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Abstract 

 

Advances in image and video capturing technologies, coupled with the introduction of innovative 

Multiview displays, present new opportunities and challenges to content providers and 

broadcasters. New technologies that allow multiple views to be displayed to the end-user, such as 

Super Multiview (SMV) and Free Viewpoint Navigation (FN), aim at creating an immersive 

experience by offering additional degrees of freedom to the user. Since transmission bitrates are 

proportional to the number of the cameras used, reducing the number of capturing devices and 

synthesizing/generating intermediate views at the receiver end is necessary for decreasing the 

required bandwidth and paving the path toward practical implementation. 

 

View synthesis is the common approach for creating new virtual views either for expanding the 

coverage or closing the gap between existing real camera views, depending on the type of Free 

Viewpoint TV application, i.e., SMV or 2D walk-around-scene-like (FN) immersive experience. 

In these implementations, it is common for the majority of the cameras to have dissimilar 

characteristics and different viewpoints often yielding significant luminance and chrominance 

discrepancies among the captured views. As a result, synthesized views may have visual artifacts, 

caused by incorrect estimation of missing texture in occluded areas and possible brightness and 

color differences between the original real views. 

 

In this thesis, we propose unique view synthesis methods that address the inefficiencies of 

conventional view synthesis approaches by eliminating background leakage and using edge-aware 

background warping and inter-pixel color interpolation techniques to avoid deformation of 
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foreground objects. Improved occlusion filling is achieved by using information from a temporally 

constructed background. We also propose a new view synthesis method specifically designed for 

FN applications, addressing the challenge of brightness and color transition between consecutive 

virtual views. Subjective and objective evaluations showed that our methods significantly improve 

the overall objective and subjective quality of the synthesized videos. 

  



v 
 

Lay Summary 

 

New immersive video technologies such as Free Viewpoint TV and its subcategories Super 

Multiview and Free Navigation require huge amount of information to be transmitted to the end-

user. View synthesis creates virtual views from the real ones and is the best way to address the 

bandwidth challenges of these technologies as well as the large variety of Multiview displaying 

technologies at the receiver end. Synthesized views, however, may suffer from visual artifacts, 

mainly caused by “occluded” regions did not exist in the real views and their color and intensity 

information have to be predicted through some kind of interpolation. In this work, we introduce a 

new view synthesis method that eliminates most of the problems of existing view synthesis 

approaches for Free Viewpoint TV applications, yielding better overall visual quality. 
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1. Chapter 1: Introduction 

Nowadays, multiple capturing and display technologies (Free Viewpoint TV), such as Super 

Multiview (SMV) (Figure 1.1a), Free Navigation (FN) [1] (Figure 1.1b), and Virtual Reality (VR) 

[2] (Figure 1.1c), are trying to provide viewers with a more realistic impression of camera captured 

or computer-generated scenes. Each one of the above-mentioned technologies is trying to create 

an immersive experience by offering additional degrees of freedom to the user. Life-like 

impression of the perceived surroundings can be achieved using different technological approaches 

and different physical devices. 

There are a few major differences between FN and SMV, both in capturing and displaying content. 

First, the physical distance amongst content capturing cameras differs. SMV provides more 

densely spaced views (eighty or more), whereas FN’s goal is to provide smooth transition between 

views that are spaced further apart than those in SMV (up to ten meters between neighboring 

cameras). Figures 1.1a and 1.1b show a camera setup for Stereoscopic and Free Navigation 

respectively. The second difference is how that content is projected to the viewer. SMV is 3D 

content displayed on 3D enabled monitors (see Figure 1.2) that can show multiple number of the 

views at once, whereas FN is 2D content that the viewer can sweep through. 

VR provide the viewer with partially or fully generated images to replicate a real environment and 

simulate the user’s physical presence in this environment. That requires multiple images to be 

    

(a)           (b)        (c) 

Figure 1.1. Camera setups: (a) Super Multiview, (b) Free Navigation, (c) VR. 

 

Figure 2.1. Camera setups: (a) Super Multiview, (b) Free Navigation, (c) VR. 
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transmitted to the user’s display device of choice at any given time based on his/her position in 

space. Depth maps, usually, are not part of these technologies, due to absence of depth capturing 

devices in the current setups, so the need for their synthesis still exists. 

 

1.1 Motivation 

Advances in the image and video capturing technologies, coupled with the introduction of more 

affordable Multiview and 3D displays, present new opportunities and challenges to content 

providers and broadcasters. New technologies that require multiple camera views to be displayed 

to the end client, such as Super Multiview (SMV) and Free Viewpoint Navigation (FN), were 

recently introduced to the market [5]. All these technologies provide viewers with a realistic 

impression of the scene by allowing them to freely navigate through the scene and perceive the 

scene’s depth [3]. 

View Synthesis (Figure 1.3) plays an important role in the above-mentioned technologies. The 

need for view synthesis arises from the fact that its usage can significantly reduce the amount of 

content that should be captured, stored, and transmitted. The transmission bitrate is proportional 

to the number of the cameras used to capture the scene; hence, by reducing the number of capturing 

 

(a)                                                 (b) 

Figure 1.2. Super Multiview 3D (a) Alioscopy 8 views display, (b) Dimenco 28 views display. 

 

 

(b)                                                 (b) 

Figure 1.3. Super Multiview 3D (a) Alioscopy 8 views display, (b) Dimenco 28 views display. 
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devices used in the setup and synthesizing/generating intermediate views at the end device instead, 

has the potential to decrease the required bandwidth. 

As the quality of the synthesized views should be such that yields the best possible visual 

experience to the user regardless of the application in hand, the view synthesis process should try 

to match the quality of the “missing” views to that of the real ones. 

View synthesis may affect differently each of these technologies, as the challenges are different 

for each application. In case of Super Multiview, equipment manufacturers and content providers 

supply viewers with a large number of views (ten to eighty), in order to improve transition between 

sweet spots. As the number of views varies from one display to another, synthesizing virtual views 

becomes an essential task, beyond the obvious necessity for bandwidth savings. 

Free Navigation (Figure 1.1b) enables the viewer to seamlessly transition between adjacent 

cameras that surround the scene. Camera arrays arranged around the scene, usually in parallel or 

arch converging mode, are used for offering an immersive experience; examples may be watching 

a soccer game from different angles or watching and listening a symphony from different positions 

in a theatre. 

 

Figure 1.3. View Synthesis process model, from transmission to representation. 
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There are a few major differences between FN and SMV in both content capturing and displaying 

aspects. First, the physical distance amongst content capturing cameras varies. SMV provides more 

densely spaced views, whereas FN’s goal is to smooth transition between views that are spaced 

further apart than those in SMV (up to ten meters between neighboring cameras). In such cases, 

where captured content is further apart due to the physical distance between cameras (see Figure 

1.1b), the quality of the synthesized views is even more important, as there is no adequate 

information from neighboring views that can be used for filling the occluded regions in rendered 

views [3]. 

The second difference is how that content is projected to the viewer. In SMV, 3D content is 

displayed on 3D enabled monitors that can show multiple number of views at once, whereas in FN 

2D the viewer can sweep through the content. 

