
Mobile Edge Cloud: Computation Scheduling and
Caching

by

S M Shahrear Tanzil

MASc. in Electrical Engineering, The University of British Columbia -

Okanagan, 2013

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL
STUDIES

(Electrical & Computer Engineering)

The University of British Columbia
(Vancouver)

May 2018

c© S M Shahrear Tanzil, 2018

The following individuals certify that they have read, and recommend to the
Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation en-
titled:

Mobile Edge Cloud: Computation Scheduling and Caching

submitted by S M Shahrear Tanzil in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Electrical & Computer Engineering

Examining Committee:

Dr. Vikram Krishnamurthy, Electrical & Computer Engineering
Supervisor

Dr. Lutz Lampe, Electrical & Computer Engineering
Supervisory Committee Member

Dr. Z. Jane Wang, Electrical & Computer Engineering
Supervisory Committee Member

Dr. Rabab Ward, Biomedical Engineering
University Examiner

Dr. Steven Shechter, Business Administration
University Examiner

ii

Abstract

Mobile edge cloud has been proposed to accommodate computational intensive
application on mobile devices without augmenting their computational capacities
and to combat with the growing traffic volume in the network. The main concept
of mobile edge cloud is to bring computation and storage near to the end users,
serving users’ requests locally, and reducing wide area network latency. Although
mobile edge cloud improves network performance and users’ quality of experi-
ence, it brings several challenges due to possessing limited resources. The unified
focus of the thesis is to design mechanisms for mobile edge cloud to maximally
exploiting the computation and storage resources at the edge of the network to
minimize network traffic and latency.

In the first part of the thesis, we design a distributed computational resource
sharing mechanism where femtocell access points (FAPs) share their resources
with neighbouring FAPs and form local clouds. The aim of forming such local
femto-clouds is to serve computational requests locally, reducing the data transfer
delay and improving users’ quality of experience. The resource sharing problem
is formulated as an optimization problem and a myopic procedure is presented
that enables FAPs to collaboratively find its solution in a distributed fashion.

In the second and third part of the thesis, we focus on designing caching mech-
anisms for mobile edge network. It has been illustrated that almost 60% of the
data traffic results from the asynchronous requests for some popular content. By
caching those few popular content at the edge of the network, demand for the same
content can be served locally, resulting in a reduction in the data traffic volume and

iii

downloading delay in the network. In the second part of the thesis, we construct
a caching scheme that accounts for content popularity prediction and properties
of the network (e.g. cache size, bandwidth, and network topology). The caching
scheme is further extended in the final part of the thesis that includes content pop-
ularity prediction errors and routing mechanism in the caching decision. For the
caching schemes mixed-integer linear programming is used to compute where to
cache the content in the network to minimize content downloading delay.

iv

Lay Summary

Mobile edge cloud has been proposed that brings computation and storage re-
sources near to the end users to serve users’ requests locally. The unified focus
of the thesis is to design mechanisms for mobile edge cloud, maximally exploit-
ing the computation and storage resources at the edge of the network to minimize
network traffic and latency.

At first, we design a distributed computational resource sharing mechanism
where edge nodes share their resources with neighbouring nodes and form local
clouds to reduce latency.

Then we design caching mechanisms for mobile edge network to minimize
content downloading delay. The goal of these mechanisms is to cache popular
content at the edge of the network, serving maximum requests locally to reduce
downloading delay and traffic volume in the network. The presented caching
schemes account for content popularity prediction, properties of the network, pre-
diction errors, and routing mechanism in the caching decision.

v

Preface

The work presented in the thesis is based on the research works performed in
Statistical Signal Processing Laboratory at the University of British Columbia-
Vancouver. All the major contributions of the thesis including concept, litera-
ture review, problem formulation, analysis, and simulation were conducted by the
author with assistance from Prof. Vikram Krishnamurthy. Dr. Omid Namvar
Gharehshiran is the co-author of chapter 2: section 2.3 who helped the author to
formulate the problem using game theory. The results presented in this thesis re-
lated to machine learning (Chapter 3: section 3.3 and section 3.4.2; and Chapter 4:
section 4.4 and section 4.5.2) were performed by Dr. William Hoiles. Dr. William
Hoiles also helped the author to write reviewers response letter. A detailed list of
publications associated with different chapters of this thesis is provided below.

• The work of Chapter 2 has appeared in the following publications:

– Tanzil, S., Gharehshiran, O.N., and Krishnamurthy, V. (2016) A Dis-
tributed Coalition Game Approach to Femto-Cloud Formation. IEEE
Transactions on Cloud Computing

– Tanzil, S., Gharehshiran, O.N., and Krishnamurthy, V. (2015) Femto-
cloud formation: A coalitional game-theoretic approach. In Proceed-
ings of the IEEE GLOBECOM

• The work of Chapter 3 has been appeared in the following publication and
filed patent:

vi

– Tanzil, S., Hoiles, W., Krishnamurthy, V. (2017) Adaptive Scheme for
Caching YouTube Content in a Cellular Network: A Machine Learn-
ing Approach. IEEE Access

– Hoiles, W., Tanzil, S., Duan Y., Krishnamurthy, V., Ngoc Dung, and
Zhang, H. (2016) Systems and methods for caching (US patent filed)

• The work of Chapter 4 has been submitted to a peer-reviewed journal

– Hoiles, W., Tanzil, S., Krishnamurthy, V. (2017) Risk-Averse Caching
Policies for YouTube Content in Femtocell Networks using Density
Forecasting.

vii

Table of Contents

Abstract . iii

Lay Summary . v

Preface . vi

Table of Contents . viii

List of Tables . xii

List of Figures . xiii

List of Glossary . xvi

Acknowledgments . xvii

1 Introduction . 1
1.1 Overview . 1

1.1.1 Mobile Edge Computing 2
1.1.2 Mobile Edge Caching . 8

1.2 Main Contributions of the Thesis 11
1.2.1 A Distributed Coalition Game Approach to Femto-Cloud

Formation . 12

viii

1.2.2 Adaptive Scheme for Caching Content in a Mobile Edge
Network . 16

1.2.3 Risk-Averse Caching Scheme for Heterogeneous Networks 19
1.3 Thesis Organization . 22

2 A Distributed Coalition Game Approach to Femto-Cloud Formation 24
2.1 System Architecture . 25
2.2 Formulation of the Femto-Cloud Formation Problem 26

2.2.1 Local Femto-Clouds and Their Utility 27
2.2.2 Optimization of the Femto-clouds with FAP Incentives . . 32

2.3 Distributed Femto-Cloud Formation and Convergence to the Core 34
2.3.1 Distributed Femto-Cloud Formation Algorithm 34
2.3.2 Implementation Considerations 37

2.4 Numerical Results . 39
2.4.1 Object Recognition Tasks 39
2.4.2 Simulation Setup . 41
2.4.3 Numerical Examples . 42

2.5 Chapter Summary . 50

3 Adaptive Scheme for Caching Content in a Mobile Edge Network . 53
3.1 System Model and Problem Formulation 54
3.2 Content and Network Aware Adaptive Caching Scheme for Cellu-

lar Base Stations . 56
3.2.1 Mixed-Integer Linear Program Formulation 57
3.2.2 Implementation Considerations 60

3.3 Extreme Learning Machine (ELM) for Popularity Prediction . . . 63
3.3.1 Predicting Content Popularity with Extreme Learning Ma-

chines . 64
3.3.2 Feature Construction for Popularity Prediction 65
3.3.3 Optimizing the Number of Neurons in the Extreme Learn-

ing Machine . 67

ix

3.3.4 Stochastic Feature Selection 68
3.4 Numerical Example of Content and Network Aware Adaptive Caching

using Real-World YouTube Data 70
3.4.1 Simulation Setup . 71
3.4.2 Performance of Extreme Learning Machine for Caching . 73
3.4.3 Performance of the Content and Network Aware Caching

Scheme . 77
3.5 Chapter Summary . 80

4 Risk-Averse Caching Scheme for Heterogeneous Networks 82
4.1 System Model . 83
4.2 Dynamic Caching Schemes . 88
4.3 Risk-Neutral and Risk-Averse Static Caching Schemes 91

4.3.1 Risk-Neutral (RN) Static Caching Scheme 92
4.3.2 Risk-Neutral and Network-Aware (RNNA) Static Caching

Scheme . 93
4.3.3 Conditional Value-at-Risk (CVaR) and Content Retrieval

Delay Minimization . 96
4.3.4 Risk-Averse (RA) Static Caching Scheme 99
4.3.5 Risk-Averse and Network-Aware (RANA) Caching Scheme 101

4.4 Content Request Cumulative Distribution Function Forecasting . . 102
4.4.1 Content Group Association Classifier 103
4.4.2 Risk-Averse Feed-foward Neural Network for Predicting

Content Requests . 104
4.4.3 Conformal Prediction Algorithm for Content Requests . . 109

4.5 Numerical Evaluation of the Conformal Prediction Algorithm and
Coherent Risk Minimization Caching Schemes for YouTube Content111
4.5.1 Network Parameters and YouTube Dataset 111
4.5.2 Conformal Prediction Algorithm for YouTube Content . . 114
4.5.3 Selection of the Confidence Level α for Maximum Con-

tent Retrieval Delay Guarantees 118

x

4.5.4 Performance of the Risk-Neutral and Risk-Aware Caching
Schemes . 121

4.6 Chapter Summary . 123

5 Conclusions and Future Research Directions 125
5.1 Conclusions . 125
5.2 Future Research Problems . 127

5.2.1 Frame Allocation Mechanism for Edge Cloud Assisted
Mobile Gaming . 128

5.2.2 Collaborative Learning for Edge Caching 130
5.2.3 Joint Computation and Caching for Adaptive Bit Rate Video

Streaming . 131

Bibliography . 133

xi

List of Tables

Table 1.1 Comparison of fog computing, cloudlet, femto-clouds /MEC [1] 5

Table 2.1 Notations and Terminology 28
Table 2.2 Simulation setup: LTE system parameters in NS-3 44
Table 2.3 Femto-cloud coalition structures in heuristic schemes 45
Table 2.4 Simulation setup: FAP parameters in the numerical example . . 45
Table 2.5 Femto-clouds coalition structures in Example 1 49
Table 2.6 Femto-clouds coalition structures in Example 2 49

Table 3.1 Glossary of Parameters . 54
Table 3.2 Number of files in each YouTube Category in the Collected

Dataset . 74
Table 3.3 ELM Performance Comparison: TP (true positive), TN (true

negative), and training times 77

Table 4.1 Notation for Risk-Averse Caching 84
Table 4.2 Group Classification and Neuron Number Selection 116

xii

List of Figures

Figure 1.1 A typical mobile cloud computing architecture 2
Figure 1.2 A typical mobile edge computing architecture 6
Figure 1.3 A typical mobile edge caching architecture 10
Figure 1.4 A schematic view of the contributions of the thesis. 12
Figure 1.5 Schematic of the caching scheme 19
Figure 1.6 A schematic view of the remainder of the thesis. 23

Figure 2.1 A typical femto-cloud architecture 25
Figure 2.2 FAPs and FCMs locations inside the building 43
Figure 2.3 Computational capacity of FAP-1 vs. average data transfer

delay in the femto-clouds . 47
Figure 2.4 Computational capacity of FAP-1 vs. femto-cloud incentive . . 48
Figure 2.5 User arrival rate at FAP-1 vs. femto-cloud incentive 50
Figure 2.6 Computational capacity of FAP-1 vs. average data transfer

delay in the femto-clouds . 51
Figure 2.7 Computational capacity of FAP-1 vs. femto-cloud incentive . . 52

Figure 3.1 A typical network architecture 55
Figure 3.2 A schematic of the adaptive caching scheme 61
Figure 3.3 A schematic of the Segmented Least Recently Used (S3LRU)

cache replacement scheme 62
Figure 3.4 Schematic of the network . 73
Figure 3.5 Performance of the ELM . 74

xiii

Figure 3.6 Performance of the feature selection Algorithm 75
Figure 3.7 Schematic of the Extreme Learning Machine for estimating

the viewcount . 76
Figure 3.8 Viewcount on day 1 . 76
Figure 3.9 Viewcount on day 4 . 77
Figure 3.10 Cumulative average content downloading delay vs. simulation

time . 79
Figure 3.11 Cumulative average cache hit ratio in the network vs. simula-

tion time . 80

Figure 4.1 Schematic of an LTE wireless network 86
Figure 4.2 Schematic of the interaction between static and dynamic caching

schemes . 90
Figure 4.3 A schematic illustration of the risk-neutral (RN), risk-neutral

and network-aware (RNNA), risk-averse (RA) and the risk-
averse and network-aware (RANA) caching schemes 92

Figure 4.4 Schematic of the conformal prediction algorithm 110
Figure 4.5 Schematic of the network . 115
Figure 4.6 Empirical cumulative distribution function of the error ε(g) in

(4.22) for the groups g ∈ G . The gray dots indicate the empir-
ical cumulative distribution function F̂E|g(ε|g), and the black
line indicates the fitted generalized extreme value distribution. 117

Figure 4.7 Group association probability P(g|x f) 119
Figure 4.8 Conformal prediction of the number of content requests 120
Figure 4.9 Quantile-quantile plot for the empirical cumulative distribu-

tion function F̂Y (y f |x f) and the YouTube content requests . . . 121
Figure 4.10 Cumulative distribution function of the content retrieval de-

lay FD(d) using the RNNA and RANA caching schemes for a
confidence level α = 0.9,0.99 122

xiv

Figure 4.11 The cumulative distribution function FD(d) of the content re-
trieval delay for the RN, RNNA, RA, RANA, RNWR caching
schemes . 124

Figure 5.1 A schematic view of the future research challenges. 128

xv

List of Glossary

BS Base Station
CDN Content Delivery Network
CM Cache Manager
CVaR Conditional Value at Risk
ELM Extreme Learning Machine
FAP Femtocell Access Point
FCM Femto Cloud Manager
LRU Least Recently Used
LTE Long-Term Evolution
MCC Mobile Cloud Computing
MEC Mobile Edge Cloud
MILP Mixed Integer Linear Programming
NS-3 Network Simulation-3
QoE Quality of Experience
SAP Smallcell Access Point
SGW Smallcell Gateway
SLRU Segmented Least Recently Used
UE User Equipment
WAN Wide Area Network

xvi

Acknowledgments

I would like to express my sincerest gratitude to my supervisor, Prof. Vikram
Krishnamurthy for his guidance and persistent help throughout the research. This
thesis would not have been possible without his support. I am greatly indebted
to Prof. Vikram Krishnamurthy for his continuous encouragement and valuable
suggestions.

I would like to extend my sincerest appreciation to Dr. William Hoiles for
his valuable suggestions and always encouraging me to solve new challenges. I
am also thankful to Dr. Omid Namvar Gharehshiran for his valuable insights in
formulating research problem.

I would like to thank all the members of my research group for their encour-
agement. Last, but not least, I would like to express my gratefulness to my family.

xvii

Chapter 1

Introduction

1.1 Overview
The gaining popularity of mobile devices for ubiquitous use to enjoy a variety
of applications pose new challenges to the wireless network operator. On the
one hand, some of these applications are time critical and traditional centralized
cloud-based solution that introduces high wide area network latency is not suit-
able. On the other hand, applications related to video streaming increase traffic
volume in the network. Mobile edge cloud has recently been proposed to support
computational and traffic intensive applications on mobile devices while satisfy-
ing latency constraint associated with the applications and reducing traffic volume
in the network. The idea of mobile edge cloud is to bring cloud functionalities i.e.,
computation and storage near to the end users and working as an intermediate plat-
form between users and centralized cloud. In mobile edge cloud architecture, a
portion of the users’ requests are served by the local cloud and forwards remain-
ing portion of the requests to a cloud server. As a result, the amount of data traffic
sent to the cloud server is reduced and users’ quality of experience is improved
by reducing wide area network latency. Deploying computational resources at the
edge of the network is known as mobile edge computing while bringing storage
resources at the edge of the network is referred to as mobile edge caching. In this

1

Base Station

Mobile user

Access Point

Cloud

Core Network

Internet

Figure 1.1: A typical mobile cloud computing architecture. Access points
such as small cell, femtocell and base stations are connected to the
core network via backhaul link. Core network communicates with a
cloud server over the Internet.

thesis, we study both mobile edge computing and mobile edge caching. In the
next section, we describe the state-of-the-art and available architectures on mo-
bile edge computing and mobile edge caching; and their advantages over other
established network architectures. Then we explain three research challenges in
mobile edge cloud, their motivations and contributions of the thesis. The chapter
concludes providing a brief description of the thesis organization.

1.1.1 Mobile Edge Computing
In this section, we describe the emergence of mobile edge computing and the
benefits of mobile edge computing over other architectures.

2

Emergence of Mobile Edge Computing

Cloud computing has gained a lot of attentions from both industry and academia
which generally incorporates infrastructure, platform, and software as services [2,
3]. Cloud service providers rent their resources as a utility–like electricity and
users access to those resources “pay-as-you-go” basis through the Internet. In
cloud computing, users enjoy powerful computing platform with software de-
ployed by the cloud providers and store their data in the cloud storage instead
of personal devices. On demand service, resource pooling, rapid elasticity, and
lower capital investments are the main advantages of cloud computing [4].

On the other hand, mobile devices are becoming an integral part of human life
and are used for a variety of applications e.g., entertainment, games, on-line bank-
ing, social networking, travel, and news. The resource constraints of the mobile
device e.g., battery life, storage, and computations, however, hinders mobile users
to enjoy various useful but computational intensive applications like health care
and personal assistances [5]. One such solution to enjoy complicated applications
via the mobile device, yet operating within available resources and without in-
creasing mobile device cost; is mobile cloud computing (MCC) [6, 7]. The idea
of MCC is to augment capacities of mobile devices by offloading computations to
a remote cloud server over Internet. In MCC, mobile devices act as a sensory in-
put, continuously send gathered data to the connected access point which forwards
data to a cloud server via core network over the Internet. The cloud server per-
forms all the computations and sends back the required information to the mobile
device. A schematic of MCC is illustrated in Fig.1.1.

A major limitation in MCC is latency associated with data transferring to the
cloud server for computations. Another bottleneck in MCC is that it requires
high data rate backhaul connection between access point to the core network for
faster data transfer. To alleviate such limitations in MCC, mobile edge computing
architecture has recently been proposed [8].

3

What is mobile edge computing?

Mobile edge computing (MEC) is a new architecture that enables cloud com-
puting functionalities at the edge of the network. The main idea of the mobile
edge computing is to bring the cloud computing resources near to the end users
and serving user requests locally. As a result, users’ receive desired output with
low latency and fewer requests are forwarded to the cloud server, resulting in a
reduction in the network traffic. European Telecommunications Standards Insti-
tution (ETSI) proposed mobile edge computing architecture where they assumed
that cloud functionality such as computation and storage will be integrated into
the edge network devices such as macro base stations, eNodeB, small cell access
points, and radio network controller [9].

Similar to the mobile edge computing, several other paradigms are available in
the literature such as fog computing, cloudlet, and femto-clouds. These paradigms
have some common ground but they differ in their usages. The term fog is used by
Cisco as a metaphor instead of cloud wherein fog is closer to the end devices than
the cloud [10]. Fog computing is employed between end devices especially inter-
net of thing (IoT) devices and cloud computing platform. Fog nodes are deployed
in different network tiers and perform computations associated with the most time-
sensitive applications in a distributed fashion and migrate time-insensitive tasks to
a cloud server. The main difference between fog computing and mobile edge com-
puting is that fog computing aims to bring cloud functionality at the lower layer
closer to the proximity of the IoT devices where mobile edge computing specif-
ically designs to enhance cloud functionality at the edge of the wireless network
such as small cell access points and base stations.

Satyanarayanan and his colleagues proposed the concept of cloudlet [11]: A
trusted local cloud comprised of multi-core computers that are connected to over
the Internet and is available for use within the proximity of mobile users. Mobile
devices use Wi-Fi network to offload computational tasks to the cloudlet, which
saves them a considerable amount of energy as compared to offloading over the
3G/Long Term Evolution (LTE) cellular network to a remote cloud [7, 12] in

4

mobile cloud computing. This prolongs the battery lifetime of mobile devices
and, by reducing network latency, it also improves user’s quality of experience
(QoE) [13]. It is envisaged that cloudlet will be deployed like Wi-Fi hotspot and
will act as an intermediate layer between mobile device and cloud server.

In cloudlet, Wi-Fi network is used for communication between mobile device
and cloudlet. As a result, mobile devices require switching from the cellular net-
work to Wi-Fi network whenever they are accessing to the cloudlet. Handover
from the cellular network to the Wi-Fi network is one of the main limitations
of the cloudlet. In addition, Wi-Fi does not provide any guarantee on the qual-
ity of service (QoS) and the range of the Wi-Fi coverage area is smaller than
typical cellular base stations and access points. To avoid the limitations in the
cloudlet, a European project named TROPIC, introduced the idea of small cell
cloud namely femto-clouds. The main idea of femto-clouds is to enhance the
small cell access points such as femtocell, picocell access points with computa-
tional and storage resources. The advantage of the femto-clouds over the cloudlet

is that both small cell access points and mobile devices work under the same com-
munication standard. Throughout the thesis, we use mobile edge computing and
femto-clouds interchangeably as they both consider cloud resources at the wire-
less access points. The main difference between femto-clouds and mobile edge
computing is that femto-clouds considers resource sharing among neighbour ac-
cess points while current mobile edge computing architecture considers that there
is no cooperation among access points for computation. A schematic of mobile
edge computing architecture is illustrated in Fig 1.2.

A comparison among fog computing, cloudlet, and femto-clouds are provided
in Table 1.1 [1].

Table 1.1: Comparison of fog computing, cloudlet, femto-clouds /MEC [1]

fog computing femto-clouds /MEC cloudlet
Computing devices IoT devices, routers, sensors access points, base stations dedicated computers
Access medium Wi-Fi, bluetooth, cellular networks cellular networks Wi-Fi
Signalling execution dedicated nodes are used direct direct

5

Base Station

Mobile user

Access Point

Cloud

Core Network

Internet

Computing

resource

Figure 1.2: A typical mobile edge computing architecture. Access points
such as small cell, femtocell and base stations are equipped with com-
putation resources and connected to the core network via backhaul
link. Core network connects to a cloud server over the Internet. As can
be seen, computation requests can be served locally, resulting lower
number of requests send to the core network, and reduces network
traffic.

Advantages of the mobile edge computing

There are several benefits of mobile edge computing over mobile cloud computing
such as low latency and reduced network traffic. In this section, we explain some
of the advantages of the mobile edge computing which are as follows.

Latency: One of the major limitations of the mobile cloud computing is that it
costs a significant amount of latency to transfer data associated with the tasks mi-
gration to a cloud server. The data transferring latency in MCC mainly originates
from three sources that are: latency between mobile device to the connected access
point, access point to the core network, and core network to cloud server. Data
transferring latency between the mobile device and the connected access point

6

depends on several factors such as wireless channels’ quality, path loss, number
of users’ sharing the bandwidth, and interference. Low data rate backhaul link
capacity is the main reason for the latency to transfer data from access point to the
core network. Finally, the wide area network latency between the core network
and the cloud server depends on the distance and the number of hops between
them. Once the data associated with the tasks are transferred to the cloud server,
the cloud server performs all the required computations and sends back the final
results to the mobile devices via core network and access points.

On the other hand, in mobile edge computing, a portion (or entire) of the
tasks are processed in the edge cloud. As a result, a significant amount of latency
arises from transferring data from an access point to a cloud server via core net-
work can be reduced. A recent field trial operated by China Telecom showed that
latency can be reduced to 60− 90% by deploying mobile edge computing [14].
[15] demonstrates that mobile edge computing reduces up to 88% latency for aug-
mented reality application compared to mobile cloud computing.

Network traffic: Mobile edge computing enables network devices to perform
computations on behalf of the mobile devices and serves computational requests
locally. As a result, a fewer number of computational requests are migrated to the
cloud server which leads to reduction in the network traffic.

High data rate backhaul link: High data rate backhaul link is one of the key re-
quirements for mobile cloud computing to meet the stringent latency requirements
for real-time applications such as augmented reality and video processing. How-
ever, in mobile edge computing, the network devices perform computation of the
time-sensitive applications, thereby the requirement for high data rate backhaul
link is lessened.

Energy: In mobile cloud computing architecture, mobile devices offload compu-
tational tasks to the could server via an access point, and a core network, incurring

7

a significant amount of latency. To satisfy stringent latency requirements in the
real-time processing applications, mobile devices perform a portion of the tasks
while offloading the remaining portion. As a result, real-time applications con-
sume battery power of the mobile devices. On the other hand, in mobile edge
computing, the latency is lower which enables the whole tasks or a higher portion
of the tasks to be offloaded to the edge cloud. Thereby, energy consumption of
the mobile devices is reduced in mobile edge computing, resulting in prolonging
battery life-time. Gao at el. reveal that mobile edge computing saves 42% energy
consumption compared to the mobile cloud computing [16].

1.1.2 Mobile Edge Caching
The advancement of the mobile devices has facilitated to access multimedia ap-
plications such as video on demand streaming and live chatting anytime and any-
where [17]. As a result, the wireless network is experiencing substantial growth
of data traffic which will be approximate 30.6 exabytes (1018) per month in 2020,
an eightfold increase over 2015 [18]. The recent addition of high-density video
formats such as 4K video amplifies the growth of data traffic even further [19].
It is challenging for the wireless operators such as mobile operators and Internet
service providers to keep up with the massive growth of traffic while ensuring
users’ QoE requirements and keeping the data transmission cost low. Video con-
tent caching at the edge of the network such as caching at the base stations (BSs),
at the small cell access points, at the edge routers, and at the wireless infostations
is considered to be an attractive solution to address the demand for the data traffic.
In this section, we explain what is mobile edge caching and the main advantages
of the mobile edge caching.

What is mobile edge caching?

The usage of the mobile device to enjoy video on demand service increases the
traffic growth over the wireless networks. In the traditional wireless network,
video content request from the mobile users need to be fetched from a content

8

delivery network which is outside of the network and far away from the users.
In particular, mobile users first send the video content request to the connected
access points, which is then forwards it to the core network. The core network
redirects the request to a content delivery network which has the requested video
content. The requested content is then sent back to the users via core network
and access point. As a result, a popular video that receives multiple requests
asynchronously will be fetched from the content delivery network multiple times,
thereby increases the network traffic. In addition, high data rate backhual links
are required to meet the stringent latency constraints to avoid jerky video.

To mitigate the limitations in the current network architecture, mobile edge
caching has recently been proposed [20–22]. The concept of mobile edge caching
is to bring video content closer to the end users and serving video content requests
locally. The cost of hardware such as solid-state devices has become cheaper in re-
cent years which makes edge caching a cost effective solution instead of purchas-
ing additional bandwidth for backhaul links [21, 22] for handling the immense
pressure of data traffic in the network. In addition, research works on data traffic
have revealed that the main source of data traffic is video traffic. In fact, 60% of
the mobile data traffic are from video traffic [23] where few popular video con-
tent are requested several times asynchronously accounting for the majority of the
traffic [24]. By caching those few popular video content at the edge of the net-
work, repetitive requests for the same content can be served locally. This enables
content delivery faster by shortening the communication distance between content
and users. Caching at the edge of the network also alleviates the burden on the
backhaul links and reduces inter-network traffic since the requested content can
be served locally without the intervention of the core network. A schematic view
of the mobile edge caching is illustrated in Fig.1.3.

Several paradigms are available for mobile edge caching such as femtocaching,
cache enabled base stations and content-centric network. The main difference is
where to put the caching resources in the network. Some of the research works
advocate that caching in the macro base stations is considered to be a promising

9

Base Station

Mobile user

Access Point

Content Delivery

Network

Core Network

Internet

Cache

Cache

Cache

Cache

Figure 1.3: A typical mobile edge caching architecture. Access points such
as small cell, femtocell and base stations are equipped with storage
resources and connected to the core network via backhaul link. Core
network is connected to a content delivery network over the Internet.
As can be seen, content requests can be served locally, resulting lower
number of requests forwarded to the core network, and reduces net-
work traffic.

solution since coverage area of the macro base station is large and it can serve a
lot of requests [25]. However, to increase the coverage and connectivity of the
next generation heterogeneous network, small cell access points has become an
integral part of the network. The main bottleneck in small cell network is the re-
quirement for the high data rate backhaul links. Therefore, several research works
propose that caching in the small cell network namely, femtocaching is beneficial
for the network which reduces network traffic and the requirements for the high
data rate backhual links [26, 27].

On the other hand, millions of routers and switches are deployed in the net-
work. Equipping routers and switches with caching resources enable content re-
quests to be served locally. The content-centric network is a network layer proto-

10

col specially designed to handle in-network caching such as caching in routers and
switches [28, 29]. In this thesis, we consider edge caching in a cellular network
such in base stations and small cell access points.

Benefits of mobile edge caching

The main benefits of mobile edge caching are as follows.

Latency: In mobile edge caching architecture, content are served locally result-
ing a shorter travelling distance for the content compared to content served from
the content delivery network. As a result a significant amount of latency is re-
duced.

Network traffic: In mobile edge caching, cache enabled network devices serve
a significant amount of content request locally and thereby a fewer requests are
forwarded to the content delivery network. This leads to a reduction in the network
traffic. Authors of [30] shows that a 22% of backhual link traffic can be reduced
using edge caching which can be extended to a higher gain by deploying higher
storage size.

High data rate backhaul link: As already mentioned, video on demand applica-
tions require high data rate backhaul link to avoid jerky video. One way to meet
this requirement is to deploy high data rate backhaul link. Another solution is
mobile edge caching wherein video content are served locally.

1.2 Main Contributions of the Thesis
In this section, a brief description of the major contributions of the thesis are pro-
vided. These contributions fall into two category: mobile edge computation and
mobile edge caching. A schematic view of the contributions of the thesis is illus-
trated in Fig.1.4. A more detailed description of the contributions are provided in

11

separate chapters.

Mobile Edge Cloud

Computation Scheduling Caching

A Distributed Coalition
Game Approach to

Femto-Cloud Formation

Adaptive Scheme for
Caching Content in

a Mobile Edge Network

Risk-Averse Caching Scheme
for Heterogeneous Networks

Figure 1.4: A schematic view of the contributions of the thesis.

1.2.1 A Distributed Coalition Game Approach to
Femto-Cloud Formation

The aim of the work is to efficiently utilize computational resources in the edge
cloud. A detailed description of the work is provided in Chapter 2. Motivation
and contributions of this work are as follows.

Motivation

To increase the semantic richness of sensed data in personal assistant applications
such as Apple Siri, Google Now, and Microsoft’s Cortana, high data rate sensors
such as vision-based sensors are required [31]. Analyzing real-time video and
images captured by such sensors, however, requires intensive computational ca-
pacity, which makes it costly (in terms of energy consumption) to be processed in
mobile devices. Therefore, offloading-based mechanisms have been developed to
support vision-based functionalities [11, 12, 31].

