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Abstract

Due to its convenience, wireless communication systems have grown tremendously. Data

rate requirements of various services/applications that are transmitted over wireless chan-

nels are increasing day by day. Bit interleaved coded modulation (BICM), which is a serial

concatenation of a channel encoder, an interleaver and a symbol mapper, is a spectral effi-

cient technique that is being used in many wireless systems. The performance of BICM can

be significantly improved by using the iterative decoding technique at the receiver. This

system is referred as BICM with iterative decoding (BICM-ID), and offers an improved

performance over both fading and nonfading channels. It is well-known that BICM-ID

performance is strongly dependent on the applied signal mapping. Signal mapping is the

assignment of binary bits to complex symbols from a modulation alphabet. It is demanded

to use a higher order modulation in BICM-ID to achieve a higher data rate and spectral

efficiency. However, finding a mapping for a large modulation that offers an improved per-

formance for BICM-ID is very complicated. This is because of the huge number of possible

mappings for higher order modulations.

This thesis focuses on the mapping problem for BICM-ID systems. In particular, novel

mapping methods are developed for higher order modulations, including two-dimensional

and multi-dimensional modulations. The proposed methods in this thesis consist of (i)

heuristic methods and (ii) computer search techniques. In comparison with the previously

known mappings, the proposed mappings significantly improve the BICM-ID performance

over the considered channels. This is confirmed by various analytical and simulation results

that are investigated in this thesis.
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Lay Summary

Today’s wireless networks should be designed to support widely varying user needs (home,

office, etc.). The obvious trend is the need of very high data transmission rates to deal with

the increasing demand of multimedia communication services such as video teleconferencing

and high quality media streaming. The bit interleaved coded modulation with iterative

decoding (BICM-ID) system offers excellent performance on the both wired and wireless

communication channels. As such, it is a great candidate to be used in future wireless

systems. The technical challenge is to enable high data transmission rates for BICM-ID.

One main approach is to increase the number of the unique signals that BICM-ID uses to

transfer information. In this approach, the assignment of information to the unique signals

is a very crucial and complex problem. This problem is addressed in this thesis such that,

the system performance improves without any increase in the system complexity.
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Chapter 1

Introduction and Overview

1.1 Introduction

In general, data rate requirements of various services/applications that are transmitted

over communication networks including wired and wireless networks are increasing day by

day. Higher order modulations in conjunction with efficient channel coding will play a vital

role to meet this high data rate requirement.

Bit interleaved coded modulation (BICM) was introduced by Zehavi in [1] as an at-

tractive coded modulation scheme. In BICM, channel coded bits are randomly interleaved

and then the interleaved coded bits are mapped to the signals at the modulator. Due to

its simplicity and design flexiblity, BICM has been standardized for contemporary wireless

and wired communication systems [2] and is a potential choice for future communication

systems.

BICM offers a good error performance over the Rayleigh fading channel. However, the

employed interleaver results in a random modulation, which degrades BICM performance

over the additive white Gaussian noise (AWGN) channel. One effective way to overcome

this problem is to use iterative decoding at the receiver. This system is known as BICM-

ID, which is investigated in [3]-[5]. Because of the iterative decoding, BICM-ID offers an

impressive performance over the AWGN channel as well as over the Rayleigh fading channel

[6].

The performance of BICM-ID is significantly dependent on the employed signal map-

ping at the modulator. Signal mapping is defined as the assignment of binary digits to

complex signals (symbols) from a modulation alphabet. Multi-dimensional (MD) mapping

improves bandwidth efficiency for BICM-ID by a reasonable increase in system complexity

[7]. In MD mappings, a sequence of bits is mapped to a sequence of symbols instead of a

single symbol. Many research studies have been carried out to address the signal mapping

problem for BICM-ID, see for examples, [7]-[24].

The two main methodologies to develop signal mappings for BICM-ID are as follows:

(i) heuristic methods and (ii) computer search techniques. The existing heuristic methods

construct good 2-D/MD mappings for only smaller modulations such as 2-D 32-ary quadra-

ture amplitude modulation (QAM) [22] and MD 8-ary phase shift keying (PSK) [7]. For

1



1.2. BICM system

larger modulations, computer search techniques are usually used. However, the achieved

results from the existing computer search techniques are suitable only for modulations with

medium sizes such as 2-D 64-QAM [13].

Higher order modulations can be used to increase the data rate and improves the

bandwidth efficiency of BICM-ID. However, developing efficient mappings of larger con-

stellations for BICM-ID is always challenging due to the huge number of possible mappings.

Even the best computer search techniques become intractable in finding good mappings

of larger constellations for BICM-ID due to the high level of complexity [16]. In [16] and

[25], the authors demonstrated that random mapping can lead to efficient MD mappings.

Random mapping technique searches among a set of randomly generated mappings to find

a mapping that improves the performance of BICM-ID. However, as the set of randomly

generated mappings is very large, this technique also suffers from computational complex-

ity. This complexity degrades the obtained random mapping’s performance especially for

large MD modulations. Consequently, developing efficient mappings of larger constellations

(including 2-D and MD constellations) is a very important and open research question.

Motivated by the above discussions, this thesis focuses on improving the error per-

formance of BICM-ID via developing novel and efficient signal mappings. In particular,

we investigate the mapping problem for higher order signal constellations including 2-D

and MD constellations. To design mapping functions throughout this thesis, two general

methodologies will be followed: (i) systematic methods which generate mapping heuristi-

cally and (ii) novel and computationally fast computer search techniques.

In the rest of this chapter, we briefly review the BICM and BICM-ID concepts and

discuss about the mapping problem for BICM-ID.

1.2 BICM system

A BICM system model is shown in Fig. 1.1, where the transmitter is built from serial

concatenation of an encoder, a bit interleaver Π, and a modulator. A sequence of informa-

tion bits u is encoded by a convolutional encoder. Then, the coded bits c are randomly

interleaved, and the interleaved coded bits v are grouped in blocks of mN bits, where m

and N are positive integers. For notational convenience, let us denote the tth block of

interleaved coded bits at the input of the modulator by lt = [l
(1)
t , l

(2)
t , · · · , l(mN)

t ]. The

modulator maps lt to a vector of N consecutive 2m-ary signals, xt = [x
(1)
t , x

(2)
t , · · · , x(N)

t ],

using a mapping function µ : {0, 1}mN −→ χ = χN , where χ denotes the 2-D 2m-ary signal

set. Mathematically, we can write

xt = [x
(1)
t , x

(2)
t , · · · , x(N)

t ] = µ(lt). (1.1)

2



1.2. BICM system
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Figure 1.1: The block diagram of a BICM system.

At the receiver, the received signal-vector corresponding to the transmitted symbol-

vector xt can be expressed as

yt = h
T
t xt + nt, (1.2)

where ht = [h
(1)
t , h

(2)
t , · · · , h(N)

t ] is the corresponding vector of Rayleigh fading coefficients,

AT represents the transpose of A, and nt is a vector of N additive complex white Gaussian

noise samples with zero-mean and variance N0. It is important to note that if N = 1, the

mapping is a regular 2-D mapping; otherwise, it is referred to as an MD (2N -D) mapping.

At the receiver, the demapper calculates the log-likelihood ratios (LLRs) using the

received signal as [4]

Le(l
i
t) = log

∑
xt∈χi

0
P(yt|xt)∑

xt∈χi
1
P(yt|xt)

, (1.3)

where χi
0 and χi

1 represent the subset of signals xt ∈ χ whose labels have the bit value of

0 and 1, respectively, in the ith bit position. P(yt|xt) is the probability density function,

which is determined by the channel model. The extrinsic LLRs are then deinterleaved and

fed to the decoder, where a decision is made about the transmitted bits.

The idea of bit by bit interleaving in BICM improves the diversity order of the system.

Diversity order is a highly influential parameter on the bit eror rate (BER) performance

of coded systems over the Rayleigh fading channel [26]. As a result, BICM offers a good

error performance over the Rayleigh fading channel. However, as mentioned previously,

the interleaver results in a random modulation, which degrades the BER performance of

BICM over the AWGN channel.

3



1.3. BICM-ID system

1.3 BICM-ID system

To improve the error performance of BICM, iterative decoding has been used at the receiver

[3]-[5]. The resulting system is referred to as BICM-ID. The iterative decoding technique

used for the BICM-ID is similar to that of a turbo code [27]. However, BICM-ID employs

only one encoder at the transmitter and only one decoder at the receiver. As such, it has

considerably less complexity in comparison with turbo codes [4].

The BICM-ID transmitter is the same as the BICM transmitter, which has been ex-

plained in section 1.2. Therefore, in what follows, we describe only the receiver of BICM-ID.

Fig. 1.2 illustrates the block diagram of a BICM-ID system. It is assumed that the receiver

has the perfect channel state information (CSI). At the receiver, the demapper uses the

received signal-vector yt and the a priori LLR of the coded bits to compute the extrinsic

LLR for each of the bits in the received signal-vector as [4]

Le(l
i
t) = log

∑
xt∈χi

0
P(yt|xt)

∏mN
j=1,j ̸=i e

−La(l
j
t ).l

j
t∑

xt∈χi
1
P(yt|xt)

∏mN
j=1,j ̸=i e

−La(l
j
t ).l

j
t

, (1.4)

where La(l
j
t ) = log(P(ljt = 0)/P(ljt = 1)) is the a priori LLR of the coded bits. After being

permuted by the random deinterleaver, the extrinsic LLRs are applied to the channel

decoder. The decoder then calculates the extrinsic LLR values on the coded bits. After

being interleaved, these LLRs are fed back to the demapper and used as the a priori LLRs

in the next iteration. Through this iterative process, BICM-ID achieves a significant coding

gain and improves the error performance.
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Figure 1.2: The block diagram of a BICM-ID system.
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1.4 Problem statement

It is widely known that the performance of BICM-ID strongly depends on the applied signal

mapping at the modulator. Signal mapping describes how to assign binary sequences to

complex signals from a modulation alphabet. In fact, a constellation with M signal points

has λ = M ! possible mappings, where ! denotes the factorial operation. For example,

there are 8! = 40320 mappings for 8-QAM. Table 1.1 provides the number of possible

mappings for 2-D M -QAM for different values of M . It is worth noting that the number

of unique mappings for a constellation is smaller than the number of possible mappings.

However, finding the unique mappings among the possible mappings for large constellations

is prohibitively complicated.

Table 1.1: Number of possible mappings for M -QAM.
Modulation λ

4-QAM 24

16-QAM 2.1× 1013

64-QAM 1.3× 1089

256-QAM 8.6× 10506

1024-QAM 5.4× 102639

As this table shows, the number of possible mappings for higher order constellations

such as 1024-QAM approaches infinity, which makes finding the corresponding good/optimum

mappings difficult if not impossible. As a result, exhaustive computer search techniques are

not applicable to find suitable mappings of larger constellations. The well-known binary

switching algorithm (BSA) [9] is the best known computer-based mapping search technique.

However, the BSA becomes intractable to obtain good mappings of larger constellations for

BICM-ID due to the high level of complexity [16]. In the case of MD mappings, the prob-

lem is much more severe because by increasing the dimensionality, the number of possible

mappings increases exponentially. For example, as shown in Table 1.1, while the number of

possible mappings for 2-D 64-QAM is 1.3× 1089, there are 3.6× 1013019 possible mappings

for 4-D 64-QAM. For example, using In [16] and [25], the authors demonstrated that the

random mapping technique can lead to efficient higher dimensional mappings. According

to the random mapping technique, computer searching is used to obtain a good mapping

from a large set of randomly generated mappings. Selecting a mapping randomly/blindly

from a large set and checking its efficiency makes the procedure complex. Moreover, it

degrades the resulting mappings’ performance especially when the MD modulation is con-

structed using a large 2-D modulation. Therefore, the problem of 2-D or MD mapping of

higher order modulations for BICM-ID has not been solved efficiently yet.
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1.5 Thesis objective

BER is the most common metric that is used to evaluate the performance of BICM-ID.

Fig. 1.3 illustrates a typical BER curve of BICM-ID after a number of iterative decoding.

In this figure, Eb denotes the transmitted energy per bit, N0 represents the power of noise

per Hertz, the threshold Eb/N0 is the point where BER starts to decrease, the turbo cliff

region is the region where the BER curve falls quickly, and the error-floor region is the

region where the BER curve is flat at very small values. Two main goals in developing

signal mappings for BICM-ID are to achieve a BER curve with (i) a lower error-floor and

(ii) an earlier turbo cliff (i.e., smaller threshold Eb/N0).

E
b
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0
 (in dB)

0 1 2 3 4

B
E

R

10-8

10-6

10-4

10-2

100

Threshold E
b
/N

0

Turbo cliff

Error-floor

Figure 1.3: A typical BER curve for BICM-ID.

The error performance of BICM-ID at low signal to noise ratios (SNRs) depends on the

BER at the first iteration. This is because at low SNRs no coding gain can be achieved from

the iterative decoding process. In this case, BICM-ID is equivalent to BICM. Therefore,

the optimum mapping for BICM-ID in the low SNR region corresponds to the optimum

mapping for BICM. However, the mapping designed for a low SNR region usually offers a

poor error-floor for BICM-ID. The mapping designed to minimize the error-floor of BICM-

ID results in an extremely low BER at a very high SNR value. Hence, this mapping is not

very relevant for practical communication systems, which require a BER of 10−3 to 10−6.

Moreover, finding such a mapping is computationally expensive. Consequently, designing

an efficient MD mapping for BICM-ID that offers good BERs at both low and high SNR

values is very desirable.

Motivated by the above discussions, the objective in this thesis is to develop efficient 2-

D/MD mapping methods for BICM-ID to achieve good BER performance over AWGN and
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1.6. Mapping design guidelines for BICM-ID

Rayleigh fading channels in both low and high SNR regions. In what follows, we investigate

mapping design guidelines for AWGN and Rayleigh fading channels. To investigate the

guidelines for the low SNR region, we consider BICM-ID performance at the first iteration.

1.6 Mapping design guidelines for BICM-ID

1.6.1 AWGN channel

Low SNR region

Let d = {d1, · · · , dp} is the set of all possible Euclidean distances between two signal points

in χ, where di < dj if i < j, and p depends on the constellation. For example, p takes the

value of two and five, respectively, for 2-D and 4-D QPSK. A larger value of d1 is desired

to achieve a better BER performance of BICM over the AWGN channel [28]. Moreover, in

order to achieve a good asymptotic BER performance of BICM over AWGN channels, the

value of Nmin should be as small as possible [28], where Nmin is defined as

Nmin =
1

mN2mN

mN∑
i=1

1∑
b=0

∑
x∈χi

b

N(x, i), (1.5)

where x = [x1, x2, · · · , xN ] is a 2N -D signal point, and N(x, i) is the number of signal

points at the Euclidean distance d1 from x that are different from x in the ith bit position.

High SNR region

The asymptotic performance of a mapping for BICM-ID over the AWGN channel depends

on Φa(µ,χ), which is expressed as [15]

Φa(µ,χ) =

 1

mN2mN

mN∑
i=1

1∑
b=0

∑
x∈χi

b

exp

(
−∥x− x̂∥

2

4N0

)−1

, (1.6)

where x̂ = [x̂1, x̂2, · · · , x̂N ] is different from x only in the ith bit position and ∥A∥ is the

Euclidean norm of A. To achieve improved asymptotic performance, a greater value of

Φa(µ,χ) is desired [15]. Let us define, d̂2min as the minimum squared Euclidean distance

(MSED) between two symbol-vectors with a Hamming distance of one bit in the applied

mapping, i.e., d̂2min is the minimum value of ∥x− x̂∥2 in (1.6), and define

J(x, x̂) =

{
1 if ∥x− x̂∥2 = d̂2min

0 otherwise
(1.7)
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1.6. Mapping design guidelines for BICM-ID

as an indicator function. At high SNR values, exp

(
− d̂

2
min

4N0

)
becomes the dominant term

in (1.6). Therefore, (1.6) at high SNR values can be approximated as follows

Φa(µ,χ) ≃

 1

mN2mN

mN∑
i=1

1∑
b=0

∑
x∈χi

b

J(x, x̂) exp

(
− d̂

2
min

4N0

)−1

=
1

N̂min

exp

(
d̂2min

4N0

)
, (1.8)

where N̂min is defined as

N̂min =
1

mN2mN

mN∑
i=1

1∑
b=0

∑
x∈χi

b

J(x, x̂). (1.9)

In fact, N̂min is the average number of signal pairs in which the two signals are at the

Euclidean distance d̂min and at the Hamming distance of one bit from each other.

According to (1.8), in the high SNR region, Φa(µ,χ) clearly depends on N̂min and d̂2min,

which are determined by the applied mapping. In fact, Φa(µ,χ) increases as N̂min decreases

or as d̂2min increases. However, the effect of d̂2min on Φa(µ,χ) is much more significant than

that of N̂min due to the exponential relationship between d̂2min and Φa(µ,χ).

1.6.2 Rayleigh fading channel

The so called harmonic mean of the MSED [28] of a mapping is a well-known parameter

that relates to the BER performance of BICM-ID on Rayleigh fading channels. In [15], the

harmonic mean of the MSED is developed for 2N -D mappings and is expressed as

Φ(µ,χ) =

 1

mN2mN

mN∑
i=1

1∑
b=0

∑
x∈χi

b

1

∥x− x̂∥2

−1

. (1.10)

For the performance at the first iteration, x̂ refers to the nearest neighbor of x in χi
b̄
,

and Φ(µ,χ) is referred to as the harmonic mean of the MSED before feedback. For the

asymptotic performance, χi
b̄
involves only one symbol-vector x̂, which is different from x

only in the ith bit position. In this case, (1.10) is referred to as the harmonic mean of the

MSED after feedback, which is denoted by Φ̂(µ,χ).
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1.6. Mapping design guidelines for BICM-ID

We can rewrite Φ(µ,χ) as

Φ(µ,χ) =

(
1

mN2mN

p∑
i=1

ni
d2i

)−1

, (1.11)

where ni is defined as

ni =

mN∑
j=1

1∑
b=0

∑
x∈χj

b

Ii(x, x̂); i = 1, · · · , p, (1.12)

where Ii(x, x̂) is an indicator function that takes the value of one if the Euclidean distance

between x and x̂ is equal to di, otherwise it takes the value of zero. In what follows, we

describe the mapping design criteria for the Rayleigh fading channel in low and high SNR

regions.

Low SNR region

To achieve a good performance at the first iteration, a larger value of Φ(µ,χ) is desired.

In the low SNR region, x̂ in (1.10) is the nearest neighbour of x in χi
b̄
. Since each signal

is different with its nearest neighbor at least in one bit position, x̂ is at the Euclidean

distance d1 from x for some values of i. As a result, n1 in (1.11) always has a non-zero

value. Moreover, summation of ni over all values of i is constant, i.e.,

p∑
i=1

ni = mN2mN . (1.13)

Considering (1.11) and (1.13), it is obvious that for a specific value of i, any reduction in

ni without increasing nj , where j < i, yields a larger value of Φ(µ,χ). In particular, one

can increase Φ(µ,χ) by decreasing n1.

High SNR region

For the asymptotic performance of BICM-ID, x̂ is considered to be different from x only

in the ith bit position. As a result, it is possible to design a mapping in which d̂min > di

for some small values of i. This gives ni = 0 for some small values of i and it yields a larger

value of Φ̂(µ,χ). Numerical examples show that a significant increase in d̂min leads to a

considerable increase in Φ̂(µ,χ).

In summary, it can be concluded that a mapping that offers a small value of Nmin

and a large value of d̂2min is suitable to improve the error performance of BICM-ID over
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both AWGN and Rayleigh fading channels in low and high SNR regions. A small value

of Nmin implies that the average Hamming distance between neighbouring symbols, i.e.,

symbols with the Euclidean distance d1, is small, and therefore, n1 is small. This eventually

increases Φ(µ,χ) at the first iteration of BICM-ID in the Rayleigh fading channel. Thus,

a small value of Nmin can improve the mapping’s performance at the first iteration, i.e., in

low SNR region, not only in the AWGN channel but also in the Rayleigh fading channel.

On the other hand, a large value of d̂2min implies that ni is equal to zero for small values of i.

This increases Φ̂(µ,χ) at high SNR values. As a result, the asymptotic BER performance

of BICM-ID improves over AWGN and Rayleigh fading channels as the value of d̂2min

increases.

1.7 Coded modulation capacity

Throughout this thesis, we use the coded modulation (CM) capacity (or constrained capac-

ity) [28] to indicate how far the achieved performance is from the capacity. Table 1.2 lists

the CM capacity for different modulations over the AWGN and Rayleigh fading channels.

Table 1.2: CM capacity for M -QAM.
Modulation AWGN (Eb/N0 in dB) Rayleigh fading (Eb/N0 in dB)

16-QAM 2.09 3.98

32-QAM 3.13 5.02

64-QAM 4.28 6.24

128-QAM 5.26 7.34

256-QAM 6.48 8.65

512-QAM 7.57 9.77

1024-QAM 8.91 11.11

1.8 Literature review of mapping methods

This section provides a brief review of the well-known methods that have been applied to

find suitable mappings for BICM-ID. To the best of our knowledge, none of the heuristic

mapping methods in the literature is applicable for higher order modulations. Therefore,

in this section, we review only the computer-based mapping search techniques, which can

be used for higher order modulations.

10



1.8. Literature review of mapping methods

1.8.1 Binary switching algorithm (BSA)

One iteration of the BSA can be described in the following steps [9]:

1- A random mapping is generated for the constellation.

2- A cost function is calculated for each symbol in the constellation, and then, symbols are

listed in descending cost value.

3- The label of the symbol with the highest cost value is switched with the label of another

symbol such that the total cost is reduced as much as possible.

4- If a switching is done in step 3, go to step 2; otherwise, look for such a switching for the

next symbol in the list (the symbol with the next highest cost value).

5- If a switching is done in step 4, go to step 2; otherwise, the algorithm ends.

Usually, the BSA is applied for a number of iterations and the best achieved map-

ping is selected as the BSA mapping. The BSA can be considered as the best known

computer search technique to find suitable mappings for BICM-ID. However, it becomes

intractable for finding suitable mappings for modulations with a large alphabet size due to

the computational time constraints.

1.8.2 Random mapping

The random mapping technique searches among a set of randomly generated mappings

to find a mapping that minimizes a defined cost function [16], [25]. In order to achieve a

better result, the set of randomly generated mappings should be as large as possible. This

makes the random mapping technique suffer from computational complexity and degrades

the obtained mapping’s performance.

The rest of this thesis focuses on our contributions to the signal mapping problem

for BICM-ID. In particular, Chapter 2 provides our proposed mapping method for higher

order 2-D modulations. Chapter 3 presents our proposed MD mapping of 16- and 64-QAM.

Chapter 4 describes our proposed MD mapping of higher order modulations for BICM-ID

over Rayleigh fading channels. Chapter 5 presents our proposed MD mapping method

using rectangular QAMs for BICM-ID over AWGN channels. Finally, Chapter 6 concludes

the thesis.
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Chapter 2

Mapping for Higher Order 2-D

Modulations

As mentioned earlier, finding a good mapping for higher order modulations for BICM-

ID is challenging. Several mapping algorithms for 2-D modulations were proposed in

the literature. The BSA was proposed in [9]. In [13], the authors used a reactive Tabu

search (RTS) method to find mappings with a minimum error-floor. A genetic algorithm

(GA)-based mapping optimization was proposed in [17]. All the mentioned algorithms still

exhibited high computational complexity when finding suitable mappings for higher order

modulations.

In this chapter, we take a heuristic approach to propose a systematic mapping method

for higher order modulations, where the computer search based methods become imprac-

tical. The proposed method is a simple and explicit method and easily generates good

mappings for higher order modulations. We study the resulting mappings’ characteristics

and compare their performance with other well-known mappings to date. Numerical results

show that for a target BER of 10−6 and over the Rayleigh fading channel, our resulting

mapping offers a gain of 0.7 dB over the RTS mapping for 64-QAM. This gain is 2.3 dB

and 4.4 dB, respectively, over the well-known BSA mappings for 256- and 1024-QAM. For

all these cases, our mappings exhibit a comparable error-floor with a gap of about 0.6 dB

or less. On the AWGN channel, our achieved gains are even larger.

2.1 Proposed mapping

Our proposed mapping consists of a precoding process followed by an intermediate mapping

as described below.

2.1.1 Precoding process

Let us denote the proposed precoding function by Ψ : {0, 1}m → {0, 1}m, where m is

the number of bits per symbol. According to the proposed precoding method, an arbi-

trary m-bit label lt = [l1t , l
2
t , · · · , lmt ] is converted to a precoded m-bit label l̂t = Ψ(lt) =

12



2.1. Proposed mapping

[l̂1t , l̂
2
t , · · · , l̂mt ] as follows:

l̂it =

{
W (lt) if i = chosen-index

lit ⊕W (lt) otherwise,
(2.1)

where W (x) is an indicator function that takes the value of one if the Hamming weight

of x is odd, otherwise it is equal to zero, the chosen-index can take value from the set

{1, 2, · · · ,m}1, and ⊕ is the modulo-2 addition.

Example 2.1. Suppose that the chosen-index is equal to one and label l1 = [l11, l
2
1, l

3
1, l

4
1] =

[1, 1, 0, 1]. Since the Hamming weight of l1 is odd, using eq. (2.1), we can write

l̂11 = W (l1) =W ([1, 1, 0, 1]) = 1,

l̂21 = W (l1)⊕ l21 =W ([1, 1, 0, 1])⊕ 1 = 1⊕ 1 = 0,

l̂31 = W (l1)⊕ l31 =W ([1, 1, 0, 1])⊕ 0 = 1⊕ 0 = 1,

l̂41 = W (l1)⊕ l41 =W ([1, 1, 0, 1])⊕ 1 = 1⊕ 1 = 0.

Thus, using our proposed precoding process, l1 = [1, 1, 0, 1] results in l̂1 = [1, 0, 1, 0].

Similarly, for l2 = [0, 1, 0, 1] the Hamming weight is even; as such, eq. (2.1) yields

l̂2 = [0, 1, 0, 1].

Proposition 2.1. Suppose that lk and ln are two m-bit labels that are different only in the

jth bit position. According to the proposed precoding in eq. (2.1), the precoded label of lk,

i.e., l̂k, and the precoded label of ln, i.e., l̂n, have the Hamming distance of m bits if the

chosen-index is equal to j. Otherwise, they have the Hamming distance of (m− 1) bits.

Proof. Suppose that lk = [l1k, l
2
k, · · · , l

j
k, · · · , l

m
k ] and ln = [l1n, l

2
n, · · · , l

j
n, · · · , lmn ], where for

all i except i ̸= j, lik = lin. Using eq. (2.1), we can obtain the corresponding precoded labels

for lk and ln, respectively, as l̂k = [l̂1k, l̂
2
k, · · · , l̂

j
k, · · · , l̂

m
k ] and l̂n = [l̂1n, l̂

2
n, · · · , l̂

j
n, · · · , l̂mn ].

