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Abstract

While folds and pleats add interest to garments and cloth objects, incorporating

them into an existing design manually or using existing software requires expertise

and time. This thesis presents FoldSketch, a new system that supports simple and

intuitive fold and pleat design. FoldSketch users specify the fold or pleat config-

uration they seek using a simple schematic sketching interface; the system then

algorithmically generates both the fold-enhanced 3D garment geometry that con-

forms to user specifications, and the corresponding 2D patterns that reproduce this

geometry within a simulation engine. While previous work aspired to compute

the desired patterns for a given target 3D garment geometry, the main algorithmic

challenge here is that the target geometry is missing. Real-life garment folds have

complex profile shapes, and their exact geometry and location on a garment are

intricately linked to a range of physical factors; it is therefore virtually impossible

to predict the 3D shape of a fold-enhanced garment using purely geometric means.

At the same time, using physical simulation to model folds requires appropriate 2D

patterns and initial drape, neither of which can be easily provided by the user.

FoldSketch obtains both the 3D fold-enhanced garment and its corresponding

patterns and initial drape via an alternating 2D-3D algorithm. We first expand the

input patterns by allocating excess material for the expected fold formation; then

we use these patterns to produce an estimated fold-enhanced target drape geometry

that balances designer expectations against physical reproducibility. Next, we gen-

erate an initial reproducible output using the expanded patterns and the estimated

target drape as input to a garment simulation engine. Then we improve the output’s

alignment with designer expectations by progressively refining the patterns and the

estimated target drape, converging to a final fully physically reproducible fold-
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enhanced garment. The experiments confirm that FoldSketch reliably converges to

a desired garment geometry and corresponding patterns and drape, and works well

with different physical simulators. My collaborators and I demonstrate the ver-

satility of this approach by showcasing a collection of garments augmented with

diverse fold and pleat layouts specified via the FoldSketch interface, and further

validate this approach via feedback from potential users.
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Chapter 1

Introduction

Fashion designers frequently use strategically placed folds and pleats to add in-

terest to garments and other cloth objects to increase their visual appeal. Pleats

and folds are typically formed by gathering fabric along a seamline and stitching

the gathered fabric to hold it in place. In both traditional garment design software

and manual workflows, these features are incorporated into an existing design by

first skillfully modifying the underlying 2D patterns, and then draping the garment

atop a mannequin or a dress form by meticulously positioning it to achieve the

desired fold look. This workflow requires expertise and time, since it often takes

multiple trial and error iterations to successfully incorporate the envisioned folds

or pleats into an existing design [1, 16]. We propose FoldSketch, a new algorithmic

framework for fold and pleat generation that enables users to directly generate their

desired fold-enhanced 3D garments without the need for manual pattern editing or

draping (Figure 1.1). Our output garments are physically reproducible - they can

be generated using physical simulation from a set of patterns and an initial drape

we compute. Our method applies to the design of both virtual and real cloth ob-

jects, and enables experts and amateurs alike to quickly generate sophisticated fold

and pleat configurations.

Garment design literature distinguishes between folds and pleats based on how

they are formed (Figure 1.2). While folds are formed by uniformly gathering fabric

along a seam or a hemline, pleats are formed by doubling fabric back on itself and

securing it in place. We will use the term folds in this paper to describe both folds
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Figure 1.1: Complex physically simulated fabric folds generated using
FoldSketch: Plain input flag with user sketched schematic folds (a),
original (green) and modified final (red) patterns (b); final post-
simulation flag augmented with user-expected folds (c); real-life replica
manufactured using the produced patterns (d); zooming in highlights
the complex and evolving output fold profile shapes (e).

and pleats, for simplicity’s sake, and we will only refer to pleats when addressing

pleat specific processing.

Real-life folds have complex and smoothly changing cross-section geometry

(Figure 1.1) that depends on a range of physical factors such as fabric stretchiness,

thickness, and bending flexibility (Figure 2.1). While designers have an overall
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Figure 1.2: Different types of folds and pleats supported by our framework:
(top) schematic user sketch; (bottom) output folds.

sense of how the folds they envision will look, they do not mentally account for

all these factors. It is therefore unreasonable to expect designers to communicate

an exact, detailed description of the folds they envision. Instead, using FoldS-

ketch, designers schematically provide their anticipated fold configuration, namely

their paths, magnitudes, and stitching patterns (Figures 1.1a, 1.2). Our underly-

ing algorithm then generates a detailed fold-augmented garment consistent with

this schematic input, and a set of corresponding 2D patterns and initial drape that

reproduce this garment under physical simulation (Figure 1.1d).

Translating the user’s input into detailed folds is a challenging task. Fold ge-

ometry is highly dependent on physical factors such as fabric properties and ex-

ternal forces, thus it is impossible to predict physically achievable fold shapes

without a physical simulation context. At the same time, applying a physical sim-

ulation to generate a fold-enhanced garment requires correctly extended patterns

capable of supporting the desired folds and an initial drape configuration, neither

of which is available. Previous frameworks that attempted to generate garment

folds in 3D space used highly simplified, groove-like fold shapes [32, 28, 27, 33]
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(Figure 2.2,a) which do not reflect the complexity of real-life folds. More impor-

tantly, the grooves they create are purely geometric and have no basis in real-world

physics; they are not physically realizable, and any attempt to resimulate these ge-

ometric folds using state-of-the-art physics-aware pattern computation [3] is likely

to fail ((Figure 2.2,b).

Instead, we focus on computing patterns and the initial target drape, and obtain

the output garment geometry via actual simulation that uses these as input. Our

computation employs two key observations. First, we note that while we have no

exact 3D fold geometry to begin with, we can use the designer-specified schematic

input to estimate the changes in 2D patterns necessary to accommodate their in-

tended folds. We also observe that while we do not a priori know the shape

of the final fold-augmented garment, we can distinguish between changes to the

3D garment which are consistent with the designer’s intended fold formation, and

those which are not: when editing existing garments, designers attempt to intro-

duce the modifications they envision locally while maintaining the garment shape

elsewhere [3, 1]. In the context of fold generation, designers expect to see no gar-

ment geometry changes in areas away from the folds, while in the region of interest

near the folds, they expect the fabric to bend along the specified fold direction.

We use these two observations to compute the target drape and patterns, and

use those to obtain the output garment. Starting with an input simulated garment,

its corresponding patterns, and a schematic indicating the user’s desired fold place-

ment, we compute an initial new set of 2D patterns which have sufficient material

to incorporate these folds (Chapter 5). These new patterns are optimized by ex-

tending the original patterns orthogonally to the fold paths to facilitate fold for-

mation, while minimizing any secondary changes in pattern shape away from the

user specified folds. We use the new patterns to obtain a target 3D drape that bal-

ances physical reproducibility and designer intent; this is achieved by using a sim-

ulation framework which augments standard physical forces that reflect real-life

phenomena with new synthetic forces that reflect our style preservation and fold

alignment constraints (Chapter 6). While the resulting drape conforms to designer

expectations, using it as starting point for simulation without these synthetic forces

may produce undesirable artifacts in the output garment, such as local sagging

and bulging that violates our expectation of style preservation (Figure 2.3). We
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minimize these artifacts by progressively updating both the patterns and the target

drape, reducing the difference between augmented and unconstrained simulation

outputs (Chapter 7).

We demonstrate our method’s capabilities by applying a range of diverse fold

and pleat patterns to different input garments and other cloth-made objects with

varying material properties. In all cases, the resimulated outputs reflect the de-

signer’s intended fold configurations while preserving the original style of the in-

put, and are accompanied by corresponding 2D patterns. Our framework is not

specific to a particular simulation engine; it works equally well with two distinctly

different simulation engines: Sensitive Couture [34] and ARCSim [21, 22], one

of which is optimized for speed while the other is optimized for accuracy (Fig-

ures 8.2, 8.4). We validate our approach via expert critique, and by comparisons to

alternative solutions. Finally, we generate two real cloth objects using the patterns

produced by our system, confirming its applicability to real-life fashion design

(Figures 1.1, 8.1).

