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Abstract

Group Preferential Choice is when two or more individuals must collectively choose

among a competing set of alternatives based on their individual preferences. In

these situations, it it can be helpful for decision makers to visually model and com-

pare their preferences in order to better understand each others’ points of view.

Although a number of tools for preference modelling and inspection exist, none

are based on a comprehensive understanding of the demands of Group Preferential

Choice in particular.

The goal of our work is to understand these demands and explore the space

of possible visualizations to support them. We make progress toward this goal in

three steps. First, we characterize the scope of Group Preferential Choice by ex-

amining a diverse set of real-world scenarios. In particular, we identify sources of

variation in preference models, goals, and contexts. Second, we produce a detailed

model of abstract tasks to support the goals identified in the first step. Finally,

we analytically evaluate various designs with respect to these tasks and conclude

with recommendations for different classes of users. We believe that these contri-

butions will help designers produce more effective visual support tools for Group

Preferential Choice.
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Lay Summary

Sometimes a group of people must make a choice together. For instance, a board

of directors may need to agree on a new office location. This can be challenging if

there are multiple factors involved, or if the decision makers disagree about what

is important. In these situations, effective communication is key.

One way to improve communication is to have each decision maker show his

or her preferences graphically. For instance, they might use a bar chart to commu-

nicate their ratings of potential office locations. In this work, we try to understand

what questions a graphic needs to be able to answer to support effective group de-

cision making. Then, we present a variety of graphical options and discuss how

well each one answers these questions.
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Chapter 1

Introduction

Group Preferential Choice is when two or more individuals, each with his or her

own preferences, must collectively choose among a competing set of alternatives.

These situations are common in organizational and public planning. Examples

include selecting an office location, hiring a candidate for a position, or choosing a

wastewater management system for a city.

Sometimes it is possible for the group to arrive at a satisfactory decision through

discussion alone. However, this can be challenging if group members have differ-

ences in preferences and opinions. In fact, the group members may not even have

a complete understanding of their own preferences. To complicate matters further,

the group may wish to explicitly model trade-offs among competing criteria. For

instance, a company might want to independently assess a job candidate’s educa-

tion, experience, and company fit.

As the number of group members, alternatives, and criteria grows, it becomes

increasingly difficult to grapple with the complexities effectively. In fact, organiza-

tions often resort to pre-existing solutions because they do not have the resources

to tackle this challenge [11] [26]. For instance, a municipality may elect to keep

an outdated and costly wastewater management system simply because analyzing

the pros and cons of alternatives is too daunting. Clearly, there is an incentive to

develop processes and tools to facilitate such analyses.

One viable approach is to have each decision maker explicitly model his or

her preferences over the alternatives and criteria. Then, the group members can
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compare how alternatives perform under different preference models in order to

come to a better understanding of other points of view. There is evidence that

explicit preference modelling can encourage reflection, promote transparency and

inclusiveness, and ultimately lead to greater satisfaction with the outcome [4].

The benefits of this process depend on how quickly and effectively decision

makers can glean insights from their own and others’ preferences. It can be difficult

to spot interesting differences and trends when the data is represented in text-based

formats, such as traditional spreadsheets. Information Visualization solutions are

more promising because they leverage the pattern recognition and pre-attentive ca-

pabilities of the human visual system [38]. However, not all graphical methods are

equally effective, and a poorly-chosen graphic can actually diminish the efficacy of

the decision making process [2].

Many existing tools for preference modeling and inspection come from the

field of Multi-Criteria Decision Making (MCDM), a sub-discipline of Operations

Research concerned with practical aspects of multi-criteria decision making [30].

There is considerable evidence that MCDM processes can improve group deci-

sion making by enhancing communication among group members [6] and lending

transparency and legitimacy to the decision making process [51].

Although MCDA support tools are plentiful, few are able to integrate and dis-

play multiple preference models simultaneously [40] [51]. For this reason, most

recorded applications of MCDA to group decision making involve joint construc-

tion of a single preference model by all members of the group [51]. Tools that

do allow multiple users to input their preferences, such as M-MACBETH [18],

D-Sight [1], and 1000Minds [28], typically show the aggregate performance of

alternatives over all decision makers using non-interactive charts and tables.

One notable exception is Web-HIPRE, which allows groups to model each de-

cision maker as a separate criterion in the overarching decision problem [39]. Web-

HIPRE shows the performance of alternatives using stacked bar charts, where the

score for each decision maker is a segment contributing to the total (Figure 1.1).

Like other MCDA support tools, the main focus of Web-HIPRE is on the decision

analysis process, not the graphical representation.
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Figure 1.1: Web-HIPRE [40]. The total score for each alternative is repre-
sented by bar height, and the contribution of each decision maker to
the total is represented by segment height (here, each decision maker is
actually a group of people acting as a unit).

A few other tools to support joint preference inspection in Group Preferential

Choice put a stronger emphasis on Information Visualization. One is Group Val-

ueCharts (Figure 1.2), which is an interactive visual aid that uses a combination of

stacked and multi-bar charts to show how different alternatives perform for differ-

ent users [4].
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Figure 1.2: Group ValueCharts [4]. The top right section shows the score
of each alternative for each user. The bars are grouped by alternative
and colour-coded by user. The bottom left section shows the criteria
hierarchy, and the bottom right section shows the breakdown of scores
by criterion. The red outlines show the weights assigned by each user
to each criterion.

Group ValueCharts is an extension of ValueCharts, a system that supports elic-

itation and inspection of linear preference models for individual decision makers

[12]. ValueCharts was analytically evaluated based on a task model of individual

preferential choice [5]. However, this task model may not generalize to Group

Preferential Choice.

Another tool, ConsensUs, aims to support the consensus building process by

highlighting sources of disagreement [36]. It uses strip plots to encode per-criterion
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scores for each alternative and user (Figure 1.3). This tool only allows individual

users to compare their preferences against the group average or one other user at a

time.

Figure 1.3: ConsensUs [36]. The Individual View (left) allows each user to
score alternatives relative to each other on each criterion. The alterna-
tives are colour-coded dots. The Group View (right) shows the individ-
ual scores (small dots) in the context of group averages (large dots). Red
lines highlight points of disagreement.

A major shortcoming of all available tools and designs is that none (to our

knowledge) are grounded in a comprehensive data and task model for Group Pref-

erential Choice. This is not ideal, as the suitability of a design will likely depend

on the characteristics of the decision making scenario. However, the diversity of

Group Preferential Choice scenarios has not been studied. Future designers of such

tools would benefit from a clearer understanding of this diversity and the implica-

tions for design. Our work addresses this problem in three steps:

First, we perform an in-depth analysis of seven real-world group preferential

choice scenarios in order to characterize the variation in the data, goals, and deci-

sion making contexts (Chapter 3). For the analysis of goals, we focus solely on the

stage where individual preference models are combined and discussed by the deci-

sion makers, a process we call preference synthesis. These scenarios were studied

using a combination of structured interviews and analysis of secondary sources.

The outputs of this analysis are:

1. A precise definition of Group Preferential Choice

2. A taxonomy of commonly-used preference models

3. A summary of the preference synthesis goals across scenarios

4. A summary of the decision making contexts across scenarios

5



Second, we translate the data and goals identified in Chapter 3 into domain-

independent language in order to produce descriptions at various levels of abstrac-

tion (Chapter 4). These abstractions are intended to be suitable visualization design

and analysis. The data and task abstraction is performed in accordance with the ty-

pology of Brehmer and Munzner [7].

Finally, we present a prescriptive design space of visualizations to support

preference synthesis in the context of Group Preferential Choice (Chapter 5). A

prescriptive design space is a set of viable designs for a particular kind of data

with recommendations based on goals and contexts. For now, our design space is

limited to a subset of all Group Preferential Choice scenarios where there are no

explicit criteria and no more than a dozen alternatives and decision makers. The

design space is described in terms of the following design aspects:

1. Static design aspect - the basic idioms that are available and various options

for mapping the dimensions and measures to marks and channels.

2. Dynamic design aspect - the mechanisms for transforming the view.

3. Composite design aspect - the options for arranging and coordinating differ-

ent views relative to each other.

For inspiration, we look to other prescriptive design space papers, such as

Brehmer et al. [9], which presents a design space for timelines in the context of

storytelling. This work analyzes over 100 existing timelines in order to identify the

major design dimensions, and then offers recommendations based on the narrative

points that the storyteller would like to make. Similarly, we provide design recom-

mendations based on the decision making context and the relative importance of

various tasks.

We believe this work will provide a sound starting point for designers of Group

Preferential Choice support tools. Depending on the situation, designers may wish

to create standalone visual aids or integrate visualizations into complete decision

support systems. We expect our recommendations to serve in a wide variety of

individuals, ranging from project managers who need to produce graphical sum-

maries quickly to designers of MCDA support tools who want to incorporate more

effective graphics into their decision analysis software.
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Chapter 2

Background and Related Work

2.1 Decision Theoretic Foundations
Decision Theory is a field of study that is concerned with developing abstractions

and techniques to support rational decision making. It defines a decision problem

as one where a decision maker must select between two or more acts, each of which

has an associated outcome [44]. The decision maker is presumed to prefer some

outcomes over others. In some cases, the decision maker may not know for certain

what the outcome of an act will be. Such scenarios are called decisions under risk.

2.1.1 Utility Theory

In economics, utility is a quantitative measure of satisfaction with a good, service,

or situation. In order to apply certain decision theoretic methods to a decision

problem, a decision maker must describe her preferences as a utility function [60].

There are two classes of utility functions: ordinal and cardinal.

An ordinal utility function ranks all possible outcomes from most to least pre-

ferred without specifying the strength of preference. More formally, it defines a

preference relation between each pair of outcomes indicating a preference for one

or the other or indifference between the two. The function must satisfy certain

conditions, such as completeness, anti-symmetry, and transitivity [44].

A cardinal utility function maps outcomes to values along an interval scale

such that preferences are preserved up to positive linear transformations. Cardinal
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utility functions are essential for decision making under risk [32]. However, many

economists believe they are unnecessary in risk-free decision analysis, since they

are more difficult to elicit and do not add much power to the decision analysis [48]

[45].

Aside from risk, another major consideration is whether the decision problem

has one or multiple attributes [32]. In the single attribute case, the outcome is

an atomic value; in the multiple attribute case, it is a composition of values for

different attributes. For instance, if a decision maker is looking to buy a house

and only cares about cost, the outcome can be expressed in terms of cost only.

However, if the decision maker also cares about location, then the outcome needs

to be expressed in terms of cost and location.

The optimal decision making strategy for the single attribute case without risk

is straightforward - simply choose the option that yields the most preferred outcome

on the sole attribute. The multiple attribute case is more complicated, and there is

an entire field of study devoted to it.

2.1.2 Multiple Criteria Decision Making

Multi-Criteria Decision Making (MCDM) is a sub-discipline of Operations Re-

search that is concerned with formalizing and developing methods for scenarios

where a decision maker must choose among multiple competing alternatives in the

presence of multiple competing criteria. Although MCDM draws from Decision

Theory, its emphasis is more pragmatic than theoretical. Here, we focus on a subset

of MCDM called Multi-Attribute Decision Making (MADM), which is concerned

with scenarios where the options are finite and predefined [29].

A number of MADM methods have been developed, but they all require the

following key ingredients:

1. A finite set of two or more alternatives

2. A finite set of two or more attributes (also called objectives or criteria)

3. A quantitative model of the individual’s preferences over the alternatives

and/or attributes

The main way in which these methods differ is in how preferences are elicited,

expressed, and combined to produce a final score or ranking over the alternatives.
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Multi-Attribute Utility Theory (MAUT)

Multi-Attribute Utility Theory is the most popular class of MADM methods and

the only one with a solid foundation in Decision Theory [32]. Multi-attribute value

theory (MAVT) is a special case of MAUT where there is no risk.

According to MAVT, a decision maker’s preferences can be modeled using

an additive multi-attribute value function (AMVF) as long as the attributes have

additive independence, which means that the outcome on one attribute does not

affect how the decision maker feels about the possible outcomes on other attributes

[32]. An AMVF has three major components (illustrated in Figure 2.1):

• An attribute tree, which specifies a decomposition of high-level attributes

into lower-level attributes. The attributes at the leaves are called primitive

attributes, and each primitive attribute has a set of possible outcomes called

its domain.

• A set of score functions for each primitive attribute specifying the value of

each possible outcome to the decision maker. The best possible outcome is

assigned a score of 1 and the worst a score of 0, and all other outcomes are

scored relative to these two.

• An assignment of weights to the primitive attributes such that the sum of the

weights over all primitive attributes is 1. The weight represents the value of

switching from the worst possible outcome to the best possible outcome for

that primitive attribute relative to the others.

The final value for each alternative can be computed by taking the weighted

sum of the outcome scores on all primitive attributes.
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Figure 2.1: A multi-attribute value function for choosing a hotel. A MAVT
consists of an attribute tree (a) and a set of weights and score functions
for each primitive attribute (b). The score for a each alternative-attribute
pair is the value assigned by the score function to the outcome of that
alternative on that attribute (c). The score for an alternative (e.g. Days
Inn) is the weighted sum of the scores on each attribute (d).

Other Methods

Aside from MAUT, there are two other popular classes of MADM techniques.

Outranking methods such as ELECTRE [49] are among the oldest MADM

techniques [59]. They require users to set qualifying and indifference thresholds

over the attributes. Then, alternatives are eliminated if they do not meet the quali-

fying thresholds or if they are outranked by at least one alternative - that is, at the

same or a lower indifference class on every attribute. Although outranking meth-

ods have largely been replaced by more precise methods, they are still sometimes

used to winnow the set of alternatives to a reasonable number [59].

The Analytical Hierarchy Process (AHP) is the main contemporary contender

to MAUT [50]. In AHP, the decision maker is presented with pairs of alternatives

and asked to indicate their degree of preference for one alternative over the other on
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each attribute. These comparisons are used to generate a score for each alternative-

attribute pair. A similar procedure is used to elicit weights. AHP has been criticized

for its susceptibility to rank-reversal, which means that adding a new alternative to

the set may cause the relative ranks of two other alternatives to change [59].

2.1.3 Group Multi-Attribute Decision Making

Multi-attribute decision making has been applied in group settings since its ini-

tial formulation. Group MADM is similar to individual MADM except that the

selection process factors in the preferences of multiple stakeholders. Bose et al.

reviewed several early applications of MAUT in group decision making contexts

[6]. Based on their findings, they argued that MAU-based models considerably

enhance communication and understanding among group members and should be

supported in more computer-based group decision support systems.

Salo and Hämäläinen also argued that MADM methods can benefit group deci-

sion making by increasing transparency and legitimacy [51]. They analyzed several

recent applications of MADM methods to group decision making and identified six

basic steps common to all:

1. Clarification of the decision context and identification of group members

2. Explication of decision objectives

3. Generation of decision alternatives

4. Elicitation of preferences

5. Evaluation of decision alternatives

6. Synthesis and communication of decision recommendations

They note that steps 3 and 4 are sometimes reversed but recommend following

the suggested order because listing alternatives first makes it easier for people to

reason about preferences. They also note that decision makers often revisit earlier

steps to refine the decision model.

One of the major theoretical challenges behind Group MADM is how to com-

bine multiple preference models in a way that is both rational and fair. This is

the main concern of a philosophical discipline called Social Choice Theory. Ar-

row’s Impossibility Theorem states that it is not possible to aggregate individual
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preference rankings into a group preference ranking which is guaranteed to sat-

isfy certain reasonable conditions [3]. This is also true for multi-attribute utility

functions unless each decision maker is allowed to define her own objectives [31].

Fortunately, a theoretically-sound aggregate model might not be necessary in

most cases. In small group decision settings, it may be more important for decision

makers to understand their own and others’ preferences on an individual basis so

that they can negotiate effectively. To this end, high-quality visualizations have the

potential to help decision makers communicate and reason about their preferences.

2.2 Visual and Interactive Techniques For MADM and
Related Data

This section summarizes several published techniques for visualizing scores and

preferences in the context of MADM, as well as techniques for visualizing sim-

ilar multi-attribute data, such as rankings, surveys, and product reviews. These

techniques are summarized in Table 2.1.

Table 2.1: Eight techniques for visualizing multi-attribute data. Techniques
with ‘Very High’ relevance explicitly support Group MADM. The re-
maining techniques were assigned ‘High’ or ‘Medium’ relevance based
on quality and novelty.

Context Main Encodings Relevance

Group ValueCharts [4] Group MADM
Stacked bar chart;

Tabular bar chart
Very High

ConsensUs [36] Group MADM Dot plots in small multiples Very High

Web-HIPRE [39] Group MADM Stacked bar chart Very High

LineUp [25] Multi-attribute rankings
Slope graph;

Stacked or tabular bar chart
High

SurveyVisualizer [10] Multi-attribute survey results Parallel coordinates tree High

WeightLifter [41] MADM
Stacked bar chart;

Parallel coordinates
Medium

DCPAIRS [20] MADM Scatterplot matrix (SPLOM) Medium

QStack [42] Multi-attribute rankings Stacked bar chart Medium
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2.2.1 Group ValueCharts

Group ValueCharts [4] is perhaps the most sophisticated tool designed specifically

to support Group MADM. In particular, it is intended for large infrastructure deci-

sion problems where trade-offs must be considered between multiple criteria and

multiple decision makers’ preferences. It aims to make the decision process more

participatory, transparent, and comprehensible.

The main encodings are multi-bar charts (also known as grouped bar charts),

which show the total score of each alternative for each decision maker, and tabular

bar charts (also known as faceted bar charts or small multiples bar charts), which

show the breakdown of scores by criteria.

Figure 2.2: Group ValueCharts [4]. A colour-coded multi-bar chart shows
the total score of each alternative for each decision maker (top right). A
tabular bar chart shows the breakdown of scores for each decision maker
by attribute (bottom right). Red outlines show the weights assigned to
each attribute by each decision maker. The criteria hierarchy is shown
using a rectilinear tree (bottom left).
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A key strength of Group ValueCharts is that it is compact and information

dense. The multi-bar chart makes it possible to compare the overall performance of

each alternative across evaluators, while the tabular bar chart supports comparison

on a per-attribute basis. The tabular bar chart also supports direct comparison of

weights.

A limitation of Group ValueCharts is that it does not scale beyond a dozen at-

tributes, alternatives, or decision makers. One reason for this is that it does not

implement any data reduction strategies to cope with spatial constraints. Another

is that colour is used to differentiate decision makers, and people can only differ-

entiate up to around a dozen colour hues [38].

Web ValueCharts

Web ValueCharts is a successor to Group ValueCharts that integrates the capabil-

ities of both the group version and the individual version (ValueCharts [12]) on

a web platform. It is intended to bring structured decision support to a broader

audience.

Web ValueCharts is a modular system with components to support chart def-

inition, chart management, preference elicitation, and preference inspection. The

preference inspection component has two views - the individual view and the group

view (Figures 2.3 and 2.4).
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Figure 2.3: Web ValueCharts - Individual View. A colour-coded stacked bar chart shows the total score of each alter-
native (top right). A tabular bar chart shows the breakdown of scores by attribute (bottom right). A rectilinear
tree shows the attribute hierarchy and the score functions for each attribute (bottom left).
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Figure 2.4: Web ValueCharts - Group View. The overall design is the same as for Group ValueCharts.
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The individual view (Figure 2.3) allows users to inspect their own scores and

preferences in isolation. They can adjust their score functions and weights dynam-

ically by clicking and dragging relevant components. The group view (Figure 2.4)

shows the alternative scores and preferences for all users in a single view. The

design is identical to that for Group ValueCharts, except that users may also in-

spect the score functions. Users can select a subset of decision makers to view by

toggling the check boxes beside the names.

Both views support manual reordering of alternatives and attributes. There are

various view options that can be turned on and off, including the score functions,

the outcomes overlay, and the utility scale.

Web ValueCharts supports real-time synchronization of all group members’

charts. Users can join a group chart, update their preferences, and even edit the

criteria and alternatives in real-time. Although Web ValueCharts improves upon its

predecessor in many ways, it has the same limitations when it comes to scalability.

2.2.2 ConsensUs

ConsensUs is another tool that is designed to facilitate multi-criteria group decision

making [36]. In particular, it aims to support the consensus-building process by

highlighting sources of disagreement. Its primary encoding is the strip plot, which

uses point position on an axis to represent values.

Figure 2.5: ConsensUs - Individual View (left) and Group View (right) [36].
Each view has one strip plot per attribute. The alternatives are colour-
coded dots, and their positions represent the scores assigned by the in-
dividual (left) or the group average (right).

The solution consists of an individual view and a group view. Individual eval-

uations are collected via the individual view before being displayed in the group
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view. Each evaluator scores each alternative relative to the others using a sliding

scale.

The group view has two kinds of colour-coded dots: small dots showing the

individual scores and large dots showing the group averages. It also emphasizes

two kinds of disagreement for each attribute: the alternative with the largest differ-

ence between individual and group score (red line below) and the alternative with

the largest variance in score within the group (red line on top). The line length

encodes the degree of disagreement.

A few kinds of interaction are available in the group view. Users may click on

the large dots to see the scores assigned to that alternative by each evaluator. Users

may also filter alternatives (top-right) and change which other user is shown on the

large dots (top-left).

Strip plots are notable for their succinctness and compactness relative to bar

charts that show the same data [46]. However, there is the risk of occlusion if points

have the same or nearly the same value. A weakness of this design in particular

is that it only allows users to compare their scores to those of the average user or

one other user at a time. Also, the use of colour to differentiate alternatives limits

scalability.

2.2.3 Web-HIPRE

Web-HIPRE is one of the oldest interactive support tools for multi-attribute deci-

sion analysis [39]. It was originally designed for AHP analysis only but was later

extended to support other decision analysis paradigms.

Web-HIPRE’s main window (Figure 2.6) shows the attribute hierarchy and al-

ternatives. From there, users can open other windows to inspect their preferences

or analyze results.
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Figure 2.6: Web-HIPRE - Main View [40]. The blue nodes represent the
attribute tree. The yellow nodes represent the alternatives.

The Analysis Window (Figure 2.7) uses stacked bar chars to simultaneously

show the total score and per-attribute score of each alternative. Users can select

which data to map to bars and segments. Effectively, this means that they can

reverse the mapping or select a different level of the attribute hierarchy.
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Figure 2.7: Web-HIPRE - Analysis Window [40]. The bars encode alterna-
tive scores and the segments encode per-attribute scores.

Web-HIPRE supports multi-attribute group decision making by allowing users

to define a new decision problem on top of multiple individual models. The ag-

gregate model treats each user as an attribute in a new decision problem, as shown

in Figure 1.1. Web-HIPRE is notable in that it is the only tool that explicitly sup-

ports the specification of different weights for different decision makers. However,

it is limited in that it has few interactive options and its features are divided over

multiple windows.

2.2.4 LineUp

LineUp is an award-winning interactive tool for comparing ranked entities across

multiple attributes [25]. It supports a variety of tasks related to rank comparison

and sensitivity analysis and is commendable for its power, flexibility, and attention

to detail.
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Figure 2.8: LineUp [25]. Each ranked entity is a row and each column is an
attribute. Multiple rankings can be compared side-by-side, and same
entities are connected with sloped lines. This figure compares seven
rankings.

The solution is an elaborate hybrid of bar charts and slope graphs, which draw

connecting lines between the same entities across different rankings. Each item is

a row and each attribute is a column, and a ranking is an ordering of items based on

the total score over multiple attributes. Categorical attribute columns display text,

while numerical attribute columns encode the attribute scores with bars, which are

colour-coded by attribute. Histograms above each column show the distribution of

scores for that attribute. The slope graph feature can be used to compare two or

more rankings side-by-side.

The columns within each ranking can be shown as a stacked bar chart or tabular

bar chart based on the user’s selection. In this respect, the core idiom is similar to

that of ValueCharts. LineUp’s extensive list of features allows users to:

• Sort and filter entities by attribute score

• Perform sensitivity analysis on attribute weights and score functions

• Identify missing values

• Scroll through rows or inspect a fish-eye view of the rows (supports scala-

bility on entities)

• Collapse or combine columns (supports scalability on attributes)
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• Select one of the following alignment strategies: stacked, diverging stacked,

ordered stacked, or tabular

Although LineUp was not designed specifically for Group MADM, it could be

adapted to it in a couple ways. First, two or more decision makers’ models could

be compared in full using the slope-graph component of LineUp. Second, multiple

decision makers’ models could be condensed into a single model by defining a

meta-column over all decision makers.

A possible criticism of LineUp is that it may have too many features for typi-

cal users. Not all of the features were mandated by the preliminary requirements

analysis.

2.2.5 WeightLifter

WeightLifter is a novel visual and interactive technique to help system designers

understand the impact of criteria weights on the decision outcome [41].

Figure 2.9: WeightLifter [41]. Sliders support exploration of two-way trade-
offs between criteria, and a triangle with adjustable line intersections
supports exploration of three-way trade-offs.

WeightLifter supports interactive exploration of two-way and three-way trade-

offs. Two-ways trade-offs are supported by sliders - users can put any number of

criteria on either end and then adjust the slider position. Three-way trade-offs are
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supported by a triangle with intersecting lines perpendicular to each edge that the

user can adjust. In Figure 2.9, the coloured regions (a) show the points at which

the current top solution (c) would change or fall out of the top three, and black

lines show the points at which the top solution would change. The sliders also

have histograms (b) that show what fraction of the entire weight space given that

trade-off has the current solution at the top. Users can constrain the weight space

to sub-ranges on the sliders (d).

WeightLifter was integrated with two additional views to support all the tasks

identified in the preliminary requirements analysis (Figure 2.10). The Ranked So-

lution Details view is akin to a simplified version of LineUp - it uses stacked bar

charts to show the weighted sum of costs for each alternative over the criteria. Its

one unique feature is a strip divided into coloured segments proportional to cri-

teria weights. Each segment also contains a glyph showing the direction of the

score function. The Criteria Value View uses parallel coordinates to show criteria

outcomes for each alternative. It also allows users to set filters by brushing.

Figure 2.10: WeightLifter plus two additional views [41]. The Ranked So-
lution Details view allows users to inspect per-criterion scores for the
top ranked alternatives. The Criteria Value View shows the criteria
outcomes for each alternative.
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2.2.6 SurveyVisualizer

SurveyVisualizer is a tool that supports exploration of large, hierarchical satisfac-

tion survey data [10]. It was originally designed to visualize customer satisfaction

data for the public transportation system of Zurich. This data consisted of re-

sponses to 89 survey questions, which were grouped into 23 quality dimensions

and 3 quality indices. The surveys were partitioned into analysis groups based on

demographic information.

