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Abstract 
 If a weed is defined as a plant that is “growing where it is not wanted”, then agricultural weeds, 

or plants that invade and persist in cultivated fields, might be the epitome of weeds. Agricultural weeds 

have arisen repeatedly from wild plant species, often undergoing rapid evolution to escape eradication. 

While agricultural weeds thus represent an attractive opportunity to study evolutionary processes 

operating over short timescales, the genetic basis of local adaptation and, in cases of multiple 

independent weed origins, the factors influencing parallel evolution, they remain understudied. 

For my thesis work, I asked whether populations of common sunflower (Helianthus annuus) 

growing as agricultural weeds have adapted to the unique challenges posed by cultivated fields. In a 

common garden, I compared paired weedy and wild (i.e., non-agricultural) populations, collected over a 

latitudinal transect from Canada to Kansas, USA. Weedy populations grew faster and flowered earlier 

than wild populations, suggesting an evolutionary shift in life history strategy to prioritize growth and 

reproduction. One wild population from a wetland site showed the same pattern, indicating that wild 

sunflowers may face similar selection pressures in certain contexts. 

I then used whole genome resequencing to investigate the extent of parallel genetic 

differentiation between weedy and wild populations. Using two different metrics, a “cluster separation 

score” based on genetic distance matrices and FST, I identified a list of 148 differentiated genomic 

regions, though our analysis lacked power to distinguish true positives after correction for multiple 

testing, and therefore these regions are only suggestively linked to adaptation to the agricultural 

environment. Genes overlapping these regions were varied and included those involved in plant stress 

responses, flowering time genes and transporter genes linked to herbicide resistance. 

To connect phenotype to genotype, I conducted a genome-wide association analysis of 

glyphosate resistance, a trait likely critical for the success of weedy populations. At a glyphosate 

application rate of 0.5 kg a.e. ha-1, or half the rate typically applied by a farmer, resistance segregated in 

the mapping population, with surviving plants (78.5%) showing a variety of symptoms. Mapping 

identified 68 SNPs suggestively associated with resistance, and three transporter proteins, among other 

genes. 
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Lay Summary 
 Since the inception of agriculture, wild plant species have been invading cultivated fields, 

competing with crops and decreasing yields. These agricultural weeds cost the economy $33 billion 

annually in the USA alone, and further research is needed in order to develop better management plans. 

One way weeds may become more successful over time, and better able to escape eradication, is via 

evolution. Evolution describes the process whereby in each successive generation, the genes of plants 

that leave more descendants become dominant in the population. Weeds may evolve to have life cycles 

that better match those of short-season crops, for example, or to be resistant to herbicides such as 

Roundup. In my dissertation, I discovered that evolution has helped common sunflower succeed as an 

agricultural weed, with weeds showing faster growth, earlier flowering and Roundup resistance. Using 

modern sequencing technology, I identified DNA regions that may underlie these changes. 
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Preface 
 Work for Chapter 2 was conducted in collaboration with Loren Rieseberg. Together, we 

conceived the idea for the experiment, which I then executed and analyzed with his feedback. I wrote 

the manuscript, with input from Loren Rieseberg. 

 The whole genome resequencing data that I used in Chapter 3 (n = 16 individuals) was part of a 

larger dataset (n = 321 individuals) that I then used in Chapter 4. This dataset was created by a team of 

collaborators in Loren Rieseberg’s lab. To create this dataset, I first grew the plants, harvested leaf tissue 

and extracted DNA. Marco Todesco then prepared the sequencing-ready libraries for generation of the 

whole genome sequencing data. The raw reads were then cleaned and aligned to the Helianthus annuus 

reference genome by Sariel Hubner; to produce the final SNP dataset, Greg Owens then called variants 

and performed further filtering of the dataset. Using a subset of these SNP data, I then conducted the 

analyses, as conceived by myself and Loren Rieseberg, who also provided feedback on the manuscript 

that I wrote. 

 The idea and experimental design for Chapter 4 was developed by Loren Rieseberg and myself. 

As described for Chapter 3, the SNP dataset used in Chapter 4 was generated through the work of 

myself, Marco Todesco, Sariel Hubner and Greg Owens. I additionally performed all the greenhouse 

trials of glyphosate resistance, and assessed plant performance. Greg Owens performed the statistical 

analysis for the association mapping, with feedback from myself, Marco Todesco and Loren Rieseberg. I 

then finalized the list of candidate regions and identified overlapping genes of interest. The manuscript 

was written by myself, with the assistance of Loren Rieseberg. 
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Chapter 1: Introduction 

1.1 General Introduction 
 We live in a world of introduced species. Sometimes intentionally, for example in the case of 

domesticated species and garden ornamentals, often accidentally, as in the case of seed contaminants 

and other stowaway species, humans have facilitated the movement of species around the globe, 

greatly accelerating the rate of biotic exchange (Vitousek et al. 1997). Often translocated individuals will 

fail to establish, but sometimes self-sustaining populations occur, and a small fraction of introduced 

species will even go on to become invasive (Williamson 1996; Jeschke and Strayer 2006). Invasive 

species are those that exhibit a high rate of spread, typically overwhelming and displacing existing native 

species in the habitats they take over. While invaders are typically thought of exclusively as introduced, 

non-native species, the continued and drastic alteration of natural habitats by humankind has led to 

“invasive” behaviour on the part of some native species (Mooney and Hobbs 2000). Examples include 

the current population explosion in white-tailed deer (Odocoileus virginianus Zimmerman, 1780) caused 

by decimation of their native predators, making this a nuisance species (Côté et al. 2004), and the 

proliferation and expansion of native plants such as Canada fleabane (Conyza canadensis (L.) Cronq.; 

Dauer et al. 2007) and common ragweed (Ambrosia artemisiifolia L.; MacKay and Kotanen 2008) in 

disturbed areas. While many species are experiencing a decline in numbers owing to human activities, a 

select few are benefitting from the transition to a more human-dominated landscape.  

Invasive species have significant ecological costs for impacted native communities (reviewed in 

Elton 1958 and Sakai et al. 2001), and are considered to be a major driver of global change and the 

accelerated rate of species extinction (Sala et al. 2000). In addition to direct detrimental effects on the 

native biota, invasive species may also influence key ecosystem functions and processes via alteration of 

the physical environment (e.g. soil properties, disturbance regimes; Vitousek et al. 1997), sometimes 

with direct costs to humans (e.g. via altered fire regimes; D’Antonio and Vitousek 1992). Similarly, 

weedy species, where weeds are broadly defined as plants “growing where they are not desired” or 

“plants out of place” (Monaco et al. 2002), and more specifically as plant pests that interfere with 

human activities (Ellstrand et al. 2010), may have direct costs in the form of reduced agricultural yields. 

The economic costs of biological invasions, whether of cultivated fields or natural ecosystems, are 

staggering, with billions of dollars spent annually in control efforts and in lost agricultural productivity 

(e.g. ~$33 billion per year in North America; Pimentel et al. 2005).  



2 
 

Understanding how invasive species and weeds arise and what traits mediate their success may 

be critical for mitigating their effects. One pertinent question is whether invaders arrive “pre-adapted” 

for their new habitats (or at least with enough phenotypic plasticity to enable survival), or if adaptive 

evolution might play a role in enabling success in novel environments. As invaders face new biotic and 

abiotic conditions, whether in a site outside of the native range or a novel, local environment such as a 

cultivated field, there is the potential for mismatch between phenotypic traits and the environment. 

Such a mismatch should lead to a host of novel selective pressures. Indeed, a number of recent studies 

have revealed trait evolution after introduction, such as the evolution of latitudinal clines in key 

morphological and life-history traits in St. John’s wort (Hypericum perforatum L.) in its invaded range 

(Maron et al. 2004), or the increased susceptibility of introduced populations of bladder campion (Silene 

latifolia Poir.) to herbivores and fungal pathogens (Blair and Wolfe 2004; Wolfe et al. 2004). This has 

prompted the assertion that rapid evolutionary changes during invasion may be common (Prentis et al. 

2008; Whitney and Gabler 2008; Buswell et al. 2011), though the importance of such changes to 

invasion success remains under debate. What is clear is that many invasive species and weeds provide a 

remarkable opportunity to study evolution in action and the process of local adaptation. 

Agricultural weeds in particular may often serve as interesting case studies (Vigueira et al. 2013). 

Not only can weeds show startlingly rapid evolutionary change, responding to many crop management 

practices that are recent in origin, but weeds may also present exciting cases of parallel evolution, 

where multiple populations or species show similar phenotypic changes in adapting to the cultivated 

environment. Weeds growing in crop fields are exposed to a variety of human interventions, including 

the use of chemicals and irrigation, as well as regular disturbance from cropping techniques such as 

cultivation, harvesting and ploughing. Such disturbances may impose strong selection on weed 

populations (Barrett 1988), as seen, for example, in the recent evolution of herbicide resistance in many 

species (Heap 2014). In order to evade removal, weeds may evolve highly specific adaptations; crop 

mimicry, where weeds come to physically resemble the crop species they infest, provides one such 

example. More generally, adaptation to herbicides and the timing of disturbances may be crucial for 

survival (e.g. Tranel and Horvath 2009; Vigueira et al. 2013; Kuester et al. 2016). Annual weeds and 

weeds of short-season crops may experience selection for rapid development and precocious 

reproduction (Barrett 1983), in order to maximize fitness prior to harvest. As agricultural fields tend to 

represent resource-rich environments (Mohler 2001), weeds may come to prosper by evolving to 

maximize their growth rates. Faster growth could allow weeds to take advantage of transient favorable 
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conditions before disturbance occurs; however, enhanced growth may come at the expense of stress 

tolerance traits (Mayrose et al. 2011), if trade-offs in growth and tolerance traits exist. 

1.2 Research Objectives 
For my dissertation, I study a widespread agricultural weed, Helianthus annuus L. or common 

sunflower, to look for adaptation to cultivated environments and to characterize the genetic 

architecture of weedy traits. Are weedy populations of this naturally disturbance-adapted species pre-

wired for success in agricultural settings, or, despite ongoing gene flow with local wild populations of H. 

annuus (growing in more natural habitats), has adaptive evolution been important for their success? In 

Chapter 2 of my thesis, I use common garden experiments to look for genetically-based changes in 

sunflower growth and phenology in weedy populations. If similar changes are seen across multiple 

weedy populations, this provides strong evidence for a role for natural selection, as stochastic processes 

such as drift would be unlikely to result in such concerted change. The genetic basis of weediness, or 

what makes a weed a weed, generally remains poorly understood (Basu et al. 2004; Stewart et al. 2009), 

making this a critical issue for weed research. Hence, in Chapter 3, I look for differences between paired 

weedy and wild sunflower populations at the molecular level. Using whole genome shotgun 

resequencing data, I seek to identify genetically differentiated regions in the weed genome, and ask if 

the same changes have occurred in parallel across weedy populations. Finally, in Chapter 4, I connect 

phenotype to genotype, implementing genome-wide association mapping on a dense SNP dataset, in 

order to uncover the genetic basis of glyphosate resistance in sunflower.  

1.3 Introduction to the Study System 
The common sunflower, Helianthus annuus L., is a member of the family Asteraceae, the largest 

family of named flowering plants (Funk et al. 2005). This diverse family is most easily recognized by their 

composite inflorescences, which are often mistaken for single large flowers, but are actually composed 

of many individual ray and/or disk florets that cluster together, forming a capitulum at the top of the 

stem. The Asteraceae has a worldwide distribution and includes numerous economically important 

species (Kesseli and Michelmore 1997; Dempewolf et al. 2008). In the family are food plants, such as 

lettuce (Lactuca sativa L.), globe artichoke (Cynara cardunculus L.), endive and chicory (Cichorium spp.), 

as well as medicinal species and ornamentals (e.g. chrysanthemums, cosmos, dahlias, gerberas and 

marigolds). Many species are also problematic weeds (Hodgins et al. 2015), with over 100 species on the 

U.S. Federal and State noxious weed lists (USDA, NRCS 2017), for example. 
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Helianthus annuus is an annual, outcrossing, diploid (n = 17 chromosomes) native to North 

America, where it is but one member of a diverse genus of wild sunflowers, containing some 52 species 

(Schilling 2006; Stebbins et al. 2013). The genus contains both annual and perennial species with varied 

ecologies and habitats (Kane et al. 2013), and includes species occupying extreme environments such as 

sand dunes (e.g. H. anomalus Blake and H. neglectus Heiser), desert floors (H. deserticola Heiser), 

serpentine soils (H. exilis A. Gray) and salt marshes (H. paradoxus Heiser). In evolutionary biology, the 

Helianthus genus has long-served as a model system for the study of adaptive introgression and hybrid 

speciation (Rieseberg et al. 1995), as a result of the propensity for gene flow between sympatric species 

(Heiser et al. 1969). Common sunflower (H. annuus) also has considerable economic value, owing to its 

domestication as an oil-seed crop, with over 25 million hectares grown worldwide in 2014 (FAOSTAT 

2014).  

Originally domesticated in eastern North America over 4,000 years ago (Harter et al. 2004), 

sunflower has been spread around the globe for use in agriculture and as an ornamental. Compared to 

the wild progenitor, domesticated sunflower has a higher seed oil content and altered flowering time, 

and has lost traits such as branching, self-incompatibility, seed dormancy and seed shattering (Snow et 

al. 1998; Burke et al. 2002). Cultivated sunflower has served as a model for understanding the genetics 

of domestication (e.g. Burke et al. 2005; Baack et al. 2008; Baute et al. 2015) and in identifying genes 

underlying agronomic traits of interest (Blackman et al. 2010, 2011; Chapman et al. 2012). As described 

by Kane et al. (2013), ample genetic resources are available for sunflower, facilitating not only the study 

of domestication genetics, but also of adaptation in wild sunflower species. The recently completed, 

high-quality XRQ reference genome assembly for H. annuus (where XRQ is an inbred genotype 

developed by the French National Institute for Agricultural Research, or INRA), mapping over 80% of the 

3.6 Mbp genome and 97% of the gene content to 17 pseudo-chromosomes (Badouin et al. 2017), has 

paved the way for future ecological and evolutionary studies in the Helianthus genus. 

The current distribution of wild H. annuus, the progenitor of the domesticated sunflower, 

extends over much of the United States (Figure 1.1), as well as parts of southern Canada and northern 

Mexico. However, H. annuus is likely indigenous to the central USA, with the hypothesized range prior to 

human colonization comprising a narrow column from North Dakota south to Texas (see Figure 1 in 

Whitney et al. 2010). In addition to its native distribution, H. annuus is now abundant in parts of 

Australia (Dry and Burdon 1986; Seiler et al. 2008), Europe (Bervillé et al. 2005; Muller et al. 2009) and 

South America (Poverene et al. 2009; Cantamutto et al. 2010; Casquero and Cantamutto 2016), where it 



5 
 

frequently acts as a weed. In contrast to the domesticated sunflower, wild H. annuus has multiple 

inflorescences with small achenes, grows indeterminately and is highly branched (Figure 1.2), though 

there is tremendous morphological diversity across the native range (McAssey et al. 2016). Preferring 

heavy, clay soils and open grasslands (Heiser et al. 1969), wild populations of H. annuus may be found 

growing in a range of open habitats that experience frequent disturbance (Heiser 1954), such as along 

roads and railway lines, in vacant lots and waste places, and in crop fields. This heliophilic species has 

been postulated to have originated as a colonizer of natural disturbances (Asche 1993), especially those 

created by bison, which may also have acted as a dispersal agent for achenes trapped in their fur. Wild 

and cultivated H. annuus remain interfertile, and gene flow between the two is common across the 

landscape (Linder et al. 1998), with crop-wild hybrids frequently reported in the native range (Arias and 

Rieseberg 1994; Whitton et al. 1997). 

Sunflower commonly acts as an agricultural weed, infesting crop fields and their margins, in 

both North America (where it is native) and parts of Australia, Europe and South America (where it is 

not) (e.g. Al-Khatib et al. 1998; Muller et al. 2009; Casquero and Cantamutto 2016). In the USA, it has 

been listed as a noxious weed in several states (Iowa, Minnesota, Alaska: USDA, NRCS 2017), as it may 

decrease crop yields significantly in agricultural fields (Figure 1.3). For example, for corn (Zea mays L.), 

soybean (Glycine max (L.) Merr.) and sugar beet (Beta vulgaris L.) fields, a heavy infestation of weedy 

sunflowers can reduce crop productivity by up to 64%, 97% and 73%, respectively (Schweizer and Bridge 

1982; Geier et al. 1996; Deines et al. 2004). In North America, weedy populations likely originated as 

wild sunflowers that colonized agricultural fields, as weedy populations tend to be more closely related 

to nearby wild populations (occurring in more natural areas) than other weedy populations (Kane and 

Rieseberg 2008); the role, if any, of crop alleles in contributing to the success of weeds remains 

unknown. Meanwhile, in other parts of the globe, weedy sunflowers have crop-wild hybrid origins, 

perhaps originating as seed contaminants in sunflower crop fields. For example, in France and Spain, 

Muller et al. (2011) found that, while all weeds retained a mitochondrial crop-specific marker, they also 

possessed a number of alleles not present in the cultivated pool; additionally, the low population 

structure and high marker diversity found were consistent with multiple introduction events. 

1.4 Prior Research in This System 
 While sunflower is a disturbance-adapted species, and may therefore naturally act as an 

agricultural weed, both genetic and phenotypic studies of weeds have indicated that adaptation to the 

cultivated environment has occurred. Common garden experiments comparing agricultural weed 
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populations to wild populations (from non-agricultural habitats) have found evidence of trade-offs 

between growth and stress tolerance, with weeds favoring faster growth. For example, in a greenhouse 

study including four U.S. and three European weedy populations, Mayrose et al. (2011) found that 

weedy versus wild individuals were more susceptible to drought, dying earlier when water was 

withheld; under well-watered conditions, there was a marginal trend to a higher growth rate (as change 

in height over time) in weeds. Similarly, Koziol et al. (2012) found that weedy populations (five from 

Australia and four from the USA) had more wilted leaves under drought stress, and drought stress was 

ameliorated to a greater degree by inoculation with arbuscular mycorrhizal (AM) fungi. Differences in 

growth rate (higher in weeds) and root architecture (reduced fine root structure in weeds) explained 

39% and 60%, respectively, of the variation in drought tolerance seen across populations. Lastly, in a 

comparison of Argentinean H. annuus biotypes, Presotto et al. (2017) found higher growth (in 

aboveground biomass and height) in the agricultural weedy versus wild types in an irrigated, outdoor 

common garden, but under drought stress, fitness was reduced to a greater extent in the weeds; 

however, only three populations were tested in total (one weedy, two wild). As cultivated fields 

represent resource-rich environments, where water may be more accessible than in natural habitats, 

weedy sunflowers may have traded-off tolerance of drought (and potentially other abiotic stresses) in 

favour of higher growth rates, to better compete with crops and complete their life cycle before the 

harvest period. 

Weedy and wild sunflower populations are also differentiated at the molecular level. As a 

follow-up to their work on growth-tolerance trade-offs, Mayrose et al. (2011) investigated the 

expression of several candidate genes during the drought response. For two candidates, there was a 

significant correlation between mRNA expression level and the number of days until plant death, as well 

as an effect of plant type (weedy, wild or domestic); the kinetics of the HD-Zip transcription factor Athb-

8 differed between weedy and wild plants. Expression of the Athb-8 gene was downregulated over the 

course of the drought response, but to a greater extent in weeds. Previous research has shown Athb-8 

to be responsive to a range of environmental cues and stressors (Baima et al. 1995), and to regulate 

vascular development. Also examining gene expression, Lai et al. (2008) used a sunflower cDNA 

microarray to characterize differences in expression between two wild and four weedy sunflower 

populations from the USA. When grown under standard conditions in a growth chamber, over 165 uni-

genes, or roughly 5% of the array, showed differential expression between at least one weedy 

population and the pooled wild populations. Among these uni-genes, abiotic and biotic stimulus-

response and stress-related proteins were over-represented, again suggesting that stress tolerance is an 
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important differentiator of weedy versus wild populations. Finally, in an analysis of 106 microsatellites in 

six wild and four weedy populations, Kane and Rieseberg (2008) found that between 1% and 6% of loci 

were outliers showing reduced genetic variability (according to lnRV and lnRH tests) in the weedy 

populations, suggesting that they may be under selection. There was no global reduction in variation 

across the genome, however, indicating no recent population bottlenecks during weed evolution. In 

conclusion, while nearby weedy and wild populations are genetically similar, and may share local 

adaptations, they are differentiated at a small proportion of key loci. 

As the use of herbicides in agriculture rises year by year, an increasingly important adaptation 

for agricultural weeds is herbicide resistance (Powles and Yu 2010). The number of weed species with 

resistance to one or more herbicides continues to grow over time (Heap 2014), and weedy sunflower is 

no exception. On the International Survey of Herbicide-Resistant Weeds (ISHRW 2017: 

www.weedscience.org; retrieved on 13 Dec 2017), resistance to acetolactate synthase (ALS) inhibiting 

herbicides was reported for H. annuus beginning in 1996 for several U.S. states (Iowa, Kansas, Missouri 

and South Dakota). Acetolactate synthase, also known as acetohydroxyacid synthase (AHAS), is a 

required enzyme in the biosynthesis of branched-chain amino acids (i.e., isoleucine, leucine and valine), 

with ALS inhibition leading to plant starvation (Tranel and Wright 2002). Resistance to ALS-inhibitors 

evolves relatively easily compared to other types of herbicides, with ALS inhibitor-resistant weeds 

currently accounting for nearly a third of all cases of resistance (Heap 2014). As there are separate 

herbicide binding and catalytic domains on the ALS enzyme (Duggleby et al. 2008), many resistance 

mutations do not affect catalytic activity, likely explaining why resistance is common. In sunflower, 

resistance has evolved to many different ALS-inhibiting herbicides (e.g. imazethapyr, imidazolinone and 

sulfonylurea) and has also been recently reported in France in 2009 (ISHRW 2017). Interestingly, in some 

of these cases, despite high herbicide resistance frequencies in weed populations, resistance is 

uncommon in nearby unmanaged, wild populations (Massinga et al. 2003). Hence, for traits under 

strong selection, such as herbicide resistance, there is potential for differentiation between weedy and 

wild populations, even allowing for moderate levels of gene flow. More recently, resistance to 

glyphosate, the active ingredient in the immensely popular herbicide Roundup, has been reported for H. 

annuus populations infesting corn crops in Texas, USA (ISHRW 2017). 

1.5 Summary of Studies 
 To characterize genetically-based trait differences between weedy and wild sunflower 

populations, and to elucidate potential weed adaptations, I first grew sunflowers of both types in a 

http://www.weedscience.org/
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common garden. As described in Chapter 2, I collected agricultural weed and non-agricultural wild 

sunflower populations in pairs; weedy-wild pairs were located as close as possible on the landscape, to 

isolate changes due to weediness per se from other local adaptations. To control for possible maternal 

effects resulting from the use of field-collected seed, I used seed weight as a covariate in all analyses. In 

2012, I grew seedlings from nine population pairs under standard conditions in a glasshouse and 

estimated seedling growth as the change in aboveground biomass over time. Biomass was estimated 

from non-destructive measurements of seedling height and leaf number, according to a previously 

established linear model. After roughly six weeks, I transplanted seedlings (n = 5 per maternal family) 

into a prepared field, following a randomized complete block design. Plants were monitored daily in 

order to capture the date of first flower and other developmental milestones. To obtain seeds from 

mothers grown in a common environment, I generated within population crosses in the field in 2012. 

The following year, I grew sunflowers from three weedy-wild pairs in a repeat common garden, 

replicating the experiment twice by seed source (field or 2012 common garden); I then made the same 

measurements as in 2012, to examine the influence of seed source on the results. 

 While natural selection acts on phenotypes, trait changes are mediated by the evolution of the 

genes underlying these traits. For the most part, the genes underlying the evolution of weedy and 

invasive traits remain poorly characterized, perhaps as a result of meager availability of genomic tools 

and resources for many weed species (Stewart et al. 2009). In Chapter 3, I used whole genome 

resequencing to investigate the extent of genetic differentiation between weedy and wild sunflowers. 

Data were pooled across individuals from different population types (i.e., weedy or wild), meaning that 

any observed genetic differences must be common to multiple weedy populations, and therefore likely 

the result of selection and not drift. As the common garden work in Chapter 2 was carried out in 

Vancouver, Canada, well outside the H. annuus range, there was the potential for novel genotype-by-

environment interactions to obscure true trait differences; using genetic data allowed me to look for 

signatures of selection more directly. I calculated two metrics of genetic differentiation, a “cluster 

separation score” (CSS: based on genetic distance matrices)(Jones et al. 2012) and FST, in windows across 

the genome. For CSS, I used sliding windows of 10,000 bp in size, while for FST I used a novel method 

(Beissinger et al. 2015) to delineate distinct, variable-sized windows on the basis of inflection points in a 

cubic smoothing spline of FST. Taking the consensus of both methods, I identified potential regions of 

divergence across the sunflower genome and then identified genes falling within these regions. 
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 In Chapter 4, I extended the comparison of weedy and wild sunflowers on a molecular level to 

investigate the genetic basis of a critical weedy trait, herbicide resistance. Prior greenhouse and field 

trials (unpublished results) established the segregation of glyphosate resistance in my study populations, 

with some populations showing resistance at roughly half to two-thirds the rate typically applied by a 

farmer (1.0 kg a.e. ha-1). I grew sunflowers from 28 populations (both weedy and wild) in the glasshouse 

and then treated them with glyphosate at the four- to eight-leaf stage. Glyphosate was applied as a 

foliar spray at a rate of 0.5 kg a.e. ha-1, or half the field rate. Survival was assessed daily, and I 

additionally created a metric to classify survivors according to the amount of herbicide damage they 

sustained. Using SNP data obtained from whole genome resequencing of the surveyed individuals and 

the herbicide resistance scores, I performed a genome-wide association (GWA) mapping to look for 

genotype-phenotype associations. Looking for candidate SNPs clustering in peaks in the Manhattan plot, 

I identified a set of top SNPs potentially linked to glyphosate resistance, and then identified overlapping 

or nearby genes, where possible. 
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Figure 1.1: Range of wild Helianthus annuus in Canada and the United States, based on Rogers et al. 

(1982). The range also extends southwards into Mexico. 
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Figure 1.2: Photographs of representative domesticated (a) and wild (b) Helianthus annuus, taken in an 

outdoor common garden located on the University of British Columbia campus in Vancouver, Canada in 

the year 2013. The scale is approximately equal in (a) and (b). Photographs are the authors.  

 

  

(a) (b) 
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Figure 1.3: Photographs of a weedy Helianthus annuus population infesting a sorghum crop in Kansas (a) 

and weedy population competing with a corn crop in South Dakota (b). Both photos were taken towards 

the end of the growing season in 2011, when sunflowers had completed flowering (note the brown, dry 

inflorescences). Weedy sunflowers occurred throughout the crop field in both cases, competing directly 

with the crop plants and partially shading them. Photographs are the authors. 

 

 

(a) 

(b) 
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Chapter 2 : Common Garden Experiment Examining Life History 

Differences in Weedy Versus Wild Sunflower Populations 

2.1 Introduction 
 Weeds have been colonizing agroecosystems since shortly after the dawn of agriculture, some 

12,000 years ago (Doebley et al. 2006). For example, archaeologists identified 35 weed species among 

crop plant remains from a 9,000 year old coastal site, Atlit-Yam, in Israel (Hartmann-Shenkman et al. 

2014). Agricultural weeds (also known as “agrestals”), or plants that invade crop and range lands, 

represent a tremendous threat to crop productivity, lowering global yields by roughly 10% annually 

(Oerke 2006) and costing the economy $33 billion in the United States alone (Pimentel et al. 2005). 

Understanding how such weeds arise and adapt to the agricultural environment may be critical for 

achieving successful long-term weed control (Liebman et al. 2001). Apart from practical concerns, 

however, agricultural weeds also represent excellent case studies of adaptation to human-mediated 

selection occurring on a contemporary time-scale (Baker 1974). Weeds growing in crop fields are 

exposed to chemicals, such as fertilizers, herbicides and other pesticides, as well as irrigation and regular 

disturbance from cropping techniques such as cultivation, harvesting and ploughing. Such disturbances 

are often highly predictable and may impose strong selection on weed populations (Barrett 1988). For 

example, the selection of dwarf forms of fool’s parsley (Aethusa cynapium L.) and erect hedge-parsley 

(Torilis japonica (Houtt.) DC.) in cereal crops following the introduction of the reaper was one of the 

earliest documented cases of weed evolution in an agricultural setting (Salisbury 1962). Cases of crop 

mimicry, where the weed comes to physically resemble the crop in order to evade detection and 

removal, have also evolved, with well-documented cases including barnyard grass (Echinochloa crus-galli 

(L.) Beauv., formerly E. oryzicola Vasing.: Guo et al. 2017) in cultivated rice (Barrett 1983) and common 

vetch (Vicia sativa L.) as a seed mimic in lentil crops (Gould 1991). More recently, the rapid evolution of 

herbicide resistance has enabled the success of species such as Canada fleabane (Conyza canadensis (L.) 

Cronq.), the pigweeds (Amaranthus spp.) and rigid ryegrass (Lolium rigidum Gaud.) as agricultural weeds 

(Heap 2014). 

 Modern cultivated fields represent a unique environment and one that has only come into being 

in recent times, following World War II and the Green Revolution (Gould 1991), when technologies such 

as herbicides and mechanization, as well as planting in monocultures, became common practice. 

Conditions in the field are closely controlled by the farmer and are often less complex than in natural 

habitats (Snaydon 1980), even those such as open, disturbed sites. The goal is typically to reduce 
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environmental heterogeneity to produce uniform growing conditions ideal for maximizing crop yield. For 

weeds invading agricultural fields, adaptation to herbicides and the timing of disturbances may be 

crucial for survival (e.g. Tranel and Horvath 2009; Vigueira et al. 2013; Kuester et al. 2016). For example, 

annual weeds (especially those occurring within the crop field and not just on the fringes) must 

complete their lifecycle and produce seed before the crop is harvested and the field tilled. Weeds 

therefore need to time their phenology to closely coincide with both crop sowing (for which the field is 

prepared and weeds removed) and harvesting. This may result in selection for rapid development and 

precocious reproduction in weeds (Barrett 1983), especially those of short season crops. Early flowering 

has been documented, for example, in aquatic weeds of seasonally inundated habitats, such as rice 

(Oryza sativa L.) fields. In Southeast Asia, pickerel weed (Monochoria vaginalis (Burm. f.) C. Presl. ex 

Kunth) is a problematic weed of rice fields, and the short juvenile period of some annual varieties allows 

weedy individuals to flower before the drying period at harvest time (Steenis 1955); the phenology of 

populations of barnyard grass has also evolved to closely match that of the rice crops infested (Smith 

1988). Similarly, in Californian rice fields, weedy arrowhead (Sagittaria montevidensis Cham. & Schltdl.) 

flowers a mere month after flooding and matures seeds prior to herbicide treatment of the fields 

(Barrett and Seaman 1980). Such phenological shifts may be important for the success of many agrestal 

species but remain understudied.  

Agricultural fields represent relatively benign, low-stress environments for plants, as pests are 

typically controlled, vegetation density low, and nutrients and water provided in excess (Mohler 2001). 

Weeds may come to prosper in these environments by evolving to maximize their growth rates, taking 

advantage of resources before they are monopolized by crops or before disturbance occurs. Indeed, in 

Grime & Hunt’s (1975) survey of relative growth rates (RGRs) in 132 plant species, annual agricultural 

weeds had some of the highest RGRs. However, the high RGRs necessary for exploiting temporarily 

favorable conditions may come at the expense of abiotic stress-tolerance and competitive traits, 

according to life history theory (Grime 1977). Plants face intrinsic trade-offs in biomass allocation to 

defense, growth, maintenance, reproduction and storage (e.g. Coley et al. 1985; Bazzaz et al. 1987; 

Herms and Mattson 1992), with a higher investment in growth potentially reducing the resources 

available for other functions. In the field of invasion biology, it has been commonly observed that 

introduced species tend to be larger in the invaded versus native range (Crawley 1987). Increased 

growth in introduced versus native populations has also been described for a variety of species, 

including common ragweed (Ambrosia artemisiifolia L.: Hodgins and Rieseberg 2011), purple loosestrife 

(Lythrum salicaria L.: Blossey and Notzold 1995), smooth cordgrass (Spartina alterniflora Loisel.: Daehler 
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and Strong 1997), and white campion (Silene latifolia Poir.: Wolfe et al. 2004), and there is evidence in 

some cases that improved growth was correlated with lower abiotic stress tolerance. For example, 

Hodgins and Rieseberg (2011) found a trade-off between rapid growth and drought tolerance in 

ragweed, with introduced plants experiencing higher mortality under drought conditions. However, in a 

re-analysis of data from 32 common garden studies comparing natives and invaders, Colautti et al. 

