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Abstract

In this work, we focus on three problems. First, we give a relationship between

the eigenvalues of the Hodge Laplacian and the eigenvalues of the Jacobi operator

for a free boundary minimal hypersurface of a Euclidean convex body. We then

use this relationship to obtain new index bounds for such minimal hypersurfaces in

terms of their topology. In particular, we show that the index of a free boundary

minimal surface in a convex domain in R3 tends to infinity as its genus or the number

of boundary components tends to infinity. Second, we consider the relationship

between the kth normalized eigenvalue of the Dirichlet-to-Neumann map (the kth

Steklov eigenvalue) and the geometry of rotationally symmetric Möbius bands. More

specifically, we look at the problem of finding a metric that maximizes the kth Steklov

eigenvalue among all rotationally symmetric metrics on the Möbius band. We show

that such a metric can always be found and that it is realized by the induced metric

on a free boundary minimal Möbius band in B4. Third, we consider the existence

problem for harmonic maps into CAT(1) spaces. If Σ is a compact Riemann surface,

X is a compact locally CAT(1) space and ϕ : Σ → X is a continuous finite energy

map, we use the technique of harmonic replacement to prove that either there exists

a harmonic map u : Σ → X homotopic to ϕ or there exists a conformal harmonic

map v : S2 → X. To complete the argument, we prove compactness for energy

minimizers and a removable singularity theorem for conformal harmonic maps.
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Lay Summary

A minimal surface is a surface that locally minimizes area. Free boundary minimal

surfaces of a ball are a special class of minimal surfaces that meet the boundary of

the ball orthogonally. A minimal surface may not have the smallest area; the area

could decrease by perturbing the surface in certain directions. First, we relate the

surface’s topology to the number of directions in which perturbations yield decreases

in area.

A Möbius band is constructed by twisting one end of a strip of paper 180◦ and glu-

ing the ends of the paper together. Second, we construct examples of free boundary

minimal Möbius bands.

The energy of a map between two spaces measures the amount a map stretches

the original space. Third, we show that one can always find a smallest-energy map

between a surface and a space with a notion of distance whose curvature cannot be

too large.
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Preface

This thesis is based on three previous works, two of which have been published in

academic journals, and the other of which is in preparation.

The material presented in Chapter 2 and Appendix A is based on the paper “Index

bounds for free boundary minimal hypersurfaces of convex bodies” [55] appearing in

the journal Proceedings of the American Mathematical Society, Volume 145 (2017),

pages 2467-2480. I chose this problem under the guidance of my supervisor, Ailana

Fraser, and was responsible for all aspects of this work.

The material in Chapter 3 is based on a recent project “Free boundary minimal

Möbius bands in B4”, which is currently in preparation to be submitted to an aca-

demic journal. Again, this problem was chosen under the guidance of my supervisor,

and I was responsible for all aspects of this work.

The material presented in Chapter 4 and Appendix B is based on the paper

“Existence of harmonic maps into CAT(1) spaces” [6] which will appear in the journal

Communications in Analysis and Geometry. This was a joint work with Christine

Breiner, Ailana Fraser, Lan-Hsuan Huang, Chikako Mese and Yingying Zhang.
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Chapter 1

Introduction

This work is devoted to problems related to free boundary minimal surfaces and har-

monic maps. Minimal surfaces are critical points of the area functional and satisfy

certain nonlinear partial differential equations. Examples of minimal surfaces include

soap films, helicoids (the geometric shape of DNA and double-spiral staircases), as

well as catenoids (minimal surfaces obtained by rotating catenaries about their di-

rectrices). While important in geometry, they also have significant applications in

other fields of mathematics and, in fact, played a crucial role in the celebrated proof

of the Poincaré conjecture. In addition, minimal surface theory also has physical ap-

plications in fluid interface problems and deep connections to fundamental questions

in general relativity.

In addition to problems in minimal surface theory, we look at problems concerning

the existence of harmonic maps into singular spaces. A natural notion of energy for a

map between geometric spaces is defined by measuring the total stretch of the map at

each point of the domain and then integrating it over the domain. Harmonic maps are

critical points of the energy functional. They can be seen as both a generalization

of harmonic functions in complex analysis and a higher dimensional analogue of

parameterized geodesics in Riemannian geometry. In the absence of a totally geodesic

map, a harmonic map is perhaps the most natural way to map one given geometric

space into another. The theory of harmonic maps has proven to have important

applications; for example, the existence theory for harmonic two-spheres played a
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role in the proof of a generalization of the classical sphere theorem to pointwise

quarter-pinching. Other important applications of harmonic maps include those in

rigidity problems and in Teichmüller theory amongst others.

More specifically, we focus on three problems: finding index bounds for free

boundary minimal hypersurfaces of convex bodies, constructing free boundary min-

imal Möbius bands in the 4-dimensional Euclidean ball, and proving the existence

of harmonic maps from a compact Riemann surface into a compact locally CAT(1)

space. Here, we outline the problems and state the main results, and outline the

layout of the thesis.

1.1 Index bounds for free boundary minimal hy-

persurfaces of convex bodies

If M is a Riemannian manifold with ∂M 6= ∅ and Σ is a n-dimensional submanifold

with nonempty boundary ∂Σ ⊂ ∂M , then Σ is a free boundary minimal submanifold

if it is a critical point for the volume functional among all n-dimensional submanifolds

whose boundary lie in the boundary of M . It is easy to show that Σ is a free boundary

minimal submanifold of M if and only if it has zero mean curvature and if it meets

the boundary of M orthogonally. In the case when M = B3, the simplest example

of a free boundary minimal surface is the equatorial disk.

Despite their name, minimal submanifolds do not, in general, minimize volume

and instead are saddle points of the volume functional. Roughly speaking, the index

of a minimal submanifold measures the degree to which it does not minimize volume

and intuitively corresponds to the number of independent directions in which one

can perturb the submanifold and decrease its volume.

In [55], we ask whether one can estimate the index of a free boundary minimal

hypersurface of a convex body in terms of the hypersurface’s topology and dimension.

This question, and the approach taken to answer it, was motivated by the work of

Savo who, in [56], gave a lower bound on the index of a minimal hypersurface of

Sn+1 in terms of the hypersurface’s topology and dimension. In particular, if Mn is
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a minimal hypersurface of Sn+1 with first Betti number β1(M), Savo showed that

Ind(M) ≥ β1(M)(
n+2

2

) + n+ 2.

To obtain this result, Savo first found a relationship between the eigenvalues of the

Jacobi operator J and the eigenvalues of the Hodge Laplacian ∆1 on one-forms.

Namely, if λj(J) is the jth eigenvalue of the Jacobi operator and λj(∆1) is the jth

eigenvalue of the Hodge Laplacian, then Savo showed that

λj(J) ≤ λm(j)(∆1)− 2(n− 1),

where m(j) =
(
n+2

2

)
(j − 1) + 1.

We prove the analogous result for free boundary minimal hypersurfaces of convex

bodies by analyzing the Hodge Laplacian on one-forms. Unlike the case of minimal

hypersurfaces of Sn+1, however, here our hypersurfaces have boundary which forces

us to analyze boundary value problems for the Hodge Laplacian. Specifically, we

analyze the relationship between the eigenvalues of the Jacobi operator and the

eigenvalues of the Hodge Laplacian on one-forms with absolute boundary conditions

and obtain the following theorem.

Theorem 1.1.1. Let Mn be an orientable free boundary minimal hypersurface of a

convex body in Rn+1 with Jacobi operator J . Then, for all positive integers j, one

has that

λj(J) ≤ λm(j)(∆1),

where m(j) =
(
n+1

2

)
(j−1)+1 and λm(j)(∆1) is the m(j)th eigenvalue of the Laplacian

eigenvalue problem with absolute boundary conditions.

We are then able to use this to get a lower bound for the index of free boundary

minimal hypersurfaces of convex bodies in terms of the topology and dimension of

the surface. In particular, if we let β1
a = dimH1

a(M) be the first absolute Betti

number of M , we get the following index estimate.

Theorem 1.1.2. (Index Bound) If M is an orientable free boundary minimal hy-

3



persurface of a convex body in Rn+1, then

Ind(M) ≥

⌊
β1
a +

(
n+1

2

)
− 1(

n+1
2

) ⌋
.

In the special case of a free boundary minimal surface of a convex body in R3

with genus g and k boundary components, this reduces to

Ind(M) ≥
⌊

2g + k + 1

3

⌋
.

This result provides new index bounds for free boundary minimal surfaces of B3

with large topology. In particular, it shows that Ind(M) ≥ 4 when 2g + k ≥ 11

and Ind(M) tends to infinity as the genus or the number of boundary components

tends to infinity. This was obtained simultaneously, but independently and through

different methods, by Ambrozio, Carlotto and Sharp [3].

1.2 Free boundary minimal Möbius bands in B4

We are also interested finding explicit constructions of free boundary minimal sub-

manifolds. Here, we focus our attention on constructing free boundary minimal

Möbius bands in B4. Our construction is somewhat indirect and is motivated by the

works of Fraser and Schoen [24, 26] and Fan, Tam and Yu [21].

In [26], Fraser and Schoen provide a connection between metrics that maximize

the kth Steklov eigenvalue on a surface and the geometry of that surface. More

specifically, they show that a metric that maximizes the kth Steklov eigenvalue

arises geometrically as the induced metric on a free boundary minimal surface of

a Euclidean ball by showing that one can construct a conformal minimal immersion

into a ball from the eigenfunctions corresponding to the Steklov eigenvalue. As a

consequence, if one can find the metrics that maximize the Steklov eigenvalues, then

one has existence of free boundary minimal surfaces of balls.

This problem, however, is quite difficult to solve and in general does not yield

4



explicit solutions. As an alternative, in previous work Fraser and Schoen [24], and

later Fan, Tam and Yu [21], consider the more specialized problem of maximizing

Steklov eigenvalues over all rotationally symmetric metrics on the annulus. In this

more specialized setting, the result of Fraser and Schoen [26] no longer guarantees

that the maximizing metric, if it exists, arises as the metric on a free boundary

minimal surface of a Euclidean ball. However, restricting their attention to this

smaller class of metrics allowed them in [24] to solve the problem explicitly through

the method of separation of variables. Fraser and Schoen showed that there is a

metric that maximizes the first Steklov eigenvalue and that this metric is the induced

metric on the critical catenoid, a free boundary minimal surface of B3. Fan, Tam

and Yu considered the same problem for higher Steklov eigenvalues and showed

that, except in the case of the 2nd Steklov eigenvalue, whose supremum cannot be

achieved, there is a metric that maximizes the kth Steklov eigenvalue and that it

corresponds to the induced metric on a free boundary minimal surface of B3 or B4.

More specifically, they show that the metrics that maximize the Steklov eigenvalues

are the metrics induced on either the n-critical catenoid or the so-called n-critical

Möbius band. This provided explicit constructions of new free boundary minimal

surfaces in B3 and B4. Further, Fan, Tam and Yu conjectured that the supremum of

the 2nd Steklov eigenvalue can never be achieved for any surface.

Motivated by these works, we provide constructions of free boundary minimal

Möbius bands in B4 by explicitly finding metrics that maximize Steklov eigenvalues

among all rotationally symmetric metrics on the Möbius band. In particular, we

obtain the following theorem.

Theorem 1.2.1. For all n ≥ 1, the maximum of the nth Steklov eigenvalue among

all rotationally symmetric metrics on the Möbius band is achieved by the metric on

a free boundary minimal Möbius band in B4 given explicitly by the immersion

Φ(t, θ) =
1

Rn

(2n sinh(t) cos(θ), 2n sinh(t) sin(θ), cosh(2nt) cos(2nθ), cosh(2nt) sin(2nθ)),

where Rn =
√

4n2 sinh2(Tn,1) + cosh2(2nTn,1) and (t, θ) ∈ [−Tn,1, Tn,1]× S1/ ∼.

5



In particular, Theorem 1.2.1 shows that the supremum of the 2nd Steklov eigen-

value can be achieved and that the conjecture of Fan, Tam and Yu is false.

1.3 Existence of harmonic maps into singular spaces

Another topic closely related to minimal surfaces is the theory of harmonic maps from

two-dimensional domains. The focus of our third problem is on obtaining existence

results for harmonic maps into singular spaces. In the smooth setting, the celebrated

work of Sacks and Uhlenbeck [53] developed an existence theory for harmonic maps

from surfaces into compact Riemannian manifolds; see also the related works of

Lemaire [44], Sacks-Uhlenbeck [54], and Schoen-Yau [58]. In chapter 4, we extend

the Sacks-Uhlenbeck existence theory to the case where the target is a metric space

with an upper curvature bound.

For some applications, it is important to consider harmonic maps when the

smooth Riemannian target is replaced by a singular space. The seminal works of

Gromov-Schoen [28] and Korevaar-Schoen [40] consider harmonic maps from a Rie-

mannian domain into a non-Riemannian target. In particular, they generalized the

classical notion of the energy of a map in order to define the notion of a harmonic

map. As one can not use variational methods to obtain an Euler-Lagrange equation

for the energy functional in the singular setting, here, a harmonic map is defined to

be a map that is locally energy minimizing. Further exploration of harmonic map

theory in the singular setting includes works of Jost [33], J. Chen [8], Eells-Fuglede

[18] and Daskalopoulos-Mese [12].

The classical notion of curvature also needs to be generalized in the singular set-

ting. In the smooth setting, if M is a Riemannian manifold with sectional curvature

bounded above by κ and Mκ is the model space with constant sectional curvature κ,

then Toponogov’s Theorem allows us to compare the lengths of geodesics in geodesic

triangles in M and the corresponding geodesic triangles in Mκ (see Figure 1.1). In

the singular setting, one uses this idea in reverse to define the notion of a metic space

with curvature bounded above by κ.

The above mentioned works all assume non-positivity of curvature (NPC) in the

6



P Q

R

Pt

Rs

M

P̃ Q̃

R̃

P̃t

R̃s

Mκ

Figure 1.1: An illustration of a geodesic triangle inM (left) and a comparison triangle
in the model space Mκ (right). Toponogov’s Theorem implies that d(Pt, Rs) ≤
d(P̃t, R̃s).

target space, and this curvature condition is heavily used. Without the assumption

of non-positive curvature, the existence problem for harmonic maps becomes more

complicated and, in general, is not well understood even in the smooth setting.

In chapter 4, we investigate the existence theory for harmonic maps in the case

when the target curvature is bounded above by a constant that is not necessarily 0. In

this direction, we mention the local existence result of Serbinowski [60] for harmonic

maps from Riemannian manifold domains. Our third problem specifically focuses

on obtaining existence results for harmonic maps when the domain is a compact

Riemann surface and the target is a compact locally CAT(1) space, that is, a complete

metric space with curvature bounded above by 1 in the sense outlined above. We

obtain the following theorem.

Theorem 1.3.1. Let Σ be a compact Riemann surface, X a compact locally CAT(1)

space and ϕ ∈ C0∩W 1,2(Σ, X). Then either there exists a harmonic map u : Σ→ X

homotopic to ϕ or a nontrivial conformal harmonic map v : S2 → X.

This provides a generalization of the Sacks and Uhlenbeck existence result to

the case of metric space targets. The method used by Sacks and Uhlenbeck is not

accessible in the singular setting as it depends on a priori estimates stemming from

the Euler-Lagrange equation of their perturbed energy functional. In the singular

7



setting, one can no longer use variational methods to obtain an Euler-Lagrange

equation. To circumnavigate this, we exploit the local convexity of the target CAT(1)

space.

1.4 Layout

The focus of chapter 2 the proof of Theorem 1.1.2. We introduce the problem

by providing an overview of free boundary minimal submanifolds, the Morse index

of a minimal submanifold and the Hodge Laplacian. We also provide all of the

calculations needed to prove Theorem 1.1.2.

In chapter 3, we focus on proving Theorem 1.2.1. We introduce the Dirichlet-to-

Neumann map and the Steklov eigenvalue problem, explicitly calculate the eigenval-

ues and eigenfunctions for rotationally symmetric metrics on the Möbius band, and

prove a series of lemmas to determine which metric maximizes the k-th eigenvalue.

We conclude the chapter by proving Theorem 1.2.1.

Chapter 4 is devoted to proving Theorem 1.3.1. We outline both the definition

of energy and harmonicity for maps into metric spaces and CAT(1) spaces. We

then prove compactness of energy minimizing maps into CAT(1) spaces, and prove a

removable singularity theorem. We then prove Theorem 1.3.1 using a local harmonic

replacement construction.

Appendix A is an appendix to chapter 2. Here, we explicitly calculate the first

absolute Betti number for a surface of genus g with k boundary components.

Appendix B is an appendix to chapter 4. Here, we provide all of the details of

the quadrilateral estimates in CAT(1) spaces, local energy convexity, and the local

existence and uniqueness results needed throughout chapter 4.

8



Chapter 2

Index Bounds for Free Boundary

Minimal Surfaces of Convex

Bodies

2.1 Introduction

In this chapter we look at the problem of obtaining lower bounds on the index of

free boundary minimal surfaces of convex bodies in terms of their topology. Index

estimates for minimal surfaces are generally difficult to obtain, and there are few

minimal surfaces for which the index is explicitly known. However, index bounds

can help in the classification of minimal surfaces, especially when the topology is

explicitly represented in the bounds, and have applications in understanding the re-

lationships between the curvature and topology of Riemannian manifolds. Moreover,

minimal surfaces whose index is known have proven to be useful in other problems;

Urbano’s [68] index characterization of the Clifford torus as being the unique min-

imal surface in S3 of index 5 was recently used by Marques and Neves [46] in their

celebrated proof of the longstanding Willmore Conjecture. In [56], Savo was able

to obtain index bounds for minimal hypersurfaces in Sn in terms of their topology

making use of the Laplacian on 1-forms. His work has inspired the approach taken

9



here.

2.1.1 Free Boundary Minimal Hypersurfaces in Convex Bod-

ies

A submanifold M of a compact Riemannian manifold M with boundary ∂M ⊂ ∂M

is said to be a free boundary minimal submanifold in M if it is a critical point for

the volume functional among submanifolds with boundary in ∂M . That is, M is a

free boundary minimal submanifold of M if for every admissible variation Mt of M ,
d
dt

Vol(Mt)
∣∣
t=0

= 0. The first variation formula for a variation Mt of M with variation

field V is given by,

d

dt
Vol(Mt)

∣∣
t=0

= −
∫
M

〈V,H〉dV +

∫
∂M

〈V, η〉dA,

where η is the outward unit conormal vector field. It follows thatM is a free boundary

minimal submanifold of M if and only if H ≡ 0 and η is orthogonal to T (∂M), i.e.,

M meets ∂M orthogonally.

Throughout, we will focus our attention on free boundary minimal hypersurfaces

Mn properly immersed in convex bodies Bn+1. Here, a convex body is a smooth,

compact, connected (n + 1)-dimensional submanifold of Rn+1 for which the scalar

second fundamental form of the boundary satisfies h∂B(U,U) < 0 (with respect to

the outward pointing normal vector) for all vectors U tangent to ∂B.

We will also place some attention on the special case when B = B, the Euclidean

ball, as there are more existence results for free boundary minimal hypersurfaces

of Euclidean balls. Free boundary minimal hypersurfaces of Euclidean balls have

also been shown to have an alternative characterization: in [24], Fraser and Schoen

showed that if Σk is a properly immersed submanifold of the Euclidean unit ball

Bn+1, then Σ is a free boundary minimal submanifold if and only if the coordinate

functions of the immersion are (Steklov) eigenfunctions of the Dirichlet-to-Neumann

map with (Steklov) eigenvalue 1. Furthermore, free boundary minimal surfaces in

Bn+1 are extremal surfaces for the Steklov eigenvalue problem.
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2.1.2 The Index of a Minimal Hypersurface

Suppose that Mn ⊂ Bn+1 is a free boundary minimal hypersurface and that N is a

smooth unit normal vector field. Then, for a normal variation with variation field

uN , the second variation formula is

d2

dt2
Vol(Mt)

∣∣
t=0

=

∫
M

(
‖∇u‖2 − ‖A‖2u2

)
dV +

∫
∂M

h∂B(N,N)u2dA.

Let J denote the Jacobi operator (also called the stability operator),

J = ∆− ‖A‖2,

and let Q denote the associated symmetric bilinear form,

Q(u) =

∫
M

[
‖∇u‖2 − ‖A‖2u2

]
dV +

∫
∂M

h∂B(N,N)u2 dA

=

∫
M

u · Ju dV +

∫
∂M

(
∂u

∂η
+ h∂B(N,N)u

)
u dA.

We say that λ(J) is an eigenvalue of J with eigenfunction u ∈ C∞(M) ifJu = λu on M,

∂u
∂η

+ h∂B(N,N)u = 0 on ∂M.

The (Morse) index of a minimal hypersurface is the maximal dimension of a

subspace of C∞(M) on which the second variation is negative.

A free boundary minimal hypersurface is said to be stable if it has index 0. For

free boundary minimal hypersurfaces in Bn+1, there are none which are stable. This

is easy to see since if we use the variation with variation field 1 ·N , then we get that

Q(1) = −
∫
M

‖A‖2 dV +

∫
∂M

(
0 + h∂B(N,N)

)
· 1 dA < 0.

Hence, any free boundary minimal hypersurface in Bn+1 has index at least 1.
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It is well known that the equatorial disk has index 1. Moreover, it is the only

free boundary minimal hypersurface on Bn+1 to have index 1. To see this, note that,

by the above argument, the index is at least 1. Now, suppose Ind(D) > 1. Then

there is a two-dimensional subspace S of normal variations containing the variation

1 · N on which the second variation of area is negative. Let V ∈ S be a normal

variation orthogonal to 1 · N , i.e.

∫
M

〈V,N〉 dx1dx2 = 0. Then, V has zero average

in the sense that

∫
M

V dx1dx2 = 0. Now, consider the constraint that the surface

must divide the volume of the ball in half. Subject to this additional constraint, any

equatorial disk is area minimizing. However, a variation with zero average preserves

the constraint. Hence, the second variation of area for this variation must be non-

negative, a contradiction.

One can also show that, if M is not the equatorial disk, then Ind(M) ≥ 3 (see

Theorem 3.1 in [26])

2.1.3 Examples and Existence Results

For general convex bodies different from Bn, little is known about the existence of free

boundary minimal submanifolds. In [64], Struwe showed the existence of a (possibly

branched) immersed free boundary minimal disk in any domain in R3 diffeomorphic

to B3, and Grüter and Jost [30] showed that there is an embedded free boundary

minimal disk in any convex body in R3. Jost [32] was also able to show that any

convex body in R3 actually contains at least three embedded free boundary minimal

disks. More recently, Maximo, Nunes and Smith [47] showed that any convex body

in R3 contains a minimal annulus. By the above argument, we know that any free

boundary minimal hypersurface of a convex body has index at least one. However,

little else is known regarding the existence and index of minimal surfaces of greater

topological complexity in convex bodies.

If we focus on free boundary minimal submanifolds of Euclidean balls, then more

is known. The simplest examples of free boundary minimal submanifolds in Bn+1

are the equatorial k-planes Dk ⊂ Bn+1. By [50] and [27], any simply connected

12



free boundary minimal surface in Bn must be a flat equatorial disk, and it is well

known that the equatorial disk has index 1 (see p. 3741 in [23]). In fact, it is the

only free boundary minimal surface of B3 to have index 1. However, there are now

many examples of free boundary minimal surfaces of different topological type. The

critical catenoid, a minimal surface with genus 0 and 2 boundary components, is an

explicit example of such a surface. In [26], Fraser and Schoen proved the existence

of free boundary minimal surfaces in B3 with genus 0 and k boundary components

for any k > 0. Using gluing techniques, in [22] Folha, Pacard and Zolotareva gave

an independent construction of free boundary minimal surfaces in B3 of genus 0

with k boundary components for k large. They were also able to use the same

techniques to construct a genus 1 free boundary minimal surface with k boundary

components for k large. Examples of free boundary minimal surfaces in B3 with

any sufficiently large genus and 3 boundary components have also been constructed.