Figure 2.11: SurveyVisualizer [10]. A parallel coordinates tree (top) shows
the survey results at three levels of aggregation. Each line corresponds
to an analysis group. The analysis group selector (bottom) allows users
to control which analysis groups are included.

The basis of SurveyVisualizer is a novel encoding called a Parallel Coordinates

Tree, which shows the performance of every analysis group across criteria at three

levels of aggregation. The groups are drawn in light grey by default, but individual

groups can be emphasized temporarily by: (a) hovering over them, which high-
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lights them and brings up details about them, (b) clicking on them, which turns

them black temporarily, or (c) assigning them a permanent colour.

The navigation mechanism is the bifocal lens, which allows users to emphasize

individual analysis groups. The Parallel Coordinates Tree and the analysis group

selectors are coordinated - selecting an analysis group in one causes the same group

to be emphasized in the other view.

This work is notable for its novelty and the fact that it has achieved some com-

mercial success [10]. It combines the strengths of two different types of encodings

- parallel coordinates and trees. The parallel coordinates component supports in-

spection of multiple items, while the tree component supports inspection at various

levels of aggregation. Parallel coordinates scale well to hundreds of items and

are effective for identifying outliers and trends between neighboring attributes, but

they are sensitive to the ordering of axes [38]. SurveyVisualizer also makes ef-

fective use of linked highlighting, annotation, and the focus plus context design

choice.

2.2.7 DCPAIRS

DCPAIRS is a compact tool for individual MCDA that allows users to explore

trade-offs between alternatives without using colour to distinguish attributes [20].

This is motivated by the fact that colour is not a scalable identity channel, since

people can only distinguish up to around a dozen hues [38]. This work investigates

the use of colour for user annotation instead - a novel feature for MCDA tools.
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Figure 2.12: DCPAIRS [10]. The six focal attributes are placed on the main
diagonal (a), and the remaining attributes are arranged in the lower
triangle (b). The points in each scatterplot are the alternatives, and their
coordinates encode their weighted scores on each of the two attributes
at that intersection (c). Points are coloured according to user-defined
annotation groups.

The solution consists of a scatter-plot matrix that shows pairwise trade-offs

between six attributes at a time. The six focal attributes are placed on the main

diagonal (a), and the remaining attributes are arranged in the lower triangle (b).

The points in each scatterplot are the alternatives, and their coordinates encode

their weighted scores on each of the two attributes at that intersection (c).

The user can drag-and-drop attribute tiles into one of the six slots and adjust

their weights using the sliders on the tiles (h). The current weight of each attribute

is redundantly coded in gray-scale. The attribute score functions are positive linear

by default, but the user can invert them by toggling ‘high’ and ‘low’ in each tile

(g).

When the user clicks on a point, that alternative gets highlighted in all the plots,

and the inspector (f) gets populated with the score information for that alternative.

The user can interactively assign alternatives to colour-coded groups (e) based on

features of interest. Finally, the user can filter alternatives on overall score using

the threshold slider (d).

The dominant encoding - the scatter-plot matrix - is limited in that it is only ef-

fective at showing pair-wise trade-offs. Furthermore, it does not show the contribu-

tion of weighted attribute scores to total score. Nevertheless, the design does have
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its strengths, including the annotation feature and the use of details-on-demand and

linked highlighting for selected alternatives. It also has relatively high scalability

for number of alternatives.

2.2.8 QStack

QStack is a tool for ranking collections in multi-tag datasets based on tag frequency

[42]. For instance, a user might want to find photo albums on Flikr with high

incidence of the tags ‘summer’ and ‘flowers.’

Figure 2.13: QStack [42]. Each bar in the focus view (top) corresponds to a
collection, and each segment represents the frequency of a particular
tag. The tags are coded by colour (left). The context view (bottom)
shows the entire data-set, and the focus view is populated with data
from the selected portion.

QStack is similar to ValueCharts and LineUp in that its primary encoding to

show score totals is the stacked bar chart. The user enters a set of tags in the

search bar, and a set of collections that contain any of these tags is returned. The

focus view (Figure 2.13) is then populated with stacked bars, where each bar is a

collection and the height of each coloured segment encodes the tag frequency for

that collection.

The context view below the focus view shows the total tag frequencies of col-
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lections in seven different clusters. Users can brush the context view to select a

subset of the data to inspect in the focus view.

Users can sort in ascending or descending order by a particular tag or total tag

frequency. When the user hovers over an item, the Distributions column of the tag

table (left) is populated with the tag distributions for that item.

For the most part, QStack is simply a weaker version of LineUp, but it is not

without its merits. Its primary strength is that it uses the focus plus context design

choice to achieve scalability by splitting the view into a focus view and context

view.

2.2.9 Lessons from Evaluations

It is important to note that few of these techniques have been thoroughly evaluated,

and many have not been evaluated at all.

Group ValueCharts was evaluated in a qualitative study with two groups in-

volved in real-world decision making. The participants expressed a desire to see

the average scores and disagreement levels, so these features were added to the tool

[4]. The authors of ConsensUs performed a laboratory study and concluded that

showing disagreement visually is more effective than showing verbal arguments

and just as effective as showing both [36]. Finally, the authors of LineUp also con-

ducted an experiment and discovered that a strong analysis tool enables novices

to complete complex tasks faster than experts using Excel or Tableau [25]. The

overarching finding in all studies was that people generally react positively to tools

of this nature [4] [36] [25] [42].

What has yet to be established is which of the many features implemented by

these tools are valuable in various Group Preferential Choice contexts. This is

our primary motivation for developing a comprehensive data and task model for

preference synthesis in the context of Group Preferential Choice.

2.3 Design Space Analyses
Another major goal of this work is to produce a design space of visual tools for

preference synthesis in the context of Group Preferential Choice. For inspiration,

we reviewed six papers that can be loosely described as design space analyses, but
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the papers vary in what that entails. These are summarized in Table 2.2.

Three of these are best described as design surveys - they review large bodies

of literature on Information Visualization solutions for a particular domain or data

class: disease epidemiology [13] traffic data [17], and sentiment in text [33]. They

attempt to identify the major dimensions and classify the solutions according to

these dimensions. A couple of these works conclude with some broad suggestions

for design [13] [33], but none produce a complete set of design recommendations.

The result of these works is a descriptive design space, which covers what designs

currently exist.

Ceneda et al. [14] also has a design survey component, but rather than focusing

on a particular domain, it considers a particular aspect of InfoVis solutions in gen-

eral - guidance. Another difference is that it first develops the design space based

on previous work and then describes the surveyed works in terms of this space.

The result of this work is also a descriptive design space.

Brehmer et al. (2016) [8] is best described as a design study, which involves

analyzing a specific problem faced by domain experts and developing a visualiza-

tion solution to address the problem [52]. In this case, the goal was to produce a

set of design guidelines for presenting time-oriented data in the energy analysis do-

main and develop a support tool based on these guidelines. A number of possible

designs were proposed and evaluated, and a set of design guidelines was produced.

The result of this work is a combination of a speculative design space, which de-

scribes what designs are possible, and a prescriptive design space, which describes

what designs are recommended.

Brehmer et al. (2017) combines elements of all of these works [9]. First, it

surveys over 100 existing timelines from various sources to produce a descriptive

design space of timelines. Then, it considers all combinations of different facets of

the design space, resulting in a speculative design space. Finally, the speculative

design space is winnowed based on viability, and recommendations are made for

different story-telling goals. The final product is a prescriptive design space. Via-

bility was assessed based on existing principles, common sense, and the author’s

intuition rather than any new empirical data.
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Table 2.2: Summary of six design space analyses.

Type of design space # of works surveyed
Epidemiology Visualization [13] Descriptive 88

Sentiment Visualization [33] Descriptive 132

Traffic Data Visualization [17] Descriptive Unclear (10s)

Characterizing Guidance [14] Descriptive Unclear (10s)

Energy Portfolio Analysis [8]
Speculative,

Prescriptive
N/A

Timelines for Storytelling [9]
Descriptive,

Speculative,

Prescriptive

145

Of the works above, Brehmer et al. (2017) is the closest to our goals, as we

intend for our design space to cover all existing viable designs (that we know of),

as well as potentially viable new designs.

However, there are some key differences worth noting. First, there are not

enough existing tools designed specifically for Group Preferential Choice to sup-

port a design survey of the same scope. Hence, our design space may be more

speculative. Second, the speculative component of Brehmer et al. (2017) only

considers novel combinations of dimension values (for example, spiral layout with

logarithmic scale), whereas ours may also propose novel dimension values. Fi-

nally, Group Preferential Choice data is more heterogeneous, which means that

our design space will be more complex.
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Chapter 3

Characterizing Group
Preferential Choice

The goal of this chapter is to characterize sources of variation among real-world

Group Preferential Choice scenarios that might have implications for the design

of visual support tools for preference synthesis. In particular, we examine the

following for each scenario:

1. The nature of the decision problem in terms of alternatives, decision makers,

and criteria

2. The nature of the individual preference models

3. The goals of the decision makers during preference synthesis

4. The decision making context

Section 3.1 presents the tentative data model for Group Preferential Choice that

is grounded in the existing vocabulary of Multi-Attribute Decision Making (Sec-

tion 2.1.2). This establishes the scope of our work and constrains which scenarios

are suitable for analysis.

Section 3.2 analyzes seven real-world Group Preferential Choice scenarios that

roughly conform to this model. These scenarios were selected to cover as much

variation as possible.
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Section 3.3 proposes revisions to the data model based on this analysis. The

revised model is presented in full in Section 3.4.

Section 3.5 collates the scenario-specific goals into scenario-independent goals

for preference synthesis in the context of Group Preferential Choice. This list of

goals serves as input to the task analysis in Chapter 4.

Finally, Section 3.6 discusses contextual features of the seven scenarios, such

as the stakes involved, the expertise of decision makers, and the amount of time in-

vested. It also summarizes the number of alternatives, decision makers, and criteria

in each scenario.

3.1 Preliminary Data Model for Group Preferential
Choice

We define Group Preferential Choice as a situation where two or more decision

makers, each with his or her own explicit preferences,1 must jointly choose from a

set of alternatives.2 There may or may not be explicit criteria. More formally, the

Group Preferential Choice data model has the following elements:

• A set of Alternatives A : {a1...am},m≥ 1

• A set of Decision Makers D : {d1...dn},n≥ 2, each of whom has a Prefer-
ence Model (described below)

• A set of Criteria C : {c1...cr},r ≥ 0

• A set of Primitive Criteria PC ⊂C : {pc1...pcs},s≥ 0

• A set of Abstract Criteria AC =C \PC

• A Criteria Tree T where the set of nodes in T is equal to C, and the set of

leaf nodes in T is equal to PC. This models the criteria hierarchy.

Criteria may be objective or subjective depending on whether their outcomes

are measurable facts or personal judgments. For example, size of lawn is an ob-

jective criterion, whereas attractiveness of lawn is a subjective criterion. Objective

1We use explicit to differentiate formally-expressed preferences from hidden or informally-
expressed preferences (e.g. through conversation).

2Here, an alternative is an entity that the decision makers evaluate. The number of actual options
might be larger, as decision makers might have the option of choosing multiple or no alternatives.
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criteria outcomes are the same for all decision makers, while subjective criteria

outcomes are individually defined by each decision maker.

For any objective criterion, there are the following additional elements:

• A Domain function dom(pc) where pc ∈ PC, which defines the possible

outcomes for criterion pc. The domain may be a discrete set (ordered or

unordered) or a continuous range.

• An Outcome function out(a, pc) ∈ dom(pc) where a ∈ A and pc ∈ PC,

which defines the outcome of alternative a on criterion pc.

In keeping with the standard definition of Multi-Attribute Decision Making

[30] [35], this model excludes scenarios where the number of alternatives is infi-

nite, or where different decision makers have different explicit criteria. We also

exclude scenarios where the criteria outcomes are uncertain (that is, decisions un-

der risk).

3.1.1 Preference Model Taxonomy

There are numerous ways that preferences can be modelled in formal decision pro-

cesses [30] [58]. Here, we describe a few common models that are appropriate for

a variety of evaluation contexts. These are organized into a hierarchy of increasing

complexity based on what is evaluated and how the preferences are expressed.

Level P0: The decision makers evaluate the alternatives holistically.

a. Ordinal evaluation. Each decision maker ranks the alternatives. Prefer-

ences can be modeled as a function rd(a) ∈ [1, |A|] where:

1. a ∈ A and d ∈ D
2. If abest is the most preferred alternative for decision maker d, then

rd(abest) = 1
3. rd(a1)< rd(a2) if and only if d prefers a1 to a2

b. Cardinal evaluation. Each decision maker scores each alternative along

a common linear scale. Preferences can be modeled as a function sd(a) ∈
[min,max] where:

1. a ∈ A and d ∈ D
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2. min and max are the minimum and maximum points on a linear scale

common to all decision makers

Level P1: The decision makers evaluate each alternative with respect to each cri-

terion.

a. Ordinal evaluation. Each decision maker ranks the alternatives with re-

spect to each criterion. Preferences can be modeled as a function rd(a, pc)∈
[1, |A|] where:

1. a ∈ A, d ∈ D, and pc ∈ PC

2. If abest is the most preferred alternative for decision maker d on crite-

rion pc, then rd(abest , pc) = 1
3. rd(a1, pc)< rd(a2, pc) if and only if d prefers a1 to a2 on criterion pc

b. Cardinal evaluation. Each decision maker scores each alternative with

respect to each criterion along a common linear scale. Preferences can be

modeled as a function sd(a, pc) ∈ [minpc,maxpc] where:

1. a ∈ A, d ∈ D, and pc ∈ PC

2. minpc and maxpc are the minimum and maximum points on a linear

scale for pc common to all decision makers

b+w. Same as above, with the addition of weights specifying the relative

value of switching from the worst to the best outcome on each criterion.

This can be modeled as a function wd(pc) ∈ [0,1], where d ∈ D, pc ∈ PC,

and
|PC|

∑
i=1

wd(pci) = 1 (3.1)

At this level, the raw (unweighted) preferences are specified by the function

uwsd(a, pc), while the weighted preferences are specified by the function

sd(a, pc) = uwsd(a, pc)∗wd(pc).

Level P2: The decision makers evaluate each possible outcome of each criterion.

a. Ordinal evaluation. Each decision maker ranks the possible outcomes of

each criterion. (This is only applicable for criteria with discrete domains.)

Preferences can be modeled as a function rd(out, pc)∈ [1, |dom(pc)|] where:
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1. d ∈ D, pc ∈ PC, and out ∈ dom(pc)
2. If outbest is the most preferred outcome for decision maker d on crite-

rion pc, then rd(outbest , pc) = 1
3. rd(out1, pc) < rd(out2, pc) if and only if d prefers out1 to out2 on cri-

terion pc

b. Cardinal evaluation. Each decision maker scores each possible outcome

of each criterion along a common linear scale.3 Preferences can be modeled

as a function sd(out, pc) ∈ [minpc,maxpc] where:

1. d ∈ D, pc ∈ PC, and out ∈ dom(pc)
2. minpc and maxpc are the minimum and maximum points on a linear

scale for pc common to all decision makers

b+w. Same as above, with the addition of weights specifying the relative

importance of each criterion. More precisely, a weight is the relative value

of switching from the worst to the best outcome on each criterion. This can

be modeled in the same manner as Level P1b+w.

At this level, the raw (unweighted) preferences are specified by the func-

tion uwsd(out, pc), while the weighted preferences are specified by the func-

tion sd(out, pc) = uwsd(out, pc)∗wd(pc).

Recommended Usage

This taxonomy is intended to be descriptive in that it captures several models that

are used in practice. Here, we briefly discuss a few prescriptive considerations

pertaining to preference models.

Raw preference data should be collected at the lowest level possible given the

criteria. Level P2 is recommended whenever alternative outcomes can be defined

globally, which is the case when the criteria are objective. This eliminates the bias

associated with direct evaluation of alternatives. Otherwise, preferences must be

collected at Level P1 (when the criteria are subjective) or Level P0 (when there are

no explicitly-defined criteria). A decision maker’s preferences may span multiple

levels of the taxonomy if there is a mix of subjective and objective criteria.
3This mapping from outcomes to scores is often called a Score Function, and the minimum and

maximum values are typically 0 and 1.
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If different scales are used for different criteria at Levels P1b or P2b, the scores

must be normalized. Additionally, in forced-choice scenarios where decision mak-

ers must select at least one alternative, it is customary to scale decision makers’

scores such that the best and worst alternatives for each criterion receive the mini-

mum and maximum scores on the scale (see Campbell River, Section 3.2.3). This

ensures that differences are maximally emphasized in the problem space. However,

in scenarios where decision makers may elect to choose none of the alternatives,

then absolute performance matters, and the original assessments should be pre-

served (see Faculty Hiring, Section 3.2.2).

At Level P1b, this can be achieved simply by scaling the scores such that:

1. If abest is the most preferred alternative for decision maker d on criterion pc,

then sd(abest , pc) = maxpc

2. If aworst is the most preferred alternative for decision maker d on criterion

pc, then sd(abest , pc) = minpc

3. rd(out1, pc) < rd(out2, pc) if and only if d prefers out1 to out2 on criterion

pc

At Level P2b, this also mandates restricting the domain of each criterion to

those represented in the problem space. In other words, there must be a one-to-

one relationship between each primitive criterion’s domain and the set of outcomes

achieved by the alternatives on that criterion. Then, each score function can be

scaled such that:

1. If outbest is the most preferred outcome for decision maker d on criterion pc,

then sd(outbest , pc) = maxpc

2. If outworst is the most preferred outcome for decision maker d on criterion

pc, then sd(outworst , pc) = minpc

3. Corollary: there must be at least two possible outcomes for each criterion,

and no decision maker may be completely indifferent to the outcomes of any

criterion.

At Level P1a and below, the criteria should be as independent as possible. That

is, the performance of an alternative on one criterion should not change the way a
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decision maker feels about its performance on another criterion. This ensures that

the decision maker’s total score for each alternative can be attained by summing

over the criteria scores. The more independent the criteria, the more accurate the

additive model will be.

Conversion Between Taxonomy Levels

Once preferences have been collected at a certain level, it is possible to move up

the taxonomy by applying simple transformations to the data, as shown in Figure

3.1.

The left-to-right arrows indicate possible conversions between numeric lev-

els of the taxonomy, each of which is coded in a different color. Preferences over

alternative-criterion pairs (P1) can be derived from preferences over outcomes (P2)

simply by looking up the score/rank of the alternative’s outcome on that crite-

rion. Preferences over alternatives only (P0) can be derived from preferences over

alternative-criterion pairs (P1) by aggregating over criteria. Conversion from P1b

to P0b is achieved by mapping the criteria scores to a common scale (if they are

not on the same scale already) and summing over the normalized scores. Conver-

sion from P1a to P0a involves combining ranks to form a new ranking. There are a

number of established techniques for doing this, but none of them are guaranteed to

satisfy all plausible fairness properties [3], so trade-offs must be considered. The

dashed arrow is used to convey this ambiguity.

The right-to-left arrows show possible conversions between alphabetic levels

of the taxonomy (a, b, and b+w). The conversion from b levels to a a levels is

straightforward, since a set of scores implies a ranking. The dotted arrow between

Levels P2b to P2a means that this is only applicable for criteria with finite domains.

The conversion from b+w to b involves calculating a weighted criterion score by

multiplying the unweighted criterion score by the criterion weight.

Finally, it is possible to move from Level P1a to P0b by converting ranks across

criteria into a numeric score for each alternative. One of the simplest and most

widely-used methods of doing so is the Borda count, which gives each alternative

one point for every alternative it beats on each ballot (in this case, each criterion)

[21]. Again, there is no single way to meaningfully convert a set of ranks into a
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score, so a dashed arrow is used to capture this ambiguity.

Figure 3.1: Preference Model Taxonomy. The numeric component of each
level reflects what is evaluated (P0: alternatives, P1: alternatives by cri-
terion, P2: outcomes by criterion), whereas the alphabetic component
encodes how they are evaluated (a: ordinal, b: cardinal, b + w: cardi-
nal + criteria weights). An upward arrow means that the level below
implicitly encodes the level above, as discussed in the text.
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Simplifying Assumptions

In order to constrain the scope of the analysis, we make the following tentative

assumptions regarding the nature of the preference models:

1. The preferences do not span multiple levels. That is, there in not a mix of

objective and subjective criteria or ordinal and cardinal evaluations.

2. All decision makers express their preferences at the same levels of the tax-

onomy.

3. The preferences are complete, that is:

(a) At level P0, every decision maker ranks (or scores) every alternative.4

(b) At level P1, every decision maker ranks (or scores) every alternative

with respect to every criterion.

(c) At level P2, every decision maker ranks (or scores) every outcome for

every criterion.5

4. The preferences and weights are treated as certain. That is, there is no fuzzi-

ness.

Whether or not these assumptions are realistic varies from situation to situation.

We revisit this taxonomy and list of assumptions in Section 3.3 after analyzing

several real-world scenarios.

3.2 Seven Real-World Scenarios
This section describes seven real-world Group Preferential Choice scenarios. Four

were assessed through one-on-one interviews with decision makers and the remain-

der were drawn from secondary sources. We address the following questions for

each scenario:

1. What is the decision problem, and what is the decision-making process?

2. What is the formal description in terms of the data model from Section 3.1?

4In the case of P0a, this means that the preference model must specify a total order over the
alternatives, but not necessarily a strict total order (which disallows ties).

5In the case of continuous domains, a complete score function may be attained by extrapolating
from scores on a few sample points.
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3. What are the goals during preference synthesis, and how are they achieved?

4. What are other relevant characteristics of the decision making context? In

particular:

(a) Is this decision made in a professional or casual setting?

(b) How high are the stakes?6

(c) How often does this decision recur?

(d) How much time is devoted to preference synthesis?

(e) Are the decision makers familiar with MCDA?

The first aim of this analysis is to validate and refine the data model. Section

3.3 proposes revisions to the data model to capture all relevant information and

sources of variation. The updated model is presented in Section 3.4.

The second aim is to identify key preference synthesis goals and specific tasks

that support them. Section 3.5 summarizes these findings.

The final aim is to characterize contextual factors that could inform system

design. These findings are summarized in Section 3.6.

3.2.1 Best Paper at a Conference

This scenario was characterized through a one-on-one interview with a faculty

member that was involved in selecting the best paper at a conference. Five re-

searchers were tasked with choosing two papers for the best paper award out of

four candidates that had been selected by the program chairs.

1. Decision Process

The five researchers met in person to choose the two best papers. They each ranked

the papers according to their preferences, with ties permitted. Then, they summa-

rized their rankings and had a discussion.

6For this question, the following broad categories suffice for this analysis:
• Low: minor impact on a few individuals
• Medium: major impact on a small organization or a few individuals
• High: major impact on a large organization (> 100 members)
• Very High: major impact on multiple large organizations or the general public
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2. Formal Data Description

The decision makers were the five researchers, and the alternatives were the four

papers. There were no explicit criteria. Each researcher ranked the alternatives,

which corresponds to level P0a of the Preference Model Taxonomy.

3. Preference Synthesis Goals

The overarching goal was to arrive at a consensus through focused discussion.

To achieve this, the decision makers combined their ranks in a spreadsheet with

decision makers on rows, papers on columns, and ranks in cells (Figure 3.2). In

the event of ties, the average of the spanned ranks was assigned to each of the tied

papers. For instance, if Papers A - D were ranked 1, 2, 2, and 3 respectively, the

adjusted ranks would be 1, 2.5, 2.5, and 4. A sum of ranks was computed for each

paper to assess overall performance.

Figure 3.2: Spreadsheet of ranks for each paper by researcher. (This is not
the actual data.)

The researchers used the spreadsheet to identify disagreement among them-

selves, taking note of papers with high variability in rank. This focused the discus-

sion on contentious points and encouraged the decision makers to reflect on their

own assessments.

A pair of papers was chosen that minimized the total rank sum while also ad-

hering to certain constraints (in this case, no two papers from the same author were

to be selected). The decision makers agreed that the process was efficient and sys-

tematic compared to less formal approaches. The goals and tasks are summarized

in Table 3.1.
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Table 3.1: Preference Synthesis Goals and Tasks for Best Paper Scenario

High-Level Goals Supporting Activities and Tasks
G1 Reach consensus Discussion, focused around G2 - G5.

G2 Identify papers with best overall performance
T1: Compute rank sum for each paper
T2: Compare papers with respect to rank sum

G3 Identify disagreement among decision mak-
ers

T3: Compare paper ranks across decision makers
T4: Identify rank discrepancies across decision
makers and papers

G4 Encourage reflection on individual prefer-
ences

T3: Compare paper ranks across decision makers
T5: Identify discrepancies between a particular
decision maker’s rankings and others’ rankings

G5 Understand reasons for disagreement Discussion

4. Contextual Features

This is a medium-stakes decision made in a professional setting over the course of

a one-hour meeting. The decision is made annually, although the exact scenario

may vary from year to year. The decision makers do not typically have MCDA

knowledge.

3.2.2 Faculty Hiring

This scenario was characterized through one-on-one interviews with four faculty

members of a research department at a major university. This department follows

a semi-formal process to evaluate candidates for open faculty positions. The pro-

cess is overseen by a hiring committee consisting of select faculty members and

students. Two of the interviewees were members of the hiring committee, and the

other two were voting members of the department.

1. Decision Process

The decision process has roughly four stages.

In the first stage, the candidate pool is winnowed via process of elimination.

The applications are screened, and select candidates are asked to send letters. A

subset of these candidates are contacted for Skype interviews. The candidates that

pass the Skype interview are invited to visit the department in person.

In the second stage, the short-listed candidates give a talk at the department,
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meet students, and have one-on-one meetings with faculty. The department is in-

vited to evaluate the candidate using a standardized form. Around 50 - 100 opinions

are collected this way.

In the third stage, the hiring committee meets to decide who will receive an

offer. If more than one candidate is approved for an offer, then the committee

decides the order in which the offers will be given.

In the final stage, the committee presents its recommendation at a department

meeting. Faculty members may vote to approve, disapprove, or abstain. These

votes are consulted by the department head, who makes the final decision.

