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Abstract

This dissertation develops new modeling tools to provide new scientific perspectives on migratory
transboundary fish populations. I particularly focus on two main issues: (1) the interaction between
age/size based migratory movement, spatial availability, and fisheries exploitation rates, and (2)
time-varying fisheries selectivity caused by size based migration and cohort targeting. I use Pacific
hake (Merluccius productus) as a case study. Pacific hake occurs off the Pacific coast of the U.S.A.
and Canada and is characterized by ontogenetic migratory movement (older fish migrate further
north), strong recruitment events, and time-varying selectivity due to targeting of strong cohorts. In
this dissertation, I present two new modeling approaches, and explore the effects of spatial structure
on management outcomes using a closed-loop evaluation. First, I use a Lagrangian approach to
develop a migration model that describes the Pacific hake dynamics including seasonal migrations,
fisheries dynamics, and cohort targeting. Second, I introduce a new stock assessment method that
bypasses the requirement of estimating selectivity by using catch at length and growth parameters
to produce estimates of exploitation rate at age. This method produces mixed results because of
low precision in selectivity estimates. Third, I evaluate the impacts of harvest control rules on the
outcomes experienced by Canada and the U.S.A while sharing the Pacific hake resource. I use the
migration model described above in a closed-loop simulation to evaluate the long-term impact of
61 harvest control rules. The results indicate that there are differences in performance of harvest
control rules between the two nations when maximizing potential long-term yield and log yields.
This is a result of the reduced availability of the resource in Canadian waters as the overall harvest
rate increases. Caps on allowable catch may help to avoid reduced availability issues. I believe that
the results and conclusions presented in this dissertation can inform the future management and
modeling of Pacific hake. In addition, the methods presented here could be used for management of
other resources subject to time-varying selectivity and other transboundary stocks managed under
agreements that do not consider spatial management explicitly.
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Lay Summary

When fisheries resources are shared by two or more nations, tracking the spatial range of the fish
and avoiding management actions that severely change this range becomes important. I developed
models to aid in the management of shared fisheries using Pacific hake as an example. Pacific hake
is fished by the U.S.A. and Canada, and the extent of their annual south-north migrations depends
on the age/size of the individual fish, with only larger and older fish present in Canadian waters.
I present two new modelling tools: a model that imitates annual Pacific hake migrations; and a
model that provides consistent estimates of fish abundance regardless of changes in the location
of the fish or fishing vessels. I use these models to explore the impacts that fish movement can
have on fisheries management. The contributions presented here can inform future management of
migratory and shared resources.
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Chapter 1

Introduction

Fish species have evolved to optimize reproductive success, feeding rates and to avoid unfavourable

conditions, such as high predation and cannibalism (McKeown, 1984). For many species this op-

timization is achieved with migratory movement away from nursery grounds (for new recruits),

and subsequently between feeding and spawning grounds (Harden Jones, 1968; McKeown, 1984).

Migratory movement is indeed a common feature in the ecology of fishes, and has been a frequent

subject of study over the last centuries (see Morais and Daverat (2016) for a historic review of fish

migration literature). For iteroparous species, the migration routes are frequently traced between

spawning and feeding grounds, and can occur repeatedly, in a cyclic manner, throughout an indi-

vidual’s life (Secor, 2015; Walters and Martell, 2004). Examples of cyclic migration behavior are

found in tunas and tuna-like species (Nakamura, 1969; Merten et al., 2016), sharks (Hammerschlag

et al., 2011), sardines (Lo et al., 2011), flatfishes (Hunter et al., 2003) and gadoids (Robichaud and

Rose, 2004; Alheit and Pitcher, 1995).

Migration is frequently associated with segregation of subgroups within a population (Harden Jones,

1968). For example, segregation can occur by sex (e.g., Okamura et al., 2014; Mucientes et al.,

2009), size or age (e.g., Ressler et al., 2007; Chen et al., 2005). Size segregation is often a result of

fish migrating over larger distances; fish tend to migrate further and faster as they get larger leading

to segregation of individuals by size/age (Secor, 2015). Fish movement is of particular concern
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when the migratory path of the exploited resource crosses political boundaries, so that if the fish

stock is exploited, management may require transboundary management agreements (Munro, 2005;

Sumaila, 2013). Management of transboundary stocks frequently assumes that the distribution of

the resource is stable over time (Liu and Heino, 2013). Whenever changes in distribution occur,

management agreements can become unstable and require renegotiations (Bjørndal and Ekerhovd,

2014). One notable example of how changes in fish distribution can impact international manage-

ment agreements is the case of Atlantic mackerel. The stock was initially managed through an

international agreement between Norway, the EU and the Faroe Islands. However, around 2008 the

stock started migrating into Icelandic waters which led to the development of a fishery for Atlantic

mackerel in that country. The increase in Icelandic catches lead to conflict and consequent failure

of the management agreement previously held (Hannesson, 2013; Spijkers and Boonstra, 2017).

Size segregation can further the problem of transboundary management for migratory species.

This is because there is a relationship between size composition and fishing mortality in a pop-

ulation. If we assume that recruitment and natural mortality remain constant, populations under

higher fishing pressure will have truncated age structures, i.e., much lower proportions of older

and larger fish (Beverton and Holt, 1957). For this reason, management quantities, such as target

and threshold exploitation rates, will have an effect on the size distribution of the population. This

impacts the migration patterns of the exploited population that segregate by size/age; if larger/older

fish migrate further, the migration extent will be shortened by a truncated size/age structure. The

change in migration extent may affect the nations sharing the resource to different degrees, and

could significantly diminish the availability of the resource to one or more of the fishing nations.

In addition to affecting availability, migratory movement and size/age segregation can also lead

to cohort targeting behavior by the fishing fleets. Cohort targeting occurs when fish segregate by

age and the fishing fleet targets areas of high abundance. This leads to a disproportionate amount

of effort being applied to the most abundant cohorts, either because the cohort is the outcome

of a strong recruitment event or because the cohort has been recently recruited and has not yet

been fished. When cohorts are targeted, the fishery selectivity changes as the cohorts grow older,
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resulting in temporal changes in fisheries selectivity. This is an important issue for many of the

modern stock assessment methods that rely on estimates of selectivity to produce age specific

fishing mortality rates and derived management quantities.

Both migratory movement and size segregation are common for many exploited species around

the globe. For many species, size segregation comes as byproduct of the migratory movement with

larger individuals migrating further away from spawning grounds. A few examples of important

commercial stocks that exhibit this behavior are: tunas (Nakamura, 1969), sharks (Camhi et al.,

2009), Lake Erie walleye (Berger et al., 2012), Pacific halibut (Webster et al., 2013), sardines (Lo

et al., 2011) and Pacific hake (Bailey et al., 1982).

This dissertation aims at identifying robust management procedures for transboundary fish pop-

ulations that are subject to size/age segregation associated with migratory movement. Here, I de-

fine the term “management procedure” as the series of choices made regarding the management

of exploited fisheries resources, including choices about data collection methods, stock assessment

models, target harvest rates and harvest control rules. I evaluate two main aspects that relate to the

management of transboundary migratory populations: (1) changes in availability of a fisheries re-

source to a nation due to management outcomes and (2) the issue of time-varying selectivity caused

by changes in availability and cohort targeting by fishing fleets. I use the offshore stock of Pacific

hake (Merluccius productus) as a case study, and focus the research questions on issues that are

relevant for Pacific hake management.

1.1 Management of transboundary stocks

Many fisheries around the world exploit stocks that are distributed across waters under the jurisdic-

tion of two or more coastal nations, such stocks are called transboundary stocks (Sumaila, 1999;

Miller and Munro, 2004). Several complications arise in the management of transboundary stocks

because the optimal harvest strategy from the perspective of an individual nation usually differs

from that of a group of nations exploiting a shared fisheries resource (Criddle and Strong, 2014).
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Several studies have modeled the management of transboundary stocks under a game theory

approach (Bailey et al., 2010). In this approach, nations involved in transboundary fisheries are

represented by players who seek to maximize their benefits (utility) (Munro, 1979). The players

can adopt cooperative or non-cooperative strategies with examples of both strategies found in fish-

eries management (Munro, 2005). However, multiple studies show that although the individual gain

can be higher under a non-cooperative strategy, the overall utility is greater when all players opt for

a cooperative strategy (e.g., Bailey et al., 2013; Ishimura et al., 2013). The adoption of cooperative

strategies is also frequently associated with better long-term management of the resource and in-

creased fishery sustainability (Ishimura et al., 2013). Cooperative strategies are usually represented

by treaties and agreements signed by two or more countries or by Regional Fisheries Management

Organizations. These agreements typically assume that stock distribution remains somewhat con-

stant over time and that catch shares for each nation are proportional to the biomass of the stock

occupying that nation’s Exclusive Economic Zone (EEZ). This assumption does not always hold

as changes in stock distribution often occur and lead to inadequacy of the management agreements

(Liu and Heino, 2013).

Variability in the distribution of exploited resources is not uncommon and can be caused by

a wide variety of factors, including range contraction, i.e., as a population decreases, individuals

concentrate in optimal areas (e.g., Brodie et al., 1998), or changes in habitat characteristics such

as temperature or food availability (e.g., Rodríguez-Sánchez et al., 2002). The disparity between

actual stock distributions and that assumed by management agreements can lead to ineffective man-

agement regulations and sub-optimal outcomes for one or all nations sharing the resource (Miller

and Munro, 2004; Bjørndal and Ekerhovd, 2014).

Movement and migration patterns can both affect management outcomes and be affected by

changes in management procedures. Therefore, potential shifts in distribution need to be consid-

ered when evaluating the performance of management procedures for transboundary stocks. How-

ever, very few studies to date have included a spatial dimension when evaluating the effectiveness

of fisheries management procedures. This effect is partly because spatial models are rarely used
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for fisheries management (Berger et al., 2017a). However, this scenario has been changing in re-

cent years due to increased spatial data availability, increases in computer power, and development

of new data collection and modeling techniques (Goethel et al., 2011, 2016). These factors have

contributed to a better understanding of movement dynamics and spatial structures of fished pop-

ulations. The improved understanding has also led to a surge in management related questions

associated with movement and spatial distribution of exploited populations (Goethel and Berger,

2017).

1.2 Size segregation and fishing selectivity

Selectivity is defined by a combination of two processes: vulnerability and availability. The vul-

nerability process represents the contact selectivity, i.e., the proportion of individuals at a given age

or size retained by a fishing gear. The availability process represents the spatial dimension of the

fisheries, i.e., the degree of overlap between the spatial distribution of the population being fished

and the spatial distribution of the fishing activity (Lee et al., 2017).

Both vulnerability and availability of an exploited population can vary over time and therefore

modify the resulting selectivity. Vulnerability changes are generally associated with changes in the

fishing fleet and gear type. Such changes can be identified if there is good knowledge of the history

of the fishery. Documentation on technological innovations, changes in target species or popula-

tion groups, and development of new fleets are often found in stock assessment documents, legal

documents, and industry reports. Availability changes as fish and fishers move. Fish movement

can be driven by migration and dispersal, and although ecological studies of fish movement are

abundant, the inclusion of spatial distribution of fish in stock assessment models is comparatively

scarcer (Berger et al., 2017a). For this reason, in many cases, the effects of fish movement and

spatial structure is modeled in stock assessment by considering spatial areas as different fishing

fleets that are subject to different selectivities. Although this methodology can capture some of the

variance caused by migration and spatial structure, it can sometimes also lead to biased assessment

results (Hurtado-Ferro et al., 2014).
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The spatial distribution of fishing fleets is also non-static and affects availability. Many fishing

fleets target a given size range, either for economic or regulatory reasons. For this reason, a fleet

tends to optimize its distribution in order to target areas of high abundance of the resource within

their preferred size. For fisheries where the preferred size range is broad, fleets tend to target strong

cohorts, especially if the fished resource tends to segregate by size or age. The cohort targeting

behavior will lead to changes in the fisheries selectivity over time, which in turn can be a difficult

characteristic to model in stock assessments. Cohort targeting is a characteristic of the Pacific hake

fisheries, which is consequently, a strong indication that the selectivity patterns for that fishery

changes as strong cohorts grow.

Time varying selectivity is an important issue for current fisheries stock assessment (Gud-

mundsson and Gunnlaugsson, 2012). In statistical catch at age models, now a widespread as-

sessment method for many data rich fisheries (Methot and Wetzel, 2013), selectivity is used as a

multiplier to fishing mortality, and therefore acts as a scaler to fishing mortality at age and, conse-

quently, for fishing mortality of each cohort. If not appropriately considered in stock assessments,

changes in selectivity over time can severely impact the estimates of fishing mortality and derived

management quantities.

In 2014, a special issue of the Fisheries Research journal was dedicated to the estimation of

selectivity, and the implications for stock assessment and fisheries management (Maunder et al.,

2014). This special issue contains articles that evaluate the impacts of misrepresenting selectivity

in assessments (e.g., Butterworth et al., 2014; Martell and Stewart, 2014), present methods for

treating selectivity estimation (e.g., Nielsen and Berg, 2014; Waterhouse et al., 2014) and review

the occurrence of various selectivity patterns in real data (e.g., Sampson, 2014).

1.3 Pacific hake - fisheries ecology and management

Pacific hake, also known as Pacific whiting, inhabits the waters off the west coast of North America,

living within the California Current system (Lloris et al., 2005). Several stocks are encountered

throughout the species distribution range (Chittaro et al., 2013; King et al., 2012), but a single and
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offshore transboundary stock supports most of the Pacific hake commercial fisheries off the west

coast of the U.S.A. and Canada. This dissertation focuses on the offshore transboundary stock, and

all references to Pacific hake are, therefore, referring to that stock.

The recruitment of Pacific hake is highly variable, and very strong recruitment events happen

with some regularity (once or twice per decade) although not in a predictable pattern. The popu-

lation age structure is heavily influenced by strong recruitment events, and the fishing fleets from

both U.S.A. and Canada tend to target the strong cohorts. Maximum age is around twenty years

and natural mortality is estimated to be around 0.23 year−1, but individuals older than fifteen years

old are rarely encountered in the fisheries (Methot and Dorn, 1995). The offshore Pacific hake

population exhibits seasonal migratory behavior. Spawning occurs in offshore waters off southern

California during the winter with fish migrating north between spring and fall to feed (Bailey et al.,

1982; Ressler et al., 2007). The extent of the migrations is correlated with individual size. Larger

fish, typically older than age four, migrate longer distances and are found to be more abundant than

younger age classes in Canadian waters. Fish three years of age and younger tend to remain in U.S.

waters off the coast of California and Oregon (Methot and Dorn, 1995; Ressler et al., 2007).

The fishery occurs between May and November off the coast of northern California, Oregon,

Washington (U.S.A.) and British Columbia (Canada), and is conducted almost exclusively by mid-

water trawls. The fishing vessels operate in areas with bottom depth ranging between 100 to 500m.

Until the 1990s, the Pacific hake fishery was strongly dominated by foreign fleets. The large scale

fishery was started in 1966 with factory trawlers from the Soviet Union (Forrester et al., 1978)

and expanded in the mid-1970s when factory trawlers from Poland, Federal Republic of Germany,

the German Democratic Republic and Bulgaria joined the fishery. A joint venture fishery between

U.S.A. trawlers and Soviet factory ships acting as motherships started in 1978. The U.S.A. national

fishery expanded during the 1980s, and the fleet became entirely domestic by the early 1990s

(Methot and Dorn, 1995; Ressler et al., 2007). In Canada, the domestic fleet also expanded after

the mid-1980s but joint venture initiatives continued to occur until 2011. In recent years, most
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Pacific hake production has been processed into headed and gutted products and surimi (Ressler

et al., 2007; Nelson, 2014).

The offshore Pacific hake stock is managed through a bilateral agreement between Canada and

the United States, known as the Pacific hake Treaty (United States State Department, 2004). This

treaty and was initially ratified by the U.S. in 2006 but an error in the original text delayed its im-

plementation until a new ratification in 2010. The treaty has been considered in force in Canada

since 2008. The agreement determines that a stock assessment should be conducted every year by

a Joint Technical Committee (JTC). The JTC is composed of scientists appointed by each country

and independent members chosen by a private sector advisory panel. The stock assessment results

are used in association with a defined harvest control rule (40:10 rule) to generate a recommen-

dation for a coast-wide Total Allowable Catch (TAC), which is evaluated and adjusted by a Joint

Management Committee (JMC). The JMC approved TAC is then shared between the U.S.A. and

Canada following a fixed proportion: 73.88% and 26.12% of the TAC is allocated to the U.S.A.

and Canada, respectively (United States State Department, 2004).

Throughout the Pacific hake exploitation history there has been some concern about potential

changes in stock distribution and stock biomass associated with gaps in the occurrence of strong

recruitment events. Whenever there is a strong cohort hiatus, as occurred between 1999 and 2010,

the population age structure tends to become more truncated with most of its biomass being repre-

sented by fish of younger age classes. Because the Pacific hake migratory movement is associated

with fish size/age, the truncation of the population age composition has an effect on the population

range and distribution (Hicks et al., 2016). This variability in stock distribution can particularly

impact the northern distribution of the stock, resulting in lower availability of Pacific hake off the

coast of Washington and Canada. These changes have generated concern to the Canadian Pacific

hake Advisory Panel regarding the efficiency of the current harvest control rule, and the consequent

appropriateness of total allowable catch recommendations (Canadian Advisory Panel, 2013).