In SMV and FN implementations, it is common for the majority of the cameras to have dissimilar 

radiometric lens characteristics and be pointed to the scene from a different viewpoint, often 

yielding significant luminance and chrominance discrepancies among the captured views [20]. As 

a result, synthesized views may have visual artifacts, caused by incorrect estimation of missing 

texture in occluded areas and possible brightness and color differences between the original real 

views. 

Although several methods have been designed for improving the visual quality of the synthesized 

views for 3D and Multiview applications, unfortunately they do not directly apply to FN 

implementations. This is much more evident in the case of color and discrepancies between views. 

In Multiview applications, the camera base is narrow and color differences between the real views 

are due to the optical differences of the cameras and lenses. However, in case of FN, the cameras 

are far apart, and the inconsistencies in brightness levels and colors are not due to miss-calibration 
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or the optical differences between the cameras, but in fact, they represent the actual scene viewed 

from different angles.  

Existing view synthesis methods [4] fail to tackle the problem of color prediction for synthesized 

views in this case, thus creating visible color, shade, and brightness related artifacts. Color and 

brightness estimation of the objects in the scene is one of the big challenges that we addressed. 

 

1.2 Thesis Organization 

The rest of the thesis is structured as follows. Chapter 2 gives an overview of existing view 

synthesis and color matching works. Chapter 3 presents in detail our first proposed view synthesis 

and occlusion filling approaches. Chapter 4 introduces our color estimation method designed for 

FN applications. Finally, conclusions, discussions, and future work are drawn in Chapter 5. 
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2. Chapter 2: Background 

2.1 View Synthesis 

Depth Image Based Rendering (DIBR) [6] has been adopted by industry as the most efficient 

approach for view synthesis, since it provides the depth information of the scene that can be used 

for intermediate view generation. DIBR still suffers from artifacts arising from the fact that some 

regions of the synthesized views are not visible in the original images, which results in occlusions 

(pixels without information) that are filled using varies techniques. The detailed explanation of the 

origin of the occlusions can be found in recent work by Zhu et al [7]. 

The DIBR view synthesis model uses point cloud representation of the objects in the scene. Each 

pixel location can be derived from the depth map and the camera’s known position in space. Based 

on that data, each color pixel is translated to the virtual camera plane separately. The translation 

process creates occlusions in a way similar to a disparity-based synthesizing approach that was 

dealing only with horizontal disparity of the objects in the scene, which suitable for capturing the 

scene with parallel camera arrangement [8]. Additionally, neighboring pixels can be mapped to 

the non-integer location and rounded to the same pixel, effectively creating small occlusions. Due 

to the sparse camera locations, synthesized content of FN will have bigger occlusions in 

comparison with SMV. An alternative to the single pixel transition approach is using triangular 

meshes in order to reduce the number of the occlusions [9]. 

Recently, view synthesis has been generalized for the circular camera arrangement described in 

[8] as part of the 3D-HEVC standard based on the 3D in Multiview Video and Depth format 

(MVD). For MVD, the depth information of the pixel determines its location in the virtual plane 

based on its coordinates in space, and camera’s extrinsic, intrinsic, and translation parameters. 
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A series of color cameras bundled with depth cameras can capture the scene from multiple 

viewpoints located parallel, in arch mode, or around the scene. In order to reduce the amount of 

the information that should be captured and transmitted, the FN and SMV technologies use a depth 

map (DM) plus a color image pair for generating all the transitional views between them (DIBR 

approach similar to [4]). The displaying device determines the number of the synthesized views in 

Multiview that can vary from eight to over a hundred. For FN, the number of the virtual views in 

between the real views defines how smooth the transition is. The main difference between Free 

Viewpoint Navigation and the Super Multiview technologies is the distance between capturing 

devices. The wider disparity in FN will affect the size of the occlusions, thus affecting the quality 

and accuracy of the synthesized views. 

In general, the occlusion filling methods can be divided into three categories depending on the 

source of information these occlusions will be filled with. The first category involves approaches 

that use temporal information from previous and future frames to obtain additional temporal 

predictions of the synthesized frame [10][11][12]. In this case, forward motion vectors are applied 

in the temporal sense, computed in the reference views and warped in the synthesized view to 

obtain up to four temporal predictions, which are blended together with the DIBR predictions using 

either an average or adaptive approach [12]. This helps to extract information on occluded areas. 

Luo et al. [13] utilized the random walker algorithm for foreground extraction combined with 

dynamic background reconstruction and used that background for occlusion filling. 

In the second category, patches are extracted from available real views and used for occlusion 

filling in newly synthesized image [14][15][16]. The downfall of both categories is that not all the 

occlusions can be visible in space or temporal neighboring frames, leaving some of them not filled 

thus causing unwanted artifacts. 
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In the last category, missing pixel color information can be predicted based on the observation that 

the background color and texture should be continuous. Inter pixel color interpolation (inpainting) 

is the most commonly used approach where occlusions are filled by interpolating neighboring 

color pixel information with this process sometimes followed by a smoothing filter such as in the 

View Synthesis Reference Software (VSRS) [8]. Another approach involves warping the 

neighboring background into the occluded region [17][18]. Even though both approaches can 

cover all the occlusions, in doing so they can create unwanted visible artifacts. Warping will cause 

foreground stretching or background line distortions, whereas interpolation alters background’s 

visible patterns. 

In FTV, visual artifacts are Background Leakage (BL) and occluded regions. BL is caused by the 

fact that objects in a scene have volumetric nature, resulting in several different depth values for 

the same object. While transitioning color pixels from the real camera to the new virtual camera 

plane, depth map values will create discontinuities in solid objects, which will end up filled with 

background information, thus resulting in visual artifacts. 

 

2.2 Color Matching 

Color matching attracted a lot of attention over the years, with one of the first methods proposed 

by Reinhard et al. [21]. This method used statistical analysis to impose one image's color 

characteristics on another and achieved color correction by choosing an appropriate source image 

and applying its characteristics to another image. A representative color correction method for 

Multiview applications is presented in [22]. This method uses block-based disparity estimation to 

find matching points between all the views and efficiently estimate the average color that is used 

for color correction. In [23] an example-based color transfer algorithm (EBVCC) achieves color 

matching by preserving the gradient details of the source using Laplacian pyramids. A more recent 
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method designed to correct color differences in Multiview video sequences uses a dense matching-

based global optimization framework [24]. Dong-Won et al. attempted to solve the color mismatch 

problem in Multiview applications by finding correspondences between the source and target 

viewpoints and calculating a translation matrix using a polynomial regression technique in CIELab 

color space [25]. 

