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Abstract

This thesis presents a Stochastic Dynamic Programming (SDP) modeling algorithm to
model six hydropower plants in British Columbia (BC), Canada. The main output of the
algorithm is the water value function for the two biggest reservoirs in BC, Williston and
Kinbasket reservoirs. The AMPL programming language was used to implement the algorithm.
Extensive testing has shown that the program is able to solve the problem producing acceptable
water value and marginal value functions up to a problem size of ~ 164 million states per time

step using the computing resources available on one of the BC Hydro’s servers.

The objective of the work presented here was to assess the sensitivity of solution
efficiency and precision for several storage state and decision space discretizations. The impact
of introducing a storage state-space corridor, as an alternative of the traditional fixed storage
state-space, was investigated. In addition, the sensitivity of the modeling results to different spill
penalty values was analyzed. It was found that finer state-space increments give more precise
results but the granularity was limited to the computing resources available. Introducing the
storage state-space corridor provided several advantages; nevertheless, care should be taken in
the design of such corridors so that the solution efficiency and accuracy are not jeopardized.

Also, recommendations on the use of suitable spill penalty value are provided.

Flexibility is one important feature of the modeling algorithm. This flexibility is a result
of optimizing the algorithm and the organization of the code, which provided control over the
increment of the state-spaces and the storage corridor, the ability to run the problem for one
storage reservoir while fixing the state of the other storage reservoir and the ability of the user to



run the model either directly on a personal computer/server using the command prompt or by

using a scheduling program to optimize the use and sharing of computing assets.

Further enhancements of the algorithm will enable the model developed in this thesis to
handle much larger problems but will likely still suffer from the limitations due to the inherent

curse of dimensionality in modeling using the SDP algorithm.



Lay Summary

The researcher has developed a computer program that uses advanced mathematical
modeling technique, called Stochastic Dynamic Programming, to produce price signals
representing the value of water stored in British Columbia’s biggest reservoirs such as Williston
Reservoir in the Peace region in British Columbia (BC) and Kinbasket Reservoir in the
Columbia region in BC. These price signals are intended to inform the operators of the
generating stations downstream of these reservoirs of the optimal way to dispatch the generation,
within a certain time window, through comparing the value of the energy produced to the value

of energy in the wholesale electricity markets connected to BC.

To ensure that this computer program is working properly, the researcher has tested the
program using several case studies with different input parameters. The results of the tests have

shown that the program gives acceptable results within certain limits.
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for the purpose of generating electricity

Electricity produced/consumed at any instant in time, usually measured by MW

A plant that has a reservoir with little to no storage capability

Months between seasons where neither domestic load nor prices are high; such
as September and October

A unit of time over which an optimization process is undertaken in a DP or SDP
model

A unit in a given space, for example storage space within a reservoir
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Chapter 1: Introduction

1.1. Research Goals

The main goal of this research is to develop an algorithm to solve the medium-term/long-
term stochastic optimization problem using a practically acceptable representation of the inherent
stochasticity and uncertainty in the modeled reservoir system. The algorithm is meant to be used
as a potential decision support tool for operations planning of large-scale multireservoir systems
such as the BC Hydro system. The second goal for the research is to provide a benchmarking
tool for other more sophisticated models developed by the UBC/ BC Hydro research team. A
further goal is to test the limits of the Stochastic Dynamic Programming technique that is used to
develop the algorithm using the computer resources and programing capabilities available at the
time this research was conducted. The driver is to provide guidance for future implementation of
algorithms based on the same technique. The development of the modeling in this research was

done in consideration of some of the challenges and the gaps outlined in the next section.
1.2.  Challenges and Gaps

There are several shortcomings to the current models that were surveyed in the literature
and the ones developed in-house and currently in use at BC Hydro. Some of the gaps identified

are:

1. It is hard to reasonably represent the inherent stochasticity and uncertainty in reservoir

systems without extensive computation cost;



2. Some of the best models that are currently used still need some manual guidance and/or
several trial and error simulations in order to achieve the best possible outputs, which
might jeopardize the final product by introducing human and other inherent errors;

3. Due to the curse of dimensionality and/or other modeling shortcomings, many of the
models currently in-use cannot cover the desirable planning horizon or the actual state-
space especially for long/medium-term planning purposes without jeopardizing the
accuracy or the proper representation of the system modeled,;

4. Several models and techniques seem very promising and have good potential, such as
heuristic techniques, but unfortunately they have not been tried on large systems which
typically entail more challenges; and

5. There is a need to develop more accurate estimates of the value of water in storage
reservoirs for use in long-term capacity expansion planning studies and to improve the

system operation in operations planning.

