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Abstract 

 

Lung cancer is the leading cause of cancer-associated death worldwide. To improve clinical 

management, biological discovery underlying disease pathogenesis and improved sensitivity of 

early detection imaging modalities are required. Presently, therapeutic targeting immune 

components of the tumor microenvironment led to immunotherapies, potent therapeutic agents 

revolutionizing clinical practice. Increasingly recognized, the native spatial organization of 

tumor microenvironment immune cells could potentially serve as a surrogate for predicting 

prognosis and stratifying tumor immunogenicity. However, conventional methods, including 

histopathology and genomic profiling, are limited in measuring such parameters. Image analysis 

systems are being tested for these applications, but further development and optimization is 

required before clinical adoption. Dr. Calum MacAulay and Dr. Martial Guillaud’s research team 

at the British Columbia Cancer Research Centre (BCCRC) developed a novel hyperspectral 

image analysis system capable of spatially profiling tumor microenvironments in situ. Herein, 

this thesis reports the workflow optimization of this system prototyped with the lung 

adenocarcinoma (AC) microenvironment. This study was conducted with 21 primary lung AC. 

Adjacent tumor sections were stained for nuclei with hematoxylin and markers of tumor-

infiltrating lymphocytes (CD3, CD79a, CD8) or adaptive immune resistance (PD1, PDL1, CD8) 

by multiplex immunohistochemistry. After a lung pathologist identified areas of interest on 

tissue sections, five representative regions within each area were imaged. Image stacks of sixteen 

different illumination wavelengths (from 420 to 720 nm) were then processed by spectral 

unmixing, segmented, and immunohistochemical marker positivity thresholds applied. Processed 

two-dimensional images were quantified for cell types and neighboring cell type spatial 
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correlations. Additionally, three lung AC within this cohort were selected to test workflow of 

image registration software to interpolate cell spatial distributions between sections. The system 

was able to determine immune cell-to-cell spatial correlations and distribution within and across 

sections. Furthermore, technical factors were identified that affected the workflow of this system, 

including staining, image acquisition, segmentation, specialized equipment, and sampling 

strategy. Here we describe a valuable platform to quantitatively and spatially profile tumor 

heterogeneity that could then be used to correlate with lung cancer prognosis and treatment 

outcomes, although further optimization of this method is required.  
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Lay Summary 

 

Lung cancer is the leading cause of cancer-related death worldwide. To improve patient survival, 

understanding lung cancer biology and developing new technologies are essential. Awareness 

that immune cells exist in tumors has enabled remarkably effective drugs, and their spatial 

locations better predict cancer survival and treatment response. However, conventional methods 

in pathology and biology do not precisely measure these spatial features. Image analysis software 

is primarily being explored, but requires further development. Dr. Calum MacAulay and Dr. 

Martial Guillaud’s research team developed a new image analysis system to measure cell spatial 

locations in tumors. This thesis determined that this system can identify different levels of 

immune cell spatial organization and distribution in tumors and discovered technical factors 

affecting the workflow of this system. These results reveal that the platform is valuable, although 

additional testing and optimization are required.  
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Chapter 1: Introduction 

 

1.1 Background on lung cancers 

 

Lung cancers are the leading cause of cancer-associated death worldwide. The five-year survival 

rate for this disease remains only 17% in Canada [1]. Underpinning the poor prognosis of this 

disease include the following two challenges. Firstly, current lung cancer treatment modalities 

are not curative to all patients. Despite primary treatment by surgical resection with curative 

intent, recurrence occurs in over 30% of patients with early stage lung cancer [2, 3].  And 

secondly, existing methods for early detection of lung cancers are limited. Approximately 70% 

of patients are presented with locally advanced or metastatic disease at the time of diagnosis [4]. 

Antithetically, lung cancers detected at early stage can have five year survival rates of over 70% 

[5]. Solving these two fundamental problems in lung cancer clinical management requires 

multidisciplinary research. The former challenge can be approached through biological discovery 

– a deeper understanding of the mechanisms driving lung cancer pathogenesis is required to 

identify therapeutic intervention points to inform the development and implementation of new 

treatment strategies. The latter can be tackled by technological advancement – improved 

sensitivity of imaging methods to detect early-staged lung cancers will be imperative, as these 

localized cancers have a higher probability to respond to treatment [6-8]. Identification of 

populations to screen for pre-existing and new technologies will also be a relevant strategy. 

Integration of this multidisciplinary scientific knowledge will inform clinical practice to improve 

prognosis of lung cancer patients.  
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1.1.1 Classification of lung cancers 

 

Lung cancers are heterogenous and are classified into two major groups: small cell lung cancer 

(SCLC), accounting for 15% of lung cancer cases, and non-small cell lung cancer (NSCLC), 

which are the remaining 85% of cases. The dichotomization of these two major groups of 

carcinoma is based on the morphology of lung cancer cells, where “small cell” in SCLC 

nomenclature refers to tumor cells with scant cytoplasm and small nuclei, and where NSCLC do 

not exhibit such phenotypes [9]. As the most aggressive type of lung cancer, SCLC are highly 

malignant, are thought to originate from neuroendocrine cells present central airways, and is 

typically diagnosed in smokers. Representing the majority of lung cancer cases, NSCLC is 

further subdivided into three major histological subtypes: adenocarcinoma (AC), squamous cell 

carcinoma (SqCC), and large cell carcinoma (LCC). Lung AC is the predominant NSCLC 

diagnosed, accounting for approximately half of all NSCLC cases and thus, will be the focus of 

this thesis [10]. Lung AC tends to arise from glandular epithelium of the lung periphery from 

bronchioalveolar stem cells, club cells, or type II pneumocytes and unlike other subtypes, occurs 

in greater percentage of never smokers [11]. Conversely, SqCC develops mostly in the central 

airways and segmental bronchi and is predominantly diagnosed in smokers. Lung tumors that do 

not exhibit hallmark features of SCLC, SqCC, and AC are diagnosed as LCC. These tumors may 

arise anywhere in the lung. The diverse pathologies of lung cancers described here display the 

extensive biological complexities of this disease (Figure 1.1). 
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Figure 1.1   Classification of lung cancers. Left: Lung cancer classification and percent incidence of American populations. Lung cancer is dichotomized into 

two major classes, small cell lung cancer (SCLC) and non small cell lung cancer (NSCLC). Percent incidence of NSCLC histologies sum to NSCLC percent 

incidence (83.4%). Remaining histologies (non-small cell carcinoma and other specified carcinomas) are not shown. Right: Representative sites of origin typical 

of lung cancer. SCLC originates from the central airway, and is posited to arise from neuroendocrine cells (middle panel). As the predominant class, NSCLC is 

further classified into three major subtypes (SqCC), large cell carcinoma (LCC), and adenocarcinoma (AC). SqCC typically arises from central airways and 

segmental bronchi from basal cells (upper and middle panel). Tumors without features of other NSCLC subtypes are classified as LCC, and may arise from 

anywhere in the lung. AC is the most frequent NSCLC and is postulated to arise from type II pneumocytes and club cells (upper and lower panel). I produced the 

illustrated figures in this publication. Figure reprinted is original from the original publisher BioMed Central with proper attribution of authorship and citation 

from Marshall, Ng, and Kung et al. [12].  BioMed Central does not require formal written permission to reprint figures. 



4 

 

Classification of lung cancers is essential to enable best clinical practice. Classification is 

mandatory for treatment, as drugs are only approved for specific lung cancer subtypes or are 

contraindicated (inadvisable) in certain cases, as illustrated by pemetrexed, one of the first drugs 

rationalizing the distinction between squamous and nonsquamous histologies for treatment 

decisions [13]. To identify lung cancer subtypes, histopathology and molecular testing of lung 

tumors are essential techniques implemented in the clinic. Histopathology refers to the study of 

disease states microscopically characterized in tissue. The heterogeneous pathogenesis of lung 

cancer subtypes previously described are attributed by the plethora of different genetic 

backgrounds expressed in lung cancer subtypes, resulting in assorted morphologies and protein 

marker expression patterns. Unique, common physical features or markers (both molecular and 

histopathological) within each group can be exploited as a means to categorize different lung 

cancer subtypes [11]. For instance, AC can be differentiated from SqCC using thyroid 

transcription factor 1 (TTF1, alternatively called NKX2-1) and keratin 7 (KRT7), as the latter do 

not highly express these markers [14]. Lung AC is further classified based on invasiveness (pre-

invasive lesions, minimally invasive AC (MIA), invasive AC, or variants of invasive AC). These 

AC classifications can be further characterized based on predominant histological growth 

patterns, a feature significantly correlating with patient prognosis: predominant lepidic 

lymphovascular or pleural invasion) with better prognosis, predominant acinar (glandular 

formation and predominant papillary) fibrovascular cores with tumor cells replacing alveolar 

lining) with intermediate prognosis, predominant micropapillary (tufting without fibrovascular 

cores) and predominant solid (sheets of tumor cells) with poorer survival, and predominant 

invasive mucinous (columnar cells with mucin) [15, 16]. Lung AC can also be further subdivided 

based on expression of specific proteins, referred to as molecular subtypes. Molecular subtyping 
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of lung cancers enables systematic stratification of patients for treatment with small molecule 

inhibitors. For instance, epidermal growth factor receptor (EGFR) positivity prescribes the usage 

of EGFR tyrosine kinase inhibitors (erlotonib, geftinib, and aftinib), and anaplastic lymphoma 

kinase (ALK) positivity with ALK inhibitors (crizotinib and ceritinib) [17]. Lung cancers are 

genetically heterogeneous, and the complex diversity of clinically relevant phenotypes 

emphasizes the need for appropriate classification. With new biological discoveries and 

technological advances expected, the lung cancer classification system undergoes revisions to 

reflect updated knowledge about this disease with recommendations by the International 

Association for Study of Lung Cancer (IASLC) [18, 19]. Indeed, the presentation of distinct 

physical features in tumors is a wealth of information that if precisely understood, can be 

strategically mined for appropriate clinical decision making. 

 

1.2 Lung cancer detection and diagnostics 

 

1.2.1 Cancer imaging and clinical features of lung cancer diagnostics 

 

Medical imaging has an essential role in lung cancer detection and is present in all steps of the 

complete medical examination used to diagnose suspected lung cancer, referred to as the clinical 

work up. Lung cancer diagnosis relies on both sophisticated macroscopic and microscopic 

imaging to comprehensively provide evidence of disease presentation for effective clinical 

decision making. These conventional imaging modalities tend to be initially non-invasive and 

more invasive downstream. The imaging modalities implemented in the clinical work up include 

chest radiograph or chest X-ray (CXR, as commonly referred to), computed tomography (CT), 
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bronchoscopy, microscopy, positron emission tomography (PET), and magnetic resonance 

imaging (MRI) (Figure 1.2) [20]. The workup is sequentially divided in the following major 

steps: clinical presentation, diagnosis, and staging. 

In clinical presentation, macroscopic, non-invasive cancer imaging is primarily 

implemented. If a patient is suspected to present with lung cancer to a health care provider 

(family physician, walk-in clinic, emergency department), the patient will first be referred for a 

CXR, and the radiograph will be reviewed by a primary care provider. CXR provides initial 

evidence of lung cancer, however is not ideal for cancer characterization and staging [21]. If 

results are suspicious, the patient will be referred to a diagnostic assessment program or 

specialist to perform a chest CT, an imaging method found to be more effective than CXR at 

determining early stage lung cancer as determined by the seminal study known as the National 

Lung Screening Trial (NLST)  [22]. A chest CT scan facilitates the identification of preliminary 

staging, tumor type, and to assess patient fitness for prospective treatment strategies. Although 

CT is a core imaging modality for lung cancer screening, this technique presents many 

challenges, including interpretation of positive CT results, such as high false positivity rates from 

low dose CT, and possible negative effects after repeated CT exposure, such as potential risks for 

cancer development [23-29]. 

Based on initial cancer imaging, the patient will undergo diagnostic procedures if a  

suspected mass is identified from initial staging, involving invasive procedures. Image-guided 

biopsies using real-time imaging are performed by a lung oncologist to collect primary 

specimens for analysis, including bronchoscopy (endoscopic imaging of the airways) to collect 

bronchial fluid specimens and bronchial/transbronchial biopsies and endobronchial ultrasound 

(EBUS) biopsy of lymph nodes [30, 31]. Anatomical location of the tumor informs the type of 
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diagnostic technique used. For instance, bronchoscopy is appropriate for central/hilar lung 

tumors (located in airways), and is not as accurate for peripheral nodules (small airways or lung 

parenchyma) [32]. Anatomical location of tumor also informs lung cancer diagnosis, as different 

subtypes of lung tumors tend to originate in different sites, described earlier in Sub-Section 1.1.1.  

In staging, the definitive diagnosis of the extent of anatomical disease is made. Cancer diagnosis 

is performed using lung tumor biopsies by the pathologist, a trained observer, to classify and 

describe disease severity. Specifically, the pathologist evaluates an analog image of the tumor 

directly viewed through brightfield microscopy to determine histopathology. The microscope is 

the principle optical instrument used by the pathologist for imaging, and this imaging modality 

will be the focus of this thesis. Key histopathological features of lung tumors are evaluated, as 

described in Sub-Section 1.1.1, where tumor tissues are stained to enhance the visualization and 

perception of histological features (detailed in Sub-Section 1.2.2). In addition to tumor tissue, 

histopathology of lymph nodes present in the mediastinum is also assessed if invasion is evident 

from initial cancer imaging. These organs of the immune system are one of the first site of 

metastasis for the majority of solid cancers and therefore, provide valuable clinical information 

that informs staging, prognosis, patient management, and decision making of treatment 

modalities such as surgery and/or chemoradiation [33-36].  

Cancer staging also relies on PET/CT and MRI or CT brain scans (if MRI is not available 

or is contraindicated) to determine if extrathoracic spread has occurred [21, 37]. This procedure 

may be optional for patients that have clinical stage I or II disease and are asymptomatic. If the 

tumor is non-resectable, additional treatment algorithms are implemented to decide potential 

treatment strategies. In summation, the lung cancer diagnostic work up highlights that modern  
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Figure 1.2   Cancer imaging in clinical work up of lung cancer.  Microscope illustration adapted from photo courtesy of Paul Gallagher. 
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imaging technologies and optical devices are essential infrastructure for appropriate clinical 

decision making and timely intervention of lung cancer treatment strategies [38]. 

 

1.2.2 Molecular indicators for lung cancer diagnostics 

 

The detection of proteins in preserved tumor tissue is routinely performed in the clinic. 

Specifically, immunohistochemistry (IHC) of formalin-fixed paraffin-embedded (FFPE) lung 

tumor tissue is primarily used for definitive diagnoses due to practicalities, including greater 

convenience for storage and sectioning of tissue and improved preservation of tissue morphology 

compared to frozen tissue specimens [39, 40]. Chromogen detection of IHC is primarily used in 

the clinic. By contrast, fluorescence detection methods can simultaneously assess more markers, 

but are confounded by autofluorescence present in tissues, signal degradation leading to fading, 

and the cost of image acquisition hardware [39]. As previously mentioned, brightfield IHC of 

singly stained sections of tissue is primarily used in clinical settings. Multiplex IHC approaches 

(chromogen or fluorescence), where more than one molecular target is simultaneously stained in 

one tissue section, is not routinely performed in clinical settings, but rather are implemented in 

research settings. Multiplex IHC staining of tissue is advantageous, whereby simultaneous 

analysis of markers conserves limited tumor biopsy specimens and more accurately phenotypes 

specific cell types, such as immune cells that require multiple markers for identification [41].  In 

addition to protein, other molecular indicators for lung cancer are used for diagnosis, including 

nucleic acids. Nucleic acid assessment is primarily used to determine lung cancer molecular 

subtypes. Clinical assays include polymerase chain reaction (PCR) for molecular subtyping of 

lung cancer to assess mutation of EGFR to stratify tyrosine kinase inhibitors. However, such 
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methods do not describe localization of specific cell types in tissue. IHC is used to identify ALK 

translocations [42]. Staining of nucleic acid using in situ hybridization (ISH) is also implemented 

in clinical practice, including fluorescent in situ hybridization (FISH). The United States Food 

Drug Administration (FDA) approved the Vysis ALK Break-Apart FISH Probe Kit as a 

companion diagnostic test for the ALK inhibitor crizotinib for lung cancer [43]. However, ISH 

methods are relatively poorly standardized method across centers, and where false negatives are 

more prevalent compared to IHC [44, 45]. In anticipation of auxiliary technologies to improve 

standardization of in situ nucleic acid detection, IHC and brightfield imaging of stained antigens 

in specimens remain the mainstay methodology implemented in routine clinical practice for 

economy and convenience [39, 40].       

 

1.3 Lung cancer prognosis methods 

 

1.3.1 Gold standard for lung cancer prognostics 

 

The 8
th

 Edition of the Tumor Node Metastasis (TNM) classification system established  

by the IASLC and Prognostic Factors Committee (enacted January 1, 2017) is at present the gold 

standard for lung cancer diagnosis to describe the anatomic extent of this disease [19]. Collective 

observations derived from cancer imaging modalities from the clinical work up are summarized 

by the TNM descriptor, where T descriptor refers to primary tumor site, N descriptor represents 

the regional lymph nodes in the lung, and M is the presence or absence of distant metastasis. T 

and N staging primarily rely on histopathology results (as described in Sub-section 1.2.1). The 

TNM staging system is subdivided into clinical TNM (cTNM or TNM) where diagnoses are 
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made from imaging studies and biopsies, and pathological TNM (pTNM), where diagnosis is 

determined post-surgery of resectable tumors to validate features previously identified in the 

biopsy and extent of local involvement. Although the gold standard, this classification scheme is 

prone to inaccuracies, primarily from the differences in survival observed within TNM staging 

groups, which may be attributed to a lack of personalized prognosis that accounts for genetics 

and environmental factors of patients [5, 46, 47]. Thus, identification of additional prognostic 

markers is needed to further refine this classification scheme.  

 

1.3.2 Discovering molecular features for lung cancer prognostics 

 

Elucidation of the molecular features of lung tumors carries significant potential to improve lung 

cancer prognostics. Genomic profiling is the current state of knowledge approach to capture new 

insights into lung cancer molecular biology, including clinical applications for precision 

oncology [48]. Gene expression profiles of cancers is spearheaded by microarray and ribonucleic 

acid (RNA)-sequencing technologies, enabling multidimensional genomic databases, including 

The Cancer Genome Atlas (TCGA), a repository for high throughput analyses of cancer genetic 

alterations [49, 50]. Comparison of genetic profiles of non-malignant and malignant tissue 

enables determination of candidate genes specific to tumors, encapsulating global cellular 

functions specific to cancer pathogenesis. Gene sets derived from gene expression profiling can 

be combined and are referred to as gene signatures. Gene signatures, when correlated with 

clinical features and treatment outcomes, are a powerful device to predict cancer prognosis and 

improve treatment stratification. Expression signatures include different types of RNA, including 

microRNA (miRNA), piwi-interacting RNA (piRNA), messenger RNA (mRNA), and long non-
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coding RNA (lncRNA), or a combination of these RNA species [51-55]. Several studies have 

demonstrated that gene expression profiles of lung cancers derived from microarrays are able to 

predict lung cancer survival [53, 56, 57]. This includes analyzing non-tumor cell gene expression 

profiles in bulk tumor derived from microarray [58]. Other recently developed methods include 

gene expression profile of immune cells in tumors and peripheral blood, and such methods are 

also useful for monitoring therapeutic responses in clinical trials [59, 60]. Thus, this in silico 

approach has been implemented to improve lung cancer prognostics.  

Despite the utility of gene expression profiling for large scale molecular data analyses, 

this method is limited by the use of dissociated bulk tumor and not the assessment of single cells. 

Furthermore, RNA levels do not always correlate with protein levels, which may not necessarily 

directly predict tumor phenotypes [61]. Consequently, inaccurate gene expression profiling 

confounds interpretations of cancer biology. In addition to analyzing genetic components 

intrinsic to tumor cells, the context of tumors, referred as the tumor microenvironment, is 

presently recognized as a significant component of tumors that requires profound elucidation, 

given that the targeting of this specific biology has enabled dramatic therapeutic responses [60]. 

Present methods for genomic profiling do not fully capture sufficient information regarding 

tumor cellularity, including characterizing the native cellular spatial locations and organizations 

within the tumor microenvironment [62]. Thus, new methods are needed to provide more 

immediate insights into this expanding field of research. These innovative methods that 

investigate tumor microenvironments will be discussed in further detail in Section 1.4. 
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1.3.3 Lung tumor microenvironment, cancer immunology, and immunotherapies 

 

The lung tumor microenvironment is comprised of many different cell types, including  

stromal, endothelial, and immune cells that coexist amongst one another, in addition to non-

cellular components such as extracellular matrix [14]. Thus, the tumor entity can be appreciated 

from the perspective of ecology as an ecosystem, where diverse cell types interact with one 

another in various ecological relationships, including synergistic relationships such as mutualism 

or others that are oppositional, including predator-prey interactions [63, 64]. The cellular 

composition of the tumor microenvironment can be thought of as an equilibrium between pro-

tumor or anti-tumor responses, and it is the balance of these biological processes that 

significantly contribute to cancer progression and patient prognosis [65]. For instance, 

immunosuppressive cells, such as regulatory T cells (Tregs), are known to promote immune 

evasion of tumors, progression, and metastasis [66]. In addition, the different levels and types of 

cytokines produced by tumor and immune cells is a primary mechanism that modulates the 

tumor microenvironment to favor progression of tumors [14]. As such, these mechanisms are 

affected by cellularity, including heterogeneity in infiltrating immune cell composition (Figure 

1.3). The paradigm of the tumor microenvironment has presently revolutionized clinical practice 

of lung cancers, as epitomized by the innovation of immune checkpoint inhibitors.  

Immune evasion is a hallmark of cancer [67]. Such mechanisms enable cancers to  

circumvent anti-tumor immune surveillance. Therapies that enhance the anti-tumor immune 

response are referred to as cancer immunotherapies. Presently, several are becoming first-line 

treatments for cancers, including lung cancers. For instance, the understanding of immune 

checkpoint molecules and realization of their potential as targets for therapeutic blockade of  
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Figure 1.3    Heterogeneity of immune cell infiltration within lung adenocarcinoma (AC) tumor 

microenvironment.   (A) Lung tumors can exhibit high immune cell infiltration. For instance, wide expansion (star) 

of alveolar interstitium by a diffuse population of inflammatory cells, mostly lymphocytes, can be presented in 

tumors with lepidic growth pattern. Arrow indicates cancer cells. (B) By contrast, a similar tumor can present with 

less immune infiltration, with minimal interstitial expansion (star) and few infiltrating inflammatory cells. Arrow 

indicates cancer cells. (C) AC with lepidic growth can have focal expansion of interstitium by lymphoid follicular 

hyperplasia (star). Arrow indicates neoplastic cells. (D) Fibroblastic scarring (star) with few infiltrating lymphocytes 

may also be observed, as in this AC with acinar pattern. Arrow indicates neoplastic cells. (E) AC can exhibit no 

fibrous expansion nor contain infiltrating lymphocytes as exhibited in this tumor with a papillary pattern, as 

highlighted by the alveolar septae (arrow heads). Arrow indicates cancer cells. Original magnification of images 

100x. Annotations of histology courtesy of Dr. John English. Figure reprinted is original from the original publisher 

BioMed Central with proper attribution of authorship and citation from [12]. BioMed Central does not require 

formal written permission to reprint figures. 
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tumor immune evasion was an important contribution to the development of cancer 

immunotherapies [68]. Several monoclonal antibody cancer immunotherapies are approved by 

the FDA, including for lung cancers. Despite the observation of dramatic responses, only a 

fraction of patients respond to these immunotherapies. Therefore, a greater understanding of how 

cancer cells evade the immune system is essential for: (a) identifying and stratifying patients who 

may benefit from existing immunotherapies, and (b) informing the development and application 

of novel immunotherapies targeting the biology underlying specific tumor immune evasion 

mechanisms observed in different individuals. Lung cancers were historically thought to be non-

immunogenic as patients displayed limited response when treated with non-specific 

immunotherapies expected to stimulate an immune response, such as Bacillus Calmette-Guérin 

(BCG) vaccination and cytokine therapies, including interleukin-2 (IL-2) and interferon 

treatments [69-71]. However, based on results from recent immunotherapy trials targeting 

immune checkpoint molecules, including cytotoxic T-lymphocyte-associated 4 (CTLA4), 

programmed cell death 1 (PD1), and programmed cell death ligand 1 (PDL1), it appears that 

lung cancers are sensitive to specific cancer immunotherapies (Figure 1.4). FDA-approval of 

immune checkpoint inhibitors, including first line treatment of lung cancers, has been a 

significant milestone in lung cancer treatment. However, like most therapies, there is a range of 

responses observed following immunotherapy, as illustrated by across and within different kinds 

of immune checkpoint inhibitors. For instance, anti-PD1/PDL1 immune checkpoint inhibitors 

compared to anti-CTLA4 inhibitors have less toxicities, known as immune related adverse events 

(irAE) [72].Within PD1 and PDL1 immune checkpoint inhibitors, objective response rates 

(ORR) are observed to be variable. In the KEYNOTE 024 Phase III clinical trial of 

pembrolizumab (anti-PD1 humanized monoclonal antibody), ORR was 44.8% for patients
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Figure 1.4    Biology of immune checkpoint blockade and mechanism of action of immune checkpoint 

inhibitors. (A) T cell and cancer cell immune checkpoint blockade. T cell receptor (TCR) binds to tumor associated 

antigen (TAA) and bound to cognate major histocompatability complex (MHC) leading to anti-tumor T cell 

activation and cancer cell death. Immune checkpoint receptor and ligand interactions dampen the TCR-MHC axis. 

Administration of immune checkpoint inhibitors restores T cell activation and induces cancer cell death (B) T cell 

and antigen presenting cell (APC) immune checkpoint blockade. Similarly, T cell activation from antigen presenting 

cells, such as dendritic cells requires the binding of the TCR to TAA peptide/MHC complex in addition to the 

binding of CD28 and B7 costimulatory molecules. Interactions of these molecules promote T cell activation and 

cancer cell death. Immune checkpoint receptors and ligands inhibit activation of these interactions. Immune 

checkpoint inhibitors restore APC-mediated T cell activation. (C) FDA approved cancer immune checkpoint 

inhibitors targeting the PD1/PDL1 axis for lung cancers. Generic drug name is listed first, and corresponding trade 

drug name is included in brackets. Drugs in bold and with asterisks are FDA approved for lung cancer. (D) FDA 

approved cancer immune checkpoint inhibitors targeting the CTLA4/B7 axis for lung cancers. Generic drug name is 

listed first, and corresponding trade drug name is included in brackets.
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that qualified (including criteria of having at least PDL1 tumor proportion score of 50%), while 

in CHECKMATE 057 Phase III clinical trial of nivolumab (another anti-PD1 humanized 

monoclonal antibody), only 19% of patients had objective responses [73, 74]. The initial Phase 

III OAK trial of atezolizumab (anti-PDL1 humanized monoclonal antibody) revealed that ORR 

was observed in only 14% of patients, where the median duration of response was significantly 

longer [16.3 months (95% CI 10.0–not evaluable) versus 6.2 months (4.9–7.6) with docetaxel; p 

value < 0.0001] [75]. Despite recent accelerated approval by the FDA, combination of 

pembrolizumab with cisplatin in the treatment arm was observed to have ORR of 55% [76]. 

Evidently, improved stratification of these drugs will be necessary. 

Certainly, the identification of definitive cancer immunotherapy diagnostic markers 

remains a challenge. Although PDL1 companion diagnostic tests are FDA-approved for NSCLC, 

the test is imperfect for PD1 immune checkpoint inhibitors, as patients negative for PDL1 can 

still benefit from these immunotherapies, and some PDL1 positive patients do not benefit.  In 

order to improve the efficacy of immunotherapies, including immune checkpoint inhibitors, to 

treat lung cancer patients, it is imperative to (1) further characterize the mechanisms contributing 

to immune evasion/suppression phenotypes in lung cancer patients and (2) determine the 

variability in these phenotypes across and within individual patients. Resolution of these 

questions will enable improved stratification of immunotherapeutic drugs and/or repositioning of 

immunotherapies used in other cancers to treat lung cancer patients. 
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1.4 Digital pathology 

 

At present, traditional histopathology remains the gold standard for definitive diagnosis, whereby 

immunohistochemically stained tissue biopsies are viewed and carefully assessed under 

brightfield microscopy by a pathologist for suspected carcinoma [39, 77, 78]. Converging with 

the revolution of computerization and technological development, pathology has accelerated 

towards automation, such as in immunohistochemical staining systems that have been integrated 

in the routine workflow of pathologists. However, histopathological evaluation of tumor tissue 

slides remains manual and is problematic due to subjectivity, involving intra-observer and inter-

observer variability, and limited standardization of  pre-fixation and fixation methodologies [79]. 

Histopathology remains at most semi-quantitative, as the metrics for positive stain level 

quantification carries few descriptors, with the highest resolved description being the semi-

quantitative scoring system that is primarily nominal or ordinal and with discrete 3- or 4-point 

scoring methods for stain intensity levels [39, 61, 77]. These limitations are associated with 

imprecise cut off values, heterogenous staining patterns, in addition to details that the human eye 

are not sensitive to detect [39, 78, 80].  