(2009) demonstrated that differences in latitude between the native and invaded range may confound 

the results of some studies. Thus, while plant species may evolve faster growth under advantageous 

conditions, other factors, such as latitude, may also influence growth rates and must be accounted for. 

 There are three main ways in which agricultural weeds appear to arise (De Wet and Harlan 

1975). First, disturbance-adapted wild species may colonize agricultural fields; these may already have 

many of the traits needed for survival as agrestals, but evolution may also frequently play a role in their 

success (Stewart et al. 2009; Vigueira et al. 2013). Secondly, hybridization between wild species and 

domesticated crops can produce new weeds of admixed origin, with crop genes facilitating success in 

the agricultural environment. Lastly, feral populations of crops that have escaped cultivation may evolve 

into agricultural weeds, following a process of “de-domestication” in which traits such as non-shattering 

(i.e., seed retention) are lost. Examples of at least the first two pathways to weediness can be found in 

common, annual sunflower (Helianthus annuus L.). Helianthus annuus is native to North America, where 

it was domesticated at least 4,000 years ago (Harter et al. 2004); wild and domesticated sunflowers 

remain interfertile, despite morphological differences in the crop (e.g. loss of branching, seed dormancy 

and self-incompatibility, as well as larger achenes) (Snow et al. 1998; Burke et al. 2002). Sunflower 

commonly acts as an agricultural weed in North America (where it is native), as well as in Australia, 

Europe and South America (where it is not), causing significant crop yield losses where infestations 

occur (e.g. Geier et al. 1996; Deines et al. 2004; Muller et al. 2009; Gerstein et al. 2015; Casquero and 

Cantamutto 2016). In North America, agricultural weed populations have been shown to be closely 

related to nearby wild populations occurring in more natural areas (Kane and Rieseberg 2008), 

suggesting that weediness has arisen independently multiple times from wild H. annuus. Although crop 

sunflower frequently exchanges pollen with wild sunflower populations on the landscape (Linder et al. 

1998), and crop-wild hybrids have been reported (Arias and Rieseberg 1994; Whitton et al. 1997), crop 

alleles have not been hypothesized to contribute to the evolution of weed populations. In contrast, 

European weed populations are likely of crop-wild origin, as a crop-specific maternally inherited genetic 

marker was present in all weeds surveyed (Muller et al. 2011); as sunflower seed grown in Europe is 

often sourced from the United States, these hybrids likely originated from the unintentional pollination 
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of maternal lines in U.S. seed production fields by wild sunflower. Similarly, a recently described agrestal 

biotype of H. annuus in Argentina that is intermediate in its morphology between crop and wild 

sunflower (Casquero et al. 2013) is believed to be a crop-wild hybrid (Presotto et al. 2017).  

 Here, we used common garden experiments to quantify life history differences between weedy 

and wild populations of H. annuus collected across the southern Canadian prairies and the US Midwest. 

Previous greenhouse work has revealed that weedy sunflowers tend to exhibit faster growth than wild 

sunflowers when grown as seedlings under benign conditions (Mayrose et al. 2011; Koziol et al. 2012; 

Presotto et al. 2017); however, weedy seedlings were more susceptible to drought and fungal infection, 

as well as more palatable to a generalist insect herbivore. These studies suggest that weedy sunflowers 

from North America may have evolved faster growth at the expense of defense and stress-tolerance 

traits. However, studies did not account for potential differences in maternal effects on seed 

provisioning among populations (and seed was collected from very different habitats); also, weedy and 

wild populations were not matched for climate and spanned a large geographical transect. Thus, 

environmental differences among source populations may influence the results. To address these issues, 

in this study, we used seed collected from weedy-wild population pairs, located as close as possible to 

one another on the landscape; this paired design should control for climatic differences and allow us to 

isolate changes due to weediness per se from other local adaptations. We used seed weight as a 

covariate in all analyses to account for maternal effects, and additionally conducted a separate follow-

up study to directly compare the growth of individuals from two seed sources: field-collected seed 

(different maternal environments) and common-garden generated seed (same maternal environments). 

In both experiments, we measured seedling growth and then followed individuals to flowering. If weeds 

have experienced selection for a shortened life cycle as a result of agricultural disturbance, or to take 

advantage of relatively benign crop-field conditions, weedy populations may show increased growth and 

earlier flowering than wild populations. 

2.2 Materials and Methods 

2.2.1 Study Populations and Sample Collection 
 In the fall of 2011, I collected seeds from each of twenty populations of wild sunflower, 

Helianthus annuus, over a latitudinal gradient across the Midwestern United States and Southern 

Canada (Figure 2.1). This region consists of rich farming land with fertile soils, and accordingly 

agriculture drives the local economy (Hatfield 2012), with extensive areas on the landscape planted in 

monocultures. Maize (Zea mays L.) and soybean (Glycine max (L.) Merr.) are the two most common 
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crops (United States Department of Agriculture, National Agricultural Statistics Service: 

www.nass.usda.gov; retrieved on 21 Oct 2017). Across the study region, H. annuus shows tremendous 

variation in plant size, architecture and phenology; to isolate changes due to agricultural weediness per 

se from other local adaptations, I used a paired design, matching local agricultural weed and non-

agricultural populations. Paired populations were located as close to one another as possible; the mean 

distance between pairs was 28.5 km ± 7.6 km (mean ± standard error). Additionally, to minimize the 

impact of outside gene flow, all selected populations were large, averaging ~2,000 individuals (range = 

250 to 10,000+ individuals). Finally, to avoid gene flow from cultivated sunflower, selected populations 

were a minimum of 1 km from any crop sunflower fields in 2011 (though populations may have received 

crop pollen in previous years). 

I targeted agricultural weed populations (hereafter “weedy” populations) that had a long-term 

presence in a given area, as established by collection records from our lab, lab alumni and the United 

States Department of Agriculture (USDA); wherever possible, I also spoke to landowners to confirm local 

land-use history and the long-term presence of weedy sunflowers. Agricultural weed populations were 

found competing directly with a cultivated crop of either corn (n = 3), soybean (n = 3), wheat (Triticum 

spp.) (n = 2) or sorghum (Sorghum bicolor (L.) Moench) (n = 2) in areas of high-intensity agricultural use. 

Each weedy population was paired with a nearby non-agricultural wild population (hereafter “wild” 

populations) at roughly the same latitude. Wild populations occurred in grasslands, fallow lands, 

roadside ditches, wetlands and other unmanaged lands. Finding wild populations was challenging given 

the dominance of agriculture across the landscape; in the end, we proceeded with the analysis of only 

nine weedy-wild population pairs (n = 18 populations), as the remaining pair (Kansas 1; Figure 2.1) did 

not meet our selection criteria. In Kansas 1, I was not able to locate a true wild population on non-

agricultural land, only a weedy-wild hybrid population growing mostly on rangeland, but also nearby 

fallow lands and the margins of a sorghum field. While the sunflowers were not subject to removal 

efforts, a large subset of the population was certainly influenced by agricultural chemicals, fertilizers, 

and irrigation, as well as disturbance by beef cattle. Upon careful consideration, we decided that the 

physical attributes of the rangeland were too similar to those of crop fields, and we excluded this 

population and its match from the weedy-wild analysis, though Kansas 1 does appear in overall 

descriptions of the study populations. 

For each population, I recorded site characteristics such as the elevation, distance to the nearest 

road and any associated physiographic features, as well as population characteristics such as flowering 

http://www.nass.usda.gov/
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stage, size and spatial pattern (Table 2.1). I collected seeds from a representative sample of 40 focal 

maternal plants, which I selected by first establishing a transect through each population along its 

longest axis, then walking the transect and selecting the closest plant every ~10 plants (depending on 

population size). For each focal plant, I measured the height (as the length of the main stem), height to 

the lowest branch, number of branches, branching degree, stem diameter (at the ground) and number 

of inflorescences. The branching degree is the number of branches on branches, e.g. a main stem with 

only primary branches would have a degree of one, a main stem with primary branches that had 

secondary branches (growing on the primary branches) a degree of two, and so on. For one weedy 

population, Kansas 2, most individuals had an unusual phenotype: the main stem had been severed 

early in the plant’s growth (perhaps by mowing) and there were one or two basal branches growing in 

place of the main stem. For these individuals, I selected the largest basal branch and treated this as the 

main stem. Seeds collected from different maternal families were kept separate.  

Summary statistics for the maternal plant traits were calculated using base R (version 3.3.0: R 

Core Team 2017) and plots created using the R packages ggpubr and ggplot2 (Wickham 2009). To 

explore the range of phenotypic variation among populations for plant size, architecture and fitness, I 

performed a two-way Analysis of Variance (ANOVA) for each quantitative trait with location (i.e. the ten 

population pairs) and population type (weedy or wild) as independent variables, using the stats and car 

packages in R (Fox and Weisberg 2011); Tukey’s HSD tests were performed post-ANOVA to compare 

factor means. Dependent variables were log or square root transformed as necessary to meet model 

assumptions of normality in the residuals and homogeneity of variances between groups. As branching 

degree can be thought of as an ordinal variable, I used chi-squared tests to examine the relationship 

between degree and population location or type. 

 To explore the variation in local climate for my study populations, and to confirm that paired 

populations experience similar conditions, I generated annual climate data (mean annual temperature, 

precipitation, etc.) for the twenty populations using the web-based version of ClimateNA (v5.21: Wang 

et al. 2016), available at www.climatewna.com (retrieved on 21 Oct 2017). Historical data were 

averaged for the 1961-1990 normal period. The ClimateNA software is unique in that it locally 

downscales climate data layers into scale-free estimates of climate values, using a combination of 

bilinear interpolation and elevation adjustments (details in Wang et al. 2016). Raw data for the 23 

climate variables obtained for each population are presented in Table 2.2. Relationships among the 

climate variables and study populations were investigated using Principal Components Analysis (PCA), as 

http://www.climatewna.com/
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implemented in the stats package in base R. Climate variables were each normalized to have a mean of 

zero and unit variance prior to PCA to control for differences in magnitude among variables. I created 

the PCA plot using the packages ggbiplot and ggplot2 (Wickham 2009). 

Germination trials performed in January 2012 revealed that one of the weedy populations (from 

Manitoba) had seeds that, while appearing viable, did not germinate. We replaced this population with 

an accession obtained from the USDA (National Plant Germplasm System PI 592327) that was collected 

along the edge of a harvested wheat field in 1994, in roughly the same location as the population to be 

replaced. The replacement can thus be considered an historical version of Manitoba weedy. The USDA 

provides bulk seed and so the family structure is unknown. 

2.2.2 Seedling Common Garden and Growth Study 
 Wild sunflower seeds possess strong seed dormancy that must be broken in order for 

germination to proceed (Chandler and Jan 1985). As such, direct-field seeding typically results in very 

low germination rates, and we instead germinated seeds indoors in a glasshouse at the University of 

British Columbia (UBC) in Vancouver, Canada to produce seedlings to plant in the field. Our goal for the 

common garden was to include five individuals from each of five maternal families per population (n = 

25 per population). As germination trials revealed less than perfect germination rates for some 

populations, with rates ranging from ~66% to 90%, I started seeds for an average of ten maternal 

families per population (range = 7 to 17) and a surplus of seeds (ten or more) per family. The maternal 

families were randomly selected from the 40 available per population, though families that completely 

failed to germinate in trials were excluded. For the replacement Manitoba weedy population, 

germination rates were unknown and I started a total of 35 seeds. Prior to starting, seeds were weighed 

for all maternal families (n = 30 seeds per family) to obtain the mean seed weight as an estimate of 

maternal provisioning. 

 Seeds were scarified on two separate dates one week apart. Germination trials had indicated 

that seeds from more southern populations (Iowa, Kansas, Missouri, and South Dakota) did not 

germinate as readily as those from northern populations (Manitoba, North Dakota, Saskatchewan), so 

the goal was to synchronize germination. Southern population pairs were scarified on March 27th, 2012 

and northern population pairs on April 3rd, 2012; matched weedy and wild populations for a given 

location were always scarified on the same day. Scarification involved cutting off the blunt (widest) end 

of the cypsela, removing up to a quarter of the husk (i.e. pericarp). Seeds were then placed on moist 

filter paper in petri dishes to imbibe overnight. Seed coats were fully removed on the following day to 
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enhance germination. I changed filter paper daily and watered with a 1% solution of the biocide plant 

preservative mixture, or PPM (Plant Cell Technology, Washington, DC, USA), to reduce microbial 

contamination, though some seeds still became contaminated; these were removed daily and the 

remaining seeds moved to a new dish. Seeds were germinated in the dark, with dishes moved into the 

light once seeds began producing chlorophyll. A seed was considered “germinated” and suitable for 

planting once the primary root was at least 1 cm long and ideally some secondary roots had also 

appeared (this did not always happen prior to planting, depending on the population). 

  Perhaps owing to enhanced natural light availability in the spring, or the longer amount of time 

the seeds had had to ripen, southern populations now germinated readily, making it necessary to begin 

planting just before scarifying the northern populations, on April 2nd, 2012. For each population, I waited 

until all or the majority of families had germinated before randomly selecting five families to plant. My 

goal was to not bias the selection of families on the basis of ease of germination. Seven seedlings were 

planted per family (to have extras), with each planted into a 5 cm diameter conical “Deepot” (Stuewe & 

Sons, Inc.) prefilled with moistened, standard potting soil mix (75% peat with 25% perlite). Deepots were 

placed into support trays that held 50 Deepots each, for a seedling density of 269 per m2. Support trays 

rested on a glasshouse bench that flooded twice daily with weak fertilizer solution prepared on-site; at 

the outset of the experiment, seedlings were also misted frequently to keep the top layers of soil moist. 

Seedlings received 16 hours of supplemental lighting per day, delivered by 600 W high-pressure sodium 

lights. On April 13th, 2012, when all seedlings were planted, I fully randomized the experiment. Not all 

seedlings survived the transition into soil and there were also a number of seedlings with growth 

abnormalities (e.g. fused first true leaves, lack of apical meristem, etc.) that only became apparent after 

planting; I replaced these individuals (~10% of the experiment) as needed using retained seedlings on 

petri dishes or, if these were no longer available, newly scarified seeds. Scarification dates and planting 

dates were recorded individually. 

 To assess potential early life history differences between weedy and wild sunflowers, I 

documented seedling growth beginning on April 6th, 2012. Non-destructive measurements were taken 

every two days throughout the month of April, before transferring seedlings outdoors to harden-off in 

May. Growth slowed at this time and measurements were taken roughly every four days from April 27th 

until May 10th, 2012. For each seedling, I recorded the height (i.e. length of the main stem) and the 

number of fully expanded true leaves on each date after planting. To characterize the relationship 

between these non-destructive measurements and seedling biomass (i.e. dry weight), I planted extra 
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germinants (n = 70) not needed for the main experiment in early April. Every few days, a number of 

seedlings were measured (height, number of leaves and largest leaf dimensions) and then harvested. 

Plant materials were dried in an oven at 60°C for three days before weighing. 

 Using multiple linear regression in R, I determined that biomass was highly predictable based on 

measurements of seedling height and leaf characteristics. To improve model predictions, I included an 

additional 157 individuals in the analysis (n = 227 total) harvested from other greenhouse experiments 

(not reported) using the same populations. These seedlings were grown in the same glasshouse, 

Deepots, etc. though experiments took place at different times of the year and included a broader 

diversity of maternal families. Seedlings ranged greatly in size (Table 2.3). Exploratory graphs (Figure 2.2) 

showed strong relationships between all measured variables and biomass. Biomass was transformed 

using a Box-Cox power transformation (MASS package: Venables and Ripley 2002) to achieve normality 

in the model residuals. The best model, not including interactions, was: 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = (
𝐻𝑒𝑖𝑔ℎ𝑡

100
+

𝐿𝑒𝑎𝑓 𝐻𝑎𝑙𝑓 𝑊𝑖𝑑𝑡ℎ

700
+ 0.44 )

4.55

 

which had an R2 of 92% (F2,224 = 1321, p < 0.001). The number of leaves, leaf length and leaf half width 

were essentially interchangeable in the model. The model including leaf number had an R2 of 90% (F2,224 

= 983.5, p < 0.001): 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = (
𝐻𝑒𝑖𝑔ℎ𝑡

100
+

𝐿𝑒𝑎𝑓 𝑁𝑢𝑚𝑏𝑒𝑟

200
+ 0.39 )

4.55

 

Including interactions was not found to greatly improve the amount of variation explained by the model 

(best model with interactions, R2 = 93%), and so simpler models, without interactions, were preferred. 

Seedling measurements from the common garden were converted into biomass estimates using height 

and leaf number. 

2.2.3 Field Common Garden and Flowering Study 
 We transplanted seedlings into a common garden at the UBC Farm to assess differences among 

populations in reproductive traits. While it is possible to grow annual sunflowers to maturity in pots, in 

our experience this leads to dramatically different plants compared to those grown in the ground. 

Branching, for example, is reduced, plants are spindlier, and flowering time may be affected as pot-

bound plants can flower prematurely due to stress. We therefore planted the seedlings at the UBC Farm 

(ubcfarm.ubc.ca; retrieved on 23 Oct 2017), a 24-hectare integrated teaching and research space on the 

http://ubcfarm.ubc.ca/
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UBC campus with predominantly sandy-loam soils (Dennis and Kou 2014). The UBC Farm follows organic 

practices and fields are regularly amended with compost to maintain soil fertility. The field used for the 

common garden had a gentle slope with a south-west aspect; soils also became sandier in texture from 

north to south.  

The common garden followed a randomized complete block design, with one replicate of each 

population per block, to control for observed differences in soils across the field. The longest axis of the 

field ran from approximately north-east to south-west, and so blocks (n = 25) were configured as parallel 

rows, running across this axis (i.e. from the north-west to south-east side). Blocks, or rows, were spaced 

1.5 m apart, and plants within rows were 1 m apart. Without assigning specific individuals, maternal 

families for each population were randomly assigned to rows. Within a row, the order of the populations 

was then randomized with the constraint that populations be distributed approximately evenly across 

the shorter axis of the field, so e.g. all individuals from a given population could not occur only on the 

north-west side. To achieve this effect, I divided the rows into three subsections (seven, six and seven 

individuals wide) and required that each population occur at least seven times per subsection across all 

rows. To reduce edge effects, the common garden included a single-plant border around the exterior, 

following the same spacing as within the garden. 

Seedlings were hardened-off outdoors at the UBC Farm from May 2nd to 11th, 2012. For the first 

five days, they were placed in a sheltered, shady area before moving them into the sun for the next five 

days. On May 11th, 2012 the seedlings were planted into a freshly tilled and prepared field, randomly 

selecting an individual from the maternal family assigned to each position. The border was planted on 

May 15th, 2012 using left-over seedlings placed in random order. Irrigation was provided by sprinklers on 

1 m risers, which were run daily for the first two weeks, and then twice a week (for ~1 hr each time) as 

needed for the duration of the summer. Conditions were drought-like in July and August, and so 

irrigation was necessary to avoid significant stress to the plants; riser height was increased to 3 m in July 

to allow for better water distribution. Eight plants died within the first three weeks of the experiment, 

most as a result of breakage after a high wind event. Each was replaced with another seedling from the 

same population and maternal family, with the exception of a wild Manitoba individual where no 

seedlings from family 4 were available (family 16 was substituted). Germination was very poor for 

Manitoba wild and, in planting the field experiment, I also had to substitute an individual from family 14 

for family 8; similarly, for Missouri weedy, an individual from family 23 was substituted for 33. With the 
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exception of these two populations, I was otherwise successful in planting five individuals from five 

different maternal families per population. 

 We surveyed sunflowers daily to record the date of first flower for all individuals and track the 

progression of flowering. An inflorescence was considered to have “flowered” on the date when 

stamens first emerged. More than a quarter of plants became infected with Sclerotinia sclerotiorum 

(Lib.) de Bary, a generalist fungal pathogen causing stem rot disease, which can be fatal if the main stem 

is girdled. Onset of disease systems was typically concurrent with the initiation of flowering, though this 

varied, and four individuals died pre-flowering; these were excluded from the analysis. To obtain seeds 

for each population from mothers growing in a common environment, I made within-population crosses 

during peak flowering. Plants from different maternal families within a population were paired based on 

proximity and overlap in flowering, and pollen exchanged reciprocally to create new maternal families of 

full-sibs. Focal inflorescences were enclosed in organza bags while still buds; the organza allows air flow 

while preventing pollinator access to pollen. Pollen was exchanged every second day between the 

inflorescences of matched individuals using a paper towel; pollination success was near 100%. Seeds 

were harvested when completely ripe (at the stage when the inflorescence dries and turns completely 

brown), threshed and stored on silica gel.  

2.2.4 Maternal Effects Experiment 
 Seed weight is commonly used as a metric of maternal investment (e.g. Jonas and Geber 1999; 

Sambatti and Rice 2006; Dlugosch and Parker 2008), though cotyledon length may also be used (e.g. 

Parker et al. 2003; Angert et al. 2008). Including seed weight as a covariate in models may therefore 

account for maternal effects, and authors then often attribute any remaining differences among 

individuals to genetics. However, it is important to note that the maternal environment may affect 

factors other than seed provisioning, for example the seed oil or protein content (Roach and Wulff 

1987), which may not be accounted for by a seed weight covariate. Here, we had the opportunity to 

compare the growth and reproduction of individuals obtained from different seed sources directly, 

owing to the within-population crosses we made in 2012. In the field, weedy and wild sunflower 

populations occupied different habitats which potentially led to differences in maternal provisioning 

between the two types. In the 2012 common garden, conditions were much more uniform and 

environmental influences on seed provisioning should be the same for weedy and wild maternal plants.   

 Seeds from two sources were used to initiate a second common garden in 2013 to examine in 

more detail the role of maternal effects on traits measured in the 2012 common garden. This 
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experiment included a subset of three locations, North Dakota and South Dakota 1 and 2, for which we 

had good seed yields; we were unable to harvest mature seeds for the majority of population pairs 

owing to cold, rainy fall conditions that arrested seed development prematurely. In the 2013 common 

garden, I compared growth rates and flowering time for individuals from field-collected seed (obtained 

from wild populations in 2011) and common garden seed (generated in 2012 experimental crosses). The 

same five maternal families included in the 2012 common garden were used here for the field-collected 

seed, with the exception of family 30 from South Dakota 2 wild; as there were no more seeds available, 

family 4 was used instead. In selecting families to use from the common-garden generated seed, I 

attempted to maximize diversity by including materials from crosses made using all five maternal 

families as both mothers and fathers (Table 2.4), though this was not always possible in the case of the 

fathers. 

 Seeds were scarified on April 2nd, 2013 using the protocol established for the 2012 common 

garden. We germinated ten seedlings per maternal family, except for some field-collected families from 

South Dakota 2 that had poor germination rates (n = 12 instead), and planted five individuals per family 

in the glasshouse (n = 300 total). Seedlings were maintained under identical conditions to the previous 

year, and the experiment was fully randomized after planting all materials on April 9th, 2013. Only four 

seedlings died following planting, and these were not replaced. Seedling height and the number of 

leaves was recorded every second day from April 8th to May 7th, 2013. Seedlings were hardened-off in a 

protected area adjacent to the glasshouse for one week before planting into a prepared field at the 

Totem Field Research Station, a 12 hectare research facility located on the UBC campus. Owing to the 

heavy infestation of S. sclerotiorum in soils at the field site used in 2012, we elected to plant the 

maternal effects common garden at a different location. We planted three randomly-selected seedlings 

per maternal family (i.e. n = 15 per population per seed source, n = 180 total), with one replicate from 

each population and seed source per experimental block. Again, maternal families from a given 

population and seed source were randomly assigned to each block and position within a block. Blocks 

were arranged in five rows running west-to-east, with 1.5 m spacing between rows and 1 m spacing 

between adjacent plants within rows. A single plant border composed of left-over seedlings was used to 

reduce edge effects. We surveyed plants daily to record the first flower date and counted the total 

number of inflorescences produced by each individual at the end of the season. 
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2.2.5 Statistical Analyses of Common Garden Data 
 For seedlings in both common garden experiments, we were interested in analyzing differences 

in growth between sunflower types (i.e. weedy vs wild) over the period from germination to planting in 

the field. I analyzed growth curves using linear mixed effects models with the biomass of each individual 

as the response variable. Fixed effects included the time of measurement, the type of sunflower and 

seed weight (taken as the familial average), as well as interactions between time and type. Seed weight 

was used as a covariate to represent possible differences in maternal provisioning. To account for non-

linear patterns in seedling growth, I also included a quadratic term for time of measurement. Random 

effects of individual (to account for the repeated measures), location (i.e. which population pair) and 

maternal family on model intercepts were also included. The full model, using R syntax for the random 

effects, was: 

Biomass = (Type * Time) + (Type * Time2) + Seed Weight + (1|Location/Maternal Family) + (1|Individual) 

Biomass was first zeroed (by subtracting the minimum value from all values) then log-transformed 

(adding a one first) to meet model assumptions. The significance of each term was determined by 

comparing nested models using likelihood ratio tests (LRTs), dropping non-significant effects one at a 

time (cut-off p-value = 0.05). We decided to test the significance of random effects (again using LRTs and 

comparing to the full model), though there is debate in the literature regarding whether such tests 

should be performed (see Hurlbert 1984; Pinheiro and Bates 2000). For the maternal effects common 

garden, data from different seed sources (i.e. field versus common garden) were analyzed separately.  

 To look for differences in first flower date between weedy and wild sunflowers in both common 

garden experiments, I again used linear mixed effects models with random intercepts. Here, fixed 

effects included the type of sunflower and seed weight covariate, and random effects included location, 

maternal family and experimental block. The full model in 2012 was: 

Days to First Flower = Type + Weight + (1|Location/Maternal Family) + (1|Block) 

Note that in the 2012 common garden, we discovered a planting mistake mid-season in block 2; owing 

to a smudged label, Iowa 1 wild family 4 (IA1W4) was planted in place of Iowa 2 wild family 4 (IA2W4) 

and the mistake was not noted in initial checks. Thus, block 2 was incomplete in the analyses (no IA2W), 

but this was taken into account by the model. For the 2013 common garden, an additional fixed effect of 

seed source and its interaction with type was included: 

Days to First Flower = (Type * Source) + Weight + (1|Location/Maternal Family) + (1|Block) 
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The number of days to first flower (day zero was the unique scarification date for each individual) was 

transformed to better meet model assumptions of normality and homogeneity of variances in the 

residuals. A square root transformation was used for the days to first flower in 2013; for 2012, a 

stronger transformation was needed, and I took the square of the reciprocal of days to first flower. 

Significance testing was again achieved comparing nested models with likelihood ratio tests, and all 

analyses were performed using the lme4 package in R (Bates et al. 2014). 

2.3 Results 

2.3.1 Source Populations were Well-Matched for Climate and Phenotypically Diverse 
 Population pairs were well matched climatically (Figure 2.3), confirming that we selected weedy-

wild pairs that experienced similar conditions apart from habitat. In the PCA plot, most pairs clustered 

together, though the wild population of Kansas 2 was closer to the Kansas 1 populations (later excluded 

from analysis) than the Kansas 2 weedy population. The first principal component (PC1) separated 

locations roughly on the basis of latitude. More northern locations (such as the Canadian populations 

and North Dakota) had higher PC1 values, a greater temperature differential between the warmest and 

coldest months (TD), and lower mean annual temperatures (e.g. MAT, MWMT) overall. Meanwhile, 

southern locations (such as Kansas and Missouri) had lower PC1 values, lower temperature differentials 

and higher mean annual temperatures. The second PC axis (PC2) further separated locations on the 

basis of moisture availability, with higher PC2 values associated with greater annual and seasonal 

precipitation (e.g. MAP, MSP), higher relative humidity (RH) and a lower heat to moisture index (AHM, 

SHM). Hot, dry locations such as Kansas had greater values of the heat to moisture index than cooler, 

wetter ones such as southwestern Missouri. Overall, locations spanned a diverse range of climatic 

conditions, as expected given the latitudinal gradient over which we sampled. 

 Sunflower populations showed substantial phenotypic variation across the collection region 

(Figure 2.4). Though we not able to score phenological variables (owing to arriving at the end of the 

season in order to collect seeds), we noted differences in plant size, architecture and fitness. For all 

measured continuous variables (height, height to the lowest branch, stem diameter, number of 

branches and number of heads), use of ANOVA revealed an interaction between the location and type 

of population (p < 0.0001), indicating that weedy-wild differences were not consistent across locations. 

For example, weedy sunflowers were taller than wild ones on average for some locations (e.g. Iowa 2 

and Missouri), but the reverse was true in other locations (e.g. Kansas) (Figure 2.4a). Though main 

effects cannot be interpreted in the presence of a significant interaction, the ANOVA sum-of-squares 
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was larger for location than for the location-by-type interaction for all variables; in the case of height, 

height to the lowest branch and stem diameter, it was almost double. Thus location accounted for more 

of the phenotypic variation than the location-by-type interaction or type itself (which explained the 

smallest proportion of variation in the data). Looking at plant fitness (Figure 2.4b), wild sunflowers 

produced more inflorescences than weedy ones overall, though this trend was driven by three locations 

(Kansas, Iowa and North Dakota). Lastly, for branching degree, wild sunflowers were more branched 

than weedy ones (χ2 = 15.3, df = 5, p = 0.009), and branching degree also varied by location (χ2 = 242.2, 

df = 45, p < 0.001) with no obvious pattern. In conclusion, sunflowers varied greatly in measured traits 

across locations and, while weedy-wild pairs often differed within locations, type differences were not 

consistent in direction across locations. 

2.3.2 Weedy Sunflowers Exhibit Faster Growth and Earlier Reproduction 
 Sunflower seedling biomass in the 2012 common garden increased over time (Figure 2.5a), with 

a slight slowdown visible in the last week (day 23 onwards) at the beginning of the hardening-off period. 

Though growth followed a similar curve for all seedlings, some seedlings grew much faster than others 

and achieved relatively larger sizes by the end of the experiment (note the different y-axes in the figure). 

On a log-scale (Figure 2.5b), the slope of the growth curve at any time point illustrates the relative 

growth rate (RGR: mg mg-1 day-1) at that time. If seedling growth were exponential, the RGR would be 

constant and growth curves would follow a straight line on the log-scale (Paine et al. 2012); here, the 

RGR decreases at later measurement dates and the curves deviate from a straight line, confirming that 

growth slowed towards the end of the measurement period. 

 Trend lines for weedy versus wild seedling growth (in untransformed biomass) are presented 

separately for each location in Figure 2.6. Visually, there were large differences in seedling biomass 

among locations, with Missouri having some of the largest seedlings and Saskatchewan the smallest. For 

eight out of nine locations, weedy seedlings grew faster than wild ones, achieving a higher biomass by 

the end of the experiment. The only exception was Iowa 1, were the trend was reversed; also, in South 

Dakota 1, growth curves were similar for the two types, and though the weedy sunflowers had a higher 

mean biomass at the last few measurement dates, confidence intervals for the two types were 

overlapping. Maternal family was an important source of variation in growth within some populations 

(e.g. in Iowa 1) but not others (e.g. Saskatchewan: no appreciable difference among families).  

To examine differences in growth for weedy versus wild sunflowers statistically, I implemented a 

mixed effects model of individual biomass over time, accounting for the non-linearity of growth curves 
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on the log-scale by incorporating a quadratic term for time (p < 0.001). Neither the type x time (p = 0.61) 

nor type x time2 (p = 0.59) interaction were significant, indicating that patterns of growth (i.e. shape of 

the curves) were similar for weedy and wild sunflowers. However, there was an effect of type (p = 

0.013) such that, on average, weedy sunflowers were larger than wild sunflowers. Seed weight also had 

a positive effect on growth (p = 0.010), with heavier seeds producing larger sunflower seedlings. 

Random effects of individual, location and maternal family were included in all models when testing the 

significance of the fixed effects. Differences among individuals accounted for the most variance (44%), 

followed by maternal family (39%) and lastly location (9%). It made sense to include these random 

effects whether they were significant or not, as both individual and maternal family represent sources of 

pseudoreplication, and the data are naturally paired on the basis of location. However, all were 

significant according to LRTs: p < 0.001 for individual and maternal family, and p = 0.034 for location. 

Thus, seedlings from a given location or maternal family were more similar to one another than 

seedlings from different locations or maternal families. Removing Iowa 1 (the discordant location) from 

the analysis and re-running the models, the interaction terms for type x time remained non-significant 

(both p > 0.05), but the p-value for type decreased slightly from p = 0.013 to p = 0.010; interestingly, the 

effect of seed weight was no longer significant (p = 0.12). Importantly, the same results were obtained 

when fitting a three-parameter logistic model to the biomass data, confirming the results of the 

quadratic model. 