A few studies have evaluated the performance of current and alternative management proce-

dures considered for Pacific hake. Ishimura et al. (2005) evaluated the performance of the 40:10
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harvest control rule and a series of linear harvest control rules for the aggregate Pacific hake stock.

They considered performance metrics relating to average yield (magnitude and standard deviation),

probability of closures, and total biomass and found that the best results were obtained for low har-

vest rates and low threshold biomass. They also found that the 40:10 harvest control rule performed

well in relation to the best linear harvest control rules. Punt et al. (2008) assessed the performance

of a set of harvest control rules a for groundfish stocks off the U.S.A. west coast, including Pacific

hake. They evaluated the performance of such rules in relation to average catch and conservation

metrics. They found that threshold harvest control rules, i.e., rules that progressively adjust harvest

rates as the biomass decreases (reach thresholds), tend to perform better in relation to conserva-

tion objectives, but results are sensitive to assumed productivity and recruitment variability. An

additional evaluation has been carried out by the Pacific hake JTC since 2014 (Taylor et al., 2014).

However none of the evaluations listed above considered issues involving the spatial structure of

the stock.

1.4 Objectives and dissertation structure

This dissertation focuses on questions that are relevant to the management of transboundary stocks.

Particularly, those stocks that are subject to migratory movement, ontogenetic segregation, and

time-varying selectivity. We use the Pacific hake resource as an example to illustrate the use of

the modeling tools developed. The dissertation is organized into three modeling chapters and a

conclusion. The three main chapters evaluate the following questions: (1, Chapter 2) How to model

cyclic ontogenetic migrations and fleet dynamics associated with cohort targeting? (2, Chapter

3) Is it possible to overcome the requirement of estimating selectivity curves by using catch at

length and growth curve information? (3, Chapter 4) How do commonly considered harvest control

rules perform for the management of a transboundary fish stock when performance measures are

evaluated separately for each fishing nation?

In Chapter 2, I develop and implement a continuous migration model to describe the population

dynamics of the Pacific hake resource. The model simulates the cyclic migratory movement that is
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characteristic of Pacific hake including cohort segregation. In this model, the population dynamics

of the resource are described with an age-structured model that allows for high variability in re-

cruitment and strong recruitment events. This model is also coupled with a fleet dynamics model

that simulates the tendency of fishing fleets to target areas of high abundance, which leads to the

targeting of strong cohorts and consequent time varying selectivity. Using a simulation-evaluation

analysis, I demonstrate how the model’s movement parameters can be estimated given commonly

available spatial catch at age composition data.

In Chapter 3, I present a novel length based stock reduction analysis (Length-SRA) approach.

This assessment model bypasses the requirement of estimating selectivity parameters, generating

no constraints on the occurrence of time-varying selectivity, similarly to what is obtained with a

Virtual Population Analysis (VPA). I demonstrate the model performance under three exploita-

tion trajectories, and with both time varying and time invariant selectivity patterns. I also use the

approach to estimate trends in selectivity and management quantities for two real data examples:

Peruvian jack mackerel and Pacific hake.

In Chapter 4, I use the movement model developed in Chapter 2 as an operating model in a

closed loop simulation to evaluate the performance of a series of linear harvest control rules and the

harvest control rule currently used to manage the Pacific hake resource, the 40:10 harvest control

rule with a cap on maximum allowable catch. I evaluate five performance metrics that represent

my interpretation of three potential fisheries objectives: high catches with limited variability, low

probability of closures and maintenance of biomass above a threshold.

The research presented in this dissertation offers opportunities for improving the understanding

of the effects of spatial dynamics on fisheries assessment and management. The modeling tools

and framework presented here is informative for the future management of Pacific hake and other

transboundary migratory stocks.
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Chapter 2

A Lagrangian approach to model movement

of migratory species

2.1 Introduction

Two main drivers of cyclic migration in marine fish species are seasonal availability of food and

spawning behavior (Walters and Martell, 2004). In many iteroparous species, these drivers are

responsible for a continuous migration cycle between feeding and spawning areas (e.g., Hunter

et al., 2003; Costa et al., 2012; Merten et al., 2016). Migration modeling is an important component

of fisheries science due to the common presence of migratory behavior in exploited species. In this

study, I present a novel method for modeling the migration of fisheries resources and the associated

fisheries dynamics that can arise from fish movement.

The migration cycle observed in many iteroparous species can vary in extent (i.e., distance or

timing) for subgroups within a population, e.g., for different age or size groups (Ressler et al.,

2007), sex (Okamura et al., 2014) or sub stocks (Carlson et al., 2014). This variability can lead

to spatial segregation of subgroups within a fish population. When spatial segregation is present,

subgroups are susceptible to distinct environmental and ecological drivers leading to differences in

natural mortality, recruitment and to additional variability in spatial distribution (Ciannelli et al.,

2008). In addition, spatial segregation within a population can cause spatial differences in vulner-

11



ability and fishing effort or mortality that are independent from fishing gear or fishing techniques

(Martell and Stewart, 2014). If ignored, migratory movement and spatial segregation can lead to

strong bias in surveys and stock assessment which could result in unreliable management advice

(McAllister, 1998; Waterhouse et al., 2014). It can also lead to failure of management strategies,

particularly when considering space/time closures (Martell et al., 2000; Grüss et al., 2011). The

evaluation of impacts of fish movement on fisheries management often requires the use of migra-

tion models and simulation studies. See Kerr and Goethel (2014) for a comprehensive review on

the application of simulation studies to evaluate the impacts of movement and migration on fish

population dynamics and fisheries management.

Migration models are diverse in the fisheries literature (Goethel et al., 2011) and can be grouped

based on two numerical methods used to implement them: Eulerian and Lagrangian models. These

terms are originally applied to fluid dynamics but have been used to describe migration modeling

for aquatic resources (Kerr and Goethel, 2014; Walters and Martell, 2004). The two approaches

differ in the way that movement is measured. In the Eulerian approach space is divided in prede-

termined areas and the movement rate of individuals across such areas is the variable of interest.

Eulerian models have been coupled with stock assessment models and tagging studies (Carruthers

et al., 2011; Methot and Wetzel, 2013; Sippel et al., 2015) and are useful when there is interest

in tracking the net flux of individual across predetermined spatial areas. In the Lagrangian ap-

proach, the movement of individuals is tracked through time and space and the movement tracks

are the variable of interest (Walters et al., 1999). Lagrangian models rely on the assumption that

an underlying force drives movement. For example, this force could be environmental drivers forc-

ing ichthyoplankton dispersal (Lett et al., 2008) or homing behavior driving salmonid runs (Cave

and Gazey, 1994; Branch and Hilborn, 2010). Lagrangian models are not commonly applied to

iteroparous species, despite the suitability of the approach to model migratory behavior. Migration

hypotheses, such as the cyclic movement between feeding and spawning areas, can be used as the

underlying pattern that drives the movement of individuals through space in a Lagrangian model.
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In this paper, I describe a Lagrangian movement model designed for iteroparous species that

perform cyclic migrations throughout their lifetime. The objective of this model is to provide a

way of formalizing movement hypotheses into mathematical models. The resulting model can be

used to summarize data and test the validity of alternative migration hypotheses and to represent

complex movement dynamics as an operating model in closed loop simulation studies. The model

is applied to the Pacific hake (Merluccius productus) as a study case. In particular, I focus on the

offshore Pacific hake stock that inhabits the California current system. This stock is believed to

perform annual migration cycles between the spawning area off southern California and feeding

grounds along the West coast of North America, from Oregon to Southeast Alaska (Ressler et al.,

2007). The migration cycle of Pacific hake is partially influenced by the age/length of individuals,

with older/larger individuals reaching waters further north (Methot and Dorn, 1995; Ressler et al.,

2007). The migration cycle is a key component to consider for management strategies for this stock.

The agreement between Canada and the US defines an aggregate (i.e., non-spatial) harvest control

rule, but, given that prosecution of the fishery itself affects the mean age/size of fish, it also affects

the distribution of the stock and hence, the distribution of the fishery’s benefits between the parties.

In addition to the model description, I provide a description of data requirements to estimate the

model movement parameters. I also show how the model can be extended to incorporate covariates

representing biological and environmental factors that alter the distribution and migration range of

the populations being modeled.

2.2 Methods

2.3 Movement model framework

I decompose the model into the following sections: population dynamics, movement, and fisheries

dynamics. This division is somewhat arbitrary as all three parts are interdependent, but the division

is done to ease the description of the model. All three sections are structured by age, time, space

(i.e., modeled area, fishing grounds and territories), and group. All model indexes, i.e., variables

used to designate the model dimensions, are presented in Table 2.1. The age dimension, denoted as
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a, aggregates individuals by cohort, and spans from age one to a plus group A, which encompasses

individuals of age 20 and older. Individuals age is set to increase in the first month of each year,

i.e., t = t0. The time dimension is denoted at t. I assumed monthly time steps, so all quantities

within the model were computed twelve times within a year/migrations cycle, but any step length

could be used. The indexing of time is cyclic, so that the range {t0, ..., tmax} is repeated every year.

The first month of the migration cycle is also indexed with the year counters (y), so that y−1 = t0

in the previous year. The space dimension is considered at three scales: area, fishing ground, and

territory. The variable area (r) refer to small and equally sized intervals of space, which are used

to discretize the variables of interest (biomass, fishing effort, etc.). The area range denotes the

limits of the modeled space. Fishing grounds and territories are larger than areas, but are contained

within the area range (i.e., within the limits of the modeled space). The fishing grounds correspond

to areas where a fleet is known to operate and territories correspond territorial waters of a nation or

state. Each territory may contain one or more fishing grounds, and the biomass within one territory

is only accessible to the fleets operating within that territory. Lastly, the group dimension is used

to represent parcels within an age cohort that move at different speeds.

In the population dynamics section (Table 2.3) the processes relating to recruitment, survival,

aging and growth are described. These processes are modeled for each group in the population

through time and space. The spatial section (Table 2.4) encompasses the description of movement

of individuals at age and group through time. And finally, the fishing dynamics section (Table 2.5)

describes the model effort distribution as a function of spatio-temporal effort scalers and the spatial

distribution of fish biomass (summed over all ages and groups). The spatial distribution of fishing

effort is used to generate of spatially explicit fishing mortality. In the movement section, groups are

modeled in two ways yielding two versions of the model: single group or multiple groups versions.

All model variables are defined in Table 2.2.

The population dynamics is composed of survival and recruitment processes (Table 2.3). The

model assumes age-specific vulnerability and fecundity as well as Beverton-Holt recruitment oc-

curring at age 1. Recruitment and aging are assumed to happen at the first time step within a
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Table 2.1: Indexes and variable definitions

Symbol range Description
t {t = t0, ..., tmax} time steps within a migration cycle
y {y = yo, ...,Y} year index
a {a = 1, ...,A} age index
r {r = rini, ...,R} area index
k {k = 1, ...,K} fishing ground index
n {n = 1, ...,N} territory index
g {g = 1, ...,G} group index
RM range of modeled area
dr interval between two adjacent areas
tmax ·Y total numbers of time steps modeled

migration cycle (Equation T3.2 - cases i-iii) and survival due to natural and fishing mortality are

calculated at monthly time steps (Equation T3.2 - cases ii-iv). Because of the continuous nature of

the model, sometimes some portion of the population might be located outside the boundaries of

modeled area and therefore outside the fishing grounds. When this happens, we assumed that indi-

viduals are subject to natural mortality only (Equation T3.2 - second term on cases ii-iv). Spawning

biomass is combined over all areas and groups (Equation T3.3).

The movement section (Table 2.4) assumes the individuals in a population are distributed along

a unidimensional gradient X , and that they perform annual cyclic migrations between spawning

and feeding areas. This cyclic migration is modeled with a sine function in which the position of

individuals change as a function of time (Figure 2.1). I have developed two alternative versions:

single group and multiple groups. In both versions, the cyclic movement of individuals between

spawning and feeding areas is modeled with a sine curve (Equation T4.1). The magnitude of

the movement is determined by two parameters representing maximum and minimum positions

of the migration cycle (Xmax,a,g and Xmin), and the starting time step of the cycle is given by the

parameter t0. The maximum and minimum positions of the cyclic movement, Xmax and Xmin, can

be modeled as a function of covariates, such as age, size or environmental drivers. Here, I model

the maximum position as a logistic function of age (Equation T4.2) and fix the minimum position

as constant for all ages. Once the maximum and minimum positions are defined, the sine curve

is used to calculate the mean position of individuals in each group of age a, in time step t (X̄a,t).
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Table 2.2: Variable definitions

Symbol Description
Population dynamics
Na,t,g Numbers at age, time and group
M Annual natural mortality
va Vulnerability at age
S0 Maximum juvenile survival rate
SBt Spawning biomass at time t
β Beverton & Holt density dependence
propg Proportion of total recruitments that recruits to group g
wt Normally distributed recruitment error
Pra,r,t,g Proportion of population of age a, group g and at time t in area r
wa Weight at age
fa Fecundity at age
f Proportion of females in the population
Φ(x|µ,σ) Cumulative normal distribution with mean µ and standard deviation

σ , evaluated at x
Spatial dynamics
X̄a,t mean position at age and at time t
X̄min minimum average position
X̄max,a maximum average position at age
t0 time step at which individuals are at their minimum average position
a50 inflection point for maximum average position logistic function
σXmax standard deviation for maximum average position logistic function
σXa standard deviation for position at age
CV coefficient of variation for position at at age
single group version
Xa,t probability distribution for position at age and time
multiple groups version
X̄a,t,g mean position at age, time t and for group g
QXa,t,g quantiles for mean group distribution
δ distance between quantiles for mean group distribution
σXa,g standard deviation for position at age
X̄a,t,g mean position at age and group
Xa,t,g probability distribution for position at age and time for each group
Fisheries dynamics
Er,t Effort in area r and at time t
Ey,k Maximum yearly effort scaler in fishing ground k
Et,k Maximum time step effort scaler in fishing ground k
Ar,t Attractiveness of each area r and at time t
λ Attractiveness power
V Br,t Vulnerable biomass by area and time
Epot,r Relative effort potential for each area r
Fr,t Fishing mortality rate in area r and at time t
q Catchability coefficient
Ca,r,t Catch at age for each small area r and time t
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Table 2.3: Population dynamics model
Initial year and time step - y = yo

Na,t,g =



S0·SB0
1+β ·SB0

· exp(wt) · propg, (i) t = t0 & a = 1

Na−1,t,g · exp(−M/tmax), (ii) t = t0 & 1 < a < A

Na−1,t,g·exp(−M/tmax)
1−exp(−M/tmax)

, (iii) t = t0 & a = A

(T3.1)

Age-schedule information

Na,t,g =



S0·SBy−1
1+β ·SBy−1

· exp(wt) · propg, (i) t = t0 & a = 1

r∈RM
∑ (Na−1,t−1,g ·Pra−1,r,t−1,g · exp(−M/tmax−q ·Er,t−1 · va−1))

+Na−1,t−1,g ·
(

1−
r∈RM

∑ Pra−1,r,t−1,g

)
· exp(−M/tmax), (ii) t = t0 & 1 < a < A

r∈RM
∑

(
Na−1,t−1,g·Pra−1,r,t−1,g·exp(−M/tmax−q·Er,t ·va−1)

1−exp(−M/tmax−q·Er,t−1·va)

)
+

Na−1,t−1,g·
(

1−
r∈RM

∑ Pra−1,r,t−1,g

)
·exp(−M/tmax)

1−exp(−M/tmax)
, (iii) t = t0 & a = A

r∈RM
∑ (Na,t−1,g ·Pra,r,t−1,g · exp(−M/tmax +q ·Er,t−1 · va))

+Na,t−1,g ·
(

1−
r∈RM

∑ Pra,r,t−1,g

)
· exp(−M/tmax), (iv) t0 < t ≤ tmax &

1≤ a≤ A
(T3.2)

SBt =
g

∑
a

∑Na,t,g · fa ·wa · f (T3.3)

propg =

{
1, single group
Φ(QXg +δ |µ = 0,σ = 1)−Φ(QXg−δ |µ = 0,σ = 1), multiple groups

(T3.4)
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The proportion of individuals in each area, i.e., small intervals of space, is given by the cumulative

normal distribution function given the mean position and standard deviation of the cohort (Equation

T4.5) or group (Equation T4.11).
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Figure 2.1: Diagram illustrating the sine function used to describe the cyclic movement dy-
namics used in the Lagrangian model. The position (y-axis) of an individual changes in
cyclic waves as time (x-axis) progresses. In this diagram, we assume that a cycle lasts
12 time steps and that movement occurs between values of 30 and 60 along the spatial
scale.