Without loss of generality, let us assume that the chosen-index is equal to q. Then, there

are two possible cases as follows.

Case 1: The chosen-index is equal to the bit position in which lk and ln differ, i.e., q = j.

Using eq. (2.1), we can write l̂ik =W (lk) and l̂
i
n =W (ln) if i = q. Moreover, the Hamming

distance between lk and ln is equal to one bit. Therefore, we can write

l̂ik ⊕ l̂in =W (lk)⊕W (ln) = 1. (2.2)

Now, l̂ik ⊕ l̂in = 1 implies that l̂ik =
¯̂
lin, where x̄ is the 1’s complement of x.

1In the next subsection, we describe how to choose the chosen-index.
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2.1. Proposed mapping

Similarly, using eq. (2.1), we can write l̂ik = lik⊕W (lk) and l̂
i
n = lin⊕W (ln) when i ̸= q,

which yields

l̂ik ⊕ l̂in = lik ⊕W (lk)⊕ lin ⊕W (ln). (2.3)

Using the fact that the Hamming distance of lk and ll is equal to one bit and lik ⊕ lin = 0,

from eq. (3) we can write l̂ik⊕ l̂in = 1, which implies that l̂ik =
¯̂
lin. Hence, for Case 1, l̂ik =

¯̂
lin

for all i, which means that l̂k and l̂n have a Hamming distance of m bits from each other.

Case 2: The chosen-index is equal to one of the bit positions in which lk and ln do

not differ, i.e., q ̸= j. Similar to Case 1, using eq. (2.1), we can write

l̂ik ⊕ l̂in =W (lk)⊕W (ln) = 1, if i = q, (2.4)

which means that l̂ik =
¯̂
lin. However, if i ̸= q, using eq. (2.1) we can write l̂ik = lik ⊕W (lk)

and l̂in = lin ⊕W (ln). Then, we have

l̂ik ⊕ l̂in = [lik ⊕ lin]⊕ [W (lk)⊕W (ln)]. (2.5)

Since the Hamming distance of lk from ln is equal to one bit, and lk and ln are different

in the jth bit-position, then using eq. (2.5) we can write l̂jk ⊕ l̂
j
n = 0, which implies that

l̂jk = l̂jn. On the other hand, if i ̸= j, we can write lik ⊕ lin = 0, which yields eq. (2.5) to be

equal to one. This implies that l̂ik =
¯̂
lin. Consequently, for Case 2, for all i except i ̸= j,

l̂ik =
¯̂
lin, which means that l̂k and l̂n have a Hamming distance of (m − 1) bits from each

other.

Proposition 2.2. The proposed precoding function is bijective, i.e., lt = Ψ−1(̂lt); the

original label lt can be uniquely obtained from the precoded label l̂t.

Proof. Let us consider that the chosen-index is q, and then according to eq. (2.1), we can

write

l̂qt =W (lt) =
∑
∀j
ljt = lqt ⊕

∑
j ̸=q

ljt , (2.6)

where
∑

is a modulo-2 summation. From eq. (2.6), we have

lqt = l̂qt ⊕
∑
j ̸=q

ljt . (2.7)

Now, let us find the m-bit label lt = [l1t , l
2
t , · · · , lit, · · · , lmt ] from its precoded version, i.e.,

l̂t = Ψ(lt) = [l̂1t , l̂
2
t , · · · , l̂mt ]. There are two possible cases as follows.
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2.1. Proposed mapping

Case 1 : i ̸= q. In this case, according to eq. (2.1), l̂it is given by

l̂it = lit ⊕W (lt), (2.8)

and using l̂qt =W (lt), we can write

lit = l̂it ⊕W (lt) = l̂it ⊕ l̂
q
t . (2.9)

Case 2 : i = q. In this case, using eq. (2.7), lit can be obtained as

lit = lqt = l̂qt ⊕
∑
j ̸=q

ljt . (2.10)

Using eq. (2.9), we simplify eq. (2.10) as

lit = l̂qt ⊕
∑
j ̸=q

(l̂jt ⊕ l̂
q
t ) (2.11)

= l̂qt ⊕
∑
j ̸=q

l̂jt ⊕
∑
j ̸=q

l̂qt

=
∑
∀j
l̂jt ⊕

∑
j ̸=q

l̂qt

= W (̂lt)⊕A(m)× l̂qt ,

where A(m) is an indicator function that takes the value zero if m is odd, otherwise it is

equal to one. Consequently, if q denotes the chosen-index, using eqs. (2.9) and (2.11), the

reverse equation to generate lt from l̂t can be expressed as

lit =

{
l̂it ⊕ l̂

q
t if i ̸= q

W (̂lt)⊕A(m)× l̂qt if i = q.
(2.12)

From eq. (2.12), it is obvious that lt depends only on its precoded version l̂t. In other

words, two precoded labels, l̂k and l̂l yield the same original label only when l̂k = l̂l. That

is, l̂k = l̂l leads to lk = ll. As a result, the precoding function is bijective.

2.1.2 Mapping process

Our proposed mapping uses Gray mapping as the intermediate mapping. The reason will

be explained later in this section. In order to obtain the resulting mappings using the

precoded label l̂t and Gray mapping, we map the symbols as follows. In the Gray labeled

constellation, the symbol labeled with l̂t is mapped to lt. The proposed mapping is defined
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Figure 2.1: An example of the resulting mapping for 16-QAM.

as

Φ(lt) = G(̂lt) = G(Ψ(lt)), (2.13)

where Φ(·) is the proposed mapping and G(·) represents the Gray mapping.

Example 2.2. For example, Fig. 2.1 shows the resulting 16-QAM mapping with our

proposed algorithm. In what follows, we describe how the resulting 16-QAM mapping is

obtained. Let us assume that the chosen-index is equal to one. Using eq. (2.1), the

precoded version of labels l1 = [1, 1, 0, 1] and l2 = [0, 1, 0, 1] can be written as follows (c.f.,

Example 2.1):

l1 = [1, 1, 0, 1] → l̂1 = [1, 0, 1, 0],

l2 = [0, 1, 0, 1] → l̂2 = [0, 1, 0, 1].

Now, l1 = [1, 1, 0, 1] is mapped to the symbol in the 16-QAM constellation whose label

in the Gray labeled 16-QAM is l̂1 = [1, 0, 1, 0], and l2 = [0, 1, 0, 1] is mapped to the symbol

whose label in the Gray labeled 16-QAM constellation is l̂2 = [0, 1, 0, 1]. In a similar fashion,

the rest of the 16-QAM symbols can be mapped using our proposed mapping method.

Proposition 2.3. The Hamming distance between two adjacent symbols in resulting map-

pings is either two, m, or (m − 1) bits, and the fraction of adjacent symbols with the

Hamming distance of two bits can be at least (m−1
m ), which tends to be larger for higher

order constellations.

Proof. See Appendix A.
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2.2. Characteristics of Gray mapping

2.2 Characteristics of Gray mapping

In what follows, we go through three characteristics of Gray mappings that are beneficial

in our proposed mapping method.

• Gray mapping is easy to generate. For square QAM and PSK constellations, Gray

labeling can be obtained from the natural binary labeling (see [29] and [30] for de-

tails). For cross QAM constellations, pseudo Gray labeling can be obtained using

the procedure described in [31].

• The Hamming distance between two adjacent symbols is one bit for Gray mappings

and is at most two bits for pseudo-Gray mappings.

• Our study shows that among the well-known mappings of 2m-ary modulations, Gray

mappings have the largest average Euclidean distance between any pair of symbols

with the Hamming distance of m or (m− 1) bits. For example, Table 2.1 shows that

among the well-known mappings for 16-QAM (m = 4), the Gray mapping has the

largest average Euclidean distance between symbols with the Hamming distance of

3 or 4 bits (please refer to [32] for the comparison of the average Euclidean distance

between symbols with the Hamming distance of m or (m − 1) bits for other QAM

constellations).

Table 2.1: Average Euclidean distance between symbols with 3 or 4-bit Hamming distances
for 16-QAM mappings.

Mapping Average Euclidean distance

Set Partitioning [33] 0.8154

Modified Set Partitioning [34] 0.7946

Mixed Laleling [34] 0.7520

Gray [34] 0.8541

MSEW-1 [11] 0.7798

MSEW-2 [11] 0.7195

MSEW-3 [11] 0.6584

M16a [9] 0.8255

M16r [9] 0.7807

2.3 Characteristics of our mapping

Since our proposed mapping uses a simple precoding and Gray mapping as an intermediate

mapping, it provides a simple and efficient method for generating mappings for QAM and

PSK modulations of any order. Moreover, it has two interesting characteristics as follows.
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• The average Euclidean distance between the symbols with the Hamming distance of

one bit is considerably increased. This can increase d̂2min and the harmonic mean of

the MSED after feedback (denoted by Φ̂(µ,χ)), and as a result, it improves the BER

performance of BICM-ID in the error-floor region.

• According to proposition 2.3, the Hamming distance between most of the adjacent

symbols in our proposed mappings is two bits 2. This decreases Nmin and increases

the harmonic mean of MSED before feedback (denoted by Φ(µ,χ)), and therefore, it

improves the BER performance of BICM-ID in the turbo cliff region.

2.4 Numerical results and discussion

In this section, we compare the performance of our proposed mappings and the best previ-

ously known mappings for BICM-ID over AWGN and Rayleigh fading channels. Table 2.2

compares various evaluation parameters for different QAM mappings. This table shows

that the proposed mappings improve Nmin and Φ, while offering significantly large values

of d̂2min and Φ̂. As a consequence, it is expected that the proposed mappings offer a better

error performance for BICM-ID in the low SNR region.

Table 2.2: Evaluation parameters for different QAM mappings.
Modulation Mapping Nmin d̂2min Φ Φ̂

64-QAM
RTS-based mapping [13] 2.7500 1.6190 0.1048 2.8742

TV mapping [14] 5.0000 1.2381 0.0952 2.2784
Proposed mapping 2.2143 1.2381 0.1127 2.4986

256-QAM
BSA mapping [9] 3.6104 1.1765 0.0257 2.8741
TV mapping [14] 7.0000 0.5882 0.02353 1.7876e
Proposed mapping 2.1667 1.0588 0.0333 2.5301

1024-QAM
BSA mapping [9] 4.4899 0.5865 0.0064 2.7515
Proposed mapping 2.1129 0.9208 0.0100 2.5617

Simulation results for the BER performance of the BICM-ID system using different

mappings are shown in Fig. 2.2-2.6. We use a rate-12 convolutional code with the genera-

tor polynomial of (13, 15)8. The length of the used interleaver is about 10000 bits. All gains

are quantified at a BER of 10−6, which is the target BER of many practical data commu-

nications. All BER curves are presented with seven iterations, and BER performance for

various iterations can be found in [32].

2We are thankful to the anonymous Reviewer of the original article as his/her comment motivated us
to investigate why our mappings perform better in the turbo cliff region and we found this characteristic.
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Figure 2.2: BER performance of 64-QAM.

Fig. 2.2 plots the simulation results for the BER performance of BICM-ID using our

resulting 64-QAM mapping and the previously known 64-QAM mappings, i.e., the RTS-

based mapping, which is optimal in the error-floor region [13], and TV mapping3. In this

figure, we also plot the corresponding analytical bound on the error-floor using the Gauss-

Chebyshev method [34]. From this figure, we can observe that our proposed mapping

outperforms the RTS-based mapping in the turbo cliff region with a certain degradation

of the error-floor. This is expected as our proposed mapping has a larger value of Φ while

it has a comparable value of Φ̂, as listed in Table 2.2. As shown in Fig. 2.2, in comparison

with the TV mapping, our proposed mapping significantly improves the error performance

of BICM-ID in both the turbo cliff and error-floor regions. This is because the values of Φ

and Φ̂ for our proposed mapping are large (see Table 2.2). On Rayleigh fading channels,

the proposed mapping outperforms the RTS-based mapping by 0.7 dB and TV mapping

by 2.7 dB. The gain on AWGN channels is even larger.

In Fig. 2.3, we compare the BER performance of BICM-ID using our proposed mapping,

TV mapping, and the BSA mapping for 256-QAM. We have used the BSA mapping that

is optimized for the error-floor region. By optimizing the generalized weighted BSA cost

function [9] via exhaustive search, the performance of BSA mapping in the turbo cliff

region can be improved at the expense of the error-floor. Moreover, the time complexity of

3For the constellations presented in this section, we have used the same TV mappings that are reported
in [14].
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Figure 2.3: BER performance of 256-QAM.

this exhaustive search can prohibit finding a BSA mapping for higher order constellations.

Fig. 2.3 shows that our mapping outperforms the BSA and TV mappings in the turbo

cliff region and it achieves a gain of about 2.3 dB over the BSA mapping. In Fig. 2.4, we

compare the BER performance of our proposed mapping with that of the BSA mapping

for 1024-QAM. On Rayleigh fading channels, our mapping for 1024-QAM offers a gain of

about 4.4 dB. This is expected as our proposed mapping has a larger value for Φ than

that of the BSA mapping (see Table 2.2). The obtained gains on AWGN channels are

even larger. Finally, in Fig. 2.5 and Fig. 2.6, we compare the error-floor of BICM-ID

using 64-QAM and using 256- and 1024-QAM mappings, receptively on Rayleigh fading

channels. These figures show that our mappings offer comparable error-floors (the gap is

0.6 dB or less) to those of the best known mappings.

It is worth noting that it takes more than a day for the BSA to complete only one round

of the search algorithm for 1024-QAM. However, our method requires only a fraction of a

second to obtain the corresponding proposed mapping. Moreover, our mappings improve

the system performance compared to the BSA mappings. This indicates our method’s

efficiency compared to the BSA.
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Chapter 3

Efficient Multi-Dimensional

Mapping of 16-, 64-QAM for

BICM-ID

Assigning a sequence of binary digits to a vector of symbols rather than a single symbol

is referred to as a MD mapping. MD mapping improves system bandwidth efficiency and

also offers more flexibility in generating good mappings for BICM-ID [15]. However, it

tremendously increases the number of possible mappings and makes it difficult to find

good/optimum mappings for MD modulations. This problem is more severe when MD

modulations are constructed using higher order 2-D modulations. Suitable MD mappings

are obtained by computer search techniques except for MD modulations that use a smaller

modulation, e.g., BPSK, QPSK and 8-PSK, as a basic modulation.

The BSA can be considered as the best known computer search method for finding

good mappings. However, to obtain suitable mappings for larger modulations such as

MD modulations, the BSA becomes intractable due to its complexity [16]. In [16] and

[25], the authors demonstrated that random mapping can lead to efficient MD mappings.

According to the random mapping technique, computer search is used to obtain a good

mapping from a large set of randomly generated mappings, which makes the procedure

complex. Moreover, it degrades the resulting mappings’ performance especially for larger

MD modulations.

In this chapter, we propose a more efficient mapping method for MD modulations

that use 2m-QAM (m = 4, 6) as the basic modulation. Our goal is to obtain mappings

that improve the error performance of BICM-ID at low SNR values as well as at high

SNR values. A similar objective is considered in [11] where the authors used a doping

technique (combining two mappings) to obtain mappings for 2-D modulations. However,

instead of combining mappings, we develop a single mapping for a given MD modulation,

in order to achieve a lower error rate for BICM-ID in both low and high SNR regions.

Furthermore, our proposed method yields mappings for MD modulations rather than 2-

D ones. The proposed method is a heuristic-based technique and does not employ any
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3.1. Proposed mapping method

computer searching. The presented numerical results show that our approach not only

efficiently generates mappings but also improves the BER performance of BICM-ID over

both AWGN and Rayleigh fading channels. For example, our method can save about 3 dB

of transmit signal energy for a target BER of 10−6 compared to the mappings found by

the BSA and random mappings.

3.1 Proposed mapping method

As it is discussed in section 1.6, a mapping that offers a small value of Nmin while it

gives a large value of d̂min is suitable to achieve good error performance of BICM-ID over

both AWGN and Rayleigh fading channels in low and high SNR regions. Based on this

discussion, we take a heuristic approach to construct a mapping that improves the BER

performance of BICM-ID in low and high SNR regions over AWGN and Rayleigh fading

channels. In particular, we apply two key techniques as follows. First, to generate a

mapping with a large value of d̂min, we map binary labels with a Hamming distance of one

bit to the symbol-vectors with a large Euclidean distance. This leads to improved error-

floors over AWGN and Rayleigh fading channels. Second, most of the nearest neighbouring

symbol-vectors are mapped to the binary labels with a Hamming distance of two bits. This

results in a small value of Nmin and yields good BER performance in a low SNR region

over AWGN and Rayleigh fading channels.

3.1.1 Method description

The proposed MD mapping using 2m-QAM symbols is constructed progressively in (m−1)

steps. The mappings in step i (1 ≤ i ≤ (m − 2)) are intermediate mappings whereas the

mapping in step i = (m−1) is the final mapping. In the ith step, 2i+1 symbols from 2m-ary

constellation are selected to be used in the mapping process. In what follows, we describe

our mapping method in details.

Symbols selection

Let Sj represent the symbol with position-index j in a square QAM constellation, j =

1, · · · , 2m. We assume that j increases from left to right and from top to bottom in the

constellation. The general principles in choosing 2i+1 symbols from a 2m-QAM constella-

tion in the ith step are as follows: (i) by moving the set of selected symbols one can cover

all symbols of the constellation such that each symbol is covered only one time. In other

words, the squareM -QAM constellations can be partitioned into a number of subsets where

the structures/shapes formed by these subsets are congruent with one another. Thus, by
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3.1. Proposed mapping method

moving one of the subsets and superimposing it on the remaining subsets, one can cover all

symbols in the constellation such that each symbol is covered only once. (ii) The MSED

between the chosen symbols is as large as possible. Without loss of generality, assume

that χi denotes the set of 2i+1 chosen symbols in step i and αi = [α
(1)
i , α

(2)
i , · · · , α(2i+1)

i ]

indicates the position-indexes of symbols in χi. The set of used symbols in step (i + 1)

contains all the used symbols in step i, i.e., χi ⊂ χi+1 and αi ⊂ αi+1. As such in step

(m− 1), all symbols in the constellation will be used to construct the MD mapping.

Mapping process

Suppose that l = [l(1), l(2), · · · , l(mN)] is an mN -bit binary label, and in step i, ai =

[a
(1)
i , a

(2)
i , · · · , a((i+1)N)

i ] denotes the (i + 1)N least significant bits of l where a
(k)
i is given

by:

a
(k)
i = l(mN−(i+1)N+k), k = 1, 2, · · · , (i+ 1)N. (3.1)

Assume that ai is mapped to symbol-vector xi = [x
(1)
i , · · · , x(N)

i ], where x
(k)
i ∈ χi. The

corresponding position-index vector for xi is denoted by ji = [j
(1)
i , · · · , j(N)

i ], where j
(k)
i ∈

αi refers to the position-index of symbol x
(k)
i in the constellation. Now, we describe the

steps of the mapping process.

First step: In step i = 1, the selected symbol set χ1 is equivalent to QPSK symbols in

terms of intersymbol Euclidean distances. Therefore, in order to achieve a good mapping,

we use the optimum MD QPSK mapping method introduced in [12]. In particular, a 2N -

bit label a1 is mapped to N consecutive QPSK symbols using the method proposed in

[12]. Then, we use a conversion vector, denoted by γ = [γ(1), · · · , γ(4)], to convert each

symbol in the achieved MD QPSK mapping to one of the symbols in χ1. Without loss of

generality, we assume the QPSK symbols are expressed as:

Pk = ej
πk
2 ; k = 1, · · · , 4; j2 = −1, (3.2)

where k is the symbol position-index in the QPSK constellation. A particular QPSK

symbol, Pk, is converted to one of the symbols in χ1, as given below:

Pk → Sz; z = γ(k), (3.3)

where Sz is the symbol with position-index z in 2m-QAM constellation. It is important to

note that γ converts each QPSK symbol to the corresponding symbol in the 4-ary constel-

lation created using the four chosen 2m-QAM symbols. As a consequence, all properties of

the developed MD QPSK mapping in [12] are conserved for our MD mapping using four

selected 2m-QAM symbols.
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3.1. Proposed mapping method

Subsequent steps: In step i (i = 2, 3 · · · ,m − 1), we use the intermediate mapping in

the previous step to map label ai to a vector of N symbols from χi. Assume that in step

i, bi = [b
(1)
i , b

(2)
i , · · · , b(N)

i ] denotes the N most significant bits of ai, i.e., b
(k)
i = a

(k)
i for

k = 1, · · · , N . Each symbol in xi−1 is transformed to obtain the symbol-vector in step i,

xi. The transformation rule is defined by βi,k, i.e.,

x
(k)
i−1

βi,k−−→ x
(k)
i , x

(k)
i−1 ∈ χi−1, x

(k)
i ∈ χi, (3.4)

where βi,k is a 2i-tuple vector and it is determined based on the Hamming weight of bi

and the bit value of b
(k)
i .

Symbol transformation using βi,k: For given vectors ji−1 and αi−1 and for a particular

value of k (k = 1, · · · , N), there exists a q ∈ {1, · · · , 2i} such that j
(k)
i−1 = α

(q)
i−1. Then the

position-index of the kth symbol in xi, i.e., j
(k)
i , is given by:

j
(k)
i = β

(q)
i,k , (3.5)

where β
(q)
i,k is the qth element of the corresponding vector βi,k. The values of j

(k)
i determine

the symbols in xi.

3.1.2 Design considerations of βi,k

There are two key ideas in designing βi,k (i > 1) as follows. As discussed in Section 1.6, a

large value of d̂2min is desired to achieve a good error performance at high SNRs over AWGN

and Rayleigh fading channels. Let d̂2min,i be the MSED between two symbol-vectors with a

Hamming distance of one bit in the ith step of our proposed mapping process. As mentioned

earlier, the intermediate MD mapping in the first step is equivalent to the optimum MD

QPSK mapping, which is developed in [12]. Therefore, it yields the largest possible value

of d̂2min,1 for the selected four symbols from 2m-QAM. To achieve a large value of d̂2min,

βi,k should be designed such that d̂2min,i ≥ d̂2min,1 for i = 2, 3, · · · ,m − 1. To develop a

mapping with a small value of Nmin, βi,k is designed such that the most of the symbol-

vectors with the Euclidean distance dmin,i in step i are mapped by binary labels with a

Hamming distance of two bits, where dmin,i is the minimum Euclidean distance between

the symbols in χi. Based on the above discussion, we design βi,k as discussed below.

Let ai = [bi,ai−1] be a given label in step i where bi and ai−1 are two binary sequences

of lengths N and iN bits, respectively. Assume that âi is a binary sequence of (i + 1)N

bits and it is different from ai only in the kth bit position. Then, there are two possible
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3.1. Proposed mapping method

cases for âi as given below:

âi =

{
[b̂i,ai−1] if k ≤ N,
[bi, âi−1] if k > N,

(3.6)

where b̂i and âi−1 are two binary sequences of lengths N and iN , respectively that have

a Hamming distance of one bit from bi and ai−1, respectively. Our first goal is to map ai

and âi to the symbol-vectors xi and x̂i, respectively such that ∥xi − x̂i∥2 ≥ d̂2min,1.

Let ãi be a sequence of (i + 1)N bits. Also assume that ãi is different from ai in the

jth and the kth bit positions where j < k ≤ (i + 1)N . Then, ãi can be defined as one of

the three following possible cases:

ãi =


[b̃i,ai−1] if j < N, k ≤ N,
[b̂i, âi−1] if j ≤ N, k > N,

[bi, ãi−1] if j > N, k > N,

(3.7)

where b̃i is an N -bit sequence with a Hamming distance of two bits from bi and ãi−1 is an

iN -bit sequence with a Hamming distance of two bits from ai−1. Suppose that in step i, x̃i

is an element of ψi, i. e., x̃i ∈ ψi, where ψi denotes the set of the nearest symbol-vectors

to xi in χi = χN
i . Our second goal is to map most of the symbol-vectors in ψi by one of

the possible cases of ãi in (3.7). In this way, one can have:

dH(xi, x̃i) = 2 (3.8)

for most cases of x̃i, where dH(a, b) denotes the Hamming distance between a and b.

The two mentioned goals are achieved via a systematic symbol transformation from

step (i− 1) to step i using βi,k. Specifically, βi,k depends on the Hamming weight of bi as

well as on the bit value b
(k)
i . We consider four different cases for βi,k as follows:

βi,k =


βE0 if wH(bi) ∈ E, b(k)i = 0,

βE1 if wH(bi) ∈ E, b(k)i = 1,

βO0 if wH(bi) ∈ O, b(k)i = 0,

βO1 if wH(bi) ∈ O, b(k)i = 1,

(3.9)

where βE0, βE1, βO0, and βO1 are row vectors with 2i elements and each of them is a

subset of αi.
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3.1.3 Proposed vectors for αi, γ, and βi,k

Table 3.1 shows the position-index vector of the selected symbols in step i, i. e., αi, of

the proposed mapping method. The proposed conversion vector, γ, for 16-QAM and 64-

QAM is also indicated in Table 3.2. Furthermore, Tables 3.3 and 3.4 provide the proposed

vectors for βE0, βE1, βO0, and βO1 for different steps in the MD mapping using 16-QAM

and 64-QAM, respectively.

Table 3.1: αi in different steps of the proposed mapping method.
Basic Modulation i αi

16-QAM
1 [1, 3, 9, 11]
2 [1, 2, 3, 4, 9, 10, 11, 12]

64-QAM

1 [1, 5, 33, 37]
2 [1, 3, 5, 7, 33, 35, 37, 39]
3 [1, 3, 5, 7, 17, 19, 21, 23, 33, 35, 37, 39, 49, 51, 53, 55]

4
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33,
35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63]

Table 3.2: Conversion vector, γ.
Basic Modulation γ

16-QAM [11, 3, 1, 9]

64-QAM [37, 5, 1, 33]

Table 3.3: Different cases of βi,k for 16-QAM.

βi,k i = 2 i = 3

βE0 [1, 3, 9, 11] [1, 2, 3, 4, 9, 10, 11, 12]

βE1 [2, 4, 10, 12] [5, 6, 7, 8, 13, 14, 15, 16]

βO0 [11, 9, 3, 1] [11, 12, 9, 10, 3, 4, 1, 2]

βO1 [12, 10, 4, 2] [15, 16, 13, 14, 7, 8, 5, 6]

3.2 Examples

In what follows, we provide a number of examples to illustrate how to use Tables 3.1-3.4

to construct the MD mapping using 16-QAM.

