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Abstract 

Improving overall glycemia by targeting postprandial glucose spikes, particularly at the breakfast 

meal when insulin resistance is the highest in type 2 diabetes (T2D), may help to prevent 

diabetes complications. The purpose of this thesis was to determine whether consuming a low-

carbohydrate high-fat breakfast was superior to a breakfast with the dietary guidelines 

recommended nutrient profile for improving postprandial and 24-hour blood glucose responses 

to mixed meals in individuals with T2D. Adults with physician diagnosed T2D (N=23, 59 ± 11y, 

A1c: 6.7 ± 0.6%, BMI: 31 ± 7kg/m2) completed two 24-h isocaloric intervention periods, in a 

random order. Participants consumed either i) a low-carbohydrate high-fat breakfast [LC-BF; 

<10% energy from carbohydrate (CHO), 85% energy from fat (FAT), and 15% energy from 

protein (PRO)], or ii) a breakfast with the dietary guidelines recommended nutrient profile (GL-

BF; 55%CHO/30%FAT/15%PRO), with the same lunch and dinner provided (both 

55%CHO/30%FAT/15%PRO). Continuous glucose monitoring assessed postprandial glucose 

responses to each meal (incremental area under the curve; iAUC) and the mean 24-h glucose 

during each intervention. The postprandial glucose excursion (3h iAUC) after the LC-BF was 

~80% lower than the GL-BF (p<0.01). Overall postprandial hyperglycemia (measured as the sum 

of the 3h iAUC of breakfast, lunch and dinner), and glycemic variability (mean amplitude of 

glycemic excursions [MAGE]) were significantly reduced with the LC-BF compared to the GL-

BF (3h iAUC: -100 ± 116 mmol/L•9h, p<0.01; MAGE: -0.4 ± 0.8 mmol/L•24h, p=0.03). 

However, the mean 24-h blood glucose was not significantly reduced (LC-BF: 7.2 ± 1.1 mmol/L 

vs. GL-BF: 7.5 ± 1.5 mmol/L, p=0.09). Restricting carbohydrate at breakfast reduces 

postprandial hyperglycemia in individuals with T2D. A low-carbohydrate high-fat breakfast may 

be a simple and effective strategy to reduce the development of diabetes complications in T2D 

and long-term interventions are warranted.  
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1 Introduction 

1.1 Background 

In type 2 diabetes (T2D) the body is resistant to the metabolic effects of insulin and the 

insulin response is blunted when carbohydrates (CHO) are consumed (Bell, 2001). Previous 

studies have shown that post-meal glucose spikes are linked to diabetes complications and 

diabetic neuropathy (Bell, 2001). In people with T2D, the largest post-meal spike tends to occur 

following the consumption of breakfast (Pedersen et al., 2016; Manders et al., 2006; van Dijk et 

al., 2011; Little et al., 2011). This large spike following breakfast is most likely due to insulin 

resistance being highest in the morning in people with T2D (Van Cauter et al., 1997) and 

because typical breakfast foods are relatively high in CHO (e.g., cereal, oatmeal, toast, fruit). 

Currently, the Diabetes Canada guidelines recommend consuming an even distribution of CHO 

throughout the day (Dworatzek et al., 2013). However, whether this distribution is optimal for 

preventing hyperglycaemia and improving glycemic control has not been adequately tested. 

Continuous glucose monitoring (CGM) devices provide researchers, healthcare providers and 

patients the ability to track changes in glucose over several days under free-living conditions 

(Zavalkoff & Polychronakos, 2002; Rodbard, 2016; Monnier et al., 2007; Klonoff, 2005; 

Vigersky & Shrivastav, 2017). CGM is therefore a useful tool for determining how manipulating 

the carbohydrate content of meals impacts glycemic regulation in attempt to optimize dietary 

recommendations in T2D. The overall aim of this MSc thesis project was to determine how 

reducing the CHO content of a breakfast meal affects 24-hour glucose control, assessed by 

CGM, in individuals with T2D.  
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1.2 Overview of Normal Glucose Homeostasis 

Blood glucose concentration is determined by the balance between endogenous glucose 

production from the liver (i.e., glycogenolysis and gluconeogenesis), the appearance of 

exogenous glucose (from ingestion, digestion and absorption of CHO), and the uptake by tissues 

in the body (e.g., skeletal muscle, brain, adipose) (Nolan, 2011). Following ingestion of a meal, 

blood glucose levels increase and this triggers insulin release from the pancreatic beta-cells 

(DeFronzo, 2009). Incretin hormones released from the gut also serve to augment beta-cell 

insulin secretion.  The immediate release of insulin from beta-cells suppresses glucagon secretion 

from juxtaposed pancreatic alpha-cells (Aronoff et al., 2004), which collectively function to 

reduce endogenous glucose production in the liver. The major action of the rise in circulating 

insulin is to increase the rate of glucose disposal into insulin sensitive tissues (e.g., skeletal 

muscle) in order to reduce blood glucose concentration (Nolan, 2011).  

 

1.3 Insulin Signalling Pathway 

Insulin signals peripheral tissues to increase the uptake of glucose through a complex 

signalling pathway involving the insulin receptor, insulin receptor substrate (IRS) 1 and 2, 

phosphatidyl-inositol-3 kinase (PI-3K), and Akt leading to translocation of the insulin-responsive 

glucose transporter 4 (GLUT4) protein from intracellular pools to the plasma membrane (see 

Figure 1) (Cartee, 2015). In this manner insulin signalling triggers glucose uptake into tissues by 

facilitated diffusion.  
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Figure 1. Summary of The Insulin Signalling Pathway for Glucose Uptake. When insulin 
binds to the insulin receptor, a series of phosphorylation events activates various signalling 
proteins ultimately resulting in translocation of GLUT4 from the intracellular pool to the plasma 
membrane. Abbreviations: IRS, insulin receptor substrate; PI-3K, phosphatidyl-inositol-3 kinase; 
GLUT4, glucose transporter 4 protein. [Adapted from Cartee, 2015]. 

 

1.4 Pathogenesis of Type 2 Diabetes (T2D) 

T2D is characterized by decreased insulin sensitivity combined with beta-cell dysfunction 

(Cerf, 2013). This causes a pathological scenario where the level of insulin release from beta-

cells is insufficient for the prevailing level of insulin sensitivity, leading to elevated levels of 

blood glucose (i.e., hyperglycemia) (DeFronzo, 2009). T2D is diagnosed when 1) fasting plasma 

glucose (no caloric intake for at least 8 hours)  >7mmol/L, 2) glycated hemoglobin (HbA1c) 

>6.5%, or 3) plasma glucose two-hours following a 75g oral glucose tolerance test >11.1mmol/L 

(Goldenberg & Punthakee, 2013).  

T2D is characterised by hyperglycemia in the fasting and fed state, due to deficiencies in 

both insulin secretion and action (DeFronzo, 2009). Specifically, beta-cell dysfunction in T2D is 
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characterized by a dramatic loss of first phase insulin secretion, which results in reduced 

suppression of hepatic glucose production following ingestion of a meal (Ceriello, 2010). 

Release of incretin hormones (i.e. GLP-1, GIP) is also reduced, causing further impairment in 

post-meal beta-cell insulin secretion (Cariello, 2010; Leahy, 2005). When combined with insulin 

resistance in peripheral tissues, blood glucose levels rise excessively high after a meal, a 

condition termed postprandial hyperglycemia (Leahy, 2005). Postprandial hyperglycemia is 

associated with increased oxidative stress, inflammation, and endothelial dysfunction, which 

mechanistically links impaired glucose regulation with cardiovascular disease risk in people with 

T2D (Ceriello, 2005; DeFronzo, 2009). Indeed, higher postprandial glucose (PPG) values are an 

independent risk factor for future cardiovascular events and all-cause mortality in T2D patients 

(Cavalot, 2013). 
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2 Glucose Control in T2D 

Given the link between elevated glucose levels and macro- and microvascular 

complications (Monnier & Colette, 2015), the primary treatment strategies in T2D focus on 

improving glucose control (Asif, 2014). Guidelines for treatment of hyperglycaemia aim to 

maintain optimal HbA1c levels, which is defined as ≤7% (Imran et al., 2013). HbA1c reflects the 

average blood glucose concentrations over the preceding 2-3 months (Nolan, 2011). However, 

there is a growing body of evidence suggesting that treatment strategies should not only focus on 

HbA1c levels but also focus on the “glucose triad” (Monnier et al., 2006). The glucose triad is 

comprised of three main elements: 1) HbA1c, an indication of satisfactory overall glucose 

control 2) fasting blood glucose, reflecting how well an individual is able to regulate blood 

glucose levels following an 8-12 hour fasting period and 3) postprandial glycemia  (Monnier et 

al., 2008; Tay et al., 2015a). HbA1c and fasting glucose are widely emphasized in diabetes 

management. However, recent investigations support the notion that postprandial 

hyperglycaemia contributes more to overall daily hyperglycaemia in patients with better-

controlled diabetes (i.e., HbA1c <7.3%) (Ceriello et al., 2014), whereas fasting glucose is the 

main contributor to overall hyperglycaemia with poorly controlled diabetes (HbA1c >9.3%) 