The differences between single and multiple groups versions are in how the individuals are

distributed around the mean position (X̄a,t). When a single group is present, the individuals are

assumed to be normally distributed around the mean with variance σ2
Xa

(Equation T4.4). In the

multiple groups version, each group’s position follows a group specific normal distribution and

the mean and variance of each group is a function of the overall mean and variance (Equations

T4.6-T4.9). The main difference between the two versions is that in the single group version, the

distribution of fish regenerates to a normal distribution at every time step, but with a new average

position. Although individual fish might experience different fishing mortality depending on lo-

cation, the regeneration assumption does not allow localized depletion to occur. Instead, fish are

redistributed across their range in each time step following a normal density function. When multi-

ple groups are considered, each group is distributed according to a group specific distribution that is

much narrower than the overall distribution of individuals at an age class. This mechanism allows
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Table 2.4: Lagrangian movement model
Movement information

X̄a,t = X̄min +(X̄max,a− X̄min) ·
(

0.5+0.5∗ sin
(

t · 2π

tmax
− t0 ·

2π

tmax
− π

2

))
(T4.1)

X̄max,a =
1

1+ exp(−(a−a50)/σXmax)
· e(vt∼N (0,σvt)) (T4.2)

σXa = X̄max,a ·CV (T4.3)

Single group version

Xa,t ∼N (X̄a,t ,σXa) (T4.4)

Pra,r,t = Φ(x = r+
dr
2
|µ = X̄a,t ,σ = σXa)−Φ(x = r− dr

2
|µ = X̄a,t ,σ = σXa) (T4.5)

Multiple groups version

X̄a,t,g = QXa,t,g ·σXa + X̄a,t (T4.6)

QXg = δ · (g−G/2.0) (T4.7)

δ = 6.0/G (T4.8)

σXa,g =

√
σXa

2

G2 (T4.9)

Xa,t,g ∼N (X̄a,t,g,σXa,g) (T4.10)

Pra,r,t,g = Φ(x = r+
dr
2
|µ = X̄a,t,g,σ = σXa,g)−Φ(x = r− dr

2
|µ = X̄a,t,g,σ = σXa,g) (T4.11)

certain groups to experience different fishing pressures depending on where the group is located,

which might lead to higher or lower fishing pressure over extended periods of time. Because the

distribution range of each group is narrower the regeneration only occurs within a narrow range,

which allows local depletion to become apparent.

In the fishing dynamics section (Table 2.5), spatial fishing effort allocation is done with a gravity

model (Caddy, 1975) . These models assume that effort in each area is a function of the latent yearly

and monthly effort in a fishing territory and the attractiveness index of that area (Equation T5.3).

The effort potential quantities Ey,k and Em,k are scaling matrices of dimensions Y x K and tmax x K

respectively. The values in these matrices range between 0 and 1. Values of 0 indicate that no effort
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is allowed in that particular year or month, conversely, values of 1 indicate that full effort is allowed

in that particular year or month. The attractiveness index can include factors such as fishing cost,

target fish abundance and bycatch abundance (Caddy, 1975; Walters and Martell, 2004). I make

attractiveness (Equation T5.2) a function of vulnerable biomass V Br,t−1, the power parameter λ

and effort potential Epot,r (Equation T5.1). I use the vulnerable biomass in the previous time step

because I assume that effort distribution is guided by the biomass distribution observed in the

previous time step. The parameter λ is used to indicate if the attractiveness is directly proportional

to abundance (λ = 1), or if the fleet tends to disproportionately aggregate in high abundance areas

(λ > 1). One example in which λ > 1, is when there is communication between fishing vessels

when a high abundance area is located. In such cases, fishing effort would tend to aggregate in high

abundance areas generating a patchy distribution of effort. The effort potential Epot,r parameter

represents the avoidance factors for a given area, e.g., fishing costs and bycatch avoidance. This

parameter can be used to represent a range of differences in fishing fleets, such as storage capacity,

autonomy at sea, and distance between fishing grounds and home port. The Epot,r parameter can

also be used to represent areas that are avoided due to high bycatch occurrence. Avoidance areas

affect the ability to concentrate fishing effort at a given location, and therefore should be considered

in the modeling process. Effort is then multiplied by q, the effort scaler, resulting in the fishing

mortality in that area. Lastly, catches are calculated for each time step using the Baranov catch

equation (Equation T5.4).

Process and observation random errors are incorporated in the model. The process random error

was represented annual recruitment variability, annual variability in the maximum average position,

and annual variability in the effort scaler q. All these variability components were modeled with

lognormally distributed error. The age composition data, in numbers and aggregated by fishing

ground, are generated with multivariate logistic sampling error.
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Table 2.5: Fisheries dynamics model
Fisheries dynamics

V Br,t−1 =
a

∑

g

∑va ·Na,t−1,g ·wa ·Pra,r,t−1,g (T5.1)

Ar,t =

 V Br,t−1
r∈n
∑ V Br,t−1

λ

·Epot,r (T5.2)

Er,t = Ey,k ·Et,k ·
Ar

∑r Ar
(T5.3)

Ca,r,t =
Fr,t · va

Fr,t · va +M
·Na,r,t · (1− exp(−(Fr,t · va +M))) (T5.4)

Fr,t = q · e(wx∼N (0,σwx)) ·Er,t (T5.5)

2.3.1 Application to Pacific hake and simulation-estimation procedure

The offshore Pacific hake stock was used as an example to illustrate the model dynamics. In the

Pacific hake case, the fish are known to perform annual migration between the waters off South

California and northern British Columbia. Therefore, I model the movement of hake in terms of

latitude degrees, from 30◦N to 60◦N (Figure 2.2). The driving population dynamics parameters for

Pacific hake were obtained from the 2015 stock assessment (Taylor et al., 2015). The parameters

for the effort dynamics were set to mimic the fisheries dynamics described in the stock assessment

document (Taylor et al., 2015). The parameters used in the simulation-estimation procedure are

listed in Table 2.6.

I did a simulation experiment to evaluate the estimability of the movement parameters. I sim-

ulated and estimated population movement dynamics using both single group and multiple groups

versions (20 groups). I simulated total catch and catch at age data with observation error, and used

that data to estimate the models parameters.

The model parameterization is divided into two categories: fixed (extracted from other models),

and parameters that could be estimated, given seasonal catch at age data. The fixed parameters

include all the population dynamics and fisheries capacity parameters. These parameters were the

recruitment function parameters (Ro and h) and natural mortality (M). These parameters were
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Figure 2.2: Map of the study area. The dashed lines indicate the division between fishing
grounds.
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Table 2.6: Pacific hake model dimensions and parameter values

Symbol value or range Description
Dimensions

t 1−12 Time steps within a migration cycle
y 1−30 Years
a 1−20 Age
r 30−60Area
k 3 or 5 Fishing grounds

42, 46, 48.5 and 51 Fishing ground boundaries in latitude degrees
n 2 Territories

48.5 Territory boundary in latitude degrees
g 1−20 Groups
dr 1 Interval between two adjacent areas
tmax ·Y 360 Total numbers of time steps mod-

eled
Population dynamics parameters

M 0.223 Annual natural mortality
S0 15.331 Maximum juvenile survival rate
β 5.422 Beverton & Holt density dependence

Movement parameters
t0 1 Time step at which individuals are at their mini-

mum average position
CV 0.1 Coefficient of variation for position at at age
a50 3.0 Inflection point for maximum average position lo-

gistic function
σXmax 1.5 Standard deviation for maximum average position

logistic function
error levels

τ 0.4 or 1.0 Standard deviation for the multivariate logistic er-
ror around catch at age

σwx 0.08 Standard deviation for lognormal variation around
the maximum average position

σvt 0.1 Standard deviation for lognormal variation around
the effort scaler

Effort parameters
Ey,k Constant for all years and equal to (1,

1, 1, 0.2, 0.2) for fishing grounds from
1 to 5

Yearly effort scaler - fishing grounds 1-2 and 4-5
were combined when only 3 fishing grounds were
considered

Et,k (0.0 0.0 0.0 0.0 0.5 1.0 1.0 1.0 0.5 0.1
0.0 0.0) for fishing grounds 1-3 and
(0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.5 0.3
0.0 0.0) for fishing grounds 4-5

Monthly effort scaler - fishing grounds 1-2 and 4-5
were combined when only 3 fishing grounds were
considered

q 1 Effort scaler
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considered as a fixed input to the model and were assumed to be known without error in both

simulation and estimation models. The estimable parameters are: t0, CV , a50, σXmax and q. These

parameters were estimated with a multivariate logistic likelihood function fitted to simulated age

composition data.

A total of 12 simulation-evaluation scenarios were considered in this study (Table 2.7). I con-

sidered two data aggregation scenarios with data reported from three or five large fishing grounds

(aggregated over all areas within fishing ground). These two levels of data aggregation were con-

sidered in order to explore the sensitivity of the model to levels of spatial aggregation of the age

composition information. I initially considered these two levels of data aggregation for the single

and multiple groups version, however I got very low levels of model convergence (50% or less)

when three fishing ground were considered using the multiple groups version. This fact lead me to

drop the three fishing ground scenarios when the multiple groups version was used. The aggregated

catch at age data was assumed to have multivariate logistic error with two levels of observation er-

ror, i.e., the standard deviation (τ) being either (0.4 or 1.0). These two levels of variability in the

age composition data were chosen in order to evaluate the sensitivity of the model to measurement

and sampling errors. In addition, I considered two attractiveness scenarios (λ = 1 and λ = 2). The

different levels of attractiveness are likely to change the spatial distribution of fishing effort, and

would likely impact the degree of depletion experienced by fish in different areas. This is par-

ticularly relevant for the multiple group scenarios as the different λ values might affect the local

depletion patterns.

The estimation model was identical to the simulation model, and parameters were estimated

with a multivariate logistic likelihood function fitted to simulated age composition data and a

lognormal likelihood fitted to the simulated total catches. A total of 100 simulations were run

for each scenario-version combination. Simulation and estimation routines were performed us-

ing ADMB (Fournier et al., 2012). The code and simulated data are available for download from

https://github.com/catarinawor/Lagrangian
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Table 2.7: Simulation-estimation scenarios

Scenario number Model Version catch at age error Fishing grounds λ value
1 single group low (τ = 0.4) 3 1.0
2 single group low (τ = 0.4) 3 2.0
3 single group high (τ = 1) 3 1.0
4 single group high (τ = 1) 3 2.0
5 single group low (τ = 0.4) 5 2.0
6 single group low (τ = 0.4) 5 1.0
7 single group high (τ = 1) 5 1.0
8 single group high (τ = 1) 5 2.0
9 multiple groups low (τ = 0.4) 5 1.0

10 multiple groups low (τ = 0.4) 5 2.0
11 multiple groups high (τ = 1) 5 1.0
12 multiple groups high (τ = 1) 5 2.0

2.4 Results

2.4.1 Model dynamics

Figure 2.3 shows spatial distribution of biomass in the absence of fishing for the single and multiple

groups versions. If fishing is absent, the biomass spatial distributions are practically identical.

However, the spatial distributions for the two models tend to change if fishing is present and the

effort is not homogeneously distributed throughout the unfished distribution of the resource (Figure

2.4). For the multiple groups version, the spatial distribution of fish at each age tends to deviate

from the initial normal distribution assumption as the fish grow older. This distortion is caused by

the fact that not all groups are subject to the same effort intensity, hence they encounter different

fishing mortality, and therefore depletion levels over their lifetime.

In the Pacific hake example, effort is assumed to be concentrated towards the northern areas

(bars on Figure 2.4). Therefore, when the multiple groups version of the model is considered

(dark line on Figure 2.4), the groups that move to higher latitudes tend to be subject to stronger

fishing pressure, and therefore become more depleted than groups that remain in lower latitudes.

This effect cannot be detected for the younger ages (Figure 2.4, age 1). However, as cohort ages,

the groups that move further (located to the right of the mean distribution for the entire cohort)

start exhibiting perceptibly higher depletion levels compared to groups within the same cohort that
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do not migrate as far (located to the right of the mean distribution for the entire cohort, Figure

2.4, age 5). The higher depletion levels on the fish that move further also causes the mean in the

overall distribution of each cohort to shift to the south, which, over time would tend to diminish the

availability of fish to the fishing fleets in the northern areas.

2.4.2 Simulation-estimation

The simulation-evaluation analysis showed that the five key parameters of the movement model

can be estimated given spatial catch at age data, assuming that the model assumptions are satisfied.

When data were simulated using the single group version (scenarios 1-8 - Table 2.7), it was possible

to predict the main movement parameters with practically no bias, i.e., parameter estimates were

within 10% of true values (Figure 2.5). Variability in parameter estimates was lower when data were

reported for five fishing grounds when compared to scenarios where data were reported only for

three fishing grounds. When the data reporting was assumed to occur for five fishing grounds, the

data was less aggregated and therefore more informative to the estimation of the movement pattern

along the latitudinal migration route of the fish. As expected, higher values of τ , the standard

deviation for the catch at age error, resulted in higher variability in the parameter estimates. No

difference was observed for scenarios with different values for the λ parameter. The parameter λ

allows effort to concentrate in areas of high abundance. It is likely that the effects different values

of λ were not noticeable because of the regeneration assumption that is inherent to the single group

version of the model. In other words, even though effort might have aggregated in certain areas, it

did not affect the overall distribution of fish for each cohort.
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Figure 2.3: Illustration of the distribution of fish of age 5, in the month of July for the single
and multiple groups versions in the absence of fishing. The multiple groups version
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Figure 2.4: Monthly representation of differences between spatial distribution of biomass for
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When data were simulated with the multiple groups version (scenarios 9-12 - Table 3.6), bias in

the estimated parameters became more prominent (Figure 2.5). The effort scaler parameter, q, was

underestimated in all scenarios by about 40%. In order to evaluate the impact of the parameter bias

on the predicted biomass distribution, I used plotted the median predicted biomass for scenario 12,

one of the cases where the bias was most prominent (Figure 2.6). Despite the bias in parameter

estimates for the multiple groups version the impact on the distribution of total biomass over time

predicted by the model was relatively small (Figure 2.6). Because of the lower effort predictions

due to the underestimation of q, higher median biomass distributions are predicted by estimation

model. However, little impact is seen in the overall proportion of biomass in each area.

2.5 Discussion

The Lagrangian movement model described in this paper is an alternative to traditional Eulerian

approaches commonly used to model the distribution of adult iteroparous fish (Goethel et al., 2011;

Sippel et al., 2015). The Lagrangian approach shown here allows for the explicit consideration of

migration hypotheses, such as the cyclic migration between spawning and feeding grounds, and

exploration of potential impacts of covariates in shaping migration variability within a population.

Traditional Eulerian models are generally represented by spatially discrete box or bulk transfer

models (Carruthers et al., 2015; Methot and Dorn, 1995) or continuous advection-diffusion mod-

els (Sibert et al., 1999). Box models are simpler but require the predetermination of, usually large,

spatial areas from which flow (i.e., movement) is measured. The determination of such areas can be

challenging, especially due to the assumption that fishing mortality is homogeneously distributed

within each area and that flow in between boxes is mainly caused by migration or diffusive move-

ment (Walters and Martell, 2004; Carruthers et al., 2011). Frequently, these large spatial areas

are determined by political or management boundaries or historical division of data, and do not

correspond to an ecologically relevant partition of the habitat of the species being studied. Such

artificial partitions can lead to violation of the box model assumptions. The Lagrangian model pre-

sented here is continuous in space, and therefore does not require the definition of homogeneous
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spatial areas. However, the model output can be aggregated in larger areas for comparison with

historical data or for investigation of management questions relating to political boundaries.

Advection-diffusion models are continuous in space, but are much more data intensive and

generally require the availability of tagging and tracking data (Sibert et al., 1999; Costa et al., 2012).

Similarly to advection-diffusion models, the Lagrangian model presented in this paper is continuous

in space and time, allowing for predictions of biomass at any location in the time-space continuum.

However, differently from the diffusion models, the approach shown here does not assume that

animals move at random. Instead, the movement is assumed to be directed by an innate migration

hypothesis, frequently derived from observed seasonal size or age distribution of the species of

interest (e.g., Ressler et al., 2007; Francis and Clark, 1998). The use of a migration assumption

replaces the need to directly estimate advective terms to explain fish movement and, therefore, does

not rely on tagging data to determine the direction of fish movement. This is an advantage because

for many fish species tagging data is not readily available and tagging studies can be difficult to

carry out. This is particularly true for deep water species due the complications and high mortality

rates resulting from the barotrauma caused by bringing the individuals to the surface for tagging

(Nichol and Chilton, 2006; Winter et al., 2007). In addition, tagging studies usually involve high

operational costs, which include tag deployment, recapture surveys and/or publicity campaigns to

increase voluntary tag reporting rates in the fisheries and, in some cases, high costs associated

with the tags themselves (Pine et al., 2003). Despite the high costs and the large effort associated

with tagging studies, the data quality is frequently diminished by violation of basic assumptions

of tagging experiments, such as changes in reporting rates over time, time-varying catchability

and influence of the tag on fish behavior (Pine et al., 2003). These difficulties associated with

tagging data frequently result in the lack of enough information in the data, despite extraordinary

expense and effort to accurately resolve the movement dynamics of the species of interest without

a number of simplifying assumptions. Alternatively, the movement model presented here relies

mainly on seasonal catch and age composition data to estimate its movement parameters. Catch

and age composition data are conventionally available for many temperate exploited fish species
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(Melnychuk et al., 2017) and the collection of such data is already part of the management programs

for such species, i.e., used in stock assessments. Therefore, the Lagrangian model presented can be

used as an alternative tool to formalize and test the movement hypotheses based on data, even when

tagging or movement track data are not available. It is important to note, however, that the approach

described here is not meant to be a complete replacement for tagging studies. There are several

caveats associated with the present approach, including the assumption of known population and

fishing dynamic parameters. Such parameters are seldom known with certainty, and if the assumed

values deviate significantly from the reality, the model outputs would likely be severely biased as

well.

