
The Impact of Balking Queues
on n-Redundancy in Computer

Systems
by

Maryam Sadeghi

B.Sc., Mathematics, Shiraz University, Iran, 2009
M.Sc., Mathematics, AmirKabir University, Iran, 2013

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE COLLEGE OF GRADUATE STUDIES

(Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

May 2018

c© Maryam Sadeghi, 2018

The undersigned certify that they have read, and recommend to the Col-

lege of Graduate Studies for acceptance, a thesis entitled: The Impact of

Balking Queues on n-Redundancy in Computer Systems submit-

ted by Maryam Sadeghi in partial fulfillment of the requirements of the

degree of Master of Science

Dr. Javad Tavakoli, Department of Mathematics

Supervisor, Professor

Dr. Wayne Broughton, Department of Mathematics

Supervisory Committee Member, Professor

Dr. Paramjit Gill, Department of Mathematics

Supervisory Committee Member, Professor

Dr. Chen Feng, School of Engineering

University Examiner, Professor

ii

Abstract

We study the steady state queue length probabilities for a queueing sys-

tem for file downloading in which files are stored with redundancy. In par-

ticular, we address how the ability of a download file request to leave the

system after seeing the queue length but before joining the queue. While it

has been thoroughly proven that redundancy improves the performance of

queueing systems, previous work has failed to address the inclusion of request

loss affects a queueing system with redundancy. We develop a model for a

queueing system with redundancy and request loss based on the Supermarket

Model. Using that model, we solve for steady state queue length distribution

and provide numerical results comparing systems with and without request

loss. These numerical simulations show that in a queueing system with re-

dundancy and request loss, the probability of having a particular number of

requests in the system decreases as the number increases.

iii

Lay Summary

After computer systems have been running for a long time, it is highly

likely that file download requests will begin to be lost. As we know, losing

requests can directly affect the cost and performance of such systems as well

as increase user frustration. Thus, we are interested in understanding the

behavior of such systems. We provide a model in which each file is stored in

several servers, and in order to download a desired file, the download request

should be served by one of these servers. We consider the case in which each

download request enters the shortest queue in accordance with the number

of requests waiting in that queue. Under these assumptions, we observe that

request loss significantly affects the number of requests in a queue.

iv

Table of Contents

Abstract . iii

Lay Summary . iv

Table of Contents . v

List of Tables . vii

List of Figures . viii

Acknowledgements . x

Dedication . xi

Chapter 1: Introduction . 1

1.1 Motivation and Contribution 1

1.2 Literature review . 3

1.3 Organization . 6

Chapter 2: Preliminaries . 7

2.1 Markov Chain . 7

v

TABLE OF CONTENTS

2.2 Steady-state probability . 9

2.3 Poisson Process . 10

2.4 Queuing Theory . 12

Chapter 3: The Impact of Balking on Computer Systems . . 17

3.1 Power of n Choices . 18

3.1.1 Supermarket Model . 18

3.1.2 Mean Field Analysis of Coding in Cloud Storage System 20

3.2 Our Model . 23

3.3 Steady-state results . 25

3.3.1 Steady-State for n = 1 26

3.3.2 Steady-states for n ≥ 2 30

3.4 The Average Request Loss . 35

3.5 Chapter Summary . 38

Chapter 4: Numerical Results 40

4.1 The Performance of an M/M/1 Queueing System with Balking 41

4.2 The Performance of a Queueing System with n Redundancy

and Balking . 45

4.3 Chapter Summary . 50

Chapter 5: Conclusion . 51

Bibliography . 53

vi

List of Tables

Table 4.1 An M/M/1 queueing system with balking and arrival

rate λ = 0.1 . 42

Table 4.2 An M/M/1 queueing system with balking and arrival

rate λ = 0.1 . 43

Table 4.3 A queueing system with 2 redundancy and balking prob-

ability where the arrival rate λ = 0.1 48

Table 4.4 A queueing system with 2-redundancy and balking where

the arrival rate λ = 0.99 49

vii

List of Figures

Figure 2.1 A queueing system with s servers 12

Figure 3.1 A super market model in which an arriving customer

chooses two queues and joins the shortest one. 19

Figure 3.2 An M/M/1 queueing system with balking probability

where the service rate is µ = 1. 27

Figure 3.3 The impact of arrival rate on s1, s2, s3, s4 and s5. . . 29

Figure 3.4 Heavy traffic period vs. the steady state distribution

of queue length . 30

Figure 3.5 The impact of arrival rate on the average balking rate 36

Figure 3.6 The impact of arrival rate on the average request loss . 38

Figure 4.1 The impact of the general arrival rate on s4 and s5 in

an M/M/1 queueing system with or without balking . 41

Figure 4.2 An M/M/1 queueing system in low traffic periods

with balking and arrival rate λ = 0.1 42

Figure 4.3 An M/M/1 queueing system with balking in a high

traffic period . 44

viii

LIST OF FIGURES

Figure 4.4 The impact of heavy traffic periods on s3 and s6 in a

queueing system with redundancy n = 5 45

Figure 4.5 The probability of requests in the queue where λ varies

from zero to one and storage space from two to five . . 46

Figure 4.6 The probability of two requests without and with balk-

ing in a system that two servers used for storage. . . . 47

Figure 4.7 A queueing system with 2 redundancy and balking

probability in a low traffic period 49

Figure 4.8 An M/M/1 queue with balking probability in a high

traffic period . 50

ix

Acknowledgements

I would first like to thank my thesis advisor Dr. Javad Tavakoli for his

guidance in completing this thesis and providing me with the opportunity to

work in queueing system. He consistently steered me in the right direction

whenever he thought I needed it.

I would also like to thank my honorable committee members, Dr. Wayne

Broughton and Dr. Paramjit Gill, for their precious comments and sugges-

tions in preparing this thesis.

I would also like to acknowledge Dr. Chen Feng as the University ex-

aminer of this thesis, and I am gratefully indebted to him for very valuable

comments on this thesis.

Finally, I would like to thank my family for their support which enabled

me to pursue my education and finish my M.Sc. degree.

x

Dedication

To my parents

The reason of what I become today.

Thanks for your great support and continous care.

To my husband

who makes the impossible possible!

Thanks for being there for me.

xi

Chapter 1

Introduction

Queuing theory is the mathematical study of the congestion and delays of

waiting in line. The goal of queueing theory has been the design of balanced

systems serving customers quickly and efficiently. For this reason, we have

tried to examine the potential effects of impatience factors on computer and

telecommunication systems to build efficient and cost-effective systems. This

chapter is divided into three parts: motivation, literature review, and the

organization of this thesis.

1.1 Motivation and Contribution

The field of queueing theory began in 1909 with the study of telephone

conversations. The Danish mathematician A.K. Erlang was the pioneer re-

searcher in this area whose goal was to determine the number of telephone

operators to manage a given volume of calls. In the 1930s, F. Pollaczek

extended Erlang’s work and defined an M/G/1 queueing system in which

jobs arrive according to the Poisson process and have general service time

distribution. Currently, queueing systems have various applications in our

1

1.1. Motivation and Contribution

daily life, such as waiting in line at banks and post offices, traffic flows, and

downloading files. In 2016, Li et al. [LRS16] studied cloud storage systems

under the assumption that new file download requests enter the system with

a constant rate λ. They found the expected waiting time a request spends

in a system when files are stored in servers under the Maximum Distance

Separable (MDS) code (see subsection 3.1.2 for more details). Moreover,

they compared their results with a simple M/M/1 queueing system where

download requests are not able to choose servers. Much study has gone into

the design of algorithms to reduce waiting time in cloud storage systems.

For example, redundancy which referrers to storing a file in several servers

is one of these algorithms. However, some facts about request loss in com-

puter systems were ignored. For instance, if a computer system is old or has

been used a lot in the past, requests are discouraged from joining the queue.