One such solution is MCC [5] that augments the computational capacity of
mobile devices by offloading computation and storage to a remote cloud. The
interactive response essential for real-time video/image processing is, however,

12

limited by two major bottlenecks in MCC, namely, energy consumption and la-
tency [11, 32–34]. Therefore, the concept of mobile edge computing such as fog

computing, cloudlet, and femto-clouds have been proposed as explained in Sec-
tion 1.1.1.

The main idea in this work is to allow edge network devices such as femtocell
access points (FAPs) augmented with computational resources to cooperate with
each other and form local computational pools, namely, femto-clouds. FAPs share
the computational resources exceeding their demands in femto-clouds. Therefore,
by maximally exploiting FAPs’ local resources, such femto-clouds reduce latency1

and, hence, improve end-user QoE. We assume that FAPs are deployed by differ-
ent residential users. To motivate FAP owners to share their excess resources, it
is natural to assume an incentive mechanism. The maximal use of FAP resources
then translates into both lower handling latency and higher incentives to FAP own-
ers. The question that this work focuses on is then: How should FAPs decide on
formation of such femto-clouds in a distributed fashion?

The data transfer delay and limited computational capacity of FAPs impose
stringent constraints that naturally prohibit formation of the grand coalition to
which all FAPs join, namely, grand femto-cloud. Since offloading tasks to other
FAPs within a femto-cloud incurs delay, it is not beneficial to collaborate with
FAPs that are far away. On the other hand, the computation tasks exceeding the
computational capacity of the femto-clouds have to be transported to the remote
cloud. This incurs both data transfer delay and remote cloud costs. If such a cost
exceeds the associated incentives, all FAPs within the femto-cloud will be respon-
sible for the loss. Formation of the grand femto-cloud produces a huge pool of
tasks, and increases the probability of such losses. Therefore, FAPs form femto-

clouds in a way to minimize tasks that are needed to be transported to the remote
cloud. The proposed femto-cloud formation scheme identifies such optimal lo-
calized femto-clouds, to which only a subset of FAPs subscribe, in a distributed
fashion.

1Latency can be formulated as the sum of computational delay and data transfer delay.

13

Contributions

The main results in this work are:

• The resource sharing problem is formulated as an optimization problem
with the objective to maximize the overall utility of all femto-clouds with
constraints on the fair division of incentives among individual FAPs within
a femto-cloud. The utility function of each femto-cloud takes into account
the profile of request arrivals in individual femtocells, previous cooperative
behaviour of FAPs, data transfer delay, and computational capacity of FAPs
to determine the overall incentive available to each femto-clouds. There-
fore, solving the formulated problem translates into finding the femto-cloud

structure that maximizes utilization of FAPs’ local resources (taking into ac-
count users’ experience), yet provides incentives to FAPs for sharing their
resources such that no FAP is willing to give up collaboration within its
current femto-cloud to join another femto-cloud.

• The similarities between the formulated femto-cloud formation problem and
coalition formation games enable us to employ the dynamic coalition for-
mation algorithm in [35] to devise a procedure that prescribes individual
FAPs how to revise their decisions as to which femto-cloud to join so as
to reach the solution of formulated problem (i.e., core of the underlying
coalition formation game) in a distributed fashion.

• Finally, numerical simulations using network simulator-3 (NS-3) illustrate
superior performance of the proposed scheme in terms of both handling
latency and incentives provided to FAP owners over alternative heuristic
femto-cloud formation schemes. They further confirm that forming a grand
femto-cloud, comprising of all FAPs in the network, is not always the opti-
mal choice.

Related Work

Here, we provide a brief description of relevant works in the literature.

14

Collaboration among cloud providers: There is a large body of research works
devoted to studying cooperation in cloud computing framework; see, e.g., [36],[37],[38].
Cooperation among mobile cloud service providers is studied in [36] for pooling
computational resources with the goal to maximize revenue. The authors then
use Shapley value to distribute the revenue among the collaborating cloud ser-
vice providers. In [39], a cooperative outsourcing strategy is proposed which
prescribes the providers whether to satisfy users’ requests locally or to outsource
to a certain provider. Dynamic cloud federation formation is also studied in [40].

Collaboration among femtocells: Coalition formation in femtocell network has
been extensively studied in the literature; see, e.g., [41],[42],[43]. For instance,
[44] studies coalition formation among femtocells in order to mitigate interfer-
ence in the network. In [43], an interference management model is developed in
a femtocell network wherein the cooperation problem is formulated as a coalition
formation game with overlapping conditions. Rami et al. [45] also consider re-
source and power allocation in cooperative femtocell networks. All these works
consider cooperation among femtocells with the aim to improve physical-layer
throughput.

Incentives for cooperation in femtocell network: Femtocells are typically de-
ployed by mobile network operators in an open/hybrid access mode, in which
FAPs are willing to accommodate guest users; see, e.g., [46],[47],[48],[49]. To
motivate FAP owners to adopt such an access mode, several incentive schemes
have been studied in the literature, e.g., [46],[47],[48],[49],[50],[51]. Incentives
can be categorized as reputation or remuneration [52]. Reputation reflects the
willingness of wireless nodes’ to cooperate with other nodes. Nodes receive ser-
vices from other nodes based on their past behaviour—misbehaving nodes are de-
prived from receiving services. In contrast, remuneration-based mechanisms pro-
vide monetary incentives for cooperation, e.g., micropayment, virtual currency,
E-cash, and credit transfer [53],[54],[55],[56].

15

Femto-clouds: Femto-clouds are relatively recent and only few studies can be
found in the literature. For instance, [13] proposes a mechanism for joint op-
timization of communication and computational resources. In [33],[57], an of-
floading strategy is proposed for femto-clouds. All these works consider the
cloud offloading mechanism while assuming that FAPs are already grouped into
coalitions. Femto-clouds differ substantially from cloud radio access networks
(CRAN) [58] in that FAPs are endowed with computational resources and the
offloaded computations are preferred to be performed locally rather than in a cen-
tralized cloud (e.g. remote radio head in CRAN) to reduce handling latency.

Jessica et al. propose cluster formation strategies in [59] to handle a single
user’s requests in femto-clouds. These strategies are devised with different objec-
tives, e.g., to minimize the experienced latency or to reduce power consumption
in the cluster. This work is extended to a multi-user scenario in [60] where clus-
ters are formed for each unserved request according to the strategies proposed
in [59]. Their model, however, is suitable only for enterprise femtocell environ-
ments where all FAPs share their computational resources with each other. More-
over, cluster formation for each unserved request significantly increases the sig-
nalling overhead. To the best of our knowledge, the formulation and distributed
scheme proposed in this work for formation of femto-clouds considering a re-
muneration incentive mechanism and taking into account the delay involved in
migrating tasks between FAPs have not been studied before.

1.2.2 Adaptive Scheme for Caching Content in a Mobile Edge
Network

The target of this work is to devise caching scheme in a edge network such as in
cellular network to maximally utilize edge network storage resources. A detailed
explanation of this work are provided in Chapter 3. Motivation and contributions
of this work are as follows.

16

Motivation

The literature on content caching in edge networks has grown in recent years [61–
63]. Caching methods roughly fall into two categories: i) designing new content
caching methods with different objectives e.g., minimizing downloading delay,
energy consumption, network congestions or maximizing users’ QoE while as-
suming content popularity is known; and ii) developing new methods for predict-
ing content popularity and caching the most popular content. For instance, [26]
presents content caching methods for base stations (BSs) to minimize content
downloading delay. The proposed coded content caching optimization problem
in [26] is convex and involves the solution to a linear program. In [62], a multicast-
aware caching method is developed that minimizes energy consumption in the
network while the method described in [25] improves users’ QoE. A cooperative
content caching policy is proposed in [64] to improve network performance and
users’ QoE. The presented content caching problem is formulated as an integer
linear programming and suboptimal solutions are devised using the hierarchical
primal-dual decomposition method.

A limitation with the caching methods [26],[64],[62] is that they assume knowl-
edge of the content popularity in advance, and assume that the content popu-
larity follows a Zipf distribution. In reality, content popularity must be esti-
mated [65, 66]. In [67],[68],[69], content popularity is estimated using the re-
quest statistics of the content2. The content is then cached based on the estimated
content popularity. In [70],[71], collaborative filtering methods are used to clus-
ter users with similar content preferences, and then cache the content based on
the number of users in each cluster. For new users, their social network char-
acteristics can be used to estimate their content preferences and cluster associa-
tion. The combination of collaborative filtering with social network information
is used in [72, 73] to mitigate the cold start and data sparseness issues associ-
ated with collaborative filtering. There are two main issues with employing these
methods for caching content. The first is that these methods are highly intrusive

2In this work content refers to YouTube video files.

17

as the methods require knowing the user’s content requests and social network
information–for example, these methods can not be employed in countries such
as Canada without user consent as it would violate privacy laws3. The second
issue is that content popularity is estimated using the content request statistics.
Therefore, these methods can not be used to cache new content which have no
user request statistics.

Contributions

In this work, we construct an adaptive caching scheme that accounts for users’
behaviour and properties of the cellular network (e.g. cache size, bandwidth, and
network topology). The scheme does not require specific user’s content requests
and/or social network information. Instead, the popularity of the content is pre-
dicted using features of the content. This allows the caching of popular content
without the need for directly observing user requests for the content. Addition-
ally, since the popularity of the content is predicted, the content caching can be
performed when the network load is minimal reducing in the overall energy usage
of the network. A schematic of the adaptive caching scheme proposed in this work
is displayed in Fig. 1.5. The main contributions of this work include:

• A machine learning algorithm, based on the extreme learning machine (ELM) [74],
to estimate the popularity of content based on the features of the content.

• A mixed-integer linear program (MILP) is constructed to perform cache ini-
tialization that accounts for the predicted content popularity and properties
of the cellular network.

• An adaptive caching scheme which uses the MILP for cache initializa-
tion, and the S3LRU (Segmented Least Recently Used with three segments)
cache replacement scheme for dynamically adjusting the cache based on
the requests from users. The combination of these schemes increases the
overall performance of the cellular network.

3https://www.loc.gov/law/help/online-privacy-law/canada.php, 7 March, 2017

18

https://www.loc.gov/law/help/online-privacy-law/canada.php

• The performance of the adaptive caching scheme is illustrated using real-
world data from YouTube and NS-3 simulator. The results illustrated that
the adaptive caching scheme improves network performance and users’ QoE
compared with industry standard caching schemes [26, 71, 75].

Content Features
Content Requests

Extreme Learning
Machine

Content Popularity

Content Analysis

Cache Deployment

Content and Network
Aware Adaptive Caching

Caching Scheme for
QoE and Network Traffic

Improvement

Figure 1.5: Schematic of the caching scheme. Improving the quality of ex-
perience (QoE) involves ensuring a higher cache hit ratio for requested
content and reduced downloading delay.

1.2.3 Risk-Averse Caching Scheme for Heterogeneous
Networks

This work is an extension of the previous work that accounts for error in the con-
tent popularity prediction. More details of this work are provided in Chapter 4.
Motivation and contributions of the work are as explained below.

Motivation

As already mentioned, the design of efficient caching policies requires i) estima-
tion of the future content requests, ii) a method to cache popular content based
on the request estimates and routing protocol to deliver content to users in the
network. In this work we design risk-averse caching schemes for heterogeneous
networks that account for the uncertainty of predicting the future popularity of
content, the content routing protocol, and balance the network traffic load.

19

Given the main source of traffic in the networks is video content, several meth-
ods have been proposed for estimating video content requests. These methods fall
into two categories, namely, time-series or content feature based. Time-series
methods use the historical content requests to predict the future content requests.
Multivariate linear models [76], pure birth stochastic process [77], and ordinary
differential equations [78] have all been used for constructing time-series meth-
ods for estimating content requests. A limitation with time-series methods is that
they can only be used to predict the content requests of posted content. Content
feature based methods use the uploader, textual, and image features of the content
to predict the content requests. These methods include multivariate linear regres-
sion [79], Markov clustering [80], and extreme learning machines [81]. All these
methods provide point forecasts (expected value) for the content requests. No es-
timate of the confidence interval, prediction interval, or measure of the uncertainty
associated with the predicted content requests is provided. In this work we utilize
conformal prediction algorithm for estimating the cumulative distribution func-
tion of the content requests. The key idea of the conformal prediction algorithm is
to first group content, then for each group assume that the resulting error between
the point forecasts and the actual content requests are generated from the same
cumulative distribution function. The estimated cumulative distribution function
provides a complete description of the uncertainty associated with the estimated
content requests. Both the confidence interval and prediction interval of the con-
tent requests can be constructed from the estimated probability distribution. Note
that density forecasting [82],[83] in the time-domain is typically referred to as
prequential forecasting [84] in the economics literature.

Having estimated the future content requests, the aim is to optimally cache the
content throughout the network to minimize the delay to transfer the requested
content to the users. This requires that content is cached where it is likely to be
requested, and to optimally transfer content throughout the network to serve user
requests. The methods in [85],[86],[87] account for user specific downloading
delay and wireless channel fading gain to determine where to cache content and

20

which user to connect to which access point. These caching methods can be con-
sidered as dynamic cache replacement methods as they adapt the cache based on
the users ability to connect to different access points. However, a limitation with
the caching methods [85],[86],[87] is that they do not account for the routing pro-
tocol used in the backhaul network to retrieve content that is not cached in the
access points. In [88] cooperative caching is used to account for the backhaul link
bandwidth in the network to cache content throughout the network. Once the con-
tent is cached in the hetergeneous network, then content and load aware routing
methods are used to transfer the requested content to users [89],[90],[91]. The aim
of these routing methods to ensure load balancing occurs throughout the network
to minimize the delay of transferring content to users.

A common theme with the caching methods [85],[86],[87],[88] is that they
contain three distinct steps. First, a point estimate of the content popularity is
performed. Second, the content is cached in the network to minimize the delay of
transferring content to users. Third, given the cached content, a routing method is
used to deliver the content to the users. Notice that the routing method does not
affect how the content is cached in the network. Additionally, the above methods
are not risk-averse–that is, the point estimate of the content requests is equivalent
to computing the expectation of the requests using the forecaster content request
density. An issue with using the point estimate is that it does not provide a measure
of the uncertainty associated with estimating the future content requests. As such,
no probabilistic guarantees can be made on the network operating characteristics
(e.g. downloading delay, bit-error-rate, energy consumption, cache miss ratio) for
a selected caching decision.

Contributions

In this work, we include routing mechansism in the caching decision and instead
of minimizing the expected downloading delay as explained in the previous work,
we replace the additive expectation operator with a more general subadditive risk
operator, to make caching decisions to optimize network performance. Specifi-

21

cally, we use the Conditional Value-at-Risk (CVaR) risk operator to construct the
caching schemes in the heterogeneous network4. There are two important proper-
ties of CVaR that make it useful for performing caching decisions to reduce delay.
First, CVaR accounts for the minimal probability of a substantial network delay
for a caching decision where the total delay probability distribution is asymmet-
ric. Second, CVaR is a coherent risk measure–that is, CVaR is monotonic, subad-
ditive, positive homogeneous, and translation invariant. The monotonic property
states that if the delay of a caching decision D1 is always less than another caching
decision D2 almost surely, then the risk of selecting D1 is always less than D2. Ad-
ditionally, the subadditive property guarantees that the risk of using two caching
decisions D1 and D2 is always less than or equal to the risk associated with using
D1 and D2 separately. Since CVaR is a coherent risk measure, the optimization
of CVaR results in a convex optimization problem. As we show, the optimization
of CVaR to confidently reduce the network delay while accounting for the routing
protocol results in a mixed-integer linear program.

1.3 Thesis Organization
The remainder of the thesis is organized as follows. In chapter 2, we describe
a mechanism to form femto-clouds using distributed coalition formation game.
Chapter 3, explains a caching scheme in edge network. This work utilizes machine
learning algorithms to predict content popularity from their features. Then an
optimal caching scheme is devised using mixed integer linear programming. In
Chapter 4, we describe caching schemes for heterogeneous networks. This work
is an extension of the work described in Chapter 3. Finally, main research findings
and future research directions are provided in Chapter 5. A schematic of the
remainder of the thesis is illustrated in Fig.1.6.

4CVaR is one of the “big” developments for risk-averse decision making in mathematical fi-
nance; see [92–94].

22

Thesis organization

Chapter 2 Chapter 3 Chapter 4 Chapter 5

A Distributed Coalition
Game Approach to

Femto-Cloud Formation

Adaptive Scheme for
Caching Content in

a Mobile Edge Network

Risk-Averse Caching Scheme
for Heterogeneous Networks

Conclusions
Future Works

Figure 1.6: A schematic view of the remainder of the thesis.

23

Chapter 2

A Distributed Coalition Game
Approach to Femto-Cloud
Formation

In this chapter, we describe a distributed approach for femto-clouds formation.
Recall from Chapter 1, the main target of femto-clouds formation is to maximally
exploit computational resources at the edge of the network. In femto-clouds, edge
nodes such as FAPs share their computational resources with other FAPs with the
objective to maximize utilities that are lower overall network latency and higher
incentives. FAP decides individually which femto-clouds to join in for performing
computational tasks and receives a fair share of incentives following a distributed
coalition formation game approach.

At the beginning of the chapter in Sec. 2.1, we introduce system architecture
considered for the problem. The utility function for the femto-clouds is defined in
Sec. 2.2. The distributed femto-cloud formation algorithm is presented in Sec. 2.3.
Numerical studies are provided in Sec. 2.4. Finally, Sec. 2.5 concludes the chapter.

24

eNode-B

Macro UE

Remote

Cloud

FAP

Home UE

Optical Fiber/Ethernet

Wireless Link

Femto-cloud manager

Figure 2.1: A typical femto-cloud architecture. The macrocell and femtocell
base stations are referred to as eNode-B and femtocell access point
(FAP), respectively, and the end users are referred to as user equip-
ment (UE). FAPs are connected to their closest femtocell cloud man-
ager (FCM) via the Z interface while FCM is linked with the remote
cloud via optical fiber/Ethernet. The FAPs are also connected to the
neighbouring FAPs via the Z interface.

2.1 System Architecture
We consider a UMTS LTE architecture with V FAPs/Home eNode-Bs (HeNBs)
endowed with heterogeneous computational capacity. Each FAP is located in a
separate room and possibly different floor of a multi-story building. The FAPs
share bandwidth with a macro base station (BS) as shown in Fig. 2.1, and are
deployed by different residential users.

We assume that there exist NF femtocell cloud managers (FCMs) in the build-

25

ing, where NF <V . The FAPs are connected to their closest FCMs via Z interface
according to the proposed standalone FCM architecture in [34]. FCMs are respon-
sible for:

(i) gathering task request information of the connected FAPs, and exchanging
this information with neighbouring FCMs;

(ii) implementing the incentive mechanism by monitoring the tasks completed
by each FAP;

(iii) performing computations for the femto-cloud formation mechanism pro-
posed in this work.

FCMs are connected to the remote cloud via optical fiber links, hence, can offload
the computational tasks of the connected FAPs to the remote cloud with no inter-
vention of the core network. The FCMs substantially reduce the traffic generated
by the MCC in the core network. It is therefore natural to assume that FCMs are
installed and maintained by the mobile network operators.

It is assumed that FAPs are connected to the core network via wireless back-
haul, and can be deployed by the residential users in a plug-and-play fashion. The
FAPs use the 2.6 GHz licensed bandwidth to connect with FCMs, and commu-
nicate with other FAPs via the Z interface in a multicast fashion. Since FAPs
and FCMs are located in different rooms/floors of the building, the FAP-FAP and
FAP-FCM signal propagation undergo several losses. Here, we only consider
external wall loss, shadowing loss, and the 2.6 GHz path loss models. As a re-
sult, the FAP-FAP communication delay depends on the location of the FAPs and
channels’ quality.

2.2 Formulation of the Femto-Cloud Formation
Problem

This section formulates the femto-cloud formation problem. We first formulate
the utility function that quantifies the performance of individual femto-clouds in

26

Sec. 2.2.1. The global femto-cloud formation problem with fair allocation of in-
centives to FAPs is then formalized in Sec. 2.2.2. We finally discuss the similar-
ities between the formulated problem and coalition formation games. Table 2.1
summarizes the notations used in this section.

2.2.1 Local Femto-Clouds and Their Utility
Mobile devices make decisions on offloading their tasks to FAPs based on the
handling latency1 and energy [12]. If offloaded to FAPs, they will then decide
whether to perform computations locally or send them to the remote cloud tak-
ing into account the users’ QoE requirements, their computational capacity and
workload. The main goal in this work is to motivate a cooperation protocol to
maximally exploit FAPs’ local resources. Neighbouring FAPs form collaborative
coalitions to increase local computational capacity. Since FAPs are densely de-
ployed, sending the data for the requested tasks to such local femto-clouds incurs
less latency as compared to the remote cloud. This improves users’ QoE while
enabling FAP owners to earn incentive by sharing their excess resources.

Resource sharing problems can generally be formulated as constrained opti-
mization problems with a utility function that trades-off the benefits and costs as-
sociated with collaboration by sharing resources. Consider a set of FAPs, indexed
by the set V = {1,2, . . . ,V}, and let C ⊆ V denote a coalition of FAPs formed for
a fixed time interval over which the parameters described below remain constant.
The case |C | > 1 is referred to as a femto-cloud, whereas |C | = 1 is referred to
as an isolated FAP. Here, | · | denotes the cardinality operator. The performance
of femto-clouds are then quantified by the function U : 2V − /0→ R, where 2V

denotes the power set of the set of FAPs V . This function quantifies the total
incentive earned by a femto-cloud as the result of FAPs sharing their resources,
which is then divided among the FAPs in the femto-cloud, and is formulated as

U(C) =U r(C)−Uc(C)+U p(C), (2.1)

1Latency can be formulated as the sum of computational delay and data transfer delay.

27

Table 2.1: Notations and Terminology

System
Parame-

ters
Description

V Number of FAPs
NF Number of FCMs
Rk Trust/reputation value of FAP k

dmax
k Computational capacity of FAP k

Dmax
C

Overall computational capacity of
femto-cloud C

bk,l
Uplink data transmission rate from
FAP k to FAP l

bk
Uplink data transmission rate from
FAP k to FCM

L
WAN latency for sending tasks to re-
mote cloud

Task
Request

Description

NB Data size

dk
Sample mean of task requests received
by FAP k

DC
Sample mean of task requests in femto-
cloud C

HC
Entropy of total task requests in femto-
cloud C

Utility
Function

Description

mr Revenue per unit task
mp Proportionality constant for trust
cr Remote cloud charges per unit task
co Offloading delay cost
cu Penalty for demand uncertainty

28

where each term on the right hand side is described below:
The first term U r(C) models the revenue earned by the femto-cloud and is

formulated as
U r(C) = mr ·DC , (2.2)

where mr is the revenue per unit task ($/task). Further, DC denotes the sample
mean of the task requests received by femto-cloud C over the past time slots since
the femto-cloud has been modified/formed. If the requested tasks for a particu-
lar FAP exceed its computational capacity, the FAP offloads tasks to femto-cloud

members and shares the incentive with them. Since femto-clouds are formed for
several time slots, rather than dealing with instantaneous offloaded tasks, the in-
centive function relies on the previously observed statistics of requests.

The second term Uc(C) in (2.1) represents the costs incurred by forming a
femto-cloud, and is comprised of four terms

Uc(C) =Uc
r (C)+Uc

o,r(C)+Uc
o,m(C)+Uc

u (C) (2.3)

where each term is described below:

1) Remote cloud cost: When the accumulated task requests within a femto-cloud

exceeds its computational capacity, the excess tasks have to be offloaded to the
remote cloud to avoid processing delays. This incurs two types of costs:

a) Remote cloud processing cost: The term Uc
r (C) in (2.3) models the remote

cloud processing cost

Uc
r (C) = cr ·

∣∣DC −Dmax
C

∣∣+ , (2.4)

where cr is the remote cloud charges in $/task. Further, |x|+ = max{0,x}, and
Dmax

C = ∑k∈C dmax
k is the overall computational capacity of femto-cloud C , where

dmax
k represents the computational capacity2 of the k-th FAP. This term motivates

2One unit of computational capacity is equal to one unit of workload.

29

FAPs to form coalitions with FAPs with low workload to computational capacity
ratio.

b) Remote cloud offloading delay cost: The second term Uc
o,r(C) in (2.3) is

the penalty associated with the data transfer delay in offloading excess femto-cloud

workload to the remote cloud, and is formulated as

Uc
o,r(C) = co ·

(∣∣DC −Dmax
C

∣∣+ ·NB ·
(1

mink∈C bk
+L
))

. (2.5)

Here, NB denotes the data size, in bytes, of a task, bk is the uplink data transmis-
sion rate, in bytes/sec, from k-th FAP to FCM, L represents the wide area network
(WAN) latency introduced by transporting the task to the remote cloud via the
FCM (byte/second), and co ($/sec) is the dimension for proportionality constant.

2) Multicast offloading delay to FAPs: The term Uc
o,m(C) in (2.3) represents the

penalty for the delay in transmitting data, associated with the tasks exceeding
FAPs’ computational, to the femto-cloud into a monetary penalty. It provides
incentive for FAPs to collaborate with neighbouring FAPs to decrease the handling
delay and improve the QoE of users, and is formally given by

Uc
o,m(C) = co ·

(
∑

k∈C

∣∣dk−dmax
k

∣∣+ · NB

minl∈C−{k} bk,l

)
. (2.6)

Here, bk,l denotes the uplink data transmission rate from the k-th FAP to the l-th
FAP, dk is the sample mean of the task request in the k-th FAP over the past time
slots since the femto-cloud has been modified/formed. Finally, dk− dmax

k is the
number of tasks that exceeds the computational capacity of the k-th FAP, and have
to be sent to the cloud.

3) Demand uncertainty cost: Since femto-clouds are formed for multiple time
slots and we use sample statistics rather than instantaneous task requests, it is
important to account for deviation from the mean demand so as to avoid remote

30

cloud costs. The last component of the cost function captures such uncertainty in
the overall femto-cloud demand, and is formulated as

Uc
u (C) = cu ·HC , (2.7)

where HC denotes the sample entropy of the accumulated task request time se-
ries. This term simply motivates FAPs to form femto-clouds with FAPs with less
variability around their mean computational demand.

Finally, the last term U p(C) in (2.1) models the priority value of the coalition
C . With each FAP, there corresponds a trust value, denoted by Rk, that captures the
quality of its previous cooperative behaviour [95]. By joining femto-clouds and
successfully performing computations offloaded by other cloud members, FAPs
earn trust. Femto-cloud comprising of FAPs with higher trust values are expected
to perform tasks in a timely manner; therefore, the service provider is willing to
provide them with higher monetary incentives as they improve the users QoE. This
further eliminates free-rider FAPs that join coalitions to obtain incentives without
performing tasks.

We formulate U p(C) as follows:

U p(C) = mp ·
(

∑
k∈C

Rk ·
min{dmax

k , f}
dk

)
, (2.8)

where mp ($) is the proportionality constant that determines the relative weight of
trust in formation of femto-clouds, and f is a system parameter3 that depends on
the overall task requests in the system. Note in the above formulation that higher
priority is placed on FAPs with lower mean demand to computational capacity
ratios and higher trust values. It is assumed that FCMs are responsible for up-
dating the trust values for their neighbouring FAPs. The mechanism for updating
these trust values is however out of the scope of this work, and merits a separate

3Taking the minimum in (2.8) is a technicality to avoid obtaining excess priority for computa-
tional capacity that exceeds the femto-cloud demands.

31

research work. We further assume that Rk remains constant for several time slots
while the FCM monitors the k-th FAP cooperative behaviour, and is only updated
when the femto-clouds structure is being modified.

2.2.2 Optimization of the Femto-clouds with FAP Incentives
As mentioned in Sec. 2.2.1, FAPs expect incentives for sharing their excess re-
sources. Let r = (r1, . . . ,rV) denote the incentive allocation vector. Each element
rk represents the share of each FAP k from the total incentive obtained by the
femto-cloud C that FAP k have joined. To make the problem mathematically
tractable, the set of incentive values is confined to a finite set. Suppose ∆ ($) is the
smallest incentive unit. Each FAP’s demand is then restricted to the set

P =

{
n̂∆; n̂ ∈ N,0≤ n̂∆≤ max

C∈2V − /0
U(C)

}
, (2.9)

where N represents the set of all natural numbers, and the function U(·) is defined
in Sec. 2.2.1. Let further B denote the set of all possible femto-cloud structures.
Each femto-cloud structure S is a partition on the set V , i.e., ∪C∈S C = V . The
femto-cloud formation problem is then formulated as

max
S∈B ∑

C∈S
bU(C)c∆,

s.t. rk ∈P,

∑
k∈C

rk = bU(C)c∆, ∀C ∈B,

∑
k∈C ′

rk ≥ bU(C ′)c∆, ∀C ′ ⊆ V ,C ′ 6= /0.

(2.10)

where bxc∆ = b x
∆
c·∆ denotes the greatest integer multiple of the smallest divisible

incentive unit ∆, and P is defined in (2.9).
Before proceeding to provide an intuitive interpretation of (2.10), a few defi-

nitions are in order. Let r and r′ denote two V ×1 incentive vectors. The product
ordering r ≤ r′ holds if and only if rk ≤ r′k for all k ∈ V . An incentive allocation

32

r is then called efficient if the sum of incentives of all FAPs is equal to the max-
imum total incentive, achievable under the most desirable femto-cloud structure.
In addition, if a group of FAPs can form a femto-cloud C ′ where the division of
coalition’s incentive guarantees r′ ≥ r, then C ′ will block the currently formed
femto-cloud C and the associated incentive vector r. An incentive vector r is
called non-blocking if for all possible femto-clouds C ′, the associated incentive
r′ satisfies r ≥ r′. The second constraint in (2.10) ensures that the incentives al-
located to FAPs are efficient. The third constraint in (2.10) is the non-blocking
condition, and can be interpreted as a fairness criterion on the division of incen-
tives among FAPs in each femto-cloud. An incentive allocation vector is called
fair if no FAP can gain higher incentive by sharing its resources with a differ-
ent group of FAPs. The solution to (2.10) can thus be considered as the optimal
femto-cloud structure in that: i) the computational capacity of all FAPs is maxi-
mally exploited, and ii) the FAP incentives are distributed in a fair fashion within
each femto-cloud.