2. Formal Data Description

The overarching process is composed of many distinct decision problems. How-

ever, we focus on Stages 3 and 4, as these make use of formal evaluations collected

from the department.

In this context, the alternatives are the short-listed candidates. The explicit

criteria are Research, Communication, Compatibility, Maturity, Research Fit, and

Teaching Fit. In Stage 3, the decision makers are the members of the hiring com-

mittee. In Stage 4, the decision makers are the voting faculty members.7

Preferences are collected using a standard form that can be filled out by anyone

in the department. It consists of 6-point scales for each of the six criteria. There is

also an ‘NA’ (not applicable) option for each scale. Each scale is accompanied by

a text field in which the user can justify their rating. Additionally, each evaluator

is asked to rate their confidence in their evaluation as either ‘Low’, ‘Medium’, or

‘High’. This preference model corresponds to level P1b of the taxonomy.

3. Preference Synthesis Goals

Prior to the hiring committee meeting, the quantitative results of the department

survey are summarized in the form of histograms, as shown in Figures 3.3 and 3.4.

In Stage 3, committee members consider these results and discuss their own

opinions. In addition to the explicit criteria, the committee members consider ad-

7Ultimately, the final decision is made by the department head, but this distinction is not critical
to this analysis.
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ditional factors about the candidates, such as number of papers published at top

conferences and how well they complement current faculty members. Faculty

members that work in the same area as the candidate (the ‘in-area’ faculty) are

given more weight in the discussion.

Both interviewees on the hiring committee reported that the subjective feed-

back provided in text fields or expressed in conversation was much more important

than the quantitative summaries. Because this is a high-stakes decision with a high

level of personal investment, subtleties are taken seriously.

Figure 3.3: Here, the results are summarized as a matrix of histograms with
criteria on rows and candidates on columns. Each bar encodes the fre-
quency with which that candidate scored at a particular level for that
criterion. The levels are VS: Very Strong, S: Strong, AP: At Par, W:
Weak, VW: Very Weak, and NA: Not Applicable.
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Figure 3.4: Here, the results are summarized separately for candidates A and
B. The x-axis groups the results by score level, and the bars are colour-
coded by criterion. Each bar encodes the percentage of reviewers that
gave that candidate that score for that criterion. The levels are VS: Very
Strong, S: Strong, AP: At Par, W: Weak, VW: Very Weak, and NA: Not
Applicable.

In Stage 4, Figures 3.3 and 3.4 (or equivalent) are presented to the department

along with selected text excerpts in order to justify the hiring committee’s recom-

mendation.

Two voting faculty members were interviewed following a department meet-

ing. In order to assess how they used the information presented, they were asked

the following questions:
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1. Did the visual summary influence your decision? If so, how?

2. Is there any information that would have helped you make your decision?

Both interviewees said that the summary confirmed what they already sus-

pected - that people generally liked the candidate. One interviewee said that the

summary influenced him by corroborating his viewpoint. The other said it did not

influence her because she was already convinced, but that it might have if it had

revealed more controversy.

Both interviewees expressed a desire to see the breakdown of scores by role

(student, in-area faculty, and other faculty) and confidence level (low, medium,

and high), which was not provided by the visualization. One interviewee would

have liked to read specific comments by people that gave negative feedback.

Table 3.2 provides a summary of the preference synthesis goals and tasks. For

simplicity, the goals and tasks of Stage 3 and Stage 4 have been combined.

Table 3.2: Preference Synthesis Goals and Tasks for Faculty Hiring Scenario

High-Level Goals Supporting Activities and Tasks
G1 Reach consensus through approval voting Facilitated discussion around G2 - G5.

G2 Gauge candidate performance across cri-

teria

T1: Count frequency of scores for that candidate

on each criterion

T2: Inspect distribution of scores for that candidate

on each criterion

G3 Identify discrepancies in performance

across candidates

T3: Compare distribution of scores across candidates

for each criterion

G4 Identify evaluators that might not be sat-

isfied with a particular candidate

T4: Count frequency of ‘disagree’ and ‘strongly disagree’

outcomes for each criterion and candidate

(Identification of individual evaluators not supported)

G5 Identify disagreement across evaluator

roles (student, in-area faculty, others)

Not supported

G6 Identify disagreement across evaluator

confidence levels (low, medium, high)

Not supported

G7 Understand reasons for evaluator opin-

ions

Consult textual feedback (Stage 3 only)

G8 Understand reasons for voter opinions Discussion

G9 Give more weight to expert opinions
Implicit (voters do this mentally)

Grant experts dedicated time to make a case
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4. Contextual Features

This is a high-stakes decision made in a professional setting. The hiring committee

meeting lasts about 2 hours, while the department meeting devotes about 1 hour

to the faculty hiring segment. This scenario recurs once or twice a month during

recruiting season. The decision makers do not typically have MCDA knowledge.

3.2.3 Campbell River Watershed

This scenario was characterized by watching a Webinar prepared by Compass, a

Vancouver-based consulting firm that helps organizations tackle high-stakes de-

cision problems using structured decision making techniques. In this scenario,

Compass oversaw the selection of a new operation strategy for the Campbell River

hydroelectric facilities on Vancouver Island. The process took three years and in-

volved numerous stakeholders, including the Federal and Provincial Government,

BC Hydro, local businesses, and First Nations.

1. Decision Process

The Campbell River Watershed is a major hydroelectric facility on Vancouver Is-

land. The region is also one of cultural significance to First Nations peoples, home

to multiple salmon species, and a popular recreation destination.

At the time, the Watershed consisted of three reservoirs and three river divi-

sions. The goal was to devise a new operation strategy that would better appeal to

a diverse set of interests.

A list of initial issues was collected through a series of public open houses.

These issues were pared down and organized by interest group: flooding and ero-

sion, fish and wildlife, recreation, water quality, and financial. Then, special sub-

committees were formed for each interest group to identify key objectives and

describe them in terms of measurable attributes. This process resulted in twelve

objective-attribute pairs. The final set of criteria was produced by listing applica-

ble objectives at each of five watershed locations, yielding a total of fifteen criteria

(Figure 3.5). A score function for each attribute was developed by an expert, which

would apply to all stakeholders.

Meanwhile, six alternatives were devised by considering feasible strategic ad-
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justments at each location in the watershed. The outcomes on each objective were

estimated, and these were arranged in a consequence table (Figure 3.5).

Finally, fifteen stakeholders from different interest groups met to evaluate the

alternatives with respect to their individual preferences. The process is described

below. The best two alternatives were identified in this manner, and these were

taken back to the drawing board for refinement. The final choice was made by

consensus voting.

Figure 3.5: Consequence table for six operation strategies on fifteen criteria
(derived by listing applicable objective-attribute pairs for each of five
watershed locations).

2. Formal Data Description

The alternatives were the six operation strategies, and the decision makers were the

fifteen stakeholders. The criteria were the twelve objectives.

Two types of preferences were collected: holistic and criteria-based. Holis-

tic preferences were obtained by asking users to rank the alternatives in order of

preference, with ties allowed. Then, they were asked to assign the highest ranked

alternative a score of 100 and score the others relative to that. These preferences

correspond to levels P0a and P0b in the taxonomy.

Criteria-based preferences were obtained by collecting weights using the SMARTER
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technique [23]. This corresponds to level P2b+w of the taxonomy, where the

weights are supplied by individual decision makers and the score functions by an

expert. A score for each alternative was calculated using Simple Additive Weight-

ing (SAW) [30] over the weighted criteria scores.

The reason for collecting two types of preferences was to validate the model.

Discrepancies between the two outcomes would indicate that one or both models

is flawed - either the decision maker did not consider all criteria in her holistic

assessment (the holistic model is flawed) or some criteria of interest to the decision

maker are missing from the set (the criteria-based model is flawed). The results

of this comparison were presented to each user in the form of a line graph (Figure

3.6).

Figure 3.6: Comparing two preference models for a participant.
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3. Preference Synthesis Goals

The ultimate goal of preference synthesis was to support negotiation and help the

stakeholders reach consensus. To this end, Compass provided each user with two

sheets of paper, each featuring a different graphic.

Figure 3.7 shows each person her weights in the context of the range of weights

for the whole group. The intent of this was to help the decision makers see how

their priorities compare to the rest of the group, and to reveal criteria for which

there was a wide range of opinions.

Figure 3.8 shows the ranking of each alternative for each person and scor-

ing method. The purpose of this was to help the decision makers identify high-

performing alternatives at a glance, and then to see which decision makers are not

content with the top alternatives.

Figure 3.7: The range of weights assigned to each criteria across users. A
yellow square denotes the weight assigned by that participant.
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Figure 3.8: The performance of each alternative for each user’s two prefer-
ence models. The number in each cell represents rank, whereas color
encodes score.

After a period of discussion, alternatives G and H were selected for further

refinement. The goals and tasks are summarized in Table 3.3.
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Table 3.3: Preference Synthesis Goals and Tasks for Campbell River Sce-
nario

High-Level Goals Supporting Activities and Tasks
G1 Reach consensus Discussion, focused around G2 - G6.

G2 Identify differences in priorities among

decision makers

T1: Inspect distribution of weights for each

criterion

G3 Identify differences in priorities between

self and others

T2: Compare own weight to distribution of

weights for each criterion

G4 Identify strategies with best overall per-

formance

T3: Compare strategy scores and ranks across

decision makers

G5 Identify decision makers that may not be

satisfied with a particular strategy

T4: Identify decision makers that assigned a

low score to that strategy

G6 Understand reasons for disagreement Discussion

4. Contextual Features

This was a one-time, very high-stakes decision made in a professional setting. Pref-

erence synthesis took an entire day. The decision makers did not have MCDA

knowledge themselves, but they were assisted by MCDA experts.

3.2.4 MJS77 Project

Dyer and Miles describe the first recorded application of MCDA methods to a real-

world group decision problem [22]. The decision makers were NASA scientists,

and the task was to choose a pair of trajectories for the Jupiter/Saturn 1977 (MJS77)

Project. The resulting missions were later named Voyager 1 and Voyager 2.

1. Decision Process

The Jet Propulsion Laboratory (JPL) of NASA was tasked with selecting a pair of

trajectories (flight paths) for two spacecrafts that would be launched within days of

each other. The trajectories had to be chosen jointly, as the merits of one depended

on the other.

The choice of trajectory is a major factor in determining the mission’s success,
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so the JPL recruited a team of eighty scientists for advice. The scientists were

divided into ten teams by specialty. Each team was represented by its leader in an

inter-team committee called the Science Steering Group (SSG).

An initial set of possible trajectory pairs was developed through back-and-forth

consultation between the JPL and science teams. This resulted in a set of 32 can-

didate pairs.

Then, each science team evaluated each of the candidate pairs by ranking and

scoring them holistically, as described below. Each team was permitted to use

whatever decision making process it wished. The JPL synthesized the results and

presented them to the SSG. The final trajectory was selected by the SSG following

a discussion.

2. Formal Data Description

The alternatives were the 32 trajectory pairs, and the decision makers were the ten

science teams. Each team ranked the trajectory pairs, with ties permitted. This

corresponds to level P0a in the taxonomy.

Scores on a cardinal scale were obtained using von Neumann-Morgenstern lot-

teries [60]. This elicitation method was selected due to its “theoretical consistency,

wide acceptance, and ease of implementation” [22]. This yielded an expected util-

ity score of 0 - 1 for each pair. This corresponds to level P0b in the taxonomy.

3. Preference Synthesis Goals

The synthesis of preferences was carried out by the JPL. The ranks were aggregated

by summing across teams and dividing by the number of trajectory pairs. In the

event of ties, the average of the spanned ranks was used. This aggregation method

is identical to that used in the Best Paper scenario, with an additional rescaling step

at the end.

The JPL tested eight different ways of aggregating the cardinal scores. In

particular, they experimented with team weights, normalization procedures, and

aggregation techniques. The purpose of this was to perform sensitivity analysis

over different collective choice rules. The level of agreement was quantified using

Kendall’s coefficient of concordance, which came to 0.96. This is very high, and it
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suggests that this problem was not especially sensitive to any of these factors.

Finally, the results of this analysis were presented to the SSG in the form of

Figures 3.9 and 3.10. Three trajectory pairs (26, 29, and 31) were found to be in the

top three for all collective choice rules. The scientists discussed the pros and cons

of these three trajectories, and all but one team eventually agreed that trajectory 26

would be acceptable. Trajectory 26 was modified to address the concerns of the

disapproving team and then approved by the project manager. The goals and tasks

of preference synthesis are summarized in Table 3.4.

Table 3.4: Preference Synthesis Goals and Tasks for MJS77 Scenario

High-Level Goals Supporting Activities and Tasks
G1 Reach consensus Facilitated discussion around G2 - G5.

G2 Identify high-performing trajectories
T1: Identify trajectories ranked in top three

across collective choice rules

G3 Identify teams that may not be satisfied

with a particular trajectory

T2: Identify teams that assigned that trajectory

a low ranking (under 10)

G4 Understand sensitivity of outcome to col-

lective choice rule

T3: Compare trajectory rankings across nine

collective choice rules

G5 Understand reasons for each team’s rank-

ings

Discussion
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Figure 3.9: The scores for the top 10 trajectory pairs on each of nine collective choice rules [22].
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Figure 3.10: Ordinal rankings for the top 10 trajectory pairs for each of the
10 science teams (RSS ... PRA) [22]. In the event of ties, the numeric
score for each pair is the average of the spanned ranks.

4. Contextual Features

This was a one-time, very high-stakes decision made in a professional setting.

Preference synthesis took several days. The decision makers did not have MCDA

knowledge themselves, but they were assisted by MCDA experts.

3.2.5 Nuclear Crisis Management

In this study, Mustajoki et al. ran a two day workshop in which a group of par-

ticipants planned countermeasures for a hypothetical nuclear emergency scenario

[40]. It was one of the first attempts to demonstrate the efficacy of MCDA software

in group decision making scenarios.

1. Decision Process

The participants in the study were authorities in nuclear emergency planning that

would be responsible for devising a plan in the event of a real emergency.
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The participants were split into six groups, and each group was assigned to

a computer equipped with Web-HIPRE (HIerachical PREference analysis on the

Web), a decision support application based on MAVT [32].

The facilitator described the hypothetical scenario: an accident had taken place

in a nuclear power plant in Finland. It was now a week later, and the fallout covered

a major milk production area. The group was tasked with choosing the best strategy

to mitigate damage.

The alternatives had been developed during prior meetings with experts. There

were four possible strategies: provision of uncontaminated fodder (‘Fod’), pro-

cessing of milk into other products (‘Prod’), banning the milk (‘Ban’), and doing

nothing (‘–’). The alternatives were six realistic pairs of strategies over two time

periods: weeks 2 - 5 and 6 - 12 after the accident: (‘–+–’), (‘Fod+–’), (‘Fod+Fod’),

(‘Prod+Fod’), (‘Ban+Fod’), and (‘Ban+Ban’).

A preliminary set of criteria had also been developed during prior meetings

with experts. The conference group deliberated and narrowed these down to seven.

Each group then used the software to supply its preferences, as described be-

low. The results were presented by the facilitator, and then approval voting was car-

ried out for each of the possible alternatives. Two of the alternatives, (‘Fod+Fod’)

and (‘Fod+Prod’), were unanimously approved.

2. Formal Data Description

The decision makers were the six teams, and the alternatives were six pairs of

strategies.

There were seven criteria arranged hierarchically into three groups: Health

(Thyroid Cancer, Other Cancers); Social-Psychological (Reassurance, Anxiety, In-

dustry, Feasibility); and Cost (Cost). These constituted a mix of subjective and

objective criteria, although the authors did not specify which were which.

For subjective criteria, the groups directly rated each alternative on a 0 - 1 scale.

For objective criteria, a common score function was defined by experts. Weights

for criteria were obtained using a SWING weighting technique [61]. Taken to-

gether, the preference model is a hybrid of P1b+w and P2b+w.

57



3. Preference Synthesis Goals

The overarching goal was to reach consensus through approval voting on the alter-

natives.

First, the alternative scores for each team were projected onto a screen one by

one. The facilitator led a discussion of each, pointing out essential characteristics

and explaining how different criteria contribute to the overall score. The facilitator

performed sensitivity analysis to demonstrate how changing the criteria weights

can affect the outcome.

Individual models were combined by computing a weighted sum of total scores

for each alternative. The results of this were projected onto the screen (Figure

3.11). At first, equal weights were assigned to the groups. Then, the facilitator

performed sensitivity analysis to demonstrate how changing the weights of the

groups can affect the outcome.

Web-HIPRE provides a visual breakdown of the scores of each alternative by

group, as seen in Figure 3.11. The teams can also see a breakdown by criteria, or

even switch the bars and segments such that the total score for each criterion is

broken down by alternative.

The participants discussed the results, paying particular attention to groups

whose preferences did not align with the others (Group 2). Eventually, the groups

arrived at a consensus, and two of the alternatives, (‘Fod+Fod’) and (‘Fod+Prod’),

were unanimously approved.
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Figure 3.11: Score for each alternative, broken down by group [40].

The process was well-received by the participants, and they were satisfied with

their final decision. However, they felt it would be better suited for planning in

advance than in the event of a real crisis.
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Table 3.5: Preference Synthesis Goals and Tasks for Nuclear Crisis Scenario

High-Level Goals Supporting Activities and Tasks
G1 Reach consensus through approval voting Facilitated discussion around G2 - G5.

G2 Identify best performing strategy for a

particular group

T1: Compute total score for each strategy

for that group

T2: Compare strategies with respect to total score

for that group

T3: Compare strategies with respect to criteria scores

for that group

G3 Understand effect of criteria weights on

outcome for particular group

T4: Perform sensitivity analysis on criteria weights

for that group

G4 Identify best performing strategies over-

all

T5: Compute total score for each strategy

T6: Compare total scores of each strategy

G5 Identify disagreements on overall strat-

egy performance

T7: Compare strategies with respect to total score

for each group

G6 Understand effect of group weights on

outcome

T8: Perform sensitivity analysis on group weights

G7 Understand contribution of each group to

total score for each alternative

T9: Inspect breakdown of total scores into scores for each group

G8 Understand reasons for disagreement Discussion

4. Contextual Features

This was a simulation of a one-time, very high-stakes decision made in a profes-

sional setting. Preference synthesis took an entire day. The decision makers did

not have MCDA knowledge themselves, but they were assisted by MCDA experts

(which may or may not be feasible in the event of a real crisis).

3.2.6 Technology Selection at XpertsCatch

This scenario was characterized by observing a team meeting of the software re-

cruitment start-up, XpertsCatch. During this meeting, the company decided which

technology stack to use for their next product. The CTO and two senior employees

were interviewed individually after the meeting.

This is not technically Group Preferential Choice since there was no formal

preference modelling. However, the interviewees explained that it would have been

feasible and useful to express their preferences formally, and they speculated about

how they might do so in the future.
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1. Decision Process

Prior to the meeting, the senior employees narrowed down their options to two

stacks of interoperable technologies along six dimensions: language, database, data

format, deploy target, back-end framework, and web server.

During the meeting, the CTO met with the engineering team, which consisted

of two senior and two junior developers. The CTO and each engineer cast a vote

for one of the two stacks and presented his or her supporting arguments. The

CTO made the final decision, putting more weight on the arguments of the senior

developers.

2. Formal Data Description

The decision maker was the CTO, and the alternatives were two possible stacks:

(Javascript, MongoDB, JSON, Mobile HTML, Express, NodeJS) and (Python,

MongoDB, XML, Android, Meteor, Apache).

Criteria and preferences were not explicitly modelled. However, the intervie-

wees said that they implicitly evaluated the stacks based on the six technological

dimensions and two whole-system criteria: learning curve and adaptability. Dif-

ferent interviewees expressed different priorities over the criteria. For instance, the

CTO cared most about deployment target because it affects the target demographic,

whereas the back-end developer cared most about language because it affects his

day-to-day productivity.

The interviewees said that if they were to use explicit preference modelling,

they would treat each of the six technological dimensions as objective criteria and

each of learning curve and adaptability as subjective criteria. Additionally, they

would use weights to capture their priorities. They all agreed that explicit prefer-

ence modelling would have been helpful for their analysis. Such a model would

correspond to a hybrid of levels P2b+w and P1b+w.

3. Preference Synthesis Goals

As there was no formal preference modelling, there was no formal synthesis of

preferences. Preferences were shared through conversation, and the expertise of

each stakeholder was taken into account. As such, the elicitation, evaluation, and
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synthesis phases were intertwined.

Before the final decision was made, the CTO consulted with a developer that

had voted for the other stack to confirm that he would accept the decision. He said

that he would.

Table 3.6: Preference Synthesis Goals for XpertsCatch Scenario

High-Level Goals Supporting Activities

G1 Choose best technology stack for the

company

Company meeting addressing

G2 - G6

G2 Identify most preferred stack for each

employee

Elicit votes

G3 Identify most preferred stack overall Count votes

G4 Understand reasons for each employee’s

preference

Hear supporting arguments

G5 Identify differences in preferences Compare supporting arguments

G6 Identify employees that do not prefer a

particular stack

Review votes

G7 Differentiate between senior and junior

engineers

Implicit (in CTO’s head)

4. Contextual Features

This is a medium-stakes decision made in a professional setting over the course of

a one-hour meeting. This or similar decisions are made about once a year. The

decision makers do not have MCDA knowledge.

3.2.7 Buying a Gift for a Colleague

In this scenario, a research lab chose a gift to buy for a recently-graduated col-

league, Oscar.8 It was characterized by interviewing the person that led the process,

as well as two other members of the lab.

Like the XpertsCatch case, this was not technically Group Preferential Choice

8All names have been replaced
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since there was no formal preference modelling. However, the interviewees were

able to speculate about how formal preference models might have been useful.

1. Decision Process

The lab members agreed that each person would contribute $10 - $20 toward the

gift. One colleague, Sayid, volunteered to lead the selection process.

First, he made a list of possible gifts within that price range. He did not have

time to consult the whole group, so he asked two colleagues that were close friends

of Oscar to help him narrow down the list. After brainstorming, they agreed on

some criteria: the gift should be around $150, high-quality, long-lasting, useful,

and aesthetically appealing. One friend believed that the usefulness of the gift was

more important than its aesthetic appeal, whereas the other thought that the col-

league might prefer an artistic gift since he did a lot of sketching for his PhD. After

conversing for about ten minutes, they narrowed down the list to three options.

Then, Sayid arranged a meeting with the whole lab. He presented the options

and explained the criteria that they had considered. The lab then voted on the three

options, and the gift with the most votes was purchased.

2. Formal Data Description

The decision makers were the lab members (ten in total), and the alternatives were

the three gifts. The criteria were cost, quality, durability, usefulness, and aesthetic

appeal. Another criteria, size, was used to screen options: only options that could

fit in his backpack were considered. There was no formal preference modelling.

Two interviewees said that formal preference modelling would have been a

good way to collect more opinions. There was a mixture of objective and sub-

jective criteria, as well as differences in opinion over which criteria were most

important. Therefore, the appropriate preference model would be a combination of

levels P2b+w and P1b+w.

3. Preference Synthesis Goals

As there was no explicit preference modelling, there was no formal synthesis of

preferences. Sayid gave a verbal synthesis of his and the two friends’ opinions
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to the group. He presented the pros and cons of the three options, and the other

colleagues used this information to decide how to vote.

Two of these colleagues were interviewed about the process. They were both

happy with the outcome, but they wished that more opinions had been collected

prior to the meeting. They noticed that not many people actively commented during

the meeting, and they suspected this might have been due to the size of the group.

One interviewee said that he would not feel comfortable expressing a contrary

opinion in front of the others. The other interviewee said that she would put the

most weight on the opinions of the organizer (Sayid) and Oscar’s friends.

4. Contextual Features

This is a low-stakes decision made in a semi-professional setting over the course

of a one-hour meeting. This or similar decisions are made about once a year. The

decision makers do not have MCDA knowledge.

3.3 Data Model Revisions
This section proposes adjustments and extensions to the data model from Section

3.1 in order to fully and accurately capture the key aspects of all seven scenarios.

These are summarized in Table 3.8. The final, updated data model is presented in

Section 3.4.

3.3.1 Participant Roles

Several scenarios indicate that the current definition of decision maker is inade-

quate to capture the complexity of participant roles.

In the Faculty Hiring case, feedback from the department is considered by the

hiring committee and voters at the department meeting. In both cases, the pref-

erences of non-voting stakeholders are taken into account. The voters themselves

may or may not be evaluators, depending on whether or not they completed the

feedback form.

In the XpertsCatch case, the opinions and preferences of four engineers were

considered, but ultimately, the CTO was responsible for the final decision.
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Finally, in the MJS77 and Nuclear Crisis cases, groups of individuals of oper-

ated as single decision-making units.

To address these subtleties, we add the following definitions to our model:

• A Stakeholder is an individual or group that is invested in the outcome of

the decision.

• A Decision Maker is an individual, or a group functioning as an individual,

that is responsible for reviewing a collection of preferences and making a

decision accordingly, either through voting or acting independently.

• An Evaluator is an individual, or a group functioning as an individual,

whose preferences are modelled and taken into account by the decision mak-

ers.

In light of the definition changes above, all references to Decision Maker in

the data model definition are replaced with Evaluator (Section 3.4).

In the seven scenarios that we analyzed, the decision makers and the evaluators

were all stakeholders. However, this might not always be the case, since non-

stakeholder preferences may be taken into consideration for additional information.

We limit the definition of Group Preferential Choice to scenarios where at least

two of the evaluators are also stakeholders. But other types of problems may call

for the synthesis of non-stakeholder preferences exclusively. For example, a shop-

per might want to inspect a summary of product reviews to inform her selection.

This is not Group Preferential Choice, but the data and tasks may be similar, and

so many of the same visual techniques may apply.

3.3.2 Criteria

There are situations where a common score function is defined for objective criteria

(Campbell River, Nuclear Crisis). In these cases, all evaluators are assigned the

same score function for that criterion. This may be appropriate when the relative

values of different outcomes are generally agreed upon (e.g. cost) or require expert

judgment (e.g. fish population). Our contact at Compass explained that this is

normal, and that it is unusual for each evaluator to supply her own score function.
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For this reason, we extend the definition of objective criteria to include an

optional score function specification. Additionally, we add a new level P2w to

the Preference Model Taxonomy that only includes weights. It sits below P2b+w
because the score functions for the evaluators are implicitly encoded as the score

functions for the criteria.