Hence, requests can choose whether or not enter the system based on the

number of requests waiting in the line, this is called balking. To the best

of our knowledge, none of the previous works considered a combination of

redundancy and request loss (balking).

In this thesis, our objective is to obtain steady state probabilities of queue

length in computer systems. For this, we first assign a probability for either

joining or balking the system which depends on the number of download

requests in the queue. In order to protect files stored in servers, we use

redundancy. In Chapter 3, we will determine the steady state probabilities

of queue length in accordance with balking probability and redundancy in

2

1.2. Literature review

storage. In addition, we can observe how redundancy and balking affect the

queue length steady state probability.

1.2 Literature review

An M/M/1 queue with balking and reneging was considered for the first

time in 1957 by Haight [Hai57]. Since then, many researchers have studied

queueing systems with various balking probabilities. The main goal of this

research has been to determine steady state probabilities of queue length

and waiting times. Ancker and Gafarian studied a queueing system in which

customers arrived as a Poisson process (see section 2.3 for more details), and

balked with the probability
i

N
where i was the number of customers waiting

in a line and N was the capacity of the system [AJG63]. In [SR67], Subba

Rao analyzed an M/G/1 queueing system in which customers could balk with

a constant probability 1−β. In [Nat75] and [vTvdV80], the authors analyzed

a birth and death process in which λ is defined as the general arrival rate and

the probability of entering the system is
1

i+ 1
, consequently, customers join

with arrival rate
λ

i+ 1
where i customers were waiting in the line. In the work

of Liu et al. [LK08, LK06], a queueing system with balking was considered.

They defined a fixed level at the time of arrival such that an arriving customer

will be served if the system workload is below that level. In [BK10, KC09], the

authors studied a finite capacity queueing system with balking. In [Kap11],

Kapodistria considered the case that impatient customers were able to de-

3

1.2. Literature review

part the system simultaneously in an M/M/c queueing system. In 2010,

Wang et al. published a review paper covering many possible assumptions

about impatient customers [WLJ10]. In 2011, Lozano defined two different

probabilities for impatient customers. He analyzed a queueing system with

balking in which customers were able to balk with either a constant proba-

bility or increasing probability depending on the number of customers in the

line [LM08]. According to [Saa61], the expected number of customers in an

M/M/1 queue is defined as En =
∑∞

i=0 iqi =
∑∞

i=1 i(
λ

µ
)iq0

∏i−1
r=0 pr with the

following notations

− pr =
1

1 + r
is the probability of an arrival joining the queue,

− λ and µ are the arrival and service time rates,

− i is the number of customers waiting in the queue (not being served),

− qi is the probability that there will be a queue of i waiting customers.

Furthermore, he determined the following formula for the expected

waiting time:

Ew =
1− q0
µ

+
λ

µ2

∞∑
i=1

ipiqi

In 2002, Wang and Chang considered a finite capacity M/M/R queueing

system in which customers were able to either depart the system before

receiving service (reneging) or to not joint the system at all (balking)[WC02].

In 2001, Mitzenmacher [Mit01] proved that if customers were able to ran-

domly choose two servers from a total of L servers, their waiting time reduced

4

1.2. Literature review

exponentially compared to an M/M/1 queueing system. In [JDPF05], the

authors provided a comparison of the delay performance among different cod-

ing schemes. In [SLR16], the authors assumed that in a system with n servers,

each batch is divided into r requests. However, any distinct set containing

k requests (k ≤ r) is enough to complete the service for the given batch.

Moreover, the authors assumed requests arrive based on a Poisson process

and service times are defined to be exponentially distributed. They proved

that when each batch is sent to all n servers, i.e. when redundancy occurs,

the average waiting time is minimized. In [GZD+15], the authors studied

different methods of analyzing redundancy and proved that the method of

redundancy surpassed the method of customers always joining the shortest

queue in reducing latency. In [GHBSW+17], the authors found a formula

to express the expected waiting time under redundancy and proved this ex-

pected value decreased when redundancy increased. As can be seen from

these works, a great deal of study has gone into the topic of redundancy

in queueing systems. However, none of these works considered balking in

addition to redundancy, an omission which this thesis aims to correct.

5

1.3. Organization

1.3 Organization

The organization of this thesis can be summarized as follows:

In chapter 2, some basic definitions and concepts of queueing systems will

be reviewed. Chapter 3 is allocated to finding steady state probabilities of

queue length for a queueing system where files are stored in n servers and

there is a probability of balking. Chapter 4 presents the numerical results

and analysis of the system in various situations. Finally, chapter 5 provides

a summary of the results and presents ideas for future work based on the

work of this thesis.

6

Chapter 2

Preliminaries

In this chapter, we will review some basic definitions and concepts in

queueing systems. We will define different types of systems and give examples

of each of them so as see applications of queueing systems in reality.

2.1 Markov Chain

In order to define a queueing system, it is best to begin with the con-

cepts of the stochastic process and Markov chain. A stochastic process is

the mathematical abstraction of an experiment which is developed by prob-

abilistic laws [GSTH08].

Definition 2.1. A stochastic process is an infinite collection of random vari-

ables, usually indexed by integers (discrete) or real numbers (continuous),

which are often interpreted as time. In mathematical notation, a stochastic

process is the set {X(t) : t ∈ T} where X(t) is defined to be the state of the

process at time t. Usually, T = 0, 1, 2, . . . or T ∈ (0,∞).

A stochastic process can be classified as a discrete or continuous time

process. For discrete time, a stochastic process is a sequence of random

7

2.1. Markov Chain

variables and the time series related to these random variables. However,

in a continuous time stochastic process, the index variable takes a continues

set of values. A Markov chain or Markov process for discrete or continuous

random variables respectively, is a memoryless stochastic process and defined

as follow.

Definition 2.2. In a Markov chain, the conditional distribution of any future

state Xn+1, given the past states X0, X1, ..., Xn−1 and the present state Xn,

is independent of the past states and depends only on the present state, i.e.,

P{Xn+1 = j|X0 = i0, X2 = i1, ..., Xn = i}

= P{Xn+1 = j|Xn = i} = pij.

(2.1)

Therefore, the value pij is the probability of going from state i to state j. In

accordance with the nature of the problem, a Markov chain can have a finite

or infinite number of states. In what follows, we will provide some other

concepts and definitions about states to classify Markov chains.

Definition 2.3. State j is said to be accessible from state i when there is a

path starting from i going to j, i.e. the probability that a process in state i

will be in state j after n additional transitions, pnij > 0.

Hence, we can say two distinct states i and j communicate if i is accessible

from j and j is accessible from i. In addition, the set of all states commu-

nicating with each other is called a class of states. If all of the states in a

Markov chain are in only one class, this Markov chain is said to be irreducible.

8

2.2. Steady-state probability

Definition 2.4. State i is recurrent if starting from i, the process returns to

state i at some point almost surely. Otherwise, state i is said to be transient.

Moreover, recurrent state i is positive recurrent if starting in i, the expected

time until the process returns to state i is finite. It is possible to have a

periodic or aperiodic state by allocating a specific number called period to

each state. State i has a period d if pnii = 0 whenever n is not divisible by

d and d is the largest integer with this property [Ros14]. Thus, state i is

aperiodic if d = 1. All states in the same class have the same period. A

positive recurrent and aperiodic state is called an ergodic state. Our model

in Chapter 3 is a positive recurrent and irreducible Markov chain.

2.2 Steady-state probability

Now, we need to define steady state probabilities and a transition matrix.