 To examine if faster weedy seedling growth also led to earlier reproduction, I used a linear 

mixed model to compare the time to first flower across locations and sunflower types (Figure 2.7). 

Weedy populations flowered earlier on average for most locations: in Iowa 1 and North Dakota the wild 

population flowered earlier. Model results differed depending on whether or not Iowa 1 (which also 

showed a reversed pattern for seedling growth) was included in the analysis. Including Iowa 1, the effect 

of type on flowering date was only marginally significant (p = 0.051) and seed weight had no effect (p = 

0.64). The random effects of location and maternal family were both important for explaining variation 

in flowering time (p < 0.001 for both), though location explained the majority of the variance (89% vs 

4%), while experimental block did not influence flowering date (p = 0.19; variance explained < 1%). 

Excluding Iowa 1, the effect of type became significant (p < 0.001; weedy flowering earlier than wild), 

while weight remained unimportant (p = 0.21); in the random effects, block was marginally significant (p 

= 0.072), though it explained much less variation (< 1%) in flowering time than location (91%) or 

maternal family (2%). Flowering time was roughly correlated with latitude, with more northern 

populations flowering earlier (Figure 2.7), and there was also less variability in flowering date for 
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northern populations. Similarly, differences between weedy and wild were slighter at higher latitudes; 

for example, in Saskatchewan, weedy individuals flowered an average of 4.6 days earlier than wild 

individuals, while in Kansas 2, the weedy population flowered 13.7 days earlier. In contrast to seedling 

growth, the proportion of variance in flowering time explained by maternal families (within locations) 

was less than for location itself. Over all locations, faster seedling growth generally led to earlier 

flowering, with the only exception the North Dakota weedy population. 

2.3.3 Seed Source Influences Seedling Growth but Not Time to Flower 
 In the 2013 maternal effects common garden, sunflower seedling biomass again increased over 

time (Figure 2.8), following a curve similar to that seen in the previous year (Figure 2.6). However, 

seedlings grew slightly faster, without any visible slow-down during hardening-off, and so the 

greenhouse measurement period was shorter (29 versus 34 days). For both field and common garden 

sourced seed, weedy-wild differences were less exaggerated than in the previous year. The effect of 

sunflower type differed depending on seed source. Analyzing only individuals derived from field-sourced 

seed in a quadratic mixed model, the type x time and type x time2 interactions were not significant (p > 

0.05), nor was the effect of type (p = 0.27), confirming that there was no consistent difference between 

weedy and wild, as seen in Figure 2.8b, and in contrast to the 2012 results. As in 2012, however, the 

quadratic term time2 was significant (p < 0.001), seed mass had a positive effect on growth (p = 0.0062), 

and differences among both individuals and maternal families explained a significant proportion of the 

variation in growth (33% and 29%, respectively; p < 0.001 for both). Here, location did not explain any 

additional variation after accounting for maternal family (p > 0.1) and there was a large fraction of 

residual variance not accounted for by the model (37%). Meanwhile, analyzing only data for individuals 

from common-garden sourced seed (Figure 2.8a), there was a type x time interaction (p < 0.001; for the 

quadratic interaction type x time2, p = 0.11), so the main effect of type was not investigated. Again, the 

quadratic term was significant (p < 0.001), larger seeds resulted in larger seedlings (p = 0.026) and 

individual, location and maternal family each explained a significant proportion of the variation in 

growth (17% and p < 0.001; 31% and p = 0.011; and 19% and p < 0.001, respectively). Thus, while the 

field-collected seed did not recapture weedy-wild differences observed in the 2012 common garden, 

weedy seedlings consistently grew faster than wild ones for common garden-sourced seed. 

Compared to 2012, flowering in the 2013 common garden began earlier in the calendar year. 

Averaging across seed sources and population type, and correcting for different scarification dates, 

North Dakota flowered roughly thirteen calendar days earlier in 2013 versus 2012, South Dakota 1 
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flowered seven days earlier, and South Dakota 2 flowered nine days earlier. Flowering time was earliest 

for North Dakota in 2013 (Figure 2.9), followed by South Dakota 1 and then 2, in order of decreasing 

latitude. However, confidence intervals overlapped for all weedy-wild population pairs for a given 

location and seed source, with the exception of common-garden sourced seed for North Dakota, for 

which the wild population flowered earlier. Statistical analysis using a linear mixed effects model 

confirmed that there was no interaction between type and seed source (p = 0.69), and no main effects 

of either source (p = 0.66) or type (p = 0.25). As found in the previous year, seed weight did not have an 

effect on flowering date (p = 0.37). Of the random effects, location explained 71% of the variance, 

maternal family 3% and the experimental block virtually none; only location explained a significant 

proportion of the variance according to likelihood ratio testing (p < 0.001). Thus, in 2013, the field-

collected seed did not show the same pattern of weedy-wild differences as in 2012, although location 

differences were recaptured. For the common-garden generated seed, North Dakota and South Dakota 

2 did show the same patterns in 2013 versus 2012 (compare Figures 2.7 and 2.9), but South Dakota 1 did 

not. Here, faster weedy seedling growth did not lead to an earlier flowering date. 

2.4 Discussion 
 In this study, we investigated life history differences between Helianthus annuus populations 

found directly competing with crops in agricultural fields (i.e., “weedy” populations) and paired wild 

populations found growing in non-agricultural, unmanaged areas (i.e., “wild” populations). With 

collection locations spanning a latitudinal gradient from Manitoba, Canada to Kansas, USA, the paired 

design allowed us to isolate changes due to agricultural weediness per se from other local adaptations. 

We grew paired populations in a common garden in Vancouver, Canada in order to compare seedling 

growth rates and the time to first flower; under standardized environmental conditions, any differences 

observed among individuals should be due to genetics and not phenotypic plasticity, though non-genetic 

influences of maternal environment (“maternal effects”) may also influence phenotypes. After 

controlling for seed weight (a proxy for maternal effects) in our analyses, we consider among-population 

differences to be genetically based, although we cannot entirely exclude the influence of maternal or 

epigenetic effects on offspring phenotype. In the 2012 common garden, weedy seedlings grew faster 

than wild seedlings and flowered earlier for most locations, suggesting an adaptive shift in life history 

strategy for weedy populations. A follow-up common garden in 2013, which compared the growth and 

phenology of individuals from two seed sources (field and 2012 common garden) to test for maternal 

effects more directly, revealed an effect of seed source - but not in the expected direction. Original 

weedy-wild growth rate differences were not recaptured with the field collected seed, but were 
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recaptured for common garden sourced seed; flowering time differences between weedy and wild were 

also not observed, in contrast to the previous year.  

2.4.1 Evidence for Faster Growth and Earlier Reproduction in Weedy Sunflowers 

 To better capitalize on the highly favourable, but temporary, conditions in agricultural fields, 

weedy sunflowers may have traded-off stress tolerance in favour of growth. In support of this 

hypothesis, we observed that weedy seedlings grew faster than wild seedlings in the 2012 common 

garden. For the majority of population pairs, weedy seedlings achieved a larger biomass on average than 

wild seedlings by the final measurement date (Figure 2.6). This finding is consistent with previous 

research on the evolution of weediness in H. annuus. Growth-defense trade-off experiments performed 

by Mayrose et al. (2011) revealed that, in comparison to wild populations, weedy H. annuus populations 

(four from the USA and three from Europe) were more susceptible to drought, wilting earlier and 

surviving fewer days after water was withheld. Weedy individuals were also more palatable to a 

generalist herbivore (Trichoplusia ni (Hübner, 1803)) in leaf choice bioassays and had higher rates of 

secondary and tertiary infection with a fungal pathogen (Botrytis cinerea Pers.), though the difference in 

fungal infection was not significant. When seedlings were grown under benign greenhouse conditions, 

weedy seedlings showed a higher growth rate, but this was not statistically distinguishable from that of 

wild seedlings. However, growth was assessed only at the final time point and as the change in height in 

over time; in our experience, sunflower seedlings of the same height may have very different biomasses, 

and so height comparisons may miss much of the actual size variation. In a similar study of both 

Australian (n = 5) and U.S. (n = 4) weedy H. annuus populations, Koziol et al. (2012) also found a 

marginally significant trend (p = 0.05) to higher aboveground biomass (as final size) in weedy versus wild 

individuals under well-watered conditions. Weedy plants also had coarser roots, with a smaller specific 

root length, and were more sensitive to drought than wild plants, wilting to a greater extent when water 

was withheld. Across populations, drought tolerance and growth rate (as either plant biomass or mean 

root diameter) were negatively correlated. Finally, in a comparison of Argentinean H. annuus biotypes, 

Presotto et al. (2017) found a trade-off between growth and defoliation tolerance, and also drought 

tolerance. There was only a single agrestal population tested in an irrigated, outdoor common garden, 

but according to a three-parameter logistic model, the growth rate (in aboveground biomass or height) 

for this population was higher than for the two ruderal (i.e., wild) populations. However, agrestals 

suffered a greater reduction in fitness components (e.g. inflorescence number, seeds per inflorescence, 

seed weight, etc.) compared to ruderals upon simulated herbivory or water limitation. Thus, previous 
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research has suggested that growth rates may be higher for weedy sunflowers as a result of growth-

tolerance trade-offs, but maternal effects, source population latitude and other potentially confounding 

effects were not accounted for. After controlling for these factors in this study, we can confirm that 

weedy North American sunflowers do indeed show a shift to faster growth. 

The one exception to this finding was Iowa 1; at this location (i.e., for this population pair), the 

trend was reversed and wild seedlings grew faster than weedy ones. For Iowa 1, weedy seedlings grew 

very slowly for four out of five maternal families, leading to a low growth rate overall, quite different 

from that observed for other weedy populations at similar latitudes (compare to, e.g., Iowa 2 or South 

Dakota 2 in Figure 2.6). This may have been due to poor seed quality; though seeds were not overly 

small, germination rates were low and seedlings were also difficult to transplant successfully. In 

contrast, wild seedlings from Iowa 1 grew faster than those from any of the other surveyed wild 

populations and achieved an average final biomass similar to that of the largest seedlings (i.e., those 

from weedy populations from Missouri and South Dakota 2). Comparing the site characteristics of the 

source populations, Iowa 1 was the only wild population located in a wetland (the Wolf Creek Wetland 

Management Area). The other wild sites were typically xeric by the end of the growing season; I 

observed dry, dusty conditions and cracked soils at most locations. Thus, soil moisture was likely much 

more abundant at Iowa 1 compared to the other wild sites. This may be an important difference: under 

the trade-off hypothesis, agricultural weeds are able to maximize their growth rates owing to the 

relatively benign conditions in crop fields (Mayrose et al. 2011), where competition for nutrients and 

water are limited compared to wild habitats. It may be that under conditions of heightened resource 

availability, such as when water or nutrients are no longer limiting, wild sunflower populations also 

experience selection for faster growth rates. In the literature, resource rich environments, such as 

agroecosystems, are often recognized as favouring plant species with the potential for rapid growth (e.g. 

Chapin 1980; Coley et al. 1985; Lambers and Poorter 1992). Wetlands can also be very seasonal 

environments, with alternate periods of flooding and drying (e.g. Casanova and Brock 2000; Brock et al. 

2003; Van Der Valk 2005), and intense competition among plant species is common, especially during 

the drying period (Merlin et al. 2015). Thus, in the Iowa 1 wetland site, wild sunflowers that are better 

able to complete their life cycle quickly, while conditions are most favourable, may be at a selective 

advantage. In conclusion, Iowa 1 presents an interesting exception: it suggests that, under the right 

circumstances, wild sunflower populations may also experience selection for rapid growth. 
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Faster seedling growth was generally associated with an earlier transition to flowering, and this 

translated into an effect of sunflower type (i.e., weedy versus wild) when Iowa 1 was excluded from the 

analysis. Weedy populations flowered earlier than paired wild populations for seven out of nine 

locations; Iowa 1 and North Dakota were the exceptions (Figure 2.7). As discussed, Iowa 1 represents an 

unusual case as the wild population was uniquely located in a wetland; though the weedy-wild trend 

was reversed for this location, faster seedling growth was correlated with earlier flowering as found at 

other locations. Earlier flowering may be beneficial for plants growing in habitats experiencing regular 

disturbance, such as agroecosystems and wetlands, if precocious reproduction allows for greater seed 

production before disturbance occurs (Barrett 1988; Basu et al. 2004). In North Dakota, the wild 

population initiated flowering before the weedy population, despite faster weedy seedling growth. The 

North Dakota weedy population was phenotypically distinct among all sampled populations and closely 

resembled crop sunflower, with plants having minimal branching, shorter stature and fewer, larger 

inflorescences with much heavier seeds. Seeds averaged 16 mg ± 2 mg (SE) for this population versus a 

global mean (across all populations except North Dakota) of 7 mg ± 0.4 mg. Given our selection criteria 

for sampled populations (no crop sunflower within a 1 km radius), offspring from this population should 

not be F1 crop-wild hybrids, but they do seem likely to represent a recent hybridization event. We grew 

two European weedy populations (of mixed crop-wild origins) in the 2012 common garden for 

comparison purposes, and both had larger achenes, averaging 21 mg ± 3 mg for Italy and 108 mg (single 

bulk measure, no SE calculated) for France, as well as reduced branching. In wild sunflower, the main 

stem inflorescence usually flowers first, but it is typically no larger than the inflorescences that later 

develop on branches. In contrast, in weedy North Dakota individuals, the main stem inflorescence was 

much larger than any subsequent inflorescences. Development may have taken longer for these large 

inflorescences, leading to a delay in flowering for weedy North Dakota individuals. Though we did not 

track bud development in detail, main stem inflorescences did take longer to progress through flowering 

for weedy sunflower (44 days ± 2 days) than wild sunflower (33 days ± 2 days) in North Dakota, likely 

owing to larger inflorescence and/or seed size. Apart from in North Dakota, which may have been 

unique owing to a high proportion of cultivar alleles in the weedy population, faster growth was typically 

associated with earlier flowering. 

Sunflower showed tremendous phenotypic variation across the sampled range. Much of the 

morphological variation we observed in field populations (e.g. Figure 2.4) was likely due to phenotypic 

plasticity, owing to environmental variability among sites (Figure 2.3). However, some differences, such 

as latitudinal clines in size and flowering time, persisted in the common garden. The number of days 
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until flowering decreased with increasing latitude (Figure 2.7), and in the mixed model, location 

explained the majority of variance in flowering time. Similar latitudinal clines have been previously 

reported for H. annuus (Blackman et al. 2011; McAssey et al. 2016), among other species (e.g. 

Koornneef et al. 2004; Bohlenius et al. 2006; Zhang et al. 2008), and represent an adaptive response to 

growing season length, which shortens with increasing latitude, necessitating an earlier transition to 

flowering (often at a smaller size). In a growth chamber experiment that manipulated day length, 

Blackman et al. (2011) compared H. annuus populations collected across a latitudinal transect from 

Manitoba, Canada to Texas, USA. The interaction of day length treatment and latitude explained over 

80% of the variation in flowering time, with three distinct photoperiod responses observed (day neutral, 

long- and short-day); however, there was also variability within populations under specific treatments 

(see Figure 1b in Blackman et al. 2011), and this variability decreased with increasing latitude. We 

observed a similar pattern here, with greater variation among individuals in days to first flower for 

southern versus northern populations; weedy-wild differences were also more pronounced for southern 

populations. This suggests that northern populations, which are more constrained by season length, 

may have less flexibility in the onset of flowering. With a longer growing season, there may be more 

flexibility to adapt flowering time to other environmental cues (apart from photoperiod), such as light 

intensity or quality, and temperature (Koornneef et al. 2004), as well as to habitat type. Thus, despite 

strong latitudinal constraints on flowering, weeds evolved earlier flowering at many study locations, 

potentially enhancing their reproductive success in short-season crops. 

2.4.2 Effects of seed provisioning and seed source 
 Utilizing field collected seed, such as we did in the 2012 common garden, raises the possibility 

that observed differences among individuals may not be genetically-based, but rather due to maternal 

effects. For example, differences in the quality of the maternal environment may impact the 

provisioning of seeds (Larios and Venable 2015), with subsequent effects on seedling germination, 

growth and establishment (Zas et al. 2013). In both of our common garden experiments, seed weight 

varied among populations: in 2012, average seed weight ranged from 5.7 mg (Kansas wild) to 17 mg 

(North Dakota weedy), but most populations fell between 6.5 mg and 8 mg. In 2013, common garden 

sourced seeds were slightly larger than field collected ones (10.6 mg ± 0.6 mg versus 8.8 mg ± 0.4 mg); 

again, the weedy North Dakota population had by far the largest seeds. For most locations and across 

both experiments, weedy seeds weighed slightly more than wild seeds, potentially confounding the 

weedy-wild comparison had we not accounted for seed weight as a covariate. As previously reported for 

a wide variety of plant species (e.g. Houssard and Escarré 1991; Susko and Lovett-Doust 2000; Parker et 
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al. 2006; Zas et al. 2013), we found that higher seed mass enhanced germinant growth, with larger 

sunflower seeds producing larger seedlings in both experiments. Importantly, in our models, the effects 

of seed weight and sunflower type both influenced growth trajectories; thus, in sunflower, both genetics 

and environment (of both maternal plants and their offspring) can affect seedling growth. In contrast, 

seed weight did not explain any variation in flowering time in either experiment, implying that maternal 

effects may be limited to early in the life cycle. This makes sense intuitively, as the growth of young 

seedlings often depends on resources stored in the seeds, while as time passes, plant performance 

becomes increasingly dependent on other factors (e.g. current environmental conditions). In the 

literature (e.g. see for discussion Roach and Wulff 1987), it has been generally observed that seed mass 

can affect growth rates early on, but that this effect often dissipates with time, although there are 

exceptions; for example, in an annual dune plant (Cakile edentula (Bigelow) Hook.), seedling growth rate 

was proportional to initial seed mass, but flower bud formation and fruit maturation also occurred 

earlier for larger seeds (Zhang 1996). In conclusion, we found evidence for effects of seed size on 

sunflower seedling growth, but not flowering time; weedy-wild differences in growth persisted after 

accounting for variation in seed size and are therefore likely genetically based. 

 In a follow-up common garden in 2013, we also compared the effects of seed source directly, as 

we had the opportunity to generate seed via within-population crosses in the 2012 common garden. 

However, the follow-up experiment included only three mid-transect locations. In retrospect, these 

locations were not ideal choices, as weedy-wild differences in 2012 were weaker in these population 

pairs: there was no effect of population type on seedling growth in South Dakota 1 (Figure 2.8), and 

muted (South Dakota 2) or reverse (North Dakota) effects of type on flowering time (Figure 2.9). 

Regardless, patterns from 2012 (in growth and flowering time) were generally not recaptured in 2013 

for field collected seed. Although seedlings were grown in the same glasshouse chamber in both years, 

environmental variables such as light availability and temperature likely varied between years; field 

experiments were carried out at different sites on the UBC campus, where soil type, nutrients and 

moisture availability also differed. If genotypes varied in their response to these environmental factors, 

these genotype-by-environment (GxE) interactions could explain the different results between years. In 

studies that have multiple common gardens, either across space or time, it is quite common to observe 

variability in treatment responses across gardens. For example, in a meta-analysis comparing common 

garden studies of native and introduced plant populations, Colautti et al. (2009) observed near universal 

GxE effects of maternal family, population and range (i.e., native versus introduced), as well as for 

experimental abiotic or biotic stress treatments, in studies with replicated gardens. Thus, GxE effects 
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represent a plausible explanation for the inconsistent results across years, especially in flowering time, 

though other possibilities exist. 

One such possibility is that the relatively smaller sample of individuals from each population 

taken in 2013 (n = 15 individuals versus n = 25 in 2012) was insufficient to consistently recapture 

population patterns, given the substantial variation seen within populations in 2012. Another is a non-

genetic effect of seed age: field seeds were one year older than common garden seeds, and so seed 

source and seed age are confounded. If maternal effects had been driving weedy-wild differences in the 

2012 garden, we would expect to recapture 2012 patterns with the field seed but not the common 

garden seed in 2013, when in fact we saw the opposite (common garden seed more closely recaptured 

2012 results). Although GxE effects might explain the differing patterns between years, it is less clear 

how they may explain the inconsistencies between seed sources in seedling growth, as the same 

populations and families were used. An effect of seed age could explain this pattern, however, if seed 

quality was affected differently by aging in weedy versus wild populations. Sunflower seed quality is 

known to decline over time in storage, with decreasing oil content for example, even if humidity is kept 

low (e.g. El-Maarouf-Bouteau et al. 2011; Abreu et al. 2013). While all of our seeds were stored in 

airtight containers with silica gel as a desiccant, germinability and physiological quality of the seeds are 

both expected to decline over time. However, under similar storage conditions, Seiler (2010) observed 

high viability in seeds stored for 20 years, suggesting there should be little difference in seeds stored for 

a single year and we did not observe differences in germination between seed sources, though we 

forced seeds by breaking dormancy via scarification. Thus, any effects of seed age would be mediated 

through quality factors; if weedy seeds declined more in quality than wild seeds during storage, then 

this could explain their slower growth rates. In contrast to Baker’s (1974) “ideal weed”, which should 

have high seed longevity, this would imply that weedy sunflowers somehow invest in lower quality 

seeds than wild sunflowers, that are more prone to degradation, perhaps akin to adult plants investing 

less in stress tolerance traits, though this is highly speculative. Therefore, while the conflicting results in 

our two common gardens are difficult to explain, some combination of GxE effects and seed age effects 

may be involved, though further work would be needed to validate an effect of seed age.   

2.4.3 Conclusions and Future Directions 
 In our study of paired weedy and wild sunflower populations collected along a latitudinal 

transect, we found faster growth in weedy seedlings under favourable greenhouse conditions. 

Compared to earlier work in sunflower on life history trade-offs, our study had the advantage of working 
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with paired populations (to control for other environmental differences not related to weediness) and 

using seed weight as a covariate (to control for maternal effects). Thus, we believe growth differences 

represent an adaptive response to the unique challenges of agroecosystems; weedy sunflowers may 

achieve higher growth rates through decreasing abiotic and biotic stress tolerance traits, as suggested 

by previous work. We followed seedlings to reproductive maturity in order to ascertain if the initiation 

of flowering had also been accelerated in weeds, as expected given the short growing season of many 

modern crops. Overall, faster growth was correlated with earlier reproduction. We were unable to 

determine, however, if this advancement in phenology led to enhanced plant fitness, as many 

individuals did not complete flowering. This was for two reasons: first, most southern populations were 

mismatched to the climate in Vancouver and were only part-way through flowering when fall weather 

(colder temperatures and heavy rain) arrived. Secondly, more than a quarter of plants became infected 

with Sclerotinia sclerotiorum at the onset of flowering. Further work is therefore needed to better 

understand how phenological differences affect overall plant performance, as well as to disentangle 

effects of seed age from complex genotype-by-environment interactions in our second common garden, 

which manipulated seed source to test more directly for maternal effects. Lastly, a single wild 

population from our collections was located in a wetland; showing faster growth and earlier 

reproduction than the other wild populations (which came from drier sites), the wetland population 

behaved more akin to the weedy sites. This suggests that, apart from agricultural fields, there may also 

be conditions in the wild (e.g. high resource availability) that select for similar life history shifts.
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Table 2.1: Description of wild sunflower populations selected for study in the common garden, including the date sampled, elevation of the site and 

distance to the closest road, crop infested (if weedy), spatial pattern, estimates of population size and approximate flowering stage. 

Location Type Date 
Sampled 
(2011) 

Elevation 
(m) 

Crop Distance 
to Nearest 
Road (m) 

Spatial 
Pattern 

Population 
Size 

(х103 m2) 

Population 
Size 

(# individuals) 

Flowering Stage 

Iowa 1 weedy Oct 2 328 soybean 20 intermittent 18 1,000 long finished 
 wild Oct 2 329 na 0 mosaic 30 500 recently finished 
Iowa 2 weedy Oct 3 299 corn 10 continuous 1,200 7,500 recently finished 
 wild Oct 3 290 na 100 intermittent 350 1,000 mid-flowering 
Kansas 1 weedy Oct 5 599 sorghum 20 mosaic 10 2,500 end-of-flowering 
 wild Oct 6 550 na 5 intermittent 10 1,750 end-of-flowering 
Kansas 2 weedy Oct 7 828 sorghum 5 continuous 3.5 500 recently finished 
 wild Oct 6 709 na 5 continuous 160 700 end-of-flowering 
Manitoba weedy Sept 25 511 wheat 10 continuous 500 1,000 long finished 
 wild Sept 26 507 na 5 intermittent 3 200 long finished 
Missouri weedy Oct 4 319 soybean 35 mosaic 640 6,000 end-of-flowering 
 wild Oct 4 324 na 5 mosaic 32 1,000 mid-flowering 
North 
Dakota 

weedy Sept 28 605 corn 20 mosaic 21 2,000 long finished 

 wild Sept 28 516 na 0 intermittent 15 33,000 recently finished 
South 
Dakota 1 

weedy Sept 30 577 corn & 
soybean 

5 mosaic 80 700 recently finished 

 wild Sept 29 549 na 15 mosaic 50 800 recently finished 
South 
Dakota 2 

weedy Oct 1 419 corn 20 intermittent 30 250 long finished 

 wild Oct 1 381 na 60 continuous 40 1,500 recently finished 
Saskatche-
wan 

weedy Sept 27 626 wheat 10 mosaic 1 200+ long finished 

 wild Sept 27 585 na 5 mosaic 160 2,000 long finished 
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Table 2.2: Annual climatic data for the study populations , as obtained from the software ClimateNA (Wang et al. 2016), as scale-free estimates for 

the normal period 1961-1990. 
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IA 1 Ax 9.5 24.5 -7.3 31.8 722 463 27 52.9 629 2862 3642 560 197 120 282 162 50 -34.9 41.6 936 276 14.2 57 

 W 9.4 24.4 -7.4 31.8 725 467 26.8 52.3 634 2854 3653 556 196 120 282 161 50 -34.9 41.6 934 271 14.1 57 

IA 2 A 10.8 25.3 -5.5 30.8 804 512 25.9 49.5 462 3110 3277 675 212 113 286 173 36 -32.5 41.9 963 228 14.1 59 

 W 10.9 25.3 -5.3 30.7 810 521 25.8 48.6 455 3128 3256 682 212 113 287 173 34 -32.4 42.1 972 227 14.3 58 

KS 1 A 11.7 26.4 -3 29.4 590 389 36.8 67.7 315 3240 3032 759 212 114 285 171 16 -32.4 43.5 1077 527 15.6 53 

 W 11.3 26.2 -3.8 30.1 612 401 34.9 65.4 361 3171 3145 734 208 115 283 167 20 -33.3 43.5 1067 500 15.6 52 

KS 2 A 11 25.5 -3 28.6 537 368 39.2 69.3 333 3046 3170 656 197 119 279 160 16 -33.8 42.9 1079 576 15.9 50 

 W 10.9 25.5 -3.6 29.1 594 408 35.2 62.7 359 3037 3209 653 202 118 281 163 17 -33.6 42.6 1051 487 15.9 52 

MB A 2.9 19.5 -16.8 36.4 466 313 27.6 62.3 1702 1761 5639 155 157 140 258 118 96 -43.9 39.4 681 305 12.7 55 

 W 2.7 19.4 -17 36.5 467 315 27.2 61.7 1725 1741 5680 149 157 141 258 117 97 -43.9 39.2 675 297 12.8 55 

MO A 11.1 25.1 -4.4 29.5 922 571 22.9 44 393 3134 3147 664 212 115 288 174 34 -31.4 41.6 966 161 14.6 59 

 W 11.1 25.1 -4.4 29.5 923 571 22.9 43.9 393 3132 3148 663 212 115 288 174 34 -31.4 41.6 965 161 14.7 59 

ND A 4.5 20.9 -13.7 34.5 423 299 34.2 69.7 1338 1946 5121 227 165 138 263 125 59 -41.5 40.4 723 358 13.1 54 

 W 5.2 21.6 -13 34.6 428 300 35.5 72 1240 2100 4907 278 168 136 266 130 54 -41 41.2 757 386 13.1 54 

SD 1 A 7.2 23.4 -10.3 33.7 495 327 34.7 71.5 940 2445 4333 418 172 131 272 141 53 -38.8 42.7 864 433 14.1 52 

 W 7.6 24 -9.7 33.6 460 306 38.2 78.3 876 2521 4221 463 177 129 273 144 50 -38.5 43.1 873 478 14.2 52 

SD 2 A 8.3 23.8 -9 32.8 646 419 28.3 56.8 788 2638 3995 474 182 125 277 152 56 -36.6 41.4 899 302 14.1 56 

 W 8.9 24.4 -8.3 32.8 646 422 29.2 57.9 716 2774 3824 534 188 122 279 157 49 -36 42.1 931 332 14.2 56 

SK A 3.6 19.9 -15 34.9 432 286 31.5 69.7 1496 1808 5387 173 166 136 261 126 94 -43.5 38.8 673 332 13.1 57 

 W 3.7 20.1 -15 35.1 416 276 32.8 72.6 1494 1825 5372 180 166 136 261 125 89 -43.4 38.9 678 346 13.1 57 
 
*MAT = mean annual temperature (°C), MWMT = mean warmest month temperature (°C), MCMT = mean coldest month temperature (°C), TD = continentality (°C), MAP = mean 
annual precipitation (mm), MSP = mean summer (May to Sep) precipitation (mm), AHM = annual heat to moisture index, SHM = summer heat to moisture index, DD_0 = degree days 
below 0°C, DD5 = degree days above 5°C, DD_18 = degree days below 18°C, DD18 = degree days above 18°C, NFFD = number of frost-free days, bFFP = Julian date on which the frost-
free period begins, eFFP = Julian date on which the frost-free period ends, FFP = length of frost-free period, PAS = precipitation as snow (mm), EMT = extreme minimum temperature 
(°C), EXT = extreme maximum temperature (°C), Eref = Hargreaves reference evaporation, CMD = Hargreaves climatic moisture deficit, MAR = mean annual solar radiation (MJ m‐2 d‐

1), RH = monthly average relative humidity (%) 
xA = agricultural weed population, W = wild population 
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Table 2.3: Size variation among seedlings (n = 227) used to establish the relationship between non-destructive measurements and biomass. 

 Height (cm) Number 
of Leaves 

Length of Largest 
Leaf (cm) 

Half With of 
Largest Leaf (cm) 

Biomass (g) 

Maximum 96.5 25 17.3 7.6 18.54 

Minimum 1 2 0.4 0.1 0.005 

Mean 41.37 9.45 8.09 2.47 2.99 

Standard Deviation 25.45 4.26 3.96 1.66 3.63 

Standard Error 1.69 0.28 0.26 0.11 0.24 
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Table 2.4: Description of the plant materials generated in the 2012 common garden that were included 

in the 2013 maternal effects common garden, including the identity of the (field-collected) maternal 

families of the maternal and paternal individuals used for each cross. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location Type Family Mother’s 
Family 

Father’s 
Family 

 

North Dakota weedy 117 33 40  
   122 11 16  
   125 16 11  
   126 26 16  
   140 40 33  
North Dakota wild 144 38 20  
   145 20 38  
   148 33 38  
   153 6 20  
   156 27 38  
South Dakota 1 weedy 53 34 28  
   56 28 34  
   59 37 40  
   62 40 38  
   69 38 28  
South Dakota 1 wild 100 20 4  
   106 6 20  
   108 21 6  
   113 11 4  
   115 4 11  
South Dakota 2 weedy 1 4 7  
   3 7 4  
   7 32 27  
   8 27 32  
   24 30 7  
South Dakota 2 wild 26 27 38  
   31 23 27  
   36 14 27  
   40 38 23  
   42 30 14  
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Figure 2.1: North American range of Helianthus annuus (based on Rogers et al. 1982) and collection locations of populations included in this 

study. Each agricultural-weed population was paired with a nearby population of wild sunflowers in a non-agricultural area, to isolate changes 

due to weediness per se from other local adaptations. Location names are for the pair. Note that the Kansas 1 pair was excluded from analysis. 
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Figure 2.2: Relationship between sunflower seedling biomass and four non-destructive measurements 

of plant size : height (a), the number of leaves (b), half width of the largest leaf (c) and length of the 

largest leaf (d). Seedlings (n = 227) represented all study populations and a broad range of maternal 

families within each. Though seedlings were harvested at different times, all were grown under 

standardized conditions in the same glasshouse on the UBC campus. 
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Figure 2.3: Principal components analysis (PCA) of 23 annual climate variables obtained as scale-free 

point estimates for each population for the 1961-1990 normal period. The first PC axis explained 75.8% 

of the variation in the data and was correlated with temperature, with more northern populations 

having higher PC1 values; the second axis explained 21.4% of the variation and was correlated with 

moisture availability. Populations are coloured by location, while shapes indicate population type; 

dashed ellipses were drawn by hand to visualize pairings. Overlapping arrows for climate variables have 

been removed for the sake of clarity. 