All the above-mentioned methods focus on Multiview applications. However, in the case of FN, 

matching colors between views is not the “ideal” objective, as colors in real views may be different 

due to the fact that the actual scene is viewed from different angles and brightness. The actual 

color of the same object in two real images can be different due to the brightness, sparse camera 

location, and orientation in the scene. Thus, the objective in Free Navigation applications is to 

create a seamless transition between two real cameras through the scene using synthesized views 

whose brightness and color changes depend on their position with relation to the real views. To 

the best of our knowledge, there is no published work on color estimation for FN applications at 

the time of writing this Thesis. 
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3. Chapter 3: View Synthesis and Occlusion Filling 

3.1 Introduction 

In this chapter, we propose a unique view synthesis method, which addresses present 

shortcomings. First, a layer-based view synthesis step is introduced that eliminates background 

leakage. Second, an occlusions classification approach with spatial filling is applied, utilizing both 

extended edge-aware background warping and background inter-pixel color interpolation 

techniques to avoid deformation of foreground objects. Lastly, better hole filling is achieved by 

using information from a temporally constructed background over several frames. The following 

subsection describe our method in detail. 

3.2 Our Proposed Method 

Figure 3.1 shows the workflow of our view synthesis method. As a first step, we address the 

background leakage (Figure 3.2) by using our layer-based translation process to synthesize the 

virtual view. As a second step, we classify occlusions based on their size and fill-in the smaller 

ones using inter pixel color interpolation. After that, view blending is applied to fill-in larger 

occlusions with the information available from the second view. Since some occlusions will 

remain, the second step is repeated separating them into small and large holes. The next step 

involves the use of our temporally combined background information to fill the bigger occlusions, 

as the smaller ones were filled using inter pixel color interpolation. The final step of our method 

uses edge-aware background-only warping to fill the remaining occlusions. For the view 

extrapolation case, where only one camera view and the corresponding depth map are used, the 

above process is identical with the exception that the blending stage is not applicable. 

In the following subsections, we describe the different parts of our approach in detail. 
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3.2.1 Layer-based View Synthesis 

Our first objective and first part of our approach is to address the background leakage artifacts 

(Figure 3.2). To this end, the depth information for each pixel and the point cloud method 

expressed in equations (3.1) and (3.2) were used to transition the color pixels from the available 

real camera plane (r) through the 3D position in space to the virtual camera plane. 

 

[

𝑍𝑟  ∙ 𝑋𝑟
𝑍𝑟  ∙ 𝑌𝑟

𝑍𝑟
1

] = 𝑃𝑟 ∙ 𝑃−1 ∙ [

𝑍  ∙ 𝑋
𝑍  ∙ 𝑌

𝑍
1

]       (3.1) 

 

 

𝑃 = [

𝑓𝑥 0
0 𝑓𝑦

   
𝑐𝑥 0
𝑐𝑦 0

0  0
0  0

     1  0
     0  1

] ∙ [
𝑅 −𝑅 ∙ 𝑇

𝑂𝑇     1
]       (3.2) 

 

where X, Y, Z are coordinates of the pixel in space, R is a rotation matrix, T is a translation matrix, 

and f is the focus distance of the camera. Projection matrices P and Pr consist of the camera’s 

extrinsic, intrinsic, and translation parameters. 

 

 

Figure 3.1. Block diagram of our view synthesis method. 

 

 

 

Figure 3.1. Block diagram of our view synthesis method. 
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In our approach, instead of moving all the pixels from the captured camera plane to the virtual 

plane based on their depth map value one by one, we divide the depth map of the scene into three 

uncoupled layers: background, middle ground, and foreground using the Background Separation 

process. 

The background separation is a challenging task, since defining what background is depends on 

the scene’s composition and the subjective opinion of the viewer [3]. We start by classifying the 

background into two classes: parallel to the camera plane (“simple”, Figure 3.3a), such as the sky 

behind the rabbit in the “Big Buck Bunny” sequence [26], and non-parallel (“complex”, Figure 

3.4a), such as the green curtain behind the table in the “Poznan Blocks” sequence [27]. Simple 

background separation begins with the declaration of two global thresholds (𝑡ℎ1 𝑎𝑛𝑑 𝑡ℎ2) using 

  

(a)                                                                          (b) 
Figure 3.3. (a) Simple Parallel Background Composition, (b) background 1 of the scene using simple 

parallel background model. 

 

  

 

(a)                                                          (b) 

Figure 3.2. Background Leakage: (a) State-of-the-art view synthesis, (b) Our Method. 

 

 

(b)                                                          (b) 

Figure 3.2. Background Leakage: (a) State-of-the-art view synthesis, (b) Our Method. 
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Otsu’s method [28] (Figure 3.3b), which chooses the threshold to minimize the intra class variance 

of the black and white pixels of the provided gray level depth map [29]. The approach to the 

complex background scenes is more sophisticated, since the global threshold will inaccurately 

define the background of the image. For that case, we apply the threshold to each pixel-wide 

column in the depth map (Figure 3.3b). This step decreases the speed of the algorithm, while it 

yields excellent results. In our previous work, we used a number of vertical slices instead of pixel-

sized columns, which gave us better speed performance, but the resulted background separation 

and visual results depended on the scene’s content. The same background separation process is 

used later for the temporal background fill step. 

After separating the depth map scene representation into three separate layers, we start the 

background leakage elimination process by first synthesizing the virtual view depth map (Figure 

3.5). We observe that the foreground objects (brightest flowers) have dark lines (holes) which are 

caused by the volumetric nature of the objects that results in different disparity values for the same 

object. Since our goal is to remove the small holes inside the objects at each layer, we start a 

dilation process, which doubles each bright pixel in each direction. This step eliminates all the 

small holes inside the foreground the objects (Figure 3.6), but it also expands the edges by two 
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pixels. In order to bring the edges back to original position, we enlarge the black background pixels 

by two pixels in each direction (this process is known as erosion, Figure 3.7). We repeat this 

process for the middle-ground, separating accurately the three regions and eliminating background 

leakage. 

We continue the transition of the background pixels in exactly the same manner as the middle 

ground (Figure 3.8). This approach insures that the color information from a lower layer (farther 

away from the viewer) will not be introduced within the borders of the upper layer object (Figure 

3.2). 

Currently, our layer based view synthesis step is limited to only three layers, since based on our 

observations; the majority of the scenes have objects of interest in only three space regions. 

Further studies on a larger set of video streams may be needed to determine if that is true for all 

the cases. 

  

(a)                                                       (b) 
 

Figure 3.4. (a) Slicing Complex Background into five vertical regions, (b) resulting background using 

vertical slicing model. 

 

  

(b)                                                       (b) 
 

Figure 3.4. (a) Slicing Complex Background into five vertical regions, (b) resulting background using 

vertical slicing model. 
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Figure 3.6. Virtual View Depth Map after dilation. 

 

Figure 3.5. Virtual View Depth Map. 
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Figure 3.8. Pixel translation diagram to virtual camera plane. 

 

Figure 3.7. Virtual View Depth Map after erosion. 
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3.2.2 Occlusion Classification and Inter Pixel Color Interpolation 

Occlusions, which are areas of the synthesized image with missing color pixel information, can be 

classified into two categories: border and non-border [30]. Border occlusions occur due to the 

physical positioning of the cameras, their relative rotation to the scene, which results in border 

parts of the synthesized image being not visible. Since the majority of those can be filled from a 

secondary synthesized view, the blending stage of our model deals with this type of occlusions. If 

the part of the scene is not visible in both real views, we utilize inter pixel color interpolation. 