(Riddle, 2017; Monnier et al., 2006). Since individuals with poor glucose control (i.e., HbA1c 

>9.0%) are often excluded from lifestyle intervention studies, PPG may be a more appropriate 

outcome measure for the majority of research studies aimed at improving glucose control in 

T2D.   
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3 Postprandial Glucose and Glycemic Variability 

3.1 Postprandial Glucose (PPG) 

PPG level reflects blood glucose concentration following ingestion of a meal or glucose 

load and significantly contributes to glycemic variability (discussed below), especially in 

individuals with HbA1c levels below ~7% (Alssema et al., 2015; Ceriello, 2010). Elevated PPG 

excursions and acute hyperglycaemia influence risk markers of cardiovascular disease (CVD), 

such as retinal vascular reactivity and oxidative stress, leading to diabetes complications 

(Ceriello & Motz, 2004). Interestingly, a meta-analysis by Levitan and colleagues showed that 

high PPG levels in non-diabetic individuals had a 27% greater risk for CVD compared to 

individuals with low PPG levels (Levitan et al., 2004). Additionally, in comparison to HbA1c, 

higher PPG is strongly correlated with the progression of diabetic retinopathy (Shiraiwa et al., 

2005). Collectively, the available evidence indicates that elevated PPG is a significant risk factor 

for diabetic complications. 

PPG excursions have two main components: 1) the duration of the postprandial 

excursion, which contributes to sustained chronic hyperglycaemia and leads to production of 

reactive oxygen species (ROS) associated with the development of diabetes complications and 

CVD (Ceriello et al., 2008), and 2) the magnitude of postprandial rise, which contributes to 

glycemic variability or instability (Monnier et al., 2008). Growing evidence suggests that 

glycemic variability is an independent risk for diabetes complications over the long-term 

(Maurizi & Pozzilli, 2013; discussed below). Indeed, the International Diabetes Federation (IDF) 

has identified elevated PPG is an independent risk factor for the progression of diabetes 

complications with guidelines that PPG should be targeted through medical or dietary 

interventions in order to improve overall glycemic control and reduce glycemic variability 

(Ceriello et al., 2014).   
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3.2 Glycemic Variability 

Although lower HbA1c levels are associated with reduced risk for diabetes 

complications, it has been shown that individuals with T2D may still be at risk for developing 

microvascular complications, regardless of achieving satisfactory HbA1c levels (Monnier et al., 

2008; Tay et al., 2015a). This suggests that factors other than HbA1c may be influencing the risk 

for developing vascular complications in T2D. Because HbA1c reflects an average glucose level 

over a longer period of time, it does not give an indication of glycemic variability on an hour-to-

hour or day-to-day basis, therefore limiting the assessment and optimal treatment methods for 

diabetes management (Schnell et al., 2017; Alssema et al., 2015). Glycemic variability is 

expressed by the amplitude, frequency and duration of fluctuations in glucose concentration, 

relative to mean blood glucose (Tay et al., 2015a). High PPG is a main contributor to glycemic 

variability (Monnier et al., 2008), though it is important to note that the acute fluctuations in 

daily blood glucose concentrations can be caused by factors other than PPG excursions (Tay et 

al, 2015a; Fysekidis et al., 2014) but also may be influenced by diabetes medications, sickness, 

stress or daily activities (such as exercise) (American Diabetes Association, 2010). 

Glycemic variability is measured by many different metrics that reflect the overall 

glucose swings from multiple measurements taken throughout the day (Monnier, Collette & 

Owens, 2008). Early studies were based on repeated finger stick glucose values taken during 

waking hours whereas modern CGM technology (see below) now allows for more sophisticated 

and accurate glycemic variability measurements based on continuous glucose measurement 

across several days/weeks (Rodbard, 2016). These include standard deviation (SD) of glucose 

values and mean amplitude of glycemic excursions (MAGE), among other calculated metrics 

(Tay et al., 2015a). MAGE, calculated using CGM, is commonly used for assessing glycemic 

excursions (Maurizi & Pozzilli, 2013). This measure reflects major glucose fluctuations greater 

than one standard deviation above mean glucose, where higher MAGE readings reflect glycemic 
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instability and variability in blood glucose concentration (Schnell et al., 2017). MAGE has been 

regarded as one of the best methods for quantifying glycemic excursions over a 24-hour period 

(Zaccardi et al., 2009). The importance of glycemic variability as an important component of 

glucose control has been recognized by numerous medical organizations, but currently there are 

no firm guidelines for glycemic variability targets (Monnier et al., 2016; Tay et al., 2015a). 

 

3.3 Targeting PPG and Glycemic Variability 

The Diabetes Intervention Study showed that higher PPG excursions following breakfast 

predicted myocardial infarction and mortality in patients with newly diagnosed T2D (Hanefeld et 

al., 1996), whereas the San Luigi Gonzaga Study, a 5-year follow up study, showed that elevated 

PPG levels following lunch were a strong predictor of the occurrence of cardiovascular events 

(Cavalot et al., 2006). Given the links between elevated PPG and CVD, studies have attempted to 

target PPG as a form of diabetes management. Such studies include the STOP-Noninsulin-

Dependent Diabetes Mellitus (STOP-NIDDM) and Hyperglycemia and Its Effect After 

Myocardial Infarction on Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus 

(HEART2D) trials. Although the STOP-NIDDM showed a 49% relative risk reduction of new 

cardiovascular events in patients with impaired glucose tolerance after approximately 3.3 years 

of treatment to reduce postprandial hyperglycemia (Chiasson et al., 2003), the HEART2D trial 

found that treatment of either postprandial or basal glucose using different insulin and 

pharmacological regimens led to similar HbA1c levels with no difference in risk for 

cardiovascular events following an acute myocardial infarction in individuals with T2D (Raz et 

al., 2009). It remains unknown whether targeting elevated PPG with lifestyle interventions, such 

as specific dietary strategies or exercise, can help prevent CVD. However, it is interesting to note 

that diets lower in glycemic index or glycemic load (two surrogate markers of PPG excursions) 
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tend to be associated with reduced cardiovascular mortality in observational studies and 

improved cardiovascular risk profile in intervention studies (Brand-Miller et al., 2007). 

 

3.4 Postprandial Glucose Following Breakfast 

CGM studies have shown that the post-meal glycemic excursion following breakfast is 

the highest glucose spike of the day (vanDijk et al., 2011; Preat et al., 2006; Gillen et al., 2012; 

Little et al., 2011; Monnier et al., 2002). It is interesting to note that these studies support the 

notion that despite being treated with oral glucose lowering medications and following healthy 

diets as defined by leading diabetes guidelines, individuals with T2D still spend many hours in 

hyperglycemia each day. For example, Preat et al. (2006) showed that individuals with T2D were 

still hyperglycemic (>10 mmol/l) for approximately 13 hours of the day, regardless of their 

continued use of oral medications and healthy diet parameters (Preat et al., 2006). Similarly, van 

Dijk and colleagues (2011) found that those with T2D were hyperglycemic (>10 mmol/L) for at 

least 9 hours per day (±4 hours), while individuals with well-controlled diabetes (HbA1c <7%) 

were still hyperglycemic for approximately 6 hours per day (vanDijk et al., 2011). This led the 

authors to speculate that oral blood glucose lowering medication did not seem to have a strong 

effect on lowering PPG (van Dijk et al., 2011). Interestingly, the STOP-NIDDM trial did suggest 

that the inclusion of acarbose following a meal could be beneficial for reducing cardiovascular 

risk in patients with glucose intolerance (Riddle et al., 2017), though it is widely accepted that 

acarbose causes unpleasant gastrointestinal discomfort that limit its therapeutic use (Derosa et 

al., 2015).  

Collectively, the available data suggest that targeting elevated PPG is important for 

reducing CVD risk in T2D and highlight the need for non-pharmacological interventions that 

reduce PPG excursions. Breakfast appears to be the largest postprandial glucose spike, which is 
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related to the pathophysiology of T2D and also in free-living conditions likely related to the 

relatively high CHO content of typical breakfast meals. The use of CGM can allow for the 

assessment of exposure to hyperglycemia and glycemic excursions (Klonoff, 2005) over a period 

of several days under free-living conditions, which enables easy and accurate assessment of PPG 

(Avogaro, 2011). CGM may therefore be a useful tool to assess how different lifestyle strategies 

could impact the glycemic response to breakfast and other meals in individuals with T2D. 
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4 Diurnal Variation of Glycemic Control 

4.1 Diurnal Glucose Variation in T2D 

Previous studies have shown that there is a diurnal rhythm (i.e. a physiological or 

behavioural rhythm over a 24 hour period, generated endogenously or due to behavioural or 

environmental changes) in glucose metabolism and that this normal rhythm is disrupted in 

individuals with T2D (Qian & Scheer, 2016). Interestingly, in contrast to normoglycemic 

individuals, where glucose tolerance and insulin sensitivity are higher in the morning, those with 

T2D experience improvements in glucose tolerance throughout the day as insulin sensitivity 

improves from morning to evening (shown in Figure 2 below) (Van Cauter et al., 1997; Scheen 

& Van Cauter, 1998). This has been shown through oral glucose tolerance tests, mixed meal 

tolerance tests with tracers, intravenous glucose tolerance tests, and hyperinsulinemic-

euglycemic clamp techniques [reviewed by Van Cauter et al., 1997; Qian & Scheer, 2016]. 