Digital pathology presents as a promising method to more objectively assess tumors 

when incorporated within the pathologist’s workflow and provides numerous advantages [81]. 

Digital images enable the minimization of inter-batch variation from IHC staining, such as  

images of multiplex IHC staining systems that enable analysis of multiple parameters in tissue to 

understand complex biological systems related to pathology in limited, precious tissue specimens 

from biopsies and to further classify tumors that appear similar in morphology [39, 82-84]. 

Digital pathology is versatile and can be used to measure multiple parameters, including 
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immunohistochemical stain of proteins, estimation of cell proliferation, and multiplex FISH of 

deoxyribonucleic acid (DNA) sequences as highlighted in Bengtsson et al. 2017 [85].  In 

addition, image registration (or alignment) of adjacent tissue sections would enable the 

integration of image data sets, an image processing method used in tomography, such as CT for 

higher level spatial analysis of tissues and anatomy, in addition to image correction, such as for 

tracking lung motion from respiration [39, 86-89]. Additional advantages of digital pathology 

include transmission of pathology image data to facilitate telepathology (the practice of 

pathology from a distance), which could enable outsourcing, consultation, and diagnostic 

confirmation for remote areas with uneven distribution of pathologists, including in developing 

countries [90-92]. Nationally, telepathology was identified to be safe, accurate, and reliable for 

frozen sections by the University Health Network Canada [93-95]. Digital pathology is a 

modality that can be used to improve education of future pathologists, including enhancing 

learning and collaboration among medical students [96]. In addition, digital pathology enables 

the generation of digital tissue banking as a repository for research settings that can be 

continually reassessed for whole slide or virtual biopsy analysis to interrogate novel biological 

questions [39, 97]. 

Digital pathology can improve quantitative assessment of pathological specimens, 

including quantitative measures of native spatial organizations of immune cells in tumors. In situ 

spatial analyses of tumor infiltrating immune cells presents as a valuable prognostic and 

theranostic biomarker. Spatial patterns of immune cell infiltration in tumors significantly 

correlates with cancer prognosis, as illustrated by the Immunoscore, an immune parameter that is 

significantly better in predicting survival than standard TNM staging of colon cancers [98]. The 

Immunoscore method has been promising in lung cancer with significant correlation between 
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stromal PDL1
+
 immune cells and PD1

+
 intraepithelial tumor infiltrating lymphocytes with 

improved disease-specific survival, though additional validation is needed in multicentric studies 

[46]. In addition, spatial organization of immune cells, such as tumor infiltrating T cells, 

significantly correlates with immunotherapy, including immune checkpoint inhibitors in 

melanoma [99]. Thus, spatial profiling of immune cell infiltration in tumors holds significant 

potential to improve prognostic accuracy of lung tumor subclassification. Certainly, further 

investigations are warranted to refine this strategy for lung cancer, as many different types of 

immune cells correlate with survival and it will be critical to ascertain those that are most 

clinically relevant in a succinct manner  [100, 101]. With the advancement of computer vision 

and digital pathology, the notion to integrate computer aided diagnosis (CAD) within the 

pathologist’s workflow is crystallizing, as CAD has valuably improved accuracy, reproducibility, 

and efficiency of diagnostic tests, such as the automated screen of Pap smears [97]. Digital 

pathology imaging systems have been approved by Health Canada, including Omnyx
TM

 

Integrated Digital Pathology (IDP) system by General Electrics (GE) Healthcare [102, 103]. The 

first whole slide imaging (WSI) system, Philips IntelliSite Pathology Solution (PIPS), has been 

approved by the FDA for marketing in 2017, a significant landmark for the adoption of digital 

pathology into clinical practice [104]. Both digital pathology imaging systems have received 

Conformité Européene (CE) Mark status in Europe [105, 106]. Through globalization, digital 

pathology is poised to transform clinical practice, and implementation of guidelines for these 

technologies will need to be revisited [107]. 

Aforementioned in Section 1.3 and in this section, conventional methods of 

histopathology carry several limitations, including accounting for spatial architecture of tumors. 

Image analysis software for in situ study of tissue presents as viable and robust method for the 
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integration of CAD in clinical pathology [108-110]. Several commercial software that enumerate 

cellular composition and analyze spatial architecture of tumor microenvironments exist for non-

clinical settings, summarized in Table 1.1 and Table 1.2. The workflow of such commercial 

systems still carries several limitations before routine implementation in clinical decision making 

is possible [111]. Challenges in workflow are a significant aspect that needs to be optimized and 

then standardized for effective clinical translation, including for applications for digital 

pathology, such as telepathology [84]. 

 

Table 1.1 Several commercial non-clinical software for quantifying immune cell counts and spatial analyses  
 

Company Commercial software Description 

PerkinElmer 

[112] 

inForm Tissue Finder 

 Analyzes, quantifies, and phenotypes immune and other cells in tissue 

in situ 

 Can analyze immunofluorescence in images, and can separate weakly 

expressing and overlapping marker, and perform scoring (percent 

positivity, 0/1+/2+/3+, co-localization) 

 Quantifies biomarker from tissue regions (tumor/stroma), including 

locates tissue and structures by training 

 Batch processing of images and merges data from images into 

summary data files 

inForm Cell Analysis 

 Tissues understood at cellular level (cells, nuclei, membrane for 

biomarker expression) via cell segmentation  

 Visualize, analyze, quantifies, and phenotypes immune and other cells 

in situ 

 Immunofluorescence in images tumor/stroma 

 Weakly expressing or overlapping markers, batch processing, scoring 

(percent positivity, 0/1
+
/2

+
/3

+
, co-localization, and more) 

PhenoLOGIC Machine 

Learning 
 Performs machine learning of different cell populations and regions  

Definiens 

[113, 114] 

Tissue Studio 

 Quantifies morphology and expression profile in relation to tissue 

architecture 

 Performs image registration of adjacent sections 

Developer XD 
 Quantifies relationships and morphologies at different levels of 

analysis (regions, populations, cell and cell components) 

Image Miner 
 Quantifies tumor heterogeneity of biomarker expression in individual 

cells 

Indica Labs 

[115] 
HALO 

 Singleplex and multiplex stain analysis, including dual staining 

 Quantifies various object features in tissues 

 Spatial analyses of stained markers  

 Performs image registration of adjacent sections 

 Refer to Table 1.2 for details on software modules 
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Table 1.2 HALO software modules for oncology research  
 

 

*Description from HALO by Indica Labs [115]; CISH = chromogenic in situ hybridization; FISH = fluorescent in situ hybridization; 

IHC = immunohistochemistry; ISH = in situ hybridization; SISH = silver in situ hybridization 

 

 

 

 

Software modules  Description* 

Double stain IHC  Analyzes single or double stained cells related to cytoplasmic or nuclear positivity 

Membrane IHC Quantification  Quantifies membranous stain in regions or individual cells 

Cell-Based 

Immunofluorescence 
 Quantifies immunofluorescence of up to three markers 

Fluorescent Membrane 

Quantification 
 Quantifies membranous fluorescent stain 

Brightfield Microvessel 

Quantification 
 Quantifies and measures markers of vessels (CD31, CD34, Factor VIII) 

Fluorescent Object 

Colocalization 
 Counts one or two object types based on size, shape, percentage of colocalizing areas, 

including intensity measurements 

Immune Cell Proximity 
 Counts immune cells and measures proximity in relation to other structures 

(number of immune cells, number of proximate immune cells, percentage of proximate 

immune cells, tissue area, and tumor area) 

Spatial Analysis 

 Performs spatial analyses at different levels in tissue 

 Nearest neighbor analysis: measures average distance and number of unique neighbors 

between two populations of cells or objects  

 Proximity analysis: measures number of objects or cells from another object or cell within 

given distance away  

 Infiltration analysis: measures number of objects or cells within a given distance of an 

annotated region 

High-plex 

Immunofluorescence 

 Analyzes up to eight immunofluorescently labeled marker 

 Can be overlaid with Spatial Analysis module 

Multiplex IHC 

 Separates up to five stains  

 Analyzes subcellular compartments (nucleus, cytoplasm or membrane) and measures size and 

staining intensity 

SISH & Dual CISH 

Quantification 

 Measures gene amplification by counting probe signals in individual cell nuclei (total number 

of cells, spots, average number of spots per cell, histogram of frequency of cells containing 

signals) 

Chromogenic RNA ISH 
 Brightfield RNA ISH quantification of RNA probes for each cell (cell counts, signal counts, 

average signals per cell, signal sizes and optical densities, and histograms ) 

Multiplex RNA FISH 

 Multi-channel fluorescent images analyzing up to four RNA ISH probes  

 Average expression of individual probe in region of analysis and also expression profile for 

each cell 

Amplification & Deletion 

FISH 
 Measures gene amplification and deletion by measuring two probes in cells (including average 

copy counts and ratios of all cells within region analyzed) 

Break-Apart & Fusion FISH 
 Multi-channel fluorescent images and measures break-apart and fusion (including copy counts 

and fusion counts) 

Multiplex DNA FISH 
 Measures up to four DNA FISH probes to measure single cell DNA expression profiles for 

each cell and measures signal count for individual probe in region analyzed  

Tissue Classification 
 Machine learning to identify tissue types related to color, texture, and context (train to detect 

tumor regions) 

Serial Section Analysis  Creates classifier in a reference slide that can be applied to serial sections 

Tissue Microarray 

Circulating Tumor Cell (CTC) 
 Analysis of whole slide tissue microarray (TMA) image to identify tumor, quantify cell-based 

IHC, ISH, or immunofluorescence  

Protein Foci Quantification 
 Spot counting tool to quantify CISH, SISH, RNA ISH signals and cellular protein foci (i.e. 

gamma-H2AX) to determine various parameters (stain intensity, total number of cells, total 

number of DNA repair foci, size of foci, and number of foci per cell) 
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1.1 Thesis theme 

 

 

1.1.1 Rationale 

 

Scientists, Dr. Calum MacAulay and Dr. Martial Guillaud’s research team at the British 

Columbia Cancer Research Centre (BCCRC) developed a hyperspectral image analysis system 

capable of measuring percentage of cell types, cell-to-cell spatial relations analysis, and image 

registration of hyperspectral image data derived from multiplex IHC stained tissue (Figure 1.5). 

The cell-to-cell spatial relations analysis of this hyperspectral image analysis systems is an 

extension of  previous software by Dr. MacAulay and Dr. Guillaud’s research team to analyze 

cell proliferation with singleplex IHC of Ki67 and a multiplex FISH analysis workstation to 

identify clonally related cells [116] [117]. The underlying motivation of this study is to 

determine if the spatial analysis metric correlates with prognosis and treatment outcome of lung 

cancer patients, as this metric has not been reported by existing commercial systems. 

Quantitative metrics of tumor histology with CAD systems have not yet been clinically adopted 

with the government-approved digital pathology systems (mentioned in Section 1.4) or non-

clinical commercial systems (described in Table 1.1 and 1.2). Further studies will be required to 

rationalize the use of these metrics, which this system would contribute towards. However, this 

underlying motivation is beyond the scope of this thesis. In this proof of principle study, the 

workflow of this platform in a non-clinical setting will be first assessed and optimized in this 

pilot study.    
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Figure 1.5  Overview of software modules for BCCRC hyperspectral image analysis system. Spectral unmixing 

figure courtesy of Dr. Calum MacAulay and Paul Gallagher. Asterics figure courtesy of Dr. Calum MacAulay.  
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1.1.2 Objective and hypothesis 

 

The overall goal of this study is to facilitate the implementation of the workflow of the BCCRC 

hyperspectral image analysis system by Dr. Calum MacAulay and Dr. Martial Guillaud’s 

research team for the use of improved prognostic assessment and clinical management of lung 

cancers. As a first step, we introduce this pilot study with a specific hypothesis. The specific 

hypothesis of this work is that the workflow of the BCCRC hyperspectral image analysis system 

will facilitate the determination of spatial relationships of cell populations within the tumor 

microenvironment. The objective of this work is to assess the workflow of this new BCCRC 

hyperspectral image analysis system using the tumor microenvironment of lung AC as a 

prototype. Given their significant clinical relevance in lung cancer pathogenesis and subsequent 

mechanistic role in immunotherapeutic response, immune cells were a sample feature of the 

tumor microenvironment used to verify the new BCCRC hyperspectral image analysis system.  

 

1.1.3 Specific aims and thesis outline 

 

The following specific aims addressed the objectives and hypothesis of this study, and are also 

visually summarized in Figure 1.6:  

 

Aim 1: Assess the workflow of the imaging method in facilitating the determination of 

spatial relationships of cell populations using protein markers in a single plane  

 

Aim 2: Assess the workflow of spatial alignment between tissue sections 
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Chapter 2 is a composite methodology chapter, specifying the samples, digital image acquisition, 

digital image processing, and spatial analyses performed to address these aims. Chapter 3 

describes results of spatial analyses (first, cell-to-cell spatial analyses in a single plane of tissue 

and subsequently, cellular distribution in multiple planes of tissue), technical factors affecting 

workflow optimization of this method, and potential solutions for technical factors. Lastly, 

Chapter 4 describes the significance of this study for non-clinical and clinical settings.   

 

 

Figure 1.6  Overview of methods of specific aims of this thesis. Methods addressing Aim 1 are demarcated in the 

red box. Methods addressing Aim 2 are demarcated in the blue box. For Aim 2, tumors were selected from Aim 1 to 

perform image registration analysis. AC: adenocarcinoma; FFPE: formalin-fixed paraffin-embedded   
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Chapter 2: Material and Methods 

 

2.1 Samples 

 

This study was performed with a cohort of 21 FFPE primary lung AC (Table 2.1). Specimens 

were accrued from the Tumor Tissue Repository of the British Columbia Cancer Agency or 

Vancouver General Hospital with informed, written patient consent and approval from the 

University of British Columbia – British Columbia Cancer Agency Research Ethics Board.  

 

Table 2.1 Clinical features of lung AC cohort.  
 
 

Case Ethnicity Age Stage Gender 
Smoking 

status 
Diagnosis TNM T N M Mutation Recurrence 

Chemo 

(Regimen) 

05L9 Caucasian 71 IA F CS Unk T1bN0M0 1 0 0 KRAS n/a    No 

06L3 Caucasian 67 IIA F CS ACI T2aN1M0 2 1 0 WT n/a 
Yes 

(CDDP/VNB) 

06L14 Caucasian 57 IIA F CS ACI T2aN1M0 2 1 0 KRAS n/a 
Yes 

(CDDP/VNB) 

06L50 Caucasian 78 IA F CS ACI T1aN0M0 1 0 0 KRAS Yes No 

06L57 Caucasian 53 IIIA F CS ACI T2bN2M0 2 2 0 KRAS Yes No 

05L4 Asian 82 IIB F NS ACI T3N0M0 3 0 0 EGFR n/a No 

05L39 Asian 86 IB F NS N/A T2N0M0 2 0 0 KRAS n/a No 

05L49 Asian 77 IB F NS N/A T2N0M0 2 0 0 WT Yes No 

05L54 Asian 77 IA F NS N/A T1N0M0 1 0 0 KRAS Yes No 

06L29 Asian 71 IB F NS ACI T2N0M0 2 0 0 WT n/a No 

06L71 Caucasian 68 IA F NS N/A T1N0M0 1 0 0 WT n/a No 

05L12 Asian 66 IIIA M NS 
Invasive  

MIP 
T2aN2M0 2 2 0 EGFR Yes 

Yes 

(CDDP/VNB/ 

Erlotinib) 

05L27 Asian 77 IIA F NS Unk T2aN1M0 2 1 0 EGFR Yes No 

06L10 Caucasian 72 IB F CS 

Invasive AC 

mixed MUC 

and non 

MUC-  

prod ACI 

T2aN0M0 2 0 0 WT n/a No 

06L42 Caucasian 82 IA F EX ACI 
T1bN0M0 

(IA) 
2 0 0 Unk n/a No 

05L46 Unk 90 IIA F EX 
PAP  

(some ACI) 
IIB 2 1 0 Unk Yes No 

06L30 Asian 58 IIA M EX ACI IIB 2 1 0 Unk Yes No 

06L74 Asian 60 IIA F EX PAP IIB 2 1 0 Unk Yes 
No 

(CDDP/VNB) 

05L14 Unk 73 IIA F CS Invasive ACI T1N1M0 4 1 0 Unk Yes No 

06L19 Unk 45 IA M CS Solid AC T1N0M0 1 0 0 Unk Yes Yes 

05L17 Unk 70 IA M CS Invasive ACI T1N0M0 1 0 0 Unk n/a No 
 

Patients are radiation naïve. Stage refers to the 7th Edition of the Tumor Node Metastasis (TNM) classification system for lung cancer.  

ACI: acinar, CDDP: cisplatin, MIP: micropapillary, MUC: mucinous, PAP: papillary, WT: wildtype, VNB: vinorelbine, Unk: Unknown 



28 

 

2.2 Multiplex immunohistochemistry (IHC) 

 

FFPE tumors were sectioned at 4 μm and baked overnight at 37
o
C. Slides were manually 

deparaffinized with xylene to a 50% xylene to ethanol solution, then through a gradient of 

alcohol to water (100%, 90% 70%) and rinsed with distilled water (dH2O). Antigen was retrieved 

using the decloaking chamber plus with Diva decloaker (Biocare, United States) at 125
o
C for 30 

seconds. Slides were added to Intellipath FLX rack, rinsed with dH2O and borders marked with 

super pap pen and covered with TBS buffer. Slides were loaded into the pre-programmed, 

reagent-loaded Intellipath FLX (Intellipath FLX protocol: DS1 for adaptive immune resistance 

panel; DS2 for T&B Cell Panel, excluding CAT hematoxylin counter stain for both protocols). 

Endogenous peroxidase was blocked with peroxidazed-1 dispensed by the Intellipath FLX for 5 

min at room temperature. Non specific blocking was performed with background sniper 1 

dispensed by the Intellipath FLX for 10 minutes at room temperature. Cocktail was manually 

applied to diluted primary antibodies to slides (Cocktail 1: Anti-CD3 + Anti-CD8 + DaVinci 

Green diluents; Cocktail 2: Anti-PD-L1+ Anti PD1+ DaVinci Green diluents, Table 2.2 and 2.3) 

for 30 minutes at room temperature. Mach2 Double stain (stain #1 for adaptive immune 

resistance and stain #2 for T&B cell) was dispensed by the Intellipath FLX for 30 minutes at 

room temperature. Ferangi blue chromogen was dispensed by Intellipath FLX for 8 minutes at 

room temperature. DAB chromogen was dispensed by Intellipath FLX for 5 minutes at room 

temperature. Slides were removed from Intellipath FLX, rinsed well with dH2O, and slides were 

added to dH2O at 50
o
C and transferred to pre-warmed SDS-glycine pH 2.0 [118]. Slides were 

incubated with periodic agitation in SDS-glycine pH 2.0 (Pirici et al.) and washed with dH2O for 

45 minutes at 50
o
C [118]. Slides were placed into Intellipath FLX racks and covered with 1x 
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TBS Automation Wash Buffer and loaded into pre-programmed, reagent-loaded Intellipath FLX. 

The Intellipath FLX Protocol was followed for mouse primary, and the peroxidase blocking and 

non specific blocking steps were excluded, and mouse AP polymer, Warp Red chromogen, and 

CAT hematoxylin counterstain were included. Diluted primary antibody was manually applied 

for second round of staining for 30 minutes at room temperature (Primary Antibody 1: Anti-

CD79a + DaVinci Green diluents; Primary Antibody 2: Anti CD8 + DaVinci Green diluent). 

Mouse-AP polymer was dispensed by the Intellipath FLX at 30 minutes at room temperature. 

Warp Red chromogen was dispensed by Intellipath FLX for 7 minutes at room temperature. The 

counterstain, CAT hematoxylin (1:5 dilution with dH2O), was dispensed by Intellipath FLX for 5 

minutes at room temperature. Slides were removed from the Intellipath FLX and rinsed well with 

dH2O. Slides were air dried and coverslipped with Ecomount. Stained tissues were scanned as 

whole slide images with Pannoramic MIDI scanner and viewed with the companion digital 

pathology software Pannoramic Viewer (3D HISTTECH, Hungary).  

 

Table 2.2 Summary of immune cell marker antibody panels. 

Panel 

Name 
Antibody* 

Company 

Antibody clone 
Localization 

Spectral properties 

(chromogen) 
Positive Cell Types 

T&B Cell 

(TB) 

CD3 
Spring Biosciences 

Clone SP7 
Membranous 

Blue  

(Ferangi Blue) 
T-cells 

CD8 
Cell Marque 

Clone C8/144b 
Membranous 

Brown  

(DAB) 
Cytotoxic T-cells 

CD79a 
Spring Biosciences 

Clone SP18 

Membranous/ 

Cytoplasmic 

Red  

(Warp Red) 

Pre-B cells, B cells and 

plasma cells 

Adaptive 

Immune 

Resistance 

(AR) 

PDL1 
Spring Biosciences 

Clone SP142 
Membranous 

Brown  

(DAB) 

T and B cells, tumor 

cells, macrophages 

PD1 
Cell Marque 

Clone NAT105 
Cytoplasmic 

Blue  

(Ferangi Blue) 
T and B cells 

CD8 
Spring Biosciences 

Clone SP7 
Membranous 

Red  

(Warp Red) 
Cytotoxic T cells 

*Control tissue was tonsil 
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2.3 Hyperspectral imaging 

 

2.3.1 Imaging selection criteria 

 

Regions of interest (ROI) in tumors were defined for image acquisition due to limited computer 

memory for storage of whole slide images (WSI), downstream digital image processing files. 

ROI were manually selected with high immune cell infiltration in order to obtain sufficient signal 

detection to test spatial analyses. First, a lung pathologist selected areas with high immune cell 

infiltration in 20 out of 21 whole slide images of lung AC stained with the T&B Cell panel by 

annotating WSI of tumor sections scanned with Pannoramic Viewer (3D HISTTECH, Hungary) 

(Figure 2.1). One tumor (case 06L19) was not annotated for area selection by the lung 

pathologist due to small tissue dimensions, and was thus, included for method establishment only 

and not for spatial analyses (Section 2.3 and 2.4). A total of five images were then manually 

sampled within pathologist selected areas of T&B Cell images that had high stain intensity in 

red–green–blue (RGB) WSI images (Figure 2.1). Approximate locations of adjacent areas in the 

tumors stained with adaptive immune resistance were identified by comparing with WSI stained 

for T&B Cells (Figure 2.1).   
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Figure 2.1 Sampling of tumors for image acquisition. (A) Whole scan image (WSI) section with multiplex IHC staining of T&B Cells. Red box denotes lung 

pathologist (Dr. John English) selected areas with high immune cell infiltration. Whole area was not imaged and analyzed due to limited computer memory for 

image storage and subsequent digital image processing. Black circle denotes ROI with high stain selected for image acquisition.  Yellow X indicates origin used 

for image acquisition. (B) WSI of adjacent section stained with adaptive immune resistance markers and corresponding ROI for image acquisition.  
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2.3.2 Image acquisition 

 

The hardware for the hyperspectral image acquisition workstation was a Zeiss Axioscope 2 Mot 

Plus (Canada) connected to an Andor Neo sCMOS Camera (United Kingdom), CRI VariSpec 

Liquid Crystal Tunable Light Filter (Canada), and Marzhauser Wetzlar SCAN Series Stage 

(Germany) connected to a desktop personal computer (PC) (with a BitFlow Frame Grabber 

(United States) and installed with MATLAB R2014a) using two serial cables and serial to 

Universal Serial Bus (USB) converters (Figure 2.2A and 2.2B). The hyperspectral image capture 

software program, ImageCapture.fig, was developed and programmed in MATLAB by Paul 

Gallagher, a member of Dr. Calum MacAulay’s research team. This image acquisition software 

enables controls for lamp intensity, filter wavelength, microscope stage control, calibration 

(tiling), and spectra imaging range. To image the same region in adjacent sections, a common 

landmark was identified between tissues to orient coordinates, referred to as the origin (Figure 

2.1). Then landmarks within the five ROI selected from Section 2.3 were identified. 

ImageCapture.fig has a control for region selection and can record coordinates to locate regions 

(Figure 2.2C). Indexes can be saved, and ‘Jump’ feature available enabling navigation between 

ROI.  

Briefly, ImageCapture.fig was selected, and ‘Open end guide’ was selected, opening the 

graphical user interface (GUI). The ‘Run’ button was selected to execute the program. In the 

GUI, the program was connected to the microscope hardware equipment by selecting 

‘Axioscope’, ‘CRI filter’, and ‘Andor Neo’ in the corresponding drop down. The microscope 

settings were maintained at 82/255 lamp voltage and 600 nanometer (nm) filter in order to 

acquire an image on live view with optimal exposure and contrast (Figure 2.2C). Origin of 
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interest of tissue sections were navigated on live view with the ocular lenses at a 10x 

magnification and coordinates of this location were saved. A single bound for imaging was also 

set for each landmark of five ROI to create a list of bounds. A directory was inputted for files to 

be saved. The microscope condenser was centered, and an image of a flat-field (an area of the 

cover slipped glass slide containing no tissue and with limited slide artifacts in the field of view) 

was acquired per image acquisition run for flat-field correction. For the adjacent slide, previous 

coordinates were reloaded, and the joy stick was used to fine tune location of ROI coordinates to 

select new centers and to save regions. Image stacks of sixteen different illumination 

wavelengths in steps of 20 nm (420, 440, 460, 480, 500, 520, 540, 560, 580, 600, 620, 640, 660, 

680, 700, 720 nm) were acquired as preset three-by-three image tiles. All five ROI per slide of 

tumor were imaged sequentially across the whole slide of tumor. After hyperspectral imaging, a 

coarsely stitched image, a print screen of the three-by-three tiles, was assessed to determine 

whether the imaged region was accurately imaged. Output image file extensions of this 

hyperspectral imaging software were ‘.TIF’ and named with the following file name: 

‘SlideID_RegionNumber.TIF’. Images from adjacent sections were confirmed for image quality 

(i.e. out of focused images) and compared for centering of landmarks. Out of focused images and 

images with uncentered landmarks were reimaged.  
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Figure 2.2   Image acquisition hardware and software of BCCRC hyperspectral image analysis system. (A) 

System hardware. Manual image acquisition was performed with the setup. Microscope illustration adapted from 

image courtesy of Paul Gallagher. Wiring of hardware to power supply not shown. Dimensions of hardware drawn 

not to scale. (B) Dark room containing microscope. (C) GUI of ImageCapture.fig. Figures B and C courtesy of Paul 

Gallagher. 

A 

B C 
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2.4 Digital image processing 

 

2.4.1 Image stitching and spectral unmixing 

 

All three-by-three image tiles were stitched with the MATLAB image stitching software, 

Tile_processing.fig, developed by Paul Gallagher on a PC with the following minimal 

requirements: minimum 16 gigabyte (GB) of random-access memory (RAM) (32 GB of RAM 

used), Windows 7 64-bit operating system (OS), and sufficient hard disk (HD) space per run 

(varies with image size and number of spectral components, i.e. for a 5-spectral component 

tissue microarray (TMA) spot 600 MB of HD space per run is required), where a graphics 

processing unit (GPU) was unused, and MATLAB R2014a or later version installed (MATLAB 

R2014a was used in this study). Hyperspectral_Processing.m, also programmed by Paul 

Gallagher, was used to perform spectral unmixing of acquired images (Figure 2.3). Briefly,  

 

  
 
Figure 2.3  Graphical user interface (GUI) of Hyperspectral_Processing.m. Directory indicates location to insert 

files. All indicates selection of spectral unmixing of internal files. Spectra file indicates file containing pure spectra 

measured at specified illumination wavelengths. Scale factor indicates value to normalize grey-level intensities of 

output image files. Figure courtesy of Paul Gallagher. 
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under ‘Stitching’ the directory of stitched files was specified in the child window of ‘Directory’. 

‘All’ was also selected in order to iterate spectral unmixing in all files in directory. Under 

‘Unmixing’, an Excel file (referred to as the spectra file) containing sixteen illumination 

wavelengths of five pure spectra (Hematoxylin (Hx), Red, Blue, Brown, Black) was loaded into 

the child window under ‘Spectra File’. Black spectrum was used to spectrally unmix anthracotic 

pigmentation that may be present in the lung. The counterstain illumination wavelengths were 

listed first in the spectra file, required for downstream segmentation software. Under 

‘Constraints’, ‘Positivity’, and under ‘Spectra Evolution’, ‘Fixed’ was selected. The unmixing 

program was run by selecting ‘Un-mix ALL’. The spectral unmixing was first run with a scale 

factor equal to zero (autoscaling). The spectral unmixing was then repeated with the highest 

sampled scale factor to normalize grey-level intensities of all images. Output files included a 

folder entitled ‘imageInverted’ of grayscale images and inverted spectrally unmixed images of 

each channel.   