The transition matrix P is defined using the probability of moving from

one state to another. First, let us suppose S = {0, 1, 2, ...} is a countable

state space and pij is the probability that the process transits from state

i to state j. Thus, it is possible to write a matrix in which each entry

represents a transition probability. As mentioned in the previous section,

pnij = p{Xn = j|X0 = i} indicates the probability of going from state i to j

in n transitions. If we assign P = [pij] as a transition matrix, then P n = [pnij]

represents an n-step transition probabilities which is almost identical to P

as n goes to infinity. In other words, pnij is converging to a value which

9

2.3. Poisson Process

is the same for all i (when n → ∞). According to [Ros14], the limiting

probability limn→∞ p
n
ij exists for an irreducible ergodic Markov chain and it

can be derived from the following equations:

πj = lim
n→∞

pnij, j ∈ S (2.2)

∑
j∈S

πj = 1

thus, πj can be interpreted as the probability of being in state j in the long

term which is independent of the initial state i. According to the Chapman-

Kolmogorov equation, pn+1
ij =

∑
k p

n
ikpkj, and by taking limit from both sides

as n → ∞, the limiting equation becomes πj =
∑
πkpkj. Consequently, the

vector form of this equation is π = πP where π = (π1, π2, ..., πL) and L is

the total number of states in a finite state Markov chain or π = {πi : i ≥ 0}

in a countable Markov chain. Since finding the steady state probability can

help analyze the behavior of a system, we will compute the steady state

probability of queue length.

2.3 Poisson Process

A Poisson process is the most practical example of stochastic process and

continuous time Markov chain. The Poisson process can help to model the

time customers enter a system and describe the probability of an arrival at

any time. It can be classified by two stochastic processes. The first one is the

10

2.3. Poisson Process

interarrival times Xi for i ≥ 1 and the second one is a counting process N(t).

In the following, we will introduce these two alternative processes completely.

An arrival process is a sequence of positive increasing random variables

T1 < T2 < T3 < ... that are independent and identically distributed. Let

Ti+1 − Ti = Xi for i > 1. This is a positive random variable, called the in-

terarrival interval. Interarrival intervals, Xi, are independent and identically

distributed, and are exponentially distributed. That is,

fX(x) = λ exp(−λx) for some real λ > 0 and x ≥ 0. (2.3)

In a Poisson process, the parameter λ is called the arrival rate of the process.

Furthermore, since Ti =
∑i

j=1Xj for all i ≥ 1, i.e. the sum of i I.I.D.

random variables, then the density function for each Ti, called the Erlang

density, is given by

fTi(t) =
λiti−1exp(−λt)

(i− 1)!
. (2.4)

Despite the interarrival times, the counting process contains positive, increas-

ing, and integer-valued random variables N(t), or the number of arrivals in

the interval (0, t]. The arrival process and the counting process are related

by

{Ti ≤ t} = {N(t) ≥ i} (2.5)

which means that if the ith customer enters the system by time t, the number

of customers at time t is at least i [Gal96].

11

2.4. Queuing Theory

2.4 Queuing Theory

In a queueing system, customers arrive at random times. Having received

service, they depart the system one by one or simultaneously, depending on

the design of the system.

Figure 2.1: A queueing system with s servers

The classification of a queueing system is based on the input process, the

service time distribution, and the queue discipline.

The input process is the probability distribution of customers arrival

times. This probability is related to the pattern of customers arriving and

joining the system. For example, customers can join the line either one by

one or in group. Once customers join the system, a waiting line is formed.

The number of customers in a queueing system can be finite or infinite.

Therefore, if the system has a capacity, customers may not be able to join

12

2.4. Queuing Theory

the queue. Various distributions have been defined for the input process;

the Poisson process is one of the most common. We can suppose customers

arrive to the system with a constant rate or a rate depending on different

factors such as the number of customers waiting in the line. Furthermore,

in accordance with assumptions about the system, each customer may have

the opportunity to decide whether or not to join the system. For instance,

when many customers wait for service in a bank, a costumer enters, but then

immediately decides the line is too long and leave.

The service time distribution is the probability distribution of the time

spent serving a customer. One assumption about the service time distri-

bution is that it is a non-negative, independent, and identically distributed

random variable. An important measure to describe the service time pat-

tern is the service rate, which is the reciprocal of the expected service time.

Hence, each customer is served based on a defined rate called the service

rate. Another important parameter in a queueing system is the number of

servers, which can be either finite (e.g. in a supermarket) or infinite (e.g. in

a cloud storage system). Increasing the number of servers can significantly

reduce the waiting time a customer spends in a system.

The queueing discipline is the order in which customers are served. For

example, it can be first come first serve (FCFS), which means customers will

be served in order of their arrival, such as a line in a bank. Another example

of queue discipline is last come first serve (LCFS) which means customers

who entered the system most recently will be served first. Jobs arriving in a

13

2.4. Queuing Theory

production facility with one or more machining centers are often scheduled

based on last come first serve since it is more convenient to have access to

stored requests or meet due date requirements. Service in random order is

another discipline for customers to be served. In this case, the service order

for customers is chosen randomly.

In a queueing system, the waiting time is the sum of the time a customer

waits in a line, and being served. Reducing the waiting time is one of the im-

portant issues in systems with queues. In every queueing system, customers

enter the system with average rate λ and are served with average rate µ. The

ratio of arrival rate and the service rate is called the traffic intensity ρ =
λ

µ
,

and is very significant in the performance of any queueing system. For exam-

ple, if ρ > 1, the number of customers joining the system is greater than the

number of customers departing the system, then the queue size will always

increase, and no steady state exists. Thus, in order to have a stable queueing

system, we always assume λ < µ, so that the steady state distribution of

queue length exists.

In queueing models, we mostly assume interarrival intervals are positive,

independent, and identically distributed random variables and the format

A/B/C/c is used to describe the interarrival distribution, the service time

distribution, the number of servers, and the capacity of the system respec-

tively.

Example 1. An M/M/R system for R ≥ 1 is a queueing system in which

customers arrive as a Poisson process, and service time is exponentially dis-

14

2.4. Queuing Theory

tributed, and there are R servers. This model can be finite or infinite. If

R = 1 this system is called a single server queueing system. �

In general, the number of customers in a queueing system at time t forms

a birth and death process since arrivals can be considered as a birth process

and departures as a death process.

Example 2. In an M/GI/R model, arrivals form a Poisson process, service

times are I.I.D random variables with arbitrary distribution, and R ≥ 1 is

the number of servers. �

Example 3. In the GI/M/R model, arrivals have a general distribution,

service times follow a Poisson process, and there are R servers. �

Example 4. An M/D/R model involves arrivals forming a Poisson process,

a deterministic service time, and R servers. �

Now, let us define a queueing system with impatience factors. In reality,

each customer has the opportunity to decide whether or not enter the system.

A probability distribution can be defined for this situation depending on ei-

ther the waiting time a new customer must spend in the line, or the number

of customers in the system. Since working with the number of customers

in the system is less complicated than working with the waiting time, the

majority of such probabilities are based on the number of customers. Con-

sequently, the probability of balking, bi, is the probability that the (i + 1)st

customer does not enter the system when i customers are already present.

15

2.4. Queuing Theory

Thus, 1− bi is the probability that (i+ 1)st customer joins the queue. In this

thesis, we assume that a request will not enter the queue with probability

depending on the number of existing requests in the system. In the next

chapter, we will discuss this further.

16

Chapter 3

The Impact of Balking on

Computer Systems

In this chapter, we will consider the case in which customers or requests

may not join the queue due to the number of customers already in the queue.

After defining our model and the load-balancing algorithm, we will derive

the steady state queue length distribution in the case where arrival rates

depend on the number of requests that exist in the queue. This work can

be considered as an initial step toward applying redundancy in storing files

when requests can balk the system. In addition to balking, sometimes, due to

the number of customers waiting in a system, arriving customers may leave

the system without receiving service. However, in this thesis, we assume

that when a request joins the line, it is not able to leave until it has received

service. Here, under both redundancy and balking, our objective is to find

steady state probabilities for queue length.

In what follows, we will define our model and specify the load balancing

scheme which is most appropriate to our work. Moreover, we will compute

request loss to see how balking can influence the cost of the system.