 

Climate variables: MAT = mean annual temperature (°C), MWMT = mean warmest month temperature (°C), MCMT = mean 

coldest month temperature (°C), TD = continentality (°C), MAP = mean annual precipitation (mm), MSP = mean summer (May to 

Sep) precipitation (mm), AHM = annual heat to moisture index, SHM = summer heat to moisture index, NFFD = number of frost-

free days, bFFP = Julian date on which the frost-free period begins, PAS = precipitation as snow (mm), EMT = extreme minimum 

temperature (°C), EXT = extreme maximum temperature (°C), Eref = Hargreaves reference evaporation, CMD = Hargreaves 

climatic moisture deficit, MAR = mean annual solar radiation (MJ m‐2 d‐1), RH = monthly average relative humidity (%). 
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Figure 2.4: Box-plots of plant height and number of inflorescences for individual sunflowers sampled in 

the field (n = 40 per population) summarized by collection location (i.e. the name of a population pair) 

and population type (weedy or wild). Locations are arranged from left-to-right in order of increasing 

latitude. Shading indicates significant differences between weedy and wild for a given location, 

according to Tukey HSD post-hoc tests following an ANOVA. 

(a) 

(b) 
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Figure 2.5: Growth of four representative sunflower seedlings in the 2012 common garden over time in untransformed biomass (a) and log-

transformed, zeroed biomass (b). Biomass was obtained from measurements of seedling height and the number of leaves using a previously 

established linear model (R2 = 0.9, n = 227 plants). Note that y-axes differ, owing to the large variation among individuals in size. Time is 

measured in days since initiation of the greenhouse experiment, beginning at day zero; seedlings germinated at different times, hence first 

measurements occur on different days for different seedlings. 

 

(a) 

(b) 
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Figure 2.6: Change in biomass over time by location and population type (weedy or wild) for the 2012 

common garden. Biomass was obtained from measurements of seedling height and the number of 

leaves using a previously established linear model (R2 = 0.9, n = 227 plants). In order to better visualize 

within-location trends, y-axes differ across locations. Trend lines were obtained using local regression 

(LOESS); shading illustrates 95% confidence intervals. Points represent mean seedling biomass at a given 

time point, with five maternal families and an average of 33 individuals (range: 26 to 35) per population. 
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Figure 2.7: Days until first flower by location and population type (weedy or wild) for the 2012 common garden. Data points represent means ± 

standard errors, with 25 individuals per population (five from each of five maternal families); two populations (Iowa 2 and Iowa 1) had fewer 

individuals (22 and 24, respectively) as some plants did not flower. Note that the y-axis does not begin from zero in order to better visualize 

within-location trends. Day zero was set as the scarification date for each individual. 
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Figure 2.8: Change in biomass over time for seedlings derived from field collected seed (a) or from seed produced in the 2012 common garden 

(b) in the follow-up 2013 common garden. Separate growth curves are presented for locations and population types (weedy or wild). Biomass 

was obtained from measurements of seedling height and the number of leaves using a previously established linear model (R2 = 0.9, n = 227 

plants). In order to better visualize within-location trends, y-axes differ across locations. Trend lines were obtained using local regression 

(LOESS); shading illustrates 95% confidence intervals. Points represent mean seedling biomass at a given time point, with five maternal families 

and 24-25 individuals per unique combination of population and seed source. 
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Figure 2.9: Days until first flower by location and population type (weedy or wild) for the 2013 common 

garden. Results are presented separately for individuals derived from seed generated in the 2012 

common garden (a) and from field collected seed (b). Data points represent means ± standard errors, 

with 15 individuals per unique combination of population and seed source (i.e., three plants from each 

of five maternal families). Note that the y-axis does not begin from zero in order to better visualize 

within-location trends. Day zero was set as the scarification date for each individual. 
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Chapter 3 : Parallel Genomic Signatures of Divergence between 

Agricultural-Weed and Non-Agricultural, Wild Populations of Sunflowers 

3.1 Introduction 
It is now clear that evolutionary change can happen very rapidly, occurring at timescales fast 

enough to impact even the ecological dynamics of species (e.g. Holt 2005; Carroll et al. 2007). Rapid 

evolutionary change may be most common under the strong selective regimes invoked by changing 

environmental conditions (Neuhauser et al. 2003) or when an organism colonizes a novel habitat. For 

example, in a survey of the literature on introduced plant and animal species, Buswell et al. (2011) found 

that a majority of species (70%) showed a change in at least one morphological trait over time. 

Additionally, when the same novel environment is colonized by multiple populations or species, parallel 

evolution may result in similar phenotypic changes (see e.g. Wood et al. 2005; Arendt and Reznick 2008; 

Elmer and Meyer 2011; Conte et al. 2012). Such cases of parallel divergence, when occurring in 

geographical isolation, provide strong support for the role of natural selection, as neutral evolutionary 

processes such as genetic drift are unlikely to be responsible for repeated adaptive phenotypes (Elmer 

and Meyer 2011). Thus, invasive or weedy species in which multiple populations invade a novel range or 

habitat type can provide excellent test cases for studying not only the role of evolution (versus pre-

adaptation or phenotypic plasticity) in the response to environmental change, but also the repeatability 

of evolution and its rapidity. 

Wild, annual sunflowers (Helianthus annuus L.) may provide one such test case. Helianthus 

annuus is an outcrossing diploid (n = 17) native to North America, which grows indeterminately and is 

highly branched. Its typical habitat is heavy-soiled, undisturbed, open grassland (Heiser et al. 1969); 

however, the species is now more commonly found as an inhabitant of waste places, crop fields, and 

other human-dominated and disturbed areas (e.g. Smith 1989), suggesting it is disturbance-adapted. A 

weedy form of H. annuus is considered problematic in the Central USA, Southern Canada, and parts of 

Europe, Asia and Australia (Al-Khatib et al. 1998). This form has been listed as a noxious weed in several 

US states (e.g. Iowa, Minnesota, Alaska) and may decrease crop yields significantly in agricultural fields. 

For example, for corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) fields, infestation with weedy 

sunflowers has reduced crop productivity by up to 64% and 97%, respectively (Geier et al. 1996; Deines 

et al. 2004). Common garden experiments indicate that the agricultural weed grows faster than non-

agricultural, wild plants under benign conditions, but this comes at a cost of a decreased ability to 

tolerate drought conditions, greater palatability to insect predators, and lower tolerance of crowding 
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(Chapter 2, Mayrose et al. 2011). Hence, weedy types may have shifted their life history strategy to one 

of faster growth at the expense of stress tolerance and herbivore resistance traits. Weedy populations 

were found to be more closely related (as determined by FST and (δμ)2) to nearby non-agricultural 

populations than to other weedy populations (Kane and Rieseberg 2008), implying that sunflowers have 

colonized and adapted to agricultural environments repeatedly. 

Adaptations seen in agricultural-weed populations of sunflower may therefore represent 

parallel phenotypic evolution, though further work is needed to confirm this finding. Classic examples of 

parallel phenotypic evolution include: independent eye reduction in cave-dwelling amphipods 

Gammarus minus Say, 1818 (Jones et al. 1992); parallel latitudinal clines in Drosophila subobscura Collin, 

1936 wing length (Huey 2000); multiple origins of ecomorphs in island-colonizing Anolis lizards (Losos 

1998); repeated shifts in life-history traits at high versus low elevation sites in guppies, Poecilia 

reticulata Peters, 1859 (Reznick et al. 1996); and the repeated evolution of a freshwater form from 

marine threespine sticklebacks, Gasterosteus aculeatus L., 1758 (Foster and Baker 2004). In each of 

these fascinating cases, the same trait or suite of traits has evolved with similar environmental 

transitions, indicating the same solution to a common problem in each case. Parallel phenotypic changes 

may have a similar genetic basis or may rely on different genetic changes that produce the same 

phenotypic results. Both possibilities are seen, for example, in the transition from marine to freshwater 

living in threespine stickleback, G. aculeatus (Foster and Baker 2004). Lateral plating and pelvic spines 

are reduced in freshwater environments, due to lower predation rates (Barrett and Schluter 2008; 

Marchinko 2009). Reductions in plate number have been linked to allelic variation at a single locus, 

Ectodysplasin-A (Eda), and the same low-plate Eda alleles have been implicated in most populations 

(Colosimo 2005). In contrast, reductions in pelvic spines have been linked to different deletions in the 

Pituitary homeobox 1 (Pitx1) gene and to unidentified mutations in non-homologous genes in different 

populations (Chan et al. 2010). Thus, the repeated parallel phenotypic adaptation of marine sticklebacks 

to freshwater involves a combination of repeated recruitment of standing genetic variation, different 

mutations at a homologous gene, and also the involvement of non-homologous genes. 

A primary goal of evolutionary biology is to understand how natural selection shapes the 

genome and the genomic architecture underlying ecologically important traits (Yeaman 2013). Recent 

advances in high-throughput, next-generation sequencing (NGS) technologies have the potential to 

elucidate the genetic basis of adaptive traits, especially in non-model organisms (Stapley et al. 2010). 

Thus far, studies of wild populations have mostly relied on reduced-representation genome sequencing 
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methods (e.g. Hohenlohe et al. 2010), such as Restriction-site Associated DNA sequencing (RADseq: 

Miller et al. 2007; Baird et al. 2008) and Genotyping-By-Sequencing (GBS: Elshire et al. 2011), which use 

restriction-enzymes to reduce genome complexity. While these methods are cost-effective, in 

comparison with whole genome shotgun (WGS) resequencing, they provide much more limited data and 

so adaptive loci not in linkage disequilibrium with study markers may be missed. Furthermore, reduced-

representation methods come with certain errors and biases, for example genotyping errors due to 

allele dropout (when a polymorphism at a restriction enzyme cut-site results in a cut failure: Andrews et 

al. 2016). In order to gain a complete understanding of the number and distribution of genes underlying 

adaptive divergence, WGS sequencing may therefore be required. 

 Here, I describe the results of a genome-wide analysis, based on WGS resequencing data, 

examining the genetic basis of adaptation to contemporary, high-intensity agricultural environments in 

weedy sunflowers. Complementary to previous common garden work, which identified phenotypic 

differences in life history in agricultural-weeds, this analysis should permit us to identify any genetic 

changes that have occurred in parallel among weed populations. Importantly, by looking at replicated 

agricultural-weed and non-agricultural population pairs, we can isolate changes due to weediness per 

se, rather than other local adaptations. Furthermore, while genetic drift or population bottlenecks can 

produce false signatures of selection between populations (Excoffier and Ray 2008), our replicated 

design should identify only genomic regions that have diverged in parallel, and hence are more likely to 

be the result of similar selection pressures across populations. My goal was to discover what proportion 

of the genome may be involved in weed adaptation, the number and location of differentiated regions, 

and to identify candidate genes potentially underlying weedy trait differences within these regions. 

3.2 Materials and Methods 

3.2.1 Study Populations and Sample Collection 
 I collected seeds in the fall of 2011 from each of twenty populations of wild sunflower 

(Helianthus annuus) over a latitudinal gradient (Figure 3.1). Ten populations were located in areas of 

high-intensity agricultural use and were found competing directly with a cultivated crop of either corn, 

soybean, wheat or sorghum. Each agricultural-weed (henceforth “weedy”) population was paired with a 

non-agricultural wild (henceforth “wild”) population collected from a more natural habitat (e.g. 

grassland, fallow area, etc.) located nearby (mean distance = 28.5 ± 7.6 km), at roughly equal latitudes, 

to ensure that population pairs experienced similar environmental conditions, such as temperature, 

rainfall, day length and seasonality. Populations were large (mean ≈ 2,000 individuals, range = 250 to 
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10,000+ individuals) and located at least 1 km distant from any cultivated sunflower with which gene 

flow could occur. 

One of the weedy populations (MB1A) was found to have sterile seeds in germination trials. 

Seeds from the National Plant Germplasm System (NPGS) collections of the United States Department of 

Agriculture (USDA) were obtained to replace this population; the accession I selected (PI 592327) was 

collected in 1994 from along the edge of a harvested wheat field located in the same geographic area as 

the population to be replaced. For this study, I used phenotypic comparisons made in a common garden 

(Chapter 2), as well as careful evaluation of the collection sites themselves, to guide selection of a subset 

of representative weedy populations and their respective wild pairs. In the two omitted pairs, one wild 

population represented a weed/non-weed hybrid, while another occurred in a much more mesic 

environment than all other populations. Hence, sixteen populations were included in total (eight pairs). 

While my initial goal was to use sequence data generated from phenotyped individuals in the 

common garden (Chapter 2) that were representative of average trait values for each selected 

population, this was not possible. DNA from these samples were sequenced on older sequencing 

technology, and some samples did not have enough markers across the genome to conduct genome 

scans. Therefore, I randomly selected a single sequenced individual from a later mapping study (Chapter 

4) from one of the original maternal families evaluated in the common garden for each population for 

analysis in this study.  

We grew seedlings for the mapping study in a glasshouse at the University of British Columbia 

(UBC) in Vancouver, Canada in summer 2014. We scarified and then germinated seeds on moist filter 

paper in petri dishes, watering with a 1% solution of plant preservative media (PPM) to reduce microbial 

contamination. Seedlings were planted as they germinated into 5 cm diameter cones in standard potting 

soil placed on a glasshouse bench. The soil was thoroughly watered prior to planting and kept moist by 

misting during seedling establishment. Supplemental lighting was available 16 hours a day. 

3.2.2 DNA Extraction and Library Preparation 
 We collected leaf tissue from newly expanded leaves when seedlings were at the four- to eight-

leaf stage. Tissue was placed on dry ice shortly after collection and then stored at -80 °C in the lab. For 

the majority of samples, I extracted genomic DNA from frozen leaf tissue using a modified CTAB protocol 

based on Murray and Thompson (1980). Samples that failed to extract cleanly using the CTAB protocol, I 

extracted with the QIAGEN® DNeasy Plant Mini Kit or a DNeasy 96 Plant Kit (QIAGEN®, Hilden, Germany) 
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which both use a silica-based approach. Quality checks of DNA samples were performed using a 

NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific, Waltham MA, USA) and by running out 

samples on an EtBr-agarose gel. DNA was quantified using a Qubit® 2.0 Fluorometer (Thermo Fisher 

Scientific, Waltham MA, USA). 

 High-quality DNA samples were sheared to an average fragment size of 350 bp using a Covaris 

M220 Focused-ultrasonicator (Covaris, Woburn MA, USA), and 750 ng of sheared DNA was then used to 

create a paired-end whole-genome shotgun Illumina library for each sample. Library preparation used a 

custom lab protocol based largely on Rowan et al. (2015), the TruSeq DNA Sample Preparation Guide 

from Illumina (Illumina, San Diego CA, USA) and Rohland and Reich (2012); importantly, completed 

adapters were identical to the Illumina TruSeq adapters. As the sunflower genome contains a substantial 

fraction of highly repetitive sequences derived from the expansion of two retrotransposon families 

(Staton et al. 2012), we performed a depletion step to reduce the representation of repetitive 

sequences: Enriched libraries were treated with Duplex Specific Nuclease (DSN; Evrogen, Moscow, 

Russia) following a modified method based on Shagina et al. (2010) and Matvienko et al. (2013). 

 Enriched, depleted libraries were purified twice with 1.6 volumes of a solution of paramagnetic 

SPRI beads (prepared according to Rohland and Reich 2012) before quantification on the Qubit®. We ran 

libraries on a 2100 Bioanalyzer instrument using a High Sensitivity DNA Analysis Kit (Agilent 

Technologies, Santa Clarita CA, USA) to determine average fragment size, and assessed molarity on an 

iQ5 Real Time PCR Detection System (Bio-Rad, Hercules CA, USA). Groups of ten barcoded, randomly-

selected libraries from the mapping study (Chapter 4) were then pooled at equal molarity to be 

sequenced on a single Illumina lane. All libraries were sequenced at the Genome Québec Innovation 

Center on either an Illumina HiSeq X or HiSeq 2500 instrument (Illumina, San Diego CA, USA). 

3.2.2 Bioinformatics Pipeline 
 Samples for this study were analyzed as part of a larger group (of 323 wild H. annuus samples) 

for the mapping study presented in Chapter 4. We used Trimmomatic (version 0.36: Bolger et al. 2014) 

to clean the raw data, removing adapters and low-quality bases from each read, before aligning 

sequencing reads to the H. annuus reference genome (XRQ assembly: Badouin et al. 2017) using the 

BWA-MEM aligner (version 0.7.9a: Li and Durbin 2010) with default parameters. PCR duplicates were 

marked with Picard (version 2.5, http://broadinstitute.github.io/picard/; retrieved on 25 Sept 2017), 

while potential indels were realigned using GATK (version 3.6: McKenna et al. 2010), again using default 

parameters. Single nucleotide polymorphisms (SNPs) were identified using FreeBayes (version 1.1.0: 

http://broadinstitute.github.io/picard/
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Garrison and Marth 2012), a Bayesian genetic variant detector; as the method implemented in 

FreeBayes is haplotype-based, working on the literal sequences of reads, it is more robust to local 

alignment issues than site-based variant detection methods (i.e. samtools). 

 Low-quality SNPs were removed using cut-offs derived from comparing the distribution of 

quality metrics obtained for this dataset with that observed for a set of validated SNPs from a SNP-chip 

(Mandel et al. 2013). To do this, regions surrounding SNP-chip variants were aligned to the XRQ genome 

using BWA-MEM. Regions with the maximum observed mapping quality (60) were kept to reduce 

comparison of paralogs. Using base counts derived from samtools mpileup and custom perl scripts, 

exact variant sites were extracted from SNP-chip regions. These variants were compared to observed 

SNPs to confirm that the same change was observed in each. SNP-chip variants that were observed in 

the SNP data were considered validated. We visually compared the distribution of site quality metrics 

between validated and unvalidated SNPs to determine appropriate cut-offs. The following filters were 

used: mapping quality score > 20, mean mapping quality of observed alternate alleles > 40, and allele 

balance at heterozygous sites between 0.4 and 0.6. (Allele balance ranges from 0 to 1, and represents 

the ratio of reference allele reads to all reads for heterozygous individuals.) Additionally, for the 

divergence analysis presented here, I excluded loci with missing data for any of the sixteen focal 

individuals or with a read depth of < 4. Loci on unmapped scaffolds (i.e. those not placed on 

chromosomes in the reference genome assembly) were also not considered. I used BCFtools (version 

1.3: Li et al. 2009a) to filter by read depth and remove unmapped scaffolds, and a custom python script 

to remove loci with missing data as well as any sites that were invariant across the focal individuals.  

3.2.3 Analysis of Linkage Disequilibrium 
 To inform window-based outlier analyses of divergence between weedy and wild populations, I 

examined how linkage disequilibrium (LD), i.e. the non-random association of alleles at different loci, 

decayed with the physical distance between SNPs located on each chromosome. My goal was to enable 

a more meaningful, data-driven selection of window size for analysis, as this choice is often only loosely 

justified (e.g. Burke et al. 2010; Rubin et al. 2010) or somewhat arbitrary (e.g. Myles et al. 2008; Turner 

et al. 2011) in the literature. Recombination rates and LD can vary considerably across the genome (Hey 

et al. 2004; see Mandel et al. 2013 for patterns in sunflower), but estimating how quickly LD decays on 

average provides guidance on the minimum window size possible.  

 Here, I utilized the larger dataset of wild sunflower genomes available from the mapping study 

(Chapter 4), excluding only 20 hybrid wild-cultivar individuals. An additional 20 low-coverage wild 
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genomes from an early sequencing project (described in Section 3.2.1) were included as well, for a total 

of 343 individuals. To remove loci with low heterozygosity, I used VCFtools (version 0.1.15: Danecek et 

al. 2011) to filter out SNPs with a minor allele frequency (MAF) of < 10%, which is a common cut-off in 

analyses of linkage disequilibrium (e.g. Mandel et al. 2013). Each chromosome was then analyzed 

separately, using a random subset of 10,000 SNPs (per chromosome) that I selected using a custom 

python script. 

 As our data were unphased (i.e. haplotypes were unknown), I calculated LD as the squared 

correlation coefficient between genotypes, or r2, using VCFtools. Only bi-allelic sites are considered with 

this method, and thus genotypes were coded as either 0, 1 or 2 for the number of reference alleles in 

each individual at a given locus. This approach, based on genotypic allele counts, is not identical to the 

familiar r2 that is estimated from haplotype frequencies, but is typically very similar, as under random 

mating genotypic frequencies should be a product of gametic frequencies (Weir 2008). Even when the 

assumption of non-random mating is relaxed, genotypic estimates of r2 have been shown to remain 

fairly accurate (Rogers and Huff 2009). As my goal was to examine LD only between relatively close 

SNPs, I performed the analysis within a 100 kb window (i.e. only pairs of SNPs within 100 kb of each 

other were considered).  

 I used the statistical software R (version 3.3.3: R Core Team 2017) to calculate summary 

statistics and to fit a cubic spline, a type of generalized additive model (GAM), with normal errors to the 

LD decay curve using the mgvc package (Wood 2011).  

3.2.4 Sliding Window Analysis of Weedy versus Wild Divergence 
 To identify regions of the sunflower genome that have differentiated in parallel between 

agricultural-weed populations and wild populations from more natural habitats, I generated a modified 

cluster separation score (CSS) between individuals from different population types in windows across 

the genome. The CSS approach (Jones et al. 2012) uses genetic distance matrices to identify divergent 

regions of the genome for isolated populations adapting to the same ecological conditions. As the 

weedy populations studied here are separated geographically, with limited gene flow among some 

population pairs, they do not collectively form a distinct population (separate from the wild populations) 

and therefore FST is likely not an appropriate measure of genetic differentiation (Bhatia et al. 2013). 

Here, I modified the CSS approach following Miller (2016) to use principal components analysis 

(PCA) to calculate genetic distances rather than multi-dimensional scaling, which is more 
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computationally intensive. The method utilizes only bi-allelic loci and so I removed multi-allelic loci from 

the dataset using a custom python script. For each locus, a numeric value was assigned to each 

individual’s genotype as follows: two reference alleles (0/0) = 0, one reference allele (0/1) = 0.5, and two 

alternate alleles (1/1) = 1. Each chromosome was then analyzed separately, first dividing each into 

sliding windows of 10000 bp in length with an overlap of 5000 bp. A PCA of the covariance matrix was 

calculated for each window using the pcaMethods package (Stacklies et al. 2007); the “svd” algorithm 

was selected to compute the PCA scores using singular value decomposition (SVD). 

The first two principal components were retained in each window and used to calculate the 

Euclidean distance matrix for all individuals. The CSS score was then calculated as the mean pairwise 

distance between individuals from different groups (i.e. weedy versus wild) minus the average pairwise 

distance among individuals within groups, according to the following equation: 
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where D is the Euclidean distance between two individuals, i an individual weedy sunflower and j an 

individual wild sunflower, and s and n the number of weedy and wild individuals respectively. Windows 

that contained fewer SNPs than the total number of individuals (i.e. sixteen) were discarded. Both 

positive and negative values of CSS are possible. A positive value indicates a greater mean distance 

among sunflowers from different groups versus those from the same group, while a negative value 

indicates the opposite (more variation within versus among groups). Figure 3.2 provides a hypothetical 

example of how the PCA might look for different values of CSS. Importantly, the CSS approach was 

designed as a metric of parallel divergence among groups (personal communication from Dolph 

Schluter, also see Jones et al. 2012), with higher CSS values indicating both stronger and more parallel 

divergence. 

 Permutation testing was performed to assess the statistical significance of CSS values in each 

window. Group membership was shuffled 10,000 times without replacement (and keeping the same 

number of individuals per population type) and a CSS score calculated for each permutation. Counting 

the number of permuted CSS scores with absolute values greater than that of the observed CSS score 

(i.e., the number of scores with extreme positive or negative values) for a given window and dividing 

through by 10,000 gave a two-tailed p-value for the window. (While I am primarily interested in 

windows with high, positive CSS scores, there was signal in both directions in the dataset, and so a one-
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tailed test would be statistically inappropriate). A one was added to both the numerator and 

denominator in this calculation to avoid obtaining values of p = 0.  

All analyses were performed in R, and the variantAnnotation package (Obenchain et al. 2014) 

was used to load vcf files into R. 

3.2.5 Variable-Sized Distinct Window Analysis of Divergence 
 Analyses of high-density genomic data (such as SNPs) typically proceed by pooling data over 

windows of adjacent markers, in order to reduce sampling noise, increase statistical power and simplify 

analysis. When windows overlap, as in the CSS sliding window analysis, correlated statistics are 

generated, but while non-overlapping, distinct windows avoid this issue, they have the disadvantage of 

potentially missing outliers of interest that occur at window boundaries. Here, in a complementary 

analysis to the CSS approach, I implemented the smoothing spline technique of Beissinger et al. (2015) 

to statistically identify breakpoints in the data and generate variable-sized distinct windows for an 

outlier analysis of weedy-wild genetic differences. 

 The smoothing spline method first fits a cubic smoothing spline to the raw data, then identifies 

inflection points of the spline to use as window boundaries (see Figure 3.3 for an illustration of the 

technique). Observations for each marker may be treated as estimates of an underlying continuous 

function f that specifies the true value of a metric (e.g. FST) at every position ti, where ti is the 

chromosomal position in bp of marker i. The cubic smoothing spline estimate 𝑓 of the function f over a 

range х is then obtained by minimizing S(f): 

S(f) = ∑{𝑌𝑖 − 𝑓(𝑡𝑖)}2
+  𝜆 ∫ 𝑓″(𝑥)2𝑑𝑥 

where Yi is the observed value of the metric for a marker, λ a smoothing parameter and 𝑓 is restricted to 

be a twice-differentiable function. Inflection points of the fitted spline occur where 𝑓″= 0.  

 As the smoothing spline approach requires a per-marker metric of divergence (rather than a 

window-based metric such as CSS), I estimated Weir and Cockerham’s FST (Weir and Cockerham 1984) 

for each SNP using VCFtools. While FST may not be the most appropriate measure of genetic 

differentiation for this dataset, as discussed, it is widely used in the literature, and Miller (2016) 

reported a concordance between CSS and FST, so it is of interest for comparison purposes. The 

smoothing spline method was implemented using the GenWin package (Beissinger et al. 2015) in R; each 

chromosome was analyzed separately. 
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 To allow for comparison among windows of different sizes (i.e. with different numbers of SNPs 

and hence sampling errors), a t-test like statistic, W, was calculated for each window in GenWin as 

follows: 

W = 
(�̅�− 𝜇)

√𝑠2
𝑛⁄

 

where �̅� is the mean FST over the window, µ the mean FST across the chromosome, s2 the variance in FST 

across the chromosome, and n the number of SNPs in the window.  

3.2.6 Outlier Windows and Candidate Genes 
 To identify windows that represent regions of significant differentiation between weedy and 

wild populations of sunflowers, I took a multi-step approach. Identification of true positives remains a 

challenging issue in genomic analyses using high-density SNPs, given the sheer number of statistical 

tests typically performed (Abramovich and Benjamini 2005). It is important to recognize that, through 

chance alone, a number of p-values falling below the chosen confidence threshold α will be obtained 

when performing multiple tests (Noble 2009). How to correct p-values for multiple testing without 

sacrificing too much statistical power remains an open question, however methods to control the false 

discovery rate (FDR: Benjamini and Hochberg 1995) have become popular (Storey and Tibshirani 2003).  

 In the CSS analysis, 5.2% of tested windows were found to have p-values of < 0.05 in 

permutation testing, and this proportion was significantly higher than expected by chance, according to 

a binomial test (p = 0.017). Using the qvalue package (Storey et al. 2015) in R, I also found that values of 

π0, or the overall estimate of the proportion of true null hypotheses, averaged 0.95, with values ranging 

from 0.88 to 1 across chromosomes; this again suggests a small proportion of true alternative 

hypotheses exists for most chromosomes. However, in this low power analysis, the q-value approach 

was not able to explicitly identify which specific tests were truly significant, and FDR correction 

obliterated all signal in the data.  

 As established methods for correcting p-values under multiple testing were too conservative to 

identify true outlier windows here, I reasoned that candidate windows might be found by comparing the 

results from the CSS and FST analyses for overlap, as true positives may be more likely than false ones to 

co-occur (if false positives occur randomly across the genome in both analyses). For the CSS analysis, I 

considered windows with p < 0.001 to be regions that may potentially reflect selective differences 

between weedy and wild populations, worthy of further investigation. Meanwhile in the FST analysis, I 
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followed other authors (e.g. Choi et al. 2016; Ramu et al. 2017) in classifying windows with W-statistic 

values above the ninety-ninth percentile across each chromosome as regions of interest in weedy-wild 

divergence. For each dataset separately, I used bedtools (version 2.25.0: Quinlan and Hall 2010) to first 

merge any adjacent windows in the list into single entries, before taking the intersection, or overlap, of 

the two lists. To further focus the list of regions, I retained only intersected windows with top percentile 

CSS scores (i.e. mean CSS ≥ 0.3).  

 I looked at the number and identity of genes within this set of regions. Using bedtools, I queried 

the list of genomic regions against the annotated XRQ assembly (version 1.0: Badouin et al. 2017) of the 

H. annuus reference genome. When GenBank GenInfo Identifier (gi) numbers were available, records 

were pulled from the National Center for Biotechnology Information (NCBI, 

https://www.ncbi.nlm.nih.gov/genbank/; retrieved on 5 Oct 2017) database using the NCBI REST API to 

obtain protein names. 

3.3 Results 

3.3.1 Linkage Disequilibrium Decays Rapidly 
 Linkage disequilibrium, as estimated for each chromosome by genotypic r2 over a subset of loci 

with MAF ≥ 10%, decreased with increasing physical distance between pairs of SNPs; this decline was 

initially rapid, but became more gradual after the distance between SNPs approached roughly 10,000 to 

15,000 bp. The pattern was similar across all chromosomes and so is illustrated by a single 

representative chromosome (14) in Figure 3.4. To create Figure 3.4, I binned pairs of SNPs based on the 

distance between them at every 1 kb and took the average r2 of all pairs for each bin. Across all 

chromosomes, mean (i.e. binned) r2 values averaged 0.075 and ranged from a minimum of 0.033 to a 

maximum of 0.25. Given the rapid drop-off in LD after ~10,000 bp, I selected a small sliding window size 

(i.e. 10,000 bp) for the CSS analysis, in order not to miss small regions of differentiation between the 

genomes of weedy and wild populations. 

3.3.2 Regions of Genetic Differentiation are Small and Scattered Over the Genome 
Our bioinformatics pipeline and additional filtering steps resulted in a final dataset of 2,795,422 

SNPs, of which 2,741,044 were biallelic. Given the 3.0 Gb size of the Helianthus annuus genome 

assembly (Badouin et al. 2017), this should translate to roughly one SNP every ~1090 bp, although SNPs 

will not be distributed evenly. In actuality, SNPs averaged one per 1072 bp ± 22 bp (standard error) 

across all chromosomes. The distribution of distances between adjacent SNPs was right-skewed with a 

https://www.ncbi.nlm.nih.gov/genbank/
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very long tail; the maximum distance between adjacent SNPs was highly variable among chromosomes, 

ranging from 132 kbp (chromosome 9) to 1149 kbp (chromosome 8). This suggests that there are 

regions across the genome, such as those enriched for LTR retrotransposons or other repeated 

sequences, for which few SNPs were called.    

To identify genomic regions that have diverged in parallel between weedy and wild populations 

of sunflower, I performed genome scans on two different metrics of differentiation: a genetic distance-

based cluster separation score (CSS) for biallelic SNPs and the fixation index, FST, for multiallelic SNPs. 

For the CSS analysis, there were sufficient data for 115,478 windows (each of 10,000 bp in size) across 

the genome, representing 19% of the total possible windows. Many windows were excluded for having 

fewer than sixteen SNPs; these mostly occurred in regions with no reported SNPs, and on average 91.5% 

of the available SNPs were used per chromosome in the analysis. Table 3.1 provides summary statistics 

on the distribution of SNPs per CSS window, for windows where the metric was calculated; on average 

there were 41 SNPs per window. For the FST analysis, all data were used genome-wide and the minimum 

window size possible was set to 100 bp. Table 3.2 provides summary statistics on the size of the 

variable-sized windows, both in base pairs and number of SNPs; on average, windows were larger than 

in the CSS analysis, averaging 49,456 bp per window. 