Specifically, Kapouleas and M. Li [36] constructed such surfaces by using gluing

techniques to glue an equatorial disk to a critical catenoid, and Ketover [39] used

variational methods to construct such surfaces. Furthermore, Kapouleas and Wiygul

[37] used gluing techniques to construct free boundary minimal surfaces with one

boundary component and genus g for sufficiently large g. Less is known about the

index of such surfaces. By the above argument, the equatorial disk has index 1 and

Devyver [15], Smith and Zhou [63] and Tran [67] have independently shown that the

critical catenoid has index 4. If M is not an equatorial disk, then Tran also showed

that Ind(M) ≥ 4.

In this chapter, we give a relationship between the eigenvalues of the Jacobi

operator and the eigenvalues of the Laplacian on 1-forms and, as a corollary, obtain

new index bounds for orientable free boundary minimal hypersurfaces of convex

bodies. More specifically, our first main result is:

Theorem. 1.1.1 Let Mn be an orientable free boundary minimal hypersurface of a

convex body in Rn+1 with Jacobi operator J . Then, for all positive integers j, one

has that

λj(J) ≤ λm(j)(∆1),
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where m(j) =
(
n+1

2

)
(j−1)+1 and λm(j)(∆1) is the m(j)th eigenvalue of the Laplacian

eigenvalue problem with absolute boundary conditions.

Let β1
a = dimH1

a(M) be the first absolute Betti number of M . Our second main

result is:

Theorem. 1.1.2 (Index Bound) If M is an orientable free boundary minimal hy-

persurface of a convex body in Rn+1, then

Ind(M) ≥

⌊
β1
a +

(
n+1

2

)
− 1(

n+1
2

) ⌋
.

Corollary 2.1.1. If M is an orientable free boundary minimal surface of a convex

body in R3 with genus g and k boundary components, then

Ind(M) ≥
⌊

2g + k + 1

3

⌋
.

Corollary 2.1.1 provides new index bounds for free boundary minimal surfaces of

B3 with large topology. In particular, it shows that Ind(M) ≥ 4 when 2g + k ≥ 11

and Ind(M) tends to infinity as the genus or the number of boundary components

tends to infinity. Corollary 2.1.1 was obtained simultaneously, but independently,

by Ambrozio, Carlotto and Sharp [3]. In particular, they use different methods to

obtain similar Morse index estimates for free boundary minimal hypersurfaces of

strictly mean convex domains of Euclidean spaces.

The remainder of the chapter is structured as follows: In the second section, we

outline the basic notation and conventions that we will use throughout the chapter

and give a brief introduction to the Hodge Laplacian on p-forms. Here, we define

the Hodge Laplacian on p-forms and then focus on the special case when p = 1.

We also introduce the two main boundary conditions for the eigenvalue problem of

the Laplacian for 1-forms on a manifold with boundary. In the third section, we

provide several preliminary calculations that will ultimately allow us to see how the

Jacobi operator acts on specific test functions, which will be needed to prove our

main results. We give the proofs of our two main results in the fourth section.
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2.2 Notation and Conventions

Let Mn be an orientable free boundary minimally immersed hypersurface in a convex

Euclidean domain Bn+1 (∂M 6= ∅). Throughout, we will let N be a unit normal

vector field on M .

Let D denote the Levi-Civita connection on Rn+1 and ∇ the Levi-Civita connec-

tion on M . We will let A denote the second fundamental form of M ⊂ B, and S the

associated shape operator. That is, for X, Y ∈ Γ(TM),

A(X, Y ) = (DXY )N = 〈DXY,N〉 ·N

S(X) = − (DXN)T ,

so that 〈A(X, Y ), N〉 = 〈S(X), Y 〉
In this setting, the Gauss equation tells us that, for any X, Y, Z,W ∈ Γ(TM),

0 = RRn+1(X, Y, Z,W ) = 〈A(X,W ), A(Y, Z)〉 − 〈A(X,Z), A(Y,W )〉, (2.1)

and the Codazzi equation tells us that, for any X, Y, Z ∈ Γ(TM),

(∇XA)(Y, Z)− (∇YA)(X,Z) = (RRn+1(X, Y )Z)N = 0, (2.2)

where

(∇XA)(Y, Z) = (DXA(Y, Z))N − A(∇XY, Z)− A(Y,∇XZ).

For any parallel vector field V in Rn+1, we have the orthogonal decomposition

V = V + V N ,

where V ∈ TM is the orthogonal projection of V onto M and V N = 〈V ,N〉·N ∈ NM .

Since parallel vector fields on Rn+1 and their orthogonal projections onto M will be
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used throughout, we introduce the following vector spaces:

P = {parallel vector fields on Rn+1},

P = {vector fields on M which are orthogonal projections of elements of P}.

Throughout, we will let ∆p denote the Hodge Laplacian on p-forms (though the

p will usually be dropped for convenience) and we will let ∇∗∇ denote the rough

Laplacian on vector fields. So, if ω is a p-form on M and ξ is a vector field on M ,

then

∆pω = (dδ + δd)ω

∇∗∇ξ = −
n∑
j=1

(
∇ej∇ejξ −∇∇ej ejξ

)
,

where d is the exterior derivative, δ is the codifferential, and {e1, . . . , en} is any local

orthonormal frame of TM . Recall that a vector field X is dual to a 1-form θ if and

only if 〈X, Y 〉 = θ(Y ) for all Y ∈ Γ(TM). If ξ is the vector field dual to ω, then one

can also define the Hodge Laplacian of ξ, denoted ∆ξ, to be the vector field dual to

the 1-form ∆1ω. The Bochner formula relates the two Laplacians:

∆ξ = ∇∗∇ξ + Ric(ξ),

where Ric is seen as a symmetric endomorphism of TM .

To get a bound on the index of M , we will consider the following eigenvalue

problem defined by the absolute boundary conditions:J1ω = λω,

i∗ιηω = i∗ιηdω = 0,

where i is the inclusion ∂M ↪→ M , ιη denotes interior multiplication by η and J1 is

the Jacobi operator on 1-forms defined by J1 = ∆1 − ‖A‖2. We will often drop the

subscripts for convenience. These absolute boundary conditions are a generalization
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of Neumann boundary conditions for functions. We say that ω is tangential on ∂M

if i∗ιηω = 0, i.e., ω vanishes whenever its argument is normal to the boundary of M .

So, if ω satisfies the absolute boundary conditions, then both ω and dω are tangential

(dω is tangential whenever one of its arguments is normal to ∂M).

We define the following space of harmonic 1-forms

H1
N(M) = {ω ∈ Ω1(M) | ∆ω = 0, ω satisfies the absolute boundary conditions},

and note that β1
a = dimH1

a(M) = dimH1
N(M), where H1

a(M) is the first absolute

cohomology group of M .

2.3 Preliminary Calculations

The calculations done here are analogous to those done by Savo in [56] for the case

of a minimal hypersurface in Sn+1. In Sn+1, a hypersurface has two normal vectors

(one tangent to the sphere and one normal to both the sphere and the hypersurface)

whereas a free boundary minimal hypersurface of a convex body Bn just has one. The

absence of a second normal vector simplifies many of the preliminary calculations.

However, a minimal hypersurface in Sn+1 has no boundary, so the main barrier in

modifying the approach of Savo to this free boundary setting is presence of boundary

terms. To deal with these boundary terms, we extend a result of Ros [52] to arbitrary

dimensions.

Lemma 2.3.1. Let V ∈ P and let V ∈ P be its orthogonal projection onto M . Let

A and S be the second fundamental form and shape operator (respectively) of the

immersion φ : M → Bn. Then

(a) ∇〈V ,N〉 = −S(V ).

(b) ∆〈V ,N〉 = |S|2〈V ,N〉.
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Proof. To show (a), take any X ∈ Γ(TM). Then we have that

〈∇〈V , V 〉, X〉 = d
(
〈V ,N〉

)
(X)

= X(〈V ,N〉)

= 〈DXV ,N〉+ 〈V ,DXN〉

= 〈V ,DXN〉,

since V is parallel. Now, since 〈N,DXN〉 = 1
2
X (‖N‖2) ≡ 0 and [X, V ] is tangent to

M , we have that

〈V ,DXN〉 = 〈V ,N〉 · 〈N,DXN〉+ 〈V,DXN〉

= −〈DXV,N〉

= −〈DVX + [X, V ], N〉

= −〈DVX,N〉

= 〈X, (DVN)T 〉.

Hence, ∇〈V ,N〉 = −S(V ).

For (b), let {e1, . . . en} denote normal coordinate vector fields centred at a point

p ∈M . Then (at p),

−∆〈V ,N〉 =
n∑
i=1

〈∇ei∇〈V ,N〉, ei〉

=
n∑
i=1

〈∇ei (DVN)T , ei〉

=
n∑
i=1

ei〈DVN, ei〉 − 〈(DVN)T ,∇eiei〉

= −
n∑
i=1

ei〈N,DV ei〉
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= −
n∑
i=1

ei〈N,A(V, ei)〉

= −
n∑
i=1

〈DeiN,A(V, ei)〉+ 〈N,DeiA(V, ei)〉.

Since DeiN has no normal component, and A is symmetric, we have that

∆〈V ,N〉 =
n∑
i=1

〈N, (DeiA(ei, V ))N〉.

Now,

(DeiA(ei, V ))N = (∇eiA)(ei, V ) + A(∇eiV, ei) + A(V,∇eiei)

= (∇eiA)(ei, V ) + A(∇eiV, ei),

and from the Codazzi equation (2.2)

(∇eiA)(ei, V ) = (∇VA)(ei, ei)

= (DVA(ei, ei))
N − A(∇V ei, ei)− A(ei,∇V ei).

So,

(DeiA(ei, V ))N = (DVA(ei, ei))
N − 2A(ei,∇V ei) + A(∇eiV, ei).

Now

A(ei,∇eiV ) = (Dei∇V ei)
N ,

and, at p,

〈Dei∇V ei, N〉 = −〈∇V ei, DeiN〉

=
n∑
i=1

〈V, ej〉〈∇ejei, DeiN〉 = 0
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Moreover, since M is minimal,

n∑
i=1

(DVA(ei, ei))
N =

(
DV

(
n∑
i=1

A(ei, ei)

))
= 0.

Therefore,

∆〈V ,N〉 =
n∑
i=1

〈N, (DeiA(ei, V ))N〉

=
n∑
i=1

〈N,A(∇eiV, ei)〉

=
n∑
i=1

〈N,A(ei,∇eiV )〉

=
n∑
i=1

〈N,Dei∇eiV 〉

= −
n∑
i=1

〈(DeiN)T ,∇eiV 〉.

Lemma 2.3.2. For any vector field ξ ∈ Γ(TM) and any V ∈ P with orthogonal

projection V ,

(a) ∆ξ = ∇∗∇ξ − S2(ξ).

(b) ∇∗∇V = S2(V ), ∆V = 0.

Proof. Let {e1, . . . , en} be local normal coordinate vector fields centred at a point
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p ∈M . Then, at p,

Ric(ξ) =
n∑

i,j=1

Ric(gijei, ξ)ej

=
n∑
i=1

Ric(ei, ξ)ei

=
n∑

i,k=1

RM(ek, ei, ξ, ek)ei

Using the minimality of M and the Gauss equation (2.1), we have that

n∑
k=1

RM(ek, ei, ξ, ek) =
n∑
k=1

〈A(ek, ek), A(ei, ξ)〉 − 〈A(ek, ξ), A(ei, ek)〉

= −
n∑
k=1

〈A(ek, ξ), A(ei, ek)〉.

Now

−
n∑
k=1

〈A(ek, ξ), A(ei, ek)〉 = −
n∑
k=1

〈Dξek, N〉〈Deiek, N〉

= −
n∑
k=1

〈ek, DξN〉〈ek, DeiN〉

= −〈(DξN)T , DeiN〉

= 〈Dei(DξN)T , N〉

= 〈D(DξN)T ei + [ei, (DξN)T ], N〉

= −〈ei,
(
D(DξN)TN

)T 〉
= −〈ei, S2(ξ)〉.

Therefore, Ric(ξ) = −S2(ξ), and (a) follows from the Bochner formula.

To see that ∇∗∇V = S2(V ), we’ll first show that ∇∗∇N = 0 in the sense that if

{e1, . . . , en} are again local normal coordinate vector fields centred at p ∈ M , then,
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at p,
n∑
i=1

(
Dei(DeiN)T

)T
= 0.

Since, DeiN is tangential,

n∑
i=1

(
Dei(DeiN)T

)T
=

n∑
i=1

(DeiDeiN)T

=
n∑

i,j=1

〈DeiDeiN, ej〉ej

=
n∑

i,j=1

(ei〈DeiN, ej〉 − 〈DeiN,∇eiej〉)ej

= −
n∑

i,j=1

ei〈N,Deiej〉ej

= −
n∑

i,j=1

ei〈N,A(ej, ei)〉ej

= −
n∑

i,j=1

(〈DeiN,A(ej, ei)〉+ 〈N,Dei(A(ej, ei))〉) ej

= −
n∑

i,j=1

〈N,Dei(A(ej, ei))〉ej.

Now, using the Codazzi equation (2.2), we have that

(Dei(A(ej, ei)))
N = (∇eiA) (ej, ei) + A(∇eiej, ei) + A(ej,∇eiei)

= (∇eiA) (ej, ei)

=
(
∇ejA

)
(ei, ei)

=
(
Dej(A(ei, ei))

)N − 2A(∇ejei, ei)

=
(
Dej(A(ei, ei))

)N
.
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Therefore,

n∑
i=1

(
Dei(DeiN)T

)T
= −

n∑
i,j=1

〈N,Dei(A(ej, ei))〉ej

= −
n∑

i,j=1

〈N,Dej(A(ei, ei))〉ej

= −
n∑
j=1

〈
N,Dej

(
n∑
i=1

A(ei, ei)

)〉
ej = 0,

again using the minimality of M .

Now, if we write V = V −〈V ,N〉N , then we can use this calculation and the fact

that V is parallel to help us calculate ∇∗∇V .

∇∗∇V =
n∑
i=1

(
Dei(DeiV )T

)T − (Dei(Dei(〈V ,N〉N))T
)T

= −
n∑
i=1

(
Dei(ei(〈V ,N〉)N + 〈V ,N〉DeiN)T

)T
= −

n∑
i=1

(
Dei(〈V ,N〉DeiN)

)T
= −

n∑
i=1

(
ei(〈V ,N〉)DeiN + 〈V ,N〉DeiDeiN

)T
= −

(
n∑
i=1

ei(〈V ,N〉)DeiN

)
− 〈V ,N〉∇∗∇N

= −
n∑
i=1

〈V,DeiN〉DeiN

=
n∑
i=1

〈DeiV,N〉DeiN
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=
n∑
i=1

〈DV ei + [ei, V ], N〉DeiN

= −
n∑
i=1

〈ei, DVN〉DeiN

= DDV NN = S2(V ).

The fact that ∆V = 0 now follows from (a).

Lemma 2.3.3. Let V ,W ∈ P and let V,W ∈ P be their orthogonal projections onto

M . Then, for any ξ ∈ Γ(TM),

(a) ∆〈V, ξ〉 = 2〈S(V ), S(ξ)〉+ 〈V,∆ξ〉 − 2〈V ,N〉〈S,∇ξ〉.

(b) 〈∇〈V ,N〉,∇〈W, ξ〉〉 = −〈W,N〉〈S(V ), S(ξ)〉 − 〈W,∇S(V )ξ〉.

(c) ∆(〈V ,N〉〈W, ξ〉) = |S|2〈V ,N〉〈W, ξ〉+ 2(〈W,N〉〈S(V ), S(ξ)〉+ 〈W,∇S(V )ξ〉)
. + 〈V ,N〉(2〈S(W ), S(ξ)〉+ 〈W,∆ξ〉 − 2〈W,N〉〈S,∇ξ〉).

Proof. Let {e1, . . . , en} be local normal coordinate vector fields centred at a point

p ∈M . Then, at p,

∆〈V, ξ〉 = −
n∑
i=1

eiei〈V, ξ〉

= −
n∑
i=1

ei (〈∇eiV, ξ〉+ 〈V,∇eiξ〉)

= −
n∑
i=1

〈∇ei∇eiV, ξ〉+ 2〈∇eiV,∇eiξ〉+ 〈V,∇ei∇eiξ〉

= 〈∇∗∇V, ξ〉 − 2〈∇V,∇ξ〉+ 〈V,∇∗∇ξ〉,

where 〈∇V,∇ξ〉 =
∑n

i=1〈∇eiV,∇eiξ〉. From Lemma 2.3.2 we have that ∇∗∇V =
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S2(V ) and ∇∗∇ξ = ∆ξ + S2(ξ). We also have that

〈S2(V ), ξ〉 = 〈DDV NN, ξ〉

= −〈N,DDV Nξ〉

= −〈N,DξDVN + [DVN, ξ]〉

= 〈DξN,DVN〉 = 〈S(ξ), S(V )〉,

and, similarly, 〈V, S2(ξ)〉 = 〈S(V ), S(ξ)〉. Therefore,

∆〈V, ξ〉 = 2〈S(V ), S(ξ)〉+ 〈V,∆ξ〉 − 2〈∇V,∇ξ〉.

Finally,

〈∇eiV,∇eiξ〉 = 〈DeiV,∇eiξ〉

= 〈Dei(V − 〈V ,N〉N),∇eiξ〉

= −〈V ,N〉〈DeiN,∇eiξ〉

= 〈V ,N〉〈S(ei),∇eiξ〉.

Hence, summing over i gives us that

∆〈V, ξ〉 = 2〈S(V ), S(ξ)〉+ 〈V,∆ξ〉 − 2〈V ,N〉〈S,∇ξ〉.

From Lemma 2.3.1(a) we know that ∇〈V ,N〉 = −S(V ), so we just need to

calculate ∇〈W, ξ〉. First, notice that for any vector field X on M , since W is parallel,

∇XW =
(
DX(W − 〈W,N〉N)

)T
= −

(
X(〈W,N〉)N + 〈W,N〉DXN

)T
= 〈W,N〉S(X)

Hence,

〈∇〈W, ξ〉, X〉 = X(〈W, ξ〉) = 〈∇XW, ξ〉+ 〈W,∇Xξ〉

= 〈W,N〉〈S(X), ξ〉+ 〈W,∇Xξ〉.
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So, for X = −S(V ) (= ∇〈V ,N〉), we have that

〈∇〈V ,N〉,∇〈W, ξ〉〉 = −〈W,N〉〈S2(V ), ξ〉 − 〈W,∇S(V )ξ〉

= −〈W,N〉〈S(V ), S(ξ)〉 − 〈W,∇S(V )ξ〉.

Now (c) follows from (a) and (b) and Lemma 2.3.1(b).

Let U = {V ∈ P | ‖V ‖ ≡ 1}. Then U can naturally be identified with Sn if we

endow it with the measure µ = n+1
Vol(Sn)

dvSn .

Lemma 2.3.4. For any X,Y ∈ Rn+1,∫
U
〈V ,X〉〈V , Y 〉 dV = 〈X,Y 〉.

The proof of Lemma 2.3.4 follows from a direct, but tedious, calculation after

changing to spherical coordinates and repeatedly applying the integral identity∫
sinm x dx = − 1

m
sinm−1 x cosx+

m− 1

m

∫
sinm−2 x dx.

The following lemma was originally proved by Ros [52] for free boundary minimal

surfaces in a smooth domain in R3. Here, we extend his proof to obtain the analogous

result for free boundary minimal hypersurfaces in smooth domains in Rn.

Lemma 2.3.5. Suppose ξ is a vector field on M dual to a 1-form ω which satisfies

the absolute boundary conditions. Then, at a point p ∈ ∂M ,

〈∇ηξ, ξ〉 = h∂B(N,N)‖ξ‖2.

Proof. Let η be the (outward pointing) conormal vector along ∂M . Then, since ω

satisfies the absolute boundary conditions on ∂M , at p we have that

ω(η) = 0,

dω(η, t) = η(ω(t))− t(ω(η))− ω([η, t]) = 0,
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for any vector t ∈ Tp(∂M). In particular, if ξ is the vector field dual to ω, then the

first condition implies that ξp ∈ Tp(∂M), and so the second condition implies that

dω(η, ξ) = 0 at p. Now,

〈ξ,∇ηξ〉 = η〈ξ, ξ〉 − 〈ξ,∇ηξ〉 = (∇ηω)(ξ),

and we claim that (∇ηω)(ξ) = (∇ξω)(η). To see this, note that, by definition,

(∇ξω)(η)− (∇ηω)(ξ) = ξ(ω(η))− ω(∇ξη)− η(ω(ξ)) + ω(∇ηξ).

However,

ω(∇ξη)− ω(∇ηξ) = ω(∇ξη −∇ηξ) = ω([ξ, η]),

and, since dω(η, ξ) = 0, ω([η, ξ]) = η(ω(ξ))− ξ(ω(η)). Therefore

(∇ξω)(η)− (∇ηω)(ξ) = ξ(ω(η))− η(ω(ξ)) + ω([η, ξ]) = 0.

So,

〈ξ,∇ηξ〉 = (∇ηω)(ξ) = (∇ξω)(η).

Now, since ξ is tangent to ∂M and ω(η) = 0 on ∂M ,

(∇ξω)(η) = ξ(ω(η))− ω(∇ξη) = 〈∇ξξ, η〉 = h∂B(ξ, ξ).

Hence,

〈∇ηξ, ξ〉 = 〈ξ,∇ηξ〉 = h∂B(ξ, ξ) = h∂B(N,N)‖ξ‖2.

2.4 Proofs of Main Theorems

2.4.1 Eigenvalue Relationship

Theorem. 1.1.1 Let Mn be an orientable free boundary minimal hypersurface of a
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convex body in Rn+1 with Jacobi operator J . Then, for all positive integers j, one

has that

λj(J) ≤ λm(j)(∆1),

where m(j) =
(
n+1

2

)
(j−1)+1 and λm(j)(∆1) is the m(j)th eigenvalue of the Laplacian

eigenvalue problem with absolute boundary conditions.

Lemma 2.4.1. For V ,W ∈ P, let

XV,W = 〈V ,N〉W − 〈W,N〉V.

Let ξ be any vector field on M and consider the function u = 〈XV,W , ξ〉. Then

Ju = 〈XV,W ,∆ξ〉+ 2v,

where v is the smooth function

v = 〈∇S(V )ξ,W 〉 − 〈∇S(W )ξ, V 〉.

Proof of Lemma 2.4.1. Since u = 〈XV,W , ξ〉 = 〈V ,N〉〈W, ξ〉 − 〈W,N〉〈V, ξ〉, from

part (c) of Lemma 2.3.3, (after some cancellations) we get that

∆u = |S|2u+ 〈XV,W ,∆ξ〉+ 2v,

and so Ju = 〈XV,W ,∆ξ〉+ 2v.

Proof of Theorem 1.1.1. Let {φ1, φ2, . . . , } be an orthonormal basis for L2(M) given

by eigenfunctions of J , where φi is an eigenfunction associated to λi(J). Let V m(∆1) =⊕m
i=1E

N
λi(∆1), where EN

λi(∆1) is the space of eigenforms of ∆1 associated with λ1(∆1)

with absolute boundary conditions. We want to find ω ∈ V m(∆1), ω 6≡ 0, for which∫
M

〈XV,W , ξ〉φidV = 0, (2.3)
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for i = 1, . . . , j − 1 and for all V ,W ∈ P , where ξ is the vector field dual to

ω. Since XV,W is a skew-symmetric bilinear function of V ,W , and since dimP =

dimRn+1 = n + 1, there are
(
n+1

2

)
equations that need to be satisfied in (2.3) for

each i, and therefore
(
n+1

2

)
(j − 1) homogeneous linear equations in total. So, if

m(j) =
(
n+1

2

)
(j−1)+1, then we’re guaranteed that there is a ω ∈ V m(j)(∆1), ω 6≡ 0,

whose dual vector field satisfies (2.3) for all V,W and for i = 1, . . . j − 1. From the

min-max principle and Lemma 2.4.1 we have that,

λj(J)

∫
M

u2 dV ≤
∫
M

uJu dV +

∫
∂M

(
∂u

∂η
+ h∂B(N,N)u

)
u dA

=

∫
M

u〈XV,W ,∆ξ〉 dV + 2

∫
M

uv dV +

∫
∂M

(
∂u

∂η
+ h∂B(N,N)u

)
u dA.