17

3.1. Power of n Choices

3.1 Power of n Choices

In this section, we will first introduce the supermarket model [Mit01], then

we move from the supermarket model to analysis of cloud storage systems

[LRS16]. Since redundancy has been proven to reduce customer or request

waiting time and improve the performance of the system, we focus mainly

on this aspect of cloud storage systems.

3.1.1 Supermarket Model

In 2001, Mitzenmacher introduced a new queueing model called the su-

permarket model. In this model, each customer first chooses a subset of n

servers from the total L servers, and then goes to the shortest queue among

these choices. The n servers are chosen uniformly randomly, with replace-

ment. Clearly, if a customer chooses an idle server, he will be served instantly

and there is no waiting time. In this section, we will see the importance of

the number of choices in reducing the waiting time. Under the supermar-

ket model, customers arrive following a Poisson process with rate λ, where

λ < 1. Since there are L servers in the system, the total arrival rate is Lλ.

Furthermore, service times are assumed to be exponentially distributed with

rate µ = 1.

18

3.1. Power of n Choices

Figure 3.1: A super market model in which an arriving customer chooses two
queues and joins the shortest one.

A differential equation based on arrivals and departures can be used to

determine the steady state queue length probabilities. Let sm be the prob-

ability that the customer ends up in a queue of at least m customers at a

particular time t. Then, according to [Mit01], the differential equation


dsm
dt

= λ(snm−1 − snm) − (sm − sm+1) for m ≥ 1

s0 = 1.

(3.1)

expresses the change in the supermarket system. Since a fixed or a critical

19

3.1. Power of n Choices

point is a point p such that if s(t) = p then s(t
′
) = p for all t

′ ≥ t, the

sequence {sm}m≥0 converges to a fixed point if and only if
dsm
dt

= 0 for all m.

According to equation 3.1, it is proved that the sm converges exponentially to

a fixed point, denoted by λ
nm−1
n−1 . However, Mitzenmacher only considered a

system in which an arriving customer will undoubtedly enter the system and

join the shortest queue among his choices. As we know, if each customer has

only one choice, i.e. n = 1, the model becomes an M/M/1 queueing system

with the waiting time T1(λ) =
1

1− λ
. However for n ≥ 2, the supermarket

model queueing system performs better than an M/M/1 queueing system.

If Tn(λ) is the waiting time when the customer makes n choices, then under

the supermarket model, Mitzenmacher showed that Tn(λ) < cn(log T1(λ)) <

T1(λ) for some constanct cn which depends only on n.

3.1.2 Mean Field Analysis of Coding in Cloud

Storage System

In 2016, Li et al. proved that coding outperforms redundancy in file access

delay [LRS16]. In their work, the Maximum Distance Separable (MDS) code

is used to store files. Using an (n, k) MDS code, each file is divided into

k ≤ n parts of equal size such that n combinations of k parts are stored in n

distinct servers. In order to download a file, any set of k combination would

be enough to complete a download request. For instance, let us assume file

A is stored according to the MDS code (2, 3) over the finite field F2 = {0, 1}.

20

3.1. Power of n Choices

Thus, file A must be divided into 2 parts A1 and A2 and 3 combinations A1,

A2 and A1 + A2 are stored in 3 different servers. Based on the property of

MDS codes, downloading any 2 combinations A1 and A2, A1 and A1 + A2,

or A2 and A1 + A2 can help to have the entire file A.

It is assumed that L servers exist in the system and that arrival requests

form a Poisson process with mean λ, where 0 ≤ λ ≤ 1. Let us assume that

queues are organized based on their size. Hence, if Qi represents the ith

shortest queue among n servers containing the file, we have

Q1 ≤ Q2 ≤ Q3 ≤ · · · ≤ Qn. (3.2)

Since any set of k parts can complete the request, it is assumed that the

service times are exponentially distributed with the mean
1

k
. As mentioned

before, in order to download a file, each request must be sent to k of the n

servers that contain the file when queues are organized based on their sizes.

Let πm be the steady state probability that queue length is exactly m. In

other words, πm is the fraction of servers with queues of size m. If Lπm is the

average number of servers with queue length of m, then Lπmλ∆ is interpreted

as the average number of these queues that become of size m + 1 as an

arrival joins the system in a small time interval ∆. If the probability that ith

queue contains m requests is Pr(Qi = m), then Lλ∆
∑k

i=1 Pr(Qi = m) also

represents the average number of servers with m+ 1 requests. Consequently,

πm =
∑k

i=1 Pr(Qi = m).

21

3.1. Power of n Choices

Let us assume that sm =
∑∞

i=m πi represents the steady state probability for

queue of length at least m. Then equation 3.3 (below) illustrates the relation

between steady state probabilities and the probability of having exactly m

requests in the first k queues. Like the supermarket model, the steady state

probability sm is interpreted as the probability that a request will join a

queue with at least m requests. According to [LRS16], we have

k∑
i=1

Pr{Qi = m} = f (n,k)(sm)− f (n,k)(sm+1) (3.3)

where f (n,k)(x) =
∑k

l=1

(
n

n−k+l

)(
n−k+l−2

l−1

)
(−1)l−1xn−k+l.

From equation 3.3, we can see that a new request will join a queue of size m

with probability f (n,k)(sm) − f (n,k)(sm+1). Similarly, a departure will occur

with probability sm+1−sm+2. Due to having a stable system, for each arrival

request there should be a departure. For this reason, there should be a

balance equation between arrivals and departures, that is

λ(f (n,k)(sm)− f (n,k)(sm+1)) = k(sm+1 − sm+2) for m = 0, 1, 2, (3.4)

Under an (n, k) MDS code, the steady state queue length distribution sm

should satisfy equation 3.4. Thus, one of the solutions for equation 3.4 is


sm+1 =

λ

k
f (n,k)(sm) for m ≥ 0

s0 = 1.

(3.5)

22

3.2. Our Model

3.2 Our Model

To the best of our knowledge, all previous works on queueing systems for

file download have focused on methods for serving requests as fast as possible

after they arrive at servers. However, we do not know how the system will

change if a request is prevented from entering the system. For this reason,

we describe a queuing system in which the combination of choosing n server

for redundancy and request loss is observable.

We consider a set of L independent servers, each of which stores a very

large number of different types of files. We let the large number of servers L

exists in the system. Under redundancy, a file is stored in n distinct servers,

thus, we have
(
L
n

)
choices for where to store each file. we assume requests

arrive in the system as a Poisson process with rate λ < 1, though in practice

it is hard to define a specific distribution for arrival requests and service

times. Additionally, we assume a helper is located in the system to receive

all requests. Based on information about storage, the helper will send a

request to the shortest queue with probability pm =
1

m+ 1
where m is the

number of requests in the queue. In other words, upon arrival, a request will

either join a queue of size m with probability pm =
1

m+ 1
, or balk (leave the

system) with probability bm =
m

m+ 1
, where pm + bm = 1. Hence, it turns

out that requests join the system with rate λm =
λ

m+ 1
and will be served

based on first come first serve discipline.

Various load balancing techniques, such as Join the Shortest Queue (JSQ),

23

3.2. Our Model

or Redundant Request with Killing (RRk), have been introduced to specify

how requests are able to enter queues. In our model, we apply the Join the

Shortest Queue (JSQ) model as our load balancing scheme. Each server in-

cludes a queue of requests to download a file stored in the server. Under

the JSQ scheme, after entering the system each request is transmitted to the

shortest queue containing the appropriate file.