3.3.3 Evaluator Groups and Weights

The current data model does not provide a way to partition evaluators into groups.

The Faculty Hiring, XpertsCatch, and Gift cases indicate that this would be useful

for capturing different classes of evaluators. Furthermore, interviewees in the Fac-

ulty Hiring case expressed a desire to see a breakdown of the results by department

role or confidence level. To support this, the data model would need to permit

multiple ways of partitioning the evaluators into groups.

The current data model also does not provide a way to quantify evaluator im-

portance, which may vary for a number of reasons including expertise, authority,

or degree of investment in the outcome. For instance, in the Faculty Hiring case,

the opinions of experts are valued more than those of non-experts. As such, the

data model should support weights for individual evaluators or evaluator groups.

To address these limitations, the following elements have been added to the

data model:

• A set of Group Trees GT : gt1...gtu, |GT | ≥ 1, where:

– A Group Tree gt is a tree where the internal nodes are Groups and the

leaf nodes are Evaluators from E.

– If preferences are collected at Level P0b are below:

∗ Each Group Tree has a weights function w(e) ∈ [0,1], where e ∈
Evaluators, and ∑

|Evaluators|
i=1 w(ei) = 1.

Each Group Tree represents a hierarchical partitioning of Evaluators into Groups,

analogous to the hierarchical partitioning of Primitive Criteria into Abstract Crite-

ria. We assume that GT always includes a default Group Tree that places every

Evaluator under a single Group.
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3.3.4 Preference Model Taxonomy

Table 3.7 shows which levels of the taxonomy are covered by which cases, indi-

cated by Xs. In the XpertsCatch and Gift for Colleague columns, the Xs indicate

the levels that would have been covered if preferences had been formally modelled

(according to the interviewees).

There are no cases for levels P1a and P2a. In fact, a subsequent review of

MCDM literature uncovered no recorded cases where this type of preference model

was used, even when there is only one decision maker. Nevertheless, these levels

will be retained for completeness.

Table 3.7: Coverage of Preference Model Taxonomy. The checkmarks in-
dicate which levels are present in each scenario. Checkmarks with an
asterisk are hypothetical.

Faculty Hiring Best Paper Campbell River Voyager Nuclear Crisis XpertsCatch Gift for Colleague

P0
a X X X

b X X

P1

a

b X

b+w X X* X*

P2

a

b

b+w X* X*

w X X

Finally, we return to the list of potential simplifying assumptions:

1. The preferences do not span multiple levels. That is, there in not a mix of

objective and subjective criteria or ordinal and cardinal evaluations.

2. All decision makers express their preferences at the same levels(s) of the

taxonomy.

3. The preferences are complete, that is:

(a) At level P0, every decision maker ranks (or scores) every alternative.

(b) At level P1, every decision maker ranks (or scores) every alternative

with respect to every criterion.

(c) At level P2, every decision maker ranks (or scores) every outcome for

every criterion.
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4. The preferences and weights are treated as certain. That is, there is no fuzzi-

ness.

Assumptions 2 and 4 hold in all scenarios.

Assumption 1 is violated by the Nuclear Crisis, XpertsCatch, and Gift scenar-

ios, which each use a mix of objective and subjective criteria. This should not have

major implications for visualization design - it simply means that designs may need

to handle more heterogeneity.

Assumption 3 is violated by the Faculty Hiring scenario because evaluators can

select ‘NA’ for any of the criteria. Furthermore, in cases where multiple candidates

are being considered, evaluators are not required to evaluate all candidates. Miss-

ing values could pose a significant challenge for both the mathematical model and

the visual design, but the problem does not appear to be ubiquitous in Group Pref-

erential Choice Scenarios. For this reason, we will maintain this assumption going

forward and leave the missing values problem to future work.

Table 3.8: Summary of Data Model Issues from Scenarios

Category Issue Scenarios Solution
Participant
Roles

Relationship between decision makers

and evaluators may not be one-to-one

Faculty Hiring,

XpertsCatch

Distinguish between

decision maker, stake-

holder, and evaluator

Decision makers and evaluators may be

groups functioning as individuals

MJS77, Nuclear

Crisis

Revise role definitions

accordingly

Criteria
A common score function may be de-

fined for an objective criteria

Campbell River,

Nuclear Crisis

Add an optional score

function to the objective

criterion definition; add

level P2w to the Prefer-

ence Model Taxonomy

Evaluator
Groups
and
Weights

Decision makers may want to partition

the evaluators into groups, and then as-

sign different weights to different groups

Faculty Hiring,

XpertsCatch,

Gift

Introduce Group Trees,

Groups, and Group

Weights

Decision makers may want to assign

weights to individual evaluators

MJS77, Nu-

clear Crisis,

XpertsCatch,

Gift

Same as above (assign

individual evaluators to

their own group)
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3.4 Revised Data Model for Group Preferential Choice
We define Group Preferential Choice as a situation where one or more decision

makers must jointly choose from a set of alternatives based on two or more stake-

holders’ preferences over the alternatives.

• A set of Alternatives A : {a1...am},m≥ 1

• A set of Evaluators E : e1...en, |E| ≥ 2, each of whom has a Preference
Model (described below)

• A set of Criteria C : {c1...cr},r ≥ 0

• A set of Primitive Criteria PC ⊂C : {pc1...pcs},s≥ 0

• A set of Abstract Criteria AC =C \PC

• A Criteria Tree T where the set of nodes in T is equal to C, and the set of

leaf nodes in T is equal to PC. This models the criteria taxonomy.

• A set of Group Trees GT : gt1...gtu, |GT | ≥ 1, where:

– A Group Tree gt is a tree where the internal nodes are Groups and the

leaf nodes are Evaluators from E.

– If preferences are collected at Level P0b are below:

∗ Each Group Tree has a weights function w(e) ∈ [0,1], where e ∈
Evaluators, and ∑

|Evaluators|
i=1 w(ei) = 1.

Criteria may be objective or subjective depending on whether their outcomes

are measurable facts or personal judgments. For any objective criterion, there are

the following additional elements:

• A Domain function dom(pc) where pc ∈ PC, which defines the possible

outcomes for criterion pc. The domain may be a discrete set (ordered or

unordered) or a continuous range.

• An Outcome function out(a, pc) ∈ dom(pc) where a ∈ A and pc ∈ PC,

which defines the outcome of alternative a on criterion pc.

• An optional Score function score(out, pc) ∈ [0,1] where pc ∈ PC and out ∈
Domain(pc) and score(out, pcworst) = 0 and score(out, pcbest) = 1
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3.4.1 Preference Model Taxonomy

Level P0: The evaluators evaluate the alternatives holistically.

a. Ordinal evaluation. Each evaluator ranks the alternatives. Preferences

can be modeled as a function re(a) ∈ [1, |A|] where:

1. a ∈ A and e ∈ E

2. If abest is the most preferred alternative for evaluator e, then re(abest) =

1

3. re(a1)< re(a2) if and only if e prefers a1 to a2

b. Cardinal evaluation. Each evaluator scores each alternative along a com-

mon linear scale. Preferences can be modeled as a function se(a)∈ [min,max]

where:

1. a ∈ A and e ∈ E

2. min and max are the minimum and maximum points on a linear scale

common to all evaluators

Level P1: The evaluators evaluate each alternative with respect to each criterion.

a. Ordinal evaluation. Each evaluator ranks the alternatives with respect to

each criterion. Preferences can be modeled as a function re(a, pc) ∈ [1, |A|]
where:

1. a ∈ A, e ∈ E, and pc ∈ PC

2. If abest is the most preferred alternative for evaluator e on criterion pc,

then re(abest , pc) = 1

3. re(a1, pc)< re(a2, pc) if and only if e prefers a1 to a2 on criterion pc

b. Cardinal evaluation. Each evaluator scores each alternative with respect

to each criterion along a common linear scale. Preferences can be modeled

as a function se(a, pc) ∈ [minpc,maxpc] where:

1. a ∈ A, e ∈ E, and pc ∈ PC

2. minpc and maxpc are the minimum and maximum points on a linear

scale for pc common to all evaluators
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b+w. Same as above, with the addition of weights specifying the relative

value of switching from the worst to the best outcome on each criterion.

This can be modeled as a function we(pc) ∈ [0,1], where e ∈ E, pc ∈ PC,

and
|PC|

∑
i=1

we(pci) = 1 (3.2)

At this level, the raw (unweighted) preferences are specified by the function

uwse(a, pc), while the weighted preferences are specified by the function

se(a, pc) = uwse(a, pc)∗we(pc).

Level P2: The evaluators evaluate each possible outcome of each criterion.

a. Ordinal evaluation. Each evaluator ranks the possible outcomes of each

criterion. (This is only applicable for criteria with discrete domains.) Pref-

erences can be modeled as a function re(out, pc) ∈ [1, |dom(pc)|] where:

1. e ∈ E, pc ∈ PC, and out ∈ dom(pc)

2. If outbest is the most preferred outcome for evaluator e on criterion pc,

then re(outbest , pc) = 1

3. re(out1, pc)< re(out2, pc) if and only if e prefers out1 to out2 on crite-

rion pc

b. Cardinal evaluation. Each evaluator scores each possible outcome of

each criterion along a common linear scale. Preferences can be modeled as

a function se(out, pc) ∈ [minpc,maxpc] where:

1. e ∈ E, pc ∈ PC, and out ∈ dom(pc)

2. minpc and maxpc are the minimum and maximum points on a linear

scale for pc common to all evaluators

b+w. Same as above, with the addition of weights specifying the relative

value of switching from the worst to the best outcome on each criterion.

This can be modeled in the same manner as Level P1b+w.

At this level, the raw (unweighted) preferences are specified by the func-

tion uwse(out, pc), while the weighted preferences are specified by the func-

tion se(out, pc) = uwse(out, pc)∗we(pc).
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w. Same as above, except with weights only. (Assumes that a common score

function is defined for each primitive criterion.)

3.5 Summary of Preference Synthesis Goals
This section collates the scenario-specific goals into scenario-independent goals

for preference synthesis in the context of Group Preferential Choice.

In all scenarios, the overarching goal is to arrive at consensus or make a well-

informed decision that most stakeholders can accept. This is primarily achieved

through discussion, with the quantitative summaries serving as a guide. This is

a key point - in none of the scenarios did the quantitative summaries completely

supplant verbal exchange. Rather, the role of quantitative summaries was to fo-

cus analysis on points of interest, which can greatly enhance the efficiency of the

process. In particular, decision makers used the quantitative summaries to:

1. Discover viable alternatives

2. Discover sources of disagreement

3. Explain individual scores

The first item narrows the scope of analysis to alternatives that show promise.

This task is often paired with identifying evaluators that gave these alternatives low

scores or ranks (Faculty Hiring, XpertsCatch). Then, these evaluators can explain

why they felt this way. If the decision makers have the option of selecting no

alternatives, this also involves weighing alternatives against the status quo.

The second is concerned with identifying sources of disagreement among eval-

uators. In order to reach consensus, the decision makers need to understand how

their preferences differ so they can negotiate and make compromises. Variations

on this goal occur in all seven scenarios.

The third refers to the process of decomposing an individual evaluator’s score

into its constituents. This is necessary to support the second goal of understand-

ing points of contention, and it also allows evaluators to understand how different

aspects of their preferences (e.g. weights, score functions) contribute to their total

scores.
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These three goals pertain to understanding the model - an additional goal is to

validate the model. In practice, it is not uncommon for evaluators to adjust their

preferences after the first round of preference synthesis [51]. The accuracy and ro-

bustness of the model can be tested by encouraging reflection (Best Paper, Nuclear

Crisis), collecting preferences at multiple levels of the taxonomy (Campbell River),

or testing different aggregation techniques (MJS77). The process of observing how

changes to inputs influence outputs is called sensitivity analysis. If inconsistencies

or inadequacies are discovered, evaluators should be given an opportunity to adjust

their preferences. In some cases, it may also be necessary for the decision makers

to revise the criteria or alternatives.

Finally, quantitative models are seldom sufficient to fully capture individual

preferences. So, a final goal is to discover nuances that the explicit preference

models do not capture. This is achieved by engaging in discussion (all scenarios)

or consulting textual feedback if not all evaluators are present (Faculty Hiring).

Table 3.9 presents these goals in list form and relates them to scenario-specific

goals. The scenario goals are indexed by XX.YY, where XX is the scenario ID and

YY is the goal ID in that scenario’s Goals table. The scenario IDs are:

• BP = Best Paper (Table 3.1)

• FH = Faculty Hiring (Table 3.2)

• CR = Campbell River (Table 3.3)

• MS = MJS77 (Table 3.4)

• NC = Nuclear Crisis (Table 3.5)

• XC = XpertsCatch (Table 3.6)
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Table 3.9: Goals for Preference Synthesis in Group Preferential Choice

GENERIC GOAL SCENARIO GOALS
G1 Discover Viable Alternatives

a Discover high-performing alternatives across evaluators/evaluator groups
BP.G2, CR.G4, MS.G2,

NC.G4, XC.G3

b
Discover high-performing alternatives across criteria

(aggregated over evaluators)
FH.G2, FH.G3

c Discover high-performing alternatives for a single evaluator/evaluator group XC.G2

G2
Discover Sources of Disagreement
(i.e. find discrepancies across evaluators)

a
Discover and explain disagreement about an alternative

(across evaluators/evaluator groups)

BP.G3, FH.G4, FH.G5,

FH.G6, CR.G5, MS.G3,

NC.G5, XC.G6, XC.G7

b
Discover differences in preference models

(across evaluators/evaluator groups)
CR.G2, CR.G3, XC.G5

G3 Explain Individual Scores

a
Analyze contribution of different criteria to an alternative’s score

(for a single evaluator/evaluator group)
NC.G2

b
Analyze contribution of different parts of the preference model

(e.g. weights) to an alternative’s score (for a single evaluator/evaluator group)

c
Analyze contribution of different evaluators and evaluator weights

to an alternative’s total score
NC.G7

G4 Validate Model
a Understand sensitivity of evaluator scores to evaluator preference models NC.G3

b Understand sensitivity of total scores to group weights MS.G4, NC.G6

c Understand sensitivity of total scores to aggregation method MS.G4

d Discover discrepancies between one’s own preferences and others’ preferences BP.G4

G5
Discover nuances in evaluators’ preferences that are not captured
by the preference models

BP.G5, FH.G8, CR.G6,

MS.G5, NC.G8, XC.G4

3.6 Summary of Contextual Features and Scale
The scenarios divide roughly into three clusters based on contextual features (Table

3.10). The first cluster consists of very high-stakes, one-time decision problems

that the decision makers devote one or more days to analyzing with the help of

MCDA experts (MJS77, Nuclear Crisis, and Campbell River). The second consists

of high and medium-stakes decision problems that recur annually or monthly that

the decision makers devote only a few hours to analyzing (Faculty Hiring, Best

Paper, and XpertsCatch). The final cluster is a low-stakes decision made in a more

casual setting (Gift).
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Table 3.10: Contextual Features of Seven Scenarios

MJS77
Project

Nuclear
Crisis

Campbell
River

Faculty Hir-
ing

Best Paper
XpertsCatch

Gift for
Colleague

Assessment
Method

Journal Arti-

cle

Journal Arti-

cle

Webinar Interview Interview Interview +

observation

Interview

Work Con-
text

Professional Professional Professional Professional Professional Professional Semi-

professional

Frequency Once Once Once Monthly Annually Annually Once

Stakes Very High Very High Very High High Medium Medium Low

Preference
Model(s)

P0a, P0b P2w, P1b P0a, P0b,

P2w

P1b P0a P2b, P1b P2b, P1b

Time Al-
lowance

Several days 1 day 1 day 1 - 2 hours 1 hour 1 hour 1 hour

# Evalua-
tors

11 6 15 50 - 100 5 - 10 5 10

# Alterna-
tives

32 4 6 1 - 4 4 - 15 2 3

# Criteria NA 7 12 6 NA 8 5

Each of these clusters is likely to have somewhat different requirements for

its support system. Decision makers in the first cluster may benefit the most from

advanced analytic features, since they have the time, incentive, and expertise to

take advantage of them. Decision makers in the second cluster are more likely

to benefit from systems that are easy to learn and deliver insights quickly. If the

system is too complex or cumbersome, decision makers in this cluster may not be

willing to put in the effort to learn and use them. The third cluster may have an

even greater preference for usability over sophistication.

In most of these scenarios, the decision problem dimensions (number of eval-

uators, alternatives, and criteria) do not exceed twenty. This is reassuring from a

design standpoint, as it suggests that a variety of problems can be addressed with-

out encountering major scalability issues. The two exceptions are the number of

alternatives in the MJS77 scenario and the number of evaluators in the Faculty Hir-

ing scenario. In the former case, it is conceivable that the initial list could have

been winnowed further prior to complex preference modelling.

The Faculty Hiring scenario, on the other hand, is an outlier in more ways than

one. First, the number of evaluators is much higher than in any other scenario.

Second, it is the only scenario in which not all evaluators are present during the

preference synthesis. This may be why textual data is highly valued in this scenario
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- the evaluators are not always around to clarify their preferences in person. It is

unclear at this point if the Faculty Hiring scenario is sufficiently different from the

others to warrant its own design space.

3.7 Conclusion
The primary goal of this chapter was to characterize sources of variation among

Group Preferential Choice scenarios. We conclude with a summary of the similar-

ities and differences that were discovered.

Data

Similarities. By definition, all Group Preferential Choice scenarios have alterna-

tives, evaluators, and a rank or score for each alternative-evaluator combination.

In all but two scenarios, the number of evaluators, alternatives, and criteria did not

exceed twenty.

Differences. Between the seven scenarios, six different levels of the Preference

Model Taxonomy were represented (Table 3.7). Two of the scenarios had non-flat

criteria hierarchies (that is, they had abstract criteria other than the implicit root).

Three scenarios had or would have benefited from a non-flat evaluator hierar-

chy, and four had or would have benefitted from evaluator weights (Table 3.8). In

two scenarios, the relationship between decision makers and evaluators was not

one-to-one (Table 3.8).

Goals

In Section 3.5, the following goals were identified in three or more scenarios:

• G1a. Discover high-performing alternatives across evaluators/evaluator groups

• G2a. Discover and explain disagreement about an alternative

• G5. Discover nuances in evaluators’ preferences that are not capture by the

preference models.

The remaining goals were associated with at most two scenarios each.
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Context

As described in Section 3.6, the scenarios divide roughly into three clusters with

similar features. There is considerable variation between clusters and some varia-

tion within.
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Chapter 4

Data and Task Abstraction for
Preference Synthesis in Group
Preferential Choice

The goal of this chapter is to produce an abstract data and task model for prefer-

ence synthesis in the context of Group Preferential Choice. The resulting model is

intended to be broad enough to cover a variety of real-world scenarios but detailed

enough to guide requirements analysis for support tools. This model will inform

the analysis of potential visual encodings and interactions in Chapter 5.

Section 4.1 describes our existing data model (Section 3.4) in terms of a new

abstraction based on tables, which is more suitable for visualization design and

analysis.

Section 4.2 develops a task model by relating the goals identified in Section 3.5

to tasks described in terms of a taxonomy by Brehmer and Munzner [7]. Section

4.2.1 describes high-level tasks on Group Preferential Choice data, and Section

4.2.2 decomposes each of these tasks into lower-level tasks on generic data types.

4.1 Data Abstraction
In order to assess the suitability of different visual encodings, it is helpful to de-

scribe the data in terms of multidimensional tables, which are datasets consisting
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of attributes and dimensions, where an attribute is something that can be measured

and a dimension is a set of entities for which an attribute can be defined [38]. The

entities of a dimension are called keys, and the specific instances of an attribute

are called values. Types of attributes include categorical, ordinal, and quantitative

[38].

Multidimensional tables form the basis of OLAP (Online Analytical Process-

ing), a popular Business Intelligence paradigm that is integral to Analytics tools

such as Microsoft Excel and Tableau [16] [53]. In this context, multidimensional

tables are called data cubes and the term measure is used in lieu of attribute. Be-

cause attribute is also a synonym for criterion in MCDA, we will also use the term

measure instead.

As an example of these concepts, say that the cosmetics department of Macy’s

Gotham made a $2000 profit on 11-11-2009. In this case, Department, Store Lo-

cation, and Date are dimensions and Profit is a measure. Cosmetics, Gotham, and

11-11-2009 are keys, and $2000 is the a value for Profit defined by these keys.

Measures can be further divided into basic measures, which the user supplies,

and derived measures, which can be computed from the basic measures. The

dimensionality of a measure is the set of dimensions whose keys map to a sin-

gle value for that measure. In the example above, the dimensionality of Profit is

{Department, Store Location, Date}.
In Group Preferential Choice, each level of the Preference Model Taxonomy is

defined by one or two basic measures, as summarized in Table 4.1. All measures

are quantitative except for Outcome, whose type depends on the domain of the

criterion. Referring back to the terms and notation introduced in Section 3.8, the

dimensions are Evaluators, Criteria, Alternatives, and Outcomes, and their keys are

E, PC, A, and (
⋃|PC|

i=1 dom(pci)), respectively.1

OLAP also supports the specification of hierarchies, which impose hierarchical

arrangements on the entities of a dimension [54]. In Group Preferential Choice,

the Criteria dimension has a hierarchy that is specified by the Criteria Tree. The

Evaluators dimension has one hierarchy for each Group Tree that is defined.

1This abstraction makes the simplifying assumption that the Outcomes dimensions is independent
of the Criteria dimension. This is not especially problematic - we can simply treat the nonsensical
intersections as undefined.
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The derived measures at each level of the taxonomy include all basic measures

that are defined by any of its descendants (see Figure 3.1). Additional derived

measures can be obtained via roll-up, which is the process of aggregating over (that

is, factoring out) a dimension or aggregating within a dimension to a higher level

of some hierarchy. Applicable to this analysis are the following derived measures:

1. The aggregate of any basic measure except Outcome for an evaluator group

(aggregating up the Evaluators hierarchy)

2. The aggregate of AltCritRank, AltCritScore, or CritWeight for an abstract

criterion (aggregating up the Criteria hierarchy)

3. The TotalRank/TotalScore for an alternative, which is the aggregate of Al-

tRank/AltScore over evaluators (factoring out the Evaluators dimension)

There are numerous ways that values can be aggregated, but we assume that

aggregate totals are obtained via summation.

Table 4.1: Basic Measures. The formulae refer to those defined in Section
3.4. The dimensionality of a measure is the set of dimensions whose
keys map to a single value for that measure. In other words, they are the
inputs to the formula for that measure.

Taxonomy Level Basic Measure Formula Dimensionality
P0b and descendants EvaluatorWeight w(g) {Evaluators}
P0a AltRank re(a) {Evaluators, Alternatives}
P0b AltScore se(a) {Evaluators, Alternatives}
P0b UnweightedAltScore uwse(a) {Evaluators, Alternatives}
P1a AltCritRank re(a, pc) {Evaluators, Alternatives, Criteria}
P1b AltCritScore se(a, pc) {Evaluators, Alternatives, Criteria}
P1b+w UnweightedAltCritScore uwse(a, pc) {Evaluators, Alternatives, Criteria}
P2a OutRank re(out, pc) {Evaluators, Criteria, Outcomes}
P2b OutScore se(out, pc) {Evaluators, Criteria, Outcomes}
P2b+w UnweightedOutScore uwse(out, pc) {Evaluators, Criteria, Outcomes}
P1b+w, P2b+w CritWeight we(pc) {Evaluators, Criteria}
P2a/b/b+w Outcome outa(pc) {Alternatives, Criteria}
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4.2 Task Abstraction
In the next two sections, we relate each of the goals in Table 3.9 to abstract tasks

based on Brehmer and Munzner’s typology of visualization tasks [7] (Figure 4.1).

This typology is rooted in Munzner’s nested model of visualization design, which

separates data/task abstraction from consideration of visual encodings/interaction

idioms [37]. The idea is that designers should be able to describe why a task is

performed and what data it is performed on independently of how it is achieved.

At this stage, we are only concerned with the what and why levels of description,

as our aim is to develop a task model that is independent of any particular system.

Figure 4.1: Brehmer and Munzner’s typology of abstract visualization tasks
[7]. The why group consists of actions arranged hierarchically from
high to low level. The what group encapsulates the targets, which are
separated into inputs and outputs.

.

4.2.1 High-Level Task Abstraction

All of the goals in Table 3.9 are instances of the high-level task Consume: Dis-

cover, which covers many facets of inquiry [7]. The terms Explain (G3), Analyze

(G3a, G3b), Verify (G4), and Understand (G4a - G4d) are all included in the list of

vocabulary related to the Discover task [7].

Tables 4.2 - 4.5 relate each of the sub-goals in Table 3.9 to high-level tasks

that support that goal. Although these tasks are lower-level than the goals, they are

still high-level from the perspective of the task typology since they, too, fall under
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the umbrella of Discover. In these descriptions, criterion may refer to a primitive

criterion or an abstract criterion, and evaluator may refer to a single evaluator or an

evaluator group, unless otherwise noted. For abstract criteria and evaluator groups,

the respective value will be an aggregate as described in the previous section.

These tasks were identified in two ways: (a) revisiting the scenario-specific

goals and coding them as tasks (if they were more specific than the generic goal

they were grouped with) and (b) brainstorming tasks that were missing from the

scenarios but could clearly support the goal in question.

Table 4.2 shows tasks to support G1: Discover Viable Alternatives. Support-

ing tasks for G1a include finding alternatives with high overall scores (T1) or low

variation in scores across evaluators (T2), as these may constitute viable ‘compro-

mise’ alternatives. Another way to focus the analysis is to identify non-dominated

alternatives (T3), which can minimize distraction and interference from others. To

narrow the list further, it is essential to be able to consider trade-offs between com-

petitive alternatives (T4). Finally, it may be necessary to looks at absolute pros and

cons of one alternative (where the ‘pros’ are evaluators with high scores and the

‘cons’ are evaluators with low scores), especially if selecting no alternatives is an

option (T6).

G1b is about identifying high-performing alternatives across criteria after eval-

uators have been factored out. In addition to a high overall scores (T1), consistent

performance across criteria may be desirable (T6). As with T3, it may be useful

to focus analysis on non-dominated alternatives in criteria-space (T7). Finally, one

might want to look at the relative strengths and weaknesses (that is, the trade-offs)

between a pair of alternatives (T8), or the absolute strengths and weaknesses of

one alternative (T9).