Objects in the foreground that obscure parts of the background, or other objects behind them, 

which should be visible in the synthesized view, cause the large non-border image occlusions, 

called holes. Due to the motion of the foreground objects and camera, the occlusions’ locations 

vary over time and produce different discontinuities at different time instances in the synthesized 

view. Thus, part of the missing information may be available in future or past frames [10] 

(“temporally combined background information”), and may be covered using information from 

the secondary image (“view blending”), and for the remaining occlusions we can apply edge-aware 

background warping. 

Rounding errors in the pixel translation process and small depth discontinuities will cause small 

non-border image occlusions. Our empirical tests have shown that occlusions smaller than 3% of 

the frame’s width can be efficiently and without any significant visual degradation filled using the 

inter pixel color interpolation algorithm [8]. These occlusions are defined as cracks in this work. 

The inpainting technique (interpolating neighboring pixel’s color into occluded region) has been 

widely used, as it is the fastest and most straightforward approach for filling occlusions [8]. Even 

when some of the big occlusions cannot be completely filled by spatial or temporal occlusion-
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filling approaches, they can still be reduced in size, significantly reducing the size of artifacts in 

the final image. 

Based on these findings, we use inter pixel color interpolation as an intermediate step between 

larger occlusion fillings steps (see Figure 3.9), interpolating background pixel value in order to fill 

small occlusions in both vertical and horizontal directions. Using only background pixels helps us 

preserve the edges and the silhouettes of the foreground objects. Equation 3.3 describes the 

decision process for choosing the start or the end of a crack as a source for the pixel’s color to be 

filled in, based on the depth value of those pixels: 

 

∃𝑝𝑐(𝑥, 𝑦) = {
𝑝𝑐(𝑥𝑠, 𝑦𝑠),   𝑝𝑑(𝑥𝑠, 𝑦𝑠) ≤ 𝑝𝑑(𝑥𝑒 , 𝑦𝑒)

𝑝𝑐(𝑥𝑒 , 𝑦𝑒),   𝑝𝑑(𝑥𝑠, 𝑦𝑠) > 𝑝𝑑(𝑥𝑒 , 𝑦𝑒)
    (3.3) 

 

where 𝑝𝑐(𝑥, 𝑦) is the color image pixel values at (x, y) locations and 𝑝𝑑(𝑥, 𝑦) is the sum of 

start/end (s/e) pixel of the depth map with its neighboring non zero depth value (d). We use the 

sum of two pixels in order to eliminate the depth map inconsistencies around an object’s edges, 

according to [31].  
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Figure 3.9. Block Diagram of our method where our contributions are highlighted in dashed line. 

 

Figure 3.10. (a) Final image synthesized using VSRS, (b) final image using our method that correctly copies foreground information from 
the second view.
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3.2.3 View Blending 

Some parts of the scene that are not visible from a primary camera location can appear in the 

neighboring cameras due to the relative cameras’ rotation to the scene. For this reason, after 

synthesizing the primary virtual view from the closest to the virtual point real camera frame, we 

fill all the occluded areas with available information from the secondary real view (the camera 

second closest to the virtual camera point). There are several view blending approaches, such as 

those described in [17] and [32], but both rely on color images only (without depth map) and 

perform image-based 3D warping. Since DIBR provides the renderer with information about the 

camera position and orientation in space (in configuration file format), we can easily calculate the 

distances from the real cameras to the virtual point in space. Based on this fact, in our approach 

we use the distance-based blending approach, where the closest to the virtual view real camera 

view is the primary view, upon which we synthesize the new image (Figure 3.10). 

View blending will fill in the majority of the created occlusions with the real information from the 

available real camera views of the same scene.  

 

(a)        (b) 

Figure 3.10. (a) Final image synthesized using VSRS, (b) final image using our method that correctly copies 

foreground information from the second view. 



21 
 

3.2.4 Hole filling using Temporally Combined Background Information 

Background reconstruction has been widely used in [13] and [10][33], where temporally correlated 

information from both 2D video and its corresponding depth map are exploited to construct 

background video [13]. In contrast to the mentioned methods, our approach does not rely on 

motion flow to separate the background, but only on the provided depth maps. That helps us to 

classify even still foreground objects and achieve stable and accurate background reconstruction 

over time while using a rather fast and simple approach. 

Extensive tests involving a large set of video streams have shown that a temporal window of eight 

frames yields an adequately complete background, which can be used for efficiently filling 

occluded areas in the current frame. 

After separating the depth map into three layers, background (B), middle ground (M), and 

foreground (F) using 8 frames, we want to combine each layer from all the frames in to a single 

frame. In order to align the frames, we use the feature-matching algorithm SURF [34] to 

geometrically translate each background layer to the current virtual camera’s coordinates. After 

translation, we fill the holes in the saved background frame with the newly available information 

using the recently extracted background frame [3]. The color pixel assignment decision process is 

described by the following equation: 

 

∃𝑝𝑐(𝑥, 𝑦) ∈ {𝑀,

𝐹, 𝑝𝑑(𝑥, 𝑦) > 𝑡ℎ1

𝑡ℎ1 > 𝑝𝑑(𝑥, 𝑦) > 𝑡ℎ2

𝐵, 𝑝𝑑(𝑥, 𝑦) < 𝑡ℎ2

   (3.5) 

 

where 𝑡ℎ1 with 𝑡ℎ2 are two depth thresholds (𝑡ℎ1< 𝑡ℎ2), F, M, and B are stand for foreground, 

middle ground and background respectively, 𝑝𝑐(𝑥, 𝑦) and 𝑝𝑑(𝑥, 𝑦) are the color and depth pixel 

values at location (x, y). 
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Depth maps may be either captured during filming [35] or be synthesized using the real views by 

visual cue methods described in [36]. In both cases, they may have inaccuracies and misalignments 

with the texture counterpart, which will result in synthesized image objects’ edge artifacts. In the 

interest of reducing edge artifacts and increasing the background coverage for better occlusion 

filling, we empirically found that deleting five edge pixels from the background image and then 

interpolating pixels from the holes’ edges using sixteen background pixels significantly increases 

background coverage [3] as shown on Figure 3.13. 

The saved background and middle ground are used for occlusion filling in the synthesized view at 

that stage. From our evaluations, we noticed that for the videos with foreground objects without 

significant spatial movement (such as the Rabbit from the “Big Buck Bunny” sequence) the 

background-filling step does not cover all the occlusions. 

The separation of the remaining occlusions into large and small ones, namely holes and cracks, is 

the next step of our approach. The cracks are filled using the already mentioned inter pixel color 

interpolation technique, while background edge-aware warping, which is described in the 

following subsection, is used for filling the holes. 