(2.4)

In addition,

∂u

∂η
= η

(
〈V ,N〉〈W, ξ〉 − 〈W,N〉〈V , ξ〉

)
= 〈V ,DηN〉〈W, ξ〉+ 〈V ,N〉

(
〈DηW, ξ〉+ 〈W,Dηξ〉

)
− 〈W,DηN〉〈V, ξ〉+ 〈W,N〉

(
〈DηV , ξ〉+ 〈V ,Dηξ〉

)
.

We’ll now use an integration technique that exploits Lemma 2.3.4 to help us sim-

plify (2.4). We’ll then apply Lemma 2.3.5 to get the claimed eigenvalue relationship.

Using the product metric on U × U , Lemma 2.3.4 implies that (pointwise)∫
U×U

u2 dV dW = 2‖ξ‖2,∫
U×U

u〈XV,W ,∆ξ〉 dV dW = 2〈ξ,∆ξ〉,∫
U×U

uv dV dW = 0,
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∫
U×U

u〈V ,DηN〉〈W, ξ〉 dV dW = 0,∫
U×U

u〈V ,N〉〈W,Dηξ〉 dV dW = 〈ξ,Dηξ〉 =
1

2
η(‖ξ‖2).

Therefore, integrating (2.4) over U × U yields

2λj(J)

∫
M

‖ξ‖2 dV ≤ 2

∫
M

〈ξ,∆ξ〉 dV +

∫
∂M

(
η(‖ξ‖2) + 2h∂B(N,N)‖ξ‖2

)
dA.

From Lemma 2.3.5 we know that η(‖ξ‖2) = 2h∂B(N,N)‖ξ‖2 on ∂M , since ξ is the

dual vector field of a 1-form satisfying the absolute boundary conditions. Moreover,

since ξ is the dual vector field to a linear combination of eigenforms of ∆1, it now

follows that

2λj(J)

∫
M

‖ξ‖2 dV ≤ 2λm(j)(∆1)

∫
M

‖ξ‖2 dV + 4

∫
∂M

h∂B(N,N)‖ξ‖2 dA.

Since h∂B(U,U) < 0 for any vector tangent to ∂B, we get that

2λj(J)

∫
M

‖ξ‖2 dV ≤ 2λm(j)(∆1)

∫
M

‖ξ‖2 dV.

Now, since ω 6≡ 0, we can divide both sides by the L2(M)-norm of ξ to get

λj(J) ≤ λm(j)(∆1).

Remark 2.4.2. We note that when m(j) ≤ dimH1
N(M), i.e. when ω is a linear

combination of harmonic forms and therefore a harmonic form itself, we actually get

the strict inequality λj(J) < λm(j)(∆1) = 0. This follows from the fact that ω 6≡ 0

implies that ω|∂M 6≡ 0 (see Theorem 3.4.4 on p.131 of [59]), and so we get the strict

inequality 4
∫
∂M

h∂M(N,N)‖ξ‖2 dA < 0.
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2.4.2 Index Bound

Theorem. 1.1.2 (Index Bound) If M is an orientable free boundary minimal hy-

persurface of a convex body in Rn+1, then

Ind(M) ≥

⌊
β1
a +

(
n+1

2

)
− 1(

n+1
2

) ⌋
.

Proof. Suppose j is such that m(j) ≤ dimH1
N(M) := β1

a. Then λj(J) < λm(j)(∆) =

0, so Ind(M) ≥ j. Now, m(j) =
(
n+1

2

)
(j − 1) + 1 ≤ β1

a, so j ≤
⌊
β1
a+(n+1

2 )−1

(n+1
2 )

⌋
. Hence,

Ind(M) ≥
⌊
β1
a+(n+1

2 )−1

(n+1
2 )

⌋
.

Corollary. 2.1.1 If M is an orientable free boundary minimal surface in a convex

body in R3 with genus g and k boundary components, then

Ind(M) ≥
⌊

2g + k + 1

3

⌋
.

Proof. Since β1
a = 2g + k − 1 for a surface (see Appendix A), this follows directly

from Theorem 1.1.2.

Remark 2.4.3. We note that Corollary 2.1.1 can also be obtained by using the work

of Ros. In [52], Ros shows that if ω is a harmonic 1-form and ξ is its dual vector

field, then

∆ξ + ‖A‖2ξ = 2〈∇ω,A〉N,

and, if ω satisfies the absolute boundary conditions, then

〈∇ηξ, ξ〉 = h∂B(N,N)‖ξ‖2.

So, for ξ = (ξ1, ξ2, ξ3), if we use the notation Q(ξ, ξ) =
∑3

i=1Q(ξi, ξi) and assume
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ω 6≡ 0,

Q(ξ, ξ) = −
∫
M

〈∆ξ + ‖A‖2ξ, ξ〉dV +

∫
∂M

(〈∇ηξ, ξ〉+ h∂B(N,N)‖ξ‖2)dA

= 2

∫
∂M

h∂B(N,N)‖ξ‖2dA < 0.

Hence Q(X,X) < 0, and we get that dimH1
N(M)− 3 · Ind(M) = (2g + k − 1)− 3 ·

Ind(M) ≤ 0, or Ind(M) ≥ d (2g+k−1)
3
e = b2g+k+1

3
c.
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Chapter 3

Constructing Free Boundary

Minimal Möbius Bands in B4

3.1 Introduction

In this chapter we look at the problem of constructing free boundary minimal Möbius

bands in B4 by solving an extremal eigenvalue problem. Though there are some ex-

istence results (see 2.1.3 for an outline of currently known examples) for free bound-

ary minimal surfaces in B3, explicit constructions are less common. As mentioned

in 2.1.3, extremal eigenvalue techniques, gluing techniques and min-max techniques

have been used to successfully construct free boundary minimal surfaces with specific

topology in B3. Here we take the approach inspired by the work of Fraser and Schoen

[24, 26], and Fan, Tam and Yu [21] in which we use eigenfunctions that maximize

the Steklov eigenvalues for rotationally symmetric metrics to construct immersed

free boundary minimal Möbius bands in B4.
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3.1.1 The Dirichlet-to-Neumann Map and Steklov Eigen-

value Problem

In [25], Fraser and Schoen showed that there is a connection between Steklov eigen-

value problems on surfaces with boundary and free boundary minimal surfaces in

the unit ball. In particular, they showed that metrics that maximize the kth Steklov

eigenvalue on surfaces with boundary arise from the metrics on free boundary min-

imal surfaces in a Euclidean ball. If (Σ, g) is a compact Riemannian manifold with

boundary, the Steklov eigenvalue problem is:∆gu = 0 on Σ

∂u
∂η

= σu on ∂Σ,

where η is the outward unit normal vector to ∂Σ, σ ∈ R, and u ∈ C∞(Σ). Steklov

eigenvalues are eigenvalues of the Dirichlet-to-Neumann map, which sends a given

smooth function on the boundary to the normal derivative of its harmonic extension

to the interior. That is, if u ∈ C∞(∂Σ) and if ū ∈ C∞(Σ) is its harmonic extension,

then the Dirichlet-to-Neumann map is the map L : C∞(∂Σ)→ C∞(Σ) defined by

L(u) =
∂ū

∂η
.

The Dirichlet-to-Neumann map is a non-negative, self-adjoint operator with discrete

spectrum

σ0 = 0 < σ1 ≤ σ2 ≤ . . . ≤ σk ≤ . . .→∞.

The first nonzero Steklov eigenvalue of L can be characterized variationally as

σ1 = inf∫
∂Σ u=0

∫
Σ
|∇u|2dvΣ∫
∂Σ
u2dv∂Σ
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and in general,

σk = inf

{∫
Σ
|∇u|2dvΣ∫
∂Σ
u2dv∂Σ

:

∫
∂Σ

uφj = 0 for j = 0, 1, 2, . . . , k − 1.

}
,

where φj is an eigenfunction corresponding to the eigenvalue σj, for j = 1, 2, . . . , k−1.

3.1.2 Extremal Steklov Eigenvalue Problem and Free Bound-

ary Minimal Surfaces

A classical result by Weinstock [69] shows that, on a simply-connected planar domain,

the maximum of the first normalized Steklov eigenvalue is achieved by the round

disk in the Euclidean plane. In [26] Fraser and Schoen proved the existence of a

metric that maximizes the first normalized eigenvalue on any surface of genus zero,

and showed that it is realized by the induced metric on a free boundary minimal

surface in B3. In the case of the annulus, the surface of genus zero with 2 boundary

components, they characterized the maximizing metric as the induced metric on

the critical catenoid. They also proved the existence of a maximizing metric on the

Möbius band, and characterized it as the induced metric on the critical Möbius band,

the surface obtained by suitably scaling the embedding

φ(t, θ) = (2 sinh(t) cos(θ), 2 sinh(t) sin(θ), cosh(2t) cos(2θ), cosh(2t) sin(2θ))

to lie in the unit ball, where (t, θ) ∈ [−T0, T0] × S1 and T0 is the unique positive

solution of coth(t) = 2 tanh(2t).

In the special case of rotationally symmetric metrics on the annulus and Möbius

band, in [24, 26], Fraser and Schoen explicitly calculated the eigenvalues and eigen-

functions of the Dirichlet-to-Neumann map and showed that the critical catenoid and

critical Möbius band maximize the first normalized eigenvalue among all rotationally

symmetric metrics. Motivated by the work of Fraser and Schoen, in [21], Fan, Tam

and Yu considered the problem of maximizing the kth normalized Steklov eigenvalue

over all rotationally symmetric metrics on a cylinder. They showed that, except for
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the 2nd normalized Steklov eigenvalue, the maximum is achieved by either the n-

critical catenoid or the so-called n-Möbius band. However, they also showed that the

supremum of the 2nd normalized Steklov eigenvalue can not be achieved. Girouard

and Polterovich proved that for simply-connected planar domains, the supremum of

the second normalized Steklov eigenvalue is 4π and can not be achieved. This led

Fan, Tam and Yu to conjecture that the supremum of the second normalized Steklov

eigenvalue can never be achieved.

In this chapter, we consider the problem of maximizing the kth normalized Steklov

eigenvalue on the Möbius band over all rotationally symmetric metrics. In particular,

we show that this problem is solvable for all k, i.e. for each k, among all rotationally

symmetric metrics on the Möbius band, there is a metric that maximizes the kth

normalized Steklov eigenvalue and it is achieved by a free boundary minimal Möbius

band in B4. Specifically, our main result is:

Theorem. 1.2.1 For all n ≥ 1, the maximum of the nth Steklov eigenvalue among

all rotationally symmetric metrics on the Möbius band is achieved by the metric on

a free boundary minimal Möbius band in B4 given explicitly by the immersion

Φ(t, θ) =
1

Rn

(n sinh(t) cos(θ), n sinh(t) sin(θ), cosh(nt) cos(nθ), cosh(nt) sin(nθ)),

where Rn =
√
n2 sinh2(Tn,1) + cosh2(nTn,1) and (t, θ) ∈ [−Tn,1, Tn,1]× S1/ ∼.

In particular, this provides a counterexample to Fan, Tam and Yu’s conjecture.

In [38], Karpukhin et al. showed that, for k > 1, the supremum of the kth normal-

ized eigenvalue of the Laplacian on a sphere cannot be achieved. This, together with

the result of Girouard and Polterovich, could suggest that, in general, the supremum

of higher normalized Steklov eigenvalues might not be achievable. The results of

chapter 3, which show that the supremum of the kth normalized Steklov eigenvalue

among rotationally symmetric metrics on the Möbius band is achievable, are inter-

esting in that they could suggest that, for the Möbius band, the supremum of the

kth normalized Steklov eigenvalue among all metrics might actually be achievable.

Based on the case when k = 1, one might expect that when maximizing metrics
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exist, the maximizing metrics are rotationally symmetric.

The remainder of the chapter is structured as follows: In the second section, we

introduce the Steklov eigenvalue problem for rotationally symmetric metrics on the

Möbius band. Here, we prove a series of lemmas needed to find the rotationally

symmetric metric on the Möbius band that maximizes the kth normalized Steklov

eigenvalue. In the third section we prove that there is a metric that maximizes the

kth normalized Steklov eigenvalue, and we use the corresponding eigenfunctions to

construct a free boundary minimal surface and prove the main theorem.

3.2 The Steklov eigenvalue problem for rotation-

ally symmetric metrics on the Möbius band

Let Σ be a Möbius band, i.e. Σ = [−T, T ]× S1/ ∼, where (t, θ) ∼ (t′, θ′) if t′ = −t
and θ′ = θ + π. From [26] we know that the critical Möbius band maximizes the

first normalized Steklov eigenvalue over all smooth metrics on the Möbius band.

In general, from [25] we know that a metric on Σ that maximizes the kth Steklov

eigenvalue among all smooth metrics on Σ arises as the induced metric on a free

boundary minimal Möbius band in B4. However, solving this optimization problem

is, in general, quite difficult. Here we investigate the simpler problem of finding a

rotationally symmetric metric on Σ that maximizes the kth Steklov eigenvalue among

all rotationally symmetric metrics on Σ. That is, we consider metrics of the form

g = f(t)2(dt2 + dθ2),

where f : [−T, T ]→ R is a smooth function satisfying f(t) = f(−t). Let η = 1
f(T )

∂
∂t

be the outward unit conormal on ∂Σ. Our goal is to maximize the kth nonzero

normalized eigenvalues σ̃k(T ) = σk(T )Lg(∂Σ) = 2πf(T )σk(T ).

If u(t, θ) is Steklov eigenfunction on Σ, u(t, θ) is a harmonic map (with respect

to the flat metric) satisfying the boundary conditions u(t, θ) = u(−t, θ + π) and

is an eigenfunction of the Dirichlet-to-Neumann map. We may use the method of
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separation of variables to get u(t, θ) = α(t)β(θ), with α(t) = α(−t) and β(θ) =

β(θ + π) and
α′′(t)

α(t)
= −β

′′(θ)

β(θ)
= k2.

If k = 0, then α(t) = A + Bt and β(t) = C + Dθ. Since α(t) = α(−t) and

β(θ) = β(θ+π), we must have that 2Bt = 0 and C = C+Dπ, so B = D = 0. Thus,

α(t) = A and β(θ) = C, so u is constant. However, since u is an eigenfunction of the

Dirichlet-to-Neumann map, on ∂Σ

d

dη
u = σu⇒ 1

f(T )
α′(T ) = σα(T )β(θ),

so σ = 0.

If k 6= 0, then it is easy to show that

α(t) = Ak sinh(kt) +Bk cosh(kt) and β(θ) = Ck sin(kθ) +Dk cos(kθ).

So, since α(t)β(θ) = α(−t)β(θ + π),

(Ak sinh(kt) +Bk cosh(kt)) (Ck sin(kθ) +Dk cos(kθ))

= (−Ak sinh(kt) +Bk cosh(kt)) (Ck sin(kθ) cos(kπ) +Dk cos(kθ) cos(kπ))

= (−Ak sinh(kt) +Bk cosh(kt))
(
Ck sin(kθ)(−1)k +Dk cos(kθ)(−1)k

)
So,

Ak sinh(kt)(1 + (−1)k) (Ck sin(kθ) +Dk cos(kθ))

+Bk cosh(kt)(1− (−1)k) (Ck sin(kθ) +Dk cos(kθ)) = 0.

If k is even, then we have that

2Ak sinh(kt) (Ck sin(kθ) +Dk cos(kθ)) = 0,
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so either Ak = 0 or Ck = Dk = 0. However, if Ck = Dk = 0, then β(θ) ≡ 0. This

means that u ≡ 0, which is not possible since u is an eigenfunction. Thus, Ak = 0

and the eigenfunctions are

u(t, θ) = cosh(kt) (Ck sin(kθ) +Dk cos(kθ)) .

for some constants Ck, Dk. Now, since u is an eigenfunction of the Dirichlet-to-

Neumann map, on ∂Σ, ∂
∂η
u = σku, and so

1

f(T )
k sinh(kT ) (Ck sin(kθ) +Dk cos(kθ)) = σk cosh(kt) (Ck sin(kθ) +Dk cos(kθ)) .

Hence,

σk(T ) =
k

f(T )
tanh(kT ).

If k is odd, then we have that

2Bk cosh(kt) (Ck sin(kθ) +Dk cos(kθ)) = 0,

so, similarly to the previous case, we conclude that Bk = 0. Thus, the eigenfunctions

are

u(t, θ) = sinh(kt) (Ck sin(kθ) +Dk cos(kθ)) .

for some constants Ck, Dk. Now, again, since u is an eigenfunction of the Dirichlet-

to-Neumann map, on ∂Σ we get that

1

f(T )
k cosh(kT ) = σk sinh(kT ),

so

σk(T ) =
k

f(T )
coth(kT ).
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Thus, the nonzero eigenvalues of the Dirichlet-to-Neumann map are

λk(T ) =
2k

f(T )
tanh(2kT ), and µk(T ) =

(2k − 1)

f(T )
coth((2k − 1)T ),

k = 1, 2, . . ., and the normalized eigenvalues are

λ̃k(T ) = 4πk tanh(2kT ), and µ̃k(T ) = 2π(2k − 1) coth((2k − 1)T ),

k = 1, 2, . . ..

Lemma 3.2.1. Let k, l ≥ 1. Then

(i) λ̃k < λ̃k+1, µ̃l < µ̃l+1. Furthermore, λ̃n < µ̃n+1 for n ≥ 1, and each λ̃k and µ̃l

has multiplicity 2.

(ii) λ̃k(T ) is monotone increasing in T and µ̃l(T ) is monotone decreasing in T .

(iii) λ̃k(∞) := lim
T→∞

λ̃k(T ) = 4πk and µ̃l(∞) := lim
T→∞

µ̃l(T ) = 2π(2l − 1).

Proof. First, (i) and (iii) are clear by direct calculation. Now, (ii) follows from the

fact that

dλ̃k
dT

= 8πk2sech2(2kT ) > 0 and
dµ̃l
dT

= −2π(2l − 1)2csch2((2l − 1)T ) < 0.

Lemma 3.2.2. There exists T > 0 such that λ̃k(T ) = µ̃l(T ) if and only if l ≤ k.

Moreover, T is unique if it exists.

Proof. Let Fk,l(T ) = λ̃k(T )− µ̃l(T ) = 2π (2k tanh(2kT )− (2l − 1) coth ((2l − 1)T )).

Then Fk,l(T ) is continuous on (0,∞) and

lim
T→0

Fk,l(T ) = −∞ and lim
T→∞

Fk,l(T ) = 2π(2k − (2l − 1)).

Thus lim
T→∞

Fk,l(T ) > 0 if and only if l ≤ k. Furthermore, Fk,l(T ) is monotone increas-

ing on (0,∞) since λ̃k(T ) is monotone increasing and µ̃l(T ) is monotone decreasing.

Hence there exists a unique T > 0 for which λ̃k(T ) = µ̃l(T ) if and only if l ≤ k.
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Definition 3.2.3. For l ≤ k let Tk,l be the unique positive number such that

λ̃k(Tk,l) = µ̃l(Tk,l).

Lemma 3.2.4. For l ≤ k, Tk,l is decreasing in k and increasing in l.

Proof. Since λ̃k(T ) < λ̃k+1(T ), we have that

µ̃l(Tk,l) = λ̃k(Tk,l) < λ̃k+1(Tk,l).

Hence, Fk+1,l(Tk,l) > 0, where Fk,l is as in the proof of Lemma 3.2.2, and, again,

lim
T→0

Fk+1,l(T ) = −∞. Hence Tk+1,l < Tk,l. Similarly, if l + 1 ≤ k,

λ̃k(Tk,l) = µ̃l(Tk,l) < µ̃l+1(Tk,l),

and so Fk,l+1(Tk,l) < 0. Since lim
t→∞

Fk,l+1(T ) > 0, it follows that Tk,l < Tk,l+1.

For fixed k > 0, let s = bk
2
c. By Lemma 3.2.4, if k ≥ 2, we see that we can

decompose (0,∞) as

(0,∞) = (0, Tk−1,1) ∪

(
s⋃
j=2

[Tk−j+1,j−1, Tk−j,j)

)
∪ [Tk−s,s,∞).

Note that if k = 1, then s = 0 and we do not decompose (0,∞).

Lemma 3.2.5. For k ≥ 1,

σ̃2k−1(T ) = σ̃2k(T ) ≤



λ̃k(Tk,1) if T ∈ (0, Tk−1,1)

λ̃k−j+1(Tk−j+1,j) if T ∈ [Tk−j+1,j−1, Tk−j,j), 2 ≤ j ≤ s

λ̃k/2(∞) if T ∈ [Tk−s,s,∞), s = k
2
, k even

λ̃(k+1)/2(T(k+1)/2,(k+1)/2) if T ∈ [Tk−s,s,∞), s = k−1
2

, k odd

.

Proof. First suppose T ∈ (0, Tk−1,1). Then, since λ̃k−1(T ) is increasing in T and
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µ̃1(T ) is decreasing in T by Lemma 3.2.1, we have that

λ̃k−1(T ) < λ̃k−1(Tk−1,1) = µ̃1(Tk−1,1) < µ̃1(T ).

Since each λ̃n(T ) and each µ̃n(T ) have multiplicity two, either σ̃2k−1(T ) = σ̃2k(T ) =

λ̃k(T ) or σ2k−1(T ) = σ̃2k(T ) = µ̃1(T ). Now, since Tk,l is decreasing in k by Lemma

3.2.4, 0 < Tk,1 < Tk−1,1. So, if T ≤ Tk,1,

λ̃k(T ) ≤ λ̃k(Tk,1) = µ̃1(Tk,1) ≤ µ̃1(T )

and so σ̃2k−1(T ) = σ̃2k(T ) = λ̃k(T ) ≤ λ̃k(Tk,1). Otherwise, Tk,1 < T < Tk−1,1, so

λ̃k(T ) > λ̃k(Tk,1) = µ̃1(Tk,1) > µ̃1(T ),

and σ̃2k−1(T ) = σ̃2k(T ) = µ̃1(T ) < µ̃1(Tk,1) = λ̃k(Tk,1). Hence, in either case,

σ̃2k−1(T ) = σ̃2k(T ) ≤ λ̃k(Tk,1).

Now, if 2 ≤ j ≤ s and T ∈ [Tk−j+1,j−1, Tk−j,j), then

λ̃k−j+1(T ) > λ̃k−j+1(Tk−j+1,j−1) = µ̃j−1(Tk−j+1,j−1) > µ̃j−1(T )

and

λ̃k−j(T ) < λ̃k−j(Tk−j,j) = µ̃j(Tk−j,j) < µ̃j(T ).

So, either σ̃2k−1(T ) = σ̃2k(T ) = λ̃k−j+1(T ) or σ̃2k−1(T ) = σ̃2k(T ) = µ̃j(T ). Again,

since Tk,l is decreasing in k and increasing in l by Lemma 3.2.4, Tk−j+1,j−1 <

Tk−j+1,j < Tk−j,j. So, if Tk−j+1,j−1 ≤ T ≤ Tk−j+1,j, then

λ̃k−j+1(T ) ≤ λ̃k−j+1(Tk−j+1,j) = µ̃j(Tk−j+1,j) ≤ µ̃j(T )

and so σ̃2k−1(T ) = σ̃2k(T ) = λ̃k−j+1(T ) ≤ λ̃k−j+1(Tk−j+1,j). Otherwise Tk−j+1,j <

T < Tk−j,j, so

λ̃k−j+1(T ) > λ̃k−j+1(Tk−j+1,j) = µ̃j(Tk−j+1,j) > µ̃j(T )
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and σ̃2k−1(T ) = σ̃2k(T ) = µ̃j(T ) ≤ λ̃k−j+1(Tk−j+1,j). Hence, in either case, σ̃2k−1(T ) =

σ̃2k(T ) ≤ λ̃k−j+1(Tk−j+1,j).