There was a strong, positive correlation between values of CSS and average FST (r = 0.85) (Figure 

3.5). Note that for each CSS sliding window, window-averaged values of FST were obtained as the “ratio 

of averages” (as recommended by Bhatia et al. 2013), i.e. by summing separately the numerators and 

denominators of all per-SNP FST estimates before taking the ratio of the sums, rather than taking a 

simple average of all per-SNP FST values (the “average of ratios”). The concordance between CSS and FST 

values can also be seen in the close correspondence of the genome scan results for each metric (Figure 

3.6). Although the metrics are highly similar, CSS tends to show more exaggerated peaks, and there are 

peaks in CSS not seen in the W-statistic scores (summarized FST values), for example on chromosomes 3 

and 15. 

In considering which windows in the tails of the CSS distribution to investigate further, there 

were a total of 1184 CSS windows with p < 0.01. Although windows occurred on each of the seventeen 

chromosomes, they were not distributed evenly, as determined by a chi-squared test (χ2 = 2209.2, df 

=16, p < 10-16) that accounted for chromosome size. For example, chromosomes 1, 7 and 17 showed 

elevated divergence between weedy and wild populations, whereas chromosomes 11 through 13 

showed little divergence (Figure 3.6). Merging adjacent windows with p < 0.01 produced 793 potential 
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regions of interest. Looking at the FST analysis, there were a total of 619 windows with W-statistic values 

in the top percentile, and merging adjacent windows produced 576 regions. Intersecting the two lists of 

regions from each analysis produced a list of 236 regions, while imposing the condition of mean CSS ≥ 3 

reduced the final list to 148 regions; taken together, these regions account for less than 1% of the 

genome. As an example, Figure 3.7 illustrates where these regions are located on chromosomes 1, 7 and 

17. 

3.3.3 Candidate Adaptive Genes 
 Overlapping with the 148 regions of interest in weedy-wild divergence, we found 267 genes in 

the H. annuus XRQ genome assembly annotations; this equated to roughly 1.8 ± 0.13 genes per region. 

The majority of the genes (n = 153) were matches to expressed sequence tags in sunflower for which the 

gene products show no matches to protein or signature databases. Hence, these matches represent 

transcribed regions with unknown functions. Additionally, 36 genes were described as producing 

“uncharacterized proteins” and thus also have unknown functions to date. Finally, a total of 77 genes 

(presented in Appendix A) were linked to a probable protein match, and I will focus on these here. Note 

that 22 of these genes do not yet have a gene identifier assigned for the sunflower genome, but a 

probable protein match could be made owing to close sequence homology to identified proteins in 

other plant species. 

 Collectively, identified proteins were a diverse group, ranging from structural proteins (e.g. 60S 

ribosomal protein L38), to catalytic enzymes (e.g. hexokinase-2, isopentyltransferase-5, phospholipase 

A1-II 1), to signalling molecules and receptors (e.g. cysteine-rich RLK 33) and finally to transcription 

factors (e.g. floral homeotic protein APETALA 2-like, histone-lysine N-methyltransferase Tr). In many 

cases, functional information was limited. For example, a gene might be specified as coding for a 

particular type of domain (e.g. a flavoprotein-like domain) without knowledge of which protein it 

belonged to; similarly, a protein family or superfamily might be identified rather than a specific protein. 

As protein families may include members with diverse and varied functions, we are limited in what we 

can say regarding the potential role of these genes in the divergence between the weedy and wild types. 

 Many of the identified proteins have been implicated in the response to abiotic or biotic stress, 

and these may be candidates for the phenotypic differences seen in agricultural weeds. Some examples 

of proteins linked to abiotic stress tolerance include: nuclease HARBI1, which is upregulated under salt-

stress in Reaumuria trigyna Maxim. (Dang et al. 2014); ribonuclease H protein At1g65750, 

downregulated in nickel-resistant white birch (Betula papyrifera Marshall: Theriault and Nkongolo 
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2017); DREB2A-interacting protein 1, enhances drought and high temperature stress tolerance when 

overexpressed in Arabidopsis thaliana (L.) Heynh. (Sakuma et al. 2006); luminal-binding protein 5, linked 

to increased drought tolerance in both soybean (G. max) and tobacco (Nicotiana tabacum L.: Valente et 

al. 2009); and ascorbate peroxidase 3, a hydrogen peroxide scavenger that detoxifies H2O2 (a type of 

reactive oxygen species, or ROS) produced under adverse environmental conditions (Caverzan et al. 

2012). Several of the protein families identified here also have links to stress tolerance, including the 

integrase-type, DNA-binding superfamily (role in submergence and hypoxia tolerance in Arabidopsis: 

Seok et al. 2014), late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family (LEAs 

accumulate under drought stress in legumes: Battaglia and Covarrubias 2013), and proteins with F-box 

domains (can play a role in stress response via the ubiquitin pathway, e.g. in wheat (Triticum spp.), 

TaFBA1 enhances tolerance to oxidative stress and drought: Zhou et al. 2015). Considering biotic 

stressors such as pathogens and herbivores, Gnk2 is an anti-fungal protein expressed in the endosperm 

of Ginkgo biloba L. seeds (Miyakawa et al. 2009), and the LRR receptor-like serine/threonine-protein 

kinase EFR is a pattern-recognition receptor for the elongation factor Ef-Tu, a potent activator of the 

anti-pathogen defense response (Zipfel et al. 2006); meanwhile, proteins from the glycoside hydrolase 

family 1 play a role in the creation of chemical defenses against herbivory (Xu et al. 2004), and VAMP 

family proteins function in plant disease-resistance pathways (e.g. to powdery mildew: Yun et al. 2016). 

Conversely, other outliers such as BONZAI 3-like are known to repress plant immunity, facilitating 

growth and development (Li et al. 2009b). 

 Interestingly, we found two flowering-related genes in the windows of interest. Considering that 

only 35 regions were found to affect flowering in sunflower in a recent GWAS study (Badouin et al. 

2017), it is unlikely that these would be found by chance alone. The first related protein, floral homeotic 

protein APETALA 2-like (AP2), is a transcriptional activator that promotes early floral meristem identity, 

and is necessary for the transition of an inflorescence meristem to a floral meristem (Jofuku et al. 1994). 

The second, AGAMOUS-like 24 (AGL24), was associated with a strong peak on chromosome 15, and is a 

transcription factor that mediates crosstalk between the flowering time genes FT, SOC1 and LEAFY. 

Overexpression of AGL24 in Arabidopsis thaliana leads to precocious flowering, while loss of AGL24 

results in late flowering (Yu et al. 2002). Finally, genes coding for an ABC-transporter and two 

cytochrome P450s were identified. Both families, though associated with diverse functions, have been 

implicated in non-target site herbicide resistance (Yuan et al. 2007; Nol et al. 2012). 
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3.4 Discussion 
 In this study, we compared collections of wild sunflowers infesting crop fields (agricultural-weed 

or “weedy” populations) to those collected from more natural environments (non-agricultural or “wild” 

populations). In common garden work, weedy sunflowers have been shown to demonstrate a shift in 

life-history strategy (see Chapter 2 & Mayrose et al. 2011), trading off stress tolerance in favour of 

growth and reproduction. Here, we examined the genomes of sixteen individual sunflowers (eight 

weedy and eight wild) to look for regions of parallel differentiation between the two types. Using two 

complementary approaches, a sliding window analysis of cluster separation scores (a metric based on 

genetic distances: Jones et al. 2012) and a distinct, variable-sized window analysis of FST between groups 

(following the methods of Beissinger et al. 2015), we found a number of potential small regions of 

genetic differentiation scattered across the genome. Within these regions, there are candidate genes for 

observed phenotypic differences, including genes linked to plant growth, immunity and abiotic stress 

tolerance, as well as two genes (AP2 and AGL24) with known roles in the transition to and timing of 

flowering. 

3.4.1 Parallel Adaptation to the Agricultural Environment Proceeds from Standing Variation 
 Despite ongoing gene flow among sunflower populations of different types, we were able to 

identify regions of genetic differentiation between weedy and wild individuals, though these did not 

pass strict false-discovery rate correction (FDR). However, careful evaluation of the proportion of true 

null hypotheses (which ranged from π0 = 0.88 to 1 across chromosomes) revealed a meaningful fraction 

of true alternative hypotheses (given as π0-1) for most chromosomes. Thus, although the FDR method 

was not able to identify which specific windows were true outliers, we decided to look within top-

ranked windows (mean CSS ≥ 0.3, CSS p < 0.01 and W-statistic in the top percentile) for candidate genes. 

These windows should be approached with caution as not all represent true outliers, though as a group, 

they indicate regions of interest. It is possible that including a larger number of individuals in our 

analysis may strengthen our ability to detect outlier windows. However, this may not be the case, given 

that there is likely variability among individual weeds from different populations (i.e. genetic differences 

are not fixed between types), leading to small effect sizes. With a larger sample size, it would however 

be possible to better account for the paired nature of the data (i.e., weedy-wild populations are paired 

by latitude), which would likely strengthen our findings, as strong genetic differences due to adaptation 

to climate, for example, may be masking the relatively weaker signal of weedy-wild divergence. 
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 We observed a total of 148 potential regions of parallel differentiation, varying in size, that in 

total accounted for a small fraction of the sunflower genome (less than 1%). Given that our 

methodology, i.e., pooling individuals from each population type, only identifies regions that have 

diverged in parallel across all agricultural-weed populations, this represents a conservative estimate of 

the proportion of the genome implicated in the evolution of weediness. Regions (and loci) that are 

differentiated in only one or a few population pairs will go undetected here, as they will not achieve 

high CSS values (Dolph Schluter, personal communication), though any such unique adaptations may be 

important locally. Nonetheless, long-standing weedy populations (i.e., that have been crop weeds 

consistently for decades) do show some potential parallel genetic changes. This result is perhaps 

unexpected. Kane and Rieseberg (2008) found that weedy sunflowers (from a different region of the 

USA) are more closely related to nearby non-agricultural, wild populations than to other weedy 

populations, implying that weediness has arisen independently. Given the large geographic distances 

between many weed populations, this could allow for adaptation to proceed individually and 

idiosyncratically among weed populations. Helianthus annuus shows a pattern of isolation-by-distance 

across the Midwest region where our populations were collected from (see Chapter 4), without 

significant population structure; this is suggestive of independent evolution of the weedy populations in 

our study. While it is possible that beneficial weedy alleles have been shared across the range, given the 

short timespan over which agriculture has intensified (beginning with the Green Revolution less than 

100 years ago), adaptation from standing genetic variation seems more plausible, i.e. soft selective 

sweeps (Hermisson and Pennings 2005). 

 For each region of interest, we identified an average of 1.8 genes. The proportion of potential 

differentiated regions was less than 1% of the genome, within the range found by other whole genome 

resequencing studies of divergence between contrasting environments, although these controlled for 

FDR (and we did not). For example, Jones et al. (2012) identified a genome-wide set of loci associated 

with the divergence of marine-freshwater stickleback, G. aculeatus, using two different methods; outlier 

regions accounted for from 0.2% of the stickleback genome (when only consensus regions were 

considered) to 0.5% (considering regions identified by either method). In contrast, Miller (2016) found a 

higher proportion of the stickleback genome (1.7%) had differentiated in response to predation by 

sculpin. Both studies identified standing genetic variation as playing an important role in the repeated 

evolution they observed, as with weedy sunflowers. Moving to plant species, Steane et al. (2017) 

compared populations of three Eucalypts (Eucalyptus spp.) growing across a rainfall gradient in Southern 

Australia; the proportion of outlier loci detected ranged from 0.12-0.2% (E. salubris F. Muell.), to 1.4% 
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(E. loxopleba Benth.), to 2.6% (E. tricarpa (L.A.S. Johnson) L.A.S. Johnson & K.D. Hill), but the authors 

attributed the low percentage for E. salubris to be due to small sample size. In a comparison of 

Arabidopsis lyrata (L.) O’Kane & Al-Shehbaz populations growing on serpentine versus non-serpentine 

soils, Turner et al. (2010) identified 96 loci associated with soil type out of 8.4 million SNPs analyzed. 

Also in serpentine soils, Porter et al. (2017) found up to 3% of genes were associated with divergence 

between wild Mesorhizobium strains found in nickel-enriched serpentine soils versus low-nickel soils. In 

combination with these findings, our results suggest that differentiation due to adaptation to 

contrasting environments occurs only for a small fraction of the genome, though this depends to some 

extent on the stringency of the methods used to detect locally adapted regions. 

 Regions of divergence between weedy and wild populations were not evenly distributed across 

the genome, but rather followed a more clumped distribution. This finding is consistent with that of 

many previous studies (e.g. Nosil et al. 2009; Nadeau et al. 2012; Renaut et al. 2012; Delmore et al. 

2015), which have shown that the loci involved in local adaptation often group together. As adaptation 

often proceeds with ongoing maladaptive gene flow, theory predicts that adaptive alleles may be 

located close together (Yeaman 2013), as less recombination events will then occur to separate co-

adapted alleles. For the same reason, these clusters of adaptive loci may often occur in genomic regions 

of low recombination (Samuk et al. 2017). Given the close proximity of many wild sunflower populations 

on the landscape, and the ability of sunflower pollen to travel some distance (1 km or more: Arias and 

Rieseberg 1994), weedy populations almost certainly receive a constant influx of pollen from nearby 

wild populations (as well as from crop sunflower). Hence, the combined forces of divergent selection 

and homogenizing gene flow may have produced the clumped distribution seen here, although other 

explanations are possible (see Cruickshank and Hahn 2014). 

3.4.2 Multiple Genes of Small Effect Contribute to Phenotypic Differences 
Regions of genetic differentiation between the weedy and wild populations were found to 

overlap with 267 genes in the H. annuus XRQ reference genome annotations, suggesting that 

agricultural environments result in selection on a substantial number of genes. As multiple genes 

overlapped with the same region in some cases, it is possible that not all genes are selected loci 

however. In the case of tight linkage between two loci within a region, for example, only a single loci 

may be the target of selection. Neutral or even slightly deleterious alleles may “hitch-hike” (Barton 

2000) along with selected loci when in tight linkage. Hence, the outlier list should be approached with 
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some caution, and requires further study to explore and validate the candidates. Candidate genes were 

diverse, coding for many types of proteins, but many were implicated in plant stress response pathways. 

Our findings are consistent with previous work on weedy sunflower populations infesting corn 

fields that identified between 1% to 6% of tested loci (from a total of 106 microsatellites), “a small, but 

not insignificant fraction of the genome” (Kane and Rieseberg 2008 p. 384), as outliers in comparisons 

with wild populations. Similar to Kane and Rieseberg (2008), we also identified transcription factors, 

membrane-bound transporters and heat-shock proteins as top candidate genes, though it is unknown if 

the two studies identified any of the same genes. Working with a subset of the same populations as 

Kane and Rieseberg (2008), Lai et al. (2008) examined gene expression using a sunflower cDNA 

microarray. Growing individuals in a common growth chamber, gene expression was found to differ 

between weedy and wild populations at 165 uni-genes (~5% of the total). Interestingly, uni-genes were 

enriched for abiotic/biotic stimulus and stress response proteins, as suggested by our work, although we 

did not carry out a formal GO enrichment analysis. 

Unlike mapping studies, genome scans for regions of divergence do not provide information on 

the effect sizes of candidate genes. Thus, we cannot rank our candidates in terms of their importance for 

weed adaptation. However, given the number of loci identified as potential candidates, it seems likely 

that weed evolution has involved many genes that are of small individual effect. Agricultural-weed 

sunflowers differ from wild sunflowers for multiple phenotypic traits (e.g. seedling growth rate, 

flowering time, drought tolerance, etc.) and this may necessitate the involvement of multiple genes and 

pathways with different functions. Similarly, many of the traits distinguishing agricultural weeds 

represent complex, quantitative phenotypes, again perhaps precluding a simple genetic basis. For 

example, drought tolerance has been well studied in crop plants such as wheat, where the genetic basis 

has been found to be multi-genic, with low trait heritability and high G×E interactions (Fleury et al. 

2010). 

Many candidate genes (e.g. ascorbate peroxidase 3, DREB2A-interacting protein 1, luminal-

binding protein 5) were linked to abiotic or biotic stress response pathways in plants, though we did not 

test statistically for enrichment of this gene category. As part of the life-history shift observed for weedy 

sunflowers, stress tolerance has been traded-off in favour of faster growth and development. This may 

be achieved through the same genes linked to the decreased stress response. For example, the 

candidate BON3 (producing protein BONZAI 3-like) has been shown to negatively regulate disease 

resistance (R) genes in Arabidopsis (Li et al. 2009b). Pathogen resistance responses can impose fitness 
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costs even in the absence of pathogens (Tian et al. 2003) and mutants with constitutive expression of R 

proteins often exhibit growth defects (e.g. Shirano et al. 2002); therefore, control of R gene expression, 

such as that achieved via BON3, is necessary to maximize plant growth. 

Agricultural weeds may frequently evolve herbicide resistance (Heap 2014) as an important 

adaptation to infesting modern agricultural fields. The International Survey of Herbicide-Resistant 

Weeds (www.weedscience.org; retrieved on 22 Sept 2017) reports that 210 agricultural weed species 

worldwide have evolved resistance to a least one type of herbicide, with evolved resistance reported for 

152 different herbicides. Thus, it seems likely that this may also be an important source of strong 

selection on weedy sunflowers, and indeed resistance to common herbicides (e.g. imazethapyr, 

imidazolinone, and sulfonylurea) has been reported for sunflower in several regions of the US (Massinga 

et al. 2003). In this study, we identified an ABC-transporter and two cytochrome P450 monooxygenases 

as candidate genes. Both represent large protein families (Kang et al. 2011), with P450s being the third 

largest gene family in Arabidopsis (Mizutani 2012), participating in a variety of biochemical pathways. 

Interestingly, both have been implicated as playing key roles in herbicide resistance achieved via 

detoxification mechanisms (see Yuan et al. 2007 for a review). For example, Nol et al. (2012) found that 

two ABC-transporters (M10 and M11) were upregulated in Conyza canadensis (L.) Cronquist individuals 

treated with glyphosate, supporting a role for these genes in glyphosate resistance via reduced 

translocation. While we do not know if the candidate genes identified here are responsible for herbicide 

resistance, or if they were simply picked up by chance in the analysis, the possibility is intriguing. 

3.4.3 Conclusions 
 In our study of parallel adaptation in agricultural-weed populations of wild sunflower, we found 

a number of small regions of potential genetic differentiation between weedy and wild populations. The 

regions identified here were discovered on the basis of parallel changes across multiple weedy 

populations, and hence are likely to be the result of adaptive evolution. While neutral processes, such as 

genetic drift, may result in allele frequency differences between populations, it is unlikely that the same 

changes would occur repeatedly across populations due to chance alone (Elmer and Meyer 2011). Given 

that agriculture originated less than 12,000 years ago (Doebley et al. 2006), and that agricultural 

intensification in the US and Canada has occurred in only the last 100 years, evolutionary changes seen 

here have taken place in a relatively short timespan. Adaptation to an agricultural context has also 

occurred in the face of gene flow from wild sunflower populations, as shown by both other theoretical 

work and empirical work in other species (e.g. see Nosil 2012; Westram et al. 2014). Our results 

http://www.weedscience.org/
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represent one of a growing number of studies using whole genome resequencing to study ecological 

differentiation and illustrate the power of the approach to detect candidate loci and regions of 

divergence. 
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Table 3.1: Summary statistics by chromosome for the CSS analysis , including the number of windows with sufficient data for analysis, the mean 

and maximum number of SNPs per window, and the number of windows with p < 0.01. 

Chromosome Chromosome 
Length (Mb) 

Chromosome 
Length (SNPs) 

Number of 
Windows 

Mean 
Number of 

SNPs 

Maximum 
Number of 

SNPs 

Number of 
Windows 

with p < 0.01 

1 153.9 144,953 6,199 40.3 209 121 
2 180.6 136,030 5,890 38.2 157 48 
3 168.5 158,953 6,545 42.5 191 50 
4 178.9 153,726 6,668 39.3 175 54 
5 219.0 175,721 7,429 40.0 187 71 
6 103.8 106,435 4,448 41.6 176 46 
7 103.8 99,389 4,141 41.7 234 57 
8 153.2 148,232 6,216 41.3 222 76 
9 209.8 206,635 8,375 43.5 222 77 

10 246.3 215,859 9,082 40.8 177 108 
11 168.4 137,508 5,860 39.6 214 54 
12 166.4 155,423 6,518 40.3 188 31 
13 197.2 185,970 7,984 40.3 191 36 
14 174.4 167,239 6,751 43.3 184 70 
15 171.2 181,039 7,723 40.8 212 95 
16 188.6 182,372 7,809 40.4 176 95 
17 214.7 185,560 7,840 40.5 191 95 
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Table 3.2: Summary statistics by chromosome for the FST analysis using the cubic smoothing spine technique of Beissinger et al. (2015) to identify 

distinct window boundaries; windows may be of variable size. 

Chromosome Number of 
Windows 

Mean 
Window Size 

(bp) 

Maximum 
Window Size 

(bp) 

Mean 
Window Size 

(SNPs) 

Maximum 
Window Size 

(SNPs) 

Number of 
Windows in 

Top 1% 

1 3,382 45,503 553,600 43.7 390 34 
2 3,013 59,886 813,400 46.0 311 31 
3 3,388 49,606 701,800 47.9 292 34 
4 3,849 46,420 714,000 40.8 306 39 
5 3,130 70,002 518,500 57.2 418 32 
6 2,663 38,988 386,500 40.8 257 27 
7 2,028 51,206 579,800 50.1 316 21 
8 3,554 43,089 653,600 42.5 361 36 
9 3,966 52,869 729,600 53.2 363 40 

10 4,627 53,215 666,200 47.5 476 47 
11 3,150 53,481 576,900 44.6 369 32 
12 3,341 49,817 1,147,400 47.4 382 34 
13 4,631 42,582 743,100 40.9 299 47 
14 4,166 41,863 628,300 41.0 324 42 
15 4,086 41,863 881,100 45.1 305 41 
16 4,113 45,831 737,600 45.2 323 42 
17 3,937 54,537 774,100 48.1 432 40 
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Figure 3.1: North American range of Helianthus annuus (based on Rogers et al. 1982) and collection locations of populations included in this 

study. Each agricultural-weed population was paired with a nearby non-agricultural population of wild sunflowers, and location names are for 

the pair. Note that two of the population pairs included in the phenotypic comparisons of Chapter 2 (Iowa 1 and Kansas 1) are not included in 

the genetic analysis. 
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Figure 3.2: Hypothetical graphs illustrating the first two components (PC1 and PC2) of a principal components analysis (PCA) conducted on 

genotype data where the CSS metric is (a) positive (CSS > 1), (b) neutral (CSS = 0) and (c) negative (CSS < 0). Each “x” represents an individual that 

is an agricultural-weed, while each “o” is a wild, non-agricultural individual. In this analysis, we are primarily interested in cases where CSS is 

positive, and there is greater genetic distance between individuals from different groups than among individuals of the same group. 
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Figure 3.3: Depiction of the cubic smoothing spline method developed by Beissinger et al. (2015) for a hypothetical chromosomal segment. (a) 

First, a cubic smoothing spline (shown in red) is fitted to the raw data: FST values for each SNP in this case. (b) Inflection points, indicated by the 

dashed lines, are identified where the second derivative of the spline equals zero. (c) Using the inflection points to define distinct window 

boundaries, data are summarized for each window using a W-statistic, for example. 
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Figure 3.4: Pattern of decay in linkage disequilibrium (LD), as estimated by the squared correlation coefficient among genotypes r2, for 

chromosome 14. Data points represent the mean LD for pairs of SNPs located in each 1 kb bin, with error bars showing standard errors. The red 

line depicts a cubic spline fit using a generalized-additive model (GAM) with normal errors (adjusted R2 = 89.6%). 
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Figure 3.5: Plot of weighted FST calculated as the “ratio of averages” for all SNPs in a window versus the cluster separation score (CSS) for 10,000 

bp windows located across the genome. Both metrics assess genetic differentiation between agricultural-weed populations and non-agricultural 

populations of sunflower. Points coloured red indicate windows where p < 0.01 in the CSS analysis. 
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Figure 3.6: Genome-wide distribution of CSS and W-statistic scores (based on FST data), which are both presented as ten-window rolling 

averages. All chromosomes are plotted on the same scale. Values of CSS are shown in black with a corresponding axis on the left-hand side; W-

statistics are shown in red with a corresponding axis on the right-hand side. Both metrics show strong concordance in their patterns, with many 

small regions of genomic differentiation between agricultural-weed and non-agricultural sunflowers scattered across the genome. 
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Figure 3.7: Ten-window rolling average of the CSS metric between agricultural-weed and non-agricultural sunflower populations for 

chromosomes 1 (a), 7 (b) and 17 (c). All chromosomes are plotted on the same scale. Blue line segments indicate the presence of outlier 

windows, which often, but not always, correspond to the highest peaks in CSS. 
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Chapter 4 : Genome-Wide Association Analysis of Glyphosate Resistance 

in Wild Sunflowers 

4.1 Introduction 
 Herbicide resistance represents a striking example of rapid evolution. While humans have 

battled to control weeds reducing crop productivity since the inception of agriculture, herbicides have 

only become an integral part of this battle in the last half century or so (Vats 2015), meaning that 

resistance has evolved in just a few short decades, with the exact timeframe depending on the 

herbicide. Globally, the evolution of herbicide resistance has been reported in an ever-increasing 

number of weed species annually (see Figure 4.1), with resistance to at least one herbicide reported in 

252 species to date, according to the International Survey of Herbicide Resistant Weeds (Heap 2017). 

Weeds have evolved resistance to 163 herbicides, with 23 unique sites of action (where a site of action 

is the specific protein inhibited by an herbicide), with some species resistant to more than one herbicide 

and/or site of action. Furthermore, distantly related species may evolve resistance to the same herbicide 

or site of action, presenting interesting cases of convergent evolution (Baucom 2016). Thus, from the 

perspective of evolutionary biology, evolved herbicide resistance (as opposed to the natural tolerance, 

or innate resistance, some species can show to certain herbicides: Nandula 2010) represents an exciting 

opportunity to understand the genetics of adaptation as it proceeds in “real time”. What is the role of 

standing genetic variation versus de novo mutation in the genetics of resistance? Are structural (i.e., 

protein changing) or regulatory (i.e., gene expression changing) mutations more commonly involved? In 

cases of convergence seen across genera, are the same or different genetic mechanisms involved? And, 

finally, what are the fitness consequences of resistance and its dynamics over space and time? 

Meanwhile, from a practical standpoint, the economic costs of weed control are huge (Pimentel et al. 

2005). Achieving weed control in the long-term requires better management practices, which depend on 

knowledge of the evolutionary dynamics and mechanisms of resistance (Neve et al. 2009). 

 The majority of herbicides inhibit specific plant enzymes, known as “target sites”, that are 

essential to plant metabolism (Powles and Yu 2010). As such, there are two main types of mechanisms 

by which herbicide resistance can evolve: target-site and non-target-site resistance. Target-site 

resistance (TSR) results from alterations to the target enzyme such that the herbicide can no longer 

effectively inhibit enzyme action. For example, resistance to the herbicide triazine is mediated by a 

single mutation that has evolved independently in weedy species worldwide (Fuerst and Norman 1991); 

here, a point mutation in the chloroplastic psbA gene encoding the targeted enzyme (photosystem two 
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protein D1) causes a single amino acid shift (Ser-264-Gly) in the binding site of D1 (Oettmeier 1999), 

which is sufficient to prevent triazine binding. The Ser-264-Gly mutation still allows for normal enzyme 

function, but at a reduced level (Gronwald 1997). This is a common feature of TSR involving binding site 

changes in targeted enzymes: plant fitness may be lowered in the absence of the herbicide as a result of 

reduced efficiency of the enzyme (Vila-Aiub et al. 2009). Alternatively, TSR may involve enhanced 

expression of the targeted enzyme (via gene amplification or alterations to the promoter), which can 

allow critical reactions to proceed via overproduction of the enzyme. For example, in Palmer amaranth 

(Amaranthus palmeri S. Watson), genotypes resistant to the herbicide glyphosate possess a greater 

number of copies of the EPSPS gene, and this translates into greater EPSPS protein levels and enzymatic 

activity (Gaines et al. 2011). The mechanism underlying this gene amplification remains unknown, but 

transposon-mediated amplification seems likely (Gaines et al. 2013). By nature, TSR is typically 

monogenic (Mithila and Godar 2013) and can exhibit varying levels of dominance (see Powles and 

Shaner 2001 for examples).  

 Non-target-site resistance (NTSR) encompasses various non-exclusive means of preventing an 

herbicide from reaching its target site (Powles and Yu 2010), including decreased foliar penetration or 

translocation of the herbicide within the plant, as well as increased sequestration or metabolic 

detoxification of the herbicide. Over evolutionary time, plants have developed sophisticated 

detoxification systems for harmful chemicals (Vaahtera and Brosché 2011), and these may be co-opted 

in new ways to remove toxic herbicide molecules. Many plant detoxifying enzymes and transporters 

may be involved in NTSR (Délye 2013), and overall our understanding of the physiological basis of most 

cases of NTSR is poor (Ghanizadeh and Harrington 2017b). Participation in NTSR has been confirmed for 

only four gene families to date (Yuan et al. 2007): cytochrome P450 mono-oxygenases, glutathione S-

transferases, glycosyltransferases and ABC transporters. For example, in velvetleaf (Abutilon theophrasti 

Medik.), glutathione S-transferases (GSTs) have been reported to mediate triazine resistance via 

detoxification by glutathione conjugation (Anderson and Gronwald 1991); resistance is achieved via 

increased GST activity that results from enhanced catalytic capacity (Plaisance et al. 1999), suggesting 

there has been a mutation that enhances herbicide binding. A unique feature of NTSR is that, unlike TSR 

which is very herbicide specific, NTSR can unpredictably confer resistance to multiple herbicides, 

including herbicides with different sites of action or even novel products not yet marketed (e.g. Preston 

et al. 1996; Cummins et al. 1999; Petit et al. 2010). Thus, NTSR represents a clear threat to weed 

management, and more information is urgently needed on this widespread, but poorly characterized, 

form of resistance (Délye 2013). Given the complexity and diversity of NTSR mechanisms, which often 
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involve a coordinated cellular response, it is believed that NTSR is typically a quantitative trait that 

evolves through the accumulation of different resistance alleles, though there are very limited data on 

the genetics of NTSR in existing weeds (Yuan et al. 2007). 

 Dubbed a “once-in-a-century” herbicide (Duke and Powles 2008) for its versatility, efficacy and 

low environmental toxicity, N-(phosphonomethyl)glycine, or glyphosate, has risen in prominence since 

its introduction in 1974. Commercialization of genetically engineered glyphosate-resistant crops by 

Monsanto in the late 1990s greatly contributed to the utility of glyphosate. Glyphosate is currently the 

most used herbicide in the world, with particularly high levels of consumption in the Americas (Powles 

and Preston 2006; Benbrook 2016), largely due to the extensive adoption of glyphosate resistant, 

Roundup Ready corn (Zea mays L.), cotton (Gossypium spp.) and soybean (Glycine max (L.) Merr.) in the 

U.S.. The global glyphosate market has been predicted to exceed 1.1 million metric tonnes by 2022 

(Global Industry Analysts, Inc.), based on the growing popularity of Roundup Ready crops, low- and no-

till systems and an expected increase in biofuel projects. The evolution of glyphosate resistance in 

weeds was initially thought to be very unlikely for several reasons (Bradshaw et al. 1997), including the 

difficulty in developing resistance in crops (which ultimately required the use of a bacterial transgene, as 

site-directed mutants had only low levels of resistance), the fact that many tested plant species did not 

readily metabolize glyphosate, and the lack of resistance observed in weeds in the first 20 years of 

commercial use. However, resistance was eventually reported in 1996 and its prevalence continues to 

increase (Heap 2014). There are currently 38 glyphosate resistant weed species, as reported by The 

International Survey of Herbicide Resistant Weeds (Heap 2017); species include both monocots, such as 

Lolium rigidum Gaudin (the first species to have documented resistance: Powles et al. 1998) and 

Eleusine indica (L.) Gaertn. (Lee and Ngim 2000), and dicots, such as Ambrosia artemisiifolia L. (Brewer 

and Oliver 2009) and Conyza canadensis (L.) Cronquist (VanGessel 2001). Many of these species are now 

under study to determine the mechanism(s) and genetics of resistance, and more recently genomic 

approaches have been initiated. 