 

 
VSRS (Y-PSNR, dB) Our Approach (Y-PSNR, dB) 

QPs 25 30 35 40 25 30 35 40 

Balloons 29.567 29.525 29.449 29.276 30.863 30.903 30.878 30.915 

Kendo 27.975 27.935 27.858 27.733 29.790 29.757 29.678 29.46 

Newspaper 26.451 25.858 25.751 25.644 25.496 25.547 25.499 25.496 

 

Table 3.1. Y-PSNR objective tests results for Multiview content for three sequences and four QP levels. 
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3.2.5 Background Edge-Aware Warping 

For the remaining occlusions, we do not have any “real” pixel information from the neighboring 

views or from future and past frames. Since using interpolation at this stage has shown to yield 

artifacts, we apply an edge-aware background warping that integrates the nonlinear disparity 

mapping principles of [18] and [37] to efficiently fill the remaining holes. 

Since the edges in the color image are important to the human visual system, our approach, unlike 

other methods, incorporates an edge mask to make sure that warping does not cross those edges 

throughout the process. In order to compute the background edge mask, we apply Sobel edge 

detector [38] on the Luma component (which represents the brightness of the image) of the YUV 

frames. Our occlusion warping process warps only up to 85% of the occlusion from the 

neighboring furthest area of the scene in the image, in contrast with [18] where the occlusion-size 

background is warped in fully. We found that usage of only 85% of the hole’s size background 

pixels introduces a smaller stretching effect to the final image. Warping is performed by comparing 

the average of a group of pixels’ depth values on both sides of the occluded region that we are 

about to fill (same approach as with the inter pixel color interpolation). If the area that we are going 

  

(a)                                                    (b) 

Figure 3.11. (a) Shows our background interpolation step expanding the hole and (b) shows the resulting 

artifacts using VSRS. 
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to warp does not have enough texture information, the approach will apply inter pixel color 

interpolation instead. Those cases include the border type occlusions at the edges of the image. 

This approach yields good results, as it does not create visual artifacts that are perceived by our 

visual system. 

 

3.3 Objective Tests 

For the objective tests, we employed the Luma-based Y-PSNR metric and compared our results 

with the methods presented in [12] and [39].  For VSRS, we used the linear mode with no blend 

option selected, as suggested by the methods we compare against. Table 3.1 shows the average Y-

PSNR values in dB over 300 frames of the Balloons”, “Newspaper”, and “Kendo”, sequences and 

for four compression levels, QP25, QP30, QP35, and QP40 for our method and VSRS. Using these 

results and results from [12] and [39], we calculate the gain in Y-PSNR using the VSRS values as 

a reference point. Table 3.2 shows the average gain for our method, Purica et al [12] method with 

average blending (P+Bavg) and the adaptive blending (P+Badapt), and motion compensated 

temporal interpolation (MCTI) method presented in [39]. We observe that, on average, our 

approach gains 1.9 dB in visual quality for the “Balloons” sequence, and 2.4 dB for “Kendo”, 

while its performance drops to -0.55 dB for the “Newspaper” sequence. The first reason for the 

poor performance on the Newspaper sequence is that the depth map and real video are not aligned, 

affecting the accuracy of our background occlusion filling technique. Wrongly classified 

background, which is actually foreground in this case, is forced into the corresponding occlusions, 

creating artifacts. The second reason is the narrow overall depth in this sequence that interferes 

with the depth-layer separation process. Even though the number of visible artifacts is significantly 

smaller than VSRS, the layer based translational approach created a few big shift-based artifacts 
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that significantly reduce the performance of the Y-PSNR metric. Another depth level separation 

process, such as the Gaussian Mixture Model, might be able to address both of above-mentioned 

problems. 

 

3.4 Subjective Tests 

The first set of subjective tests compare our method against VSRS. For this implementation, the 

VSRS-General mode with quarter pixel precision has been chosen. We used the full-paired 

comparison evaluation methodology recommended in [40]. An LG 55EA9800 OLED TV in 2D 

mode TV set has been used for showing the sweep videos to the viewers. 

We compared a pair of frames, with the subjects asked to choose if either the “Left” or “Right” 

image is of better quality, or both are the “Same”. For these evaluations, we use four representative 

sequences recommended by MPEG [41] for Free Viewpoint Television: “Soccer Linear2”, 

   Balloons Kendo  Newspaper 

QPs 25 30 35 40 25 30 35 40 25 30 35 40 

Our Approach 

(Y-PSNR gain) 1.3 1.38 1.43 1.64 1.82 1.82 1.82 1.73 -0.95 -0.31 -0.25 

-

0.15 

P+Bavg  

(Y-PSNR gain) 0.35 0.37 0.35 0.32 -0.12 -0.09 -0.02 0.04 0.71 0.75 0.72 0.64 

P+Badapt 

(Y-PSNR gain) 0.37 0.38 0.37 0.31 0.39 0.36 0.36 0.31 0.65 0.69 0.66 0.59 

MCTI 

(Y-PSNR gain) 0.19 0.18 0.16 0.012 0.19 0.17 0.15 0.14 0.09 0.08 0.07 0.06 

 

Table 3.2. Average Y-PSNR difference across Multiview Sequences with 4 QP settings for our approach, 

Purica (P+Bavg and P+Badapt), and motion compensated temporal interpolation (MCTI). 
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“Soccer Arch1”, “Poznan Blocks”, and “Big Buck Bunny Flowers”. We synthesized the required 

number of the virtual views between the provided real ones at the specified virtual points in space 

according to [41] using our approach and VSRS. View generation has been done using the two 

closest real views in the case of interpolation and single closest view for extrapolation, as the most 

appropriate case for FN. All sequences have an arch camera arrangement with each camera having 

a different angle of convergence to the scene, except “Soccer Linear 2”, which has a linear camera 

arrangement. Nineteen subjects participated in our test. We screened all the participants for color 

blindness and vision acuity (Snellen and Ishihara charts) before conducting the tests. In addition, 

there was a training session using two test sequences (“Balloons” and “LoveBird1” [41]) to make 

them familiar with the test process. After collecting test results, three outliers were detected using 

the circular triads method with defined threshold and were removed from our results [40]. 

We use the Bradley-Terry model (BT) [42] combined with the maximum likelihood criterion as 

described in [41] to convert the results into the quality score metric. The pair ties are incorporated 

where they are available. 

Figure 3.12 shows one frame of the synthesized views by VSRS (Figure 3.12a) and our method 

(Figure 3.12b). We observe that our view synthesis approach produces a better overall picture, 

significantly reducing the visual artifacts. Figures 17, 18 illustrate the subjective test results of our 

 

(a)                                                                         (b) 
Figure 3.12. Final view synthesis result of (a) VSRS and (b) our method for Big Buck Bunny Flower 

sequence. 
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proposed method with those of VSRS for interpolation (“int”) and extrapolation (“ext”) for the test 

sequences with 95% confidence interval. Figure 3.13 shows us the probability of the viewer 

choosing videos produced by our method over VSRS. Figure 3.14 shows the quality score that has 

been calculated using Bradley-Terry model from the probability results (Figure 3.13). 

As it can be observed, the “Big Buck Bunny” (BBBF) sequence shows significant improvement 

in both the extrapolation and interpolation tests (Figure 3.14). The main reason for that is the fact 

that in this case the video sequence is perfectly aligned with the corresponding depth map and that 

the movement of the flowers and the rabbit expose additional background over time that is 

efficiently used by our temporal background hole filling approach. The temporal background hole 

filling process bundled with the layer based view synthesis handles this very well, improving 

overall quality of the synthesized view.  