If T ∈ [Tk−s,s,∞), s = k
2
, k even (Tk−s,s = Tk/2,k/2), then

λ̃k/2(T ) ≥ λ̃k/2(Tk/2,k/2) = µ̃k/2(Tk/2,k/2) ≥ µ̃k/2(T ).

Furthermore, Tk/2,k/2+1 is undefined by Lemma 3.2.2, so

λ̃k/2(T ) < µ̃k/2+1(T ) ∀ T > 0.

Hence, σ̃2k−1(T ) = σ̃2k(T ) = λ̃k/2(T ) < λ̃k/2(∞).

Finally, if T ∈ [Tk−s,s,∞), s = k−1
2

, k odd (Tk−s,s = T(k+1)/2,(k−1)/2), then

λ̃(k+1)/2(T ) ≥ λ̃(k+1)/2(T(k+1)/2,(k−1)/2) = µ̃(k−1)/2(T(k+1)/2,(k−1)/2) ≥ µ̃(k−1)/2(T ).

Furthermore, T(k−1)/2,(k+1)/2 is undefined by Lemma 3.2.2, so

λ̃(k−1)/2(T ) < µ̃(k+1)/2(T ) ∀T > 0.

So, either σ̃2k−1(T ) = σ̃2k(T ) = λ̃(k+1)/2(T ) or σ̃2k−1(T ) = σ̃2k(T ) = µ̃(k+1)/2(T ).

Now, T(k+1)/2,(k+1)/2 is defined by Lemma 3.2.2 and T(k+1)/2,(k−1)/2 < T(k+1)/2,(k+1)/2

by Lemma 3.2.4. If T(k+1)/2,(k−1)/2 ≤ T ≤ T(k+1)/2,(k+1)/2, then

λ̃k+1/2(T ) ≤ λ̃(k+1)/2(T(k+1)/2,(k+1)/2) = µ̃(k+1)/2(T(k+1)/2,(k+1)/2) ≤ µ̃(k+1)/2(T )

and so σ̃2k−1(T ) = σ̃2k(T ) = λ̃(k+1)/2(T ) ≤ λ̃(k+1)/2(T(k+1)/2,(k+1)/2). Otherwise T >

T(k+1)/2,(k+1)/2 and

λ̃k+1/2(T ) > λ̃(k+1)/2(T(k+1)/2,(k+1)/2) = µ̃(k+1)/2(T(k+1)/2,(k+1)/2) > µ̃(k+1)/2(T ).

So, σ̃2k−1(T ) = σ̃2k(T ) = µ̃(k+1)/2(T ) < µ̃(k+1)/2(T(k+1)/2,(k+1)/2) and

µ̃(k+1)/2(T(k+1)/2,(k+1)/2) = λ̃(k+1)/2(T(k+1)/2,(k+1)/2). Thus, in either case, σ̃2k−1(T ) =

σ̃2k(T ) ≤ µ̃(k+1)/2(T(k+1)/2,(k+1)/2).
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Lemma 3.2.6. Let

f(t) = sinh(t) cosh(t)− t and g(t) =
sinh(t) cosh(t)− t

t2
.

Then f(t) > 0 and g′(t) > 0 for all t > 0.

Proof. We have that

f ′(t) = cosh2(t) + sinh2(t)− 1

= 2 sinh2(t)

which is positive for t > 0. Since f(0) = 0, it follows that f(t) > 0 for t > 0.

Now

g′(t) =
f ′(t)t2 − 2tf(t)

t4
=

2t(sinh2(t) + 1)− 2 sinh(t) cosh(t)

t3

=
2t cosh2(t)− 2 sinh(t) cosh(t)

t3
.

Since cosh2(t) = 1
4
(e2t + 2 + e−2t) and cosh(t) sinh(t) = 1

4
(e2t − e−2t), we get that

g′(t) =
(2t− 2)e2t + (2t+ 2)e−2t + 4t

4t3

=
1

4t3

[(
(2t− 2)

∞∑
k=0

(2t)k

k!

)
+

(
(2t+ 2)

∞∑
k=0

(−1)k
(2t)k

k!

)
+ 4t

]

=
1

4t3

[(
∞∑
k=0

(2t)k+1

k!

)
− 2

(
∞∑
k=0

(2t)k

k!

)
+

(
∞∑
k=0

(−1)k(2t)k+1

k!

)

+ 2

(
∞∑
k=0

(−1)k(2t)k

(k!)

)
+ 4t

]

=
1

4t3

[
2

(
∞∑
k=0

(2t)2k+1

(2k)!

)
− 4

(
∞∑
k=0

(2t)2k+1

(2k + 1)!

)
+ 4t

]
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=
1

4t3

[
∞∑
k=1

(
2

(2k)!
− 4

(2k + 1)!

)
(2t)2k+1

]

=
1

4

∞∑
k=1

2(2k − 1)

(2k + 1)!
(2t)2k−2

=
1

4

∞∑
k=0

2(2k + 1)

(2k + 3)!
(2t)2k

Since all of the coefficients are positive, it follows that g′(t) > 0 for t > 0.

Lemma 3.2.7. Let x(a, b) be the unique positive solution of

a tanh(ax) = b coth(bx)

for a ≥ b > 0. Let

u(a, b) = a tanh(ax(a, b)).

Then u(a, b) < u(a+ c, b− c) for a ≥ b > c > 0.

Proof. Differentiating the first equation with respect to a yields

tanh(ax) + asech2(ax)

(
x+ a

∂x

∂a

)
= −b2csch2(bx) · ∂x

∂a

and so
∂x

∂a
=
− tanh(ax)− axsech2(ax)

a2sech2(ax) + b2csch2(bx)
< 0.

Similarly,

∂x

∂b
=

coth(bx)− bxcsch2(bx)

a2sech2(ax) + b2csch2(bx)
=

sinh(bx) cosh(bx)− bx
sinh2(bx)(a2sech2(ax) + b2csch2(bx))

> 0,

where we have used Lemma 3.2.6 to conclude its sign.

Now, since u(a, b) = b coth(bx(a, b)) and ∂x
∂a
< 0,

∂u

∂a
= −b2csch2(bx) · ∂x

∂a
> 0.
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Similarly,
∂u

∂b
= a2sech2(ax) · ∂x

∂b
> 0.

Hence, (
∂u
∂a

)(
∂u
∂b

) =
b2(sinh(ax) cosh(ax) + ax)

a2(sinh(bx) cosh(bx)− bx)
>
b2(sinh(ax) cosh(ax)− ax)

a2(sinh(bx) cosh(bx)− bx)
≥ 1

by Lemma 3.2.6 since a ≥ b. Note that the inequality is strict when a > b. Thus,

for f(t) = u(a+ t, b− t),
f ′(t) =

∂u

∂a
− ∂u

∂b
,

and so f ′(t) > 0 for t > 0. Hence u(a, b) < u(a+ c, b− c) for a ≥ b > c > 0.

Corollary 3.2.1. For k ≥ l > c > 0 we have that

λ̃k(Tk,l) < λ̃k+c(Tk+c,l−c).

Proof. By Lemma 3.2.7, for k ≥ l > c > 0 we have that u(2k, 2l − 1) < u(2k +

2c, 2l − 1− 2c). Hence λ̃k(Tk,l) < λ̃k+c(Tk+c,l−c).

In particular, this tells us that

λ̃k−j+1(Tk−j+1,j) < λ̃k(Tk,1),

for 2 ≤ j < s and, when k is odd,

λ̃(k+1)/2(T(k+1)/2,(k+1)/2) < λ̃k(Tk,1).

So, when k is odd, by Lemma 3.2.5 we have that σ̃2k−1(T ) = σ̃2k(T ) ≤ λ̃k(Tk,1), and

when k is even, σ̃2k−1(T ) = σ̃2k(T ) ≤ max(λ̃k/2(∞), λ̃k(Tk,1)).

Lemma 3.2.8. For k ≥ 2 even,

λ̃k/2(∞) < λ̃k(Tk,1)
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Proof. First note that λ̃k/2(∞) = 2πk and λ̃k(Tk,1) = 4πk tanh(2kTk,1), so, if we let

k = 2n with n ≥ 1, then we need to show that 8πn tanh(4nT2n,1) > 4πn. Now

tanh(4nT ) =
e4nT − e−4nT

e4nT + e−4nT
=

1

2
⇔ T =

log(3)

8n
.

Since 2π coth(T2n,1) = 8πn tanh(4nT2n,1), if coth
(

log(3)
8n

)
> 2n = 4n tanh

(
4n log(3)

8n

)
,

then it would follow that 2π coth(T2n,1) = 8πn tanh(4nT2n,1) > 4πn. By direct

calculation, we have that

coth

(
log(3)

8n

)
=

31/8n + 1
31/8n

31/8n − 1
31/8n

=
31/4n + 1

31/4n − 1
,

so coth
(

log(3)
8n

)
> 2n is equivalent to

31/4n + 1

31/4n − 1
> 2n⇔ 31/4n + 1

2n(31/4n − 1)
> 1.

Let

f(n) =
31/4n + 1

2n(31/4n − 1)
.

Then, thinking of n as a positive real number,

f ′(n) =(
− log(3)

4n2 · 31/4n
)
·
(
2n · (31/4n − 1)

)
−
(
31/4n + 1

)
·
(

2
(
31/4n − 1

)
+ 2n

(
− log(3)

4n2 · 31/4n
))

4n2 (31/4n − 1)
2

=
− log(3)

2n
· 31/2n + log(3)

2n
· 31/4n − 2 · 31/2n + 2 + log(3)

2n
· 31/2n + log(3)

2n
· 31/4n

4n2 (31/4n − 1)
2

=
log(3)
n
· 31/4n + 2 · (1− 31/2n)

4n2 (31/4n − 1)
2 .

Since the denominator is always positive, we will focus on the numerator. Using
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Taylor series we have that

log(3)

n
· 31/4n + 2 · (1− 31/2n) =

log(3)

n

(
∞∑
k=0

1

k!

(
log(3)

4n

)k)
− 2

(
∞∑
k=1

1

k!

(
log(3)

2n

)k)

=

(
∞∑
k=0

4

k!

(
log(3)

4n

)k+1
)
−

(
∞∑
k=1

2k+1

k!

(
log(3)

4n

)k)

=

(
∞∑
k=1

4

(k − 1)!

(
log(3)

4n

)k)
−

(
∞∑
k=1

2k+1

k!

(
log(3)

4n

)k)

=
∞∑
k=1

(
4

(k − 1)!
− 2k+1

k!

)
·
(

log(3)

4n

)k
.

So, since 4
(k−1)!

= 2k+1

k!
for k = 1, 2, and 4

(k−1)!
< 2k+1

k!
for all k ≥ 3, it follows that

f ′(n) < 0 for all n > 0 and so f(n) is monotone decreasing.

Now,

lim
n→∞

2n · (31/4n − 1) = lim
n→∞

31/4n − 1
1

2n

= lim
n→∞

− log(3)
4n2 · 31/4n

− 1
2n2

=
log(3)

2
,

so

lim
n→∞

f(n) =
4

log(3)
> 1.

Thus, f(n) is bounded below by 1 and so

coth

(
log(3)

8n

)
=

31/4n + 1

31/4n − 1
> 2n.

Therefore, 8πn tanh(4nT2n,1) = 2π coth(T2n,1) > 4πn, and so λ̃k/2(∞) < λ̃k(Tk,1).

3.3 Free boundary minimal Möbius bands in B4

Here, using the results from the previous section, we first show that we can always

find a rotationally symmetric metric that maximizes the kth Steklov eigenvalue. We

then use the eigenfunctions corresponding to these maximal Steklov eigenvalues to
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get constructions of free boundary minimal Möbius bands in B4.

Theorem 3.3.1. Let k ≥ 1 and Mk = sup
T>0

(σ̃k(T )). Then M2k−1 = M2k = λ̃k(Tk,1),

and is attained precisely when T = Tk,1.

Proof. This follows directly from Lemma 3.2.1 and Lemma 3.2.8.

Consider the immersed surface in R4 given by

x(t, θ) = 2n sinh(t) cos(θ)

y(t, θ) = 2n sinh(t) sin(θ)

z(t, θ) = cosh(2nt) cos(2nθ)

w(t, θ) = cosh(2nt) sin(2nθ)

for t ∈ [−Tn,1, Tn,1]. Now, since the coordinate functions are Steklov eigenfunctions,

they are harmonic extensions of their restriction to ∂Σ. Furthermore, if we let

Φ(t, θ) = (x(t, θ), y(t, θ), z(t, θ), w(t, θ)), then

∂Φ

∂t
= (n cosh(t) cos(θ), n cosh(t) sin(θ), n sinh(nt) cos(nθ), n sinh(nt) sin(nθ)) ,

∂Φ

∂θ
= (−n sinh(t) sin(θ), n sinh(t) cos(θ),−n cosh(nt) sin(nθ), n cosh(nt) cos(nθ)) .

It follows that
∂Φ

∂t
· ∂Φ

∂θ
= 0 and

∣∣∣∣∂Φ

∂t

∣∣∣∣ =

∣∣∣∣∂Φ

∂θ

∣∣∣∣ = n2
(
sinh2(t) + cosh2(nt)

)
. Hence,

Φ is also conformal and so we see that the immersion defined by the coordinate

functions is a minimal immersion. Moreover, since |Φ| is constant on ∂Σ, it follows

from the maximum principle that Φ defines a surface contained in a ball centred

at the origin of radius
√

4n2 sinh2(Tn,1) + cosh2(2nTn,1). To obtain a free boundary

minimal Möbius band in B4, we scale the portion of this immersed surface inside

the ball centred at the origin of radius
√

4n2 sinh2(Tn,1) + cosh2(2nTn,1) to lie in B4.

This yields the following:

Theorem. 1.2.1 For all n ≥ 1, the maximum of the nth Steklov eigenvalue among

all rotationally symmetric metrics on the Möbius band is achieved by the metric on
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a free boundary minimal Möbius band in B4 given explicitly by the immersion

Φ(t, θ) =
1

Rn

(2n sinh(t) cos(θ), 2n sinh(t) sin(θ), cosh(2nt) cos(2nθ), cosh(2nt) sin(2nθ)),

where Rn =
√

4n2 sinh2(Tn,1) + cosh2(2nTn,1) and (t, θ) ∈ [−Tn,1, Tn,1]× S1/ ∼.
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Chapter 4

Existence of Harmonic Maps into

CAT(1) Spaces

4.1 Introduction

In this chapter we prove an existence result for harmonic maps from compact Rie-

mann surfaces into complete metric spaces with an upper curvature bound. The

theory of harmonic maps has proven to have important applications; for example,

the existence theory for harmonic two-spheres of Sacks and Uhlenbeck [53] was ex-

tended by Micallef and Moore [49] and used to prove a generalization of the classical

sphere theorem to pointwise quarter-pinching. Other important applications of har-

monic maps include those in rigidity problems (for example, [62], [10], [28]) and in

Teichmüller theory (for example, [70], [16], [14]) amongst others.

For some of the above mentioned applications, it has been necessary to consider

harmonic maps when the smooth Riemannian target is replaced by a singular space.

The seminal works of Gromov-Schoen [28] and Korevaar-Schoen [40] consider har-

monic maps from a Riemannian domain into a non-Riemannian target. Further

exploration of harmonic map theory in the singular setting includes works of Jost

[33], J. Chen [8], Eells-Fuglede [18] and Daskalopoulos-Mese [12]. However, all of

the above mentioned works assume non-positivity of curvature (NPC) in the target
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space.

When the curvature of the target space is allowed to be positive, the existence

problem for harmonic maps becomes more complicated, and in many ways, more

interesting. Although the general problem is not well understood, a breakthrough

was achieved in the case of two-dimensional domains by Sacks and Uhlenbeck [53].

Indeed, they discovered a “bubbling phenomena” for harmonic maps; more specifi-

cally, they prove the following dichotomy: given a finite energy map from a Riemann

surface into a compact Riemannian manifold, either there exists a harmonic map

homotopic to the given map or there exists a branched minimal immersion of the

2-sphere. We also mention the related works of Lemaire [44], Sacks-Uhlenbeck [54],

and Schoen-Yau [58].

The goal of this chapter is to provide a generalization of the Sacks and Uhlenbeck

existence result to the case of metric space targets. We specifically look at the setting

in which the target is a CAT(1) space, i.e. a complete metric space with curvature

bounded above by 1 in the sense of Alexandrov. The method used by Sacks and

Uhlenbeck is not accessible in the singular setting as it depends on a priori estimates

stemming from the Euler-Lagrange equation of their perturbed energy functional

and, in the singular setting, one can no longer use variational methods to obtain

an Euler-Lagrange equation. Here, we develop an alternative method that instead

exploits the local convexity of the target CAT(1) space.

Our original motivation for considering the existence problem in the singular

setting was to develop an approach to the non-smooth uniformization problem of

finding a conformal (or more generally, a quasisymmetric) parameterization of a

metric space homeomorphic to the 2-sphere, via harmonic map methods. We expect

to able to use an application of our theorem to solve the non-smooth uniformization

problem in the special case when the metric space in question has an additional

property that it is locally CAT(1).

Before stating our result precisely, we first describe the setting of our problem in

more detail by outlining harmonic maps with singular targets and CAT(1) spaces.
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4.1.1 Harmonic maps

Let (Mm, g) and (Nn, h) be two Riemannian manifolds, and let u : M → N . Then

there is a natural notion of the energy of u, E(u), which roughly measures the amount

the map u stretches M . More precisely, if {ei}mi=1 is a local orthonormal frame for

TxM , then the energy density at x ∈M is

|dux|2 = Trg(u
∗h) =

m∑
i=1

|dux(ei)|2

= gαβ(x)hij(u(x))
∂ui

∂xα
∂uj

∂xβ
,

and the energy of u is defined to be

E(u) =

∫
M

|du|2dµg.

A harmonic map is then a critical point of the energy functional.

When the target space is no longer a smooth manifold but simply a complete

metric space, Gromov and Schoen [28] and Korevaar and Schoen [40] developed a

Sobolev space theory for maps into metric spaces and harmonic maps theory into

complete metric spaces with non-positive curvature in the sense of Alexandrov. If

(Ω, g) is a Riemannian domain and (X, d) is a complete metric space, then a map

u : Ω → X is in L2(Ω, X) if u is a Borel measurable function with separable range

and for some P ∈ X, ∫
Ω

d2(u(x), P )dµg <∞.

To define the Sobolev space W 1,2(Ω, X) ⊂ L2(Ω, X), we need to define the energy

of a map u : Ω → X when X is a complete metric space. We first define the

ε-approximate energy density euε : Ω→ R by

euε (x) =

∫
S(x,ε)

d2(u(x), u(y))

ε2
· dσx,ε(y)

εn−1
,

where σx,ε is the induced measure on the ε-sphere S(x, ε) centred at x. The ε-
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approximating energy Eu
ε : Cc(Ω)→ R is then

dEu
ε (φ) =

∫
Ω

φeuε dµg.

We will often suppress the superscript d when the context is clear. An L2 map

u : Ω→ X is said to have finite energy if

E(u) = sup
φ∈Cc(Ω), 0≤φ≤1

lim sup
ε→0

Eu
ε (φ) <∞,

and the Sobolev space W 1,2(Ω, X) is defined to the be the subset of L2(Ω, X) con-

sisting of finite energy maps. In the case that u has finite energy, there is an energy

density function |∇u|2(x) such that

euε (x)dµg ⇀ |∇u|2(x)dµg.

For u ∈ W 1,2(Ω, X) and a smooth vector field V ∈ Γ(Ω), there is a directional energy

density function |u∗(V )|2(x) ∈ L1(Ω) such that

|u∗(V )|2(x) = lim
ε→0

d2(u(x), u(expx(εV )))

ε2
for a.e. x ∈ Ω,

the energy density is given by

|∇u|2(x) =
1

ωn−1

∫
Sn−1⊂TxΩ

|u∗(V )|2(x)dσ,

and the energy of u is

E(u) =

∫
Ω

|∇u|2dµ.

Given two finite energy maps u and v, the distance d(u, v) : Ω → R+ between

them belongs to the Sobolev space W 1,2(Ω). Therefore one can make the following

definition: u = v on ∂Ω if d(u, v) ∈ W 1,2
0 (Ω). A finite energy map u : Ω → X is
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energy minimizing if

E(u) = inf{E(v) : v ∈ W 1,2(Ω, X), v = u on ∂Ω}.

Given h ∈ W 1,2(Ω, X), we define

W 1,2
h (Ω, X) = {f ∈ W 1,2(Ω, X) : h = f on ∂Ω}.

Definition 4.1.1. We say that a map u : Ω→ X is harmonic if it is locally energy

minimizing with locally finite energy; precisely, for every p ∈ Ω, there exist r > 0,

ρ > 0 and P ∈ X such that h = u
∣∣
Br(p)

has finite energy and minimizes energy

among all maps in W 1,2
h (Br(p),Bρ(P )), where Br(p) is the geodesic ball in Ω of

radius r centred at p and Bρ(P ) is the geodesic ball in X of radius ρ centred at P .

We refer the reader to [40] for further details and background.

4.1.2 CAT(1) Spaces

Roughly speaking, a CAT(1) space is a complete metric space with curvature bounded

above by 1 in the sense of triangle comparison.

A complete metric space (X, d), is a geodesic space if for each P,Q ∈ X, there

exists a curve γPQ such that the length of γPQ is exactly d(P,Q). We call γPQ a

geodesic between P and Q.

Remark 4.1.2. For ease of notation, we will often denote d(P,Q) by dPQ.

We determine a weak notion of an upper sectional curvature bound on X by using

comparison triangles. Given any three points P,Q,R ∈ X such that dPQ + dQR +

dRS < 2π, the geodesic triangle 4PQR is the triangle in X with sides given by the

geodesics γPQ, γQR, γRS.

Let 4P̃ Q̃R̃ denote a geodesic triangle on the standard sphere S2 such that

dPQ = dP̃ Q̃, dQR = dQ̃R̃ and dRP = dR̃P̃ . We call 4P̃ Q̃R̃ a comparison triangle

for the geodesic triangle 4PQR. Note that a comparison triangle is convex since

the perimeter of the geodesic triangle is less than 2π.
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Given a geodesic space (X, d) and a geodesic γPQ with dPQ < π, for τ ∈ [0, 1] let

(1− τ)P + τQ denote the point on γPQ at distance τdPQ from P . That is,

d((1− τ)P + τQ, P ) = τdPQ.

Definition 4.1.3. Let (X, d) be a complete geodesic space. Then X is a CAT(1)

space if, given any geodesic triangle 4PQR (with perimeter less than 2π) and a

comparison triangle 4P̃ Q̃R̃ in S2,

dPtRs ≤ dP̃tR̃s (4.1)

where

Pt = (1− t)P + tQ, Rs = (1− s)R + sQ,

P̃t = (1− t)P̃ + tQ̃, R̃s = (1− s)R̃ + sQ̃.

P Q

R

Pt

Rs

P̃ Q̃

R̃

P̃t

R̃s

Figure 4.1: An illustration of a triangle in a geodesic space (X, d) (left) and a com-
parison triangle in S2 (right). If the geodesics connecting the sides of the triangle in
(X, d) are shorter than the corresponding geodesics for the comparison triangle in
S2, then (X, d) is called a CAT(1) space.