Our overall contribution is a novel framework that allows expert and amateur

fashion designers to enhance existing cloth-made objects with complex fold and

pleat patterns via a simple to use interface that successfully replaces the currently

used cumbersome, and time consuming, iterative workflow for adding folds to gar-

ments. Key to our method are the pattern extension and target drape computation

procedures that incorporate cues provided by physical simulation into the geometry

optimization process.
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Chapter 2

Related Work

Our work builds upon traditional fashion design methodologies for fold creation,

algorithms for fold generation, and modern computational fashion design tools.

2.1 Garment Construction and Traditional Fold Design
Garments and other cloth objects are traditionally constructed by first cutting 2D

fabric panels following a given pattern and stitching these panels together along

shared seams. To incorporate folds into an existing design, tailors add additional

material to panels along a hemline (open boundary) or a seam. While hemline

folds form due to gravity, seam folds are formed by gathering the excess material

to match a shorter opposite panel boundary and stitching the two. Pleats are added

by folding the material sideways and stitching it in place (Figure 1.2); commonly

pleats are then ironed to keep them in position.

Designers employ a mixture of 2D and 3D fabric manipulation to form their de-

sired fold arrangements [1, 16]. They typically start with approximate 2D patterns,

then drape them around a mannequin, using pins to gather and hold the desired

fold configuration in place. Designers then trim the patterns, eliminating redun-

dant material, or alternatively repeat the cycle with wider initial patterns when the

original are insufficient to achieve the desired fold magnitude. They subsequently

adjust and repin the drape, and iterate. Successful fold design requires significant

time and skill; design courses and tutorials dedicate multiple lectures and chapters
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Figure 2.1: Given the same schematic fold notations and visually identical
input garments with different fabric properties (a) our framework pro-
duces reproducible fold-augmented garments (b,c) that reflect the dif-
ferent bending parameters of the inputs and the corresponding sets of
patterns (d) - red for the thicker fabric (b) and blue for the thinner one
(c).

to fold design techniques [16].

Commercial garment design software, such as [8, 7, 14, 13, 35], employs a 2D-

to-3D design framework where users manually specify both 2D pattern geometry

and an initial draping configuration. These systems then use physics-based simula-

tion to generate the resulting 3D garment shapes. To add folds to a garment using

such systems users need to employ the knowledge intensive and time consuming

workflow described above - they need to manually edit the patterns, specify the

initial drape, and then use the simulation output to iterate on both.

2.2 Computational Garment Design
Recent algorithms enable procedural modeling of static virtual garments that have

the appearance of clothing [36, 32, 12, 33, 27, 19, 11, 17].

Some of these methods use sketching interfaces to produce low frequency gar-

ments [36, 32, 12, 33, 27, 11]. Specifically, Wang et al. [36] propose a feature-

based garment modeling method that can enable users to draw 2D sketches in 3D,

using the extracted mannequin features to specify garment profiles and patterns.

Tuiquin et al. [32, 33] use fine sketch inputs within multiple types of strokes, lead-

ing to a more accurate modeling of garment profiles. Decaudin et al. [12] further
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Figure 2.2: Existing fold modeling methods (here [28]) generate simplistic
fold shapes (a); which cannot be reproduced via subsequent pattern
computation and resimulation (b); given similar input fold-paths (c) we
compute complex reproducible folds (d).

enhance this sketching interface by enabling the user to draw seam-lines and darts.

Moreover, to interpret sketches more consistently over different views, Robson et

al. [27] incorporate context-aware considerations based on key factors that affect

the shape of garments. In addition, DePaoli et al. [11] propose a sketch-based

modeling system to create structures that are comprised of layered and shape in-

terdependent 3D volumes. This method potentially inspires the emergence of tools

for multi-layered garment creation.

Others support mixing of existing garment elements in 3D space [19, 17]. For

instance, Li et al. [19] model new garments on individual human models by com-

positing 3D parts from garment examples. In the meanwhile, Kwok et al. [17]

generate new and reasonable styling designs from existing garments based on evo-

lution theory. The garments produced by them have no physics aware patterns,

no physical parameters, and are often not physically reproducible; they are thus

unsuitable for cloth simulation or manufacturing.

Grading methods algorithmically resize garments to fit a mannequin different

from the one they were originally designed for [9, 37, 6]. Cordier et al. [9] and

Wang et al. [37] resize the garment based on element correspondence between

garment and mannequin. Brouet et al. [6] also explicitly define style measurement

of shape, fit, and proportion to be preserved during grading. These methods can
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Figure 2.3: FoldSketch Algorithm: (left to right) The input consists of a gar-
ment pattern, a corresponding drape on a mannequin, and designer-
sketched folds. Folds require additional fabric material, which is ob-
tained by extending the pattern. Draping depends heavily on the initial
drape of the simulation; a poor initial drape does not lead to the de-
sired fold arrangement. We add fictitious style constraining forces to
induce the fold arrangement, obtaining a target drape. We iterate, seek-
ing an initial drape that yields a similar fold arrangement without fic-
titious forces. Starting from the target drape, an unadulterated draping
simulation produces a candidate output drape. The candidate is accept-
able if we cannot improve upon it. We attempt to improve the garment
pattern to reduce differences between the target and output drapes. If
we make a substantial update to the pattern, we iterate, using our output
candidate as the new initial drape.

potentially transfer the location and 3D shape of existing folds to a new garment,

but are not designed for forming new folds.

Sensitive Couture [34] supports a limited set of 3D to 2D edits where simple 3D

changes, such as elongating or widening a garment, are propagated to 2D space. It

does not provide the fine control necessary for detailed edits such as fold addition.

Bartle et al. [2016] enable coarse scale 3D garment edits, such as garment mixing,

length and fit changes. They use a geometric approach to produce a target 3D

shape encapsulating both the original design and user-specified changes, and then

reverse-engineer 2D patterns whose draped result is isometric to the target. Our

focus on 3D fold design requires a target shape computation that, as opposed to

being purely geometric, is closely linked to garment material’s constitutive laws

(Figure 2.1) and external forces.
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2.3 Fold and Wrinkle Modeling
Computer animation frameworks produce dynamic folds whose location and shape

are determined by the physical forces rather than the user [5]. The computation

they employ relies on input patterns and draped geometry to guide fold formation.

In our setting we have neither. Sketch-based static garment modeling tools such as

[33, 27] model folds by sweeping a cylindrical profile along a user sketched path.

Turquin et al. [33] directly move the garment mesh vertices away or close to the

mannequin according to user specified fold orientation, depth, width and location

with their fold-sketching UI. In contrast, Robson et al. [27] model the profile by

rotating the nearby triangles along the path and re-solve for surface normals of the

garment.

Cylindrical arc profiles, smoothly blended with the surrounding surface, are

similarly used to procedurally model dynamic folds to augment low-quality ani-

mations [24, 28]. In [24], folds are added to enhance details for garment animation

capturing techinques, where the fold locations are computed from the frames. In

contrast, the input in [28] is an existing garment animation, of which the stretch

tensors are used to guide fold formation. Both methods ensure temporal coherence

with a space-time approach allowing for smooth and natural wrinkle behavior.