 

2.4.2 Segmentation 

 

To detect single cells in images, segmentation (process to partition a digital image to identify 

objects of interest) was performed to identify nuclei of cells. Segmentation was manually 

performed with DUnit, a digital image processing software developed by Dr. Calum MacAulay 

and Dr. Martial Guillaud’s research team. To increase throughput of manual segmentation, three 

independent observers (Dr. Calum MacAulay, Dr. Katey Enfield, and I) segmented ROI images 

processed by image stitching and spectral unmixing. Briefly, the software DUnit was 

implemented to segment images. Grayscale images of stitched and spectrally unmixed image 
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files of all ROI were individually imported to DUnit where all indexes of images were selected. 

Files were then saved as with a ‘.unit’ file extension. Files were segmented with the following 

settings selected (‘Cluster A’, ‘Cluster B’, ‘Inflections’ were checked, and primary red (R)). 

Composite image settings were not selected. Thresholds were then selected for nuclei detection, 

where autothreshold was first tested and then optimized with manual threshold adjustment if the 

autothreshold was not sufficient to segment all cells. Efficacy of segmentation was visually 

confirmed by assessing Voronoi tessellation, and vertices (seed points) recognizing nuclei at 

various magnifications of the monochromatic image of hematoxylin, viewed by selecting RGB 

color channels for counterstain only (‘Filter 0’). Images were re-segmented if necessary by 

optimizing the threshold value. Individual image files of segmented cells were then saved.  

 

2.4.3 Classification 

 

In addition to segmentation, DUnit was also implemented to establish staining thresholds for cell 

classification. Three independent observers (Dr. Calum MacAulay, Dr. Katey Enfield, and I) 

established thresholds for each stain of images for both differently stained sections. Each 

observer established thresholds for each panel on one set of ROIs in both different sections. 

Briefly, DUnit was opened and ‘Classification’ selected to use the feature ‘test.tree’. In the GUI, 

corresponding integrated intensity (II) was selected for each channel and the program executed. 

The RGB map was modified to view the stain of interest. Thresholds were optimized by testing 

different threshold value in the threshold ‘Menu’, ‘Options’, and ‘Edit Record’ control. 

Threshold values were saved, and the program was run. Thresholds were evaluated with the 

scatter plot in ‘Features’ and ‘Gallery’ visualizing individual positive cells that can be sorted  
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Figure  2.4   Gallery for validation of thresholds. (A) Image 05L27_5 analyzed with Gallery for CD3
+
 cells in the 

T&B Cell Panel. Teal dots indicate areas DUnit recognizes segmented CD3
+
 cells. (B) GUI of gallery in DUnit. The 

gallery lists all of the identified positive cells,  Each single array (red box) of the matrix in Gallery indicates image 

objects recognized with integrated intensity (II) matching threshold highlighted corresponding to individual cells 

(for blue = II3). Teal letters indicates integrated intensity (II). (C) Cells in gallery with low, intermediate, and high 

intensity staining for CD3
+
. Cells correspond to magnified array in Gallery matrix. Red contour indicates mask of 

cell nuclei indicating area with intensity measured by established threshold in DUnit. Number below indicates value 

of II.  

Array  
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based on positivity threshold and toggled to view segmentation (Figure 2.4). Groups of single 

stains of interest were assessed by visual confirmation in the gallery of single positive cells to    

Gallery for validation of thresholds evaluate whether positivity threshold selected was 

appropriate. Thresholds in ‘test.tree’ were optimized based on this assessment. Groups of other 

cell classifications were hidden. All thresholds were manually recorded. The average of the three 

optimized thresholds was calculated to account for intra-observer variability for the T&B Cell. 

The average of two optimized thresholds was calculated for AR panel. The optimized tree, 

entitled ‘immuno.tree’, for each panel was then applied to all images (105 images per panel). 

 

2.5 Spatial analyses 

 

Spatial analyses using the BCCRC hyperspectral image analysis platform were performed in a 

single plane and in more than one plane. Section 2.5.1 describes cell-to-cell spatial analyses in a 

single plane with custom software (Asterics), and Section 2.5.2 for cell distribution spatial 

analyses in more than one section with custom image registration software (Imreg.m). For these 

spatial analyses, case 06L19 was excluded, as areas of this tumor were not annotated by a 

pathologist. 

 

2.5.1 Cell quantity and cell-to-cell spatial analyses 

 

The cell sociology software, Asterics, developed by Dr. Calum MacAulay and Dr. Martial 

Guillaud’s research team, was implemented to analyze cell quantities and cell-to-cell spatial 

analyses. Asterics uses input files with ‘.jb0’ file extension. First, all ‘.jb0’ images of processed 
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images were moved into one single directory in one file, and loaded into Asterics to prime the 

program. In the ‘Sociology’ features window, ‘Options’ was selected, and all settings were 

deselected, except for ‘Morphology’ features, ‘Architectural’ features, and ‘QImmuno’ features 

(all groups, 4 moments, layer types). In ‘Batch Processor’ window, ‘Options’ were selected and 

searched for ‘.jb0’ file type and selected for architectural features and all corresponding ROIs. 

‘Input’ and then ‘Calculate’ were selected. Microsoft Excel was opened to search directory of 

‘.jb0’ files as Asterics output files. Output files of Asterics containing cell quantity and cell-to-

cell spatial analyses was entitled ‘Arch.txt’ and were in the same location as the main directory. 

‘Arch.txt’ was modified into a Microsoft Excel file and was formatted by text delimited and 

space. Graphs of average and standard deviation (SD) of all ROI of tumors in regards to cell 

percentages, mean neighborhood groups (MNG), and variance (VAR) of neighborhood groups 

were individually plotted with commercial statistical software package, Statistica Academic. 

Line of best fit across averages value of all five ROI (Percentage, MNG, or VAR) and bands of 

95% confidence intervals (CI) were also plotted in Statistica Academic. Values equating to -999 

indicate that not enough cells are present for accurate analysis and were excluded in the data set. 

Analyses are further described in Section 3.4 of this thesis.  

 

2.5.2 Image registration 

 

Three lung AC were selected out of the cohort (from Section 2.1) with cell count data available 

for all five ROI with the highest average of percentage of any CD8
+
 cells in both adjacent 

sections for image registration analysis. The image registration software programmed by Paul 

Gallagher, Imreg.m, applies geometric transformation to digital images of adjacent sections 
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based on similar intensities in images. Hardware used was a desktop PC (Cooler Master Co., 

Ltd) with MATLAB 2016a installation. Syntax that was modified and MATLAB functions of 

Imreg.m are summarized in Figure 2.5 and Table 2.3.  Digital images were assigned either as the 

moving image (undergoes geometric transformation) or fixed image (remains unchanged) with 

‘Imread’ command (Figure 2.3). Image file names were created and directory to save registered 

images were specified with ‘Imwrite’ command. File name of output files of registered images 

were as follows: ‘Stain_FixedImage_CaseID_RegionNumber.TIFF’, where ‘FixedImage’ 

denotes if T&B Cell or Adaptive Resistance stained section was assigned as fixed. Modifications 

to script were saved each time, and then the program was executed to issue image registration 

commands. ‘Command Window’ and ‘Workspace’ were not manually cleared after each run, as 

the script contains these internal commands. The reciprocal assignment of fixed and moving 

images for each image pair (T&B Cell and corresponding Adaptive Resistance image) was also 

performed with Imreg.m to test reproducibility of image registration.  

 

Moving = Imread(‘directory\filename.TIF’); 

Fixed = Imread(‘directory\filename.TIF’); 

 
 

Imwrite (img, ‘directory\filename.TIFF’) 

 

 
Figure 2.5   Syntax modified in Imreg.m to perform image registration. (A) Syntax for assigning moving and 

fixed images for image registration with Imreg.m in MATLAB. Directory refers to directory of grayscale image for 

image registration. (B) Syntax for assigning output file containing registered image. Directory refers to directory to 

save output file. Single quotations operator (‘’) indicates character string. Semicolon operator (;) indicates end of 

command and suppresses display of command in Command Window.  

 

A 

B 
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Chapter 3: Results and Discussions 

 

3.1 Image acquisition and spectral unmixing 

 

We acquired images by sampling areas of tumor sections with the custom image acquisition 

system (virtual biopsy). Spectral unmixing was required to analyze specific wavelengths of light 

that contain different information, including stains of markers that correspond to different 

immune cells. Computer memory for image storage and management and image acquisition time 

are important factors considered in digital pathology workflow, and these factors are as 

important for other imaging modalities, such as CT screening [6]. File sizes present as a unique 

challenge for digital pathology images, as they are dramatically larger, even when compared to 

CT scans [89]. In this study, a total of 210 images were imaged, 105 images for each panel (5 

ROI imaged per lung AC × 21 lung AC = 105 images) with the described hyperspectral imaging 

system. Sample regions were imaged, as file size for hyperspectral imaging of whole slide 

images with this system would exceed space for file storage. The project file size with all image 

processing performed was 456 GB, where average file size of individual 

‘Scaled_InvertedConcentrations.TIF’ image (T&B and AR) was ~148 megabyte (MB) per 

image, with additional image data output files acquired from spectral unmixing (Figure 3.1) This 

file size exceeds the capacity for rapid transfer through an existing BCCRC computer network, 

limiting file accessibility in our research setting. File size represents an important issue with 

implications for telepathology, which rely on placing image datasets on a server (or cloud) for 

tissue evaluation [81]. Commercial systems that use remote image management system and  
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Figure 3.1  Spectral unmixing of acquired images. (A) Spectral unmixing of different spectral components of 

sample ROI of T&B cell hyperspectral image data (B) Spectral unmixing of different spectral components of sample 

ROI of adaptive immune resistance hyperspectral image data.  

 

 

A 

B 
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cloud server for various electronic devices for efficient access, though data security will need to 

be addressed [119]. Two potential approaches could be proposed in the future to address this 

challenge: (1) acquiring a larger computer network or (2) integrating image compression 

methods to reduce file size [120]. Regarding the former approach, though conspicuous, this 

potential solution may be more uneconomical. Continual studies using this system would require 

frequent acquisition of new networks to perform new studies when memory in networks 

becomes saturated from large file size. Prospectively, this approach would not be sustainable in a 

clinical setting where a large repository of data would be collected from a frequently expanding 

cohort. The latter approach is inclined to be more sustainable by conserving existing memory. 

Furthermore, this approach has shown to be effective. Previously, investigators have shown that 

lossy image compression produces similar image analysis results as lossless image compression 

where these results did not affect interpretation of pathologists [120-122]. Compatibility of 

digital image processing software with diverse image file extensions, including compressed 

images, will enable more versatility of programs, as illustrated by commercial systems [123, 

124].  

In addition to economical conservation of computer memory, approaches to more 

efficiently maintain image quality was another aspect observed in this study. With the BCCRC 

image acquisition system, approximately seven days were required to manually acquire all 210 

images. Out of focus scans were observed in these imaged slides, which are also an existing 

challenge for current digital pathology platforms [61]. Out of focus or blurred images may be 

caused by panning artifacts including variations in tissue thickness, air bubbles, tissue folds or 

dust, as reported for whole slide scanners [125, 126]. Rescanning of images is a method to 

troubleshoot images containing artifacts [127]. In this study, an additional six days were required 
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to reimage ROI to account for image quality, including images that were out of focus or 

uncentered. A total of 32% of all ROI images were reimaged (for skew or out of focus together) 

[67 reimaged / 210 total images] with the hyperspectral image acquisition system, indicating that 

the majority of images were imaged in focus, though certain images needed to be reimaged. 

Collectively, a grand total of thirteen days were required for hyperspectral image acquisition 

with the BCCRC hyperspectral image acquisition system. Currently, out of focus images were 

assessed manually. It would be interesting to integrate an automated method to assess image 

quality as in Ameisen et al. 2014 for a quantitative and more efficient way to determine image 

quality [128]. Presently, the workflow of this system will need to take into account additional 

time for reimaging for sufficient image quality for downstream analysis if a larger cohort is to be 

used.  

 Alternatively, imaging slides in batches (including a method used by commercial 

systems) or where microscope stage can be moved in larger step sizes can also improve image 

acquisition performance [114, 123, 124, 127, 129]. Reducing the number of illumination 

wavelengths to perform image acquisition and spectral unmixing is anticipated to also decrease 

the amount of running time required for image acquisition  [130]. This last approach was tested 

to assess whether the current image acquisition system, independent of additional auxiliary 

electronic units could have improved performance.   

To determine whether fewer illumination wavelengths could improve performance while 

maintain image quality, the sixteen illumination wavelengths was reduced to six illumination 

wavelengths (420, 460, 520, 600, 660, 720 nm) (Table 3.1). These six illumination wavelengths 

were selected due to a similar concentration map to the sixteen illumination wavelengths that 

were initially used (Figure 3.2). Confirmation is required to determine if reducing the number of 
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illumination wavelengths to this fewer amount would produce similar image data to imaging all 

sixteen illumination wavelengths for hyperspectral images. Thus, a pilot experiment was 

performed to test whether reducing the number of illumination wavelengths to these selected six 

illumination wavelengths would produce similar image data as spectral unmixing with all sixteen 

illumination wavelengths. The experiment was performed for spectral unmixing of the initially 

acquired images. Results from this experiment will provide evidence as to: (a) whether these 

selected six illumination wavelengths will provide similar image data in a more efficient manner, 

and (b) initial evidence regarding whether these fewer number of wavelengths are appropriate for 

building a multispectral image acquisition system that images only with these fewer steps of 

wavelengths. 

 

Table 3.1 Spectral components with six and sixteen illumination wavelengths.  

 

  Components (optical density, unitless) 

Wavelengths 

(nm) 
Hematoxylin Red Blue Brown Black 

420 0.101999 0.286282 0.219142 0.494995 1.074562 

440 0.09631 0.317762 0.160342 0.544291 1.077952 

460 0.093373 0.407146 0.124488 0.542725 1.115249 

480 0.115964 0.577312 0.144825 0.476438 1.15619 

500 0.158563 0.772731 0.236577 0.383639 1.20467 

520 0.204072 0.932973 0.36889 0.29274 1.230545 

540 0.242716 0.858718 0.557132 0.217443 1.255227 

560 0.272961 0.834685 0.743612 0.167585 1.267742 

580 0.302181 0.551552 0.892058 0.13098 1.28088 

600 0.313563 0.075651 1.050625 0.098693 1.296845 

620 0.28804 0.015417 1.036513 0.081003 1.289892 

640 0.226668 0.008166 0.976663 0.067658 1.288713 

660 0.139926 0.007791 0.925634 0.055718 1.271939 

680 0.077127 0.005662 0.631702 0.046867 1.252295 

700 0.05005 0.004395 0.367524 0.040852 1.21398 

720 0.034088 0.003482 0.195295 0.036276 1.172802 
 

Yellow cell: Selected six illumination wavelengths spectral components with similar 

concentration map to all sixteen illumination wavelengths 
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Figure 3.2 Spectral unmixing sixteen versus six illumination wavelengths concentration maps. (A) Hypercube 

of sixteen illumination wavelengths in 20 nm steps between 420 to 720 nm. (B) Concentration maps of six selected 

illumination wavelengths and sixteen selected illumination wavelengths. Legend indicates spectral components. 

Figure adapted from Dr. Calum MacAulay and Paul Gallagher.  

A 

B 

(nm) 
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A subset of tumors was selected for this imaging experiment. Random sampling 

[Microsoft Excel = RAND() formula] was performed to select three tumors from the lung AC 

cohort from this study (the unannotated tumor, case 06L19, was excluded). Briefly, a number 

between zero and one was randomly assigned to cases, and the three cases with the smallest 

values were selected for spectral unmixing (Table 3.2). For these selected tumors, the five ROI 

images per tumor were tested for each panel (TB = 15 images total from three tumors, five per 

tumor; AR = 15 images total from three tumors, five per tumor). This randomly sampled dataset 

will be referred to as the ‘randomly sampled image data’. An independent MATLAB program 

named Compare16v6.m, developed and programmed by Paul Gallagher, was written. This  

  

Table 3.2   Random selection of cases for sixteen versus six illumination wavelength experiment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Random number Case 

0.041242 05L54 

0.09972 06L14 

0.105602 05L12 

0.169646 06L29 

0.20203 06L42 

0.204751 05L9 

0.273944 06L30 

0.416507 05L17 

0.496195 06L74 

0.513502 05L49 

0.524725 05L4 

0.561008 05L46 

0.625822 06L57 

0.704934 06L3 

0.707257 05L27 

0.726324 05L14 

0.789525 06L10 

0.839762 05L39 

0.949695 06L50 

0.984409 06L71 
Turquoise cell = cases selected for analysis. 



49 

 

program is capable of spectral unmixing functions, using the same code as Hyperspectral-

_Unmixing.m. The program is also able to iterate image subtraction between sixteen and six 

illumination wavelengths for each spectral component and print the absolute difference matrix as 

an image output file (subtracted image file). To assess image quality, Compare16v6.m calculates 

the sum of the pixels (to determine if pixel intensities differ between images spectrally unmixed 

with sixteen or six illumination wavelengths) and mean of the absolute difference matrix (to 

determine the variability of array elements between sixteen or six illumination wavelengths). To 

assess performance time, Compare16v6.m prints the performance time of spectral unmixing of 

sixteen and six illumination wavelength (the time the script takes to perform spectral unmixing), 

and of total program run time in a Microsoft Excel file (the entire software, including sixteen and 

six illumination wavelengths spectral unmixing and other functions).  

Compare16v6.m was executed on a desktop PC with MATLAB R2016a installation, as 

this computer had sufficient computer memory to perform the analysis. Several test runs with 

single test image and multiple test images were performed to test program execution prior to 

running with the randomly sampled image data. Image data directory path were independently 

specified in each run. Spectra file path and spectra Excel files were also specified. Changes to 

code were saved in the script, and ‘Run’ was selected to execute the program. ‘Clear Workspace’ 

and ‘Clear Command Window’ was performed in between runs.  

It was observed that quantitatively the image data were similar even with reduction of 

illumination wavelengths. The mean of the absolute difference was close to zero in all cases in 

both panels. For the T&B Cell cases, the range of mean absolute difference matrix ranged was 

close to zero (0.000696 to 0.019987) (Table 3.3). The range of mean absolute difference matrix 

was also close to zero for the AR panel (0.000788 to 0.020319), indicating reproducibility of  
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Table 3.3 Averages of each spectral component of T&B Cell panel for sum of the absolute difference, mean of the absolute difference, and performance 

time for sixteen compared to six illumination wavelengths. 

 

Case_ROI 

Sum of the absolute difference matrix  

(number of pixels) 

Mean of the absolute difference matrix  

(unitless) 

Time  

(seconds) 

Hx Red Blue Brown Black Hx Red Blue Brown Black 
Sixteen 

Bands 

Six 

Bands 

TB_05L54_1 477035.7 84930.88 101665.4 171446.7 35835.36 0.013233 0.002356 0.00282 0.004756 0.000994 59.51947 35.805 

TB_05L54_2 584774.2 150081.5 135334.1 163348.5 31362.73 0.016176 0.004152 0.003744 0.004519 0.000868 60.2355 36.17703 

TB_05L54_3 773528 182734.4 168629.7 199053.1 18839.48 0.021434 0.005063 0.004673 0.005516 0.000522 59.43266 34.70936 

TB_05L54_4 748245.8 187768.1 167647.7 198960.4 21129.06 0.020736 0.005204 0.004646 0.005514 0.000586 59.6508 34.66419 

TB_05L54_5 496068.3 80758.04 94717.89 157657 21566.08 0.013732 0.002235 0.002622 0.004364 0.000597 61.5027 36.1281 

TB_06L14_1 730979.2 165173.3 122685.5 196704.6 18921.03 0.02019 0.004562 0.003389 0.005433 0.000523 60.87164 35.22379 

TB_06L14_2 717237.5 151701.4 140943.1 189418.9 23593 0.01989 0.004207 0.003909 0.005253 0.000654 60.19385 35.08114 

TB_06L14_3 741096.6 152873.6 147442.4 198234.1 25030.74 0.020583 0.004246 0.004095 0.005506 0.000695 60.09994 34.91044 

TB_06L14_4 759549.5 151195.8 145258 204337.3 19559.81 0.021025 0.004185 0.004021 0.005656 0.000541 60.2182 34.99122 

TB_06L14_5 778430.3 138029.8 167050.7 277801.9 22361.68 0.02163 0.003835 0.004642 0.007719 0.000621 60.11466 35.03641 

TB_05L12_1 854932.9 178919.5 196918 232547 45216.28 0.023693 0.004959 0.005457 0.006445 0.001253 60.36455 35.01754 

TB_05L12_2 854932.9 178919.5 196918 232547 45216.28 0.023693 0.004959 0.005457 0.006445 0.001253 60.39611 35.05055 

TB_05L12_3 778551.6 186278.9 187599.5 208531.2 17838.9 0.021598 0.005168 0.005204 0.005785 0.000495 59.77609 34.55337 

TB_05L12_4 725232.4 147326.2 148064.1 192906.9 18010.82 0.020105 0.004084 0.004105 0.005348 0.000499 60.39761 35.21993 

TB_05L12_5 797446.5 128715.3 149711.5 211808.3 12403.65 0.022085 0.003565 0.004146 0.005866 0.000344 60.4923 35.23833 

Average of cases 721202.8 151027.1 151372.4 202353.5 25125.66 0.019987 0.004185 0.004195 0.005608 0.000696 60.21774 35.18709 

SD of cases 114181.4 33107.73 30712.61 29820.27 9906.943 0.003169 0.000917 0.000853 0.000831 0.000275 0.526824 0.4893 
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results with different markers (Table 3.4). These results indicate that spectral unmixed images 

with only six illumination wavelengths have modest difference in array elements as sixteen 

illumination wavelengths. These results suggest that quantitatively, image data would be similar 

despite wavelength number reduction when performing spectral unmixing (Table 3.3). Mean 

absolute difference was also close to zero in all cases for AR panel, illustrating the 

reproducibility of this result, that image quality is similar between the spectrally unmixed image 

with fewer wavelengths (Table 3.4). It was noted that the sum of the absolute difference for 

hematoxylin was greatest and least for black spectral components in both panels, although values 

for all spectral components are close to zero. These results suggest that different stains may have 

different image qualities when reducing number of illumination wavelengths for spectral 

unmixing. However, all mean absolute differences remain close to zero, suggesting negligible 

differences between sixteen and six illumination wavelengths in image quality in this 

experiment. Thus, these results reveal images spectrally unmixed with fewer illumination 

wavelengths generally have similar image quality from a quantitative perspective. 

In addition to quantitative assessment, the absolute difference matrix output files were 

also qualitatively observed to confirm if there are differences in image quality between sixteen 

versus the selected six illumination wavelengths for spectral unmixing. The latter analysis took 

into account the whole image. This qualitative analysis would confirm if there are areas in 

images that tend to differ by providing spatial context to differences. The majority of absolute 

difference matrix image files were observed to be black for each spectral component, suggesting 

that overall, few intensity differences between sixteen and six illumination wavelength spectrally 

unmixed files are presenting, suggesting similar image quality from qualitative analysis. 

However, a few images had observable qualitative differences in areas of images, such as  
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Table 3.4 Averages of each spectral component of AR panel for sum of the absolute difference, mean of the absolute difference, and performance time 

for sixteen compared to six illumination wavelengths. 

 

Case_ROI 

Sum of the absolute difference matrix  

(number of pixels) 

Mean of the absolute difference matrix  

(unitless) 

Time  

(seconds) 

Hx Red Blue Brown Black Hx Red Blue Brown Black 
Sixteen 

Bands 

Six 

Bands 

AR_05L54_1 577067.7 86209.94 131928.2 254833.7 43321.96 0.016033 0.002395 0.003665 0.00708 0.001204 61.29854 36.27254 

AR_05L54_2 671566.8 118944.1 137125 228782.3 35780.82 0.018615 0.003297 0.003801 0.006341 0.000992 61.84023 36.20765 

AR_05L54_3 755079.7 124275 129823.8 210138 22317.13 0.020912 0.003442 0.003595 0.00582 0.000618 61.12668 35.54924 

AR_05L54_4 752795.9 126661 135514.6 205286.9 23552.11 0.020914 0.003519 0.003765 0.005703 0.000654 60.88083 35.53811 

AR_05L54_5 597651.7 88025.71 90243.95 212725.7 30906.97 0.016579 0.002442 0.002503 0.005901 0.000857 61.77709 36.37333 

AR_06L14_1 788080.2 108766.2 132268.6 192845.7 26247.7 0.021822 0.003012 0.003663 0.00534 0.000727 61.27095 35.80502 

AR_06L14_2 758844.6 107974.5 120709.8 189323 28443.24 0.021048 0.002995 0.003348 0.005251 0.000789 61.26159 35.69767 

AR_06L14_3 754828.7 98470.13 116336.3 194723.2 27719.77 0.020981 0.002737 0.003234 0.005413 0.000771 61.03862 35.78427 

AR_06L14_4 765714.5 100870 119944.9 199847.5 21411.09 0.02121 0.002794 0.003322 0.005536 0.000593 61.34608 35.68836 

AR_06L14_5 755642.6 112551.3 101050.4 278384.7 25794.89 0.020945 0.00312 0.002801 0.007716 0.000715 61.01091 35.66472 

AR_05L12_1 769549.5 121107.4 124339.2 215136.9 45872.4 0.021341 0.003359 0.003448 0.005966 0.001272 60.96933 35.51549 

AR_05L12_2 761335.9 111549.8 129397.2 185513.2 25054.4 0.021022 0.00308 0.003573 0.005122 0.000692 61.32784 35.69278 

AR_05L12_3 742075.9 113936.7 127543.9 188628.2 22052.68 0.020483 0.003145 0.003521 0.005207 0.000609 61.1215 35.66012 

AR_05L12_4 745933.3 117749.7 131671.9 187426.7 26365.39 0.020717 0.00327 0.003657 0.005205 0.000732 61.13218 35.57954 

AR_05L12_5 799492.4 129563.7 139695.3 191171.3 21541.26 0.022168 0.003592 0.003873 0.005301 0.000597 61.10332 35.46461 

Average of cases 733044 111110.3 124506.2 208984.5 28425.45 0.020319 0.00308 0.003451 0.005794 0.000788 61.23371 35.76623 

SD of cases 65388.02 13104.53 13536.48 26804.29 7618.571 0.001803 0.000363 0.000375 0.000746 0.000212 0.270511 0.286249 
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saturation (bright pixels) in output images from image subtraction, though these images 

comprised the minority of all images tested (Figure 3.3). These differences as observed were 

multiplied by a factor of 255. We then observed that images with differences in image 

subtraction (points of saturation) appear to correspond to areas containing tissue fold artifacts in 

images, such as in Figure 3.3A and Figure 3.3B, or some kinds of dark pigmentation in the 

tissue, as in Figure 3.3C, potentially due to anthracotic pigmentation in tumors. These results 

suggest that avoiding tissue artifacts may improve image quality of the selected six illumination 

wavelength to sixteen illumination wavelength data, though further investigation is required, 

such as the intensity of image stain caused by artifacts related to nonrigid deformation in tissue 

or endogenous tissue pigmentation. These qualitative results corroborate the quantitative results 

of spectral unmixing, that the selected six illumination wavelengths generally will produce little 

difference in image data to sixteen wavelengths, though certain areas in tissue may be prone to 

slight differences in image quality than others. 

Since we verified that image quality was similar with reduced image quality, differences 

in efficiency were then observed between both methods. Total running time of Compare16v6.m 

to spectrally unmix with six and sixteen illumination wavelengths of all fifteen images from 

T&B Cell panel was 34.8 minutes and 35.6 minutes respectively for all fifteen images of AR 

panel data, indicating stability and reproducibility of Compare16v6.m in analyzing datasets. The 

average file size for absolute difference matrix output files was ~140 MB (4,427,035,520 bytes 

total images ÷ 30 images ÷ 1,048,576 
 
bytes per MB = 140.7 MB). These image subtraction 

image files are comparable in size to the grayscale acquired images in Section 3.1. Performance 

time of sixteen illumination wavelength spectral unmixing was nearly twice as long to run as six 
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Figure 3.3   Sample images of absolute difference matrix between sixteen and six illumination wavelengths 

with saturation observed. Majority of images for all components were all black. The images shown in this figure 

are outliers with strong saturation that was visually detected, indicating a difference in image subtraction between 

spectral unmixing images with the sixteen and selected six illumination wavelength. Differences shown were 

multiplied by a factor of 255. Lower case letter annotations indicate magnified areas magnified with strong 

saturation. White arrowheads indicate areas of saturation (bright pixels) in images, (A) Third ROI of case 05L12 in 

the T&B Cell panel (TB_05L12 _3) of hematoxylin spectral component. a refers to enlargement of region a in A, b 

refers to enlargement of region b in A (B) Second ROI of case 05L54 in the T&B Cell panel (05L54_2) of red 

spectral component. c refers to enlargement of region c in B. (C) Second ROI of case 06L14 in the AR panel 

(AR_06L14_2) of hematoxylin spectral component.  

 

illumination wavelengths for the T&B Cell panel for each image (60.21774 vs. 35.18709 

seconds) (Table 3.3). The sixteen illumination wavelengths were also observed to be twice as 

long for each image in AR (61.23371 vs. 35.76623 seconds) indicating the reproducibility of 

results (Table 3.4). These results indicate that in addition to having similar image quality, 

spectral unmixing with six illumination wavelengths is more efficient than sixteen illumination 

wavelengths. Image file size was not assessed with Compare6v16.m because files were kept as 

variables local in workspace in order to accurately perform image subtraction. Future studies 

may want to confirm if significant differences in file sizes are present when using these selected 

fewer illumination wavelengths. Collectively, these results indicate that using these selected six 

illumination wavelengths may be valuable to improve the efficacy and workflow of spectral 

unmixing. These results also serve as initial evidence revealing that development of a 

multispectral image acquisition system with only these wavelengths may be justified. However, 

testing with such an image acquisition system warrants further investigation.   