Although numerous studies have attempted to delineate the exact physiological mechanisms 

behind this occurrence, it still remains unclear as to why or how this happens [reviewed by Van 

Cauter et al., 1997; Qian & Scheer, 2016]. However, limited evidence in both human and animal 

studies have suggested the variation in diurnal glucose tolerance for individuals with T2D may 

be due to abnormalities in counterregulatory hormones (such as a surge in catecholamines, 

glucagon, growth hormone, incretins and cortisol), rate of insulin secretion/clearance, and/or rate 

of glucose production/utilization [reviews by Van Cauter et al., 1997; Qian & Scheer, 2016].  
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Figure 2. Diurnal Glucose Tolerance for Normoglycemic and T2D Individuals. In healthy 
individuals (black line) glucose tolerance and insulin sensitivity are highest in the morning and 
deteriorate across that day such that the largest postprandial glucose spike is typically seen after 
dinner. This diurnal variation is reversed in individuals with T2D (gray line) such that the largest 
postprandial glucose spike is typically seen in the morning. [Adapted from Van Cauter et al., 
1992 & Pedersen et al., 2016]. 

 

4.2 The Dawn Phenomenon 

The pathophysiology of T2D dictates that postprandial hyperglycemia is more prevalent 

following breakfast consumption (Preat et al., 2006; Van Cauter et al., 1997). In the early 1980’s, 

Schmidt and colleagues introduced the “dawn phenomenon” concept, which stated that a 

spontaneous rise in plasma glucose was seen towards the end of the fasting period without 

ingestion of any dietary CHO in individuals with type 1 diabetes (Schmidt et al., 1981). This 

phenomenon was later shown to occur in individuals with T2D as well (Bolli & Gerish, 1984, 

Monnier et al., 2013). In normoglycemic individuals, blood glucose and plasma insulin levels are 

lower and remain constant throughout the night, and insulin secretion gradually increases prior to 

dawn to stop hepatic glucose production and prevent hyperglycemia (Porcellati et al., 2013). In 

T2D however, the insulin resistant liver will continue to produce glucose just before dawn in the 
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absence of insulin secretion (Schmidt et al., 1984). Overnight, the liver produces glucose at a 

faster rate in individuals with T2D (~2.5 mg/kg/min vs. ~2.0 mg/kg/min in normoglycemic 

individuals), as there is an impairment in the ability to suppress hepatic glucose production, even 

in the context of elevated fasting insulin levels (DeFronzo, 2009). Monnier et al. (2013) recently 

used CGM to demonstrate the presence of the dawn phenomenon in 248 individuals with T2D. It 

was shown that the dawn phenomenon continues through to the post-breakfast period leading to 

postprandial hyperglycemia as well as the highest post-meal glucose excursion of the day 

occurring at breakfast (Monnier et al., 2013). Thus, in contrast to healthy adults, individuals with 

T2D tend to experience the highest levels of blood glucose in the morning, particularly after the 

breakfast meal (Figure 2; Van Cauter et al., 1997). It seems logical to suggest that strategies 

aimed to reduce the glucose spike following breakfast could benefit people with T2D. 

 

4.3 Effect of Breakfast Omission on Subsequent Meal Responses 

Previous research has shown that dietary intake at one meal can influence the PPG 

response to subsequent meals in both normoglycemic and impaired glucose tolerant individuals 

(Fletcher et al., 2012). The second meal phenomenon dictates that the postprandial glucose 

excursion will be lower and insulin sensitivity will be higher at lunch when breakfast has 

previously been consumed. In contrast, glycemic responses are higher and insulin secretion 

impaired following lunch and dinner when breakfast is omitted (Jacubowicz et al., 2015). The 

improvement in postprandial glucose response and insulin sensitivity following lunch and dinner, 

when breakfast is consumed, is thought to occur via improved beta-cell responsiveness after the 

second meal, where insulin release is enhanced due to previous glucose exposure (Korsgaard & 

Colding-Jorgensen, 2006). Jacubowicz and colleagues (2015) confirmed this finding in a recent 

study and also demonstrated that this effect not only occurs following lunch but can also carry on 

to dinner (discussed below).  
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In 2009, Jovanovic and colleagues conducted a study to determine the mechanisms 

behind the second meal phenomenon (Jovanovic et al., 2009a). This study was conducted on 10 

normoglycemic individuals on two separate days, in a randomized order. On one day participants 

consumed a standard breakfast (106g carbohydrates, 18g fat, 15g protein, 646 calories) and a 

standardized lunch (103g carbohydrates, 30g fat, 44g protein, 858 calories) separated by 4 hours 

on one of the experimental days. One the other day, breakfast was omitted but the same lunch 

was consumed. Blood samples and C magnetic resonance spectroscopy were used to measure 

changes in glucose concentration and postprandial muscle glycogen storage. Results from this 

study showed that when breakfast was consumed, the rise in plasma glucose following lunch was 

significantly reduced (0.9 ± 0.3 vs. 3.2 ± 0.3 mmol/L, p < 0.01), and postprandial muscle 

glycogen storage was improved by approximately 50% two hours following the lunch meal, 

which was then doubled by the five-hour mark (Jovanovic et al., 2009a). This study was one of 

the first to demonstrate the link between the second meal phenomenon and enhanced skeletal 

muscle glycogen synthesis, which is impaired in individuals with T2D (Jovanovic et al., 2009a). 

In another study by Jovanovic and colleagues (2009) it was shown that this phenomenon also 

occurs in individuals with T2D (Jovanovic et al., 2009b). When breakfast was consumed, 

individuals with T2D had a significantly reduced rise is plasma glucose concentration after 

lunch, compared to the day when no breakfast was consumed (0.68 ± 1.49 vs. 12.32 ± 1.73 

mmol/L) (Jovanovic et al., 2009b).  

 Similarly, Jacubowicz and colleagues investigated the effect of breakfast omission in 22 

patients with T2D who completed a two-day diet intervention in a random order, where three 

standardized meals were consumed on one day and two standardized meals on the other day. All 

test meals contained 20% fat, 54% carbohydrate and 26% protein, totaling 701 calories. Blood 

samples were collected at 8am on both test days and in 15-minute intervals following each meal 

for 180 minutes to assess postprandial plasma glucose. This study showed that, on the breakfast 



 15 

omission day, area under the curve (AUC)0-180 for plasma glucose, free fatty acids and glucagon 

were higher for both lunch (37, 41 and 15% higher respectively) and dinner (27, 30, and 12% 

higher, respectively) compared to the day where breakfast was consumed. Additionally, 

breakfast omission led to impaired insulin secretion (shown through the delay in peak insulin 

levels and reduced plasma insulin and c-peptide levels), and higher free fatty acid and glucagon 

levels after lunch and dinner (Jacubowicz et al., 2015). These findings extend those from 

Jovanovic and colleagues, and show that the glycemic response is worsened when breakfast is 

omitted, not only after lunch but also after dinner. Moreover, these findings emphasize the 

importance of breakfast consumption for glucose homeostasis across the day, and demonstrate 

that breakfast consumption can influence the glycemic response to subsequent meals. However, 

it still remains in question how the macronutrient composition at breakfast might affect the PPG 

response to subsequent meals. 

 

4.4 Other Factors Influencing Diurnal Glucose Values 

Presently, it is known that there is a diurnal glucose rhythm, which occurs over a 24-hour 

period and is generated as a consequence of physiological or behavioural changes (Qian & 

Scheer, 2016). However, it is not possible to distinguish whether, and to what degree, the diurnal 

rhythm is generated endogenously or due to behavioural (i.e. food intake/night eating, duration 

of fasting period/breakfast skipping, physical activity/sedentary time, sleep/wake cycle, sleep 

restriction/fragmentation) or environmental changes (i.e. 24 hour light or dark cycles) (Quian & 

Scheer, 2016; Green et al., 2008). Future studies are therefore needed to determine the 

underlying physiological mechanisms behind the diurnal rhythm, and how behavioural and 

environmental changes come into play. 
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5 Strategies to Reduce Postprandial Breakfast Glucose  

5.1 Carbohydrate Restriction 

It is well known that blood glucose concentration is highly influenced by CHO ingestion 

(Sheard et al., 2004), where the amount or type of CHO consumed is a significant determinant of 

PPG (Beulens et al., 2007). Thus, previous interventions have investigated the impact of different 

dietary strategies and CHO manipulation on glycemic outcomes in T2D patients (Tay et al., 

2015a). For instance, Kang et al. examined the effect of CHO proportion at breakfast on PPG 

fluctuations in individuals with impaired glucose tolerance (N=55) compared to individuals with 

normal glucose tolerance (N=78). Individuals were assigned to one of three different groups 

based on their typical macronutrient intake [low-CHO (<45%CHO, n=40 NGT, 37 IGR), 

medium-CHO (45-65%CHO, n=139 NGT, 76 IGR) or high-CHO (>65%CHO, n=42 NGT, 41 

IGR)]. Three-day CGMs were used to assess the glycemic response in all individuals. A positive 

correlation was seen between postprandial glucose fluctuations and increasing amounts of CHO 

ingested at each meal. Individuals with impaired glucose tolerance, assigned to the medium or 

high CHO breakfast groups, had significantly higher incremental AUC (iAUC), PPG excursions, 

PPG spikes and mean blood glucose levels. Additionally, the time it took for blood glucose 

levels to return to baseline following the medium or high carbohydrate means was significantly 

longer in the impaired glucose tolerance groups compared to the normal glucose tolerance 

individuals (Kang et al., 2013). These results indicate that consuming a larger amount of dietary 

CHO at breakfast leads to an increase in PPG and glycemic variability, whereas consuming a 

low-CHO breakfast meal seems to effectively curb PPG excursions and stabilize glucose levels 

throughout the day.  