According to n redundancy, n copies of each file are stored in n distinct

servers, chosen uniformly at random. Each request will join the system with

arrival rate λm =
λ

m+ 1
. For instance, when m = 0, a request will join the

line with probability 1 and will be served instantly. Based on our storage

method, each request can join the queue for one of the n servers in which the

file is stored. Following the JSQ scheme, after joining the system the request

will be sent to the shortest queue among these n servers. We have assumed

that the processors are homogeneous, that is the service rates are the same

at each server. Service times are considered to be exponentially distributed

with mean µ for the system. Moreover, because each file is stored entirely in

a single server, the time to download the file would be 1 unit. Consequently,

it is assumed that the service rate µ = 1. Based on our assumptions about

the general arrival rate λ < 1 and the service time rate µ = 1, the traffic

intensity ρ =
λ

µ
< 1. Thus the expected number of requests in the system

remains finite which results in having a stable system. Since a new arrival

will enter a queue in accordance with the queue length, all states depend on

each other. Therefore as mentioned previously, our system is Markovian, as

24

3.3. Steady-state results

the current state of the process depends only on the previous state. Because

the combination of redundancy and request loss considered in this thesis is

an initial step in the analysis of computer systems, we have assumed that a

request takes no time to get information about the queue length and make

the decision to either balk or join.

Our purpose in this chapter is to demonstrate that in a system where

redundancy is used in file storage, the average request loss can significantly

influence the entire system. In order to analyze such a system, we first need

to find steady state probabilities of queue length.

3.3 Steady-state results

In this section, we will derive a formula for the steady state queue length

distribution under redundancy and balking. It is clear that the system is easy

to analyze and understand when a file is stored in only one server, that is

n = 1. For this reason, it is impossible to send a request to the shortest queue

since there will be only one long queue for all requests to join the system.

Therefore, in order to analyze the system in all situations, this section will

be divided into two parts. The first part is to find steady state probabilities

for a simple M/M/1 queue with balking. In the second part, steady state

probabilities for a system with balking and redundancy for n ≥ 2 will be

determined.

As mentioned previously, our model is a Markovian process, since an

25

3.3. Steady-state results

arriving request will join the system based on the number of existing requests

in the system. Under the assumption that the general arrival rate λ is less

than 1, a request will join a queue of size m with the arrival rate λm =

λ

m+ 1
< 1 for m ≥ 0. Furthermore, since the service time rate is µ = 1, the

traffic intensity is less than 1, that is ρm =
λm
µ

< 1. This implies that the

system is stable. Therefore, we are able to find steady state probabilities. If

we define πm as the probability that a queue is of size m, then sm =
∑∞

i=m πi

represents the probability that a queue contains at least m requests. Also,

the sequence {sm}∞m=0 is interpreted as the steady state probabilities of queue

length. Clearly, in an empty system, the probability that there is no request

in the system is 1, i.e. s0 =
∑∞

m=0 πm = 1 and the probability that a queue

has at leastm requests is sm = 0 form ≥ 1. If we do not consider redundancy,

for which n = 1, then each server works independently and we will have L

M/M/1 queueing systems. Systems with redundancy n > 1 are much more

difficult to completely analyze, as all servers depend on each other.

3.3.1 Steady-State for n = 1

Owing to the need to protect files from damage, each file will be stored

in more than one server. Although it is not reliable to use a single server

to store a file, our model will be easier to analyze in this case. Since arrival

requests join the system with probability, pm =
1

m+ 1
, depending on the

number of requests in the queue, and form a Poisson process, we will have

26

3.3. Steady-state results

an M/M/1 queue with balking probability bm =
m

m+ 1
.

Figure 3.2: An M/M/1 queueing system with balking probability where the
service rate is µ = 1.

According to the general arrival rate λ and balking probability bm =
m

m+ 1
,

requests enter the queue with arrival rate λm = λ(1 − bm) =
λ

m+ 1
, where

m is the number of requests in the queue. Additionally, they will be served

with rate µ = 1. From figure 3.2, the balance equation among states is as

follows: 
λm−1sm−1 + sm+1 = (1 + λm)sm for m ≥ 1

s0 = 1.

(3.6)

or equivalently,


λ

m
sm−1 + sm+1 = (

λ

m+ 1
+ 1)sm for m ≥ 1

s0 = 1.

(3.7)

27

3.3. Steady-state results

From figure 3.2, the balance equation between states 0 and 1 is

λs0 = s1. (3.8)

Since s0 = 1, then s1 = λ and by substituting s0 and s1 in equation 3.7 we

find the steady state probabilities for m ≥ 1 to be:


sm = λm−1sm−1 for m ≥ 1

s0 = 1.

(3.9)

Since we have s0 = 1 for an empty system, the remaining steady state

probabilities can be derived from equation 3.9 by substitution. Hence, sm =

λm

m!
is the steady state probability of queue length for an M/M/1 queueing

system with balking probability. Based on the definition of sm, the sequence

of steady state probabilities is decreasing which implies that s0 ≥ s1 ≥ s2 ≥

. . . and
∑∞

m=0 sm <∞. The following figures indicate how the general arrival

rate λ can affect the probability of one to four requests in the system.

28

3.3. Steady-state results

Figure 3.3: The impact of arrival rate on s1, s2, s3, s4 and s5.

In figure 3.3, we see that the probability of having a particular number of

requests in the system decreases as the number increases, even in high traffic

periods, when λ approached 1. Furthermore, in light traffic areas, for which

the arrival rate λ is close to zero, the probability of having more requests

is close to zero. In such a case, since the queue length goes to zero, this

probability decreases nearly to zero. For this reason, the time each request

spends in the queue is its service time. In other words, the waiting time for

each request is µ = 1.

In figure 3.4, we can observe how the probability of the number of requests

in the system changes during a heavy traffic period. As illustrated in this

29

3.3. Steady-state results

figure, due to balking probability and requests loss, the probability of having

m requests in the queue decreases when m increases.

Figure 3.4: Heavy traffic period vs. the steady state distribution of queue
length

3.3.2 Steady-states for n ≥ 2

Redundancy has been shown to improve the waiting time in a queueing

system, though it is not clear how many servers are needed to store files

and to improve the performance of computer systems. In this section, it

has been assumed that each file is stored in n ≥ 2 servers. Our objective

is to determine the steady state distribution of queue length when files are

stored with redundancy and requests are able to leave without being served

(balking).

30

3.3. Steady-state results

A new request will join a queue of size m with probability pm =
1

m+ 1

and becomes the (m+ 1)st request in that queue. Let us assign πm to be the

probability that a queue has m requests. Under the assumptions we have

made, our system is memoryless, because the future state depends only on the

current state and not the past states. Furthermore, since states communicate

with each other, our system is an irreducible Markov chain.

The load balancing policy is to route a request entering the system

whichever of the n servers containing the file has the shortest queue length.

We ignore reneging in the system. Thus, after joining the system (with the

arrival rate
λ

m+ 1
), the request will wait until it is served.

Let us again assign sm to be the probability that a queue has at least m

requests. That is sm =
∑∞

i=m πi. Therefore, a new request will join the

queue of exactly size m and becomes the (m + 1)st request with probability

snm− snm+1. Similarly, a departure will occur from a server of size m+ 1 with

probability sm+1 − sm+2. The following example illustrates how a queue of

size m changes due to an arrival in a small queueing system. Because our

model has various applications in real life, we will consider a call center with

3 operators.

Example 5. Suppose there are three servers in the system with queues of

length 0, 1, or 2.

If a new customer goes to empty server, the customer will be served

instantly and depart the system. Suppose now that the customer first makes

two choices at random, then goes to the shortest queue. There are nine

31

3.3. Steady-state results

options for the number of customers in the two queues that the new customer

chooses: (0, 0), (0, 1), (1, 0), (0, 2), (2, 0), (1, 1), (1, 2), (2, 1), and (2, 2) with

probabilities π2
0, π0π1, π1π0, π0π2, π2π0, π

2
1, π1π2, π2π1, and π2

2, respectively.