The simplest examples of CAT(1) spaces are the complete Riemannian manifolds

with curvature bounded above by 1. In particular, S2 is a CAT(1) space. However,

there are many examples of CAT(1) spaces other than Riemannian manifolds.

A metric space (X, d) is said to be locally CAT(1) if every point of X has a

56



geodesically convex CAT(1) neighbourhood. Note that for a compact locally CAT(1)

space, there exists a radius r(X) > 0 such that for all y ∈ X, Br(X)(y) is a compact

CAT(1) space. We refer the reader to Section 2.2 of [7] for further background on

CAT(1) spaces.

4.1.3 Main results and outline

The goal of this chapter is to prove a result analogous to the existence result of Sacks

and Uhlenbeck when the target space is a compact CAT(1) space. More specifically,

we obtain the following theorem.

Theorem. 1.3.1 Let Σ be a compact Riemann surface, X a compact locally CAT(1)

space and ϕ ∈ C0∩W 1,2(Σ, X). Then either there exists a harmonic map u : Σ→ X

homotopic to ϕ or a nontrivial conformal harmonic map v : S2 → X.

Sacks and Uhlenbeck used the perturbed energy method in the proof of Theorem

1.3.1 for Riemannian manifolds. In doing so, they rely heavily on a priori estimates

procured from the Euler-Lagrange equation of the perturbed energy functional. One

of the difficulties in working in the singular setting is that, because of the lack of

local coordinates, one does not have a P.D.E. derived from a variational principle

(e.g. harmonic map equation). In order to prove results in the singular setting, we

cannot rely on P.D.E. methods. To this end, we use a 2-dimensional generalization

of the Birkhoff curve shortening method [4], [5]. This local replacement process

can be thought of as a discrete gradient flow. This idea was used by Jost [33] to

give an alternative proof of the Sacks-Uhlenbeck theorem in the smooth setting.

More recently, in studying width and proving finite time extinction of the Ricci flow,

Colding-Minicozzi [9] further developed the local replacement argument and proved

a new convexity result for harmonic maps and continuity of harmonic replacement.

However, even these arguments rely on the harmonic map equation and hence do not

translate to our case. The main accomplishment of our method is to eliminate the

need for a P.D.E. by using the local convexity properties of the target CAT(1) space.

(The necessary convexity properties of a CAT(1) space are given in Appendix B.)
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For clarity, we provide a brief outline of the harmonic replacement construction.

Given ϕ : Σ → X, we set ϕ = u0
0 and inductively construct a sequence of energy

decreasing maps uln where n ∈ N∪{0}, l ∈ {0, . . . ,Λ}, and Λ depends on the geometry

of Σ. The sequence is constructed inductively as follows. Given the map u0
n, we

determine the largest radius, rn, in the domain on which we can apply the existence

and regularity of Dirichlet solutions (see Lemma 4.2.1) for this map. Given a suitable

cover of Σ by balls of this radius, we consider Λ subsets of this cover such that every

subset consists of non-intersecting balls. The maps uln : Σ → X, l ∈ {1, . . . ,Λ} are

determined by replacing ul−1
n by its Dirichlet solution on balls in the l-th subset of the

covering and leaving the remainder of the map unchanged. We then set u0
n+1 := uΛ

n to

continue by induction. There are now two possibilities, depending on lim inf rn = r.

If r > 0, we demonstrate that the sequence we constructed is equicontinuous and

has a unique limit that is necessarily homotopic to ϕ. Compactness for minimizers

(Lemma 4.2.2) then implies that the limit map is harmonic. If r = 0, then bubbling

occurs. That is, after an appropriate rescaling of the original sequence, the new

sequence is an equicontinuous family of harmonic maps from domains exhausting C.

As in the previous case, this sequence converges on compact sets to a limit harmonic

map from C to X. We extend this map to S2 by a removable singularity theorem

developed in section 4.3.

We now give an outline of the chapter. In section 4.2, we introduce some notation

and provide the results that are necessary in order to perform harmonic replacement

and obtain a harmonic limit map. In particular, we state the existence and reg-

ularity results for Dirichlet solutions and prove compactness of energy minimizing

maps into a CAT(1) space. In section 4.3, we prove our removable singularity theo-

rem. Namely, in Theorem 4.3.6 we prove that any conformal harmonic map from a

punctured surface into a CAT(1) space extends as a locally Lipschitz harmonic map

on the surface. This theorem extends to CAT(1) spaces the removable singularity

theorem of Sacks-Uhlenbeck [53] for a finite energy harmonic map into a Riemannian

manifold, provided the map is conformal. The proof relies on two key ideas. First, for

harmonic maps u0 and u1 into a CAT(1) space, while d2(u0, u1) is not subharmonic, a

more complicated weak differential inequality holds if the maps are into a sufficiently
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small ball (Theorem B.2.4 in Appendix B.2, [60]). Using this inequality, we prove a

local removable singularity theorem for harmonic maps into a small ball. The second

key idea, Theorem 4.3.4, is a monotonicity of the area in extrinsic balls in the target

space, for conformal harmonic maps from a surface to a CAT(1) space. This theorem

extends the classical monotonicity of area for minimal surfaces in Riemannian mani-

folds to metric space targets. The proof relies on the fact that the distance function

from a point in a CAT(1) space is almost convex on a small ball. In application, the

monotonicity is used to show that a conformal harmonic map defined on Σ\{p} is

continuous across p. Then the local removable singularity theorem can be applied

at some small scale. Section 4.4 contains the harmonic replacement construction

outlined above and the proof of the main theorem, Theorem 1.3.1. Note that we give

complete proofs of several difficult estimates for quadrilaterals in a CAT(1) space

in Appendix B.1. The estimates are stated in the unpublished thesis [60] without

proof. We apply these estimates in Appendix B.2 to give complete proofs of some

energy convexity, existence, uniqueness, and subharmonicity results (also stated in

[60]) that are used throughout this chapter.

4.2 Preliminary results

Throughout this chapter we let (Ω, g) denote a Lipschitz Riemannian domain and

(X, d) a locally CAT(1) space. We denote a geodesic ball in Ω of radius r centred

at p ∈ Ω by Br(p) and a geodesic ball in X of radius ρ centred at P ∈ X by Bρ(P ).

The following results will be used in the proof of the main theorem, Theorem 1.3.1.

Lemma 4.2.1 (Existence, Uniqueness and Regularity of the Dirichlet solution). For

any finite energy map h : Ω→ Bρ(P ) ⊂ X, where ρ ∈ (0,min{r(X), π
4
}), the Dirich-

let solution exists. That is, there exists a unique element Dirh ∈ W 1,2
h (Ω,Bρ(P ))

that minimizes energy among all maps in W 1,2
h (Ω,Bρ(P )). Moreover, if Dirh(∂Ω) ⊂

Bσ(P ) for some σ ∈ (0, ρ), then Dirh(Ω) ⊂ Bσ(P ). Finally, the solution Dirh is lo-

cally Lipschitz continuous with Lipschitz constant depending only on the total energy

of the map and the metric on the domain.
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For further details see Lemma B.2.2 in Appendix B.2, [60], and [7].

Lemma 4.2.2 (Compactness for minimizers into CAT(1) space). Let (X, d) be a

CAT(1) space and Br ⊂ Ω a geodesic (and topological) ball of radius r > 0 where

(Ω, g) is a Riemannian manifold. Let ui : Br → X be a sequence of energy minimizers

with Eui [Br] ≤ Λ for some Λ > 0.

Suppose that ui converges uniformly to u on Br and that there exists P ∈ X such

that u(Br) ⊂ Bρ/2(P ) where ρ is as in Lemma 4.2.1. Then u is energy minimizing

on Br/2.

Proof. We will follow the ideas of the proof of Theorem 3.11 [41]. Rather than prove

the bridge principle for CAT(1) spaces, we will modify the argument and appeal

directly to the bridge principle for NPC spaces (see Lemma 3.12 [41]).

Since ui → u uniformly and u(Br) ⊂ Bρ/2(P ), there exists I large such that for

all i ≥ I, ui(Br) ⊂ Bρ(P ). By Lemma 4.2.1, there exists c > 0 depending only on

Λ and g such that for all i ≥ I, ui|B3r/4
is Lipschitz with Lipschitz constant c. It

follows that for t > 0 small, there exists C > 0 depending on c and the dimension of

Ω such that

Eui [Br/2\Br/2−t] ≤ Ct. (4.2)

For ε > 0, increase I if necessary so that for all i ≥ I and all x ∈ B3r/4,

d2(ui(x), u(x)) < ε. (4.3)

For notational ease, let Ut := Br/2−t. Let wt : Ut → X denote the energy

minimizer wt := Diru|Ut ∈ W 1,2
u (Ut, X), with existence guaranteed by Lemma 4.2.1.

Following the argument in the proof of Theorem 3.11 [41], (4.2) and the lower semi-

continuity of the energy imply that limt→0E
wt [Ut] = Ew0 [Br/2]. Observe that by the

lower semi-continuity of energy, Theorem 1.6.1 [40],

dE
u
[Br/2] ≤ lim inf

i→∞
dE

ui
[Br/2].
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Thus, it will be enough to show that

lim sup
i→∞

dE
ui

[Br/2] ≤ dE
w0

[Br/2].

Let vt : Br/2 → X be the map such that vt|Ut = wt and vt|Br/2\Ut = u. Given

δ > 0, choose t > 0 sufficiently small so that

dEvt [Br/2] < dEw0 [Br/2] + δ. (4.4)

Since vt is not a competitor for ui (i.e. vt|∂Br/2 is not necessarily equal to ui|∂Br/2),

for each i we want to bridge from vt to ui for values near ∂Br/2. Since we want to

exploit a bridging lemma into NPC spaces, rather than bridge between vt and ui, we

will bridge between their lifted maps in the cone C(X).

Let C(X) := (X × [0,∞)/X × {0}, D) where

D2([P, x], [Q, y]) = x2 + y2 − 2xy cos min(d(P,Q), π).

Then C(X) is an NPC space and we can identify X with X × {1} ⊂ C(X). For any

map f : Br → X, we let f : Br → X × {1} such that f(x) = [f(x), 1]. Note that for

f ∈ W 1,2(Br,Bρ(Q)), since

lim
P→Q

D2([P, 1], [Q, 1])

d2(P,Q)
= lim

P→Q

2(1− cos(d(P,Q)))

d2(P,Q)
= 1,

it follows that DEf [Ω] = dEf [Ω] for Ω ⊂ Br.

For each i ≥ I, and a fixed s, ρ > 0 to be chosen later, define the map

vi : ∂Us × [0, ρ]→ C(X)

such that

vi(x, z) :=

(
1− z

ρ

)
vt(x) +

z

ρ
ui(x).

The map vi is a bridge between vt|∂Us and ui|∂Us in the NPC space C(X). That is,
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we are interpolating along geodesics connecting vt(x), ui(x) in the NPC space C(X)

and not along geodesics in X. By [41] (Lemma 3.12) and the equivalence of the

energies for a map f and its lift f ,

DE
vi

[∂Us × [0, ρ]] ≤ ρ

2

(
DE

vt
[∂Us] + DE

ui
[∂Us]

)
+

1

ρ

∫
∂Us

D2([vt, 1], [ui, 1])dσ

=
ρ

2

(
dE

vt
[∂Us] + dE

ui
[∂Us]

)
+

1

ρ

∫
∂Us

D2([vt, 1], [ui, 1])dσ.

By (4.2), and since vt = u on Br/2\Ut, for s ∈ [2t/3, 3t/4] the average values of the

tangential energies of vt and ui on ∂Us are bounded above by Ct/(3t/4−2t/3) = 12C.

Moreover, since ui(Br/2), vt(Br/2) ⊂ Bρ(P ), (4.3) implies that for all x ∈ Br/2\Ut,

D2(ui(x), vt(x)) = 2(1− cos d(ui(x), vt(x))) ≤ d2(ui(x), vt(x)) < ε. (4.5)

Thus, there exists C ′ > 0 depending only on g such that for every s ∈ [2t/3, 3t/4],∫
∂Us

D2([vt, 1], [ui, 1])dσ < C ′ε.

Note that for each ε > 0, the bound above depends on I but not on t. Now, we

first choose an s ∈ (2t/3, 3t/4) such that dE
vt [∂Us] + dE

ui [∂Us] ≤ 24C. Next, pick

0 < µ� 1 such that [s, s+µt] ⊂ [2t/3, 3t/4] and 12Cµt < δ/2. For this t, µ, decrease

ε if necessary (by increasing I) such that

DEvi [∂Us × [0, µt]] =
µt

2

(
dE

vt
[∂Us] + dE

ui
[∂Us]

)
+

1

µt

∫
∂Us

D2([vt, 1], [ui, 1])dσ

< 24Cµt/2 + C ′ε/(µt)

< δ.

Now, define ṽi : Br/2 → C(X) such that on Us, ṽi is the conformally dilated map of vt

so that ṽi|∂Us+µt = vt|∂Us . On Us\Us+µt, let ṽi be the bridging map vi, reparametrized

in the second factor from [0, µt] to [s, s+µt]. Finally, on Br/2\Us, let ṽi = ui. Then,
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for all i ≥ I,
DE ṽi [Br/2] ≤ dEvt [Br/2] + δ + dEui [Br/2\Us]. (4.6)

While the map ṽi agrees with ui on ∂Br/2, it is not a competitor for ui into X

since ṽi maps into C(X). However, by defining vi : Br/2 → X such that ṽi(x) =

[vi(x), h(x)], vi is a competitor. Note that for all x ∈ ∂Us, (4.5) implies that h(x) ≥
1−
√
ε. Therefore, on the bridging strip we may estimate the change in energy under

the projection map by first observing the pointwise bound

D2(ṽi(x), ṽi(y)) = D2([vi(x), h(x)], [vi(y), h(y)])

= h(x)2 + h(y)2 − 2h(x)h(y) cos(d(vi(x), vi(y)))

= (h(x)− h(y))2 + 2h(x)h(y)(1− cos(d(vi(x), vi(y))))

≥ 2(1−
√
ε)2(1− cos(d(vi(x), vi(y))))

= (1−
√
ε)2D2([vi(x), 1], [vi(y), 1]).

Therefore,
dE

vi [Br/2] = DE
[vi,1]

[Br/2] ≤
(
1−
√
ε
)−2 DE

ṽi
[Br/2]. (4.7)

Since vi is a competitor for ui on Br/2, (4.7), (4.6), (4.4), and (4.2) imply that

dE
ui

[Br/2] ≤
(
1−
√
ε
)−2 DE

ṽi
[Br/2] ≤

(
1−
√
ε
)−2 (dEw0

[Br/2] + 2δ + Ct
)

Since for any ε, δ > 0, by choosing t > 0 sufficiently small and I ∈ N large enough,

the previous estimate holds for all i ≥ I, the inequality

lim sup
i→∞

dE
ui

[Br/2] ≤ dE
w0

[Br/2]

then implies the result.
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4.3 Monotonicity and removable singularity theo-

rem

We first show the removable singularity theorem for harmonic maps into small balls.

Note that the first theorem of this section is true for domains of dimension n ≥ 2,

but all other results require the domain dimension n = 2.

Theorem 4.3.1. Let u : Br(p) \ {p} → Bρ(P ) ⊂ X be a finite energy harmonic

map, where ρ is as in Lemma 4.2.1 and dim(Br(p)) = n. Then u can be extended on

Br(p) as the unique energy minimizer among all maps in W 1,2
u (Br(p),Bρ(P )).

Proof. Let v ∈ W 1,2
u (Br(p),Bρ(P )) minimize the energy. It suffices to show that

u = v on Br(p)\{p}. Since u is harmonic, there exists a locally finite countable open

cover {Ui} of Br(p) \ {p}, and ρi > 0, Pi ∈ Bρ(P ) such that u|Ui minimizes energy

among all maps in W 1,2
u (Ui,Bρi(Pi)). Let

F =

√
1− cos d

cosRu cosRv

where d(x) = d(u(x), v(x)) and Ru = d(u, P ), Rv = d(v, P ). By Theorem B.2.4,

div(cosRu cosRv∇F ) ≥ 0

holds weakly on each Ui. Therefore, for a partition of unity {ϕi} subordinate to the

cover {Ui} and for any test function η ∈ C∞c (Br(p) \ {p}),

−
∫
Br(p)\{p}

∇η · (cosRu cosRv∇F ) dµg = −
∑
i

∫
Ui

∇(ϕiη) · (cosRu cosRv∇F ) dµg ≥ 0,

(4.8)

where we use
∑

i ϕi = 1 and
∑

i∇ϕi = 0.
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Using polar coordinates in Br(p) centered at p, for 0 < ε� 1, we define

φε =


0 r ≤ ε2

log r−log ε2

− log ε
ε2 ≤ r ≤ ε

1 ε ≤ r

.

Letting ωn−1 denote the volume of the unit (n− 1)-dimensional sphere, note that∫
Br(p)

|∇φε|2 dµg =
ωn−1

(log ε)2

∫ ε

ε2
rn−3 dr + o(ε)→ 0 as ε→ 0.

Therefore, for η ∈ C∞c (Br(p)),

−
∫
Br(p)

φε∇η · (cosRu cosRv∇F ) dµg

= −
∫
Br(p)

∇(ηφε) · (cosRu cosRv∇F ) dµg +

∫
Br(p)

η∇φε · (cosRu cosRv∇F ) dµg

≥
∫
Br(p)\{p}

η∇φε · (cosRu cosRv∇F ) dµg (by (4.8))

≥ −
(∫

Br(p)\{p}
|∇φε|2 dµg

) 1
2
(∫

Br(p)\{p}
η2| cosRu cosRv∇F |2 dµg

) 1
2

,

by Hölder’s inequality. The last line converges to zero as ε→ 0 because d,Ru, Rv are

bounded by the compactness of Bρ(P ) and
∫
Br(p)\{p} |∇F |

2 dµg is bounded by energy

convexity. We conclude that

−
∫
Br(p)

∇η · (cosRu cosRv∇F ) dµg = − lim
ε→0

∫
Br(p)

φε∇η · (cosRu cosRv∇F ) dµg ≥ 0,

and hence div(cosRu cosRv∇F ) ≥ 0 holds weakly on Br(p).

Since d(u(x), v(x)) = 0 on ∂Br(p), by the maximum principle d(u(x), v(x)) ≡ 0

in Br(p). This implies that u ≡ v is the unique energy minimizer.

Remark 4.3.2. Note that Theorem 4.3.1 implies that if u : Ω → Bρ(P ) is harmonic,

65



then u is energy minimizing.

From this point on we assume our domain is of dimension 2. Recall the con-

struction in [40] and [7] of a continuous, symmetric, bilinear, non-negative tensorial

operator

πu : Γ(TΩ)× Γ(TΩ)→ L1(Ω) (4.9)

associated with a W 1,2-map u : Ω→ X where Γ(TΩ) is the space of Lipschitz vector

fields on Ω defined by

πu(Z,W ) :=
1

4
|u∗(Z +W )|2 − 1

4
|u∗(Z −W )|2

where |u∗(Z)|2 is the directional energy density function (cf. [40, Section 1.8]). This

generalizes the notion of the pullback metric for maps into a Riemannian manifold,

and hence we shall refer to π = πu also as the pullback metric for u.

Definition 4.3.3. If Σ is a Riemann surface, then u ∈ W 1,2(Σ, X) is (weakly) con-

formal if

π

(
∂

∂x1

,
∂

∂x1

)
= π

(
∂

∂x2

,
∂

∂x2

)
and π

(
∂

∂x1

,
∂

∂x2

)
= 0,

where z = x1 + ix2 is a local complex coordinate on Σ.

For a conformal harmonic map u : Σ → X with conformal factor λ = 1
2
|∇u|2,

and any open sets S ⊂ Σ and O ⊂ X, define

A(u(S) ∩ O) :=

∫
u−1(O)∩S

λ dµg,

where dµg is the area element of (Σ, g).

Theorem 4.3.4 (Monotonicity). There exist constants c, C such that if u : Σ →
X is a non-constant conformal harmonic map from a Riemann surface Σ into a

compact locally CAT(1) space (X, d), then for any p ∈ Σ and 0 < σ < σ0 =

min{ρ, d(u(p), u(∂Σ))}, the following function is increasing:

σ 7→ ecσ
2
A(u(Σ) ∩ Bσ(u(p)))

σ2
,
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and

A(u(Σ) ∩ Bσ(u(p))) ≥ Cσ2.

Proof. Since Σ is locally conformally Euclidean and the energy is conformally in-

variant, without loss of generality, we may assume that the domain is Euclidean.

Fix p ∈ Σ and let R(x) = d(u(x), u(p)). Since u is continuous and locally energy

minimizing, by [60, Proposition 1.17], [7, Lemma 4.3] we have that the following

differential inequality holds weakly on u−1(Bρ(u(p))):

1

2
∆R2 ≥ (1−O(R2))|∇u|2. (4.10)

Let ζ : R+ → R+ be any smooth nonincreasing function such that ζ(t) = 0 for

t ≥ 1, and let ζσ(t) = ζ( t
σ
). By (4.10), for σ < σ0 we have

−
∫

Σ

∇R2 · ∇(ζσ(R)) dx1dx2 ≥ 2

∫
Σ

ζσ(R) (1−O(R2))|∇u|2 dx1dx2

= 4

∫
Σ

ζσ(R) (1−O(R2))λ dx1dx2.

Therefore,

2

∫
Σ

ζσ(R) (1−O(R2))λ dx1dx2 ≤ −
∫

Σ

R∇R · ∇(ζσ(R)) dx1dx2

= −
∫

Σ

R

σ
ζ ′
(
R

σ

)
|∇R|2 dx1dx2

≤ −
∫

Σ

R

σ
ζ ′
(
R

σ

)
1

2
|∇u|2 dx1dx2

= −
∫

Σ

R

σ
ζ ′
(
R

σ

)
λ dx1dx2

=

∫
Σ

σ
d

dσ
(ζσ(R)) λ dx1dx2

= σ
d

dσ

∫
Σ

ζσ(R) λ dx1dx2,

where in the second inequality we have used that ζ ′ ≤ 0 and |∇R|2 ≤ 1
2
|∇u|2, since
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u is conformal. Set f(σ) =
∫

Σ
ζσ(R)λ dx1dx2. We have shown that

2(1−O(σ2))f(σ) ≤ σf ′(σ).

Integrating this, we conclude that there exist c > 0 such that the function

σ 7→ ecσ
2
f(σ)

σ2
(4.11)

is increasing for all 0 < σ < σ0. Approximating the characteristic function of [−1, 1],

and letting ζ be the restriction to R+, it then follows that

ecσ
2
A(u(Σ) ∩ Bσ(u(p)))

σ2

is increasing in σ for 0 < σ < σ0.

Since λ = 1
2
|∇u|2 ∈ L1(Σ,R),

lim
r→0

∫
Br(x)

λ dx1dx2

πr2
= λ(x), a.e. x ∈ Σ (4.12)

by the Lebesgue-Besicovitch Differentiation Theorem. Since u is conformal, for every

ω ∈ S1,

λ(x) = lim
t→0

d2(u(x+ tω), u(x))

t2
, a.e. x ∈ Σ (4.13)

([40, Theorem 1.9.6 and Theorem 2.3.2]). Since u is locally Lipschitz [7, Theorem

1.2], by an argument as in the proof of Rademacher’s Theorem ([20, p. 83-84]),

λ(x) = lim
y→x

d2(u(y), u(x))

|y − x|2
(4.14)

for almost every x ∈ Σ. To see this, choose {ωk}∞k=1 to be a countable, dense subset

of S1. Set

Sk = {x ∈ Σ : lim
t→0

d(u(x+ tωk), u(x))

t
exists, and is equal to

√
λ(x)}
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for k = 1, 2, . . . and let

S = ∩∞k=1Sk.