In a longer-term study conducted by Tay et al. it was shown that a low-CHO diet (14% 

total energy, 57 g/day; 28%PRO, 58%FAT) led to reductions in glycemic variability as well as 
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medication requirements, compared to a high CHO diet (53%CHO, 17%PRO and 30%FAT) in 

115 individuals with T2D. Additionally, reductions in time spent in hyperglycemia, AUC, mean 

blood glucose level and HbA1c were seen following a 24-week nutrition and exercise protocol 

(Tay et al., 2014). After 52 weeks of following this protocol, further improvements were seen in 

glycemic control (HbA1c), fasting glucose, and glycemic variability, as well as a reduction in 

diabetes medication, weight, blood pressure and lipids (Tay et al., 2015b). These data support the 

notion that carbohydrate restriction at breakfast or throughout the day can lead to improvements 

in glycemic control and glycemic variability over the short and long term. However, these 

studies did not specifically address how the macronutrient manipulation at one meal (i.e. 

breakfast) affected the PPG response to subsequent meals. 

 

5.2 Carbohydrate Distribution at Meals 

Currently, the nutritional guidelines for diabetes management recommend consuming a 

moderate amount and even distribution of CHO throughout the day (Dworatzek et al., 2013). 

However, it has previously been shown that this distribution may not be optimal for glycemic 

control in T2D (Pearce et al., 2008). Pearce et al. examined the effect of CHO distribution on 

PPG, assessed by CGM. This study compared the effect of consuming a moderate amount of 

CHO throughout the day (~40% of total energy) versus consuming an even distribution of 

carbohydrate at each meal (70g CHO/each (3x) meal) or CHO loading at breakfast, lunch or 

dinner (125g CHO). Results from this study showed that peak PPG was only weakly related to 

CHO amount and glycemic load, which accounted for a mere 16-17% of variance in postprandial 

glycemic excursions. Interestingly, it was shown that consuming an even distribution of CHO 

throughout the day was not optimal for glycemic control. When the lunch meal was CHO loaded, 

AUC20-h, PPG peak and time spent above 12 mmol/L values were lower in comparison to 

consuming an even distribution of CHO throughout the day or CHO loading at breakfast or 
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dinner (Pearce et al., 2008). These results indicate that consuming meals containing CHO at 

lunchtime may be the most beneficial for lowering PPG outcomes as compared to consuming an 

even distribution of CHO throughout the day. Larger scale studies and different CHO 

manipulations are warranted to determine whether this strategy is beneficial for improving 

glycemic control and reducing glycemic variability over the long-term. 

 

5.3 Low-Carbohydrate Breakfast for Improving Glucose in T2D 

As we were beginning data collection for this study, Pedersen and colleagues published a 

similar investigation to ours examining the effect of a low-CHO/high-fat breakfast on glycemic 

control in patients with T2D (Pedersen et al., 2016). In studies where carbohydrates are 

restricted, it is important to match the total energy intake of the manipulated meals so as to not 

confound interpretations due to an energy imbalance. This is most commonly accomplished by 

increasing the proportion of energy coming from fat to the low-carbohydrate meal condition(s) 

resulting in what can be described as a low-carbohydrate high-fat dietary approach. Pedersen et 

al. (2016) used CGM to track mean and peak blood glucose levels as well as time spent in a 

hyperglycaemic state (blood glucose >10 mmol/L) to compare conditions when participants 

consumed a low-carbohydrate high-fat breakfast versus a standard low-fat breakfast of equal 

energy content. It was shown that eliminating CHO from the breakfast meal in the low-

carbohydrate high-fat breakfast condition decreased peak blood glucose following the meal, but 

did not affect the glucose response to a lunchtime meal or across a 24-hour period. Based on 

these findings, this study concluded that reducing daily CHO content by 33%, by avoiding CHO 

at breakfast, will likely not improve glycemic control in the absence of weight loss for people 

with T2D (Pedersen et al., 2016). However, there are several considerations worth noting in the 

authors’ interpretations of their findings. First, the authors focused solely on 24-hour average 

glucose concentration and did not analyze PPG nor did they perform detailed analyses of 
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glycemic variability, which as mentioned above are key indices of glycemic control in patients 

with T2D. Given that numerous studies using CGM have reported that breakfast yields the 

highest PPG spike in individuals with T2D (Preat et al., 2006; Little et al., 2011; Gillen et al., 

2012; Monnier et al., 2013; van Dijk et al., 2011; Manders et al., 2006) and there are independent 

associations between elevated PPG and cardiovascular mortality (Ceriello, 2005; DeFronzo, 

2009; Cavalot et al., 2013) it would seem that limiting the post-breakfast spike would be of 

potential benefit to patients with T2D provided that a low-CHO breakfast did not negatively 

impact the subsequent lunch or dinner glucose responses. Over time, reducing the PPG response 

to breakfast could lead to an overall improvement in glycemic control (i.e., lower postprandial 

hyperglycemia and lower glycemic variability). Consuming CHO at lunch and dinner also aligns 

better with the altered circadian rhythms in T2D where insulin resistance is higher and insulin 

secretion is lower in the morning period (Van Cauter et al., 1997). Second, the authors did not 

base distribution of calories and foods on what participants normally eat, which may have led to 

changes in diurnal glucose rhythms within itself, therefore reducing external validity of the 

study. Finally, the study excluded individuals with an HbA1c between 7-8% as the investigators 

recruited and compared two groups of T2D patients; one with HbA1c <7% and one with HbA1c 

>8%, leaving it unknown what the impact of breakfast carbohydrate restriction on a large portion 

of T2D patients with HbA1c values in between 7 and 8%. With these data and considerations in 

mind, we hypothesize that avoiding CHO at breakfast will reduce the largest PPG spike of the 

day and will be beneficial for individuals with T2D by reducing overall PPG exposure and 

glycemic variability. Therefore, the primary purpose of this thesis is to examine the effect of 

consuming a low-CHO breakfast on PPG, glycemic variability and 24-hour blood glucose 

response to mixed meals in individuals with T2D.  

 



 20 

6 Research Questions 

i) Will a breakfast low in carbohydrate and high in fat be more effective than a breakfast 

with the dietary guidelines recommended nutrient profile (matched for caloric intake) 

for reducing glycemic response throughout the day in adults with type 2 diabetes 

(T2D)? 

ii) Will a low-carbohydrate high-fat breakfast (LC-BF) improve postprandial glucose 

responses and reduce glycemic variability to a greater extent than a dietary guidelines 

breakfast (GL-BF), without worsening the glycemic response to isocaloric lunch and 

dinner meals? 
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7 Overall Objective 

To determine whether a LC-BF is superior to a GL-BF for improving short-term glucose control 

in T2D.  

 

7.1 Specific Objectives 

 
1. To determine whether consuming a low-carbohydrate high-fat breakfast (LC-BF; 

<10%CHO/ 85%FAT/ 15%PRO) is superior to consuming an isocaloric breakfast with 

dietary guidelines recommended nutrient profile (GL-BF; 55%CHO/ 30%FAT/ 

15%PRO) for improving postprandial glucose responses to mixed meals in individuals 

with T2D.  

2. To determine whether the LC-BF will improve 24-hour glucose and glycemic variability 

when compared to the GL-BF. 
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8 Hypotheses 

1. The LC-BF will lead to an overall reduction in the sum of postprandial glucose 

incremental area under the curve (iAUC) for breakfast, lunch and dinner, compared to the 

GL-BF day.  

2. The LC-BF will lead to a greater reduction in 24-hour glucose levels and glycemic 

variability throughout the day compared to the GL-BF. 

3. The LC-BF will not significantly worsen the postprandial glucose response to lunch or 

dinner. 
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9 Methods 

9.1 Participants 

Twenty-seven patients with physician diagnosed T2D, aged between 30 and 90 years, 

were recruited to perform two 24-hour experimental trials in a randomized order. This study was 

performed at the University of British Columbia Okanagan during the period of June 2016 to 

June 2017. All participants provided written informed consent, the study protocols were 

approved by the UBC Clinical Research Committee, and the trial registered at clinicaltrials.gov  

(NCT02982330). Participants were included if they had physician diagnosed T2D with stable 

medication and body mass for the preceding three months. Participants were excluded if they 

were taking exogenous insulin, regularly skipped breakfast, or had been diagnosed with type 1 

diabetes or cardiovascular disease. Of the twenty-seven randomized, twenty-three participants 

successfully completed the two conditions. Baseline characteristics are shown in Table 1, and the 

Consort study flow diagram is presented as Figure 3. 

