%z  , 1
Tl T, G

cos?(n — %)z 1
2)T . o 2
4cos? s o (§x)(x —v)

z)(z —y)* +

1 1
=n(1+ grtan S)(@ = y)* + O(le = yP*(n* + o =yl + [n = ])).
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Proof. Noting that 1 + cosz = 2 cos?(3x), we have that

iy + @B (1+ cosa)(w — )
. 2 2
_ i <_ (smgn—%j)x) N (Coségs—%j)x) > COSQ(%x)(I )
+O(lz —yl*(In — | + |z — y]))-
Therefore,

L Bryy + c1nBy) (1 + cos z)(z — y)?

4
1, ) sinQ(n—%)x 5,1 ) COS2(77—%)$ ! )
(n=3)(@ -y + . cos(52)(x —y)" + Teos® Lo sin”(52)(z — y)
cos?(n — 2)x 1
= | ——5 =5 (@ =y + Oz —yl’(In— 7| + |z — yl))
4 cos 3 2

1 1 1 1
= (3 goetan e = (< ) (0= 9P+ 0e = o067 + 1+ 1o = o).

Combing the above computations, we have that

1 1
cosd(Q1—y, Pi_y) + cosd(Q,y, P,) > 2 — B <1 + 2ndps tan(§dpg)) (dpg + dip)

1 1
+ 77(1 + §dp5 tan §dps)(dQR — dp5)2

—(2n—1)(n' — n)dps(dgr — dps)
+ n*Quad(dpg, drs, dor — dps)
+ Cub (dgr — dps,dpg. drs,n’ — 7).

Taylor expansion gives the result. ]

Corollary B.1.2. Given a pair of finite energy maps ug,u; € WH(Q, X) with
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images u; () C B,(Q) and a function n € C}(), 0 <n < 1, define the maps

(1 =n(x))uo() + n(z)u (z)
ur—y () = n(@)uo(x) + (1 = n(x))u (x)
d(z) = d(uo(x), ur(x)).

up(x) =

Then w,, u1—, € WH*(Q, X) and

[V, | + [Vuy_|* < (1+ 2ndtan - )(\Vuo| + |V |?)

—2n(1 + than )|Val]2 —2dVn - Vd + Quad(n, |Vn)|).

B.2 Energy Convexity, Existence, Uniqueness, and

Subharmonicity

As with the previous section, the results in this section are stated in [60]. Excepting
the first theorem, they are stated without proof. As, again, the calculations are

non-trivial and tedious, we verify them for the reader.

Theorem B.2.1 ( [60, Proposition 1.15)). Let ug,us : Q — B,(0) be finite energy
maps with p € (0, %). Denote by

Then there exists a continuous function n(x) : Q — [0,1] such that the function
w Q—>B( ) defined by

w(z) = (1 = n(x))uy () +n(x)0

1
2
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is in WH2(Q, B,(0)) and satisfies

1
(COSSp)/ dpy < 5 (/ |Vu0|2d,ug+/ |Vu1|2dug) —/|Vw|2dug.
Q Q Q Q

Proof. Once the estimates in Lemma B.1.2 and Lemma B.1.4 are established, we

tan %d 2

cos R

\Y

proceed as in [60]. Choose 71 to satisfy

sin((1 = n(#)R@) __da)
sin R(x) 2

Note that 0 < n <1 and 7 is as smooth as d(x), R(z). It is straightforward to verify

that w € L} (2, B,(0)).
For W € I'(€2), consider the flow € — xz(¢) induced by W.

() uy ()

x(e)% (1‘;(6)) ur(z(€))
0

Figure B.4: An illustration of the quadrilateral OPQRS with P = ug(z(€)), Q =
up(z), R = uy(z) and S = uy(x(€)) used in the proof of Lemma B.2.1.

Applying Lemma B.1.2 to the quadrilateral determined by P = wg(z(e)),Q =
ug(z), R = ui(x),S = ui(x(e)) (see Figure B.4), divided by €*, and integrate the
resulting inequality against f € C2°(Q2) and taking € — 0, we obtain

(c0s ™52 ) Juyo (W) < 5 (1Cw0)- O+ ). (W) = [t

Note that the cubic terms vanish in the limit as every cubic term will be the product

of an L! function and d(z) — d(x(€)) or d(u;(z),u;(x(€))), i =0, 3, 1.

)9
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Applying Lemma B.1.4 to the triangle determined by Q = O, P = u%(m),S =
(x(€)) yields

.o < (LY g,

U1
2

)+ (WP = [VwRI®) + [V ((1 = n)R)[?

=

— (cos @) () (W) = [VwRI*) + [V (1 = ) R) .