Observe that H2(Σ \ S) = 0. Fix x ∈ S, and let ε > 0. Choose N sufficiently large

such that if ω ∈ S1 then

|ω − ωk| <
ε

2Lip(u)

for some k ∈ {1, . . . , N}. Since

lim
t→0

d(u(x+ tωk), u(x))

t
=
√
λ(x)

for k = 1, . . . , N , there exists δ > 0 such that if |t| < δ then∣∣∣∣d(u(x+ tωk), u(x))

t
−
√
λ(x)

∣∣∣∣ < ε

2

for k = 1, . . . , N . Consequently, for each ω ∈ S1 there exists k ∈ {1, . . . , N} such

that∣∣∣∣d(u(x+ tω), u(x))

t
−
√
λ(x)

∣∣∣∣
≤
∣∣∣∣d(u(x+ tωk), u(x))

t
−
√
λ(x)

∣∣∣∣+

∣∣∣∣d(u(x+ tω), u(x))

t
− d(u(x+ tωk), u(x))

t

∣∣∣∣
≤
∣∣∣∣d(u(x+ tωk), u(x))

t
−
√
λ(x)

∣∣∣∣+

∣∣∣∣d(u(x+ tω), u(x+ tωk))

t

∣∣∣∣
<
ε

2
+ Lip(u)|ω − ωk|

< ε.

Therefore the limit in (4.14) exists, and (4.14) holds, for almost every x ∈ Σ.

The zero set of λ is of Hausdorff dimension zero by [48]. At points where λ(x) 6= 0

and (4.14) holds, we have that for any ε > 0

u(B σ

(1+ε)
√
λ
(x)) ⊂ u(Σ) ∩ Bσ(u(x))
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if σ is sufficiently small. Therefore by (4.12),

Θ(x) := lim
σ→0

A(u(Σ) ∩ Bσ(u(x)))

πσ2
≥ 1, a.e. x ∈ Σ. (4.15)

By the monotonicity of (4.11), Θ(x) exists for every x ∈ Σ, and Θ(x) is upper

semicontinuous since it is a limit of continuous functions (the density at a given

radius is a continuous function of x). Therefore, Θ(x) ≥ 1 for every x ∈ Σ. Together

with the monotonicity of (4.11), it follows that

A(u(Σ) ∩ Bσ(u(p))) ≥ Cσ2

for 0 < σ < σ0.

Remark 4.3.5. Note that if u : M → Bρ(P ) is a harmonic map from a compact

Riemannian manifold M , then u must be constant. This follows from the maximum

principle, since equation (4.10) implies that R2(x) = d2(u(x), P ) is subharmonic.

For a conformal harmonic map from a surface into a Riemannian manifold, con-

tinuity follows easily using monotonicity ([57, Theorem 10.4], [29], [33, Theorem

9.3.2]). By Theorem 4.3.4, using this idea we can prove the following removable

singularity result for conformal harmonic maps into a CAT(1) space.

Theorem 4.3.6 (Removable singularity). If u : Σ \ {p} → X is a conformal har-

monic map of finite energy from a Riemann surface Σ into a compact locally CAT(1)

space (X, d), then u extends to a locally Lipschitz harmonic map u : Σ→ X.

Proof. Let Br denote Br(p), the geodesic ball of radius r centered at the point p in

Σ, and let Cr = ∂Br denote the circle of radius r centered at p. By the Courant-

Lebesgue Lemma, there exists a sequence ri ↘ 0 so that

Li = L(u(Cri)) :=

∫
Cri

√
λ dsg → 0

as i → ∞, where dsg denotes the induced measure on Cri = ∂Bri from the metric

g on Σ. Since E(u) < ∞, λ = 1
2
|∇u|2 is an L1 function and, by the Dominated
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Convergence Theorem,

Ai = A(u(Bri \ {p})) :=

∫
Bri\{p}

λ dµg → 0

as i→∞.

First we claim that there exists P ∈ X such that u(Cri) → P with respect to

the Hausdorff distance as i → ∞. Let di,j = d(u(Cri), u(Crj)). Suppose i < j so

ri > rj, and choose Q ∈ u(Bri \ B̄rj) such that d(Q, u(Cri) ∪ u(Crj)) ≥ di,j/2. For

σ = min{di,j
3
, ρ

2
}, by monotonicity (Theorem 4.3.4),

A(u(Bri \ B̄rj) ∩ Bσ(Q)) ≥ Cσ2.

Since A(u(Bri \ B̄rj)∩Bσ(Q)) ≤ A(u(Bri \ {p})) = Ai, it follows that σ ≤ c
√
Ai → 0

as i→∞, and we must have di,j → 0. Therefore any sequence of points Pi ∈ u(Cri)

is a Cauchy sequence since

d(Pi, Pj) ≤ di,j + Li + Lj → 0

as i, j → ∞. Hence, there exists P ∈ X independent of the sequence, such that

Pi → P .

Finally, we claim that limx→p u(x) = P . It follows from this that we may extend

u continuously to Σ by defining u(p) = P . To prove the claim, consider a sequence

xi ∈ Σ \ {p} such that xi → p. We want to show that u(xi) → P . Suppose

xi ∈ Brj(i) \ B̄rj(i)+1
for some j(i), and let di = d(u(xi), u(Crj(i)) ∪ u(Crj(i)+1

)). For

σ = min{di
3
, ρ

2
}, by monotonicity (Theorem 4.3.4),

A(u(Brj(i) \ B̄rj(i)+1
) ∩ Bσ(u(xi))) ≥ Cσ2.

Therefore, σ < c
√
Aj(i) → 0 as i → ∞, and we must have d(u(xi), u(Crj(i)) ∪

u(Crj(i)+1
))→ 0. It follows that u(xi)→ P and u extends continuously to Σ.

We may now apply Theorem 4.3.1 to show that u is energy minimizing at p.

Since u is continuous, there exists δ > 0 such that u(Bδ) ⊂ Bρ(Q) ⊂ X. By Theorem
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4.3.1, u is the unique energy minimizer in W 1,2
u (Bδ,Bρ(Q)). Hence u is locally energy

minimizing on Σ and by [7, Theorem 1.2], u is locally Lipschitz on Σ.

The following is derived using only domain variations as in [57, Lemma 1.1] (using

[40, Theorem 2.3.2] to justify the computations involving change of variables) and

is independent of the curvature of the target space (see for example, [28, (2.3) page

193]).

Lemma 4.3.7. Let u : Σ → X be a harmonic map from a Riemann surface into a

locally CAT(1) space. The Hopf differential

Φ(z) =

[
π

(
∂

∂x1

,
∂

∂x1

)
− π

(
∂

∂x2

,
∂

∂x2

)
− 2iπ

(
∂

∂x1

,
∂

∂x2

)]
dz2,

where z = x1 + ix2 is a local complex coordinate on Σ and π is the pull-back inner

product, is holomorphic.

Corollary 4.3.1. Let u : C→ X be a harmonic map of finite energy and (X, d) be a

compact locally CAT(1) space. Then u extends to a locally Lipschitz harmonic map

u : S2 → X.

Proof. Let p : S2 \{n} → R2 be stereographic projection from the north pole n ∈ S2.

Set û = u ◦ p : S2 \ {n} → X. We will show that n is a removable singularity.

Let ϕ = π( ∂
∂x1
, ∂
∂x1

) − π( ∂
∂x2
, ∂
∂x2

) − 2iπ( ∂
∂x1
, ∂
∂x2

). By Lemma 4.3.7, the Hopf

differential Φ(z) = ϕ(z)dz2 is holomorphic on C. By assumption,

E(u) =

∫
R2

(
‖u∗(

∂

∂x1

)‖2 + ‖u∗(
∂

∂x2

)‖2

)
dx1dx2 <∞

and therefore ∫
R2

|ϕ| dx1dx2 ≤ 2E(u) <∞.

Thus |ϕ| ∈ L1(C,R) and is subharmonic, and hence ϕ ≡ 0 and u is conformal. Then

by Theorem 4.3.6, u extends to a locally Lipschitz harmonic map u : S2 → X.
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4.4 Harmonic Replacement Construction

In this section we prove the main theorem:

Theorem. 1.3.1 Let Σ be a compact Riemann surface, X a compact locally CAT(1)

space and ϕ ∈ C0∩W 1,2(Σ, X). Then either there exists a harmonic map u : Σ→ X

homotopic to ϕ or a nontrivial conformal harmonic map v : S2 → X.

Lemma 4.4.1 (Jost’s covering lemma, [33] Lemma 9.2.6). For a compact Rieman-

nian manifold Σ, there exists Λ = Λ(Σ) ∈ N with the following property: for any

covering

Σ ⊂
m⋃
i=1

Br(xi)

by open balls, there exists a partition I1, . . . IΛ of the integers {1, . . . ,m} such that

for any l ∈ {1, . . . ,Λ} and two distinct elements i1, i2 of I l,

B2r(xi1) ∩B2r(xi2) = ∅.

Definition 4.4.2. For each k = 0, 1, 2, . . . , we fix a covering

Ok = {B2−k(xk,i)}mki=1

of Σ by balls of radius 2−k. Furthermore, let I1
k , . . . , I

Λ
k be the disjoint subsets of

{1, . . . ,mk} as in Lemma 4.4.1; in other words, for every l ∈ {1, . . . ,Λ},

B2−k+1(xk,i1) ∩B2−k+1(xk,i2) = ∅, ∀i1, i2 ∈ I lk, i1 6= i2. (4.16)

By the Vitali Covering Lemma, we can ensure that

B2−k−3(xk,i1) ∩B2−k−3(xk,i2) = ∅, ∀i1, i2 ∈ {1, . . . ,mk}, i1 6= i2. (4.17)

Let Σ be a compact Riemann surface. By uniformization, we can endow Σ with

a Riemannian metric of constant Gaussian curvature +1, 0 or −1. Let Λ = Λ(Σ) be

as in Lemma 4.4.1 and ρ = ρ(X) > 0 be as in Lemma 4.2.1. We inductively define
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a sequence of numbers

{rn} ⊂ 2−N := {1, 2−1, 2−2, . . . }

and a sequence of finite energy maps

{uln : Σ→ X}

for l = 0, . . . ,Λ, n = 1, . . . ,∞ as follows:

Initial Step 0: Fix κ0 ∈ N such that B2−κ0 (x) is homeomorphic to a disk for

all x ∈ Σ. Let u0
0 := ϕ ∈ C0 ∩W 1,2(Σ, X), and let

r′0 = sup{r > 0 : ∀x ∈ Σ,∃P ∈ X such that u0
0(B2r(x)) ⊂ B3−Λρ(P )}

and k′0 > 0 be such that

2−k
′
0 ≤ r′0 < 2−k

′
0+1.

Define

r0 = 2−k0 = min{2−k′0 , 2−κ0},

and let

Ok0 = {Br0(xk0,i)}
mk0
i=1 and I1

k0
, . . . , IΛ

k0

be as in Definition 4.4.2. For l ∈ {1, . . . ,Λ} inductively define ul0 : Σ→ X from ul−1
0

by setting

ul0 =

{
ul−1

0 in Σ\
⋃
i∈Ilk0

B2r0(x
k0
,i)

Dirul−1
0 in B2r0(x

k0
,i), i ∈ I lk0

where Dirul−1
0 is the unique Dirichlet solution in W 1,2

ul−1
0

(B2r0(xk0,i),Bρ(P )) of Lemma

4.2.1. Here there are two things to check related to the definition of the Dirichlet solu-

tion. First, since B2r0(xk0,i1)∩B2r0(xk0,i2) = ∅, ∀ i1, i2 ∈ I lk0
with i1 6= i2 (cf. (4.16)),

there is no issue of interaction between solutions at a single step so the map is well-

defined if it exists. Second, we claim that ul−1
0 (B2r0(xk0,i)) ⊂ B3−Λ+(l−1)ρ(P ) ⊂ Bρ(P )
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for some P ∈ X and thus the Dirichlet solution exists and is unique by Lemma 4.2.1.

To verify the claim, first note that for each i = 1, . . . ,mk0 there exists P ∈ X such

that u1
0(B2r0(xk0,i)) ⊂ B3−Λ+1ρ(P ). Indeed, ifB2r0(xk0,i)∩B2r0(xk0,j) = ∅ for all j ∈ I1

k0

then u1
0 = u0

0 on B2r0(xk0,i) and so u1
0(B2r0(xk0,i)) = u0

0(B2r0(xk0,i)) ⊂ B3−Λρ(P ) for

some P . On the other hand, if B2r0(xk0,i) ∩ B2r0(xk0,j) 6= ∅ for one or more j ∈ I1
k0

,

then since u0
0(B2r0(xk0,i)) ⊂ B3−Λρ(P ) for some P and u1

0(B2r0(xk0,j)) ⊂ B3−Λρ(Pj) for

some Pj with B3−Λρ(P )∩B3−Λρ(Pj) 6= ∅, it follows that u1
0(B2r0(xk0,i)) ⊂ B3−Λ+1ρ(P ).

Inductively, we may show that for each i = 1, . . . ,mk0 and l ∈ {1, . . . ,Λ} there exists

P ∈ X such that ul−1
0 (B2r0(xk0,i)) ⊂ B3−Λ+(l−1)ρ(P ), as claimed.

Inductive Step n: Having defined

r0, . . . , rn−1 ∈ 2−N,

and

u0
ν , u

1
ν , . . . , u

Λ
ν : Σ→ X, ν = 0, 1, . . . , n− 1,

we set u0
n = uΛ

n−1 and define

rn ∈ 2−N and u1
n, . . . , u

Λ
n

as follows. Let

r′n = sup{r > 0 : ∀x ∈ Σ,∃P ∈ X such that u0
n(B2r(x)) ⊂ B3−Λρ(P )}

and k′n ∈ N be such that

2−k
′
n ≤ r′n < 2−k

′
n+1.

Define

rn = 2−kn = min{2−k′n , 2−κ0}.

Let

Okn = {Brn(xkn,i)}
mkn
i=1 and I1

kn , . . . , I
Λ
kn
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be as in Definition 4.4.2. Having defined u0
n, . . . , u

l−1
n , we now define uln : Σ→ X by

setting

uln =

{
ul−1
n in Σ\

⋃
i∈Ilkn

B2rn(xkn,i)

Dirul−1
n in B2rn(xkn,i), i ∈ I lkn

where Dirul−1
n is the unique Dirichlet solution in W 1,2

ul−1
n

(B2rn(xkn,i),Bρ(P )) for some

P of Lemma 4.2.1.

This completes the inductive construction of the sequence {uln}. Note that

E(uΛ
n) ≤ · · · ≤ E(u0

n) = E(uΛ
n−1), ∀n = 1, 2, . . . .

Thus, there exists E0 such that

lim
n→∞

E(uln) = E0, ∀ l = 0, . . . ,Λ. (4.18)

We consider the following two cases separately:

CASE 1: lim infn→∞ rn > 0.

CASE 2: lim infn→∞ rn = 0.

For CASE 1, we prove that there exists a harmonic map u : Σ → X homotopic to

ϕ = u0
0. We will need the following two claims.

Claim 4.4.3. For any l ∈ {0, . . .Λ− 1},

lim
n→∞

||d(uln, u
Λ
n)||L2(Σ) = 0.

Proof. Fix l ∈ {0, . . . ,Λ − 1}. For n ∈ N, λ ∈ {l + 1, . . . ,Λ} and i ∈ Iλkn , we apply

Theorem B.2.1 with u0 = uλ−1
n

∣∣
B2rn (xkn,i)

, u1 = uλn
∣∣
B2rn (xkn,i)

and Ω = B2rn(xkn,i). Let

w : Σ→ X be the map defined as w = uλn = uλ−1
n outside

⋃
i∈Iλkn

B2rn(xkn,i) and the
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map corresponding to w in Theorem B.2.1 in each B2rn(xkn,i). Then

(cos8 ρ)

∫
B2rn (xkn,i)

∣∣∣∣∇tan 1
2
d(uλ−1

n , uλn)

cosR

∣∣∣∣2 dµ
≤ 1

2

(∫
B2rn (xkn,i)

|∇uλ−1
n |2dµ+

∫
B2rn (xkn,i)

|∇uλn|2dµ

)
−
∫
B2rn (xkn,i)

|∇w|2dµ.

Summing over i, using that w = uλn = uλ−1
n outside

⋃
i∈Iλkn

B2rn(xkn,i), and applying

the Poincaré inequality, we obtain∫
Σ

d2(uλ−1
n , uλn)dµ ≤ C

(
1

2
E(uλ−1

n ) +
1

2
E(uλn)− E(w)

)
,

where here and henceforth C is a constant independent of n. Since uλn is harmonic

in
⋃
i∈Iλkn

B2rn(xkn,i), we have E(uλn) ≤ E(w). Hence

∫
Σ

d2(uλ−1
n , uλn)dµ ≤ C

(
1

2
E(uλ−1

n )− 1

2
E(uλn)

)
.

Thus,

∫
Σ

d2(uln, u
Λ
n)dµ ≤

∫
Σ

(
Λ∑

λ=l+1

d(uλ−1
n , uλn)

)2

dµ

≤ (Λ− l)2

Λ∑
λ=l+1

∫
Σ

d2(uλ−1
n , uλn)dµ

≤ C

Λ∑
λ=l+1

(
E(uλ−1

n )− E(uλn)
)

= C
(
E(uln)− E(uΛ

n)
)
.

This proves the claim since limn→∞
(
E(uln)− E(uΛ

n)
)

= 0 by (4.18).

Claim 4.4.4. Let ε > 0 such that 3−Λε < ρ, l ∈ {1, . . . ,Λ} and n ∈ N be given. If
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δ ∈ (0, rn) is such that √
8πE(u0

0)

log δ−2
≤ 3−Λε, (4.19)

then

∀x ∈
l⋃

λ=1

⋃
i∈Iλkn

Brn(xkn,i), ∃P ∈ X such that uln(BδΛ(x)) ⊂ B3ε(P ).

In particular, for l = Λ, ∀x ∈ Σ, ∃P ∈ X such that uΛ
n(BδΛ(x)) ⊂ B3ε(P ).

Proof. Fix ε, l, n and let δ be as in (4.19). For x ∈
⋃l
λ=1

⋃
i∈Iλkn

Brn(xkn,i), there

exists λ ∈ {1, . . . , l} such that x ∈ Brn(xkn,i) for some i ∈ Iλkn and hence

Brn(x) ⊂ B2rn(xkn,i).

Since uλn is harmonic in B2rn(xkn,i), it is harmonic in Brn(x). By the Courant-

Lebesgue Lemma, there exists

R1(x) ∈ (δ2, δ)

such that

uλn(∂BR1(x)(x)) ⊂ B3−Λε(P1) for some P1 ∈ X.

Since uλn is a Dirichlet solution and 3−Λε < ρ, by Lemma 4.2.1

uλn(Bδ2(x)) ⊂ uλn(BR1(x)(x)) ⊂ B3−Λε(P1).

Next, by the Courant-Lebesgue Lemma, there exists

R2(x) ∈ (δ3, δ2)

such that

uλ+1
n (∂BR2(x)(x)) ⊂ B3−Λε(P

′
2) for some P ′2 ∈ X. (4.20)
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There are two cases to consider:

Case a. BR2(x)(x) ∩
⋃
i∈Iλ+1

kn
B2rn(xkn,i) = ∅. In this case, uλ+1

n = uλn in BR2(x)(x).

Since uλn is harmonic on this ball,

uλ+1
n (BR2(x)(x)) = uλn(BR2(x)(x)) ⊂ uλn(Bδ2(x)) ⊂ B3−Λε(P1).

In this case we let P2 = P1.

Case b. BR2(x)(x) ∩
⋃
i∈Iλ+1

kn
B2rn(xkn,i) 6= ∅. In this case, uλ+1

n is only piecewise

harmonic on BR2(x)(x). The regions of harmonicity are of two types. On the re-

gion Ω := BR2(x)(x)\
⋃
i∈Iλ+1

kn
B2rn(xkn,i), we have uλ+1

n = uλn. As in Case a, we

conclude that the image of this region is contained in B3−Λε(P1). All other regions,

which we index Ωi, have two smooth boundary components, one on the interior of

BR2(x)(x), which we label γi, and one on ∂BR2(x)(x), which we label βi. By construc-

tion uλ+1
n = uλn on γi, thus

uλ+1
n (γi) ⊂ B3−Λε(P1).

Moreover, uλ+1
n (βi) ⊂ B3−Λε(P

′
2) by (4.20). Notice that in this case,

B3−Λε(P1) ∩ B3−Λε(P
′
2) 6= ∅.

Thus, by the triangle inequality there exists P2 ∈ X such that

uλ+1
n (∪i∈Iλ+1

kn
∂Ωi) ⊂ B3−Λ+1ε(P2).

Since uλ+1
n is harmonic on each Ωi,

uλ+1
n (∪i∈Iλ+1

kn
Ωi) ⊂ B3−Λ+1ε(P2).

Since BR2(x)(x) = Ω ∪
⋃
i∈Iλ+1

kn
Ωi,

uλ+1
n (BR2(x)(x)) ⊂ B3−Λ+1ε(P2).
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Thus, we have shown that in either Case a or Case b,

uλ+1
n (Bδ3(x)) ⊂ uλ+1

n (BR2(x)(x)) ⊂ B3−Λ+1ε(P2).

After iterating this argument for uλ+2
n , . . . , uln, we conclude that there exists Pl−λ+1 ∈

X such that

uln(BδΛ(x)) ⊂ uln(Bδl−λ+2(x)) ⊂ B3−Λ+l−λε(Pl−λ+1) ⊂ B3ε(Pl−λ+1).

Letting P = Pl−λ+1, we obtain the assertion of Claim 4.4.4.

Since lim infn→∞ rn > 0, there exist k ∈ N and an increasing sequence {nj}∞j=1 ⊂
N such that rnj = 2−k (or equivalently knj = k). In particular, the covering used for

Step nj in the inductive construction of u0
nj
, . . . , uΛ

nj
is the same for all j = 1, 2, . . . .

Thus, we can use the following notation for simplicity:

O = Okj , I l = I lkj , Bi = Brnj
(xknj ,i) and tBi = Btrnj

(xknj ,i) for t ∈ R+.

With this notation, Claim 4.4.4 implies that for a fixed l ∈ {1, . . . ,Λ},

{ulnj} is an equicontinuous family of maps on Bl :=
l⋃

λ=1

⋃
i∈Iλ

Bi. (4.21)

In particular, {ulnj} is an equicontinuous family of maps in Σ. By taking a further

subsequence if necessary, we can assume that

∃u ∈ C0(Σ, X) such that uΛ
nj
⇒ u. (4.22)

We claim that for every l ∈ {1, . . . ,Λ},

ulnj ⇒ u on Bl where u is as in (4.22). (4.23)

Indeed, if (4.23) is not true, consider a subsequence of {ulnj} that does not converge
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to u. By (4.21), we can assume (by taking a further subsequence if necessary) that

∃ v : Bl → X such that ulnj ⇒ v 6= u|Bl .

Combining this with (4.22) and Claim 4.4.3, we conclude that

||d(v, u)||L2(Bl) = lim
j→∞
||d(ulnj , u

Λ
nj

)||L2(Bl) ≤ lim
j→∞
||d(ulnj , u

Λ
nj

)||L2(Σ) = 0

which in turn implies that u = v. This contradiction proves (4.23).

Finally, we are ready to prove the harmonicity of u. For an arbitrary point

x ∈ Σ, there exists l ∈ {1, . . . ,Λ} and i ∈ I l such that x ∈ Bi. Since ulnj is energy

minimizing in Bi and ulnj ⇒ u in Bi by (4.23), Lemma 4.2.2 implies that u is energy

minimizing in 1
2
Bi.

The map u is homotopic to ϕ since it is a uniform limit of uΛ
nj

each of which is

homotopic to ϕ. This completes the proof for CASE 1 as u is the desired harmonic

map homotopic to ϕ.

For CASE 2, we prove that there exists a non-constant harmonic map u : S2 → X.