 

Table 1. Baseline Characteristics of Participants (n=23)  

Sex 
(F:M) 

Age 
(y) 

HbA1c 
(%) 

Body mass 
(kg) 

BMI 
(kg/m2) 

Energy 
intake 
(kcals) 

Blood 
pressure 
(mmHg) 

12:11 59 ± 11 6.7 ± 0.6 88 ± 20 31 ± 7 1921 ± 387 124/79 
Values are mean ± standard deviation. F = Females, M= Males, HbA1c = Glycated hemoglobin, 
BMI = Body mass index 

 

9.2 Experimental Protocol 

Participants completed two 24-hour trials in a randomized crossover design. For one trial, 

a low-carbohydrate high-fat breakfast (LC-BF) was consumed, and on the other trial a breakfast 

providing the guidelines recommended macronutrient distribution (GL-BF) was consumed. The 
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two conditions differed only in the macronutrient composition of breakfast, with identical lunch 

and dinner meals between conditions. Macronutrient profiles for each provided lunch, dinner and 

GL-BF were based on the Canadian Diabetes Association Clinical Practice Guidelines 

(Dworatzek et al., 2013) providing ~55% carbohydrate (focusing on low glycemic index), ~30% 

fat, and ~15% protein, whereas the LC-BF consisted of <10% carbohydrate, ~85% fat, and ~15% 

protein. Breakfast options were standardized as an oat-based breakfast (GL-BF) or an egg 

omelette breakfast (LC-BF) (Table 2). 

 

 

Figure 3. Consort Study Flow Diagram. 

  

Assessed for eligibility (n=38) 

Random Assignment (n=27) 

Withdraw due to personal  
reasons (n=2) 

Excluded from analysis (n=2) 
Sickness (n=1) 

Adherance (n=1) 

Successfully completed intervention (n=23) 

Did not meet inclusion criteria (n=8) 
(taking exogenous insulin, recent injury, 

not physician diagnosed with T2D) 
Unable to commit time (n=2) 
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Table 2. Example Menu (62y, moderately active female, BMI=27.1) 

 Cals  
(kcals) 

CHO  
(g) 

FAT  
(g) 

PRO  
(g) 

LC-BF     

Omelette with: 

633 4.6 55.3 29.3 

     2 eggs 
     3.5 Tbsp. whipping cream 
     1/2 c. shredded cheddar cheese 
     1 c. spinach 
     1 tsp. margarine (for frying) 
1 c. coffee w/ 1 Tbsp. 10% cream 

GL-BF     

Breakfast Parfait with: 

628 82.3 20.4 28.9 

     1/2 c. oats 
     3/4 c. sliced banana 
     1/2 c. blueberries 
     100 g. low-fat yogurt  
     100 g. Greek yogurt  
     1 Tbsp. + 2 tsp. pumpkin seeds 
1 c. coffee w/ 3 Tbsp. 1% milk  

Lunch     

Turkey Sandwich with: 

513 67.5 16.6 23.5 

     2 slices whole grain bread 
     1 Tbsp. margarine 
     75 grams turkey 
     3 outer leaf lettuce (romaine)  
6 cherry tomatoes 
6 baby carrots 
1 large apple 
6 cashew nuts 

Dinner     

650mL butternut squash soup  

940 120.6 31.1 44.4 
2/3 c. cubed chicken breast 
10 whole wheat crackers 
37 g. marble cheese 
1 large apple 

 Daily Average (kcals) (%) (%) (%) 

 LC-BF 2086 35.6 45.8 18.6 
 GL-BF 2081 52.1 29.4 18.5 

LC-BF = low carbohydrate breakfast, GL-BF = guidelines breakfast, cals = calories, kcal = 
kilocalories, g = grams, CHO = carbohydrates, PRO = protein, Tbsp. = tablespoon, c = cups, tsp. 
= teaspoon 
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First, participants completed a three-day food log in order to generate individualized meal 

plans based on food preferences and normal caloric distribution for meals. Calories were 

matched between conditions for each meal within participants (Table 3). Energy requirements for 

the day were calculated using the Harris-Benedict formula and Physical Activity Level 1.4 

(Gerrior et al., 2006; Males: RMR [kcal/day] = 66.4730 + 13.7516W + 5.0033H – 6.7750A and 

Females: RMR [kcal/day] = 665:0955 + 9.5634W + 1.8496H - 4:6756A, where W = weight in 

kilograms; H = height in centimeters; A = age in years). Participants were provided with all food 

items, as well as meal preparation instructions, for six meals (three meals per day), with the 

timing of meals standardized between trials (meals were separated by at least three hours). A 

logbook was provided for participants who were instructed to record the timing of their meals, 

any changes made to their prescribed meal plan, daily physical activity and to record capillary 

glucose measurements for CGM calibration. The primary outcome of postprandial glucose was 

assessed using CGM (iPro®2 Professional, Medtronic Inc.). The CGM sensor (Enlite™ Sensor, 

Medronic Inc.) was inserted the day before the first condition and removed 24 hours after the 

second condition. Participants were also instructed to take four capillary glucose measurements 

per day for CGM calibration (before breakfast, lunch, dinner and bedtime). 

 

9.3 Self-Reported Appetite Ratings 

To explore subjective ratings of hunger, fullness, and desire to eat something sweet or 

savoury, Visual Analog Scales (VAS) were used. Before and after each meal participants rated 

each of the following four questions by marking vertically on a horizontal line with descriptive 

anchors on either side (‘not at all’ to ‘extremely’): 1) How hungry do you feel; 2) How full do 

you feel; 3) How strong was your desire to eat savoury foods; and 4) How strong was your desire 

to eat sweat foods. The VAS scores were converted to a 0-100 scale, as previously described 

(Flint et al., 2000; Rebello et al., 2016). 
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9.4 Analyses 

 Data from the CGM were downloaded and integrated with four capillary glucose 

calibrations using the Carelink software (Medtronic Inc.) before being exported to Excel for 

analyses. Glycemic variability and mean glucose across each 24-h period (starting immediately 

before breakfast) were analyzed using the online EasyGV platform (EasyGV, Oxford, UK). 

Postprandial hyperglycemia, for both total (24-hour) and meals (3-hour) area under the curve 

(AUC) and incremental AUC (iAUC), was assessed using the trapezoid method (Le Floch et al., 

1990). Total AUC describes glycemic control incorporating basal blood glucose levels, whereas 

iAUC largely represents the glycemic response to meals (Le Floch et al., 1990). 

 

9.5 Statistical Analyses 

Statistical analyses were performed using SPSS 24.0 (SPSS, Chicago, Illinois). Data were 

assessed for normality using histograms and Q-Q plots and transformed using natural log or 

square root transformation prior to analyses if necessary. For all summary CGM variables (sum 

of 3h post-meal glucose iAUC, 24h mean, 24h AUC, 24h iAUC, MAGE, SD, maximal glucose, 

minimal glucose) data were analyzed using paired t-tests. The primary outcome was overall 

postprandial hyperglycemia, defined as the sum of the 3h post-meal iAUC. Additionally, 

repeated measures ANOVA (2 conditions X 3 time points; breakfast, lunch & dinner) was used 

to examine the postprandial responses at each meal. Separate repeated measures ANOVAs were 

used to assess hunger/satiety scores before (pre) and after (post) meals. Significant interactions 

were followed up with paired-sample t-tests between conditions. Sample size was calculated a 

priori in order to detect a 20% reduction (effect size, Cohen’s d = 0.72) in the sum of 3-hour 

post-meal iAUC based on means and standard deviations from previous CGM studies conducted 

in our laboratory. It was estimated that 23 paired observations would be needed to detect a 20% 
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difference in iAUC with 90% power and effect size of 0.72 assuming a conservative correlation 

between repeated measures of r=0.5 (calculated using G*Power v3). A 20% reduction was 

considered clinically relevant based on previous studies showing that commonly-prescribed 

glucose-lowering medications lead to a ~20% reduction in PPG (Goldstein et al., 2007). Effect 

sizes for pairwise comparisons were calculated using Cohen’s d. 
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10 Results 

Summary CGM curves for the LC-BF and GL-BF conditions are shown in Figure 4A. 

Full CGM data analyses for all variables are shown in Table 3. 

 

10.1 Postprandial Blood Glucose 

The primary outcome of the sum of the 3-h post-meal glucose iAUC was significantly 

reduced by -100 ± 116 mmol/L�9h in the LC-BF condition compared to the GL-BF (p<0.01, 

95% CI: -151.4, -48.6, Figure 4A & 4B). 24-h iAUC was also lower by -173.5 ± 361 

mmol/L with the LC-BF compared to the GL-BF (p<0.05, 95% CI: -333.4, -13.6). Total 24-h 

AUC was not significantly different between the LC-BF and GL-BF conditions (Table 3). The 3-

h postprandial iAUC, mean and peak glucose responses to each meal were significantly different 

between the LC-BF and GL-BF conditions (Condition X Time interactions: p<0.01, Table 3). 