Example 3.1. Fig. 3.1(a) indicates the symbols in a 16-QAM constellation. According to

Table 3.1, α1 equals [1, 3, 9, 11], which means the set of selected symbols to be used in step 1

is χ1 = {S1, S3, S9, S11}. Similarly, using this table we have χ2 = {S1, S2, S3, S4, S9, S10, S11, S12}.
The symbols in χ1 and χ2 are shown in black colour in Fig. 3.1(b) and Fig. 3.1(c), respec-

tively.
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Figure 3.1: (a) A 16-QAM constellation, (b) Four selected 16-QAM symbols (dark symbols)
to be used in mapping step i = 1, i.e., χ1, and (c) Eight selected 16-QAM symbols (dark
symbols) to be used in mapping step i = 2, i.e., χ2.

Table 3.4: Different cases of βi,k for 64-QAM.

βi,k i Index-vector

βE0

2 [1, 5, 33, 37]
3 [1, 3, 5, 7, 33, 35, 37, 39]
4 [1, 3, 5, 7, 17, 19, 21, 23, 33, 35, 37, 39, 49, 51, 53, 55]

5
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33,
35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63]

βE1

2 [3, 7, 35, 39]
3 [17, 19, 21, 23, 49, 51, 53, 55]
4 [9, 11, 13, 15, 25, 27, 29, 31, 41, 43, 45, 47, 57, 59, 61, 63]

5
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34,
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64]

βO0

2 [37, 33, 5, 1]
3 [37, 39, 33, 35, 5, 7, 1, 3]
4 [37, 39, 33, 35, 53, 55, 49, 51, 5, 7, 1, 3, 21, 23, 17, 19]

5
[37, 39, 33, 35, 45, 47, 41, 43, 53, 55, 49, 51, 61, 63, 57,
59, 5, 7, 1, 3, 13, 15, 9, 11, 21, 23, 17, 19, 29, 31, 25, 27]

βO1

2 [39, 35, 7, 3]
3 [53, 55, 49, 51, 21, 23, 17, 19]
4 [45, 47, 41, 43, 61, 63, 57, 59, 13, 15, 9, 11, 29, 31, 25, 27]

5
[38, 40, 34, 36, 46, 48, 42, 44, 54, 56, 50, 52, 62, 64, 58,
60, 6, 8, 2, 4, 14, 16, 10, 12, 22, 24, 18, 20, 30, 32, 26, 28]

Example 3.2. In the proposed MD mapping method, let us set m = 4 (16-QAM), N = 2,

and l = [1, 1, 1, 0, 0, 1, 1, 1]. For this example, a1 is made of the four least significant

bits of l, i.e., a1 = [0, 1, 1, 1]. In step i = 1, a1 is mapped to a vector of two QPSK

symbols following the proposed method in [12], which results in the QPSK symbol-vector

P = [P4, P2]. Then, P is converted to the 16-QAM symbol-vector x1 using γ. By applying
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(3.3) and setting γ = [11, 3, 1, 9] (c.f., Table 3.2 for 16-QAM), x1 is obtained as:

x1 = [Sγ(4) , Sγ(2) ] = [S9, S3]. (3.10)

The vector of the position-indexes corresponding to the symbol-vector x1 is j1 = [9, 3].

Example 3.3. Using example 3.2, and for step i = 2, a2 is equal to [1, 0, 0, 1, 1, 1] and then

b2 equals [1, 0]. Let us consider that a2 is mapped to symbol-vector x2 = [x
(1)
2 , x

(2)
2 ] in this

step. Since b2 has an odd Hamming weight and b
(1)
2 = 1, according to (3.9) β2,1 equals

βO1. From Table 3.1, α1 = [1, 3, 9, 11] and from Table 3.3, βO1 = [12, 10, 4, 2]. Since j1

is equal to [9, 3] (see Example 3.2), then j
(1)
1 = α

(q)
1 when q = 3. Using (3.5) and setting

q = 3, the result is j
(1)
2 = β

(3)
2,1 = 4. Similarly, since b22 = 0, then β2,2 equals βO0, where

βO0 = [11, 9, 3, 1] (c.f., Table III for i = 2). Moreover, when q = 2, j
(2)
1 = α

(q)
1 . Using (3.5)

and setting q = 2, the result is j
(2)
2 = β

(2)
2,2 = 9. As a consequence, j2 equals [4, 9], which

means that x1 will be transformed to x2 = [S4, S9]. In other words, in step i = 2, a2 is

mapped to x2 = [S4, S9].

In step i = 3, a3 equals [1, 1, 1, 0, 0, 1, 1, 1], and then, b3 is equal to [1, 1]. The Hamming

weight of b3 is even and both elements of b3 are equal to 1. As a result, in order to

determine the elements of j3 = [j
(1)
3 , j

(2)
3 ], we set β3,1 = βE1 and β3,2 = βE1. From Table

3.3 for i = 3, βE1 equals [5, 6, 7, 8, 13, 14, 15, 16] and from Table 3.1 for 16-QAM, α2 is

equal to [1, 2, 3, 4, 9, 10, 11, 12]. Furthermore, in step i = 2, j2 equals [4, 9]. As a result,

j
(1)
2 = α

(q)
2 when q = 4, and j

(2)
2 = α

(q)
2 when q = 5. By applying (3.5), one can obtain

j
(1)
3 = β

(4)
E1 = 8 and j

(2)
3 = β

(5)
E1 = 13. Consequently, j3 equals [8, 13], which means that x2

will be transformed to x3 = [S8, S13]. In other words, l is finally mapped to symbol-vector

x3 = [S8, S13].

Example 3.4. Table 3.5 illustrates the proposed 4-D mapping using 16-QAM symbols.

In this table, the decimal label in the (j + 1, k + 1)th entry is mapped to symbol-vector

x = [Sj , Sk]. For example, the decimal label 231, which corresponds to binary label

l = [1, 1, 1, 0, 0, 1, 1, 1], is the (9, 14)th entry of Table 3.5 and is mapped to symbol-vector

x = [S8, S13].

3.3 Numerical results and discussion

In this section, we provide a selection of select numerical examples to demonstrate the

performance and advantages of our proposed MD mapping for BICM-ID systems. We

compare our mappings with random mappings and also with the mappings that are opti-

mized using well-known BSA. However, the BSA becomes intractable for MD modulations
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Table 3.5: Our proposed 4-D 16-QAM mapping.
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

S1 0 17 14 31 65 80 79 94 3 18 13 28 66 83 76 93

S2 33 48 47 62 96 113 110 127 34 51 44 61 99 114 109 124

S3 5 20 11 26 68 85 74 91 6 23 8 25 71 86 73 88

S4 36 53 42 59 101 116 107 122 39 54 41 56 102 119 104 121

S5 129 144 143 158 192 209 206 223 130 147 140 157 195 210 205 220

S6 160 177 174 191 225 240 239 254 163 178 173 188 226 243 236 253

S7 132 149 138 155 197 212 203 218 135 150 137 152 198 215 200 217

S8 165 180 171 186 228 245 234 251 166 183 168 185 231 246 233 248

S9 9 24 7 22 72 89 70 87 10 27 4 21 75 90 69 84

S10 40 57 38 55 105 120 103 118 43 58 37 52 106 123 100 117

S11 12 29 2 19 77 92 67 82 15 30 1 16 78 95 64 81

S12 45 60 35 50 108 125 98 115 46 63 32 49 111 126 97 112

S13 136 153 134 151 201 216 199 214 139 154 133 148 202 219 196 213

S14 169 184 167 182 232 249 230 247 170 187 164 181 235 250 229 244

S15 141 156 131 146 204 221 194 211 142 159 128 145 207 222 193 208

S16 172 189 162 179 237 252 227 242 175 190 161 176 238 255 224 241

with a large alphabet size, e.g., 6-D 64-QAM, due to its computational time constraints.

The random mappings for AWGN and Rayleigh fading channels are obtained by selecting

the best mappings from a large number of randomly generated mappings. We consider

a rate-1/2 convolutional code with the generator polynomial of (13, 15)8. The length of

interleaver used is 10008 bits. All BER curves are presented with seven iterations, and all

reported gains are measured at a BER of 10−6. Also, throughout this section, SNR refers

to the SNR per bit, i.e., Eb
N0

.

3.3.1 Performance over AWGN channel

As previously discussed, there are two important parameters for a mapping, i.e., Nmin and

d̂2min, that are relevant to BER performance of BICM-ID systems over AWGN channel. In

Table 3.6, we compare Nmin and d̂2min values of our MD mappings using 16-QAM and 64-

QAM with those of the well-known BSA mappings that are optimized for AWGN channels

and random mappings. In this table, BSA MD 64-QAMmapping for higher dimension, e.g.,

N = 3, is not reported as it could not be obtained due to the computational complexity.

Table 3.6 clearly shows that our mappings offer smaller values of Nmin compared to their

counterparts. So, the proposed MD mappings will improve the BER performance of BICM-

ID at low SNR values over AWGN channels. This is confirmed in Fig. 3.2 which plots

the BER of various mappings over an AWGN channel. As it can be observed from this

figure, the proposed mappings outperform the BSA mappings by 1.5 dB, 2.5 dB, and 3.5

dB for 4-D 16-QAM, 6-D 16-QAM, and 4-D 64-QAM, respectively in the low SNR region.

The error rate improvement with the proposed mappings over random mappings is even
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Figure 3.2: BER performance over an AWGN channel.

larger. Table 3.6 also shows that our mappings yield larger values of d̂2min compared to

the BSA and random mappings. Thus, the proposed mappings result in improved BER

performance in the high SNR region over AWGN channels. This can be observed from

the plotted error-floor bounds in Fig. 3.3. It is worth noting that the gap between Nmin

for different mappings in Table 3.6, can explain the gap between the corresponding BER

curves in Fig. 3.2. This is because for large constellations such as MD constellations, the

impact of Nmin on BER is more significant than that of d̂2min.

Table 3.6: Comparison of Nmin and d̂2min for different mappings.

Mapping
N = 2 N = 3

Nmin d̂2min Nmin d̂2min

Random MD 16-QAM 4.0412 0.2069 6.0137 0.1333

BSA MD 16-QAM 3.7305 1.2069 5.8254 1.3333

Proposed MD 16-QAM 2.2500 2.4000 2.2778 2.6667

Random MD 64-QAM 6.0114 0.0476 8.9979 0.0317

BSA MD 64-QAM 5.8240 1.1905 - -

Proposed MD 64-QAM 2.3214 2.2857 2.3571 2.5397

3.3.2 Performance over Rayleigh fading channels

For Rayleigh fading channels, Φ(µ,χ) and Φ̂(µ,χ) are two important mapping parameters

to compare the BER performance of BICM-ID systems. We compare the values of Φ(µ,χ)
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Figure 3.3: Error-floor bounds over an AWGN channel.

and Φ̂(µ,χ) for the mappings already considered in the previous section in Table 3.7.

The proposed mappings offer larger values of Φ(µ,χ) in comparison with the BSA and

random mappings. This results in better BER performance in the low SNR region with

our mappings. The BER plots in Fig. 3.4 show that the proposed mappings offer gains of

1.5 dB, 1.6 dB, and 3 dB for 4-D 16-QAM, 6-D 16-QAM, and 4-D 64-QAM, respectively,

compared to the BSA mappings that are optimized for Rayleigh fading channels. The

performance gain with respect to the random mappings is larger. Similar to the AWGN

channel, the gap between BER curves in Fig. 3.4 can be explained by the gap between

the corresponding Φ(µ,χ) in Table 3.7. From the listed values of Φ̂(µ,χ) in Table 3.7, we

observe that the proposed mappings also increase the values of Φ̂(µ,χ). Therefore, our

mappings offer improved error-floor bounds as illustrated in Fig. 3.5.

Table 3.7: Comparison of Φ(µ,χ) and Φ̂(µ,χ) for different mappings.

Mapping
N = 2 N = 3

Φ(µ,χ) Φ̂(µ,χ) Φ(µ,χ) Φ̂(µ,χ)

Random MD 16-QAM 0.2012 1.4350 0.1335 1.4934

BSA MD 16-QAM 0.2026 2.5814 0.1342 2.8047

Proposed MD 16-QAM 0.2151 2.8491 0.1446 2.9741

Random MD 64-QAM 0.0478 1.1688 0.0318 1.4370

BSA MD 64-QAM 0.0481 2.6899 - -

Proposed MD 64-QAM 0.0579 2.8166 0.0392 2.9040
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Please note that the BSA requires a very long time to finish only one round of the search

algorithm for 6-D 16-QAM. But, our proposed method is a heuristic method and generates

the proposed mappings instantaneously. Moreover, our proposed mappings improve the

system error performance compared to the BSA mappings. This shows the efficiency of

our proposed method compared to the BSA.
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Figure 3.4: BER performance over a Rayleigh fading channel.
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Chapter 4

Multi-dimensional Mapping of

Higher Order QAM for BICM-ID

Over Rayleigh Fading Channels

The number of possible mappings for an MD modulation increases exponentially as the

order of the employed 2-D basic modulation increases. For example, there are 4! = 24

distinct mappings for a 2-D QPSK while for a 4-D QPSK modulation, there are 16! =

2.1 × 1013 possible mappings. For the higher order modulations such as 1024-QAM, the

number of possible MD mappings approaches infinity. This makes it complicated to find

good mappings for larger constellations. Indeed, the large number of possible mappings

is the main pitfall of all the proposed computer search based methods. For instance, the

well-known mapping search method known as the BSA [9], becomes intractable if the

order of the modulation increases [7]. As a result, the BSA is not applicable to directly

search for good MD mappings for higher order modulations. Analytical mapping search

methods are investigated in [13] and [16] for higher order modulations. However, due to a

high computational complexity, in these works, the authors have not reported results for

constellations larger than 64-QAM.

Motivated by the above discussions, the present study focuses on finding good MD

mappings for a wide range of modulations including higher order modulations. The ob-

jective is to improve the error performance of the BICM-ID system over Rayleigh fading

channels. First, we introduce a MD mapping method employing four 2-D mappings. Then,

a lower bound for the harmonic mean of the MSED [6] is derived for this MD mapping.

We next develop mutual cost functions and minimize them over the 2-D mappings in order

to achieve a MD mapping with a large value for the harmonic mean of the MSED. The

proposed method is a low complexity approach and can be easily applied to find good MD

mappings for higher order modulations such as 512- and 1024-QAM. The reported numer-

ical results confirm the efficiency of the achieved mappings. In Chapter 2, we developed

MD mappings for two specific modulations, i.e., 16- and 64-QAM. In the current chapter,

we develop a generalized mapping method to construct MD mappings for a vast range of
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modulations that includes 2m-QAM (m = 4, · · · , 10). Moreover, the proposed method in

this chapter, is not limited to QAM and it is applicable to any kind of constellation.

4.1 Proposed mapping method

As mentioned earlier, for a 2m-ary signal constellation there are 2m! possible mappings. In

fact, a comprehensive computer search to find good mappings becomes intractable quickly

as the modulation order increases. The well-known BSA mapping search method cannot

be used directly to obtain good mappings. Therefore, we propose an efficient technique to

find good MD mappings for BICM-ID systems over Rayleigh fading channels.

We consider the asymptotic performance of BICM-ID in which the ideal a priori infor-

mation about the decoded bits is available at the demodulator. In this case, to detect a

particular bit carried by the received signal, the demodulator has perfect information about

the remaining (mN − 1)-bits carried by the signal. Thus, the modulation is converted to a

binary modulation and Euclidean distances can easily be increased by employing a carefully

designed mapping. As it is discussed in 1.6.2, the asymptotic performance of BICM-ID over

Rayleigh fading channels is influenced by the harmonic mean of the MSED after feedback,

which is calculated for a given mapping function, µ, applied to signal set χ. According

to 1.10, for a 2N -D mapping of a 2m-ary constellation, the harmonic mean of the MSED

after feedback is given by

Φ̂(µ,χ) =

 1

mN2mN

mN∑
i=1

1∑
b=0

∑
x∈χi

b

1

∥x− x̂∥2

−1

, (4.1)

where x = [x1, x2, · · · , xN ] is a 2N -D signal point and χi
b is the subset of χ whose labels

take value b at the ith bit position, and x̂ = [x̂1, x̂2, · · · , x̂N ] is a signal point in χi
b̄
whose

label is different with that of x only in the ith bit position. For BICM-ID with a particular

code, a larger value of Φ̂(µ,χ) offers a lower error floor [34]. However, maximizing Φ̂(µ,χ)

is a complicated problem even for 2-D modulations such as 64-QAM [13]. Therefore, we

propose an innovative approach to generate MD mappings using 2-D mappings. Next, we

develop cost functions that are optimized over the employed 2-D mappings to achieve a

high value of Φ̂(µ,χ) for the MD mapping. Our cost functions are simple and give excellent

results, even for higher order modulations such as 1024-QAM.

Let l = [l1, l2, · · · , lmN ] be an mN -bit binary label. Equivalently l = [l1, l2, · · · , lN ]

where li is an m-bit binary label and is given by

li = [l(i−1)m+1, · · · , lim]; i = 1, ..., N. (4.2)
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4.1. Proposed mapping method

Suppose that L denotes the set of all mN -bit binary labels and Le and Lo represent

the subset of all l ∈ L with even and odd Hamming weights, respectively. The MD

mapping problem can be broken into four mappings in 2-D signal space as described below.

According to the proposed MD mapping function, i.e., µ, label l is mapped to the 2N -D

signal point x = [x1, · · · , xN ] as given below

xi =


λel(li) if i = 1 , l ∈ Le,
λol(li) if i = 1 , l ∈ Lo,
λer(li) if i ≥ 2 , l ∈ Le,
λor(li) if i ≥ 2 , l ∈ Lo,

; i = 1, ..., N, (4.3)

where λel, λol, λer, and λor are 2-D mapping functions, which will be discussed later in

this section. In the applied mapping, let χe and χo represent the subset of signal points in

χ whose labels belong to Le and Lo, respectively. Without loss of generality, assume that

x ∈ χe and x̂ ∈ χo where x̂ = [x̂1, x̂2, · · · , x̂N ] is a signal point whose label is different

with that of x only in one bit position. We partition the 2-D signal constellation χ into

two separate subsets with equal cardinalities and denote them as χel and χol. Then, we

limit the first element in x and x̂, i.e., x1 and x̂1, to belong to χel and χol, respectively. In

(4.3), λel(.) and λol(.), each map an m-bit label to a 2-D signal point chosen from χel and

χol, respectively. However, χel and χol involve only 2m−1 signal points while there are 2m

distinct m-bit labels. As a consequence, each signal point in χel and χol should be mapped

by two m-bit labels simultaneously. In order to obtain a one-to-one MD mapping function,

we restrict the two labels that are mapped to a particular signal point in either χel or χol

to be different in an odd number of bit positions. For simplicity, we assume that these two

labels are different just in the first bit position. On the other hand, there is no constraint

on λer(.) and λor(.) except they need to be bijective.

Proposition 4.1. In the proposed MD mapping function, µ, there is a one-to-one corre-

spondence between MD signal points and binary labels.

Proof. It is obvious that the Hamming distance between two labels from a particular label-

set, i.e., Le or Lo, is even. However, two labels one from Le and the other from Lo have

an odd Hamming distance from each other. Since there is no common 2-D signal point

between χel and χol, there is no common 2N -D signal point between χe and χo. As a result,

none of the 2N -D signal points will be mapped simultaneously by a label from Le and a

label from Lo. Therefore, it is sufficient to prove that there is a one-to-one correspondence

between labels from Le and signal points from χe and similarly between labels in Lo and

signal points in χo. In what follows, we prove this for the even subsets, i.e., for labels in
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4.2. Development and optimization of cost functions

Le and signal points in χe.

Assume that l = [l1, l2, · · · , lmN ] and l̃ = [l̃1, l̃2, · · · , l̃mN ] are two labels in Le and

are mapped to x = [x1, · · · , xN ] and x̃ = [x̃1, · · · , x̃N ], respectively where both x and x̃

are in χe. Let us define li and l̃i as the ith m-tuple bits of l and l̃, respectively. Then

l = [l1, l2, · · · , lmN ] and l̃ = [̃l1, l̃2, · · · , l̃mN ]. Based on the relation between li and l̃i for

different values of i, there are two possible cases as follows:

Case 1: There exists a value of i (i ≥ 2) such that li ̸= l̃i. Let j ≥ 2, then according

to (4.3) the same one-to-one mapping function, i.e., λer(.), is used to map lj to xj and l̃j

to x̃j . Therefore, because lj ̸= l̃j , we have

xj ̸= x̃j ⇒ x ̸= x̃. (4.4)

Case 2: li = l̃i for all i ≥ 2. In this case, li ̸= l̃i only when i = 1, and as a result,

the Hamming distance between l and l̃ is equal to the Hamming distance between l1 and

l̃1. Since l and l̃ belong to Le, they have an even Hamming distance from each other.

Consequently, the Hamming distance between l1 and l̃1 is even as well. However, the two

labels that are mapped to each symbol in χel have an odd Hamming distance from each

other. Therefore, because λel(l1) ̸= λel(̃l1), we have

x1 ̸= x̃1 ⇒ x ̸= x̃. (4.5)

From (4.4) and (4.5), it is concluded that in the proposed mapping function, different labels

from Le are mapped to different signal points in χe. In a similar way, it can be proven that

the different labels from Lo are mapped to the different signal points in χo. As a result,

the proposed MD mapping function is bijective.

4.2 Development and optimization of cost functions

As it is mentioned previously, maximizing Φ̂(µ,χ) is a complicated task. In what follows,

we break Φ̂(µ,χ)−1 into two separated parts. Next, we derive a cost function for each part

to maximize Φ̂(µ,χ). Both cost functions operate in 2-D signal space rather than MD

signal space. As such, they have much lower complexity. We use (4.1) to write
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Φ̂(µ,χ)−1 =
1

mN2mN

mN∑
i=1

1∑
b=0

∑
x∈χi

b
x∈χe

1

∥x− x̂∥2
+
∑
x∈χi

b
x∈χo

1

∥x− x̂∥2

 , (4.6)

where χe and χo are the same size. Moreover, when a given x is in χe then the corre-

sponding x̂ belongs to χo and vice versa. Therefore, the two parts in (4.6) are equivalent,

and as a result, we have

Φ̂(µ,χ)−1 = 2Ω(µ,χ), (4.7)

where Ω(µ,χ) is given by

Ω(µ,χ) =
1

mN2mN

mN∑
i=1

1∑
b=0

∑
x∈χi

b
x∈χe

1

∥x− x̂∥2
. (4.8)

Since ∥x− x̂∥2 =
∑N

j=1 |xj − x̂j |2, then (4.8) can be rewritten as

Ω(µ,χ) =
1

mN2mN

mN∑
i=1

1∑
b=0

∑
x∈χi

b
x∈χe

1∑N
j=1 |xj − x̂j |2

. (4.9)

Proposition 4.2. Let y = [y1, y2, · · · , yN ] is a vector of positive real numbers. Then we

have

1∑N
i=1 yi

6 1

N2

N∑
j=1

1

yj
. (4.10)

Proof. As f(y) = 1
y is convex on R+, so

f(
N∑
i=1

λiyi) ≤
N∑
i=1

λif(yi), (4.11)

where
∑N

i=1 λi = 1. Let λi =
1
N . Then

f(
1

N

N∑
i=1

yi) ≤
N∑
i=1

1

N
f(yi), (4.12)

i.e.,
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1
1
N

∑N
i=1 yi

≤
N∑
i=1

1

N

1

yi
(4.13)

⇒ N∑N
i=1 yi

≤ 1

N

N∑
i=1

1

yi

⇒ 1∑N
i=1 yi

≤ 1

N2

N∑
i=1

1

yi
.

Applying (4.10) in (4.9), we can write

Ω(µ,χ) 6 KΨ(µ,χ), (4.14)

where K is a constant value and Ψ(µ,χ) is defined as

Ψ(µ,χ) =
mN∑
i=1

1∑
b=0

∑
x∈χi

b
x∈χe

N∑
j=1

1

|xj − x̂j |2
.

We can decompose Ψ(µ,χ) as

Ψ(µ,χ) = Ψl(µ,χ) + Ψr(µ,χ), (4.15)

where Ψl(µ,χ) and Ψr(µ,χ) are given by

Ψl(µ,χ) =

mN∑
i=1

1∑
b=0

∑
x∈χi

b
x∈χe

1

|x1 − x̂1|2
(4.16)

and

Ψr(µ,χ) =

mN∑
i=1

1∑
b=0

∑
x∈χi

b
x∈χe

N∑
j=2

1

|xj − x̂j |2
. (4.17)

Let l = [l1, l2, · · · , lmN ] and l̂ = [l̂1, l̂2, · · · , l̂mN ] are twomN -bit labels, which are differ-

ent only in the ith bit position, and are mapped to x = [x1, · · · , xN ] and x̂ = [x̂1, · · · , x̂N ],

respectively. We define li and l̃i respectively as the ith m-tuple bits of l and l̂, and rewrite

l = [l1, l2, · · · , lmN ] and l̃ = [̃l
1
, l̃

2
, · · · , l̃mN

]. Then, (4.16) is equivalent to
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Ψ′
l(λel, λol,L) =

mN∑
i=1

1∑
b=0

∑
l∈Li

b
l∈Le

1

|λel(l1)− λol(̂l1)|2
, (4.18)

where Lib ∈ L is the subset of labels with value b in their ith bit position. For a given m-bit

sequence li, l̂i can take (m+ 1) distinct m-bit sequences, where each one is the same as li

or different from li only in one bit position. For example, if m = 4 and li = [0, 0, 0, 0], l̂ can

take either of the 5 labels in {[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]}. Let α =

[α1, · · · , αm] and β = [β1, · · · , βm] are two binary sequences, where β has the Hamming

distance of either zero or one from α. The set of (m+ 1) possibilities for β is denoted by

B. Assume that for a given i, li = α and l̂i = β. Then (4.18) is equivalent to

ψl(λel, λol, χel, χ) =
∑
α

∑
β∈B

a
(l)
α,β

|λel(α)− λol(β)|2
(4.19)

where a
(l)
α,β is given by

a
(l)
α,β =

mN∑
i=1

1∑
b=0

∑
l∈Li

b
l∈Le

[l1 = α, l̂1 = β], (4.20)

where [x] is an indicator function and is defined as

[x] =

{
1 if x is true

0 otherwise.
(4.21)

Similarly, (4.17) is equivalent to

Ψ′
r(λer, λor,L) =

mN∑
i=1

1∑
b=0

∑
l∈Li

b
l∈Le

N∑
j=2

1

|λer(lj)− λor (̂lj)|2
. (4.22)

The m-bit elements li in l = [l1, l2, · · · , lN ] are independent from one another for all i.