G1c is about identifying high-performing alternatives for a particular evaluator

of interest, such as oneself. Tasks T11 - T14 are analogous to Tasks T6 - T9 except

that they target a particular evaluator instead of the aggregate over all evaluators.
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Table 4.2: Tasks to Support G1: Discover Viable Alternatives. Viable alter-
natives may include those with high overall scores (T1) or low variation
in scores (T2), as these may constitute viable ‘compromise’ alternatives.
Discovering non-dominated alternatives (T3) can focus the analysis on
competitive alternatives and minimize distraction and interference from
the others.

TASK Applicable Levels
G1a. Discover high-performing alternatives across evaluators
T1 Discover alternative(s) with best TotalRank/TotalScore Any

T2 Discover alternatives(s) with low variance in AltRanks/AltScores across

evaluators

Any

T3 Discover non-dominated alternatives across evaluators Any

T4 Discover trade-offs in AltRanks/AltScores between alternatives a and b Any

T5 Discover pros and cons in AltRanks/AltScores for alternative a Any

G1b. Discover high-performing alternatives across criteria
T6 Discover alternatives(s) with low variance in AltCritRanks/AltCritScores

across criteria (aggregated over evaluators)

P1a and descendants

T7 Discover non-dominated alternatives across criteria (aggregated over

evaluators)

P1a and descendants

T8 Discover trade-offs in AltCritRanks/AltCritScores between alternatives a

and b (aggregated over evaluators)

P1a and descendants

T9 Discover strengths and weaknesses of alternative a (aggregated over eval-

uators)

P1a and descendants

G1c. Discover high-performing alternatives for a single evalu-
ator
T10 Discover alternative(s) with best AltRank/AltScore for evaluator e Any

T11 Discover alternatives(s) with low variance in AltCritRank/AltCritScore

across criteria for evaluator e

P1a and descendants

T12 Discover non-dominated alternatives across criteria for evaluator e P1a and descendants

T13 Discover trade-offs in AltCritRanks/AltCritScores between alternatives a

and b for evaluator e

P1a and descendants

T14 Discover strengths and weaknesses of alternative a for evaluator e P1a and descendants

Table 4.3 shows tasks to support G2: Discover Sources of Disagreement. At

the highest level, disagreement can be discovered by finding alternatives with high

variance in scores, as these are more likely to be controversial (T15). Once an

interesting alternative has been identified (either through G1 or G2a), one can zero

in on evaluators with dissenting opinions (T16) or criteria that are responsible for

the controversy (T17).
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Another approach to discovering sources of disagreement is to look directly at

the preferences. If weights are included in the model, one can look for criteria with

high variance in weights (T18) and then identify dissenters (T19). This can also be

done for score functions if they are included (T20 and T21).

Table 4.3: Tasks to Support G2: Discover Sources of Disagreement. These
tasks hone in on where the disagreement is (T15) and who is disagreeing
(T16), bringing dissenting viewpoints to light.

TASK Applicable Levels
G2a. Discover and explain disagreement about an alternative
T15 Discover alternatives(s) with high variance in AltRank/AltScore across

evaluators

Any

T16 Discover evaluators that are outliers with respect to AltRank/AltScore for

alternative a

Any

T17 Discover criteria with high variance in AltCritRank/AltCritScore across

evaluators for alternative a

P1a and descendants

G2b. Discover differences in preference models
T18 Discover criteria with high variance in CritWeights across evaluators P1b+w, P2b+w

T19 Discover evaluators that are outliers with respect to CritWeights for crite-

rion c

P1b+w, P2b+w

T20 Discover criteria outcomes with high variance in OutRanks/OutScores

across evaluators

P2b and descendants

T21 Discover evaluators that are outliers with respect to OutRanks/OutScores

for outcome o of primitive criterion pc

P2b and descendants

Table 4.4 shows tasks to support G3: Explain Individual Scores. Each of these

tasks involves breaking down a derived measure into its constituents.
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Table 4.4: Tasks to Support G3: Explain Individual Scores. These tasks allow
decision makers to analyze constituents of global scores and individual
evaluator’s scores.

TASK Applicable Levels
G3a. Analyze contribution of different criteria to an alternative’s score
T22 Analyze breakdown of AltRanks/AltScores into

AltCritRanks/AltCritScores for alternative a and evaluator e

P1a and descendants

G3b. Analyze contribution of different parts of the preference model
to an alternative’s score
T23 Analyze breakdown of AltCritScore into UnweightedAltCritScore and

CritWeight for alternative a, evaluator e, and criterion c

P1b+w

T24 Analyze breakdown of OutScore into UnweightedOutScore and

CritWeight for evaluator e, primitive criterion pc, and outcome out

P2b+w

T25 Understand mapping between AltCritRank/AltCritScore and Out-

Rank/OutScore for a particular evaluator, alternative, and primitive cri-

terion

P2a/b and descendants

T26 Analyze breakdown of AltCritRank/AltCritScore for alternative a, evalu-

ator e, and abstract criterion ac

P1a and descendants

G3c. Analyze contribution of different evaluators and evaluator
weights to an alternative’s total score
T27 Analyze breakdown of AltScores into UnweightedAltScore and Evalua-

torWeight for alternative a and evaluator e

P0b and descendants

T28 Analyze breakdown of TotalRanks/TotalScores into AltRanks/AltScores

for alternative a

Any

Finally, Table 4.5 shows tasks to support G4: Validate Model. Tasks T29 - T32

support sensitivity analysis on various aspects of the model. The remaining tasks

allow individuals to compare their preference models to those of others, which

could inspire them to reevaluate their own preferences.

85



Table 4.5: Tasks to Support G4: Validate Model. These tasks support sensi-
tivity analysis and encourage comparison of individual preferences with
those of others.

TASK Applicable Levels
G4a. Understand sensitivity of evaluator scores to evaluator preference models
T29 Discover differences in AltRanks/AltScores for evaluator e before and

after changing CritWeights

P1b+w, P2b+w

T30 Discover differences in AltRanks/AltScores for evaluator e before and

after changing non-weight component of preference model

Any

G4b. Understand sensitivity of total scores to evaluator weights
T31 Discover differences in TotalScores before and after changing Evaluator-

Weights

P0b and descendants

G4c. Understand sensitivity of total scores to aggregation method
T32 Discover differences in TotalRanks/TotalScores from two different aggre-

gation methods

Any

G4d. Discover discrepancies between one’s own preferences and others’ preferences
T33 Discover differences in CritWeights for evaluator e to CritWeights for

other evaluators

Any

T34 Discover differences in non-weight component of preference model (e.g.

AltScores at P0b, OutScores at P2b) for evaluator e to that of other evalu-

ators

Any

4.2.2 Low-Level Task Abstraction

In this final stage of analysis, we decompose the high-level Discover tasks into

low-level Search and Query tasks.

Task Targets

The what node in the typology presented in Figure 4.1 represents the targets of the

tasks, which include inputs and outputs.

In Group Preferential Choice, there are two types of targets: values and distri-

butions (which are simply sets of values). Referring back to Table 4.1, the value

of a measure is defined by its complete key-set. For instance, an AltScore value is

uniquely defined by an alternative and an evaluator. If any of the keys are missing,

the result is a distribution.

The codes for various targets are provided in Tables 4.6 and 4.7. The distri-

butions in Table 4.7 are the result of allowing one dimension for the measure in
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question to vary and fixing the others. For instance, D2( john) is the distribution of

AltRanks or AltScores for evaluator john over all alternatives.

In each of these tables, a criterion may refer to an abstract or primitive criterion.

Similarly, an evaluator may consist of a single evaluator or multiple evaluators in a

group. If it is an abstract criterion or multi-evaluator group, the values in question

will be aggregates.

Table 4.6: Target Values for Task Analysis. These include all measures ap-
plicable to the given level.

Task Targets - Values For Applicable Levels
V1(a) TotalRank/TotalScore a ∈ A Any

V2(a,e) AltRank/AltScore a ∈ A,e ∈ E Any

V3(a,e) UnweightedAltScore a ∈ A,e ∈ E Any

V4(a,e,c) AltCritRank/AltCritScore a ∈ A,e ∈ E,c ∈C Any

V5(a,e,c) UnweightedAltCritScore a ∈ A,e ∈ E,c ∈C P1b+w and descendants

V6(e,pc,o) OutRank/OutScore e ∈ E, pc ∈ PC,o ∈ dom(PC) P2a and descendants

V7(e,pc,o) UnweightedOutScore e ∈ E, pc ∈ PC,o ∈ dom(PC) P2b+w

V8(c) CritWeight c ∈C P1b+w, P2b+w

V9(e) EvaluatorWeight e ∈ E P0b and descendants

V10(a,pc) Outcome a ∈ A, pc ∈ PC P2a and descendants

Table 4.7: Target Distributions for Task Analysis. The Across column spec-
ifies the dimension that varies and the For column specifies the dimen-
sions that are fixed.

Task Targets - Distributions Across For Applicable Levels
D1 TotalRanks/TotalScores Alternatives All data Any

D2(e) AltRanks/AltScores Alternatives e ∈ E P0a/b and descendants

D3(a) AltRanks/AltScores Evaluators a ∈ A P0a/b and descendants

D4(a,c) AltCritRanks/AltCritScores Evaluators a ∈ A,c ∈C P1a/b and descendants

D5(a,e) AltCritRanks/AltCritScores Criteria a ∈ A,e ∈ E P1a/b and descendants

D6(pc,o) OutRanks/OutScores Evaluators pc ∈ PC,o ∈ dom(PC) P2a/b and descendants

D7(c) CritWeights Evaluators c ∈C P1b+w, P2b+w

D8(e) CritWeights Criteria e ∈ E P1b+w, P2b+w
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Auxiliary Tasks

All of the high-level tasks from the previous section can be accomplished using a

combination of just ten auxiliary tasks on these targets. These are defined in terms

of an action, an input type, and an output type (Table 4.8).

Brehmer and Munzner define four types of Search tasks based on whether the

identify and location of the search target are known [7]. The target of a Locate or

Lookup task is an element with a particular identity, whereas the target of a Browse

or Explore task is an element with particular features. The search space for Locate

and Explore tasks is the whole data-set, while the search space for Lookup and

Browse is restricted.

We use three of these tasks - Locate, Lookup, and Browse. In this context,

Locate and Lookup involves finding the value or distribution for a measure given

a key-set (e.g. the AltScore for a particular alternative and evaluator), whereas

Browse involves looking through distributions or sets of distributions for interest-

ing subsets (e.g. find outliers in a set of AltScores).

Brehmer and Munzner define three types of Query tasks based on the number

of items involved: Identify (single item), Compare (two items), and Summarize

(3+ items) [7]. Query tasks are often performed on the outputs of a Search tasks.

When paired with Locate or Lookup, Query returns features; when paired with

Browse or Explore, it returns identities [7].

Table 4.8: Auxiliary Tasks. In AT3 and AT4, ‘matched distributions’ means
distributions of the same type (i.e. same row in Table 4.7).

AUXILIARY TASKS
Action Input Output Supported by

AT1 Query: Identify A single value or distribution Its key-set

AT2 Query: Compare A pair of values Difference

AT3 Query: Compare A pair of matched distributions A tuple of differences AT2

AT4 Query: Compare A pair of matched distributions A dominance relation AT3

AT5 Query: Summarize A single distribution A summary of variance

AT6 Search: Locate A key-set A single value or distribution

AT7 Search: Lookup (in context) A key-set + a single value or distribution A single value or distribution AT6

AT8 Search: Browse A single distribution Outliers AT2

AT9 Search: Browse A single distribution Top/bottom values AT2

AT10 Search: Browse A set of distributions Non-dominated distributions AT4

Equipped with these and the targets from 4.6 and 4.7, we can now describe
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how to accomplish each high-level task. Auxiliary tasks and targets are referenced

by code and accompanied by a short English description.

• T1: Discover alternative(s) with best TotalRank/TotalScore

1. AT9(D1)→ X (Get top values in TotalScores distribution)

2. AT1(x) for x ∈ X (Identify top values)

• T2: Discover alternatives(s) with low variance in AltRanks/AltScores across

evaluators

1. AT5(D3(a)) for a ∈ A → X (Get variance of each AltScores distribu-

tion)

2. AT9(X)→ Y (Get bottom values)

3. AT1(y) for y ∈ Y (Identify bottom values)

• T3: Discover non-dominated alternatives across evaluators

1. AT10({D3(a) for a∈ A})→ X (Get non-dominated AltScores distribu-

tions)

2. AT1(x) for x ∈ X (Identify non-dominated AltScores distributions)

• T4: Discover trade-offs in AltRanks/AltScores between alternatives a and b

1. AT6(D3(a))→ X (Locate AltScores for a)

2. AT6(D3(b))→ Y (Locate AltScores for b)

3. AT3(X,Y))→ X (Get differences between AltScores distributions)

• T5: Discover pros and cons in AltRanks/AltScores for alternative a

1. AT6(D3(a)) (Locate AltScores for a)

2. AT6(V2(a,e)) for e ∈ E (Locate every AltScore for a)

3. AT2(V2(a,e1),V2(a,e2)) for {a1,a2}∈E (Pairwise compare every AltScore

for a)

• T6: Discover alternatives(s) with low variance in AltCritRanks/AltCritScores

across criteria (aggregated over evaluators)
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1. AT5(D5(a,e = all)) for a ∈ A→ X (Get variance of each AltCritScores

distribution)

2. AT9(X)→ Y (Get bottom values)

3. AT1(y) for y ∈ Y (Identify bottom values)

• T7: Discover non-dominated alternatives across criteria (aggregated over

evaluators)

1. AT10({D5(a,e= all) for a∈A})→X (Get non-dominated AltCritScores

distributions)

2. AT1(x) for x ∈ X (Identify non-dominated AltCritScores distributions)

• T8: Discover trade-offs in AltCritRanks/AltCritScores between alternatives

a and b (aggregated over evaluators)

1. AT6(D5(a,e = all))→ X (Locate AltCritScores for a)

2. AT6(D5(b,e = all))→ Y (Locate AltCritScores for b)

3. AT3(X,Y) (Get differences between AltCritScores distributions)

• T9: Discover strengths and weaknesses of alternative a (aggregated over

evaluators)

1. AT6(D5(a,e = all)) (Locate AltCritScores for a)

2. AT6(V4(a,e = all,c)) for c ∈ PC (Locate every AltCritScore for a)

3. AT2(V4(a,e = all,c1),V4(a,e = all,c2)) for {c1,c2} ∈ PC (Pairwise

compare every AltCritScore for a)

• T10: Discover alternative(s) with best AltRank/AltScore for evaluator e

1. AT6(D2(e))→ X (Locate AltScores for e)

2. AT9(X)→ Y (Get top values)

3. AT1(y) for y ∈ Y (Identify top values)

• T11: Discover alternatives(s) with low variance in AltCritRank/AltCritScore

across criteria for evaluator e
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1. AT6(D5(x,e))→ X (Locate AltCritScores for e)

2. AT5(X) for a∈A→Y (Get variance of each AltCritScores distribution)

3. AT9(Y )→ Z (Get bottom values)

4. AT1(z) for z ∈ Z (Identify bottom values)

• T12: Discover non-dominated alternatives across criteria for evaluator e

1. AT6(D5(x,e))→ X (Locate AltCritScores for e)

2. AT10(D5(X))→ Y (Get non-dominated AltCritScore distributions)

3. AT1(y) for y ∈ Y (Identify non-dominated AltCritScore distributions)

• T13: Discover trade-offs in AltCritRanks/AltCritScores between alterna-

tives a and b for evaluator e

1. AT6(D5(a,e))→ X (Locate AltCritScores for a and e)

2. AT6(D5(b,e))→ Y (Locate AltCritScores for b and e)

3. AT3(X,Y) (Get differences between AltCritScores in X and Y)

• T14: Discover strengths and weaknesses of alternative a for evaluator e

1. AT6(D5(a,e)) (Locate AltCritScores for a)

2. AT6(V4(a,e,c)) for c ∈ PC (Locate every AltCritScore for a and e)

3. AT2(V4(a,e,c1),V4(a,e,c2)) for {c1,c2} ∈ PC (Pairwise compare ev-

ery AltCritScore for a and e)

• T15: Discover alternatives(s) with high variance in AltRanks/AltScores across

evaluators

1. AT5(D3(a)) for a ∈ A → X (Get variance of each AltScores distribu-

tion)

2. AT9(X)→ Y (Get top values)

3. AT1(y) for y ∈ Y (Identify top values)

• T16: Discover evaluators that are outliers with respect to AltRank/AltScore

for alternative a
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1. AT6(D3(a))→ X (Locate AltScores for a))

2. AT8(X)→ Y (Get outliers)

3. AT1(z) for y ∈ Y (Identify outliers)

• T17: Discover criteria with high variance in AltCritRank/AltCritScore across

evaluators for alternative a

1. AT6(D4(a,x))→ X (Locate AltCritScores for a)

2. AT5(X) for a∈A→Y (Get variance of each AltCritScores distribution)

3. AT9(Y )→ Z (Get top values)

4. AT1(z) for z ∈ Z (Identify top values)

• T18: Discover criteria with high variance in CritWeights across evaluators

1. AT5(D7(pc)) for pc ∈ PC → X (Get variance of CritWeights for each

criterion)

2. AT9(X)→ Y (Get top values)

3. AT1(y) for y ∈ Y (Identify top values)

• T19: Discover evaluators that are outliers with respect to CritWeights for

criterion c

1. AT6(D7(c))→ X (Locate CritWeights for c))

2. AT8(X)→ Y (Get outliers)

3. AT1(y) for y ∈ Y (Identify outliers)

• T20: Discover primitive criteria outcomes with high variance in OutRanks/OutScores

across evaluators

1. AT5(D6(pc,o)) for pc ∈ PC,o ∈ dom(pc) → X (Get variance of each

OutScores distribution)

2. AT9(X)→ Y (Get top values)

3. AT1(y) for y ∈ Y (Identify top values)
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• T21: Discover evaluators that are outliers with respect to OutRanks/OutScores

for outcome o on primitive criterion pc

1. AT6(D6(pc,o))→ X (Locate D6 for pc, o)

2. AT8(X)→ Y (Get outliers)

3. AT1(y) for y ∈ Y (Identify outliers)

• T22: Analyze breakdown of AltRanks/AltScores into AltCritRanks/AltCritScores

for alternative a and evaluator e

1. AT7(D5(a,e),V2(a,e)) (Locate AltCritScores for a, e in context of AltScore

for a, e)

• T23: Analyze breakdown of AltCritScore into UnweightedAltCritScore and

CritWeight for alternative a, evaluator e, and criterion c

1. AT7(V5(a,e,c),V4(a,e,c)) (Locate UnweightedAltCritScore for a, e, c

in context of AltCritScore for a,e,c)

2. AT7(V8(e,c),V4(a,e,c)) (Locate UnweightedOutScore for e, c in con-

text of AltCritScore for a,e,c)

• T24: Analyze breakdown of OutScore into UnweightedOutScore and CritWeight

for evaluator e, primitive criterion pc, and outcome o

1. AT7(V7(e,pc,o),V6(e,pc,o)) (Locate UnweightedOutScore for e, pc, o

in context of OutScore for e,pc,o)

2. AT7(V8(e,pc),V6(e,pc,o)) (Locate UnweightedOutScore for e, pc in

context of OutScore for e,pc,o)

• T25: Understand mapping between AltCritRank/AltCritScore and OutRank/OutScore

for a alternative a, evaluator e, and primitive criterion pc

1. AT6(V10(a,pc))→ X (Locate Outcome for a, pc)

2. AT6(V7(e,pc,X)) (Locate UnweightedOutScore for e, c, X)

• T26: Analyze breakdown of AltCritRank/AltCritScore for alternative a, eval-

uator e, and abstract criterion ac
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1. AT7(V4(a,e,c),V4(a,e,ac)) for c ∈ children(ac) (Locate AltCritScore

for each child of ac in context of AltCritScore for a,e,c)

• T27: Analyze breakdown of AltScores into UnweightedAltScore and Eval-

uatorWeight for alternative a and evaluator e

1. AT7(V3(a,e),V9(e)) (Lookup UnweightedAltScore for a, e in context

of EvaluatorWeight for e)

• T28: Analyze breakdown of TotalRanks/TotalScores into AltRanks/AltScores

for alternative a

1. AT7(D2(a),V1(a)) (Lookup AltScores for a in context of TotalScore

for a))

• T29: Discover differences in AltRanks/AltScores for evaluator e before and

after changing CritWeights

1. AT6(D2(e) before)→X (Locate AltScores for e in the ‘before’ dataset)

2. AT6(D2(e) after)→ Y (Locate AltScores for e in the ‘after’ dataset)

3. AT3(X,Y) (Get differences between AltScores distributions)

• T30: Discover differences in AltRanks/AltScores for evaluator e before and

after changing non-weight component of preference model

1. Same as T29

• T31: Discover differences in TotalScores before and after changing Evalua-

torWeights

1. AT6(D1) before)→ X (Locate D1 in the ‘before’ dataset)

2. AT6(D1) after)→ Y (Locate D1 in the ‘after’ dataset)

3. AT3(X,Y) (Get differences between D1s)

• T32: Discover differences in TotalRanks/TotalScores from two different ag-

gregation methods

1. AT6(D1) method1)→ X (Locate TotalScores in the ‘method1’ dataset)
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2. AT6(D1) method2)→Y (Locate TotalScores in the ‘method2’ dataset)

3. AT3(X,Y) (Get differences between TotalScores distributions)

• T33: Discover differences between CritWeights for evaluator e and CritWeights

for other evaluators

1. AT6(D8(e))→ X (Locate CrightWeights for e)

2. AT3(X,D8(e‘)) for e‘ ∈ E (Get differences between CrightWeights for

e and every other evaluator)

• T34: Discover differences between non-weight component of preference

model for evaluator e to that for other evaluators

1. Analogous to T33 - simply replace CritWeights with the distribution

corresponding to the base measure for the taxonomy level
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Chapter 5

A Design Space of Visualizations
to Support Preference Synthesis
in Group Preferential Choice

This chapter presents a design space for visualizations to support inspection and

exploration of multiple evaluators’ preferences in the context of Group Preferential

Choice. This is not intended to cover all possible designs, but rather, a viable subset

that designers can choose from to suit their needs. We discuss the strengths and

weaknesses of the various options, analytically evaluate their efficacy for different

tasks, and offer recommendations based on contextual features. Such designs can

be used in isolation or integrated into more sophisticated decision support systems.

At this time, we focus solely on Level P0b of the Preference Model Taxonomy

(Section 3.8). Furthermore, we limit the design space to Group Preferential Choice

scenarios where:

1. There are no more than a dozen alternatives or evaluators.1

2. The Evaluator hierarchy is flat - that is, there is only one group that contains

all evaluators.

3. Preferences are expressed on a scale with no negative values. This is impor-

1This threshold was selected because colour is effective for encoding up to a dozen distinct iden-
tities. Beyond this, other strategies are required.
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tant because diverging scales have somewhat different design implications

[47].

Chapter 6 will briefly discuss how the design space might be extended to cover

other levels of the taxonomy and scenarios that do not meet restrictions above.

The inputs to this analysis are the data and task abstractions developed in Chap-

ter 4, with the exception of the tasks related to sensitivity analysis (T29 - T33),

which we leave to future work. At this time, we only consider tasks that do not

involve manipulating the underlying data. The design space is described in terms

of the following design aspects:

1. Static design aspect (Section 5.1) - the basic idioms that are available and

various options for mapping the dimensions and measures to marks and

channels.

2. Dynamic design aspect (Section 5.2) - the mechanisms for transforming the

data and the view, including:

(a) View transformations, which change how the data is shown

(b) Data transformations, which change what data is shown

3. Composite design aspect (Section 5.3) - the options for arranging and coor-

dinating different views relative to each other.

This chapter will use of a running example of seven friends - Beth, Darnell,

Janelle, Jessica, Joel, and Taycee - trying to choose a hotel to stay at - Budget,

Days Inn, or Fairmont. Each friend scored each hotel on a scale from 0 to 1.

5.1 Static Design Aspect
This section describes the static design aspect for Level P0b of the Preference

Model Taxonomy. It introduces the major competitive idioms for presenting small-

scale tabular data with categorical keys and numeric values. As such, it provides
the basic building blocks from which the entire design space for all levels of
the taxonomy may be built. We limit our discussion to idioms that encode values

using position on a common scale, as it is the most effective channel for encoding

magnitude [37]. Idioms that use less effective channels in exchange for greater
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information density, such as heatmaps, are more appropriate for larger datasets.

These are discussed in Chapter 6.

Section 5.1.1 discusses each of these idioms in turn, and Section 5.1.2 performs

an analytic evaluation of the idioms based on the tasks identified in Chapter 4.

5.1.1 Major Idioms

We start with the simplest case in which there are no evaluator weights. At this

level, evaluators score the alternatives holistically according to their preferences.

To recap, the data consists of:

• 2 - 12 Evaluators (E)

• 2 - 12 Alternatives (A)

• |A|x|E| AltScores

• |A| TotalScores

The data abstraction is a two-dimensional table with Evaluators and Alterna-

tives as categorical keys and AltScores as numeric values. The TotalScores are

obtained by summing AltScores over Evaluators.

Note that all non-radial designs described in this section can be oriented hori-

zontally or vertically. For succinctness, we show the horizontal orientation only.

Bar-based Idioms

One of the most common ways to represent tabular data is the bar chart [38].

Bar charts redundantly encode values using two perceptual channels: position

and length. There are three styles of bar charts that are suitable for presenting

two-dimensional tabular data: stacked bar charts, multi-bar charts, and tabular bar

charts [25].

Stacked Bar Chart

Stacked bar charts are appropriate when a one-dimensional measure is the sum of a

two-dimensional measure, as is the case with TotalScores and AltScores [38] [25].

The stacked bar chart in Figure 5.1 maps alternatives to bars and evaluators to

segments. The TotalScore of each alternative is encoded by the length and position
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of its bar, while the AltScore for each evaluator is encoded by segment length. To

improve discriminability, the segments are typically assigned different colour hues

[38].

Because unaligned lengths are more difficult to compare than aligned lengths,

the stacked bar chart is not particularly effective for tasks that require comparison

of AltScores [38] [55]. However, they are effective at supporting TotalScore com-

parisons while also providing extra information about the relative contribution of

each AltScore to the TotalScore.