Compared to GL-BF, the LC-BF reduced the 3-h blood glucose after breakfast (by -1.4 ± 1.3 

mmol/L, p<0.01, 95% CI: -1.94, -0.80) but not after lunch (0.1 ± 1.3 mmol/L, p=0.65, 95% CI: -

0.47, 0.74) or dinner (0.0 ± 1.1 mmol/L, p=0.91, 95% CI: -0.44, 0.50).  

 

10.2 Glycemic Variability 

The 24-h MAGE in the LC-BF condition was significantly lower (by -0.4 ± 0.8 mmol/L, 

p=0.03, 95% CI: -0.7, -0.04, Figure 4C) when compared to the GL-BF. The SD of blood glucose 

across 24-h with the LC-BF was also significantly lower (by -0.2 ± 0.4 mmol/L, p=0.01, 95% CI: 

-0.41, -0.07, Table 3) compared to the GL-BF. 
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10.3 24-hour Average and Peak Blood Glucose 

Mean 24-h blood glucose was not significantly different between the LC-BF (7.2 ± 1.1 

mmol/L) and GL-BF (7.5 ± 1.5 mmol/L) conditions (p=0.09, Table 3). However, the peak blood 

glucose was significantly reduced by 0.9 mmol/L (p=0.02, 95% CI: -1.56, -0.167, Table 3).  

 

 

Figure 4. CGM Summary and Individual Data for Sum Meal iAUC and MAGE. A) 
Continuous blood glucose data (n=23) for 24-h with a low-carbohydrate high-fat breakfast (LC-
BF; black line) compared to guidelines breakfast (GL-BF; grey line). Striped shaded area 
indicates the sum of 3-h post-meal incremental area under the curve (iAUC), which was 
significantly lower in the LC-BF versus the GL-BF condition. B) Sum 3-h postprandial iAUC 
individual data. C) MAGE individual data. Abbreviations: LC-BF = low carbohydrate breakfast, 
GL-BF = guidelines breakfast, iAUC = incremental area under the curve, MAGE = mean 
amplitude of glycemic variability. P-values refer to paired t-tests between conditions. 
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Table 3. Summary of Continuous Glucose Monitoring (CGM) Data  

 GL-BF LC-BF P-value Cohen’s d 

24-h total AUC 
(mmol/L•24-h) 10610 ± 2221 10223 ± 1633 0.08 -0.48 

24-h iAUC 
(mmol/L•24-h) 540 ± 477 366 ± 289* 0.03 -0.55 

Sum meal iAUC 
(mmol/L•9-h) 390 ± 196 290 ± 143* 0.001 -0.96 

MAGE (mmol/L) 3.3 ± 1.2 2.9 ± 0.9* 0.03 -0.53 
24-h mean glucose 
(mmol/L) 7.5 ± 1.5 7.2 ± 1.1 0.14 -0.39 

24-h SD (mmol/L) 1.3 ± 0.5 1.0 ± 0.3* <0.001 -0.72 
24-h peak glucose 
(mmol/L) 10.9 ± 2.5 10.0 ± 1.6* 0.02 -0.65 

24-h min glucose 
(mmol/L) 5.8 ± 1.1 5.5 ± 0.9 0.16 -0.31 

PPG Breakfast (mmol/L)  
     3-h mean glucose 8.8 ± 2.0 7.4 ± 1.3* <0.001 -1.19 
     3-h peak glucose 10.5 ± 2.4 8.1 ± 1.5* <0.001 -1.75 
     3-h min glucose 7.0 ± 1.7 6.7 ± 1.3 0.16 -0.32 
     3-h AUC 1583 ± 368 1335 ± 244* <0.001 -1.19 
     3-h iAUC 136 ± 78 35 ± 40* <0.001 -1.86 

PPG Lunch (mmol/L)  
     3-h mean glucose 7.8 ± 2.1 8.0 ± 1.2 0.48 0.18 
     3-h peak glucose 9.3 ± 2.5 9.3 ± 1.6 0.94 0.01 
     3-h min glucose  6.4 ± 1.6 6.5 ± 0.9 0.59 0.14 
     3-h AUC 1415 ± 374 1454 ± 223 0.46 0.19 
     3-h iAUC 113 ± 75 118 ± 90 0.71 0.08 

PPG Dinner (mmol/L)  
     3-h mean glucose 8.2 ± 1.8 8.2 ± 1.5 0.91 0.02 
     3-h peak glucose 10.0 ± 3.3 9.5 ± 1.8 0.44 -0.18 
     3-h min glucose 6.4 ± 1.4 6.6 ± 1.4 0.38 0.19 
     3-h AUC 1473 ± 334 1476 ± 269 0.93 0.02 
     3-h iAUC 136 ± 90 135 ± 83 0.98 -0.01 

GL-BF = guidelines breakfast, LC-BF = low carbohydrate breakfast, AUC = area under the 
curve, iAUC = incremental area under the curve, MAGE = mean amplitude of glycemic 
excursions, SD = standard deviation, PPG = postprandial glucose, mmol/L = millimoles per litre  
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10.4 Self-Reported Appetite Ratings  

Hunger, satiety, desire for sweets, and desire or savoury foods assessed before (pre) and 

after (post) each meal are presented in Table 4. Pre-meal hunger demonstrated a significant 

condition X time interaction (p=0.03) with post-hoc pairwise comparison testing between 

conditions showing lower hunger before dinner in the LC-BF compared to the GL-BF (p=0.03; 

Figure 5A). Post-meal hunger, and pre- and post-meal fullness did not differ between conditions 

(all p>0.11). Desire to eat sweet foods tended to be lower in the LC-BF condition compared to 

the GL-BF condition (Main effect condition: p=0.06, Figure 5B). The post-meal desire to eat 

sweet foods, and pre- and post-meal desire for savoury foods did not significantly change across 

time or differ between conditions (all p>0.17).   

 

 

Figure 5. Self-Reported Ratings of Satiety. A) Self-reported ratings of pre-meal hunger 
(n=13). B) Self-reported ratings of pre-meal craving for sweets (n=13). A significant condition X 
time interaction was detected for pre-meal hunger (p=0.03). *P<0.05 pairwise comparison 
between GL-BF and LC-BF at the dinner time point. 

 
 
 
 
 
 
 
 
 
 
 

100 
 
  80 
 
  60 
 
  40 
 
  20 
 
    0 

	

Pr
e-

m
ea

l H
un

ge
r (

0-
10

0)
 

Pr
e-

m
ea

l D
es

ire
 fo

r S
w

ee
ts

  
(0

-1
00

) 

 60 

 
 40 

 
 20 

 
   0 

 
-20  

 Breakfast            Lunch              Dinner 
 
Breakfast            Lunch              Dinner 

A B 

*

GL-BF 
LC-BF 

GL-BF 
LC-BF 



 33 

Table 4. Self-Reported Ratings of Satiety  

 GL-BF LC-BF 

Breakfast   
     Pre-meal hunger 47 ± 15.6 51.1 ± 18.3 
     Post-meal hunger 12.4 ± 19.3 14 ± 19.1 
     Pre-meal fullness 21.7 ± 15.3 23.1 ± 23.3 
     Post-meal fullness 65.7 ± 19.8 54.7 ± 29.7 
     Pre-meal desire for savoury 26.4 ± 25.1 27.5 ± 21 
     Post-meal desire for savoury 21.7 ± 24.5 20.9 ± 21.8 
     Pre-meal desire for sweets 15.1 ± 15.8 13.7 ± 14.3 
     Post-meal desire for sweets 10.2 ± 15.7 9.6 ± 15.2 
Lunch   
     Pre-meal hunger 50 ± 24.6 44.8 ± 24.7 
     Post-meal hunger 14.2 ± 18 16.8 ± 22.5 
     Pre-meal fullness 15.4 ± 12.9 24.2 ± 23.7 
     Post-meal fullness 52.2 ± 25.5 63.5 ± 19.9 
     Pre-meal desire for savoury 34.3 ± 20.3 31.6 ± 20.7 
     Post-meal desire for savoury 22.8 ± 22.6 26.6 ± 23.5 
     Pre-meal desire for sweets 10.4 ± 14.6 13.5 ± 17.6 
     Post-meal desire for sweets 12.4 ± 17 18.4 ± 20.3 

Dinner   
     Pre-meal hunger 51.9 ± 28.4 37.6 ± 21.8* 
     Post-meal hunger 9.6 ± 11.9 10.2 ± 11.6 
     Pre-meal fullness 23.4 ± 18.3 36.3 ± 22.5 
     Post-meal fullness 55.5 ± 16.9 62.9 ± 20.5 
     Pre-meal desire for savoury 39.6 ± 28.6 30.2 ± 20.2 
     Post-meal desire for savoury 18.4 ± 22.1 17.6 ± 19.8 
     Pre-meal desire for sweets 22.3 ± 21.3 8.8 ± 14 
     Post-meal desire for sweets 12.1 ± 16.8 9.9 ± 14.2 