Coalition Formation Game Interpretation: The femto-cloud formation problem
with FAP incentives outlined above fits well within the context of coalition forma-
tion games. The coalition formation games encompass cooperative games where
the coalition structure plays a major role, and are defined by the pair (G ,Q), where
G denotes the set of players and Q : 2G − /0→ R is the characteristic function4.
This function associates with any non-empty coalition a number that quantifies
the total payoff that can be gained by the coalition. A cooperative game is called
superadditive if for any two disjoint coalitions C1,C2 ⊂ G :

Q(C1∪C2)≥ Q(C1)+Q(C2).

In superadditive games, the grand coalition—the coalition consisting all players—
forms the stable coalition structure. The coalition formation games encompass

4The term characteristic function is as used in cooperative games and is unrelated to character-
istic functions in probability theory.

33

cooperative games where the coalition structure plays a major role. These games
are generally non-superadditive; therefore, the optimal coalition structure may be
comprised of several disjoint coalitions. Due to the data transfer delay and limited
computational capacity of FAPs, it is intuitive that the optimal structure of femto-

clouds has to incorporate several disjoint coalitions of FAPs. It is thus natural to
formulate the femto-cloud formation problem as a coalition formation game with
G = V and Q(·) = U(·). In particular, the solution of the femto-cloud forma-
tion problem (2.10) is identical to a solution notion in coalition formation games,
namely, modified core [35]. Therefore, solving (2.10) is equivalent to finding the
modified core of the underlying coalition formation game. The interested reader
is referred to [96],[97],[98] for further details.

2.3 Distributed Femto-Cloud Formation and
Convergence to the Core

This section presents a distributed femto-cloud formation algorithm that guaran-
tees convergence to the solution of (2.10) almost surely, and elaborates on its
implementation considerations.

2.3.1 Distributed Femto-Cloud Formation Algorithm
Define network state pair by ω = (S ,r), which contains the femto-clouds struc-
ture S and the incentive vector of FAPs r. The distributed femto-cloud formation
procedure relies on the dynamic coalition formation algorithm proposed in [35]
and is summarized below in Algorithm 1. The advantage of using the decentral-
ized procedure in Algorithm 1 over centralized solutions is that it retains auton-
omy of FAP owners as whether to collaborate and better captures the dynamics of
the negotiation process among them [35]. In a centralized solution, FAP owners
have to be forced to follow the calculated optimal femto-cloud structure. In fact, if
an FAP owner decides to not follow the prescription, the implemented femto-cloud

structure is no longer the optimal solution. In contrast, the decentralized solution

34

implemented in Algorithm 1 mimics the natural procedure that FAP owners will
follow to form collaborative groups—they explore their options and settle in the
femto-cloud that provides the highest feasible incentive. The implementation con-
siderations will be addressed in the next subsection.

Algorithm 1 Distributed Femto-Cloud Formation
Initialization. Set 0 < ε,ρ < 1, where ρ is the probability of revising strategy
and ε is the experimentation probability. Initialize ω0 = (S 0,r0), where

S 0 =
{
{1}, . . . ,{V}

}
,r0 =

(
r̂1, . . . , r̂V

)
,and r̂k =U({k}).

Step 1. Find blocking coalitions by FCM:
Let A n = /0. For all C ∈ 2V − /0,

if ∑k∈C rn
k < bU(C)c∆, then A n←A n∪C .

Step 2. Each FAP k ∈ {1, . . . ,V} independently performs:
Step 2.1. With probability ρ , continue with Step 2.2. With the remaining
probability 1−ρ , stay in the same coalition, set rn+1

k = rn
k , and go to Step 2.5.

Step 2.2. Compute

C̃ n+1
k = argmax

C∈S n∪ /0

(
bU(C ∪{k})c

∆
− ∑

l∈C ,l 6=k
rn

l

)
(2.11)

r̃n+1
k =

⌊
U
(
C̃ n+1

k ∪{k}
)⌋

∆
− ∑

l∈C̃ n+1
k ,l 6=k

rn
l (2.12)

Step 2.3. If k ∈ A n, with probability ε , go to Step 2.4. With the remaining
probability 1−ε , sample uniformly from the set S n∪ /0, denote it by C̃ n+1

k , and
set rn+1

k = r̃n+1
k , where r̃n+1

k is computed according to (2.12). Go to Step 2.5.

Step 2.4. Set rn+1
k = r̃n+1

k and, if non-singleton, randomize among C̃ n+1
k uni-

formly.
Step 2.5. If k 6=V , continue with the next FAP.

Step 3. Form ωn+1 = (S n+1,rn+1).
Set n← n+1 and go to Step 1.

35

The myopic best-reply strategy implemented in Step 2.1-2.3 of Algorithm 1
defines a finite-state Markov chain, namely, best-reply process [35]. Standard re-
sults on finite state Markov chains show that, no matter where the process starts,
the probability that the best-reply process reaches a recurrent set of states after
n iterations tends to one as n tends to infinity. The outcome that which of these
ergodic states will eventually be reached is determined by the initial state. Under
the best-reply process, absorbing states do not necessarily guarantee reaching the
solution of (2.10). To address this issue, perturbation has to be introduced. That
is, to allow FAPs deviate from optimal strategies and choose sub-optimal strate-
gies with a small probability with the hope of achieving higher incentives. The
interested reader is referred to [35] for details and further discussion.

Deviation from the best-reply process, namely, experimentation, is formally
defined as follows: In any state, when there exists a potential femto-cloud C ′ ∈ 2V

such that

∑k∈C ′ rk < bU(C ′)c∆, (2.13)

each FAP k ∈ C ′ follows the best-reply process of Step 2.1-2.3 with probability
1−ε . With the remaining probability ε , it randomly joins an existing femto-cloud,
and demands the surplus incentive that the femto-cloud expects to achieve as the
result of FAP k joining it. The blocking condition (2.13) is checked in Step 1 of
Algorithm 1. This modified best-reply process defines a finite-state Markov chain,
namely, best-reply process with experimentation [35], with the same state space as
the best-reply process (without experimentation) and slightly modified transition
probabilities.

The limiting distribution of the best-reply process with experimentation sum-
marized in Algorithm 1 assigns probability one to the states (S n,rn) that solve the
femto-cloud formation problem (2.10). This result is summarized in the following
theorem.

Theorem 2.3.1. Let ωc = (S c,rc) denote the states that solve the femto-cloud

formation problem (2.10). Then, the sample path of ωn = (S n,rn) generated by

36

Algorithm 1 converges almost surely to the core, i.e.,

P
(

limn→∞ ωn = ωc)= 1, (2.14)

for all initializations ω0 if the solution set is non-empty.

• The proof relies on the results of [35] and the analogy between the femto-

cloud formation problem (2.10) and the modified core of the underlying

coalition formation game; see Sec. 2.2.2 for details. It is shown in [35] that

the best-reply process with experimentation implemented by Algorithm 1

converges almost surely to the modified core of the coalition formation

game; see [35] for the detailed proof. Comparing the definition of modi-

fied core in [35] with (2.10) then completes the proof.

2.3.2 Implementation Considerations

a) Decentralized Implementation: The proposed algorithm, independently fol-
lowed by each FAP, provides a decentralized solution to (2.10). This decentral-
ized implementation relies on collaboration among the FCMs. It is assumed that
FAPs monitor their users task request statistics over an interval comprising several
time slots, and periodically transmit this information to their neighbouring FCM.
The FCMs then exchange this information with each other so as to be able to
evaluate the femto-cloud characteristic function (2.1) and detect for blocked FAPs
(Step 1 in Algorithm 1) in their neighbourhood. Note that data size of user request
information is negligible compared to the task data size. The FCMs are further
responsible for providing FAPs that decided to revise their cooperation strategies
with the feasible incentive (the term inside parentheses in (2.11)) in the associ-
ated femto-cloud, and to inform the blocked FAPs of their potential for obtaining
higher incentives in other femto-clouds. Finally, having been enabled to commu-
nicate with each other, it is the task of FCMs to collaboratively update the network
state parameter ωn in Algorithm 1.

37

b) Complexity: Searching for the blocking coalition (Step 1 in Algorithm 1) is
the main computational complex part of the algorithm. An exhaustive search for
blocking coalition requires checking (2V −1) different combination of coalitions.
As the number of FAPs increase, the randomized searching algorithm presented
in [99] can be utilized. According to the randomized searching algorithm, only
a subset of the combination of coalitions is constructed for checking blocking
coalition. The randomized searching algorithm still converges to the core of the
coalition formation game with probability one, however, resulting in slower con-
vergence rate.

c) Time-scales: We assume that the femto-cloud structure remains constant for
several time slots, and FAPs update their user request statistics with the same fre-
quency. During this period, FAPs run Algorithm 1 based on the most recent sam-
ple statistics of the user requests. Once convergence to the solution takes place,
the femto-cloud structure and associated incentives will be followed in the next
decision epoch that the femto-cloud structure is being revised. Note that, since
FAPs and FCMs are both static, the FAP-FAP and FAP-FCM channel responses
vary slowly. In the utility function, average data transmission rate is considered
over which femto-cloud structures are assumed to remain constant.

d) Characteristic Function Parameters: The parameters mr, cr, co, cu, and mp

in (2.1) could be mathematically be interpreted as weight factors that determine
the relative importance of the different factors considered in formulation of the
characteristic function such as the delay cost, the demand uncertainty cost, and
remote cloud processing cost. The choice of these parameters is an interesting
topic in utility theory. Clearly, the values of these parameters affect the optimal
femto-cloud structure and incentive allocations. The particular choice of these
values will depend on the specific application. For instance, in some applications
users may be willing to incur longer delays to pay less for using the femto-cloud,
in which case co should be smaller relative to mr. In others, users may not tolerate

38

delay, where co should be set very large. We further emphasize that the utility
function formulated in Sec. 2.2.1 is only an example that exhibits how to incorpo-
rate different factors into the implementation of femto-clouds. Depending on the
application specifics, certain terms could be added or omitted.

e) Empty Core: Finally, imposing conditions on the utility function to ensure
existence of a solution (modified core of the underlying game) could be inherently
complex in some applications. To address this issue, the experimentation factor ε

in Algorithm 1 can be made to diminish to zero with time, e.g., one can replace
ε with εn = 1/nα for 0 < α < 1. This ensures that Algorithm 1 converges to the
absorbing states of the best-reply process (Steps 2.1-2.3 in Algorithm 1) if the core
is empty. Extensive simulations in Sec. 2.4 numerically verify that the results still
outperform alternative schemes.

2.4 Numerical Results
This section provides numerical examples to evaluate the performance of the pro-
posed incentive-based femto-cloud formation scheme.

2.4.1 Object Recognition Tasks
We focus on the processing associated with the object recognition task from im-
ages and videos captured via vision-based sensors in mobile devices, which is
required to support mobile augmented reality applications. The formulation, how-
ever, is general enough to be adapted to various computationally intensive applica-
tions such as face recognition, pattern recognition, and optical character recogni-
tion from images/videos5. In particular, applications with different computational
requirements can be split into several equal-sized computational sub-tasks. The
utility function only requires how many sub-tasks can be executed in the femto-

5Different object recognition applications may require different feature descriptors. The choice
of the descriptor, however, is not crucial to the problem formulation and the proposed femto-cloud
formation mechanism; it only affects the parameters of the utility function defined in Sec. 2.2.1.

39

cloud and the predicted demand of sub-tasks in the coalition.
Feature extraction is typically the most computationally intensive task in ob-

ject recognition at the deployment stage [100]. We assume that FAPs are equipped
with graphics processing units (GPUs), and are capable of performing parallel
computations in their GPUs. Therefore, the feature extraction procedure can be
performed either on the UE’s local processor, or on the FAPs. When both UE and
FAPs are busy or lack sufficient computation capacity, the task is outsourced to
the remote cloud. Once extracted, the feature vectors are sent to the application
server, which compares them with the training models, and sends the best matched
result(s) to the UE. In the examples to follow, we consider feature extraction tasks
on both images and videos. At each time, each UE can either offload an image or
a video to the FAP for the feature extraction task. In the numerical examples, gPb6

is used for feature extraction. We assume that the duration of a video is uniformly
distributed between 1 to 10 seconds.

Here, one unit of workload/demand associated with feature extraction is con-
sidered to be 144 Giga floating point operations per second (GFLOPs), which
is also used to define one unit of computational capacity7. We assume that a
3264×2448 pixels image is divided into 9 sub-images [102, 103] with each sub-
image containing 1088× 816 pixels and occupying 2.1 mega bit (Mb) memory.
Similarly, videos are divided up into 1 second segments. Each 1 second video of
640× 480 pixels and 30 frame rate occupies 2.2 Mb memory. In both cases, the
feature extraction task requires approximately 144 GFLOPs which is equivalent
to one unit of workload or computational capacity.

6The global probability algorithm (gPb) is a contour detection algorithm that achieves the best
performance among all such schemes [101]. The computational requirement of gPb is 158,600
FLOPS per pixel [100].

772 cores, each with 1000 MHz clock speed, are grouped together and considered as one unit
of computational capacity.

40

2.4.2 Simulation Setup
Throughout this section, the NS-3 simulator is used for simulating LTE system ar-
chitecture. We consider a city environment and use the LTE module developed by
the LENA project [104, 105] as follows: We use LENA’s RandomRoomPosition-

Allocator function to randomly locate 15 FAPs inside a 10-story building made
of concrete and comprising 20 apartments, as depicted in Fig. 2.2. There exist
2 FCMs in the building located close to FAP-2 and FAP-15, respectively. The
FCMs are connected to the remote cloud via 1Gbps optical fiber link. LENA’s
HybridBuildingsPropagationLossModel and 3kmphTraceFadingLossModel func-
tions (i.e., slowly varying Nakagami-m fading model) are used for propagation
loss and channel fading between UEs and FAPs, respectively. We further use the
Kun2600MhzPropagationLossModel and the NakagamiPropagationLossModel func-
tions as the propagation loss model and channel fading for FAP-FAP and FAP-
FCM communication. The handover is handled via the LENA’s AddX2Interface

function. UEs are further randomly located inside the building and connected to
FAP using the AttachToClosestEnb function. At each time slot, sub-channels are
allocated to users in each FAP according to the proportional fair (PF) schedul-
ing policy with hybrid automatic repeat request (HARQ) re-transmission mecha-
nism. Further, the UEs and FAPs are equipped with multiple input multiple output
(MIMO) antennas, and support adaptive modulation and coding. UEs transmit
UDP packets to the FAP. FAPs also transmit UDP packets for multi-cast commu-
nication. The data transfer rates are calculated from the RLCTrace files generated
by the NS-3 simulator. Other NS-3 simulation parameters are listed in Table 2.2.
Please note that in this section and throughout the thesis we assume that the net-
work carries video traffic and NS-3 simulator takes care of this traffic using LTE
EPS Video bearer. The service quality, strict transmission deadline, and priority
of video traffic have already taken care in the NS-3 simulation setup.

Finally, the UE is considered to be an iPhone 5S and can perform 76.6 Giga
floating point operations per second.

41

2.4.3 Numerical Examples
With the above simulation set-up, in the following examples, the effect of a single
parameter is studied on the formation of femto-clouds while other parameters are
kept constant. We set ε = 0.3, ρ = 0.2, ∆ = 1, and α = 0.5 in Algorithm 1.
Table 2.4 summarizes the parameters of all FAPs. These parameters are chosen so
as to enable illustrating different scenarios. Each point on the graphs of Figs. 2.3-
2.6 are averaged over 1000 i.i.d. realizations. The results are compared with two
alternative heuristic schemes for femto-cloud formation. Scheme-1 is based on the
relative distance of the FAPs. That is, κ FAPs with the least relative distances form
a local femto-cloud. Scheme-2 relies on the computational capacity, the sample
mean and sample entropy of demand at the FAPs. That is, FAPs are ranked based
on the value of dmax

k −dk−Hk. Then, κ FAPs with the highest ranks are collected
to form a local femto-cloud with κ lowest ranked FAPs. The procedure continues
until all FAPs form/join a coalition. Coalition structures in heuristic schemes are
listed in Table 2.3.

Example 1

The first example studies the effect of data transfer delay in the formation of femto-

clouds. This scenario represents an enterprise environment where all FAPs are
owned by the same authority. Therefore, we set mr = cr = cu = mp = 0, and
co = 1 $/sec. The utility function defined in equation(2.1) can be rewritten as
follows.

Udelay(C) =−U(C) =Uc
o,r(C)+Uc

o,m(C), (2.15)

where the first term represents remote cloud offloading delay cost which is defined
in equation(2.5). The second term defined in equation(2.6) represents multicast
offloading delay to FAPs. The goal will thus be to reduce the overall handling
delay by forming local femto-clouds. In this case, W = (w1, . . . ,wV) denote the
handling latency cost allocation vector where wk =−rk, k ∈ V . The femto-cloud

42

600
550

X-axis (m)

11

500

 7

15

450

10

 5

 8

400

 9

 1

140

 2

160

14 3

180

12

Y-axis (m)

13

 6

200

 4

40

50

0

10

20

30

220

Z
-a
x
is

(m
)

FAPs

FAPs with FCMs

Figure 2.2: FAPs and FCMs locations inside the building. UE arrival at each
FAP follows a Poisson distribution. The number of UEs in the simula-
tion depends on the user arrival rate at each FAP (see Table 2.4).

formation problem is then reformulated as

min
S∈B ∑

C∈S
bUdelay(C)c∆,

∑
k∈C

wk = bUdelay(C)c∆, ∀C ∈B,

∑
k∈C ′

wk ≤ bUdelay(C
′)c∆, ∀C ′ ⊆ V ,C ′ 6= /0.

(2.16)

As can be seen from equation (2.16), the goal of the femto-clouds formation prob-
lem is to minimize overall handling latency. Inequality constraint ensures that no
other coalition can provide lower handling latency. Algorithm 1 is redefined to

43

Table 2.2: Simulation setup: LTE system parameters in NS-3

Parameters Value/Type

Adaptive Modulation & Coding PiroEW2010
Bit Error Rate 0.0005

MIMO 2×2
FAP Antenna IsotropicAntennaModel

External Wall Loss 10 dB
Shadowing Loss 5 dB

EPS Bearer GBR CONV VIDEO
FAP Transmission Power 20 dbm

FAP Noise Figure 5 dbm
UE Transmission Power 10 dbm

UE Noise Figure 5 dbm
Macrocell Bandwidth 20 MHz

Mobility Model ConstantPosition
Scheduler PfFfMacScheduler

identify optimal coalition structures that minimize overall handing latency.
Fig. 2.3 shows the average data transfer delay in the femto-clouds versus the

computational capacity of FAP-1. The ‘Isolated FAPs’ case refers to the scenario
where no FAP is willing to cooperate and operates individually—that is, there
exist no femto-cloud. In contrast, the ‘Grand femto-cloud’ refers to the case where
all FAPs form one large collaborative femto-cloud. In the ‘Isolated FAPs’ case,
as the computational capacity increases, FAP-1 can perform more tasks locally
and offloads fewer tasks to the remote cloud. This leads to the reduction of WAN
latency. Therefore, the data transfer delay of FAP-1 decreases and, hence, the
overall data transfer delay in the femto-clouds decreases.

As can be seen in Fig. 2.3, the data transfer delay in the femto-cloud structures
prescribed by Algorithm 1 is the lowest. This is in contrast to the grand femto-

cloud which provides the highest delay. This is mainly because some FAPs are
located far away in the building; hence, the multicast delay in the grand femto-

44

Table 2.3: Femto-cloud coalition structures in heuristic schemes

Femto-Clouds Coalition Structure
Scheme-1 {1,2,5,8,9},{3,4,12,13,14},{6,7,10,11,15}
Scheme-2

(FAP-1 comp.
capacity 0–4)

{1,2,6,10,15},{3,7,9,11,12},{4,5,8,13,14}

Scheme-2
(FAP-1 comp.
capacity 6–8)

{2,6,7,10,15},{1,3,9,11,12},{4,5,8,13,14}

Scheme-2
(FAP-1 comp.

capacity 10–14)
{1,2,7,10,15},{3,9,11,12,14},{4,5,6,8,13}

Scheme-2
(FAP-1 comp.

capacity 16–20)
{2,7,10,12,15},{3,4,9,11,14},{1,5,6,8,13}

Scheme-2
(FAP-1 arrival

rate 1)
{1,7,10,12,15},{2,3,4,9,14},{5,6,8,11,13}

Scheme-2
(FAP-1 arrival

rate 2)
{1,2,7,10,15},{3,9,11,12,14},{4,5,6,8,13}

Scheme-2
(FAP-1 arrival

rate 3–5)
{1,2,6,10,15},{3,7,9,11,12},{4,5,8,13,14}

Table 2.4: Simulation setup: FAP parameters in the numerical example

FAP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trust Value 0.1 0.5 0.5 0.4 0.1 0 0.1 0.2 0.4 0.1 0.2 0.4 0.1 0 0.5

Comp. Capacity 10 10 30 10 10 5 5 20 20 15 15 5 10 10 30

User Arrival Rate 2 1 2 2 1 2 3 2 3 1 2 2 1 3 1

Mean Process. Requests 20.47 13.13 17.63 15.7 13.51 16.46 20 11.4 17.77 8.13 17.53 11.67 10.64 21.63 13.16

Entropy 3.55 2.96 3.38 3.23 3.02 3.23 3.29 2.97 3.28 2.75 3.29 2.97 2.8 3.38 2.99

45

cloud is high. The data transfer delay in alternative scheme-1 is higher than alter-
native scheme-2. This is due to the fact that some FAPs have more requests than
their computational capacity, in which case tasks are transported to the remote
cloud and, hence, the WAN latency increases. The ‘Isolated FAPs’ case ignores
cooperation among FAPs, which naturally results in higher delay.

The femto-cloud structures are listed in Table 2.5 for various values of compu-
tational capacity for FAP-1. FAP-1 forms a femto-cloud with FAP-8 and FAP-15
when its individual computational capacity is low. In this case, FAP-1 offloads
a portion of the requested tasks to the femto-cloud and reduces WAN latency as
compared to transporting tasks to the remote cloud. However, as the computa-
tional capacity of FAP-1 goes beyond its demand, it joins in a different femto-

cloud so as to be able to process tasks exceeding the capacity of the femto-cloud

members. This reduces the overall handling delay in the femto-cloud and im-
proves users’ QoE.

Example 2

This example considers a scenario where FAPs are deployed by residential users.
To motivate owners for sharing excess resources, monetary incentives are con-
sidered as described in Sec. 2.2.2. Therefore, FAPs are motivated to cooperate
by forming femto-clouds not only to reduce the handling delay, but also to earn
incentive. We assume mr = 4 $/task, cr = 5 $/task, co = 3 $/sec, cu = 2 $/task,
mp = 1, and f = 200 in the characteristic function (2.1).

Figure 2.4 plots the total incentive earned by all FAPs versus computational
capacity of FAP-1. As the capacity of FAP-1 increases, it can serve more tasks
exceeding other FAPs’ capacities within the femto-cloud; hence, it receives higher
incentives, which in turn increases the total incentive. Note that, for lower compu-
tational capacity, the incentive obtained by FAP-1 is still higher than the ‘isolated
FAPs’ case. This is because incentives depend not only on the revenue but also on
costs associated with delay costs. By forming a femto-cloud, FAP-1 can save on
its delay costs as explained in Example 1 and, thus, obtains higher incentives.

46

Computational capacity of FAP-1
0 2 4 6 8 10 12 14 16 18 20

A
v
er
a
g
e
fe
m
to
-c
lo
u
d
d
a
ta

tr
a
n
sf
er

d
el
a
y

30

40

50

60

70

80

90
Isolated FAPs

Algorithm 1

Grand femto-cloud

Heuristic scheme-1

Heuristic scheme-2

Figure 2.3: Computational capacity of FAP-1 vs. average data transfer delay
per 2.2 Mb data in the femto-clouds (c0 = 1). Here, lower data transfer
delay improves users’ QoE.

Figure 2.5 also displays the total incentive obtained by all FAPs versus the user
arrival rate at FAP-1. As expected, as the user arrival rate at FAP-1 increases, the
tasks requested at FAP-1 will increase and the incentives it receives will decrease.
This is mainly because FAP-1 (in the isolated case) as well as other FAPs in the
femto-cloud need to transport more tasks to the remote cloud, which increases the
delay costs and remote cloud charges and, hence, reduces the incentives offered to
FAPs. Note that this example considers the case where the charge per computation
in the remote cloud is higher than the revenue obtained per computation in femto-

cloud, i.e., mr ≤ cr in (2.1). Therefore, for fixed computational capacity, FAP-1’s
incentives decreases as the user arrival rate increases. The femto-cloud structures

47

Computational capacity of FAP-1
0 2 4 6 8 10 12 14 16 18 20

T
o
ta
l
in
ce
n
ti
v
es

200

250

300

350

400

450

500

550

600

650

Isolated FAPs

Algorithm 1

Grand femto-cloud

Heuristic scheme-1

Heuristic scheme-2

Figure 2.4: Computational capacity of FAP-1 vs. femto-cloud incentive.
Higher incentives mean that FAP owners receive more incentives by
joining in the femto-clouds.

are listed in Table 2.6.
Fig. 2.6 shows the delay-incentive trade-off for a range of computational ca-

pacity of FAP-1. As expected, the femto-cloud data transfer delay for the femto-

cloud structures in Example 2 is higher than those obtained in Example 1. This
is due to the fact that the main goal of femto-cloud formation in Example 2 is
to maximize the incentives where delay cost c0 is lower than the computational
revenue mr and remote cloud processing cost cr, whereas the aim of femto-cloud

formation in Example 1 was to reduce the data transfer delay.

48

Table 2.5: Femto-clouds coalition structures in Example 1

FAP-1
Computational

Capacity

Femto-Clouds Coalition
Structure

0
{1,8,15}, {2}, {3,7}, {4},
{5,10}, {6}, {9}, {11},
{12}, {13}, {14}

2–14
{1,6,8,15}, {2}, {3,4},
{5,10}, {7}, {9}, {11},
{12}, {13}, {14}

16–20
{1,3,4,6,8,9}, {5,10},

{11,12,15}, {2}, {7}, {13},
{14}

Table 2.6: Femto-clouds coalition structures in Example 2

FAP-1
Computational

Capacity

Femto-Clouds Coalition
Structure

0-10
{1,2,3,4,6,7,8,9},

{11,12,13,14,15}, {5,10}

12-20
{1,6,8,11,12,13,14,15},
{2,3,4,5,7,9,10}

FAP-1 User
Arrival Rate

Femto-Clouds Coalition
Structure

1-5
{1,2,3,4,6,7,8,9},

{11,12,13,14,15}, {5,10}

Example 3

In this example, we consider a hotspot scenario where all FAPs are located closely
such that the multicast offloading delay among FAPs is negligible. More precisely,
in such a case, the uplink data transmission rate from the k-th FAP to the l-th FAP,
denoted by bk,l in (2.6), is much greater than NB. This results in the Uc

o,m(C) term
in (2.3) being negligible compared to other terms.

49

User arrival rate at FAP-1
1 1.5 2 2.5 3 3.5 4 4.5 5

T
o
ta
l
in
ce
n
ti
v
es

250

300

350

400

450

500

550

600

650

Isolated FAPs

Algorithm 1

Grand femto-cloud

Heuristic scheme-1

Heuristic scheme-2

Figure 2.5: User arrival rate at FAP-1 vs. femto-cloud incentive. Higher
incentives provide higher benefit to the FAP owners.

Figure 2.7 shows the total incentives earned by all FAPs versus computational
capacity of FAP-1. Here, the grand femto-cloud is the optimal coalition structure
and provides the highest incentives to the FAP owners compared to other heuristic
schemes.

2.5 Chapter Summary
To reduce the handling latency and costs associated with offloading computation-
ally intensive tasks to remote clouds, the local computational capacity of FAPs
should be maximally exploited. To this end, this work proposed formation of
femto-clouds comprising of several FAPs wherein their excess computational re-
sources are shared. In exchange for sharing their excess resources, FAP own-

50

Computational capacity of FAP-1
0 2 4 6 8 10 12 14 16 18 20

A
v
er
a
g
e
fe
m
to
-c
lo
u
d
d
a
ta

tr
a
n
sf
er

d
el
a
y

30

35

40

45

50

55
Isolated FAPs

Algorithm 1-Example 1

Algorithm 1-Example 2

Figure 2.6: Computational capacity of FAP-1 vs. average data transfer delay
2.2 Mb in the femto-clouds. Lower data transfer delay improves users’
QoE.

ers receive monetary incentives. We formulated the resource sharing problem as
an optimization problem with the objective to maximize the overall utilities of
all femto-clouds subject to the fair division of incentives among individual FAPs
within a femto-cloud. We then presented a distributed femto-cloud formation al-
gorithm that enabled FAPs to reach the optimal solution in a distributed fashion.
We further commented on the similarities between the solution of the formulated
problem and the modified core of a coalition formation game. Finally, simulation
experiments using the LTE protocol stack in NS-3 showed superior performance
of the proposed scheme in terms of both handling latency and incentives provided
to FAP owners. They confirmed the interesting observation that a femto-cloud

51

Computational capacity of FAP-1
0 2 4 6 8 10 12 14 16 18 20

T
ot
al

in
ce
n
ti
ve
s

200

300

400

500

600

700

800

Isolated FAPs

Algorithm 1/Grand femto-cloud

Heuristic scheme-1

Heuristic scheme-2

Figure 2.7: Computational capacity of FAP-1 vs. femto-cloud incentive.
Higher incentives lead to higher benefit to the FAP owners.

comprised of all FAPs is not always optimal—in many cases, multiple disjoint
femto-clouds resulted in reduced latency and higher incentives to the FAP own-
ers. The numerical examples further verified the applicability of Algorithm 1 in
a wide range of scenarios, e.g., hotspot area, residential, and enterprise femtocell
environments.

52

Chapter 3

Adaptive Scheme for Caching
Content in a Mobile Edge Network

In this chapter, we explain an adaptive caching scheme for a mobile edge network.
The main goal of the caching scheme is to maximally utilize the caching storage
at the edge network especially at the cellular network to reduce overall network
traffic and content downloading delay. Recall from chapter 1, the caching scheme
takes into account content popularity and network parameters for optimally de-
cides cached content in the network. Precisely, the caching scheme estimates
content popularity from their features using extreme learning machine algorithm.
The caching scheme involves solving a mixed integer linear programming prob-
lem that considers predicted content popularity and network parameters. At the
beginning of the chapter, we describe the system model and formulate the caching
problem as a mixed integer linear programming problem. Then we describe the
content popularity estimation methods using extreme learning machine. Finally,
we demonstrate the efficacy of the presented scheme using YouTube dataset.