 Together, the results in this thesis identified that the image acquisition system is feasible, 

technical factors that affected image acquisition and spectral unmixing, and that optimizing some 

of these technical factors could improve efficiency of the current system. For image acquisition, 

these include computer memory and file size, image quality, and efficiency of spectral unmixing. 

Potential solutions for these systems have been speculated for some of these factors, including 
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testing image compression and automated methods to detect image quality. We tested six 

illumination wavelengths produce similar image quality as the sixteen used in this study, which 

enabled more efficient spectral unmixing. These results rationalize the use of these six 

wavelengths and potentially in the development of a multispectral image acquisition system with 

these selected wavelengths.     

 

3.2 Segmentation 

 

Segmentation is a digital image processing method used to extract objects of interest in images in 

order to simplify the image for analysis [131]. For this study, the objects of interest are cells in 

the tumor microenvironment. Thus, segmentation of cell nuclei (stained with hematoxylin) in 

hyperspectral images of lung tumors was performed to delineate cells. Briefly, the DUnit 

segmentation software uses Voronoi tessellation, a type of geometric partitioning that involves 

determination of neighboring cells of a given identified cell [117]. The accuracy of segmentation 

would contribute to the interpretation of results. If segmentation were inaccurate, this could 

translate to undersegmentation – loss of area containing cells missed in analysis or alternatively – 

or oversegmentation – leading to false positive results by analyzing background areas containing 

no cells [132-134]. Multiple software users could improve the efficiency of image analysis, as 

the concept of incorporating a multi-user platform to enable simultaneous collaboration of image 

datasets, such as Cytomine, so that multiuser segmentation could be concurrently done [135, 

136].  To increase efficiency of manual segmentation, three individuals were used to segment 

images. In assessing the workflow of image segmentation of this hyperspectral image analysis 

system, it was observed that, while the majority of images could be segmented, the quality of  
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Figure 3.4    Segmentation of images with low and high density cell nuclei. (A) Low nuclei density sample image 

(B) High nuclei density sample image. Grey areas in image indicate hematoxylin stain. Blue circle indicates high 

density area. Red indicates object recognition of nuclei. In Voronoi tessellation, red outline indicates edge detection 

of cellular membrane. 

 

segmentation varied. Approximately 95.7% of the images were segmented with DUnit (201 

images segmented/total of 210 images) indicating that the software could segment the majority 

of images. We observed that within segmented images, segmentation of nuclei present in images 

was variable across all images. It was observed cell nuclei density affected the efficacy of image 

segmentation. Images with high density of cell nuclei in clusters were unable to be segmented, 

while images that had lower densities of cell nuclei were able to be segmented (Figure 3.4). 

Areas with high density of cell nuclei in tumors include immune cell clusters, such as the 

presence of tertiary lymphoid structures in lung tumors, highly organized ectopic lymph node 
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structures containing large abundance of tumor infiltrating T and B cells [137]. The size of these 

clusters may also vary depending on the axis the tumor specimen was cross sectioned in 

consideration of the three dimensional spatial configurations of bulk tumor. A number of 

investigators have used various approaches to overcome the challenge of segmenting 

overlapping cells, including deep learning approaches and various algorithms using 

approximation, image preprocessing, and including a priori information regarding nuclear 

morphology [123, 138-147].  

Improved segmentation was observed by selecting one of these areas for images with 

high density of cell nuclei (Figure 3.5). Thus, an immediate potential solution to this 

segmentation problem could be to frame a biological research question requiring to interpret 

immune cell clusters or segment outside of the clusters. This would enable separate segmentation 

of areas with high or low nuclei density. Additional solutions remain to be determined, including 

image preprocessing steps implementing image sharpening to enhance region and edge detection 

of nuclei or image smoothing to denoise images for segmentation. Other systems, including 

commercial systems use pattern recognition to increase performance [123]. Various methods 

have been used for segmentation, that have been highlighted in Zarei et al. 2016 [148]. Notably, 

accuracy of cell segmentation in images remains a challenge for current commercial software. 

Segmentation may be limited by partial cells exposed on tissue from sectioning or 

multinucleated cells, as nuclear segmentation algorithms interpret nuclei as one cell [41]. Other 

studies have tried building algorithms to better partition ‘immune cell conglomerates’ [149]. An 

automated method with pattern recognition to detect immune clusters would be useful to inform 

users if the area may be difficult to segment [150].  
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Figure 3.5    Segmentation inside and outside of clusters of dense cell nuclei. Seed detection and Voronoi tessellation of image for nuclei object recognition. 

Red indicates object recognition of nuclei. In Voronoi tessellation, red outline indicates edge detection of cellular membrane 

Seed 
detection 
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Collectively, these results indicate segmentation with the BCCRC hyperspectral image 

analysis system is possible for the majority of images. However, the quality of segmentation is 

primarily affected by the nuclei density. These results suggest that additional optimization 

especially for images containing large cell clusters are to be investigated in the BCCRC  

hyperspectral image analysis system. In summary, at present, study design, such as whether a 

biological research question is to be focused on highly dense immune cell clusters or less dense 

areas that may influence criteria for ROI selection during image acquisition stage and 

segmentation, would be a feasible solution to account for technical factors effecting 

segmentation efficacy. Future studies may investigate how to better segment images with both 

high and low nuclei density areas.   

 

3.3 Classification 

 

Thresholds or brightness constants can be used to distinguish object from background,  

and thus, can dichotomize whether an object is negative or positive for a particular stain [148, 

151]. Thresholds can be established by classifying grey level or intensity of pixels in an image, 

which is one of the simplest segmentation methods to separate objects from background [148, 

151]. Establishing thresholds by this method is possible as different objects can display different 

constant surface reflectivity or light absorption [151]. These differences in turn can then be 

isolated from images as objects.  

We considered that inter-observer variability may be present in establishing thresholds. 

Consequently, thresholds were determined by three observers for each index of ROI (Table 3.5). 

Thresholds could range from 0 (black, high threshold) to 255 (white, low threshold) at 8 bits per 
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Table 3.5   Summary of thresholds for T&B Cell panel.  

      Case 

Index 1 

(grey level intensities) 

Index 2 

(grey level intensities) 

Index 3 

(grey level intensities) 

Average of 3 indexes per case 

(grey level intensities) 

SD of 3 indexes per case 

(grey level intensities) 

II2 

(Red) 
CD79a 

II3 

(Blue) 
CD3 

II4 

(Brown) 
CD8 

II2 

(Red) 
CD79a 

II3 

(Blue) 
CD3 

II4 

(Brown) 
CD8 

II2 

(Red) 
CD79a 

II3 

(Blue) 
CD3 

II4 

(Brown) 
CD8 

II2 

(Red)  
CD79a 

II3  

(Blue)  
CD3 

II4 

(Brown) 
CD8 

II2 

(Red) 
CD79a 

II3  

(Blue)  
CD3 

II4  

(Brown)  
CD8 

05L14 229 229 228 218 225 210 210 220 195 219 224.6667 211 9.539392 4.50925 16.52271 

05L49 232 230 226.7 233 221 219 230 210 195 231.6667 220.3333 213.5667 1.527525 10.01665 16.5337 

05L46 242.6 239 229.9 225 223 215 225 220 200 230.8667 227.3333 214.9667 10.16136 10.21437 14.95003 

05L54 225 220 216.3 222 205 210 225 225 195 224 216.6667 207.1 1.732051 10.40833 10.94212 

06L42 242 218.6 225.5 235 225 225 235 225 230 237.3333 222.8667 226.8333 4.041452 3.695042 2.753785 

06L57 238.6 237.9 235 230 220 215 225 225 195 231.2 227.6333 215 6.878953 9.23598 20 

06L71 237.5 230 229 230 220 211 215 200 210 227.5 216.6667 216.6667 11.45644 15.27525 10.69268 

06L74 240 233 234.8 232 225 205 225 200 195 232.3333 219.3333 211.6 7.505553 17.21434 20.70459 

06L10 242 238 220 230 210 210 200 190 210 224 212.6667 213.3333 21.63331 24.11086 5.773503 

06L14 239.2 240 237 217 225 215 230 210 200 228.7333 225 217.3333 11.15407 15 18.61003 

06L19 N/A N/A N/A 210 225 205 200 220 195 205 222.5 200 7.071068 3.535534 7.071068 

005L4 237.5 228.5 224.9 230 225 225 245 238 230 237.5 230.5 226.6333 7.5 6.726812 2.916048 

06L3 230 229.1 220.8 230 225 225 235 235 230 231.6667 229.7 225.2667 2.886751 5.026927 4.605793 

06L29 238.6 236.5 230 218 225 210 210 220 175 222.2 227.1667 205 14.75534 8.460693 27.83882 

06L30 235.7 224 227.3 230 225 210 225 225 195 230.2333 224.6667 210.7667 5.353815 0.57735 16.16364 

05L9 237.2 227.9 224.3 230 225 228 215 225 200 227.4 225.9667 217.4333 11.32608 1.674316 15.21063 

05L12 237.2 227.9 232 234 215 222 215 225 200 228.7333 222.6333 218 12.00056 6.767816 16.37071 

05L17 236 235.1 230.6 225 227 220 215 215 215 225.3333 225.7 221.8667 10.50397 10.11286 7.96576 

05L27 237 225 221.4 225 215 220 220 215 220 227.3333 218.3333 220.4667 8.736895 5.773503 0.80829 

05L39 240 230 230.9 225 229 217 220 215 195 228.3333 224.6667 214.3 10.40833 8.386497 18.10166 

06L50 N/A N/A N/A N/A N/A N/A 200 200 190 200 200 190 #DIV/0! #DIV/0! #DIV/0! 

Average 

(grey level 

intensities) 

237 231 228 226 222 216 220 217 203 

226 222 214 8.81 8.84 12.7 
Average SD 

(grey level 

intensities) 

4.67 6.16 5.48 6.58 6.09 6.94 12.0 12.0 14.5 

N/A:  no data due to no segmentation; #DIV/0!: unable to calculate 
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pixel (bpp) for grey level intensity for monochromatic images of each spectral component of 

images processed by spectral unmixing. Calculation of threshold, as measured by average 

integrated intensity (II), was dependent on whether segmentation was possible, which was the 

case for the majority of images. However, a few images were not able to be segmented well and 

thresholds were not able to be established for these images (indicated by N/A in Table 3.5). 

These images without thresholds were not included in the calculations of average threshold. 

These observations highlight the importance of upstream processes effecting downstream 

procedures in the workflow of this image analysis system.   

As predicted, inter-observer variability for immunohistochemical stain thresholds were observed. 

Average of averages for T&B Cells is red, blue, and brown threshold are 226 (SD = 8.81), 222 

(SD = 8.84), and 214 (SD = 12.7) grey level intensity respectively (Table 3.5). The intensities for 

a positive stain are similar in range when analyzed with monochromatic spectrally unmixed 

images. The SD is greater than zero, indicating that there is some variability involved in visually 

assessing stain levels. Thresholds recorded by two observers (Dr. Calum MacAulay and I) were 

used to calculate the threshold for the AR panel. Averages were calculated independently of 

cases. Average of averages for AR in red, blue, and brown thresholds were 231 (SD = 6.20), 212 

(SD = 15.0), and 221 (SD = 9.88) grey level intensities (Table 3.6). These results were similar to 

using three observers and averaging individual cases. In summary, these results demonstrate that 

inter- observer variability is present in the establishment of threshold, suggesting that there is 

variation in the subjective interpretation of positivity and also biologically within images. 

Currently, this study has used a manual approach to determine thresholds for stain positivity. It 

would be interesting to fine tune thresholding with deep learning approaches as investigated by 

other studies to minimize this interobserver variability [152, 153].  
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Table 3.6   Summary of thresholds for adaptive immune resistance panel.  

 

Index 

II2 

(Red) 

CD8 

(grey level 

intensities) 

II3 

(Blue) 

PD1 

(grey level 

intensities) 

II4 

(Brown) 

PDL1 

(grey level 

intensities) 

Index 3 

225 195 220 

225 195 225 

225 195 225 

230 195 235 

230 195 235 

230 195 230 

230 195 225 

240 215 235 

235 210 233 

235 210 225 

235 210 230 

235 210 230 

230 205 220 

230 205 235 

230 210 230 

230 210 220 

240 210 230 

230 210 230 

230 200 225 

230 200 230 

230 200 220 

Index 1 

232 216 223 

219 189.5 204 

235 231.2 200 

235 196 218 

230 200 210 

230 228.7 208 

237.3 203 220 

235 234.4 222.5 

235.6 244 215 

222 224 208 

234.6 235 220 

234.8 231 217 

234 220 225 

209.45 224 220.7 

242 225 225.8 

226.4 237.9 209.65 

230 218.6 204.2 

241.1 230.6 200 

241.7 230 229 

230 190 210 

Average thresholds 

(grey level intensities) 
231 212 221 

Average SD 

(grey level intensities) 
6.20 15.0 9.88 
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Another potential explanation of inter-observer variability is biological variation in 

staining patterns. We noticed that staining of antibodies within images was observed to be 

heterogeneous, in other words, some cell types had greater variability in stain intensities than 

others. It was observed that PDL1 had heterogenous stain patterns with more variable grey level 

intensities, while others were more homogenous, such as CD8 (Figure 3.6). A potential reason 

for this variability is the different expression levels of the protein in different cell types. For 

instance, PDL1 is known to be highly expressed in macrophages and moderately expressed in 

tumors [154]. A potential solution is to establish and apply additional positivity thresholds for 

IHC marker; as currently, the development of companion diagnostic tests of PDL1 implement 

expression threshold levels of this protein to stratify the administration of PD1 drugs. In this 

study, the PDL1 antibody clone used was SP142. This is the same clone used in the FDA-  

 

 

 

Figure 3.6    Homogeneity and heterogeneity of antibody stains. Hematoxylin (Filter 0) stained in image. CD8 in 

image homogenous stain. PDL1 in image stained with heterogenous stain.  
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approved complementary diagnostic test for the stratification of the FDA approved immune 

checkpoint inhibitor atezolizumab, and is known to stain immune cells more than tumor cells 

[154-157]. This approach of a scoring method has also been applied in commercial systems [124, 

158]. Using this approach, we established and implemented multiple PDL1 thresholds to account 

for the variation of the expression of PDL1 within tissues and to be able to measure these 

differences (Table 3.7). 

To test the addition of higher threshold, two observers (Dr. Katey Enfield and I) 

established thresholds for high intensity values of PDL1 thresholds for two different indexes of 

ROI by reoptimizing thresholds on ‘test.tree’ on DUnit (Table 3.7, Figure 3.7). This new higher  

 

Table 3.7   Summary of thresholds for adaptive immune resistance panel for PDL1high.  

 

Case 

Index 2 

II4  

(Brown)  

PDL1 

(grey level 

intensities) 

Index 3 

II4  

(Brown)  

PDL1 

(grey level 

intensities) 

Average 

of Index 

2&3 

(grey level 

intensities) 

SD 

(grey level 

intensities) 

05L14 200 192 196 5.656854 

05L49 180 201 190.5 14.84924 

05L46 190 178 184 8.485281 

05L54 180 182 181 1.414214 

06L42 190 185 187.5 3.535534 

06L57 180 200 190 14.14214 

06L74 180 210 195 21.2132 

06L71 180 170 175 7.071068 

06L10 200 216 208 11.31371 

06L14 200 187 193.5 9.192388 

06L19 190 179 184.5 7.778175 

06L3 160 190 175 21.2132 

06L29 200 199 199.5 0.707107 

06L30 180 185 182.5 3.535534 

05L9 185 N/A 185 #DIV/0! 

05L12 200 180 190 14.14214 

05L17 200 170 185 21.2132 

05L27 180 194 187 9.899495 

05L39 170 205 187.5 24.74874 

06L50 170 223 196.5 37.47666 

05L4 200 190 195 7.071068 

Average of Averages 189 12.2 

N/A: no data due to no segmentation 
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Figure 3.7   Establishing multiple thresholds for PDL1 stain. Spectral unmixed image of PDL1 stain. Image of total segmentation of Voronoi tessellation 

(red). PDL1
+
 threshold established by the average of three observers (blue). PDL1

++
 threshold established by the average of three observers (orange).  
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threshold that was established was referred to as PDL1
++

. The average threshold of PDL1
++

 had 

an II value 15% less than the initial PDL1
+
 II, creating a higher threshold (Table 3.7). Again the 

threshold observed had a SD greater than zero, suggesting the presence of inter-observer 

variability and heterogeneity of stain distribution present in sampled regions. This assessment 

corroborates that inter-observer variability in establishing thresholds is present, though some of 

the variability may be biologically related, such as a gradient of positivity present in tissue, 

rather than a binary assessment.  

Accordingly, we were able to construct a classification tree based on grey level 

thresholds of spectrally unmixed images (Figure 3.8). With this supervised approach, it is 

important to account for inter-observer variability when establishing these thresholds that may 

introduce potential biases to subsequent interpretation of images. Furthermore, application of 

immunohistochemical stain thresholds will depend on the variability of grey level intensities 

present in spectrally unmixed images or the gradient of stain that may be observed, which may 

be biologically relevant, such as different expression levels of proteins in different cell types.  

Due to the limited subset of markers that can be interrogated using light absorbance from 

chroma-based systems, it would be interesting to further differentiate between different immune 

cell subsets, such as neutrophils or natural killer cells, with the integration of a classifier for 

machine learning to differentiate these cell types with pattern recognition of additional cellular 

features.  
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Figure 3.8    Classification trees of cell types based on threshold positivity. Figure courtesy of Dr. Katey Enfield.  
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3.4 Cell quantity and cell-to-cell spatial relations:  potential factors related to data 

interpretation 

 

Selection bias refers to systematic error in selecting samples that do not represent the population 

of interest, where false significant relationships may be identified (false positive or type I error) 

and true significant relationships potentially missed (false negative or type II error) [159-161]. 

Thus, selection bias is problematic in limiting the generalizability or external validity of a study, 

and is of particular concern for limiting clinical error [162].  

In routine clinical practice, selection bias of tissue sections for histopathology remains a 

problematic issue, as typically only one tissue section is selected for assessment. Estimates will 

be biased if every structure in tissue has an unequal probability of being assessed [161, 163]. A 

solution for unbiased sampling relies on equal probability of all structures in a three dimensional 

tissue being assessed [161, 163]. In the case of digital pathology clinical workflow optimization 

and in this study, limited memory in servers is an expected constraint. Thus, analysis of entire 

WSI was not performed, and ROI sampling (virtual biopsy) was conducted as a sensible and 

practical means to conserve image file size and computer memory. 

 It is important to distinguish the difference between precision and bias. Precision 

determines how reproducible an estimate is and is related to the rigor of sampling [161]. The 

more precise an estimate is, the lower the variability will be present for a particular estimate  

[161]. Bias refers to how accurate an estimate is to the true population mean and is difficult to 

determine, and unbiased data can be either precise or imprecise [161]. The presence of selection 

bias of imaged areas would contribute to misinterpretation of cell-to-cell spatial organizations 

measurements and clinically, for potential false predictions of cancer prognosis and pathological 
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features of tumors. Thus, evaluation of ROI sampling strategy in this study for image acquisition 

and subsequent downstream digital image processing, data analysis, and interpretation is 

essential for potential future clinical application of this image analysis system. Due to the small 

number of biological replicates in this cohort in this proof-of-concept study, we were neither able 

to determine accurate population mean to assess selection bias nor generate any biologically 

relevant conclusions from these results. However, the following section of this thesis 

demonstrates the feasibility of Asterics for cell-to-cell spatial analysis of the tumor 

microenvironment and evaluates if the ROI sampling strategy and related effects deriving these 

metrics associate with data precision and effect data interpretation.  

 

3.4.1 Parameters measured by Asterics: Cell quantity and cell-to-cell spatial relations 

 

Asterics is the cell-to-cell spatial analysis software of the BCCRC hyperspectral image analysis 

system developed by Dr. Calum MacAulay and Dr. Martial Guillaud’s research team. Asterics 

performs analysis of various tissue architecture parameters, including the following three metrics 

to quantify cells and their spatial contexts: percentage of positive cells (Percentage), mean 

neighborhood group (MNG), and variance of neighborhood group (VAR). Definitions, 

significance, and specific examples of these parameters assessed by Asterics are summarized in 

Table 3.8, and will be further described in detail in this section.  
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Table 3.8   Parameters measured by Asterics used to assess selection bias analysis in this study.  
 

Parameter Definition Significance Example 

Percentage of 

positive cells 

(Percentage) 

Proportion of cells with 

positive stain relative to all 

segmentable cells in image 

Measures quantity of a given cell population 
 

A conventional metric used by other commercial 

system 
 

Collects baseline information of cell abundance to 

inform tumor microenvironment spatial model related 

to MNG 

Proportion of PD1+ 

cells relative to all 

detected cells in 

image 

Mean 

neighborhood 

group (MNG) 

Average proportion of cell 

population of interest next to 

a given cell population across 

an entire image 

Profiles cell sociology or ‘tissue level organization’ 
 

Emerging, novel metric to quantify spatial organization 

in tissue  

Average proportion 

of PD1+ cells next to 

PDL1+ cells across 

image 

Variance of 

neighborhood 

group (VAR) 

Variance of proportion of cell 

population of interest next to 

a given cell population 

(MNG) across an entire image 

Assesses whether the pattern of spatial relationships 

(MNG) is consistently present or not in an image 
  

Novel metric to quantify spatial organization in tissue 

Variance of 

proportion of PD1+ 

cells next to PDL1+ 

cells across image 

 

 

Percentage of positive cells, herein referred to as just ‘percentage (%)’, measures the 

proportion of cells positive for a stain relative to all segmented cells that could be recognized by 

the segmentation software DUnit (Table 3.8). This parameter provides a global proportion of the 

number of a particular cell population is present, and is a metric more classically used in the 

literature for quantifying the abundance of a cell population of interest [82, 164, 165]. Such 

metrics are conventionally measured by commercial systems (refer to Table 1.1).  For Asterics, 

percentage would provide baseline information on the relative presence or absence of a particular 

cell type in relation to more complex spatial modelling of the tumor microenvironment that is 

capable by this software. For instance, few percentage of cells identified from this metric could 

inform that few initial cells are available for spatial modelling; highlighting that this basic 

information is essential for interpretation of higher dimensional analyses if performed.  

MNG is a unique parameter measured by the BCCRC hyperspectral image analysis 

software, Asterics (Table 3.8). MNG refers to the average proportion of cell population of 

interest ‘next to’ or ‘neighboring’ (symbolized as forward slash (/) in this Chapter of this thesis) 

a given cell population (referred to as ‘neighborhood group’, i.e. CD3
+
 cell next to CD79a

+
 cell) 
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across the entire image (Figure 3.9). For instance, a high MNG (MNG = 1) would refer to a high 

frequency that a reference cell type is next to a given cell type, while a low MNG (MNG = 0) 

would be indicative of a low frequency. As colloquially understood, a neighborhood, such as 

within a city, is a physical area implying both geographic and social constructs [166]. An 

extension of this concept can be applied to understand single cells in the tumor 

microenvironment, which is uniquely performed by Asterics. MNG enables an even higher 

resolution, local description of cell geography, specifically the configuration of the immediate  

local spatial domain or micro-habitat of a single tumor microenvironment cell, whether one 

classified cell type is more or less likely to be in the vicinity – appears to physically touch – 

another given classified cell type. Relative to percentage, the concept of cell-to-cell spatial 

relation analysis is an emerging metric with few developments currently being made. MNG is  

especially valuable by profiling tissue level organization in a quantitative manner, contributing to 

 

 
 

 

Figure 3.9    Mean neighborhood group (MNG) by Asterics. A frequency of neighboring cells from reference cell 

is calculated for all cells in images. The mean of these frequencies reference to neighboring cell pairs is calculated 

for all cells in images. Pink indicates adjacent, neighboring cells. Red seed point indicates cell classified as group 1 

(i.e. cell with no stain). Blue seed point indicates cell classified as group 2 (i.e. PDL1
+
 cell). Green seed point 

indicates cell classified as group 3 (i.e PD1
+
 cell). Yellow seed point indicates cell classified as group 4 (i.e. CD8

+
 

cell). Turquoise indicates DUnit edge detection of cell membrane. Figure courtesy of Dr. Calum MacAulay. 
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developing a method for mapping the spatial ecology of cells in tumors. Frequent geographic 

proximity of specific cell types of interest in images implies potential cell-to-cell interactions or 

cell sociology. However, such physical interactions are inferred and thus, correlative. Therefore, 

MNG derived from this software is a valuable tool to posit hypotheses regarding novel cell-to-

cell interactions in the tumor microenvironment for further validation. Furthermore with this 

approach, MNG could then be correlated with treatment or survival outcomes as a CAD tool, 

contributing to more advanced spatial analyses of tissue for prognostic and theranostic 

predictions.  

In conjunction with MNG, VAR indicates the variance of MNG – how variable the 

proportion of cell population of interest is next to a given cell population is across the entire 

image (Table 3.8). Classically, variance assumes a non-negative value, where the minimum 

value is zero, indicative that no variation is present. For instance, across a given ROI image, a 

reference cell may be consistently next to two cells of a given population in different sites of the 

ROI image, or observed to be more variable, next to four different cells, or sometimes one 

different cell of a given population strewn across different sites within an ROI. Thus, VAR 

measures the spread or dispersion of neighborhood group within an ROI – a high variance (VAR 

> 0) would indicate that there is large variation of a reference cell type next to a given cell type 

in the whole image, and a small variance (VAR = 0) would be indicative that little variation is 

present between a reference cell type and a given cell type in the whole image. In the case that 

not enough cells are present to accurately analyze variance, Asterics value can output a special 

value (-999) to alert the user (raw data plots with inclusion of these large negative values are in 

Appendix A of this thesis). The following graphs in this thesis have this large value excluded in 

plots. In conclusion, VAR would additionally inform whether the cell sociology pattern of 
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specific neighborhood groups observed tends to be relatively constant or is more sporadic in a 

given snapshot of the tumor microenvironment.  

Thus far, HALO is one of the only known commercial, non-clinical image analysis 

system with a similar cell-to-cell spatial metric as Asterics. However, the clinical value of its 

proprietary algorithm for prognostic or theranostic predictions remains to be tested. There 

remains a paucity of published studies with the HALO nearest neighborhood analysis metric 

currently available. The different neighborhood analysis algorithms by Asterics could present as 

an alternative method with regards to consilience (the concept that convergence of evidence 

derived from different methods when synthesized, generates strong conclusions). Moreover, 

technology transfer and access to deluxe commercial quantitative image analysis software 

remains a challenge from an economical perspective, including for developing countries. The 

image analysis system described in this thesis may provide a potential alternative, cost-effective 

approach if efficacy is demonstrated in the workflow of this system.  

In this section of this thesis, the following six analyses were conducted on Asterics with 

the processed image data. The table that follows, Table 3.9, outlines and describes the types of 

analyses performed to assess ROI sampling strategy in this study, and potential challenges that 

arose during data interpretation. The analyses presented here are organized from least to most 

complex scenarios when quantitatively modeling the tumor microenvironment. The graphs 

presented in this thesis have y-axes scaled to the same dimensions to facilitate data comparisons. 

To better represent observations made from some analyses, the same graphs also had their axes 

autoscaled to have a larger domain to view all coordinates, which are presented in the 

Appendices (B.1 to B.6) at the end of this thesis. A graphical key to facilitate data interpretation 

of all graphs in this Sub-section are presented in Figure 3.10.
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Table 3.9   Summary and significance of analyses performed with Asterics.  
 