Figure 5.1: Stacked Bar Chart. Each bar encodes the TotalScore for each
hotel. The segment lengths correspond the AltScores for each evaluator.

Multi-bar Chart

Multi-bar charts map spatial regions to dimensions in a nested fashion such that all

bars are aligned to a common baseline. Additionally, color hue may be mapped to

the secondary grouping to facilitate comparison across regions.

Figures 5.2 and 5.3 show the two possible designs given the available mappings

from spatial region and color hue to Evaluators and Alternatives.
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Figure 5.2: Multi-bar Chart Design 1: bars are grouped by alternatives, and
colour is mapped to evaluators.

Figure 5.3: Multi-bar Chart Design 2: bars are grouped by evaluators, and
colour is mapped to alternatives.

Tabular Bar Chart

Tabular bar charts map dimensions to spatial regions in a grid. There are four

possible designs given the available mappings from spatial region and color hue to

evaluators and alternatives. Figures 5.4 and 5.5 show the versions that map colour
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to the column’s dimension (Figures 5.4 and 5.5).

Note that Figure 5.4 pairs nicely with Figure 5.1, since a stacked bar chart

can be transformed into a tabular bar chart simply by pulling apart the segments

and aligning them to their own baseline. This pairing would allow users to easily

transition between the tasks of comparing TotalScores, inspecting the breakdown

of TotalScores into AltScores, and comparing AltScores for a particular evaluator.

Figure 5.4: Tabular Bar Chart Design 1: alternatives on rows and evaluators
on columns. Colour is mapped to evaluators.
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Figure 5.5: Tabular Bar Chart Design 2: evaluators on rows and alternatives
on columns. Colour is mapped to alternatives.

Tabular bar charts are more compact than multi-bar charts of the same size,

but they are also less precise because the same axis range is compressed and re-

peated across columns. Another weakness of tabular bar charts is that each column

has its own baseline, and so comparisons across columns are less accurate than

comparisons across regions in multi-bar charts [55].

Point-based Idioms

Strip Plot

The simplest of the point-based idioms is the strip plot, which uses position along

a common axis to encode values. Two-dimensional tabular data can be represented

as a series of strip plots with one dimension separated by region (each with its own

strip plot) and the other distinguished using another channel, typically colour hue.2

Figures 5.6 and 5.7 show the two possibilities.

2Colour hue is the second most effective channel for encoding categorical attributes after spatial
region [38]. Another option is mark shape, which is sometimes used redundantly along with colour
hue [46].
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Figure 5.6: Strip Plot Design 1: alternatives on axes and evaluators on points.

Figure 5.7: Strip Plot Design 2: evaluators on axes and alternatives on points.

The key strength of strip plots relative to bar charts is that they place an entire

dimension along a single axis. In doing so, they unite the precision of multi-bar

charts with the compactness of tabular bar charts. This property also makes them

superior to bar charts for tasks related to spread, such as identifying clusters and

outliers, since the user only needs to scan a single spatial dimension to obtain all
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relevant information.

However, strip plots are less effective than bar charts at supporting look-up

tasks because the secondary dimension is differentiated using colour alone. The

necessity of colour also limits their scalability, since people can only differentiate

up to around a dozen hues [38]. Their efficacy is contingent on the quality of the

colour palette, which should be highly discriminable and accessible to individuals

with colour-blindness [38].

Another challenge associated with strip plots is that occlusion may occur if

two or more points have the same (or nearly the same) value. This is especially

likely to become a problem if a discrete evaluation scale is used. There are several

ways to address this challenge, including mark transparency, fill removal, jittering

or stacking, or using another channel such as shape to redundantly encode point

identity [24] [19]. Perhaps the most scalable option is a combination of stacking

and fill removal, which means plotting multiple unfilled points (as in Figure 5.6) in

a vertical ‘stack’ at the same x-coordinate.

Finally, point-based idioms are ill-suited to showing part-whole relationships.

An additional plot could be added to Strip Plot Design 2 that shows evaluator av-

erages, but this would not show how the parts contribute to the total.

Strip Plot Enhancements

Strip plots can be augmented in one of two ways to support comparison of distri-

butions across either dimension. First, each axis can be overlaid with distribution

information in the form of range plots, box plots, or violin plots. This further in-

creases their efficacy for tasks related to spread along an axis. For succinctness,

we will only consider box plots.
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Figure 5.8: Box Plot Design 1 (Note: the gray fill is a feature of Tableau’s
box plot design. We do not recommend using a fill, as it makes it more
difficult to differentiate the colours.)

Figure 5.9: Box Plot Design 2

Alternatively, the points corresponding to items in the secondary dimension can

be connected with straight lines of the same colour. This enhancement transforms

the strip plot into another popular idiom - parallel coordinates. This design supports
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tasks related to inspection and comparison across axes. However, its effectiveness

for these tasks depends on the order of the axes [38].

Figure 5.10: Parallel Coordinates Design 1: alternatives on axes and evalua-
tors on lines.

Figure 5.11: Parallel Coordinates Design 2: evaluators on axes and alterna-
tives on lines.

A variation on parallel coordinates is the radar chart, which arranges the axes
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radially (Figures 5.13 and 5.14). For the most part, radar charts are effective for the

same tasks as parallel coordinates. However, they are less effective for comparison

of values across axes since the axes are not aligned. Furthermore, their cyclic

layout may be misleading if the data itself is not cyclic [38].

Yet another problem with radar

charts is that a value of zero on one

axis will cause the polygon to collapse

on top of the neighboring axes. Figure

5.12 illustrates this problem using a

simple example where Ann and Carol

have assigned scores of 0 to Days Inn

and Budget respectively. Also, crowd-

ing gets worse the closer the scores are

to 0. For these reasons, the overlap

problem for radar charts is much more

complicated than it is for strip plots

and parallel coordinates.

Figure 5.12: Troublesome radar
chart.

One benefit of radar charts is that polygon area is roughly proportional to the

squared sum of the axis scores. This means that Radar Chart Design 2 (Figure

5.14) roughly encodes TotalScores. Although area is a less effective channel for

encoding magnitude than position and length [38], it may be useful to have this

information for additional context.
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Figure 5.13: Radar Chart Design 1: alternatives on axes and evaluators on
polygons. (Note: this figure was generated using onlinecharttool.com,
and the polygon fill is a feature of their radar chart design. It is not
recommended, as the blending of colours makes it more difficult to
identify the boundaries.)
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Figure 5.14: Radar Chart Design 2: evaluators on axes and alternatives on
polygons.

With Evaluator Weights

Introducing evaluator weights means adding the following measures to the dataset:

• |A|x|E| UnweightedAltScores (scores before applying the weights)

• |E| EvaluatorWeights

Integrated View

The most straightforward way to show the relationship between the original scores

(UnweightedAltScores), the weighted scores (AltScores), and the evaluator weights
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is with a modified version of Tabular Bar Chart Design 1 (Figure 5.4) where the

column widths are proportional to the corresponding EvaluatorWeights. This ef-

fectively compresses each axis into an amount of space proportional to the weight

of that evaluator. This design is shown in Figure 5.15.

Figure 5.15: Tabular Bar Chart Design 1 with variable column widths.
The width of each column encodes the weight of each evaluator.
The relative width of each bar within its column encodes the Un-
weightedAltScore. The absolute width of each bar encodes the
AltScore (that is, the product of the UnweightedAltScore and Eval-
uatorWeight).

This encoding pairs nicely with a stacked bar chart where the segments corre-

spond to the AltScores (Figure 5.16). No other idiom can be as easily adapted to

show the part-whole relationship between AltScores and EvaluatorWeights.
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Figure 5.16: Stacked Bar Chart corresponding to Tabular Bar Chart in Figure
5.15. The width of each segment encodes the weighted AltScore, and
the length and position of each bar encodes the TotalScore.

Separate Views

An alternative approach is to show the AltScores, UnweightedAltScores, and Eval-

uatorWeights independently in separate views. This is not recommended, as it ob-

scures the relationship between the measures. We especially advise against show-

ing the AltScores apart from EvaluatorWeights, as this may lead users to erro-

neously attribute differences in scores to differences in preferences when they are

actually due to differences in weights.

However, it may be sensible to supplement the integrated view with additional

views that better support certain tasks. We will return to this discussion in Section

5.3.

5.1.2 Task-based Evaluation of Encodings

Section 4.2 showed how various tasks identified in our analysis can be decomposed

into auxiliary tasks on particular values and distributions. This section performs an

in-depth assessment of the suitability of each encoding for each task-input pair that

supports some high-level task for Level P0b. Table 5.1 summarizes the possible

inputs to each task.
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Table 5.1: Possible Inputs for Each Auxiliary Task

AT1 AT2 AT3 AT4 AT5 AT6 AT7 AT8 AT9 AT10
A single AltScore mark X

A single TotalScore mark X

A single EvaluatorWeight mark X

A pair of AltScore marks for one evaluator X

A pair of AltScore marks for one alternative X

The set of AltScore marks for one evaluator X

The set of AltScore marks for one alternative X X

The set of AltScore marks for a pair of alternatives X X

The set of AltScore marks for a pair of evaluators X

The set of all AltScore marks X

The set of all TotalScore marks X

A single evaluator X X

A single alternative X X

An evaluator/alternative pair X

Tasks that apply to more than one type of the input (AT2, AT3, AT6, AT7, and

AT9) are split into cases in the descriptions below. Note that much of this eval-
uation is speculative and will require empirical validation. The results of this

assessment are summarized in Figures 5.20 and 5.21.

AT1: Identify a mark

The input to this task is a single AltScore mark, and the output is the alternative

and evaluator it corresponds to.

Bar charts are the most effective for this task because each mark occupies a

labeled region, and the user does not need to consult a color key. Furthermore,

there is no risk of marks overlapping. Tabular bar charts may be superior to multi-

bar charts because they do not nest labels, and this could improve legibility.

Whether or not there are differences among the point-based idioms is less

definitive. The connecting lines in parallel coordinates and radar charts may im-

prove identification speed by increasing the salience of the colour. Box plots do

not provide anything useful for this task.

AT2: Compare values (Case A: one evaluator, two alternatives)

The input to this task is a pair of AltScore marks for one evaluator, and the output

is an approximate difference.

There are numerous factors to consider when ranking the encodings for this
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task. Figure 5.17 provides an overview of the key ideas using a simplified version

of the hotel problem. The box plots are omitted because the example data set is

very small.

Figure 5.17: What is the best encoding for comparing Budget and Days Inn
for Bob? This figure divides the encodings into four efficacy groups
according to key principles. (a) Highly effective - comparisons are
performed along a single axis or within single region; (b) Less effec-
tive - comparisons are made across axes or regions; (c) Less effec-
tive - axes are condensed and offer less precision; (d) Least effective
- requires comparison of unaligned widths or positions. The rankings
within groups (a) and (b) are nuanced, as discussed in the text.

The most critical factor is whether the values to compare are plotted on aligned

axes. This is not the case for the Stacked Bar Chart, Tabular Bar Chart Design 2,

and Radar Chart Design 1, so these are the least effective encodings for this task

(Figure 5.17d).

Another important factor is precision, or how much space is allocated to each

axis. Tabular Bar Chart Design 1 and Radar Chart Design 2 offer less precision

because the axes are shorter relative to the area of the plot (Figure 5.17c). Fur-

thermore, Radar Chart Design 2 may be at a disadvantage because not all axes are

perpendicular to the line of site.
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Of the remaining point-based idioms, Strip Plot Design 2 is superior to Strip

Plot Design 1 (and its derivatives) because the positions to compare are located

on the same axis. Similarly, Multi-bar Chart Design 2 is superior to the Multi-bar

Chart Design 1 because the comparison is made within rather than across regions

[56]. This division is illustrated in Figure 5.17a and 5.17b.

Within these two groups, it is unclear whether the box plot or parallel coordi-

nate overlays for the strip plots would improve or interfere with performance - our

intuition is that they might interfere by distorting the perception of distance.

It is also difficult to rank the multi-bar charts relative to the point-based id-

ioms, as there are several factors that may contribute in subtle ways. Bar charts

redundantly encode values using both the position and length channels, which may

strengthen their efficacy for comparison tasks. However, they are more cluttered

than point-based idioms [46], and their efficacy is sensitive to sort order - non-

adjacent bars are more difficult to compare than adjacent bars because they are

further apart and the viewer must ignore the bars in between [56]. This problem

can be mitigated by giving users the ability to filter alternatives.

Point-based idioms are more succinct than multi-bar charts because they do

not use length to encode values. Also, there is a more direct relationship between

relative positions and relative values - it is simply the distance between the points.

Finally, the fact that each plot uses just one spatial dimensions means that ordinal

relationships can be identified at a glance simply by checking which point lies to

the left or right of the other. Point-based idioms also risk points overlapping, but

there are several effective strategies for dealing with this [24] [19].

In light of these factors, we surmise that Strip Plot Design 2 is the best for this

task overall.

AT2: Compare values (Case B: one alternative, two evaluators)

The input to this task is a pair of AltScore marks for one alternative, and the output

is an approximate difference.

The evaluation of encodings for Case B mirrors that of the Case A with the

Design numbers reversed. In other words, the most effective encodings are the De-

sign 1 non-radial point-based idioms and Multi-bar Chart Design 1. We surmise

that Strip Plot Design 1 is the best overall.
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AT3: Compare distributions (Case A: all evaluators, two alternatives)

The input to this task is the set of AltScore marks for two alternatives, and the

output is a rough approximation of the pairwise differences.

This task requires the user to keep two distribution in focus while performing

multiple comparisons in sequence. As such, it is a hybrid of AT2 Case A and AT6

Case B, and the ranking of encodings reflects this (Figure 5.18).

Figure 5.18: What is the best encoding for comparing Fairmont and Budget
across all evaluators? Parallel Coordinates Design 2 makes it easy to
perform multiple precise comparisons in sequence, especially if fil-
tering is permitted. The other three encodings shown here are also
effective, but each has its weaknesses.

Interestingly, the most effective encoding for this task may be Parallel Coor-

dinates Design 2, as the connecting lines make it easy to keep the distributions in

focus while the strip plot base makes it easy to perform individual comparisons.

Furthermore, trade-offs can be identified at a glance by looking for line intersec-

tions. The same is true of Radar Chart Design 2, although the radial layout might

make it harder to perform repeat comparisons with accuracy. A drawback of both

is visual interference from other lines - this can be mitigated by allowing users to

filter alternatives.
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Another relatively effective encoding is the Tabular Bar Chart Design 1. The

grid structure allows users to compare two rows of bars one column at a time, albeit

with less precision than some of the other encodings. This is much easier if the two

rows are adjacent. Parallel Coordinates Design 1 is also effective if the plots to be

compared are adjacent.

Multi-bar charts are less effective because they require comparisons to be made

across regions regardless of how the bars are sorted. Plain strip plots and box plots

are also less effective because the absence of a grid or connecting lines makes it

difficult to visually isolate each pair for comparison. This is true whether the dis-

tributions of interest lie along the plots (Design 1) or across the plots (Design 2).

Again, the least effective encodings are those that require comparison of unaligned

position and widths - the Stacked Bar Chart, Tabular Bar Chart Design 2, and Radar

Chart Design 1.

AT3: Compare distributions (Case B: all alternatives, two evaluators)

The input to this task is the set of AltScore marks for two evaluators, and the output

is a rough approximation of the pairwise differences.

The ranking of encodings for Case B mirrors that of the Case A with the De-

sign numbers reversed.

AT4: Identify a dominance relation

The input to this task is a set of AltScore marks for a pair of alternatives, and the

output is an assessment of whether one dominates the other.

This task is a special case of AT3 Case A, so the evaluation of encodings is

similar. Notice that there is a dominance relationship between Fairmont and Budget

in Figure 5.18, so it applies to this task as well.

The best encodings for this task are Parallel Coordinates Design 2 and Radar

Chart Design 2, as a dominance relation can be easily identified by checking if the

lines intersect. In Radar Charts Design 2, this amounts to checking for enclosure.

As in AT3 Case A, interference from other lines can be eliminated by filtering

alternatives.

The next most effective encoding is Tabular Bar Chart Design 1, as users can

identify dominance by comparing two rows, one column at a time. This is easier if
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the two rows are adjacent.

Finally, the Design 1 non-radial point-based idioms are also somewhat effec-

tive, since a dominance relationship can be identified by checking whether each

point lies to the left of the same-coloured point in the other plot. This is easier to

do if the plots are adjacent. The connecting lines in Parallel Coordinates Design

1 may help, since all connecting lines will tilt in the same direction or not at all if

one alternative dominates the other (see Figure 5.18).

The remaining encodings are not effective for this task for reasons similar to

those discussed in AT2 and AT3.

AT5: Summarize variance

The input to this task is a set of AltScores for a single alternative, and the output is

a rough approximation of how much variation there is in the set.

Box Plot Design 1 is the best encoding for this task, as it provides direct in-

formation about the distribution and range. The next best encoding is Strip Plot

Design 1 and its other derivatives, as it enables the user to inspect the range and

distribution by scanning a single spatial dimension. Radar Chart Design 1 may be

at a slight disadvantage because not all axes are perpendicular to the line of site.

Variance can be roughly assessed using Multi-bar Chart Design 1 by looking at

the variation in bar length within a region. This can also be done with Tabular Bar

Chart Design 2, albeit with less precision. This is more challenging with Multi-bar

Chart Design 2 since the comparisons must be made across regions.

Variance can also be roughly assessed using Parallel Coordinates Design 2 and

Radar Chart Design 2 by examining the smoothness of the line or polygon. How-

ever, this relationship is sensitive to axis order - the impression of variance may be

exaggerated if clusters are split.

The remaining encodings are not effective for this task for reasons similar to

those discussed in AT2 and AT3.

AT6: Locate a value for a key-set (Case A: one alternative, one evaluator)

The input to this task is an alternative/evaluator pair and the output is the AltScore

value for that pair.

Bar charts are best for look-up tasks for the same reason that they are good for
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identification tasks - each mark is assigned to a particular region, so it is possible

to look up values without discriminating colour.

Which style of bar chart is best may depend on the size of the dataset and the

amount of space allocated to the view. The nesting of labels in multi-bar charts

may result in more crowding, but it may also reduce the amount of area the user

needs to scan to find the labels of interest.

AT6: Locate a distribution for a key-set (Case B: one alternative)

The input to this task is an alternative and the output is the distribution of AltScores

for that alternative.

The best encoding for this task is Tabular Bar Chart 2, since it differentiates

alternatives using both contiguous spatial region and colour hue. The next best

encodings are the Design 1 encodings, as these assign alternatives to contiguous

spatial regions.

The Stacked Bar Chart and Multi-bar Chart Design 2 assign alternatives to non-

contiguous spatial regions, and users must tune out the bars in between. Parallel

Coordinates Design 2 and Radar Chart Design 2 map alternatives to connected

lines, but users must tune out the other lines that occupy the same space.

For the remaining encodings, the user must visually group disconnected marks

based on colour alone, which is substantially more difficult. Filtering can reduce

the amount of interference in all cases.

AT6: Locate a distribution for a key-set (Case C: one evaluator)

The input to this task is an evaluator and the output is the distribution of AltScores

for that evaluator.

The evaluations of encodings is the same as in AT6 Case B, except with the

Design numbers reversed.

AT7: Look-up value in context (Case A: AltScore in TotalScore)

The input to this task is an evaluator and a TotalScore mark for some alternative,

and the output is the AltScore for that evaluator and alternative. In other words, the

task is to identify the contribution of some evaluator’s AltScore to the TotalScore.

If EvaluatorWeights are defined, then the only applicable encoding for this task
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is the Stacked Bar Chart. Otherwise, Radar Chart Design 2 is also weakly effec-

tive for this task, since the area of each polygon is roughly proportional to the

TotalScore squared.

AT7: Look-up value in context (Case B: UnweightedAltScore in EvaluatorWeight)

The input to this task is an alternative and an EvaluatorWeight mark for some

evaluator, and the output is UnweightedAltScore for that alternative. This task is
only applicable when EvaluatorWeights are defined.

The only applicable encoding for this task is the Tabular Bar Chart with Vari-

able Widths. Using this encoding, the task can be achieved by assessing what

fraction of the evaluator’s column is filled by the bar.

AT8: Browse for outliers

The input to this task is a set of AltScores for a single alternative, and the output is

a set outliers.

Box Plot Design 1 is best for this task, since it encodes outliers explicitly. Strip

Plot Design 1 (and its other derivatives) are also effective, since outliers can be

identified simply by finding points that are relatively far from the others.

Outliers can be detected in bar charts by identifying bars that are much longer

or shorter than others in their region. Large outliers are more perceptually salient

than small outliers because they ‘stick out’ from the others. Multi-bar Chart Design

1 is the most effective of the bar-based idioms due to its precision and the proximity

of the bars. Tabular Bar Chart Design 2 is less precise, while Multi-bar Chart

Design 2 requires comparison of bars across regions. Sorting based on AltScore

could increase the efficacy of bar charts for this task.

Outliers can be detected using Parallel Coordinates Design 2 or Radar Chart

Design 2 by looking for non-recurrent spikes. Unlike bar charts, these are not

perceptually biased toward large outliers, but they are disadvantaged in that the

lines overlap with each other and may interfere perceptually.

The remaining Design 2 point-based idioms are not effective because it is too

difficult to visually isolate the distribution of interest (see AT6: Case B). The

Stacked Bar Chart and Tabular Bar Chart 1 are the least effective because they

require comparison of unaligned widths.
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AT9: Browse for top/bottom values (Case A: one evaluator)

The input to this task is a set of AltScores for a single evaluator, and the output is

a set of top or bottom values.

The relative strengths of the encodings for identifying top and bottom values

are similar to those of task AT8, except this case is concerned with a distribution

over alternatives.

The best encoding for this task is Strip Plot Design 2 (and its derivatives), as

the top and bottom values are simply the points furthest to the left or right along

a single axis. This could be harder with Radar Chart Design 2 because the axis of

interest might not be perpendicular to the line of site.

The remainder of the assessment mirrors that of AT8 with the Design numbers

reversed. In this case especially, the ability to sort bar charts by AltScore could

significantly improve task performance.

AT9: Browse for top/bottom values (Case B: all data)

The input to this task is a set of TotalScores for all alternatives, and the output is

a set of top values. If EvaluatorWeights are defined, the only applicable encoding

for this task is the Stacked Bar Chart. Otherwise, an ‘Average Evaluator’ can be

added to any of the other plots to show the average scores (which is effectively the

same as showing the total scores). In this case, the efficacy of each encoding is the

same as for AT9 Case A.

AT10: Browse for non-dominated distributions

The input to this task is all the AltScores, and the output is a set of dominance

relationships between the alternatives.

In the worst case, this simply requires performing task AT4 for every pair of

alternatives, but this is not necessary most of the time. Dominance relationships

can be identified at a glance using Parallel Coordinates Design 2 or Radar Chart

Design 2 by looking for lines or sets of lines that do not intersect.

The efficacy of the Design 1 non-radial point-based idioms for this task can be

improved by sorting the plots by TotalScore so that fewer comparisons need to be

made. The same is true of Tabular Bar Chart Design 1 (Figure 5.19).
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Figure 5.19: It is easier to identify dominated alternatives when the rows are
sorted by TotalScore (right) than when they are not (left). When the
rows are sorted, each row only needs to be compared to the rows above
it. In this example, Grandma’s Basement is dominated by Budget,
which is dominated by Fairmont.

The remaining encodings are not effective for this task for reasons discussed in

AT4.

Summary of Task-based Assessment

Table 5.20 summarizes the results of the task-based assessment when Evaluator-

Weights are defined. For each task, the best encodings are assigned a score of

3, strongly effective encodings are assigned a score of 2, weakly effective encod-

ings are assigned a score of 1, and ineffective encodings are assigned a score of 0.

Inapplicable encodings are marked with a hyphen.

Table 5.21 summarizes the same information when EvaluatorWeights are not

defined. Note that the only differences between the two tables are:

1. Table 5.21 does not have a row for Tabular Bart Chart Design 1 with Variable

Widths (it is not applicable).

2. Table 5.21 does not have a column for AT7: B (it is not applicable).

3. Some of the scores for AT7: A and AT9: B are different for reasons discussed

in the text.
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Figure 5.20: Support for each auxiliary task by encoding when Evaluator-
Weights are defined. 3 = best, 2 = strongly effective, 1 = weakly ef-
fective, 0 = ineffective. Gray cells indicate that the encoding is not
applicable to that task. The rows are sorted by the Total Score col-
umn, which contains the sum of scores for each row.

Figure 5.21: Support for each auxiliary task by encoding when Evaluator-
Weights are not defined. 3 = best, 2 = strongly effective, 1 = weakly
effective, 0 = ineffective. Gray cells indicate that the encoding is not
applicable to that task. The rows are sorted by the Total Score column,
which contains the sum of scores for each row.

What is apparent is that most tasks are strongly supported by at least one of

the top two encodings in Table 5.20: Tabular Bar Chart Design 1 (with variable

weights) and Parallel Coordinates 2. This suggests that these two encodings can be

used in conjunction to support most tasks.

Another observation is that parallel coordinates dominate radar charts except

for in AT7 Case A, and then only when there are no EvaluatorWeights. In other

words, the only benefit that radar charts confer is that they weakly encode To-

talScore via polygon area. In light of this and the numerous problems with radar
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charts discussed earlier, we eliminate them from further consideration.

We will return to this discussion in Section 5.3 when we consider how different

design choices may be combined to effectively support a variety of tasks.

5.2 Dynamic Design Aspect
This section describes a number of options for transforming the view so that the

user can perform multiple analytic tasks in sequence or perform particular tasks

more effectively.

5.2.1 View Transformations

Rearrange: Reorder and Sort

Allowing users to manually reorder rows, columns, and plots gives them control

over which items are adjacent, and this can improve their performance on compar-

ison tasks (AT2, AT3, and AT4). This is especially true for the bar-based idioms.

Allowing users to sort elements by TotalScore or AltScore for a particular eval-

uator or alternative can improve their performance on tasks related to identifying

top values (AT9) or looking for dominance relationships (AT10). It can also help

them perform further analysis on top performing options only. For instance, one

evaluator might want to inspect how her top alternatives perform for other evalua-

tors.

Rearrange: Change Mapping

Allowing users to change the mapping from dimensions to regions/marks gives

them the flexibility to toggle between Designs 1 and 2 of each idiom. Whether or

not this is advised depends on which idioms are already provided and how potential

conflicts in the use of colour will be resolved (Section 5.3).