Appreciable differences between the two versions of the model, i.e., the single group and mul-

tiple groups versions, were observed. These differences are associated with the way in which

movement of each age class is treated. In the single group version, all individuals within a co-

hort are considered equal and individuals are assumed to be normally distributed around the mean

position at time. In the multiple groups version each cohort is sliced into groups which have a

group-specific mean position at time. The single group model is simpler and, for this reason, much

more computationally efficient. However, it relies on the assumption of regeneration of spatial dis-

tribution at each time step. That is, fish of a given age are assumed to spread spatially following

a normal distribution at each time step regardless of possible local depletion due to concentration

of fishing effort. This might be a reasonable assumption if the distribution of effort is relatively

homogeneous over the distribution of the age group being exploited. However, effort concentration

and local depletion is not uncommon, and has been observed for many fish stocks around the world

(e.g., Maury and Gascuel, 2001; Bez et al., 2006). Alternatively, if fishing effort is known to be

restricted to some areas, or is known to concentrate heavily in some areas, then using the multiple

groups version is more appropriate. I found that a minimum of 15 groups is required to appropri-

ately reduce the effects of regeneration of spatial distribution. The multiple groups formulation will

allow local depletion to occur and persist through the life of each cohort.
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An important feature of the simulation approach presented is that it explicitly accounts for spa-

tial fishing effort with the gravity model (Caddy, 1975). Because the effort dynamics are modeled

explicitly, it is possible to use the model to investigate questions relating to active avoidance of

specific areas due to high bycatch occurrence or spatial aggregation in fishing effort. In the specific

example of Pacific hake, the U.S. fleet has a strong incentive to avoid areas where abundance of

bycatch species is high, despite potential high abundances of the target species. This effect can be

modeled by linking the Epot,r to the abundance and distribution of bycatch species. Spatial aggre-

gation of fishing effort is also important because if fishers aggregate in areas of high abundance,

it is likely that strong cohorts will be targeted disproportionately causing variation in selectivity

across time. Time varying selectivity can be confounded with fishing mortality estimates leading

to biases in the estimation of reference points and management targets (Punt et al., 2015; Martell

and Stewart, 2014).

I found that it is possible to estimate the driving movement parameters of the model using spatial

catch at age information collected throughout the migration cycle of the species being modeled.

Data were generated and estimated using both single and multiple groups versions of the model.

This procedure resulted in unbiased parameter estimates for the single group simulation scenarios

and up to 40% median relative error in parameter estimates for multiple group scenarios. The

causes for biased parameter estimates in the multiple groups version is unclear. However, the

higher data requirements of the multiple groups version is understandable given the higher degree

of complexity in the model. I have not tested the performance of this model assuming catch at

age from more than five fishing grounds, but it is possible that less aggregated data would result

in better resolution of the model parameters. However it is also important to consider that less

aggregated data will probably have higher observation error levels and that might also impair the

estimation of the model parameters.

It is possible that the relative error estimates obtained in the simulation-estimation analysis are

over optimistic because the same model structure was used for simulating data and for estimating

parameters. This similarity is likely to have improved the realized model fit. In addition, the pa-
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rameter estimates obtained in this study are dependent on assumptions regarding the fixed model

parameters, i.e., the fisheries and population dynamics parameters. The true values of such param-

eters are usually not well known, and estimates can change dramatically over time (Brooks et al.,

2015). However, when we attempted to jointly estimate the movement and population dynamics

parameters, i.e., use the current model as a stock assessment model, there was a great amount of

confounding between the estimates of productivity, recruitment deviations and the movement pa-

rameters. Therefore, it is unlikely that the movement dynamics presented here could be integrated

into stock assessment models.

A promising application of the Lagrangian model described here is its potential to be used as

an operating model in closed loop simulations. Such simulations can be used to evaluate the ef-

fects of management strategies for exploited fish populations (Giske et al., 2001; Sainsbury et al.,

2000). The model can be used to represent the complex population dynamics of migratory species,

as well as the variability in distribution of stocks due to intrinsic (e.g., growth, maturity) and ex-

trinsic (e.g., environmental forcing, fishing effort) forces to the population. One advantage is that

the mechanics of this model is different from that usually implemented in stock assessment models

(e.g., Methot and Wetzel, 2013; Fournier et al., 1998), which would yield significant differences

between operating and estimation models in closed loop simulations. Similarities between operat-

ing and estimation models lead to improved performance of estimation models, which in turn result

in overly favorable performance of management strategies (McClure et al., 2014). In reality it is

unlikely that the estimation models capture all the processes that occur in nature.

A couple model extensions were not included in this chapter, but could easily be added to the

model dynamics. These extensions are the addition of multidimensional movement and the use of

other mathematical functions to represent migration hypotheses. The model illustration presented

in this study only describes movement in a unidirectional basis, that is from spawning to feeding

grounds. This simplification of movement trajectory stems partly from the knowledge of the species

chosen as a case study. A unidimensional model is commonly used to describe the movement dy-

namics of Pacific hake, and not much is known regarding the population trajectory and habitat use
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in other dimensions (Ressler et al., 2007). However for many species, migration routes are more

complex and involve simultaneous migration between spawning and feeding grounds, shallow and

deep water and between inshore and offshore grounds (e.g., Misund et al., 1998; Barbaro et al.,

2009; Merten et al., 2016). The current approach could be easily extended to a multidimensional

approach. The addition of new dimensions, however, would require the development of mathe-

matical functions that describe movement in each dimension. The sine function presented here is

a good candidate to describe cyclic movements, but linear, logistic or knife-edge functions could

also be used if movement in a given dimension is thought to be permanent, as would be true for

migration between nursery and rearing grounds.

I believe that the model presented here is a useful approach to model movement of migra-

tory fish species. I anticipate that the model can be used to examine the plausibility of different

movement hypotheses and to explore the possible links between fish migration and ecosystem in-

teractions. In addition, we suggest that the model is a good candidate to be used as an operating

model in closed loop simulations, especially when there is interest in evaluating the implication of

migratory movement on management outcomes.
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Chapter 3

Stock Reduction Analysis using catch at

length data: Length-SRA

3.1 Introduction

Modern stock assessments typically attempt to fit population dynamics models to catch at age

and/or catch at length data, in hopes of extracting information from these data about age/size selec-

tivity, cohort strength, and fishing mortality patterns (Methot and Wetzel, 2013; Hilborn and Wal-

ters, 1992). Some assessment methods attempt to put aside the length frequency data, by converting

these data to age compositions using age-from-length tables, perhaps using iterative methods to es-

timate proportions of fish at age for each length interval (Kimura and Chikuni, 1987). In cases

where age data are lacking, models like MULTIFAN-CL attempt to obtain estimates of selectivity,

fishing mortality and population dynamics parameters only from size distribution data (Fournier

et al., 1998). Combined with a few assumptions regarding the structure and variability in length

at age, this procedure can even be used to attempt to recover information about changes in body

growth patterns if there is a strong age-class signal in the length frequency data (Fournier et al.,

1998). It is typical for assessment results from length-based assessment models to show substantial

deviations between predicted and observed length distributions of catches, reflecting both sampling
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variation in the length composition data and incorrect assumptions about stability of growth and

selectivity patterns (Hilborn and Walters, 1992).

Selectivity to fishing is the combination of two processes: vulnerability to the fishing gear

and availability of the fished population in the area being fished (Beverton and Holt, 1957). Both

processes can vary over time and therefore modify the resulting selectivity. Although selectivity

process can often be directly measured through gear experiments, availability is generally harder

to measure as it depends on the size-based distribution of the exploited population and the spatial

distribution of the fishing fleet. Fish movement, size-structured changes in fish distribution, and

changes in fleet distribution, can all affect availability and consequently lead to selectivity changes.

Changes in selectivity are not uncommon (Sampson and Scott, 2012) but are usually difficult to

track over time. This difficulty is associated with an inability to distinguish between changes in

fishing mortality and changes in selectivity in most age- and length-based stock assessment meth-

ods. For this reason, many assessment methods rely on ad hoc parametric selectivity models that

may or may not include changes over time (Maunder et al., 2014). If misspecified, such models

might lead to severe bias in fishing mortality estimates and other model parameters, which could

result in misleading management advice (Martell and Stewart, 2014).

Here, I introduce an alternative approach to assessment modeling that begins by assuming that

the assessment model should exactly reproduce the observed catch at length composition. This

approach follows the dynamics of an age structured stock reduction analysis (SRA) (Walters et al.,

2006; Kimura et al., 1984; Kimura and Tagart, 1982), which follows a “conditioned on catch”

format, in which catch composition is assumed to be known without error. The observed catches

at age are then subtracted from modeled numbers at age to project numbers at age over time. A

good review of SRA-type models is provided in Thorson and Cope (2015). The assumption of

known catch composition is analogous to the classical assumption in virtual population analysis

that reconstructed numbers at age should exactly match observed catch at age data (Hilborn and

Walters, 1992). The suggested approach may have two key advantages over statistical catch at age

and/or catch at length models: (1) it does not require estimation of age or size selectivity schedules,
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and (2) catch at length data are commonly available for every year, even when age composition

sampling has not been conducted.

I have named this approach a Length-SRA assessment model. Here, I present the model formu-

lation, demonstrate its performance with a simulation-evaluation analysis, and apply it to fisheries

data from the Peruvian jack mackerel (Trachurus murphyi) and Pacific hake (Merluccius productus)

fisheries.

3.2 Methods

3.2.1 Stock reduction analysis with catch at length data - length-SRA

The stock reduction analysis (SRA) described here proceeds through the following steps: (1) com-

pute numbers at age (based on recruitment estimates and mortality in the previous year); (2) convert

numbers at age into numbers at length using the proportions of individuals at length given each age

class; (3) calculate the exploitation rate at length using numbers at length and observed catch at

length; (4) convert the exploitation rate at length to exploitation rate at age; (5) compute numbers

in the following year using the exploitation rate at age, natural mortality, and recruitment estimates.

The model requires data on length composition of catch in numbers (used in step 3), a prior

distribution for the recruitment compensation ratio, and a survey index of abundance that is used to

tune the model parameters to the most likely stock abundance trajectory. The model also requires

good estimates of growth parameters, variability around mean length at age, and natural mortality.

The stock assessment and simulation routines were written in ADMB (Fournier et al., 2012) and

are available on github.com/catarinawor/length_SRA.

A crucial component of the length-SRA is the calculation of proportions of individuals at length

given each age class (Pl|a - eqs. T3.1-T3.5). The calculation of such proportions (eq. T3.1) relies

on four main assumptions regarding the distribution of length at age: (1) The mean length at age

follows a von Bertalanffy growth curve (eq.T3.4), (2) The length at age is normally distributed (eqs.

T3.1 -T3.3), (3) The standard deviation of the length at age is defined (e.g., eq.T3.5), and (4) PL|a

is constant for all lengths equal or greater than a maximum length L (eq.T3.3).
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The proportions of length at age are used to convert the length-based quantities into age-based

quantities, which are used to propagate the age structured population dynamics forward (Table 3.3).

I assume that recruitment follows a Beverton-Holt type recruitment curve (eq. T3.6), that harvesting

occurs over a short, discrete season in each time step (year or shorter), and that natural survival rate

is known and constant over time (Equations T3.6-T3.10). The computation of numbers at age in

the initial year (i.e., first year in which data is reported - t = init) is different from that in the

remaining years (Equation T3.13). Recruitment in the initial year is set to the unfished recruitment

level Ro times random recruitment deviates, which are used to indicate that the population was not

at equilibrium at the start of the time series.

I used equilibrium spawner per recruit (SPR) quantities to calculate management targets, for

illustration purposes I use 40% as a SPR target and use YieldSPR=40% and USPR=40% as target

management benchmarks (Table 3.4 - Equations T4.6 to T4.14). As in all spawner per recruit

calculations, the Yieldtarget and Utarget estimates depend on the selectivity curves calculated for

each year (Equation T4.9).

To assess how well the model tracked changes in selectivity over time, I calculated the resulting

selectivity estimates by normalizing the yearly vectors of exploitation rate at length (Ul,t) by the

yearly average exploitation rate at length (Ūl) (Equation T3.11), which is more stable than the max-

imum yearly exploitation rate (maxUl). This happens because observation errors tend to average

out over the length classes, diminishing variability of Ūl in relation to maxUl . When calculating

the management targets, I used the same method to calculate the mean selectivity at age (Equation

T4.7), however I also averaged the selectivity at age curves over the past two years (Equation T4.7)

in order to further smooth the curves.

The Length-SRA model estimates two main parameters: average unexploited recruitment R0

and the recruitment compensation ratio κ . In addition, the annual recruitment deviations wt are

estimated for all cohorts observed in the model. That is, the number of recruitment deviations

is equal to the number of years in the time series plus the number of age classes greater than

recruitment age.
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Table 3.1: Indexes, variable definition, and values used in simulation-evaluation

Symbol Value Description
l {lo, ...,L} Central point of length bin, L = 50 cm
a {ao, ...,A} Age-class, A = 20 years
t {1, ...,T} Annual time step, T = 50 years
ao 1 First age or age of recruitment
lbin 2 cm Size of length bin
lo 8 cm Central point of first length bin
init 21 Annual time step in which data starts to be re-

ported
Distribution of length given age
L∞ 50 cm Maximum average length
K 0.3 Rate of approach to L∞

to -0.1 Theoretical time in which length of individuals is
zero

cvl 0.08 Coefficient of variation for length at age curve
Pl|a Matrix of proportions of length at age
Φ Standard normal distribution
zla,l Normalized z score for lower limit length bins
zua,l Normalized z score for upper limit length bins
bll Lower limit of length bins
bul Upper limit of length bins
L̄a Mean length at age
σL Standard deviation of length at age
Population dynamics
Ro 100 Average unfished recruitment
κ 10 Goodyear recruitment compensation ratio
S 0.7 Natural annual survival
σR 0.6 standard deviation for recruitment deviations
wt N (0,σR) Recruitment deviations for years {init-A-

ao,...,T}
Na,t Numbers of fish at age and time
SBt Spawning biomass at time
mata Proportion of mature individuals at age
arec,brec Beverton & Holt stock recruitment parameters
V Bt Biomass that is vulnerable to the survey at time t
va {0,0.5,1,...,1} Survey vulnerability at age
Ua,t Exploitation rate at age and time
Ul,t Exploitation rate at length and time
Cl,t Catch at length and time
Nl,t Numbers at length and time
lxa Unfished survivorship at age
φe Unfished average spawning biomass per recruit
ŝell,t Selectivity estimates at length and time
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Table 3.2: Variable definition for operating model, MSY quantities, and values used in
simulation-evaluation

Symbol Value Description
Operating model
sell,t Fishing selectivity at length and time
g,d,k vary by scenario Parameters for selectivity function
Ut vary by scenario Annual maximum exploitation rate
It Index of abundance at time
σIt 0.1 Standard deviation for index of abundance devi-

ates
q 1.0 Catchability coefficient
τ multivariate logistic error term with στ = 0.1
Management quantities
lza Fished survivorship at age
Fz seq(0.0,1.0,by=0.001) Hypothetical average fishing mortality to calcu-

late management targets
φz Average spawning biomass per recruit
φeq Average exploited biomass per recruit under Uz

ŝela,t Selectivity at age and time t
Req Average equilibrium recruitment under Uz

Yieldz Equilibrium yield under Uz

Yieldtarget Yield that would reduce spawner per recruit to
40% of unfished levels

Utarget Exploitation rate that reduce spawner per recruit
to 40% of unfished levels

The objective function (Equation T5.8) is composed of a negative log-likelihood component,

one penalty, and a prior component for the recruitment compensation ratio κ . The negative log-

likelihood component minimizes the differences between the predicted and observed index of abun-

dance (Equation T5.1). I assume that such differences are lognormally distributed (Equations T5.3-

T5.4) and use the conditional maximum likelihood estimator described by Walters and Ludwig

(1994) to estimate the survey catchability coefficient q (Equation T5.2). A lognormal penalty is

added to the negative log-likelihood function to constrain annual recruitment residuals so estimates

have mean of zero and fixed standard deviation σR (Maunder and Deriso, 2003) (Equation T5.5).