Sub-

section # 

Cell population Examples from panels 

Parameters  

assessed 

Asterics 

metric 
Significance 

Neighbor type  

(# of cell 

subsets) 

Population 

properties  

(# of markers) 

T&B cell  
Adaptive immune 

resistance  

3.4.2 
Same neighbor 

(1) 
General (1) 

CD3
+
 

CD79a
+
 

CD8
+
 

CD8
+
 

PD1
+
 

PDL1
+
 

PDL1
++

 

Cell quantity Percentage 

Assesses baseline level of general subsets in ROI 
 

Least complex scenario with the expected largest available pool of cells 

(no spatial modeling) to assess:  

 data precision of individual tumor sample (intratumoral) 

 extent of variability across cohort (intertumoral) 

3.4.3 
Same neighbor 

(1) 

General A (1) / 

General A (1) 

CD3
+
 / CD3

+
 

CD79a
+
 / CD79a

+
 

CD8
+
 / CD8

+
 

CD8
+
 / CD8

+
 

PD1
+
 / PD1

+
 

PDL1
+
 / PDL1

+
 

PDL1
++

 / PDL1
++

 

Cell-to-cell spatial 

relations 

MNG 

 

VAR 

More complex scenario with the expected largest available pool of cells 
(with spatial modeling) to assess:  

 data precision of individual tumor sample (intratumoral) 

 extent of variability across cohort (intertumoral) 

3.4.4 
Same neighbor 

(1) 

Specific (2) CD3
+
CD8

+
 CD8

+
PD1

+
 Cell quantity Percentage 

Assesses if Asterics may be able to detect more specific cell subsets 

(preliminarily assess sensitivity) 
 

Least complex scenario with the expected smaller available pool of 
cells (no spatial modeling) to assess:  

 data precision of individual tumor sample (intratumoral) 

 extent of variability across cohort (intertumoral) 

Specific (3) CD3
+
CD8

+
CD79a

+
 

CD8
+
PD1

+
PDL1

+
 

CD8
+
PD1

+
PDL1

++
 

Cell quantity  Percentage 
Negative control: Determine if non-conventional cell types are detected 

in images 

3.4.5 
Same neighbor 

(1) 

Specific A (2) / 
Specific A (2) 

CD3
+
CD8

+
 / 

CD3
+
CD8

+
 

CD8
+
PD1

+ 
/
 

CD8
+
PD1

+
 

Cell-to-cell spatial 
relations 

MNG 
 

VAR 

More complex scenario with the expected smaller available pool of 

cells (with spatial modeling) to assess:  

 data precision of individual tumor sample (intratumoral)  

 extent of variability across cohort (intertumoral) 

Specific A (3) / 
Specific A (3) 

CD3
+
CD8

+
CD79a

+
 / 

CD3
+
CD8

+
CD79a

+
 

CD8
+
PD1

+
PDL1

+
 / 

CD8
+
PD1

+
PDL1

+
 

CD8
+
PD1

+
PDL1

++
 / 

CD8
+
PD1

+
PDL1

++
 

Cell-to-cell spatial 
relations 

MNG 

 
VAR 

Negative control: Determine if non-conventional cell types are detected 
in images using spatial relations analysis 

3.4.6 

Different 

neighbor  
(2) 

General A (1) / 

General B (1) 
CD3

+
 / CD79a

+
 

PD1
+
 / PDL1

+
 

PD1
+
 / PDL1

++
 

Cell-to-cell spatial 

relations 

MNG 

 

VAR 

Most complex scenario (with spatial modeling) with expected larger 

available pool of cells to assess:  

 data precision of individual tumor sample (intratumoral) 

 extent of variability across cohort (intertumoral) 

General B (1) / 

General A (1) 
CD79a

+
 / CD3

+
 

PDL1
+
 / PD1

+
 

PDL1
++

 / PD1
+
 

Cell-to-cell spatial 

relations 

MNG 

 

VAR 

Assess if cell-to-cell spatial analysis is dependent on reference cell 

matters, in other words if Asterics can potentially detect variation in 

microhabitats of cells 

3.4.7 
Different 
neighbor  

(2) 

General (1) /  

Specific (2) 
CD3

+
CD8

+
 / CD79a

+
 

CD8
+
PD1

+
 / PDL1

+
 

CD8
+
PD1

+
 / PDL1

++
 

Cell-to-cell spatial 

relations 

MNG 

 

VAR 

Most complex scenario (with spatial modeling) with expected least 

available pool of cells to assess:  

 potential sensitivity relative to general / general neighborhood 
cell-to-cell spatial correlations  

 data precision of individual tumor sample (intratumoral) 

 extent of variability across cohort (intertumoral) 
 

Assess if cell-to-cell spatial relations is dependent on reference cell, in 

other words can potentially detect changes in cell microhabitats  

Specific (2) /  

General (1) 
CD79a

+
 / CD3

+
CD8

+
 

PDL1
+
 / CD8

+
PD1

+
 

PDL1
++

 / CD8
+
PD1

+
 

Cell-to-cell spatial 

relations 

MNG 

 

VAR 

 

Dashed line = divides analysis within same sub-section; General = refers to cells defined by a single marker; Heterogenous = refers to two different cell populations or neighborhood groups being assessed; Homogenous = 

refers to two same cell populations or neighborhood groups being assessed; MNG = mean neighborhood group; Slash (/) = ‘next to’; Specific = refers to cells defined by multiple markers; VAR = variance of MNG  
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Figure 3.10    Key for graph interpretations. (A) Components of graph representation of tumor. Texture in ROI was performed with texture image provided in 

Microsoft PowerPoint. (B) Graph representation of tumor (Case). Red box indicates pathologist annotation of area selection. Black circles indicate ROI 

containing high immune cell infiltration (blue blob). (C) Illustration of high and low precision. High precision indicated by small magnitude of SD and tight 

values of ROI (points). Low precision is indicated by high dispersion of values derived from ROI (points) and large magnitude of SD. (D) Red line indicates line 

of best fit of mean of all ROI. Blue bands indicate confidence interval (CI) of mean of ROI. A large spread of CI indicates that there is large variation across 

different tumors (Cases); whereas a small band indicates small variation across different tumors. (E) Formula of line of best fit of mean of all ROI. Vel ( ) in 

subscript refers to ‘OR’. Since (   slope of the line in these graphs approximates zero, therefore ( ), the line of best fit approximates the value of the y-intercept. 

A B 

C 

D 

E 

Five ROI 
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3.4.2 Quantity of general cell types  

 

Effects of sampling strategy were first assessed in a single cell type that was part of a general cell 

class (as defined by a single molecular marker). Heuristically, analysis with only one general cell 

subset is expected to have greater confidence, as a larger pool of cells would be sampled (larger 

cell percentage or alternatively, larger number of expected cells to be positive. Thus, using this 

more conventional quantitative cell metric, the following analyses was conducted as a toy 

problem prior to more complex conditions, such as with more specific cell subsets (where fewer 

cells would be anticipated for assessment) or masked by additional layers of complexities related 

to spatial modeling of cells.  

To determine the precision of ROI selection strategy for image acquisition for this 

hyperspectral image acquisition system, percentages of classified general cell types for five ROI 

(if available from adequate segmentation) from Section 3.3 were plotted along with mean and 

SD among the five ROI. Precision was assessed within individual tumors (technical replicates or 

ROI) in terms of how close points were in relation to one another. Variability across different 

tumors (biological replicates) among the 20 lung AC in this study was observed by the line of 

best fit across the mean of ROI (                       
≃                       

; Refer to Figure 

3.10E for deriving this approximation) and spread of 95% CI bands plotted by Statistica (Refer 

to Figure 3.10D for graphical illustration). Data precision was first assessed within tumors 

(intratumoral) and across tumors (intertumoral) in cell types next to the same cell type, where a 

similar neighborhood group referred to as ‘same neighbor’ is present. Single markers used to 

identify general cell subsets that were used in this analysis include CD3
+
, CD8

+
, and CD79a

+
 in 
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the T&B Cell Panel, and CD8
+
, PD1

+
, PDL1

+
, and PDL1

++
 in the ARPDL1high panel. The 

following general observations were made: 

Sufficiency of sampling for cell quantity analysis: We observed that precision of 

sampling was variable among the cohort assessed. High precision when measuring cell 

percentages of general cell types with same neighbors was observed within several tumors for 

each stain. This was observed as close overlap of points within SD bars that were of a lower 

value (illustrated ‘low precision’ in Figure 3.10C) as observed in the T&B Cell panel (for 

example, Percentage(CD3
+

): case 06L3, 06L30; Percentage(CD79a
+

): case 05L14, 05L4, and 05L9; 

Percentage(CD8
+

TB): majority of cases; Figure 3.11 and for view of points refer to Appendix B, 

first column of B.1). These results suggest that for some tumors, selection of five ROI to assess 

cell percentages may be sufficient to produce precise data as observed by low variability of cell 

percentage.  High precision for several cases may potentially suggest that five ROI may be 

oversufficient for data precision within these cases. Low precision of this sampling strategy was 

also observed within few tumors for each stain, as indicated by dispersion of ROI data points 

(illustrated ‘high precision’ in Figure 3.10C), some of which are outside high SD whiskers, 

(examples include Percentage(CD3
+

): case 06L57, Percentage(CD79a
+

): case 05L17, 

Percentage(CD8
+

TB): case 05L54, first column of Figure 3.11 and for view of points refer to 

Appendix B, first column of B.1). In summary, the variability of precision in percentage values 

per case suggests that the ROI sampling strategy cannot be generalized for precise data values. 

Biologically, some tumors may have more variability in areas with high immune cell densities, 

while others may be more consistent with this ROI sampling strategy, highlighting the relevance 

of tumor heterogeneity. Presently, the accuracy of these results is not known as a small cohort 
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was analyzed. Determination of the accuracy of these results is required to verify if the sampling 

strategy is sufficient for future studies.  

Reproducibility of sampling methods for cell quantity analysis: To assess if the 

precision observations of percentage in Asterics are generalizable, percentage of ARPDL1 high 

was assessed. Similar results were observed in the AR panel, where close overlap of points 

within SD (illustrated in Figure 3.10C) suggesting high precision were observed 

(Percentage(CD8
+

AR): 05L46, 06L14, 06L30; Percentage(PD1
+

): the majority of cases; 

Percentage(PDL1
+

): 05L46; Percentage(PDL1
++

): the majority of cases; first column of Figure 3.12 

and for view of points refer to Appendix B, first column of B.2) and high scatter of points with 

high SD (illustrated in Figure 3.10C) were also observed suggesting the method of ROI selection 

exhibits low precision for some tumors (Percentage(CD8
+

AR): case 06L57; Percentage(PD1
+

): case 

06L42, Percentage(PDL1
+

): majority of cases, Percentage(PDL1
++

): case 05L4, 05L54, 06L3, 06L30, 

06L50; first column of Figure 3.12, and for raw data plot refer to Appendix A, first column of 

A.1, and view of points refer to Appendix B, first column of B.2). These results in a different 

panel suggest the reproducibility of this effect – that not all cases had high precision of cell 

quantity with five ROI. This effect is most prominently demonstrated in PDL1
+
 percentages, 

where intertumoral variation is present in the majority of cases, exhibiting high data scatter, and 

intratumorally, where high 95% CI bands are observed across the cohort (first column of Figure 

3.12).When assessing precision in both panels, the 95% CI bands of several stains or markers are 

close to one another, indicating that different tumors exhibit similar baseline levels of cell 

composition from one another (95% CIPercentage(CD8
+

TB), first column of Figure 3.11; 95% 

CIPercentage(PD1
+

), CIPercentage(PDL1
++

), first column of Figure 3.12), while other stains or markers 

exhibit large spread of 95% CI bands (95% CIPercentage(CD3
+

), 95% CIPercentage(CD79a
+

), first column 
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of Figure 3.11; 95% CIPercentage(CD8
+

AR), 95% CIPercentage(PDL1
+

), 95% CIPercentage(PDL1
++

) first column 

of Figure 3.12), suggesting a larger range of immune cells may be present, though the accuracy 

of these measures needs to be verified in a larger population.  

Interestingly, for CD8
+
 percentages in the T&B Cell panel and PD1

+
 percentages in the 

AR panel, few cells are present in any of the lung AC in this cohort, suggesting that the lung AC 

within this cohort exhibit similarly low levels of these immune cell populations as measured by 

Asterics (where bpercentage(CD8
+

TB) = 1.7119%, first column of Figure 3.11; bpercentage(PD1
+

) = 

1.1279%, first column of Figure 3.12). However, CD8
+
 percentages in the AR panel exhibit 

more spread in the upper and lower 95% CI (blue dotted band) and have a higher percentage 

compared to CD8
+
 in the T&B Cell panel (bpercentage(CD8

+
TB) = 1.7119% first column of Figure 

3.11;  bpercentage(CD8
+

AR) = 9.7947%, first column of Figure 3.12). Speculating on these results, 

interpretation of Asterics may also be dependent on biological variation, such as potentially the 

section of tumor selected for analysis or technical variation, including the type of stain used for 

protein detection. Potentially, section selection (i.e. number of sections assessed) and stain type 

selection may be important factors to consider in study design using this method and further 

investigation is warranted to validate their effects in Asterics data interpretation.  

   Threshold selection for cell quantity analysis: Threshold selection appeared to effect 

the interpretation of Asterics percentage results. The addition of a more stringent threshold with 

PDL1
++

, exhibits different precision of the same ROI compared to a less stringent threshold with 

PDL1
+
, in some tumors. For instance, intertumorally, PDL1

+ 
 has approximately four fold greater 

percentage of cells present compared to PDL1
++

 (bpercentage(PDL1
+

) = 8.0289% versus 

bpercentage(PDL1
++

) = 1.8786%, first column of Figure 3.12). Furthermore, PDL1
+
 has a larger 

spread of 95% CI bands of average mean of ROI compared to PDL1
++

 (first column of Figure 
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3.12). These results suggest that the stringency of threshold may bias interpretation of results for 

this image analysis system, including the precision of data collection. From this pilot study, 

future studies will need to consider the biases of threshold selection in study design if a manual 

approach as described in this thesis is used.  

 

3.4.3 Cell-to-cell spatial relations of same neighbor general cell types  

 

Since precision was evaluated by assessing a less complex context with general cell types of the 

same kind and baseline assessment of cell abundance was performed using a more conventional 

method, the sampled image dataset was then assessed using a more complex scenario in regards 

to cell-to-cell spatial relations. This was performed by conducting a similar analysis to the 

percentage analysis in the previous analyses described in Sub-Section 3.4.2, but the percentage 

metric was replaced with the novel spatial cell metric measured by Asterics, MNG and VAR. 

The same cell types were assessed as in the previous analyses in Sub-Section 3.4.2, where 

general cell types were assessed that had the same kind of neighbors.  

To determine the precision of ROI selection strategy for studying spatial relations, MNG 

and VAR of classified general cell types for five ROI (if available from adequate segmentation) 

from Section 3.3 were plotted along with mean of MNG or VAR and SD of MNG or VAR. 

Precision was assessed within individual tumors (technical replicates or ROI) in terms of how 

close MNG or VAR values were (Refer to Figure 3.10E for illustrated schematic of high and low 

precision). Variability across different tumors (biological replicates) among the 20 lung AC 

cohort in this study was also evaluated by observing the line of best fit across the mean of MNG 

or VAR plotted with Statistica (                      
≃                      

; Refer to Figure 3.10E 
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for deriving this approximation) and spread of 95% CI (Refer to Figure 3.10D for graphical 

illustration). For this spatial relations analysis, single markers aforementioned in previous 

analysis of cell quantities in Sub-section 3.4.2 were used: CD3
+
, CD8

+
, and CD79a

+
 in the T&B 

Cell Panel and CD8
+
, PD1

+
, PDL1

+
, and PDL1

++
 in the ARPDL1high panel. Unlike the previous 

analysis, context was analyzed, where data precision of cell types next to the same cell type was 

assessed (same neighbors). For instance, data precision of a CD3
+
 cell next to another CD3

+
 cell 

was evaluated. The following general observations were made, which were similar to the 

previous analysis performed on cell percentages: 

Sufficiency of sampling for cell-to-cell spatial relations analysis: Similar observations 

were made as with the conventional quantitative measurement, cell percentage, using this cell-to-

cell spatial relations metrics regarding sampling and data precision. Precision of spatial relations 

was first assessed in the T&B Cell panel. High precision, as defined by close overlap of data 

points within SD bars that were of a lower value (illustrated in Figure 3.10E), was observed 

when measuring spatial relations with Asterics within several tumors for each stain (MNG(CD3
+

/ 

CD3
+

): majority of cases; MNG(CD79a
+

/ CD79a
+

): cases 05L14, 05L4, 05L9, 06L50; MNG(CD8
+

TB/ 

CD8
+

TB): case 05L39; 06L10; 06L42, second column of Figure 3.11). Low precision was also 

observed within several tumors for each stain, as indicated by spread of ROI data points 

(illustrated in Figure 3.10E), some of which are outside high SD bars (this spread is most 

dramatically observed in MNG(CD79a
+

 / CD79a
+

): case 06L57 and MNG(CD8
+

TB/ CD8
+

TB): case 05L54; 

second column of Figure 3.11). These spatial analyses results corroborate with results from the 

percentage analysis, that for some tumors five ROI has precise data of spatial relations across 

tumors, while others may require sampling greater than five ROI. For cases with high overlap, 

potentially fewer than five ROI could be potentially used to gain precise data of spatial relations.
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Figure 3.11    General cell type cell quantity and spatial relations of same neighbors in T&B cell panel. X-axis indicates 20 cases. Each column in each plot 

represents one case. Whiskers indicate SD. Asterisk (*) indicates that whiskers of SD for the indicated case contains large negative variance. Points indicate value 

for one ROI, where there are five ROI sampled in total for each case (column). Red solid line indicates line of best fit of mean of ROI. Dotted blue bands indicate 

95% confidence interval of mean of ROI. Case 06L50 and 06L19 have less than five ROI, as ROI were not able to be segmented. Dash indicates average 

parameter of each case.  

 Percentage                                                  MNG                                                               VAR 

CD3
+
 
 
 
 
 
 
 
 
 
 
 
 

CD79a
+
 
 
 
 
 
 
 
 
 
 
 
 
 

CD8
+
 
 
 
 

P
e
rc

e
n
ta

g
e

 (
C

D
3

+
) 

P
e
rc

e
n
ta

g
e

 (
C

D
7
9

a
+
) 

P
e
rc

e
n
ta

g
e

 (
C

D
8

+
) 



84 

 

Intratumorally, low precision of MNG tended to be higher in different stains. For instance, CD3
+ 

next to CD3
+
 (bMNG(CD3

+
/ CD3

+
) = 0.2102 MNG) and CD8

+
 next to CD8

+
 (bMNG(CD8

+
TB/ CD8

+
TB) = 

0.0782 MNG) had lower precision across all tumors compared CD79a
+
 next to CD79a

+
 

(bMNG(CD79a
+

/ CD79a
+

) = 0.2905 MNG) as demonstrated by closer proximity between line of best fit 

and 95% CI bands (second column of Figure 3.11). These results suggest that data precision of 

spatial relation metrics with Asterics may vary with cell type or stain type when analyzing same 

neighbors. In summary, this analysis indicates that analysis of spatial relations with the current 

sampling strategy has variations in data precision, as previously shown with cell percentage. 

Whether this precision may be affected by other biological variations, and whether this data 

precision is accurate requires assessment of a larger population of lung tumors than the cohort 

used in this study.  

Reproducibility of sampling method for cell-to-cell spatial relations analysis: To assess 

if this effect of precision of spatial relations is dependent on staining panels and is generalizable, 

cell-to-cell spatial relations of same neighbors in a different panel (the AR panel) were analyzed. 

Similar observations regarding differences in data precision was also observed in a different 

panel, where some stains had higher precision than others (MNG(CD8
+

AR/ CD8
+

AR): majority of 

cases high precision; MNG(PD1
+

 / PD1
+

): majority of cases high precision) and other stains, such as 

PDL1 had lower precision (MNG(PDL1
+ 

/ PDL1
+

): majority of cases low precision; MNG(PDL1
++

 / 

PDL1
++

): majority of cases low precision, second column of Figure 3.12). These results suggest 

that variation in data precision is present when analyzing spatial relations with Asterics.  

Potentially, stain selection may again be an important factor effecting data interpretation 

of spatial relations as with cell percentages. It was expected that magnitude of spatial relations as 

measured by MNG for CD8
+
 in the AR and TB panel may be similar in adjacent sections, as 
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although different stain colors were used, the same antibody was used between both panels to 

detect the same protein (refer to Table 2.2). However, it was observed that CD8
+
 spatial relations 

were more abundant in the AR panel (bMNG(CD8
+

AR / CD8
+

AR) = 0.174 MNG; second column of 

Figure 3.12) than the T&B Cell panel (bMNG(CD8
+

TB / CD8
+

TB) = 0.0782 MNG; second column of 

Figure 3.11), which was approximately over a twofold greater magnitude of this spatial 

correlation and also more precise across tumors, as indicated by the closer 95% CI observed in 

the AR panel to the CD8
+
 line of best fit (second column of Figure 3.11). Additional 

investigations into this observation are required, including if this variation are indeed due to 

technical variation that may implicate that stain type may bias accuracy of spatial relation 

analyses with Asterics across images in addition to cell quantity.  

We highlight the importance of combining different cellular metrics, such as percentage 

data, for interpreting results from cell-to-cell spatial analyses. For instance, very few spatial 

correlations were observed between PD1
+
 next to PD1

+
 cells, as exhibited by a low MNG value 

for all tumors in this cohort (bMNG(PD1
+

/ PD1
+

) = 0.0254 MNG, second column of Figure 3.12). 

Potentially, this observation may be explained by the very few initial PD1
+
 cells identified in the 

ROI as observed in percentage data (bpercentage(PD1
+

) = 1.1279%, first column of Figure 3.12). 

These results illustrate the importance of pairing different quantitative metrics, such as 

percentage and MNG, to provide baseline information regarding the abundance of a particular 

cell type in tumors when interpreting spatial relations, particularly for biological studies. A larger 

cohort of lung AC would be further required to determine whether this low number of same 

neighbor PD1
+
 cells represents the whole population of lung AC or if bias is present from the 

ROI sampling method. Collectively, these results highlight that variation is present in data 
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precision and that validation of potential technical factors that may effect this data interpretation 

is needed.   

Variation of spatial relations within ROI for cell-to-cell spatial relations analysis: To 

determine if spatial relations within ROI were variable, precision of VAR was assessed. With 

this sampling strategy, we observed that some molecular markers and staining conditions had 

more variation of spatial relations within an image. In the T&B Cell panel, some stains such as 

VAR of CD3
+
 next to CD3

+
 exhibited similar VAR across the lung AC cohort (bVAR(CD3

+
/ CD3

+
) = 

0.1944 VAR), while other stains such as VAR of CD79a
+ 

next to CD79a
+
 (bVAR(CD79a

+
/ CD79a

+
) = 

0.23 VAR; VAR(CD79a
+
/ CD79a

+
): including case 05L54, 06L10) and especially VAR of CD8

+
 next 

to CD8
+
 (bVAR(CD8

+
TB/ CD8

+
TB) = 0.1218 VAR; VAR(CD8

+
TB/ CD8

+
TB): case 05L27, 05L54, 06L71, 

06L74) exhibited larger spread of variance across different ROI and 95% CI, suggesting that 

these cell types or stains do not consistently exhibit the same cell-to-cell spatial relations (MNG) 

within different parts of the ROI (third column of Figure 3.11). However, in a different panel 

(AR panel), CD8
+
 exhibited precise variance value, where the majority of cases had closer 

overlap in SD (refer to Figure 3.10E for illustration), (bVAR(CD8
+

AR/ CD8
+

AR) = 0.1818 VAR, third 

column of Figure 3.12). This variance value in the AR panel is very similar to that of the 

adjacent tissue in the other panel. However, variance was observed to be more consistent across 

tumors in this cohort, as observed from closer 95% CI with the line of best fit compared to the 

T&B Cell panel. As the same antibody was used in these two different panels (refer to Table 

2.2), these results further suggest that potential biological and technical factors (i.e. different 

sections and different stains in tissues) may bias interpretation of consistency of intertumoral 

variation of spatial relations within images of ROI, although further investigation to validate this 

correlation are required.   
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Figure 3.12    General cell type cell quantity and spatial relations of same neighbors in adaptive resistance 

panel. X-axis indicates 20 cases. Each column in each plot represents one case. Whiskers indicate SD. Asterisk (*) 

indicates that whiskers of SD for the indicated case contains ROI with large negative value (VAR = -999 indicating 

case has not enough cells to assess variance), which was excluded from analysis.  Points indicate value for one ROI, 

where there are five ROI sampled in total for each case (column). Red solid line indicates line of best fit of mean of 

ROI. Dotted blue bands indicate 95% confidence interval (CI) of mean of ROI. Graph with no line of best fit and 

95% CI is out of bounds from skew of negative VAR values. Case 06L50 and 06L19 have less than five ROI, as 

ROI were not able to be segmented. Dash indicates average parameter of each case.  

 

Lastly, we observed that significant negative value of SD was present when measuring 

VAR. Three cases out of the 20 cases in the PD1
+
 next to PD1

+
 cell-to-cell spatial relations 

analysis exhibited negative VAR values, resulting in a SD of large magnitude contributing to 

why the line of best fit and 95% CI bars were not shown in the graph as they were out of bounds 

of the graph (VAR(PD1
+

 / PD1
+

) = -999 VAR for case 05L54  indicated by asterisks (*) in third 

column of Figure 3.12 and seen in full range in A.1B). These results for negative VAR indicate 

that for some tumors, not enough cells are present to accurately determine variance. This 

observation regarding negative VAR will be further discussed below in further detail in the triple 

positive cell analysis in Sub-section 3.4.5. Deletion of the negative VAR value enabled the line 

of best fit to be plotted (third column of Figure 3.12). 

Collectively, these results indicate that variability of spatial relations in an image is 

present at many different levels, suggesting that the presence of specific cells next to the same 

kind of each other is not a constant value, but is highly variable within and across some tumors. 

However as previously illustrated with percentages, a different MNG and VAR value is observed 

in adjacent sections, suggesting that potential technical or biological variation, such as with 

different stains or sections assessed for CD8
+
. In terms of potential technical factors, determining 

whether stain type biases data and if one stain is more accurate to the true population value 
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would require validation in a larger dataset. In conclusion, these results further suggest that 

presently some bias is present in the interpretation of spatial relations across all samples.  

 

3.4.4 Quantity of specific cell types  

 

Precision was then observed in more specific subsets, defined by cell types with combined 

positivity of more than one marker. By analyzing cell types positive for more than one marker, a 

smaller pool of cells sampled (lower cell percentage) was expected to be analyzed. Thus, 

confidence of these results is expected to be less compared to the scenario tested within the 

previous analyses in Sub-section 3.4.2, as fewer quantity of cells were expected to be assessed 

than the general cell type analysis. Specific cell types were analyzed with two cell markers and 

also tested with the maximum of all three cell markers in each panel in this study. Double-

marker cell combinations plotted were selected due to their biological relevance and 

establishment as immune cell subsets in literature: CD3
+
CD8

+
 cells as cytotoxic T cells in the 

T&B Cell panel and CD8
+
PD1

+
 as exhausted T cells in the AR panel. Triple marker cells in this 

study, CD3
+
CD8

+
CD79a

+
 and CD8

+
PD1

+
PDL1

+
, are expected to be present at a very low 

quantity as they are not presently recognized as a known specific cell type. As in previous 

analyses with general cell subsets, specific cell subset analysis reported in this sub-section will 

be first analyzed with a conventional cell quantity metric, percentage, to acquire baseline 

information of cell abundance and potential technical factors related to data interpretation. 

Double positive cell class analysis: We expected that specific cell types nested in a 

general cell type to be present at lower quantities than their broader counterpart. We could not 

completely validate if a smaller population of cells is present for double positive cells as the 
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general cell types (i.e. CD3
+
 refers to CD3

+
CD8

-
CD79a

-
) and specific cell types (i.e. CD3

+
CD8

+
) 

were classified as different groups. To observe the relative cell quantities of these groups, line of 

best fits of the percentage of double marker cell types were compared to line of best fits of 

percentages of single marker cell types. Smaller quantity of cells was present with the more 

specific cell types compared to general cell types for one of the panels (bpercentage(CD8
+

AR) =  

9.7947%; bpercentage(PD1
+

) = 1.1279%, first column of Figure 3.12; bpercentage(CD8
+

PD1
+

) = 0.9355%, 

first column of Figure 3.13). In the T&B Cell panel, one of the more specific cell type 

(CD3
+
CD8

+
) had a greater percentage than the general subset (CD8

+ 
) (bpercentage(CD3

+
) = 

10.8268%, bpercentage(CD8
+

TB) = 1.7119%, first column of Figure 3.11; bpercentage(CD3
+

CD8
+

) = 

7.9835%, first column of Figure 3.13). These results indicate that very low spatial relationship 

may be indicated in the AR panel and more spatial relationships may be detected in the T&B cell 

panel.  

Since specific cell types appeared to be of a less percentage for some general subsets as 

expected, we then determined if data for cell percentage was precise with the ROI sampling 

strategy using specific cell types. Precision was again evaluated by proximity of points and 

spread of SD (as illustrated in Figure 3.10C). For cell percentage, double positive marker cell 

types selected exhibited high precision as observed by close data points within low SD 

(SDpercentage(CD3
+

CD8
+

): case 06L3 and 06L30 and SDpercentage(CD8
+

PD1
+

): majority of cases), while 

some tumors exhibit low precision with double markers indicated by scatter of points, and points 

outside high SD (SDpercentage(CD3
+

CD8
+

): case 06L29, 06L57 and (SDpercentage(CD8
+

PD1
+

): case 05L17, 

05L54, and 06L42, first column of Figure 3.13). Again, these results suggest that with the given 

ROI sampling strategy, five ROI may be sufficient to provide precise data, while for some 

tumors five ROI may be insufficient for precise data. Given that the majority of CD8
+
PD1

+
 cells 
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demonstrated precise data the majority of cases in the cohort, five ROI may be over sufficient to 

represent certain types of marker combinations. These results suggest that double positive cells 

can be detected by the system in tissues.  