Glyphosate exerts its toxic effects by binding to and consequently inhibiting the function of the 

chloroplastic enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) (Steinrücken and Amrhein 

1980). This enzyme plays a key role in the shikimic acid pathway, catalyzing the reaction of shikimate-3-

phosphate (S3P) and phosphoenol pyruvate to form 5-enolpyruvyl-shikimate-3-phosphate (ESP). The 

shikimic acid pathway converts simple carbohydrate precursors into aromatic amino acids (i.e., 

phenylalanine, tyrosine and tryptophan), which may be transformed into plant hormones, vitamins and 
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other metabolites essential for plant function (Herrmann and Weaver 1999). When glyphosate is 

sprayed on a plant, it is initially and quickly absorbed through foliar surfaces and then translocated 

within the plant to growth sites such as meristem and roots where it will bind EPSPS (Duke and Powles 

2008). As the reaction is blocked, shikimic acid begins to build up (leading to carbon shortages) and 

aromatic amino acids stop being produced; the plant eventually dies from starvation. The EPSPS enzyme 

active site is highly conserved across higher plant families, enabling glyphosate to affect a broad 

spectrum of weedy plant species (Garg et al. 2014). Several weed species have independently evolved 

TSR to glyphosate via a single amino acid change in EPSPS position 106 (see e.g. Christoffers and 

Varanasi 2008 for a review) that reduces the binding affinity of glyphosate but does not eliminate it 

completely. Thus, the resistance conferred by binding site changes in EPSPS is relatively weak (~2-4 

times that of susceptible plants); in contrast, recently documented cases of NTSR confer higher levels of 

resistance (~8-12 fold) (Perez-Jones et al. 2007). To date, reported NTSR mechanisms are varied and 

include reduced translocation (e.g. Koger and Reddy 2005; Nandula et al. 2008), active vacuolar 

sequestration (Ge et al. 2010), limited cellular uptake (Ge 2013) and a rapid necrosis response 

(Robertson 2010). No alleles involved in NTSR have been identified yet (Délye 2013), but 

transmembrane transporter proteins are suspected to play a role in reduced translocation and 

sequestration.   

Glyphosate resistance was first identified in wild, annual sunflower (Helianthus annuus L.) 

populations from the US Midwest and Canadian prairies in 2012 glasshouse trials by our lab group 

(unpublished results), and confirmed in field trials by an industry collaborator, DuPont-Pioneer, at 

roughly half to two-thirds the 1 kg a.e. ha-1 rate typically applied by a farmer. Sunflower populations 

from Texas have also been reported to have glyphosate resistance (as of 2015) on the International 

Survey of Herbicide Resistant Weeds (www.weedscience.org, Heap 2017; retrieved on 10 Oct 2017). 

Wild sunflower is known to have evolved resistance to other common herbicides, including imazethapyr, 

imidazolinone, and sulfonylurea (Massinga et al. 2003). Here, we investigated the genetic basis of 

glyphosate resistance segregating in our sunflower populations using next-generation sequencing and 

genome-wide association mapping, a statistical technique that examines phenotype-genotype 

correlations for each genetic marker. Genomics offers powerful opportunities for identifying the loci 

underlying evolved herbicide resistance (Stewart et al. 2009), as well as the inheritance, occurrence and 

movement across the landscape of herbicide-resistance genes. Especially in the case of NTSR, the lack of 

progress in elucidating underlying mechanisms and loci may be due in part to limited availability of 

genomic information (Yuan et al. 2007), a situation that will hopefully improve as sequencing continues 

http://www.weedscience.org/
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to decrease in cost. With the recent availability of a high-quality reference for the sunflower genome 

(Badouin et al. 2017) created using long reads generated by PacBio sequencing, sunflower mapping 

studies based on high-density single-nucleotide polymorphism (SNP) data obtained from resequencing 

are now possible. To our knowledge, ours is the first study to date to utilize whole genome shotgun 

(WGS) resequencing data to investigate the loci and alleles underlying glyphosate resistance. 

4.2 Materials and Methods 

4.2.1 Plant Materials 
 The association mapping population included Helianthus annuus accessions from three different 

sources (Table 4.1): the twenty paired agricultural-weed and non-agricultural wild sunflower 

populations collected across the Midwest in 2011 (described in Chapter 2), eight weedy populations 

obtained from Dr. Matt King (DuPont-Pioneer, Iowa) based on targeted collections in 2013 (hereafter 

the “Matt King [MK]” populations), and pre-breeding materials provided by an industry collaborator. 

The MK collections were made in the Central USA (Figure 4.2) and represented populations highly likely 

to possess glyphosate resistance. These populations were found directly infesting fields of Roundup 

Ready crops in intensively-managed agricultural areas. All eight MK populations were large, containing 

1,000 individuals or more. Within a population, seeds were collected from a number of mother plants in 

a random fashion, for an average of 33 maternal families per population (range = 27 to 55). 

 In 2013, we shared seed materials with an industry collaborator, DuPont-Pioneer, for field 

validation of our preliminary glyphosate testing results. The shared materials included seeds from six 

weedy populations collected for my thesis (IA1A, IA2A, KS1A, KS2A, MO1A, and SD1A), as well as F1 seed 

from each of three crosses I made in 2012 between a glyphosate-resistant, weedy father (i.e., pollen-

donor) and a susceptible cultivated mother. Two fathers were from Kansas (KS2A families 22 and 6) and 

one from North Dakota (ND1A family 4). To facilitate crosses, all maternal plants (i.e., pollen recipients) 

were cytoplasmic male sterile (cms) HA 412 individuals; HA 412 is a maintainer germplasm line available 

from the United States Department of Agriculture (USDA) National Plant Germplasm System (NPGS) 

collections (PI 603993). After screening all donated materials for glyphosate resistance at a rate of ⅔ kg 

a.e. (i.e., acid equivalent) of glyphosate per hectare (i.e., two-thirds the field application rate), 

collaborators at DuPont-Pioneer allowed the survivors to freely inter-mate. The DuPont-Pioneer pre-

breeding materials used here are seeds produced by this process. Note that individuals were of mixed 

origin and some may represent crop-wild hybrids. 
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 Our goal was to include as diverse material as possible in the association mapping population. 

With this in mind, we tried to maximize the inclusion of maternal families for all source materials. For 

the twenty thesis populations, with the exception of “Man” (which was bulked seed; see Table 4.1), we 

germinated seeds from at least ten maternal families per population (more for populations with lower 

germination fractions in the common garden, Chapter 2), with the goal of obtaining at least ten 

individuals per population (i.e., n = 200 total), each from a different maternal family. Similarly, we 

germinated seeds from twelve maternal families for each MK population, with the goal of inclusion of at 

least ten individuals from unique maternal families in the mapping population (n = 80 total). From the 

DuPont-Pioneer pre-breeding materials, seeds from twenty accessions (i.e., maternal families) were 

germinated, with the goal of including one individual for each (n = 20). Hence, the anticipated size of the 

mapping population would be 300 individuals or more. 

4.2.2 Determination of Glyphosate Resistance Phenotype 
 We grew seedlings for the mapping study in a glasshouse at the University of British Columbia 

(UBC) in Vancouver, Canada in summer 2014. Seeds for the populations and maternal families described 

above (4.2.1 Plant Materials) were scarified on July 10th, 2014 and placed on moist filter paper in petri 

dishes to imbibe overnight. Seed coats were fully removed on the following day to enhance 

germination. We watered with a 1% solution of plant preservative media to reduce microbial 

contamination and changed filter paper daily. Seeds were germinated in the dark; once greening (i.e., 

chlorophyll production) of any seeds in a given dish occurred, the dish was transferred to the light for 

the completion of germination. Germination dates were recorded at the level of the family (i.e., we did 

not keep track of individual seeds), and a seed was considered “germinated” once the primary root was 

at least 1 cm long and some secondary roots had appeared. 

 We planted seedlings as they germinated beginning on July 14th, 2014. Seedlings were planted 

into 5 cm diameter conical “Deepots” (Stuewe & Sons, Inc.), which we had pre-filled with potting soil (a 

mix of 75% peat with 25% perlite) in sequential order. Planting date was recorded individually. Seedlings 

were kept on a mist bench initially after planting, to avoid dehydration. Once all seedlings were planted, 

we fully randomized the experiment on July 20th, 2014, with individual Deepots placed in support trays 

with 50 slots each (i.e., a seedling density of 269 per m2). Trays were laid out in a large rectangle on a 

glasshouse flood bench receiving 16 hours of supplemental lighting per day, delivered by 600 W high-

pressure sodium lights. We continued to mist by hand twice daily, until seedling roots were long enough 
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to obtain water from the flood bench. The bench was flooded twice daily with a solution of weak 

fertilizer water prepared on-site. 

 We took twice-weekly non-destructive measurements of seedling growth, which included the 

height (i.e., length of the main stem), number of true leaves and dimensions of the largest leaf. Owing to 

the diversity of the plant materials included, we observed significant variation in growth rates (as time 

to reach the four-leaf stage). Hence, we decided to split the experiment into two groups, to be treated 

with glyphosate on different dates. While not ideal, this approach reduced the variation in leaf number 

among individuals in each spray group; studies in other species have shown a strong effect of plant size 

or growth stage at the time of herbicide treatment on the level of resistance observed (see e.g. Shaner 

2010; Chauhan and Abugho 2012; Dennis et al. 2016). As seedlings approached the four-leaf stage (our 

desired target for the time of spraying), they also became crowded and overlapping. As this could have 

an impact on the amount of glyphosate received (when delivered as a foliar spray), we also decided to 

increase the spacing at this time (to 134 plants per m2); plants were kept in the same order, but each 

tray was expanded into two, with Deepots placed in every second available slot. 

The first spray group, with seedlings ranging in size from four- to eight-true leaves, was treated 

with glyphosate on July 31st, 2014, after taking pre-spray photographs of every seedling. Similarly, group 

two seedlings were photographed and then treated a week later, on August 6th, 2014. Each plant was 

individually sprayed with 1 mL of glyphosate solution, delivered from a pre-calibrated spray bottle 

positioned at a constant distance of 20 cm above all plants. We used a commercial formula available 

locally: Roundup Concentrated Grass and Weed Control, 1-L, rainproof in 2 hours (143 g a.e. L-1). As the 

ingredient list for this product is proprietary, we unfortunately do not know which chemical surfactants 

(used to enhance foliar penetration, coverage and overall herbicide effectiveness) are included in the 

formula. The concentration of the solution was calibrated to deliver a rate of 0.5 kg a.e. ha-1 (or half the 

field rate), calculated based on the size of the Deepot trays. Because some plant leaves spread past the 

edges of the Deepots, we also delivered 1 mL of spray above each empty slot in a tray, and an additional 

34 mL in a perimeter around each tray, to ensure even coverage. Note that seedlings do not receive 

identical doses with a spray application, however, as plants have different surface areas and angles of 

leaves (which can cause more or less of the herbicide to drip off). Cultivated sunflowers (HA 89, NPGS PI 

599773) were used as positive controls (n = 15), while extra seedlings (from a variety of populations, n = 

46) not included in the mapping served as negative controls being sprayed with 1 mL of distilled water 

only. 
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Post-spray photos were taken at one week post-treatment and deaths resulting from the 

glyphosate treatment were recorded daily. Meanwhile, surviving individuals were assessed 

quantitatively at each of the first, second and third week after treatment. For each week, the regular 

non-destructive growth measurements were taken (e.g. height, etc.), but additionally the numbers of 

dead and deformed leaves were recorded, and the presence of any wilting. At three weeks post-

treatment, survivors were ranked visually from one to five, with a rank of one indicating very little 

remaining living tissue, while a rank of five indicated the individual appeared virtually untouched by the 

treatment; dead plants received a score of zero. The severity of the deformation in new leaves was also 

ranked at this time from one to four (1 = leaves < 25% of normal size, 2 = 25% < leaf size < 50%, 3 = 50% 

< leaf size < 75%, and 4 = leaf size >75% of normal size). 

I used the statistical software R (version 3.3.0: R Core Team 2017) to calculate summary 

statistics for the phenotypic data, and to evaluate the relationship between glyphosate resistance and 

each of plant size, spray group and spray tray, using the stats package. Linear models or t-tests were 

used in the case of one categorical and one quantitative variable, as appropriate; quantitative variables 

were log-transformed as needed to achieve normality in the model residuals. In the case of two 

categorical variables, a chi-squared test was used. Seedling biomass was determined by inputting non-

destructive growth measurements (of seedling height and leaf number) into a previously established 

linear model (see regression details in Chapter 2: R2 = 0.9, n = 227 plants). 

4.2.3 DNA Extraction and Library Preparation 
 Prior to glyphosate treatment in each spray group, we collected leaf tissue from newly 

expanded leaves when seedlings were at the four- to eight-leaf stage. Tissue was harvested quickly, 

placed on dry ice shortly after collection and then stored at -80 °C in the lab. For the majority of samples 

(n = 255), I was able to extract genomic DNA cleanly using a modified CTAB protocol based on Murray 

and Thompson (1980). The remaining samples I extracted using either a QIAGEN DNeasy Plant Mini Kit 

(n = 51) or a DNeasy 96 Plant Kit (n = 15) (QIAGEN, Hilden, Germany) which both use silica-based 

columns. Unfortunately, a side effect of the column-based methods was that genomic DNA was 

fragmented, as seen by running out samples on an EtBr-agarose gel. A NanoDrop 1000 

Spectrophotometer (Thermo Fisher Scientific, Waltham MA, USA) was used to assess sample purity, 

while DNA was quantified with a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham MA, USA) 

using a Qubit dsDNA Broad Range (BR) Assay Kit (Invitrogen, Carlsbad CA, USA). 
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 High-purity DNA samples were sheared to an average fragment size of 350 bp using a Covaris 

M220 Focused-ultrasonicator (Covaris, Woburn MA, USA); for column-extracted DNAs that were 

degraded, the shearing protocol was adjusted following manufacturer recommendations to account for 

the smaller initial size of DNA fragments. A total of 750 ng of sheared DNA was then used as starting 

material to prepare a paired-end whole-genome shotgun Illumina library for each sample, using a 

custom lab protocol based on Rowan et al. (2015), the TruSeq DNA Sample Preparation Guide from 

Illumina (Illumina, San Diego CA, USA) and Rohland and Reich (2012). Importantly, completed adapters 

were identical to the Illumina TruSeq adapters. We performed a depletion step on the enriched libraries 

to reduce the representation of repetitive sequences; libraries were treated with Duplex-Specific 

Nuclease (DSN; Evrogen, Moscow, Russia) following the methods of Shagina et al. (2010) and Matvienko 

et al. (2013). As the sunflower genome contains a large fraction of highly repetitive sequences (over 81% 

of the genome is composed of transposable elements: Staton et al. 2012), this step was important to 

maximize the capture of useful sequence data. Libraries were re-amplified after the depletion step and 

six-bp indexes were added at this time (to the P7 adapter) to allow for sample multiplexing. 

 Enriched, depleted libraries were purified twice with 1.6 volumes of a solution of paramagnetic 

SPRI beads (prepared according to Rohland and Reich 2012) to clean up any free primers or adapters in 

our libraries. We quantified libraries using the Qubit BR Assay Kit, and ran them on a 2100 Bioanalyzer 

instrument using a High Sensitivity DNA Analysis Kit (Agilent Technologies, Santa Clarita CA, USA) to 

determine average fragment size. Library molarity was assessed on an iQ5 Real Time PCR Detection 

System (Bio-Rad, Hercules CA, USA). Groups of ten barcoded, randomly-selected libraries were then 

pooled at equal molarity to be sequenced on a single Illumina lane. All libraries were sequenced at the 

Genome Québec Innovation Center on either an Illumina HiSeq X or HiSeq 2500 instrument (Illumina, 

San Diego CA, USA). 

4.2.4 Bioinformatics Pipeline 
 To obtain a set of high-confidence variants (i.e., single-nucleotide polymorphisms, or SNPs) to 

use in the association analysis, we performed a number of data processing steps. Raw sequencing reads 

were cleaned using Trimmomatic (version 0.36: Bolger et al. 2014); this step is necessary to both remove 

technical sequences (i.e., Illumina adapters and barcodes) and low-quality bases, such as those that 

typically occur at the 3' end of a read. Filtered reads were then aligned to the H. annuus reference 

genome (XRQ assembly: Badouin et al. 2017) using the BWA-MEM aligner (version 0.7.12 : Li and Durbin 

2010) with default parameters. Picard (version 2.5, http://broadinstitute.github.io/picard/; retrieved 25 

http://broadinstitute.github.io/picard/


89 
 

Sept 2017) was used to mark duplicate reads, which can result from sequencing the same DNA fragment 

more than once; duplicate DNA fragments arise during the PCR amplification step of library construction 

and are usually removed to avoid biases in variant calling (Ebbert et al. 2016). Potential indels were 

identified and realigned using GATK (version 3.6: McKenna et al. 2010) to remove alignment artifacts. A 

number of libraries were sequenced twice by Genome Québec, resulting in two alignment files per 

individual; this occurred either because a flow cell under-performed in the first run and libraries were 

re-sequenced (on the HiSeq 2500, n = 69), or because the same pool of libraries was sequenced in 

different flow cells at the same time (as a common operating practice on the HiSeq X10, n = 79). For 

these individuals, data were combined prior to variant calling. 

We used a haplotype-based method, as implemented by the Bayesian genetic variant detector 

FreeBayes (version 1.1.0: Garrison and Marth 2012), to identify single nucleotide polymorphisms. 

Variants that were located in transposable elements (TEs) were filtered out by referring to an 

annotation of repeated elements within the reference Helianthus annuus XRQ assembly (Badouin et al. 

2017). Low-quality SNPs were also removed on the basis of quality metric cut-offs obtained using a set 

of validated SNPs from a SNP-chip (Mandel et al. 2013), as described previously in Chapter 3. Briefly, 

SNP-chip variants observed in the SNP data were considered validated, and the distribution of site 

quality metrics was compared between validated and unvalidated SNPs to determine meaningful cut-

offs, with the following filters used: mapping quality score > 20, mean mapping quality of observed 

alternate alleles > 40, and allele balance at heterozygous sites between 0.4 and 0.6. Additionally, only 

biallelic SNPs on mapped scaffolds were considered for this study, and we required a minor allele 

frequency (MAF) > 0.05 for each locus included in the association analysis. Filtering on MAF is standard 

in genome-wide association studies, as when MAF is very small most individuals have two copies of the 

major allele, and this results in low power to detect an effect of the SNP on the trait of interest (Reed et 

al. 2015). 

4.2.5 Genome-Wide Association Study 
To identify SNPs correlated with glyphosate resistance we performed a genome-wide 

association study (GWAS). Association mapping is one of two commonly used methods for identifying 

quantitative trait loci (QTL) underlying a phenotypic trait of interest; the other is QTL-mapping. Unlike 

QTL-mapping, which relies on recombination events in controlled crosses, association mapping takes 

advantage of natural recombination events (that have occurred over evolutionary history) and does not 

use controlled crosses (Yu and Buckler 2006). Thus, association mapping represents a quicker approach, 
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as only a single generation of plants is needed, and may also capture a wider diversity of loci and alleles 

due to the variety of plant germplasm included; a QTL-mapping population, in contrast, is initiated with 

a cross between a single pair of individuals divergent in the phenotype of interest (Hall et al. 2010). 

Additionally, linkage disequilibrium (LD), or the non-random association of alleles between genetic loci, 

will be lower in association mapping than QTL-mapping as linkage blocks will be smaller, allowing QTL to 

be mapped with greater resolution (Myles et al. 2009). 

 While GWAS has many advantages, it is also highly susceptible to spurious genotype-phenotype 

associations resulting from population structure (Bouaziz et al. 2011), such as that which occurs when 

subgroups within the mapping population possess systematic differences in allele frequencies. False 

positives occur because both patterns of genetic relatedness among individuals in the mapping 

population and genetic structure among mapping subpopulations can create linkage disequilibrium (LD) 

between unlinked loci (Lander and Schork 1994). Many methods have been developed to deal with 

these confounding effects, including those of “genomic control” (Devlin and Roeder 1999), structured 

association (Pritchard et al. 2000) and the use of principal components analysis (PCA: Price et al. 2006) 

to capture information on structure. Recently, however, approaches based on linear mixed models have 

gained popularity (Eu-ahsunthornwattana et al. 2014) as they are better able to reduce the false-

positive rate while maintaining statistical power (e.g. see Zhao et al. 2007; Myles et al. 2008). To control 

for population structure and genetic relatedness in our GWAS, we combined the use of PCA with a 

mixed-model approach. 

 We first performed a PCA on our SNP data for use in accounting for genetic structure in the 

GWAS. Principal components analysis is a technique for reducing the dimensionality of a dataset that 

has long been used to infer population structure in genetic data (Price et al. 2010). In PCA, a new set of 

axes through the data are created such that the first principal components axis explains the most 

variation in the data, while subsequent axes (which must all be orthogonal, i.e., uncorrelated) explain 

progressively less variation; the total number of components equals the number of dimensions in the 

data, i.e., the number of individuals. Including the top principal components (PCs) in GWAS has been 

shown to effectively correct for population structure (e.g. Price et al. 2006; Hinrichs et al. 2009; Bouaziz 

et al. 2011). We used the R package SNPRelate (Zheng et al. 2012) to conduct a PCA, as its optimized 

algorithm is many times faster than competing implementations. Prior to PCA, we pruned the dataset 

heavily to use only a subset of SNPs in approximate linkage equilibrium, following best practice 

recommendations to avoid influential SNP clusters in the PCA (Laurie et al. 2010). The SNPRelate 



91 
 

function “snpgdsLDpruning” was used for pruning with the ld.threshold = 0.2; this function works on one 

chromosome at a time to recursively remove SNPs within a sliding window based on pairwise genotypic 

correlations. The PCA was then performed using the function “snpgdsPCA” and results plotted using the 

ggplot2 package (Wickham 2009). 

 As PCA may not always capture the full complexity of genetic relationships in a mapping 

population, we additionally calculated a Balding-Nichols kinship matrix for inclusion in our GWAS, to 

provide additional correction for hidden relatedness. Especially as our mapping population included not 

only materials from widely-separated geographic locations, but also replicates from within populations 

(which may share varying degrees of ancestry) and, in some cases, multiple individuals from the same 

maternal family (which are at least half-sibs), we expected patterns of genetic relatedness to be 

complex; there are also a subset of individuals that may be part cultivar. Mixed-model approaches, as 

pioneered by Yu et al. (2006) for use in GWAS, are able to incorporate a kinship matrix (K) as a random 

effect in the model, allowing for a more detailed description of the relatedness of individuals. We 

calculated kinship coefficients between all pairs of individuals on the basis of the full SNP dataset 

(filtered for MAF > 0.05), using the Efficient Mixed-Model Association eXpedited (EMMAX) software 

(beta version: Kang et al. 2010). 

 To identify loci associated with glyphosate resistance as determined by visual scores (assigned 

three weeks post-treatment), we fit a linear mixed model for each SNP across the genome in turn using 

the EMMAX software. The model included fixed effects of the alleles at a given locus (coded numerically 

as the minor allele count for a given individual, whether 0, 1 or 2) and of population structure as 

captured by the first two PCs, which were included as covariates; K was included as a random effect. As 

fitting the full linear mixed model genome-wide would be computationally intractable, EMMAX makes 

use of several approximations (Kang et al. 2010). In essence, the contribution of genetic structure to the 

phenotype is estimated only once using a variance component model, based on restricted-maximum 

likelihood (REML). This produces a phenotypic covariance matrix incorporating the effect of genetic 

relatedness, which is then used globally across all markers. The model thus reduces to a generalized 

least square (GLS) F-test for each marker. Results were visualized using the qqman package (Turner 

2014) in R. 

4.2.6 Significance Testing and Genes of Interest 
 After performing the GWAS in EMMAX, we evaluated the resulting p-values for each SNP to look 

for outliers. The question of what strength of evidence to consider significant in GWAS, and how to 
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account for the massive number of tests performed, remains an issue of active research lacking in clear 

directives (Dudbridge and Gusnanto 2008; Johnson et al. 2010). For example, using a significance cut-off 

of p = 0.05, roughly 5% of all SNPs will randomly appear to be associated with the trait of interest, which 

represents hundreds of thousands of false positives when considering millions of SNPs. However, 

traditional Bonferroni correction, in which the p-value is adjusted by dividing by the number of tests, 

assumes that tests are independent, but this is not the case for dense SNP datasets as SNPs in close 

proximity may be linked; this results in testing being overly conservative (Duggal et al. 2008). Instead, 

the total number of SNPs might be replaced with the “effective number of independent SNPs” (Me) in 

the Bonferroni correction (e.g. Gao et al. 2010; Li et al. 2012), but methods for determining Me are still 

in development. Methods to instead control the false discovery rate (FDR: Benjamini and Hochberg 

1995) have also been suggested, and we implemented this approach for our data using the qvalue 

package (Storey et al. 2015) in R. While π0, or the overall estimate of the proportion of true null 

hypotheses, averaged 0.996, suggesting a very small proportion (100% - 99.6% = 0.4%) of SNPs truly 

associated with glyphosate resistance, FDR correction resulted in no significant p-values. 

 True genotype-phenotype associations may not reach statistical significance in GWAS for a 

variety of reasons (e.g. Schork et al. 2013; Sham and Purcell 2014; Shin and Lee 2015). As there were 

suggestive “peaks”, i.e., columns of nearby SNPs that all show the same signal, on several chromosomes 

(see section 4.3.2), we decided to investigate SNPs falling above a “suggestive” p-value cut-off of p < 1 х 

10-5, a common cut-off used in other GWAS studies (Stranger et al. 2011). For these SNPs, we focused on 

cases where multiple correlated SNPs had suggestive p-values, rather than singletons SNPs, which may 

represent genotyping errors (Reed et al. 2015). We then identified all genes within 100 kbp of these 

SNPs using bedtools (version 2.25.0: Quinlan and Hall 2010) to query each region against the annotated 

XRQ assembly of the H. annuus reference genome (Badouin et al. 2017). When GenBank GenInfo 

Identifier (gi) numbers were available, records were pulled from the National Center for Biotechnology 

Information (NCBI, https://www.ncbi.nlm.nih.gov/genbank/; retrieved on 14 Oct 2017) database using 

the NCBI REST API to obtain protein names. 

4.3 Results 

4.3.1 Glyphosate Treatment Produced a Variety of Phenotypic Effects 
 The association mapping population included a total of 321 individuals (Table 4.1): 206 from the 

2011 thesis collections, 95 from the 2013 targeted collections, and 20 from the DuPont-Pioneer pre-

breeding materials. Owing to poor germination in some thesis collection populations, we were not 

https://www.ncbi.nlm.nih.gov/genbank/
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always able to get ten individuals from unique maternal families. In these cases, we included a second 

individual from families with extra germinants. Thus, all populations included at least ten individuals, 

with the exception of the Manitoba weedy population (“Man” from the USDA) that had very low 

germination. Owing to differences in growth rate, individuals were treated with glyphosate on two 

different dates (see section 4.2.2). The first spray group contained the majority of individuals (n = 274), 

while the second spray group was much smaller (n = 47). 

 Our glyphosate treatment of the genome-wide association mapping population was effective in 

producing segregation in resistance (see e.g. Figure 4.3); this was independently validated in field trials 

by collaborator DuPont-Pioneer at higher glyphosate application rates. In our greenhouse study, at the 

applied rate of 0.5 kg a.e. ha-1, not only did positive controls (cultivars) die, but also a proportion of the 

individuals in the mapping population. Meanwhile, negative controls sprayed with distilled water 

survived with no visible damage, implying that, apart from the herbicide treatment itself, there were no 

other causes of damage to experimental plants such as disease, pests, or under- or over-watering or 

fertilizing. A total of 69 individuals died within the month after treatment, or 21.5% of the mapping 

population. Looking at source materials separately, 15% of DuPont-Pioneer individuals died, 20% of MK 

individuals and 23% of thesis individuals. The effect of source on survival was not significant, however, 

as determined by a chi-squared test (χ2 = 0.84, df =2, p = 0.66), though the test may be unreliable as a 

result of the low numbers of DuPont-Pioneer samples. Similarly, we did not find significant differences in 

survival among populations (χ2 = 35.8, df =28, p = 0.15), despite much greater variation in death rates 

(from 0% in MK1 & MO1A, to 44% in SD1W). Note that this study had low replication (only ~11 

individuals/population), however, which makes looking at inter-population differences difficult. 

 Among the surviving individuals, glyphosate resistance proved very challenging to phenotype 

quantitatively owing to the complex and varying responses of individual plants (Figure 4.3 and Figure 

4.4). While some individuals appeared virtually untouched by the herbicide, others showed some 

combination of the following symptoms: wilting, bleaching, leaf die-off, necrotic patches, death of the 

apical meristem, deformation/stunting of new leaves, premature budding and excessive branch 

production. No buds or branching were seen in negative control seedlings; typically, both appear later in 

the sunflower life cycle. Symptoms also developed over time, with seedlings often on disparate time 

courses. While for example, some seedlings appeared fine initially (e.g. in the one week post-spray 

photos) they later wilted and died; in contrast, other seedlings that experienced massive leaf die-off 

early on, later produced new healthy leaves and recovered. As such, we focused on assessments made 
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of the phenotype after a full three weeks; by this point, plants that were severely damaged were no 

longer capable of recovering, whereas plants that were recovering only continued to improve. This was 

confirmed by following seedlings for an additional few weeks. Visual assessment, and ranking of the 

survivors in terms of their recovery at three weeks post-spray, was deemed to be the most robust way 

of assessing overall herbicide resistance; plants with low scores (1) had very little living tissue, whereas 

intermediate scores (2 or 3) had both severe deformation as well as leaf loss/necrosis, and finally high 

scores (4 or 5) had mostly intact, normal-sized leaves. Scores assigned by different observers were 

largely concordant, and any disagreements were individually re-assessed and resolved. 

 We evaluated the influence of potential confounding variables in our mapping population, 

including the effects of plant size at the time of glyphosate treatment, experimental tray and spray 

group. Despite attempts to standardize as much as possible, wild materials were diverse and grew at 

different rates, translating into variability in plant size at the time of spraying. Leaf number ranged from 

2 to 13.5 (mean = 6), height from 6.9 cm to 31.5cm (mean = 18.6 cm), and estimated biomass ranged 

from 0.06 g to 1.52 g (mean = 0.29 g). However, plant size, whether measured as leaf number (LN), 

height (H) or biomass (B), was not related to herbicide resistance as determined by survival (LN: p = 

0.06, H: p = 0.17, B: p = 0.47) or herbicide score (LN: p = 0.94, H: p = 0.92, B: p = 0.91) (Figure 4.5). Note 

that the few individuals with the most leaves (LN > 8, n = 8), which were not necessarily the tallest 

plants, all survived, and this may be the cause of the marginally significant p-value for the LN ~ Survival 

model. There was also no effect of the experimental tray on survival (χ2 = 19.1, df = 14, p = 0.14), 

indicating that the glyphosate application was consistent across trays (which were treated one at a 

time). Lastly, survival was higher in the second spray group compared to the first (χ2 = 4.6, df = 1, p = 

0.03), and plants were also less damaged (χ2 = 19.4, df = 9, p = 0.02). Plants in the second spray group 

were also smaller than those in the first at the time of spraying (0.16 g of estimated biomass versus 0.31 

g: means differ according to a t-test, p < 0.0001), though they had the same number of leaves on 

average (p = 0.93).   

4.3.2 GWAS Identified SNPs Suggestively Associated with Glyphosate Resistance 
 Our bioinformatics pipeline and additional filtering steps resulted in a final dataset of 7,556,414 

biallelic SNPs. Given the 3.0 Gb size of the Helianthus annuus genome assembly (Badouin et al. 2017), 

this should translate into roughly one SNP per 397 bp. In actuality, biallelic SNPs averaged one per 396 

bp ± 4.5 bp (standard error) across all chromosomes, but as the distribution of distances between SNPs 

was highly right-skewed, the median = 44 bp provides a better idea of the spacing between adjacent 
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SNPs. The maximum distance between SNPs ranged from 137 kbp (chromosome 7) to 438 kbp 

(chromosome 12), suggesting that there are large regions of the genome where few SNPs were called, 

likely as they contained highly repetitive sequences.  

 To correct for the effects of genetic relatedness and population structure in the GWAS, we 

calculated pairwise Balding-Nichols kinship coefficients among all individuals using the SNP data and also 

performed a PCA to characterize genetic structure (Figure 4.6). The PCA included 422,090 SNPs after 

trimming for LD, or about 5.6% of our total dataset. This implies that many SNPs in the full dataset are 

linked and hence not independent in the GWAS. The amount of variance explained by each individual PC 

axis was low, with the first four PCs, for example, explaining only 1.08%, 0.81%, 0.75% and 0.71% of the 

variance, respectively. The first PC axis correlates roughly with latitude (Kendalls’ τ = 0.52, p < 0.001), 

while PC2 separates the four populations from Kansas from the rest, though there are a few individuals 

from other U.S. states in the Kansas group. Thus, there is some evidence for subtle isolation-by-distance 

across our sunflower populations to account for in the GWAS. 