Lastly, informative normal prior for log(κ) and log(q) were included in the objective function

(Equations T5.6 and T5.7).
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Table 3.3: population dynamics for Length-SRA and operating model
Distribution of length given age

Pl|a =


∫ zua,l

zla,l
Φ(z)dz, l < L∫

∞

zla,l Φ(z)dz, l = L∫ zua,l
−∞ Φ(z)dz, l = lo

(T3.1)

zla,l =
bll− L̄a

σLa

(T3.2)

zua,l =

{
bul−L̄a

σLa
l < L

1.0 l = L
(T3.3)

L̄a = L∞ · (1− e(−K·(a−to))) (T3.4)

σLa = L̄a · cvl (T3.5)
Population dynamics

Na,t>init =


arec·SBt−1

1+brec·SBt−1
· ewt , a = ao

Na−1,t−1 ·S · (1−Ua−1,t−1), ao < a < A
Na−1,t−1·S·(1−Ua−1,t−1)

1−S·(1−Ua,t) , a = A

(T3.6)

Ua,t = ∑
l
(Pl|a ·Ul,t) (T3.7)

Ul,t =
Cl,t

Nl,t
(T3.8)

Nl,t = ∑
a
(Pl|a ·Na,t) (T3.9)

SBt = ∑
a
(mata ·wa ·Na,t) (T3.10)

ŝell,t =
Ul,t

Ūt
(T3.11)

V Bt =
a

∑Na,t ·wa (T3.12)
Initial year and incidence functions

Na,t=init = lxa ·Ro · e(wt=init ...wt=(init−A+ao)) (T3.13)

arec =
κ

φe
(T3.14)

brec =
κ−1
Ro ·φe

(T3.15)

φe = ∑
a

lxa ·mata ·wa (T3.16)

lxa =


1, a = 1
lxa−1 ·S, 1 < a < A
lxa−1·S

1−S , a = A

(T3.17)
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Table 3.4: Management quantities and operating model
Operating model

Na,t=1 = lxa ·Ro (T4.1)

Ul,t =Ut · selOM
l,t (T4.2)

Cl,t = Nl,t ·Ul,t ·Pl|a · τ (T4.3)

sell,t =
1

1−g
·
(

1−g
g

)g

· ed·g·(k−l)

1+ ed·(k−l)
(T4.4)

It = q ·V Bt · e(N (0,σIt )) (T4.5)
Management quantities

lza =


lza = 1 a = ao

lza−1 ·S · exp(−Fz · ŝela−1,t) ao < a < A
lza−1·S·exp(−Fz·ŝela−1,t)

1−S·exp(−Fz·ŝelA,t)
a = A

(T4.6)

ŝela,t =
Ua,t−1
Ūt−1

+
Ua,t
Ūt

2
(T4.7)

φz = ∑
a

lza ·mata ·wa (T4.8)

Targetφ = |φz

φe
−0.4| (T4.9)

φeq = ∑
a

lza · (1− exp(−Fz ∗ ŝela,t)) ·wa (T4.10)

Req = Ro ·
κ−φe/φz

κ−1
(T4.11)

Yieldz = Req ·φeq (T4.12)

Yieldtarget = Yieldz→ min(Targetφ ) (T4.13)

Utarget = 1− exp(−Fz)→ min(Targetφ ) (T4.14)

3.2.2 Simulation-evaluation

Model performance was evaluated using a simulation-evaluation with the biological parameters of

an hypothetical fish species. I used the same model structure described in Table 3.3 for both the

simulation and estimation models. However, the operating model was modified to control annual

exploitation rate (Equation T4.2), time-varying selectivity (Equation T4.4), and observation and

process errors.

The simulation model was initialized at unfished conditions (Equation T4.1) but only started

reporting data for the simulation-evaluation procedure after the tinit year. Selectivity in the operating

model was computed with the three parameter selectivity function described by Thompson (1994)
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Table 3.5: Likelihood functions and penalties
Conditional Likelihood

Zt = log(It)− log(V Bt) (T5.1)

q = eZ̄ (T5.2)

Zstatt = Zt − Z̄ (T5.3)

LL1 ∼N (Zstat|µ = 0,σ = σIt ) (T5.4)

Penalties

Pwt ∼

{
N (wt |µ = 0,σ = σR) phase < last phase
N (wt |µ = 0,σ = σR ·2) phase = last phase

(T5.5)

Priors
prior(log(κ))∼N (log(κ),σ = 0.5) (T5.6)

prior(log(q))∼N (log(q),σ = 0.5) (T5.7)
Objective function

Ob j =−log(LL1)+(−log(Pwt ))+ prior(log(κ))+ prior(log(q)) (T5.8)

(Equation T4.4). I chose to use this three parameter selectivity curve because of its flexibility,

which allowed us to switch between logistic and dome-shaped selectivity curves in the scenarios

in which time-varying selectivity was considered. The observation error in the operating model

included lognormal error in the index of abundance and logistic multivariate error (Schnute and

Richards, 1995) in the catch numbers at length (Table 3.2). Recruitment deviations were assumed

to be lognormally distributed with constant σR (Table 3.1).

I considered a total of six different scenarios in simulation-evaluation trials, including three

historical exploitation rate trajectories (contrast, one-way trip and U-ramp) and two selectivity

patterns (constant and time-varying). In the contrast scenario the exploitation rate (Ut) starts low

and increases beyond Utarget and then decreases until Ut ≈ Utarget . In the one-way trip scenario

U increased through time until U ≈ 2 ·Utarget . In the U-ramp scenario, Ut increases steadily until

Ut ≈ Utarget and remains constant thereafter. In the constant selectivity scenario, selectivity was

assumed to follow a sigmoid shape. In the time-varying selectivity scenario, the selectivity curve

was assumed to vary every year, progressively changing from a dome shaped curve to sigmoid and

back to dome shaped. The complete list of scenarios and the acronyms used are presented in in

Table 3.6.
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All simulations had 30 years of data, and 200 simulation trials were performed for each sce-

nario. I evaluated the distribution of the relative proportional error ( esimated−simulated
simulated ) for the main

parameter estimates (R0 and κ) and for four derived quantities (Depletion: SBt
SB0

, Yieldtarget , Utarget ,

and q).

Table 3.6: Simulation-estimation scenarios

Scenario Code Selectivity U trajectory
CC constant contrast
CO constant one-way trip
CR constant U-ramp
VC time-varying contrast
VO time-varying one-way trip
VR time-varying U-ramp

3.2.3 Misspecification of growth parameters

One important feature of the Length-SRA is that it assumes that growth follows a von Bertalanffy

curve and that the growth parameters are known and constant over time. If this assumption is vi-

olated, the model outcomes will be impacted as the model will try to explain the deviations from

the true growth curve with changes in the selectivity pattern. Here I illustrate how the model out-

comes are impacted by the misspecification of the growth parameters by purposefully misreporting

the values of L∞ (Table 3.7). I assumed a simple logistic selectivity curve for this exercise and

therefore expect the model to produce logistic patterns in the exploitation rate at length Ul,t .

Table 3.7: Scenarios for testing misspecification of L∞

Scenario name version L∞ value
true true 68
plus10 10% overestimated 74.8
minus10 10% underestimated 61.2

3.2.4 Real data examples

Two case studies were chosen to illustrate the application of the Length-SRA to real datasets:

Pacific hake and Peruvian jack mackerel. Both species are believed to be subject to time-varying

selectivity.
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The Pacific hake fishery is believed to exhibit time-varying selectivity due to cohort targeting

and annual changes, fleet spatial distribution (Ruttan, 2003). The population is know to have spas-

modic recruitment, with high recruitment events occurring once or twice every decade (Ressler

et al., 2007). Pacific hake tends to segregate by size during their annual migration (Ressler et al.,

2007), allowing the fishing fleet to target strong cohorts by changing the spatial distribution of fish-

ing effort as the cohort ages. Pacific hake catch at length data was available for the period between

1975 and 2013. The survey index of abundance was available intermittently from 1995 to 2013.

The movement pattern of jack mackerel is not as well known, although fish appear to move

between spawning and feeding areas (Gerlotto et al., 2012). Variability in selectivity patterns for

the jack mackerel fishery are believed to be associated both with evolution of fleet capacity and gear

utilization and with compression and expansion of the species range associated with abundance

changes (Gerlotto et al., 2012). Jack mackerel catch at length data was available from 1980 to

2013, and the survey index was available between 1986 and 2013, with the exception of 2010.

3.3 Results

3.3.1 Simulation-evaluation

I evaluated the performance of the model in relation to the main parameters, and derived manage-

ment quantities with boxplots of the relative proportional error. Throughout, I use the terms positive

and negative median bias to indicate that the median relative proportional error is above or below

zero. The median relative proportional error sign indicate if a parameter has been underestimated

or overestimated the majority of the time.

The simulation-evaluation of the Length-SRA model resulted in a small positive median bias

for the κ parameter in all simulations scenarios. Negative median bias was seen in the R0 estimates

in all but one scenario (Constant selectivity and one-way trip exploitation history). The relative

error estimates for κ indicate that this parameter was nearly unbiased, an effect of the informative

prior considered for that parameter (Figure 3.1 - bottom panel). The estimates for κ are also more
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precise than the estimates for R0, this is a result of the use of the informative prior as well as the

likelihood function which lets σR be higher in the last phase of the estimation (Equation T5.5).

κ
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Figure 3.1: Relative proportional error for main parameters for all scenarios considered in the
simulation-evaluation. Boxplots center lines indicate the median estimate. Lower and
upper hinges indicate first and third quartiles. Upper and lower whiskers are given by
the maximum and minimum values within the intervals given by the hinge value +/- 1.5
· inter-quartile range (distance between the first and third quartiles).

The depletion in the last year of data (SBT/SBo) estimates resulted in negative median relative

error for all scenarios (Figure 3.2 - top panel). Yieldtarget median relative error were variable being

overestimates for the VO and CO scenarios and underestimated for the CR, VC and VR scenarios.

The absolute median relative error for Yieldtargetwas relatively low (< 7.5%) (Figure 3.2 - second

panel). The Utarget and q relative error estimates were positively biased with higher median biases

seen for the CR, VO and VR scenarios (Figure 3.2 - third and fourth panels).
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Figure 3.2: Relative proportional error for main parameters for all scenarios considered in the
simulation-evaluation. Boxplots center lines indicate the median estimate. Lower and
upper hinges indicate first and third quartiles. Upper and lower whiskers are given by
the maximum and minimum values within the intervals given by the hinge value +/- 1.5
· inter-quartile range (distance between the first and third quartiles).

The simulation-evaluation exercise showed that the Length-SRA model is able to track selec-

tivity changes through time relatively well (Figure 3.3). However, the selectivity estimates are

quite variable, which is likely to be a associated with the observation error in the catch at length

composition.
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Figure 3.3: Simulated and realized selectivity estimates for a set of years within simulation-evaluation time series. The estimated
solid lines indicate median, 2.5% and 97.5% quantiles for the derived selectivities.
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3.3.2 Misspecification of growth parameters

I found that misspecification of L∞ has severe implications in the capability of the model to estimate

exploitation rate at length Ul,t(Figure 3.4). If the value of L∞ was reported to be lower than true,

the estimates of Ul,t were lower than true for most length and extremely high for high lengths

(approaching the true L∞ ). In the scenario where L∞ was reported to be higher than true, Ul,t was

estimated to follow a dome shaped pattern, with very low exploitation rates for the higher lengths.

This patterns occur because the model is trying to adjust the mismatch between proportions of

catch at length and the Pl|a matrix by changing the predicted selectivity pattern. As a result, failure

to adequately specify L∞ leads to erroneous estimation of selectivity patterns and, consequently, to

failure in estimating management quantities.
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Figure 3.4: Simulated and realized exploitation rate at length Ul,t when L∞ is misspecified. Results shown for the last four years of
simulation-evaluation time series. Boxplots center lines indicate the median estimate. Lower and upper hinges indicate first
and third quartiles. Upper and lower whiskers are given by the maximum and minimum values within the intervals given by
the hinge value +/- 1.5 · inter-quartile range (distance between the first and third quartiles).
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3.3.3 Real data examples

The model fit the Pacific hake and jack mackerel indexes of abundance relatively well (Figure 3.5),

despite some limitation in the available data. The Pacific hake index of abundance time-series is

relatively short and intermittent (survey happens every two or three years). The index of abundance

time series for jack mackerel was longer, but it indicates a downward trend in abundance with low

contrast in the last ten years of data.

The model fit for both species resulted in time-varying selectivities that lead to variation in

Yieldtarget and consequent changes in Utarget (Figure 3.5). This is because changes in selectivity re-

sult in changes to the vulnerable biomass even if total biomass is constant. Variability in selectivity

and, consequently in Utarget , are more pronounced for Pacific hake, if compared to jack mackerel.

The relationship between Yieldtarget and Utarget is also more variable for the Pacific hake case, again

an indication of temporal changes in selectivity. Whereas for jack mackerel, both Yieldtarget and

Utarget seem to follow the same trend.

The selectivity curves estimated for Pacific hake and jack mackerel are quite variable and fre-

quently estimated to be dome shaped (Figure 3.6). The resulting selectivity curves presented for

the Pacific hake case, differ from those presented in the 2014 Pacific hake stock assessment (Tay-

lor et al., 2014). The selectivities estimates presented in the Taylor et al. (2014) assessment also

vary through time but tend to follow an asymptotic shape. In the present study, the selectivity

patterns tends to alternate between dome-shaped and asymptotic. For the Peruvian jack mackerel

case, the resulting selectivity shapes match those presented in the assessment closely. Both the

results presented here and the results presented in the assessment indicate that the Peruvian fleet

selectivity for the Peruvian jack mackerel is dome shaped and with peak selectivity at young ages

(Figure 3.6 and Anonymous (2013)). It is important to note, however, that the observed variability

in selectivity estimates for both examples might indicate real changes in selectivity (e.g., cohort

targeting) or might also be caused by misspecification of the growth parameters (see Figure 3.4).

At this point it impossible to determine what are the causes for the resulting patterns in selectivity
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observed with the Length-SRA fit. Further investigation would be needed if this model is to be

used for management purposes.
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Figure 3.5: Fit to index of abundance, historical catches, and Yieldtarget and Utarget estimates
for Pacific hake and jack mackerel. Observed indexes of abundance are shown in open
circles, closed dots in Yieldtarget and Utarget panels indicate model estimates.

3.4 Discussion

I present a length-based stock reduction analysis (Length-SRA) that allows monitoring of time-

varying selectivity. In the Length-SRA model, catch at length is assumed to be known without

error, and exploitation rate at length is calculated directly from estimates of numbers at length. In

turn, numbers at length are produced based on numbers at age and on probabilities derived from

growth curve parameters and the assumed variability (standard deviation) around mean length at

age. This fact is important because it allows the model to bypass the requirement for the estimation

of a selectivity ogive, as is required in more traditional age- and length-based models (e.g., Sullivan

et al., 1990; Mesnil and Shepherd, 1990) and in more recent length based state-space modeling

approaches (White et al., 2016). Estimation of selectivity ogives can be very difficult, especially
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Figure 3.6: Realized selectivity at age patterns across years for Pacific hake and jack mack-
erel.
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if selectivity is believed to vary over time unpredictably (Martell and Stewart, 2014; Linton and

Bence, 2011).

Nielsen and Berg (2014) presents a stock assessment approach that accounts for time-varying

selectivity by treating fishing mortality at age as stochastic processes that are correlated over age

and time. The accuracy in the estimates of selectivity obtained with the Length-SRA are compara-

ble with those presented by Nielsen and Berg (2014), especially for the one-way trip scenarios. The

Length-SRA selectivity estimates are less precise than those shown by Nielsen and Berg (2014),

likely because the Length-SRA estimates incorporate observation error. Their model seems to per-

form extremely well, however they only considered one exploitation rate trajectory, with significant

contrast in the data. In addition, the changes in selectivity considered in their study are more subtle

than the ones considered here.

An important advancement of Length-SRA over conventional stock-assessment models is the

indirect calculation of time-varying selectivity. This information alone can be used to characterize

the complexity of the fishery system. Length-SRA on its own is reasonably accurate in deriving im-

portant management-oriented parameters (depletion and Yieldtarget), however another option may

be to combine findings from this model with another assessment model, such as a statistical catch

at age (SCA) model. In this framework, Length-SRA can be used to calculate annual selectivity

patterns and provide an indication of possible changes over time. These selectivity estimates can

then become an input into an SCA to calculate other important variables and produce management

advice. This combination of models has been used in the past (Walters and Punt, 1994); I suggest

Length-SRA may be a useful tool in this context.

Accurate estimates of selectivity are particularly important if the fishery management is based

on yield per recruit reference points. Fishery yield per recruit depends on the selectivity curve

(Beverton and Holt, 1957) and for this reason, changes in selectivity over time will directly affect

reference points (Beverton and Holt, 1957; Hilborn and Walters, 1992). I observed selectivity

changes for both Pacific hake and jack mackerel, and show how this variability can lead to a not

insignificant difference between the maximum and minimum estimates of Yieldtarget and Utarget
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calculated along the time series. I believe that tracking these changes is important not only to

ensure appropriate management recommendations, but also to illustrate the relationship between

selectivity patterns and management targets (Vasilakopoulos et al., 2016).