However, real-life folds have complex profile shapes that can significantly dif-

fer at different points along the path; thus the results produced by such methods

provide only a coarse unrealistic-looking approximation (Figure 2.2a). Even with

BendSketch [18] that translates user input into actual surface detail geometry, it

is still hard for users to draw fold profiles that are physically reliable. More im-

portantly, fold-enhanced garments generated using these approaches have no cor-

responding patterns, and often are not physically reproducible. Figure 2.2b shows

the result of attempting to reproduce the geometry in Figure 2.2a by computing

physics-aware patterns [3] that match this geometry and using those patterns and

the fold-enhanced geometry as input to an actual simulator. Our framework suc-

cessfully generates complex reproducible fold geometries and their corresponding

patterns using sketched paths as guidance (Figure 2.2,cd).
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Chapter 3

Algorithm

3.1 Problem Statement
The input to our algorithm is a simulated 3D garment, draped around a charac-

ter or mannequin, and its corresponding set of 2D patterns (Figure 2.3,a). Using

FoldSketch, designers specify their desired fold configuration by sketching on top

of this input. They draw path strokes (Figure 1.2, blue) to indicate the direction

and length of their desired folds, and schematic gathering strokes (Figure 1.2, red),

whose label indicates the type of fold they want to form (e.g. ”knife pleats” or

”gathered folds”) and whose geometry encodes fold properties such as the pattern

boundary location where new material should be added, the stitching scheme, and

the amount of extra material that should be added (Chapter 4, Figure 1.2). Given

this input, our goal is to generate a new garment that has both the desired fold

geometry within the region of interest surrounding the input strokes and the input

garment geometry away from the strokes, and to produce a corresponding set of

2D patterns (Figure 2.3,d).

3.2 Solution Framework
We approach this problem using an alternating 2D-3D process, inspired by tra-

ditional garment design practices (Figure 2.3). We first create an initial set of

extended patterns. We then create an initial, synthetic, target drape that utilizes
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Figure 3.1: Input garment and strokes (a) and unconstrained simulation out-
puts produced using different initial drapes: (b) from flat panels; (c)
from initial 3D garment (augmented with pleat sewing scheme); (d)
from our initial 3D target drape. (e) Final result (using iteratively up-
dated patterns and target drape). The horizontal lines highlight the gar-
ment proportions.

these patterns and conforms to designer expectations. We use the patterns and this

drape as input to a standard simulator to obtain a reproducible output, which may

or may not align with designer expectations. We optimize output alignment with

designer expectations by alternatingly refining the patterns and the target drape,

and generate the final output (Figure 2.3, right) by performing one more round of

unconstrained simulation using those.

3.3 Pattern Extension
Adding folds to an existing garment requires extending the patterns in the region of

interest, in the direction orthogonal to the fold paths direction, to allow for buck-

ling. We compute the extension direction and the amount of extension necessary to

accommodate the user anticipated fold magnitudes for each triangle contained in

the region of interest. We extend the input patterns by scaling these triangles us-

ing the specified directions and scaling factors, while retaining triangle shape and

scale everywhere else (Chapter 5, Figure 2.3,b). In our pattern extension computa-

tion, we explicitly account for sewing and pattern making constraints. We enforce

seam compatibility, ensuring that shared boundaries between panels that had the

same length in the original garment retain this property after extension. We also

minimize changes in pattern boundary shape in order to prevent high curvature
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oscillations, which complicate pattern cutting and sewing.

3.4 3D Target Drape Estimation
FoldSketch’s desired output is a 3D garment that is physically reproducible from

an input set of patterns, and which conforms to the designer’s expectations as ex-

pressed in the sketched input. The shape of a fold-enhanced garment is highly

dependent on an initial drape (Figure 3.1), as loose fabric can be easily arranged to

have different forms. One of our core challenges is to obtain a suitable initial drape

that, when combined with the patterns, will produce the desired simulation output.

We would like a drape that reflects designer expectations and is also close to the

final output, in order to minimize the changes induced by the simulation. We gen-

erate a target drape geometry that balances these two considerations by employing

a constrained garment simulation. We augment the standard physical forces with

synthetic forces that serve two roles: they explicitly enforce designer expectations

of preserving input garment geometry outside the region of interest, and of purely

fold-aligned buckling inside it (Figure 2.3c, Chapter 6). We initialize this simula-

tion using the extended patterns and an initial 3D garment drape which is based on

the original garment geometry, but which adds the additional synthetic constraints

that are necessary to form the designer’s envisioned folds (Chapter 6.2).

3.5 2D-3D Update
Using the obtained estimated patterns and drape as inputs to a simulation is unlikely

to produce a garment that fully aligns with designer expectations. We optimize the

resulting garment using an alternating 2D-3D process that updates the patterns and

the drape (Chapter 7). The output of this final stage consists of a set of patterns,

an initial drape, and a final output garment produced via simulation that uses the

patterns and the drape as input.

13



Chapter 4

Sketch Interface

Figure 4.1: UI walkthrough example: (a) fold path strokes (blue) traced over
input garment in 3D view; (b) gathering stroke; (c) output garment.

This chapter illustrates FoldSketch’s UI with a worked example. Starting with

a draped garment on a mannequin (Figure 4.1, a) a designer adds one or more path

strokes (blue); the path strokes describe the locations, length and direction of the

folds that they wish to add. As explained earlier designers typically form folds by

elongating one or more garment panel boundaries. While the choice of the bound-

ary can be deduced from the path strokes end-points, designers need the means to

define the stitching pattern and the expected amount of boundary elongation. The

designer provides this information by specifying a fold type via a dropdown button,

and adding a gathering stroke (Figure 4.1, b) atop of the corresponding boundary.
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This stroke indicates the amount of extra material that must be incorporated into

the folds; in this case, uniformly gathered folds is to be added. The system then

synthesizes a new garment (Figure 4.1, c)), incorporating the designer’s desired

folds. The designer may then add other folds as desired, or revert their folds and

experiment with new designs.

The reason for sketching the gathering configuration and not the fold profile

(cross-section) elsewhere along the fold paths is that designers know the gathering

configuration they want to use; while the fold cross-section varies in shape based

on fabric physics. This interface enables naturally employing schematic input to

augment garments with different fabric properties.

The design tool provides four types of folds (Figure 1.2): hemline folds, uni-

formly gathered folds, pinched pleats, and knife pleats. In all cases, the process

is the same: the designer chooses a fold type, draws multiple path strokes which

define the direction and length of the folds, and concludes with a single gather-

ing stroke which defines the amount of boundary elongation. The amount of extra

material needed to form the folds is then computed by comparing the length of

this stroke to the portion of the corresponding, gathering, boundary in-between the

stroke end-points. To form pleats, fabric needs to be folded onto itself and the

overlapping portions need to be stitched together. We use the sharp corners in the

gathering stroke to dictate the location and magnitude of the pleats (See Figure 4.2,

e and f). For knife pleats, the user can also choose between right or left foldovers

(See Figure 4.2, f). Designers can specify folds that extend between two gather-

ing boundaries (Figure 2.2). To communicate their intent rather than drawing two

gathering strokes, they simply need to draw path strokes that start and end at two

boundaries, and provide a gathering stroke on one of these boundaries. We inter-

pret such strokes as two-sided and mirror the gathering pattern along the gathering

boundary onto its opposite boundary.

For hemline and uniformly gathered folds the frequency and magnitude of the

formed folds directly depend on the properties of the fabric used [28]. Therefore

designers are only expected to encode the amount of the extra material, rather

than the fold magnitude, when drawing the gathering stroke, and to use the path

strokes to dictate fold direction rather than frequency or locations. In contrast, for

pleats we use the stroke geometry to dictate the fabric folding and stitching pattern,
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Figure 4.2: Impact of different gathering strokes on output folds: (a,b) hem-
line folds with different magnitude, (c,d) gathered folds with different
magnitude, (e) pinched pleats with different width (left and right shoul-
ders), (f) knife pleats with different orientation (left and right panels).
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determining their location, magnitude, and orientation (Figure 4.2).

In many of the cases, the input garment contains pairs of symmetric patterns,

which enables users to design symmetric folds. To support convenient symmetric

fold design, FoldSketch can reflect the user strokes from one pattern to its symmet-

ric pattern (e.g. all examples in Figure 4.2). This also proves that our system can

handle fold enhancement on multiple patterns simultaneously, while in this the-

sis with the prototyping FoldSketch, all examples with folds designed on multiple

patterns (except symmetric designs) are enhanced successively (e.g. Figure 1.1,

Figure 8.1, Figure 8.2a, Figure 8.3a).
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Chapter 5

Pattern Extension

After the designer has marked up their desired changes in FoldSketch, we estimate

the shape of new garment patterns that are appropriately extended to allow the

designer’s target folds to form. We have as inputs the garment patterns, draped

on the mannequin; the extended gathering seam length, computed from the user

annotation; and the designer specified fold paths.