If a multi-bar chart or tabular bar chart is in use, users might also be permit-

ted to select which dimension to map to colour, since it is not strictly dictated by

the spatial mapping. This functionality would not greatly add to the users’ ability

to perform any of the identified tasks. Furthermore, it is not recommended if the

tabular bar chart is paired with a stacked bar chart, as this would break the corre-

spondence between the two.
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Table 5.2 summarizes which rearrangements are applicable to each encoding.

We do not recommend allowing users to manually reorder bars within regions of a

multi-bar chart, as this could lead to inconsistency across regions. We also do not

recommend allowing users to reorder the segments of a stacked bar chart. However,

if the stacked bar chart is paired with a tabular bar chart, then changing the order of

columns in the tabular bar chart should change the order of the segments as well.

Table 5.2: Applicable rearrangements for each encoding. Justifiable transfor-
mations are shown in green with a checkmark. Applicable but ill-advised
transformations are shown in yellow with a question mark. Impossible
or nonsensical transformations are shown in gray.

Manually Reorder

Alternatives

Manually Reorder

Evaluators

Sort Alternatives

by TotalScore

Sort Alternatives

by AltScore

(for an evaluator)

Sort Evaluators

by AltScore

(for an alternative)

Swap Region/Mark

Mapping

Swap Colour

Mapping

Stacked Bar Chart X ? X X X

Multi-bar Chart Design 1 X ? X X X X X

Multi-bar Chart Design 2 ? X X X X X X

Tabular Bar Chart

(Designs 1 and 2)
X X X X X X ?

Point-based Design 1 X X X X

Point-based Design 2 X X X X

Add Emphasis

A final type of view transformation is the ability to emphasize or highlight an entity

of interest. This technique alters the appearance of a mark to make it stand out -

possible alterations include changing the hue, increasing saturation, or magnifying

the mark. Linked highlighting adds emphasis to a set of entities that are related to

the selected entity. In this case, related entities would be those of the same colour -

that is, all other marks for a particular evaluator (in the case of Design 1 encodings)

or alternative (in the case of Design 2 encodings). Linked highlighting could im-

prove users’ ability to locate distributions (AT6) and compare distributions (AT3),

especially in cases where the distributions of interest are spread across regions or

axes.

This design choice is coupled with the select design choice, which is the mech-

anism by which users choose items for further action (in this case, highlighting)

[38]. One common mechanism that we recommend is hover, which selects an item

for as long as the mouse hovers over it. It may also be worthwhile to allow users
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to select multiple items for highlighting at once - this is typically done via mouse

click. This would make it easier for users to keep two or more distributions in focus

for comparison tasks.

5.2.2 Data Transformations

Filtering

There are two types of filtering a designer might want to support: filtering on

entities and filtering on values.

Filtering on entities is the ability to select a subset of alternatives or evalua-

tors to inspect at any time. This can facilitate any number of tasks by removing

distracting elements. Filtering is especially important when working with parallel

coordinates or radar charts, since the distributions occupy the same space.

Filtering on values is the ability to exclude alternatives based on TotalScore

or AltScore for a particular evaluator. This would allow users to set satisficing

thresholds that must be met for an alternative to be considered. This feature is not

required to support any of the tasks we identified, but it could be useful in scenarios

where satisficing thresholds are important.

Both types are filters are applicable to all encodings. There are a number of

ways to implement filter controls, such as checklists for categorical entities or range

sliders for quantitative entities. Another mechanism for filtering is brushing, which

allows users to specify a region to filter out or leave in with a drag of the mouse. If

this design choice is used, there also needs to be a clear mechanism for reversing

the action.

Details-on-demand

Another type of transformation involves augmenting the display with more detailed

information. For example, users might want to query the precise value encoded by

a bar or mark, as this information may be difficult to glean from the graphical rep-

resentation alone. Possible implementations of this feature include a label overlay

that can be turned on or off or a tool-tip that appears when the user hovers over a

mark. The tool-tip could also include the label for the mark in order to expedite

identification (AT1).

Other forms of textual information designers might consider making available
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on demand include averages, variances, and axis details. If evaluators supple-

mented their scores with text explanations, this could be displayed whenever a

user clicks on the corresponding mark.

5.3 Composite Design Aspect
In this section, we offer recommendations on how different encodings and interac-

tions can be integrated to create a complete interactive tool for preference synthesis

in the context of Group Preferential Choice at Level P0b of the taxonomy. Note
that all recommendations are tentative and may be revised as we collect more
empirical data.

We start with some general recommendations that apply to all cases. Then,

we present recommendations for each of the three classes of users identified in

Section 3.6, starting with the least sophisticated. We recognize that not all cases

fall cleanly into one of these three classes, but designers should be able to pick and

choose recommendations from each to suit their exact situation.

5.3.1 General Recommendations

Number and Arrangement of Views

It is clear from the task-based assessment that no single encoding is sufficient to

support all tasks. For this reason, many of our recommendations employ the mul-

tiform design choice, in which the same data is faceted into two views that use

different encodings [38]. If the intended platform is a desktop of laptop computer,

we recommend splitting the window horizontally and populating each half with

a single encoding in the horizontal orientation, since this arrangement offers the

most precision. It may also be beneficial to allow users to adjust the size of the

views in order to devote more screen real-estate to one or the other.

There is a cost associated with multiple views, both in terms of cognitive load

and screen real estate [62], so we do not advise supporting more than two views.

As the next few sections will demonstrate, it is possible to strongly support every

tasks using combinations of just two encodings and a few basic interactions.
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Evaluator Weights

For designers of general purpose tools, we recommend including support for evalu-

ator weights, since this feature was desired in the majority of the cases we studied.

If EvaluatorWeights are included, then the only viable option is Tabular Bar Chart

Design 1 paired with a Stacked Bar Chart, as it is the only combination that sup-

ports joint inspection of the three related measures (AT7 Cases A and B) and iden-

tifying alternatives with the top weighted scores (AT9 Case B). From this point

forward, we will treat these two encodings as a unit due to their complementary

nature.

If the designer does not intend to support evaluator weights, then the options

are more flexible. In this case, there may be no need to compute total scores in

the first place. In fact, it may be more useful to show the average scores, since

these are on the same scale as individual scores and can be conveyed by adding an

‘Average Evaluator’ to any plot.

5.3.2 Class C: Casual Users

This class includes users involved in low-stakes decision making in a casual setting.

Examples include selecting a gift for a colleague or choosing a hotel to stay at. We

now present two viable options that ought to be suitable for this class of users.

Option 1: Tabular Bar Chart Design 1 + Stacked Bar Chart (single view)

This is the simplest option if the designer intends to support evaluator weights,

as it only requires one view. It is not effective for tasks that require comparison

across evaluators (AT2 Case B, AT5, AT8), and it is only weakly effective for tasks

that require comparison across alternatives (AT2 Case A, AT9 Case A). For the

latter, the designer might include a text overlay that labels each bar with its value

to facilitate more precise comparison. Additionally, users could be given the option

to collapse the Stacked Bar Chart to devote more space to the Tabular Bar Chart.

Option 2: Option 1 + Box Plot Design 1 (dual view)

In order to identify potentially strong combinations for a dual-view design, we

computed a score for each pair of encodings by taking the sum of the maximum
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score on each task. The parallel coordinate designs were excluded from consid-

eration due to the moderate learning curve and the fact that most people are not

familiar with them [38] [41]. Including unfamiliar idioms may confuse casual

users and make them less likely to stick with the tool.

Of the pairs that were included, the top scoring combinations were:

1. Tabular Bar Chart Design 1 + Box Plot Design 1

2. Tabular Bar Chart Design 1 + Strip Plot Design 2

3. Box Plot Design 1 + Strip Plot Design 2

4. Box Plot Design 1 + Multi-bar Chart Design 2

Of these, only the first uses the same colour mapping in both encodings. This

is desirable because it preserves the semantics of colour across views [43]. The

remaining pairs would require two distinct, non-overlapping colour pallets. Oth-

erwise, they would risk implying connections between unrelated marks [43]. This

limits their scalability to about a dozen entities in total (alternatives and evaluators).

For this reason, we recommend the first pairing above all others.

When combined with the Stacked Bar Chart (Figure 5.22), this pairing strongly

supports all tasks except AT9 Case A, which is weakly supported by the Tabular

Bar Chart. This weakness can be mitigated by including sort functionality and text

labels for bar values. The one drawback of this design (and multiform designs in

general) is that users might get confused shifting attention back and forth between

the two views since they use different idioms and the axes do not correspond.
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Figure 5.22: Class C Option 2: Dual View with Tabular Bar Chart Design 1
+ Stacked Bar Chart (top view) and Box Plot Design 1 (bottom view).
Note that this and other figures in this section are intended for
rough illustration only - we would expect an actual implementation
to be more polished and include appropriate interaction controls.

Interactions

At the very least, users should be able to sort rows and plots by TotalScore or

AltScore for a particular evaluator, as this is essential for inspecting top values

(AT9) and identifying dominance relationships (AT4). Ideally, users should also

be able to reorder plots, rows, and columns manually to support particular compar-

isons of interest. The ability to sort columns by AltScore for a particular alternative

is not essential, but would be nice to have. Whenever the columns in the tabular

bar chart are reordered, the segments in the corresponding stacked bar chart should

be reordered too. We leave it to the designer to choose the mechanism for imple-

menting these features.

Another essential feature is the ability to filter alternatives and evaluators, as

this allows users to remove distractions and narrow the scope of analysis. Filtering

on values is not essential for small data-sets and may be too advanced for casual

users. We recommend a global scope for filter controls in order to preserve consis-
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Table 5.3: Recommended Interactive Features for Class C

Essential Sort alternatives by TotalScore/AltScore for evaluator
Filter alternatives and evaluators

Ideal
Manually reorder alternatives and evaluators
Tool-tips for dots (AltScore and identify)
Label overlay for bars (AltScore)

Nice-to-have Sort evaluators by AltScore for alternative
Linked highlighting (on hover)

tency between views [43].

If linked highlighting is implemented, it should be applied to same-colour

marks across all views. This will help users stay oriented when shifting attention

between views. Highlight-on-hover may be sufficient for casual users.

Finally, we recommend tool-tips for dots that show their identity and value.

As previously mentioned, we also recommend text overlays for the bar charts that

show the values of the segments and bars. If EvaluatorWeights are defined, the text

overlay should specify the AltScore (not the UnweightedAltScore) for consistency

between the tabular and stacked bar charts. The text colour should be discernible

against the bar colour, and the user should have the ability to turn the overlay on

and off.

5.3.3 Class B: Professional Users

This class of users includes professionals involved in medium to high-stakes deci-

sion making in a work setting. Examples include faculty hiring and software stack

selection. In the cases we studied, this class of decisions was also recurrent, but

this may have been an coincidence within our sample.

The space of viable options for this class is somewhat larger than for Class

C, since designers may want to provide more or less flexibility depending on the

exact work context and expertise of potential users. Here, we describe two possible

options that might be worth considering.
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Option 1: Dual View with Custom Strip Plot

This design is identical to Option 2 for Class C except that the second view contains

a custom strip plot that allows users to select:

1. which dimension to map to plots

2. which overlay to apply (box plot, parallel coordinates, or none)

Figure 5.23: Class B Option 1: Dual View with Tabular Bar Chart Design 1
+ Stacked Bar Chart (top view) and Custom Strip Plot (bottom view).
The user may select a dimension to plot and an overlay. In this ex-
ample, the user has selected Evaluators with a Parallel Coordinates
overlay, producing Parallel Coordinates Design 1.

This design allows users to access the capabilities of all six strip plot-based

designs with just a little exploration. All tasks are strongly supported by at least

one encoding in this space. The only problem is that it introduces the risk of two

different colour mappings in the same window (Figure 5.24). Again, this is not

ideal because it reduces scalability by a factor of two, but it might be acceptable if

both dimensions are small.
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Figure 5.24: The user has constructed Parallel Coordinates Design 2, result-
ing in two different colour mappings. (In this example, the colour
pallets overlap - we recommend using distinct colour pallets.)

A possible solution would be to let users define the colour mapping at a global

level. That way, they can choose the mapping that is most helpful for their current

task while preserving consistency between views. If the Evaluators is selected,

then Strip Plot Design 2 dots belonging to the same axis will all have the same

colour (and vice versa). To preserve some degree of discriminability in all cases,

the designer might also choose to map different shapes to the items of the sec-

ondary dimension (Figure 5.25). If Alternatives is selected, then the segments of

the Stacked Bar Chart will be the same colour. A dividing line can be drawn be-

tween them to keep them distinguishable (Figure 5.26).
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Figure 5.25: The user has selected to map colour to Evaluators. The bottom
view contains Box Plot Design 2, where shape is used to preserve some
discriminability of hotels along each plot.

Figure 5.26: The user has selected to map colour to Alternatives, causing the
segments of the Stacked Bar Chart to be the same colour. White divid-
ing lines preserve some discriminability.
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Option 2: Dual View with Intelligent Plot Selection

Notice that all tasks are strongly supported by at least one of the following: Stacked

Bar Chart, Tabular Bar Chart Design 1, Box Plot Design 1, and Parallel Coordinates

Design 2. In fact, Box Plot Design 1 and Parallel Coordinates Design 2 are the

reason that Option 1 achieves complete task coverage.

However, transitioning back and forth between these two encodings in Option

1 requires three toggles - one to change the colour mapping, one to change the

dimension mapping in the strip-plot, and one to change the overlay. Furthermore,

the user might not realize the complementary power of these two encodings and

may end up wasting time with less effective intermediaries.

An alternative approach is to populate the two views with effective, comple-

mentary encodings given the selected colour mapping. If colour is mapped to

Evaluators, then the secondary view is populated with Box Plot Design 1. Oth-

erwise, it is populated with Parallel Coordinates Design 2. On its own, each pair

of designs strongly supports most tasks, but the combination of all four strongly

supports for every task.

Figure 5.27: Intelligent plot selection when the user has selected to map
colour to Evaluators.
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Figure 5.28: Intelligent plot selection when the user has selected to map
colour to Alternatives.

One problem with this design is that users might not expect the encoding to

change when they toggle the colour mapping. A simple solution would be to

change the name of the drop-down or other toggle mechanism to ‘Analysis Mode.’

Interactions

The recommended interactions for this group include all of those for Class C with

a few additions (Table 5.4). The first addition is the ability to change the colour

mapping, which is integral to both suggested designs. The second addition is linked

highlighting with multi-select, which would allow users to apply persistent high-

lighting to items of interest. This could help them keep multiple items in focus

while performing complex tasks involving parallel coordinates, such as AT3. The

final addition is the ability to filter alternatives based on TotalScore or AltScore,

which would enable user to set satisficing thresholds.
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Table 5.4: Recommended Interactive Features for Class B. Items in bold are
additions to the list for Class C (Table 5.3).

Essential
Sort alternatives by TotalScore/AltScore for evaluator

Filter alternatives and evaluators

Swap colour mapping

Ideal

Manually reorder alternatives and evaluators

Tool-tips for dots (AltScore and identify)

Label overlay for bars (AltScore)

Linked highlighting + multi-select

Nice-to-have
Sort evaluators by AltScore for alternative

Linked highlighting (on hover)

Filter alternatives on AltScore/TotalScore values

5.3.4 Class A: Specialized Users

This class of users includes professionals and governing officials involved in very

high-stakes decision making that impacts society at large. These users are often

aided by consultants with expertise in formal decision processes - these experts are

included in this group as well.

This class is the most likely to require sophisticated analysis software. How-

ever, this need typically comes hand-in-hand with more sophisticated preference

models - that is, expressed at a higher level of the Preference Model Taxonomy. As

such, the recommendations for Class A do not differ much from those for Class B

at this level. The recommendations will diverge as we extend the design space to

higher levels of the taxonomy.

If users in this class do express their preferences at Level P0b, then a likely

task would be to assess the sensitivity of the final result to aggregation method and

evaluator weights, as in the Mariner Jupiter-Saturn project [22]. Tasks related to

sensitivity analysis are currently beyond the scope of this analysis - we leave this

topic to future work.
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Chapter 6

Conclusion

Group Preferential Choice can be challenging due to its multi-variate and inter-

personal nature. There is considerable evidence that structured decision processes

[6] [51] and individual preference modeling in particular [4] can promote more

fruitful analysis and discussion, ultimately leading to greater satisfaction with the

outcome.

The potential benefits of individual preference modelling are constrained by

how effectively the data is presented to decision makers. Information Visualization

solutions have great potential, but only a handful have been attempted [40] [4] [36].

Furthermore, no work thus far has attempted to characterize sources of variation

among Group Preferential Choice scenarios.

This work makes progress on these fronts in three major steps, which are sum-

marized in Section 6.1. Section 6.2 critically reflects on the limitations and vision

of the work, and Section 6.3 presents possible directions for future work.

6.1 Summary of Contributions
This section summarizes the major contributions of this work and anticipates how

they might be used by other academics or designers of Group Preferential Choice

support tools. All contributions are works in progress - they may be extended or

refined as new information is gathered.
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6.1.1 Characterization of Group Preferential Choice

The goal of Chapter 3 was to characterize sources of variation in the data, goals,

and decision making contexts of Group Preferential Choice. This was achieved

by performing an in-depth analysis of a diverse set of Group Preferential Choice

scenarios. The results of this analysis can help designers define the scope of their

work by orienting them to the space of possibilities.

Section 3.4 presented a data model for Group Preferential Choice, including

a taxonomy of commonly-used preference models. The model was extended to

account for new sources of variation that were discovered during the analysis of

scenarios. This model is the interface between specific decision problems and the

rest of our work - if a decision problem can be described in these terms, then readers

can easily identify which tasks and design recommendations are applicable to their

situation.

Section 3.5 presented a summary of goals for preference synthesis in the con-

text of Group Preferential Choice. It is worth reiterating that this is not intended

to be an exhaustive list. Depending on the exact situation, designers may wish to

support additional goals or only a subset of these goals. As noted in Section 3.7,

three goals were found in at least three scenarios - these would be good candidates

for inclusion in any general-purpose support tool.

Finally, Section 3.6 summarized the variation in contextual features across sce-

narios. We found that the scenarios form roughly three clusters at different levels

of sophistication. This result can help designers define the target audience for their

tools by giving them a sense of likely classes of users.

6.1.2 Data and Task Abstraction for Preference Synthesis

The goal of Chapter 4 was to describe the data and goals identified in Chapter 3

in abstract terms that are suitable for visualization design and analysis. This is the

bridge between the descriptions of Chapter 3 and the design recommendations in

Chapter 5 and beyond.

Section 4.1 described the data in terms of multi-dimensional tables. This ab-

straction is useful because the pros and cons of different encodings for tabular data

are well known [38], and there has been considerable work on representing large
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multi-dimensional data sets in particular [16] [54].

Section 4.2.1 presented a list of tasks to support each goal. Some of these

tasks were derived from the scenarios we studied, and others were added based on

intuition. Again, this list is not intended to be exhaustive and may be iteratively

improved as more data is collected. Finally, Section 4.2.2 described each of these

tasks in terms of a smaller set of low level tasks from Brehmer and Munzner’s task

taxonomy [7]. This is useful because it allows potential designs to be evaluated

more efficiently.

In addition to providing abstractions for the current set of goals, this analysis

also serves as a template for abstracting new goals that are identified in the future.

6.1.3 Design Space for Preference Synthesis

Chapter 5 presented our final contribution, which is a prescriptive design space of

visualizations to support preference synthesis in the context of Group Preferential

Choice. At this time, the design space is limited to small-scale decision problems

where preferences are expressed at Level P0b of the taxonomy - that is, each evalu-

ator simply scores each alternative. Despite the limited scope of the current design

space, the analysis underlying its construction lays the foundation upon which a

complete design space may be built. As it stands, we believe that designers of

Group Preferential Choice support tools will find plenty of useful suggestions re-

gardless of the complexity of their data.

Section 5.1 introduced the major competitive idioms for presenting small-scale

tabular data and analytically evaluated their suitability for each auxiliary task. Sec-

tion 5.2 described how interactivity could be introduced to enhance the efficacy of

the static encodings. Finally, Section 5.3 showed how a complete support system

could be constructed from the aforementioned elements, with specific recommen-

dations for each of the three contextual classes identified in Chapter 3.

Although the design space is tailored to Group Preferential Choice, many of

our recommendations could also be applied to the design of visualizations for other

preferential data-sets, including but not limited to rankings, surveys, and evalua-

tions. Furthermore, the task-based assessment of static encodings (Section 5.1.2)

applies to tabular data in general.
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6.2 Critical Reflections

6.2.1 Goals Elicitation

The procedure we used to elicit scenario goals in Chapter 3 was structured and

systematic, but it was not without limitations. According to human-centred design

experts, the most effective way to attain a complete and accurate understanding of

a situation is using a combination of in situ observation and interviews [57]. Due

to time constraints, we were only able to do this for two scenarios - Faculty Hiring

(department meeting portion) and XpertsCatch.

The Best Paper, Gift, and Faculty Hiring (committee meeting portion) scenar-

ios were assessed through interviews conducted after the fact. This is not as effec-

tive, since interviewees may not be able to accurately identify, recall, or communi-

cate key aspects of the situation [27]. The remaining three cases were assessed by

reviewing second-hand reports, which is also error-prone due to the degree of sep-

aration between the original situation and the analyst. Another potential source of

bias is the analyst’s interpretation of the data - in our case, this involved compiling

a list of scenario goals from the interview notes.

On the one hand, problem characterization is seldom done at all in Information

Visualization [37], so any attempt to do so may constitute satisfactory progress. On

the other hand, Group Preferential Choice is highly complex and human-centered,

and so the risk of some elements getting lost in translation is high. Our hope is that

the scenarios we examined are sufficiently rich that they converge upon key points

despite the methodological limitations.

There are several immediate actions we could take to validate our model, which

are discussed in Section 6.3. However, it is unlikely that we will fully understand

the complexity of this problem space until support tools are deployed, which brings

us to our next topic.

6.2.2 A More Agile Approach?

Thus far, our approach has been to perform a series of analyses on an entire class

of problems in sequence. The strength of this approach is that we now have a solid

framework for relating specific scenarios to the overarching problem space. This
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is useful because it allows us to iteratively refine our understanding as new data is

encountered.

A major challenge with this approach is that the sheer amount of variation

within each step makes it easy to lose site of tangible realities. Errors in the early

stages of analysis did not always become apparent until later stages, and recovery

was sometimes costly due to the layers of complexity and abstraction that needed

to be synchronized.

Now that we have a preliminary model in place, it may be worthwhile to switch

to an alternative but complementary approach. Specifically, we could embark on

a series of design studies following the methodology proposed in Sedlmair et al.

[52]. In a design study, the needs of a particular group of users are identified,

a visualization solution is implemented and evaluated, and insights are recorded.

After several iterations of this process, we could compile our insights and update

our data model, task abstractions, and design space recommendations accordingly.

This would allow us to achieve breadth while maintaining agility and practical

grounding.

6.3 Future Work

6.3.1 Validating the Data and Task Model

There are a number of actions we could take to improve the completeness and

accuracy of our data and task models.

The first and easiest would be to have another researcher reproduce the de-

scriptions of each scenario based on our interview notes and second hand sources.

Then, the two descriptions could be compared for discrepancies. Another easy op-

tion would be to go back and validate the written description of each scenario with

interviewees and authors of second hand sources (where possible).

An even better approach would be to collect new data by observing Group

Preferential Choice scenarios as they occur. This might be more productive, since

we could apply the lessons learned to the new situation. This could be done in the

context of complete design studies, as suggested in Section 6.2.
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6.3.2 Validating the Task-based Assessment

It is important to emphasize that the task-based assessment in Section 5.1.2 con-

tains a fair amount of speculation. We referred to reliable sources wherever pos-

sible, but there were a surprising number of cases where we could not definitively

say which encoding was better based on available literature. In particular, there

is a scarcity of literature devoted to comparing strip plots and bar charts, and that

which does exist invokes general principles such as data-ink maximization rather

than empirical data on task efficacy [15] [46].

This could be a rich territory for future research in the field of Vision Science.

Questions that one might ask include:

1. Do the connecting lines on parallel coordinates plots affect perception of

distance between points along each axis?

2. Under what circumstances do bar charts or strip plots support more accurate

comparisons?

3. Do bar charts or parallel coordinates (single line) give a more accurate im-

pression of variance?

It may well be the case that answers to these questions exist but are hard to

find due to a scarcity of relevant surveys. In this case, conducting a review of

relevant Vision Science literature could be a valuable avenue for future research.

Otherwise, we hope that future research in Vision Science will shed light on these

questions, as the answers would be valuable to anyone interested in the pros and

cons of different ways of presenting tabular data.

6.3.3 Extending the Design Space to Other Levels of the Taxonomy

We are currently working on extending the design space to the remaining levels of

the taxonomy while retaining the same constraints, that is:

1. There are no more than a dozen alternatives or evaluators.

2. The Evaluator and Criteria hierarchies are flat.

3. Preferences are expressed on a scale with no negative values.
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Recall that the set of applicable designs depends on which dimensions and

measures are defined (Figure 6.1). With the exception of EvaluatorWeights, this is

determined wholly by the level of the Preference Model Taxonomy.

Figure 6.1: Overview of Dimensions and Measures defined at each level of
the Preference Model Taxonomy.

Since each level of the taxonomy implicitly encodes all the levels above it, the

design space at each new level is a superset of the design space of the levels above

it. Therefore, we will also consider ways to support transitions between different

levels of the taxonomy - for instance, factoring out the Criteria dimension to move

from P1b to P0b.

6.3.4 Relating Existing Encodings to the Design Space

We have already performed an extensive analysis of each of the tools introduced in

Chapter 2. This analysis currently exists as a detailed slide-deck, which is shown in

Appendix A. It describes the capabilities of these tools in terms of our data model

and identifies the static idioms, mappings, interactive techniques, and other design

choices they employ. The next step is to relate this explicitly to the the design space
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once it is complete.

6.3.5 Extending the Design Space to Hierarchical and Large
Dimensions

In the future, we hope to extend the design space to include hierarchical dimensions

and dimensions with more than a dozen items. This promises to be an exciting area

of research, as there are a number of interesting possibilities, including:

• More compact encodings for tabular data, such as heatmaps

• Data reduction strategies, such as:

– Hierarchical aggregation

– Histograms

– Focus + context (juxtaposed views or focal lens)

• Hierarchy representation and traversal strategies, such as:

– Node-link graphs

– Rectilinear trees

– Semantic zooming

We have already begun reviewing relevant literature in this area. Liu et al. [34]

provides an overview of the pros and cons of different data reduction strategies.