The organization of the chapter is as follows. The system model and problem
formulation are presented in Sec.3.1. The content and network-aware adaptive
caching scheme, which accounts for the parameters of the content popularity and
technological network is presented in Sec.3.2. In Sec.3.3 we describe how ELMs

53

Table 3.1: Glossary of Parameters

Parameters Description
G = (V ,E) Network graph
V Set of cache-enabled base stations
V = |V | Number of cache-enabled base stations
E Set of communication links
F Set of content
F = |F | Number of content
C Set of categories
C = |C | Number of categories
f j Size of content j ∈F

Popularity Estimation
T Total number of observations
t Time index
D = {x j,v j(t)} Observation dataset

hk(x;θk)
Transfer function for hidden-layer neu-
ron k

θk Parameters of hidden-layer neuron k
βk Output weights
L Total neurons of ELM
lth Video popularity threshold

can be used to efficiently estimate content popularity using both content features
and the request statistics of users as they become available. The performance of
ELM for caching, and content and network-aware adaptive caching scheme are
illustrated in Sec.3.4 using real-world data from YouTube.

3.1 System Model and Problem Formulation
We consider a heterogeneous cellular network in a geographical region where base
stations (BSs), such as eNodeB and home eNodeB, are deployed and equipped
with a physical storage/cache capacity. The network shown in Fig. 3.1 can be
represented by a graph, G = (V ,E). The set of vertices V is used to denote the
set of cache enabled BSs which comprises of V BSs and indexed by i ∈ V =

{1,2, . . . ,V}. The set of edges E denotes communication links among BSs. BSs
can communicate with each other and with a cache manager (CM) via Xn in-
terface [106, 107]. CM is connected to a content server such as a telco content

54

delivery network (CDN) via a high-speed dedicated link and is responsible for:
i) retrieving unavailable content from the content server;
ii) maintaining a lookup table that stores cached content location in the network;
iii) forwarding content request to the neighbouring BS which has the content;
iv) gathering information from BSs about the content are being requested;
v) making decision when to refresh entire cache of the BSs which can be done
either specific intervals or when content popularity changes significantly;
vi) performing computations for adaptive caching.

Content Server

Base Station

Mobile user

High Speed Dedicated Link

Communication Link

Cache Manager

Figure 3.1: A typical network architecture. Base stations (BSs) are con-
nected with each other and with the cache manager (CM) via het-
erogeneous communication links. Cache manager is connected to the
content server via high speed dedicated link.

Mobile users are connected to the BSs according to a cellular network pro-

55

tocol. Connected BS is responsible for serving users’ content requests. If a re-
quested content is in the cache of the connected BS, the request is served instantly.
In this case, the content downloading delay is lower, and hence, improves user’s
QoE. In addition, no additional load is put on the back-haul connection which
reduces network traffic. On the other hand, when a requested content is not avail-
able at the connected BS, the request is forwarded to the CM. The CM checks the
lookup table whether the requested content is available in the network. If the con-
tent is available in the network, CM performs all the required signaling to fetch
the content from the neighbour BS. Content served by the neighbour BSs incur
lower downloading delay and reduce network traffic. Finally, CM fetches content
from the content server when requested content is unavailable in the network or
when retrieving content from neighbour BSs incurs higher delay than the content
server.

The content that can be cached is indexed by F = {1,2, . . . ,F}. Let f j denote
the size of the j-th content. The initial file transferring cost via the CM to a BS
i is denoted by dgi (second per byte), and the latency between BS i and BS l is
denoted by dil where l ∈ V . dgi and dil both depends on the network topology,
communication link, and routing strategy. The network topology may vary over
time and routing strategy can be adjusted according to the network traffic. dgi

and dil also depends on channel quality when BSs are communicating with one
another via a wireless link.

3.2 Content and Network Aware Adaptive Caching
Scheme for Cellular Base Stations

Our proposed content and network aware adaptive caching scheme proceeds as
follows. Given the estimated content popularity, network topology, link capacity,
routing strategy and cache deployment budget/energy usage budget in the net-
work, the adaptive caching scheme prescribes individual BSs which content to
cache and adapts its prescriptions as the preferences of users (content popularity)
evolves over time. The caching scheme utilizes popularity estimation to account

56

for the users content request characteristics. The benefit of using popularity esti-
mators in the caching decision is that it allows caching decisions to be made–that
is when the network is not being heavily utilized, popular content can be trans-
ferred between BSs without hindering the quality of service of the network.

The rest of this section is organized as follows: Sec.3.2.1 formulates the
caching scheme as a mixed-integer linear programming (MILP) while Sec.3.2.2
provides implementation considerations of the proposed caching scheme.

3.2.1 Mixed-Integer Linear Program Formulation
The adaptive caching scheme takes into account content popularity, link capacity,
network topology, cache size, and network operating costs. The network oper-
ating costs include storage read/write costs and the cost of data transmission in
the network. In this work, energy usage to read/write files from hardware units
are considered as cache deployment cost. Hardware units draw energy when they
are active due to read/write of the cached content. On the other hand, hardware
units do not cache content when they are in sleep/idle mode and draw a neg-
ligible amount of energy. Therefore, higher active hardware units mean higher
storage/cache size for caching at a higher energy cost to operate. Network op-
erators allow BSs to activate a certain number of hardware unit(s) for caching.
The flexible cache size facilitates network operators to provide physical storage
at different BSs according to their content popularity distribution and network pa-
rameters such as link capacity and network topology while maintaining a target
cache deployment cost in the network at a given time.

In the network, each BS can select a maximum of R possible hardware units
(e.g. physical cache storage sizes) where each hardware unit has a storage size of
s0. Each BS can only use ri ∈ {1, . . . ,R} active hardware unit(s) due to the cache
deployment cost constraint. Each hardware unit that is activated has an associated
cost defined by z0. The maximum physical storage size that can be used in the
network at any given time to maintain target cache deployment cost is denoted by
S. The parameter µ̂ i

j(t) ∈ [0,1] represents the estimated popularity of content j at

57

BS i ∈ V for time index t ∈ {1, · · · ,T}. The parameter µ̂ i
j(t) is computed by:

µ̂
i
j(t) =

v̂i
j(t)

∑
j∈F

v̂i
j(t)

, (3.1)

where v̂i
j(t) is total views of content j at BS i for time index t. In Sec.3.3 we

provide a method to estimate the popularity of content based on the features of
the content.

The MILP is formulated in (3.2) which minimizes the content downloading
delay, taking into account initial file transferring cost, and cache deployment cost
in the network while maintaining total cache deployment cost. There are three
decision variables in the MILP:
i) ri ∈ {1, . . . ,R} denotes the number of memory units used at BS i. The total size
of the physical cache used at BS i is equal to ris0 where s0 is the physical size
of the memory units (e.g. one hardware unit may represent 200 GB of physical
memory);
ii) ai

j ∈ {0,1} which is equal to 1 if content j is cached by BS i;
iii) bil

j which represents the fraction of content j served by BS i to BS l. Note that
bll

j = 1 means that BS l caches the content j and serves the request itself. Note, the
time index t is omitted for brevity in the content popularity and decision variables.

58

min
bil

j ,a
i
j,r

i

(
w1 ∑

j∈F
∑
i∈V
l∈V

f jµ̂
l
jd

ilbil
j +w2 ∑

j∈F
∑
i∈V

f jdgiai
j

+w3 ∑
i∈V

riz0

)
(3.2)

subject to constraints

∑
i∈V

bil
j = 1 ∀ j ∈F , l ∈ V (3.3)

bil
j ≤ ai

j ∀ j ∈F , i ∈ V , l ∈ V (3.4)

∑
j∈F

f jai
j ≤ ris0 ∀i ∈ V (3.5)

∑
i∈V

ris0 ≤ S (3.6)

bil
j ≥ 0 ∀ j ∈F , i ∈ V , l ∈ V (3.7)

ai
j ∈ {0,1} ∀ j ∈F , i ∈ V (3.8)

ri ∈ {1,2, · · · ,R} ∀i ∈ V . (3.9)

The first term of the objective function in the MILP (3.2) accounts for the con-
tent downloading delay in the network. The second term of equation (3.2) repre-
sents the initial content transferring cost in the network. The third term reflects
cache deployment cost in the network. w1 and w2 are the weight of real-time
latency/downloading delay cost and initial file transferring cost in the objective
function, respectively. w3 reflects the weight of cache deployment cost in the
objective function. Constraint (3.3) ensures that total fraction of j-th content is
equal to 1. Constraint (3.4) represents the fact that BS i can serve other BSs’
request only when it caches the requested content. Constraint (3.5) ensures that
each BS i fully uses the available cache where f j is the size of the j-th content,
s0 is the size per unit of physical storage, and ri is the number of units of storage.
Constraint (3.6) maintains the cache deployment budget in the network.

59

3.2.2 Implementation Considerations

MILP Solution

The MILP (3.2) is NP-hard [108, 109]. Due to the size of the problem such as the
number of available content and the number of network nodes, it is intractable to
find optimal solutions in real-time. However, several numerical methods exist for
estimating the solution to (3.2) which include: Branch-and-bound, cutting planes,
branch-and-cut, branch-and-price are popular heuristic approaches to solve MILP
via linear relaxation [67, 110],[111],[112],[113]. In this work, individual videos
are grouped into clusters c ∈ C where C = {1, · · · ,C} represents the set of clus-
ter/category of videos. Machine learning methods can be used to estimate the
optimal clusters, however, in the YouTube network a suitable clustering method is
to cluster the YouTube videos based on their associated category. Examples of cat-
egories of YouTube videos include “Entertainment”, “Music”, “News”, “Sports”,
“Howto”. The set of content in category c ∈ C is denoted by Fc ⊆F . The popu-
larity associated with each category c ∈ C at base station i ∈ V is given by:

µ̂
ic(t) = ∑

j∈Fc
µ̂

i
j(t) (3.10)

where µ̂ i
j(t) is computed using (3.1). Given the categorical content popularity

(3.10), the MILP can be used to optimally select where to cache these content.

Cache Update Frequency

In the adaptive caching scheme there are two content caching schemes used. The
first is the MILP which performs the cache initialization, and the second caching
scheme which uses users’ request statistics to dynamically cache content. An
important design parameter to consider when using the MILP (3.2) for cache ini-
tialization is when to replace the currently cached content. Given that the MILP
may replace a significant portion of the cached content, typically the solution of
the MILP will only be used when the network traffic flow is minimal. Fig. 3.2

60

provides a schematic of the adaptive caching scheme.

MILP

Base Station Cache

S3LRU

Content popularity µ̂ ic(t0) Network parameters

ri(t0),ai
j(t0)

ai
j(t)

Content requests

Figure 3.2: A schematic of the adaptive caching scheme. Initially the MILP
uses the estimated content popularity µ̂ ic(t0) (3.10) and network pa-
rameters to compute the physical cache size ri(t0)s0 to be used at base
station i ∈ V , and ai

j(t0) ∈ {0,1} indicating if content j ∈F is to be
cached at base station i ∈ V initially. t0 indicates when the solution of
the MILP is used to update the base station cache. Then, the S3LRU
uses the content requests from users to compute ai

j(t)∈ {0,1} at times
t > t0.

The BSs initialize their physical cache size and content to cache based on
the results of the MILP. Then, the S3LRU [114] is used to select the content to
cache based on the users’ requests. In the S3LRU caching scheme, the physical
cache of each BS is composed of three segments as illustrated in Fig. 3.3. The
segments are defined by Level-3, Level-2, and Level-1 in which Level-3 has the
content with the largest popularity, and Level-1 has the content with the lowest
popularity. Each of the Levels is composed of a head segment and a tail segment
where the head segment contains the most popular content, and the tail segment
contains the least popular content in the associated level. The dynamics how the
content is cached in the S3LRU is illustrated in Fig. 3.3. If the requested content
is currently in the cache, then the content is moved to the head of the next level
with all other content shifted down by one. Note that in Level-1, the content in the
tail segment is evicted from the cache (that is, it no longer resides in the cached
content). If the requested content is not currently in the cache, then the requested
content from the cache manager is placed in the head segment of Level-1 of the

61

H T H T H T

Level-3 Level-2 Level-1 Cache Manager

Storage of a Base Station

Content request

Content request

Content request

Figure 3.3: A schematic of the Segmented Least Recently Used (S3LRU)
cache replacement scheme with three levels denoted by Level-3,
Level-2, and Level-1. The S3LRU is used to control the cache con-
tent at each base station after the cache is initialized. Level-3 has the
content with the highest popularity, and Level-1 has the content with
the lowest popularity. In each Level, the most popular content is placed
in the head H of the level, and the least popular content is placed in
the tail T of the level. If the requested content is not currently in the
cache, then the requested content is transferred from the cache man-
ager (CM) to the head segment of the Level-1 cache. If the requested
content is currently in the cache, then the content is moved to the head
of the next level with all other content shifted down by one with the
content in the tail of Level-1 removed from the cache.

cache. This replacement policy ensures that the popular content resides in Level-3
of the cache, and the least requested content resides in Level-1 of the cache.

Effect of Different Parameters on Caching Decision

The parameters w1, w2 and w3 in equation (3.2) could be mathematically inter-
preted as relative importance of the different factors considered in formulation.
Clearly, the choice of caching content and caching performance depend on the
values of these parameters. The choice of these values depends on the network
specifications. For instance, w1 < w2 when real-time latency has higher effect in
the network than initial file transferring cost.

62

Cache Deployment Cost

Clearly, the choice of the parameter w3 is crucial since the objective function ac-
counts for two different types of costs i.e., energy cost and latency cost. One
option is to move the cache deployment cost from the objective function and con-
siders it as a constraint. In particular, the objective function defined in equation
(3.2 is a Lagrangian relaxation of dual problem of the new formulation that con-
siders cache deployment cost as a constraint. The optimal solutions of equation
(3.2) provide a lower bound of the new formulation [115]. We used the objec-
tive function in equation (3.2) since the formulation can search optimal solutions
faster than the new formulation [116].

3.3 Extreme Learning Machine (ELM) for
Popularity Prediction

The adaptive caching scheme in Sec.3.2 requires the future popularity of the con-
tent to be known. In this section we use ELMs [117, 118] to estimate the popu-
larity of content given the content features and previous request statistics of the
content. Additionally, we provide methods to optimize the number of neurons of
the extreme learning machine and select the optimal features to perform the popu-
larity prediction. As an illustrative example, we focus on predicting the popularity
of videos in YouTube. The prediction of popular content in YouTube is challeng-
ing as the features of YouTube video contains significant noise. Therefore the
machine learning algorithms used must be able to address this challenging prob-
lem of mapping from these type of noisy features to the associated popularity of a
video. Of the machine learning methods tested we found that the ELM [117, 118]
provides sufficient performance to estimate the popularity of YouTube videos.
Though the results presented in this section are focused on the use of ELM, the
constructed features, neuron selection algorithm, and feature selection algorithm
are general and can be used with other machine learning techniques.

63

3.3.1 Predicting Content Popularity with Extreme Learning
Machines

Consider a dataset D =
{
{x j,v j(t)} : j ∈F = {1, . . . ,F}, t ∈ {1, . . . ,T}

}
of fea-

tures x ∈RM, and total views v j(t) on day t for content j ∈F . The aim is to con-
struct a model that relates the features x to the total views v based on the dataset D .
For example, single hidden-layer feed-forward neural networks can be used for es-
timating the functional relationship v j(t) and the features x j. However, in practice
the selection of the model and training method is complex requiring consideration
of the universal approximation ability of the model, sequential learning ability, ef-
ficiency, parallel implementation, and hardware implementation. Recently, based
on the Rosenblatt perceptron [119], ELMs [74] have been introduced for learning
the functional relationship between inputs x j and output v j(t). The ELM which
satisfies the universal approximation condition [120, 121], can be implemented
in parallel [117], can be trained sequentially for large datasets or as new train-
ing data becomes available [122, 123], and can be efficiently implemented on
field-programmable gate array devices as well as complex programmable logic
devices [118]. The ELM is a single hidden-layer feed-forward neural network in
which the parameters of the hidden-layer are randomly generated by a distribu-
tion, and the subsequent output weights are computed by minimizing the error
between the computed output v j(t) and the measured output from the dataset D .
Each hidden-layer neuron can have a unique transfer function. Popular trans-
fer functions include the sigmoid, hyperbolic tangent, and Gaussian however any
non-linear piecewise continuous function can be utilized.

The classic extreme learning machine, presented in [124], is given by:

v̂ j(t) =
L

∑
k=1

βkhk(x j;θk) (3.11)

with β1,β2, . . . ,βL the weights of each neuron, h1(x j),h2(x j), . . . ,hL(x j) the asso-
ciated transfer function of each neuron, and v̂ j(t) the estimated total views of the
video content j at time t. Given D , how can the ELM model parameters βk,θk,

64

and L in (4.16) be selected? For fixed number of hidden neurons L, the ELM
trains βk and θk in two steps. First, the hidden layer parameters θk are randomly
initialized. Any continuous probability distribution can be used to initialize the
parameters θk. Second, the parameters βk are selected to minimize the square
error between the model output and the measured output from D . Formally,

β
∗ ∈ argmin

β∈RL

{
||Hβ −Y ||22

}
(3.12)

with H the hidden-layer output matrix with entries Hk j = hk(x j;θk) for k∈{1,2, . . . ,L}
and j ∈F , and Y the target output with entries Y = [y1,y2, . . . ,yF]. The solution
of (4.18) is given by β ∗ = H+Y where H+ denotes the Moore-Penrose general-
ized inverse of H. Several efficient methods can be used to compute β ∗ (refer to
Golub and Van Loan, 2012). The benefit of using the ELM, (4.16) and (4.18), is
that the training only requires randomly generating parameters θk; the parameters
βk are computed as the solution of a linear algebraic system of equations.

3.3.2 Feature Construction for Popularity Prediction
Here we describe how the features of YouTube videos are constructed using the
YouTube Application Programming Interface1.

The meta-data of each YouTube video contains four primary components:
Thumbnail, Title, Keywords (also known as tags), and Description. Addition-
ally, each YouTube video is associated with a Channel that contains features such
as the number of subscribers. The viewcount of a video is sensitive to the features
of the Thumbnail, Title, Keywords, and Channel. However, features associated
with the description appear not to significantly impact the viewcount of a video.
This may result because when performing video searched on YouTube, only a
subset of the description is provided to the users. In this work we focus on how
features of the Thumbnail, Title, Keywords, and Channel can be used to estimate

1Specific details on how to interact with the YouTube API are provided at https://developers.
google.com/youtube/v3/docs/, 7 March, 2017.

65

https://developers.google.com/youtube/v3/docs/
https://developers.google.com/youtube/v3/docs/

the the viewcount of a YouTube video. Note that our analysis does not include the
video or audio quality, and the description of the YouTube video. These features
will impact the dynamics of users subscribing to a channel, and rating the video,
however, they do not directly impact the viewcount of a specific video.

For the Thumbnail, 19 features are computed which include: the blurriness
(CannyEdge, Laplace Frequency), brightness, contrast, overexposure, and en-
tropy of the thumbnail. All image analysis is performed using the OpenCV (Open
Source Computer Vision) library2. To compute the brightness ηw of each video
thumbnail, we first import the thumbnail in RGB color format. Let us denote
Xue as a pixel in the thumbnail image, and R(Xue) ∈ [0,255] as the red light,
G(Xue) ∈ [0,255] as the green light, and B(Xue) ∈ [0,255] as the blue light as-
sociated with pixel Xue. The total size of the thumbnail is given by NX NY with
u ∈ {1, . . . ,NX} and e ∈ {1, . . . ,NY}. The brightness of the image is then com-
puted using:

ηw(Xue) = 0.299R(Xue)+0.587G(Xue)+0.114B(Xue)

ηw =
1

765NX NY

NX

∑
u=1

NY

∑
e=1

ηw(Xue). (3.13)

Typically humans’ perceived brightness for color are most sensitive to variations
in green light, less to red, and least to blue. The coefficients in (3.13) are associ-
ated with the perceived brightness for color, and the specific values are obtained
from the OpenCV software. The contrast of each thumbnail ζw is computed using
the RMS Contrast given by:

ζw =

√√√√ 1
765NX NY

NX

∑
u=1

NY

∑
e=1

(
ηw(Xue)−ηw

)2
. (3.14)

As we illustrate, the brightness ηw and contrast ζw of a videos Thumbnail provide
important information that can be used to estimate the viewcount of a YouTube

2http://opencv.org/, 7 March, 2017

66

http://opencv.org/

video.
For the Title, 23 features are computed which include: word count, punctua-

tion count, character count, Google hits (e.g. if the title is entered into the Google
search engine, how many results are found), and the Sentiment/Subjectivity of the
title computed using Vader [125], and TextBlob 3. For the Keywords, 7 features
are computed which include: the number of keywords, and keyword length. In
addition, to the above 49 features, we also include auxiliary video and channel
features including: the number of subscribers, resolution of the thumbnail used,
category of the video, the length of the video, and the first-day viewcount.

In total 54 features are computed for each video. The complete dataset used for
the sensitivity analysis is given by D = {(x j,v j)} j∈F , with x j ∈R54 the computed
features for video j ∈F , v j the viewcount t = 14 days after the video is published,
and F the total number of videos used for the sensitivity analysis.

3.3.3 Optimizing the Number of Neurons in the Extreme
Learning Machine

For online applications of caching where millions of videos may be cached, it
is critical to consider the computational cost of evaluating the popularity of the
content. In this section we consider how to select the number of neurons L in the
ELM while still ensuring a sufficient predictive performance is maintained.

Several methods exist for selecting the number of neurons L (4.16) in the ex-
treme learning machine [120, 126, 127]. In [127] a multiresponse sparse regres-
sion is utilized to order the neurons from best to worst. Then using the leave-one-
out generalization metric the optimal number of neurons can be selected. Another
method is to incrementally increase L until the desired accuracy or maximum
number of neurons is reached [120]. In [126] neurons are added incrementally un-
til the output of the ELM negligibly effected as measured using a non-parametric
noise estimator known as the delta test. The main idea in [126] is that if the in-
crease in accuracy of the ELM is above the estimated variance of the ELM then a

3http://textblob.readthedocs.io/en/dev/, 7 March, 2017

67

http://textblob.readthedocs.io/en/dev/

neuron is added.
The predictive performance (e.g. probability of Type-I and Type-II errors) of

the ELM, as a function of the number of neurons L, is a random variable as a result
of how each ELM is initialized. Given the desired predictive performance, instead
of having to estimate the mean of the ELM for each L and then using a gradient
decent method, one could instead employ the stochastic perturbation simultaneous
approximation (SPSA) [128] method to compute the optimal number of neurons.
The ELM parameter L is adapted to estimate:

argmin
L∈{1,2,...}

A(L) = E
[
P(Type-I error)+P(Type-II error)+gτ

]
(3.15)

where τ is the training time of the ELM, and g is a design parameter. Here E
denotes the expectation with respect to the random variable θ defined in (4.16),
and P denotes the probability. Since the probability of Type-I errors, Type-II
errors, and the training time τ is not known explicitly, (3.15) is a simulation based
stochastic optimization problem. To determine a local minimum value of A(L),
several types of stochastic optimization algorithms can be used [128]. In this work
we use the following SPSA algorithm (Algorithm 2):

The SPSA is a gradient based stochastic optimization algorithm where the gra-
dient is estimated numerically by random perturbation(3.17). The nice property
of the SPSA algorithm is that estimating the gradient ∇LAn(Ln) in (3.17) requires
only two measurements of the cost function (3.16) corrupted by noise per itera-
tion. See [128] for a tutorial exposition of the SPSA algorithm. For decreasing
step size ψ = 1/n, the SPSA algorithm converges with probability one to a local
stationary point. For constant step size ψ , it converges weakly (in probability) to
a local stationary point.

3.3.4 Stochastic Feature Selection
Feature selection algorithms are geared towards selecting the minimum number
of features such that a sufficiently accurate prediction is possible. If the feature

68

Algorithm 2 SPSA Neuron Selection
Step 1: Choose initial ELM parameters L0 by generating each from the distri-

bution N (0,1), and define the video popularity threshold as lth.

Step 2: For iterations n = 1,2,3, . . .

· Estimate the Type-I and Type-II error probabilities of the ELM with Ln neurons
using

FP =
|F |
∑
j=1

1{(v̂ j ≥ lth)∩ (v j < lth)},

TP =
|F |
∑
j=1

1{(v̂ j ≥ lth)∩ (v j ≥ lth)},

FN =
|F |
∑
j=1

1{(v̂ j < lth)∩ (v j ≥ lth)},

TN =
|F |
∑
j=1

1{(v̂ j < lth)∩ (v j < lth)},

P(Type-I error)≈ FP/(T P+FN),

P(Type-II error)≈ FN/(T N +FP), (3.16)

where 1{·} is the indicator function and ∩ denotes the logical and operator.
Given (3.16), compute the cost Ân(Ln) by substituting (3.16) into (3.15).

· Compute the gradient estimate ∇̂LÂn(Ln):

∇̂LÂn(Ln) =
Ân(Ln +∆nω)− Ân(Ln−∆nω)

2ω∆n
(3.17)

∆n(j) =

{
−1 with probability 0.5
+1 with probability 0.5

with gradient step size ω > 0.

· Update the number of neurons Ln of the ELM at step n with step size ψ > 0:

Ln+1 = Ln−ψ∇̂LÂn(Ln).

69

set is too large then the generalization error of the predictor will be large. Though
several feature selection algorithms exist [129, 130], only the ELM feature selec-
tion method presented in [131] has utilized feature selection to improve the per-
formance of the ELM. In this section we construct a feature selection algorithm,
Algorithm 3, which relies on computing the optimal features based on the model
sensitivity to variations in the features and an estimate of the generalization error
of the model. Features are removed sequentially while ensuring the generalization
error is sufficiently low.

The main idea of the sequential feature selection algorithm (Algorithm 3) is to
sequentially remove the least useful features while ensuring that the performance
of the ELM is sufficiently high. This is performed by computing the output of the
ELM with all features, then computing the output with one of the features held
constant at its mean (i.e. the null ELM model). If the output from the ELM and
null ELM are similar under some metric then the feature held constant does not
contribute significantly to the predictive performance of the ELM and should be
removed. This process is repeated sequentially in Algorithm 3 until a performance
threshold is reached.

3.4 Numerical Example of Content and Network
Aware Adaptive Caching using Real-World
YouTube Data

This section provides a numerical example to illustrate the performance of the
adaptive caching using real-world YouTube dataset. Sec.3.4.1 describes simula-
tion setup. Performance of extreme learning machine for caching is presented in
Sec.3.4.2. We use results obtained from Sec.3.4.2, to evaluate the performance of
the adaptive caching presented in Sec.3.4.3.

70

Algorithm 3 Sequential Wrapper Feature Selection
Step 0: Collect the dataset D =

{
{x j,v j} : j ∈ F = {1, . . . ,F}

}
of features

x j ∈ RM and video view count v j for videos. Select the desired similarity
metric J(·) (e.g. R2 coefficient of determination).

Step 1: Train the ELM (4.16) using the dataset D and (4.18). Denote the pre-
dicted viewcount from the ELM by v̂D .

Step 2: For m ∈ {1,2, . . . ,M}, train the ELM using the dataset Dm where Dm is
the dataset D with the feature x j(m) held at its mean for all j ∈F . Denote
the predicted output from each of the m ∈ {1,2, . . . ,M} ELMs by v̂m

D .

Step 3: Compute the feature index m with maximum similarity between v̂D from
Step 1 and v̂m

D from Step 2:

m∗ ∈ argmax
m∈{1,...,M}

{J(v̂D , v̂m
D)} (3.18)

where J(·) denotes the selected similarity metric from Step 0.

Step 4: Compute the metrics of performance (Type-I and Type-II error proba-
bilities) using the ELM trained using the dataset D∗ where the feature m∗

from Step 3 has been removed. If the metrics of performance are too high
then stop. Otherwise return to Step 1 using the dataset D ←D∗.

3.4.1 Simulation Setup
The real-world YouTube data was collected using the YouTube API between the
years 2013 to 2015 and consists of F = 12,500 YouTube videos. In the collected
dataset, the viewcounts range from 102 to above 107. Therefore, to prevent the
machine learning algorithms from biasing their prediction to only the videos with
the highest viewcount, we scale the viewcount v j to be on the log scale (i.e. if
a video has 106 views then v j = 6). All the content features are scaled to satisfy
x(m) ∈ [0,1] for m ∈ {1, . . . ,M}. Note that we also collect the category c ∈ C of
each YouTube video (e.g. “Entertainment”, “Music”, etc.), however, this infor-
mation is not included into the feature set used to train the ELMs. In total there

71

are 17 YouTube categories in the collected dataset. Each ELM is trained using an
identical 10-fold cross validation method using the dataset D , or in the case of the
feature selection method D∗. The trained ELMs are then used to compute both
the video popularity µ̂ i

j(t) (3.1), and categorical popularity µ̂ ic(t) (3.10).
For evaluating the performance of the adaptive caching scheme we require the

network parameters, a method to generate user requests, and the cache initial-
ization time of the MILP. Initially, the content is cached via the solution of the
MILP (3.2) at simulation time slot p = 1 with the parameters w1 = 1, w2 = 0.005,
w3 = 1, and z0 = 0.1. The parameters w3 and z0 are chosen as presented in [132]
in such a way so that all the cost terms in equation (3.2) receive priority according
to the network specification. The topology of the network is provided in Fig. 3.4,
and the parameters of the network are given by: S = 9 TB, f j = 500 MB, s0 = 200
GB, ri ∈ {1,2}, and Table 3.2 provides the size of all content in each video cate-
gory. To generate user requests based on the real-world YouTube data, we use the
following stochastic simulation.

λ
i ∼U [1,10] i ∈ V

Ni
p ∼ Poisson(λ i) p ∈ {1, . . . ,50,000}

Ji
q ∼ Cat(µ(t)) q ∈ {1, . . . ,Ni

p} (3.19)

where Ni
p is the total number of requests at BS i at simulation time slot p, Ji

q is
the video content that is requested at BS i at simulation time slot p by the q-th
request. The categorical distribution Cat(µ(t)) is defined by the video popularity
vector µ(t) = [µ1(t),µ2(t), . . . ,µF(t)] where µ i

j(t) is defined in (3.1). The pa-
rameter µ(t) is computed using the viewcount on day t = 4 (v̂i

j(4)). The content
popularity is assumed to be equal at each BS. With the parameters in (3.19), each
BS i ∈ V will receive on average between 50,000 to 500,000 content requests
per day. To compute the latency parameters, dil and dgi of equation (3.2) we use
the ndnSIM2.0 (an NS-3 based simulator) software [133]. ndnSIM’s Best Route

strategy is used to transfer content between BSs.

72

CM

200 GB 400 GB

1 Mbps 10 Mbps

100 Mbps 1 Gbps 10 Gbps

Figure 3.4: Schematic of the network. The circles with a solid black outline
and light gray fill represent base stations having 400 GB storage size.
Other base stations have 200 GB storage size. The associated commu-
nication links between the base stations are denoted by the connected
arrows. CM is the content manager. CM represents the cache man-
ager which has the access to all the video files, and the other nodes
represent the base stations used to serve user requests.