The probability that the customer will join a queue of length at least 1 is the

sum of these probabilities, for the choices with no empty servers:

π2
1 + 2π1π2 + π2

2 = (π1 + π2)
2 = s21. (3.10)

The probability that the customer will join a queue of length at least 2 is

π2
2 = s22. (3.11)

Hence, the customer goes to a queue of length exactly 1 with probability

π2
1 + 2π1π2 = s21 − s22. (3.12)

�

From[LRS16], the summation of probabilities that the lth shortest queue

has exactly m requests is expressed as follows

k∑
l=1

(
n

n− k + l

)(
n− k + l − 2

l − 1

)
(−1)l−1(sn−k+lm − sn−k+lm+1), (3.13)

where each file is divided into n chunks and downloading any distinct set of

k chunks would be sufficient to complete the service. However, in this thesis,

32

3.3. Steady-state results

we have only considered redundancy for which k = 1. Therefore, having

stored a file in n servers, through joining the shortest queue among these n

queues, a request can be served and depart the system.

The steady state queue length distribution of a server under redundancy

and balking is 
sm = λm−1s

n
m−1 for m ≥ 1

s0 = 1.

(3.14)

Let us explain the reason behind the equation 3.14. As we know, a new

request will enter one of n queues of size m and become the (m+1)st waiting

request with the probability snm − snm+1. Thus, if we add the probability of

balking for this new arrival, we will have λms
n
m−λm+1s

n
m+1. Since the service

rate µ is 1, a departure from a queue of size m+1 will occur with probability

sm+1 − sm+2. Due to having a stable system, whenever there is an arrival,

there should also be a departure. As a result, λms
n
m−λm+1s

n
m+1 = sm+1−sm+2

for m = 0, 1, 2, Clearly, if we assign sm+1 = λms
n
m, then equation 3.14

holds. In fact, one can obtain this equation by using 3.5 and taking k = 1

for arrival rate λm.

According to equation 3.14, the steady state probabilities for n ≥ 2 is


sm =

λ
nm−1
n−1∏m

j=1 j
nm−j for m ≥ 1

s0 = 1

(3.15)

where m is the number of request in the queue and n is the number of choices.

33

3.3. Steady-state results

Proof. Since we know the initial point s0 = 1, we can determine the steady

state distribution by induction on m. From equation 3.14,

s1 = λ0s0 = λ.

s2 = λ1s
n
1 =

λ

2
(λ)n =

λn+1

2
=
λ

n2−1
n−1

2
.

s3 = λ2s
n
2 =

λ

3

(λn+1

2

)n
=
λn

2+n+1

2n.3
=
λ

n3−1
n−1

2n.3
.

Let us assume that sm =
λ

nm−1
n−1∏m

j=1 j
nm−j . We will prove that sm+1 =

λ
nm+1−1

n−1∏m+1
j=1 j

nm+1−j
.

According to equation 3.14, we have sm+1 = λms
n
m. Thus, by substituting

sm in the equation we get

sm+1 =
λ

m+ 1

(λ
nm−1
n−1∏m

j=1 j
nm−j

)n
=

λ

m+ 1

(λ
nm+1−n

n−1

mn.(m− 1)n2 . . . 3nm−22nm−1

)

=
λ

nm+1−n
n−1

+1

(m+ 1).mn.(m− 1)n2 . . . 3nm−22nm−1

Consequently, the steady state probability sm+1 is

sm+1 =
λ

nm+1−1
n−1∏m+1

j=1 j
nm+1−j

.

Equation 3.15 is the steady state queue length distribution when redun-

dancy and balking occur in a large queueing system.

34

3.4. The Average Request Loss

3.4 The Average Request Loss

As we know, impatience factors such as balking and reneging probabilities

can significantly affect queueing systems. In order to control the cost of the

system, we need to determine the factors that influence the cost, such as the

average request loss. The average request loss is the sum of average balking

rate and the average reneging rate. When reneging is ignored, the average

request loss is defined to be the average balking rate.

A new request arrives with the rate λ and decides not to enter the queue

with the balking probability bm =
m

m+ 1
, where m is the number of waiting

requests in the queue. Since our system behaves differently when redundancy

is applied, we have determined the average request loss for the two cases n = 1

and n ≥ 2. Equation 3.16 illustrates the average balking rate for a computer

system in which only one server is used to store each file. We proved that the

steady state probability of queue length where m requests wait in the queue

is sm =
λm

m!
. The average balking rate is given by

Bn=1 =
∞∑
m=1

λbmsm =
∞∑
m=1

mλm+1

(m+ 1)!
. (3.16)

It is clear that the sequence of balking probabilities {bm}m≥0 is increasing

while the sequence of steady state probabilities {sm}m≥0 is decreasing. With

a simple calculation to find the sum of the series we have

35

3.4. The Average Request Loss

Bn=1 =
∞∑
m=0

λm+1(m+ 1)

(m+ 1)!
−
∞∑
m=0

λm+1

(m+ 1)!

= 1 + eλ(λ− 1). (3.17)

Figure 3.5: The impact of arrival rate on the average balking rate

As we know, the balking probability depends on the number of requests

in the queue, which means that this probability increases when the number

of requests waiting in the queue increases. Therefore, when the arrival rate

λ is close to 1, the average balking rate increases exponentially. When the

arrival rate λ is close to 0, the average balking rate or request loss is less

than 0.2. From figure 3.5, we can observe that the results match our claim

36

3.4. The Average Request Loss

which is the negative impact of balking probability on the average request

loss as well as the cost.

Now, we apply n redundancy in a system with balking probability, to deter-

mine the average request loss when n ≥ 2. According to equation 3.15, the

steady state probability of queue length would be sm =
λ

nm−1
n−1∏m

j=1 j
nm−j for n ≥ 2

and m ≥ 1. Consequently, the average balking rate for this case is given by:

Bn≥2 =
∞∑
m=1

λbmsm =
∞∑
m=1

(
mλ

m+ 1
)

λ
nm−1
n−1∏m

j=1 j
nm−j

=
∞∑
m=0

mλ
nm+n−2

n−1

(m+ 1)
∏m

j=1 j
nm−j . (3.18)

Clearly, a system including both redundancy and balking is more complicated

to study. Hence, instead of theoretical results, we will analyze our system

through numerical comparison. As we know, when we increase the storage

space, download requests will be distributed among more servers. Thus, the

average balking rate, or in general the average request loss, will decrease.

This is shown in figure 3.6.

37

3.5. Chapter Summary

(a) The impact of the arrival rate
on the average request loss where
files are stored in 5 and 10 servers

(b) The impact of the arrival rate
on the average request loss where
files are stored in 20 and 30 servers

Figure 3.6: The impact of arrival rate on the average request loss

Figure 3.6 displays the average request loss for different queueing sys-

tems. As can be seen in this figure, the average request loss varies from 0

to approximately 0.86 when the arrival rate λ changes from 0 to 1. Further-

more, it turns out that when more servers are used to store a file the average

request loss is smaller even though the impact of the balking probability is

still considerable.

3.5 Chapter Summary

We applied the Join the Shortest Queue (JSQ) scheme in a queueing

system where files were stored in n servers for n ≥ 1. It has been proved that

38

3.5. Chapter Summary

after a computer system has been in use for a long time, request loss will

begin to occur. For this reason, we added the probability of balking bm which

depends on the number of requests waiting in a queue. In order to analyze

the cost and the performance of our system, the steady state probabilities of

queue length and the average request loss were determined. According to our

model, it turned out that balking probability significantly affect computer

systems.

39

Chapter 4

Numerical Results

In this chapter, we provide numerical results comparing the performance

of a queueing system with redundancy with that of M/M/1 queueing sys-

tem. In addition, since impatience factors affect the system, we will evaluate

the impact of including a balking probability on a queueing system with

redundancy and an M/M/1 queueing system.