Triple positive cell class analysis: Conventionally, the triple positive cells in this study, 

CD3
+
CD8

+
CD79a

+
 and CD8

+
PD1

+
PDL1

+
, are not presently considered as any known major 

subset of immune cells. Therefore, we expected that triple marker cell abundance in images 

would be a rare event. Corroborating this prediction, a low percentage of CD8
+
PD1

+
PDL1

+
 and 

CD8
+
PD1

+
PDL1

++
 in the AR panel (bpercentage(CD8

+
PD1

+
PDL1

+
) = 0.4232%, bpercentage(CD8

+
PD1

+
PDL1

++
) 

= 0.192%) was observed, though one case (05L54), had slightly higher levels of 

CD8
+
PD1

+
PDL1

+
 compared to other lung AC in this cohort (first column of Figure 3.14B). 

However, percentage of triple positive cells was identified for all tumors in the T&B cell panel, 

where the value was greater than zero (bpercentage(CD3
+

CD8
+

CD79a
+

) = 3.2966%), first column of 

Figure 3.14A). These values were fairly precise for tumors, as the 95% CI and line of best fit 

were relatively close together for CD3
+
CD8

+
CD79a

+
 cells (first column of Figure 3.14A). To 

verify whether these cells exist in images, we visually inspected images for triple positive cells 

with DUnit. Triple positive cells were observed in images, which may be subject to different 

interpretations – that these may be a bonafide cell type or more likely, represent a co-localization 

of two different cell types, for instance, close proximity of CD3
+
CD8

+
 and CD79a

+
 cells or 

CD8
+
PD1

+
 and PDL1

+
 cells. If the latter is accurate, this would suggest that the segmentation 

method by this system at present cannot distinguish the different cell types, potentially due to 

close proximity from occlusion or limitations in segmenting areas with high nuclei density. This 

observation substantiates additional optimization of upstream steps of the image analysis system 

procedure (i.e. further optimize cell segmentation or establish the threshold as described in 
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Section 3.2), particularly if a future study entails analysis of cell types identified by triple 

markers using this platform.   

 

3.4.5 Cell-to-cell spatial relations of same neighbor specific cell types 

 

We then investigated a more complex scenario by assessing more specific cell subsets in the 

context of spatial modeling. Given that if a smaller cell population of cells was to be assessed, it 

is anticipated that fewer spatial relations may be assessed. This analysis could serve as a 

preliminary indicator of the sensitivity of Asterics to detect cell-to-cell spatial relations. 

Consistent with the previous cell quantity analysis (in Section 3.4.4), the same cell types were 

assessed with the added complexity of their spatial context in a adjacent to the same neighbors: 

double marker positive cells that are established cell types used in literature (CD3
+
CD8

+
 next to 

CD3
+
CD8

+
, CD8

+
PD1

+
 next to CD8

+
PD1

+
), and triple positive cells that are expected to be low 

in abundance (as verified in the previous analysis), as they are not considered any known cell 

type, including (CD3
+
CD8

+
CD79a

+
 next to CD3

+
CD8

+
CD79a

+
, CD8

+
PD1

+
PDL1

+
 next to 

CD8
+
PD1

+
PDL1

+
, and CD8

+
PD1

+
PDL1

++ 
next to

 
CD8

+
PD1

+
PDL1

++
).       

Double positive cell class analysis: Reiterating from the previous cell quantity analysis 

(in Sub-section 3.4.4) we observed two scenarios regarding cell percentage: (1) a result where 

specific cell types had a very low percentage and (2) a result where specific cell types had a very 

high percentage, comparable to the general cell types. The results derived from these cell 

quantity analyses would impact data interpretation for cell-to-cell spatial relations discussed in 

this analysis.  
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Figure 3.13    Specific cell type identified by double markers cell quantity and spatial relations of same neighbors. (A) T&B cell panel. (B) ARPDL1high 

panel. X-axis indicates 20 lung AC cases. Each column in each plot represents one case. Whiskers indicate SD. Asterisk (*) indicates that whiskers of SD for the 

indicated case contains ROI with large negative value (VAR = -999 indicating case has not enough cells to assess variance), which was excluded from analysis. 

Points indicate value for one ROI, where there are five ROI sampled in total for each case (column). Red solid line indicates line of best fit of mean of ROI. 

Dotted blue bands indicate 95% confidence interval (CI) of mean of ROI. Graph with vertical line of best fit and no 95% CI is out of bounds from skew of 

negative VAR values. Case 06L50 and 06L19 have less than five ROI, as ROI were not able to be segmented. Dash indicates average parameter of each case.  
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(1) Double positive cell class low percentage: We observed high precision of MNG of 

CD8
+
PD1

+
 next to CD8

+
PD1

+
 cells for tumor, where MNG line of best fit was close to zero 

(bMNG(CD8
+

PD1
+

 /  CD8
+

PD1
+
) = 0.0326%), suggesting very few interactions between CD8

+
PD1

+
 with 

their own cell type (second column of Figure 3.13B). This is to be expected as the percentage of  

CD8
+
PD1

+
 cells was initially very low to begin within the ROI sampled across all tumors in this 

cohort (bpercentage(CD8
+

PD1
+

)  = 0.9355%, first column of Figure 3.13B). Large variation of 

CD8
+
PD1

+
 cells within ROI was identified for the majority of tumors across the cohort (as 

defined by low precision of VAR values, refer to Figure 3.10C for illustration of low precision). 

This variation may be attributed to the few cells present in ROI. Large negative VAR was 

observed in one case of CD8
+
PD1

+
 (case 06L30), suggesting that not enough cells were present 

to perform the analysis (third column of Figure 3.13B, for full scale view refer to Appendix B, 

third column of B.3B). As previously mentioned, observations regarding negative VAR will be 

further discussed in detail in the triple positive cell class analysis in this sub-section. Removal of 

negative VAR enabled plotting of line of best fit within the field of view (third column of Figure 

3.13B and refer to Appendix A, third column of A.2B).  

(2) Double positive cell class high percentage: Since the average percentage of 

CD3
+
CD8

+
 cells was greater than zero for the majority of the lung AC cohort (bpercentage(CD3

+
CD8

+
 / 

CD3
+

CD8
+

) = 7.9835%, first column of Figure 3.13A), we observed that the cell-to-cell spatial 

relations of these cells were relatively frequent (bMNG(CD3
+

CD8
+

 / CD3
+

CD8
+

) = 0.2004 MNG, second 

column of Figure 3.13A). High variation of CD3
+
CD8

+
 cells across ROI was identified for some 

tumors within the cohort as defined by low precision of MNG values (refer to Figure 3.10C for 

illustration of low precision, MNG(CD3
+

CD8
+

): case 06L57, second column of Figure 3.13A). Low 

variation of CD3
+
CD8

+
 cells across ROI was identified for some tumors within the cohort (as  
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defined by low precision of MNG values, (refer to Figure 3.10C for illustration of low precision) 

(MNG(CD3
+

CD8
+

): case 05L9, case 06L74, second column of Figure 3.13A). VAR was also 

observed to vary across tumors as observed in the spread of 95% CI (bVAR(CD3
+

CD8
+

) = 0.1997). 

These results suggest that variation is present in the cell-to-cell spatial analysis within tumors 

and across tumors with this sampling strategy. Whether these results are accurate of the true 

population mean require a larger cohort for validation.  

Together, these results provide preliminary indication that suggests the sensitivity of 

Asterics measuring spatial relations of specific cell types, including double positive cells. 

Specifically, these results suggest that the ROI sampling strategy may require a baseline level of 

percentage of a specific cell type of interest in order to detect cell-to-cell spatial interactions and 

that accurate interpretation requires sufficient cell quantity data. Additional validation of this 

finding may be useful for larger biological studies using this method. 

Triple positive cell class analysis: As with analysis of quantity of triple positive cells, we 

expected that MNG of triple positive cells would be low as the triple positive cells assessed in 

this study (CD3
+
CD8

+
CD79a

+
 / CD3

+
CD8

+
CD79a

+
, CD8

+
PD1

+
PDL1

+
 / CD8

+
PD1

+
PDL1

+
, and 

CD8
+
PD1

+
PDL1

++
 / CD8

+
PD1

+
PDL1

++
) are not considered as any known major cell type. 

Corroborating this hypothesis, we observed that cell-to-cell spatial relations of CD8
+
PD1

+
PDL1

+
 

cells next to CD8
+
PD1

+
PDL1

+
 cells was close to zero across all tumors in the cohort 

(bMNG(CD8
+

PD1
+

PDL1
+

 / CD8
+

PD1
+

PDL1
+

) = 0.0461 MNG), where the line of best fit was relatively 

close 95% CI bands, suggesting very few interactions that are precise across tumors as expected 

(second column of Figure 3.14B). These results suggest that separation of cell groups, such as 

with segmentation, may have been possible for this cell combination (for instance, few cells 

CD8
+
PD1

+
 cells overlapping with PDL1

+
 or PDL1

++
 were detected). However, we observed an 
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Figure 3.14   Specific cell type identified by triple markers cell quantity and spatial relations of same neighbors. (A) T&B cell panel. (B) ARPDL1high 

panel. X-axis indicates 20 lung AC cases. Each column in each plot represents one case. Whiskers indicate SD. Asterisk (*) indicates that whiskers of SD for the 

indicated case contains ROI with large negative value (MNG or VAR = -999 indicating case has not enough cells to assess variance), which was excluded from 

analysis. Points indicate value for one ROI, where there are five ROI sampled in total for each case (column). Red solid line indicates line of best fit of mean of 

ROI. Dotted blue bands indicate 95% confidence interval (CI) of mean of ROI. Graph with vertical line of best fit or no 95% CI or lines not shown is out of 

bounds from skew of negative VAR values. Case 06L50 and 06L19 have less than five ROI, as ROI were not able to be segmented. Dash indicates average 

parameter of each case.  
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unexpected result, the image analysis platform detected spatial interactions of triple positive 

cells, where cell-to-cell spatial relations of CD3
+
CD8

+
CD79a

+
 cells next to CD3

+
CD8

+
CD79a

+
 

cells had non-zero MNG values, suggesting a relatively high presence of this interaction, 

especially for CD3
+
CD8

+
CD79a

+
 given nested combinations of more general cell types are 

present in the tertiary lymphoid structures present in ROI (bMNG(CD3
+

CD8
+

CD79a
+
 / CD3

+
CD8

+
CD79a

+
) 

= 0.1514 MNG, second column of Figure 3.14A). The specific incidence of these events occurs 

erratically in an image, as indicated by large dispersion of VAR for the triple positive cells. A 

number of tumors have large negative VAR value affecting initial plotting in Statistica graphs 

(refer to cases with asterisks (*) in third column of Figure 3.14B, VAR(CD8
+

PD1
+

PDL1
+
 / 

CD8
+

PD1
+

PDL1
+   CD8

+
PD1

+
PDL1

++
 / CD8

+
PD1

+
PDL1

++
)  = -999, for full scale view refer to third column of 

Appendix B, B.4B). Removal of these negative values enabled effective plotting of line of best 

fits (refer to third column of Figure 3.14B and Appendix A, third column of A.3B). 

Aforementioned analyses on VAR also exhibit negative values (refer to Sub-section 3.4.3), this 

negative variance is most prevalent among cases in the analyses of triple positive cells (35% of 

tumors in VAR(CD8
+

PD1
+

PDL1
+ 

/ CD8
+

PD1
+

PDL1
+

))
  
and is reduced when the PDL1 threshold is more 

stringent (15% with negative VAR(CD8
+

PD1
+

PDL1
++ 

/ CD8
+

PD1
+

PDL1
++

),
 
third column of Figure 3.14B). 

These results highlight that the triple positive cells analyzed to spatial analyses have fewer 

immune cell quantities to calculate variance and greater marker combinations, which warrants 

further investigation. 

Collectively, these results suggest that technical factors may contribute to data 

interpretation of this image analysis system. Sufficient quantity of cells may be required to 

perform cell-to-cell spatial analyses. Potentially, detection of overlapping cells may be more 

challenging for certain panel combinations. Lastly, analysis of a very small population of cells 
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for cell-to-cell spatial relations with Asterics may be limited, and potentially may require 

additional optimization if a biological studies requires a high sensitivity to detect a similarly low 

abundance of a specific cell type. 

     

3.4.6 Cell-to-cell spatial relations of different neighbor general cell types  

 

As an even more complex scenario, we determined whether the effects of ROI sampling strategy 

derived precise data on spatial relations of two different cell type neighbors and identified 

potential technical factors affecting this analysis. Again, combinations were analyzed in this 

sequence as general populations (defined by a single marker) were expected to have a greater 

pool of cell quantity for analysis. Quantities of these general cell types were already analyzed in 

Sub-section 3.4.2. Combinations of these general markers were selected to compare cell-to-cell 

spatial relations, as they are known to biologically localize, including directly interacting with 

one another. The following combinations were used for this analysis where the latter was 

subdivided into an additional two parts: (1) general CD3
+
 T cell subset next to CD79a

+
 B cells or 

plasma cells, such as in the organization of tertiary lymphoid structures and (2) general PD1
+
 cell 

interaction with (2a) cognate ligand PDL1
+
, and (2b) with a more stringent threshold defined by 

PDL1
++

 cells.  

In this analysis, we also evaluated whether the cell-to-cell spatial relations would be 

different by reciprocally assigning which cell would be the reference cell in a specific 

interaction. For instance, the cell-to-cell spatial relations between CD3
+
 and CD79a

+
 cells were 

assessed, where CD3
+
 is a reference cell, and then CD79a

+
 as the reference cell. If cell-to-cell 

spatial relations are dependent on the reference cell, this would suggest that the ROI sampling 
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strategy detected that cellular neighborhoods for individual cell types are different, indicating 

that there may be biological complexity of spatial microhabitats of cells within the tumor 

microenvironment. 

We first assessed whether cell-to-cell spatial relations of two different neighbors of 

general cell types could be detected with Asterics. We expected that cell-to-cell spatial relations 

could be detected for one cell combination (CD3
+
 next to CD79a

+
 cells) as sufficient quantities 

of these cell groups were present in lung AC (bpercentage(CD3
+

) = 10.8268% and bpercentage(CD79a
+

) = 

7.6887%, first column of Figure 3.11). As expected, we identified that a small percentage of 

these cell-to-cell spatial relations were able to be detected across the lung cohorts (bMNG(CD3
+

 / 

CD79a
+

)  = 0.075 MNG,  bMNG(CD79a
+

 / CD3
+

)  = 0.1208 MNG;    bMNG(CD3
+

 / CD79a
+   CD79a

+
 / CD3

+
)  > 0, 

first column of Figure 3.15A). As a negative control, we also expected that cell-to-cell spatial 

relations would be very few for another heterogenous combination of cells (PD1
+
 next to PDL1

+
 

or PDL1
++

), as quantities of some of these cell types were initially very low (bpercentage(PD1+) = 

1.1279%,  bpercentage(PDL1
+

) = 8.0289%, and bpercentage(PDL1
+

) = 1.8788%, first column of Figure 

3.12). As anticipated, we identified that a low amount of these cell-to-cell spatial relations were 

detected in the lung cohort for the majority of PD1
+
 and PDL1

+ 
or PDL1

++ 
combinations 

(bMNG(PD1
+

 / PDL1
+

) = 0.05 MNG,  bMNG (PDL1
+

/ PD1
+

)  = 0.0049 MNG, and bMNG (PD1
+

/PDL1
++

) = 

0.0054 MNG, bMNG (PDL1 
++

 / PD1
+

) = 0.004 MNG;   bMNG(PDL1
+

/ PD1
+    PD1

+
/PDL1

++ 
  PDL1 

++
 / PD1

+
)  

≃ 0, first column of Figure 3.15B). These results emphasize the importance of combining 

quantitative metrics, including pairing percentage data with cell-to-cell spatial relations analysis 

for analyzing different neighbor types, to facilitate the interpretation of data using Asterics.  

We noticed that the quantity of cell-to-cell spatial relations differed depending on which 

cell is the reference cell. There appears to be very low frequency that PDL1
+
 cells are next to a  
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Figure 3.15    General cell type next to different general cell type neighbor cell quantity and spatial relations 

and vice versa. (A) T&B cell panel. (B) ARPDL1high panel. X-axis indicates 20 lung AC cases. Each column in 

each plot represents one case. Whiskers indicate SD. Asterisk (*) indicates that whiskers of SD for the indicated case 

contains ROI with large negative value (VAR = -999 indicating case has not enough cells to assess variance), which 

was excluded from analysis. Points indicate value for one ROI, where there are five ROI sampled in total for each 

case (column). Red solid line indicates line of best fit of mean of ROI. Dotted blue bands indicate 95% confidence 

interval (CI) of mean of ROI. Graph with no line of best fit and no 95% CI is out of bounds from skew of negative 

VAR values. Case 06L50 and 06L19 have less than five ROI, as ROI were not able to be segmented. Dash indicates 

average parameter of each case. 

 

PD1
+
 cell bMNG(PDL1

+
/ PD1

+
) = 0.0049 MNG ≃ 0), while higher frequency that a PD1

+
 is next to a 

PDL1
+
 cell (bMNG(PD1

+
 / PDL1

+
) = 0.05 MNG), suggesting that the cell neighborhoods are different 

in this pair of interactions, highlighting biological complexity in the microhabitat of tumors (first 

column of Figure 3.15B). There are relatively no interactions with PD1
+
 and PDL1

++
 cells in 

both conditions and the difference between reciprocal assignment is negligible (bMNG(PD1
+

 / 

PDL1
++

) = 0.0054 MNG, bMNG(PDL1
++

/PD1
+

) = 0.004 MNG, |bMNG(PDL1
++

/PD1
+
- PD1

+
 / PDL1

++
)| = 

0.0014 MNG (first column of Figure 3.15B). For both combinations investigated, we observed 

that generally, the ROI sampling strategy produced precise data (as illustrated in Figure 3.10E),  

suggesting that cell-to-cell spatial relations are relatively constant across different areas in 

tumors with high immune cell infiltration. The variability of these spatial relations appears to 

have consistent variability within images for some cell combinations, as precise values of VAR 

were present (as illustrated by Figure 3.10C), given the tight cluster of cells of the five ROI with 

each other for majority of cases (bVAR(CD3
+

 / CD79a
+

) = 0.1264 VAR, bVAR(CD79a
+

 / CD3
+
 ) = 0.1428 

VAR,  bVAR(PDL1
+

 / PD1
+

) = 0.0252 VAR, bVAR(PDL1
++

 / PD1
+

) = 0.0185 VAR, second column of 

Figure 3.15B). However, the negative VAR was also exhibited for some cases with cell-to-cell 

spatial analysis between heterogeneous general cell types (VAR(PD1
+

 / PDL1
+

) and  VAR(PD1
+

 / 

PDL1
++

): case 05L54 = -999, VAR asterisks (*) in second column of Figure 3.15B, refer to 

Appendix B, second column of Appendix B.5B), indicating that not enough cells are present to 
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calculate variance. Removal of this negative VAR value enabled plotting of the line of best fit 

(second column of Figure 3.15B and second column of Appendix A.4B). Collectively, these 

results indicate that Asterics is sensitive to detect a small population of cell-to-cell spatial 

relations if sufficient quantities of cell numbers are initially present. Together, these results 

indicate that the ROI selection strategy gave precise data for analysis of heterogenous general 

cell subsets and relatively consistent variance of these relationships within images. Furthermore, 

these results highlight the complexity of microhabitat of single cells could be detected with 

Asterics. One case was identified with too few cells for variance analysis, suggesting additional 

optimization is required to account. Future work should explore whether the sensitivity of 

Asterics is specific to this panel or if these results are generalizable – that Asterics is sensitive to 

detect differences in single cell microhabitats that is reference cell dependent.  

 

3.4.7 Cell-to-cell spatial relations of general and specific cell type neighbors 

 

Lastly, we assessed whether precise data was generated for cell-to-cell spatial relations between 

different cell neighbors, where one group was more specific than the other. This is the most 

sophisticated model of the tumor microenvironment that was tested with Asterics. Rather than 

general CD3
+
 T cell subset or PD1

+
 cells, cell-to-cell spatial relations of more specific 

CD3
+
CD8

+
 T cells, including cytotoxic T cells and CD8

+
PD1

+
 T cell, were examined in relation 

to their general cell type counterparts. The following biologically relevant cell combinations 

were tested: CD3
+
CD8

+ 
cells next to CD79a

+
 cells, CD8

+
PD1

+
 cells next to PDL1

+
 or PDL1

++
 

cells, and vice versa (reciprocal assignment of reference cell) to assess whether the sampling 

strategy captures potential differences in microhabitats in these more specific types of cells.  
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To determine if the image analysis system has sensitive detection, percentage data was 

correlated with cell-to-cell spatial relation quantities. We expected that less CD3
+
CD8

+
 next to 

CD79a
+
 cell-to-cell spatial relations to be present, as fewer CD3

+
CD8

+
 cells were compared to 

general CD3
+
 cells in the same lung cohort image dataset (bpercentage(CD3

+
CD8

+
) = 7.9835% versus 

bpercentage(CD3
+

) = 10.8268%, first column of Figure 3.13A and first column of Figure 3.11 

respectively). As expected, we observed the presence of CD3
+
CD8

+
 and CD79a

+
 cell-to-cell 

spatial relations, which were less than general CD3
+
 (bMNG(CD3

+
CD8

+
 / CD79a

+
 = 0.0562 MNG, 

bMNG(CD79a
+
 / CD3

+
CD8

+
) = 0.0681 MNG, first column of Figure 3.16A versus bMNG(CD3

+
 / CD79a

+
) = 

0.075 MNG, bMNG(CD79a
+

 / CD3
+
 ) = 0.1208 MNG, first column of Figure 3.15A). The cell-to-cell 

spatial relations between the reciprocal assignment of reference cells were much similar in the 

specific cell combinations (|bMNG(CD3
+

CD8
+

 / CD79a
+
- CD79a

+
 / CD3

+
CD8

+
)| = 0.0119 MNG first column 

of Figure 3.16A versus |bMNG(CD3
+

 / CD79a
+

 - CD79a
+

 / CD3
+

)| = 0.0458 MNG, first column of Figure 

3.15A). These results suggest that the cell-to-cell spatial relations are reference cell independent 

for analyzing different neighbor specific cell next to general cell types and vice versa. Different 

cell sizes may contribute to differences cell percentage. For instance, a larger cell may have more 

area for potential cells surrounding rather than a smaller cell. The sensitivity for double marker 

cell detection cell-to-cell spatial relations is possible, though the sensitivity may not be as strong 

with the fewer amount of cells present. As a small cohort was used in this study, future work 

could investigate if these quantities are accurate to the population mean and to determine the 

lowest cell percentage that can be used to accurately detect cell-to-cell spatial relations. More 

cell combinations are required (i.e. two marker versus one marker) to determine if reference cell 

independence is a feature of these specific markers or generalizable to different marker 

combinations. As a negative control, it was expected that very low cell-to-cell spatial relations 
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would be present in the CD8
+
PD1

+
 next to PDL1

+
 or PDL1

++
, as aforementioned some of these 

individual, general subsets had very low abundance of cells initially present (i.e. bpercentage(PD1
+

) = 

1.1279%, bpercentage(PDL1
+

) =1.8788%, first column of Figure 3.12) and the cell type of interest, 

CD8
+
PD1

+
, also had few cells present (bpercentage(CD8

+
PD1

+
) = 0.9355%, first column of Figure 

3.13B). The quantity of cell-to-cell spatial relations in the more specific cell types compared to 

the general cell types have similar values (bMNG(CD8
+

PD1
+

/ PDL1
+

) = 0.0504 MNG, bMNG(PDL1
+

 / 

CD8
+

PD1
+

) = 0.0049 MNG, bMNG(CD8
+

PD1
+

/ PDL1
++

) = 0.0064 MNG, bMNG(PDL1
++

/ CD8
+

PD1
+

) = 0.004 

MNG, first column of Figure 3.16B, bMNG(PD1
+

/ PDL1
+

) = 0.05 MNG, bMNG(PDL1
+

/ PD1
+

) = 0.0049 

MNG, bMNG(PD1
+

 /PDL1
+

) = 0.0054 MNG, bMNG(PDL1
+

 /PD1
+

) = 0.004 MNG, first column of Figure 

3.15B). The difference between cell-to-cell spatial relations in a more specific and general cell 

type neighbors is small (|(bMNG(CD8
+

PD1
+

 /PDL1
+ 

- PD1
+

 /PDL1
+

)| = 0.0004 MNG, |(bMNG(PDL1
+ 

/ 

CD8+PD1
+

 - PDL1
+

 / PD1
+

)|= 0 MNG, |(bMNG(CD8+PD1
+

 /PDL1
++ 

- PD1
+

 /PDL1
++

)| = 0.001 MNG, 

|(bMNG(PDL1
++ 

/ CD8+PD1
+

 - PDL1
++

 / PD1
+

)|= 0 MNG, first column of Figure 3.16B and Figure 3.15B). 

This low probability of cell-to-cell spatial relations is expected as few quantities of cells are 

present in tissue. We noticed that the precision of points for cell-to-cell spatial relations was also 

generally precise (given the tight cluster of cells of the five ROI with each other as illustrated by 

Figure 3.10C) for the majority of cases in all graphs with few cases exhibiting low precision 

(first column of Figure 3.16A and Figure 3.16B). These results illustrate that the detection limit 

of Asterics for both general and specific cell types for cell-to-cell spatial relations may depend 

on the initial quantity of cells present, and is shown here to be precise. 

Since little variation was present across ROI, we then investigated if variation was 

present within each ROI. We noticed that VAR was relatively precise for most cases as ROI of 

cases were close together for the majority of specific cell-to-cell spatial relations tested in this  
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Figure 3.16    General cell type next to specific cell type neighbor and vice versa cell quantity and spatial 

relations. (A) T&B cell panel. (B) ARPDL1high panel. X-axis indicates 20 lung AC cases. Each column in each 

plot represents one case. Whiskers indicate SD. Asterisk (*) indicates that whiskers of SD for the indicated case 

contains large negative variance, suggesting case has not enough cells to assess variance. Points indicate value for 

one ROI, where there are five ROI sampled in total for each case (column). Red solid line indicates line of best fit of 

mean of ROI. Dotted blue bands indicate 95% confidence interval (CI) of mean of ROI. Graph with vertical line of 

best fit and no 95% CI is out of bounds from skew of negative VAR values. Graphs that case 06L50 and 06L19 have 

less than five ROI, as ROI were not able to be segmented. Dash indicates average parameter of each case.  

 

section (as illustrated in Figure 3.10C), suggesting that each ROI has a rather precise variance 

across the whole cohort of lung AC as observed by close 95% CI with line of best fit (second  

column of Figure 3.16A and Figure 3.16B). For different neighbor specific-general cell 

combinations with positive cell-to-cell spatial relations, variance was observed to be independent 

of reference, as observed by small difference in VAR between reciprocal assignments  

 (bVAR(CD3
+

CD8
+
 / CD79a

+
) = 0.1096 VAR; bVAR(CD79a

+
 / CD3

+
CD8

+
) = 0.1088 VAR, |bVAR(CD3

+
CD8

+
 / 

CD79a
+
- CD79a

+
 / CD3

+
CD8

+
)| = 0.0008 VAR, second column of Figure 3.16A). However, for cases 

that were expected to have few cell-to-cell spatial relations, the analysis was disrupted by an 

outlier case that exhibited significant negative VAR (case 06L30: VAR(CD8
+

PD1
+

 / PDL1
+

) = -999 

VAR; VAR(CD8
+

PD1
+

 / PDL1
++

) = -999 VAR, asterisks (*) in second column of Figure 3.16B and 

refer to Appendix B, second column of B.6B). The negative VAR indicates that for several cases 

that not enough cells are present to calculate variance. Negative VAR skewed the interpretation 

of average line of best fit (bVAR(CD8
+

PD1
+

 / PDL1
+

) = 4.3028 VAR; bVAR(CD8
+

PD1
+

 / PDL1
++

) = 4.2308 

VAR, vertical line drawn in Statistica as out of bounds, refer to Appendix A, second column of 

A.5B). However, removal of the negative VAR enabled plotting of the line of best fit (second 

column of Figure 3.16B). Values of VAR are close to zero and are rather precise as 95% CI 

bands are close together in combinations of CD8
+
PD1

+
/PDL1

+
 and CD8

+
PD1

+
/PDL1

++
, 

including combinations with the reciprocal reference cell (second column of Figure 3.16B).
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Thus, these results indicate that the variance of cell-to-cell spatial relations across images is 

rather precise, as variability across ROI is low within tumors and across tumors. 

 In summation, these results indicate that the ROI selection strategy gave precise data for 

analysis of heterogenous general cell subsets. Furthermore, these results suggest that the 

complexity of microhabitats of single cells may be less likely detected with specific cell types if 

present at a low quantity. Thus, these results indicate that presently the analysis of specific cell 

types and general cell types may not be sensitive enough to detect changes in the microhabitat. It 

may be potentially better to use more general subsets for different neighbor analysis, where a 

greater cell quantity was present as observed from previous analysis. Additional validation of 

this relationship is required, and future work would need to verify if these results are biologically 

accurate in a larger cohort.  

 

3.4.8 Summary of quantity and cell-to-cell spatial relations analyses with Asterics  

 

Taken together, these findings have illustrated a proof-of-principle of the feasibility of using 

Asterics to study the cellular geography and sociology of cell microhabitats within tumor 

microenvironments. Furthermore, these findings identified potential associated conditions to 

contribute towards optimal cell quantity and cell-to-cell spatial relation analysis using Asterics. 