Values are mean ± standard deviation of n = 13 individuals per group. Units of measurement 
reported as percentage, p values determined via paired t-tests.  GL-BF = guidelines breakfast, 
LC-BF = low-carbohydrate breakfast. A significant meal X time interaction was found for pre-
meal hunger (P<0.05). *P<0.05 versus dinner pre-meal hunger in GL-BF condition. 
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11 Discussion 

The present study shows that consuming a low-carbohydrate high-fat breakfast (LC-BF) 

lowers postprandial hyperglycemia and glycemic variability across the subsequent 24 hours. In 

addition, ratings of pre-meal hunger and desire to eat sweet foods later in the day were reduced 

in the LC-BF condition. These potential benefits of a LC-BF were realized when compared to an 

isocaloric mixed macronutrient breakfast based on what is typically recommended; i.e., low in 

fat and moderate in carbohydrate (Dworatzek et al., 2013; American Diabetes Association, 

2004). Previous studies have shown that an overall low-carbohydrate high-fat diet lowers 

hyperglycemia, blood lipids and improves body composition over several weeks/month (Boden 

et al., 2005; Forsythe et al., 2008; Samaha et al., 2003; Saslow et al., 2014; Volek et al., 2004; 

Westman et al., 2008); however long-term compliance to restrictive dietary interventions are 

poor (Pagoto & Appelhans, 2013). Here, we provide evidence that a low-carbohydrate high-fat 

breakfast may be a simple and effective strategy to reduce hyperglycemia in individuals with 

T2D. However, intervention studies are warranted to determine the long-term impact on 

glycemic control measures, cardiovascular risk factors, and other health outcomes.  

 

11.1 Low-Carbohydrate High-Fat Breakfast Lowers Postprandial Hyperglycemia 

The postprandial glucose response to breakfast was reduced by 74% when carbohydrates 

were restricted to less than 10% of breakfast caloric intake. This is in agreement with previous 

studies (Ceriello et al., 1999; Kang et al., 2013; Pedersen et al., 2016), highlighting the 

effectiveness of carbohydrate restriction to limit postprandial hyperglycemia in T2D. The present 

findings and those of others (Clark et al., 2006; Pedersen et al., 2016) show that there is no 

carryover effect of a LC-BF on the postprandial response to lunch or dinner. Pedersen et al. 

(2016) have previously proposed that restricting carbohydrates at breakfast might lead to a 
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subsequent worsening of the lunch and dinner responses, as this has been seen with breakfast 

omission (Jacubowicz et al, 2015). However this does not appear to be the case as there were no 

differences between lunch and dinner between the LC-BF and GL-BF conditions. Therefore, 

much of the effect for reducing overall postprandial hyperglycemia in our study (i.e., sum of 

iAUC; Figure 4B) can be attributed to reducing the immediate postprandial glycemic response to 

breakfast with no evidence of a LC-BF worsening glucose responses to lunch or dinner.  

 

11.2 Low-Carbohydrate High-Fat Breakfast Lowers Glycemic Variability 

Glycemic variability (frequency and magnitude of 24-hour glucose oscillations) as 

assessed by MAGE and 24-hour SD was significantly reduced when a LC-BF was consumed 

compared to a GL-BF. The MAGE gives an index of within-day fluctuations in glucose that are 

greater than one SD, and is regarded as the most comprehensive marker of intraday glycemic 

variability (Monnier et al., 2008; Tay et al., 2015a). Interestingly, the reduction in MAGE in the 

present study agrees with a previous study reporting a significant reduction in glycemic 

variability with the use of the drug acarbose (Derosa et al., 2015). A reduction in glycemic 

variability may be cardioprotective as hyperglycemic excursions are known to be proatherogenic 

by stimulating reactive oxygen species and inflammatory cytokine production that contribute to 

the development of cardiovascular disease (Brownlee, 2005). For example, in individuals with 

T2D, a meal high in carbohydrates (causing hyperglycemia) increases the susceptibility of LDL 

to oxidation (Ceriello et al., 1999) and has been shown to impair vascular endothelial function 

(Ceriello et al., 2005). Additionally, a meal containing equal amounts of carbohydrate and fat 

significantly impairs endothelial function, whereas a low-carbohydrate meal alone does not 

(Ceriello et al., 2002). Indeed, oscillating blood glucose is more deleterious for promoting 

oxidative stress (Monnier et al., 2006) and predicting future cardiovascular risk than constant 

hyperglycemia (Ceriello et al., 2008). These data highlight the importance of reducing 
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postprandial hyperglycemia and glycemic variability in individuals with T2D. The current study 

expands on previous work by using CGM analyses to show that postprandial hyperglycemia and 

glycemic variability are reduced over a 24-hour period after a LC-BF is consumed. 

 

11.3 Low-Carbohydrate High-Fat Breakfast May Restore Diurnal Glucose Rhythms 

Generally, an even distribution of macronutrients across the day is recommended in T2D 

(American Diabetes Association, 2004; Gillen & Tapsell, 2006). However, it is currently unclear 

whether this recommendation is optimal for glucose control in patients with T2D or for all 

cardiometabolic health outcomes. The hyperglycemic response to breakfast is the largest and 

most prevalent in individuals with T2D (van Dijk et al, 2011). Indeed, the present study showed 

that by reducing hyperglycemia at breakfast the 24-hour peak glucose was reduced. Therefore, 

restricting carbohydrates at breakfast appears to be a simple and effective strategy to reduce the 

magnitude and prevalence of hyperglycemia across the day. However, it is important to note that 

the same may not be true for individuals without T2D. In healthy adults, markedly higher 

responses to carbohydrates are seen in the evening (Carroll & Nestel, 1973, Saad et al., 2012), 

which is likely related to the opposite diurnal variation in glucose tolerance and insulin 

sensitivity seen in healthy adults compared to individuals with T2D (reviewed by Van Cauter et 

al. 1997; Qian & Scheer, 2016). In the healthy state, glucose tolerance and insulin sensitivity are 

highest in the morning whereas in T2D this is reversed, contributing to the large postprandial 

glucose spike after breakfast (Manders et al., 2006; van Dijk et al., 2011; Little et al., 2011). 

Therefore, the optimal timing of carbohydrates may depend on an individuals’ degree of 

glycemic control. Kessler et al. (Kessler et al., 2017) showed that four weeks of consuming high-

carbohydrate meals until 13:30 followed by low-carbohydrate meals between 16:30 to 22:00 

resulted in a 7.9% decrease in the whole-day glycemic response, compared to the inverse 

sequence of meal composition in individuals with impaired glucose tolerance. Indeed, 



 37 

carbohydrate consumption in the evening is linked to the metabolic dysregulation that occurs 

with late feeding in shift workers (Morgan et al., 2012). However, these data are in contrast to 

some findings from normoglycemic overweight/obese adults which show that glycemic control is 

improved when carbohydrates are eaten at dinner (Alves et al., 2014). Moreover, in obese 

individuals consuming carbohydrates mainly at dinner has been shown to lead to more 

pronounced weight loss and reduced hunger (Sofer et al., 2011). Clearly further research 

regarding potential diurnal rhythms and carbohydrate consumption is warranted. Our findings of 

reduced postprandial hyperglycemia and lower glycemic variability with carbohydrate restriction 

at breakfast may apply to those with T2D where glycemic outcomes are most important.  

 

11.4 Low-Carbohydrate High-Fat Breakfast May Reduce Hunger Later in The Day 

Research on the satiating effects of carbohydrate versus fat is conflicting (Blundell et al., 

1993; Cecil et al., 1999, Cotton et al., 1994), however, most studies have only looked at the 

immediate response to a single meal and not how manipulating carbohydrate or fat at the 

breakfast meal impacts subsequent meals. Our design allowed us to determine how changing 

only breakfast might impact hunger and satiety later in the day when identical lunch and dinner 

meals were consumed. The rapid weight loss seen with a low-carbohydrate high-fat diet is 

purported to be attributed to, in part, appetite suppression (Erlanson-Albertsson & Mei, 2005). 

Our findings of lower hunger at dinner, after consuming a LC-BF, could be interpreted to 

indicate that such a strategy could lead to reduced energy intake in people with T2D. 

Interestingly, cravings for sweet foods followed the same trend as hunger, showing evidence of 

reduced cravings for sweets later on in the day (Main effect condition, p=0.06). These findings of 

lower hunger, and potentially lower cravings for sweets, may help inform additional ad libitum 

studies to determine whether consuming a LC-BF can curb hunger and therefore help promote 

weight loss in T2D. Notably, Gibbons and colleagues have previously shown that ghrelin, GLP-1 
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and PYY levels increase significantly following a low-carbohydrate high-fat meal, where ghrelin 

and GLP-1 levels were associated with short-term improvements in appetite control and reduced 

feelings of hunger (Gibbons et al., 2013). Therefore, it may be beneficial to measure ghrelin, 

GLP-1 and PYY levels throughout the day, in association with feelings of hunger and satiety, 

following a low-carbohydrate high-fat breakfast in future studies. 