3.4.2 Performance of Extreme Learning Machine for Caching
In this section, using the real-world data from YouTube, we illustrate how the
number of neurons of the ELM (4.16) and features can be selected using Algo-
rithm 2 and Algorithm 3. Additionally we will illustrate how the ELM can be
used to both predict the popularity of new videos, and estimate the popularity of

73

Table 3.2: Number of files in each YouTube Category in the Collected
Dataset

Category 1 2 3 4 5 6
Number of files 230 2 1475 76 151 47

Category 7 8 9 10 11 12
Number of files 3774 300 406 1839 220 913

Category 13 14 15 16 17
Number of files 69 126 10 2855 7

published videos.
Fig. 3.5 illustrates the mean and variance of the specificity, false negative rate,

false positive rate, sensitivity, and Gmean computed using 600 independently
trained ELMs for each number of neurons. Using the SPSA (Algorithm 2) we
found that an ELM with L = 300 provides sufficient accuracy for performing the
content popularity estimation.

100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hidden Neurons L

P
er

fo
rm

an
ce

Type-I
Sensitivity

Gmean

Type-II
Specificity

100 200 300 400 500 600
0

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25

Hidden Neurons L

T
ra

in
in

g
T
im

e
[s
]

Figure 3.5: Performance of the ELM (4.16) for estimating YouTube video
content popularity as a function of the number of neurons L in the
ELM. The dataset used for this analysis is presented in Sec.3.3.2.

Having computed the optimal number of neurons, the next task is to select
the video features which are most important for estimating the video viewcount.
The performance of Algorithm 3 for selecting the YouTube features of the ELM
is illustrated in Fig. 3.6. When using R2, only 3 features are required to maintain
a high level of performance for the ELM. These 3 features are the number of
subscribers, contrast of the video thumbnail, and the overexposure of the video

74

thumbnail. This illustrates that the title and keywords contribute negligibly to the
popularity of YouTube videos in the dataset analysed when using the ELM.

Feature Index
10 20 30 40

F
ea

tu
re

S
el
ec

ti
on

It
er

at
io

n

10

20

30

40

10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature Selection Iteration

P
er

fo
rm

an
ce

Type-I

Sensitivity

Gmean

Type-II

Specificity

Figure 3.6: Performance of the feature selection Algorithm 3 when the R2

coefficient of determination are used as the similarity metric.

Having optimized both the number of neurons of the ELM and the important
features required for performing the popularity estimation, we now illustrate the
performance of the ELM compared to several other machine learning methods.
Fig. 3.7 provides a schematic of the ELM that can perform both prediction of new
and published videos. The meta-data for a video is presented to the feature se-
lection algorithm which constructs the video features x j ∈ R4 which is composed
of subscribers, contrast, overexposure, and previous day viewcount. Notice that
x j(t) evolves per day t after the video is posted as new request statistics become
available. The predicted viewcount on day t from the ELM is given by v̂ j(t).

As expected, with no request statistics available, the predicted viewcount from
the ELM has a large variance as illustrated in Fig. 3.8 for v j(1). However in typical
caching applications we are only interested in the top 10% of content in which case
we can construct a binary popularity estimator using the output from the ELM by
thresholding. For a video popularity threshold of lth = 104.5 views there are 1379
popular videos and 11,121 unpopular videos. Table 3.3 provides the performance
of the Binary ELM classifier and several other machine learning classifiers. Note
that all classifiers were trained using the same dataset and on a standard desktop
computer. As seen, the ELM has comparable performance to several popular
classifiers and can be evaluated efficiently. As the request statistics arrive the
ELM can be used to make an accurate prediction of the viewcount dynamics as

75

illustrated in Fig. 3.9 for the viewcount on day 4 (i.e. v j(4)). Therefore a course
estimate of the popularity of videos can be made using the ELM initially, then as
request statistics arrive the ELM can be used to provide a high accuracy estimate
of the next day popularity of videos.

Feature
Selection

Extreme Learning
Machine

features x j(0) v̂ j(t)
x j(t) ∈R4

Delay

Figure 3.7: Schematic of the Extreme Learning Machine for estimating the
viewcount v j(t) of video j ∈F . x j(0) ∈ RM is the initial set of fea-
tures of video j ∈F , x j(t) ∈ R4 are the features used by the ELM to
estimate the video viewcount v̂ j(t) on day t.

Figure 3.8: Viewcount on day 1. Real-World viewcount v j(t) (black dots)
and numerically predicted viewcounts v̂ j(t) (grey dots) computed us-
ing the ELM (4.16). The ELM is trained using the YouTube dataset D
as described in Sec.3.4.

76

Figure 3.9: Viewcount on day 4. Real-World viewcount v j(t) (black dots)
and numerically predicted viewcounts v̂ j(t) (grey dots) computed us-
ing the ELM (4.16). The ELM is trained using the YouTube dataset D
as described in Sec.3.4.

Table 3.3: ELM Performance Comparison: TP (true positive), TN (true neg-
ative), and training times

Method TP TN Times (s)
Stochastic Gradient Boosting [134] 432 11509 5.41
Independent Component
Regression [135] 769 11424 0.75

Generalized Linear Model [136] 769 11423 0.59
k-Nearest Neighbours [136] 1000 11524 24.55
Stacked AutoEncoder Deep
Neural Network [137, 138] 959 11374 24.27

Boosted Tree [139] 1029 11419 16.32
Extreme Learning Machine 1067 11399 0.54

3.4.3 Performance of the Content and Network Aware
Caching Scheme

This section illustrates the performance of the adaptive caching scheme presented
in Sec.3.2. Specifically, the content downloading delay and cache hit ratio from
the adaptive caching scheme are compared with the most popular and random

cache deployment schemes.

77

In the most popular caching scheme, each BS caches the most popular esti-
mated categories (computed using request statistics) of the content until each base
station’s cache is full [26, 71]. The random cache deployment scheme accounts
for content popularity (computed using content request statistics) and network pa-
rameters using an MILP which does not account for changes in the physical cache
sizes at the BSs [75]. Additionally, the method in [75] incorporates a cache re-
placement scheme using the LRU (Least-Recently-Used) scheme. In this section,
we compare the performance of the adaptive caching scheme with the schemes
in [26, 71, 75] with the predicted popularity from the ELM used in place of the
request statistics, and the S3LRU used in place of the LRU cache replacement
scheme.

To compute the optimal size of caches for the BSs, we solve the MILP problem
(3.2). The results of the MILP are provided in Fig. 3.4 where the circles with a
solid black outline and light gray fill represent BSs allocated with a 400 GB cache
storage size. Other BSs are allocated with a 200 GB cache storage size. As
seen in Fig. 3.4, the physical cache sizes in the network are heterogeneous. The
MILP, based on the network topology, link capacity, routing strategy, and content
popularity, optimally selects the physical cache sizes to use to reduce network
energy consumption.

Fig. 3.10 shows the cumulative content downloading delay in the network vs.
the simulation time. From Fig. 3.10, the adaptive caching scheme has the small-
est cumulative content downloading delay compared with the most popular and
random cache deployment schemes. This allows the adaptive caching scheme to
increase the users’ QoE in the network compared to these other caching schemes.
The main reason the adaptive caching scheme outperforms the most popular and
random cache deployment schemes is that the adaptive caching scheme considers
adjacent BSs physical cache sizes and cached content to improve network per-
formance. Comparing the performance of the most popular caching scheme and
random cache deployment scheme, it is clear that methods which account for net-
work parameters while making caching decisions will improve the users’ QoE.

78

Simulation time slots ×104

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
u
m
u
la
ti
v
e
av
er
a
g
e
d
ow

n
lo
a
d
in
g

d
el
ay

(s
ec
o
n
d
)

×105

0

0.5

1

1.5

2

2.5

3

3.5

4
Random cache deployment
Adaptive caching
Most popular

Figure 3.10: Cumulative average content downloading delay vs. simulation
time. The figure illustrates that lower content downloading delay im-
proves users’ QoE.

Fig. 3.11 plots the cumulative average cache hit ratio in the network vs. the
simulation time. As seen in Fig. 3.11, the adaptive caching scheme performs
better than the other two caching schemes. This performance improvement is due
to the fact that the adaptive caching scheme takes into account network topology,
content popularity and cache deployment in the formulation. Here, higher cache
hit ratio in the network means, a higher number of requests are being served by
the connected BSs or by the neighbour BSs. As can be seen from Fig. 3.11, cache
hit ratio for adaptive caching scheme is 0.9. That means only 10% of the content
requests are served by the content server while random cache deployment and
most popular caching schemes account for 15% and 25%, respectively for the
given simulation setup. Therefore, the adaptive caching scheme reduces network
traffic since fewer requests are served from the content server.

79

Simulation time slots ×104

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
u
m
u
la
ti
v
e
a
v
er
a
g
e
ca
ch
e
h
it

ra
ti
o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Random cache deployment

Adaptive caching

Most popular

Figure 3.11: Cumulative average cache hit ratio in the network vs. simula-
tion time. The figure illustrates that a higher cache hit ratio reduces
the overall network traffic since fewer requests are served by transfer-
ring the content from the cache manager to the BS where the request
originated.

3.5 Chapter Summary
In this work an adaptive caching scheme is presented that takes into account users’
behaviour and operating characteristics of the cellular network. The caching
scheme uses an optimized extreme learning machine to estimate the popularity
of content based on users’ behaviour, features of the content, and request statistics
from users as they become available. The features of the content are computed
using a combination of human perception models and network parameters. The
estimates are used in a mixed-integer linear program which takes into account
the cellular network parameters (e.g., network topology, communication link, and
routing strategy) to select where to cache content and also to provide storage rec-

80

ommendations to the network operator. The scheme is validated using real-world
data from YouTube and the NS-3 simulator.

81

Chapter 4

Risk-Averse Caching Scheme for
Heterogeneous Networks

In this chapter, we describe risk-averse caching schemes for the heterogeneous
wireless network. Recall from chapter 1, the caching schemes presented in this
chapter not only consider content popularity and network parameters but also ac-
count for the routing protocol in the caching decision to ensure balancing the load
throughout the network. In addition, the caching schemes take into account un-
certainty associated with the predicted content requests. As a result, the caching
schemes are formulated as risk-averse schemes using the CVaR measure instead
of minimizing expected downloading delay as presented in chapter 3.

In this chapter, we propose four caching schemes for heterogeneous wireless
network. The chapter is organized as follows. The system model of the hetero-
geneous wireless network is provided in Sec.4.1 where Table 4.1 provides a sum-
mary of the parameters used throughout the chapter. In Sec.4.2 dynamic cache
replacement schemes are discussed. In Sec.4.3 we discuss four static caching
schemes, two which are risk-neutral and two which are risk-averse. Specifically,
in Sec.4.3.1 and 4.3.2 we construct risk-neutral static caching schemes for the het-
erogeneous network. The term risk-neutral is used to indicate that these methods
use point estimates of the content requests–that is, they do not account for the

82

uncertainty associated with estimating the future content requests. An useful out-
come of Sec.4.3.2 is that the static caching scheme, which accounts for content
requests, cache size, bandwidth, load, and content routing, only requires the solu-
tion to a unimodular linear program. In Sec.4.3.4 and 4.3.5, risk-averse caching
schemes are constructed based on the risk-neutral caching schemes in Sec.4.3.1
and 4.3.2. The main idea is that the uncertainty associated with estimating content
requests is accounted for using the CVaR measure. In Sec.4.4 a novel content re-
quest conformal prediction algorithm is constructed based on the extreme learning
machine and CVaR optimization. The performance of the risk-neutral and risk-
averse caching schemes are evaluated using real-world data from the YouTube
social network in Sec.4.5. The results show that a 6% reduction in the average
delay can be achieved if the uncertainty of the content requests is accounted for,
and a 25% reduction in average delay is achieved if both the uncertainty and rout-
ing protocol are accounted for compared to the risk-neutral caching scheme that
neglects the routing protocol. Therefore, it is essential to account for both the un-
certainty of predicting the content requests and routing when performing caching
decisions.

4.1 System Model
In this section we introduce the system model of the heterogeneous wireless net-
work and introduce the mathematical notation that will be used throughout the
chapter to formulate the risk-neutral and risk-averse caching schemes.

We consider a heterogenous LTE wireless network that contains wireless nodes
(e.g. base stations, smallcell access points, smallcell gateway) and a core net-
work as illustrated in Fig. 4.1. The nodes in the network are defined by the set
V = {1, . . . ,V}. Each wireless node v ∈ V contains a physical cache of size Sv

which stores the cached content. Additionally, the bandwidth between nodes is
given by the parameter bi j ∈ R+ for i, j ∈ V . If the nodes i and j have no di-
rect communication link then their bandwidth bi j = 0. The bandwidth between
nodes in the LTE network are typically heterogeneous as they are composed of

83

Table 4.1: Notation for Risk-Averse Caching

Parameters Definition
F(·) cumulative distribution function
F̂(·) empirical cumulative distribution function
p(·) probability mass function
α confidence level
t time
Network Parameters
V set of nodes {1, . . . ,V}
Vd destination nodes with Vd ⊆ V
Sv cache size of node v ∈ V
C(t) cached content indicator matrix
cv(t) cached content indicator vector for node v ∈ V
nv(t) load at node v ∈ V
qv the request-queue-time at node v ∈ V
Ai j f weight between nodes i, j ∈ V for f ∈F
bi j bandwidth between nodes i, j ∈ V
li j latency between nodes i, j ∈ V
δi jd f shortest-path indicator for i, j,d ∈ V and f ∈F
dv f (t) content retrieval delay at v ∈ Vd for f ∈F
Content Parameters
F set of content {1, . . . ,F}
D(t) dataset of content features and requests at time t
G content groups {1, . . . ,G}
f content index f ∈F
s f size of content f ∈F
gv f (t) group association of content f ∈F at v ∈ Vd
yv f (t) request count for content f ∈F at v ∈ Vd
x f feature vector of content f ∈F
ĝv f (t) estimated group association of content f ∈F at v ∈ Vd
ŷv f (t) estimated request count for content f ∈F at v ∈ Vd
µg mean vector of group g ∈ G
Σg covariance matrix of group g ∈ G
β neuron weights
θ neuron transfer function parameters
L number of neurons

84

wired, fiber-optic, and wireless links [140]. For example, the bandwidth between
base stations and smallcell gateway nodes to the core network are on the order of
several GB/s (fiber-optic). The link capacity of base stations and smallcell access
points to mobile users are typically on the order of 1-100 MB/s (wireless). And
the link capacity of smallcell access points to the smallcell gateways are on the
order of 100 MB/s (wired connection). The content server stores all the content
that can be requested by users. The core network communicates with the con-
tent server over the wide area network. Note that the content server is typically
comprised of a commercial content distribution network (CDN) such as Akamai,
Amazon CloudFront, Azure CDN or dedicated telco CDN that is maintained by a
wireless network operator.

When a mobile user connects to the network, the network protocol established
the communication link between the mobile user and either a smallcell access
point or base station based on the minimal signal-to-interference-plus-noise ratio
of the wireless channel. The set of content that can be requested by mobile users
is denoted by F = {1,2, · · · ,F}. The size of each content is denoted by s f ∈R+

for f ∈F . When a smallcell access point or base station receives a user request
for content f ∈ F , the node that receives the request will retrieves the content
from the network. The set of nodes (smallcell access points and base stations)
that receive users’ requests is denoted by Vd where Vd ⊂ V . The delay between
when the user request was received and when the content is delivered to the user
is known as the content retrieval delay. The content retrieval delay for content
f ∈ F requested at node v ∈ Vd at time t is denoted by dv f (t). The content
retrieval delay dv f (t) depends on where the content is cached in the network, the
load of each node, bandwidth between nodes, network-layer protocol, and link-
layer protocol of the LTE network. The load nv(t) of each wireless node v ∈ V is
the total number of content requests the wireless node is currently processing. If
a user requests content f ∈F from the wireless node v ∈ Vd and node v has the
content cached, then the content retrieval delay dv f (t) = s f qvnv(t) where qv is the
request-queue-time of node v and s f is size of the content f . The request-queue-

85

Base Station

Mobile user

Communication

Link

Core Network

Smallcell Access

Point

Cache

Smallcell

Gateway

Content Server

Figure 4.1: Schematic of an LTE wireless network. The wireless network is
composed of smallcell access points, base stations, smallcell gateways,
and a core network. The smallcell access point, smallcell gateway,
and base stations all contain physical caches that can store content.
Mobile users are connected to either the base station or the smallcell
access point through a low-bandwidth connection. Smallcell access
points are connected to the smallcell gateway which is then connected
to the core network. Note that the base stations and smallcell gateway
nodes do not communicate directly with each other. The core network
is connected to the content server over the wide area network.

time qv of node v ∈ V provides the average time to process a single packet/byte
request. Note that if node v does not contain the requested content, then it must
be retrieved by another node in the network or from the content server.

The goal of the network is to minimize the total content retrieval delay to serve

86

all user requests in the network. To achieve this objective, each node in Fig.4.1
contains a physical cache and a cache manager. The cache manager of each node
controls the content that is cached at the node [66]. The currently cached content
at node v∈ V is given by the cached content indicator vector cv(t)∈ [0,1]F where
F is the total number of contents that users can request in the network. The cache
of each node is composed of a static segment and a dynamic segment. The content
in the static cache does not change for a time interval ∆T and is associated with
the slow-time scale caching decisions. The content in the dynamic cache changes
as a function of the user requests and is associated with the fast-time scale. The
cache manager controls the cache replacement scheme for the static and dynamic
caches to minimize content retrieval delay dv f (t). Specifically, the cache manager
at each node:

• runs the cache replacement scheme to minimize request delays.

• forwards content requests to neighbouring nodes or the content server if the
content is not cached locally.

• records the number of requests yv f (t) and feature vector x f for content f ∈
F at v ∈ V .

It is assumed that each node in the network has computational resources equivalent
to a standard desktop computer to allow the operation of the cache manager. Given
that the cache size Sv, only a small fraction of all the content F can be cached
locally (except for the content server which contains all contents). If the content
is not cached locally, the content is retrieved from another node that minimizes
the content retrieval delay dv f (t).

To perform cache replacement of the static cache, the cache manager records
the request statistics yv f (t) and feature vector x f for content f ∈F at node v ∈
V . For video content, the feature vector comprises information related to the
thumbnail and title of the video, as well as information regarding the user that
uploaded the video such as number of subscribers. The complete set of content

87

features and requests at each node is contained in the dataset

D(T) =
{
{x f ,yv f (t),gv f (t)} : v ∈ V , f ∈F , t ∈ [0,T]

}
(4.1)

where T is the total time the content F has been available to users. The parameter
gv f (t) in (4.1) is the group association of content f ∈F at node v ∈ V . The pos-
sible groups that content can be associated with is denoted by G = {1,2, . . . ,G}.
The cache manager uses the information in D(T) to estimate the future number of
requests of content for both new content and previously cached content that users
have requested.

Given the network parameters (cache size, load, and bandwidth between nodes)
and the content parameters (feature vector, request count, group association), the
aim is to design caching schemes to minimize the cumulative content retrieval
delay

d(T) =
Kt

∑
k=1

V

∑
v=1

F

∑
f=1

dv f (tk) (4.2)

where Kt is the total number of content requests in the time interval [0,T], and
tk ∈ [0,T] denotes the time of each of the k ∈ {0,1, . . . ,Kt} content requests. To
minimize the delay requires a method to estimate the future content requests, and
a method to cache popular content based on the request estimates and routing
protocol to deliver content to users in the network. In this work we construct a
content request density forecasting method, and both risk-neutral and risk-averse
caching schemes to minimize the network delay.

4.2 Dynamic Caching Schemes
The cache of each node in the network, illustrated in Fig. 4.1, is composed of a
dynamic segment and a static segment. This section discusses dynamic caching
schemes, while Sec.4.3 discusses static caching schemes. To give more perspec-
tive, recall from Sec.4.1 that the content in the dynamic segment changes as a
function of the user requests, while the content in the static segment changes on

88

a time interval ∆T that is significantly larger than the time-scale of individual
content requests. The content in the dynamic and static segments of the cache are
controlled by the dynamic caching scheme and static caching scheme respectively.
Here we briefly discuss dynamic caching schemes that can be used in the network.
In Sec.4.3 we present static caching schemes that are used in combination with the
dynamic caching schemes presented in this section.

A schematic of the interaction of the dynamic and static cache is illustrated in
Fig. 4.2. There are three possible scenarios that can occur depending on where
the requested content is cached in the network. In the first scenario Fig. 4.2,
the content is transferred from the static cache to the user and no change in the
dynamic cache occurs. In the second scenario in Fig. 4.2, the content is transferred
from the dynamic cache to the user. Additionally, the content in the dynamic cache
will be adjusted according to the dynamic cache replacement scheme. In the third
scenario in Fig. 4.2, the content must first be transferred to the dynamic cache
from another node in the network, and then transferred to the user. Additionally,
the content in the dynamic cache will be adjusted and evicted according to the
dynamic cache replacement scheme. In all of the three scenarios, the content in
the static cache remains unchanged, and identical content is not simultaneously
available in both the static and dynamic caching segments. The content in the
static cache is only updated at a time interval ∆T after it was first initialized. The
aim of the static caching segment is to store content that is expected to have a
large number of user requests in the duration ∆T , while the dynamic cache stores
other content requested by users.

Several dynamic caching schemes exist which are based on users’ real-time
content requests including: Least-Recently-Used (LRU), Segmented Least-Recently-
Used (SLRU) [114], Least-Frequently-Used, and Least-Frequently-Used with Dy-
namic Ageing and Adaptive Replacement Cache. The LRU cache replacement
scheme operates by maintaining an ordered cache where recently requested con-
tent will reside at the beginning of the cache (known as most recently used po-
sition). As user requests are processed by the node, the content in the dynamic

89

Dynamic CacheStatic Cache

Requested content

Network Nodes

A)

B)

C)

Figure 4.2: Schematic of the interaction between static and dynamic caching
schemes. Three possible scenarios can be resulted from a content re-
quest. Scenario (A) refers to the situation when the requested content
is available in the static cache. In this case, content in the static and
dynamic cache remain unchanged. B) refers to the case when the re-
quested content is available in the dynamic cache. In this case, content
in the dynamic cache are adjusted according to the dynamic cache re-
placement scheme and content in the static cache remain unchanged.
C) represents the situation when the requested content is unavailable in
the cache. In this case, the content will be retrieved from the network
nodes and stored in the dynamic cache. Other content in the dynamic
cache will be adjusted and one content in the dynamic cache will be
evicted. Content in the static cache remain unchanged.

cache that are not requested by users are shifted towards the end of the cache (least
recently used position). If the requested content is not currently available in the
cache, it will be retrieved from other nodes in the network and stored in the most
recently used position. All other content in the cache will be shifted towards the
end of the cache with the content in the least recently used position being evicted
from the cache. Variants of the LRU scheme commonly used include the SLRU.
In the SLRU cache replacement scheme, the entire cache is divided into different
segments with each segment associated with a priority or popularity level. When
requested content is unavailable in the cache, the content will be retrieved and

90

stored in the most recently used position of the lowest priority segment of the dy-
namic cache. Simultaneously, the content that is in the least recently used position
of the lowest priority segment will be evicted from the cache. The main advan-
tage of the LRU and SLRU dynamic cache replacement policies is that they do
not require knowledge of the network architecture or where the content is stored
throughout the network. As such, these caching schemes are straightforward to
implement and are widely used in commercial distribution networks such as Face-
book [114].

4.3 Risk-Neutral and Risk-Averse Static Caching
Schemes

This section presents four static caching schemes and constitutes the main con-
tribution of the chapter. Both risk-neutral and risk-averse caching schemes are
discussed.

The static cache replacement scheme controls the content stored in the static
cache of each node in the network illustrated in Fig.4.1. The content in the static
cache remains the same for a time interval ∆T that is significantly longer than the
characteristic time-scale of individual content requests from users. The goal of the
static caching scheme is to cache content that is predicted to have a large number
of requests in order to minimize the total content retrieval delay in the time interval
∆T . Given the parameters of the network and the content dataset D , this section
presents two risk-neutral and two risk-averse static caching schemes as illustrated
in Fig. 4.3. The term risk-neutral is used for any scheme that uses point estimates
of the content requests and do not account for the uncertainty associated with pre-
dicting the content requests. These include the risk-neutral (RN) and risk-neutral
and network-aware (RNNA) caching schemes. Risk-averse caching schemes in
contrast to the risk-neutral schemes, account for the uncertainty associated with
estimating the content requests yv f for content f at node v. These include the risk-
averse (RA) and risk-averse and network-aware (RANA) caching schemes. The
RA and RANA schemes can be viewed as generalizations of the RN and RNNA

91

schemes. Here, the uncertainty associated with the content requests is accounted
for using the coherent CVaR risk measure with a confidence level α ∈ [0,1]. Note
that if we do not consider risk (e.g. risk-neutral) then the confidence level α = 0.

Static caching schemes

Risk Neutral Risk Averse

RN RNNA RA RANA

Figure 4.3: A schematic illustration of the risk-neutral (RN), risk-neutral
and network-aware (RNNA), risk-averse (RA) and the risk-averse and
network-aware (RANA) caching schemes discussed in Sec.4.3. RN
and RNNA use point estimates of the content requests and do not
account for the uncertainty associated with predicting the content re-
quests. RA and RANA account for the uncertainty associated with
estimating the content requests yv f for content f at node v. The two
network-aware caching schemes RNNA and RANA account for the
LTE network parameters such as bandwidth, load at the nodes, request-
queue-time, network-layer protocol, link-layer protocol and routing
protocol in contrast to the network oblivious RN and RA caching
schemes.

4.3.1 Risk-Neutral (RN) Static Caching Scheme
Let us assume that we have the predicted number of requests for each content
f ∈F at node v ∈ V , which is denoted by ŷv f . Then, the content to be cached at
each node can be selected by solving the following binary integer program

C∗ ∈ argmincv f

{
F

∑
f=1

V

∑
v=1

ŷv f (1− cv f)

}

s.t.
F

∑
f=1

s f cv f ≤ Sv for v ∈ V , (4.3)

92

where C∗ ∈ [0,1]V×F and cv f ∈ [0,1] indicates if the content f ∈F is cached at
node v ∈ V . The inequality constraint in (4.3) ensures that each node does not
cache more files than can be stored in each nodes associated cache. Although
(4.3) is a binary integer program which has complexity NP-complete, (4.3) can be
solved with complexity O(F log(F)) as each node merely caches the maximum
number of content that are predicted to have the highest number of requests.

The RN caching scheme (4.3) is used extensively in the literature [26, 30, 66].
The key feature of the risk-neutral caching scheme is that it require an accu-
rate estimation of yv f , namely, the number of requests for the content. The RN
scheme does not account for any aspects of the network other than the cache size
of each node. Additionally, (4.3) does not account for the uncertainty associated
with estimating the number of content requests yv f . Therefore, although (4.3)
can be evaluated with low complexity O(F log(F)), the total content retrieval de-
lay is expected to be higher compared with static caching schemes that account
for the network parameters, routing protocol, and the uncertainty associated with
predicted content requests.

4.3.2 Risk-Neutral and Network-Aware (RNNA) Static
Caching Scheme

Here we construct RNNA static caching scheme to optimally cache content given
the predicted content requests ŷv f , and the network parameters (bandwidth, load at
the nodes, request-queue-time, and cache size of each node). The RNNA caching
scheme accounts for both the network parameters and routing protocol, however
neglects the uncertainty associated with predicted content requests ŷv f .

The (RNNA) static caching scheme is given by the following binary integer

93

program

C∗ ∈ argminc,k,δ ,r

{
F

∑
f=1

∑
d∈Vd

∑
i, j∈V

ŷd f Ai j f δi jd f

}
s.t. cs f ∈ [0,1], ksd f ∈ [0,1], δi jd f ∈ [0,1],

rsd f ∈ [0,1], Ti j ∈ Z+

∑
i∈V

δsid f −δisd f = ksd f , ∑
i∈V

δdid f −δidd f =−1,

1{bi j = 0}+δi jd f ≤ 1 (4.4a)
F

∑
f=1

s f cs f ≤ Ss,
V

∑
s=1

cs f ≥ 1 (4.4b)

V

∑
s=1

ksd f = 1,
V

∑
s=1

rsd f = 1,

F

∑
f=1

∑
d∈Vd

δi jd f ≤ Ti j (4.4c)

rsd f ≤ ksd f , rsd f ≤ cs f , rsd f ≥ ksd f + cs f −1, (4.4d)

∀s ∈ V , ∀d ∈ Vd, ∀ f ∈F .

In (4.4), C∗ ∈ [0,1]V×F indicates the content cached in the static cache of all nodes,
Vd ⊂ V are the destination nodes in the network, and Ti j is a positive integer that
indicates the maximum number of content transfer paths allowed between nodes i

and j (e.g. congestion threshold). The destination nodes Vd communicate directly
with the users and are comprised of the base stations and smallcell access points
illustrated in Fig. 4.1. Given the predicted content requests ŷd f , the objective
function in (4.4) represents the total content retrieval delay over the time-interval
[t, t +∆T]. Note that we have dropped the time-dependence from the parameters
in (4.4) to improve readability. The parameter Ai j f in (4.4) is the edge weight of

94

the network for content f ∈F and is equal to

Ai j f =

{
s f (li j +q jn j) if i 6= j

s f q jn j otherwise
(4.5)

where s f is the size of content f , li j is the latency between nodes i ∈ V and
j ∈ V , q j is the request-queue-time of node j ∈ V . The latency li j (second per
byte) between nodes is a function of the bandwidth bi j, the network topology,
the network-layer protocol, and the link-layer protocol used in the network. The
parameter δi jd f indicates if nodes i, j ∈V are used to transfer the content f ∈F to
the destination node d ∈ Vd . ksd f indicates if source node s∈ V is used to retrieve
content f ∈ F for the destination node d ∈ Vd . The parameter rsd f = ksd f cs f

indicates if the source node s ∈ V , used by destination node d ∈ Vd to retrieve
content f , currently has the requested content cached.

The RNNA caching scheme (4.4) optimally selects the cache C∗ to minimize
the total content retrieval delay while accounting for the network parameters and
predicted content requests. Additionally, RNNA accounts for the shortest-path
routing used to transfer content throughout the network to serve user requests.
The path constraints (4.4a) ensures that the δi jd f defines the shortest-path from
source node s∈ V to destination node d ∈ Vd for transferring content f ∈F . The
caching constraints (4.4b) ensure that the files cached at each node do not exceed
the nodes cache size, and that atleast one instance of each content f ∈F is cached
in the network. The link congestion constraint (4.4c) ensures that the number of
content transferred over the link between node i ∈ V and node j ∈ V satisfies
the congestion threshold Ti j. The source constraints (4.4d) ensures that only one
source node s ∈ V is used to transfer content f optimally to the destination node
d ∈ Vd . Additionally, the source constraints ensure that the source node s has the
content f to be transferred to the destination node d.