The “Poznan Block” (PB) video sequence shows small improvement, due to the overall low quality 

depth map, that does not align with the video sequence. 

The “Soccer Arch’s” (SA) modest gain, on the other hand, comes from the fact that this represents 

a FN case with the cameras located far away from each other and the camera calibration parameters 

 

 

Figure 3.13. Probability for one of the method in each sequence to be chosen by the viewer. 
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(extrinsic and intrinsic matrices from equations 3.1 and 3.2) were off. The misalignment of the left 

and right views is obvious on the synthesized views, making it a hard task to fill in the large border 

holes. Our warping technique provides slight improvement over VSRS. 

In the case of “Soccer Line2” (SL), although it looks like the videos have a completely different 

quality score, the results a priori show no statistically significant preference for our method  or 

VSRS, as the “same” option was selected in 84% of the cases (Figure 3.13, Figure 3.14). Video 

produced by our method, does not show any significant improvement over VSRS, since the scene’s 

objects are located far from the camera plane and both foreground and background have 

insignificant differences in depth values. There are no artifacts due to the small shift of the objects 

in the scene. 

No. Source Seq. Name Number 

of Views 

Resolution 

(pel) 

Frame 

rate 

(fps) 

Length Camera 

Arrangement 

Views 

positions to 

be 

transmitted 

Frame range 

to be 

transmitted 

1 UHasselt Soccer-

Linear 2 

(FN) 

8 1392x1136 60 10 sec 

600 

frames 

1D parallel 1-7 0-599 

2 UHasselt Soccer-

Arc 1 

(FN) 

7 1920x1080 25 22 sec 

550 

frames 

120 deg. 

Corner, arc  

1-7 0-249 

3 Poznan 

Universit

y of 

Technolo

gy 

Poznan 

Blocks   

(FN & 

Multiview

) 

10 1920x1080 25 40 sec 

1000 

frames 

100 deg. arc 

around the 

scene 

2-8 0-249 

4 Holografi

ka 

Big Buck 

Bunny 

Flowers 

noBlur 

(Multivie

w)  

91 1920x1080 24 5 sec 

121 

frames 

45 deg, arc 6,19,32,45,

58,71,84 

0-120 

 

Table 3.3. Summary of the sequences used in subjective test. 
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3.4.1 FTV Video Dataset for Subjective Evaluation 

Our test included four sequences from the FTV video dataset provided in the MPEG CfE (Table 

3.3). One of the sequences, “SoccerLinear2” uses linear/parallel camera arrangement, and three 

remaining “SoccerArc1”, “Poznan Blocks”, “Big Buck Bunny Flowers noBlur” use arch camera 

arrangements with various degree of convergence. 

The materials for the subjective evaluation were prepared according to the methodology described 

in the CfE [1] as follows. Video clips of the rendered views were combined to create sweeps 

through all of the rendered and reconstructed views. The starting positions of the sweeps were 

selected randomly by the test chair (Table 3.4) [41]. 

The sweeps (Figure 3.15) were constructed at a speed of one frame per view. This has been 

performed for the anchor and the responses [41]. 

 

 

 

Figure 3.14. Probability converted to Quality Scores using Bradley-Terry model. 
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3.4.2 Display 

LG 55EA9800 OLED TV in 2D mode has been used for showing the sweep videos to the viewers. 

 

3.4.3 Viewers 

Nineteen subjects participated in the test. All the subjects are screened for the color blindness and 

vision acuity (Snellen and Ishihara charts) before conducting the test. In addition, to make them 

familiar with the test process, there was a training session using two test sequences (“Balloons” 

and “LoveBird1” [41]). After collecting test results, outliers were detected using circular triads 

method with defined threshold [40]. 

  

 

Figure 3.15. Free Navigation (FN) sweep evaluation procedure. 
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3.5 Subjective Tests against the Multiview Synthesis (MVS) approach and Discussions 

In addition to the subjective evaluation against VSRS using sequences recommended by FTV, we 

also compered our results with the Multiview Synthesis (MVS) presented in [9]. 

Subjective quality evaluation against MVS was conducted using the same quality score metric 

presented in the paper. Each viewer rated the quality of synthesized views on the scale of 0 to 10, 

where 10 is the perfect quality – indistinguishable from the reference [9]. We chose four FTV 

sequences for the experiment and displayed them to 15 non-expert viewers. 

No. Seq. Name Starting position of the sweeps 

1 Soccer Linear 2 60 

2 Soccer Arc 110 

3 Poznan Blocks 20 

4 Big Buck Bunny Flowers 35 

 

Table 3.4. Starting positions of the sweeps selected randomly by the test chair for FTV. 

 

 

Figure 3.16. Comparison of subjective quality of VSRS, our approach, and MVS using 11 step scale. 
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The results of MVS [9] are informal and were conducted on expert viewers, whereas our results 

were conducted on non-expert level observers, which can explain the large deviation of the scores 

amongst our participants. The distance between the cameras is twice that recommended for the 

FTV tests [41] and falls under the FN category. Figure 4.1 shows the quality scores for our method, 

MVS and VSRS. As we can see for the SA and SL sequences, our method still outperforms both 

VSRS and MVS (by 11.8% on average), as the relative increase in distance between cameras is 

insignificant compared to the overall depth of the scene, while increasing the base line does not 

affect the amount of the artifacts in the same proportion as in BBBF or PB sequences. That 

indicates that the previously performed suggested subjective tests are still in line with these 

findings. The PB sequence suffers the most from the increased distance between cameras, since 

the overall depth of the scene is small (distance from the camera to the green curtain), creating 

multiple visible artifacts. 

 

3.5.1 Conclusions 

We presented a novel view-synthesizing scheme for Free Viewpoint TV applications. Objective 

comparisons against methods presented in [9] and [33] showed that our approach gains an average 

of 1.9 dB in visual quality in Y-PSNR. Subjective tests using Mean Opinion Score (MOS) have 

shown that our method yields significant visual improvement over VSRS for Multiview 

applications (over 30% in MOS). For Free Navigation applications, subjective tests showed that 

our method yields 4% in MOS over VSRS 11.85% against MVS.  



33 
 

4. Chapter 4: Color Estimation 

4.1 Introduction 

In this chapter, we introduce a new color estimation method specifically designed for FN view 

synthesis applications, addressing the challenge of brightness and color transition between 

consecutive virtual views. Our method uses a Gaussian Mixture Model for representing color 

histograms and then estimates the color of any virtual view based on its position in space relative 

to the real views. Subjective performance evaluations have shown that our method yields better 

visual quality than the existing methods. 