These results highlight areas for further optimization in the future. Briefly, these analyses have 

identified that the manual ROI sampling strategy presented in this study for immune cell 

infiltrate areas generates variability, where some cases may require more sampling while others 

less for precise data. These results have also suggested that several technical factors may bias 

data interpretation (including stain type, threshold establishment, initial cell percentage in 
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images, and segmentation to separate overlapping cells). Experiments validating if these 

speculated technical factors effect Asterics are required. The study highlights the value of 

incorporating multiple quantitative cell metrics, including cell quantity, to inform interpretation 

of cell-to-cell spatial analysis. As the feasibility of this cell-to-cell spatial analysis has been 

demonstrated in this pilot study, a larger cohort is required to determine if data precision 

corresponds with accurate results. This study also identified that negative variance was observed 

using Asterics for cell-to-cell spatial analysis, indicating that for some cases not enough cells are 

present to calculate variance. A detailed summary of conclusions can be found in Table 3.10 of 

this thesis. In this section, we implemented a manual approach to determine areas for image 

acquisition, which has also been used in other studies with a blinded pathologist [122]. It would 

be interesting to explore the application of an automated system to detect ROI using deep 

learning methods as performed by other investigators and commercial systems, such as 

identification of immune cell hot spots, and to compare the accuracy of the manual approach of 

ROI selection with this automated approach for virtual biopsy of tumors [115, 124, 135, 150, 

167]. 

Professional and regulatory societies, including the American Thoracic Society (ATS) 

and European Respiratory Society (ERS) are aware of the limitations of two dimensional 

morphometry and quantitative analysis and are beginning to take precautions by creating 

standards to measure lung structure using three dimensional analysis or stereology [161]. 

Discrepancies between two dimensional and three dimensional analyses of cell quantification 

have been observed in the past decades [161]. Cognizant of these limitations, image registration 

development for this image platform is rationalized as an important tool to account for stereology 

of tissue as a potential approach to reduce selection bias of digital pathology. 
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Sub-

section 

# 

Cell population Examples from panels 

Parameters  

assessed 

Asterics 

metric 
Conclusions / Future Directions 

Neighbor type  

(# of cell 

subsets) 

Population 

properties  

(# of markers) 

T&B cell  
Adaptive immune 

resistance  

3.4.2 
Same neighbor 

(1) 
General (1) 

CD3
+
 

CD79a
+
 

CD8
+
 

CD8
+
 

PD1
+
 

PDL1
+
 

PDL1
++

 

Cell 

quantity 
Percentage 

Significance: analysis with the least complex scenario with the largest available pool of 

cells (no spatial modeling)  

 Five ROI may be sufficient, insufficient, or oversufficient to represent cell 
percentages of lung AC tumors  

 ROI sampling strategy cannot be generalized to be precise or not and these results 
are reproducible in different panels 

 A larger cohort is required to confirm if variation related to biological factors (i.e. 
accuracy of results to population mean, section specific effects from tumor 

variability) 

 Technical factors that correlate with data interpretation of cell percentages need to be 

verified (i.e. differences in stains and threshold biases in determining data precision) 

3.4.3 
Same neighbor 

(1) 

General A (1) / 

General A (1) 

CD3
+
 / CD3

+
 

CD79a
+
 / CD79a

+
 

CD8
+
 / CD8

+
 

CD8
+
 / CD8

+
 

PD1
+
 / PD1

+
 

PDL1
+
 / PDL1

+
 

PDL1
++

 / PDL1
++

 

Cell-to-cell 

spatial 

relations 

MNG 

 

VAR 

Significance: analysis with more complex scenario with the largest available pool of cells 
(with spatial modeling)  

 Five ROI may be sufficient, insufficient, or oversufficient to represent cell 

percentages of lung AC tumors  

 A larger cohort is required to confirm if variation related to biological factors (i.e. 
accuracy of results to population mean, section specific effects from tumor 

variability) 

 Variation is present in cell-to-cell spatial relations  

 Combining different quantitative metrics with cell-to-cell spatial relations is valuable 
for data interpretation (i.e. percentage and cell-to-cell spatial relations) 

 Technical factors that correlate with data interpretation of cell-to-cell spatial relations 

need to be verified (i.e. differences in stains and threshold biases in determining data 
precision) 

 For several cases, not enough cells are present to calculate VAR (indicated by large 

negative VAR in data) 

3.4.4 
Same neighbor 

(1) 

Specific (2) CD3
+
CD8

+
 CD8

+
PD1

+
 

Cell 

quantity 
Percentage 

Significance: assesses sensitivity of Asterics to detect more specific cell subsets. Analysis 

with the least complex scenario with the smaller available pool of cells (no spatial 
modeling):  

 Specific cell types were found to be of smaller population as expected, but also larger 

than general cell type populations  

 Technical factors effecting this unexpected result require verification (i.e. 
segmentation of clusters and overlapping cells) 

 For case with that had sufficient number of specific cell types present – five ROI 
may be sufficient, insufficient, or oversufficient sampling in some tumors 

 Specific cell types (detected with two markers) can be detected, though additional 
optimization may need to be required 

Specific (3) CD3
+
CD8

+
CD79a

+ CD8
+
PD1

+
PDL1

+
 

CD8
+
PD1

+
PDL1

++
 

Cell 

quantity  
Percentage 

Significance: Negative control - determine if non-conventional cells are detected in 

images 

 Non-conventional cells were rarely detected in one panel as expected, while non-
conventional cells were present, potentially due to colocalization of cells  

 Presence of non-conventional cells may be due to colocalization of cells  

 Future work may consider improved detection of overlapping cells 

Table 3.10   Summary and future directions of analyses performed with Asterics. (Continued on page 110). 
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Sub-

section 

# 

Cell population Examples from panels 

Parameters  

assessed 

Asterics 

metric 
Conclusions / Future Directions 

Neighbor type  

(# of cell 

subsets) 

Population 

properties  

(# of markers) 

T&B cell  
Adaptive immune 

resistance  

3.4.5 
Same neighbor 

(1) 

Specific A (2) / 

Specific A (2) 

CD3
+
CD8

+
 / 

CD3
+
CD8

+
 

CD8
+
PD1

+ 
/
 

CD8
+
PD1

+
 

Cell-to-cell 

spatial 

relations 

MNG 

 

VAR 

Significance: analysis with more complex scenario with smaller available pool of cells 

(with spatial modeling)  

 For cell-to-cell spatial relations analysis with sufficient cell quantity present, cell-to-
cell spatial relations is relatively precise for specific cell types 

 For several cases, not enough cells are present to calculate VAR (indicated by large 
negative VAR in data) 

 Therefore, baseline level of cell percentage is important for cell-to-cell spatial 
relations analysis 

Specific A (3) / 

Specific A (3) 

CD3
+
CD8

+
CD79a

+
/ 

CD3
+
CD8

+
CD79a

+ 

CD8
+
PD1

+
PDL1

+
 / 

CD8
+
PD1

+
PDL1

+
 

CD8
+
PD1

+
PDL1

++ 
/ 

CD8
+
PD1

+
PDL1

++
 

Cell-to-cell 

spatial 

relations 

MNG 

 

VAR 

Significance: determine if non-conventional cells are detected in images using spatial 

relations analysis 

 Cases with high cell quantity had high cell-to-cell spatial relations 

 For several cases, not enough cells are present to calculate VAR (indicated by large 
negative VAR in data) 

3.4.6 

Different 

neighbor  

(2) 

General A (1) / 

General B (1) 
CD3

+
 / CD79a

+
 

PD1
+
 / PDL1

+
 

PD1
+
 / PDL1

++
 

Cell-to-cell 

spatial 

relations 

MNG 

 

VAR 

Significance: most complex scenario (with spatial modeling) with larger available pool of 

cells and assess if reference cell matters is dependent on ROI sampling (i.e. sensitive to 

detect changes in microhabitat) 

 Heterogenous general cell-to-cell spatial relation in cases with higher cell percentage 
can be detected, where as those with low percentage had few cell-to-cell spatial 

relations detected 

 Combining different quantitative metrics with cell-to-cell spatial relations is valuable 
for data interpretation of heterogenous general cell types (i.e. percentage and cell-to-

cell spatial relations) 

 Some cell combinations that had different cell-to-cell spatial relations, suggesting 
Asterics may be sensitive to detect differences in microhabitat for heterogenous 

general subsets 

 Cell-to-cell spatial relations were precise and constant across image 

 For several cases, not enough cells are present to calculate VAR (indicated by large 

negative VAR in data) 

General B (1) / 

General A (1) 
CD79a

+
 / CD3

+
 

PDL1
+
 / PD1

+
 

PDL1
++

 / PD1
+
 

Cell-to-cell 

spatial 

relations 

MNG 

 

VAR 

3.4.7 

Different 

neighbor  
(2) 

General (1) /  

Specific (2) 
CD3

+
CD8

+
 / CD79a

+
 

CD8
+
PD1

+
 / PDL1

+
 

CD8
+
PD1

+
 / PDL1

++
 

Cell-to-cell 

spatial 

relations 

MNG 

 

VAR 

 Significance: most complex scenario (with spatial modeling) with least available 

pool of cells and assess if reference cell matters is dependent on ROI sampling (i.e. 
sensitive to detect changes in microhabitat) 

 Cell-to-cell spatial analyses were reference cell independent, indicating that the 

software may not be sensitive to detect cell-to-cell spatial relations of different 
neighbors of specific next to general cell types or vice versa 

 ROI sampling strategy correlated with precise data 

 For several cases, not enough cells are present to calculate VAR (indicated by large 
negative VAR in data) 

Specific (2) /  

General (1) 
CD79a

+
 / CD3

+
CD8

+
 

PDL1
+
 / CD8

+
PD1

+
 

PDL1
++

 / CD8
+
PD1

+
 

Cell-to-cell 

spatial 

relations 

MNG 

 

VAR 

Dashed line = divides analysis within same sub-section; General = refers to cells defined by a single marker; Heterogenous = refers to two different cell populations or neighborhood groups being assessed; Homogenous = 

refers to two same cell populations or neighborhood groups being assessed; MNG = mean neighborhood group; Slash (/) = ‘next to’; Specific = refers to cells defined by multiple markers; VAR = variance of MNG 
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3.5  Image registration 

 

Image registration is an important component of image analysis by merging datasets derived 

from more than one image for multidimensional analysis [168]. Image datasets can include 

phenotypic and functional information [169]. In the context of this hyperspectral image analysis 

system, image registration would enable analysis of spatial distribution of the same or different 

cell populations in more than one plane of the tumor. This capacity is important, accounting for 

the fact that tumors are three dimensional structures with tissue architecture that exhibit 

heterogeneous spatial organization and two dimensional analyses of single sections fail to 

completely capture this information, introducing selection bias [161]. Thus, the BCCRC 

hyperspectral image analysis system valuably has an image registration component to include 

prospective multimodal analysis of different stains and molecular markers or multiplanar spatial 

analysis to provide stereological insights on tumor immune cell distribution. The type of image 

registration used by Imreg.m is intensity-based, where similar intensities were matched between 

fixed and moving images, and non-rigid, as an affine was used. 

  To assess the workflow of the image registration software of the BCCRC hyperspectral 

image analysis system, Imreg.m, a subset of tumors were selected for this analysis. Hematoxylin 

and CD8
+
 were selected to perform image registration as these markers were stained in both 

panels (T&B cell and AR panel), and image features are expected to match in these image pairs. 

To have sufficient stain intensity to assess accuracy of image registration, cases were selected 

with the highest of any type of CD8
+
 cell. Any type of CD8

+
 refers to the sum of single marker, 

double marker, and triple marker cells positive for CD8. In order to have the most data available 

to calculate averages, cases also needed to have data available for all five ROI where the 
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majority of cells in hyperspectral images of tumor were able to be segmented. With these 

inclusion criteria, the following three lung AC were selected from the cohort to perform image 

registration: 05L14, 05L4, and 06L29 (Table 3.11). Despite the same antibody clone used in both  

sections, the percentage of any CD8
+
 cells was different in adjacent sections, as with total CD8

+
 

cells for each case (first column of Figure 3.11 and Figure 3.12). Percentage of any CD8
+
 cells 

was lower in the adaptive immune resistance panel compared to the T&B Cell panel.   

Images could not be registered at the cell-to-cell level between adjacent sections. Image  

registration of single cells still presents as a challenge, as immune cells are small in size (human 

lymphocytes range from 7 to 10μm, where larger granular lymphocytes range from 10 to 12μm), 

which may  not span the width of tissue sections (4 μm thick in this study) if multiple adjacent 

sections are required [170, 171]. Such challenges also exist with image registration of single cells 

with sequential acquisition methods, where a single section is imaged with a first set of markers 

added and reimaged after stain removal and restaining with a second set of markers [41]. In 

addition, cells may get physically pushed into one section or the other by the thickness of the 

sectioning blade. Thus, the highest resolution at which the image registration software can 

currently assess is determining spatial distributions of immune cells between sections and not at 

the single cell level. Presently, no objective measures of image registration are available with the 

BCCRC image registration software. However, visual assessment of registered images is 

considered an accepted approach for image registration assessment [172]. The following image 

registration figures in this section (Section 3.5) have been compressed.  

 

 

 

 

 

 



113 

 

Table  3.11    Sample selection for image registration analysis. (A) T&B Cell panel. (B) Adaptive Immune 

Resistance. Averages of five ROI shown. Red cells indicate cases with less than five ROI and were not selected for 

analysis.  Yellow cells indicate that cases had highest average of percentage of any cell with CD8
+
 and were selected 

for image registration.  

 

 

 

 

Case 

Mean of any 

CD8+ cell 

(percentage) 

05L14 16.9878 

06L29 15.60655 

05L4 14.65004 

06L50 13.15282 

05L17 11.93655 

05L54 10.96252 

06L74 10.7725 

05L27 10.70428 

06L57 10.64163 

06L3 10.28953 

06L42 8.796242 

05L39 8.041601 

06L71 7.031383 

05L12 5.825822 

06L30 4.876695 

06L10 4.590661 

05L49 4.514275 

05L9 4.273412 

05L46 4.134632 

06L14 3.000233 

06L19 2.813438 

 

 

The average file size of registered images (including reciprocal alignments) was ~114 

MB (7,187,076,080 bytes per registered image ÷ 1,048,576 bytes per MB ÷ 60 registered images 

= ~114.2 MB). Total file size of all output files containing registered images was 6.69 GB. 

Average file size of individually registered image files are smaller than ‘Scaled_Inverted 

Concentration’ images in Section 3.1 (148 MB – 114 MB = 34 MB). Several adjacent sections 

Case 

Mean of any 

CD8+ cell 

   (percentage) 

06L29 29.78246 

05L4 23.34376 

06L50 22.25003 

06L19 21.14594 

05L14 20.23605 

05L27 19.3632 

05L54 18.21045 

06L57 17.39396 

06L74 15.27533 

05L17 13.92758 

06L42 11.94573 

06L3 10.31713 

05L39 9.562668 

06L71 8.470634 

05L12 8.198894 

06L30 7.947859 

05L49 7.533698 

06L10 7.448415 

05L46 7.045617 

05L9 5.283316 

06L14 4.003303 

A B 
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could be reproducibly aligned (Figure 3.17). Images had more grey areas rather than brightly 

colored areas (green and magenta), indicating similar intensities, however, colored areas do not 

necessarily indicate that areas are misregistered to Section 3.8 (Figure 3.17).   

 

 

 

 
 

Figure 3.17    Examples of well registered images. Grey areas indicate that images of adjacent sections have 

similar intensities. Colored areas indicate that intensities of area in image are brighter than the other, where magenta 

indicates moving image, and green indicates fixed image. Figure has been compressed.  
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 Image registration with this software revealed that some adjacent sections could not be 

reproducibly aligned (Figure 3.18). Technical factors affecting image registration are described 

here and in Section 3.6 to 3.8. Manual imaging was observed to be different between adjacent 

sections for cases, which may potentially affect the reproducibility of image registration with 

Imreg.m. Image registration of ROI onto WSI to confirm location may be a method to further 

confirm the location of images and improve image quality for image registration [173]. 

Interpretation of imaging and subsequent analysis will be relevant in clinical settings, as inter-

observer variability was present when pathologists were asked to image the same area [84].   

Presently, tissue deformation, such as from tissue processing, was not corrected prior to  

image registration. Tissue stretching is known to occur before image analysis, including during 

fixation and sectioning of tissues. Non-rigid transformation methods have been used to correct 

cutting distortions from kidney sections [174]. Pre-processing of images is a potential solution 

and is an important factor consider for standardizing digital pathology images [175]. Correction 

of regional deformation, such as the image warping approach used for two dimensional gels, may 

also present as a potential solution [176]. Fiducial marker placement in tissue may be a potential 

method as described in the skull for CT scans to obtain ground truth transformation [168]. 

Collectively, image quality presents as an important factor to consider for the workflow of this 

hyperspectral image analysis system and object measure to determine image quality is an 

important factor to consider for standardizing digital pathology images [175].  
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Figure 3.18   Examples of differences in reproducibility for image registration. Grey areas indicate that images 

of adjacent sections have similar intensities. Colored areas indicate that intensities of area in image are brighter than 

the other, where magenta indicates moving image, and green indicates fixed image. Figure has been compressed. 
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3.5.1 Different stains 

 

Registration of multimodal information provides different functional information of the same 

area, such as multimodal method of image registration with MRI and histopathology [177]. 

Although there is value in such an approach, feasibility remains an issue. However, different 

immunohistochemical stains could potentially affect image registration of two images. To 

determine if image registration software of the BCCRC hyperspectral image analysis system was 

effected by different stains, registered images of markers of same stain (hematoxylin) were 

compared with images of the same marker using different stains (CD8, red and brown). Images 

with the same stain, such as hematoxylin, of adjacent sections given sufficient similarity in 

appearance were observed to be well-aligned (Figure 3.17). However, images with different 

chromogen stains were observed to not be sufficiently similar in appearance or not well-aligned 

(Figure 3.19). Antibody clones were the same in both adjacent sections, but differences were 

observed in cell counts (Table 2.2 and 2.3, Figure 3.19). Antibody differences are a challenge, 

even for established biomarkers, such as PDL1, where further standardization is required [178-

180]. A potential solution would be to record the geometric transformation of same stain images 

with high similarity as a control, such as counterstain and apply to the alignment to differently 

stained images [181]. Classifiers with a reference slide can be applied to serial sections to enable 

multimodal stain image registration as done by commercial systems [115]. Multiresolution block 

matching and methods to improve structure similarity for differently stain adjacent sections have 

also been performed [182, 183]. Another method requires no stain of tissue by visualizing 

morphology and features by Fourier transform infrared (FT-IR) spectroscopic imaging of various 

non-malignant, precancerous, and malignant tissues [184]. Methods for stain normalization are 
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also implemented, including control slides for calibrating heterogenous staining, or with sparse 

autoencoders (StaNoSA) [127, 185, 186]. 

 

 

 

 
 

Figure 3.19    Examples of differences in stain of CD8. Grey areas indicate that images of adjacent sections have 

similar intensities. Colored areas indicate that intensities of area in image are brighter than the other, where magenta 

indicates moving image, and green indicates fixed image. Figure has been compressed.  
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3.5.2 Local landmarks 

 

Landmarks in tissue may be used as a guide to accurately register two serial images in a process 

known as ‘image matching’ [168]. For other imaging modalities, such MRI, anatomical 

landmark detection is essential for accurate image registration [187]. Imreg.m performs image 

registration by matching intensities of pixels in the moving and fixed image. This is referred to 

as intensity-based image registration. Although Imreg.m performs intensity-based image 

registration, the size of landmarks was observed to correlate with registration of the BCCRC 

hyperspectral image analysis system. Images with large local landmarks were relatively well-

aligned based on visual observation (Figure 3.17). Images with small local landmarks were 

challenging to assess registration in comparing sufficient similarity for adjacent sections and 

were considered unclassified (Figure 3.20). This finding corroborates with other studies, that 

poor histological structures in images effected the quality of image registration as for image 

registration of slides with sequential labeling and erasing methods [87]. A metric to measure 

whether images are sufficiently similar prior to image registration may be useful such as an 

initial image difference of common information such as with thresholded images as in one study, 

where stereology approaches for ROI detection or using tumor masks to distinguish areas within 

the tumor may contribute to additional automated method to verify image matching during or 

after image acquisition in adjacent sections [181, 188, 189].  With stereology, the staining of 

every three to four sections to observe nuclei morphology at different levels to improve image 

registration correlation, and an interactive interface to confirm image registration by viewing 

different transparency and opacity of images is another approach used to verify landmarks 
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Figure 3.20    Examples of small landmarks. Grey areas indicate that images of adjacent sections have similar 

intensities. Colored areas indicate that intensities of area in image are brighter than the other, where magenta 

indicates moving image, and green indicates fixed image. Figure has been compressed. 
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at different levels [127]. Automated methods for landmark detection would be valuable or even a 

zoomable interface for ROI detection as available for the FDA-approved WSI digital pathology 

systems by Omnyx
TM

 and Philips [135, 190]. With this current system, potential solutions 

include that prior to image acquisition, ROI are selected with large, prominent local landmarks 

for image registration. Alternatively, artificial introduction of landmarks, such as fiducial marker 

placements in tissue, could present as another solution. The use of TMA rather than whole tissue 

may better ensure the same region would be imaged and potentially limit intra-observer 

variability in imaging [191].  

 

3.5.3 Tissue artifacts 

 

Tissue artifacts may be observed in images, including tissue wrinkles, folds or pleats, and 

scratches [87]. ROI of this image registration experiment were observed to have tissue artifacts. 

Images with large tissue artifacts were not well-aligned based on visual confirmation (Figure 

3.21). Images without large tissue artifacts could be well-aligned (Figure 3.17). Therefore, tissue 

artifacts are a potential technical factor that would affect image registration. The observation of 

tissue artifacts indicates that upstream events prior image analysis will affect subsequent image 

analysis. Such features are important for image quality control [111]. Image quality control will 

be an important aspect to address for telepathology methods and establish for routine digital 

pathology analysis. In addition to tissue processing artifacts, other artifacts exist, including those 

during pre-fixation or fixation. Pre-fixation artifacts include those during surgery from injection,  
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Figure 3.21   Examples of tissue artifacts. Folds in tissue were not well aligned. Magenta image indicates moving 

image. Green image indicates fixed image. Figure has been compressed. 
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forceps incorporating crush artifact or fulguration from surgical cautery equipment or during 

fixation, freezing, and transport [192]. Tissues can shrink by 33% or if fixation is prolonged,  

secondary shrinkage could occur, which may distort the dimensions and scaling of the tumor 

architecture [192, 193]. Potential solutions to mitigate observable tissue artifacts include image 

preprocessing which are discussed in more detail in the following section, Section 3.9. 

 

 

3.5.4 Image preprocessing with image cropping 

 

Image preprocessing refers to improving image features for downstream processing operations. 

Image preprocessing may be useful for images with tissue artifacts. Incorporating algorithms for 

recognition of tissue artifacts, such as for folds, is one approach to identify tissue artifacts and 

improve image quality [194]. Other methods of this operation include color saturation and 

intensity based methods to eliminate artifacts [111, 195, 196]. Image cropping is another method 

to improve image matching, which has been performed to smaller ROI in lung adenocarcinoma 

to improve image registration [127]. Virtual image cropping is also performed in other 

commercial systems [124]. 

To test the application of image preprocessing for the BCCRC image registration 

software, a total of three sample images that contained image skew, irreproducible alignment, 

and tissue artifacts were selected for the analysis from Section 3.5 to 3.9, including Figure 3.18 

and 3.19. To test the incorporation of preprocessing steps with Imreg.m, images were cropped in 

Microsoft Office Picture Manager to areas where registered images overlapped or to areas 

without tissue artifacts and then registered using Imreg.m (Figure 3.22).         
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Figure 3.22  Image preprocessing with image cropping in Microsoft Office Picture Manager. (A) Images selected with misregistration for image 

preprocessing analysis. (B) Areas cropped in image registration. Black box indicates cropped area selected. Figure has been compressed.   

A B 

T&B Cell ARPDL1high 
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Initially, Imreg.m could not proceed to complete the run and create an output file. 

Preliminary image displayed (imshow) the test image, indicating that the final image is similar. 

The error indicates that the file size is too small to perform image registration. It was also 

observed in MATLAB workspace that images that have undergone image preprocessing with 

Microsoft Office Picture Manager were read as three dimensional matrices rather than two 

dimensional, which made the images incompatible with the script (Figure 3.23). Additional lines 

of syntax were added to command image registration software to issue the preprocessed images 

in the first page, being the red (R) matrix containing image data of hematoxylin in the three 

dimensional RGB matrix. Implementation of this fix enabled preprocessed images to be  

registered in a test run when one moving image was preprocessed and when both images are 

 

 

 

          

                               

Figure 3.23   Preprocessing of images with Microsoft Office Picture Manager is recognized as a three 

dimensional image in MATLAB workspace. (A) Preprocessed image recognized as 3 dimensional by Imreg.m. 

(B) Fix to Imreg.m script. Preprocessed images recognized as 2 dimensional and additional variables indicated for 

geometric transformation of image registration output file. Examples are of different images.   

 

 

A 

Fixed = preprocessed 
Moving = without preprocessing 

Fixed = preprocessed 
Moving = preprocessed 

B 
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preprocessed (Figure 3.24). Syntax to measure execution time of image registration software was 

then implemented to the Imreg.m with fixes for preprocessed images by incorporating the 

MATLAB tic toc function and additional syntax to print performance time into a Microsoft 

Excel file and move files to an external folder were also included. Image registration script did 

not measure execution time of Microsoft Excel file printing of time and moving image files, as 

values needed to be first defined for time function for software performance. Thus, execution 

time only measures the elapsed time to perform image registration. 

 

 
 

 

Figure 3.24  Image registration with fixes implemented of preprocessed images. (A) Image registration output 

files with Imreg.m. (B) Image registration of preprocessed images with fixes implemented in Imreg.m. Grayscale 

image pairs of hematoxylin were first cropped with Microsoft Office Picture Manager. Fixes were implemented for 

preprocessed images to be on the first page. Figure has been compressed.   

A 

B 
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Figure 3.25   Classes of preprocessed image tested with Imreg.m with fixes.  

 

Various combinations of images with or without preprocessing were tested (Figure 3.25). 

Average size of image registration output files were 136 MB (815 MB ÷ 6 images = 136 MB) for 

input images without preprocessing, 108 MB ([661 MB + 635 MB] ÷ 12 images = 108 MB) for 

single preprocessed input image, and 49 MB (296 MB ÷ 6 images = 49 MB) for both 

preprocessed input images (Table 3.12). Thus, image preprocessing by image cropping can 

dramatically reduce file size of registered images for more effective file storage. 

 

Table 3.12  File sizes of preprocessed image classes. Calculations were performed on rounded file sizes.  

 

 

Unique ID 
Size  

(MB) 

Size on Disk  

(MB) 

 Number of 

images  

Average size  

per image (MB)  

No preprocessing  815  815  6  ~136  

Single preprocessed  

(fixed)  
661  662  

12  ~108  
Single preprocessed 

(moving)  
635  635  

Both preprocessed  296  297  6  ~49  
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Average time elapsed of image registration was calculated by averaging the time of duplicates 

and averaging for each image pair group. Average time elapsed for image required 

approximately 224 seconds for preprocessed image, 137 seconds for single preprocessed image, 

and 97 seconds for both preprocessed images (Table 3.13). Thus, image preprocessing with 

image cropping reduces running time and may improve software performance in regards to 

efficiency.  Interestingly, for single preprocessed images, it was observed that when the 

preprocessed image was assigned as the fixed image, the running time was faster (104 seconds 

compared to 169 seconds) (Table 3.14). Image preprocessing with image cropping improved 

image registration especially when both images were preprocessed as observed in 05L14_4 and 

05L4_1 (Figure 3.26). However, it was difficult to assess if image registration was accurate if 

both moving and fixed image are cropped to an exceedingly small size as in 05L4_4, illustrating 

the requirement for sufficient identifiable landmark to provide context when manually assessing 

image registration. An interesting approach would be to perform image registration on scaled 

versions of images and apply this to geometric transformation to the larger resolution images 

[188]. Images were able to be reproducibly aligned when one image was cropped and one was 

not preprocessed. However, there was some dependency on which image pair was assigned as 

the fixed or moving image, as observed in 05L14_4 where T&B Cell was preprocessed (Figure 

3.26). Thus, preprocessing of images with image cropping may present as a potential solution to 

improve image quality, accuracy, and efficiency of image registration for some images where 

skewing exists in imaging. A priori knowledge of the object in space may be required in order to 

determine where to perform image cropping for landmark based image registration. 
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Table 3.13  Running time of Imreg.m with fixes on images without preprocessing and with preprocessing.   