The binary integer program (4.4) to be solved for the RNNA caching scheme con-
tains a total of (V +2V 2+V 3)F binary variables, (3V +V 2)F equality constraints,
and

(
(1+V +2V 2 +V 3)F +V 2 +V

)
inequality constraints. If each content has

95

approximately equal size, then the constraint matrix in (4.4) is a network matrix.
As such, (4.4) is a unimodular linear program and can be solved with polyno-
mial time complexity using interior-point numerical methods [141]. Although
YouTube content is not of equal size, it can be broken into equal sized blocks.
The reason is that typically YouTube content is of duration between 30 seconds to
5 minutes, with a user attention span of approximately 90 seconds [142]. If each
YouTube video is broken into 30 second intervals, then the decision of where to
cache these video blocks throughout the network can be solved in polynomial
time using the optimization problem (4.4). The main challenge, in this case, is to
estimate the popularity of individual 30 second intervals of a content. One simple
way to handle this challenge is to estimate the popularity of a content and then
assume that all the individual 30 second intervals of the content have same pop-
ularity. However, in practice, the first 30 second of a content may receive more
attention from users that the last 30 second and vice versa. In such case, we need
to design a sophisticated prediction method and out of the scope of this thesis.
Please note that the optimization problem (4.4) of solving four content with 30
second intervals is identical to the problem of solving two content with 60 second
intervals where 60 second is divided into two 30 second intervals.

Though the RNNA caching scheme (4.4) uses the network parameters, pop-
ularity of content, and content transfer protocols, it does not account for the un-
certainty associated with estimating the request count yv f for content f at node
v. Therefore, we can not control how to account for the risk associated with any
given caching decision. Here the risk can be viewed as a measure of the worst
case content retrieval delay that results from a given caching decision.

4.3.3 Conditional Value-at-Risk (CVaR) and Content
Retrieval Delay Minimization

The two risk-averse caching schemes RA and RANA both use the coherent CVaR
risk measure to account for the uncertainty associated with predicting the content
requests. Here, we precisely define the CVaR risk measure and how it accounts

96

for the uncertainty associated with predicting the content requests.
Let D be a random variable that denotes the total content retrieval delay in

a time-interval [t, t + ∆T]. Realizations of the total content retrieval delay are
defined by d (4.2). The ability to compare random outcomes of D based on the
confidence α ∈ [0,1] is crucial for accounting for the risk associated with the
uncertainty of estimating yv f when performing caching decisions.

How can we estimate the total content retrieval delay D for a given confidence
level α ∈ [0,1] (where α = 1 is completely risk-averse, and α = 0 is risk-neutral).
One possibility is to use the Value-at-Risk (VaR) risk measure

VaRα(D) = min{d ∈R : FD(d)≥ α} (4.6)

where FD(d) is the cumulative distribution function of D. Classically, VaRα(D)

was a popular method to estimate risk, however, it has several limitations [92,
93]. First, VaRα(D) is difficult to optimize as it is non-convex and is a non-
coherent measure of risk as it fails the sub-additive condition. Second, VaRα(D)

does not account for the properties of the distribution FD(d) beyond the threshold
VaRα(D).

To account for the uncertainty of estimating yv f for computing D, we use the
CVaR measure [92, 93] which is a coherent risk measure. That is, CVaR satisfies
the following properties: it is positive homogeneous, sub-additive, monotonic,
translation invariant with respect to first order stochastic dominance, and mono-
tonic with respect to second order stochastic dominance. CVaR is the expected
total delay given that we are in the α ∈ [0,1] confidence interval of the cumulative
distribution FD(d). Formally, CVaR is given by

CVaRα(D) = ED[D|D≥ VaRα(D)]

=
1

1−α

1∫
α

VaRβ (D)dβ . (4.7)

where ED denotes the expectation with respect to the random variable D that repre-

97

sents the content retrieval delay. As seen from (4.7), CVaRα(D) can be interpreted
as the conditional expectation of D where the expectation is evaluated on the α-
confidence portion of the tail distribution FD(d). If α = 0, then CVaRα(D) =E[D]

is the expected value of D, and if α → 1, then CVaRα(D) = max{D} gives the
maximum value of D.

Given the CVaR risk measure (4.7), to minimize the total content retrieval de-
lay in a time-interval [t, t+∆T] for a confidence level α the following optimization
problem needs to be solved

C∗ ∈ argminz∈Z {CVaRα(D)}, (4.8)

where z are the decision variables that affect the total content retrieval delay D,
and Z are the associated constraints on the decision variables. C∗ in (4.8) is the
associated caching decision that minimizes the total content retrieval delay with
a confidence of α . If α = 0 in (4.8), then (4.8) is equivalent to the risk-neutral
caching schemes discussed in Sec.4.3.1 and Sec.4.3.2. Here, we are interested in
risk-averse caching schemes for evaluating (4.8) where α ∈ (0,1].

The evaluation of (4.8) for general α ∈ (0,1] is non-trivial as it requires an
analytical expression for the cumulative distribution function FD(d) which is un-
known. Recall that the random variable D representing the total content retrieval
delay in the time-interval [t, t +∆T] which depends on the network parameters,
popularity of content, content transfer protocols, and the uncertainty associated
with estimating the request count yv f for content f at node v. Using Theorem 2
in [92], the optimization problem (4.8) can be represented by

C∗ ∈ argminz∈Z ,c∈R{c+
1

1−α
ED[max{0,D− c}]} (4.9)

where the expectation is taken with respect to the random variable D. Though the
distribution FD(d) is unknown, if the distribution of the content requests FYv f (yv f)

at node v ∈ V is known, then the objective function (4.9) can be approximated
using Monte-Carlo integration techniques. That is, the expectation ED[·] in (4.9)

98

is estimated using K independent and identically distributed samples of the con-
tent requests yv f generated from the distribution FYv f (yv f). Additionally, the non-
smooth operator max{·} in the objective function (4.9) can be removed by intro-
ducing auxiliary parameters ξk. The approximate solution to (4.9) can be com-
puted by solving:

C∗ ∈ argminz∈Z ,c∈R{c+
1

K(1−α)

K

∑
ξ=1

ξk}

s.t. ξk ≥ D(z, ŷv f k)− c

ŷv f k ∼ FYv f (yv f) for v ∈ V , f ∈F

ξk ≥ 0, for k ∈ {1, . . . ,K}. (4.10)

where ŷv f k represents the generated sample of the content requests for content f

at node v for sample k.
The optimization problem (4.10) provides the basis for constructing the risk-

averse static caching schemes in this chapter.

4.3.4 Risk-Averse (RA) Static Caching Scheme
Here we construct a risk-averse (RA) static caching scheme that accounts for the
uncertainty associated with predicting the content requests yv f for content f at
node v. The caching method RA is a generalization of the caching method RN in
Sec.4.3.1 that does not account for the uncertainty associated with estimating the
content requests.

Given the conditional density function FYv f (yv f) of content requests, the CVaR
optimization problem (4.10), and using the constraints in the popularity based

99

caching method (4.3), the RA caching scheme is defined by

C∗ ∈ argmincv f ,c

{
c+

1
K(1−α)

K

∑
ξ=1

ξk

}
s.t. cv f ∈ [0,1],c ∈R,

ξk ≥
F

∑
f=1

V

∑
v=1

ŷv f k(1− cv f)− c, (4.11a)

ŷv f k ∼ FYv f (yv f),

F

∑
f=1

s f cv f ≤ Sv, (4.11b)

ξk ≥ 0,v ∈ V , f ∈F ,k ∈ {1, . . . ,K},

where C∗ ∈ [0,1]V×F . The parameter K in (4.11) is the total number of the content
requests generated from the distributions FYv f (yv f) for v ∈ V and f ∈F . Addi-
tionally, the parameter c in (4.11) represents the estimated Value-at-Risk (VaR) of
the total content delay for a confidence α , and α ∈ (0,1] is the confidence level.

The RA caching scheme (4.11) is a mixed integer linear program that contains
(2K +V) inequality constraints, (FV) binary variables, (K + 1) real variables,
and requires the generation of (V FK) samples from the distributions FYv f (yv f).
The complexity of (4.11) is NP-hard, however several numerical methods ex-
ist which can be used to evaluate (4.11) including: Branch-and-bound, cutting
planes, branch-and-cut, and branch-and-price [143]. The selection of the number
of samples K to use is still an open research problem. However, we found that a
reasonable performance is achieved using K = 10,000 samples.

Though RA caching scheme (4.11) accounts for the uncertainty associated
with predicting the number of requests, it neglects the network parameters (net-
work bandwidth, load at the nodes, request-queue-time, content cached at other
nodes), and the protocol of the network.

100

4.3.5 Risk-Averse and Network-Aware (RANA) Caching
Scheme

Here we construct RANA caching scheme that accounts for the uncertainty as-
sociated with predicting the number of requests, network parameters (network
bandwidth, load at the nodes, request-queue-time, content cached at other nodes),
and protocol of the LTE network.

Given the conditional density function FYv f (yv f) of content requests, the CVaR
optimization problem (4.10), and using the constraints in (4.4), the RANA caching
scheme is given by

C∗ ∈ argminC,k,δ ,r,c

{
c+

1
K(1−α)

K

∑
ξ=1

ξk

}
s.t. cs f ∈ [0,1], ksd f ∈ [0,1], δi jd f ∈ [0,1],

rsd f ∈ [0,1], Ti j ∈ Z+, c ∈R,

ξk ≥
F

∑
f=1

∑
d∈Vd

∑
i, j∈V

ŷd f Ai j f δi jd f − c,

∑
i∈V

δsid f −δisd f = ksd f , ∑
i∈V

δdid f −δidd f =−1,

1{bi j = 0}+δi jd f ≤ 1
F

∑
f=1

s f cs f ≤ Ss,
V

∑
s=1

cs f ≥ 1

V

∑
s=1

ksd f = 1,
V

∑
s=1

rsd f = 1,

F

∑
f=1

∑
d∈Vd

δi jd f ≤ Ti j (4.12a)

rsd f ≤ ksd f , rsd f ≤ cs f , rsd f ≥ ksd f + cs f −1,

∀s ∈ V , ∀d ∈ Vd, ∀ f ∈F , ξk ≥ 0, k ∈ {1, . . . ,K}.

A description of each of the constraints in (4.12) is provided below (4.4). Note that

101

the RANA caching scheme (4.12) is equivalent to the RNNA caching scheme (4.4)
if we do not account for the uncertainty associated with predicting the number of
requests for content f ∈F at node v ∈ V – that is, we set α = 0 in (4.12).

The mixed integer linear program (4.12) contains a total of (V +2V 2 +V 3)F

binary variables, (2K + 1) real variables, (3V +V 2)F equality constraints, and(
(1+V + 2V 2 +V 3)F +V 2 +V + 2K + 1

)
inequality constraints. As discussed

in Sec.4.3.4, several numerical methods can be used to evaluate C∗ in (4.12) for
typical small networks that contain up to V = 10 wireless nodes and F = 1000
content.

Summary: In this section we constructed four static caching schemes, namely,
RN in (4.3), RNNA in (4.4), RA in (4.11), and RANA in (4.12). The RNNA
caching scheme accounts for content requests, cache size, bandwidth, load, and
content routing, only requires the solution to a unimodular linear program. The
unique feature of the risk-averse caching schemes RA and RANA compared to RN
and RNNA is that they use a coherent risk measure to account for the uncertainty
associated with predicting the content requests. The confidence level α ∈ [0,1] in
the RA and RANA methods can be used to network operator to select the level
of risk when performing a caching decision. For example, setting α = 1 result
in the RA and RANA minimizing the maximum possible content retrieval delay
in the network. To evaluate the caching decision using RA or RANA requires a
conformal prediction of the content requests–that is, an estimate of the cumulative
distribution function of the content requests. In Sec.4.4 we provide a conformal
prediction algorithm for constructing the cumulative distribution function of the
requests.

4.4 Content Request Cumulative Distribution
Function Forecasting

The risk-neutral and risk-averse static caching schemes constructed in Sec.4.3 re-
quire a point estimate ŷv f or cumulative distribution function estimate FYv f (yv f) of
the request count yv f for content f ∈F at node v∈V . In this section we construct

102

a conformal prediction algorithm to estimate FYv f (yv f) given the dataset D(T) in
(4.1). The key idea of the conformal prediction algorithm is to use discriminant
analysis to perform coarse-grained prediction of the content requests. Then use a
feed-forward neural network to perform fine-grained request estimation. For both
the coarse-grained and fine-grained request estimates, the prediction interval of
each is denoted by P(g|x f) and FY f (y f |g,x f) respectively where g ∈ G represents
the group association, and Yf is the random variable representing the number of
requests for content f ∈ F . Using the total-law of probability the cumulative
distribution function of the content requests is

FY f (y f |x f) =
G

∑
g=1

FY f (y f |g,x f)P(g|x f), (4.13)

for content f ∈F . Below we present the coarse-grained and fine-grained request
prediction methods, and the density forecasting algorithm to evaluate (4.13).

4.4.1 Content Group Association Classifier
Given the dataset D(T) in (4.1), the goal is to construct a classifier that can assign
content f ∈F to a particular group g ∈ G and provide a confidence estimate of
the group association. That is, we desire a classifier which learns the conditional
probability mass function P(g|x) of group association.

The elements of the content features x f are commonly constrained to intervals
on the real line. For example, for YouTube videos, the number of subscribers
to the user that uploaded the video must be a positive number and the minimum
length of a video is 1 second (15 seconds if ads are present). Let us assume that the
feature vector x is a random variable which has a conditional probability density
function given by a doubly truncated multivariate normal distribution

p(x|g) = N (µg,µ
−
g ,µ+

g ,Σg) (4.14)

∝ exp
(
−1

2
(x−µg)

′
Σ
−1
g (x−µg)

)
1{µ−g ≤ x≤ µ

+
g }.

103

In (4.14), µg is the mean vector of features in group g ∈ G , µ−g is the minimum
value of the content features in group g, µ+

g is the maximum value of the content
features in group g, and Σg is the covariance matrix of the features in group g.
If the mean µg, lower and upper limits (µ−g and µ+

g) on the feature vector, and
covariance matrix Σg are known for each group g∈ G , and the prior probability of
group association is P(g), then the probability of content f ∈F being associated
with group g ∈ G is

P(g|x f) =
P(x f |g)P(g)

∑
G
r=1 P(x f |r)P(r)

. (4.15)

The prior probability P(g) of group association can either be set to an uninforma-
tive prior (i.e. P(g) = 1/G), or to the population average with P(g) = ng/F where
ng is the number of content in F that are associated with group g ∈ G .

Given the dataset D(T) in (4.1), how can the parameters µg,µ
+
g ,µ−g ,Σg in

(4.14) be estimated? If µ−g = −∞ and µ+
g = +∞ (the feature vector x is uncon-

strained), then classical discriminant analysis methods can be used to estimate
µg and Σg. These include Linear Discriminant Analysis, Factor-Based Linear
Discriminant Analysis, Maximum Uncertainty Linear Discriminant Analysis, and
Regularized Discriminant Analysis [144]. Typically, the content features x are
contained on an interval of the real line such that −∞ < µ−g and µ+

g <+∞. Given
µ−g and µ+

g , the estimate of the mean µg and covariance Σg can be computed using
Gibbs sampling, maximum likelihood estimation, and generalized method of mo-
ments [145]. Here use the maximum likelihood estimation method to estimate µg

and Σg using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
with box constraints to account for the limits of the feature vector x.

4.4.2 Risk-Averse Feed-foward Neural Network for Predicting
Content Requests

In this section we construct the risk sensitive extreme learning machine that com-
bines the benefits of the extreme learning machine with a risk-aware training
method to predict content requests. The presented method is comprised of a

104

single-layer feed-foward neural network trained using a stochastic optimization
algorithm that dynamically adjusts the number of neurons and weights to mini-
mize the risk of over fitting with a confidence level α ∈ [0,1].

Classic Extreme Learning Machine

Given the dataset D(T) in (4.1), the goal is to construct a method to estimate the
functional relationship between the content features x f and the associated request
count y f (t). A single-layer feed-foward neural network can be used to relate the
content features x f to the requests y f (t). Denoting ŷ f (t) as the estimated request
count given x f , the feed-forward neural network is given by

y f (t) =
L

∑
i=1

βihi(x f ;θi) = β
′h(x f) (4.16)

with β = [β1,β2, . . . ,βL]
′ are the weights of each neuron, and

h(x f) = [h1(x f ;θ1), . . . ,hL(x f ;θL)]
′ the associated transfer function of each neu-

ron. Popular transfer functions include the sigmoid, hyperbolic tangent, and Gaus-
sian, however any non-linear piecewise continuous function can be utilized. The
neuron weights βi and θi in (4.16) are computed from the solution to

θ
∗,β ∗ ∈ argmin

{
F

∑
f=1

(y f (t)− ŷ f (t))2

}
. (4.17)

For general transfer functions h(x f), (4.17) is a non-convex and non-linear opti-
mization problem that is commonly solved using stochastic gradient decent, ant-
colony optimization, and simulated anealling methods [146, 147]. A draw-back
with these numerical methods for solving (4.17) is that they require a large number
of computations to converge to the global optimal solution of (4.17). However, us-
ing random matrix theory, it has been shown that the parameter values at the local
minima of the objective function (4.17) yield similar mean-square error compared
to the global optimal solution of (4.17) [148]. Therefore, the mean-square er-

105

ror of the feed-forward neural network is not sensitive to the set of local minima
{θ ∗,β ∗} is used.

Could selecting the neuron weights θ randomly, and then fitting the weights β

via least-squares minimization provide a reasonable approximation to the solution
of (4.17)? Since the mean-squared error of the feed-forward neural network is not
sensitive to which local minima of (4.17) are used, it is reasonable to postulate that
randomly selecting θ and then fitting β will produce a reasonable solution. This is
the main idea behind the extreme learning machine (ELM) proposed in [124]. For
fixed number of neurons L, the ELM selects the parameters θ and β in two steps.
First, the hidden layer parameters θ are randomly initialized. Any continuous
probability distribution can be used to initialize the parameters θ . Second, β is
selected to minimize the mean-square error between the model output and the
measured output from the dataset D(T) in (4.1). Formally,

θ
∗ ∼N (0,1)

β
∗ = H(X ;θ

∗)+Y (4.18)

where N (0,1) is the multivariate normal distribution with unit variance, H(X ;θ
∗)

is the hidden-layer output matrix with entries Hi f (X ;θ)= hi(x f ;θi) for i= 1, . . . ,L
and f ∈F , H+ denotes the Moore-Penrose generalized inverse of H, and Y =

[y1, . . . ,yF]
′. Several efficient methods can be used to compute β

∗, for example
Gaussian elimination. The major benefit of using the ELM, (4.16) and (4.18), is
that the training only requires the random generation of the parameters θ

∗, and β
∗

is computed as the solution of a set of linear equations.
The ELM satisfies the universal approximation condition [120], can be imple-

mented in parallel [117], can be trained sequentially for large datasets or as new
training data becomes available [122, 123], and can be efficiently implemented
on field-programmable gate array devices as well as complex programmable logic
devices [118]. A limitation with the ELM is that it can not be used to select the
number of neurons L while minimizing the risk of overfitting the dataset D(T) in

106

(4.1).

Regularized Extreme Learning Machine

Here we construct the regularized extreme learning machine (RELM) which is
a generalization of the ELM that minimizes the risk of overfitting with a confi-
dence level α ∈ (0,1]. For example, given the dataset D(T) in (4.1) and setting
α = 1, the RELM selects the parameters θ ,β ,L in (4.16) to minimize the mean-
square generalization error between the actual and predicted content requests. The
RELM is equivalent to the ELM if we do not account for risk–that is, we set α = 0.

The RELM is trained by solving the following optimization problem (we dis-
cuss the motivation below):

L∗ ∈ argminL∈Z+,c∈R{c+
1

K(1−α)

K

∑
k=1

zk}

s.t. zk ≥
1

(1− γ)F
||η(L)H(Xk;θ k)β k−Y k||22− c (4.19a)

Xk,Xk,Y k,Yk ∼ FY(D(T),γ) (4.19b)

θ k ∼N (0,1), (4.19c)

β k = [η(L)H(Xk;θ k)]
+Yk (4.19d)

zk ≥ 0, L≤ Lmax, for k ∈ {1, . . . ,K}. (4.19e)

In (4.19), N (0,1) is the multivariate normal distribution, FY(D ,γ) is the Fisher-
Yates random permutation which is used to partition the data D(T) into com-
plementary subsets of training data (Xk,Yk) and validation data (Xk,Y k) where
γ ∈ (0,1) denotes the percentage of data used for training, and η(L) is a diagonal
matrix with elements

ηii(L) =

{
1 if i≤ L

0 otherwise.
(4.20)

The parameter Lmax is the maximum number of neurons in the RELM, and K is
the number of samples used to estimate the cumulative distribution function of the

107

mean-square error of the feed-forward neural network.
The objective function in (4.19) represents the CVaR of the mean-square gen-

eralization error of the ELMs with L neurons for a confidence level α . The mean-
square generalization error of each ELM is evaluated using

1
(1− γ)F

||η(L)H(Xk;θ k)β k−Y k||22

defined in constraint (4.19a). The constraint (4.19b) is used to generate the train-
ing (Xk,Yk) and testing (Xk,Y k) data for each of the k ∈ {1, . . . ,K} ELMs. The
constraint (4.19c) is used to generate the neuron transfer function weights θ k.
Given the transfer function weights θ k and the training data (Xk,Yk), constraint
(4.19d) is used to construct the neuron weights β k of each ELM. The final con-
straint (4.19e) defines the maximum number of possible neurons Lmax and the
number of ELMs K generated to evaluate the CVaR risk measure. The selection
of Lmax and K are important to restrict the computational resources used to train
and evaluate the RELM. The final result of the RELM (4.19) is the optimal num-
ber of neurons L∗ of use for predicting the content requests while minimizing the
risk of overfitting the training data with a confidence level α . Given L∗, the ELM
weights θ ,β can be constructed using equation (4.18).

Discussion of (4.19): Solving the mixed integer nonlinear program (4.19) is
equivalent to optimally selecting the number of neurons L to minimize the risk of
overfitting the dataset D(T). The training method in (4.19) dynamically adjusts
the number of neurons L based on the available training data in D(T). Typically,
as the number of observations in D(T) increases, the number of neurons in the
RELM will also increase. The solution to (4.19) can be computed in polynomial
time by solving (4.19) for L = 1, . . . ,Lmax independently, and then selecting the
solution that minimizes the objective function in (4.19).

108

4.4.3 Conformal Prediction Algorithm for Content Requests
In this section we construct the conformal prediction algorithm to estimate the
cumulative distribution function FY f (y f |x f) of the number of requests for content
f ∈F given the content features x f .

A schematic of the conformal prediction algorithm is provided in Fig.4.4. The
algorithm is comprised of an offline training stage, and an online stage to evaluate
the requests for new content. In the offline stage the dataset D(T) in (4.1) is
used to train the group association classifier defined in Sec.4.4.1, and the RELM
defined in Sec.4.4.2. Then, using the dataset

D̂(T) = {{x f ,g f (t),y f (t), ŷ f (t)} : v ∈ V , f ∈F , t ∈ [0,T]}, (4.21)

the set of prediction errors {ε f (g)}, where ε f (g) = ŷ f (g,x f)−y f for each content
f ∈F associated with group g ∈ G is constructed. The trained parameters from
the offline stage are then used in the online stage to estimate the request count of
the content. In the online stage, when a new content with features xo is received,
the group association classifier is used to compute the group association probabil-
ities P(g|xo). Then the RELM is used to estimate the number of requests ŷ f (xo,g)

for the content f . The group association probabilities and predicted number of
requests from the RELM are then sent to the conformal prediction block which
outputs the conformal prediction FY (yo|xo).

Insight into the design of the conformal prediction algorithm in Fig. 4.4 is
gained by considering the content requests y f for content f as a random variable.
We assume that the random variable y f satisfies

y f = ŷ f (g,x f)+ ε f (g) (4.22)

where ŷ f (g,x f) is the estimated number of requests from the RELM trained using
data from group g∈G , and ε f (g) is the random variable that accounts for the error
in the predicted and actual number of requests. The error ε f (g) accounts for the
errors associated with the parametric structure of the RELM, the parameters of the

109

Offline

Online

Group
Association

RELM
Prediction

Error

Group
Prediction

Request
Prediction

Conformal
Prediction F̂Y (yo|xo)

D(T)

xo

P(g|x f)

µg,Σg

D̂(T)

β g,θ g,Lg {εi(g)}
P(g|xo) ŷo

Figure 4.4: Schematic of the conformal prediction algorithm. D(T) in (4.1)
is the training dataset, P(g|x f) is the probability of group association,
D̂(T) is the training dataset with the predicted content requests from
the RELM, {ε f (g)} are the errors between the predicted and actual
requests for content in group g ∈ G , xo is a new content feature, and
F̂Y (yo|xo) is the empirical cdf function of the content given the content
features xo.

RELM, and the errors that may be contained in the feature vector x f . The random
variables ε f (g) are assumed independent and identically distributed. Then, given
the dataset D̂ , the empirical cdf of the random variable y f is

F̂Y (y f |g,x f) =
1
ng

ng

∑
i=1

1
{

εi(g)≤ y f − ŷ f (g,x f)
}

(4.23)

where ng is the total number of contents in group g ∈ G and 1{·} is the indicator
function.

Substituting (4.23) into (4.24) gives the conformal prediction of the content
f ∈F . Formally, the empirical conditional distribution function of the number of
requests for content f ∈F is

F̂Y (y f |x f) =
G

∑
g=1

F̂Y (y f |g,x f)P(g|x f) (4.24)

where P(g|x f) is the conditional probability of content f belonging to group g∈G

from the discriminant analysis classifier.
Summary: In this section we constructed a conformal prediction algorithm,

110

illustrated in Fig. 4.4, for content requests. The conformal prediction algorithm
is comprised of an offline learning stage in which content request and features
are used to select the doubly-truncated multivariate normal distribution parame-
ters for group association estimation, and train the RELM for constructing point
estimates of the content requests. For new content, the output of the trained group
classifier and RELM are used to construct the conformal prediction of the content
requests. This conformal prediction is used with the risk-averse caching methods
in Sec.4.3.4 and 4.3.5 to optimally cache content in the network.

4.5 Numerical Evaluation of the Conformal
Prediction Algorithm and Coherent Risk
Minimization Caching Schemes for YouTube
Content

In this section we evaluate the performance of the conformal prediction algorithm
and four static caching schemes (RN, RNNA, RA, RANA) presented in Sec.4.3
using real-world YouTube datasets. The results show that a 6% reduction in the av-
erage delay can be achieved if the uncertainty of the content requests is accounted
for, and a 25% reduction in average delay is achieved if both the uncertainty and
smallcell routing protocol are accounted for compared to the risk-neutral caching
scheme that neglects the routing protocol. These results illustrate the importance
of both accounting for the risk associated with estimating content requests and ac-
counting for the routing protocol used to transfer content throughout the network.

4.5.1 Network Parameters and YouTube Dataset
To evaluate the performance of the static caching schemes (RN, RNNA, RA,
RANA), and the conformal prediction method illustrated in Fig.4.4, we construct
an LTE heterogeneous network and generate user content requests based on real-
world YouTube datasets.

111

Network Parameters: The LTE network topology used for evaluation is il-
lustrated in Fig.4.5. The LTE network is composed of a core network that is con-
nected to base station nodes, smallcell gateway nodes, and a server which contains
all the content F that can be requested by users. The content server and the core
network communicate via the wide area network. The latency in the wide area
network is typically in the range of 10 ms to 100 ms depending on the distance
and the number of hops between the server and the core network [149, 150]. The
core network, base station, and gateway nodes communicate with one another via
an intra-network communication link with link capacity values in the range of 500
Mbps to 1 Gbps. Finally, the smallcell access points are connected to the gateway
nodes via heterogeneous backhaul links with link capacity values in the range of
100 Mbps to 500 Mbps.

In the network illustrated in Fig.4.5, user requests are only received by the
smallcell access points and the base station nodes. Each requested video con-
tent has a size of s f = 200 MB. The smallcell access points, base station, and
gateway have a cache size of 500 GB (approximately 10% of the entire content
library), and the core network node has a cache size of 1 TB (approximately 20%
of the entire content library). For each node, 90% of the cache storage is used
for static caching, and the remaining is used for dynamic caching. The dynamic
cache segment of each node is controlled using the Least-Recently-Used (LRU)
replacement method discussed in [75]. Given the cache size, link capacity be-
tween the nodes, processing delay, propagation delay, number of hops between
nodes, packet size, and the topology in the network in Fig.4.5, the edge weight
parameter Ai j f (4.5) between node i and node j is evaluated using the ndnSIM 2.0
NS-3 base simulator [151]. ndnSIM allows a video content f to be addressable
and routable inside the network. For the network-layer protocol, ndnSIM’s NDN
stack is used while point-to-point communication is considered as the link layer
protocol. In ndnSIM, the smallcell access points and base station are defined as
the Consumer node. We implement a new consumer application method for the
Consumer node to generate content requests according to the YouTube datasets.

112

All the nodes having cache storage are considered as the Producer node which
can satisfy content requests generated by the Consumer nodes. The ndnSIM Best

Route is used to forward content requests to neighbouring nodes until the content
is retrieved–this is equivalent to the shortest-path routing algorithm. Finally, the
ndnSIM Application-level trace helper is used to compute the edge weight Ai j f

(4.5) between node i and node j for content f . We set Ti j = 16 in equation (4.4c)
and in equation (4.12a).

YouTube Dataset: The real-world YouTube dataset was collected using the
YouTube API between the years 2013 to 2015 and consists of 25,000 YouTube
videos. The dataset is comprised of videos from 17 YouTube categories including
“Gaming” (44% of videos), “Entertainment” (40% of videos), “Music” (5% of
videos), and “Education” (2% of videos). Note that gaming and entertainment are
among the most popular video categories on YouTube. The video requests range
from 102 to above 107. Therefore, to prevent the ELM algorithm from biasing it’s
prediction to only the videos with the highest requests, we apply a log transform
to the requests such that the range is in 2 to 7. All the content features are scaled to
satisfy x(m)∈ [0,1] for m∈ {1, . . . ,M}. We use 11,747 video content to construct
the training dataset D = {{x f ,g f ,y f } : f ∈F}. The remaining videos are used
to test the performance of the conformal prediction algorithm. In total there are
G = 3 groups in the dataset, where group g = 1 is associated with videos with
less than 100 requests, g = 2 with videos with requests in the range of 100 to
30,000 requests, and g = 3 videos that have more then 30,000 requests. For
testing the performance of the discriminant analysis classifier, extreme learning
machines, and coherent risk-minimization algorithms, we use the dataset D̂ which
is comprised of 13,253 videos. The number of requests for each video content is
identical at each of the smallcell access points and base station.