Recall that we have endowed Σ with a metric g of constant Gaussian curvature

that is identically +1, 0 or −1. Fix

y∗ ∈ Σ

and a local conformal chart

π : U ⊂ C→ π(U) = B1(y∗) ⊂ Σ

such that

π(0) = y∗
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and the metric g = (gij) of Σ expressed with respect to this local coordinates satisfies

gij(0) = δij. (4.24)

For each n, the definition of rn implies that we can find yn, y
′
n ∈ Σ with

2rn ≤ dg(yn, y
′
n) ≤ 4rn

where dg is the distance function on Σ induced by the metric g, and

d(u0
n(yn), u0

n(y′n)) ≥ 3−Λρ.

Since Σ is a compact Riemannian surface of constant Gaussian curvature, there exists

an isometry ιn : Σ→ Σ such that ιn(y∗) = yn. Define the conformal coordinate chart

πn : U ⊂ C→ πn(U) = B1(yn) ⊂ Σ, πn(z) := ιn ◦ π(z).

Thus,

πn(0) = yn.

Define the dilatation map

Ψn : C→ C, Ψn(z) = rnz

and set Ωn := Ψ−1
n ◦ π−1

n (B1(yn)) ⊂ C and

ũln : Ωn → X, ũln := uln ◦ πn ◦Ψn.

Since lim infn→∞ rn = 0, there exists a subsequence

{rnj} such that lim
j→∞

rnj = 0. (4.25)
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Thus, Ωnj ↗ C. Furthermore, (4.24) implies that

lim
j→∞

dg(y
′
nj
, ynj)

|π−1
nj

(y′nj)|
= 1.

Hence, for zn = Ψ−1
n ◦ π−1

n (y′n),

2 ≤ lim
j→∞
|znj | ≤ 4 (4.26)

and

d(ũ0
nj

(znj), ũ
0
nj

(0)) = d(u0
nj

(y′nj), u
0
nj

(ynj)) ≥ 3−Λρ. (4.27)

Additionally, by the conformal invariance of energy, we have that

E(ũln) = E(uln
∣∣
B1(yn)

) ≤ E(u0
0). (4.28)

For R > 0, let

DR := {z ∈ C : |z| < R}.

Since harmonicity is invariant under conformal transformations of the domain, we

can follow CASE 1 (cf. (??), (??) and (4.22)) and prove that

||d(ũΛ
n−1, ũ

Λ
n)||L2(DR) → 0,

{ũΛ
n}∞n=nR

is an equicontinuous family in DR

for some nR, and

∃ ũR : DR → X such that ũΛ
n ⇒ ũR in DR. (4.29)

Below, we will prove harmonicity of ũR by following a similar proof to CASE 1. We

first need the following lemma.

Lemma 4.4.5. Let Okn be as in Definition 4.4.2. For a fixed R > 0, there exists M
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independent of n such that for every n ∈ N,

|{i : B2−kn (xkn,i) ∩ (πn ◦Ψn(DR)) 6= ∅}| ≤M.

Proof. By (4.24),

lim
n→∞

Vol(πn ◦Ψn(D2R))

4πR22−2kn
= 1

and

lim
n→∞

Vol(B2−kn−3(xn,i))

π2−2kn−6
= 1

where Vol is the volume in Σ. Let J ⊂ {1, . . . ,mkn} be such that

J = {i : B2−kn (xkn,i) ∩ (πn ◦Ψn(DR)) 6= ∅}.

By (4.17), we have that for sufficiently large kn,

|J |π2−2kn−6 ≤ 2
∑
i∈J

Vol(B2−kn−3(xkn,i))

≤ 2Vol(πn ◦Ψn(D2R))

≤ 16πR22−2kn .

Hence |J | ≤ R2210 and {B2−kn (xkn,i)}i∈J covers DR.

For each B2−kn (xkn,i) ∈ Okn , let

B̃n,i := Ψ−1
n ◦ π−1

n (B2−kn (xkn,i))

and

2B̃n,i := Ψ−1
n ◦ π−1

n (B2−kn+1(xkn,i))

for notational simplicity. After renumbering, Lemma 4.4.5 implies that there exists

M = M(R) such that

DR ⊂
M⋃
i=1

B̃n,i.
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If we write

I lkn(R) = {i ∈ I lkn : i ≤M} ∀ l = 1, . . . ,Λ,

then

DR ⊂
Λ⋃
l=1

⋃
i∈Ilkn (R)

B̃n,i.

Choose a subsequence of (4.25), which we will denote again by {nj}, such that

Ψ−1
nj
◦ π−1

nj
(xknj ,i)→ x̃i ∀ i ∈ {1, . . . ,M}

and such that for each l = 1, . . . ,Λ, the sets

Ĩ l := I lknj (R) = {i ∈ I lknj : i ≤M}

are equal for all knj . Unlike CASE 1, where Brnj
(xknj ,i) is the same ball Bi for all j,

the sets B̃n1,i, B̃n2,i, . . . are not necessarily the same. Since the component functions

of the pullback metric Ψ∗njg converge uniformly to those of the standard Euclidean

metric g0 on C by (4.24) and B̃nj ,i with respect to Ψ∗njg is a ball of radius 1, B̃nj ,i

with respect to g0 is close to being a ball of radius 1 in the following sense: for all

ε > 0, there exists J large enough such that for all j ≥ J , B1−ε(x̃i) ⊂ B̃nj ,i for

i = 1, . . . ,M . Choose ε > 0 sufficiently small such that DR ⊂
⋃M
i=1 B1−ε(x̃i). Then

choose J as above. Set

B̃i :=
⋂
j≥J

B̃nj ,i ⊃ B1−ε(x̃i) and tB̃i :=
⋂
j≥J

tB̃nj ,i for t ∈ R+.

Then

DR ⊂
M⋃
i=1

B̃i =
Λ⋃
l=1

⋃
i∈Ĩl(R)

B̃i. (4.30)
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Using (4.30), we can now follow CASE 1 (cf. (4.23)) to prove that for l ∈ {1, . . . ,Λ},

ũln ⇒ ũR on
l⋃

λ=1

⋃
i∈Ĩλ

B̃i where ũR is as in (4.29). (4.31)

Let x ∈ DR. There exists l ∈ {1, . . . ,Λ} and i ∈ Ĩ l such that x ∈ B̃i by (4.30).

Since harmonicity is invariant under conformal transformations of the domain, ũlnj
is a energy minimizing on 2B̃nj ,i. Since B̃i ⊂ B̃nj ,i ⊂ 2B̃nj ,i and ũlnj ⇒ ũR on B̃i

by (4.31), Lemma 4.2.2 implies that ũR is energy minimizing on 1
2
B̃i. Since x is an

arbitrary point in DR, we have shown that ũR is harmonic on DR.

Finally, by the conformal invariance of energy, E(ũln) = E(uln
∣∣
B1(yn)

) ≤ E(u0
0).

By the lower semicontinuity of energy and (4.28), we have

E(ũR) ≤ E(u0
0). (4.32)

By considering a compact exhaustion {D2m}∞m=1 of C and a diagonalization pro-

cedure, we prove the existence of a harmonic map ũ : C→ X. By (4.32),

E(ũ) ≤ E(u0
0).

It follows from (4.26) and (4.27) that ũ is nonconstant. Thus, CASE 2 is complete

by applying the removable singularity result Corollary 4.3.1.
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Appendix A

The Dimension of the Space of

Harmonic 1-Forms with Dirichlet

Boundary Condition

It is well-known, we believe, that if M is a surface with boundary ∂M 6= ∅, genus g

and k boundary components, then dimH1
N(M) = 2g + k − 1, but this result seems

difficult to find in the literature. We give a proof here for completeness. When M is

a surface, it follows from Lefschetz duality that dimH1
N(M) = dimH2−1

D (M), where

H1
D(M) is the space of harmonic 1-forms on M which satisfy the relative boundary

conditions:

i∗ω = i∗δω = 0,

where i : ∂M ↪→M is the inclusion. So, to prove that dimH1
N(M) = 2g + k − 1, we

will show that dimH1
D(M) = 2g + k − 1.

Lemma A.0.6. Let M be an orientable surface of genus g with k boundary compo-

nents. Then dimH1
D(M) = 2g + k − 1.

Proof. Let EH1
D(M) denote the subspace of harmonic fields with Dirichlet boundary

conditions which are exact. Then,

H1
D(M) = EH1

D(M)⊕
(
EH1

D(M)
)⊥
,
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and dimH1
D(M) = dim EH1

D(M)+dim
(
EH1

D(M)
)⊥

. We claim that dim EH1
D(M) =

k − 1 and dim
(
EH1

D(M)
)⊥

= 2g.

For the first claim, if ω ∈ EH1
D(M), then there is a function u ∈ C∞(M) for

which ω = du. Since ω is a harmonic field with Dirichlet boundary conditions, it

follows that u is a harmonic function and is constant on the boundary. If we write

the boundary as a disjoint union of k curves, ∂M = Γ1 ∪ · · · ∪ Γk, then we get that

u|Γi = ci, for some constant ci, i = 1, . . . k. Now, the Dirichlet problem∆u = 0

u|Γi = ci,

has a unique solution for each choice of (c1, . . . , ck) (see pg. 307 of [66]). Let

F =

{
u ∈ C∞(M)

∣∣∣∣ ∆u = 0, u|Γi = ci, i = 1 . . . k,
k∑
i=1

ci = 0

}
.

It easy to see that the differential d|F : F → EH1
D(M) is linear and bijective, and so

dim EH1
D(M) = dimF = k − 1.

Let M be a smooth Riemannian manifold obtained from M by gluing a disk into

each of its boundary curves Γi. To prove the second claim, we will construct an

isomorphism between
(
EH1

D(M)
)⊥

and H1(M). The result will then follow from the

fact that there are 2g cohomology classes of closed forms on M .

Let θ ∈ Ω(M) be a closed form. We’ll first show that there is a closed form

ω̃ ∈ Ω(M) supported on M which is cohomologous to θ. To see this, let D̃i, i =

1, . . . , k, be a disk slightly larger than and containing Di, and let φi be a smooth

cut-off function for which φi|Di ≡ 1 and φi|M\D̃i ≡ 0. Since D̃i is simply-connected,

θ|D̃i = dfi for some smooth functions fi. Let ω̃ = θ −
∑k

i=1 d(φifi). Then ω̃|Di ≡ 0

and dω̃ = 0, so ω̃ is a closed form in Ω(M) with compact support. Since
∑k

i=1 d(φifi)

is exact, it follows that θ and ω̃ are cohomologous. For simplicity, we will suppress

the restriction notation and write ω̃|M by ω̃. Now, we claim that any closed form

ω̃ ∈ Ω(M) with compact support is cohomologous to a form ω0 ∈ (EHD(M))⊥. To
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see this, let u be a solution to the Poisson problem∆u = −δω̃

u|Γi = 0
,

and define ω = ω̃+du. Then, ω is harmonic, since ∆ω = ∆ω̃+∆du = dδω̃+0−d∆u =

0. Moreover, i∗ω = i∗ω̃+ d(i∗u) = 0, so ω satisfies the Dirichlet boundary condition.

Now, ω = ω0 + dv for some ω0 ∈ (EH1
D(M))⊥ and dv ∈ EH1

D(M). Hence, ω0 is

cohomologous to ω, and therefore ω̃ and θ. Note that ω0 is unique, i.e., for any

closed form θ ∈ Ω(M), there is a unique ω0 ∈ (EH1
D(M))⊥ for which ω0 ∼ θ. If

ω1
0, ω

2
0 ∈ (EH1

D(M))⊥ are two such forms, then ω1
0 ∼ θ ∼ ω2

0. Hence, ω1
0 − ω2

0 = dζ,

for some smooth function ζ. However, ω1
0 − ω2

0 ∈ (EH1
D(M))⊥ ⊂ (EΩ(M))⊥ and

dζ ∈ EΩ(M), so it follows that ω1
0 = ω2

0.

Let L : H1(M) → (EH1
D(M))⊥ be the map [θ] 7→ ω0 (as above). Note that it

follows from the uniqueness of ω0 that L is well-defined and linear.

Now, L is also injective. If L([θ1]) = L([θ2]), then θ1 + du1 = θ2 + du2, for some

smooth functions u1, u2, which yields θ1 ∼ θ2.

Finally, L is surjective. Suppose ω0 ∈
(
EH1

D(M)
)⊥

. Then, since i∗ω0 ≡ 0,∫
∂M

ω0 = 0,

and it follows that ω0 is exact in a neighbourhood of each boundary curve, i.e.,

ω0 = dψi in a neighbourhood of Γi. Since we can extend each ψi smoothly over Di,

we can extend ω0 to a closed form θ ∈ M . It follows from the well-definedness of L
that L does not depend on the choice of D̃i or φi, i = 1, . . . k. Hence, L([θ]) = ω0.
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Appendix B

Quadrilateral Estimates and

Energy Convexity

B.1 Quadrilateral estimates

In this section, we include several estimates for quadrilaterals in a CAT(1) space. The

estimates are stated in the unpublished thesis [60] without proof. As the calculations

were not obvious, we include our proofs for the convenience of the reader. References

to the location of each estimate in [60] are also included.

The first lemma is a result of Reshetnyak which will be essential in later estimates.

Lemma B.1.1 ([51, Lemma 2]). Let �PQRS be a quadrilateral in X. Then the

sum of the length of diagonals in �PQRS can be estimated as follows:

cos dPR + cos dQS ≥ −
1

2
(d2
PQ + d2

RS) +
1

4
(1 + cos dPS)(dQR − dPS)2

+ cos dQR + cos dPS + Cub (dPQ, dRS, dQR − dSP ) .
(B.1)

Proof. It suffices to prove the inequality holds for a quadrilateral �PQRS in S2. By

viewing S2 as a unit sphere in R3, the points P,Q,R, S determine a quadrilateral in
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R3. Applying the identity for the quadrilateral in R3 (cf. [40, Corollary 2.1.3]),

PR
2

+QS
2 ≤ PQ

2
+QR

2
+RS

2
+ SP

2 − (SP −QR)2

where AB denotes the Euclidean distance between A and B in R3. To prove this,

consider the vectors A = Q− P,B = R−Q,C = S −R,D = P − S. Then

PR
2

+QS
2

=
1

2

(
|A+B|2 + |C +D|2 + |B + C|2 + |D + A|2

)
= |A|2 + |B|2 + |C|2 + |D|2 + (A ·B + C ·B +D · A+D · C)

= |A|2 + |B|2 + |C|2 + |D|2 − |B +D|2 since A+B + C +D = 0

≤ |A|2 + |B|2 + |C|2 + |D|2 − ||B| − |D||2 .

Note that AB
2

= 2− 2 cos dAB, we obtain

cos dPR + cos dQS = −2 + cos dPQ + cos dRS + cos dQR + cos dPS

+
1

2

(√
2− 2 cos dQR −

√
2− 2 cos dSP

)2

.

The lemma follows from the following Taylor expansion:

−2 + cos dPQ + cos dRS = −1

2
d2
PQ −

1

2
d2
RS +O(d4

RS + d4
PQ)(√

2− 2 cos dQR −
√

2− 2 cos dSP

)2

=

(
sin dSP√

2− 2 cos dSP
(dQR − dSP ) +O

(
(dQR − dSP )2

))2

=
1 + cos dPS

2
(dQR − dSP )2 +O

(
(dQR − dSP )3

)
.

Lemma B.1.2 ([60, Estimate I, Page 11]). Let �PQRS be a quadrilateral in the

CAT(1) space X. Let P 1
2

be the mid-point between P and S, and let Q 1
2

be the

mid-point between Q and R. Then

cos2

(
dPS
2

)
d2(Q 1

2
, P 1

2
) ≤ 1

2
(d2
PQ + d2

RS)− 1

4
(dQR − dPS)2
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+ Cub
(
dPQ, dRS, d(P 1

2
, Q 1

2
), dQR − dSP

)
.

Proof. As a direct consequence of the law of cosines (see Figure B.1), we have the

following inequalities

cos d(Q 1
2
, P 1

2
) ≥ α

(
cos d(Q 1

2
, S) + cos d(Q 1

2
, P )

)
cos d(Q 1

2
, S) ≥ β (cos dRS + cos dQS)

cos d(Q 1
2
, P ) ≥ β (cos dRP + cos dQP )

where

α =
1

2 cos
(
dPS

2

) and β =
1

2 cos
(
dQR

2

) .

P S

RQ
Q 1

2

P 1
2

Figure B.1: An illustration of the quadrilateral �PQRS from Lemma B.1.2.

Combining the above inequalities yields

cos d(Q 1
2
, P 1

2
) ≥ αβ (cos dRS + cos dQS + cos dRP + cos dQP ) .

We apply (B.1) for the sum of diagonals cos dQS + cos dRP and Taylor expansion for

cos dRS and cos dQP . It yields

cos d(Q 1
2
, P 1

2
) ≥ αβ

(
2− (d2

PQ + d2
RS) +

1

4
(1 + cos dPS)(dQR − dPS)2 + cos dQR + cos dPS

)
+ Cub (dPQ, dRS, dQR − dSP )
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= αβ

(
2 + cos dQR + cos dPS +

1

4
(1 + cos dPS)(dQR − dPS)2

)
− αβ(d2

PQ + d2
RS) + Cub (dPQ, dRS, dQR − dSP ) .

Note that

2 + cos dQR + cos dPS +
1

4
(1 + cos dPS)(dQR − dPS)2

= 2(cos2 dQR
2

+ cos2 dPS
2

) +
1

2
cos2 dPS

2
(dQR − dPS)2

= 2

(
cos

dQR
2
− cos

dPS
2

)2

+ 4 cos
dQR

2
cos

dPS
2

+
1

2
cos2 dPS

2
(dQR − dPS)2

=
1

2
sin2 dPS

2
(dQR − dPS)2 + 4 cos

dQR
2

cos
dPS
2

+
1

2
cos2 dPS

2
(dQR − dPS)2

+O(|dQR − dPS|3)

=
1

2
(dQR − dPS)2 + 4 cos

dQR
2

cos
dPS
2

+O(|dQR − dPS|3).

Since αβ = α2 +O(|dQR − dPS|), we have

cos d(Q 1
2
, P 1

2
) ≥ 1− α2(d2

PQ + d2
RS) +

1

2
α2(dQR − dPS)2 + Cub (dPQ, dRS, dQR − dSP ) .

The lemma follows as

cos d(Q 1
2
, P 1

2
) = 1−

d2(Q 1
2
, P 1

2
)

2
+O(d4(Q 1

2
, P 1

2
)).

Definition B.1.3. Given a metric space (X, d) and a geodesic γPQ with dPQ < π,

for τ ∈ [0, 1] let (1 − τ)P + τQ denote the point on γPQ at distance τdPQ from P .

That is

d((1− τ)P + τQ, P ) = τdPQ.

Lemma B.1.4 (cf. [60, Estimate II, Page 13]). Let ∆PQS be a triangle in the
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CAT(1) space X. For a pair of numbers 0 ≤ η, η′ ≤ 1 define

Pη′ = (1− η′)P + η′Q

Sη = (1− η)S + ηQ.

Then

d2(Pη′ , Sη) ≤
sin2((1− η)dQS)

sin2 dQS
(d2
PS − (dQS − dQP )2)

+ ((1− η)(dQS − dQP ) + (η′ − η)dQS)
2

+ Cub (dPS, dQS − dQP , η − η′) .

Proof. Again we prove the inequality for a quadrilateral on S2. Denote x = dQS and

y = dQP . Denote

αη =
sin(ηdQS)

sin dQS
=

sin(ηx)

sinx
, βη′ =

sin(η′dQP )

sin dQP
=

sin(η′y)

sin y
.

Q S

P

Sη

Pη′

Figure B.2: An illustration of the triangle ∆PQS, and the points Sη and Pη′ from
Lemma B.1.4.

By the law of cosines on the sphere (see Figure B.2),

cos dPS = cosx cos y + sinx sin y cos θ = cos(x− y) + sin x sin y(cos θ − 1)

cos d(Pη′ , Sη) ≥ cos((1− η)x) cos((1− η′)y) + sin((1− η)x) sin((1− η′)y) cos θ

= cos((1− η)x− (1− η′)y) + sin((1− η)x) sin((1− η′)y)(cos θ − 1),

where θ denotes the angle ∠PQS on S2. Substituting the term (cos θ − 1) of the
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second inequality with the one in the first identity, we obtain

cos d(Pη′ , Sη) ≥ cos((1− η)x− (1− η′)y) + α1−ηβ1−η′(cos dPS − cos(x− y))

= cos ((1− η)(x− y) + (η′ − η)x+ (η′ − η)(y − x))

+ α2
1−η(cos dPS − cos(x− y))

+ α1−η(β1−η′ − α1−η)(cos dPS − cos(x− y)).

Using the Taylor expansion cos a = 1− a2

2
+O(a4) and (β1−η′ −α1−η) = O(|η′− η|+

|x− y|), we derive

cos d(Pη′ , Sη) ≥ 1− ((1− η)(x− y) + (η′ − η)x)2

2
+ α2

1−η

(
−d

2
PS

2
+

(x− y)2

2

)
+ Cub (|η′ − η|, |x− y|, dPS) .

It implies that

d2(Pη′ , Sη) ≤ α2
1−η(d

2
PS − (x− y)2) + ((1− η)(x− y) + (η′ − η)x)2

+ Cub (|η′ − η|, |x− y|, dPS) .

Corollary B.1.1. Let u : Ω→ Bρ(Q) be a finite energy map and η ∈ C∞C (Ω, [0, 1]).

Define û : Ω→ Bρ(Q) as

û(x) = (1− η(x))u(x) + η(x)Q.

Then û has finite energy, and for any smooth vector field W ∈ Γ(Ω) we have

|û∗(W )|2 ≤
(

sin(1− η)Ru

sinRu

)2

(|u∗(W )|2 − |∇WR
u|2) + |∇W ((1− η)Ru)|2,

where Ru(x) = d(u(x), Q).

Note that every error term that appeared in Lemma B.1.4 will converge to the
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product of an L1 function and a term that goes to zero. So all error terms vanish

when taking limits.

Lemma B.1.5 (cf. [60, Estimate III, page 19]). Let �PQRS be a quadrilateral in

a CAT(1) space X. For η′, η ∈ [0, 1] define

Qη′ = (1− η′)Q+ η′R, Pη = (1− η)P + ηS.

Then

d2(Qη′ , Pη) + d2(Q1−η′ , P1−η)

≤
(

1 + 2ηdPS tan(
1

2
dPS)

)
(d2
PQ + d2

RS)

− 2η

(
1 +

1

2
dPS tan(

1

2
dPS)

)
(dQR − dPS)2

+ 2(2η − 1)(η′ − η)dPS(dQR − dPS)

+ η2Quad(dPQ, dRS, dQR − dPS) + Cub (dQR − dPS, dPQ, dRS, η − η′)

Proof. For notation simplicity, we denote

x = dPS, y = dQR, αη =
sin(ηx)

sinx
, βη′ =

sin(η′y)

sin y
.

Apply [60, Definition 1.6] to each of the blue, red, and yellow triangles in Figure B.3

below.

We derive

cos d(Q1−η′ , P1−η) ≥ αη cos d(Q1−η′ , S) + α1−η cos d(Q1−η′ , P )

≥ αη(βη′ cos dSR + β1−η′ cos dSQ) + α1−η(βη′ cos dPR + β1−η′ cos dPQ).

Compute similarly for d(Qη′ , Pη) for the highlighted triangles below:
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P S

RQ

P1−η

Q1−η′

Pη

Qη′

Figure B.3: An illustration of the quadrilateral �PQRS, and the points Pη, P1−η,
Qη′ and Q1−η′ from Lemma B.1.5.

P S

RQ

P1−η

Q1−η′

Pη

Qη′

We derive

cos d(Qη′ , Pη) ≥ αη cos d(Qη′ , P ) + α1−η cos d(Qη′ , S)

≥ αη(βη′ cos dPQ + β1−η′ cos dPR) + α1−η(βη′ cos dSQ + β1−η′ cos dSR).