40

4.1. The Performance of an M/M/1 Queueing System with Balking

4.1 The Performance of an M/M/1 Queueing

System with Balking

(a) The impact of the general ar-
rival rate on s4 in a system with
balking (solid) or without balking
(dotted)

(b) The impact of the general ar-
rival rate on s5 in a system with
balking (solid) or without balking
(dotted)

Figure 4.1: The impact of the general arrival rate on s4 and s5 in an M/M/1
queueing system with or without balking

Figure 4.1 illustrates the comparison between two M/M/1 systems. In

the first system, requests are not able to balk while in the second one, balking

is possible. In figure 4.1(a), we see that when balking is not possible (dotted

line), the steady state probability s4 rises to 1 in high traffic periods (greater

λ). However, when balking is possible (solid line), the steady state probability

s4 only reaches 0.05. The steady state probability s5 (figure 4.1(b)) behaves

similarly, but increases to 1 faster in the no balking case and remains smaller

41

4.1. The Performance of an M/M/1 Queueing System with Balking

in the balking case. In an M/M/1 system with an impatience factor, since

the size of a queue can affect new arrivals, the steady state probabilities of

queue length are small values.

Table 4.1: An M/M/1 queueing system with balking and arrival rate λ = 0.1

m sm
1 0.1
2 0.005
3 0.001666666667
4 4.166666667× 10−6

5 8.333333333× 10−8

6 1.388888889× 10−9

7 1.984126984× 10−11

8 2.480158730× 10−13

9 2.755731922× 10−15

10 2.755731922× 10−17

Figure 4.2: An M/M/1 queueing system in low traffic periods with balking
and arrival rate λ = 0.1

The steady state probabilities give the information about the number of

queues with m requests. In table 4.1, we have assume that each file is stored

in only 1 server and the demand for joining the system is very low, i.e. the

42

4.1. The Performance of an M/M/1 Queueing System with Balking

arrival rate is close to zero. As we can observe, the probability of having m

requests in the queue decreases when the number of requests increases. For

example, for λ = 0.1, s6 = 1.388888889× 10−9 means the probability that a

new request will join the queue of size 6 is 1.388888889 × 10−9, however, in

a system without balking, s6 = 10−6. Therefore, in low traffic periods, the

probability that an arrival enters the system is highly influenced by balking

probability.

Table 4.2: An M/M/1 queueing system with balking and arrival rate λ = 0.1

m sm
1 0.99
2 0.4900500000
3 0.1617165000
4 0.04002483375
5 0.007924917082
6 0.001307611319
7 0.0001849336008
8 0.2288553310× 10−4

9 2.517408641× 10−6

10 2.492234554× 10−7

43

4.1. The Performance of an M/M/1 Queueing System with Balking

Figure 4.3: An M/M/1 queueing system with balking in a high traffic period

Despite of table 4.1, in table 4.2, we evaluate steady state probabilities for

λ = 0.99. A comparison between tables 4.1 and 4.2 shows in high traffic pe-

riods the probability of having a queue of size m increases by the arrival rate

λ. For instance, the probability of having a queue of size 6 is 0.001307611319

which is significantly higher than s6 in low traffic periods.

44

4.2. The Performance of a Queueing System with n Redundancy and Balking

4.2 The Performance of a Queueing System

with n Redundancy and Balking

(a) The impact of the general ar-
rival rate on s3 in a system with
redundancy

(b) The impact of the general ar-
rival rate on s6 in a system with
redundancy

Figure 4.4: The impact of heavy traffic periods on s3 and s6 in a queueing
system with redundancy n = 5

Figure 4.4 demonstrates how the steady state probability of having a

queue of size 3 or 6 changes in a system where each file is stored in 5 servers.

To be more accurate, from Chapter 3, for the steady state probability of

queue length we have sm =
λ

nm−1
n−1∏m

j=1 j
nm−j . Thus, it is clear that when there is

a small change in the number of either servers or download requests there is

a significant change in the queue length steady state probability. According

to figure 4.4, the numerical results validate our claim. It is clear that when

45

4.2. The Performance of a Queueing System with n Redundancy and Balking

we have a busy system, the number of requests increases. However, due to

the opportunity for a request not to enter the system, the probability of

having requests in a queue of size 3 is very small when λ is close to zero.

When the arrival rate reaches 1, the probability of having three requests

increases to 0.01. As we can see, the probability of having 6 requests is very

small since the number of requests in the queue has negative impact on this

probability. Consequently, only when the arrival rate is very close to 1, does

the probability of 6 requests in the queue increase. However, it only goes up

to 7× 10−268 which is still a very small value.

Figure 4.5: The probability of requests in the queue where λ varies from zero
to one and storage space from two to five

Let us compare a queueing system consisting of both redundancy and

46

4.2. The Performance of a Queueing System with n Redundancy and Balking

balking with a system that only includes redundancy. From our theoretical

and numerical results, we can conclude that the performance of a system

with redundancy and balking is much weaker since the number of requests

decreases. Figure 4.5 is an example of such a system. In this example, the

number of servers used for storage varies from 2 to 5 and the arrival rate λ

varies from 0 to 1. According to this figure, the probability of having a queue

of size 3 for n = 2, 3, 4, 5 and 0 ≤ λ ≤ 1 with balking probability is smaller

than the system without balking.

Figure 4.6: The probability of two requests without and with balking in a
system that two servers used for storage.

Figure 4.6 is an example of having two waiting requests in a system in

which each request has only two choices to download their intended file. In

47

4.2. The Performance of a Queueing System with n Redundancy and Balking

the case with no balking (solid line), the probability of having at least two

requests in a queue is higher than the case with balking (dashed line).

To obtain visual understanding of the impact of balking and redundancy

on a computer system, the steady state probabilities sm in low and high

traffic periods for n = 2 is provided in tables 4.3 and 4.4.

Table 4.3: A queueing system with 2 redundancy and balking probability
where the arrival rate λ = 0.1

m sm
1 0.1
2 0.5× 10−3

3 8.333333333× 10−9

4 1.736111111× 10−18

5 6.028163580× 10−38

6 6.056459357× 10−77

7 5.240099993× 10−155

8 3.432330993× 10−311

9 1.308988450× 10−623

10 1.713450762× 10−1248

48

4.2. The Performance of a Queueing System with n Redundancy and Balking

Figure 4.7: A queueing system with 2 redundancy and balking probability
in a low traffic period

Table 4.4: A queueing system with 2-redundancy and balking where the
arrival rate λ = 0.99

m sm
1 0.99
2 0.4851495
3 0.07767211232
4 0.1493156866× 10−2

5 4.414444503× 10−7

6 3.215407844× 10−14

7 1.462208447× 10−28

8 2.645841258× 10−57

9 7.700523559× 10−115

10 5.870508245× 10−230

49

4.3. Chapter Summary

Figure 4.8: An M/M/1 queue with balking probability in a high traffic period

4.3 Chapter Summary

In this chapter, we analyzed the performance of a queueing system in

which files are stored in various servers and download requests can balk.

According to our observations, the request loss decreases the probability of

having m requests in a queue. In addition to the balking probability, the

number of servers used for storage also causes changes in the queue length.

Even though redundancy itself can improve the performance of a queueing

system, impatience factors such as balking strongly reduce the performance.

50

Chapter 5

Conclusion

We studied queueing systems under the case that a very large number

of files are stored redundantly in a very large number of servers, and in

which there is a probability that a request might not enter the system. That

probability depends on the number of requests waiting in a queue. We con-

sidered Join the Shortest Queue as our load balancing scheme and found the

steady state probabilities relevant to our model. In order to evaluate the cost

and performance of the system, we determined the average request loss and

proved that redundancy improves the performance of a system. Therefore,

our objective was to analyze a queueing system in which the probability of

balking was added. Using our balking probability and redundancy, we gener-

ated numerical results to illustrate how the number of requests in the system,

or the number of servers used for storage, can affect the steady state prob-

abilities of queue length. As a consequence, when a file download request

is lost in a computer system, it can directly influence the cost. In order to

reduce the cost and improve the performance, we need to change our com-

puter systems so that balking probability has less of an influence. Since this

thesis was the initial step in considering request loss, much more work can

51

Chapter 5. Conclusion

be done in this area. For instance, moving from redundancy to coding, or

applying another load balancing method, may help to both control the cost

and decrease the waiting time. In particular, further studies can be carried

out for the case in which files can stored according to Maximum Distance

Separable codes.