Then (4.22) is equivalent to

ψr(λer, λor, χ) =

mN∑
i=1

1∑
b=0

∑
l∈Li

b
l∈Le

N − 1

|λer(l2)− λor (̂l2)|2
, (4.23)

which can be rewritten as
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ψr(λer, λor, χ) =
∑
α

∑
β∈B

a
(r)
α,β(N − 1)

|λer(α)− λor(β)|2
, (4.24)

where a
(r)
α,β is computed as

a
(r)
α,β =

mN∑
i=1

1∑
b=0

∑
l∈Li

b
l∈Le

[l2 = α, l̂2 = β]. (4.25)

Using (4.7), (4.14), and (4.15), a lower bound of Φ̂(µ,χ) can be derived as follows

Φ̂−1(µ,χ) 6 2K (Ψl(µ,χ) + Ψr(µ,χ)) (4.26)

⇒ ∆ 6 Φ̂(µ,χ),

where ∆ is given by

∆ =
K ′

Ψl(µ,χ) + Ψr(µ,χ)
. (4.27)

Because Ψl(µ,χ) ≡ ψl(λel, λol, χel, χ) and Ψr(µ,χ) ≡ ψr(λer, λor, χ), we rewrite ∆ as

∆ =
K ′

ψl(λel, λol, χel, χ) + ψr(λer, λor, χ)
. (4.28)

Note that (4.28) operates in 2-D signal space rather than MD signal space, and as a result,

optimization is much simpler.

Our objective is to maximize ∆ and then to calculate the corresponding Φ̂(µ,χ). Since

ψl(λel, λol, χel, χ) and ψr(λer, λor, χ) are independent from each other, then the maximum

value of ∆, ∆max is given by

∆max = K ′
[

min
λel,λol,χel

ψl(λel, λol, χel, χ) + min
λer,λor

ψr(λer, λor, χ)

]−1

. (4.29)

4.2.1 Optimization of cost functions

The minimization of ψl and ψr in (4.29) can be done using the BSA [9]. To minimize ψr, two

randommappings are initially considered as λer and λor. Then, the BSA is used to minimize

the cost function introduced in (4.24) for λer. In fact, this is a mutual cost function where

the cost value for a given symbol in λer, is computed by using (m+1) corresponding symbols
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from λor. Our approach is to minimize this cost function by alternatingly modifying each

of λer and λer. In other words, the BSA is used to modify λer to reduce the cost function.

After a given number of iterations, λer and λor are exchanged. Again, the BSA is used to

decrease the cost value. After a certain number of iterations, λer and λor are exchanged

again and the BSA modifies λer. This procedure is repeated up to a given number of

iterations.

In addition to λel and λol, χel is another effective argument in computing ψl. As

there is no constraint on χel, it is a complex process to optimize ψl. To simplify the

optimization process, χel is constrained to involve only the symbols whose labels in the

resulting λer take binary value b in a given bit position. In this chapter, we assume that χel

involves the symbols whose labels in λer take the value zero in the first bit-position. The

functions ψl and ψr are computed by considering the similar Euclidean distances between

two dimensional symbols. As a result, there is a potential advantage in applying the above

mentioned constraint on χel because it will be easier to find a suitable λel corresponding

to a given λol. After determining χel and χol, two random mappings are generated as λel

and λol. As mentioned previously, two assigned labels to a given symbol by either of λel

and λol are different only in the first bit position. Similar to the previous step, the BSA

is applied to minimize ψl by modifying λel. Then, λel is exchanged by λol and the BSA

minimizes ψl by modifying the new λel. This procedure is repeated up to a given number

of iterations.

By executing the proposed algorithm for a certain number of iterations, a local maxi-

mum value is calculated using (4.29). The search algorithm is executed several times and

each time the corresponding value for Φ̂(µ,χ) is calculated. Finally, the modulations cor-

responding to the maximum obtained Φ̂(µ,χ) are chosen. Fig. 4.1 illustrates the flowchart

of the proposed algorithm.

Numerical results confirm that the proposed algorithm generates mappings with sig-

nificantly large values of Φ̂(µ,χ). As a result, the obtained mappings would improve the

error performance of BICM-ID systems over Rayleigh fading channels.

4.3 Numerical results and discussion

In this section, we provide our resulting mappings and selected numerical results to illus-

trate the performance and advantage of our proposed MD mappings for BICM-ID.
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minimize rψ  
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Calculate ∆  

max∆ > ∆
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• 1i i= +  
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No 
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Figure 4.1: Flowchart of the proposed algorithm (it.num.r, it.num.l, and it.num represent
the number of iterations for different loops).

4.3.1 Resulting MD mappings of M-QAM

Our proposed algorithm is used to obtain MD mappings of 2m-QAM for m = 4, 5, · · · , 10.
Tables 4.1-4.11 show the resulting 2-D mappings such as λer, λor, λel, and λol in decimal

format. In these tables, the resulting 2-D mappings for higher order constellations are
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4.3. Numerical results and discussion

indicated in multiple rows. For example in Table 4.3, λer for 64-QAM is indicated in

two rows where the first element in the second row is the label of the 33rd symbol in the

constellation. For square QAMs, it is assumed that the symbol order starts from the top

left corner in the constellation and increases from top to bottom and from left to right

(see Fig. 4.2.(a) as an example for 16-QAM). For cross QAM constellations such as 32-

QAM, we consider the symbol order used in [19]. In Tables 4.1-4.11, two labels in the

ith parentheses in λel and λol belong to the ith symbol in χel and χol, respectively. For

example, Fig. 4.2(b), (c), and (d) illustrate the 16-QAM mappings reported in Table 4.1.
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Figure 4.2: (a). Symbol’s arrangement in 16-QAM, and achieved 16-QAM mappings in
decimal format: (b). λer, (c). λor, and (c). λel (the light symbols), λol (the dark symbols).

As mentioned previously, χel involves the symbols whose binary labels in λer take

the value zero at the first bit position. Equivalently, χel is constructed by the sym-

bols whose decimal label in λer is smaller than M
2 . As a result, for 16-QAM, χel =

{S1, S2, S5, S6, S9, S10, S13, S14}, where χel is indicated by light symbols in Fig. 4.2(d).
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Table 4.1: Proposed λer, λor, λel, and λol for 16-QAM.
λer [3 2 15 11 7 6 14 10 0 4 12 13 1 5 8 9]

λor [12 8 5 4 13 9 1 0 10 11 3 7 14 15 2 6]

λel [(3, 11) (2, 10) (7, 15) (6, 14) (0, 8) (4, 12) (1, 9) (5, 13)]

λol [(5, 13) (4, 12) (1, 9) (0, 8) (3, 11) (7, 15) (2, 10) (6, 14)]

Table 4.2: Proposed λer, λor, λel, and λol for 32-QAM.

λer
[24 17 13 8 25 29 1 9 21 28 0 5 16 20 4 12,
30 22 6 2 23 18 14 7 26 19 15 11 27 31 3 10]

λor
[7 2 30 22 6 14 18 23 10 15 19 26 3 11 27 31,
13 9 25 24 8 1 29 21 4 0 28 20 5 12 17 16]

λel
[(13 29) (8 24) (1 17) (9 25) (0 16) (5 21) (4 20) (12 28),
(6 22) (2 18) (14 30) (7 23) (15 31) (11 27) (3 19) (10 26)]

λol
[(7 23) (2 18) (6 22) (14 30) (10 26) (15 31) (3 19) (11 27),
(13 29), (9 25) (8 24) (1 17) (4 20) (0 16) (5 21) (12 28)]

The remaining 16-QAM symbols belong to χol, which are shaded in Fig. 4.2(d). Example

4.1 clarifies how to use λel, λol, λer, and λor to construct the proposed MD of 16-QAM.

Example 4.1. In the proposed MD mapping method, let us set m = 4 (16-QAM), N = 3

and l = [0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1]. l is considered as a sequence of three 4-bit labels, i.e.,

l = [l1, l2, l3], where l1 = [0, 1, 1, 0], l2 = [1, 1, 1, 1], and l3 = [0, 1, 1, 1]. The mapping

rule in (4.3) is used to map l = [l1, l2, l3] to signal point x = [x1, x2, x3], as follows. The

Hamming weight of l is odd, i.e., l ∈ Lo, thus x1 = λol(l1), x
2 = λor(l2), and x

3 = λor(l3).

The decimal format of l1, l2, and l3 are 6, 15, and 7, respectively. In Fig. 4.2(d), it can be

observed that among the shaded symbols that λol operates on, symbol S16 is mapped by

decimal label 6. As a result, x1 = S16. Considering the mapping function λor indicated in

Fig. 4.2(c), we also have x2 = λor((15)2) = S14 and x3 = λor((7)2) = S12. Consequently, l

is mapped to x = [S16, S14, S12].

Table 4.3: Proposed λer, λor, λel, and λol for 64-QAM.

λer

[63 55 61 53 48 56 50 58 62 54 46 38 35 43 51 59,
60 52 36 37 32 33 49 57 47 39 44 45 40 41 34 42,
21 6 4 5 0 1 3 16 14 29 12 13 8 9 24 11,
22 30 28 20 17 25 27 19 23 31 15 7 2 10 26 18]

λor

[0 8 17 2 7 20 13 5 1 9 25 10 15 28 12 4,
16 24 27 26 31 30 29 21 3 11 19 18 23 22 14 6,
49 57 59 58 63 62 60 52 34 42 51 50 55 54 47 39,
41 33 56 48 53 61 36 44 40 32 43 35 38 46 37 45]

λel

[(14 46) (6 38) (4 36) (5 37) (0 32) (1 33) (3 35) (11 43),
(30 62) (21 53) (12 44) (13 45) (8 40) (9 41) (16 48) (27 59),
(22 54) (29 61) (20 52) (7 39) (2 34) (17 49) (24 56) (19 51),
(23 55) (31 63) (28 60) (15 47) (10 42) (25 57) (26 58) (18 50)]

λol

[(0 32) (8 40) (17 49) (2 34) (7 39) (20 52) (13 45) (5 37),
(1 33) (16 48) (25 57) (10 42) (15 47) (28 60) (21 53) (4 36),
(9 41) (24 56) (27 59) (26 58) (31 63) (22 54) (29 61) (12 44),
(3 35) (11 43) (19 51) (18 50) (23 55) (30 62) (14 46) (6 38)]
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Table 4.4: Proposed λer, λor, λel, and λol for 128-QAM.

λer

[100 103 37 86 105 122 32 115 116 118 36 70 104 107 106 113,
102 110 126 111 127 96 114 98 119 101 108 124 109 82 66 99,
117 94 78 125 64 67 112 97 87 76 79 95 80 72 83 74,
68 71 92 77 88 65 75 90 61 84 69 93 73 89 91 120,
60 31 13 85 24 8 81 121 14 15 12 29 25 11 16 3,
30 5 21 28 9 27 17 19 52 23 7 20 57 56 26 1,
39 4 22 59 43 10 49 51 38 54 6 41 58 40 42 33,
53 46 47 63 18 2 50 48 62 55 44 45 0 123 34 35]

λor

[17 24 121 0 44 61 85 15 16 8 81 3 60 31 13 14,
25 9 27 56 20 21 28 29 11 26 40 59 57 4 5 12,
1 10 49 43 41 22 7 30 19 48 58 42 6 52 53 23,
18 35 51 33 54 39 55 47 123 2 50 34 38 46 62 37,
107 122 32 98 102 118 36 63 104 106 115 114 126 119 70 86,
113 97 99 96 110 100 103 116 83 112 82 66 111 101 78 117,
72 67 64 109 127 108 94 76 65 88 80 125 124 95 79 77,
74 89 90 120 68 71 69 87 75 73 91 105 45 84 93 92]

λel

[(37 101) (32 96) (36 100) (61 125) (60 124) (31 95) (13 77) (24 88),
(8 72) (14 78) (15 79) (12 76) (29 93) (25 89) (11 75) (16 80),
(3 67) (30 94) (5 69) (21 85) (28 92) (9 73) (27 91) (17 81),
(19 83) (52 116) (23 87) (7 71) (20 84) (57 121) (56 120) (26 90),
(1 65) (39 103) (4 68) (22 86) (59 123) (43 107) (10 74) (49 113),
(51 115) (38 102) (54 118) (6 70) (41 105) (58 122) (40 104) (42 106),
(33 97) (53 117) (46 110) (47 111) (63 127) (18 82) (2 66) (50 114),
(48 112) (62 126) (55 119) (44 108) (45 109) (0 64) (34 98 (35 99)]

λol

[(17 81) (24 88) (0 64) (45 109) (60 124) (15 79) (16 80) (8 72),
(3 67) (63 127) (31 95) (13 77) (14 78) (25 89) (11 75) (9 73),
(27 91) (57 121) (21 85) (28 92) (29 93) (56 120) (10 74) (40 104),
(59 123) (20 84) (4 68) (7 71) (12 76) (26 90) (1 65) (49 113),
(43 107) (41 105) (22 86) (23 87) (5 69) (19 83) (48 112) (51 115),
(58 122) (6 70) (39 103) (52 116) (30 94) (18 82) (50 114) (35 99),
(42 106) (54 118) (55 119) (62 126) (53 117) (2 66) (34 98) (33 97),
(38 102) (46 110) (37 101) (47 111) (32 96) (36 100) (44 108) (61 125)]
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Table 4.5: Proposed λer, λor, λel, and λol for 256-QAM.

λer

[206 205 222 237 236 220 252 211 227 195 194 135 215 204 231 199,
207 254 221 141 253 200 140 243 167 226 151 210 247 83 230 198,
238 142 201 88 217 157 216 156 131 209 242 166 193 134 213 197,
239 255 89 158 173 232 172 188 163 130 183 225 208 150 246 214,
223 218 174 233 249 189 248 136 162 147 241 129 165 81 245 229,
202 219 159 191 190 137 153 152 179 145 146 182 224 149 192 133,
203 234 250 138 154 169 185 168 177 161 240 144 181 80 244 212,
143 175 251 170 155 187 186 184 178 176 160 128 164 148 132 228,
91 235 139 60 171 25 24 56 49 17 51 180 35 3 115 99,
92 124 44 28 120 40 57 59 48 16 50 34 19 2 39 67,
12 72 29 61 121 8 41 58 32 33 113 18 55 114 98 7,
108 125 73 104 62 9 27 26 52 112 1 54 97 38 23 66,
93 109 13 45 105 63 10 42 43 0 53 96 22 65 82 103,
77 94 90 30 46 122 123 11 36 20 37 21 5 6 119 196,
76 95 126 14 127 31 106 47 116 4 117 64 118 102 85 71,
78 79 110 111 74 75 15 107 84 101 100 68 69 86 70 87]

λor

[49 48 16 32 112 0 52 36 43 42 27 26 58 59 57 56,
17 33 1 53 21 117 20 116 47 11 123 10 63 41 40 24,
50 113 54 96 37 64 84 4 107 106 46 122 105 62 9 25,
51 18 97 65 22 5 101 100 15 127 31 90 30 104 121 8,
34 55 114 38 6 118 69 68 75 74 14 13 73 45 61 120,
19 2 23 82 119 102 86 111 110 95 126 109 125 72 29 60,
35 3 98 7 66 103 85 70 79 77 94 108 12 124 44 28,
180 115 39 99 67 196 71 87 78 76 93 92 91 235 139 171,
80 148 244 228 212 229 197 198 206 207 239 203 143 234 175 170,
164 149 132 133 246 214 231 199 205 238 223 142 202 219 251 138,
128 224 192 245 213 230 215 204 222 237 221 255 218 159 250 155,
181 81 150 193 134 210 247 135 220 236 254 141 174 89 191 154,
240 165 225 208 151 83 194 195 211 200 253 201 158 233 249 187,
160 144 129 183 166 209 226 227 252 140 217 173 88 190 137 169,
176 161 182 241 130 242 167 131 243 216 157 232 189 153 185 186,
178 177 179 146 145 162 147 163 156 188 172 248 136 152 168 184]

λel

[(83 211) (88 216) (89 217) (81 209) (80 208) (91 219) (60 188) (25 153),
(24 152) (56 184) (49 177) (17 145) (51 179) (35 163) (3 131) (115 243),
(99 227) (92 220) (124 252) (44 172) (28 156) (120 248) (40 168) (57 185) ,
(59 187) (48 176) (16 144) (50 178) (34 162) (19 147) (2 130) (39 167),
(67 195) (12 140) (72 200) (29 157) (61 189) (121 249) (8 136) (41 169) ,
(58 186) (32 160) (33 161) (113 241) (18 146) (55 183) (114 242) (98 226),
(7 135) (108 236) (125 253) (73 201) (104 232) (62 190) (9 137) (27 155),
(26 154) (52 180) (112 240) (1 129) (54 182) (97 225) (38 166) (23 151),
(66 194) (93 221) (109 237) (13 141) (45 173) (105 233) (63 191) (10 138),
(42 170) (43 171) (0 128) (53 181) (96 224) (22 150) (65 193) (82 210),
(103 231) (77 205) (94 222) (90 218) (30 158) (46 174) (122 250) (123 251),
(11 139) (36 164) (20 148) (37 165) (21 149) (5 133) (6 134) (119 247),
(76 204) (95 223) (126 254) (14 142) (127 255) (31 159) (106 234) (47 175),
(116 244) (4 132) (117 245) (64 192) (118 246) (102 230) (85 213) (71 199),
(78 206) (79 207) (110 238) (111 239) (74 202) (75 203) (15 143) (107 235),
(84 212) (101 229) (100 228) (68 196) (69 197) (86 214) (70 198) (87 215)]

λol

[(49 177) (48 176) (32 160) (112 240) (0 128) (53 181) (43 171) (52 180),
(11 139) (10 138) (42 170) (26 154) (27 155) (58 186) (59 187) (56 184),
(17 145) (33 161) (1 129) (54 182) (96 224) (21 149) (20 148) (36 164),
(116 244) (122 250) (123 251) (63 191) (9 137) (41 169) (57 185) (16 144),
(113 241) (97 225) (37 165) (117 245) (84 212) (4 132) (47 175) (31 159),
(46 174) (30 158) (105 233) (62 190) (8 136) (24 152) (50 178) (18 146),
(22 150) (5 133) (64 192) (101 229) (107 235) (106 234) (75 203) (127 255),
(13 141) (45 173) (104 232) (121 249) (25 153) (51 179) (55 183) (38 166),
(65 193) (6 134) (118 246) (68 196) (100 228) (15 143) (74 202) (14 142),
(90 218) (73 201) (61 189) (40 168) (34 162) (2 130) (114 242) (23 151),
(119 247) (102 230) (86 214) (69 197) (111 239) (110 238) (126 254) (109 237),
(125 253) (72 200) (29 157) (120 248) (19 147) (115 243) (98 226) (82 210),
(66 194) (103 231) (85 213) (70 198) (79 207) (95 223) (77 205) (94 222),
(12 140) (44 172) (28 156) (35 163) (3 131) (39 167) (99 227) (7 135),
(83 211) (71 199) (87 215) (78 206) (76 204) (93 221) (108 236) (92 220),
(91 219) (124 252) (60 188) (80 208) (81 209) (67 195) (89 217) (88 216)]
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4.3. Numerical results and discussion

Table 4.6: Proposed λer and λor for 512-QAM.

λer

[397 493 479 462 477 456 335 269 162 165 455 502 468 453 439 503,
411 334 509 494 461 472 488 285 374 342 372 402 485 501 434 385,
172 440 408 510 495 504 491 473 262 451 498 466 452 406 386 326,
475 174 409 511 492 507 271 366 164 481 449 486 471 390 340 260,
463 415 399 446 398 447 410 430 420 422 464 438 388 405 389 484,
414 412 396 474 458 442 428 394 423 421 448 384 487 436 437 404,
413 445 459 431 270 395 429 427 416 418 480 432 401 400 496 407,
444 506 443 393 489 286 424 426 417 483 261 358 433 403 465 391,
392 350 284 457 380 382 300 425 419 263 327 309 277 499 482 497,
490 505 268 173 318 301 282 264 259 257 256 258 308 356 435 387,
287 348 302 170 319 365 280 266 295 359 294 167 279 467 166 276,
364 317 316 281 299 330 314 298 275 288 304 273 160 292 310 324,
441 332 267 346 315 313 312 296 291 289 320 305 306 272 293 325,
303 383 265 362 378 10 361 297 355 290 352 370 336 353 311 274,
283 171 328 360 169 329 381 376 371 307 354 321 3 163 369 368,
367 379 347 8 331 344 345 377 35 339 323 375 337 0 322 373,
168 363 58 11 42 333 40 41 19 39 32 338 17 48 161 2,
74 26 27 45 43 24 56 57 50 34 33 38 96 16 49 1,
126 44 123 59 122 9 25 120 115 99 113 103 97 102 53 240,
62 90 46 106 107 104 105 121 114 51 67 65 112 64 71 227,
201 91 47 124 75 72 125 73 83 98 18 81 36 80 52 7,
12 28 109 29 61 60 127 89 82 66 119 37 23 20 211 21,
219 251 31 92 249 110 111 88 117 118 55 100 243 6 241 209,
203 153 185 94 76 108 77 93 101 87 69 54 70 68 179 147,
136 253 235 349 217 13 248 95 85 116 22 225 193 226 4 129,
222 351 15 184 78 232 200 79 86 242 84 146 195 178 215 181,
191 220 236 255 152 239 252 216 194 210 245 244 246 198 148 130,
143 159 223 204 206 238 254 207 213 197 229 212 196 214 149 133,
234 137 218 139 508 157 237 14 177 208 183 128 470 199 230 5,
187 205 189 478 476 154 186 30 231 341 192 151 150 180 228 145,
155 156 140 142 141 202 250 63 224 176 144 454 500 134 131 247,
221 188 190 158 460 138 175 233 357 278 450 135 469 182 132 343]

λor

[48 37 96 33 306 64 5 308 186 60 90 441 41 123 45 233,
225 112 113 339 161 129 224 240 250 26 10 42 40 107 61 127,
179 103 39 32 17 241 341 69 126 74 58 347 169 59 11 235,
343 16 0 1 65 81 80 21 63 124 122 43 345 171 106 44,
35 49 51 99 98 34 114 50 89 25 73 9 105 120 121 57,
163 3 115 53 83 66 2 18 72 185 88 249 91 75 104 56,
97 67 117 119 55 116 82 54 93 13 77 232 111 8 125 109,
19 227 131 102 226 38 118 52 153 248 95 29 137 24 108 27,
101 100 36 195 178 87 242 6 22 217 79 201 184 76 47 349,
243 68 85 23 84 70 194 86 216 152 200 136 15 219 187 251,
7 211 245 4 247 20 130 146 221 205 155 253 189 92 139 110,
193 147 229 183 230 215 210 246 157 223 236 239 255 237 12 203,
71 231 181 199 244 198 150 182 204 207 252 141 78 28 31 351,
176 144 135 197 213 151 134 214 159 220 238 222 254 94 202 234,
145 128 192 228 149 196 212 148 206 143 140 191 188 218 14 46,
310 209 342 208 133 166 132 180 156 158 142 174 154 30 138 62,
374 450 278 438 471 406 164 470 478 479 476 477 190 172 397 472,
262 402 466 502 390 454 468 404 462 415 412 460 413 461 408 456,
434 386 326 340 407 500 469 452 414 350 463 399 396 492 175 392,
279 439 276 422 486 455 405 464 398 510 494 511 508 495 411 509,
358 167 503 436 391 453 388 484 446 430 474 444 428 445 348 332,
387 260 418 501 437 400 448 389 286 410 447 284 493 287 475 443,
165 467 324 485 487 423 384 420 394 458 431 334 395 268 424 303,
419 356 435 403 277 496 421 401 270 382 490 429 459 366 507 267,
357 481 272 327 449 432 465 318 426 442 506 380 170 491 383 425,
293 295 160 336 263 385 480 416 316 302 319 300 427 301 296 365,
353 288 256 359 325 497 433 261 282 266 346 317 330 315 312 297,
305 289 352 321 257 273 320 417 298 314 378 362 299 376 379 377,
451 292 373 371 354 309 375 372 457 173 367 281 265 344 440 271,
499 368 307 369 322 258 311 482 285 488 393 328 329 331 280 364,
483 304 291 323 290 338 274 294 335 504 168 505 363 360 264 489,
275 259 337 355 370 177 162 498 409 473 269 333 361 313 381 283]
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4.3. Numerical results and discussion

Table 4.7: Proposed λel and λol for 512-QAM.