 

Fixed 

(+/-preprocessing) 

Moving 

(+/- preprocessing) 
ID_ROI 

Time of image 

registration 

(seconds) 

Time of 

reciprocal 

image 

registration 

(seconds) 

Average time of 

duplicates 

(seconds) 

Average time of 

samples (seconds) 

T&B Cell  

- preprocessing 

ARPDL1high  

- preprocessing 

05L14_4 194.8521 219.5953 207.2237 

224.3262 05L4_1 238.6409 231.3881 235.0145 

05L4_4 221.3210 240.1596 230.7403 

T&B Cell  

- preprocessing 

ARPDL1high  

+ preprocessing 

05L14_4 179.9735 114.4780 147.2258 

136.7976 

05L4_1 228.2138 188.1644 208.1891 

05L4_4 117.3220 31.0050 74.1635 

T&B Cell 

+ preprocessing 

ARPDL1high 

- preprocessing 

05L14_4 115.8091 176.0541 145.9316 

05L4_1 146.4185 200.6933 173.5559 

05L4_4 30.8595 112.5801 71.7198 

T&B Cell  

+ preprocessing 

ARPDL1high  

+ preprocessing 

05L14_4 110.0066 112.6197 111.3132 

97.1436 05L4_1 153.1980 162.3976 157.7978 

05L4_4 22.0522 22.5877 22.3200 
 

 

 

 

 

Table 3.14  Single image preprocessed running time. Groups classified into whether moving or fixed image is preprocessed. 

 

Fixed 

(+/-preprocessing) 

Moving 

(+/- preprocessing) 
ID_ROI 

Time of image 

registration, 

where Fixed = 

T&B Cell 

(seconds) 

Time of image 

registration 

where Fixed = 

ARPDL1high 

(seconds) 

Average time of 

duplicates (seconds) 

Average time of 

samples (seconds) 

- preprocessing + preprocessing 

05L14_4 179.9735 176.0541 178.0138 

169.1395 05L4_1 228.2138 200.6933 214.4535 

05L4_4 117.3220 112.5801 114.9511 

+ preprocessing - preprocessing 

05L14_4 115.8091 114.4780 115.1436 

104.4558 05L4_1 146.4185 188.1644 167.2915 

05L4_4 30.8595 31.0050 30.9323 
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Figure 3.26  Image registration of preprocessed image with Imreg.m with fixes.  

Figure has been compressed.  

05L14_4              05L4_1                        05L4_4 
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Chapter 4: Conclusions 

 

4.1 General conclusions and significance 

 

This work aimed to assess the workflow optimization of a hyperspectral image analysis system 

to study tumor-immune cell spatial organizations within lung tumor microenvironments 

developed by Dr. Calum MacAulay and Dr. Martial Guillaud’s research team at the BCCRC. 

The specific hypothesis of this work is that the workflow of the BCCRC hyperspectral image 

analysis system will facilitate the determination of spatial relationships of cell populations within 

the tumor microenvironment. Here, this work has demonstrated that the BCCRC hyperspectral 

image analysis system is a platform that is valuable for quantitatively and spatially profiling 

tumor heterogeneity at the cell-to-cell level and distribution at a multi-plane level, although 

further optimization of this method is required for application in non-clinical or clinical settings. 

Technical factors affecting workflow optimization of this system were identified at different 

stages of digital image analysis, including in image acquisition, segmentation, specialized 

equipment, staining reproducibility, and sampling strategy. Potential solutions were suggested 

that could improve the workflow of this method for non-clinical or clinical settings (Figure 4.1 

and Table 4.1 to Table 4.3). For multiplex IHC, selection of stains will be an important factor to 

select (Figure 4.1A). Experiments to verify whether different stains would yield different results 

for image registration will be needed. The ROI selected will be an important factor to address 

selection bias for future studies implementing this method. Importantly, a study determining 

what the optimal number of ROI needed to represent the whole tissue section of lung tumors or 

for other solid tumors will be essential for future studies using this in situ multiplex detection 
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system. Large landmarks will be required in ROI selection for studies deciding to use image 

registration (Figure 4.1B, first decision). The testing of fiducial markers in tissue could be used 

to determine whether this is an effective method to study areas with few large landmarks. 

Regarding segmentation, the system currently relies on selection criteria of either ROI with high 

density of cell nuclei or low density of cell nuclei (Figure 4.1B, second decision). Additional 

preprocessing methods such as image smoothing or image sharpening applied to the image can 

be investigated to determine whether further optimizations can be made to segment the whole 

field of view with variable densities of cell nuclei (Figure 4.1C). This study revealed that image 

preprocessing by image cropping is a potential solution to eliminate tissue artifacts (Figure 4.1B, 

third decision). The elimination of tissue artifacts was able to improve image registration (Figure 

4.1D). Additional steps needed for future studies include optimal size for image cropping and 

investigation of a priori knowledge required for image cropping may be required. Integration of 

other algorithms for tissue artifact recognition could be explored. Other less noticeable tissue 

artifacts, such as tissue stretching and other non rigid tissue deformation, would require 

experimental testing with other image preprocessing, such as auxiliary geometric transformations 

to virtually correct deformed tissue. Regarding file storage, future experiments could include 

determining what image compression method is optimal to best preserve image data while 

conserving computer memory. Furthermore, acquiring a larger network may be considered, 

though optimizing for image compression may be a more sustainable method (Figure 4.1B, third 

decision). Future studies may consider using fewer wavelengths to perform spectral unmixing 

and to develop a multispectral image acquisition system implementing these fewer wavelengths 

to improve efficiency of this image analysis system.  
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Figure 4.1     

Flowchart of workflow 

optimization of the 

BCCRC hyperspectral 

image analysis system. 

Oval indicates start of 

workflow. Diamond 

indicates decision, and 

darkly colored diamond 

indicates technical factors 

identified in this study 

affecting workflow 

optimization. Rounded 

rectangle indicates finish. 

Arrow indicates connector. 

Parallelogram indicates 

output, data retrieved. 

Rectangle indicates 

process.  
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Workflow 

feature 
Approaches by other investigators / manufacturers 

Cell images  
(human/mouse/rat/other/unknown) 

References 

Approach by BCCRC 

hyperspectral 

image analysis system 

Software 

performance 

Larger step size with low-power objective or low resolution images for faster 

performance of image acquisition time  
Heart mitral (h)  [129] 

 

 
 

Reduce image file size with image 

cropping for faster image registration 

performance (T) 

 

Perform spectral unmixing with six 
illumination wavelengths rather than 

sixteen illumination wavelengths for 

faster performance (T) 
 

Develop image acquisition system to 

image six illumination wavelengths 
rather than sixteen illumination 

wavelengths to reduce image 

acquisition time (FD) 
 

Consider using a GPU for image 

acquisition for faster performance 
(FD) 

 

Reimage slides that are manually 
detected to be blurry or out of focus 

(T) 

 
 

 

Automated image acquisition system that can be imaged in batches to increase 
image acquisition time 

Lung adenocarcinoma (h) [127] 

Use of Intel HD Graphics 2500 Display Card in workstation  Non small cell lung cancer (u) [197] 

Suggests use of multi-core processors or GPU to increase performance with multi-

threading ability 

Lung cancer (u) 

Colon cancer (u) 
[188] 

Software with a web interface, such as Cytomine, that uses simultaneous multi-user 

platform  to enable collaboration of image datasets (analogous to multi-user 

interface such as Google Docs) 

Lung cancer (u) [135, 136] 

Blur detection and sharpness quantification using machine learning 

Clear cell renal  
cell carcinoma (h) 

Prostate cancer (h) 

Hippocampal sclerosis (h) 

[198] 

inForm Tissue Finder (PerkinElmer) performs automated segmentation with 

proprietary pattern recognition algorithms to increase performance 
 

Images (hundreds or thousands) can be segmented through batch processing and 

analyzed 20 (for 32bit) or 400 (for 64 bit) for maximum number of images per 

training set 
 

Unlimited number of images per batch set 
 

Training processing speed takes seconds per image in training set while batch 
processing takes minutes for multiple images 

- [123] 

Definiens Tissue Studio conducts proprietary updates to processing workflow  
 

Automatic proprietary method for image registration of adjacent sections 
 

Identifies factors including image size, tissue amount on slide, nature of tissue 

(density of nuclei), effects performance for processing 
 

Use lower resolution images for increased performance of ROI detection 
 

Enables batch processing 

- [114, 124]  

Table 4.1  Proposed solutions for the BCCRC hyperspectral image analysis system for performance and specialized equipment. (Continued on page 135). 
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Workflow 

feature 
Approaches by other investigators / manufacturers 

Cell images  
(human/mouse/rat/other/unknown) 

References 

Approach by BCCRC 

hyperspectral 

image analysis system 

File size 

Lossless image compression is not required, lossy and lossless image compression 

produced similar image analysis results  
Helicobacter pylori gastritis (h) [121] 

Image acquisition software can 

image ROI in adjacent sections with 

reduced file size relative to WSI (T) 
 

Perform image preprocessing (image 

cropping) to further reduce file size 
(T) 

 

Larger server needed to 
accommodate large file size of 

images (FD) 

 
Determine compatible image 

compression to reduce file size and 

maintain image quality for this image 
analysis platform (FD) 

 

Determine if less than five ROI is 
representative of tumor to reduce 

number of images needed to acquire 
for study (FD) 

Image compression with JPEG2000 of ROI from WSI without effecting 
interpretation of pathologist  

Breast cancer (u) [120] 

HALO Link (Indica labs) enables remote image management and  cloud server 

access to various electronic devices (computer, tablet, smartphone) for efficient 

access 

- [119] 

inForm is compatable with monochrome or color images including lossy and 

lossless compression images (JPEG, single-layer TIFF, BMMP, PNG), and other 
PerkinElmer Multispectral Image file formats (.im3, .im4) 

- [123] 

Definiens Tissue Studio is compatible with various image formats from different 

image acquisition systems (including, Aperio ScanScope, Leica SCN, Nikon, 
Olympus, Roche Ventana, TissueGnostics, Unic, Zeiss)  
 

Identifies that size, resolution of images effects hard disk requirements 

- [124]  

Use of lossy image compression (such as JPEG) file formats for images Non-small cell lung cancer (h) [122] 

Perform image registration on scaled versions of images and apply to larger 
resolution image 

Lung cancer (u) 
Colon cancer (u) 

[188] 

Selection bias 

Hotspot and cell cluster detection  
Pancreatic neuroendocrine 

tumor (u) 
[150] 

Selection bias – to be determined, 

identify method to sample tumor 
areas to limit bias, such as automatic 

ROI selection (FD) 

 
Image registration to assess patterns 

in 3D space (T) 

Use of tissue microarray Non-small cell lung cancer (h) [191] 

Blinded pathologist selected 3 fields of views by qualitative observation of greatest 

cellular areas  
Non-small cell lung cancer (h) [122] 

Semi-automatic ROI detection by using training set Lung cancer (m) [135, 167] 

HALO Classifier (Indica Labs) enables automatic tissue selection to train for 
selections ROI of interest  

- [115] 

Definiens enables creation of ROI from training dataset in addition to manual ROI 

selection 
- [124] 

 

FD: Future direction; T: Tested  
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Table 4.2  Proposed solutions for the BCCRC hyperspectral image analysis system for cell-to-cell spatial analysis. (Continued on page 137) 

 

Workflow 

feature 
Approaches by other investigators / manufacturers 

Cell images  
(human/mouse/rat/other/unknown) 

References 

Approaches by BCCRC 

hyperspectral 

image analysis system 

Cell-to-cell 

spatial analysis 

HALO (Indica Labs) is a commercial software capable of spatial analyses, including 

proximity, neighborhood, infiltration analysis (algorithms proprietary)  
-  [115] 

Asterics performs higher resolution 

quantitative characterization of 

microhabitat of cell (proportion 
measurements) (T) 

 

Cell-to-cell spatial analysis can be 
performed with over two markers, 

including hematoxylin (T) 

Investigator indicates that a number of manufacturers only work with 2 antibodies, 
including HALO (Indica Labs) 

- [181] 

Quantification of cytotoxic and memory T cell densities with the immunoscore 

significantly correlate with patient survival 

Colorectal cancer (h) 

Melanoma (h) 
[110]  

Proximity of PD1 and PDL1 cells significantly correlates with response or 

progression with pembrolizumab (used HALO proximity analysis, Indica Lab)  
Melanoma (h) [99] 

Segmentation 

For single pixels use spatial location related to two-dimensional Gaussian mixture 

model (GMM), with a priori information of appearance of object  
Seminavis robusta (o) [138] 

Modify cluster A and B in DUnit to 

refine thresholds and further 
segment large clusters (T) 

 

Segmentation of either low cluster 
or high cluster areas based on 

framing research study (T) 

 

Have multiple users to increase 

thoroughput of segmentation (T) 

 
Avoid areas with too dense cell 

nuclei for image analysis (T) 

 
Determine method to automate 

segmentation for faster performance 

(FD) 
 

Deep learning and deformation model to segment clusters  Cervical cancer pap smear (h) [139] 

Extract boundary of nucleus using multiscale LoG filter and adaptive scale selection 

with concavity measurement applied, three classes of split-point candidates of binary 

nuclei image to search for optimal split-point pair, to determine nuclear occlusion  

Kidney renal clear cell 
carcinoma (h) 

[142] 

Segmentation of touching nuclei by approximate convex decomposition, lines of 

Sight (LoS) concept with local adaptive pre-processing  

Embryo (m) 
Breast cancer spheroid (h) 

Pancreatic cancer spheroid (h) 

[143] 

Bayesian method to separate touching nuclei  Breast cancer (h) [144] 

Color space, mean shift clustering, illumination adjustment, and nucleus mark 

watershed operation (NMWO) for segmenting occluded cells  

Normal peripheral blood (h) 
Acute myeloid leukemia  

blood (h) 

[145] 

Deep learning using multiscale convolutional network (MSCN) to segment touching 

nuclei  
Cervical cancer (h) [140] 

Deep convolutional neural network and selection-based sparse shape model and 
local repulsive deformable model to segment nuclei  

Brain tumor (u) 

Pancreatic neuroendocrine 
tumor (u) 

Breast cancer (u) 

[141] 

Algorithm for immune cell conglomerates  

Colorectal cancer (h) 

Liver metastases (h) 
Colon mucosa (h) 

Liver (h) 

[149] 

Automatic segmentation of touching nuclei with sparse reconstruction  with trivial 
templates and stacked denoising autoencoders with a  MATLAB workstation 

Lung cancer (u) 
Brain cancer (u) 

[146] 

Clumps of nuclei segmented by watershedding 
Glioblastoma multiforme (u) 

Lower grade glioma (u) 
[147] 

inForm (PerkinElmers) is trainable for segmentation  - [123] 
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Workflow 

feature 
Approaches by other investigators / manufacturers 

Cell images 
(human/mouse/rat/other/unknown) 

References 

Approaches by BCCRC 

hyperspectral 

image analysis system 

Threshold 

Deep learning approach – identify image patches for training positive or negative 
class  
 

Determine a threshold of image with color deconvolution to identify negative class 

Breast tumor (u) [152, 153] Gallery as supplemental method to 
verify individual cells for 

classification (T) 

 
Establish multiple grey level 

thresholds to quantify strength of 

staining intensity (T) 
 

Have multiple observers to account 

for interobserver variability in 
establishing thresholds (T) 

inForm (PerkinElmers) performs various scoring methods (% positivity, 0/1+/2+/3+, 

co-localization and more) 

- 
[158] 

Tissue Studio (Definiens) sets thresholds for low, medium, high intensity cells 
 

Uses HSD models rather than RGB space to increase performance for threshold 
application  
 

Tissue-background separation for brightfield or immunoflurescent images based on 

autothreshold or manual threshold selection (homogeneity, brightness, tissue min 

size) 

- [124] 

FD: Future direction; T: Tested 
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Table 4.3  Proposed solutions for the BCCRC hyperspectral image analysis system for image registration. (Continued on page 139). 

 

Workflow 

feature 
Approaches by other investigators / manufacturers 

Cell Images  
(human/mouse/rat/other/unknown) 

References 

Approach by BCCRC 

hyperspectral 

image analysis system 

Image matching 

Perform image registration of ROI onto WSI to confirm location 
Colon (u) 

Sarcoma (u) 
[173] 

Image cropping improves image 

registration with MATLAB based 
image registration software (T) 

 

Perform image cropping for areas 
misaligned from image acquisition 

and further ensure image quality (T) 

 
Determined that image registration 

can be non-reproducible depending 

on which adjacent section is used as 
the fixed image with MATLAB 

based image registration program (T) 

 
Avoid selecting areas for image 

registration with weak local 

landmarks (T) 
 

Correct nonrigid deformation in 
imaged sections with image 

preprocessing (FD) 

 
 

Test using fiducial markers to create 

common landmarks or detect areas 
with large landmarks for ROI image 

acquisition (FD) 

 
  

Registration with sequential labeling and erasing and identified that poor 

histological structures effected image registration quality 

Colorectal cancer (h) 

Tonsil (u) 

Brain (u) 
Glioma (u) 

[87] 

ROI detection method for when adjacent sections do not match perfectly using 

stereology approaches 
Breast mammary gland (h) [189] 

Tumor mask to distinguish inside or outside tumor and correlate with adjacent 
section 

Breast cancer (h) [181] 

Correct cutting distortions using non-rigid transformation Kidney (m/r) [174] 

Overlay segmentation from more than one image 
 

Automated sectioning machine to create consistent, high quality section s 
 

Staining of H&E every three to four sections to observe nuclei morphology at 

different level to improve image registration correlation 
 

Interactive interface to confirm image registration by viewing different transparency 

and opacity of images 
 

Registered areas can be cropped to smaller region of interest 

Lung adenocarcinoma (h) [127] 

Extract common information between different slides, including preprocessing grey 

scale images with K-means classification to determine a threshold 

Lung cancer (u) 

Colon cancer (u) 
[188] 

Landmark detection Danio rerio [135] 

Fiducial markers in skull for CT scans to obtain ground truth transformation Skull (h) [168] 

Serial Section Analysis by HALO (Indica Labs) creates classifier in a reference slide 

that can be applied to serial sections to enable multimodal stain image registration 
- [115] 

Zoomable interface for ROI detection (including OmnyxTM Pathologist Workstation, 

Philips Pathology Viewing System) 
- [190] 
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Workflow 

feature 
Approaches by other investigators / manufacturers 

Cell Images 
(human/mouse/rat/other/unknown) 

References 

Approach by BCCRC 

hyperspectral 

image analysis system 

Tissue 

artifacts 

Tissue fold detection by using a soft and hard threshold and including neighborhood 
criteria 

Kidney clear cell carcinoma (h) 

Ovarian serous 

adenocarcinoma (h)  

[199] 
Perform image preprocesing (image 
cropping) to remove areas with 

tissue artifacts (T) 

 
Avoid imaging areas with tissue 

artifacts (T) 

 
 

Develop method such as an 

algorithm to detect and exclude 
tissue artifact areas in image (FD) 

 

Correction of tissue folds by using k-means clustering Aorta (m)  [194] 

Tissue fold detection by color-based method and fixed threshold 

- 

Breast (h) 

Liver (h) 
Esophagus (h) 

[195, 196] 

Tissue Studio (Definiens) has feature to modify unprocessed images, such as manual 

marking to correct for artifacts  
- [124] 

Rescanning of images containing artifacts Lung adenocarcinoma (h) [127] 

 

Multimodal 

stains 

Nonrigid image registration of differently stained adjacent sections using 

multiresolution block matching and two-dimensional unsupervised content 
classification to improve structure similarity 

Liver cirrhosis (h)  

Ovine intervertebral disc (o) 
[182, 183] 

Avoid using different stains to 

perform image registration (T) 
 

Use same stains to perform image 

registration as template of geometric 
transformation for image registration 

(FD) 

Multimodal method of image registration with MRI and histopathology  Prostate cancer (h) [177] 

Visualize tissue morphology and features without using dyes by Fourier transform 
infrared (FT-IR) spectroscopic imaging  

Normal breast (h) 

Non-malignant breast (h) 
Pre-cancer breast (h) 

Breast cancer (h)  

[184] 

Save transformation matrix from hematoxylin and apply it to a mask of protein 

expression variability in adjacent tissue sections to account for biological variability  
Breast cancer (h) [181] 

Automated method to normalize stain by mitigating batch effects (referred to as 

intensity centering and histogram equalization) 
Lung cancer (h) [185] 

Rescanning of images containing weak staining 
 

Control slides for calibration of heterogenous staining 
Lung adenocarcinoma (h) [127] 

Normalize stains with sparse autoencoders (StaNoSA) 
Breast (u) 

Gastrointestinal (u) 
[186] 

 

FD: Future direction; T: Tested 
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4.2 Future directions 

 

The work presented in this thesis has been conducted on a small cohort. Technical factors 

affecting workflow optimization of this method were identified, which may be valuable for 

future biological studies employing this method. For future studies, it would be beneficial to use 

a larger cohort for analysis with clinical-pathological features or immunotherapy information to 

verify if MNG of particular cell types could present as a valuable prognostic biomarker relative 

to histopathology TNM staging. Additional geographical information of tumor tissue 

architecture, including whether digitally sampled sites are from the invasive margin or tumor 

core would be valuable to predict prognosis, as attained by the Immunoscore. Future studies 

might compare the measurements of cell counts and neighborhood groups, including economical 

costs of this software to commercial software that perform spatial analyses. In addition, the 

development of platforms for multi-omic information is of value to analyze spatial organization, 

such as images of ISH multiplexed with IHC or correlating with other multimodal images, such 

as CT to study tumor aggressiveness [41]. One must take into consideration that a single section 

is typically analyzed in a clinical setting, which may not be representative of the entire tissue and 

an evaluation of this representation may be useful for this hyperspectral image analysis system. 

Studies on determining what cohort of lung cancer patients will benefit most from this type of 

analysis will also be valuable.  
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Appendices 

 

 

Appendix A -  Manual graphs of cell-to-cell spatial analyses (raw data without exclusion of data indicating not enough cells for 

analysis, value = -999) 

 

 

A.1    General cell type cell quantity and spatial relations of same neighbors in adaptive resistance panel (raw data plot).  
 

X-axis indicates 20 cases. Each column in each plot represents one case. Whiskers indicate SD. Asterisk (*) indicates case contains large negative variance (VAR 

= -999), suggesting case has not enough cells to assess variance. Points indicate value for one ROI, where there are five ROI sampled in total for each case 

(column). Red solid line indicates line of best fit of mean of ROI. Dotted blue bands indicate 95% confidence interval (CI) of mean of ROI. Graph with no line of 

best fit and 95% CI is out of bounds from skew of negative VAR values. Case 06L50 and 06L19 have less than five ROI, as ROI were not able to be segmented. 

Dash indicates average parameter of each case.  
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A.2    Specific cell type identified by double markers cell quantity and spatial relations of same neighbors (raw data plot).  
 

(A) T&B cell panel. (B) ARPDL1high panel. X-axis indicates 20 lung AC cases. Each column in each plot represents one case. Whiskers indicate SD. Asterisk 

(*) indicates that case contains large negative variance (VAR = -999), suggesting case has not enough cells to assess variance. Points indicate value for one ROI, 

where there are five ROI sampled in total for each case (column). Red solid line indicates line of best fit of mean of ROI. Dotted blue bands indicate 95% 

confidence interval (CI) of mean of ROI. Graph with vertical line of best fit and no 95% CI is out of bounds from skew of negative VAR values. Case 06L50 and 

06L19 have less than five ROI, as ROI were not able to be segmented. Dash indicates average parameter of each case 
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A.3   Specific cell type identified by triple markers cell quantity and spatial relations of same neighbors (raw data plot).  
 

(A) T&B cell panel. (B) ARPDL1high panel. X-axis indicates 20 lung AC cases. Each column in each plot represents one case. Whiskers indicate SD. Asterisk 

(*) indicates that case contains large negative variance (MNG = -999; VAR = -999), suggesting case has not enough cells to assess variance. Points indicate value 

for one ROI, where there are five ROI sampled in total for each case (column). Red solid line indicates line of best fit of mean of ROI. Dotted blue bands indicate 

95% confidence interval (CI) of mean of ROI. Graph with vertical line of best fit or no 95% CI or lines not shown is out of bounds from skew of negative VAR 

values. Case 06L50 and 06L19 have less than five ROI, as ROI were not able to be segmented. Dash indicates average parameter of each case.  
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A.4    General cell type next to different general cell type neighbor cell quantity and spatial 

relations and vice versa (raw data plot).  
 

(A) T&B cell panel. (B) ARPDL1high panel. X-axis indicates 20 lung AC cases. Each column in each plot 

represents one case. Whiskers indicate SD. Asterisk (*) indicates that case contains large negative variance (VAR = 

-999), suggesting case has not enough cells to assess variance. Points indicate value for one ROI, where there are 

five ROI sampled in total for each case (column). Red solid line indicates line of best fit of mean of ROI. Dotted 

blue bands indicate 95% confidence interval (CI) of mean of ROI. Graph with no line of best fit and no 95% CI is 

out of bounds from skew of negative VAR values. Case 06L50 and 06L19 have less than five ROI, as ROI were not 

able to be segmented. Dash indicates average parameter of each case. 
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A.5    General cell type next to specific cell type neighbor and vice versa cell quantity and 

spatial relations (raw data plot).  
 

(A) T&B cell panel. (B) ARPDL1high panel. X-axis indicates 20 lung AC cases. Each column in each plot 

represents one case. Whiskers indicate SD. Asterisk (*) indicates that case contains large negative variance (VAR = 

-999), suggesting case has not enough cells to assess variance. Points indicate value for one ROI, where there are 

five ROI sampled in total for each case (column). Red solid line indicates line of best fit of mean of ROI. Dotted 

blue bands indicate 95% confidence interval (CI) of mean of ROI. Graph with vertical line of best fit and no 95% CI 

is out of bounds from skew of negative VAR values. Graphs that case 06L50 and 06L19 have less than five ROI, as 

ROI were not able to be segmented. Dash indicates average parameter of each case.  
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Appendix B -  Autoscaled graphs of cell-to-cell spatial analyses 

 

 

B.1    General cell type cell quantity and spatial relations of same neighbors in T&B cell panel with graph autoscaling. 
 

X-axis indicates 20 cases. Each column in each plot represents one case. Whiskers indicate SD. Points indicate value for one ROI, where there are five ROI 

sampled in total for each case (column). Red solid line indicates line of best fit of mean of ROI. Dotted blue bands indicate 95% confidence interval of mean of 

ROI. Case 06L50 and 06L19 have less than five ROI, as ROI were not able to be segmented. Dash indicates average parameter of each case.  
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B.2    General cell type cell quantity and spatial relations of same neighbors in adaptive resistance panel with graph  

          autoscaling. 
 

X-axis indicates 20 cases. Each column in each plot represents one case. Whiskers indicate SD. Points indicate value for one ROI, where there are five ROI 

sampled in total for each case (column). Red solid line indicates line of best fit of mean of ROI. Dotted blue bands indicate 95% confidence interval of mean of 

ROI. Case 06L50 and 06L19 have less than five ROI, as ROI were not able to be segmented. Dash indicates average parameter of each case.  
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B.3    Specific cell type identified by double markers cell quantity and spatial relations of same neighbors with graph   

          autoscaling. 
 

 (A) T&B cell panel. (B) ARPDL1high panel. X-axis indicates 20 lung AC cases. Each column in each plot represents one case. Whiskers indicate SD. Points 

indicate value for one ROI, where there are five ROI sampled in total for each case (column). Red solid line indicates line of best fit of mean of ROI. Dotted blue 

bands indicate 95% confidence interval of mean of ROI. Case 06L50 and 06L19 have less than five ROI, as ROI were not able to be segmented. Dash indicates 

average parameter of each case.  
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B.4    Specific cell type identified by triple markers cell quantity and spatial relations of same neighbors with graph  

          autoscaling. 

 
(A) T&B cell panel. (B) ARPDL1high panel. X-axis indicates 20 lung AC cases. Each column in each plot represents one case. Whiskers indicate SD. Points 

indicate value for one ROI, where there are five ROI sampled in total for each case (column). Red solid line indicates line of best fit of mean of ROI. Dotted blue 

bands indicate 95% confidence interval of mean of ROI. Case 06L50 and 06L19 have less than five ROI, as ROI were not able to be segmented. Dash indicates 

average parameter of each case.  
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B.5    General cell type next to different general cell type neighbor and vice versa cell  

          quantity and spatial relations with graph autoscaling. 
 

(A) T&B cell panel. (B) ARPDL1high panel. X-axis indicates 20 lung AC cases. Each column in each plot 

represents one case. Whiskers indicate SD. Points indicate value for one ROI, where there are five ROI sampled in 

total for each case (column). Red solid line indicates line of best fit of mean of ROI. Dotted blue bands indicate 95% 

confidence interval of mean of ROI. Case 06L50 and 06L19 have less than five ROI, as ROI were not able to be 

segmented. Dash indicates average parameter of each case. 
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B.6    General cell type next to specific cell type neighbor and vice versa cell quantity and  

          spatial relations with graph autoscaling. 
 

 (A) T&B cell panel. (B) ARPDL1high panel. X-axis indicates 20 lung AC cases. Each column in each plot 

represents one case. Whiskers indicate SD. Points indicate value for one ROI, where there are five ROI sampled in 

total for each case (column). Red solid line indicates line of best fit of mean of ROI. Dotted blue bands indicate 95% 

confidence interval of mean of ROI. Graphs that Case 06L50 and 06L19 have less than five ROI, as ROI were not 

able to be segmented. Dash indicates average parameter of each case.  
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