We observe that, in order to facilitate the desired behavior, our extended pat-

terns have to satisfy the following conditions. Inside the folds’ region of influence

we expect each triangle to be elongated orthogonally to the fold paths direction

to facilitate subsequent buckling. We expect the elongation to be maximal next to

the gathering seam, and to smoothly decrease further away from it; we also expect

these triangles to retain their original length along the direction of the fold paths.

Conversely, we expect pattern triangles away from the folds to retain their original

shape and size. To avoid sewing artifacts, we must pay special attention to panel

boundaries: we need to strictly preserve the lengths of all panel boundaries except

the gathering seam. We also need to avoid high curvature oscillations along them,

as those make sewing and cutting panels more challenging.

We solve for our initial extended patterns using a two step process. We first

compute the direction and amount of extension for each garment pattern triangle

(Section 5.1). We then deform the existing 2D patterns to incorporate this desired

expansion (Section 5.2).
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Figure 5.1: Pattern extension: (a) input garment and strokes; (b) visualized
3D space scaling field; (c) scaling field on 2D patterns; (d) extended
patterns (blue) and input patterns (green).

5.1 Tensor Field Computation
We use stretch tensor field to represent the target expansion of patterns, thus we are

essentially solving a sketch based tensor field design problem [38, 31]. In comput-

ing the field we face a chicken-and-egg problem, where we must know the folds’

region of influence in order to compute where scale should be preserved, while at

the same time we cannot determine the exact boundaries of this region of influ-

ence without knowing the amount of scaling required to accommodate the folds.

We compute expansion directions first and use them to compute preliminary region

of influence boundaries; we then use this set of boundaries to compute expansion

magnitudes and finalize the region of influence.

We compute target pattern expansion directions and magnitudes in 3D space

first as this is where the user input is provided. We then project them to the actual

patterns accounting for the deformation these patterns undergo during the garment

simulation. To define our tensor we use a 2-Rotational Symmetry tensor field [38],

as stretch should be invariant under 180◦ rotation. We express each tensor T t
i as

a 2x2 matrix using the singular value decomposition T t
i = R(θi)SiR(θi)

T , where

R(θi) =

[
cos(θi) −sin(θi)

sin(θi) cos(θi)

]
is a rotation matrix, and Si is the diagonal skew ma-

trix Si =

[
si 0

0 1

]
, where si ≥ 1. Both T t

i and θi are defined on the 2D local frame

of triangle i. This allows us to decompose the problem of finding the tensor field

into separately finding the per-triangle expansion directions θi and the per-triangle
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expansion amounts si, facilitating the two stage region-of-influence computation.

Figure 5.2: ei,k is the k-th edge of ti, qi is the vector defined in the local frame
of ti, the discrete Levi-Civita connection is defined as ri j = βi−β j

5.1.1 Computation of 3D Expansion Direction

For computing the expansion directions θ of the tensor field, we follow the frame-

work and nomenclature of Ray et al. [2009]. Rather than computing directional

angles θi, we employ their method and instead compute the representative vectors

Vi = (cos(2 ·θi),sin(2 ·θi)), and extract θi from them. To compute Vi, we minimize

an energy function that balances smoothness of the tensor directions against the

requirements for these tensors to be orthogonal to the fold paths:

E = Esmooth +Efit

Esmooth = ∑
i j∈E ∗

w−1
i j (Vi−R(2ri j)Vj)

2

Efit = (1/|ti|)∑
i
|ti|(Vi−V init

i )2 (5.1)

where E ∗ is the set of all adjacent triangle pairs.

The term Efit is evaluated over all triangles i crossed by fold paths. Here wi j are

the standard cotangent weights [23]; ri j ∈ R is the discrete Levi-Civita connection

[10], which is necessary as θi and θ j exist in different local tangent spaces; V init
i
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is the orthogonal direction of the path strokes on the triangle i; |ti| is the area of

triangle i; and |ti| is the average triangle area. Since Vi must be unit length, we use

an iterative minimization: we first minimize Esmooth +Efit without normalization

constraints, then normalize the computed Vi and proceed to iterate renormalizing

them after every iteration. We then compute θi = atan(Vi · (0,1)/Vi · (1,0))/2.

This iterative renormalization could robustly achieve acceptable accuracy with just

a few more iterations compared to directly enforcing the nonlinear constraints.

One may consider directly taking the angles as optimization variable like in

[25] or [10]. However, it turns out that [26] is most suitable for our settings since

in [25], an iterative framework is still needed for handling integer variables in the

angles for invariance under 180◦, and in [10], 2-RoSy fields need to be handled by

specifying singularities with fractional indices while in our case the singularities

might be outside the garment surface and we really want it to be handled automat-

ically.

5.1.2 Preliminary Region of Influence

We use the computed directions to extract an approximate set of boundaries for

the folds’ region of influence. We trace the approximate boundaries by starting

from the end points of the gathering seam, and following the direction orthogonal

to our computed extension direction. Tracing terminates when the boundary of

the current pattern is reached. We use the Runge-Kutta method [2] to perform

the tracing. Specifically, we are solving an initial value problem of the ordinary

differential equation
dbp

dt
= f (bp(t)), bp(0) = pe,i

, where bp is the boundary to be traced, t is the integration parameter, f is the vector

field orthogonal to the extension directions θ , and pe,i is the i-th end point of the

gathering seam. Starting from each pe,i, we applied the midpoint RK2 scheme to

evaluate

bp(tn+1)← bp(tn)+∆t f (bp(tn)+0.5∆t f (bp(tn)))

in each step n.
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5.1.3 Computation of Expansion Magnitudes

To obtain the expansion magnitudes si, we compute a smoothly varying scalar field

that propagates the anticipated expansion along the fold paths throughout the trian-

gles in the region of influence on the 3D garment mesh. Our formulation accounts

for four considerations: magnitude smoothness, accommodation of the anticipated

scaling along fold paths, preservation of original scale outside the region of influ-

ence, and preservation of the lengths of all pattern boundaries except the gathering

seam:

min
s

E = ∑
i j∈E ∗

w−1
i j (si− s j)

2

︸ ︷︷ ︸
Smoothness

+ λlE len

︸ ︷︷ ︸
Boundary length preservation

+ λvEFL

︸ ︷︷ ︸
Fold path scaling

+ λv/|ti|∑
i∈B
|ti|(si−1.0)2

︸ ︷︷ ︸
Scale preservation outside region of interest

(5.2)

We empirically set λl = 100, λv = 10.

Fold-Driven Scaling To scale garment material around fold paths, we first smoothly

interpolate the scale terms si along each fold path. We use the ratio between the

lengths of the gathering stroke and its corresponding pattern boundary segment as

the scale at the start of the path, and set the value to 1 at the end of the path furthest

from the gathering boundary. We then constrain the scales within triangles inter-

secting the fold path to scale by the average scale factor s′i along the intersected

fold path segment:

EFL = 1/|ti| ∑
i∈F
|ti|(si− s′i)

2 (5.3)

where F contains triangles intersecting fold paths.

Pattern Boundary Length Preservation. We seek to strictly preserve the lengths

of non gathering seam panel boundaries. We can explicitly express triangle edge

length as a function of the stretch si in a given direction:
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li(si) = l′i

√
s2

i cos2 αi + sin2
αi. (5.4)

Here l′i and li are the lengths of the boundary edge before and after expansion, and

αi is the angle between the stretch direction and the boundary edge. This function

is non linear and thus hard to optimize; we therefore linearly approximate Eq.5.4

around si = 1 instead:

la
i (si) = l′i +(

∂ li
∂ st )st=1(si−1) (5.5)

We express boundary length preservation as:

E len
j = 1/l̄′i ∑

i∈E ( j)
(la

i (si)− l′i)
2 (5.6)

Here l′i is the average boundary edge length, and E ( j) are the participating bound-

ary edges. This expression is equivalent to enforcing the constraint that si = 1.0,

i ∈ E ( j) weighted by l′i cos2 αi. Note that if the extension direction is orthogonal

to the edge segment, this constraint vanishes as desired.