52

Bibliography

[AJG63] CJ Ancker Jr and AV Gafarian. Some queuing problems with

balking and reneging. i. Operations Research, 11(1):88–100,

1963. → pages 3

[AP09] Jesus R Artalejo and Vicent Pla. On the impact of cus-

tomer balking, impatience and retrials in telecommunica-

tion systems. Computers & Mathematics with Applications,

57(2):217–229, 2009. → pages

[BK10] Jongho Bae and Sunggon Kim. The stationary workload of the

g/m/1 queue with impatient customers. Queueing systems,

64(3):253–265, 2010. → pages 3

[Gal96] Robert G. Gallager. Random Walks and Martingales, pages

223–263. Springer US, Boston, MA, 1996. → pages 11

[GHBSW+17] Kristen Gardner, Mor Harchol-Balter, Alan Scheller-Wolf,

Mark Velednitsky, and Samuel Zbarsky. Redundancy-d: The

power of d choices for redundancy. Operations Research,

65(4):1078–1094, 2017. → pages 5

53

https://doi.org/10.1007/978-1-4615-2329-1_7
https://doi.org/10.1287/opre.2016.1582
https://doi.org/10.1287/opre.2016.1582

Bibliography

[GSTH08] Donald Gross, John F. Shortle, James M. Thompson, and

Carl M. Harris. Fundamentals of Queueing Theory. Wiley-

Interscience, New York, NY, USA, 4th edition, 2008. → pages

7

[GZD+15] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor

Harchol-Balter, and Esa Hyytia. Reducing latency via re-

dundant requests: Exact analysis. ACM SIGMETRICS Per-

formance Evaluation Review, 43(1):347–360, 2015. → pages

5

[Hai57] Frank A Haight. Queueing with balking. Biometrika,

44(3/4):360–369, 1957. → pages 3

[JDPF05] Sushant Jain, Michael Demmer, Rabin Patra, and Kevin Fall.

Using redundancy to cope with failures in a delay tolerant

network. SIGCOMM Comput. Commun. Rev., 35(4):109–120,

August 2005. → pages 5

[Kap11] Stella Kapodistria. The m/m/1 queue with synchronized

abandonments. Queueing Systems, 68(1):79–109, May 2011.

→ pages 3

[KC09] Jau-Chuan Ke and Fu-Min Chang. Modified vacation policy

for m/g/1 retrial queue with balking and feedback. Computers

& Industrial Engineering, 57(1):433–443, 2009. → pages 3

54

http://doi.acm.org/10.1145/1090191.1080106
http://doi.acm.org/10.1145/1090191.1080106
https://doi.org/10.1007/s11134-011-9219-0
https://doi.org/10.1007/s11134-011-9219-0

Bibliography

[LK06] Liqiang Liu and Vidyadhar G Kulkarni. Explicit solutions for

the steady state distributions in m/ph/1 queues with workload

dependent balking. Queueing Systems, 52(4):251–260, 2006.

→ pages 3

[LK08] Liqiang Liu and Vidyadhar G. Kulkarni. Busy period analysis

for m/ph/1 queues with workload dependent balking. Queue-

ing Systems, 59(1):37, Jun 2008. → pages 3

[LM08] Macarena Lozano and Pilar Moreno. A discrete time single-

server queue with balking: economic applications. Applied

Economics, 40(6):735–748, 2008. → pages 4

[LRS16] B. Li, A. Ramamoorthy, and R. Srikant. Mean-field-analysis

of coding versus replication in cloud storage systems. In IEEE

INFOCOM 2016 - The 35th Annual IEEE International Con-

ference on Computer Communications, pages 1–9, April 2016.

→ pages 2, 18, 20, 22, 32

[Mit01] M. Mitzenmacher. The power of two choices in random-

ized load balancing. IEEE Transactions on Parallel and Dis-

tributed Systems, 12(10):1094–1104, Oct 2001. → pages 4, 18,

19

[Nat75] Bent Natvig. On a queuing model where potential customers

55

https://doi.org/10.1007/s11134-008-9074-9
https://doi.org/10.1007/s11134-008-9074-9
http://dx.doi.org/10.1080/00036840600749607
http://dx.doi.org/10.1080/00036840600749607
http://www.jstor.org/stable/4615573
http://www.jstor.org/stable/4615573

Bibliography

are discouraged by queue length. Scandinavian Journal of

Statistics, 2(1):34–42, 1975. → pages 3

[Ros14] Sheldon Ross. - queueing theory. In Sheldon Ross, editor,

Introduction to Probability Models (Eleventh Edition), pages

481 – 558. Academic Press, Boston, eleventh edition edition,

2014. → pages 9, 10

[Saa61] Thomas L Saaty. Elements of queueing theory: with applica-

tions. McGraw-Hill New York, 1961. → pages 4

[SK82] Hari M Srivastava and BRK Kashyap. Special functions in

queuing theory and related stochastic processes. ACADEMIC

PRESS, 111 FIFTH AVE., NEW YORK, NY 10003, 1982.→

pages

[SLR16] N. B. Shah, K. Lee, and K. Ramchandran. When do redun-

dant requests reduce latency? IEEE Transactions on Com-

munications, 64(2):715–722, Feb 2016. → pages 5

[SR67] S. Subba Rao. Queuing with balking and reneging in m—g—1

systems. Metrika, 12(1):173–188, Dec 1967. → pages 3

[VLDIK96] Nikita Vvedenskaya, R L. Dobrushin, and F I. Karpelevich.

Queueing system with selection of the shortest of two queues:

An asymptotic approach. 32, 01 1996. → pages

56

http://www.jstor.org/stable/4615573
http://www.jstor.org/stable/4615573
http://www.sciencedirect.com/science/article/pii/B9780124079489000086
https://doi.org/10.1007/BF02613493
https://doi.org/10.1007/BF02613493

Bibliography

[vTvdV80] Martien van Tits and Henk van der Veeken. Simulation of a

queueing problem with balking. SIMULATION, 35(3):88–93,

1980. → pages 3

[WC02] Kuo-Hsiung Wang and Ying-Chung Chang. Cost analysis of

a finite m/m/r queueing system with balking, reneging, and

server breakdowns. Mathematical Methods of Operations Re-

search, 56(2):169–180, Nov 2002. → pages 4

[WLJ10] K. Wang, N. Li, and Z. Jiang. Queueing system with impa-

tient customers: A review. In Proceedings of 2010 IEEE In-

ternational Conference on Service Operations and Logistics,

and Informatics, pages 82–87, July 2010. → pages 4

[YSK17] Lei Ying, R Srikant, and Xiaohan Kang. The power of slightly

more than one sample in randomized load balancing. Mathe-

matics of Operations Research, 2017. → pages

57

https://doi.org/10.1177/003754978003500303
https://doi.org/10.1177/003754978003500303
https://doi.org/10.1007/s001860200206
https://doi.org/10.1007/s001860200206
https://doi.org/10.1007/s001860200206

	Abstract
	Lay Summary
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	1 Introduction
	1.1 Motivation and Contribution
	1.2 Literature review
	1.3 Organization

	2 Preliminaries
	2.1 Markov Chain
	2.2 Steady-state probability
	2.3 Poisson Process
	2.4 Queuing Theory

	3 The Impact of Balking on Computer Systems
	3.1 Power of n Choices
	3.1.1 Supermarket Model
	3.1.2 Mean Field Analysis of Coding in Cloud Storage System

	3.2 Our Model
	3.3 Steady-state results
	3.3.1 Steady-State for n=1
	3.3.2 Steady-states for n2

	3.4 The Average Request Loss
	3.5 Chapter Summary

	4 Numerical Results
	4.1 The Performance of an M/M/1 Queueing System with Balking
	4.2 The Performance of a Queueing System with n Redundancy and Balking
	4.3 Chapter Summary

	5 Conclusion
	Bibliography