The main takeaway is that binned aggregation is the ideal data reduction strategy,

since it captures both global trends and outliers. Other data reduction strategies

include filtering, sampling, and model-fitting. Filtering and sampling may hide

global trends, whereas model-fitting may hide interesting outliers.

Stolte et al. (2002a) [53] presents Polaris, a novel interface for exploring multi-

dimensional table, and Stolte et al. (2002b) [54] extends Polaris to support hier-

archical dimensions. It proposes basic mechanisms to allow users to drill-down

and roll-up hierarchies via drop-down selection. Polaris became the basis for the

popular visual analytics tool suite Tableau. When extending the design space to

include hierarchical dimensions, we will look to Tableau for guidance due to its

long history and widespread use.
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Analysis of Existing 
Encodings

1

Analysis of Existing Encodings
● Inclusion criteria: Explicitly visualizes the performance of alternatives with 

respect to multiple criteria and/or multiple people’s preferences
● Excludes:

○ Visualizations of users (without showing the alternatives)
○ MODM visualization (infinite alternatives, i.e. design space exploration)

● Class 1: Interactive Tools (have some interaction)
○ Group and individual MCDA support tools
○ Tools for visualizing related datasets (evaluations, surveys, opinions)

● Class 2: Standalone Encodings (no interactions)
○ Encodings used in the scenarios from Ch. 1

2

Class 1: Interactive Tools

3
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Preview: Group MCDA

ConsensUs [2]

Group ValueCharts [1]
Web-HIPRE (used in Nuclear case) [3,4]

4

Web-HIPRE [3,4]

5

What data is supported?

Measures:

Taxonomy level? P2b+w (and above) *

Evaluator weights?

Dimensions:

Criteria hierarchies?

Evaluator hierarchies?

6
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Overall Organization

● Main window shows criteria hierarchy and alternatives

● From there, user can view other windows:
○ Priorities window
○ Analysis window
○ Ratings window

● Group MCDA is is achieved by treating evaluators as criteria in an another 
decision problem

7

Main Window (Individual)

● In individual MCDA context, the 
main window shows alternatives 
and criteria hierarchy

● Can open additional windows 
from here

Criteria hierarchy

8

Main Window (Group)

● In group MCDA context, the 
main window shows alternatives 
and criteria hierarchy

● Can open additional windows 
from here

Evaluators hierarchy

9
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Priorities Window

● Priorities window supports 
preference elicitation 

● Can be opened by clicking on a 
criterion in the main window

● Supports five elicitation methods, 
each in a different tab

CritWeights

10

Priorities Window

● Priorities window supports 
preference elicitation 

● Can be opened by clicking on a 
criterion in the main window

● Supports five elicitation methods, 
each in a different tab

CritWeights

11

Priorities Window

● Priorities window supports 
preference elicitation 

● Can be opened by clicking on a 
criterion in the main window

● Supports five elicitation methods, 
each in a different tab

● Can also be used to define or 
inspect the score function and 
alternative outcomes

Outcomes
Unweighted 
OutScore

12

155



Analysis Window (Individual)

● In individual MCDA context, the 
analysis window supports 
evaluation phase tasks

● Can map different things to bars 
and segments:

○ Alternatives
○ Criteria (one level at a time)

AltScore

AltCritScore

13

Analysis Window (Individual)

● In individual MCDA context, the 
analysis window supports 
evaluation phase tasks

● Can map different things to bars 
and segments:

○ Alternatives
○ Criteria (one level at a time)

● Interaction: roll-up/drill-down 
criteria hierarchy

AltScore

AltCritScore

14

Analysis Window (Individual)

● In individual MCDA context, the 
analysis window supports 
evaluation phase tasks

● Can map different things to bars 
and segments:

○ Alternatives
○ Criteria (one level at a time)

● Interaction: roll-up/drill-down 
criteria hierarchy

● Can also do stuff like...

15
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Analysis Window (Group)

● In group MCDA context, the 
analysis window supports 
synthesis phase tasks

● Can map different things to bars 
and segments:

○ Alternatives
○ Evaluators (one level at a time)

TotalScore

Weighted
AltScore

16

Analysis Window

● Another tab allows users to 
perform sensitivity analysis    
(i.e. inspect trade-offs):

17

Ratings Window

● Ratings window contains a 
consequence table

● Colors:
○ Yellow: min/max
○ Blue: unit
○ Green: value present
○ Red: value missing

18
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How: Encode (Measures)
Measure Class Measure Window Idiom Encoding

Scores TotalScore Analysis (group) Aligned stacked bar chart

Dimension mappings: 
customizable

Length of bar

AltScore Length of segment

UnweightedAltScore Analysis (individual) Length of bar

AltCritScore Length of segment

Weights CritWeights Priorities (any weights tab) Horizontal bar charts + text field Length of bar, text

EvaluatorWeights * Horizontal bar charts + text field Length of bar, text

Score Functions UnweightedOutScore Priorities (ValueFn tab) Interactive line graph Point on graph, text coordinates

Outcomes Outcome Table (meaning of color unclear) Color-coded text

Ratings Table Text in color-coded cell

19

How: Encode (Dimensions)
Dimension Window Idiom Encoding

Criteria Main (individual) Node-link graph

(Nodes color-coded by dimension)

Blue node

Alternatives Yellow node

Evaluators Main (group) Node-link graph

(Nodes color-coded by dimension)

Blue node

Alternatives Yellow node

20

How: Manipulate (Data Changing Interactions)
● Change weights:

○ Change values of text fields in Priorities windows
● Change score function:

○ Adjust coordinates of a single point on the score function graph in ValueFn tab of the 
Priorities window (click-and-drag)

21
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How: Manipulate (View Changing Interactions)
● Change mapping:

○ Swap the selections in the Segments and Bars drop-downs in the Analysis window
● Change aggregation level: (How: Reduce -> Aggregate)

○ Change selected dimension hierarchy level in one of the three drop-downs in Analysis 
window

● Change data shown: (How: Reduce -> Filter)
○ Change selected dimension in one of the three drop-downs in Analysis window

22

Group ValueCharts [1]

23

What data is supported?

Measures:

Taxonomy level? P2b+w (and above)

Evaluator weights?

Dimensions:

Criteria hierarchies?

Evaluator hierarchies?

24
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Overall Organization

● One main window with two different views:
○ Individual view
○ Group view

● Each view has the following components:
○ Details component (with 3 tabs: Chart Details, Alternatives, and User List)
○ Criteria component
○ Scores component
○ Score functions component

● Another window may be opened to view score functions up close

How: Facet -> Partition
How: Facet -> Linked views
How: Facet -> Superimpose

25

Individual View

26

Individual View - Details Component

Outcomes

1. User List tab

2. Alternatives tab

3. Alternatives tab after clicking 
an alternative

2 3

1

27
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Individual View - Criteria Component

Criteria hierarchy

CritWeight

28

Individual View - Scores Component

AltScore

CritWeight
Outcome

AltCritScore

AltCritScore

Max AltScore

How: Facet -> 
Superimpose

29

Individual View - Score Functions Component
Unweighted
OutScore

Unweighted
OutScore

Categorical Score Function Continuous Score Function
30
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How: Encode
Measure Class Measure View Component Idiom Encoding

Scores AltScore Scores 1. Aligned stacked bar chart
2. Tabular bar chart

Dimension mappings:
Alternatives -> columns
Criteria -> rows, colour

Height of bart (1)  + text

AltCritScore Height of bar (2); height of segment (1)

Max(AltScore) Red-coloured text

Weights CritWeights Row height

Criteria Rectilinear node-link graph Row height

Outcomes Outcome Scores “” Text label in (2)

Details Tabular list Text

Score Functions UnweightedOutScore Score Functions Interactive bar chart/ line graph Height of bar/Y-coordinate of dot

31

How: Manipulate (Data Changing Interactions)
● Change weights:

○ Adjust height of box in Criteria Component
■ Click-and-drag
■ “Pump” (double-click to inflate/deflate)

● Change score function:
○ Adjust y-coordinate of a point/bar in the score functions graph (click-and-drag)

32

How: Manipulate (View Changing Interactions)
● Change arrangement:

○ Change orientation (vertical or horizontal)
○ Reorder Objectives (drag-and-drop)
○ Reorder Alternatives (drag-and-drop, alphabetical, or by Objective score)

● Change data shown: (How: Reduce -> Filter)
○ Choose Alternative to see Outcomes for (click on name in Alternatives tab) 

■ This is a special case of filter where exactly one item may be chosen
● Change elements shown:

○ Toggle view options (average lines, score functions, outcomes, score labels, utility scale)
● Change viewpoint: (How: Navigate)

○ Expand score function (How: Navigate -> Geometric Zoom)

33
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Group View

34

Group View - Details Component

Outcomes

1. User List tab

2. Alternatives tab

3. Alternatives tab after clicking 
an alternative

1

2 3

35

Group View - Criteria Component

Criteria hierarchy

Max CritWeight

36
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Group View - Scores Component
AltScore

TotalScore

CritWeight

OutcomeAltCritScore

Max CritWeight

37

Group View - Score Functions Component
Unweighted
OutScore

Unweighted
OutScore

Categorical Score Function Continuous Score Function
38

How: Encode
Measure Class Measure View Component Idiom Encoding

Scores TotalScore (AvgScore) Scores 1. Aligned multi bar chart
2. Tabular multi-bar chart

Dimension mappings:
Alternatives -> columns (primary)
Criteria -> rows
Evaluators -> columns 
(secondary), colour

Vertical position of horizontal line (1)

AltScore Height of bar (1)  + text

AltCritScore Height of filled bar (2)

Max(AltScore) Red-coloured text

Weights CritWeights Height of unfilled bar (2)

Max(CritWeight) Row height

Criteria Rectilinear node-link graph Row height

Outcomes Outcome Scores “” Text label in tabular bar chart

Details Tabular list Text

Score Functions UnweightedOutScore Score Functions Interactive bar chart/ line graph Height of bar/Y-coordinate of dot

39
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How: Manipulate (View Changing Interactions)
● Change arrangement:

○ Change orientation (vertical or horizontal)
○ Reorder Objectives (drag-and-drop)
○ Reorder Alternatives (drag-and-drop, alphabetical, or by Objective score)

● Change mapping:
○ Change color for user

● Change data shown: (How: Reduce -> Filter)
○ Filter users (toggle checkboxes)
○ Choose Alternative to see Outcomes for (click on name in Alternatives tab) 

■ This is a special case of filter where exactly one item may be chosen
● Change elements shown:

○ Toggle view options (average lines, score functions, outcomes, score labels, utility scale)
● Change viewpoint: (How: Navigate)

○ Expand score function (How: Navigate -> Geometric Zoom)
40

ConsensUs [2]

41

What data is supported?

Measures:

Taxonomy level? P1b

Evaluator weights?

Dimensions:

Criteria hierarchies?

Evaluator hierarchies?

42
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Overall Organization

● One main window with two linked views:
○ Individual view
○ Group view

How: Facet -> Partition
How: Facet -> Linked views

43

Individual View

AltCritScore(Individual, Sam, Academic)

AltScore(Individual, Sam)

Alternatives

44

Group View
Alternatives

Evaluators

TotalScore(Jim)

Avg(AltCritScore(x, Jim, Readiness))AltCritScore(Individual*, Sam, Academic)

AltScore(Individual, Jim)

45
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How: Encode
Measure Class Measure View Idiom Encoding

Scores AltScore Group and Individual Small multiples, dot plot 
(specifically, Cleveland dot plot)

Dimension Mappings:
Alternatives -> colour
Criteria -> rows
Evaluators -> size (two levels)

Position of dot on plot 
(horizontal axis)

AltCritScore

TotalScore Group

Avg(AltCritScore(x, a, c)) *

46

How: Manipulate (Data Changing Interactions)
● Change scores:

○ Adjust position of dot along criteria slider (click-and-drag)

47

How: Manipulate (View Changing Interactions)
● Change data shown: (How: Reduce -> Filter)

○ Filter alternatives (toggle checkboxes)
○ Choose an evaluator to map to big dots (click on name in list)

■ This is a special case of filter where exactly one item may be selected
● Change aggregation level: (How: Reduce -> Aggregate)

○ Drill-down average criterion score to see breakdown by evaluator (click on dot)

48
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Preview: Individual MCDA

WeightLifter [7]

DCPAIRS [6]ValueCharts (now just a part of GVC) [5]

49

DCPAIRS [6]

50

What data is supported?

Measures:

Taxonomy level? P2+w

Evaluator weights?         (Single evaluator)

Dimensions:

Criteria hierarchies?

Evaluator hierarchies?         (Single evaluator)

51
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View (only one)

● SPLOM (scatter-plot matrix) over 
six criteria at a time

● Each cell shows trade-off between 
row/column criteria (each point is 
an Alternative)

● Other criteria can be swapped in, 
and are shown as tiles in the 
bottom corner

● Criteria weight is encoded on slider

UnweightedAltCritScores (for selected Alternative)

AltCritScores 

Criteria CritWeight

How: Facet -> Partition
How: Facet -> Linked Views
How: Reduce -> Embed -> Focus + Context

52

How: Encode
Measure Class Measure Idiom Encoding

Scores UnweightedAltCritScore Scatter-plot matrix

Dimension mappings:
Alternatives -> spatial coordinates
Criteria -> spatial regions

x or y coordinate of point on scatter plot 
(two criteria per plot)

UnweightedAltCritScore(a, c) is shown on 
every plot in the row and column for c 

Bar chart Length of bar + text

Weights CritWeights --- Position of knob on slider widget; 
color of tile (grayscale)

53

How: Manipulate (Data Changing Interactions)
● Change weights:

○ Adjust position of dot along criteria slider (click-and-drag)
● Change score function:

○ Toggle positive linear/negative linear (click text)
● Define alternative groups:

○ Assign selected alternatives to a group

54
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How: Manipulate (View Changing Interactions)
● Change mapping:

○ Change color for alternative group
● Change data shown:

○ Filter alternatives on score (adjust position on range sliders)
○ Choose attributes to put on the main diagonal (drag-and-drop)

■ This is a special case of filter where exactly six items may be chosen
● Change emphasis:

○ Highlight selected alternative in all plots (click on point in one plot)

55

WeightLifter [7]

56

What data is supported?

Measures:

Taxonomy level? P2b+w

Evaluator weights?         (Single evaluator)

Dimensions:

Criteria hierarchies?

Evaluator hierarchies?         (Single evaluator)

57
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Overall Organization

● One main window with three different views:
○ Ranked Solution Details view
○ Criteria view
○ WeightLifter view

How: Facet -> Linked Views
How: Facet -> Superimpose
How: Reduce -> Embed -> Focus + Context

58

Ranked Solution Details View

CritWeightUnweighted 
OutScores AltScore

AltCritScore
Alternatives

59

Criteria Value View

Alternatives

Criteria

● Parallel coordinates plots where:
○ Each line is an Alternative
○ Each axis is a Criterion
○ Each coordinate is an Outcome

Outcome

60
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WeightLifter View

61

How: Encode
Measure Class Measure View Idiom Encoding

Scores AltScore Ranked Solution Details Table with embedded stacked 
bars

Dimension mappings:
Alternatives -> rows
Criteria -> colour

Length of bar

AltCritScore Length of segment

Weights CritWeights Stacked bar (on top of 
above-mentioned table)

Length of bar, text

Score Functions UnweightedOutScore Line graph glyph

Outcomes Outcome Criteria Values Parallel coordinates

Dimension mappings:
Alternatives -> marks (lines)
Criteria -> axes, colour

Coordinate of line for Alternative 
on axis for Criterion

62

How: Manipulate (Data Changing Interactions)
● Change weights:

○ Adjust height of box in Criteria Component
■ Click-and-drag
■ “Pump” (double-click to inflate/deflate)

● Change score function:
○ Adjust y-coordinate of a point/bar in the score functions graph (click-and-drag)

63
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How: Manipulate (View Changing Interactions)
● Change arrangement:

○ Reorder Alternatives (by selected criterion score)
● Change emphasis:

○ Highlight selected alternative in all views (click on point in one plot)
● Change data shown: (How: Reduce -> Filter)

○ Filter alternatives (toggle in Ranked Solution Details View)
○ Filter alternatives by criterion value (brush values in Criteria Values View)

64

Preview: Related Datasets

LineUp [8]

SurveyVisualizer [9]

Rizoli (2009) [10] 65

LineUp [8]

66
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What data is supported?

Measures:

Taxonomy level? P2b+w (analogous)

Evaluator weights?         (Single evaluator)

Dimensions:

Criteria hierarchies?         (Define on the fly)

Evaluator hierarchies?         (Single evaluator)

67

Overall Organization

● One interactive main view that allows users to dynamically define and 
compare multiple rankings

● Data-mapping (e.g. score function) editor available on demand

How: Facet -> Linked Views
How: Facet -> Superimpose
How: Reduce -> Embed -> Focus + Context -> Distort

68

Single-Ranking View

AltCritScore Sum(AltCritScore(...))
Outcome

69
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Multi-Ranking View

70

Data-Mapping Editors

● Used to define mapping from 
domain values to scores (i.e. 
score functions)

● Can also filter values by not 
mapping them to any score

● (No need to get into the details 
beyond this)

71

How: Encode
Measure Class Measure View Idiom Encoding

Ranks 
(not included in design 
space analysis)

AltRank Main Slope graph/bump chart; 

Table with embedded bars (with 
option of aligned, stacked, or 
stack diverging}

Dimension mappings:
Alternative -> rows
Criteria -> columns, colour

Row order, text label

Scores AltScore Length of stacked bar 
(available on demand)

AltCritScore Length of segment

Weights CritWeights Column width

Outcomes Outcome Text label on segment for 
AltCritScore (numeric Criteria)

Text label in cell for criterion 
(categorical Criteria)

Score Functions UnweightedOutScore Data-Mapping 
Editor

? Coordinate on score axis

72
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How: Manipulate (Data Changing Interactions)
● Change weights:

○ Adjust width of column for criterion (click-and-drag, or manually enter a percentage)
● Change score function:

○ Adjust boundaries in data-mapping editor
● Define meta-criteria:

○ Assign selected criteria columns to a group

73

How: Manipulate (View Changing Interactions)
● Change arrangement:

○ Reorder Alternatives by column or meta-column score (click on header)
○ Change alignment strategy (stacked bars, aligned bars, diverging bars, or sorted bars)

● Change level of detail:
○ Expand/collapse criterion column
○ See exact outcomes for an Alternative (hover over row)

● Change data shown: (How: Reduce -> Filter)
○ Filter alternatives by categorical criterion value (enter text filter in widget in column header)
○ Filter alternatives by numeric criterion value (adjust mappings in Data-Mapping Editor)
○ Filter missing values (checkbox toggle in Data-Mapping Editor)

● Change emphasis:
○ Highlight selected alternative in all plots (hover for grey highlighting, click for yellow)

cont...
74

How: Manipulate (View Changing Interactions)
● Change navigation strategy:

○ Toggle between uniform and fisheye view of rows
● Change viewpoint: (How: Navigate)

○ Change position of fisheye lens (How: Navigate -> Pan)

● Create new linked viewt: (How: Navigate)
○ Create snapshot of current view (which will appear next to it, connected by a slope graph)

75
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SurveyVisualizer [9]

76

What data is supported?

Measures:

Taxonomy level? P1b (analogous)

Evaluator weights?         (Single evaluator)

Dimensions:

Criteria hierarchies?

Evaluator hierarchies?         (Single evaluator)

77

Overall Organization

● One main window with two linked views:

○ Parallel Coordinates Tree View

○ Analysis Group Selector View

How: Facet -> Linked views
How: Reduce -> Embed -> Focus + Context -> Distort 

78
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Parallel Coordinate Tree

Criteria Hierarchy

AltCritScores *
79

Analysis Group Selector

● Narrows down the set of surveys included 
(here, surveys are analogous to alternatives).

● Nothing relevant to GPC.

80

How: Encode
Measure Class Measure / Dimension Idiom Encoding

Scores AltCritScore Parallel coordinate tree 
(rectilinear tree with embedded 
parallel coordinates plots)

Dimension mappings:
Evaluators -> marks (lines)
Criteria -> axes

Coordinate of line for Evaluator 
Group on axis for Criterion

N/A Criteria Line; region of rectilinear tree

81
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How: Manipulate (View Changing Interactions)
● Change mapping:

○ Change color for Alternative
● Change emphasis:

○ Highlight selected alternative in red (hover over line)
○ Highlight selected alternative in black (click on line)

● Change data shown: (How: Reduce -> Filter)
○ Filter alternatives by analysis group (expand tree, toggle checkbox)
○ Filter alternatives by criterion value (brush values in Criteria Values View)

● Change viewpoint: (How: Navigate -> Pan)
○ Change position of bifocal lens

82

Rizoli (2009) [10]

83

What data is supported?

Measures:

Taxonomy level? P1b (analogous)

Evaluator weights?       

Dimensions:

Criteria hierarchies?

Evaluator hierarchies?       

84
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Main View
Count(AltCritScore(x, Yoyodyne, Image) == -1)

Possible values for AltCritScore 
(diverging scale)

Sum(Count(AltCritScore(x, Yoyodyne, y) == -1))

TotalScore (Avg Score)

How: Facet -> Partition 
85

How: Encode
Measure Class Measure Idiom Encoding

Scores Avg(AltCritScore(x, a, c)) Small-multiples of histograms

Dimension mappings:
Alternatives -> rows
Criteria -> columns

Text label

Count(AltCritScore(x, a, c)  == value) Height of bar

Stacked bar chart

Dimension mappings:
Alternatives -> rows
Criteria -> colour

Height of segment

Sum(Count(AltCritScore(x, a, y)  == 
value))

Height of bar

TotalScore (Avg(AltCritScore(x, a, y))) Text label

86

Class 2: Standalone 
Encodings

87
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Case Studies
Faculty Hiring Campbell River

Voyager [11]

Best Paper

88

Faculty Hiring

How: Facet -> Partition 

89

What is the data?

Measures:

Taxonomy level? P1b (with discrete evaluation scale)

Evaluator weights?

Dimensions:

Criteria hierarchies?

Evaluator hierarchies?

90
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View 1

● Small-multiples view faceted by 
criteria on rows, alternatives on 
columns

● Each cell shows distribution of 
AltCritScores over possible 
values of AltCritScore:

○ Bar encodes count of 
AltCritScores with that value

● One bar for each combination of 
Alternative, Criteria, and 
possible AltCritScore value 
(aggregated over Evaluators)

Count(AltCritScore(x, A, Research) == VS)

Possible values for 
AltCritScore (specified by 
discrete evaluation scale) 91

View 2

● Small-multiples view partitioned 
by Alternative

● Each view consists of a multi-bar 
chart, partitioned into regions by 
possible values of AltCritScore

● Each region shows distribution of 
AltCritScores over criteria

● One bar for each combination of 
Alternative, Criteria, and possible 
AltCritScore value (aggregated 
over Evaluators)

Count(AltCritScore(x, A, Research) == VS)

Possible values for 
AltCritScore (specified by 
discrete evaluation scale)

92

How: Encode
Measure Class Measure View Idiom Encoding

Scores Count(AltCritScore(x, a, c)  == value) * 1 Small-multiples

Dimension mappings:
Alternatives -> columns (primary)
Criteria -> rows
Outcomes -> columns (secondary)

Height of bar

2 Small-multiples, multi-bar chart

Dimension mappings:
Criteria -> columns (secondary), 
colour
Outcomes -> columns (primary)

Height of bar;
Text labels on Count axis

View 1 and 2 show the same data in different ways

93
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Campbell River

94

What is the data?

Measures:

Taxonomy level? P0b and P2+w

Evaluator weights?

Dimensions:

Criteria hierarchies?

Evaluator hierarchies?

95

View 1

● Range plot, with one range glyph 
per Criterion

● Each range glyph shows the range 
(min and max) of CritWeights over 
that criterion

● One bar for each combination of 
Alternative, Criteria, and possible 
AltCritScore value (aggregated 
over Evaluators)

CritWeight(MikeM, Flooding)

Criteria Hierarchy

Range(CritWeight(x, Erosion))

96
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View 2

● Table with Evaluators/Elicitation 
method on rows, Alternatives on 
columns, and AltRanks in cells

● AltScores are sorted into three bins, 
and a different colour is used for each 
bin (it is unclear what the scale is)

AltRank(15, J) (number) and AltScore(15, J) (colour)

97

How: Encode
Measure Class Measure View Idiom Encoding

Ranks 
(not included in design space 
analysis)

AltRank 2 Table

Dimension mappings:
Alternatives -> columns
Evaluators -> rows

Text

Scores AltScore Colour (three bins)

Weights Range(CritWeights) 1 Range plot

Dimension mappings:
Criteria -> columns

Range bar

CritWeight Point on range bar

N/A Criteria Hierarchy Label groups (a tree, loosely)

Views 1 and 2 show different data

98

Best Paper

Measures:

Taxonomy 
level?

P0a

Evaluator 
weights?

Dimensions:

Criteria 
hierarchies?

Evaluator 
hierarchies?

Measure Class Measure Idiom Encoding

Ranks 
(not included in design 
space analysis)

AltRank Table

Dimension mappings:
Alternatives -> cols
Evaluators -> rows

Text

Sum(AltRank) Text

Data:
Encoding:

Analysis:

AltRank(Person 1, Paper D) Sum(AltRank(x, Paper D)

99

184



Voyager [11]

Measures:

Taxonomy 
level?

P0a, b

Evaluator 
weights?

Dimensions:

Criteria 
hierarchies?

Evaluator 
hierarchies?

Data:

Analysis:
Measure Class Measure Idiom Encoding

Ranks 
(not included in design 
space analysis)

TotalRank * Table (Table III) Text

AltRank Table (Table II)

Scores TotalScore * Table (Table III)

AltScore Table (Table II)

Weights EvaluatorWeights Table (Table III)

Encoding:
● Table II: Alternatives on rows, Evaluators on columns, AltRank 

and AltScore in cells
● Table III: Alternatives on rows, Collective choice rules 

(including EvaluatorWeights) on columns, TotalRank and 
TotalScore in cells
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