Linear Solver. Since both optimizations formulated for solving direction field and

scalar field are linear optimization, the optimum is found by solving the linear

system that enforces the energy gradient to be equal to 0 using Sparse Cholesky

implementation in the Eigen library [15] as the coefficient matrix is symmetric

positive-definite.

Final Region of Influence. At this point, we can now trivially define the final

region of influence: a triangle ti is contained in the region of influence if its scalar

component si ≥ 1.0+ ε .

5.1.4 Tensor Field Projection onto 2D Patterns

To actually expand the patterns, we must transfer the expansion tensor field, com-

puted on and expressed with respect to the 3D draped input garment, onto the set

of 2D patterns. Since fabric often stretches under simulation this stretch must be
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factored into our computations: failing to account for stretch incurred by the drap-

ing process would cause a naive algorithm to assume sufficient material already

exists to form folds, and hence the amount of required 2D pattern extension may

be underestimated (Figure 5.3). We employ a transformation scaling approach to

correctly account for stretch during 2D pattern extension.

Recall that we have constructed the per-triangle symmetric tensors T t
i with

R(θi)SiR(θi)
T , which specify how much each triangle must expand and in what

direction. However, this deformation is computed with respect to the simulated

3D garment. To obtain the corresponding change for garment patterns, we need

to compute a transformation for each of the 2D pattern triangles ti that, after sim-

ulation, will extend their corresponding 3D triangle t ′i in the direction and by the

amount specified by the tensor field. We first compute a common coordinate frame

for the 2D pattern and 3D garment triangles by rotating them to the xy plane and

co-aligning them, so that both triangles are placed at the origin and have a desig-

nated common edge u that is aligned with the x-axis. We refer to the transformed

replica of the triangle t ′ as t̃. The 2D intrinsic action of the garment simulation per

triangle is then described by the 2× 2 matrix T d0, t̃i = T d0ti. Assuming the im-

pact of the simulation on the deformed triangle is the same as on the undeformed

one, we must find a transformation T ′i such that T t
i t̃i = T t

i T d0ti = T d0T ′i ti. We can

consequently compute T ′i as

T ′i = (T d0)−1T t
i T d0 (5.7)

Fold Pre-Conditions. In order for the designer’s specified folds to form, we must

take into account that the original simulation may have stretched the fabric when

draping it on the mannequin, and that this stretch is not explicitly accounted for

in the computation of the per-triangle stretch tensors T t
i . If the extension that we

have computed is of similar or smaller magnitude to the stretch of the draped gar-

ment, then adding the amount of material specified by T ′i to the garment pattern

is sufficient to release the stretched fabric, but may not be sufficient to form folds

(Figure 5.3 top).To actually add visible folds, the extension needs to be increased

to fully cancel out the stretch and to locally extend the 3D garment to reflect the
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Figure 5.3: Impact of fold pre-conditions: (top) result without and with or-
thogonal stretch cancellation; (bottom) result without and with fold path
stretching. Note the impact on fold length and shape.

designer’s expected fold magnitude.

In addition to accounting for stretch orthogonal to the fold direction in the

original drape, we also consider fold feasibility. While vertical folds are consistent

with gravity, horizontal and near-horizontal folds can only form if the fabric is

either very stiff or is stretched along the fold path (Figure 5.3 bottom). If the

user placed folds are on a loose part of the garment, there is no way to guarantee

that they show up without major changes to the garment style. However if the

garment is locally tightly fitting, we can improve fold feasibility by ensuring that

the garment is, at least, weakly stretched along the fold direction.

We therefore account for draped garment stretching and fold feasibility by si-

multaneously canceling the stretch in the original deformation gradient of the drap-

ing on the left-hand side of Eq.5.7 to approximate the deformation gradient when

draping the new patterns, and weakly shrinking each input triangle ti when T d0
i has

no stretch along the fold path:

(T s
i )
−1T d0

i T 0
i = T t

i T d0
i (5.8)
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Here T s
i =R(θi)

[
max(1,T d0,R

i,(2,2)) 0

0 k

]
R(θi)

T is the tensor with the part of stretch

and compression to be cancelled in T d0
i , where k = 1 if T d0,R

i,(1,1) >
1

0.95 and k =

0.95 ·T d0,R
i,(1,1) otherwise, and T d0,R

i = R(θi)
T T d0

i R(θi). The final transformation T 0
i

is then:

T 0
i = (T d0

i )−1T s
i T t

i T d0
i

Although obtaining the 2D tensor field by first projecting the strokes onto 2D

patterns and then solve for the fields in 2D would be less complicated, the mecha-

nism described in this section is more in demand. Since cloth simulation is a non-

linear process, the 2D to 3D map T d0
i is also nonlinear: computing T 0

i by smoothly

averaging directions in 3D and projecting them to 2D is not equivalent to smoothly

averaging in 2D. What’s more, only solving in 2D space will make it hard to do fold

pre-conditions because there would be no access to direct manipulation of tensors

in design space - the tangent space of 3D garment surface.

5.2 Pattern Deformation
The collection of transformations T 0 describes the intrinsic change that each tri-

angle on the input 2D pattern P0 is expected to undergo. These can be applied to

the patterns using standard local-global deformation approaches [29, 20]. How-

ever, as previously mentioned, the shape of the resulting pattern boundaries affects

both cutting and sewing - more curved boundaries, especially those with high cur-

vature variation are harder to process. We thus augment our formulation with a

boundary-shape preserving term, and minimize:

∑
i∈T
‖Si−RiT 0

i S′i‖2
F .+λb ∑

j∈B
Eboundary

j

Here Ri is a per-triangle rotation matrix; Si = [vi,1− vi,0,vi,2− vi,0] ∈ R2×2 is the

local coordinate frame of the deformed triangles, and S′i ∈ R2×2 is the local co-

ordinate frame of the original triangles. Eboundary
j encodes boundary shape. We

empirically set λb = 10. We minimize this energy using a standard local-global

approach [29], where Ri is optimized in local step using singular value decompo-
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sition, and Si is optimized in global step by solving a symmetric positive-definite

linear system using the Sparse Cholesky implementation in the Eigen library [15].

Boundary Shape Preservation. When preserving boundary shape, we differenti-

ate between vertices that are located on straight boundary sections and those that

are located on curved boundary sections. Let e′j be the vector between the two

original vertices v′j and v′j−1 on a boundary; that is: e′j = v′j − v′j−1. We distin-

guish between straight and curved vertices by thresholding | |e
′
j·e′j+1|
|e′j||e′j+1|

− 1| with the

threshold set to 10−3. For each curved boundary vertex v′j we express its curvature

normal

n′j = (−e′j,y− e′j+1,y,e
′
j,x + e′j+1,x)

as a linear combination of e′j−1 and e′j+1:

n′j = α je′j +α j+1e′j+1.

We then define

Eboundary
j = ‖n′j− (α je j +α j+1e j+1)‖2

where e j = v j− v j−1 is the unknown variable.