The above two inequalities imply

w. (W) < % (1) (W) * + [(ur)(W)[?)

1 2 d(x) 2 2 2
—Z\de\ —|cos—— IVwR|"+ |V (1 =n)R)|".

By direct computation,

d(z)
2

d(z)
cos® R(x) cos® &2

)rvwm%uvwal—mﬂﬂ2

2
v tan @
1 — sin® R(z) cos? @ cos R(x)

1
— 1‘VWd|2 — (cos

The lemma follows from estimating

cos® R(z) cos* 4 d
(z) 2 > cos® R(z) cos* % > cos® p,

1 — sin? R(x) cos? @

dividing the resulting inequality by €2, integrating over S*~!, letting ¢ — 0, and then

integrating over €. ]

Theorem B.2.2 (Existence Theorem). For any p € (0,7%) and for any finite energy
map h : Q — B,(0) C X, there exists a unique element P"h € W,2*(Q, B,(O)) which
minimizes energy amongst all maps in W,"*(Q, B,(0)).

Moreover, for any o € (0, p), if P"h(0Q) C B,(O) then Pirh(Q) C B,(O).
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Proof. Denote by
Ey = inf{E(u) : u € W}*(Q,B,(0))}.

Let u; € Wh2(Q, B,(P)) such that F(u;) — Ey. By Theorem B.2.1, we have that

(cos® p) /Q

where wyy is the interpolation map defined by Theorem B.2.1. The above right hand

tan %d(uic(l‘), ug())
cos R

\%

’ dug < % (E(ur) + E(uw)) — E(wge),

side goes to 0 as k,¢ — oco. By the Poincaré inequality,

/ d(ug, ug) dpg — 0.
0

Thus the sequence {uy} is Cauchy and uj, — u for some u € W2(Q, B,(0)) because
Wt2(Q, B,(0)) is a complete metric space. By trace theory, u € WJ’Q(Q, B,(0)). By
lower semi-continuity of the energy, E(u) = Fy. The energy minimizer is unique by

energy convexity.

Finally, since p < 7, for any o € (0, p], the ball B,(0) is geodesically convex.

Therefore, the projection map 7, : B,(O) — B,(O) is well-defined and distance

decreasing. Thus, since P"h(Q) C B,(0), we can prove the final statement by

contradiction using the projection map to decrease energy. ]

Lemma B.2.3 (cf. [60, (2.5)]). Let up,us : Q@ — B,(Q) C X be finite energy
maps (possibly with different boundary values). For any given n € C°(Q) with
0 <1 < 1/2, there exists finite energy maps u,, t, € W2(Q, B,(Q)) and ui_, Uy, €
Wi, B,(Q)) such that

[ ity |* + [ (1) |* = [ (o) |* — | (ua)

d
< —2cos R"" cos R~V ( - an,,) - VF, 4+ Quad(n, Vn),

S111

where

d(x) = d(uo(z), ur (x))
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and

1 —cosd
F, = .
K \/cos Run cos Rv-n
Proof. Let n € C°(Q) satisfy 0 <n < 1/2. For 0 < ¢, < 1 that will be determined

below, we define the comparison maps

Uy = (1= ¢(2))uy(z) + o(2)Q
Uy = (1= 9(2))ur—y(2) + ¥ (2)Q,

where

uy(x) = (1 = n(z))uo(z) + n(x)us(z) and  wp(z) = n(x)uo(z) + (1 —n(z))ui(z).
By Corollary B.1.1,

. . sin(1 — ¢)R"n
)l + iy < (U2

Sin(l — w)RUIin i 2 UL—p |2
' ( sin R"1-n > (|m(ui—p)|” = VR B

+V((L = )R

) () — [VR™P) + [V (1 — §)R™)P

Define ¢ and v so that

sin?((1 — ¢)R%)
sin® Run
sin?((1 — ) R¥1-n)

sin? Ru1-n

d
=1—2ndtan 5t O(n?)