λel

[(172 428) (168 424) (162 418) (165 421) (175 431) (173 429) (164 420) (170 426),
(160 416) (167 423) (161 417) (42 298) (43 299) (169 425) (41 297) (57 313),
(35 291) (33 289) (32 288) (1 257) (64 320) (177 433) (10 266) (58 314),
(171 427) (122 378) (59 315) (123 379) (40 296) (121 377) (51 307) (49 305),
(163 419) (96 352) (65 321) (17 273) (241 497) (80 336) (90 346) (74 330),
(106 362) (45 301) (107 363) (56 312) (105 361) (120 376) (34 290 99 355),
(97 353) (113 369) (37 293) (39 295) (103 359) (69 325) (124 380) (235 491),
(61 317) (11 267) (109 365) (75 331) (104 360) (9 265) (50 306) (98 354),
(115 371) (19 275) (48 304) (112 368) (81 337) (7 263) (63 319) (44 300),
(127 383) (233 489) (125 381) (91 347) (73 329) (25 281) (89 345) (114 370),
(3 259) (67 323) (225 481) (0 256) (16 272) (100 356) (139 395) (110 366),
(47 303) (27 283) (108 364) (8 264) (88 344) (72 328) (66 322) (83 339),
(53 309) (227 483) (101 357) (243 499) (179 435) (71 327) (12 268) (92 348),
(251 507) (24 280) (111 367) (249 505) (185 441) (2 258) (117 373) (116 372),
(119 375) (195 451) (131 387) (68 324) (211 467) (189 445) (219 475) (76 332),
(187 443) (137 393) (232 488) (77 333) (93 349) (18 274) (82 338) (55 311),
(226 482) (102 358) (85 341) (4 260) (229 485) (255 511) (253 509) (15 271),
(201 457) (29 285) (95 351) (13 269) (54 310) (242 498) (118 374) (38 294),
(87 343) (23 279) (36 292) (247 503) (230 486) (252 508) (239 495) (155 411),
(136 392) (184 440) (79 335) (248 504) (153 409) (52 308) (6 262) (178 434),
(70 326) (84 340) (20 276) (244 500) (198 454) (238 494) (207 463) (141 397),
(205 461) (152 408) (200 456) (216 472) (217 473) (86 342) (22 278) (194 450),
(130 386) (210 466) (215 471) (150 406) (212 468) (156 412) (159 415) (206 462),
(220 476) (236 492) (204 460) (223 479) (221 477) (157 413) (146 402) (246 502),
(182 438) (134 390) (214 470) (148 404) (180 436) (203 459) (94 350) (154 410),
(142 398) (174 430) (14 270) (46 302) (234 490) (21 277) (176 432) (144 400),
(208 464) (133 389) (149 405) (147 403) (193 449) (31 287) (78 334) (188 444),
(158 414) (218 474) (138 394) (250 506) (126 382) (129 385) (128 384) (228 484),
(166 422) (197 453) (231 487) (28 284) (254 510) (222 478) (140 396) (190 446),
(202 458) (186 442) (26 282) (5 261) (240 496) (209 465) (135 391) (196 452),
(213 469) (199 455) (245 501) (237 493) (191 447) (143 399) (30 286) (62 318),
(60 316) (224 480) (145 401) (192 448) (132 388) (151 407) (183 439) (181 437)]

λol

[(225 481) (19 275) (163 419) (33 289) (64 320) (177 433) (60 316) (58 314),
(42 298) (57 313) (40 296) (56 312) (125 381) (179 435) (48 304) (113 369),
(49 305) (161 417) (17 273) (241 497) (224 480) (126 382) (10 266) (90 346),
(43 299) (41 297) (123 379) (45 301) (103 359) (112 368) (37 293) (97 353),
(1 257) (65 321) (80 336) (129 385) (234 490) (26 282) (74 330) (171 427),
(169 425) (107 363) (11 267) (127 383) (69 325) (0 256) (39 295) (32 288),
(96 352) (81 337) (63 319) (124 380) (106 362) (122 378) (59 315) (61 317),
(235 491) (44 300) (35 291) (34 290) (51 307) (98 354) (114 370) (66 322),
(89 345) (50 306) (185 441) (72 328) (25 281) (73 329) (9 265) (120 376),
(121 377) (99 355) (3 259) (227 483) (53 309) (83 339) (55 311) (82 338),
(18 274) (2 258) (249 505) (88 344) (111 367) (8 264) (91 347) (104 360),
(105 361) (115 371) (67 323) (117 373) (116 372) (38 294) (242 498) (118 374),
(13 269) (93 349) (77 333) (232 488) (137 393) (24 280) (27 283) (109 365),
(75 331) (101 357) (119 375) (226 482) (102 358) (178 434) (52 308) (153 409),
(54 310) (248 504) (29 285) (95 351) (184 440) (108 364) (47 303) (233 489),
(243 499) (131 387) (195 451) (23 279) (70 326) (87 343) (6 262) (194 450),
(217 473) (79 335) (201 457) (15 271) (76 332) (187 443) (16 272) (36 292),
(85 341) (211 467) (84 340) (130 386) (146 402) (86 342) (22 278) (200 456),
(216 472) (136 392) (219 475) (12 268) (92 348) (251 507) (100 356) (71 327),
(68 324) (4 260) (247 503) (20 276) (210 466) (157 413) (221 477) (152 408),
(155 411) (253 509) (189 445) (237 493) (139 395) (110 366) (7 263) (193 449),
(229 485) (245 501) (244 500) (215 471) (134 390) (246 502) (205 461) (236 492),
(141 397) (239 495) (255 511) (28 284) (31 287) (203 459) (5 261) (21 277),
(181 437) (199 455) (230 486) (198 454) (150 406) (182 438) (223 479) (220 476),
(207 463) (252 508) (254 510) (78 334) (94 350) (250 506) (240 496) (147 403),
(231 487) (197 453) (183 439) (151 407) (212 468) (214 470) (204 460) (206 462),
(238 494) (191 447) (188 444) (218 474) (14 270) (46 302) (176 432) (128 384),
(208 464) (149 405) (213 469) (196 452) (132 388) (148 404) (159 415) (156 412),
(222 478) (142 398) (190 446) (154 410) (202 458) (186 442) (209 465) (144 400),
(228 484) (135 391) (133 389) (166 422) (164 420) (180 436) (143 399) (140 396),
(158 414) (174 430) (30 286) (138 394) (62 318) (145 401) (192 448) (167 423),
(172 428) (175 431) (165 421) (173 429) (170 426) (160 416) (162 418) (168 424)]
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4.3. Numerical results and discussion

Table 4.8: Proposed λer for 1024-QAM.

λer

[674 195 226 193 197 229 67 225 129 163 161 165 97 69 203 65,
182 54 252 222 220 180 118 176 86 151 148 150 247 246 214 212,
194 199 227 231 131 133 200 99 234 202 37 101 1 33 235 201,
158 156 254 22 52 470 23 20 116 183 144 146 215 242 244 213,
192 228 224 162 66 64 3 5 35 451 483 139 485 481 449 233,
406 190 404 407 502 223 48 50 468 112 178 87 240 245 210 208,
196 230 130 167 205 237 450 487 453 389 385 77 72 171 137 169,
438 188 94 436 400 159 191 500 16 255 114 179 181 84 243 694,
198 128 98 68 232 39 448 141 138 419 355 421 74 417 75 73,
126 30 124 432 434 402 92 184 496 18 248 119 82 147 149 662,
134 135 103 96 239 0 136 173 104 109 13 106 323 353 107 105,
62 278 28 342 374 127 95 186 471 498 503 55 221 80 145 209,
132 160 71 2 455 482 170 423 359 322 45 10 11 325 357 321,
60 310 304 476 31 368 370 439 403 435 152 464 253 19 115 211,
166 164 7 32 480 387 168 324 320 8 456 257 461 491 9 41,
412 510 306 308 274 276 372 343 336 340 189 157 51 250 177 241,
70 100 4 34 452 418 327 356 495 490 42 261 493 293 43 457,
446 508 478 272 279 307 63 56 375 371 120 154 466 218 216 83,
102 204 207 484 386 76 354 260 40 291 488 458 289 459 393 489,
414 444 447 408 479 511 275 472 58 338 122 405 499 469 21 117,
238 36 143 175 384 79 111 47 259 295 397 429 427 363 361 425,
284 286 415 440 442 410 311 504 506 24 125 401 155 467 53 85,
6 486 454 420 12 15 352 292 258 392 426 394 395 301 331 329,
318 380 314 348 445 413 509 305 61 26 433 437 187 501 49 113,
236 140 391 416 78 326 263 256 463 431 424 365 269 328 265 297,
316 280 312 376 443 411 309 477 474 273 29 93 90 88 251 17,
38 206 388 108 358 294 460 290 288 399 268 367 271 360 299 267,
287 350 383 315 282 378 441 475 277 507 27 339 123 497 219 81,
673 142 172 422 14 44 494 492 428 270 364 332 303 264 266 330,
382 319 317 283 313 379 346 409 59 373 341 369 185 153 249 217,
581 174 390 110 46 262 396 398 430 462 302 300 333 362 298 296,
351 285 381 281 347 344 377 473 505 25 337 121 91 465 702 566,
609 745 961 681 585 617 833 553 521 969 335 873 366 777 334 809,
829 831 349 828 830 345 798 924 57 572 574 542 89 638 918 534,
577 713 993 649 837 869 865 555 805 1001 939 843 937 875 813 811,
825 827 792 826 796 892 862 956 958 926 822 790 636 700 670 764,
677 747 997 619 587 835 523 971 1003 905 845 841 781 815 779 810,
793 797 824 799 794 894 952 927 816 818 1022 540 944 950 668 766,
579 513 545 683 933 525 522 773 1005 941 907 877 842 776 778 808,
893 891 795 895 888 860 959 954 1020 820 990 543 606 916 1014 732,
741 715 651 586 929 621 557 968 973 769 801 840 879 783 812 780,
953 859 856 863 957 890 920 784 788 786 791 854 912 948 564 734,
611 613 549 584 897 589 970 554 807 1000 909 906 872 874 876 814,
921 889 858 955 923 922 823 991 575 988 882 886 919 671 560 688,
641 547 963 995 901 871 867 520 1007 803 943 938 904 936 847 782,
861 1021 821 989 925 984 1016 819 787 880 639 914 946 735 982 630,
705 714 965 650 931 618 834 1002 552 771 975 844 768 911 940 878,
857 987 789 817 573 986 1018 570 568 884 604 1008 703 980 532 656,
737 578 517 999 685 616 836 832 866 559 772 770 775 1004 908 846,
910 1017 1019 785 536 1023 887 852 855 915 607 983 1012 562 535 660,
675 746 515 962 749 653 935 899 839 868 804 972 802 800 974 942,
985 569 539 538 541 883 850 848 947 951 696 1010 767 624 628 663,
709 643 712 717 744 682 960 996 623 591 864 527 838 1006 556 774,
885 537 571 851 945 637 634 632 669 664 698 528 567 631 598 690,
739 707 645 551 514 994 648 680 687 898 588 870 524 806 526 558,
849 853 881 605 913 600 917 976 701 733 765 530 596 599 658 692,
679 704 610 576 615 751 967 512 930 964 655 896 903 590 620 633,
601 603 635 602 949 667 666 978 760 1015 531 762 626 752 727 695,
706 642 740 580 583 546 612 516 992 719 966 932 928 900 902 622,
977 697 665 1009 699 979 981 728 730 563 592 659 720 722 754 759,
738 736 743 676 708 608 644 519 544 548 716 998 934 652 654 684,
761 729 1013 731 529 1011 565 533 627 594 657 661 691 724 756 726,
678 672 742 710 711 646 640 647 582 614 550 518 718 748 686 750,
593 625 763 561 597 629 595 721 689 753 723 725 755 757 693 758]
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4.3. Numerical results and discussion

Table 4.9: Proposed λor for 1024-QAM.

λor

[829 825 827 797 793 893 891 889 856 859 921 861 987 857 1017 985,
910 846 942 908 940 878 782 876 814 783 812 778 808 810 811 809,
831 792 824 795 953 957 955 858 1021 821 789 1019 571 569 537 849,
774 556 1006 974 802 911 1004 844 847 936 874 780 776 815 779 334,
349 826 799 895 863 923 817 573 989 541 785 539 885 881 853 633,
558 526 806 524 972 800 775 772 768 904 938 872 879 781 875 813,
828 796 794 890 925 1016 984 986 538 536 945 851 605 635 603 697,
601 590 620 870 838 527 864 804 770 975 771 943 840 842 843 777,
345 888 860 922 823 1023 570 887 883 637 913 600 602 1009 665 902,
622 900 928 903 896 588 623 866 868 559 554 803 906 941 939 366,
830 894 920 991 819 1018 848 850 632 917 949 667 699 731 1013 977,
654 684 934 932 655 898 591 899 839 832 552 807 1000 909 907 937,
892 959 954 575 787 568 855 634 947 976 666 979 1011 561 729 761,
686 652 966 719 964 687 930 680 935 836 1002 1007 970 801 845 877,
798 784 788 880 884 882 852 701 669 978 1015 728 981 565 529 593,
718 998 548 544 992 996 648 960 653 931 616 834 520 968 769 841,
927 1020 791 543 639 607 915 951 664 765 733 730 533 595 763 625,
748 518 716 516 751 967 512 682 685 901 618 871 867 557 1005 873,
952 820 786 604 914 696 1008 1010 980 760 531 762 563 627 629 597,
750 519 612 615 546 994 514 962 749 650 897 525 522 773 973 905,
862 818 988 886 912 703 698 528 530 567 596 659 592 594 657 721,
550 614 582 608 583 551 744 717 999 965 584 589 621 835 971 805,
816 1022 990 854 946 671 983 1012 767 631 626 599 661 720 753 689,
644 647 640 676 580 610 712 515 517 549 995 586 929 865 523 1003,
924 822 540 636 919 948 735 560 532 624 752 658 691 722 725 723,
646 710 711 708 645 576 746 714 547 513 963 651 933 837 555 1001,
956 572 542 944 916 564 982 732 562 628 598 663 727 724 755 693,
742 743 740 642 707 578 705 611 613 997 545 683 587 619 521 969,
958 926 638 606 950 668 1014 764 734 535 656 660 754 756 759 757,
736 672 679 704 709 643 641 579 747 715 993 961 649 585 869 553,
57 790 89 700 918 702 670 566 766 534 630 690 692 695 758 726,
678 738 706 739 675 737 677 673 581 609 713 745 681 617 833 398,
25 574 121 91 465 249 219 217 81 113 688 241 662 694 208 213,
194 674 196 230 198 166 741 6 38 577 142 390 172 110 262 430,
505 337 369 185 153 497 49 251 17 85 117 83 209 210 242 212,
195 192 199 228 134 132 70 102 236 238 140 174 388 14 46 396,
473 341 93 123 90 467 501 53 218 115 177 145 211 245 247 214,
227 226 231 224 128 135 164 7 204 486 206 454 422 108 44 428,
373 27 339 437 187 88 469 21 19 216 80 149 243 240 215 244,
193 197 131 162 130 98 160 4 207 36 143 391 420 78 294 492,
59 507 433 371 401 155 499 51 250 82 181 147 146 144 148 246,
225 229 133 64 167 68 71 100 32 452 175 384 416 358 494 462,
409 277 29 125 122 405 466 253 248 221 179 84 183 178 176 151,
129 67 99 163 66 103 96 239 34 484 386 418 12 326 460 288,
475 305 273 26 120 154 157 464 55 119 114 87 116 118 86 150,
182 161 165 200 205 232 2 455 0 480 76 111 15 292 290 270,
377 477 474 24 338 435 189 498 503 16 255 468 112 220 22 180,
65 97 234 202 5 237 39 448 482 168 79 354 352 263 463 302,
346 309 61 506 375 340 186 152 471 18 50 23 20 52 222 54,
69 1 101 37 35 3 487 136 170 423 356 260 495 256 399 335,
379 441 509 504 58 336 439 403 184 496 500 223 48 156 254 252,
235 203 33 483 453 450 138 141 387 327 320 40 259 258 431 364,
313 378 411 472 307 56 372 127 92 402 191 159 470 404 158 406,
201 449 485 451 385 389 173 355 104 324 47 291 295 392 332 300,
347 344 443 511 311 343 276 95 370 434 400 407 436 502 188 190,
233 481 139 171 421 109 419 106 359 322 490 488 426 367 268 303,
281 283 445 413 442 410 275 63 274 368 31 28 94 432 438 73,
169 137 75 72 417 77 13 10 8 456 42 397 424 365 271 333,
381 315 282 376 415 479 440 408 279 476 374 342 310 124 30 126,
105 107 323 353 74 45 257 261 461 289 429 394 269 360 264 362,
285 317 383 312 314 348 380 447 272 508 308 304 306 60 278 62,
321 357 9 325 11 491 293 493 458 427 395 328 301 299 266 298,
351 382 319 287 350 280 318 316 284 286 478 444 510 414 446 412,
457 41 489 43 459 425 393 361 363 331 265 329 297 267 330 296]
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4.3. Numerical results and discussion

Table 4.10: Proposed λel for 1024-QAM.

λel

[(195 707)) ((226 738) (193 705) (197 709) (229 741) (67 579) (225 737) (129 641),
(163 675) (161 673) (165 677) (97 609) (69 581) (203 715) (65 577) (182 694),
(54 566) (252 764) (222 734) (220 732) (180 692) (118 630) (176 688) (86 598),
(151 663) (148 660) (150 662) (247 759) (246 758) (214 726) (212 724) (194 706),
(199 711) (227 739) (231 743) (131 643) (133 645) (200 712) (99 611) (234 746),
(202 714) (37 549) (101 613) (1 513) (33 545) (235 747) (201 713) (158 670),
(156 668) (254 766) (22 534) (52 564) (470 982) (23 535) (20 532) (116 628),
(183 695) (144 656) (146 658) (215 727) (242 754) (244 756) (213 725) (192 704),
(228 740) (224 736) (162 674) (66 578) (64 576) (3 515) (5 517) (35 547),
(451 963) (483 995) (139 651) (485 997) (481 993) (449 961) (233 745) (406 918),
(190 702) (404 916) (407 919) (502 1014) (223 735) (48 560) (50 562) (468 980),
(112 624) (178 690) (87 599) (240 752) (245 757) (210 722) (208 720) (196 708),
(230 742) (130 642) (167 679) (205 717) (237 749) (450 962) (487 999) (453 965),
(389 901) (385 897) (77 589) (72 584) (171 683) (137 649) (169 681) (438 950),
(188 700) (94 606) (436 948) (400 912) (159 671) (191 703) (500 1012) (16 528),
(255 767) (114 626) (179 691) (181 693) (84 596) (243 755) (198 710) (128 640),
(98 610) (68 580) (232 744) (39 551) (448 960) (141 653) (138 650) (419 931),
(355 867) (421 933) (74 586) (417 929) (75 587) (73 585) (126 638) (30 542),
(124 636) (432 944) (434 946) (402 914) (92 604) (184 696) (496 1008) (18 530),
(248 760) (119 631) (82 594) (147 659) (149 661) (134 646) (135 647) (103 615),
(96 608) (239 751) (0 512) (136 648) (173 685) (104 616) (109 621) (13 525),
(106 618) (323 835) (353 865) (107 619) (105 617) (62 574) (278 790) (28 540),
(342 854) (374 886) (127 639) (95 607) (186 698) (471 983) (498 1010) (503 1015),
(55 567) (221 733) (80 592) (145 657) (209 721) (132 644) (160 672) (71 583),
(2 514) (455 967) (482 994) (170 682) (423 935) (359 871) (322 834) (45 557),
(10 522) (11 523) (325 837) (357 869) (321 833) (60 572) (310 822) (304 816),
(476 988) (31 543) (368 880) (370 882) (439 951) (403 915) (435 947) (152 664),
(464 976) (253 765) (19 531) (115 627) (211 723) (166 678) (164 676) (7 519),
(32 544) (480 992) (387 899) (168 680) (324 836) (320 832) (8 520) (456 968),
(257 769) (461 973) (491 1003) (9 521) (41 553) (412 924) (510 1022) (306 818),
(308 820) (274 786) (276 788) (372 884) (343 855) (336 848) (340 852) (189 701),
(157 669) (51 563) (250 762) (177 689) (241 753) (70 582) (100 612) (4 516),
(34 546) (452 964) (418 930) (327 839) (356 868) (495 1007) (490 1002) (42 554),
(261 773) (493 1005) (293 805) (43 555) (457 969) (446 958) (508 1020) (478 990),
(272 784) (279 791) (307 819) (63 575) (56 568) (375 887) (371 883) (120 632),
(154 666) (466 978) (218 730) (216 728) (83 595) (102 614) (204 716) (207 719),
(484 996) (386 898) (76 588) (354 866) (260 772) (40 552) (291 803) (488 1000),
(458 970) (289 801) (459 971) (393 905) (489 1001) (414 926) (444 956) (447 959),
(408 920) (479 991) (511 1023) (275 787) (472 984) (58 570) (338 850) (122 634),
(405 917) (499 1011) (469 981) (21 533) (117 629) (238 750) (36 548) (143 655),
(175 687) (384 896) (79 591) (111 623) (47 559) (259 771) (295 807) (397 909),
(429 941) (427 939) (363 875) (361 873) (425 937) (284 796) (286 798) (415 927),
(440 952) (442 954) (410 922) (311 823) (504 1016) (506 1018) (24 536) (125 637),
(401 913) (155 667) (467 979) (53 565) (85 597) (6 518) (486 998) (454 966),
(420 932) (12 524) (15 527) (352 864) (292 804) (258 770) (392 904) (426 938),
(394 906) (395 907) (301 813) (331 843) (329 841) (318 830) (380 892) (314 826),
(348 860) (445 957) (413 925) (509 1021) (305 817) (61 573) (26 538) (433 945),
(437 949) (187 699) (501 1013) (49 561) (113 625) (236 748) (140 652) (391 903),
(416 928) (78 590) (326 838) (263 775) (256 768) (463 975) (431 943) (424 936),
(365 877) (269 781) (328 840) (265 777) (297 809) (316 828) (280 792) (312 824),
(376 888) (443 955) (411 923) (309 821) (477 989) (474 986) (273 785) (29 541),
(93 605) (90 602) (88 600) (251 763) (17 529) (38 550) (206 718) (388 900),
(108 620) (358 870) (294 806) (460 972) (290 802) (288 800) (399 911) (268 780),
(367 879) (271 783) (360 872) (299 811) (267 779) (287 799) (350 862) (383 895),
(315 827) (282 794) (378 890) (441 953) (475 987) (277 789) (507 1019) (27 539),
(339 851) (123 635) (497 1009) (219 731) (81 593) (142 654) (172 684) (422 934),
(14 526) (44 556) (494 1006) (492 1004) (428 940) (270 782) (364 876) (332 844),
(303 815) (264 776) (266 778) (330 842) (382 894) (319 831) (317 829) (283 795),
(313 825) (379 891) (346 858) (409 921) (59 571) (373 885) (341 853) (369 881),
(185 697) (153 665) (249 761) (217 729) (174 686) (390 902) (110 622) (46 558),
(262 774) (396 908) (398 910) (430 942) (462 974) (302 814) (300 812) (333 845),
(362 874) (298 810) (296 808) (351 863) (285 797) (381 893) (281 793) (347 859),
(344 856) (377 889) (473 985) (505 1017) (25 537) (337 849) (121 633) (91 603),
(465 977) (335 847) (366 878) (334 846) (349 861) (345 857) (57 569) (89 601)]
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Table 4.11: Proposed λol for 1024-QAM.

λol

[(349 861) (334 846) (366 878) (345 857) (473 985) (398 910) (335 847) (505 1017),
(57 569) (121 633) (91 603) (89 601) (465 977) (249 761) (217 729) (81 593),
(113 625) (209 721) (208 720) (212 724) (195 707) (196 708) (198 710) (134 646),
(102 614) (38 550) (142 654) (390 902) (422 934) (46 558) (396 908) (430 942),
(377 889) (25 537) (337 849) (185 697) (153 665) (497 1009) (219 731) (49 561),
(17 529) (85 597) (83 595) (211 723) (243 755) (210 722) (213 725) (214 726),
(194 706) (199 711) (230 742) (135 647) (132 644) (166 678) (70 582) (6 518),
(236 748) (140 652) (174 686) (110 622) (14 526) (262 774) (294 806) (302 814),
(409 921) (341 853) (369 881) (123 635) (88 600) (501 1013) (53 565) (251 763),
(117 629) (177 689) (145 657) (241 753) (245 757) (247 759) (242 754) (246 758),
(226 738) (192 704) (228 740) (128 640) (160 672) (71 583) (164 676) (204 716),
(238 750) (206 718) (388 900) (172 684) (108 620) (44 556) (494 1006) (428 940),
(346 858) (373 885) (339 851) (93 605) (187 699) (499 1011) (467 979) (218 730),
(216 728) (115 627) (181 693) (149 661) (240 752) (215 727) (244 756) (193 705),
(227 739) (231 743) (224 736) (130 642) (162 674) (68 580) (100 612) (7 519),
(36 548) (486 998) (454 966) (420 932) (78 590) (460 972) (492 1004) (462 974),
(475 987) (59 571) (27 539) (433 945) (90 602) (155 667) (51 563) (21 533),
(19 531) (82 594) (80 592) (84 596) (147 659) (146 658) (148 660) (150 662),
(225 737) (197 709) (229 741) (131 643) (167 679) (103 615) (4 516) (32 544),
(207 719) (484 996) (391 903) (416 928) (12 524) (326 838) (290 802) (270 782),
(347 859) (507 1019) (29 541) (437 949) (401 913) (469 981) (466 978) (253 765),
(250 762) (221 733) (179 691) (114 626) (144 656) (151 663) (86 598) (118 630),
(67 579) (129 641) (133 645) (66 578) (98 610) (96 608) (239 751) (34 546),
(455 967) (143 655) (175 687) (384 896) (358 870) (292 804) (288 800) (268 780),
(379 891) (277 789) (273 785) (125 637) (122 634) (405 917) (157 669) (464 976),
(55 567) (119 631) (112 624) (87 599) (183 695) (176 688) (180 692) (182 694),
(161 673) (163 675) (99 611) (64 576) (3 515) (205 717) (232 744) (2 514),
(452 964) (386 898) (418 930) (76 588) (15 527) (263 775) (258 770) (399 911),
(344 856) (309 821) (61 573) (26 538) (371 883) (120 632) (154 666) (503 1015),
(255 767) (248 760) (16 528) (468 980) (178 690) (116 628) (220 732) (22 534),
(65 577) (165 677) (200 712) (234 746) (5 517) (237 749) (39 551) (0 512),
(480 992) (168 680) (327 839) (79 591) (354 866) (256 768) (463 975) (364 876),
(411 923) (441 953) (305 817) (506 1018) (24 536) (338 850) (189 701) (152 664),
(496 1008) (498 1010) (18 530) (23 535) (20 532) (52 564) (222 734) (203 715),
(97 609) (69 581) (101 613) (202 714) (487 999) (450 962) (448 960) (482 994),
(170 682) (423 935) (111 623) (260 772) (352 864) (47 559) (431 943) (300 812),
(313 825) (443 955) (477 989) (474 986) (58 570) (375 887) (340 852) (435 947),
(471 983) (184 696) (50 562) (223 735) (502 1014) (254 766) (252 764) (54 566),
(201 713) (1 513) (37 549) (483 995) (35 547) (138 650) (141 653) (136 648),
(387 899) (324 836) (356 868) (40 552) (259 771) (392 904) (424 936) (332 844),
(283 795) (376 888) (410 922) (504 1016) (472 984) (56 568) (336 848) (403 915),
(439 951) (186 698) (500 1012) (191 703) (48 560) (470 982) (158 670) (156 668),
(235 747) (33 545) (485 997) (451 963) (453 965) (389 901) (173 685) (104 616),
(359 871) (320 832) (495 1007) (490 1002) (291 803) (426 938) (367 879) (271 783),
(381 893) (378 890) (413 925) (509 1021) (275 787) (343 855) (372 884) (370 882),
(127 639) (92 604) (402 914) (159 671) (407 919) (400 912) (404 916) (233 745),
(481 993) (406 918) (190 702) (139 651) (385 897) (419 931) (109 621) (355 867),
(322 834) (8 520) (456 968) (295 807) (488 1000) (365 877) (269 781) (333 845),
(317 829) (281 793) (282 794) (445 957) (311 823) (307 819) (63 575) (276 788),
(95 607) (368 880) (432 944) (434 946) (94 606) (124 636) (436 948) (449 961),
(137 649) (438 950) (171 683) (417 929) (72 584) (421 933) (106 618) (13 525),
(45 557) (261 773) (42 554) (397 909) (394 906) (301 813) (303 815) (264 776),
(383 895) (315 827) (314 826) (348 860) (442 954) (408 920) (511 1023) (274 786),
(308 820) (31 543) (374 886) (342 854) (28 540) (30 542) (73 585) (188 700),
(169 681) (75 587) (107 619) (74 586) (323 835) (77 589) (10 522) (257 769),
(493 1005) (461 973) (429 941) (427 939) (395 907) (265 777) (360 872) (298 810),
(285 797) (319 831) (280 792) (312 824) (286 798) (440 952) (479 991) (279 791),
(272 784) (304 816) (476 988) (306 818) (310 822) (60 572) (105 617) (62 574),
(278 790) (126 638) (353 865) (357 869) (11 523) (325 837) (491 1003) (293 805),
(289 801) (458 970) (393 905) (331 843) (328 840) (299 811) (362 874) (296 808),
(351 863) (382 894) (287 799) (350 862) (380 892) (318 830) (284 796) (415 927),
(447 959) (478 990) (444 956) (508 1020) (457 969) (510 1022) (41 553) (9 521),
(321 833) (412 924) (489 1001) (446 958) (414 926) (43 555) (425 937) (361 873),
(459 971) (363 875) (329 841) (297 809) (316 828) (267 779) (266 778) (330 842)]
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4.3.2 Performance comparison

The proposed mappings are compared to the MD mappings that are optimized for Rayleigh

fading channels using the BSA. Typically, the BSA is the best known computer search

algorithm to find good mappings for BICM-ID. However, it becomes intractable to obtain

MD mappings with a higher alphabet size, e.g., 6-D 64-QAM. In our simulations, we

consider a rate-1/2 convolutional code with the generator polynomial of (13, 15)8. The

length of the used interleaver is about 10000 bits. All BER curves are presented with seven

iterations, and all gains reported in this section are measured at a BER of 10−6.