As a preliminary step, the YouTube videos are clustered based on their asso-
ciated category. The content requests of cluster c ∈ C at node v is:

yv
c = ∑

f∈Fc
yv f , (4.25)

113

where Fc ⊆F . Given the content requests per cluster, the caching methods pre-
sented in this chapter optimally cache each category of content in the network.
We use the top 10 most popular YouTube categories to compute the performance
metrics of the caching schemes. To evaluate the delay of the risk-averse caching
schemes a method is required to generate user request that is consistent with the
YouTube dataset D .

Content Request vector: We discretize time into a total of Kt time slots,
where for each time-slot a content request is received. We construct content pop-
ularity distribution using dataset D where Pv

f denotes the probability of content f

being requested at node v and Pv
f ∼ yv f . Let rv denote the content request vector

with elements rv(k) ∈F that define the content f being requested time k at node
v. The content request vector satisfies the condition

Kt

∑
k=1

1{rv(k) = f} ∼ Pv
f ∀ f ∈F . (4.26)

To construct the content request vector we randomly generate a total of Kt =

20,000 content requests in rv such that (4.26) is satisfied. The estimated delay
for a given caching decision is computed by evaluating the total delay associated
with the content requests from the request vector rv at each of the v nodes.

4.5.2 Conformal Prediction Algorithm for YouTube Content
In this section the performance of the conformal prediction algorithm presented
in Sec.4.4, is evaluated using real-world YouTube datasets. This includes the
performance of the discriminant analysis classifier, extreme learning machines,
and the conformal prediction for video content requests.

From fig. 4.4, the first step in the conformal prediction algorithm is the offline
stage in which the parameters of the group association classifier (µg and Σg) are
selected, the extreme learning machines are trained for each group (β g,θ g,Lg),
and the parameters ε f (g) in (4.23) are estimated using the training dataset D .
The performance of the group classifier is evaluated using the true positive rate

114

BS

Communication

Link

Core Network

SAP-1

SGW

Content Server

SAP-2

SAP-3

Figure 4.5: Schematic of the network. There are three smallcell access
points (SAPs) in the network. These SAPs are connected with the
smallcell gateway (SGW) via heterogeneous communication links.
SGW and base station (BS) are connected with the core network. Each
SAPs, BS and SGW has a storage of 500 GB. Storage of the core net-
work is assumed to be 1 TB and the core network is connected to the
content server which can cache the entire library via wide area network
(WAN).

(TPR) and true negative rate (TNR), and the extreme learning machines using
CVaRα(ε

2) for an α = 0.95. The results are provided in Table 4.2 where the pa-
rameter ng is the total number of content in each of the groups g ∈ G . As seen,
the group association classifier has a reasonable TPR and TNR for classifying the
group association of each video. Using the RELM in Sec.4.4.2, Table 4.2 illus-
trates that the selected number of neurons Lg for the ELM associated with group

115

g ∈ G varies between the three groups, however the error CVaRα(ε
2) remains

approximately equal. This illustrates that the RELM can dynamically adjust the
number of neurons necessary to effectively estimate the content requests ŷ f of new
content while minimizing the risk of over-fitting with a confidence level α = 0.95.

Table 4.2: Group Classification and Neuron Number Selection

Group ng TPR TNR CVaRα(ε
2) Lg

1 2405 0.80 0.96 0.3302 37
2 10314 0.94 0.79 0.3046 59
3 534 0.74 0.99 0.3133 24

To construct the conformal prediction (4.24) requires an estimate of the pre-
diction errors ε f (g) in (4.23). Alternatively, we can construct an estimate of
F̂Y (y f |g,x f) using the empirical cumulative distribution function F̂E|g(ε|g) of the
random variables ε . Fig.4.6 illustrates the computed group empirical cumula-
tive distribution function F̂E|g(ε|g) of the error of the ELM associated with each
group g ∈ G . Using maximum likelihood estimation, we find that the empirical
cdf F̂E|g(ε|g) is approximately equal to the generalized extreme value distribution
typically used in risk management, finance, and economics. Given F̂E|g(ε|g), the
conditional distribution of content requests can be evaluated using

F̂Y (y f |g,x f) = F̂E|g(y f − ŷ f (x f ,g)|g,x f) (4.27)

where ŷ f (x f ,g) is the estimated content requests from the ELM associated with
group g ∈ G for content f .

Given the parameters of the group association classifier, ELMs, and F̂Y (y f |g,x f)

from the offline stage of the conformal prediction algorithm, we now evaluate the
performance of the online portion of the conformal prediction algorithm for new
content. The group association probability P(g|x f) and results of the conformal
prediction algorithm for new content are provided in Fig.4.7. The content index

116

g = 2 g = 3g = 1

E
m

pi
ri

ca
lC

D
F
F̂
E
|g
(ε
|g
)

Figure 4.6: Empirical cumulative distribution function of the error ε(g) in
(4.22) for the groups g ∈ G . The gray dots indicate the empirical cu-
mulative distribution function F̂E|g(ε|g), and the black line indicates
the fitted generalized extreme value distribution.

is ordered such that the least requested content is f = 1, and the most requested
content is f = 13,253 based on the results of the conformal prediction. As Fig.4.7
illustrates, the group association probability P(g|x f) from the discriminant anal-
ysis classifier provides a reasonable accuracy for the probability of group associ-
ation. From Fig.4.8, there are approximately 1,225 contents (indicated in black)
that have predicted number of requests from the ELMs that are outside the 90%
confidence interval. Equivalently, approximately 9.2% of the content requests
reside outside the 90% confidence interval computed from the conformal predic-

117

tion algorithm. To determine if the cumulative distribution function F̂Y (y f |x f) is
consistent with observed content requests data, we use the quantile-quantile plot.
The quantile-quantile plot in Fig. 4.9 is evaluated using the confidence interval of
F̂Y (y f |x f). As seen from Fig. 4.9, the empirical cumulative distribution F̂Y (y f |x f)

is in excellent agreement with the observed data. Therefore, F̂Y (y f |x f) provides a
reasonable approximation for the actual content request distribution FY (y f |x f).

The above results indicate that the conformal prediction algorithm presented
in Sec.4.4, and illustrated in Fig. 4.4, can be used to estimate the cumulative dis-
tribution function FY (y f |x f) of YouTube content requests. The estimated cumu-
lative distribution function F̂Y (y f |x f) can then be used in the risk-averse caching
schemes (RA and RANA) to optimally cache content in the smallcell network.
Additionally, the trained ELMs can be used for point predictions of the content
requests for the risk-neutral caching schemes (RN and RNNA).

4.5.3 Selection of the Confidence Level α for Maximum
Content Retrieval Delay Guarantees

The risk-averse caching schemes (RA and RANA) account for the uncertainty of
the predicted content requests using the CVaR risk measure for a given confidence
level α . From (4.7), for a confidence level α , CVaR is the expected content re-
trieval delay given that the delay is greater than or equal to the VaR at α . The
selection of the parameter α ∈ [0,1] is determined by the network operator. In
this section we evaluate the cumulative distribution function FD(d) to evaluate
the probability that the delay D is less than the threshold d using the RNNA and
RANA caching schemes for a given confidence level α . Given FD(d), the net-
work operator can select the confidence level α to guarantee that the delay does
not exceed the given threshold dth.

Fig. 4.10 provides the cumulative distribution function FD(d) for the con-
tent retrieval delay for confidence levels α = 0.9 and α = 0.99 using the RANA
caching scheme, and the RNNA caching scheme. From Fig. 4.10, the RANA
caching scheme (4.12) provides better performance compared to the RNNA caching

118

Figure 4.7: Group association probability P(g|x f). Gray dots indicate the
probability of association with group g = 1, black dots with g = 2, and
light-gray dots with g = 3. Performance of the conformal prediction
algorithm that was schematically illustrated in Fig. 4.4, for YouTube
content requests. Group g = 1 is associated with all videos that are
predicted to have less than 100 requests, g = 2 with requests in the
range of 100 to 30,000, and group g = 3 with more then 30,000 re-
quests. The 90% confidence interval is evaluated using the empirical
cumulative distribution function F̂Y f (y f |x f) of content requests defined
in (4.24). As seen, the computed group association, point content re-
quests, and conformal predictions are in excellent agreement with the
YouTube datasets. The training and evaluation datasets are discussed
in Sec.4.5.1.

scheme (4.4) for all delay threshold values d. This results as the RANA caching
scheme accounts for the uncertainty associated with estimating the content re-
quests. For example, if we are interested in the probability the delay is less than
the threshold d = 50 seconds, the RNNA scheme is approximately 50%, while the

119

Figure 4.8: Conformal prediction of the number of content requests. The
expected number of requests is the solid black line, gray region is the
90% interval where the requests are expected to reside, and the black
dots are the real number of requests in D .

RANA schemes are approximately 98%. A substantial improvement in perfor-
mance is obtained by accounting for the prediction error in the caching decisions.
The associated delay of between the RANA caching schemes with α = 0.99 and
α = 0.9 are approximately equal except in the delay range of 46 seconds to 49
seconds. In this region the selection of α is important. For example, if d = 48
seconds, then the probability the delay is 50% for RANA with α = 0.99, and 60%
RANA with α = 0.9. Therefore, if the network operator wants to minimize the
probability of the delay exceeding the threshold dth = 48 seconds, an α = 0.9
should be selected. The reason that a larger value of α does not guarantee min-
imizing FD(d), for a specific d, is that as α → 1, the maximum delay is being
minimized in (4.12).

120

Figure 4.9: Quantile-quantile plot for the empirical cumulative distribution
function F̂Y (y f |x f) and the YouTube content requests. The linear black
line indicated perfect agreement between the data and distribution, and
the grey dots indicate the quantiles computed from the YouTube data.

4.5.4 Performance of the Risk-Neutral and Risk-Aware
Caching Schemes

In this section, we illustrate the performance of the four caching schemes (RN and
RNNA) in Secs.4.3.1, 4.3.2, and (RA and RANA) in Secs.4.3.4, 4.3.5. Addition-
ally, we compare the performance of these four caching schemes with the caching
scheme presented in [88]. The caching scheme in [88] accounts for the content
requests, and network parameters (cache size, bandwidth, latency among nodes),
however it does not account for the routing protocol used in the network or the un-
certainty associated with the estimated content requests. We refer to the caching
scheme in [88] as the risk-neutral without routing (RNWR) caching scheme.

The performance metric we use to compare these five caching schemes is the

121

Content retrieval delay d per MB file (second)
42 44 46 48 50 52 54 56

C
u
m
u
la
ti
ve

D
is
tr
ib
u
ti
on

F
u
n
ct
io
n
F
D
(d
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RANA α = 0.9
RANA α = 0.99
RNNA

Figure 4.10: Cumulative distribution function of the content retrieval de-
lay FD(d) using the RNNA and RANA caching schemes for a
confidence level α = 0.9,0.99. The circles denote the RNNA
caching scheme (4.4), diamond shape indicate the RANA caching
scheme (4.12) with α = 0.9, and squares for the RANA caching
scheme with α = 0.99. As the value of FD(d) = P(D≤ d) increases,
the probability the delay exceeds d decreases.

cumulative distribution function FD(d) for the content retrieval delay. To esti-
mate FD(d), we set K = 10,000 and α = 0.9, and generate 20,000 samples of
the total content retrieval delay D. Fig. 4.11 illustrates empirical FD(d) from
the five caching schemes. The results in Fig. 4.11 illustrate that the RA caching
scheme (4.11) has a lower delay than the RN caching scheme (4.3) for all possible
values of d. That is, the delay that results from the RN caching scheme illustrates
a first-order stochastic dominance compared with the delay that results from the

122

RA caching scheme. The delay of the RN and RA schemes are approximately
twice as large as compared with the RNWR scheme which accounts for the net-
work parameters but not the routing protocol used in the network. Therefore,
including network parameters can substantially reduce the delay that results when
performing a caching decision. Comparing the results for the RNWR, RNNA, and
RANA, both the RNNA and RANA caching schemes significantly reduce the con-
tent retrieval delay in the network compared with the RNWR caching scheme by
approximately 25%. This results as the RNNA and RANA schemes both reduce
the congestion of transferring content throughout the network as they account for
the network routing protocol used. Finally, the RANA scheme provides the low-
est content retrieval delay compared with the other four schemes as it accounts for
the uncertainty of content requests, network parameters, and the routing protocol
used to transfer content throughout the network.

4.6 Chapter Summary
In this work we designed risk-neutral and risk-averse caching schemes for het-
erogeneous networks that contain smallcell access points and base stations which
have limited storage capacity and low bandwidth backhaul links. The risk-averse
caching schemes employed the coherent Conditional Value-at-Risk (CVaR) mea-
sure to account for the uncertainty of estimating the content requests to perform
the caching decisions. The CVaR risk measure is evaluated using information
from the conformal prediction algorithm which constructs the cumulative dis-
tribution function of the content requests based on the content features. Using
real-world datasets from YouTube and the NS-3 simulator, we demonstrate how
the caching schemes reduce the delay of retrieving content in heterogeneous net-
works compared with industry standard caching schemes. The results show that a
6% reduction in the average delay can be achieved if the uncertainty of the content
requests is accounted for, and a 25% reduction in average delay is achieved if both
the uncertainty and network routing protocol are accounted for compared to the
risk-neutral caching that neglects the routing protocol.

123

Content retrieval delay d per MB file (second)
40 50 60 70 80 90 100 110 120 130 140

C
u
m
u
la
ti
ve

D
is
tr
ib
u
ti
on

F
u
n
ct
io
n
F
D
(d
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RANA
RNNA
RA
RN
RNWR

Figure 4.11: The cumulative distribution function FD(d) of the content re-
trieval delay for the RN, RNNA, RA, RANA, RNWR caching
schemes. To evaluate FD(d) for the RA and RANA caching schemes,
we set K = 10,000 and α = 0.9 in (4.11) and (4.12). A total of 20,000
samples are generated for the content retrieval delay to construct the
empirical cdf FD(d). The results illustrate that the delay of the RN,
RNNA, RA, and RNWR schemes all first-order stochastically domi-
nate the delay associated with the RANA caching scheme.

124

Chapter 5

Conclusions and Future Research
Directions

In this chapter, we summarize the main contributions of the thesis and describe
future research directions.

5.1 Conclusions
The growing popularity of cloud computing offers mobile users to enjoy a wide
variety of applications. However, the traditional centralized cloud computing ar-
chitecture faces several challenges. Offloading tasks to a distant remote cloud
incur data transferring delay which is not suitable for time-critical applications
while sending data associated with tasks migration to a remote cloud increases
the traffic volume in the network. On the other hand, the gaining popularity of
video streaming via mobile devices surges traffic volume in the network. To ad-
dress these challenges new architecture, namely, mobile edge cloud has gained
attention from both industry and academia. The main idea of mobile edge cloud
is to integrate computation and storage at the edge of the network, serving a por-
tion of the users’ requests locally, resulting in a reduction in data traffic volume
and data transferring delay. The unified theme of the thesis was to design mecha-

125

nisms for mobile edge cloud to maximally utilize edge network resources. In this
thesis, we made three major contributions and a summary of these contributions
is as follows.

• In the first part of the thesis, we designed a distributed resource sharing
mechanism for mobile edge cloud where edge nodes such as FAPs share
their computational resources with the neighbours FAPs and form local
clouds to reduce the number of offloading tasks to a remote cloud. As such,
the resulting local femto-clouds reduce overall latency associated with tasks
migration to a remote cloud, and hence, improve users’ QoE. To motivate
FAP owners to share their resources for performing tasks in femto-clouds, a
monetary incentive mechanism was introduced. To this end, we proposed a
distributed femto-clouds formation mechanism and formulated the problem
as an optimization problem with the objective to maximize overall utili-
ties such as higher monetary incentives and lower overall network latency
while ensuring a fair division of incentives among individual FAPs within
the femto-clouds. In particular, the problem was formulated as a coalition
formation game with modified core and the proposed algorithm reached to
the optimal solution in a distributed fashion. The numerical results verified
the applicability of the proposed femto-clouds formation mechanism in a
wide range of scenarios e.g., hotspot, residential, and enterprise environ-
ment of the femtocell network.

• In the second part of the thesis, we constructed a caching scheme to max-
imally utilize storage resources at the edge of the network. The presented
caching scheme reduces traffic volume in the network by serving users’ re-
quests locally and also reduces content downloading delay. To this end,
we constructed a caching scheme that takes into account users’ behaviour
and operating characteristics of the network. In particular, the presented
caching scheme estimated content popularity from the content features and
requests statistics of users as they were available. Then a mixed integer

126

linear program was formulated that took into account content popularity,
and network parameters such as network topology, a communication link to
select where to place content in the network. Numerical evaluations using
YouTube videos demonstrated the efficacy of the proposed caching scheme.

• The caching scheme presented in the second part of the thesis did not in-
clude content retrieval path in the caching decision. As a result, a separate
routing mechanism was employed to retrieve content from the neighbour
nodes. In the third part of the thesis, we designed a caching scheme that
not only considered content popularity and network parameters but also ac-
counted for the routing mechanism in the caching decision. As such, the
presented caching scheme reduced content downloading and traffic volume
in the network while balancing the traffic load over communication links us-
ing the routing mechanism. To this end, we constructed a caching scheme
which is referred to the risk-neutral caching scheme in this thesis. The risk-
neutral caching scheme required to solve a unimodular linear program. In
order to incorporate uncertainty associated with the error in the content pop-
ularity prediction, we presented a risk-averse caching scheme where uncer-
tainty was modelled using conditional value at risk measure. The numerical
evaluation demonstrated that an improved network performance can be ob-
tained by including routing mechanism in the caching decision. Numerical
results also demonstrated the benefit of the risk-averse caching scheme over
the risk-neutral caching scheme.

5.2 Future Research Problems
In this section, we describe three future research problems in mobile edge cloud.
Precisely, the first problem is related to the mobile edge cloud computing. The
main target of this problem is to design frame allocation mechanism for edge
cloud assisted mobile game to improve mobile users’ gaming experience. The
aim of the second problem is to design caching method where individual wire-

127

less node learns content popularity locally by observing content request statistics.
The third problem combines both computations and caching at the edge of the
network. The main target of this problem is to design a caching strategy that
stores content with appropriate bit rate version. In this problem, edge comput-
ing resources are employed to perform computations related to transcoding of a
content. A schematic of the future research problems is depicted in Fig.5.1.

Mobile Edge Cloud

Computation Scheduling Caching

Edge Cloud assisted
Mobile Game

Joint Computation and Caching
for Adaptive Bit Rate Video Streaming

Collaborative Learning
for Edge Caching

Figure 5.1: A schematic view of the future research challenges.

5.2.1 Frame Allocation Mechanism for Edge Cloud Assisted
Mobile Gaming

With the proliferation of smart phones, mobile gaming is gaining popularity among
young generation. Although smart phones offer a wide variety of games, they are
mostly single player games due to the resource constraints of the mobile devices
such as battery life and computational power. Mobile cloud gaming has been
proposed to support complicated multi-player games on mobile devices without
augmenting resources. The idea is to outsource computational burdens to a cloud
server. In mobile cloud gaming, the mobile device behaves like a thin client and
works as a platform to send gaming control inputs to the cloud server. The cloud
server processes the gaming scenarios and then streams back video frames to the
mobile device. Players are interacting each other in the cloud via a wireless net-

128

work. Mobile cloud gaming enables users to play any game using their mobile
devices as long as the device has the ability to support video. Although mobile
cloud gaming prolongs the battery life of the mobile device, it also introduces
latency which affects players’ QoE. Edge cloud assisted mobile gaming is one
possible solution to overcome latency issue in mobile cloud gaming [152, 153].

Though edge cloud assisted mobile gaming takes care of the latency issue, it
also introduces several challenges. On the one hand, edge cloud nodes are pos-
sessing a finite amount of resources and a number of users are sharing these re-
sources simultaneously. Therefore, the availability of the computational resources
has an impact on the processing delay. On the other hand, to make a game inter-
active and to avoid jerky video, a minimum number of video frames needs to
be received by the mobile device in a second. However, the time-varying nature
of the wireless channels limits the number of packet delivery through wireless
channels. In addition, users’ prefer high-quality video frames which consist of a
higher number of packets and hence requires longer transmission and processing
time. Studies reveal that video quality and response delay affects mobile gaming
user experience and users may quit the game [154].

Motivated by the aforementioned facts, designing a frame allocation mecha-
nism for edge cloud assisted mobile gaming is important where the main objective
of the frame allocation mechanism is to maximize mobile gaming user experience
while satisfying all the constraints: the target number of frames in a second, pro-
cessing delay of the video frames, edge cloud nodes computational workload, and
wireless channels’ supportable packet rate. One possible way to solve the problem
is to formulate the problem as a finite horizon Markov decision problem where the
objective is to maximize mobile gaming user experience over the horizon while
satisfying all the constraints. To overcome the complexity issue in Markov deci-
sion process, designing sub-optimal solutions are also important for this problem.

129

5.2.2 Collaborative Learning for Edge Caching
The caching methods presented in this thesis first estimate content popularity from
their features using learning algorithms. Having computed the content popularity,
the caching methods employ optimization techniques to decide the content to be
cached in the edge nodes. As such, the presented caching methods involve two
steps for caching a content. As already mentioned, there are several advantages of
the presented caching methods such as:

i) the content popularity estimation technique enables to cache popular content
without observing requests for the content. Thereby, content downloading delay
is reduced even if the content has recently been uploaded;

ii) since content popularities are already available from the learning technique,
the content caching can be performed when the network load is minimal; and

iii) the estimation techniques and optimization techniques are not tethered.
As a result, different estimation techniques can be employed for the presented
optimization techniques and vice versa.

Although presented caching methods have several advantages, they incur cache
initialization cost that is content transferring cost at the beginning of caching. The
entire cache needs to be updated with the recent popular ones when content pop-
ularity changes. As a result, when content popularity changes rapidly, learning
content popularity and cache content simultaneously, provides more benefit than
the presented caching methods that requires cache initialization.

Few research works consider learning and caching content simultaneously for
the edge network [67],[68] where the caching methods involve solving a multi-
armed bandit problem. In particular, at the beginning, content are cached ran-
domly and edge node records requests for each of the cached content. After an
interval, edge node evicts content that receive a lower number of requests than
a target threshold. Then the cache is filled with some new content and previous
interval popular content. This procedure continues and asymptotically the cache
will be filled with the popular content [67]. Nonetheless, the presented caching
methods require keeping track of the request statistics for each of the content.

130

To overcome such limitation, contextual multi-armed bandit caching methods are
proposed where content are clustered based on context and the eviction decisions
are made based on the cluster the content belongs to[68]. Although the presented
caching methods improve learning speed, the caching methods still require a cer-
tain number of content requests to identify popular clusters.

Collaborative learning can provide a significant improvement in learning speed
when edge nodes are densely populated such as in today heterogeneous hotspot
areas. According to the collaborative learning, edge nodes are grouped together
according to their content popularity pattern. As such, edge nodes that receive
significantly different content requests reside in separate groups. The main ad-
vantage of collaborative learning compared to the methods presented in [68] is
that collaborative learning not only exploits hidden information of the context but
also shares the gathered information with the neighbour edge nodes, as such edge
nodes with same popularity pattern learn content popularity as a single entity. The
resulting procedure thus takes advantage of content popularity patterns in the data
in a way akin to collaborative filtering methods[155],[156].

5.2.3 Joint Computation and Caching for Adaptive Bit Rate
Video Streaming

The caching methods exist in the literature do not account for different bit rate ver-
sion of the content. However, in reality, a content is requested from heterogeneous
platforms such as a laptop, smart phone, tablet and a transcoding mechanism is
required to adapt the bit rate version of the content according to the platform. In
addition, the time-varying nature of the wireless channels advocates the necessity
for considering different bit rate version of the content in the caching decision.

One way to handle this issue is to deploy some computational resources at
the edge caching node and perform computations associated with the transcoding.
The main benefit of such solution is that the edge node can cache diverse content
as such only one copy of a content is cached at the edge node. However, this
solution may not perform well when some popular content contribute to a large

131

portion of the content requests from the heterogeneous platform. In such case,
transcoding for each and every requests not only costs a significant amount of
computational resources but also introduces latency, resulting degradation in the
users’ QoE. Therefore, we need a joint computational and caching methods that
not only prescribe which content to cache but also recommend which version(s)
of the content to cache so that computational and caching resources are maximally
utilized. Authors of [157] have recently considered this issue which needs further
attention from the research community.

132

Bibliography

[1] K. Dolui and S. K. Datta, “Comparison of edge computing
implementations: Fog computing, cloudlet and mobile edge computing,”
in Proceedings of the IEEE Global Internet of Things Summit, pp. 1–6,
2017. → pages xii, 5

[2] N. C. Nguyen, P. Wang, D. Niyato, Y. Wen, and Z. Han, “Resource
management in cloud networking using economic analysis and pricing
models: a survey,” IEEE Communications Surveys & Tutorials, 2017. →
pages 3

[3] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A
survey,” Future Generation Computer Systems, vol. 29, no. 1, pp. 84–106,
2013. → pages 3

[4] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Cloud monitoring: A
survey,” Computer Networks, vol. 57, no. 9, pp. 2093–2115, 2013. →
pages 3

[5] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud
computing: Architecture, applications, and approaches,” Wireless
Communications and Mobile Computing, vol. 13, no. 18, pp. 1587–1611,
2013. → pages 3, 12

[6] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and
N. Venkatasubramanian, “Mobile cloud computing: A survey, state of art
and future directions,” Mobile Networks and Applications, vol. 19, no. 2,
pp. 133–143, 2014. → pages 3

[7] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,” in
Proceedings of the IEEE INFOCOM, pp. 1285–1293, 2013. → pages 3, 4

133

[8] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Communications Surveys
& Tutorials, 2017. → pages 3

[9] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI White Paper, vol. 11,
no. 11, pp. 1–16, 2015. → pages 4

[10] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications
and issues,” in Proceedings of the ACM Workshop on Mobile Big Data,
pp. 37–42, 2015. → pages 4

[11] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” vol. 8, no. 4, pp. 14–23, 2009.
→ pages 4, 12, 13

[12] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: making smartphones last longer with
code offload,” in Proceedings of the International Conference on Mobile
Systems, Applications, and Services, (San Francisco, CA), pp. 49–62,
2010. → pages 4, 12, 27

[13] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Joint allocation of
computation and communication resources in multiuser mobile cloud
computing,” in Proceedings of the IEEE Workshop on Signal Processing
Advances in Wireless Communications, (Darmstadt, Germany),
pp. 26–30, 2013. → pages 5, 16

[14] J. Zhang, W. Xie, F. Yang, and Q. Bi, “Mobile edge computing and field
trial results for 5g low latency scenario,” China Communications, vol. 13,
no. Supplement2, pp. 174–182, 2016. → pages 7

[15] J. Dolezal, Z. Becvar, and T. Zeman, “Performance evaluation of
computation offloading from mobile device to the edge of mobile
network,” in Proceedings of the IEEE Standards for Communications and
Networking, pp. 1–7, 2016. → pages 7

[16] Y. Gao, W. Hu, K. Ha, B. Amos, P. Pillai, and M. Satyanarayanan, “Are
cloudlets necessary?,” School Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep. CMU-CS-15-139, 2015. → pages 8

134

[17] S. H. Chae and W. Choi, “Caching placement in stochastic wireless
caching helper networks: Channel selection diversity via caching,” IEEE
Transactions on Wireless Communications, vol. 15, no. 10,
pp. 6626–6637, 2016. → pages 8

[18] C. V. N. Index, “Global mobile data traffic forecast update, 2015–2020,”
2016. → pages 8

[19] S. Dernbach, N. Taft, J. Kurose, U. Weinsberg, C. Diot, and A. Ashkan,
“Cache content-selection policies for streaming video services,” in
Proceedings of the IEEE INFOCOM, pp. 1–9, 2016. → pages 8

[20] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. Leung, “Cache in the
air: exploiting content caching and delivery techniques for 5g systems,”
IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139, 2014. →
pages 9

[21] M. Gregori, J. Gómez-Vilardebó, J. Matamoros, and D. Gündüz,
“Wireless content caching for small cell and d2d networks,” IEEE Journal
on Selected Areas in Communications, vol. 34, no. 5, pp. 1222–1234,
2016. → pages 9

[22] N. Zhao, X. Liu, F. R. Yu, M. Li, and V. C. Leung, “Communications,
caching, and computing oriented small cell networks with interference
alignment,” IEEE Communications Magazine, vol. 54, no. 9, pp. 29–35,
2016. → pages 9

[23] C. V. N. Index, “Global mobile data traffic forecast update, 2015-2020,”
Cisco white paper, 2016. → pages 9

[24] C. Yang, Y. Yao, Z. Chen, and B. Xia, “Analysis on cache-enabled
wireless heterogeneous networks,” IEEE Transactions on Wireless
Communications, vol. 15, no. 1, pp. 131–145, 2016. → pages 9

[25] H. Ahlehagh and S. Dey, “Video-aware scheduling and caching in the
radio access network,” IEEE/ACM Transactions on Networking (TON),
vol. 22, no. 5, pp. 1444–1462, 2014. → pages 10, 17

[26] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed

135

caching helpers,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 8402–8413, 2013. → pages 10, 17, 19, 78, 93

[27] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, “Femtocaching
and device-to-device collaboration: A new architecture for wireless video
distribution,” IEEE Communications Magazine, vol. 51, no. 4,
pp. 142–149, 2013. → pages 10

[28] M. Xie, I. Widjaja, and H. Wang, “Enhancing cache robustness for
content-centric networking,” in Proceedings of the IEEE INFOCOM,
pp. 2426–2434, 2012. → pages 11

[29] R. Wang, X. Peng, J. Zhang, and K. B. Letaief, “Mobility-aware caching
for content-centric wireless networks: Modeling and methodology,” IEEE
Communications Magazine, vol. 54, no. 8, pp. 77–83, 2016. → pages 11

[30] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role of
proactive caching in 5g wireless networks,” IEEE Communications
Magazine, vol. 52, no. 8, pp. 82–89, 2014. → pages 11, 93

[31] S. Agarwal, M. Philipose, and P. Bahl, “Vision: The case for cellular small
cells for cloudlets,” in Proceedings of the International Workshop on
Mobile Cloud Computing & Services, (Bretton Woods, NH), pp. 1–5,
2014. → pages 12