One potential point of concern that should be considered when using the Length-SRA is that

it assumes that the biological parameters used in the growth curve and catch at age relationship

are known without error and constant over time. I have tested the Length-SRA under misspeci-

fication of the von Bertalanffy growth parameters, and I observed additional bias in the estimates

of parameter and management quantities as well as strong distortions in the resulting selectivity

parameters. Similarly, Minte-Vera et al. (2017) showed that misspecification in biological param-

eters, especially in asymptotic length, can have a significant impact in assessment results. Other

length models, e.g., MULTIFAN-CL (Fournier et al., 1998), overcome the assumption of known

growth parameters by estimating the von Bertalanffy parameters alongside the assessment param-

eters. Once a selectivity curve is assumed, additional deviations in observed catch at length are

explained by adjusting the growth parameters. This assumption can also lead to bias in parameter

estimates, as other studies show that variability in selectivity and non-asymptotic patterns are com-

mon (Waterhouse et al., 2014). In reality, in most cases it is difficult to know if patterns observed

in catch at length are caused by fisheries targeting (i.e., selectivity) or if they would be more appro-

priately explained by adjusting the growth parameters. Therefore, I recommend that, when using

the Length-SRA, the user should perform extensive sensitivity analyses over the possible range

of values for the growth parameters, particularly if the predicted selectivity patterns are highly

variable.

As mentioned previously, the model and simulation exercise presented here assumes that the

growth parameters are known and constant through time. Consequently, time variability in growth

patterns could also impacts the results produced by the model. I would not recommend attempting

to estimate time-varying growth parameters within the Length-SRA because growth and exploita-

tion rates at length are confounded. However, if estimates of time-varying growth are available,

preferably from fishery independent data (empirical age-length keys), those could be used as an
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input to the Length-SRA model. Non-stationarity in growth is a relatively easier phenomenon to

study, particularly if a fishery independent survey is already established. Changes in growth can

be investigated independently by developing empirical age-length keys. In contrast, measuring

changes in selectivity directly is much more difficult and data intensive, requiring independent

tagging programs.

The approach used in the Length-SRA is analogous to that used in virtual population analysis

in that the length composition data is assumed to be known without error. For this reason, the

selectivity estimates include extra variability due to observation and sampling error. I attempted to

minimize this effect by smoothing the predicted selectivity over two years, however this method

is not capable of completely removing the observation error effect from the selectivity estimates.

Because of the assumption of known catch at length, it is important that the catch sampling is

representative of the total removals from the population (Pope, 1972). As in any other fisheries

model, biased sampling and/or low sampling effort will result in bias in parameter and fishery

reference point estimates (Coggins and Quinn, 1998; Bunch et al., 2013).

Some management parameters are consistently overestimated (Yieldtarget) and underestimated

(depletion), which may be cause for concern. However, it is important to note that both parameters

have low absolute median relative error (<7%). The magnitude of the bias in the estimates of

Yieldtarget and Utarget observed in this study are comparable (in magnitude) to the results obtained

by Martell and Stewart (2014) for MSY and FMSY in a simulation study on the impacts of time-

varying selectivity on the estimates generated by a statistical catch at age model. Other studies show

even higher biases in face of time-varying selectivity (e.g., Linton and Bence, 2011; Henríquez

et al., 2016). The estimates of depletion are also comparable to those produced with other SRA type

assessments evaluated by Thorson and Cope (2015). Overall, parameter and derived parameters

estimates are generally within the range of many other stock assessment models.

The Length-SRA approach presented in this study can be a useful tool for fisheries stock as-

sessment. I believe that this is particularly true when time-varying selectivity is thought to occur,

especially if the variability is not easily predictable from historical changes in gear use/fleet com-
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position. However, I would like to acknowledge that the selectivity estimates will only be reliable if

the growth parameters for the population being assessed are known. In addition, the simple nature

of the Length-SRA model makes it a good candidate model for inclusion in closed-loop simulation

studies. Further testing of this model in a closed-loop simulation set up would provide more in-

sight on the model performance on achieving management outcomes (Punt et al., 2016). I foresee

the application of this model as an investigative tool to evaluate potential time-varying selectivity

patterns, as a stock assessment tool and as part of closed loop simulation studies.
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Chapter 4

Evaluation of harvest control rules for

transboundary stocks

4.1 Introduction

In fisheries management, harvest control rules are previously agreed upon management actions

that should be taken in response to stock status indicators (Deroba and Bence, 2008). Despite the

long history of harvest control rule evaluations in the literature (Hilborn, 1986; Walters and Parma,

1996), the practice of formally adopting harvest control rules in fisheries management is more

recent (Deroba and Bence, 2008). Over the past decade, harvest control rules have been recognized

as a mechanism to increase consistency and transparency in fisheries management (Punt, 2010;

Kvamsdal et al., 2016). In addition a variety of policy documents have fostered the adoption of

harvest control rules in many fisheries around the world (Government of Canada, 2009; Food and

Agriculture Organization of the United Nations, 1996; Magnuson-Stevens act, 2007).

Harvest control rules can be generally grouped into three categories: fixed escapement, fixed

exploitation rates and threshold harvest control rules (Punt, 2010). Fixed escapement rules im-

ply that fishing should only occur if the biomass is higher than a given reference biomass, i.e.,

a given amount of exploitable biomass is allowed to “escape” harvest. This kind of harvest con-

trol rule is more commonly applied to salmonids (Hawkshaw and Walters, 2015), and it has been
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shown to lead to high variability in yields and increased frequency of closures (Deroba and Bence,

2008). The fixed exploitation rate harvest control rules works by adjusting the yield in propor-

tion to the population size. Fixed exploitation rate harvest control rules reduce inter annual fishery

variability when compared to fixed escapement harvest control rules (Hilborn, 1986). Finally the

threshold harvest control rules are usually designed to produce stepwise changes in exploitation

rate as biomass decreases below some threshold; many such control rules also include a minimum

escapement threshold i.e., the harvest rate is set to zero if biomass is below a limit level. Threshold

harvest control rules are popular among many fisheries management agencies (Punt, 2010) because

they tend to maintain higher biomass and allow for faster rebuilding of depleted stocks (Quinn II

et al., 1990).

Ideally, the choice of harvest control rule is based on an evaluation process that optimizes a set

of performance metrics associated with the objectives of a fishery. Some examples of commonly

used performance metrics include average expected yield, annual average variability in yield and

minimum biomass threshold (Punt et al., 2016). This process usually also exposes the trade-offs

between potentially conflicting objectives (Hall et al., 1988; Punt and Donovan, 2007). The evalu-

ation of harvest control rules is usually done through closed-loop simulations (e.g., Walters, 1998;

Ishimura et al., 2005) which are computer models used to simulate the fisheries management sys-

tem and evaluate the performance of management options given the best available understanding

of dynamic of the resource as well as observation and implementation error models.

The performance of a harvest control rule is often evaluated for an entire stock (e.g., Ishimura

et al., 2005; Tong et al., 2014; Hawkshaw and Walters, 2015). However, in the case of transbound-

ary stocks the aggregate evaluation of performance metrics may not reflect the outcomes experi-

enced by each nation separately. This is especially true if the distribution of the fished stock varies

systematically with abundance. For example, many stocks exhibit range contraction as abundance

decreases (e.g., Brodie et al., 1998). This can affect the availability of the resource in a given area

even when the biomass is considered to be above the aggregate stock reference points. In other

stocks, spatial distribution may be a function of ontogeny, usually with larger individuals perform-
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ing more extensive migrations (e.g., Ressler et al., 2007). These populations too can become less

available to a given fishing nation if the population age or size structure becomes truncated due to

fishing mortality, even if such fishing mortality is equal to target exploitation goals for the aggregate

stock. These effects are usually not accounted for in international fisheries management treaties de-

spite the fact that treaties are often designed with the intention of securing equitable benefits of the

resource to all the parties. When the application of a harvest control rule results in a change in the

distribution of the stock, then it is possible that the benefits of the treaty will not be realized by one

or more parties. In such situations, it may be useful to consider the relationship between biomass,

age/size composition and spatial distribution of the stock when managing transboundary stocks.

This would enable us to address the following questions: Is it possible to optimize a set of perfor-

mance metrics across all nations that share the resource? If not, what are the trade-offs between

the performance metrics for each of the nations sharing the resource? The explicit consideration of

these trade-offs can help to design effective management strategies for shared stocks. This could

be achieved by using spatially explicit models to identify potential differences in management out-

come experienced by nations separately, thus, exposing trade-offs between two nations that would

not otherwise have been visible using a spatially aggregate approach.

Pacific hake (Merluccius productus) is an example of a transboundary stock whose spatial dis-

tribution is thought to be affected by changes in age structure (Bailey et al., 1982). It exhibits

seasonal migratory behavior with spawning occurring off southern California during the winter

and fish migrating north between spring and fall to feed (Ressler et al., 2007). Larger fish, typically

older than age-4, migrate longer distances and are found to be more abundant in Canadian waters

(Methot and Dorn, 1995). Fish age-3 years and younger tend to remain in U.S. waters off the coast

of California and Oregon (Methot and Dorn, 1995; Ressler et al., 2007).

Management of the Pacific hake stock follows the regulations determined in an international

treaty between Canada and the U.S.A. (United States State Department, 2004). The treaty estab-

lishes that the coastwide Total Allowable Catches (TAC) should be calculated following a 40:10

threshold harvest control rule. The treaty also determines that the TAC be split between the two
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countries following a fixed allocation, 73.88% to the U.S.A. and 26.12% to Canada. Given the

spatial dynamics of the resource and location of the spawning grounds, the American fishing fleet

has first access to the incoming cohorts. This has the potential to cause conflicts between the two

nations because harvest will lead to age truncation, which in turn could lead to limited availability

of the resource in Canadian waters. Despite the potential for conflict associated with harvest levels

and spatial distribution, the impacts of the current treaty based management procedures have only

been evaluated for the aggregate stock (Ishimura et al., 2005; Punt et al., 2008; Taylor et al., 2014;

Hicks et al., 2016). However, given the life history of the stock and the fishing practices (Bailey

et al., 1982; Ressler et al., 2007), it is important to consider spatial effect of management strategies

that are otherwise masked by non-spatial models.

In this chapter, I aim at addressing how the application of a harvest control rule to an aggregate

stock affects spatial fishing opportunities. I evaluate the performance of a large set of harvest

control rules for the Pacific hake stock using a spatially explicit model in a closed-loop simulation

routine. I illustrate some differences in performance between harvest control rules using yield and

conservation related metrics, for the whole stock and relative to each individual nation. I map the

tradeoffs between alternative harvest policies for the two nations sharing the Pacific hake resource.

4.2 Methods

In order to evaluate the performance of various harvest control rules, I performed a series of closed-

loop simulations. The spatial operating model was used to simulate fishery and scientific data every

year. Observations on the stock status were generated with process and observation error. Annual

total allowable catch was set each year using alternative harvest control rules and the data generated

from the spatial operating model. In the following sections, I describe the simulation model, the

harvest control rules, and performance metrics in detail.
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4.2.1 The simulation model

I used the spatial model described in Chapter 2 as an operating model to describe the population

dynamics of the Pacific hake resource. The Lagrangian model used in that study allows the fish to

move in a seasonally cyclic manner that is characteristic of the Pacific hake offshore stock (Ressler

et al., 2007). This model applies a sine function to model the cyclic the movement of each indi-

vidual cohort along the coast of U.S.A. and Canada. The mean position of an individual cohort at

a given time step t is given by X̄a,t , which is a function of the mean minimum position X̄min, the

mean maximum cohort specific position X̄max,a, the number of time steps within a migration cycle

tmax and the time step at which the migration cycle starts t0 (Equation 4.1).

X̄a,t = X̄min +(X̄max,a− X̄min) ·
(

0.5+0.5∗ sin
(

t · 2π

tmax
− t0 ·

2π

tmax
− π

2

))
(4.1)

As noted above, the mean maximum position X̄max,a is specific for each separate cohort. The

extent of the migrations is given by a logistic function of age, similar to the one used in Methot and

Dorn (1995) (Equation 4.2), which allows older (and larger) fish to move further away from the

spawning grounds. In the following function, the parameters a50 and σXmax are the logistic function

parameters, and σvt is normally distributed random error component.

X̄max,a =
1

1+ exp(−(a−a50)/σXmax)
· e(vt∼N (0,σvt)) (4.2)

For a more detailed description of the movement model, as well as the population dynamics

components and effort dynamics components of the operating model used in this study, I recom-

mend that the reader refer to Chapter 2. In this study, I used the multiple groups version of the model

described in Chapter 2. The model parameterization was extracted from the 2017 stock assessment

(Berger et al., 2017b), and the movement parameters were set to approximate the movement dy-

namics of Pacific hake described in the literature (Methot and Dorn, 1995; Ressler et al., 2007). All
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parameter values are given in Table 4.2. In order to mimic the historical trends in abundance, I set

the historical catch limits for the historical data equal to the realized catches by each nation.

The operating model, therefore has the ability to model Pacific hake movement and effort dis-

tribution allowing the characterization of the relationship between fishing mortality, strong recruit-

ment events and cohort targeting on the distribution of the stock, and hence the realized perfor-

mance in each nation. As the fishing mortality increases, the age structure of the population will

tend to become truncated (due to the cumulative effects of fishing mortality), and therefore, in the

operating model, the mean biomass distribution of the stock will shift southwards, reducing the

availability of the resource in northern waters.

The Pacific hake stock distribution is also affected by the recruitment dynamics. When a strong

recruitment event occurs, the mean biomass distribution of the resource will be strongly linked to

the age of that strong cohort, i.e., the mean biomass distribution of the stock will tend to shift north

as that cohort grows. Strong recruitment events occur recurrently for the Pacific hake offshore

stock (Berger et al., 2017b; Ressler et al., 2007). These strong recruitment events usually increase

the overall biomass of the stock significantly, and individuals from strong cohorts dominate the

fisheries catch for a few years. Despite the intermittent strong recruitment events in the Pacific hake

time series, the causes for such strong recruitment events are unknown so predictions of when a

strong recruitment will occur in the future are unreliable. In order to model this uncertainty, I opted

to simulate three possible recruitment scenarios based on the historical recruitment time series

reported by Berger et al. (2017b). I repeated the last 30 years of recruitment deviations reported

by Berger et al. (2017b) twice to generate the recruitment for the next 60 projection years. These

projection recruitment time series were modified to generate three scenarios: no strong recruitment

events, one strong recruitment event per decade, and two strong recruitment events per decade. I

opted for the repetition of the historical recruitment time series in order to maintain the historical

patterns in recruitment autocorrelation, as well as the cycles in strong recruitment occurrences, i.e.,

a minimum interval of thee years between strong recruitment events.
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Figure 4.1: Logistic functions used in the three movement scenarios considered in this study.

In addition to scenarios that explore the impacts of strong recruitment events, I also explored

the sensitivity to the model in relation to the movement parameters. More specifically, I explored

changes in the logistic function that describes the maximum average position reached by each co-

hort (Equation 4.2). The modification to the logistic curve are shown in Figure 4.1. The movement

parameter sensitivity analysis was only performed for the no strong recruitment scenario. A list of

scenarios evaluated is presented on Table 4.1.

The historical population was reconstructed for the years 1966 to 2016 by simulating the popu-

lation dynamics using the stock assessment parameters reported in Berger et al. (2017b), and setting

the historical catches equal to those extracted by the U.S.A. and Canada fleets during that period.

Catches for both nations for the historical period were also reported by Berger et al. (2017b). Then
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Table 4.1: List of scenarios for closed loop simulations

Number Recruitment Movement
1 no strong recruitment Base
2 one strong recruitment per decade Base
3 two strong recruitment per decade Base

m2 no strong recruitment Early movement
m3 no strong recruitment Late movement

the closed loop simulations were carried on for 60 years into the future. For the closed loop simu-

lations, I assumed that the TAC allocation between nations remains constant as determined in the

Pacific hake treaty, 73.88% to the U.S.A. and 26.12% to Canada.

In the simulations, the observation model was represented by adding uncertainty around the

model predictions of relative spawning biomass, i.e., spawning biomass levels in relation to the un-

fished average. This study focuses on exploring and comparing the performance of harvest control

rules, not on the stock assessment components of the management process. Therefore, I chose to

not implement an assessment model in the closed loop simulations. Instead, the observation uncer-

tainty was represented by adding autocorrelated and normally distributed error around the model

predictions of true biomass and spawning biomass (Equation 4.3 and 4.4). Walters (2004) shows

that estimates of biomass from stock assessments are usually autocorrelated over time; I assumed

that the autocorrelation coefficient, ρ , was 0.5. This approach was chosen because of computa-

tional convenience, i.e., faster simulation running time than the simulation of the stock assessment

methodology. I believe that the high autocorrelation coefficient I use provides a comparable effect

to that of using more complicated assessment models.