Adding the above two inequalities, we obtain

cos d(Q1−η′ , P1−η) + cos d(Qη′ , Pη)

≥ (αηβη′ + α1−ηβ1−η′)(cos dPQ + cos dSR) + (αηβ1−η′ + α1−ηβη′)(cos dPR + cos dSQ).

(B.2)

Applying (B.1) to the term cos dPR + cos dSQ and using Taylor expansion, the

inequality (B.2) becomes

cos d(Q1−η′ , P1−η) + cos d(Qη′ , Pη) ≥ (αηβη′ + α1−ηβ1−η′)

(
2−

d2
PQ

2
− d2

SR

2

)
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+ (αηβ1−η′ + α1−ηβη′)

(
−1

2
(d2
PQ + d2

SR) +
1

4
(1 + cos dPS)(dQR − dPS)2

)
+ (αηβ1−η′ + α1−ηβη′) (cos dQR + cos dPS)

+ Cub (dPQ, dRS, dQR − dSP ) .

Hence,

cos d(Q1−η′ , P1−η) + cos d(Qη′ , Pη)

≥ −1

2
(αηβη′ + α1−ηβ1−η′ + αηβ1−η′ + α1−ηβη′)(d

2
PQ + d2

SR) (B.3)

+ 2(αηβη′ + α1−ηβ1−η′) + (αηβ1−η′ + α1−ηβη′)(cos dQR + cos dPS)

(B.4)

+
1

4
(αηβ1−η′ + α1−ηβη′)(1 + cos dPS)(dQR − dPS)2 (B.5)

+ Cub (dPQ, dRS, dQR − dSP ) .

We need the following elementary trigonometric identities to compute (B.3),

(B.4), (B.5):

αηβη′ + α1−ηβ1−η′ =
sin(η − 1

2
)x sin(η′ − 1

2
)y

2 sin 1
2
x sin 1

2
y

+
cos(η − 1

2
)x cos(η′ − 1

2
)y

2 cos 1
2
x cos 1

2
y

αηβ1−η′ + α1−ηβη′ = −
sin(η − 1

2
)x sin(η′ − 1

2
)y

2 sin 1
2
x sin 1

2
y

+
cos(η − 1

2
)x cos(η′ − 1

2
)y

2 cos 1
2
x cos 1

2
y(

cos(η − 1
2
)x

cos 1
2
x

)2

= 1 + 2ηx tan
1

2
x+O(η2).

Noting that

αηβη′ + α1−ηβ1−η′ + αηβ1−η′ + α1−ηβη′ =
cos(η − 1

2
)x cos(η′ − 1

2
)y

cos 1
2
x cos 1

2
y

=

(
cos(η − 1

2
)x

cos 1
2
x

)2

+O(|η − η′|+ |x− y|)
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= 1 + 2ηx tan(
1

2
x) +O(η2 + |η − η′|+ |x− y|),

we obtain for (B.3)

− 1

2
(αηβη′ + α1−ηβ1−η′ + αηβ1−η′ + α1−ηβη′)(d

2
PQ + d2

SR)

= −1

2

(
1 + 2ηx tan(

1

2
x)

)
(d2
PQ + d2

SR) +O
(
(η2 + |η − η′|+ |x− y|)(d2

PQ + d2
SR)
)
.

Lemma B.1.6. We can compute (B.4) as follows:

2(αηβη′ + α1−ηβ1−η′) + (αηβ1−η′ + α1−ηβη′)(cosx+ cos y)

= 2−
(

(η − 1

2
)(y − x) + (η′ − η)x

)2

+
sin2(η − 1

2
)x

4 sin2 1
2
x

cos2(
1

2
x)(x− y)2

+
cos2(η − 1

2
)x

4 cos2 1
2
x

sin2(
1

2
x)(x− y)2 +O(|x− y|2(|x− y|+ |η′ − η|)).

Proof.

2(αηβη′ + α1−ηβ1−η′) + (αηβ1−η′ + α1−ηβη′)(cosx+ cos y)

=
sin(η − 1

2
)x sin(η′ − 1

2
)y

2 sin 1
2
x sin 1

2
y

(2− cosx− cos y)

+
cos(η − 1

2
)x cos(η′ − 1

2
)y

2 cos 1
2
x cos 1

2
y

(2 + cos x+ cos y).

Note that

2− cosx− cos y = 2(sin
1

2
x)2 + 2(sin

1

2
y)2 = 2

(
2 sin

1

2
x sin

1

2
y + (sin

1

2
x− sin

1

2
y)2

)
= 4 sin

1

2
x sin

1

2
y +

1

2
(cos

1

2
x)2(x− y)2 +O(|x− y|3)

2 + cos x+ cos y = 2(cos
1

2
x)2 + 2(cos

1

2
y)2 = 2

(
2 cos

1

2
x cos

1

2
y + (cos

1

2
x− cos

1

2
y)2

)
= 4 cos

1

2
x cos

1

2
y +

1

2
(sin

1

2
x)2(x− y)2 +O(|x− y|3),
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where we apply Taylor expansion in the last equality. Hence we have

2(αηβη′ + α1−ηβ1−η′) + (αηβ1−η′ + α1−ηβη′)(cosx+ cos y)

= 2

(
sin(η − 1

2
)x sin(η′ − 1

2
)y + cos(η − 1

2
)x cos(η′ − 1

2
)y

)
+

sin2(η − 1
2
)x

4 sin2 1
2
x

(cos
1

2
x)2(x− y)2 +

cos2(η − 1
2
)x

4 cos2 1
2
x

(sin
1

2
x)2(x− y)2

+O(|x− y|2(|x− y|+ |η′ − η|)).

Here we use the estimates

sin(η − 1
2
)x sin(η′ − 1

2
)y

2 sin 1
2
x sin 1

2
y

−
sin2(η − 1

2
)x

2 sin2 1
2
x

= O(|η − η′|+ |x− y|)

and
cos(η − 1

2
)x cos(η′ − 1

2
)y

2 cos 1
2
x cos 1

2
y

−
cos2(η − 1

2
)x

2 cos2 1
2
x

= O(|η − η′|+ |x− y|).

Observe that(
sin(η − 1

2
)x sin(η′ − 1

2
)y + cos(η − 1

2
)x cos(η′ − 1

2
)y

)
= cos

(
(η − 1

2
)(y − x) + (η′ − η)x+ (η′ − η)(y − x)

)
and use cos a = 1− a2

2
+O(a4).

Lemma B.1.7. Adding the terms in the previous computational lemma that contain

(x− y)2 to (B.5), we have the following estimate:

1

4
(αηβ1−η′ + α1−ηβη′)(1 + cos x)(x− y)2

− (η − 1

2
)2(x− y)2 +

sin2(η − 1
2
)x

4 sin2 1
2
x

cos2(
1

2
x)(x− y)2 +

cos2(η − 1
2
)x

4 cos2 1
2
x

sin2(
1

2
x)(x− y)2

= η(1 +
1

2
x tan

1

2
x)(x− y)2 +O(|x− y|2(η2 + |x− y|+ |η − η′|)).
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Proof. Noting that 1 + cosx = 2 cos2(1
2
x), we have that

1

4
(αηβ1−η′ + α1−ηβη′)(1 + cos x)(x− y)2

=
1

4

(
−
(

sin(η − 1
2
)x

sin 1
2
x

)2

+

(
cos(η − 1

2
)x

cos 1
2
x

)2
)

cos2(
1

2
x)(x− y)2

+O(|x− y|2(|η − η′|+ |x− y|)).

Therefore,

1

4
(αηβ1−η′ + α1−ηβη′)(1 + cos x)(x− y)2

− (η − 1

2
)2(x− y)2 +

sin2(η − 1
2
)x

4 sin2 1
2
x

cos2(
1

2
x)(x− y)2 +

cos2(η − 1
2
)x

4 cos2 1
2
x

sin2(
1

2
x)(x− y)2

=

(
cos2(η − 1

2
)x

4 cos2 1
2
x
− (η − 1

2
)2

)
(x− y)2 +O(|x− y|2(|η − η′|+ |x− y|))

=

(
1

4
+

1

2
ηx tan

1

2
x− (−η +

1

4
)

)
(x− y)2 +O(|x− y|2(η2 + |η − η′|+ |x− y|)).

Combing the above computations, we have that

cos d(Q1−η′ , P1−η) + cos d(Qη′ , Pη) ≥ 2− 1

2

(
1 + 2ηdPS tan(

1

2
dPS)

)
(d2
PQ + d2

SR)

+ η(1 +
1

2
dPS tan

1

2
dPS)(dQR − dPS)2

− (2η − 1)(η′ − η)dPS(dQR − dPS)

+ η2Quad(dPQ, dRS, dQR − dPS)

+ Cub (dQR − dPS, dPQ, dRS, η′ − η) .

Taylor expansion gives the result.

Corollary B.1.2. Given a pair of finite energy maps u0, u1 ∈ W 1,2(Ω, X) with
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images ui(Ω) ⊂ Bρ(Q) and a function η ∈ C1
c (Ω), 0 ≤ η ≤ 1

2
, define the maps

uη(x) = (1− η(x))u0(x) + η(x)u1(x)

u1−η(x) = η(x)u0(x) + (1− η(x))u1(x)

d(x) = d(u0(x), u1(x)).

Then uη, u1−η ∈ W 1,2(Ω, X) and

|∇uη|2 + |∇u1−η|2 ≤ (1 + 2ηd tan
d

2
)(|∇u0|2 + |∇u1|2)

− 2η(1 +
1

2
d tan

d

2
)|∇d|2 − 2d∇η · ∇d+ Quad(η, |∇η|).

B.2 Energy Convexity, Existence, Uniqueness, and

Subharmonicity

As with the previous section, the results in this section are stated in [60]. Excepting

the first theorem, they are stated without proof. As, again, the calculations are

non-trivial and tedious, we verify them for the reader.

Theorem B.2.1 ( [60, Proposition 1.15]). Let u0, u1 : Ω → Bρ(O) be finite energy

maps with ρ ∈ (0, π
2
). Denote by

d(x) = d(u0(x), u1(x))

R(x) = d(u 1
2
(x), O).

Then there exists a continuous function η(x) : Ω → [0, 1] such that the function

w : Ω→ Bρ(O) defined by

w(x) = (1− η(x))u 1
2
(x) + η(x)O
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is in W 1,2(Ω, Bρ(O)) and satisfies

(cos8 ρ)

∫
Ω

∣∣∣∣∇tan 1
2
d

cosR

∣∣∣∣2 dµg ≤ 1

2

(∫
Ω

|∇u0|2dµg +

∫
Ω

|∇u1|2dµg
)
−
∫

Ω

|∇w|2dµg.

Proof. Once the estimates in Lemma B.1.2 and Lemma B.1.4 are established, we

proceed as in [60]. Choose η to satisfy

sin((1− η(x))R(x))

sinR(x)
= cos

d(x)

2
.

Note that 0 ≤ η ≤ 1 and η is as smooth as d(x), R(x). It is straightforward to verify

that w ∈ L2
h(Ω, Bρ(O)).

For W ∈ Γ(Ω), consider the flow ε 7→ x(ε) induced by W .

u0(x(ε))
u1(x(ε))

u1(x)u0(x)
u 1

2
(x)

u 1
2
(x(ε))

O

w(x)

w(x(ε))

Figure B.4: An illustration of the quadrilateral �PQRS with P = u0(x(ε)), Q =
u0(x), R = u1(x) and S = u1(x(ε)) used in the proof of Lemma B.2.1.

Applying Lemma B.1.2 to the quadrilateral determined by P = u0(x(ε)), Q =

u0(x), R = u1(x), S = u1(x(ε)) (see Figure B.4), divided by ε2, and integrate the

resulting inequality against f ∈ C∞c (Ω) and taking ε→ 0, we obtain(
cos

d(x)

2

)2

|(u 1
2
)∗(W )|2 ≤ 1

2

(
|(u0)∗(W )|2 + |(u1)∗(W )|2

)
− 1

4
|∇Wd|2.

Note that the cubic terms vanish in the limit as every cubic term will be the product

of an L1 function and d(x)− d(x(ε)) or d(ui(x), ui(x(ε))), i = 0, 1
2
, 1.
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Applying Lemma B.1.4 to the triangle determined by Q = O,P = u 1
2
(x), S =

u 1
2
(x(ε)) yields

|(w)∗(W )|2 ≤
(

sin(1− η)R

sinR

)2

(|(u 1
2
) ∗ (W )|2 − |∇WR|2) + |∇W ((1− η)R)|2

=

(
cos

d(x)

2

)2

(|(u 1
2
)∗(W )|2 − |∇WR|2) + |∇W ((1− η)R)|2.

The above two inequalities imply

|w∗(W )|2 ≤ 1

2

(
|(u0)∗(W )|2 + |(u1)∗(W )|2

)
− 1

4
|∇Wd|2 −

(
cos

d(x)

2

)2

|∇WR|2 + |∇W ((1− η)R) |2.

By direct computation,

− 1

4
|∇Wd|2 −

(
cos

d(x)

2

)2

|∇WR|2 + |∇W ((1− η)R) |2

= −
cos4R(x) cos4 d(x)

2

1− sin2R(x) cos2 d(x)
2

∣∣∣∣∣∇ tan d(x)
2

cosR(x)

∣∣∣∣∣
2

.

The lemma follows from estimating

cos4R(x) cos4 d(x)
2

1− sin2R(x) cos2 d(x)
2

≥ cos4R(x) cos4 d(x)

2
≥ cos8 ρ,

dividing the resulting inequality by ε2, integrating over Sn−1, letting ε→ 0, and then

integrating over Ω.

Theorem B.2.2 (Existence Theorem). For any ρ ∈ (0, π
4
) and for any finite energy

map h : Ω→ Bρ(O) ⊂ X, there exists a unique element Dirh ∈ W 1,2
h (Ω,Bρ(O)) which

minimizes energy amongst all maps in W 1,2
h (Ω,Bρ(O)).

Moreover, for any σ ∈ (0, ρ), if Dirh(∂Ω) ⊂ Bσ(O) then Dirh(Ω) ⊂ Bσ(O).
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Proof. Denote by

E0 = inf{E(u) : u ∈ W 1,2
h (Ω,Bρ(O))}.

Let ui ∈ W 1,2(Ω,Bρ(P )) such that E(ui)→ E0. By Theorem B.2.1, we have that

(cos8 ρ)

∫
Ω

∣∣∣∣∇tan 1
2
d(uk(x), u`(x))

cosR

∣∣∣∣ dµg ≤ 1

2
(E(uk) + E(u`))− E(wk`),

where wk` is the interpolation map defined by Theorem B.2.1. The above right hand

side goes to 0 as k, `→∞. By the Poincaré inequality,∫
Ω

d(uk, u`) dµg → 0.

Thus the sequence {uk} is Cauchy and uk → u for some u ∈ W 1,2(Ω,Bρ(O)) because

W 1,2(Ω,Bρ(O)) is a complete metric space. By trace theory, u ∈ W 1,2
h (Ω,Bρ(O)). By

lower semi-continuity of the energy, E(u) = E0. The energy minimizer is unique by

energy convexity.

Finally, since ρ < π
4
, for any σ ∈ (0, ρ], the ball Bσ(O) is geodesically convex.

Therefore, the projection map πσ : Bρ(O) → Bσ(O) is well-defined and distance

decreasing. Thus, since Dirh(Ω) ⊂ Bρ(O), we can prove the final statement by

contradiction using the projection map to decrease energy.

Lemma B.2.3 (cf. [60, (2.5)]). Let u0, u1 : Ω → Bρ(Q) ⊂ X be finite energy

maps (possibly with different boundary values). For any given η ∈ C∞c (Ω) with

0 ≤ η < 1/2, there exists finite energy maps uη, ûη ∈ W 1,2
u0

(Ω,Bρ(Q)) and u1−η, û1−η ∈
W 1,2
u1

(Ω,Bρ(Q)) such that

|π(ûη)|2 + |π(û1−η)|2 − |π(u0)|2 − |π(u1)|2

≤ −2 cosRuη cosRu1−η∇
(

d

sin d
ηFη

)
· ∇Fη + Quad(η,∇η),

where

d(x) = d(u0(x), u1(x))
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Ruη(x) = d(uη(x), Q)

Ru1−η(x) = d(u1−η(x), Q)

and

Fη =

√
1− cos d

cosRuη cosRu1−η
.

Proof. Let η ∈ C∞c (Ω) satisfy 0 ≤ η < 1/2. For 0 ≤ φ, ψ ≤ 1 that will be determined

below, we define the comparison maps

ûη = (1− φ(x))uη(x) + φ(x)Q

û1−η = (1− ψ(x))u1−η(x) + ψ(x)Q,

where

uη(x) = (1− η(x))u0(x) + η(x)u1(x) and u1−η(x) = η(x)u0(x) + (1− η(x))u1(x).

By Corollary B.1.1,

|π(ûη)|2 + |π(û1−η)|2 ≤
(

sin(1− φ)Ruη

sinRuη

)2

(|π(uη)|2 − |∇Ruη |2) + |∇((1− φ)Ruη)|2

+

(
sin(1− ψ)Ru1−η

sinRu1−η

)2

(|π(u1−η)|2 − |∇Ru1−η |2)

+ |∇((1− ψ)Ru1−η)|2.

Define φ and ψ so that

sin2((1− φ)Ruη)

sin2Ruη
= 1− 2ηd tan

d

2
+O(η2)

sin2((1− ψ)Ru1−η)

sin2Ru1−η
= 1− 2ηd tan

d

2
+O(η2).
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Since sin(1−a)θ
sin θ

= 1− aθ cot θ +O(a2), we solve

φ = η
tanRuη

Ruη
d tan

d

2
and ψ = η

tanRu1−η

Ru1−η
d tan

d

2
.

Note that in particular uη, ûη ∈ W 1,2
u0

(Ω,Bρ(Q)) and u1−η, û1−η ∈ W 1,2
u1

(Ω,Bρ(Q)).

Together with the estimate for |π(uη)|2 + |π(u1−η)|2 in Corollary B.1.2 (which also

explains the choice of φ and ψ in order to eliminate the coefficient), we have

|π(ûη)|2 + |π(û1−η)|2 − |π(u0)|2 − |π(u1)|2

≤ −2η(1 +
1

2
d tan

d

2
)|∇d|2 − 2d∇η · ∇d− (1− 2ηd tan

d

2
)(|∇Ruη |2 + |∇Ru1−η |2)

+ |∇(1− η tanRuη

Ruη
d tan

d

2
)Ruη |2 + |∇(1− η tanRu1−η

Ru1−η
d tan

d

2
)Ru1−η |2 + Quad(η, |∇η|).

Simplifying the expression and using 1− sec2 θ = − tan2 θ , we obtain

1

2

(
|π(ûη)|2 + |π(û1−η)|2 − |π(u0)|2 − |π(u1)|2

)
≤ η

(
− (1 +

1

2
d tan

d

2
)|∇d|2 − d tan

d

2
(tan2Ruη |∇Ruη |2 + tan2Ru1−η |∇Ru1−η |2)

−∇(d tan
d

2
) · (tanRuη∇Ruη + tanRu1−η∇Ru1−η)

)
+∇η ·

(
−d∇d− tanRuηd tan

d

2
∇Ruη − tanRu1−ηd tan

d

2
∇Ru1−η

)
+ Quad(η,∇η).

(B.6)

We hope to find a, b, Fη which are functions of d,Ruη and Ru1−η such that the right

hand side above is ≤ a∇(bηFη) · ∇Fη.
Since a∇(bηFη) · ∇Fη = η(ab|∇Fη|2 + a

2
∇b · ∇F 2

η ) + ab
2
∇η · ∇F 2

η , by comparing

the terms involving ∇η in (B.6), we solve

ab

2
∇η · ∇F 2

η = ∇η ·
(
−d∇d− tanRuηd tan

d

2
∇Ruη − tanRu1−ηd tan

d

2
∇Ru1−η

)
= −d tan

d

2
∇η ·

(
∇ log sin2 d

2
−∇ log cosRuη −∇ log cosRu1−η

)
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= − d

sin d
cosRuη cosRu1−η∇η · ∇ 1− cos d

cosRuη cosRu1−η
,

where we use 2 sin2 d
2

= (1− cos d) and tan d
2

= 1−cos d
sin d

. It suggests us to choose

ab

2
= − d

sin d
cosRuη cosRu1−η and Fη =

√
1− cos d

cosRuη cosRu1−η
.

We then compute the term η(ab|∇Fη|2 + a
2
∇b · ∇F 2

η ) for the above choices of a, b,

and Fη. For the term ab|∇Fη|2, we compute

ab|∇Fη|2 = − d

2 sin d(1− cos d)
|sin d∇d+ (1− cos d)(tanRuη∇Ruη + tanRu1−η∇Ru1−η)|2

≥ −
(

d sin d

2(1− cos d)
|∇d|2 + d∇d · (tanRuη∇Ruη + tanRu1−η∇Ru1−η)

+
d(1− cos d)

sin d
(tan2Ruη |∇Ruη |2 + tan2Ru1−η |∇Ru1−η |2)

)
,

where we expand the quadratic term and use the AM-GM inequality to handle the

cross term (tanRuη∇Ruη) · (tanRu1−η∇Ru1−η). For the term a
2
∇b · ∇F 2

η , we assume

b = b(d) and compute:

a

2
∇b · ∇F 2

η =
ab

2
∇ log b · ∇F 2

η

= −db
′

b
|∇d|2 − d(1− cos d)

sin d

b′

b
∇d · (tanRuη∇Ruη + tanRu1−η∇Ru1−η).

Combining the above inequalities, we obtain

ab|∇Fη|2 +
a

2
∇b · ∇F 2

η ≥ −
[(

d sin d

2(1− cos d)
+ d

b′

b

)
|∇d|2

+

(
d+

d(1− cos d)

sin d

b′

b

)
∇d · (tanRuη∇Ruη + tanRu1−η∇Ru1−η)

+
d(1− cos d)

sin d
(tan2Ruη |∇Ruη |2 + tan2Ru1−η |∇Ru1−η |2)

]
.
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Comparing to (B.6), we solve

d sin d

2(1− cos d)
∇d+ d∇ log b = (1 +

1

2
d tan

d

2
)∇d

d∇d+
d(1− cos d)

sin d
∇ log b = ∇(d tan

d

2
).

which implies that b = d
sin d

, and hence a = −2 cosRuη cosRu1−η .

Theorem B.2.4 (cf. [60, Corollary 2.3]). Let u0, u1 : Ω → Bρ(P ) ⊂ X be a pair

of energy minimizing maps (possibly with different boundary values). Let d(x) =

d(u0(x), u1(x)) and Rui = d(ui, P ). Then the function

F =

√
1− cos d

cosRu0 cosRu1

satisfies the differential inequality weakly

div(cosRu0 cosRu1∇F ) ≥ 0.

Proof. Let η ∈ C∞c (Ω) with η ≥ 0. For t > 0 sufficiently small, we have 0 ≤ tη < 1/2.

Let ûtη and û1−tη be the corresponding maps defined as in Lemma B.2.3. Since u0

and u1 minimize the energy among maps of the same boundary values, we have

0 ≤
∫

Ω

|π(ûη)|2 + |π(û1−η)|2 − |π(u0)|2 − |π(u1)|2 dµg

≤
∫

Ω

−2 cosRutη cosRu1−tη∇
(

d

sin d
tηFtη

)
· ∇Ftη dµg + t2Quad(η,∇η).

Dividing the inequality by t and let t→ 0, since Rutη → Ru0 and Ru1−tη → Ru1 and

Ftη → F , we derive

0 ≤
∫

Ω

−2 cosRu0 cosRu1∇
(

d

sin d
ηF

)
· ∇F dµg
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= 2

∫
Ω

(
d

sin d
ηF

)
div (cosRu0 cosRu1∇F ) dµg.
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