Table 4.12 indicates the values of Φ̂(µ,χ) for different 2N -D (N = 2, 3) 2m-QAM

mappings. Note that in the case of 6-D (N = 3) mappings using 2m-QAM (m > 4), the

BSA result could not be obtained due to the computational time constraints. However,

our proposed method yields efficient 2N -D mapping of 2m-QAM for any value of N and

for m (m ≤ 10). Table 4.12 shows that for all considered values of N and m, the resulting

mappings with our proposed method offer greater values of Φ̂(µ,χ) in comparison with

those of the BSA mappings. Moreover, for a given code and modulation, the mapping with

a greater value of Φ̂(µ,χ) achieves a lower error floor [34]. As a consequence, the proposed

mappings are expected to offer lower error-floors than those of the BSA mappings. The

value of Φ̂(µ,χ) for the proposed 4-D mapping using higher order 2m-QAM (m = 7, · · · , 10)
is listed in Table 4.13.

Table 4.12: Comparison of the harmonic mean of MSED, Φ̂(µ,χ), for different mappings.
Mapping N = 2 N = 3

BSA MD 16-QAM 2.5814 2.8047

Proposed MD 16-QAM 3.1622 3.3105

BSA MD 32-QAM 2.8574 -

Proposed MD 32-QAM 3.1677 3.3089

BSA MD 64-QAM 2.8047 -

Proposed MD 64-QAM 3.1683 3.2870

Table 4.13: Φ̂(µ,χ) for proposed 4-D mapping using higher order QAMs.

Basic modulation Φ̂(µ,χ)

128-QAM 3.2272

256-QAM 3.2289

512-QAM 3.2833

1024-QAM 3.2995
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Figure 4.3: BER performance of BICM-ID with 4-D and 6-D 16-QAM over Rayleigh fading
channels.

Fig. 4.3 plots the BER performance of BICM-ID employing different 2N -D mappings

of 16-QAM for N = 2, 3. From Fig. 4.3, it can be observed that our 4-D and 6-D 16-

QAM mappings respectively achieve 0.85 dB and 1.5 dB gain over their BSA counterparts.

The BER performance of BICM-ID with 4-D 32-QAM and 4-D 64-QAM is plotted in Fig.

4.4. It can be seen from this figure that compared to the BSA mappings, the proposed

mappings significantly improve the BER performance of BICM-ID using 4-D 32-QAM and

4-D 64-QAM. In particular, our resulting mapping for 4-D 32-QAM offers a gain of 1.4dB

while for 4-D 64-QAM it offers a gain of 2.6 dB compared with the BSA mappings.

In Fig. 4.5, we compare the error bounds for BICM-ID presented in [15] using MD

16-QAM mappings. This figure shows that our proposed mappings provide a gain of 0.9

dB and 0.73 dB respectively over the BSA results for 4-D and 6-D 16-QAM. Fig. 4.6 plots

the error bounds for BICM-ID with 4-D 32-QAM and 4-D 64-QAM. This figure shows that

in comparison with the BSA mappings, our proposed mappings improve the error bound

respectively by 0.5 dB and 0.53 dB.

It is important to note that the BSA could not be applied to find a mapping for 6-

D 32-QAM due to the computational time constraint. However, our proposed method

easily finds suitable mappings for an unlimited dimension of modulations larger than 32-

QAM. Moreover, for smaller MD modulations, our proposed mappings outperform the BSA

mappings. This indicates the efficiency of our proposed method compared to the BSA.
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Figure 4.4: BER performance of BICM-ID with 4-D 32- and 64-QAM over Rayleigh fading
channels.
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Figure 4.6: Error-floor bounds of BER for BICM-ID with 4-D 32- and 64-QAM over
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Chapter 5

Multi-dimensional Mapping of

M-QAM Constellations for

BICM-ID over AWGN Channels

The AWGN channel is an effective model for many communication links such as satellite

communication link. To improve the error performance and the data rate of BICM-ID

over AWGN channels, efficient mappings of large constellations are required. However, as

mentioned earlier, developing optimum mappings of large constellations for BICM-ID is

complicated. This is because of the significantly large number of possible mappings for large

constellations. In fact, for a constellation with order 2m, there are 2m! possible mappings,

which quickly approaches infinity by increasing m. In this chapter, we first propose an

optimum MD mapping for 16-QAM. Then, employing an innovative transfer system, we

construct highly efficient MD mappings for any order/dimension of QAM constellations

using the proposed MD 16-QAM mapping. Throughout this chapter, we assume that in

a 2m-ary QAM constellation: (i) the MSED between symbols is equal to 1 and (ii) the

symbol index in 2m-QAM starts from the top left corner of the constellation and increases

from top to bottom and from left to right (see for example Fig. 5.1 for 16-QAM, where

the symbol with index i is indicated by Si).

5.1 Optimum MD 16-QAM mapping

In a 2N -D 16-QAM mapping, a sequence of n binary bits is mapped to a vector of N

16-QAM symbols, where n = 4N . The proposed method uses the precoding process given

in 5.1, followed by an intermediate mapping. Let l = [l1, · · · , ln] be an n-bit label and

l̂ = [l̂1, · · · , l̂n] be the precoded version of l. Each element of l̂ is obtained according to the

following precoding process:

l̂i =

{
W (l) if i = chosen-index,

li ⊕W (l) otherwise,
(5.1)

60



5.1. Optimum MD 16-QAM mapping

 

1
S

6
S

7
S

10
S

11
S

5
S

2
S

9
S

13
S

14
S

3
S

4
S

8
S

12
S

16
S

15
S

Figure 5.1: Symbol arrangement in a 16-QAM constellation.

where W (x) denotes an indicator function that takes the value one if x has an odd Ham-

ming weight, otherwise it is equal to zero. The chosen-index can also take a value from

{1, 2, · · · , n}, and⊕ is the modulo-2 addition. The proposed MD 16-QAMmapping method

assigns the label l to the symbol-vector s = [s1, · · · , sN ] as follows

sj = λ(̂l
j
), (5.2)

where

l̂
j
= [l̂4(j−1)+1, · · · , l̂4j ], (5.3)

and j takes a value from {1, · · ·N}, and λ is the intermediate 16-QAM mapping function

(which will be discussed later in this section).

Let d2i indicate the ith unique squared Euclidean distance (SED) between the symbols

in a 16-QAM constellation, where d2i < d2i+1. As mentioned in 1.6, an optimum mapping

offers the maximum possible value of d̂2min.

Proposition 5.1. For a 2N -D 16-QAM mapping, the maximum d̂2min is (N − 1)d25 + d24.

Proof. If s is a central-symbol in a 16-QAM constellation, i. e., s ∈ Υ = {S6, S7, S10, S11},
there is only one 16-QAM symbol at the SED of d25 from s, and each of the remaining

symbols has a smaller SED from s. Assume that l = [l1, · · · , ln] is the assigned label to
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the symbol-vector s = [s1, · · · , sN ], where ∀i; si ∈ Υ. There are n distinct labels that are

different from l in only one bit position. Moreover, regarding the above discussion, there

is only one symbol-vector with SED of Nd25 from s. Consequently, the MSED between s

and the symbol-vectors with a Hamming distance of one bit from s cannot be larger than

(N − 1)d25 + d24. As a result, the maximum possible d̂2min for a 2N -D 16-QAM mapping is

(N − 1)d25 + d24.

Proposition 5.2. Let us assume that l = [l1, · · · , ln] is a particular n-bit sequence and

lk = [l1k, · · · , lnk ] is different with l only in the kth bit position, where k ∈ {1, · · · , n}. Also,

assume that l̂ = [l̂1, · · · , l̂n] and l̂k = [l̂1k, · · · , l̂nk ] are the precoded versions of l and lk,

respectively. Let us define l̂
j
and l̂

j

k as

l̂
j
= [l̂4(j−1)+1, · · · , l̂4j ], (5.4)

l̂
j

k = [l̂
4(j−1)+1
k , · · · , l̂4jk ],

where j ∈ {1, · · · , N}. Then, for all values of j, the Hamming distance between l̂
j
and l̂

j

k

is either 3 or 4 bits.

Proof. Suppose that the chosen-index in (5.1) is equal to p. Regarding Proposition 2.1, if

p is equal to k, then l̂ and l̂k are different in all n bits; otherwise, they are the same in the

kth bit position and are different in the remaining (n− 1) bits. As a result, we can write

dH (̂l
j
, l̂

j

k) =


4 if p = k , ∀j,
4 if p ̸= k , j = q,

3 if p ̸= k , j ̸= q,

(5.5)

where dH(a, b) is the Hamming distance between a and b and q is given by

q = ⌊k − 1

4
⌋+ 1, (5.6)

where ⌊.⌋ represents the floor function.

Proposition 5.3. In (5.5), for all values of j and k, the Hamming distances of 3 and 4

bits between l̂
j
and l̂

j

k occur n(N − 1) + 1 and (n− 1) times, respectively.

Proof. In Proposition 5.2, suppose that the chosen-index is equal to p. Then, regarding

Proposition 2.1, there are two possible cases as follows.
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Case 1: k = p. l̂ and l̂k are different in all n bits. Then, for all values of j and k,

there is a 4-bit difference between l̂
j
and l̂

j

k.

Case 2: k ̸= p. l̂i and l̂k are the same in kth bit and they are different in (n − 1)

remaining bits. Then, using (5.5), the Hamming distance between l̂
j
and l̂

j

k is given by

dH (̂l
j
, l̂

j

k) =

{
3 if j = q,

4 otherwise,
(5.7)

where q is defined in (5.6).

For a given value of p and for all values of k, Case 1 occurs only one time. In this case,

for j = 1, · · · , N , the Hamming distance of 4 bits between l̂
j
and l̂

j

k occurs N times overall.

Similarly, since for a given p, there are (n − 1) possible values of k such that k ̸= p, then

Case 2 occurs (n−1) times. Each occurrence results in (N−1) Hamming distance of 4 bits

and one Hamming distance of 3 bits between l̂
j
and l̂

j

k, where j = 1, · · · , N . Therefore,

for a particular l and for all values of j and k, between l̂
j
and l̂

j

k, a 4-bit distance occurs

n(N − 1) + 1 times and a 3-bit distance occurs (n− 1) times.

Suppose that in the proposed MD mapping, l is mapped to the symbol-vector s =

[s1, · · · , sN ] and lk is mapped to sk = [s1k, · · · , sNk ], where sj = λ(̂l
j
) and sjk = λ(̂l

j

k) are

two symbols in the 16-QAM intermediate mapping and they have a Hamming distance of

either 3 or 4 bits from each other. As a result, to increase d̂2min, i. e., the MSED between

s and sk, our approach is to increase the MSED between the symbols with a Hamming

distance of 3 or 4 bits in the intermediate 16-QAM mapping. Moreover, as Proposition 5.3

declares, the 4-bit distance between l̂
j
and l̂

j

k is more often. Therefore, it is preferred that

the MSED between the symbols with 4-bit distance in the intermediate mapping to be as

large as possible.

5.1.1 16-QAM intermediate mapping

Each symbol in a 16-QAM mapping is mapped by a 4-bit binary label. In the set of all

possible 4-bit labels, there are 5 labels with a Hamming distance of 3 or 4 bits from a

given label, l. We refer to these 5 labels as the forbidden-labels of label l. Let d2min be

the desired MSED between a particular symbol, S, and the symbols that have a Hamming

distance of 3 or 4 bits from S. We refer to symbols whose SED from S is less than d2min

as the forbidden-symbols of symbol S and to the remaining symbols as the authorized-

symbols of symbol S. As the main principle, if a label is mapped to the symbol S, none

of its forbidden-labels can be mapped to the forbidden-symbols of symbol S. We start the

mapping process by assigning labels to the central-symbols because central-symbols have
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the smallest number of authorized-symbols; therefore, it is easier to map them at first.

The maximum possible d2min for a 16-QAM constellation is d24. In fact, d24 is the maximum

MSED between a central-symbol and any set of 5 symbols in a 16-QAM constellation.

Let in Fig. 5.1, Ai indicate the set of authorized-symbols for symbol Si. Then, for

the central-symbols, i.e., S6, S7, S10, and S11, we have A6 = {S4, S12, S13, S15, S16},
A7 = {S1, S9, S13, S14, S16}, A10 = {S1, S3, S4, S8, S16}, and A11 = {S1, S2, S4, S5, S13}.
The label of each central-symbol has 5 forbidden-labels. Moreover, each of the forbidden-

labels is allowed to be mapped only to one of the corresponding authorized-symbols. As

a result, if Si and Sj are two central-symbols with α common members in their set of

authorized-symbols, then they must have α common members in their set of forbidden-

labels as well. For a 16-QAM constellation, α = 2. Therefore, the labels of two particular

central-symbols must have two common members in their set of forbidden-labels. Conse-

quently, regarding the definition of forbidden-labels, the Hamming distance between two

central-symbols should be either one or two bits.

The maximum Euclidean distance between a central-symbol and its authorized-symbols

is d5. Moreover, each central-symbol has only one authorized-symbol at the Euclidean

distance of d5. In the proposed intermediate 16-QAM mapping, we constrain the Hamming

distance between a central-symbol and its only authorized-symbol at the Euclidean distance

of d5 to be 4 bits. For example, S16 is the only symbol from A6 at the Euclidean distance

d5 from the central-symbol S6. Therefore, the labels mapped to S6 and S16 should be

different in all 4 bits. The symbol S16 is also a common member in both A7 and A10,

which constrains both symbols S7 and S10 to have a 3-bit Hamming distance from S16.

This causes the symbol S6 to have a one bit Hamming distance from both S7 and S10,

which are at the Euclidean distance d1 from S6. There are the same conditions for other

central-symbols whose Euclidean distance from each other is d1.

In summary, the intermediate mapping is developed in the three following steps:

1- The central-symbols are mapped such that there is a one bit Hamming distance between

two central-symbols with the Euclidean distance d1.

2- Let S be a central-symbol that is mapped by the label l. The symbol at the Euclidean

distance d5 from S should be mapped by the label l̄.

3- Regarding the main principle, each of the eight remaining labels has two permitted

symbols to map. However, some of these labels are in the forbidden-labels of each other.

As a result, mapping a label to one of the remaining symbols affects the rest of the mapping

process. This is discussed further in the following.

Assume that the chosen-index in the precoding function in (5.1) is equal to p and the

two n-bit labels, i.e., l and lk, are different only in the kth bit position, where p ̸= k. Then,

the precoded versions of l and lk, i. e., l̂ = [l̂1, · · · , l̂n] and l̂k = [l̂1k, · · · , l̂nk ], are different
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in all bits except for in the kth bit position [23]. Suppose that l and lk are mapped to

s = [s1, · · · , sN ] and sk = [s1k, · · · , sNk ], respectively, where sj = λ(̂l
j
), sjk = λ(̂l

j

k), and l̂
j

and l̂
j

k are defined in (5.4). Let l̂
q
include both pth and kth bits of l̂, i.e.,

q = ⌊p− 1

4
⌋+ 1 (5.8)

= ⌊k − 1

4
⌋+ 1.

Also assume that w = Q(k) and z = Q(p), where Q(x) is defined as

Q(x) = x− 4× (q − 1). (5.9)

Then, l̂
q
= [l̂q,1, · · · , l̂q,4] and l̂qk = [l̂q,1k , · · · , l̂q,4k ] are the same in the wth bit position, i.e.,

l̂q,w = l̂q,wk , and they are different in the remaining 3 bits including the zth bit. As a result,

in the proposed method, for l̂
q
there is no l̂

q

k that is different from l̂
q
in all bits except for in

the zth bit. Therefore, in the third step of designing the intermediate mapping, the labels

that are different in all bits except for in the zth bit are mapped to the symbol pairs with

the Euclidean distance d4 from each other. Then, these symbol pairs will never be used

as sq and sqk in the proposed MD mapping. Hence, some symbol pairs with the Hamming

distance of 3 bits and the Euclidean distance d4 in the intermediate mapping will be unused

in the proposed MD mapping. As a consequence, in the resulting MD mapping, the MSED

of (N − 1)d5+ d4 between two labels with a Hamming distances of one bit will occur fewer

times. This diminishes N̂min (defined in 1.9) and makes the proposed mapping much closer

to the optimum mapping.

Proposition 5.4. Suppose that in the third step of designing the intermediate mapping,

bi = [b1i , · · · , b4i ] and bj = [b1j , · · · , b4j ] are two binary labels with the Hamming distance

of 3 bits. Let bi and bj be mapped to the symbols Si and Sj, which are at the Euclidean

distance d4 from each other. Also, assume that bx = [b1x, · · · , b4x] and by = [b1y, · · · , b4y] are
two binary labels, which are different in only one bit position. Let bx and by be mapped

to two central-symbols, i.e., Sx and Sy, which are at the Euclidean distance d1 from each

other. Moreover, suppose that bx and by have a 3-bit Hamming distance from bi and bj,

respectively. Then, in order for bi and bj to be the same in the zth bit, they need bx and

by to be different in the zth bit position.

Proof. Suppose that Sr and St are two central-symbols, where Sr is the neighbor of both

Sx and St, and St is the neighbor of Sy. Let Sr and St be mapped by the 4-bit binary

labels br and bt, respectively. Without loss of generality, assume that z = 1, bi = [0, 0, 0, 0]
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and bj = [0, 1, 1, 1]. Because bi and bj have not been mapped in the second step then

b̄i = [1, 1, 1, 1] and b̄j = [1, 0, 0, 0] cannot be used for the central-symbols in the first step.

The labels bx and by, which have a 3-bits Hamming distance from bi and bj , respectively,

will take a label from {[1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]} and {[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1]},
respectively. Without loss of generality, let bx = [1, 0, 1, 1], then by can take a label from

{[1, 0, 1, 0], [1, 0, 0, 1]}. Let by = [1, 0, 1, 0], then bt, which should differ from by at one bit

position but not in the zth bit, will take a label from {[1, 1, 1, 0], [1, 0, 0, 0]}. But, [1, 0, 0, 0]
is different from bj in all bits, and thus, it is unusable for central-symbols. As a result, St

is mapped by [1, 1, 1, 0]. Now, the only choices for br, which should be different from lx

and lt at only one bit position but not in the zth bit, are [1, 0, 1, 0] and [1, 1, 1, 1]. However,

[1, 0, 1, 0] cannot be used for br because it has already been mapped to by; moreover,

[1, 1, 1, 1] is different from bi in all bits, and thus, it is not authorized to be mapped to a

central-symbol. Therefore, there is not an authorized label for Sr. The same conditions

apply for the other scenarios in which Sx or Sy must select another label from their set of

authorized-labels. Consequently, bx and by have to be different in the zth bit.
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Figure 5.2: Proposed intermediate 16-QAM mapping for (a). z ∈ {1, 2}, and (b). z ∈
{3, 4}.

Fig. 5.2. a and Fig. 5.2. b indicate our proposed intermediate mappings of 16-QAM

with z ∈ {1, 2} and z ∈ {1, 2}, respectively, where bi ∈ {0, 1} for i = 1, · · · , 4. In what

follows, we explain how the intermediate mapping of 16-QAM shown in Fig. 5.2. a is

developed.

Step 1 : As aforementioned, in the first step, the central-symbols are mapped by the
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binary labels with a Hamming distance of one bit. We first map the label [b1, b2, b3, b4] to

the symbol S6. Then, S7 and S10, whose Euclidean distances from S6 are d1, are mapped by

the labels with the Hamming distance one from S6, i. e, by [b1, b̄2, b3, b4] and [b̄1, b2, b3, b4],

respectively. The symbol S11 is at the Euclidean distance d1 from both S7 and S10 thus

its Hamming distance from each of S7 and S10 should be one bit. Therefore, it is mapped

by [b̄1, b̄2, b3, b4].

Step 2 : The symbols S1, S4, S13 and S16 are at the Euclidean distance d5 from the

central-symbols S11, S10, S7 and S6, respectively. As a result, each of them takes a label

with a Hamming distance of 4 bits from the label of the corresponding central-symbol at

the Euclidean distance d5.

Step 3 : Each of the eight remaining labels for step 3 are forbidden by only one of the

central-symbols, and each have two authorized-symbols to map. The first label is chosen

randomly and is arbitrarily mapped to one of its authorized-symbols. However, the rest

of the labels each one will have only one authorized-symbol to map. The only rule that

should be considered is the main principle of the mapping method. For example, the label

[b1, b2, b3, b̄4] has two authorized-symbols to map, i.e., S2 and S5. In this example, we map

it to S2. The label [b1, b̄2, b̄3, b4] is forbidden by S10 and it was authorized to be mapped

to one of S3 and S8. However, it cannot be mapped to S3 anymore. This is because

[b1, b̄2, b̄3, b4] has a Hamming distance of 3 bits from the label of S2, and the Euclidean

distance of S3 from S2 is smaller than d4. As a result, [b1, b̄2, b̄3, b4] is mapped to its other

authorized-symbol, i.e., S8. In a similar way, the rest of the labels are mapped to the

remaining symbols, as shown in Fig. 5.2. a.

Proposition 5.5. In the proposed 2N -D 16-QAM mapping, the MSED between symbol-

vectors with a Hamming distance of one bit is equal to (N − 1)d25 + d24.

Proof. Let l and lk be two 4N -bit labels that are different only in the kth bit position and

they are mapped to the symbol-vectors s = [s1, · · · , sN ] and sk = [s1k, · · · , sNk ], respectively.

The precoded versions of l and lk are l̂ = [̂l
1
, · · · , l̂N ] and l̂k = [̂l

1

k, · · · , l̂
N

k ], respectively,

where l̂
j
and l̂

j

k are defined in (5.4). Using (5.2), for all values of j, sj = λ(̂l
j
) and sjk =

λ(̂l
j

k), where λ is the proposed intermediate mapping function. Regarding the specifications

of the precoding function, l̂ and l̂k are different either in 4N bits or (4N − 1) bits. If this

distance is 4N bits, then for all values of j the Hamming distance between l̂
j
and l̂

j

k is 4

bits. Otherwise, l̂
j
and l̂

j

k have a Hamming distance of 4 bits for (N − 1) values of j, and

they have a Hamming distance of 3 bits for the one remaining value of j. Moreover, the

intermediate mappings indicated in Fig. (5.2) have two characteristics: (i) the Euclidean

distance between two symbols with a Hamming distance of 4 bits is d5 and (ii) the Euclidean

distance between two symbols with a Hamming distance of 3 is either d4 or d8. As a result,
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if l̂ and l̂k have a Hamming distance of 4N and (4N − 1) bits, the MSED between s and

sk is equal to Nd25 and (N − 1)d25 + d24, respectively. Consequently, overall in the proposed

2N -D 16-QAM mapping, the MSED between s and sk is equal to (N − 1)d25 + d24.

5.1.2 Proposed 4-D 16-QAM mapping

Example 5.1. Let in the proposed MD 16-QAM mapping, N = 2, the chosen-index be

equal to one (p = 1), l = [0, 1, 1, 1, 0, 0, 1, 1], and in Fig. 5.2, bi = 0 for i = 1, ..., 4. Using

(5.9) we have

z = Q(p) = 1. (5.10)

As a result, the mapping in Fig. 5.2(a) is used as the intermediate mapping. The precoded

version of l, i.e., l̂ = [1, 0, 0, 0, 1, 1, 0, 0], can be rewritten as l̂ = [̂l
1
, l̂

2
], where l̂

1
= [1, 0, 0, 0]

and l̂
2
= [1, 1, 0, 0]. Let in the proposed mapping method, l be mapped to s = [s1, s2];

then, we can write

s1 = λ(̂l1) = λ([1, 0, 0, 0]) = S10,

s2 = λ(̂l2) = λ([1, 1, 0, 0]) = S11. (5.11)

As a consequence, in the proposed 4-D 16-QAM mapping, the label l = [0, 1, 1, 1, 0, 0, 1, 1]

is mapped to the symbol-vector s = [S10, S11].

Table 5.1 shows the proposed 4-D 16-QAM mapping. To achieve this mapping, it is

Table 5.1: The proposed 4D mapping of 16-QAM for chosen-index equal to 1.
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

S1 51 177 53 183 178 48 180 54 58 184 60 190 187 57 189 63

S2 147 17 149 23 18 144 20 150 154 24 156 30 27 153 29 159

S3 83 209 85 215 210 80 212 86 90 216 92 222 219 89 221 95

S4 243 113 245 119 114 240 116 246 250 120 252 126 123 249 125 255

S5 163 33 165 39 34 160 36 166 170 40 172 46 43 169 45 175

S6 3 129 5 135 130 0 132 6 10 136 12 142 139 9 141 15

S7 195 65 197 71 66 192 68 198 202 72 204 78 75 201 77 207

S8 99 225 101 231 226 96 228 102 106 232 108 238 235 105 237 111

S9 220 94 218 88 93 223 91 217 213 87 211 81 84 214 82 208

S10 124 254 122 248 253 127 251 121 117 247 115 241 244 118 242 112

S11 188 62 186 56 61 191 59 185 181 55 179 49 52 182 50 176

S12 28 158 26 152 157 31 155 25 21 151 19 145 148 22 146 16

S13 76 206 74 200 205 79 203 73 69 199 67 193 196 70 194 64

S14 236 110 234 104 109 239 107 233 229 103 227 97 100 230 98 224

S15 44 174 42 168 173 47 171 41 37 167 35 161 164 38 162 32

S16 140 14 138 8 13 143 11 137 133 7 131 1 4 134 2 128
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assumed that the chosen-index in (5.1) is equal to one, and bi in Fig. 5.2 is equal to 0

for i = 1, ..., 4. In this table, the label in the (j + 1; k + 1)th entry is mapped to the

symbol-vector x = (Sj , Sk). For example, the label 115, corresponding to the binary label

l = [0, 1, 1, 1, 0, 0, 1, 1], is the (11, 12)th entry of Table 5.1. This means that 115 is mapped

to the symbol-vector x = [S10, S11].

5.2 MD mapping of 2m-QAM

We propose a transfer system that takes the proposed MD 16-QAM as the input and

constructs a desired MD mapping of rectangular 2m-QAM through m − 3 steps (m > 4).