B̂t = Bt · eεt (4.3)

ŜBt

SB0
=

SBt

SB0
· eεt (4.4)

εt = ρ · εt−1 +νt (4.5)

νt ∼N (0,σ = 0.3) (4.6)
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Table 4.2: Pacific hake operating model dimensions and parameter values

Symbol Value or Range Description
Model Dimensions

t 1−12 Time steps within a migration cycle
y 50−160 Years
Y 60 Total Number of projection years
hy 50−100 Historical years
a 1−20 Age
r 30−60 Area
k 5 Fishing grounds
kb 42, 46, 48.5 and 51 Fishing ground boundaries in latitude de-

grees
n 2 Number of nations

48.5 Nation boundary in latitude degrees
g 1−20 Groups
dr 1 Interval between two adjacent areas

Population dynamics parameters
M 0.223 Annual natural mortality
R0 2923 thousand tons Average unfished recruitment
h 0.814 Beverton & Holt recruitment steepness
σR 1.4 Standard deviation for recruitment devia-

tions - used in bias correction only
Movement parameters

t0 1 Time step at which individuals are at their
minimum average position

CV 0.07 Coefficient of variation for position at at
age

a50 4.0 Inflection point for maximum average posi-
tion logistic function

σXmax 2.0 Standard deviation for maximum average
position logistic function

error levels
σwx 0.08 Standard deviation for lognormal variation

around the maximum average position
σvt 0.1 Standard deviation for lognormal variation

around the effort scaler
Effort parameters

Ey,n 1 for nation 1 and 0.35 for nation 2 Yearly effort scaler - constant for all years
Et,k (0,0,0,0,0.5,1.0,1.0,1.0,0.5,0.1,0.0,0.0)

for k = 1,2,3 and
(0,0,0,0,0,1.0,1.0,1.0,0.5,0.3,0,0)
for k = 4,5

Monthly effort scaler

q 3 Effort scaler
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4.2.2 The 40:10 harvest control rule

The Pacific hake treaty determines that the annual quota for the stock should be determined accord-

ing to a 40:10 threshold harvest control rule (United States State Department, 2004; Hicks et al.,

2016). The 40:10 harvest control rule used in the Pacific hake agreement determines that the coast

wide total allowable catches are calculated using a proxy for the fishing mortality that will pro-

duce maximum sustainable yield (FMSY - in practice replaced by the proxy FSPR=40%) whenever the

spawning biomass is above 40% of average unfished levels. The 40:10 adjustment refers to the re-

duction in harvest rate when the spawning biomass falls below 40% of unfished average equilibrium

level. The harvest rate adjustment corresponds to a linear decrease in TAC if the spawning biomass

is between 40% and 10% of unfished spawning biomass and set to zero if spawning biomass is

below the 10% threshold. I used the same formulation as the one described by Hicks et al. (2016).

The 40:10 harvest control rule results in very high quota recommendations when the stock abun-

dance is high, which happens whenever a strong cohort reaches maturity (around age 3). However,

in reality the actual quotas recommended by the Pacific hake Joint Management Committee are

usually capped and tend not to exceed 600 thousand metric tonnes (Hicks et al., 2016). For this

reason, I implemented a cap on the 40:10 harvest control rules recommendations to 600 thousand

tonnes.

4.2.3 Linear harvest control-rules

I evaluate a series of harvest control rules that are given by a linear relationship between relative

spawning biomass (SBt/SB0) and TAC. I opted for evaluating linear harvest control rules because

they encompass a broad range of harvest control rules commonly used in fisheries management

(i.e., fixed exploitation rate and fixed escapement). Similar rules are frequently considered in policy

optimization studies, (e.g., Reed, 1979; Moxnes, 2003; Hawkshaw and Walters, 2015). In addition,

this type of control rule has also been previously evaluated for Pacific hake (Ishimura et al., 2005)

but not within a spatially explicit model. The re-evaluation of the linear harvest control rules allow

for direct comparison with the Ishimura et al. (2005) study, building up on previous knowledge.
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The linear harvest control rule functional form is given in Equation 4.7 and illustrated on Fig-

ure 4.2. The slope is the harvest rate at which the stock biomass is harvested. The intercept is

the relative spawning biomass threshold (biomass threshold, for short). The biomass threshold is

the minimum relative spawning stock biomass level required for harvest to occur. B̂t is the ob-

served total biomass in the last year of data and SB0 is the unfished average spawning biomass.

Analogously to what was implemented for the 40:10 harvest control rule described in the previous

section, I impose a cap on TAC so that it does not exceed 600 thousand tonnes. Figure 4.2 shows an

illustration of the resulting TACs as a function of relative spawning biomass for two linear harvest

control rules examples and the implementation of 40:10 rule.

TAC = slope · B̂t ·
(ŜBt−SB0 · intercept)

SB0
(4.7)

To evaluate and compare the performance of linear harvest control rules, I systematically cal-

culated a series of performance metrics over a range of 10 slopes (to capture alternative harvest

rated from 0.05 to 0.5 in 0.05 intervals) and 6 intercepts (representing different relative biomass

threshold from 0.0 to 0.5 in 0.1 intervals). I then mapped the performance metrics values over the

slope-intercept surface. I computed the performance metrics for 54 combinations of slope and in-

tercept and the 40:10 harvest control rule. Each combination is evaluated with 100 simulation runs

with the same set of random number seeds for each harvest control rule, which was sufficient to

accurately and precisely characterize the distribution for each performance metric for each harvest

control rules.

4.2.4 Performance metrics

In order to evaluate the harvest control rules, I calculate a set of performance metrics for the aggre-

gate fisheries and for each nation’s fleet separately. The performance metrics that were calculated

for each nation separately include log utility (Average of annual log of yield plus a small value),

total yield and annual average variability in yield (AAV) (Table 4.3). Total yield and AAV were
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Figure 4.2: Illustration of the relationship between relative spawning biomass and TAC for
two example linear harvest control rules and the 40:10 harvest control rule used in this
study.

chosen to illustrate potential impacts of the magnitude and variability of yield, respectively. Log

utility was included to represent a composite view of these two quantities as it increases as yield

increases, but it also strongly penalizes fisheries closures (i.e., yield equal to zero). In addition,

I computed the following performance metrics for the stock as an aggregate (both nations com-

bined), % of times the fishery closed, % of times the total biomass was below 40% of average

unfished levels (Table 4.3).

This set of performance metrics was chosen based of potential objectives that have been ana-

lyzed in other closed loop simulations for hake (Taylor et al., 2014; Hicks et al., 2016) and other
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Table 4.3: Equations used to calculate performance metrics for evaluation of harvest control
rules. All quantities were averaged across simulation runs.

Average log utility

log(U) =
∑

y log(Yieldy +1)
Y

(T3.1)

Average annual yield

Yield =
∑

yYieldy

Y
(T3.2)

% of closures

%Closure =
y

∑CL/Y (T3.3)
Mean Annual Average Variability in Yield

AAV = mean(
|Yieldi−Yieldi−1|

∑
i=y
i=y−1Yieldi

) (T3.4)

% of years with of stock spawning biomass below 40% of SBo

%B < 40% =
∑

y B < 40%SBo

Y
(T3.5)

fisheries (Cox et al., 2013; Punt et al., 2008): preference for higher average yield, stability (i.e.,

low inter annual variation in TAC), avoidance of fisheries closures, and the conservation objective

of maintaining the biomass at or above the target level.

The analysis presented in this study include 305 unique simulation configurations (61 harvest

control rules, three recruitment scenarios and three movement scenarios). In order to summarize the

outputs I chose to compute the average performance over the projection years and the simulation

runs for each harvest control rule, recruitment scenario and movement scenario configuration.

For both yield and log utility, I compare the relative performance by nation by using trade-off

plots, i.e., by contrasting the relative performance of each metric by nation. The average perfor-

mance metrics for each nation are rescaled so that the maximum value is set to one. For these trade-

offs plots, I limit the linear harvest control rules to those with intercept (biomass threshold) equal

or below 0.3. This threshold was chosen so that the figures would be more easily interpretable.

To compare the performance of the linear and 40:10 harvest control rules in terms of AAV,

percentage of times the fishery closed, and percentage of times the total biomass was below 40%, I

created surface maps where the x and y axes represent the values for biomass threshold and harvest
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rate for the linear harvest control rules, and the z axis (color gradient) represents the values obtained

for each performance metric. I also indicated in the surface, which of the linear harvest control rules

produced the minimum or maximum (the optimum) performance metric. The performance metric

value obtained with the 40:10 rule was also mapped to that surface, i.e., the 40:10 indicator was

placed on the point that more closely matched the performance metric value obtained with the

40:10 rule.

4.3 Results

Each combination of harvest control rule and recruitment scenario gives rise to a biomass and yield

trajectory. As an example, I show three of these catch trajectories under the scenario with no strong

recruitment events (Figure 4.3 ). These trajectories represent median and 95% intervals for catch

trajectories simulated under the 40:10 rule and for two linear harvest control rules with 0.1 biomass

threshold and 0.1 and 0.5 harvest rates. The linear harvest control rule with 0.1 harvest rate (red

line, Figure 4.3 ) produces lower catches than the 40:10 rule for both nations. However, the linear

harvest control rule with higher harvest rate (0.5 - blue line, Figure 4.3) produces higher median

yields than the 40:10 rule for nation 1 (U.S.A.) and lower median yield than the 40:10 rule for

nation 2 (Canada). This result is an indication of how high harvest rates decrease the availability

of the resource in northern areas, leading to lower yield to Canada. One interesting fact to notice is

that, in Figure 4.3, the yield variability increases as the exploitation rate increases. This result could

be considered counterintuitive as one would expect less variability in catches if a stock is lightly

fished. This result is likely a byproduct of the simulation design. Here, I assume that the population

has exactly the same recruitment deviation trajectories regardless of stock size for all simulation

runs. Therefore the variability around biomass and yield becomes directly proportional to the

population size. High biomass, will produce higher recruitment variability and higher observation

error, consequently producing higher yield variability, while the inverse will occur for low biomass.
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Figure 4.3: Historical and median and 95% intervals for projected catches for three exam-
ple harvest control rules under the "no strong recruitment" scenario. Harvest control
rules include the 40:10 rule with cap, and two linear harvest control rules with biomass
threshold (SBt/SBo) of 0.1 and exploitation rates of 0.1 and 0.5.

Reproducing Figure 4.3 for all harvest control rules evaluated in this study would be a formidable

task. For this reason, I chose to summarize the results for all scenarios and harvest control rules by

comparing the mean performance across projection years and across simulation runs.

In Figure 4.4, I show the differences in mean performance when it comes to average log util-

ity and average yield for the two nations sharing the resource. If no interaction between harvest

levels and spatial distribution of the stock existed the lines shown in Figure 4.4 would be straight,

following a 1:1 ratio. However, the lines tend to bend for low biomass threshold and higher harvest

rates, indicating that Canada (Nation 2) experiences lower than expected catches. This is a result of

decreased availability of the Pacific hake resource in Canadian waters. As the harvest rate (slope)

increases, the population age structure will become more truncated, and it becomes harder for the
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Canadian fleet to catch its full quota. In general the difference in performance between nations

and harvest control rules become more important as the incidence of strong recruitment decreases

(4.4). In terms of log utility, the 40:10 harvest control rule tends to perform near optimum for both

nations across all scenarios (Figure 4.4). However, when it comes to average yield, the 40:10 har-

vest control rule performs relatively better for Canada than the U.S.A. (Figure 4.4). For the U.S.A

(Nation 1 - x axis on Figure 4.4), both yield and log utility tend to increase as harvest rate increases

and biomass threshold decreases. For Canada (Nation 2 - y axis on Figure 4.4) results for log utility

and yield indicate that better performance is obtained at harvest rates between 0.1 and 0.25 for the

no strong recruitment scenario and higher harvest rates (> 0.35) for the other recruitment scenarios

(Figure 4.4). In addition, for the no strong recruitment scenario, the relative yield and log utility

for Canada declines when harvest rates are greater than 0.35, while the relative yield and log utility

results for the U.S.A. tend to remain constant (Figure 4.4).
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The AAV values increased as the incidence of strong recruitment events decreased (see color

scale legend on Figure 4.5). Across all recruitment scenarios, the minimum variability occurs

at lower values of biomass threshold (≤ 0.1), and high harvest rates (> 0.4) (Figure 4.5). The

40:10 rule AAV gets closer to the point where minimum AAV is found as the incidence of high

recruitment events increase (Figure 4.5). This results indicate that, for the scenarios considered

in this study, minimum variability in catch is obtained when the stock is fished to very low levels

and kept near the origin of stock-recruitment relationship. At some point, in reality, the biomass

would get so low that it would no longer be economically viable to operate a fishery. Similarly

to what happened in Figure 4.3, the results observed in Figure 4.5 could also be influenced by

the simulation design. Lower variability in both biomass and yield occur at low population size,

because recruitment deviations here were assumed to follow the same trajectory irrespective of

population size. This results would likely change, if, for example, strong recruitment events became

more likely when abundance is either high or low. To date, there is no evidence of such phenomenon

for the Pacific hake stock, as historical strong recruitment events seem to happen at both high and

low spawning biomass levels (Berger et al., 2017b).

Fisheries closures were only computed for the aggregate stock, as closures are determined based

on the total biomass threshold. As expected, closure rates decrease as biomass threshold decreases

(Figure 4.6). Also, the area with very low closure percentage (blue area in the colored surface)

increases as the occurrence of strong recruitment events increases. This happens because when

strong recruitment events occur the population biomass tends to increase considerably, rendering it

unlikely that the biomass levels will fall below the threshold. The 40:10 also performed very well

in avoiding fisheries closures, with performance comparable to the minimum closure percentage

across all scenarios (Figure 4.6).

With reference to the conservation performance metric, the % of time that biomass is below

40% of unfished levels, minimum values occurred for high biomass threshold values (Figure 4.7 -

blue area). For the scenario with two strong recruitment events per decade low harvest rates also

produced low % of biomass below 40%. In relation to the 40:10 rule performance, the difference
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between the 40:10 rule and the minimum % of time that biomass is below 40% of unfished levels

tended to increase as the number of strong recruitments per decade decreased (Figure 4.7). For the

scenarios where no strong recruitments occur, biomass was predicted to be below 40% of unfished

levels about 86% of the time.

The sensitivity analysis for the movement parameters of the migration model indicate that the

movement parameter values have less impact on the difference in performance between nations

than the occurrence of strong recruitments (Figure 4.8). However, the movement parameters do

have an impact. For the Early movement scenario, i.e., where fish migrate farther at younger ages,

the differences in performance between the nations are less prominent than in the Base case and

Late movement scenarios. In addition, in the Early movement scenario, the 40:10 rule performance

is closer to that of linear harvest control rules with low harvest rate and low biomass threshold for

both nations (Figure 4.8). This result indicates that if a higher percentage of younger fish migrate

further north, there will be less of an impact on the long term yield due to reduced availability of

the resource in the northern range of the distribution.
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Figure 4.5: Median Average Annual Variability in yield (AAV). Surfaces indicate perfor-
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Figure 4.6: % closures for total fisheries over the 60 years of simulation. Surfaces indicate
performance for linear harvest control rules. White circle indicates performance level
comparable to the 40:10 harvest control rule. Minimum value along the surface is indi-
cated with a black square. Recruitment scenarios are indicated on the columns: A - no
strong recruitments, B - one strong recruitment per decade,C - two strong recruitments
per decade.
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Figure 4.7: % of time that biomass is above 40% of average unfished levels. Surfaces indicate
performance for linear harvest control rules. White circle indicates performance level
comparable to the 40:10 harvest control rule. Minimum value along the surface is indi-
cated with a black square. Recruitment scenarios are indicated on the columns: A - no
strong recruitments, B - one strong recruitment per decade,C - two strong recruitments
per decade.
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Figure 4.8: Comparison of relative performance of average log yield (log utility) and average yield between nations (trade-offs) for
the three alternative movement scenarios. Quantities were normalized by the maximum observation per nation and scenario
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4.4 Discussion

The results shown in this study corroborate those presented by Ishimura et al. (2005) in that lower

values of both biomass thresholds and harvest rates tend to produce higher yields and lower vari-

ability in yield for the aggregate stock. The present results are also in agreement with Ishimura et al.

(2005) in pointing that the 40:10 harvest control rule performs similarly to the low harvest rate and

low biomass threshold alternatives in terms of maximizing yield and minimizing yield variability

(bottom left are of the heat maps). The results obtained for the 40:10 harvest control rule with

cap also corroborate with those presented Taylor et al. (2014) and Hicks et al. (2016), indicating

that the 40:10 harvest control rule, with cap, performs well in the long term; i.e., it secures yield

while minimizing fisheries closures and maintaining the biomass above the 10% of unfished levels

threshold.

However, in addition to evaluating the performance of harvest control rules for the stock as an

aggregate, I also evaluated the impacts experienced by each nation individually. I show that there is

a difference in performance between the two fishing nations when the log utility and sum of yields

metrics are considered. In general, after rescaling by the maximum observed values, the U.S.A. has

higher relative yield and log utility when fishing at higher harvest rates when compared to Canada.