For straight boundaries, we use line Laplacian as the respective energy:

Eboundary
j = ‖v j− (w j−1v j−1 +(1−w j−1)v j+1)‖2

where w j−1 = |e′j+1|/(|e′j|+ |e′j+1|).
To avoid simulation artifacts due to poor triangulations, we remesh the obtained

2D patterns Pe, and resample the tensor fields defined on them for later use.
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Chapter 6

Target Drape Computation

Our final goal is a garment which can be reproduced via an unconstrained simula-

tion from a set of appropriate patterns and a suitable initial drape. However, draping

a garment to achieve a desired fold look often requires careful initial placement. As

Figure 3.1 demonstrates, simulation using the extended patterns alone and a range

of standard initial drape configurations can result in unappealing outputs that do not

conform to the expected garment look. We thus require a principled way to com-

pute an initial drape that, under simulation, will produce the designer’s expected

output. Our drape computation is based on two observations that follow traditional

fold design practices. We note the shape of the output garment is more strongly

correlated with the shape of the input drape if this drape itself is reproducible -

that is, if the drape is, by itself, an output of a simulation using the current pat-

terns. While we have no direct control on the shape of the output garment, we

note that we can indirectly control its shape by computing a new target drape that

is as close as possible to reproducible, but that also aligns with designer expecta-

tions. We balance reproducibility and design preservation by computing the drape

via a constrained simulation that augments the cloth simulation energy with syn-

thetic design preserving forces. We can use the resulting drape and current patterns

as an input to an unconstrained simulation that computes a reproducible garment

(Figure 3.1c). To improve this garment’s adherence to designer expectations, we

update the patterns and recompute the drape (Chapter 7, 3.1d).

We introduce synthetic design-preserving forces by augmenting the energy for-
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mulation used by the cloth simulator of interest Ecloth with an additional design

term Edesign. We integrate the synthetic term into the formulation, augmenting the

energy gradients and Hessians, and optimize

EPAS = Ecloth +Edesign

using the standard time-stepping process. We tested our framework with Sensitive

Couture [34] and ArcSim [22], as discussed in Chapter 8.

6.1 Design Preservation Energy
Our design preserving energy consists of two terms, one applied within the region

of interest and one applied outside it. Outside the region of influence, we preserve

the original garment shape by aligning every vertex to its positions on the original

3D garment Go using spring forces:

Eu
design =

1
2

ku ∑
i
||vi− v′i||2

Here ku is the stiffness coefficient of the energy, and vi and v′i are vertex coordinates

on the target garment Gt and original garment Go respectively.

Within the region of influence, we expect the garment shape to significantly

change compared to the original. We expect the fabric to bend while forming the

desired folds; we therefore anticipate changes in surface normals, as well as some

tangential and normal vertex displacement. Consequently, the main phenomenon

that we seek to penalize is buckling or bending along an undesirable direction.

This requirement can be cast as a restriction that any change in the normal should

be orthogonal to the path direction:

E f
design =

1
2

k f ∑
i
||Ti−R j

i T p
i ||

2
F . (6.1)

Here k f is the stiffness coefficient of the energy, Ti and T p
i are the local coordinate

frames [30] of the corresponding triangles on the target garment Gt and the 2D

patterns Pe, and R j
i is a 3×3 rotation matrix recomputed at every simulation time
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step j. We compute R j
i as the product of the two matrices Ro

i Re, j
i , where Ro

i is

the rotation extracted from the deformation gradient of the original garment T o
i

using singular value decomposition, and Re, j
i is the projection of the transformation

between the original and current time step drapes to the valid space of rotations

around the fold line direction. We compute Re, j
i at each simulator time step as

follows. We first project the current triangle normal n j
i in simulation step j onto the

plane orthogonal to the fold path to obtain np, j
i =

n j
i−( fi·n j

i ) fi

|n j
i−( fi·n j

i ) fi|
, where fi is the path

direction on triangle i. Then we compute the angle θ
e, j
i = acos(np, j

i · no
i ) between

np, j
i and the normal on the input garment no

i . Re, j
i is then given by the matrix that

rotates no
i to np, j

i around fi with θ
e, j
i .

In addition to undesired buckling, we seek to minimize tangental displacements

of garment boundaries with respect to the body within the region of interest. This

constraint is enforced implicitly for all seam between panels inside and outside the

region of influence. For hemlines, we enforce this constraint by augmenting the

energy with a term that penalizes tangential shifts:

E f
design =

1
2

k f ∑
i
||Ti−R j

i T p
i ||

2
F +

1
2

ku ∑
j

(
((v j− v′j) · t0

j )
2 +((v j− v′j) · t1

j )
2
)

Here j iterates over the hemline vertices inside the region of interest, and t0
j

and t1
j are two orthogonal tangential vectors at vertex j.

To incorporate this term into the cloth simulator, we apply damping to Eu
design

and E f
design that is similar to the one employed by the simulator when minimizing

Ecloth, and adjust the magnitudes ku and k f of the staging “forces” to bring them to

the same scale with the cloth forces. Chapter 8 provides the specific numbers used

for the simulators we tested.

6.2 Initial Drape
When running the augmented simulation for the first time, we need a suitable initial

drape that can accommodate our target folds. While the initial garment provides

a reasonable starting point for most fold types, pleats require special processing.

In particular, we want fabric to fold sharply along pleats, and we want the folding

order along them to be preserved (Figure 1.2). To allow crisp pleats, we refine the
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Figure 6.1: Top: crisp knife pleats; bottom: pinched pleats sewing.

mesh along the expected pleat paths starting at the sharp corners of each pleat, and

following the fold-path directions (see Figure 6.1, top). We introduce the correct

folding order by stitching the pleat boundary segments in an in-to-out order, in-

stead of all at once, starting from the layer closest to the mannequin. To further

penalize interpenetrations, we apply weak spring forces to pull the segments in

the outer layer along their normal direction away from the mannequin. This term

helps separate the layers, guiding the fabric towards the desired folding order that

we want while simultaneously avoiding collisions. The stiffness of these springs is

set to be proportional to the gap between the inner stitch pairs, so that they won’t

pull the outer layered fabrics after the inner layer has been stitched. We emphasize

pinched pleats by introducing short 2cm seams orthogonal to the gathering seam at

the pinching point (see Figure 6.1, bottom).
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Figure 6.2: Pattern and garment update: (a) user input garment and strokes;
(b) extended patterns (blue) superimposed on original (green) and initial
target drape; (c) unconstrained simulation output using these patterns
and drape; (d) updated patterns (purple) superimposed on extended ones
(b,blue) and unconstrained simulation output using these new patterns
and initial drape; (e) final patterns (red) superimposed on updated (pur-
ple) and extended (blue) and final unconstrained drape.
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Chapter 7

2D and 3D Update

At this stage in the process we have extended patterns and an initial drape that

we can use to compute a simulated garment, via simple unconstrained simula-

tion. While clearly reproducible, this garment may exhibit undesirable artifacts

(Figure 6.2). We minimize such artifacts by using a two pronged approach that

modifies our patterns and target drape. First, we modify the 2D patterns to con-

struct new patterns that, under unconstrained sumulation, result in an output that is

closer to the initial drape. Second, if the result is not sufficiently close, we repeat

the constrained simulation with the new patterns generating a new drape, which we

can expect to be more physically reproducible. We then iterate until the two steps

converge.

7.1 Pattern Update
We first look for a new set of 2D patterns that, in an unconstrained simulator with-

out synthetic forces, will produce an output garment as similar as possible to the

target drape. We achieve this goal by following the pattern update framework of

Bartle et al. [2016]. Specifically, we measure the intrinsic difference between the

target drape and the current simulated garment and update the patterns in a manner

designed to minimize this difference; we repeat the simulation and update steps

until convergence. The output of this stage is a set of patterns and a new simulated

garment.
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7.2 Garment Update
The obtained simulated garments are close to, but not necessarily identical to, the

target drape generated using synthetic forces. In particular they may exhibit fine-

level deviations such as secondary folds, local sagging, or bulging (Figure 6.2c).

These artifacts are typically due to the fact that the constrained simulation result

is not fully physically reproducible, and has material held in place by the syn-

thetic draping forces; without these synthetic forces, this material sags or slides

due to gravity. We rectify this problem by computing a new target drape that is

more reproducible. We repeat the constrained simulation (Section 6.2) using the

new patterns and the simulated garment as the initial drape. The input to this con-

strained simulation consists of a set of more accurate patterns, and an initial drape

(simulated garment) that is both reproducible and better aligned with the synthetic

design energy we use. We thus expect the resulting target drape to be much closer

to the simulated one, and thus more reproducible. We repeat the pattern and target

drape update steps until the simulated garment geometry no longer changes. Each

iteration simultaneously improves the physical feasibility of the target garment and

the visual similarity between the target and simulated garments by reducing unde-

sirable artifacts on the latter.