=1- 2ndtang +O(n?).
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sin(1—a)0

Since == =1 — af cot 6 + O(a?), we solve

tan R"n d tan R"1-7 d
T dtan§ and ¢ = RTdtan§

b=

Note that in particular wu,, @, € Wy*(Q, B,(Q)) and ui_,, i1, € W;*(Q, B,(Q)).
Together with the estimate for |7 (u,)|*+ |7 (u1_,)|? in Corollary B.1.2 (which also

explains the choice of ¢ and v in order to eliminate the coefficient), we have

| (i) |* + |7T(@1 n)|2 = | (uo)* — |m(us)]®

<-2(1+ Litan @ )|Vd|2—2dV77 Vd — (1 — 2ndtan - )(|VR“"|2+|VR“1 n|2)

t R“ d tan R%1-n d
+V(1 - a; dtan 5)R"[* 4 V(1 - agTdtan )R"7)2 + Quad(n, | Vn)).
Simplifying the expression and using 1 — sec?d = — tan?6 , we obtain

1 ~ ~
5 (I + |7T(u1_n)|2 — I (uo)|? — |m(w)[?)
d
S ,'7( (1 + = dtan )|Vd|2 dtan §(tan2 RUU|VRU7]|2 + tan2 Rul_n|VRu1_”|2)
d
= V(dtan ) - (tan R’V R" + tan R“l—"VRul—n))

d d
+Vn- (—dVd — tan R""d tan §VR“" — tan R"'~"d tan §VR“1‘") + Quad(n, V7).
(B.6)

We hope to find a, b, F;, which are functions of d, R*" and R"*~" such that the right
hand side above is < aV(bnF}) - VE,.

Since aV (bnFy,) - VF, = n(ab|VE,|> + $Vb - VF?) + 9Vn - VE], by comparing
the terms involving V7 in (B.6), we solve

a—bvn VF2 Vn - (—dVd — tan R""d tan gVR“" — tan R"'~"d tan gVR“1">

d d
= —dtan §Vn . (V log sin? 5~ V log cos R"" — V log cos R““’)

114



d 1 —cosd
= ———cos R""cos R"'"-"Vn -V ,
sind cos Rvn cos R¥1-n
where we use 2 sin

2 %l = (1 — cosd) and tan%l = ?T";d. It suggests us to choose

ab d " "
> = —SindCOSR "cos R and F, = \/

1 —cosd
cos R¥n cos Rwi-n"

We then compute the term 7(ab|VF,|> + §Vb - VF?) for the above choices of a,b,

and F),. For the term ab|VF,|?, we compute

d

F|?=-
abVE| 2sind(1 — cosd)

|sindVd 4 (1 — cos d)(tan R“"V R"" + tan R~V R"~")|?

dsind
> — e d2 d d. t Un Un t UL—n Ul—n
<2(1 cosd)w | +dV (anR VR" 4+ tan R VR )

+d(1 —cosd)

sin d

(tan® R"[VR"|* + tan® R"=[V R"~" |2)) :

where we expand the quadratic term and use the AM-GM inequality to handle the
cross term (tan R*7VR“) - (tan R“-"VR*“ ). For the term §Vb- VF?, we assume
b = b(d) and compute:

a 5 ab 9
1 —cosd)t/

_ v 2 d( Uy Uy ul_p ui_p

Combining the above inequalities, we obtain

dsind

2, @ 2
ablV Ey| 2 b-VE, {(2(1—cosd)

b/
+ d—) Vd|*
b
d(1 — cosd) ¥/
(a4 =S DYN G an RV R+ tan R0 R )
sind b

d(1 — cosd)

ind (tan® R*|[VR"|* + tan® R“—"|VR“~|*)| .
S1n
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Comparing to (B.6), we solve

dsind 1 d
———Vd+dViogh= (1+ —dtan =)Vd
2(1_Cosd)v + dVlogb = ( +3 an2)V

1—
v+ M= D G~ idtan D).
sin 2
which implies that b = Siﬁ 5, and hence a = —2 cos R*" cos R"*~.

]

Theorem B.2.4 (cf. [60, Corollary 2.3]). Let up,uq : Q@ — B,(P) C X be a pair
of energy minimizing maps (possibly with different boundary values). Let d(x) =
d(uo(z),ui(z)) and R* = d(u;, P). Then the function

1 —cosd
F =
\/cos Rwo cos R»

satisfies the differential inequality weakly

div(cos R* cos RV F) > 0.

Proof. Let n € C2°(Q2) withn > 0. For ¢ > 0 sufficiently small, we have 0 < tn < 1/2.
Let i, and ¢, be the corresponding maps defined as in Lemma B.2.3. Since ug

and u; minimize the energy among maps of the same boundary values, we have

0< /Q |7 (n) * + |7 (1) |* = |7 (uo)[* — | (1) dpg
d
< / —2cos R"" cos R~V (@tnﬂn) - VFy, dug + t*Quad(n, V).
Q

Dividing the inequality by ¢ and let t — 0, since R*" — R"° and R"'-*» — R"* and
F,, — F, we derive

d

sind

0< / —2cos R" cos R"'V ( nF) -VFdp,
Q
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d
= 2/ < , 77F) div (cos R* cos R""VF) dp,.
q \sind
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