 

4.2 Our Proposed Method 

Our objective here is to create smooth and seamless transition of colors between FTV views. Figure 

4.2 shows the view synthesis pipeline and the three components of our method: histogram 

approximation by the Gaussian mixture model (GMM), estimation of the virtual view’s GMM 

Real Left View
Histogram 
Extraction

Gaussian Histogram 
Representation

 Histogram GMM 
Matching

Temporal Filtering
Color Adjusted Left 

View

Virtual View GMM 
Histogram 

Representation
VSRS Virtual View

Real Right View
Histogram 
Extraction

Gaussian Histogram 
Representation

 Histogram GMM 
Matching

Temporal Filtering
Color Adjusted 

Right View

I II III

Figure 4.1. Flow chart of the entire view synthesis pipeline, including the three main components of our 

method: I. Histogram representation by Gaussian Mixture Model (GMM), II. Estimation of the virtual view’s 

color histogram in GMM based on its relative position between two real views, and III. Temporal filtering. 
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color histogram based on its relative position between two real views, and temporal filtering that 

removes flickering caused by any abrupt color changes. 

 

4.2.1 Gaussian Mixture Model Histogram Representation 

First, we calculate the histogram of each color channel, which shows the pixel distribution 

according to their intensities in the entire frame. Although in the case of color matching between 

two views, it is easy to match one of the histograms to the other, in the case of estimating the 

histogram of the virtual view, based on naturally different color histograms of the real views and 

the physical location of this virtual point in space, the problem is not as trivial. For this reason, we 

decided to represent the histograms using the Gaussian Mixture Model (GMM) [43]. In our 

implementation, GMM allows us to represent the color histogram of a frame (Figure 4.3a) as a 

weighted sum of Gaussian functions or, in other words, by a set of scaled and shifted Gaussians 

(Figure 4.3b). Each Gaussian function represents a region of the frame with certain color intensities. 

Note that since we assume that the two real views used for virtual view synthesis share the majority 

of the scene’s content, then those regions will be common in both histograms, meaning that the 

corresponding Gaussian functions in the two representations will be very similar and can be easily 

matched (Figure 4.4a, Figure 4.4c). 

Each arbitrary histogram can be formulated as a weighted sum of k Gaussians, which requires to 

estimate three vectors of k parameters as follows [44]: 

 

𝐻 ≅ ∑ s𝑖 ∙𝑘
𝑖=1 ℕ(µ𝑖, 𝜎𝑖) (4.1) 
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where 𝐻 is a histogram of one of the color channels of the input frame, si is a scaling factor, and 

ℕ(µ𝑖, 𝜎𝑖) is an i-th Gaussian function with mean µi and variance σi. 

We start with extracting the histograms for each of the real views. After that, we calculate each 

color channel histogram GMM approximation. It is common practice when attempting to optimize 

the number of Gaussian functions that accurately represent a histogram to use the expectation 

maximization (EM) algorithm for the mean and variance calculations [45][46][47]. However, since 

the complexity of this algorithm is prohibitive for real-time implementations, we decided to 

determine the number of the Gaussian functions and their parameters by applying a technique 

introduced by Abdoli et al in [44]. In this approach, the mean, variance, and scaling factor are 

estimated by iterative greedy algorithms that after each iteration step exclude the estimated 

parameters from the estimation process of the next Gaussians [44]. We use least-square 

optimization as a cost function for determining the minimum number of Gaussians needed for a 

predefined error/difference between the estimated and original histograms. 

During the process of GMM histogram approximation, a cost function ensures that the resulting 

GMM histogram representation is as close to the original histogram as possible. For that reason, 

our Gaussian model may yield a different number of Gaussian functions for each real view at the 

same instance and in time. In order to address this issue for the same time instance, we gradually 

 

(a)                                   (b)                                              (c) 
Figure 4.2. (a) Original histogram of a single channel, (b) Gaussian Mixture Model, (c) histogram’s 

approximation by combining Gaussian functions. 
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adjust (decrease) the cost function of view with the smaller number of Gaussians functions until 

its number of Gaussian functions becomes equal to that of the other view. 

 

4.2.2 Virtual View Histogram Creation and Real View Matching 

Our next step focuses on estimating the GMM histogram of the virtual view, taking into 

consideration its physical location and the known GMM histograms of the neighboring real views. 

As previously discussed, each Gaussian function in the left real view is expected to have a 

matching function in the right view, due to the fact that both views cover the same scene. Based 

on this fact, we can estimate each Gaussian function in the virtual view histogram as a weighted 

sum of the two corresponding GMMs in the real views, with the weights calculated as a function 

of the virtual view’s position in space. Although there are many ways of calculating these weights, 

extensive tests showed that the linear approach yields as good results as any other metric while 

offering the simplest implementation. Equation (4.2) shows the weight assignments based on the 

relative distance from a real view: 

 

𝑤𝑙 =
𝐷𝑣𝑟

𝐷𝑙𝑟
;  𝑤𝑟 =

𝐷𝑣𝑙

𝐷𝑙𝑟
  (4.2) 

 

 

(a)                                               (b)     (c) 
Figure 4.3. Gaussian Mixture Histogram approximations of (a) Left, (b) Virtual, and (c) Right views. 
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where wl and wr are the weights for the left and right parameters, Dvr and Dvl are the distance of 

the virtual view from the right and left real views, and Dlr is the distance between the right and 

left real views. 

Equations (4.3) to (4.5) show how the weights are used for calculating the mean, variance and 

scaling factor for a Gaussian function of a virtual view: 

 

µ𝑣𝑖𝑟𝑡𝑢𝑎𝑙 = 𝑤𝑙 · µ𝑙 + 𝑤𝑟 · µ𝑟 (4.3) 

𝜎𝑣𝑖𝑟𝑡𝑢𝑎𝑙
2 = 𝑤𝑙

2 · 𝜎𝑙
2 + 𝑤𝑟

2 · 𝜎𝑟
2 (4.4) 

𝑠𝑣𝑖𝑟𝑡𝑢𝑎𝑙 = 𝑤𝑙 · 𝑠𝑙 + 𝑤𝑟 · 𝑠𝑟 (4.5) 

 

where µ𝑙 , µ𝑟 , and µ𝑣𝑖𝑟𝑡𝑢𝑎𝑙  are mean values of the left, right and the virtual view; 𝜎𝑙 , 𝜎𝑟 , and 

𝜎𝑣𝑖𝑟𝑡𝑢𝑎𝑙 are variances of the left, right, and the virtual view; 𝑠𝑣𝑖𝑟𝑡𝑢𝑎𝑙, 𝑠𝑙, and 𝑠𝑟 are the scaling 

factors of the functions, wl and wr are the weights for the left and right parameters accordingly. 

The GMM histogram representation for the left real view, the virtual view, and the right real-view 

are shown in Figure 4.4a, Figure 4.4b, and Figure 4.4c, respectively. 

 

4.2.3 Temporal Filtering and Virtual View Synthesis 

One challenge in this approach is that although the real and virtual views of any instance are 

represented by the same number of Gaussian functions that is not true for the frames of the views 

in time. Consequent views may end up with a different number of Gaussian functions, due to small 

variations in scene content, which will have an effect on our optimization process that tries to come 

up with the most accurate approximation of the original histogram. The result of assigning different 

number of Gaussians to consecutive frames in time means changes in some color intensities, which 

in turn may translate to flickering. To address this problem, we make sure that we have the smallest 

possible error when we optimize the number of Gaussian functions for the first frame of each scene 
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and then we force our algorithm to assign the same number of Gaussians to the rest of the frames 

in the scene. 