[32] P. Bahl, R. Y. Han, E. E. Li, and M. Satyanarayanan, “Advancing the state
of mobile cloud computing,” in Proceedings of the ACM Workshop on
Mobile Cloud Computing & Services, (Ambleside, UK), pp. 21–28, 2012.
→ pages 13

[33] S. Barbarossa, P. Di Lorenzo, and S. Sardellitti, “Computation offloading
strategies based on energy minimization under computational rate
constraints,” in Proceedings of the European Conference on Networks and
Communications, (Bologna, Italy), pp. 1–5, 2014. → pages 16

[34] F. L. Vilela, A. J. Ferrer, M. A. Puente, Z. Becvar, M. Rohlik, T. Vanek,
P. Mach, O. M. Medina, J. V. Manzano, H. Hariyanto, et al.,
“TROPIC-D22 design of network architecture for femto-cloud
computing,” 2013. → pages 13, 26

136

[35] T. Arnold and U. Schwalbe, “Dynamic coalition formation and the core,”
Journal of Economic Behavior & Organization, vol. 49, no. 3,
pp. 363–380, 2002. → pages 14, 34, 36, 37

[36] R. Kaewpuang, D. Niyato, P. Wang, and E. Hossain, “A framework for
cooperative resource management in mobile cloud computing,” IEEE
Journal on Selected Areas in Communications, vol. 31, no. 12,
pp. 2685–2700, 2013. → pages 15

[37] M. Guazzone, C. Anglano, and M. Sereno, “A game-theoretic approach to
coalition formation in green cloud federations,” in Proceedings of the
IEEE International Symposium on Cluster, Cloud and Grid Computing,
(Chicago, IL), pp. 618–625, 2014. → pages 15

[38] C. A. Lee, “Cloud federation management and beyond: Requirements,
relevant standards, and gaps,” IEEE Cloud Computing, vol. 3, no. 1,
pp. 42–49, 2016. → pages 15

[39] T. Truong-Huu and C.-K. Tham, “A novel model for competition and
cooperation among cloud providers,” IEEE Transactions on Cloud
Computing, vol. 2, no. 3, pp. 251–265, 2014. → pages 15

[40] L. Mashayekhy, M. M. Nejad, and D. Grosu, “Cloud federations in the
sky: Formation game and mechanism,” IEEE Transactions on Cloud
Computing, vol. 3, no. 1, pp. 14–27, 2015. → pages 15

[41] F. Pantisano, M. Bennis, W. Saad, and M. Debbah, “Spectrum leasing as
an incentive towards uplink macrocell and femtocell cooperation,” IEEE
Journal on Selected Areas in Communications, vol. 30, no. 3,
pp. 617–630, 2012. → pages 15

[42] O. N. Gharehshiran, A. Attar, and V. Krishnamurthy, “Collaborative
sub-channel allocation in cognitive lte femto-cells: a cooperative
game-theoretic approach,” IEEE Transactions on Communications,
vol. 61, no. 1, pp. 325–334, 2013. → pages 15

[43] Z. Zhang, L. Song, Z. Han, and W. Saad, “Coalitional games with
overlapping coalitions for interference management in small cell
networks,” IEEE Transactions on Wireless Communications, vol. 13,
no. 5, pp. 2659–2669, 2014. → pages 15

137

[44] F. Pantisano, M. Bennis, W. Saad, M. Debbah, and M. Latva-Aho,
“Interference alignment for cooperative femtocell networks: A
game-theoretic approach,” IEEE Transactions on Mobile Computing,
vol. 12, no. 11, pp. 2233–2246, 2013. → pages 15

[45] R. Langar, S. Secci, R. Boutaba, and G. Pujolle, “An operations research
game approach for resource and power allocation in cooperative femtocell
networks,” IEEE Transactions on Mobile Computing, vol. 14, no. 4,
pp. 675–687, 2015. → pages 15

[46] S.-Y. Yun, Y. Yi, D.-H. Cho, and J. Mo, “The economic effects of sharing
femtocells,” IEEE journal on selected areas in Communications, vol. 30,
no. 3, pp. 595–606, 2012. → pages 15

[47] L. Gao, G. Iosifidis, J. Huang, and L. Tassiulas, “Economics of mobile
data offloading,” in Proceedings of the IEEE INFOCOM Workshops,
(Turin, Italy), pp. 351–356, 2013. → pages 15

[48] Y. Chen, J. Zhang, and Q. Zhang, “Utility-aware refunding framework for
hybrid access femtocell network,” IEEE Transactions on Wireless
Communications, vol. 11, no. 5, pp. 1688–1697, 2012. → pages 15

[49] S. Hua, X. Zhuo, and S. S. Panwar, “A truthful auction based incentive
framework for femtocell access,” in Proceedings of the IEEE WCNC,
(Shanghai, China), pp. 2271–2276, 2013. → pages 15

[50] L. Duan, J. Huang, and B. Shou, “Economics of femtocell service
provision,” IEEE Transactions on Mobile Computing, vol. 12, no. 11,
pp. 2261–2273, 2013. → pages 15

[51] N. Shetty, S. Parekh, and J. Walrand, “Economics of femtocells,” in
Proceedings of the IEEE GLOBECOM, (Honolulu, HI), pp. 1–6, 2009. →
pages 15

[52] Y. Zhang and M. van der Schaar, “Peer-to-peer multimedia sharing based
on social norms,” Signal Processing: Image Communication, vol. 27,
no. 5, pp. 383–400, 2012. → pages 15

[53] M. Jakobsson, J.-P. Hubaux, and L. Buttyán, “A micro-payment scheme
encouraging collaboration in multi-hop cellular networks,” in Financial

138

Cryptography (R. N. Wright, ed.), vol. 2742 of Lecture Notes in Computer
Science, pp. 15–33, 2003. → pages 15

[54] B.-G. Chun, K. Chaudhuri, H. Wee, M. Barreno, C. H. Papadimitriou, and
J. Kubiatowicz, “Selfish caching in distributed systems: A game-theoretic
analysis,” in Proceedings of the Annual ACM Symposium on Principles of
Distributed Computing, (Elche, Spain), pp. 21–30, 2004. → pages 15

[55] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Compact e-cash,” in
Advances in Cryptology (R. Cramer, ed.), vol. 3494 of Lecture Notes in
Computer Science, pp. 302–321, 2005. → pages 15

[56] L. Buttyán and J.-P. Hubaux, “Nuglets: a virtual currency to stimulate
cooperation in self-organized mobile ad hoc networks,” tech. rep., 2001.
→ pages 15

[57] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 10, pp. 4738–4755, 2015. → pages 16

[58] M. Ali, Q. Rabbani, M. Naeem, S. Qaisar, and F. Qamar, “Joint user
association, power allocation, and throughput maximization in 5g h-cran
networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 10,
pp. 9254–9262, 2017. → pages 16

[59] J. Oueis, E. C. Strinati, and S. Barbarossa, “Small cell clustering for
efficient distributed cloud computing,” in Proceedings of the IEEE
PIMRC, (Washington, DC), pp. 1474–1479, 2014. → pages 16

[60] J. Oueis, E. C. Strinati, and S. Barbarossa, “The fog balancing: Load
distribution for small cell cloud computing,” in Proc. of IEEE VTC,
vol. Spring, (Glasgow, Scotland), pp. 1–6, 2015. → pages 16

[61] S. Andreev, O. Galinina, A. Pyattaev, J. Hosek, P. Masek,
H. Yanikomeroglu, and Y. Koucheryavy, “Exploring synergy between
communications, caching, and computing in 5g-grade deployments,” IEEE
Communications Magazine, vol. 54, no. 8, pp. 60–69, 2016. → pages 17

[62] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting
caching and multicast for 5g wireless networks,” IEEE Transactions on

139

Wireless Communications, vol. 15, no. 4, pp. 2995–3007, 2016. → pages
17

[63] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation algorithms
for mobile data caching in small cell networks,” IEEE Transactions on
Communications, vol. 62, no. 10, pp. 3665–3677, 2014. → pages 17

[64] W. Jiang, G. Feng, and S. Qin, “Optimal cooperative content caching and
delivery policy for heterogeneous cellular networks,” IEEE Transactions
on Mobile Computing, vol. 16, no. 5, pp. 1382–1393, 2017. → pages 17

[65] B. Bharath, K. Nagananda, and H. V. Poor, “A learning-based approach to
caching in heterogenous small cell networks,” IEEE Transactions on
Communications, vol. 64, no. 4, pp. 1674–1686, 2016. → pages 17

[66] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-aware
proactive content caching with service differentiation in wireless
networks,” IEEE Transactions on Wireless Communications, vol. 16,
no. 2, pp. 1024–1036, 2017. → pages 17, 87, 93

[67] P. Blasco and D. Gunduz, “Learning-based optimization of cache content
in a small cell base station,” in Proceedings of IEEE International
Conference on Communications (ICC), pp. 1897–1903, 2014. → pages
17, 60, 130

[68] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C. Clancy,
“Learning distributed caching strategies in small cell networks,” in
Proceedings of the International Symposium on Wireless Communications
Systems, pp. 917–921, 2014. → pages 17, 130, 131

[69] E. Baştuğ, M. Bennis, E. Zeydan, M. A. Kader, I. A. Karatepe, A. S. Er,
and M. Debbah, “Big data meets telcos: A proactive caching perspective,”
Journal of Communications and Networks, vol. 17, no. 6, pp. 549–557,
2015. → pages 17

[70] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role of
proactive caching in 5g wireless networks,” IEEE Communications
Magazine, vol. 52, no. 8, pp. 82–89, 2014. → pages 17

140

[71] E. Baştuğ, M. Bennis, and M. Debbah, “Proactive caching in 5g small cell
networks,” Towards 5G: Applications, Requirements and Candidate
Technologies, pp. 78–98, 2016. → pages 17, 19, 78

[72] E. Bastug, M. Bennis, and M. Debbah, “A transfer learning approach for
cache-enabled wireless networks,” in Proceedings of the 13th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOpt), pp. 161–166, 2015. → pages 17

[73] E. Bastug, M. Bennis, and M. Debbah, “Anticipatory caching in small cell
networks: A transfer learning approach,” in Proceedings of the 1st KuVS
Workshop on Anticipatory Networks, 2014. → pages 17

[74] G. Huang, G. Huang, S. Song, and K. You, “Trends in extreme learning
machines: A review,” Neural Networks, vol. 61, pp. 32–48, 2015. →
pages 18, 64

[75] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and
K. Ramakrishnan, “Optimal content placement for a large-scale vod
system,” IEEE/ACM Transactions on Networking, vol. 24,
pp. 2114–2127, 2016. → pages 19, 78, 112

[76] H. Pinto, J. Almeida, and M. Gonçalves, “Using early view patterns to
predict the popularity of YouTube videos,” in Proceedings of the 6th ACM
International Conference on Web Search and Data Mining, pp. 365–374,
2013. → pages 20

[77] Z. Tan, Y. Wang, Y. Zhang, and J. Zhou, “A novel time series approach for
predicting the long-term popularity of online videos,” IEEE Transactions
on Broadcasting, vol. 62, no. 2, pp. 436–445, 2016. → pages 20

[78] J. Wu, Y. Zhou, M. Chiu, and Z. Zhu, “Modeling dynamics of online video
popularity,” IEEE Transactions on Multimedia, vol. 18, no. 9,
pp. 1882–1895, 2016. → pages 20

[79] C. Li, J. Liu, and S. Ouyang, “Characterizing and predicting the popularity
of online videos,” IEEE Access, vol. 4, pp. 1630–1641, 2016. → pages 20

[80] R. Zhou, S. Khemmarat, L. Gao, J. Wan, J. Zhang, Y. Yin, and J. Yu,
“Boosting video popularity through keyword suggestion and

141

recommendation systems,” Neurocomputing, vol. 205, pp. 529–541, 2016.
→ pages 20

[81] W. Hoiles, A. Aprem, and V. Krishnamurthy, “Engagement and popularity
dynamics of YouTube videos and sensitivity to meta-data,” IEEE
Transactions on Knowledge & Data Engineering, no. 7, pp. 1426–1437,
2017. → pages 20

[82] A. Tay and K. Wallis, “Density forecasting: a survey,” Journal of
forecasting, vol. 19, no. 4, p. 235, 2000. → pages 20

[83] D. Hamilton, Time series analysis, vol. 2. Princeton university press,
1994. → pages 20

[84] L. Fang and D. Bessler, “Stock returns and interest rates in china: the
prequential approach,” Applied Economics, pp. 1–14, 2017. → pages 20

[85] K. Shanmugam, N. Golrezaei, A. Dimakis, A. Molisch, and G. Caire,
“Femtocaching: Wireless content delivery through distributed caching
helpers,” IEEE Transactions on Information Theory, vol. 59, no. 12,
pp. 8402–8413, 2013. → pages 20, 21

[86] B. Bharath, K. Nagananda, and H. V. Poor, “A learning-based approach to
caching in heterogenous small cell networks,” IEEE Transactions on
Communications, vol. 64, no. 4, pp. 1674–1686, 2016. → pages 20, 21

[87] J. Song, H. Song, and W. Choi, “Optimal content placement for wireless
femto-caching network,” IEEE Transactions on Wireless
Communications, vol. 16, no. 7, pp. 4433–4444, 2017. → pages 20, 21

[88] S. Tanzil, W. Hoiles, and V. Krishnamurthy, “Adaptive scheme for caching
youtube content in a cellular network: Machine learning approach,” IEEE
Access, vol. 5, pp. 5870–5881, 2017. → pages 21, 121

[89] J. He and W. Song, “Optimizing video request routing in mobile networks
with built-in content caching,” IEEE Transactions on Mobile Computing,
vol. 15, no. 7, pp. 1714–1727, 2016. → pages 21

[90] M. Dehghan, B. Jiang, A. Seetharam, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal request
routing and content caching in heterogeneous cache networks,”

142

IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1635–1648,
2016. → pages 21

[91] K. Poularakis, G. Iosifidis, A. Argyriou, and L. Tassiulas, “Video delivery
over heterogeneous cellular networks: Optimizing cost and performance,”
in Proceedings of the IEEE INFOCOM, pp. 1078–1086, 2014. → pages
21

[92] T. Rockafellar and S. Uryasev, “Optimization of conditional value-at-risk,”
Journal of risk, vol. 2, pp. 21–42, 2000. → pages 22, 97, 98

[93] T. Rockafellar and S. Uryasev, “Conditional value-at-risk for general loss
distributions,” Journal of banking & finance, vol. 26, no. 7,
pp. 1443–1471, 2002. → pages 97

[94] P. Krokhmal, J. Palmquist, and S. Uryasev, “Portfolio optimization with
conditional value-at-risk objective and constraints,” Journal of risk, vol. 4,
pp. 43–68, 2002. → pages 22

[95] P. Resnick, R. Zeckhauser, J. Swanson, and K. Lockwood, “The value of
reputation on ebay: A controlled experiment,” Experimental Economics,
vol. 9, no. 2, pp. 79–101, 2006. → pages 31

[96] J. P. Kahan and A. Rapoport, Theories of Coalition Formation. New York,
NY: Psychology Press, 2014. → pages 34

[97] W. Saad, Z. Han, M. Debbah, A. Hjorungnes, and T. Basar, “Coalitional
game theory for communication networks,” IEEE Signal Processing
Magazine, vol. 26, no. 5, pp. 77–97, 2009. → pages 34

[98] G. Owen, Game Theory. New York, NY: Academic Press, 1995. → pages
34

[99] O. N. Gharehshiran, Distributed Dynamic Coalition Formation for
Bearings-only Localization in Wireless Sensor Networks. PhD thesis,
University of British Columbia (Vancouver), 2010. → pages 38

[100] B.-Y. Su, Parallel Application Library for Object Recognition. PhD thesis,
EECS Department, University of California, Berkeley, 2012. → pages 40

143

[101] M. Maire, P. Arbeláez, C. Fowlkes, and J. Malik, “Using contours to
detect and localize junctions in natural images,” in Proceedings of the
IEEE CVPR, (Anchorage, AK), pp. 1–8, 2008. → pages 40

[102] J. Li and J. Z. Wang, “Studying digital imagery of ancient paintings by
mixtures of stochastic models,” IEEE Transactions on Image Processing,
vol. 13, no. 3, pp. 340–353, 2004. → pages 40

[103] K. Tan and S. Chen, “Adaptively weighted sub-pattern PCA for face
recognition,” Neurocomputing, vol. 64, pp. 505–511, 2005. → pages 40

[104] N. Baldo, M. Miozzo, M. Requena-Esteso, and J. Nin-Guerrero, “An open
source product-oriented LTE network simulator based on ns-3,” in
Proceedings of the ACM MSWiM, (Miami Beach, FL), pp. 293–298,
2011. → pages 41

[105] N. Baldo, M. Requena-Esteso, M. Miozzo, and R. Kwan, “An open source
model for the simulation of LTE handover scenarios and algorithms in
ns-3,” in Proceedings of the ACM MSWiM, (Barcelona, Spain),
pp. 289–298, 2013. → pages 41

[106] J. Zhang, X. Zhang, and W. Wang, “Cache-enabled software defined
heterogeneous networks for green and flexible 5g networks,” IEEE
Access, vol. 4, pp. 3591–3604, 2016. → pages 54

[107] J. Liu, Q. Yang, and G. Simon, “Optimal and practical algorithms for
implementing wireless cdn based on base stations,” in Proceedings of the
IEEE Vehicular Technology Conference, pp. 1–5. → pages 54

[108] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K.
Ramakrishnan, “Optimal content placement for a large-scale vod system,”
in Proceedings of the International Conference on Emerging Networking
Experiments and Technologies, p. 4, 2010. → pages 60

[109] J. Till, S. Engell, S. Panek, and O. Stursberg, “Empirical complexity
analysis of a milp-approach for optimization of hybrid systems,” in
Proceedings of the Conference on Analysis and Design of Hybrid
Systems, pp. 129–134, 2003. → pages 60

144

[110] K. Genova and V. Guliashki, “Linear integer programming methods and
approaches–a survey,” Journal of Cybernetics and Information
Technologies, vol. 11, no. 1, 2011. → pages 60

[111] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and
P. H. Vance, “Branch-and-price: Column generation for solving huge
integer programs,” Operations research, vol. 46, no. 3, pp. 316–329, 1998.
→ pages 60

[112] R. H. Bartels and G. H. Golub, “The simplex method of linear
programming using lu decomposition,” Communications of the ACM,
vol. 12, no. 5, pp. 266–268, 1969. → pages 60

[113] F. A. Potra and S. J. Wright, “Interior-point methods,” Journal of
Computational and Applied Mathematics, vol. 124, no. 1, pp. 281–302,
2000. → pages 60

[114] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C. Li,
“An analysis of facebook photo caching,” in Proceedings of the ACM
Symposium on Operating Systems Principles, pp. 167–181, 2013. →
pages 61, 89, 91

[115] M. Guzelsoy and T. K. Ralphs, “Duality for mixed-integer linear
programs,” International Journal of Operations Research, vol. 4, no. 3,
pp. 118–137, 2007. → pages 63

[116] J. N. Hooker, “Integer programming: lagrangian relaxation integer
programming: Lagrangian relaxation,” in Encyclopedia of Optimization,
pp. 1667–1673, Springer, 2008. → pages 63

[117] Q. He, T. Shang, F. Zhuang, and Z. Shi, “Parallel extreme learning
machine for regression based on mapreduce,” Neurocomputing, vol. 102,
pp. 52–58, 2013. → pages 63, 64, 106

[118] A. Basu, S. Shuo, H. Zhou, M. Lim, and G. Huang, “Silicon spiking
neurons for hardware implementation of extreme learning machines,”
Neurocomputing, vol. 102, pp. 125–134, 2013. → pages 63, 64, 106

[119] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain,” Psychological review, vol. 65,
no. 6, p. 386, 1958. → pages 64

145

[120] G. Huang and L. Chen, “Enhanced random search based incremental
extreme learning machine,” Neurocomputing, vol. 71, no. 16,
pp. 3460–3468, 2008. → pages 64, 67, 106

[121] W. Huang, Z. Tan, Z. Lin, G. Huang, J. Zhou, C. Chui, Y. Su, and
S. Chang, “A semi-automatic approach to the segmentation of liver
parenchyma from 3d ct images with extreme learning machine,” in
Proceedings of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pp. 3752–3755, 2012. →
pages 64

[122] J. Zhao, Z. Wang, and D. Park, “Online sequential extreme learning
machine with forgetting mechanism,” Neurocomputing, vol. 87,
pp. 79–89, 2012. → pages 64, 106

[123] Y. Ye, S. Squartini, and F. Piazza, “Online sequential extreme learning
machine in nonstationary environments,” Neurocomputing, vol. 116,
pp. 94–101, 2013. → pages 64, 106

[124] G. Huang, Q. Zhu, and C. Siew, “Extreme learning machine: theory and
applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501, 2006. →
pages 64, 106

[125] C. J. Hutto and E. Gilbert, “Vader: A parsimonious rule-based model for
sentiment analysis of social media text,” in Proceedings of the
International AAAI conference on weblogs and social media, 2014. →
pages 67

[126] Q. Yu, M. Heeswijk, Y. Miche, R. Nian, B. He, E. Séverin, and
A. Lendasse, “Ensemble delta test-extreme learning machine (dt-elm) for
regression,” Neurocomputing, vol. 129, pp. 153–158, 2014. → pages 67

[127] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse,
“OP-ELM: optimally pruned extreme learning machine,” IEEE
Transactions on Neural Networks, vol. 21, no. 1, pp. 158–162, 2010. →
pages 67

[128] J. Spall, Introduction to stochastic search and optimization: Estimation,
simulation, and control, vol. 65. John Wiley & Sons, 2005. → pages 68

146

[129] H. Liu and H. Motoda, Feature selection for knowledge discovery and data
mining, vol. 454. Springer Science & Business Media, 2012. → pages 70

[130] U. Stańczyk and L. Jain, Feature Selection for Data and Pattern
Recognition. Springer, 2015. → pages 70

[131] F. Benoit, M. Heeswijk, Y. Miche, M. Verleysen, and A. Lendasse,
“Feature selection for nonlinear models with extreme learning machines,”
Neurocomputing, vol. 102, pp. 111–124, 2013. → pages 70

[132] N. Choi, K. Guan, D. C. Kilper, and G. Atkinson, “In-network caching
effect on optimal energy consumption in content-centric networking,” in
Proceedings of the IEEE ICC, pp. 2889–2894, 2012. → pages 72

[133] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2.0:
A new version of the NDN simulator for NS-3,” Technical Report
NDN-0028, NDN, January 2015. → pages 72

[134] J. Friedman, “Stochastic gradient boosting,” Computational Statistics &
Data Analysis, vol. 38, no. 4, pp. 367–378, 2002. → pages 77

[135] A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis,
vol. 46. John Wiley & Sons, 2004. → pages 77

[136] W. Venables and B. Ripley, Modern applied statistics with S-PLUS.
Springer Science & Business Media, 2013. → pages 77

[137] J. Hu, J. Zhang, C. Zhang, and J. Wang, “A new deep neural network
based on a stack of single-hidden-layer feedforward neural networks with
randomly fixed hidden neurons,” Neurocomputing, 2015. → pages 77

[138] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Networks, vol. 61, pp. 85–117, 2015. → pages 77

[139] R. Quinlan, C4.5: programs for machine learning. Elsevier, 2014. →
pages 77

[140] G. Zhang, T. Q. Quek, M. Kountouris, A. Huang, and H. Shan,
“Fundamentals of heterogeneous backhaul design–analysis and
optimization,” IEEE Transactions on Communications, vol. 64, no. 2,
pp. 876–889, 2016. → pages 85

147

[141] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge Univ. Press, 2004. → pages 96

[142] M. Zeni, D. Miorandi, and F. De Pellegrini, “YOUStatAnalyzer: A tool
for analysing the dynamics of youtube content popularity,” in Proceedings
of the International Conference on Performance Evaluation
Methodologies and Tools, pp. 286–289, 2013. → pages 96

[143] G. L. Nemhauser and L. A. Wolsey, “Integer programming and
combinatorial optimization,” Wiley, 1988. → pages 100

[144] D. Silva, “Two-group classification with high-dimensional correlated data:
A factor model approach,” Computational Statistics & Data Analysis,
vol. 55, no. 11, pp. 2975–2990, 2011. → pages 104

[145] W. Griffiths, “A Gibbs’ sampler for the parameters of a truncated
multivariate normal distribution,” Contemporary issues in economics and
econometrics: Theory and application, pp. 75–91, 2004. → pages 104

[146] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in Proceedings of the
International Conference on Machine Learning, pp. 1139–1147, 2013. →
pages 105

[147] M. Mavrovouniotis and S. Yang, “Training neural networks with ant
colony optimization algorithms for pattern classification,” Soft
Computing, vol. 19, no. 6, pp. 1511–1522, 2015. → pages 105

[148] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun,
“The loss surfaces of multilayer networks,” Artificial Intelligence and
Statistics, pp. 192–204, 2015. → pages 105

[149] M. Chen, E. Zadok, A. O. Vasudevan, and K. Wang, “Seminas: A secure
middleware for wide-area network-attached storage,” in Proceedings of
the ACM International on Systems and Storage Conference, pp. 1–13,
2016. → pages 112

[150] S. Abolfazli, Z. Sanaei, M. Alizadeh, A. Gani, and F. Xia, “An
experimental analysis on cloud-based mobile augmentation in mobile
cloud computing,” IEEE Transactions on Consumer Electronics, vol. 60,
no. 1, pp. 146–154, 2014. → pages 112

148

[151] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2: An
updated NDN simulator for NS-3,” Technical Report NDN-0028, Revision
2, NDN, November 2016. → pages 112

[152] W. Cai, V. C. Leung, and L. Hu, “A cloudlet-assisted multiplayer cloud
gaming system,” Mobile Networks and Applications, vol. 19, no. 2,
pp. 144–152, 2014. → pages 129

[153] W. Cai, Z. Hong, X. Wang, H. C. Chan, and V. C. Leung,
“Quality-of-experience optimization for a cloud gaming system with ad
hoc cloudlet assistance,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 25, no. 12, pp. 2092–2104, 2015. → pages 129

[154] S. Wang and S. Dey, “Modeling and characterizing user experience in a
cloud server based mobile gaming approach,” in Proceedings of the IEEE
GLOBECOM, pp. 1–7, 2009. → pages 129

[155] S. Li, A. Karatzoglou, and C. Gentile, “Collaborative filtering bandits,” in
Proceedings of the ACM SIGIR conference on Research and Development
in Information Retrieval, pp. 539–548, 2016. → pages 131

[156] C. Gentile, S. Li, and G. Zappella, “Online clustering of bandits,” in
Proceedings of the International Conference on Machine Learning,
pp. 757–765, 2014. → pages 131

[157] T. X. Tran, P. Pandey, A. Hajisami, and D. Pompili, “Collaborative
multi-bitrate video caching and processing in mobile-edge computing
networks,” in Proceedings of the IEEE Wireless On-demand Network
Systems and Services, pp. 165–172, 2017. → pages 132

149

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Glossary
	Acknowledgments
	1 Introduction
	1.1 Overview
	1.1.1 Mobile Edge Computing
	1.1.2 Mobile Edge Caching

	1.2 Main Contributions of the Thesis
	1.2.1 A Distributed Coalition Game Approach to Femto-Cloud Formation
	1.2.2 Adaptive Scheme for Caching Content in a Mobile Edge Network
	1.2.3 Risk-Averse Caching Scheme for Heterogeneous Networks

	1.3 Thesis Organization

	2 A Distributed Coalition Game Approach to Femto-Cloud Formation
	2.1 System Architecture
	2.2 Formulation of the Femto-Cloud Formation Problem
	2.2.1 Local Femto-Clouds and Their Utility
	2.2.2 Optimization of the Femto-clouds with FAP Incentives

	2.3 Distributed Femto-Cloud Formation and Convergence to the Core
	2.3.1 Distributed Femto-Cloud Formation Algorithm
	2.3.2 Implementation Considerations

	2.4 Numerical Results
	2.4.1 Object Recognition Tasks
	2.4.2 Simulation Setup
	2.4.3 Numerical Examples

	2.5 Chapter Summary

	3 Adaptive Scheme for Caching Content in a Mobile Edge Network
	3.1 System Model and Problem Formulation
	3.2 Content and Network Aware Adaptive Caching Scheme for Cellular Base Stations
	3.2.1 Mixed-Integer Linear Program Formulation
	3.2.2 Implementation Considerations

	3.3 Extreme Learning Machine (ELM) for Popularity Prediction
	3.3.1 Predicting Content Popularity with Extreme Learning Machines
	3.3.2 Feature Construction for Popularity Prediction
	3.3.3 Optimizing the Number of Neurons in the Extreme Learning Machine
	3.3.4 Stochastic Feature Selection

	3.4 Numerical Example of Content and Network Aware Adaptive Caching using Real-World YouTube Data
	3.4.1 Simulation Setup
	3.4.2 Performance of Extreme Learning Machine for Caching
	3.4.3 Performance of the Content and Network Aware Caching Scheme

	3.5 Chapter Summary

	4 Risk-Averse Caching Scheme for Heterogeneous Networks
	4.1 System Model
	4.2 Dynamic Caching Schemes
	4.3 Risk-Neutral and Risk-Averse Static Caching Schemes
	4.3.1 Risk-Neutral (RN) Static Caching Scheme
	4.3.2 Risk-Neutral and Network-Aware (RNNA) Static Caching Scheme
	4.3.3 Conditional Value-at-Risk (CVaR) and Content Retrieval Delay Minimization
	4.3.4 Risk-Averse (RA) Static Caching Scheme
	4.3.5 Risk-Averse and Network-Aware (RANA) Caching Scheme

	4.4 Content Request Cumulative Distribution Function Forecasting
	4.4.1 Content Group Association Classifier
	4.4.2 Risk-Averse Feed-foward Neural Network for Predicting Content Requests
	4.4.3 Conformal Prediction Algorithm for Content Requests

	4.5 Numerical Evaluation of the Conformal Prediction Algorithm and Coherent Risk Minimization Caching Schemes for YouTube Content
	4.5.1 Network Parameters and YouTube Dataset
	4.5.2 Conformal Prediction Algorithm for YouTube Content
	4.5.3 Selection of the Confidence Level for Maximum Content Retrieval Delay Guarantees
	4.5.4 Performance of the Risk-Neutral and Risk-Aware Caching Schemes

	4.6 Chapter Summary

	5 Conclusions and Future Research Directions
	5.1 Conclusions
	5.2 Future Research Problems
	5.2.1 Frame Allocation Mechanism for Edge Cloud Assisted Mobile Gaming
	5.2.2 Collaborative Learning for Edge Caching
	5.2.3 Joint Computation and Caching for Adaptive Bit Rate Video Streaming

	Bibliography