These differences diminish as the frequency of strong recruitment events increase. This result is

associated with the migration of the stock because the Pacific hake migration is associated with age

and size of the fish (Ressler et al., 2007). As harvest rates increase, the overall age structure of the

population will become more truncated, i.e., older and larger fish become less abundant; therefore

the resource becomes less abundant in the northern range of the distribution which corresponds

to waters off Washington state and Canada. This effect is minimized as the frequency of strong

recruitment events increase because of a combination of higher overall abundance and reduced

harvest rates induced by the 600 thousand tons cap imposed on all harvest control rules. The

differences in long term yield between U.S.A and Canada are also minimized when if fish start

migrating further north at younger ages, as was demonstrated on the early movement scenario.

82



Overall the 40:10 harvest control rule seems to be a good compromise for the two nations, and

it performs relatively well across all performance metrics considered in this study. In the scenario

where no strong recruitment events occurred, the 40:10 rule tended to reduce the biomass below

40% of unfished biomass about 86% of the time. However, even when no strong recruitment events

were considered, the biomass rarely went below 10% of unfished levels. Our results are similar to

those obtained by Taylor et al. (2014) and Hicks et al. (2016), who considered even lower TAC caps

for the aggregate stock; they also found that the value chosen for the TAC cap is inversely related

to the conservation metrics, with lower caps resulting in more conservative outcomes. In alignment

with other studies, the adoption of a formal TAC cap for the Pacific hake fishery is likely to result

in prevention of fishery closures, prevention of severe depletion of the stock (i.e., stock biomass

falling below 10-20% of average unfished levels), and the provision of a more stable distribution of

the resource (given limited exploitation rates on strong cohorts).

The present study has two major limitations. These are the limited sensitivity analyses for the

key biological parameters, and the simplified representation of measurement and observation error

in the analyses. I assume that the biological population parameters for the Pacific hake stock are

stable over time (i.e., fixed and subject to random variability only) and equal to those reported

in the 2017 stock assessment (Berger et al., 2017b). Punt et al. (2008) shows that uncertainty

in stock recruitment parameters, more specifically, productivity and recruitment variability, can

have an impact on various performance metrics, including the percentage of time that biomass

is above some threshold quantity. I observed similar results regarding changes in productivity

when comparing the results across the three recruitment scenarios considered in this study. I also

parameterized the movement dynamics of the resource based on literature documentation instead

of using a statistical model fit to data. In Chapter 2, I showed that the movement parameters

can be estimated if spatial catch at age composition data is available. An expansion of this study

should include an evaluation of uncertainties in other key population dynamics parameters, such

as the growth rates, (and how they might vary for strong cohorts), as well as an estimation of the
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movement parameters, which will affect the difference in performance between the two fishing

nations.

In this study, I used an auto-correlated error time series to represent the measurement error, i.e.,

the error associated with stock assessments. This methodology was suggested by Walters (2004),

and employed in other studies of evaluation of harvest control rules (e.g., Punt et al., 2008). How-

ever, even though I believe that the results shown here are representative of the overall trends and

trade-offs between performance metrics experienced by each nation, the results might change if

other levels of autocorrelation and variance are used in the observation model. In a sensitivity

analysis (results not shown), I found that if lower observation error variances are considered, the

long term yields become higher and the difference in performance of long term yield between

the U.S.A. and Canada become more pronounced. (Moxnes, 2003) reviews evidence of this phe-

nomenon when using a policy optimization model to investigate the impacts of measurement error

and stock uncertainty in policy outcomes. (Moxnes, 2003) found that if stock measurements are

more uncertain, the revenue from a fishery tends to decrease and the optimum policies become

more conservative.

In addition to the weaknesses described above, I would like to also emphasize that the perfor-

mance metrics chosen for this study are somewhat arbitrary and chosen as a potential representation

of the fishery objectives. The performance metrics used in this study are equal or similar to the ones

used in the management strategy evaluation process carried out by the Pacific hake Joint Technical

Committee (Taylor et al., 2014; Hicks et al., 2016). However, if a similar exercise is to be used

to evaluate management options in the Pacific hake fishery, the preferred policies in practice will

depend on performance measures and objectives defined in the Pacific hake management process.

Other studies have evaluated management options for migratory and transboundary fish stocks,

usually accounting for the spatial effect indirectly. For example, Jones et al. (2016) implemented

closed-loop simulations for the Lake Erie walleye fisheries with the objective of comparing the per-

formance of alternative harvest control rules, and report trade-offs between the Canadian commer-

cial fisheries and the U.S. recreational fisheries. To account for changes in availability associated
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with fish movement, they included time-varying catchability in their non-spatial model. In addi-

tion, in recent years there has been increased interest in investigating the effects of spatial structure

on stock assessment outcomes and management benchmarks (Berger et al., 2017a). Many simu-

lation evaluation studies have been done to assess the impacts of spatial structure and movement

dynamics on stock assessment performance and reference points (e.g., Lee et al., 2017; Goethel

and Berger, 2017; Kerr et al., 2017; Carruthers et al., 2015). However the use of spatially explicit

models in closed loop simulations remain relatively scarce, in part due to the computational burden

and the difficulties in fitting spatially structured models to data (Goethel et al., 2016).

This study focused on Pacific hake as a case study and, for this reason, the model parameteriza-

tion and structure set to mimic the dynamic of that resource. However, I believe that the framework

designed here can be applied to many other transboundary resources that are subject to size seg-

regation and/or migration range variability. The issue of management of transboundary stocks

susceptible to changes in migration range has been explored in the literature under a game theory

approach (e.g., Bailey et al., 2013; Hannesson, 2013; Liu et al., 2016). These studies generally

point out that cooperative approaches to management perform better over the long term. However,

Bjørndal and Ekerhovd (2014) point out that changes in migration range and spatial distribution

are likely to impact international management agreements. Here, I present a framework that can

aid cooperative management agreements to evaluate the impacts of harvest control rules and other

management procedures on the distribution of the stock. This tool can be used to detect changes in

spatial distribution over time, and search for management procedures that minimize change in stock

distribution, helping to ensure equitable access to the resource by the parties sharing the stock.

In summary, the framework and evaluation exercise presented in this study are valuable for

the management of the Pacific hake resource and for the management of migratory transbound-

ary species in general. For the Pacific hake resource, I demonstrate the potential implications of

population size truncation and change in migration range that can arise from using different harvest

control rules. I also demonstrate the effectiveness of the 40:10 harvest control rule and the potential

benefits of imposing a TAC cap. For migratory transboundary species in general, I present a frame-
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work to aid the identification of effective management procedures, that promote the sustainability

of the stock and stable spatial distribution of the resource.
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Chapter 5

Conclusion

The overarching objective of this dissertation work was to explore questions that relate to the man-

agement of migratory transboundary species. I focused on two main topics: (1) the interaction

between age/size based migratory movement and the spatial availability of the resource and (2)

time-varying fisheries selectivity associated with size segregation, migratory movement and cohort

targeting. I have developed two new modeling tools to address research questions related to these

two topics. In chapter 2, I present a continuous migration model capable of modeling cyclic mi-

grations that are commonly found in iteroparous fish species. This model is suitable for exploring,

testing and demonstrating potential issues of resource availability that arise from migratory move-

ment and age/size segregation. In chapter 3, I present a length based stock assessment tool that

attempts to provide better estimates of time-varying fisheries selectivity. Finally, in chapter 4, I use

the model developed in chapter 2 in a closed-loop simulation framework to explore the impacts of

a large set of harvest control rules on management outcomes experienced by two nations sharing

a transboundary resource. In the following section, I summarize the work in chapters 2 through 4,

and discuss how these models and findings may contribute to the management of Pacific Hake and

other migratory transboundary species around the globe.
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5.1 Research summary

In chapter 2, I introduced a migration model that characterizes the cyclic migrations between feed-

ing and spawning grounds that are common in iteroparous migratory species. A Lagrangian ap-

proach to model movement is used to track individual cohorts (or sub groups within cohorts)

through space and time. I demonstrate how the movement parameters in the model can be esti-

mated from spatial catch at age data, a commonly available data type for many temperate exploited

stocks. The Lagrangian movement model I present is continuous in space and time. This is im-

portant because in a continuous model it becomes unnecessary to delimit spatial areas from which

movement rates are measured, and time steps can vary in size as needed. On the other hand, the

Lagrangian model requires an explicit migration hypothesis to generate the movement trajecto-

ries. Such hypotheses, however, exist for many exploited species. For example, many migration

hypotheses for the ocean phase of Pacific salmon species are described by Groot and Margolis

(1991). These generally include northward migrations following the North American coast then

returning to re-enter their natal streams as fish mature. Tunas are another example of a group

that in which some species perform trans oceanic cyclic migrations between spawning and feeding

grounds (Nikolic et al., 2017; Nakamura, 1969). Other species, like pelagic sharks are also believed

to perform cyclic migrations, usually between inshore and offshore waters (Campana et al., 2011;

Jorgensen et al., 2010). Similar behavior has also been demonstrated for flatfish like plaice (Hunter

et al., 2003) and some cod populations (Robichaud and Rose, 2004).

I illustrated the model performance using Pacific hake as a case study, which perform cyclic

migrations between the spawning grounds off southern California in the winter and the feeding

areas along the North American coast all the way to northern British Columbia, Canada (Ressler

et al., 2007). The migration extent is associated with fish age/size with fish moving further away

from spawning grounds as they age/grow. Because I used Pacific hake as an example, I made the

migration range a function of age. However, the model can be extended to incorporate covariates

representing biological and environmental forces that alter the distribution and migration range

of exploited populations. I expect that this movement model will be a useful tool to model fish
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migration and to illustrate how fisheries dynamics are affected by fish migration. The model could

also be used as the basis for an operating model in closed loop simulation exercises to test the

robustness of management frameworks that apply to populations and fisheries that are subject to

spatial structure.

In chapter 3, I introduce a new length-based stock assessment model: the length-SRA. This

method bypasses the requirement of estimating selectivity by calculating exploitation rate at length

directly from observed catch at length data. The objective was to come up with a method that

would be robust to time-varying selectivity, a phenomenon commonly associated with resources

subject to spatial complexities and cohort targeting. I tested the performance of the Length-SRA

with a simulation-evaluation framework under three exploitation rate trajectories and under fixed

and time-varying selectivity scenarios. The model produced parameter and derived management

quantities estimates with precision and accuracy that are comparable to that of other assessment

models, especially when considering time-varying selectivity (e.g., Martell and Stewart, 2014; Lin-

ton and Bence, 2011). The selectivity estimates produced by the model were accurate over most

of the simulation scenarios, except when the exploitation rate time series showed no contrast, i.e.,

exploitation rate was kept at values near the management target for most of the time series. In

general the selectivity estimates were not very precise. The imprecision in selectivity estimates is

probably associated with the fact that the model assumes no error in the catch at length data, and

therefore incorporates all the observation error in the selectivity estimates.

In addition, I explored the effects of misspecification of growth parameters on the length-SRA

results. The model was found to be extremely sensitive to the growth parameters input, particularly

when it comes to selectivity estimates. I used the length-SRA model to assess two species: Pacific

hake and Peruvian jack mackerel. Both species are believed to be subject to time-varying selectivity

associated with fisheries targeting of areas of high abundance and changes in population distribution

over time. I found that both species presented time-varying and mainly dome shaped selectivity,

which corroborated with the findings by Waterhouse et al. (2014) and Butterworth et al. (2014).

However, as I pointed out earlier, the model is extremely sensitive to growth parameters, and it
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remains uncertain whether the growth parameter estimates used for both Pacific hake and Peruvian

jack mackerel are reliable. I recommend that whenever this model is used, extra caution is exercised

when choosing growth parameter estimates and that extensive sensitive analyses are performed on

the growth parameter values. Another alternative might be to use a Bayesian approach to integrate

over the uncertainty in growth parameters by using distributions for the growth parameters values.

This approach likely will not address the potential biases, but it will better capture the uncertainty

caused by misspecification of growth parameters.

In chapter 4, I used the movement model described in chapter 2 in a closed loop simulation

approach to evaluate the performance of a large set of harvest control rules for the Pacific hake

population. I took advantage of the spatial capability of the movement model to explore the differ-

ences in performance of each harvest control rule in relation to the outcomes experienced by the

U.S.A. and Canada, the nations sharing the Pacific hake resource. I found that when the harvest

control rules allow for higher exploitation rates, issues of availability of the resource in Canadian

waters become more prominent, resulting in lower average yields for Canada when compared to

the lower exploitation rates. In order to assess the impacts of the occurrence of strong recruit-

ment events in the population, I ran the evaluation under three distinct recruitment scenarios: no

strong recruitment, one strong recruitment event per decade, and two strong recruitment events per

decade. These scenarios were devised based on the historical recruitment of Pacific hake; strong

recruitment events are believed to have occurred in 1980, 1985, 1999, 2010 and 2014, and seem

to have no apparent relationship with stock size (Berger et al., 2017b). I found that the availability

issue became more acute, i.e., larger decreases of average yield for Canada when strong recruit-

ment events are less frequent or absent. I also tested the sensitivity of the results to movement

parameter assumptions, and found that the differences in relative average long term yield between

nations become less prominent if fish are assumed to migrate farther at younger ages. However,

the impact of the movement parameter assumptions over the range of values explored tend to be

smaller than that of the occurrence of strong recruitment events. This is because the occurrence of
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strong recruitment events tends to inflate the biomass of the stock, eliminating problems related to

availability throughout the species range, even if movement rates are diminished.

Among the harvest control rules being tested, I included the 40:10 harvest control rule with a

maximum TAC cap. This rule is currently used for the Pacific hake management. The TAC cap is

not officially part of the Pacific hake treaty, but a maximum cap has effectively been implemented

consistently by the Pacific hake JMC over the past few years (Hicks et al., 2016). I found that this

rule performed well in terms of maintaining the resource exploitation at sustainable levels, and in

terms of mitigating the potential losses experienced by the Canadian fleet due to availability issues.

In addition to demonstrating the performance of a set of harvest control rules for the man-

agement of Pacific hake, the exercise presented in chapter 4 also has broader implications. The

approach presented can be used to evaluate harvest control rules for other transboundary stocks

that are subject to changes in distribution and migration range.

5.2 Future research directions

The material presented in this dissertation has value for future research and for management ap-

plications. The modeling tools are ready for management use provided that the necessary data

is available. Future research could include further development of the modeling tools, applica-

tion of the methods to other species, and further use of the tools in closed loop simulations and

management strategy evaluations. There are several ways in which the research presented in this

dissertation can be continued and enriched; I discuss some of those in the following paragraphs.

Most of the methodology, particularly chapters 2 and 4, were produced with the Pacific hake

study case in mind, and therefore, will need to be modified if other fisheries and resources are

considered. The Lagrangian movement model can be modified to include alternative (non cyclic)

movement functions, to model more than one spatial dimension simultaneously (e.g., centroids of

a distribution, longitude, latitude, and depth), and to incorporate other covariates, such as environ-

mental variables. The explicit inclusion of environmental covariates in the Lagrangian movement
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model could be used to test hypotheses derived from correlation between environmental variables

and fish distribution (e.g., Chen et al., 2005; Agostini et al., 2006; Mourato et al., 2014).

In relation to the length-SRA model presented in chapter 3, an interesting expansion of the

model would be to produce a stochastic version of the stock reduction analysis model, similar

to what was done by Walters et al. (2006). In that approach the SRA projections are produced

based on a range of hypothetical values for the main model parameters: unfished recruitment (R0)

and recruitment compensation ratio (κ). Then, these projections are “filtered” either by removing

those in which the stock was driven into extinction or by using a sampling-importance resampling

routine. This expansion would likely lead to a better characterization of uncertainties associated

with the model estimates. In addition, further testing of the model could be done using a closed-

loop simulation approach. Such testing would enhance the understanding of the model, not only

in terms of accuracy and precision, but also in terms of achieving management goals, such as

sustainable and stable catches as well as conservation of the stock in the long term.

The closed-loop simulation approach described in chapter 4 could be expanded in a variety of

ways, for example, to test different stock assessment methods. Testing of alternative allocations

methods, such as the fisheries footprint approach, suggested by Martell et al. (2015) could also

be considered. The closed loop simulation framework included in this dissertation could also be

incorporated into a full management strategy evaluation process, in which the questions explored,

as well as the management objectives and performance metrics, would be the result of consultation

with managers, fisheries stakeholders, and scientists. In the case of Pacific hake, a management

strategy evaluation process has been underway since 2013 (Taylor et al., 2014), and is likely to

continue in the coming years with the expansion to a spatially structured operating model (Anony-

mous, 2017). The work presented in this thesis, particularly the spatial migration model could be a

relevant contribution to the future work carried by the Pacific hake Joint Technical Committee.

In conclusion, the research presented here is comprised of two new modeling tools and a closed

loop simulation framework. Each of these could be useful in research and management of trans-

boundary fish stocks that are susceptible to age/size based migration. The use of these tools may
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thus lead to improvement in understanding of the potential spatial consequences of management

actions and, thereby leading to improved resource management.
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