 

11.5 Strengths and Limitations 

 The use of CGM was a strength in the present study because it enabled analyses of 24-

hour glucose profiles, postprandial glucose excursions and glycemic variability under free-living 

conditions, which could not have otherwise been done with the use of capillary glucose 

measurements alone. Another strength of this study was the use of individualized meals plans, 

which were tailored to the participant food preferences and typical meal sizes, as opposed to 

providing a generalized meal plan for all volunteers. We believe this may have contributed to the 

high rate of participant adherence to the study parameters and demonstrates utility for potential 

implementation in future research and clinical applications.   

 Although glucose control is the major clinical target in T2D, blood lipids are also 

important cardiovascular risk factors. The present study used CGM in free-living volunteers to 

measure glucose but unfortunately we did not have serial blood samples to measure postprandial 

triglycerides or free fatty acids, which may impact cardiovascular risk mechanisms independent 

of glucose (Ceriello et al., 2004). It is possible that the LC-BF could have differentially impacted 

blood lipids throughout the day and future work should explore how this diet manipulation 

influences other aspects of metabolism in addition to glucose control. Insulin levels and gastric 

emptying were also not measured in the current study, which limited the ability to determine how 

the different breakfasts impacted mechanisms related to postprandial glucose control. 

Additionally, the negative impacts of high PPG and glycemic variability have been attributed to 
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ROS, inflammation and endothelial dysfunction, which elevate CVD risk (Ceriello, 2005; 

Monnier et al., 2008). These mechanistic aspects of CV risk were not directly assessed in the 

present study through venous blood sampling and/or vascular function measures so it remains 

undetermined whether lowering PPG and glycemic variability impacted these outcomes. 

Furthermore, given that hunger/satiety assessments were an exploratory outcome and focus was 

placed on following the diet plan exactly as prescribed, the hunger/satiety measures were perhaps 

not prioritized by the participants, which resulted in a smaller sample size for these measures due 

to incomplete and missing data. Lastly, the external validity may have been reduced because 

participants were asked to consume relatively large meals with at least 3-5 hours in between in 

order to accurately measure 3-h PPG. In reality individuals may break up meals into smaller 

portions and consume snacks between them.  
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12 Conclusions 

 A LC-BF significantly reduces the largest glucose spike of the day, improves overall 

postprandial hyperglycemia, and lowers glycemic variability in individuals with T2D. The 

inclusion of a low-carbohydrate high-fat breakfast meal in T2D patients may be a practical and 

easy way to target the large morning glucose spike, when insulin resistance is the highest and 

glucose tolerance the lowest, without worsening glycemic responses to subsequent meals. The 

results of our study suggest potential benefits of altering macronutrient distribution throughout 

the day such that carbohydrates are restricted at breakfast with a balanced lunch and dinner rather 

than consuming an even distribution and moderate amount of carbohydrates throughout the day. 

Further testing is needed to determine if, over the long term, this meal pattern lowers 

cardiovascular risk markers and diabetes complications. The encouraging preliminary findings 

showing lower hunger later in the day following a LC-BF also indicates this approach could have 

wider implications for weight loss, but this will require further research.  
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Appendices 

Appendix A: CGM, Diet and Physical Activity Logbook 
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Continuous glucose monitoring (CGM) Instructions for 
participants 
 
This is your CGM and diet log book for the days that you will be 
wearing the CGM. Please read and use the following 
instructions. If you have any problems or questions please call:  
 

______________________on _______________________ 
 

WHAT TO DO WHILE WEARING YOUR DEVICE: 
Ø You should continue your normal daily activities while wearing the device.  
Ø The device (but not the monitor) is waterproof and can be worn in the bath 

or shower. 
Ø Please continue to eat your normal diet. You will need to record what you 

ate and when you ate it in this log book.  
Ø Please take your finger stick blood glucose readings and enter the results 

into both this log book and the monitor.  
 

WHAT NOT TO DO WHILE WEARING YOUR DEVICE: 
Ø Although the device that is attached to your stomach (sensor) is waterproof, 

we ask that you please do not go in a hot tub while wearing the CGM.  
Ø It is important that you do not take any Tylenol or other acetaminophen-

containing products while wearing the device. This is because they interfere 
with the sensors ability to measure blood sugar. 

 
WHEN TO TAKE BLOOD SUGAR FINGER PRICKS.  

Ø For each day that you wear the CGM the times that you need to take a finger 
stick blood glucose are recorded on each day in the log book.  

Ø You need to take these measures at least 3 times a day in order to calibrate 
the CGM.  

o Finger pricks will be taken before breakfast, lunch and dinner (an 
additional one can be taken before bed time if you want).  

 
HOW TO TAKE A BLOOD SUGAR FINGER PRICK.  

1) Wash your finger with warm water and soap and dry it with a towel. If you can not 
access a tap at the time, clean your finger with an alcohol wipe.  
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2) Put a new strip into the glucose meter inserting the end with black and white 
stripes so that you can’t see the stripes anymore. Put the meter aside. The meter 
will be ready for drop of blood when the drop signal flashes:  

 
3) Using the blue lancet, sliding the light blue button back until it clicks. The lancet it 

now ready to use.  
4) Press the end of the lancet against the side of your finger and press the small light 

blue button. 

5) You need to create a blood drop about this size ●. Gently message at the base of 
the finger to create the blood drop. DO NOT squeeze your finger near the site. 

6) Touch and hold the drop of blood to the end of the strip with the thin yellow stripe 
on the top edge. Blood will be drawn into the stripe. Keep holding the drop of 
blood to the top edge of the test strip until the confirmation window is full. 

7) Record this reading into your logbook.  
8) Dispose of the strip. DO NOT dispose of the lancet. The lancet provided will last 

for time you are wearing the CGM.  
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NOTE: This is an example of what your log book will look like. You DO NOT 
have to follow these times exactly.  
 
 Time  Blood glucose 
Calibration 1 
Before breakfast  

7:30 AM 6.5 

Calibration 2  
Before lunch  

11:30 AM 7.5 

Calibration 3  
Before bedtime 

9:30 PM 8.7 

 
NOTE: Please be as specific as possible when entering your additional food 
data. Use the examples below. 
 

Meal Time Food and drink (Be as 
specific as possible) 

Physical Activity 

Breakfast  
8:00 AM 

 
Breakfast provided (no leftover). 

 
15 minutes starting 
at 8:30am.  

Snack  WHAT TO WRITE: 
 
½ medium banana; 1 slice whole 
wheat bread;  
1 cup milk (2%); 1 ½  cup cereal 
(Multigrain Cheerios)  
 
WHAT NOT TO WRITE: 
 
Banana, bread, milk, cereal 
 

 
 

**Please 
include brand 
names of food 

11:00 PM Not applicable. 
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Insertion date: ___________     Insertion time: ___________     RA initial:_______ 
 
CGM Serial Number: ____________________ 
 

Meal Time  Blood glucose 
Calibration 1 
1 h after insertion  

  

Calibration 2  
Before lunch  

  

Calibration 3  
Before dinner 

  

Calibration 4 (if necessary) 
Before bedtime 

  

 
 

Meal Time Any Food/Diet Changes Physical Activity 

Breakfast 
   

Lunch 
   

Dinner 
   

Snack 
(if 

applicable) 

   

 
Total # steps per day: __________ 
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Date:  ____________ 

 
 Time  Blood glucose 
Calibration 1 
Before breakfast  

  

Calibration 2  
Before lunch  

  

Calibration 3  
Before dinner 

  

Calibration 4 (if necessary) 
Before bedtime 

  

 
 

Meal Time Any Food / Diet Changes Physical Activity 

Breakfast 

   

Lunch 

   

Dinner 

   

Snack 
(if 

applicable) 

   

 
Total # steps per day: __________ 
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Date:  ____________ 
 
 Time  Blood glucose 
Calibration 1 
Before breakfast  

  

Calibration 2  
Before lunch  

  

Calibration 3  
Before dinner 

  

Calibration 4 (if necessary) 
Before bedtime 

  

 
 

Meal Time Any Food / Diet Changes Physical Activity 

Breakfast 

   

Lunch 

   

Dinner 

   

Snack 
(if 

applicable) 

   

 
Total # steps per day: __________ 
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Date:  ____________ 
 
 Time  Blood glucose 
Calibration 1 
Before breakfast  

  

Calibration 2  
Before lunch  

  

Calibration 3  
Before dinner 

  

Calibration 4 (if necessary) 
Before bedtime 

  

 
 

Meal Time Any Food / Diet Changes Physical Activity 

Breakfast 

   

Lunch 

   

Dinner 

   

Snack 
(if 

applicable) 

   

 
Total # steps per day: __________ 
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Appendix B: Figures with individual data 

 

                                      
 
Difference in Sum Meal Incremental Area Under the Curve (iAUC; left) and Mean 
Amplitude of Glycemic Excursions (MAGE; right) between the guidelines breakfast and 
low-carbohydrate high-fat breakfast conditions. 
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24-hour area under the curve (AUC) between conditions 

  

         

24-hour incremental area under the curve (iAUC) between conditions 
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