 Examination of a quantile-quantile plot (QQ plot: Figure 4.7) and of the genomic inflation factor 

(λ) indicate that genetic structure was adequately corrected for in the GWAS. The QQ plot illustrates the 

relationship between the expected (x-axis) and observed (y-axis) distributions of the –log(p-value)s for 

all SNPs. The data generally fall on the y = x line indicating that there is no systemic bias. If the points 

were to be shifted up from the line, for example, this could indicate inflation by population structure or 

familial relatedness (Reed et al. 2015). A number of points in the upper right tail do deviate from the 

reference line, and these suggest crudely the presence of true associations in the data. The genomic 

inflation factor λ, defined as the median of the chi-squared test statistics (as calculated from the p-

values) divided by the expected median of the chi-squared distribution (when p = 0.5: Power et al. 

2016), provides a more formal way of measuring any deviation from the y = x line by the data. If the 

observed data follow the chi-squared distribution, than it is expected that λ = 1  (Lo et al. 2016). Here, λ 

= 1.004587, further confirming that population structure and relatedness were accounted for in the 

GWAS. Values of λ < 1.05 are generally considered benign, though inflation is proportional to sample 

size (Price et al. 2006). 

 Results of the GWAS are presented as a Manhattan plot in Figure 4.8; the negative log of the p-

value for each SNP is plotted against its genomic position. Hence, high values on the negative log scale 

indicate low p-values. Evaluation of the GWAS results indicated that no SNPs were significantly 

associated with glyphosate resistance, according to false-discovery rate (FDR) testing. However, the FDR 
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testing revealed that a small proportion of SNPs (1 – π0 or 0.4%) were expected to have true associations 

with glyphosate resistance, though the analysis was not able to identify which SNPs. To explore this 

possibility, we considered SNPs with p-values below a widely-used “suggestive significance” cut-off of p 

< 1 х 10-5. Of these 64 SNPs, 12 SNPs occurred within 50 kbp of another SNP below the cut-off (mean 

pairwise distance = 13,231 bp, se = ± 6,104 bp); these SNPs were found in five clusters located on 

chromosomes 1, 9, 12 and 16 (Figure 4.8 and Figure 4.9). There was a sixth potential cluster on 

chromosome 12 with SNPs spaced 150 kbp apart that we also considered. Finally, in a separate category, 

we examined singleton SNPs that similarly formed a cluster (or column in the Manhattan plot) with 

nearby SNPs, only in these cases the surrounding SNPs did not fall below the p-value cut-off (n = 14). 

SNPs in this category were located on chromosomes 3, 8, 12, 13, 15, 16 and 17. 

4.3.3 Genes of Interest for Glyphosate Resistance 
 For all 28 SNPs of interest (12 + 2 + 14), we obtained a list of potential genes of interest for 

glyphosate resistance, falling within 100 kbp of one of the SNPs. There were a total of 143 genes 

identified from the H. annuus XRQ genome assembly annotations, or roughly five per SNP. There was 

only one SNP on chromosome 13 for which no genes were located within 100 kbp. The majority of the 

genes (n = 69) were matches to expressed sequence tags (ESTs) in sunflower, representing transcribed 

regions with unknown functions. For one EST located on chromosome 15 (7,333,500 bp to 7,342,805 

bp), GeneInfo Identifier (gi) numbers for GenBank were provided in the annotation; this sequence had 

homology to late embryogenesis abundant protein LEA5 in other species. Otherwise, ESTs had no 

matches to protein or signature databases. Additionally, 52 genes were described as producing 

“uncharacterized proteins” and thus also have no known function. Searching through gi numbers 

available for some of these entries, I was able to obtain a putative function through homology to 

identified proteins in other plant species (n = 21); note these are not validated for sunflower. Finally, a 

total of 22 genes were linked to a probable protein match, or category of protein. I will focus on these 

here, as well as the uncharacterized proteins with homology to known proteins in other species. The 

gene list is available as Appendix B. 

 Within the gene list (Appendix B), entries for the 14 SNPs of greatest interest (falling in clusters 

with other suggestive SNPs) are highlighted in grey. For the suggestive peak on chromosome 1, we 

identified two nearby transcription factors, one an auxin response factor (ARF). While plant ARFs may 

regulate diverse biological processes (Baranwal et al. 2017), many have been implicated in plant stress 

responses, with a number of ARFs being up-regulated under drought stress in soybean, for example (Ha 
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et al. 2013). For the peak on chromosome 9, we found an overlapping ABC transporter; ABC-

transporters are one of the few gene families that have been definitely linked to non-target-site 

resistance (NTSR) to herbicides (Yuan et al. 2007; Nol et al. 2012). Near to the three suggestive SNPs in 

this peak (859 bp to the closest SNP), we also identified BTB/POZ domain-containing protein FBL11, 

which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (Zulet et 

al. 2013). Considering the three suggestive peaks on chromosome 12, the first contained cysteine-rich 

receptor-like kinase 8 (overlapping a SNP in the peak), DNA polymerase and a ribonuclease H protein; 

the second another ABC transporter (overlapping both SNPs in the peak); and the third an 

alanine:glyosylate aminotransferase and an unidentified protein belonging to the alpha/beta-hydrolase 

superfamily. Cysteine-rich receptor-like kinases (CRKs), constitute a large subfamily of receptor-like 

protein kinases, with 44 CRKs in Arabidopsis thaliana (L.) Heynh., for example (Burdiak et al. 2015); CRKs 

play essential roles in signal transduction in plants. Finally, for the last suggestive peak on chromosome 

16, only ESTs were identified in the vicinity (n = 8) and no known proteins. It is important to note that 

ESTs and uncharacterized proteins (ucprot) were also found in the vicinity of the other SNP clusters 

(Chr01: 3 ucprot; Chr09: 1 ucprot, 3 ESTs; Chr12: 7 ucprot, 12 ESTs). 

 Considering the remaining suggestive SNPs, i.e., those not in the six primary clusters, there were 

a number of other genes of interest found overlapping or in the vicinity of the SNPs. These included 

additional CRKs, which have been suggested to play important roles in the regulation of pathogen 

defenses (Wrzaczek et al. 2010), but also to be upregulated under osmotic stress in Arabidopsis 

seedlings (Skirycz et al. 2011). Some CRKs have also been implicated in signalling pathways responsive to 

herbicides; for example, CRK21 and CRK42 were upregulated in Arabidopsis upon treatment with 

paraquat (Han et al. 2014). Both erf domain (chromosome 16) and C2H2 zinc finger protein (ZFP) 

(chromosome 3) transcription factors may be reactive to environmental stressors such as drought, salt, 

herbicides and oxidative stress (Rashid et al. 2012; Liu et al. 2015). For example, erf domain transcription 

factors were upregulated upon treatment of Arabidopsis seedlings with glyphosate (Abdeen and Miki 

2009). Transmembrane transporters belonging to the major facilitator family (chromosome 12) have 

been implicated in herbicide resistance due to altered translocation patterns; in bacteria, high-level 

glyphosate resistance can be achieved via overexpression of the yhhS gene encoding a major facilitator 

transporter involved in drug efflux (Staub et al. 2012). Several identified proteins, in addition to FBL11 

(discussed above), participate in the ubiquitin-mediated proteolysis (i.e., protein degradation) pathway, 

including: DNA damage-inducible protein 1-like (chromosome 12: Nowicka et al. 2015), E3 ubiquitin 

ligase RBR (chromosome 3: Chen et al. 2014), and phosphatidylinositol 3-/4-kinase (chromosome 12: 
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Galvão et al. 2008). This pathway may be critical for abiotic stress responses in plants (Guo et al. 2013), 

and recently, an ubiquitin ligase was identified as playing an important role in the metabolism of ALS 

and ACCase herbicides in Lolium multiflorum Lam. (Mahmood et al. 2016). Further examples of 

identified proteins linked to abiotic stress tolerance include: nuclease HARBI1, which is upregulated 

under salt-stress in Reaumuria trigyna Maxim. (Dang et al. 2014); ribonuclease H protein At1g65750, 

downregulated in nickel-resistant white birch, Betula papyrifera Marshall (Theriault and Nkongolo 

2017); LEA5, expression induced under drought, heat or salt stress in citrus seedlings (Naot et al. 1995); 

and glycine-rich proteins, which can function to enhance stress tolerance, especially under drought (Kim 

et al. 2008). 

Interestingly, no suggestive peaks or singleton SNPs were found to overlap with either of the 

copies of the gene targeted by glyphosate (EPSPS) in the sunflower reference genome. Work by our lab 

group has previously identified two complete copies of EPSPS: one on chromosome 4 (gene ID = 

HanXRQChr04g0122731: 162,864,991 bp to 162,872,274 bp) and a second on chromosome 16 (gene ID 

= HanXRQChr16g0520001: 131,884,753 bp to 131,890,330 bp). While suggestive SNPs were identified 

on chromosome 4 (see Figure 4.8), these were discounted as singletons: nonetheless, the closest SNP to 

EPSPS was located at a distance of 5.4 Mb. Similarly, on chromosome 16, the closest SNP identified by 

GWAS was located at a distance of 6.3 Mb. Thus, linkage between either of the EPSPS copies and a 

suggestive SNP identified by GWAS seems unlikely, as LD tends to decay rapidly in sunflower (see 

Chapter 3 and Mandel et al. 2013). 

4.4 Discussion 
 In this study, we investigated the genetic basis of glyphosate resistance segregating in wild 

sunflower populations collected from the U.S. Midwest and the Canadian Prairies. We used whole 

genome shotgun (WGS) resequencing to obtain SNP data for 321 individuals from 28 populations. 

Seedlings at roughly the four- to eight-leaf stage were phenotyped for glyphosate resistance at a rate of 

0.5 kg a.e. ha-1, and assigned a score based on their recovery post-herbicide application. We used 

genome-wide association mapping to look for genotype-phenotype associations. To our knowledge, 

ours is the first study to implement a GWAS approach to investigate glyphosate resistance using 

genome-wide SNP data. We found 64 SNPs with suggestive associations (p < 1 х 10-5) to glyphosate 

resistance, with a subset of 28 of these SNPs occurring in columns in the Manhattan plot (with other 

nearby SNPs). Examining these 28 SNPs, we identified nearby genes potentially linked to resistance, 

including two ABC transporters and a major facilitator transporter, several transcription factors (zinc 
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fingers of C2H2 and GATA types), signaling molecules (e.g. CRKs and other protein kinases) and enzymes 

involved in the ubiquitin-mediated proteolysis pathway (e.g. ubiquitin ligase RBR), among others. 

Further work is needed to validate if and how these genes of interest may mediate glyphosate 

resistance in sunflower, but non-target-site mechanisms of resistance, such as altered translocation 

patterns or sequestration of the herbicide, seem likely. Interestingly, no suggestive SNPs were located 

near either of the two copies of EPSPS in the sunflower genome, though further work is needed to 

analyse the EPSPS sequences in each individual before target-site resistance can be ruled out.  

4.4.1 Glyphosate Resistance in Wild Sunflower, Helianthus annuus 
 Our 2012 finding of widespread glyphosate resistance in wild sunflower populations was novel, 

if perhaps not unexpected. The regions of the USA from which I collected populations in 2011 represent 

areas of intense agricultural use, with large areas planted in monocultures and extensive use of 

agricultural chemicals. For example, across my sampling transect, agricultural lands were treated with 

an average of 88 lbs of glyphosate per square mile or more in 2011, according to county-level estimates 

made by the United States Geological Survey (USGS, http://water.usgs.gov; retrieved on 14 Oct 2017). 

These values fall into the highest category recognized by the USGS, and represent more than a 

quadrupling of the amount of glyphosate applied 20 years ago. Truly, glyphosate has single-handedly 

replaced much of the former diversity of herbicides used on the landscape (Benbrook 2016). Speaking to 

landowners during sample collection revealed that glyphosate may also be applied to non-agricultural 

lands, such as ditches, fallow areas, roadsides and other waste places, to remove weedy species, such as 

sunflower, that may compete with crops. In the state of Iowa, H. annuus is considered a noxious weed 

under state law (despite its status as a native species) and must be destroyed when found, even on 

private lands (Iowa Department of Agriculture and Land Stewardship, 

http://www.weeds.iastate.edu/reference/weedlaw.htm; retrieved on 14 Oct 2017). Hence, there may 

be strong selection pressure for glyphosate resistance across the sampling transect, for both crop weed 

populations of H. annuus and wild populations growing in more natural areas. 

 Here, most sunflowers in the mapping population (78.5%) survived a glyphosate application of 

0.5 kg a.e. ha-1, or half of the rate typically applied on fields of Roundup Ready crops. Additional 

glasshouse trials (unpublished) found that a majority of tested seedlings also survived a higher 

application rate of two-thirds the field rate (⅔х), but few seedlings survived a second application at 1⅓х. 

Note that many factors affect glyphosate efficacy, such as the light intensity, air temperature, and 

relative humidity at the time of spraying (Waltz et al. 2004), as well as the growth stage, nutrient and 

http://water.usgs.gov/
http://www.weeds.iastate.edu/reference/weedlaw.htm
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water status of the plants (Shaner 2010), and hence independent trials may not be strictly comparable. 

Additionally, glasshouse and field trials may also find different results; for example, in Palmer amaranth 

(Amaranthus palmeri), the LD50 (i.e., dose that kills 50% of a population) was twice as high in the field 

versus greenhouse (Culpepper et al. 2006). Hence, our testing results may not translate into equivalent 

resistance in a field setting. However, the level of glyphosate resistance observed was not trivial, as all 

tested controls (cultivated sunflowers) died, even when tested at lower application rates (e.g. ⅕х). 

Hence, many tested sunflower populations had, on average, resistance at a level higher than expected 

from spray drift (typically ~10% the field rate, e.g. Hensley et al. 2013). We were not able to detect 

significant differences in survival among study populations, implying no strong geographic patterns in 

the incidence of herbicide resistance. However, survival varied considerably among populations (from 

66-100%), suggesting that with greater sample size, differences in resistance may become evident 

among populations. Survival was significantly higher in the second spray group compared to the first; 

this may be explained by differences in ambient conditions on the spray dates. Plants in the second 

spray group also grew more slowly than those in the first, so another possibility is that slower growth 

translated to lower susceptibility to the herbicide. 

 Overall, we did not find an effect of sunflower seedling size on glyphosate resistance, when 

measured as either survival or herbicide score. This contrasts with work in other species that has found 

a consistent relationship between plant size and glyphosate resistance. In common ragweed (Ambrosia 

artemisiifolia), taller plants at the time of spraying were more resistant than shorter ones (personal 

communication from K. Hodgins). Similarly, Shrestha et al. (2007) found that the level of resistance 

observed for horseweed (Conyza canadensis) seedlings increased with the number of true leaves. 

Finally, similar observations have been made for hairy fleabane (Conyza bonariensis (L.) Cronquist: 

Dinelli et al. 2008), Johnsongrass (Sorghum halepense (L.) Pers.: Vila-Aiub et al. 2007) and lambsquarters 

(Chenopodium album L.: Schuster et al. 2007), illustrating the need to standardize growth stages in 

testing for herbicide resistance. We attempted to standardize leaf stage at the time of spraying in this 

study, though this was challenging owing to the diversity of wild materials (collected across a latitudinal 

gradient) included in the mapping population. Seedlings were sprayed at a size of approximately four to 

eight true leaves, consistent with the methodology of other studies (Shaner 2010), and with the 

anticipated size of treated weedy sunflowers in agricultural fields. Thus, perhaps seedlings were similar 

enough in size at the time of testing that there was no detectable impact of size on resistance. The 

observation that the few seedlings with more than eight leaves in the mapping population all survived 

the glyphosate treatment is consistent with this hypothesis. Spray applications also tend to deposit 
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spray proportionally to the leaf area of the seedling, meaning that larger plants receive larger doses of 

glyphosate, and this may also have acted to mitigate any effects of size in our study. However, once 

sunflower seedlings get much beyond the eight leaf stage, lower leaves begin to be shielded from the 

spray by upper leaves, and hence plants of very different heights or leaf numbers may actually receive 

similar doses; the plants with the most leaves in our study would thus have received a proportionately 

smaller dose for their size. 

 Fitness costs of resistance may act to limit the level of glyphosate resistance seen in natural 

populations, perhaps explaining why the levels of resistance we observed were moderate, with very few 

seedlings surviving applications greater than the field rate. There is strong evidence that some herbicide 

resistance alleles are associated with pleiotropic effects that act to lower plant fitness in the absence of 

the herbicide (Vila-Aiub et al. 2009). For example, amino acid substitutions in targeted enzymes (i.e., 

TSR) may often, but not always, act to reduce enzyme efficiency, at the cost of reduced metabolism 

(Powles and Yu 2010); however, there are no studies of the fitness costs of the altered EPSPS allele in 

any weed species to date, though work is currently underway in Eleusine indica (Yu et al. 2015). Fitness 

costs can also arise from NTSR mechanisms because of fundamental trade-offs in resource allocation 

between plant growth, reproduction and defense (Vila-Aiub et al. 2009). As resources are diverted away 

from other plant functions, resistant individuals are often less competitive than susceptible ones in the 

absence of the herbicide. Fitness costs have been noted for the reduced translocation mechanisms of 

glyphosate resistance. In naturally glyphosate-tolerant tall morning glory (Ipomoea purpurea (L.) Roth), 

fewer seeds were produced by more resistant biotypes when grown under benign, herbicide-free 

conditions (Baucom and Mauricio 2004). Similarly, resistant ryegrass (Lolium rigidum) biotypes became 

less common over time in a mixed population (including susceptible biotypes) when no glyphosate was 

applied (Wakelin and Preston 2006), and when both resistant and susceptible biotypes were competed 

against a wheat crop, resistant types produced fewer seeds (Pedersen et al. 2007). 

4.4.2 Glyphosate Resistance in Sunflower Likely Involves Non-Target-Site Mechanisms 
 Our GWAS was unable to detect any significant genotype-phenotype associations when using 

false discovery rate correction for multiple testing. However, a total of 64 SNPs were considered 

suggestive of an association with glyphosate resistance using a cut-off of p < 1 х 10-5 (Figure 4.8). A 

striking feature of the analysis was that no suggestive SNPs occurred near either copy of the EPSPS gene 

in the sunflower genome, suggesting that amino acid changes in the target enzyme may not play a major 

role in sunflower glyphosate resistance, at least for the populations we surveyed. Before TSR can be 
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completely ruled out, however, examination of the EPSPS sequences to look for amino acid changes and 

quantitative PCR to look for EPSPS copy number variation would be needed. Amino acid changes in 

EPSPS have been reported for a total of 7 plant species to date (Gaines and Heap 2017), with the most 

common mutation occurring at position 106, from proline to either alanine, leucine, serine, or 

threonine. However, the Pro-106 mutations confer only weak glyphosate resistance (Christoffers and 

Varanasi 2008), and hence NTSR has generally been considered to be of greater importance for 

glyphosate resistance in weeds (Powles and Yu 2010). However, in a wild population of E. indica, a 

double amino acid substitution in EPSPS was recently discovered (Yu et al. 2015), combining a mutation 

at position 102, from threonine to isoleucine, with the Pro-106-Ser mutation (i.e., Thr-102-Ile and Pro-

106-Ser, or TIPS). The TIPS mutation confers high glyphosate resistance (600 times that of Pro-106-Ser in 

E. indica in vitro testing) and may evolve sequentially in weeds subject to strong glyphosate selection. 

But the mutation substantially decreases the catalytic efficiency of EPSPS, and hence likely decreases 

plant fitness if glyphosate selection is relaxed, meaning that TIPS may be maintained only rarely in 

nature. Other forms of TSR not explored here include gene duplication and enhanced expression of 

EPSPS (see Sammons and Gaines 2014a for a review); it is unknown if either plays a role in resistance in 

our populations. 

While TSR to glyphosate has been the focus of research to date, likely due to the greater ease of 

study, NTSR mechanisms are believed to also play an important role in weed resistance (Powles and Yu 

2010). Here, we found a total of 28 SNPs both suggestive of an association with glyphosate resistance 

and also occurring near to other SNPs showing the same pattern. Together the SNPs were part of 17 

clusters, or peaks in the Manhattan plot (Figure 4.8), though four peaks on chromosome 12 were 

roughly adjacent and so may not be independent; six of the clusters contained multiple suggestive SNPs 

(n = 15 SNPs total). While these peaks are merely suggestive and require further study, it is interesting 

to note that multiple genomic regions may be implicated in glyphosate resistance. This suggests a 

quantitative, polygenic basis to resistance. Investigations of NTSR for other herbicides have largely 

revealed that the genetic basis may be complex, and that individuals can accumulate many resistance 

alleles, especially in cross-pollinated species (Délye 2013). According to the “allele stacking” model of 

the evolution of NTSR proposed by Délye (2013), NTSR evolves gradually over multiple generations with 

different parental resistance alleles accumulating in individuals over time; as alleles continue to 

accumulate, herbicide sensitivity declines. Under this model, non-lethal applications of herbicide (such 

as those occurring from spray drift) enable a broader range of NTSR alleles to be selected for, as alleles 

that would not enable survival at a full dose are now maintained. This model has been experimentally 
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demonstrated for both ACCase inhibitors (Neve and Powles 2005; Busi et al. 2013) and glyphosate (Busi 

and Powles 2009). In their experiment, Busi and Powles (2009) subjected a susceptible population of 

out-crossing L. rigidum to recurrent low-dose glyphosate selection; after only three generations, the 

estimated LD50 had doubled and 33% of individuals were able to survive a glyphosate application at the 

label rate (1х). The results were consistent with progressive enrichment for minor genes contributing to 

glyphosate resistance. Biochemical studies of NTSR have also shown that multiple mechanisms may 

operate, with minor genes playing a role in the NTSR observed (see review in Ghanizadeh and 

Harrington 2017); at least seven NTSR loci were identified in a single Alopecurus myosuroides Huds. 

plant resistant to ACCase and ALS inhibitors (Petit et al. 2010), for example. 

 Considering the genetics of NTSR in glyphosate specifically, data are limited. Reduced 

translocation of glyphosate to meristematic tissues has been found in populations of horseweed (C. 

canadensis) and rigid ryegrass (L. rigidum) (Lorraine-Colwill et al. 2002; Koger and Reddy 2005). In both 

cases, classical studies of inheritance found that resistance is due to an incompletely dominant single 

nuclear gene (with dominance varying from high to moderate in crossing studies). In tall waterhemp 

(Amaranthus tuberculatus (Moq.) Sauer), in contrast, multiple genes are likely to be involved in 

glyphosate resistance, as indicated by the variability in herbicide responses seen among individuals after 

a period of recurrent selection (Zelaya and Owen 2005). Similarly, in field bindweed (Convolvulus 

arvensis L.), the existence of minor genes influencing susceptibility to glyphosate was confirmed using a 

diallel cross (Duncan and Weller 1987). Finally, some populations of resistant rigid ryegrass have both 

TSR and also reduced translocation patterns (Preston et al. 2009); these mechanisms combine additively 

to enhance overall glyphosate resistance. In conclusion, glyphosate resistance may often rely on many 

genes, especially when multiple modes of resistance are involved, but this is not universal. In sunflower, 

our GWAS results indicate that six or more NTSR loci are involved in glyphosate resistance. As genomics 

approaches become more widely employed to fine map loci involved in glyphosate resistance (e.g. Peng 

et al. 2010), hopefully the loci underlying cases of NTSR will finally be identified. 

 In the majority of cases of NTSR to glyphosate for which a putative mechanism has been 

identified, altered translocation patterns have been implicated, although other mechanisms do exist 

(Preston et al. 2009). For example, in Chilean ryegrass (Lolium multiflorum) resistant plants had lower 

spray retention and reduced absorption of glyphosate through the abaxial leaf surface (Michitte et al. 

2007). The EPSPS enzyme targeted by glyphosate preferentially accumulates in meristematic tissues 

(Shaner 2009), and thus glyphosate must translocate to sites of active growth within a plant to exert its 
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toxic effects; in susceptible plants, glyphosate is rapidly translocated via the phloem, following the same 

source to sink pattern as photoassimilates (Perez-Jones and Mallory-Smith 2010). In resistant individuals 

of C. bonariensis (Dinelli et al. 2008), C. canadensis (Koger and Reddy 2005), L. multiflorum (e.g. Perez-

Jones et al. 2007; Nandula et al. 2008) and L. rigidum (e.g. Lorraine-Colwill et al. 2002), glyphosate may 

instead become trapped, e.g. in leaf tissue. Experiments (reviewed in Sammons and Gaines 2014b) have 

revealed that this reduced translocation is due to the rapid vacuolar sequestration of glyphosate via a 

transporter mechanism. Characterization of the horseweed transcriptome has identified several 

putative transporter proteins including a tonoplast intrinsic protein (TIP) and several ABC transporters 

(Yuan et al. 2010); an expression analysis of ABC transporters found that, for thirteen out of seventeen 

tested genes, expression increased in resistant individuals sprayed with glyphosate (Peng et al. 2010). 

The ATP-binding cassette (ABC) transporters are transmembrane proteins localized in most extra- and 

intracellular membranes (e.g. plasma membrane, chloroplasts, etc.) that actively transport a wide 

variety of substrates, including drugs, lipids, metals, and metabolites, using ATP hydrolysis (Kang et al. 

2011; Lane et al. 2016). As reviewed by Yuan et al. (2007), ABC transporter activity toward herbicides 

and their metabolites has been well established for crops and model species, but more research is 

needed in terms of their role in NTSR in weedy species. In this study, we identified two ABC transporters 

of the pleiotropic drug resistance (PDR) family as well as a major facilitator transporter, and these may 

represent our best candidates for glyphosate resistance. We also identified a number of proteins linked 

to detoxification processes, suggesting a potential role of metabolism, as well as several transcription 

factors that may be needed to coordinate the cellular response upon treatment with glyphosate (Délye 

2013). 

4.4.3 Conclusions 
 In our genome-wide association study of glyphosate resistance in populations of wild sunflower 

(n = 321), we detected no significant associations with glyphosate resistance after correcting for the 

false discovery rate, but 64 SNPs had suggestive associations (p < 1 х 10-5). Peaks in the Manhattan plot, 

especially those containing multiple suggestive SNPs (n = 6 peaks), were explored to identify nearby 

genes. A variety of transcription factors, signalling molecules and detoxification enzymes implicated in 

plant abiotic stress pathways were found: these may be co-opted for glyphosate resistance in sunflower. 

Furthermore, we identified three transporter genes (two ABC transporters and a major facilitator 

transporter) from families clearly implicated in herbicide resistance in other species. The physiological 

mechanisms and genetic loci underlying non-target-site resistance (NTSR) to herbicides remain poorly 

characterized, especially for glyphosate. Thus, our work represents an important step towards 
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elucidating NTSR loci and is the first that we are aware of to use whole-genome resequencing data for 

this purpose. It is unfortunate that the GWAS was underpowered and not able to identify significant 

SNPs, perhaps due to the highly polygenic nature of NTSR in sunflower and the smaller sample size of 

the study. If different sunflower populations possess different resistance alleles, as seems likely, then 

GWAS could also fail to identify significant associations (Myles et al. 2009). Furthermore, the 0.5 kg a.e. 

ha-1 dose we used in screening the mapping population resulted in a ~80% survival rate, much higher 

than we expected; thus, we were forced to visually assess and rank survivors, rather than simply 

segregate individuals on the basis of survival. It may be that variability among plants (with a similar 

resistance level) in the symptoms expressed introduced further variation into the association mapping. 

Nonetheless, our results implicate varied NTSR mechanisms acting to confer glyphosate resistance in 

sunflower, on the basis of the number of suggestive peaks in the GWAS and types of genes found 

overlapping these peaks. 
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Table 4.1: Description of plant germplasm used in the genome-wide association analysis of glyphosate 

resistance in wild populations of Helianthus annuus, including population identifiers, state/province of 

origin, crop species infested (for weeds) and number of maternal families and individuals used. 

Material Source 
Population 

ID State of Origin 
Crop 

Infested 

Number of 
Maternal 
Families 

Number of 
Individuals 

Original 2011  
Weedy & Wild  

Thesis Collections 
(Emily Drummond) 

IA1A Iowa Soybean 7 11 
IA1W Iowa na 10 12 
IA2A Iowa Corn 9 12 
IA2W Iowa na 10 12 
KS1A Kansas Sorghum 10 11 
KS1W Kansas na 11 12 
KS2A Kansas Sorghum 10 12 
KS2W Kansas na 9 12 
Man* Manitoba (Canada) Wheat na 8 
MB1W Manitoba (Canada) na 9 11 
MO1A Missouri Soybean 10 11 
MO1W Missouri na 10 11 
ND1A North Dakota Corn 9 11 
ND1W North Dakota na 10 11 
SD1A South Dakota Corn, 

Soybean 
9 10 

SD1W South Dakota na 9 10 
SD2A South Dakota Corn 12 13 
SD2W South Dakota na 12 13 
SK1A Saskatchewan (Canada) Wheat 8 11 
SK1W Saskatchewan (Canada) na 8 11 

New 2013  
Targeted Collections  

(Matt King) 

MK1 Iowa Corn, 
Soybean 

12 12 

MK2 South Dakota Soybean 12 12 
MK3 Nebraska Soybean 11 11 
MK4 Nebraska Corn 12 14 
MK5 Iowa Corn 11 11 
MK6 Nebraska Soybean 11 11 
MK7 South Dakota Soybean 12 12 
MK8 Iowa Corn, 

Soybean 
12 12 

Pre-breeding Materials 
(DuPont-Pioneer) 

na mixed mixed 20 20 

* Replacement for original MB1A population whose seeds were sterile. Replacement obtained from the USDA 

NPGS (PI 592327). 
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Figure 4.1: Chronological increase in the reported number of cases of herbicide resistance worldwide for 

eight herbicide sites of action. The site of action refers to the specific process in plants that is disrupted 

to affect growth and development. All herbicides may be categorized by their site of action, with 26 sites 

of action currently recognized by the Weed Science Society of America. Note that different types of 

herbicides have different propensities to select for resistance. Data for the creation of this figure were 

obtained from publicly available records kept by the International Survey of Herbicide Resistant Weeds 

(www.weedscience.org) accessed on September 30th, 2017. 

 

  

http://www.weedscience.org/
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Figure 4.2: North American range of Helianthus annuus (based on Rogers et al. 1982) and collection 

locations of populations included in this study. For the twenty thesis populations, each agricultural-weed 

population was paired with a nearby population of wild sunflowers in a non-agricultural area, and 

location names are for the pair. The targeted collections of agricultural-weed populations infesting 

Roundup Ready crop fields (shown in red) were made by Dr. Matt King and are represented by his 

initials (“MK”). 
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Figure 4.3: Example photos of sunflowers taken (a) immediately prior to glyphosate application and (b) one-week after glyphosate application . 

Though all individuals pictured here were at the four- or six-leaf stage, size differences are apparent among individuals at a given developmental 

stage. Damaged leaves (i.e. with clipped edges or hole punches) were the result of tissue collection for the study. Most individuals show some 

degree of wilting after treatment, necrotic patches and an overall yellowing, especially of younger tissues, which is a hallmark of glyphosate 

treatment. While some individuals have died by one week post-treatment, others appear virtually undamaged. 

  

+1 week 

a. 

b. 
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Figure 4.4: Photo collage of sunflower seedlings treated with 0.5 kg a.e. ha-1 of glyphosate at varying times after treatment, from this study and 

others performed by the author. Individuals respond to herbicide treatment in a variety of ways, including wilting, bleaching of growing tissues, 

leaf die-off and formation of necrotic patches, premature budding and stunting of new leaves. In some individuals where the apical meristem 

died as a result of treatment, large branches were produced, even in very small seedlings. 
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Figure 4.5: Violin plots of seedling biomass, as measured just prior to glyphosate application , and the herbicide score assigned by visual 

assessment three weeks post-treatment. Seedling biomass was determined by inputting non-destructive measurements into a previously 

determined linear model (see regression details in Chapter 2: R2 = 0.9, n = 227 plants). A higher herbicide score equals greater resistance. 