Figure 7.1: Left: average triangle area per pattern update iteration; right: per-
centage of non-expanding triangles per pattern update iteration.
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7.3 Convergence
While there is no theoretical guarantee that the final, unconstrained simulation out-

put garment fully conforms to designer expectations, in our experience this is the

case for all inputs where the user specified folds can be feasibly achieved; see Fig-

ure 9.1 for some examples where they cannot. In our experiments, five update

iterations were sufficient for convergence. While we similarly have no theoretical

guarantees of algorithm convergence, we note that, starting from the initial ex-

tended patterns, each pattern update step we perform reduces the area of pattern

triangles [3], and each constrained simulation reduces the difference between the

target drape and the prior unconstrained simulation output. Consequently, one can

see our framework as an example of a fixed-point iteration scheme [4]. We vali-

date our convergence claim empirically by measuring the evolution of areas of the

triangles on the patterns and the simulated garment, as well as the percentage of

pattern triangles that at each iteration either shrink or remain the same with with

respect to the previous iteration (see Figure 7.1). The graphs show consistent and

convergent shrinkage behavior consistent with that of a fixed-point scheme.
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Chapter 8

Results and Validation

We used FoldSketch to generate the multiple examples showcased throughout this

thesis, created from a range of diverse initial garments including shirts, dresses,

pants, shorts, and overalls. We also tested input on non-garment cloth objects,

including a flag and a tissue box cover. The outputs contain the designer’s expected

folds, and preserve the input look in regions away from the folds.

The inputs we tested on are representative of a large spectrum of cloth ob-

jects, including both tight fitting (e.g. the shirt in Figure 2.2, and the skirts in

Figures 3.1, 4.1) and loose garments (e.g dresses in Figure 8.3). We showcase all

four types of folds handled by FoldSketch UI: hemline folds (e.g. Figures 1.1 and

8.1), gathered folds (e.g. skirt in 2.1, and shirt in 2.2), knife pleats (e.g. short sides

of the tissue box in 8.1, and blue pants in Figure 8.2d), and pinched pleats (e.g.

orange dress in 8.4 and yellow dress in 8.2). We showcase a range of fold-path

orientations including vertical (Figure 1.1, pants in 8.2), diagonal (skirt in Figure

4.1, green T-shirt in Figure 8.2), and horizontal (e.g Figure 8.1, 6.2, and shirt in

Figure 5.3).

Our examples were generated using four material settings: thinner (e.g. purple

skirts in Figure 4.2, green dress in Figure 8.3) and thicker (e.g. yellow skirt in

Figure 8.5, yellow and purple dresses in Figure 8.3) textiles in Sensitive Couture

(SC) examples, SC material matching our real-world flag and cover, and the de-

fault shirt material in ARCSim. Figure 2.1 and Figure 8.6 depicts application of

the same schematic input to garments created from the same initial patterns, but
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Figure 8.1: Manufactured example: (left to right) Plain input tissue box cover
with user sketched schematic folds and final post-simulation result aug-
mented with user-expected folds; original (green) and modified final
(red) patterns; real-life replica manufactured using the produced pat-
terns, with zooming in highlights the complex and evolving output fold
profile shapes.
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Figure 8.2: Additional results created using Sensitive Couture.
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Figure 8.3: Folds created from designer annotations.

with different materials. While the resulting folds are distinctly different, they still

clearly reflect designer intent if only the schematic input is reasonable for the cho-

sen material supported by the simulator. The flag and tissue-box examples show

progressive application of multiple fold types and orientations to the same input.
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Figure 8.4: Examples created using ARCSim.

8.1 Simulators
We tested our method with two simulation engines, Sensitive Couture [34] and

ARCSim [22]. Sensitive Couture is optimized for speed over accuracy, whereas

ARCSim is optimized for precision at the expense of slower computation times.

Results created with ARCSim are shown in Figure 8.4; the remainder of the results

in the paper were generated using Sensitive Couture, which is faster and provides

sufficient accuracy for this thesis.

Note that the sensitivity analysis in Sensitive Couture is not used here. Al-

though it is developed for speeding up convergence, it does not help on converging

to design preserved garment. This also means that simulators are treated as com-

plete black box in FoldSketch, except for augmenting the style-preserving energy.

For ArcSim to support garment meshes composed of multiple connected com-

ponents, the stitching scheme in Sensitive Couture is implemented into ArcSim.

However, in order to avoid numerical instability, stitches are only defined per ver-

tex of the shorter seam, which allows small holes between seams if the two sides

have very different lengths; this occurs when our system produces gathered folds.

After simulation concludes, we postprocess these seams for rendering purposes by

moving vertices on the longer seam towards their corresponding positions on the
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Figure 8.5: Comparison with deformation based pattern extension: (left) in-
put, (center) garments simulated using deformation-based extended pat-
terns, (right) Our results. The naive approach results in multiple arti-
facts.

Figure 8.6: Extreme material experiment: user input garment and strokes (a),
final unconstrained drape with thinner textiles (b), stretchy knits (c), silk
(d), and thick leather (e).
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shorter seam.

Using garment meshes composed of single connected component would re-

quire non-manifold vertices and edges to support pleats, where the gathering seams

of uniform folds will also be non-trivial to resolve.

8.2 Timing And Parameters
The input meshes range in size from 10K to 20K triangles. This number is consis-

tent with those used in commercial garment design softwares such as Marvelous

Designer, and was chosen to provide a reasonable trade-off between speed and

accuracy. The runtimes using Sensitive Couture Simulator [34] range from 8 to

20 minutes, with the vast majority of the time spent inside the simulation engine.

For Sensitive Couture, we set ku = 0.08 and k f = 0.1 for Edesign, and apply damp-

ing with coefficient 0.01. For ARCSim, we set ku = 2.0 and k f = 2.5 for Edesign

with damping coefficient 0.25. These design-preserving energy parameters remain

constant over all examples generated with a specific simulator. They are chosen

to match the energy scale of the simulators and set to provide enough force to

manipulate the garment shape and override other simulation elements. Different

simulators have different scales for their cloth energies, which is why we must use

different values across simulators.

All parameters in Chapter 5 stay the same across different inputs, materials,

and simulators.

To test our algorithm’s scalability, we subdivided the input mesh in Figure

4.1, creating a new mesh with 54K triangles. Running this model throughout the

system took significantly longer - 110 minutes total - but required the same number

of iterations to achieve the same error bound and converged to a visually similar

result.

8.3 Algorithmic Choices
We consider three different alternatives to our algorithm, and show their failure

modes. Figure 2.2, left shows the effect of producing a 3D target garment using

purely geometric folds created by folding circular grooves around the designer

specified strokes, and then using the physics-aware pattern computation of Bartle
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et al [2016] to create the patterns. As this figure shows, the intended folds simply

collapse during subsequent simulation.

We compare our pattern extension technique to one which scales patterns along

the gathering seam and fold paths using standard ARAP deformation, where scales

for along the gathering seam and paths are computed using the same process as

mine (Section 5.1.3). As Figure 8.5 shows, the results generated by this approach

fail to capture the designer folds while introducing additional unwanted folds and

changing the garment style.

Finally, we show the effects of sidestepping the 3D target computation stage

and using the initial extended patterns directly within a simulation engine (Figure

3.1). As shown, simulating a new garment using the extended patterns and a range

of standard initial drape configurations results in unappealing garments that do not

correspond to the expected garment look. FoldSketch’s final combination of pat-

terns and drape produces a garment that satisfies both the physical reproducibility

requirement and design constraints with no unwanted artifacts (Figure 3.1e).