In this approach, 16 symbols are first chosen from the 2m-QAM constellation. Then, an

MD mapping is developed employing these selected symbols and using the proposed MD

16-QAMmapping. It is important to note that the proposed method is specifically designed

for the rectangular 2m-QAM constellations. Such constellations are composed of 2⌊
m
2
⌋ rows

and 2m−⌊m
2
⌋ columns of signal points (symbols). In what follows, we describe the proposed

method in two main sections.

5.2.1 MD mapping using 16 symbols from 2m-QAM

The 16 chosen symbols from 2m-QAM in the first step of the proposed method is shown

in Table 5.2. In this Table, Λj represents the 2m-QAM symbol with index j. These 16

symbols are selected such that their structure in the 2m-QAM constellation is equivalent

to a 16-QAM constellation (see Fig. 5.3 as an example for m = 6).

Let in the proposed method, l = [l(1), · · · , l(mN)] be anmN -bit sequence that is mapped

to a vector of N symbols from 2m-QAM. In step i, li = [l
(1)
i , · · · , l((i+3)N)

i ] denotes the

(i+ 3)N least significant bits of l, where lji is given by

lji = l(mN−(i+3)N+j). (5.12)

Table 5.2: The 16 chosen symbols from 2m-QAM in the first step of the proposed method.
1 Λ1 9 Λ1+2m−1

2 Λ
1+2⌊

m
2 ⌋−2 10 Λ

1+2m−1+2⌊
m
2 ⌋−2

3 Λ
1+2⌊

m
2 ⌋−1 11 Λ

1+2m−1+2⌊
m
2 ⌋−1

4 Λ
1+3×2⌊

m
2 ⌋−2 12 Λ

1+2m−1+3×2⌊
m
2 ⌋−2

5 Λ1+2m−2 13 Λ1+3×2m−2

6 Λ
1+2m−2+2⌊

m
2 ⌋−2 14 Λ

1+3×2m−2+2⌊
m
2 ⌋−2

7 Λ
1+2m−2+2⌊

m
2 ⌋−1 15 Λ

1+3×2m−2+2⌊
m
2 ⌋−1

8 Λ
1+2m−2+3×2⌊

m
2 ⌋−2 16 Λ

1+3×2m−2+3×2⌊
m
2 ⌋−2
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Figure 5.3: 64-QAM constellation. The black symbols represent the 16 selected symbols
in the first step of the proposed mapping method.

In step i = 1, the proposed MD 16-QAM mapping method is applied to map l1 to an

N -tuple vector of 16-QAM symbols. Next, each 16-QAM symbol in the resulting mapping

is replaced by one of the 16 chosen symbols from 2m-QAM constellation, according to Table

5.3. In this table, for example, Si ← Λj means that in a given symbol-vector, the 16-QAM

symbol Si should be replaced by the 2m-QAM symbol Λj .

Table 5.3: The chart of substitution of 2m-QAM symbols for the 16-QAM symbols.
S1 ← Λ1 S9 ← Λ1+2m−1

S2 ← Λ
1+2⌊

m
2 ⌋−2 S10 ← Λ

1+2m−1+2⌊
m
2 ⌋−2

S3 ← Λ
1+2⌊

m
2 ⌋−1 S11 ← Λ

1+2m−1+2⌊
m
2 ⌋−1

S4 ← Λ
1+3×2⌊

m
2 ⌋−2 S12 ← Λ

1+2m−1+3×2⌊
m
2 ⌋−2

S5 ← Λ1+2m−2 S13 ← Λ1+3×2m−2

S6 ← Λ
1+2m−2+2⌊

m
2 ⌋−2 S14 ← Λ

1+3×2m−2+2⌊
m
2 ⌋−2

S7 ← Λ
1+2m−2+2⌊

m
2 ⌋−1 S15 ← Λ

1+3×2m−2+2⌊
m
2 ⌋−1

S8 ← Λ
1+2m−2+3×2⌊

m
2 ⌋−2 S16 ← Λ

1+3×2m−2+3×2⌊
m
2 ⌋−2
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According to proposition 5.5, in the proposed 2N -D 16-QAM mapping, d̂2min = (N −
1)d25 + d24, where d4 and d5 are equal to the Euclidean distance of S1 from S7 and S11,

respectively. Furthermore, in Table 5.3, the 16-QAM symbols S1, S7 and S11 are re-

placed by 2m-QAM symbols Λ1, Λ1+2m−1+2⌊
m
2 ⌋−1 and Λ

1+2m−2+2⌊
m
2 ⌋−1 , respectively. As a

consequence, d̂2min for the obtained mapping using 16 symbols from 2m-QAM is equal to

(N−1)d̂25+d̂24, where d̂4 and d̂5 represent the Euclidean distance of Λ1 from Λ
1+2m−1+2⌊

m
2 ⌋−1

and Λ
1+2m−2+2⌊

m
2 ⌋−1 , respectively. In other words, we can write

d̂24 = 22m−2⌊m
2
⌋−4 + 22⌊

m
2
⌋−2, (5.13)

d̂25 = 22m−2⌊m
2
⌋−2 + 22⌊

m
2
⌋−2.

5.2.2 Transferring from 16-QAM to 2m-QAM

In step i−1 (i > 1), let li−1 be mapped to si−1 = [s1i−1, · · · , sNi−1], where s
j
i−1 = xji−1+Iy

j
i−1

and I2 = −1. In step i, li is mapped to si = [s1i , · · · , sNi ], where sji = xji + Iyji and xji
and yji are calculated using Table 5.4. In this table, ei = [e1i , · · · , eNi ] represents the N

most significant bits of li, i.e., e
j
i = lji , wi denotes the Hamming weight of ei, E and O

represent the set of even and odd integers, respectively, and sgn(.) is the sign function,

which is defined as

sgn(X) =


1 if X > 0,

0 if X = 0,

−1 if X < 0.

(5.14)

For example, in step i, if wi ∈ E, eji = 1, and i ∈ E, in order to calculate the real part of

sji , i.e., x
j
i , one needs to use xji = xji−1 + 2m−⌊m

2
⌋−⌊ j

2
⌋−2 from Table 5.4.

Table 5.4: Transfer system to generate symbol coordinates for MD 2m-QAM mappings.

wi ∈ E wi ∈ O

eji = 0
xji = xji−1 xji = xji−1 − sgn(x

j
i−1)2

m−⌊m
2
⌋−1

yji = yji−1 yji = yji−1 − sgn(y
j
i−1)2

⌊m
2
⌋−1

eji = 1

i ∈ E xji = xji−1 + 2m−⌊m
2
⌋−⌊ i

2
⌋−2 xji = xji−1 + (2−⌊ i

2
⌋−1 − sgn(xji−1))2

m−⌊m
2
⌋−1

yji = yji−1 yji = yji−1 − sgn(y
j
i−1)2

⌊m
2
⌋−1

i ∈ O xji = xji−1 xji = xji−1 − sgn(x
j
i−1)2

m−⌊m
2
⌋−1

yji = yji−1 − 2⌊
m
2
⌋−⌊ i−1

2
⌋−2 yji = yji−1 − (2−⌊ i−1

2
⌋−1 + sgn(yji−1))2

⌊m
2
⌋−1
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5.2. MD mapping of 2m-QAM

Proposition 5.6. Let li = [l1i , · · · , l
(i+3)N
i ] and li,k = [l1i,k, · · · , l

(i+3)N
i,k ] be two labels in

step i that are different only in the kth bit position and are mapped to symbol-vectors

si = [s1i , · · · , sNi ] and si,k = [s1i,k, · · · , sNi,k], respectively. For all i, the MSED between si

and si,k, i.e., d̂
2
min,i, is greater than or equal to (N − 1)d̂25 + d̂24.

Proof. See Appendix B.

Example 5.2. In the proposed MD mapping method, let us set m = 6 (64-QAM), N = 2,

and l = [1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1]. In the following three steps, l is mapped to a vector

of 64-QAM symbols, i.e., s = [s1, s2].

Step 1 : Let l1 = [0, 1, 1, 1, 0, 0, 1, 1] be the eight least significant bits of l and the

chosen-index be equal to one (p = 1). The sequence l1 is mapped to the symbol-vector

s1 = [s11, s
2
1], where s

1
1 = x11 + Iy11 and s21 = x21 + Iy21 belong to the 64-QAM signal set. In

the proposed 4-D 16-QAM mapping when p = 1, the sequence [0, 1, 1, 1, 0, 0, 1, 1], i.e., l1,

is mapped to the symbol-vector [S10, S11] (c.f. Example 5.1, Section 5.1.2). From Table

5.3, the equivalent 64-QAM symbols for S10 and S11 are Λ35 and Λ37, respectively. As a

result, s11 = Λ35 and s21 = Λ37.

Step 2 : Let l2 = [1, 0, 0, 1, 1, 1, 0, 0, 1, 1] be the ten least significant bits of l and be

mapped to s2 = [s12, s
2
2]. Considering l1 from step 1, l2 can be rewritten as l2 = [e2, l1],

where e2 = [1, 0]. Table 5.4 is used to obtain the symbols s12 and s22 using the symbols s11
and s21 from step 1, respectively. Since i ∈ E (i = 2), the Hamming weight of e2 is odd

(wi ∈ O), and e12 = 1, then the following equations from Table 5.4 are used to calculate

the real and imaginary parts of s12.

xji = xji−1 + (2−⌊ i
2
⌋−1 − sgn(xji−1))2

m−⌊m
2
⌋−1 (5.15)

yji = yji−1 − sgn(y
j
i−1)2

⌊m
2
⌋−1.

Let us set x11 = 0.5 and y11 = 1.5 (s11 = Λ35 = 0.5 + I1.5) in the above equations, which

results in x12 = −2.5 and y12 = −2.5. Similarly, since e22 = 0, then the following equations

from Table 5.4 are used to calculate the real and imaginary parts of s22.

xji = xji−1 − sgn(x
j
i−1)2

m−⌊m
2
⌋−1 (5.16)

yji = yji−1 − sgn(y
j
i−1)2

⌊m
2
⌋−1.

From step 1, we set x21 = 0.5 and y21 = −0.5 (s21 = Λ37 = 0.5−I0.5) in the above equations,

which results in x22 = −3.5 and y22 = 3.5.
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5.3. Numerical results

Step 3 : In this step, l3 = l and it can be rewritten as l3 = [e3, l2], where e3 = [1, 1].

Let l3 be mapped to s3 = [s13, s
2
3]. The symbols s13 and s23 are obtained as follows. Since

i ∈ O (i = 3), the Hamming weight of e3 is even (wi ∈ E), and e13 = e23 = 1, then the

following equations from Table 5.4 are used to calculate the real and imaginary parts of s13
and s23.

xji = xji−1 (5.17)

yji = yji−1 − 2⌊
m
2
⌋−⌊ i−1

2
⌋−2.

Substituting x12, x
2
2, y

1
2, and y

2
2 in the above equations gives s13 = −2.5− I3.5 (= Λ16) and

s23 = −3.5 + I2.5 (= Λ2). Consequently, l is mapped to s = (Λ16,Λ2).

5.3 Numerical results

This section provides a selection of numerical examples to illustrate the performance and

advantage of our proposed MD mapping for BICM-ID systems over the AWGN channel.

We compare our resulting mappings with the mappings that are optimized for the AWGN

channel employing the well-known BSA [9]. From many aspects, the BSA is the best

known computer search technique to find desired mappings for BICM-ID. However, the

BSA becomes intractable to achieve suitable mappings for larger MD constellations, e.g.,

6-D 64-QAM, due to computational time constraints. We consider a rate-1/2 convolutional

code with the generator polynomial of (13, 15)8. An interleaver length of about 10000 bits

is used. All gains reported in this section are measured at a BER of 10−6.

Table 5.5 compares the values of d̂2min and N̂min for our proposed mappings and the

BSA mappings of MD 2m-QAM (m = 4, 5, 6). In the case of MD mappings of higher order

Table 5.5: d̂2min and Ñmin for different mappings.

Modulations d̂2min Ñmin

BSA 4-D 16-QAM 1.2 2

Proposed 4-D 16-QAM 2.60 6.40× 102

BSA 6-D 16-QAM 1.33 1.9× 102

Proposed 6-D 16-QAM 2.8 1.6× 104

BSA 4-D 32-QAM 0.8 1

Proposed 4-D 32-QAM 2.15 1.02× 103

BSA 4-D 64-QAM 1.2 2

Proposed 4-D 64-QAM 2.48 1.02× 104
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5.3. Numerical results

Table 5.6: d̂2min and Ñmin for MD mapping of higher order modulations.
Modulations d̂2min Ñmin

Proposed 4-D 128-QAM 2.11 1.6× 104

Proposed 4-D 256-QAM 2.45 1.6× 105

Proposed 4-D 512-QAM 2.10 2.6× 105

Proposed 4-D 1024-QAM 2.44 2.6× 106

QAMs, the BSA results could not be obtained due to the computational time constraints.

Therefore, in Table 5.6, we report the values of d̂2min and N̂min only for the proposed

MD mapping of larger constellations. Table 5.5 shows that in comparison with the BSA

mappings, the proposed mappings offer greater values of d̂2min. As a result, it is expected

that the proposed mappings improve the error performance of BICM-ID over the AWGN

channel. This is confirmed by the simulation results plotted in Fig. 5.4 and Fig. 5.5. It

can be observed from Fig. 5.4 that the proposed 4-D 16-QAM and 6-D 16-QAM mappings

outperform their BSA counterparts by 1.4 dB and 2.5 dB, respectively. Fig. 5.5 indicates

that the proposed 4-D 32-QAM and 4-D 64-QAM mappings offer a gain of 2.55 dB and

3.6 dB, respectively, over the corresponding BSA mappings. The error bounds for different

mappings are plotted in Fig. 5.6 and Fig. 5.7. These figures show that the proposed

mappings offer lower error floors in comparison with the BSA mappings.

Please note that the BSA becomes intractable when finding a MD mapping of a large

modulation. But, our proposed method is a heuristic method and generates good MD

mappings of large modulations instantaneously. Furthermore, for smaller MD modulations,

our proposed mappings improve the system performance compared to the BSA mappings.

This shows the efficiency of our proposed method compared to the BSA.
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Figure 5.4: BER performance of BICM-ID over the AWGN channel.

E
b
/N

0
 (in dB)

0 2 4 6 8 10 12 14

B
E

R

10-6

10-5

10-4

10-3

10-2

10-1

100

BSA 4D 32-QAM
Proposed 4D 32-QAM
BSA 4D 64-QAM
Proposed 4D 64-QAM
CM capacity (32-QAM)
CM capacity (64-QAM)

E
b
/N

0
 =

3.13 dB
E

b
/N

0
 =

4.28 dB

Figure 5.5: BER performance of BICM-ID over the AWGN channel.

75



5.3. Numerical results

E
b
/N

0
 (in dB)

0 1 2 3 4 5 6 7 8 9 10

B
E

R

10-100

10-80

10-60

10-40

10-20

100

BSA 4D 16-QAM
Proposed 4D 16-QAM
BSA 6D 16-QAM
Proposed 6D 16-QAM

Figure 5.6: Error-floor bounds over the AWGN channel.
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Figure 5.7: Error-floor bounds over the AWGN channel.
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Chapter 6

Conclusions

6.1 Work accomplished in this thesis

In this thesis, we have studied the mapping problem of BICM-ID for a wide range of

modulations. In particular, we have focused on the 2-D and MD mapping of 2m-ary (un-

limited m) modulations. We have proposed heuristic methods as well as computer search

techniques to achieve efficient mappings for BICM-ID. Presented analytic and simulation

results show that in comparison with the-state-of-the-art mappings such as the BSA map-

pings, our proposed mappings significantly improve the system’s error performance over

the AWGN and Rayleigh fading channels.

In Chapter 2, we have proposed a novel mapping method to find efficient 2-D mappings

of higher order QAM and PSK modulations for BICM-ID. Our method generates mappings

through a systematic approach. Two main qualities of our proposed method are as follows:

(i) it is a very simple method, and (ii) it generates efficient mappings for 2m-ary QAM and

PSK with an unlimited value of m. Simulation results show that compared to the best

previously known mappings at a target BER rate of 10−6, our proposed mappings can

save up to 5.7 dB and 4.4 dB of the transmit signal over the AWGN and Rayleigh fading

channels, respectively.

In Chapter 3, we have proposed a heuristic method to design MD mappings for BICM-

ID systems using 16- and 64-QAM. The innovation of the proposed method in this chapter

is that it can efficiently generate MD mappings using 16- and 64-QAM. Presented nu-

merical results show that in comparison with the well-known BSA mappings and random

mappings, our mappings outperform significantly over AWGN and Rayleigh fading chan-

nels. Compared to the BSA mappings for a target BER of 10−6, our mappings can save

up to 3.5 dB and 3 dB transmit signal energy over AWGN and Rayleigh fading channels,

respectively. The corresponding performance gains are larger compared to random map-

pings. The proposed mappings also have improved the error-floor performance compared

to random mappings and the mappings obtained by the BSA.

In Chapter 4, we have introduced a novel mapping method to construct efficient MD

mappings to improve the error performance of BICM-ID over Rayleigh fading channels. We

have broken the MD mapping design problem into four distinct 2-D mapping functions.
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6.2. Future work

Then, we have developed cost functions, which are optimized to minimize the error-floor

of MD mappings. Due to the lower complexity of 2-D space, the optimization approach

is very simple and results in excellent MD mappings of higher order constellations such

as 2m-QAM for m = 7, 8, 9, 10. However, the well-known BSA becomes intractable in

finding suitable MD mappings of these large constellations. In the case of MD mapping

of 2m-QAM for m = 4, 5, 6, our proposed mappings outperform the BSA mappings at the

BER of practical interest, i.e., 10−6, by up to 2.6 dB. In addition, the proposed mappings

offer lower error-floors compared to their BSA counterparts. Consequently, our proposed

mappings outperform the best previously known mappings, i.e., the BSA mappings, in

both low and high SNR regions.

In chapter 5, we have proposed an optimum MD mapping of 16-QAM for BICM-

ID performance over the AWGN channel. Then, a transferring system is developed to

construct MD mappings of higher order QAMs using the proposed MD mapping of 16-

QAM. It is proven that the proposed transferring system guarantees efficient MD mappings

of 2m-QAM (unlimited value of m). Simulation results show that our proposed mappings

save up to 3.6 dB of the transmit power for a target BER of 10−6 compared to the well-

known BSA mappings. Moreover, our proposed mappings improve the error-floor of BICM-

ID. Consequently, for MDmapping of medium constellations such as 64-QAM, our proposed

mappings outperforms the BSA mappings, in both low and high SNR region over the

AWGN channel. Moreover, our proposed method constructs efficient unlimited dimension

mappings of unlimited order QAMs for AWGN channels.

6.2 Future work

For all the results and methods presented in this thesis, it is assumed that the CSI is

perfectly known at the receiver side. However, for many practical applications, the CSI is

partially known at the receiver. In this case, all mapping design guidelines might be subject

to change. As a result, new mapping methods will be required for different modulations

based on the new mapping guidelines.

This thesis addresses the mapping problem for the constellations with fixed signal

points. In particular, the proposed mapping methods in this thesis mostly consider the

QAM and PSK constellations. However, changing the signal points’ positions in the con-

stellations can improve the system performance significantly. Therefore, optimizing signal

constellations for BICM-ID as well as finding suitable mappings for the optimized constel-

lations are interesting problems to address in future work.

78



Bibliography

[1] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,” IEEE Trans. Commun., vol.

40, pp. 873-884, May 1992.

[2] A. Alvarado “Towards fully optimized BICM transmissions,” Ph.D. dissertation, Dept.

Sign. and syst., Chalmers Univ. of Tech., Goteborg, Sweden 2010.

[3] X. Li and J. A. Ritcey, “Bit-interleaved coded modulation with iterative decoding,”

IEEE Commun. Lett., vol. 1, pp. 169-171, Nov. 1997.

[4] S. T. Brink, J. Speidel, and R. H. Han, “Iterative demapping for QPSK modulation,”

Electron. Lett., vol. 34, pp. 1459-1460, Jul. 1998.

[5] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, “Soft-input soft-output modules

for the construction and distributed iterative decoding of code networks,” Eur. Trans.

Telecommun., vol. 9, pp. 155-172, Mar. 1998.

[6] X. Li, A. Chindapol, and J. A. Ritcey, “Bit-interleaved coded modulation with iterative

decoding and 8PSK signaling,” IEEE Trans. Commun., vol. 50, pp. 1250-1257, Aug.

2002.

[7] N. H. Tran and H. H. Nguyen “A novel multi-dimensional mapping of 8-PSK for

BICM-ID,” IEEE Trans. Wireless Commun., vol. 6, pp. 1133-1142, Mar. 2007.

[8] N. H. Tran and H. H. Nguyen, “Signal mappings of 8-ary constellations for bit inter-

leaved coded modulation with iterative decoding,” IEEE Trans. Broadcasting, vol. 52,

pp. 92-99, Mar. 2006.

[9] F. Schreckenbach, N. Gortz, J. Hagenauer, and G. Bauch,“Optimized symbol mappings

for bit-interleaved coded modulation with iterative decoding,” IEEE Global Telecom-

munications Conference, vol. 6, pp. 3316-3320, Dec. 2003.

[10] N. H. Tran and H. H. Nguyen, “Improving the performance of QPSK BICM-ID by

mapping on the hypercube,” IEEE Veh. Technol. Conf., pp. 1299-1303, Sept. 2004.

79



Bibliography Bibliography
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Appendix A

Proof for Proposition 2.3

Proof. We prove Proposition 2.3 for two groups of modulations as follows: (i) PSK and

square QAM and (ii) cross QAM.

PSK and square QAM: Perfect Gray mappings can be obtained from the natural binary

labeling for PSK and square QAM constellations using the simple procedure described in

[29] and [30]. It is well-known that a given symbol in a Gray mapping has the Hamming

distance of one bit from each of its adjacent symbols.

If lk = [l1k, l
2
k, · · · , lmk ] and ln = [l1n, l

2
n, · · · , lmn ] are two m-bit labels, the proposed

mapping method maps lk and ln to the symbols whose labels in the corresponding Gray

mapping are l̂k = [l̂1k, l̂
2
k, · · · , l̂mk ] and l̂n = [l̂nl , l̂

2
n, · · · , l̂mn ], respectively. Thus, if lk and

ln are adjacent symbols in the resulting mapping, l̂k and l̂n are adjacent symbols in the

Gray mapping and have the Hamming distance of one bit from each other. According to

Proposition 2.2 (c.f., eq. (2.12)), the original label lt can be obtained uniquely from its

precoded version l̂t using the reverse process, i.e., lt = Ψ−1(̂lt). Hence, in order to prove

that a given symbol in the resulting mapping, e.g., lk, has the Hamming distance of either

two, (m − 1) or m bits from its neighbour, e.g., ln, we need to prove the following. If l̂k

and l̂n have the Hamming distance of one bit from each other, lk and ln should have the

Hamming distance of either two, (m− 1) or m bits from each other. Using eq. (2.12), we

can rewrite l̂k and l̂n as follows:

lik =

{
l̂ik ⊕ l̂

q
k if i ̸= q,

W (̂lk)⊕A(m)× l̂qk otherwise,
(A.1)

lin =

{
l̂in ⊕ l̂

q
n if i ̸= q,

W (̂ln)⊕A(m)× l̂qn otherwise.
(A.2)

Since both of l̂k and l̂n have the same length, A(m) takes the same value in eq. (A.1) and

eq. (A.2). Assume that l̂k and l̂n differ only at the jth bit position and chosen-index is

equal to q. There are two cases as follows:
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Appendix A. Proof for Proposition 2.3

Case 1: j = q. Since lk and ln differ in the jth bit position and when j = q, we can write{
l̂ik =

¯̂
lin if i = q,

l̂ik = l̂in otherwise,
(A.3)

then if l̂qk = B, using eq. (A.3) we have l̂qn =
¯̂
lqk = B̄. Since l̂k and l̂n differ in one bit

position, one of them has an odd Hamming wight and the other has an even Hamming

wight. As a result, if W (̂lk) = C, W (̂ln) = C̄. Hence, when i ̸= q, by replacing l̂ik by l̂in, l̂
q
k

by B, W (̂lk) by C, l̂qn by B̄, and W (̂ln) by C̄ we can rewrite eq. (A.1) and eq. (A.2) as

follows:

lik =

{
l̂in ⊕B if i ̸= q,

C ⊕A(m)×B otherwise,
(A.4)

lin =

{
l̂in ⊕ B̄ if i ̸= q,

C̄ ⊕A(m)× B̄ otherwise.
(A.5)

Let us assume that lx = [l1x, l
2
x, · · · , lmx ] and lx = lk⊕ ln, i.e., lix = lik⊕ lin for all i. Using

eq. (A.4) and eq. (A.5), we can write

lix = lik ⊕ lin =

{
l̂in ⊕B ⊕ l̂in ⊕ B̄ if i ̸= q,

C ⊕ (A(m)×B)⊕ C̄ ⊕ (A(m)× B̄) otherwise.
(A.6)

Using the fact l̂in ⊕B ⊕ l̂in ⊕ B̄ = (l̂in ⊕ l̂in)⊕ (B ⊕ B̄) = 0⊕ 1 = 1 and C ⊕ (A(m)×B)⊕
C̄ ⊕ (A(m)× B̄) = (C ⊕ C̄)⊕ A(m)× (B ⊕ B̄) = (1⊕ A(m)) = Ā(m), we can rewrite eq.

(A.6) as

lix =

{
1 if i ̸= q,

Ā(m) otherwise.
(A.7)

If m is odd, Ā(m) = 1 (c.f., Proposition 2.2) and lx = lk ⊕ ln has a Hamming weight

of m, which implies that the labels of two adjacent symbols, lk and ln, in the resulting

mapping are different in all m bit positions. On the other hand, if m is even, Ā(m) = 0

(c.f., Proposition 2.2) and lx has the Hamming weight of (m− 1). This implies that lk and

ln are different in (m− 1) bits.

Case 2: j ̸= q . In this case using eq. (2.1), we can rewrite eq. (A.1) and eq. (A.2) as
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follows:

lik =


l̂jk ⊕ l̂

q
k if i ̸= q, i = j,

l̂ik ⊕ l̂
q
k if i ̸= q, i ̸= j,

W (l̂k)⊕A(m)× l̂qk if i = q,

(A.8)

lin =


l̂jn ⊕ l̂qn if i ̸= q, i = j,

l̂in ⊕ l̂
q
n if i ̸= q, i ̸= j

W (l̂n)⊕A(m)× l̂qn if i = q.

(A.9)

Since l̂k and l̂n differ only in the jth bit position, if l̂jk = B, we can write l̂jl =
¯̂
ljk = B̄.