Another cause for flickering may arise from the fact that the shape of the virtual Gaussian functions 

may change in time, as it is directly related to the content changes in the real views. Any drastic 

change in shape will translate to changes in color intensities, which will cause flickering. To 

address this challenge, we introduced a cumulative moving average temporal filter that is applied 

only on the Gaussian parameters of the mean, the variance and scaling. The general form of this 

equally weighted cumulative moving average filter (CMA) is as follows: 

 

𝐶𝑀𝐴𝑛 =
𝑥1+⋯+𝑥𝑛

𝑛
  (4.6) 

 

where n is the current number of inputs and x1 … xn is the sequence of values of a given parameter 

(i.e.,,, and s). 

The advantage of this filter is that there is no need to store any information other than the previous 

CMA value of each parameter for the duration of the scene. 

As a last step, we used the color-adjusted frames for the real views to synthesize the virtual view 

according to the FTV test recommendations [41]. We used the View Synthesis Reference Software 

(VSRS) for the view synthesis step, as it is the preferred choice of industry and the reference 

software for MPEG [8]. 



39 
 

4.3 Test Results and Discussions 

We subjectively evaluated our method by comparing it with a no color correction VSRS and a 

representative color matching method (EBVCC presented in [23]). To this end, we used two FTV 

sequences namely the Poznan Blocks (PB) and Soccer Arch (SA) recommended by MPEG. We 

followed the ITU-R BT.500 recommendation for subjective assessments [48]. Twenty non-expert 

subjects were shown the sequences on an LG 55EA9800 OLED TV in 2D mode and were asked 

to rate the sequences on the scale from 1 to 10, with 1 being poor color matching and 10 meaning 

that no color-related artifacts were visible in the synthesized view. We also decided to apply our 

method to two different color spaces, RGB and the YCbCr to determine which will offer more 

accurate color representation. Four outliers were found and removed from our tests. As we can see 

in Figure 4.4, viewers clearly believed that our method provides better color accuracy than EBVCC 

(5.31% on average for FN sequences) and the no-color corrected VSRS methods (8.34% on 

average for FN sequences) when the YCbCr color space is used. 

 
 

Figure 4.4. Subjective results (score 1 to 10 – only 4 - 6 shown for clarity) for our method, VSRS, and 

EBVCC. 
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Figure 4.5 shows the one frame from the two sequences tested, generated by the original VSRS 

(Figs. 4.5b and 25e), EBVCC (Figs. 4.5c and 4.5f), and our method (Figs. 4.5a and 4.5d). We 

observe that our method manages to remove the shadow artifacts and the background artifacts on 

the left part of the frame and the ones on the right of the head, which apparently are caused by 

wrong color estimation in the virtual view. 

 

4.3.1 Conclusions 

We presented a color estimation method for Free Navigation applications. Subjective tests against 

EBVCC and VSRS showed that our method reduces color related artifacts and helps to create more 

immersive experience for the Free Navigation sequences by smoothing the viewpoint transition. 

We gain 5.3% in MOS from our subjective tests against EBVCC and 8.3% against VSRS rendered 

videos.  

 

 
(a)                                                   (b)      (c) 

 

 
(d)      (e)     (f) 

 

Figure 4.5. (a), (b) and (c): Frames from Soccer Arch sequence generated with our method, VSRS and 

EBVCC; (d), (e) and (f): Frames from Poznan Blocks generated with our method, VSRS, and EBVCC. 
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5. Chapter 5: Conclusions and Future Work 

5.1 Conclusions 

In this thesis, we addressed the challenges of view synthesis for Multiview and Free View 

navigation applications. Our first contribution involved the introduction of a novel approach for 

synthesizing virtual views for Multiview applications, where the real views are relatively close to 

each other. Our method uses background-to-foreground warping and background separation for 

accurately filling large occluded regions, while improving traditional inter pixel interpolation to 

efficiently generate the rest of missing texture in the virtual view.   

Our second contribution is a new color estimation method for synthesizing views in a Free View 

environment, addressing the challenge of color transition between consecutive views for these 

applications. Our method uses a Gaussian Mixture Model for approximating color histograms and 

estimates the color of any virtual view based on its position in a space relative to the real views. A 

flickering reduction method designed for this scheme was also developed. 

Subjective and objective tests have shown that our methods outperformed the existing ones, 

significantly improving the visual quality of the synthesized content. 

 

5.2 Future Work 

FN applications’ distant content capturing setup requires new view synthesis approaches to address 

Geometrical Distortions (GD) that appear due to the different convergence angles, camera distance 

from the objects and flat background where the objects might appear. The reason for this is that 

GDs may not offer significant depth value representation, thus not enabling the existing algorithms 

to adjust their appearance at the view synthesis stage of the model. Proper detection of such 

features is needed as a first step, followed by transformation to the virtual view plane. A possible 

solution is to match these distortions in the neighbouring real images and create a geometrical 
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transformation matrix that will help us reconstruct the features for the virtual view, as close, to 

what it should be in reality, as possible. 

Multiple light sources’ and camera locations may not only cause the foreground objects shift, but 

also their shading to be different. Shade distortions create artifacts that are very pronounced to 

human visual system, as they are located in proximity to the foreground objects that we pay 

attention to. The problem seems to be similar to the previously stated GD, but it is also affected 

by the light sources present in the scene. Multiple light sources will create different shades of 

varying intensity, thus complicating the model. 

A Free Navigation camera setup has a very wide baseline compared to Multiview applications. 

Cameras can be located up to ten meters away from each other and are pointing to the scene from 

different directions, thus affecting the amount of light that each camera will receive. The bright 

light sources can be pointed directly to the camera plain in some of the views, affecting the overall 

brightness of the captured frame. The amount of the light that hits a camera also affects the color 

perception. That means that the images captured from neighbouring cameras will have different 

colors for the same object. There are a number developments that can be used in order to define 

what is the “real” color of the current frame should be that can help to match colors for two images 

(for example, work presented in [49] and [22]). While synthesizing one of the transitional views 

(between neighbouring cameras), we have to take into account that the color of each object in the 

scene, for specific virtual view, should be the same from both cameras, for future occlusions filling 

from the second closest camera to the virtual camera position. In other words, the luminance and 

color, which have been retrieved from the original cameras, should be adjusted to match virtual 

view position. Appropriate color and brightness representation should be applied to the images, so 

it will be possible to generate perceptually acceptable transitional images. The virtual view color 
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and brightness are a function of the position of the virtual camera in space and the light sources in 

the scene, and even though the linear approximation can be applied, functions that are more 

appropriate should be investigated. 

One suggestion is to explore the idea of histogram approximation using the Gaussian mixture 

model and wavelets to match two histograms. Initial results of preliminary research showed 

significant brightness and color matching artifact reduction in the synthesized views. 

It is worth mentioning that the sweep through the synthesized views should not affect the quality 

of experience for the viewer, meaning that there should be no big “steps” in color and brightness 

differences between consecutive views in the resulted sweep video. 
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