Horizontal lines represent the mean and 95% confidence interval. There was no relationship between seedling size and herbicide score (p = 

0.91). 
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Figure 4.6: First two axes of a principal components analysis (PCA) of the genetic data . Pruning the 

dataset for linkage disequilibrium (LD threshold of 0.2) resulted in a total of 422,090 SNPs for use in the 

PCA. Individuals are coloured by population; populations are sorted in order of increasing latitude. Note 

that individuals of mixed ancestry (DuPont-Pioneer pre-breeding materials) and the replacement 

population (“Man”) for the weedy MB1A population are not pictured here. The first component roughly 

separates populations by latitude, while the second separates individuals from Kansas from the rest. 
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Figure 4.7: Quantile-quantile (QQ) plot for the genome-wide association study (GWAS) showing the 

relationship between the observed distribution of –log(p-value)s calculated for each SNP (n = 422,090) 

and the expected distribution under the null hypothesis. The GWAS used the first two principal 

components and a kinship matrix to account for population structure and relatedness. Departure of 

observed values from the y = x reference line (shown in red) can reflect systematic inflation in the test 

statistics owing to population structure; however, polygenicity can also result in departures from the 

line, but only for those SNPs with high –log(p-value)s. The data closely follow the reference line, 

suggesting that genetic structure is not affecting our results. 
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Figure 4.8: Manhattan plot of the genome-wide association study (GWAS) showing the negative of the log p-value of each variant (i.e., SNP, n = 

7,556,414) against its genomic position. Note that large values on the y-axis correspond to small p-values. The blue horizontal line represents a 

“suggestive significance” threshold at p = 0.00001, with SNPs falling above this line suggestive of an association. While no SNPs were significant 

according to strict Bonferroni correction (p < 5×10−8), 64 SNPs located across the genome fell above the suggestive line. 
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Figure 4.9: Zoomed in Manhattan plots for chromosomes 1, 9 and 16 , showing the negative value of the 

log p-value of each variant versus its chromosomal position. All chromosomes are plotted on the same 

scale. The blue horizontal line represents a “suggestive significance” threshold at p = 0.00001. Columns 

of SNPs such as those shown in green are more suggestive of a true association than singletons, which 

may represent genotyping errors. 
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Chapter 5 : Conclusion 
 As one of the greatest pests of agriculture, weeds significantly decrease crop yields causing 

billions of dollars in losses each year (Pimentel et al. 2005). Agricultural management practices have 

changed drastically over time, with cropping practices intensifying since the Green Revolution (Gould 

1991), and weeds have adapted rapidly to these progressive changes. From the perspective of 

evolutionary biology, weeds can be excellent subjects for the study of adaptation (Harper 1960; Baker 

1974; De Wet and Harlan 1975; Vigueira et al. 2013). Not only do they show rapid evolution in the face 

of human-mediated selection, but when replicate weed populations or weed species invade agricultural 

environments, evolution may also happen in parallel, allowing for tests of repeatability. Practically, the 

history of weeds on the landscape may be documented, and weed species also tend to be abundant, 

easy to grow and fast to reproduce, lending themselves to experimental manipulations. Despite these 

advantages, as mostly non-model organisms, the genetics of adaptation remain understudied in weeds 

(Stewart et al. 2009). In this thesis, I sought to improve our understanding of the evolution of weediness, 

including its genetic basis, in a common North American weed, annual sunflower (Helianthus annuus L.). 

In this final chapter, I will summarize findings from phenotypic and genotypic comparisons of paired 

populations of weedy sunflowers infesting crop fields and wild sunflowers collected from more natural 

habitats, as well as a genetic mapping study of herbicide resistance. Synthesizing the results, I will 

discuss the broader implications of my findings, while also acknowledging limitations. As a final step, I 

will identify interesting future avenues for follow-up research, while discussing the merits of agricultural 

weeds as model systems for understanding local adaptation. 

5.1 Summary 
 For my thesis work, I asked whether populations of common sunflower growing as agricultural 

weeds show adaptations to the unique conditions of cultivated fields. Compared to more natural 

environments, modern monocultures are highly simplified environments, typically resource-rich, but 

experiencing frequent disturbance (Barrett 1988). Annual weeds may face selection to accelerate their 

development, in order to better compete with crop plants, or to produce seed prior to harvesting of the 

crop. This is indeed what I discovered in the case of sunflower, as described in Chapter 2.  

Comparing populations of sunflower that had long acted as agricultural weeds (according to 

collection records) to populations obtained from non-agricultural environments (everything from 

construction sites and waste places, to prairie preserves and wetlands), weedy seedlings showed faster 

growth in the 2012 common garden. Faster growth in turn led to earlier flowering, suggesting a shift in 
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life history strategy to prioritize growth and reproduction. These trait differences were most likely 

genetically based, as I controlled for variation in seed provisioning (i.e., maternal effects). The only wild 

population collected from a mesic site (a wetland) also showed accelerated growth and reproduction. 

Wetlands are also relatively resource-rich and prone to disturbance (i.e., flooding and drying cycles), 

illustrating that selection for accelerated development is not unique to agriculture fields. 

 Following up on the initial common garden work, I performed a second common garden 

comparison the subsequent year to further explore the role of maternal effects in this system. Using 

seed generated from within-population crosses the previous year, I grew plants from both seed sources 

(field and common garden) for a subset of weedy-wild pairs, again measuring growth and flowering 

time. If effects of the maternal environment, and not genetic differences, were responsible for the 

results in 2012, we would expect to recapture the 2012 findings with the field-derived individuals, but 

not the common garden derived ones (where all mothers shared the same environment). For seedling 

growth, the results were exactly the opposite. This implies that, firstly, differences in growth seen in 

2012 were genetically-based (as they were also observed in the next generation), and secondly that 

seed age may also influence growth rates. Flowering time did not differ by seed source or population 

type in 2013, indicating that genotype-by-environment interactions may influence reproductive traits.  

 In Chapters 3 and 4, I explored the extent of genetic differentiation between weedy and wild 

sunflowers, and investigated the genomic architecture of an important weed trait, resistance to the 

herbicide glyphosate. To date, investigations into the genetic basis of adaptive traits in wild species 

(weeds or otherwise) have largely relied on either marker data or reduced-representation genome 

sequencing methods (e.g. Genotyping-By-Sequencing: Elshire et al. 2011). To better elucidate the effects 

of selection across the entire weed genome, I used whole genome resequencing to obtain dense SNP 

datasets for both chapters: 2.7 million SNPs for sixteen focal individuals (eight of each population type) 

in Chapter 3, and 7.6 million SNPs for 321 mapping population individuals in Chapter 4. To our 

knowledge, our study represents one of the first to use whole genome shotgun (WGS) data to 

investigate the genetics of weed adaptation, but see Li et al. (2017). 

For the weedy-wild comparison, I used two complementary approaches, a sliding window 

analysis of cluster separation scores (a metric based on genetic distances: Jones et al. 2012) and a 

distinct, variable-sized window analysis of FST between groups (following the methods of Beissinger et al. 

2015), to identify a number of potential small regions of genetic differentiation, on the basis of 

consensus between the methods. In total, the analysis identified 148 regions, unequally distributed 
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across the genome and accounting for much less than 1% of the genome overall. However, as the 

analysis lacked power to detect true positives while controlling the false-discovery rate, these regions 

must be approached cautiously, as some will be false positives. An average of 1.8 genes overlapped each 

region, and the gene set included plant stress response proteins, flowering time factors and transporter 

genes linked to herbicide resistance. 

 To connect genotype to phenotype more directly, I used genome-wide association mapping 

(GWAS) to investigate the genes responsible for glyphosate resistance in sunflower, with the additional 

goal of providing insight on the mechanism(s) underlying resistance. Herbicide resistance may evolve via 

target-site changes (i.e., changes to the plant enzyme affected by the herbicide) or non-target-site 

changes, which encompass a variety of non-exclusive mechanisms to reduce the effects of the herbicide. 

While the genetics of target-site resistance are typically well characterized, being linked to a single 

(often known) gene, the genetic basis of non-target-site resistance can be considered the “dark side” of 

resistance research (Délye 2013). After treating sunflower seedlings with glyphosate at a rate of 0.5 kg 

a.e. ha-1, I assessed survival and assigned a resistance score to each individual. Interpreting the results of 

the GWAS, I identified a total of 28 SNPs with suggestive associations (p < 1 х 10-5) to glyphosate 

resistance as candidates. Overlapping genes included two ABC transporters and a major facilitator 

transporter, both previously implicated in non-target-site resistance in other species (Yuan et al. 2007; 

Staub et al. 2012), but did not include either gene copy of the enzyme targeted by glyphosate. 

5.2 General Conclusions 

5.2.1 Rapid and Repeated Evolution of Weediness in Sunflower 
 The results presented in my thesis contribute to our understanding of what adaptations may be 

important for agricultural weeds in contemporary, high-intensity agroecosystems, and how these may 

evolve. There are several key take-home messages. Firstly, in accordance with a growing body of work 

on weedy and invasive species (e.g. see reviews in Buswell et al. 2011; Vigueira et al. 2013), I found that 

successful weedy sunflower populations had evolved in response to colonizing cultivated fields. Though 

Helianthus annuus is a generalist ruderal species that prefers open areas, and can show broad 

environmental tolerances and phenotypic plasticity (Heiser et al. 1969), weedy populations nonetheless 

showed genetic changes that are likely adaptive for the agricultural environment. The paired design 

utilized in my common garden work allowed me to identify changes due to weediness itself, a very 

important element for such a broad-ranged species. Previous work has identified strong phenotypic and 

genotypic geographical, and particularly latitudinal, differentiation in H. annuus (Cantamutto et al. 2010; 
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Blackman et al. 2011; McAssey et al. 2016); I also observed substantial among-population variation (e.g. 

Figure 2.4) with latitudinal patterns in traits such as plant size and flowering time. Populations were also 

sorted according to latitude in a principal component analysis (PCA) of the genetic data. If we were to 

compare weedy and wild populations from different latitudes blindly, weediness would be confounded 

with other local adaptations. Sorting loci linked to weediness from loci that had undergone unrelated 

local and regional selective sweeps was a challenge in earlier studies of this system (Kane and Rieseberg 

2008; Lai et al. 2008). 

 As I focussed on phenotypic and genotypic differences that were common across multiple 

weedy-wild population pairs, this also increases the probability that observed differences were adaptive. 

Neutral processes, such as gene flow, may cause populations to diverge randomly (Elmer and Meyer 

2011). In contrast, parallel shifts between replicate population pairs are most likely a consequence of 

natural selection, as it is unlikely that the same changes would occur repeatedly across populations due 

to chance alone. Given that agricultural intensification in the Midwest has occurred only within the last 

100 years or so, weedy sunflower evolution has been rapid. This agrees with a recent consensus in the 

literature that evolutionary change can happen very quickly (e.g. Holt 2005; Carroll et al. 2007), to the 

extent that even the ecological dynamics of species may be affected. Such rapid change may be more 

common when environmental conditions suddenly shift (Neuhauser et al. 2003) or a species colonizes a 

novel habitat, as seen in this work. Here, I found that sunflowers have evolved both life history 

differences and resistance to the herbicide glyphosate as a consequence of selection in agroecosystems. 

Weed evolution also proceeded despite ongoing gene flow from wild sunflower populations, again 

suggesting that selection is strong enough to offset maladaptive gene flow.  

 Overall, there was little genetic structure among the study populations, suggesting that levels of 

gene flow are fairly high across the landscape in sunflower. The average genome-wide FST between 

weedy and wild individuals in Chapter 3 was close to zero (FST < 0.01), implying that, while weedy and 

wild populations may differ at a small proportion of key loci, most of the genome is not differentiated. In 

an analysis of genetic structure based on microsatellite data in U.S. sunflower populations, Kane and 

Rieseberg (2008) also found that weedy ecotypes were not highly differentiated from geographically 

proximal wild populations; additionally, in a neighbour-joining tree, their populations clustered 

geographically. In my thesis populations, there was a signal of isolation-by-distance in the PCA in 

Chapter 4 (Figure 4.6); however, the first two PC axes explained less than 2% of the variation in the data. 

Altogether, these results imply that weediness has likely evolved multiple times across the H. annuus 
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range, presenting an interesting case of parallel evolution. Weedy populations have not only evolved the 

same phenotypic adaptations (e.g. faster seedling growth), but the genome scans also revealed some 

amount of parallel genetic differentiation. Adaptation to cultivated fields therefore most likely involves 

standing variation as opposed to new mutations, given the short time span. However, the evidence was 

weaker for genetic versus phenotypic parallelism. This suggests that the alleles and loci underlying 

weediness may vary among populations, diluting the overall signal of divergence. Similarly, Qi et al. 

(2015) found little evidence for a shared genetic basis to weediness in different strains of weedy rice 

(Oryza sativa L.), and there may be ample genetic variation in both rice and sunflower to allow the 

evolution of weedy traits via multiple genetic mechanisms. 

5.2.2 Widespread Glyphosate Resistance in Sunflower Suggests Multiple Origins 
In agricultural systems, the strong selection imposed by the use of novel herbicides can lead to a 

particularly rapid evolutionary response (Powles and Yu 2010). For example, in a selection experiment 

for diclofop-methyl resistance in rigid ryegrass (Lolium rigidum Gaudin), Neve and Powles (Neve and 

Powles 2005) found that even a single cycle of high-dose herbicide selection significantly increased 

resistance across populations. In my thesis, I documented the widespread evolution of glyphosate 

resistance in North American sunflowers. Glyphosate was first introduced as a herbicide in 1974, but 

became widely used only after the commercialization of glyphosate-resistant crops by Monsanto in the 

1990s (Duke and Powles 2008). All cases of glyphosate resistance in weeds have evolved since then, with 

39 reports to date, according to the International Survey of Herbicide-Resistant Weeds (ISHRW 2017, 

www.weedscience.org; retrieved on 11 Dec 2017). The first reported case occurred in rigid ryegrass in 

Australia in 1996 (Powles et al. 1998), showing just how quickly resistance can evolve, even for an 

herbicide for which evolving resistance can be challenging (Bradshaw et al. 1997).  

In comparison to herbicides with other target sites, such as acetolactate synthase (ALS) 

inhibitors, the evolution of resistance to glyphosate can be challenging as changes in the amino acid 

sequence of the target enzyme (5-enolpyruvylshikimate-3-phosphate synthase, or EPSPS) that inhibit 

glyphosate binding also decrease enzyme function (Powles and Yu 2010). In contrast, amino acid 

changes conferring resistance to ALS inhibitors, for example, tend not to inhibit enzyme function 

(Duggleby et al. 2008) and, perhaps as a result, target-site ALS resistance has evolved easily in many 

species, with 159 cases reported to date (ISHRW 2017). The alternative to target-site resistance is a 

variety of non-mutually exclusive mechanisms to reduce herbicide absorption and translocation, 

sequester the herbicide or detoxify it, collectively called non-target site resistance (NTSR) mechanisms 

http://www.weedscience.org/
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(Ghanizadeh and Harrington 2017a). While we can’t exclude target-site resistance in sunflower without 

further study of the EPSPS sequences, results from the GWAS are indicative of NTSR, with several loci on 

multiple chromosomes involved. Three candidate SNPs were found in genes for transporter proteins, 

implicating a role for altered glyphosate translocation patterns or herbicide sequestration as 

mechanisms of resistance. Thus, though much more complex to study than target-site resistance, the 

potential for NTSR to play an important role in the response to novel herbicides should not be ignored. 

 An interesting model of the evolution of NTSR was recently proposed by Délye (2013), referred 

to as “allele stacking”. In the model, NTSR increases gradually over time, as different alleles conferring 

resistance accumulate in the population, “stacking” within individuals in outcrossing species. Sub-lethal 

herbicide applications can exacerbate the accumulation of resistance alleles in weeds, by allowing the 

persistence of weak resistance alleles that may later combine. Here, peaks in the GWAS were merely 

suggestive of association with glyphosate resistance, not passing stringent correction for multiple 

testing. It therefore seems likely that different populations, separated geographically, may have stacked 

different sets of resistance alleles and loci, each evolving glyphosate resistance in a unique way. 

Idiosyncrasy in the precise NTSR mechanisms involved and/or genes could lead to greater noise in the 

GWAS and weaker associations. Interestingly, as wild sunflower is often subject to removal efforts 

across the landscape (owing to its role as an agricultural weed), glyphosate resistance may not be a 

weed-specific adaptation. In the GWAS mapping population, resistance also segregated in wild 

populations, with some wild individuals among the best survivors. Interestingly, there was no overlap in 

terms of either genes or candidate regions between the analyses in Chapter 3 and Chapter 4; comparing 

the two studies, the three closest matches occurred on chromosomes nine, thirteen and sixteen and 

were spaced roughly one million base pairs apart. If weedy and wild populations are not differentiated 

in terms of glyphosate resistance, this may explain why candidate loci identified by the GWAS were not 

recaptured in the genome scan. 

5.3 Future Directions 

5.3.1 Extending the Common Garden Work to Compare Weedy-Wild Fitness Differences 
 While the weedy-wild differences in growth rate and flowering time seen in the common garden 

are intriguing, suggesting an adaptive shift in life history strategy, the common garden work could be 

extended to better elucidate the whole story. Genotype-by-environment interactions are extremely 

common (Des Marais et al. 2013), and this was evident here when comparing the effects of two 

replicate experiments performed in two different years. Growing sunflowers well outside of the native 
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range and climate normals they typically experience could obscure true weedy-wild differences, and a 

repeat common garden in the native range may be advised to confirm trait differences seen in 

Vancouver, Canada. It is also unclear how common garden work in a benign environment, which is 

neither an agricultural field nor a typical resource-poor wild site, informs how plants may perform in 

these habitats. A reciprocal transplant experiment would allow for quantifying weedy and wild plant 

performance in both habitats. As we could not quantify plant fitness, the effects of differences in 

flowering time on seed production, for example, are unknown. Do earlier flowering plants necessarily 

have an advantage? Quantifying fitness in meaningful habitats, such as agricultural fields, could reveal 

the importance of putative weed adaptations identified here. 

5.3.2 Accounting for the Paired Nature of the Weedy-Wild Data in the Genome Scans 
 One particular challenge with the genome scan of weedy-wild genetic divergence was the small 

sample size, because I could not account for the paired nature of the data in the analysis. In the 

common garden, accounting for the fact that weedy-wild populations were paired was critical to 

uncover trait differences between the population types. As sunflowers show dramatic latitudinal 

variation, this must first be accounted for in order to then isolate the effect of type. Putative 

differentiated genomic regions in Chapter 3 could not be confirmed owing to low power in the analysis, 

likely caused by this same issue: much larger genetic differences owing to local adaptation to other 

factors (e.g. climate) obscuring the smaller effects of population type. To rectify this issue, we are 

planning a follow-up analysis including ten individuals per population. This should permit modifications 

of the randomization testing in order to better reflect the nature of the data, as well as allow us to make 

among population comparisons. Comparing individual weedy-wild pairs and then looking for overlap 

would be an alternative way to identify genomic regions of divergence between population types. 

5.3.3 Greater Precision in Mapping Glyphosate Resistance 
 Non-target-site resistance may have a complex genetic basis (Yuan et al. 2007). In the sunflower 

populations I studied here, the loci and alleles underlying NTSR to glyphosate also likely varied among 

populations, creating additional complexity. Finally, as our selected rate of glyphosate application only 

resulted in a ~20% death rate, I had to score survivors qualitatively to assign a herbicide resistance score 

to be used in the GWAS; however, survivor phenotypes were immensely varied and it was sometimes 

unclear what differences in say, leaf die-off, meant in terms of a plant’s potential future fitness. In the 

GWAS, these complexities added noise to the analysis, and SNPs with potential associations to 

glyphosate resistance did not pass corrections for multiple testing. Genetic mapping of NTSR involving 
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multiple loci will always be challenging, but we might improve our chances but reducing the complexity. 

Including only a single population, or subset of populations from a small geographical area, might be one 

option to reduce the number of loci involved. Similarly, one could select a particularly resistant 

accession and work to create a mapping population from just this line, with an extreme example being 

the creation of recombinant inbred lines (RILs). A powerful approach for mapping the loci underlying 

complex traits (Pollard 2012), RILs are created via the repeated sibling mating (or selfing, in self-

compatible species) of offspring from an initial cross between two parents differing in a phenotype of 

interest, such as herbicide resistance. 
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Appendices 

Appendix A: Gene List for Genome Scan Results 
Chromosome Start Position (bp) Gene ID Protein Name 

HanXRQChr01 17330075 HanXRQChr01g0003741 Nucleotide-binding alpha-beta plait domain 

HanXRQChr01 17332821 HanXRQChr01g0003751 S-locus lectin protein kinase family protein 

HanXRQChr01 18417984 HanXRQChr01g0003821 Dormancy-associated protein-like 1 

HanXRQChr01 18479858 HanXRQChr01g0003841 DEHYDRATION-INDUCED 19 homolog 3 

HanXRQChr01 18796866 not assigned ATP-dependent DNA helicase PIF1 

HanXRQChr01 18800133 HanXRQChr01g0003891 Phospholipase A1-II 1 

HanXRQChr01 19967814 HanXRQChr01g0004001 Protein kinase superfamily protein 

HanXRQChr01 20037080 HanXRQChr01g0004011 Cellulose synthase 1 

HanXRQChr01 23290490 HanXRQChr01g0004401 Gnk2-homologous 

HanXRQChr01 23554582 HanXRQChr01g0004421 SKP1/BTB/POZ domain; NPH3 domain 

HanXRQChr01 34310431 HanXRQChr01g0005071 NAD(P)H dehydrogenase B2 

HanXRQChr01 36544046 HanXRQChr01g0005331 DREB2A-interacting protein 1 

HanXRQChr01 38347516 HanXRQChr01g0005501 NAD(P)-binding Rossmann-fold superfamily protein 

HanXRQChr01 38758339 HanXRQChr01g0005661 ABC transporter; P-loop containing nucleoside  
triphosphate hydrolase 

HanXRQChr01 38759244 HanXRQChr01g0005671 Beige/BEACH domain; WD domain, G-beta repeat 
protein 

HanXRQChr01 38849478 HanXRQChr01g0005691 Sec23/Sec24 protein transport family protein 

HanXRQChr01 45063685 HanXRQChr01g0006491 Serine/threonine/dual specificity protein kinase,  
catalytic  domain 

HanXRQChr01 114488596 HanXRQChr01g0019491 Peptidase S28; Alpha/Beta hydrolase fold 

HanXRQChr02 10158511 HanXRQChr02g0033041 TRAM, LAG1 and CLN8 (TLC) lipid-sensing domain 
containing protein 

HanXRQChr02 10164572 HanXRQChr02g0033051 Mce/MlaD 

HanXRQChr02 156230966 HanXRQChr02g0053201 Aluminium activated malate transporter family 
protein 

HanXRQChr03 17145104 not assigned Transmembrane protein 

HanXRQChr03 85176295 HanXRQChr03g0072551 Isopentenyltransferase 5 

HanXRQChr03 114444888 HanXRQChr03g0077231 Cyclic nucleotide-gated cation channel 4 

HanXRQChr03 125903755 not assigned Nuclease HARBI1  

HanXRQChr03 125917681 HanXRQChr03g0079661 Glycoside hydrolase family 1 

HanXRQChr04 62271069 HanXRQChr04g0106061 Alpha/beta-Hydrolases superfamily protein 

HanXRQChr04 115231934 HanXRQChr04g0112531 Integrase-type DNA-binding superfamily protein 

HanXRQChr04 165740641 not assigned Ribonuclease H protein At1g65750-like  

HanXRQChr04 165742494 HanXRQChr04g0123491 Oxoglutarate/iron-dependent dioxygenase; Non-
haem dioxygenase N-terminal domain 

HanXRQChr05 17874237 HanXRQChr05g0132481 Cysteine-rich RLK (RECEPTOR-like protein kinase) 
33 

HanXRQChr05 204755331 HanXRQChr05g0158991 Flavoprotein-like domain 

HanXRQChr06 67605734 HanXRQChr06g0181091 Peroxin4 

HanXRQChr06 77964366 HanXRQChr06g0182221 SCO1 homolog, mitochondrial 
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Chromosome Start Position (bp) Gene ID Protein Name 

HanXRQChr06 100505079 HanXRQChr06g0184771 Hexokinase-2, chloroplastic 

HanXRQChr06 100509474 not assigned ATP-dependent DNA helicase PIF1 

HanXRQChr06 100566760 not assigned 60S ribosomal protein L38 

HanXRQChr06 100568100 not assigned Nuclease HARBI1 

HanXRQChr06 100612968 HanXRQChr06g0184781 F-box domain; F-box associated interaction domain 

HanXRQChr07 10904213 HanXRQChr07g0187811 Thioredoxin-like fold 

HanXRQChr08 41842349 HanXRQChr08g0219811 Serine/threonine/dual specificity protein kinase, 
catalytic  domain 

HanXRQChr08 70008833 not assigned Nuclease HARBI1  

HanXRQChr08 77313850 HanXRQChr08g0226021 Pectin lyase-like superfamily protein 

HanXRQChr08 78435674 HanXRQChr08g0226151 GYF domain; Histone-lysine N-methyltransferase 
Trr 

HanXRQChr08 112841373 not assigned BONZAI 3-like 

HanXRQChr08 112847826 HanXRQChr08g0231961 Extensin 3 

HanXRQChr09 15879229 HanXRQChr09g0239981 NC domain-containing protein-related 

HanXRQChr10 47386245 not assigned Floral homeotic protein APETALA 2-like  

HanXRQChr10 51064546 not assigned Sulfoquinovosyldiacylglycerol 2 

HanXRQChr10 77673557 not assigned ATP-dependent DNA helicase PIF1-like isoform X1 

HanXRQChr10 84839370 not assigned Ribonuclease H protein At1g65750-like 

HanXRQChr10 85297950 HanXRQChr10g0291451 LRR receptor-like serine/threonine-protein kinase 
EFR 

HanXRQChr10 155024465 HanXRQChr10g0300601 Tyrosine-protein kinase; receptor ROR 

HanXRQChr10 177672770 HanXRQChr10g0303601 Bifunctional riboflavin biosynthesis protein RIBA  

HanXRQChr10 214895610 HanXRQChr10g0310551 Rab5-interacting protein family 

HanXRQChr11 158353603 not assigned Adenosine-5'-phosphosulfate (APS) kinase 4 

HanXRQChr12 42968218 HanXRQChr12g0366451 Cytochrome P450 

HanXRQChr12 64164437 HanXRQChr12g0370371 CDP-alcohol phosphatidyltransferase 

HanXRQChr13 62236872 HanXRQChr13g0395661 Plant VAMP (vesicle-associated membrane protein) 
family protein 

HanXRQChr13 99378265 HanXRQChr13g0403571 Late embryogenesis abundant (LEA) 
hydroxyproline-rich glycoprotein family 

HanXRQChr13 99380953 not assigned Transmembrane protein 

HanXRQChr13 100991585 HanXRQChr13g0403971 Leucine-rich repeat-containing N-terminal, plant-
type 

HanXRQChr13 186782972 not assigned Cytochrome P450 

HanXRQChr13 186791506 HanXRQChr13g0423381 Alpha/beta-Hydrolases superfamily protein 

HanXRQChr15 79111145 not assigned Luminal-binding protein 5 

HanXRQChr15 79115849 HanXRQChr15g0483691 Zinc finger, RING/FYVE/PHD-type 

HanXRQChr15 81098919 HanXRQChr15g0483901 Ascorbate peroxidase 3 

HanXRQChr15 86385343 HanXRQChr15g0484901 AGAMOUS-like 24 

HanXRQChr16 1271327 HanXRQChr16g0498001 Histidine kinase-, DNA gyrase B-, and HSP90-like 
ATPase family protein 

HanXRQChr16 153871742 not assigned Carotenoid 9,10(9',10')-cleavage dioxygenase 1-like 
isoform X1 

HanXRQChr16 171951880 not assigned GDSL esterase/lipase At3g48460-like 
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Chromosome Start Position (bp) Gene ID Protein Name 

HanXRQChr16 171958254 HanXRQChr16g0529381 SGNH hydrolase-type esterase domain 

HanXRQChr17 174929190 not assigned Ribonuclease H protein At1g65750-like 

HanXRQChr17 174934473 not assigned Proline-rich receptor-like protein kinase PERK8 

HanXRQChr17 177995992 not assigned Chlorophyll A-B binding protein 

HanXRQChr17 177999628 HanXRQChr17g0564351 F-box domain; Leucine-rich repeat domain 

HanXRQChr17 191494042 HanXRQChr17g0566361 RNI-like superfamily protein 
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Appendix B: Gene List for GWAS Results 
Chromosome Start Position (bp) Gene ID Protein Name 

HanXRQChr01 86424884 HanXRQChr01g0014391 Auxin response factor+ 

HanXRQChr01 86438342 HanXRQChr01g0014421 Nucleic acid-binding, OB-fold-like protein 

HanXRQChr03 106213474 HanXRQChr03g0075421 Glycine-rich protein 

HanXRQChr03 106241973 HanXRQChr03g0075431 Zinc finger, C2H2-like 

HanXRQChr03 106263234 not assigned 
Serine/threonine-protein kinase TOUSLED-
like* 

HanXRQChr03 106264767 HanXRQChr03g0075461 Calcium load-activated calcium channel* 

HanXRQChr03 106266534 HanXRQChr03g0075471 IBR domain; E3 ubiquitin ligase RBR family 

HanXRQChr03 106267708 HanXRQChr03g0075481 Adenine phosphoribosyl transferase 

HanXRQChr03 106278046 not assigned Ribonuclease H protein At1g65750-like* 

HanXRQChr03 106294441 HanXRQChr03g0075491 Transposase, gypsy type 

HanXRQChr08 105564979 HanXRQChr08g0230781 Mlo-related protein 

HanXRQChr08 105615964 HanXRQChr08g0230811 RPA-interacting protein A* 

HanXRQChr09 66975439 HanXRQChr09g0247281 BTB/POZ domain-containing protein FBL11 

HanXRQChr09 66996355 HanXRQChr09g0247291 Plant PDR ABC-transporter associated 

HanXRQChr12 31224957 not assigned Ribonuclease H protein At1g65750-like* 

HanXRQChr12 31361738 not assigned Cysteine-rich RLK 8* 

HanXRQChr12 31389482 not assigned RNA-directed DNA polymerase* 
HanXRQChr12 36686159 HanXRQChr12g0365101 Phosphatidylinositol 3-/4-kinase, catalytic 

domain 

HanXRQChr12 36690789 not assigned Cysteine-rich RLK 8* 
HanXRQChr12 36705847 HanXRQChr12g0365111 DNA-directed RNA polymerase 1B, 

mitochondrial 

HanXRQChr12 36723906 HanXRQChr12g0365131 
Myc-type, basic helix-loop-helix (bHLH) 
domain 

HanXRQChr12 104115414 HanXRQChr12g0377241 Major facilitator superfamily,  sugar 
transporter-like 

HanXRQChr12 134373597 HanXRQChr12g0380931 Plant PDR ABC-transporter associated 
HanXRQChr12 138034586 not assigned Photosystem I P700 chlorophyll a apoprotein 

A1-like*  

HanXRQChr12 138054149 not assigned Chromatin remodeling protein EBS* 

HanXRQChr12 138084542 not assigned Chromatin remodeling protein EBS* 

HanXRQChr12 138097104 not assigned DNA damage-inducible protein 1-like* 

HanXRQChr12 140112626 HanXRQChr12g0381201 Alanine:glyoxylate aminotransferase* 

HanXRQChr12 140510824 HanXRQChr12g0381221 Alpha/beta-Hydrolases superfamily protein* 

HanXRQChr13 2165748 not assigned Protein trichome birefringence-like 10* 

HanXRQChr13 2169026 HanXRQChr13g0386871 SecY protein transport family protein 

HanXRQChr13 65390194 not assigned Nuclease HARBI1* 

HanXRQChr13 67088450 HanXRQChr13g0396151 Zinc-finger protein 1 

HanXRQChr15 7307152 HanXRQChr15g0465561 Alpha/beta-Hydrolases superfamily protein 

HanXRQChr15 7316921 not assigned 60S ribosomal protein L18-2-like* 

HanXRQChr15 7370878 not assigned ATP-dependent DNA helicase PIF1* 

HanXRQChr16 117538989 HanXRQChr16g0517611 Erf domain protein 9 
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Chromosome Start Position (bp) Gene ID Protein Name 

HanXRQChr16 175652942 not assigned Serine/threonine-protein kinase DDB* 

HanXRQChr16 175653909 not assigned Mitochondrial protein AtMg00810-like* 

HanXRQChr16 175679027 not assigned Cysteine-rich RLK 8* 

HanXRQChr16 175715161 not assigned Glucan endo-1,3-beta-glucosidase 9-like* 

HanXRQChr16 175727613 HanXRQChr16g0530461 Zinc finger, NHR/GATA-type 
*Indicates that a putative function was assigned based on homology to proteins in other plant species, using available GenBank 

gene identifier numbers. 
+Light grey shading indicates genes associated with SNPs in the top six suggestive peaks. 

 