8.4 Designer Validation
Three of the input fold designs (Figure 8.3) were traced by a professional designer

who found our tracing interface easy to use. He commented that the results were

“exactly what I expected!”, and that “the software you are working on really deliv-

ers” and would be very helpful for experts and amateurs alike.

8.5 Manufacturing
One of my collaborators Mary Buckland manufactured two cloth objects using pat-

terns generated by FoldSketch - a flag (Figure 1.1) and a tissue-box cover (Figure

8.1). The resulting manufactured objects clearly contain the designer’s expected

folds, and were manufactured directly from FoldSketch generated patterns without

further modifications. To evaluate the efficiency of FoldSketch, we asked a pro-

fessional designer to modify the initial patterns for the tissue-box cover to contain

our desired folds. The designer produced an initial set of extended patterns for a

fold-enhanced tissue box that would still require several stages of revision in order

to be acceptable; this first set of patterns took five hours to complete. The designer
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was very impressed to note that our complete set of patterns was created in under

half an hour, including both design and computation time.

8.6 Perceptual Validation
My collaborators and I validate the outputs of our method via feedback from ten

non-experts. To collect their input, we presented them with a series of pictures

of garments, consisting of an input garment with FoldSketch annotations, and two

outputs: one of which was generated by FoldSketch, and one of which was gen-

erated by one of our design alternatives. We asked the question: ”Which of the

garments below “B” or “C” is more reflective of the user input “A” above?” Survey

participants selected our results as being more representative of the input annota-

tions 95% of the time; please see Appendix A for more information.
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Chapter 9

Conclusions

This thesis presented FoldSketch, the first framework that allows designers of both

virtual and real garments to create physically reproducible folds and pleats via a

simple 3D sketching interface, eliminating the need for tedious and unintuitive 2D

pattern manipulation. We demonstrate the applicability of our framework on a large

range of fold and pleat configurations, and confirmed its ability to operate in con-

junction with different simulation engines. The key novel technical components of

FoldSketch are a 3D to 2D pattern extension algorithm that translates user sketched

schematic folds into per-triangle deformation gradients applied to the triangles of

the original patterns, a constrained simulation framework that incorporates design

constraints into off-the shelf garment simulators, and an update mechanism that

enables the correction of secondary simulation artifacts. We believe our contribu-

tions will open up a new avenue for researches trying to enable direct manipulation

in 3D space for various design problems.

9.1 Limitations and Future Work

Feasibility Detection. Our system follows user specifications in an effort to gen-

erate the folds they desire. While we do pre-processing of the garments to better

accommodate folds in tight-fitting regions (Section 5.1.4) we cannot guarantee that

folds that require more significant pattern edits will be generated. For future work,

it would be interesting to explore detection of infeasible inputs, something our
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Figure 9.1: FoldSketch fails to detect infeasible inputs such as long horizon-
tal fold-paths in loose garment regions (a), or highly curved independent
fold-path that would need more stitches along the path, or special fabrics
to support (b).

current system does not do, and to provide feedback to the designer. This would

be particularly useful for amateur designers who have no sense of what folds are

feasible.

Extending Achievable Design Space. Our system is designed for creating folds

achievable through changes in pattern shape alone. Future work on incorporating

topological changes, such as the introduction of darts and gussets, can extend the

range of achievable designs. Besides, supporting more sophisticated and flexible

stitching schemes to allow more control along the profile is another interesting

future work.

Material Modeling. Future work on material modeling, such as searching for a

space of reasonable material parameters for a specific design, or applying adaptive

stitching to achieve consistent design across different materials would benefit more

practical applications.
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Avoid Simulation in the Loop. In the 2D-3D Update stage, FoldSketch seeks for

patterns that best reproduce the target garment geometry under simulation via pat-

tern adjustment which requires simulation in the loop, and the reproducibility of the

target garment needs to be improved in between each pattern adjustment process.

For future work, on the technical side, it would be interesting to search for both

the 2D patterns and 3D target/output garment in an optimization that directly min-

imizes the net forces exerted on the garment. Without simulation in the loop, the

computational cost could be significantly improved, and the direct manipulations

on 3D garment could be more flexible on improving the physical reproducibility.
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[30] R. W. Sumner and J. Popović. Deformation transfer for triangle meshes.
ACM Trans. Graph., 23(3):399–405, 2004. ISSN 0730-0301. → pages 29

[31] K. Takayama, M. Okabe, T. Ijiri, and T. Igarashi. Lapped solid textures:
filling a model with anisotropic textures. In ACM Transactions on Graphics
(TOG), volume 27, page 53. ACM, 2008. → pages 19

[32] E. Turquin, M.-P. Cani, and J. Hughes. Sketching garments for virtual
characters. In Eurographics Workshop on Sketch-Based Interfaces and
Modeling, Grenoble, France, 2004. Eurographics. → pages 3, 7

[33] E. Turquin, J. Wither, L. Boissieux, M.-P. Cani, and J. F. Hughes. A
sketch-based interface for clothing virtual characters. IEEE Comput. Graph.
Appl., 27(1):72–81, 2007. ISSN 0272-1716. → pages 3, 7, 10

50



[34] N. Umetani, D. M. Kaufman, T. Igarashi, and E. Grinspun. Sensitive couture
for interactive garment modeling and editing. ACM Trans. Graph., 30(4):
90:1–90:12, 2011. ISSN 0730-0301. → pages 5, 9, 29, 40, 42

[35] P. Volino, F. Cordier, and N. Magnenat-Thalmann. From early virtual
garment simulation to interactive fashion design. Comput. Aided Des., 37
(6):593–608, 2005. ISSN 0010-4485. → pages 7

[36] C. C. Wang, Y. Wang, and M. M. Yuen. Feature based 3d garment design
through 2d sketches. Computer-Aided Design, 35(7):659–672, 2003. →
pages 7

[37] C. C. Wang, Y. Wang, and M. M. Yuen. Design automation for customized
apparel products. Computer-aided design, 37(7):675–691, 2005. → pages 8

[38] E. Zhang, J. Hays, and G. Turk. Interactive tensor field design and
visualization on surfaces. IEEE Transactions on Visualization and Computer
Graphics, 13(1):94–107, 2007. ISSN 1077-2626. → pages 19

51



Appendix A

Perceptual Validation Material

52



Instructions 

• The goal of this study is to assess a tool for adding folds and pleats to garment 
designs.  

 

• Using the tool designers can schematically specify the folds they want using a 
sketching interface demonstrated below.  

 

• Designers use two types of strokes 

– Gathering strokes (red): are drawn along the folds respective gathering seam (or 
hemline for hemline strokes). They indicate the gathering pattern and the 
amount of material the folds are expected to use.  See more details on the next 
page 

– path strokes (blue): define the location, directions and length of the folds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Next page shows the conventions used to communicate fold or pleat types. 

 

• In the subsequent pages you will be asked to assess the quality of different 
algorithm generated results and their adherence to the user input. 

 

4 Types of Supported Folds and Pleats 

Pinched  
Pleats 

Gathering  
Folds 

Hemline  
Folds 

Knife  
Pleats 

A 

B C 

Which of the garments below ("B" or "C") is more reflective of the 

user input above ("A")?  

ours 
100% 

[Rohmer et al. 2010] 
after pattern adjustment 

[Bartle et al. 2016] 
0% 

Which of the garments below ("B" or "C") is more reflective of the 

user input above ("A")?  

A 

B C 
ours 

100% 
[Rohmer et al. 2010] after 
pattern adjustment [Bartle 

et al. 2016] 
0% 

A 

B C 

Which of the garments below ("B" or "C") is more reflective of the 

user input above ("A")?  

ours 
90% 

a naïve extension 
method using ARAP 

10% 

A 

B C 

Which of the garments below ("B" or "C") is more reflective of the 
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Figure A.1: Perceptual Validation, with stats.
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Figure A.2: Perceptual Validation, with stats (continued).
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