When i ̸= j, we have l̂ik = l̂in, which yields l̂qk = l̂qn as well. Moreover, Since l̂k and l̂n differ

in one bit position, one of them has an odd Hamming weight and the other one has an even

Hamming weight. As a result, if W (̂lk) = C, we can write W (̂ln) = C̄. Thus, by replacing

l̂jk by B, l̂jn by B̄, l̂ik by l̂in, l̂
q
k by l̂qn, W (̂lk) by C and W (̂ln) by C̄, we can rewrite eq. (A.8)

and eq. (A.9) as follows:

lik =


B ⊕ l̂qn if i ̸= q, i = j,

l̂in ⊕ l̂
q
n if i ̸= q, i ̸= j,

C ⊕A(m)× l̂qn if i = q,

(A.10)

lin =


B̄ ⊕ l̂qn if i ̸= q, i = j,

l̂in ⊕ l̂
q
n if i ̸= q, i ̸= j,

C̄ ⊕A(m)× l̂qn if i = q.

(A.11)

Let us assume that lx = [l1x, l
2
x, · · · , lmx ] and lx = lk ⊕ ln, i.e., lix = lik ⊕ lin for all i. As a

result, using eq. (A.10) and eq. (A.11) we can write

lix = lik ⊕ lin =


B ⊕ l̂qn ⊕ B̄ ⊕ l̂qn if i ̸= q, i = j,

l̂in ⊕ l̂
q
n ⊕ l̂in ⊕ l̂

q
n if i ̸= q, i ̸= j,

C ⊕ (A(m)× l̂qn)⊕ C̄ ⊕ (A(m)× l̂qn) if i = q.

(A.12)

Using the facts B ⊕ l̂qn ⊕ B̄ ⊕ l̂qn = (B ⊕ B̄) ⊕ (l̂qn ⊕ l̂qn) = 1 ⊕ 0 = 1, l̂in ⊕ l̂
q
n ⊕ l̂in ⊕ l̂

q
n =

(l̂in ⊕ l̂in) ⊕ (l̂qn ⊕ l̂qn) = 0 ⊕ 0 = 0 and C ⊕ (A(m) × l̂qn) ⊕ C̄ ⊕ (A(m) × l̂qn) = (C ⊕ C̄) ⊕
A(m)× (l̂qn ⊕ l̂qn) = 1⊕ (A(m)× 0) = 1, we rewrite eq. (A.12) as

lix = lik ⊕ lin =


1 if i ̸= q, i = j,

0 if i ̸= q, i ̸= j,

1 if i = q.

(A.13)
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Thus, the Hamming weight of lx = lk ⊕ ln is two, which implies that the labels of two

adjacent symbols in the resulting mapping, i.e., lk and ln, are different in two bit positions.

In summary, if lk and ln are the labels of two adjacent symbols in the resulting square

QAM or PSK constellations with our proposed mapping and l̂k and l̂n are different in one

bit position, say the jth bit position, the Hamming distance between lk and ln denoted by

dH(lk, ln) is given by (from the above discussions):

dH(lk, ln) =


m if j = q, and m is odd,

m− 1 if j = q, and m is even,

2 if j ̸= q,

(A.14)

where q is the chosen-index, and j = 1, 2, · · · ,m, is the bit position in which the labels of

two adjacent symbols in the Gray mapping are different from each other. Let us assume that

the chosen-index is equal to q. Then, if j = q, the Hamming distance between two adjacent

symbols in our resulting PSK and square QAM mappings is dH(lk, ln) = m or (m−1) (c.f.,

eq. (A.14)). However, for a given value of q, the fraction of the time that we get j = q for

two adjacent symbols is less than 1
m . Therefore, the fraction of adjacent symbols that will

have the Hamming distance of m or (m− 1) bits is less than 1
m , which tends to be smaller

for higher order constellations. Also, the fraction of adjacent symbols that will have the

Hamming distance of two bits from each other is larger than (m−1
m ), which tends to be

larger for higher order constellations. Therefore, our proposed mapping method yields a

smaller average Hamming distance between adjacent symbols in the resulting PSK and

square QAM mappings especially for larger constellations as shown in Table A.1.

Table A.1: Hamming distance between adjacent symbols for proposed mappings.

Modulation m
Total num-
ber of ad-
jacent sym-
bols

Percentage of adjacent
symbols with Hamming
distance of 2 bits

Percentage of adjacent
symbols with Hamming
distance of (m − 1) bits

Percentage of adjacent
symbols with Hamming
distance of m bits

Average Ham-
ming distance
between adjacent
symbols

16-QAM 4 24 83.33% 16.67% 0% 2.17

32-QAM 5 52 88.46% 0% 11.54% 2.35

64-QAM 6 112 92.86% 7.14% 0% 2.21

128-QAM 7 232 94.83% 0% 5.17% 2.26

256-QAM 8 480 96.67% 3.33% 0% 2.17

512-QAM 9 976 97.54% 0% 2.46% 2.17

1024-QAM 10 1984 98.39% 1.61% 0% 2.11

16-PSK 4 16 87.50% 12.5% 0% 2.13

32-PSK 5 32 93.75% 0% 6.25% 2.19

64-PSK 6 64 96.87% 3.13% 0% 2.09

128-PSK 7 128 98.44% 0% 1.56% 2.08

256-PSK 8 256 99.22% 0.78% 0% 2.04

512-PSK 9 512 99.61% 0% 0.39% 2.03

1024-PSK 10 1024 99.80% 0.20% 0% 2.01
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Cross QAM: Perfect Gray mappings cannot be defined for cross QAM constellations.

However, pseudo-Gray mappings can be obtained for such constellations using the proce-

dure described in [29] and [31]. It is worth noting that the Hamming distance between

two adjacent symbols in a pseudo-Gray mapping of a cross QAM constellation is at most

2 bits.

Let lk and ln be the labels of two adjacent symbols in our proposed mapping for a

cross QAM. Thus, l̂k and l̂n are the labels of the adjacent symbols in the corresponding

pseudo-Gray mapping of the constellation and have the Hamming distance of either one

or two bits from each other. In order to prove that the label of a symbol in the proposed

mapping e.g., lk, has the Hamming distance of either two, (m−1) or m bits from the label

of its neighbouring symbols, e.g., ln, it suffices to prove the following. If l̂k and l̂n have the

Hamming distance of one or two bits from each other, then the Hamming distance between

lk and ln is either two, (m − 1), or m bits. It is already proven that if l̂k and l̂n have a

Hamming distance of one bit, lk and ln have a Hamming distance of either two, (m− 1),

or m from each other. As a result, we need to prove that, if l̂k and l̂n have the Hamming

distance of two bits from each other, then lk and ln have the Hamming distance of either

two, (m− 1), or m bits from each other. This proof is given below.

Assume that l̂k and l̂n are different in two bit positions, i.e., the hth and the jth bit

positions, and the chosen-index is equal to q. Two cases can be discussed as follows.

Case 1: h ̸= q and j ̸= q. In this case, we can rewrite eq. (A.1) and eq. (A.2) as follows:

lik =


l̂hk ⊕ l̂

q
k if i ̸= q, i = h,

l̂jk ⊕ l̂
q
k if i ̸= q, i = j,

l̂ik ⊕ l̂
q
k if i ̸= q, i ̸= h, i ̸= j,

W (l̂k)⊕A(m)× l̂qk if i = q,

(A.15)

lil =


l̂hn ⊕ l̂

q
n if i ̸= q, i = h,

l̂jn ⊕ l̂qn if i ̸= q, i = j,

l̂in ⊕ l̂
q
n if i ̸= q, i ̸= h, i ̸= j,

W (l̂n)⊕A(m)× l̂qn if i = q.

(A.16)

Since l̂k and l̂n are different in the hth and the jth bit positions, if l̂hk = B, then l̂hn =
¯̂
lhk = B̄,

and if l̂jk = C, then l̂jn =
¯̂
ljk = C̄. Also if i ̸= h and i ̸= j, then l̂ik = l̂in, which results

in l̂qk = l̂qn. Moreover, since l̂k and l̂n differ in two bit positions, both of them has either

an odd Hamming weight or an even Hamming weight. As a result, if W (̂lk) = D, then

W (̂ln) = D as well. Thus, in eq. (A.15) and eq. (A.16), by replacing l̂hk by B, l̂hn by B̄, l̂jk
by C, l̂jn by C̄, l̂ik by l̂in, l̂

q
k by l̂qn, W (̂lk) by D, and W (̂ln) by D, we can rewrite eq. (A.15)
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and eq. (A.16) as follows:

lik =


B ⊕ l̂qn if i ̸= q, i = h,

C ⊕ l̂qn if i ̸= q, i = j,

l̂in ⊕ l̂
q
n if i ̸= q, i ̸= h, i ̸= j,

D ⊕A(m)× l̂qn if i = q,

(A.17)

lin =


B̄ ⊕ l̂qn if i ̸= q, i = h,

C̄ ⊕ l̂qn if i ̸= q, i = j,

l̂in ⊕ l̂
q
n if i ̸= q, i ̸= h, i ̸= j,

D ⊕A(m)× l̂qn if i = q.

(A.18)

Let us assume that lx = [l1x, l
2
x, · · · , lmx ] and lx = lk ⊕ ln so that ∀i; lix = lik ⊕ lin. As a

result, using eq. (A.17) and eq. (A.18) we have

lix = lik ⊕ lin =


B ⊕ l̂qn ⊕ B̄ ⊕ l̂qn if i ̸= q, i = h,

C ⊕ l̂qn ⊕ C̄ ⊕ l̂qn if i ̸= q, i = j,

l̂in ⊕ l̂
q
n ⊕ l̂in ⊕ l̂

q
n if i ̸= q, i ̸= h, i ̸= j,

D ⊕ (A(m)× l̂qn)⊕D ⊕ (A(m)× l̂ql ) if i = q.

(A.19)

In eq. (A.19), B ⊕ l̂qn ⊕ B̄ ⊕ l̂qn results in (B ⊕ B̄) ⊕ (l̂qn ⊕ l̂qn), which equals to 1 ⊕ 0 = 1;

C⊕ l̂qn⊕C̄⊕ l̂qn results in (C⊕C̄)⊕(l̂qn⊕ l̂qn), which equals to 1⊕0 = 1; l̂in⊕ l̂
q
n⊕ l̂in⊕ l̂

q
n results

in (l̂in⊕ l̂in)⊕(l̂
q
n⊕ l̂qn), which equals to 0⊕0 = 0. Moreover, D⊕(A(m)× l̂qn)⊕D⊕(A(m)× l̂qn)

results in (D ⊕D) ⊕ A(m) × (l̂qn ⊕ l̂qn), which equals to 0 ⊕ A(m) × 0 = 0. Consequently,

we can rewrite eq. (A.19) as

lix = lik ⊕ lin =


1 if i ̸= q, i = h,

1 if i ̸= q, i = j,

0 if i ̸= q, i ̸= h, i ̸= j,

0 if i = q.

(A.20)

Thus, the Hamming weight of lx = lk⊕ ln is two, which implies that in this case, the labels

of two adjacent symbols in the proposed mapping, i.e., lk and ln, are different only in two

bit positions.

Case 2: One of h or j is equal to q. Without losing generality, we assume that h = q
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and j ̸= q4. In this case, we can rewrite eq. (A.1) and eq. (A.2) as follows:

lik =


l̂jk ⊕ l̂

q
k if i ̸= q, i = j,

l̂ik ⊕ l̂
q
k if i ̸= q, i ̸= j

W (l̂k)⊕A(m)× l̂qk if i = q,

(A.21)

lin =


l̂jn ⊕ l̂qn if i ̸= q, i = j,

l̂in ⊕ l̂
q
n if i ̸= q, i ̸= j

W (l̂n)⊕A(m)× l̂qn if i = q.

(A.22)

Since l̂k and l̂n differ in the qth and the jth bit positions, if l̂qk = B, then l̂qn =
¯̂
lqk = B̄, and

if l̂jk = C, then l̂jn =
¯̂
ljk = C̄. Also, if i ̸= q and i ̸= j, then l̂ik = l̂in. Moreover, since l̂k and

l̂n differ in two bit positions, then both of them has either an odd Hamming weight or an

even Hamming weight. As a result, if W (̂lk) = D, then W (̂ln) = D as well. Hence, by

replacing l̂qk by B, l̂qn by B̄, l̂jk by C, l̂jn by C̄, l̂ik by l̂in, W (̂lk) by D, and W (̂ln) by D, we

can rewrite eq. (A.21) and eq. (A.22) as follows:

lik =


C ⊕B if i ̸= q, i = j,

l̂in ⊕B if i ̸= q, i ̸= j

D ⊕A(m)×B if i = q,

(A.23)

lin =


C̄ ⊕ B̄ if i ̸= q, i = j,

l̂in ⊕ B̄ if i ̸= q, i ̸= j

D ⊕A(m)× B̄ if i = q.

(A.24)

Suppose that lx = [l1x, l
2
x, · · · , lmx ] and lx = lk ⊕ ln such that ∀i; lix = lik ⊕ lin. As a result,

using eq. (A.23) and eq. (A.24) we can write

lix = lik ⊕ lin =


C ⊕B ⊕ C̄ ⊕ B̄ if i ̸= q, i = j,

l̂in ⊕B ⊕ l̂in ⊕ B̄ if i ̸= q, i ̸= j,

D ⊕ (A(m)×B)⊕D ⊕ (A(m)× B̄) if i = q.

(A.25)

In eq. (A.25), C ⊕ B ⊕ C̄ ⊕ B̄ results in (B ⊕ B̄) ⊕ (C ⊕ C̄), which equals 1 ⊕ 1 = 0;

l̂in⊕B⊕ l̂in⊕ B̄ results in (l̂in⊕ k̂in)⊕ (B⊕ B̄), which equals 0⊕1 = 1; D⊕ (A(m)×B)⊕D⊕
(A(m)× B̄) results in (D⊕D)⊕A(m)× (B⊕ B̄), which equals to 0⊕ (A(m)× 1) = A(m).

It is worth noting that since m is odd for non-square QAM, then A(m) is equal to 0.

4It is important to note that it has no importance that which of h or j is equal to q. Both of them give
exactly the same result.
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Consequently, we can rewrite eq. (A.25) as

lix = lik ⊕ lin =


0 if i ̸= q, i = j,

1 if i ̸= q, i ̸= j,

0 if i = q.

(A.26)

As a result, the Hamming weight of lx = lk ⊕ ln is m − 2; in this case, the labels of two

adjacent symbols in the proposed mapping, i.e., lk and ln, are different only in (m − 2)

bit positions. However, in a pseudo-Gray mapping of a cross QAM constellation, if S is

the set of all possible values of j and h, then the cardinality of the set S is equal to 3.

Therefore, by choosing q (chosen-index) such that q ̸= j and q ̸= h, there will not be any

Hamming distance of (m−2) bits between two adjacent symbols in the proposed mappings

of a cross-QAM constellation. As a result, all two bit Hamming distances between l̂k and

l̂n in the pseudo-Gray mapping result in a two bit Hamming distances between lk and ln in

the proposed mappings. However, using eq (A.14), when the Hamming distance between

l̂k and l̂n in the pseudo-Gray mapping is one bit, there will be a Hamming distance of m

bits between two adjacent symbols in the proposed mappings. This happens only when

l̂k and l̂n are different at the qth bit position. As a result, for the proposed cross QAM

mappings, the fraction of adjacent symbols with Hamming distance m can be at most 1
m ,

and consequently, the fraction of adjacent symbols with Hamming distance two is larger

that (m−1
m ).
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Proof for Proposition 5.6

Let us define li = [ei, li−1], where ei = [e1i , · · · , eNi ], in which eji = lji , and li−1 =

[l1i−1, · · · , l
(i+2)N
i−1 ], in which lji−1 = lN+j

i . Similarly, we define li,k = [ei,k, li−1,k], where

ei,k = [e1i,k, · · · , eNi,k], in which eji,k = lji,k, and li−1,k = [l1i−1,k, · · · , l
(i+2)N
i−1,k ], in which lji−1,k =

lN+j
i,k . Suppose that in step i− 1, li−1 and li−1,k are mapped to si−1 = [s1i−1, · · · , sNi−1] and

si−1,k = [s1i−1,k, · · · , sNi−1,k], respectively. We group all possible cases for li and li,k in 10

cases (B.1) and investigate them in the following. When k ≤ N (Case 1 to Case 7 ), ei

and ei,k are different only in the kth bit position. Without loss of generality, it is assumed

that in Case 1-7, the Hamming weight of ei and ei,k is even and odd, respectively.

k 6 N



j ̸= k


eji = eji,k = 0; Case 1

eji = eji,k = 1

{
i ∈ E; Case 2

i ∈ O; Case 3

j = k


eji = ēji,k = 0

{
i ∈ E; Case 4

i ∈ O; Case 5

eji = ēji,k = 1

{
i ∈ E; Case 6

i ∈ O; Case 7

k > N


wi ∈ E; Case 8

wi ∈ O

{
sgn(xji−1) = sgn(xji−1,k); Case 9

sgn(xji−1) = −sgn(x
j
i−1,k); Case 10

(B.1)

Case 1 : k 6 N , j ̸= k, eji = eji,k = 0. Using Table 5.4 we can write

xji − x
j
i,k = sgn(xji−1,k)2

m−⌊m
2
⌋−1 (B.2)

yji − y
j
i,k = sgn(yji−1,k)2

⌊m
2
⌋−1,

and as a result,
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|sji − s
j
i,k|

2 = |xji − x
j
i,k|

2 + |yji − y
j
i,k|

2 (B.3)

= 22m−2⌊m
2
⌋−2 + 22⌊

m
2
⌋−2

= d̂25.

Case 2 : k 6 N , j ̸= k, eji = eji,k = 1, i ∈ E. Using Table 5.4 we can write

xji − x
j
i,k = sgn(xji−1,k)2

m−⌊m
2
⌋−1 (B.4)

yji − y
j
i,k = sgn(yji−1,k)2

⌊m
2
⌋−1,

and as a result,

|sji − s
j
i,k|

2 = |xji − x
j
i,k|

2 + |yji − y
j
i,k|

2 (B.5)

= 22m−2⌊m
2
⌋−2 + 22⌊

m
2
⌋−2

= d̂25.

Case 3 : k 6 N , j ̸= k, eji = eji,k = 1, i ∈ O. Using Table 5.4, we can write

xji − x
j
i,k = sgn(xji−1,k)2

m−⌊m
2
⌋−1 (B.6)

yji − y
j
i,k = sgn(yji−1,k)2

⌊m
2
⌋−1,

and as a result,

|sji − s
j
i,k|

2 = |xji − x
j
i,k|

2 + |yji − y
j
i,k|

2 (B.7)

= 22m−2⌊m
2
⌋−2 + 22⌊

m
2
⌋−2

= d̂25.

Case 4 : k 6 N , j = k, eji = ēji,k = 0, i ∈ E. Using Table 5.4, we can write

xji − x
j
i,k = (sgn(xji−1,k)− 2−⌊ j

2
⌋−1)2m−⌊m

2
⌋−1 (B.8)

yji − y
j
i,k = sgn(yji−1)2

⌊m
2
⌋−1.

Since |sgn(xji−1,k)− 2−⌊ j
2
⌋−1| ≥ 2−1, then
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|sji − s
j
i,k|

2 = |xji − x
j
i,k|

2 + |yji − y
j
i,k|

2 (B.9)

> 22m−2⌊m
2
⌋−4 + 22⌊

m
2
⌋−2

= d̂24.

Case 5 : k 6 N , j = k, eji = ēji,k = 0, i ∈ O. Using Table 5.4, we can write

xji − x
j
i,k = sgn(xji−1,k)2

m−⌊m
2
⌋−1 (B.10)

yji − y
j
i,k = 2⌊

m
2
⌋−1(2−⌊ j−1

2
⌋−1 + sgn(yji−1,k)),

Since |2−⌊ j−1
2

⌋−1 + sgn(yji−1,k)| ≥ 2−1, then

|sji − s
j
i,k|

2 = |xji − x
j
i,k|

2 + |yji − y
j
i,k|

2 (B.11)

> 22m−2⌊m
2
⌋−2 + 22⌊

m
2
⌋−4

= d̂24.

Case 6 : k 6 N , j = k, eji = ēji,k = 1, i ∈ E. Using Table 5.4, we can write

xji − x
j
i,k = 2m−⌊m

2
⌋−1(2−⌊ j

2
⌋−1 + sgn(xki−1)) (B.12)

yji − y
j
i,k = sgn(yji−1,k)2

⌊m
2
⌋−1.

Since |2−⌊ j
2
⌋−1 + sgn(xji−1)| ≥ 2−1, then

|sji − s
j
i,k|

2 = |xji − x
j
i,k|

2 + |yji − y
j
i,k|

2 (B.13)

> 22m−2⌊m
2
⌋−4 + 22⌊

m
2
⌋−2

= d̂24.

Case 7 : k 6 N , j = k, eji = ēji,k = 1, i ∈ O. Using Table 5.4 we can write

xji − x
j
i,k = sgn(xji−1,k)2

m−⌊m
2
⌋−1 (B.14)

yji − y
j
i,k = 2⌊

m
2
⌋−1(−2−⌊ j−1

2
⌋−1 + sgn(yji−1,k)).
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Since | − 2−⌊ j−1
2

⌋−1 + sgn(yji−1,k)| ≥ 2−1, then

|sji − s
j
i,k|

2 = |xji − x
j
i,k|

2 + |yji − y
j
i,k|

2 (B.15)

> 22m−2⌊m
2
⌋−2 + 22⌊

m
2
⌋−4

= d̂24.

From Case 1 to Case 7, we conclude that

{
|sji − s

j
i,k|

2 = d̂25 if j ̸= k, k 6 N

|sji − s
j
i,k|

2 > d̂24 if j = k, k 6 N,
(B.16)

which results in

∥si − si,k∥2 =

N∑
j=1

∥sji − s
j
i,k∥

2 (B.17)

= (N − 1)d̂25 + |ski − ski,k|2

> (N − 1)d̂25 + d̂24.

It is worth noting that in Case 8-10, k is greater than N ; therefore, ei = ei,k.

Case 8 : k > N , wi ∈ E. Let us define sji = sji−1 + γji and sji,k = sji−1,k + γji,k, where

γji = (xji −x
j
i−1)+ I(y

j
i − y

j
i−1) and γ

j
i,k = (xji,k−x

j
i−1,k)+ I(y

j
i,k− y

j
i−1,k). Using Table 5.4,

for all values of i we can write

γji,k = γji =


0 if eji = 0

2m−⌊m
2
⌋−⌊ j

2
⌋−2 if eji = 1, i ∈ E

−I2⌊
m
2
⌋−⌊ j−1

2
⌋−2 if eji = 1, i ∈ O,

(B.18)

and as a result,

|sji − s
j
i,k| = |sji−1 + γji − s

z
i−1,k − γ

j
i,k| (B.19)

= |sji−1 − s
j
i−1,k|.

When k > N and wi ∈ O, using Table 5.4 we can write
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xji − x
j
i,k = (xji−1 − x

j
i−1,k) + (sgn(xji−1,k) (B.20)

−sgn(xji−1))2
m−⌊m

2
⌋−1,

yji − y
j
i,k = (yji−1 − y

j
i−1,k) + (sgn(yji−1,k)

−sgn(yji−1))2
⌊m

2
⌋−1.

Let us define ∇x = m − ⌊m2 ⌋ and ∆x,i = (xji − x
j
i,k). Without loss of generality, assume

that xji−1 > xji−1,k and therefore ∆x,i−1 > 0. In Case 9 and Case 10, we prove that

{
2∇x−2 ≤ |∆x,i| ≤ 3× 2∇x−2 if 2∇x−2 ≤ |∆x,i−1| ≤ 3× 2∇x−2

|∆x,i| = 2∇x−1 if |∆x,i−1| = 2∇x−1.
(B.21)

Case 9 : k > N , wi ∈ O, sgn(xji−1) = sgn(xji−1,k). Using (B.20) we have (xji − x
j
i,k) =

(xji−1 − x
j
i−1,k) and therefore |∆x,i| = |∆x,i−1|. As a result, |∆x,i| possesses all the features

of |∆x,i−1|. This indeed proves (B.21) for this case.

Case 10 : k > N , wi ∈ O, sgn(xji−1) = −sgn(x
j
i−1,k). Without loss of generality, assume

that sgn(xji−1) = 1. From (B.20) we can write

xji − x
j
i,k = xji−1 − x

j
i−1,k − 2∇x , (B.22)

which results in

|∆x,i| = ||∆x,i−1| − 2∇x |. (B.23)

If 2∇x−2 6 |∆x,i−1| 6 3× 2∇x−2, we can use (B.23) to write

2∇x−2 6 |∆x,i| 6 3× 2∇x−2. (B.24)

In particular, if |∆x,i−1| = 2∇x−1, from (B.23) we have

|∆x,i| = 2∇x−1. (B.25)

Suppose ∇y = ⌊m2 ⌋, ∆y,i = (yji − y
j
i,k), and y

j
i−1 > yji−1,k. Following the same approach

in the above two cases, we can prove

{
2∇y−2 ≤ |∆y,i| ≤ 3× 2∇y−2 if 2∇y−2 ≤ |∆y,i−1| ≤ 3× 2∇y−2

|∆y,i| = 2∇y−1 if |∆y,i−1| = 2∇y−1.
(B.26)
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Assume that in step (i − 1) and for j ̸= j′ (j′ ∈ {1, · · · , N}), (i) |sji−1 − s
j
i−1,k| = d̂5,

i.e., |∆x,i−1| = 2∇x−1 and |∆y,i−1| = 2∇y−1, and (ii) for j = j′ we have either

{
2∇x−2 ≤ |∆x,i−1| ≤ 3× 2∇x−2

|∆y,i−1| = 2∇y−1
(B.27)

or

{
|∆x,i−1| = 2∇x−1

2∇y−2 ≤ |∆y,i−1| ≤ 3× 2∇y−2.
(B.28)

It is important to note that the above assumption is already true for step 1 (see proposition

5.5) and for any step when k 6 N (see Case 1-7 ). Using (B.27) and (B.28), in step i, we

have |sji − s
j
i,k| = d̂5 for j ̸= j′; and when j = j′, one of the followings will be satisfied:

{
2∇x−2 ≤ |∆x,i| ≤ 3× 2∇x−2

|∆y,i| = 2∇y−1
(B.29)

or

{
|∆x,i| = 2∇x−1

2∇y−2 ≤ |∆y,i| ≤ 3× 2∇y−2.
(B.30)

From (B.29) and (B.30), we conclude that |sj
′

i − s
j′

i,k| > d̂4. As a consequence, we can write

{
|sji − s

j
i,k| = d̂5 if j ̸= j′

|sji − s
j
i,k| > d̂4 if j = j′.

(B.31)

From (B.31), we have

∥si − si,k∥2 =

N∑
j=1

∥sji − s
j
i,k∥

2 (B.32)

= (N − 1)d̂25 + |s
j′

i − s
j′

i,k|
2

> (N − 1)d̂25 + d̂24.
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Finally, using (B.17) and (B.32) it is concluded that in step i, we have

∥si − si,k∥2 > (N − 1)d̂25 + d̂24, (B.33)

which implies that d̂2min,i ≥ (N − 1)d̂25 + d̂24.
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