It is not claimed that the model developed in this research is able to cover all of the gaps
mentioned above, but rather it is thought to add to the pool of knowledge of the UBC/BC Hydro
team and reasonably represent the complexity of the systems modeled within the expected
limiting factors of availability of computing resource and shortcomings of the technique and

programming language used. The next section lists the contributions of this research.

1.3. Contributions of the Research

The following contributions are thought to be achieved by the current research:

1. Representing the stochasticity and uncertainty in the system in an acceptable form;



2. Concurrent modeling of six of the main generating facilities in the BC Hydro system on
the Peace and Columbia Rivers which results in good representation of the system;

3. Providing practically acceptable representation of the water value functions that reflect
the value of water in storage;

4. Preforming proper and extensive testing of the limits of the Stochastic Dynamic
Programming technique and the AMPL programming language;

5. Extending the planning horizon up to 36 months with a monthly time step which is not
possible for some of the models used currently that have comparable problem size; and

6. Developing generic and flexible code that could be easily enhanced, extended and used

for different purposes including benchmarking and sensitivity analysis.

1.4.  Implementation

An implementation of the Stochastic Dynamic Programming technique is used to develop
the core SDPOMG6R model. AMPL programming language is used to develop the model. The

details of the approach and its implementation can be found in Chapter 3 of this manuscript.

1.5.  Organization of the Thesis

The majority of Chapter 2 is dedicated to the survey of the dynamic programming
optimization technique, which is the technique used in developing the model in this research.
The development of the modeling approach is detailed in Chapter 3. The source of most of the
materials included in this chapter is a report written by the author and co-authored by his
supervisor and the author’s manager at BC Hydro (Ayad, et al., 2012). A briefing of the same

materials is also included in (Abdalla, et al., 2013). Samples of the output and the results of the



model are laid out and briefly discussed in Chapter4. Chapter 5 includes the results and the
discussion of the extensive testing of the model developed in this research. The material of this
chapter is adopted from a paper that was included in the proceedings of the HydroVision
International Conference (Ayad, et al., 2013). Finally, the conclusion, and recommendations for

future work are discussed in Chapter 6.



Chapter 2: Survey of Literature

2.1. Introduction

In this chapter, a survey is conducted on the different optimization techniques used in the
fields of reservoir operation and operations planning. A number of the techniques are briefly
introduced while others are thoroughly investigated due to their relative importance and
relevance to the technique applied in this research.

Following this introduction, a brief and general review of the reservoir operation and
management models is conducted in section 2.2.

Since the Dynamic Programming technique is used to develop the model in this research,
the rest of the sections in this chapter are dedicated to this technique. The first few sections
discuss the theories and principles the technique is based on. The last two sections of this chapter
discuss the different variations and applications of the technique. They are sorted into two main
categories: Deterministic Dynamic Programming techniques and Stochastic Dynamic

Programming techniques.
2.2. Modeling of Reservoir Operation and Management

Scientists and engineers were, and still, interested in optimizing the operation of storage
reservoirs. This interest ramped up in the early 70’s with the increased access to computers.
Computers enabled the development of variety of new approaches aiming at deriving the optimal
operating policy (least cost/ highest profit). There are other reasons that drove the development

of various reservoir optimization techniques for the most efficient use of water (Wyatt, 1996)



such as: the increases complexity of the reservoir systems, the rise of energy prices in the 70’s
and the emerging public awareness of the ecological issues and their relation to water resources.

(Yeh, 1985) stated that the adoption of optimization techniques to be used in planning,
management and design studies of water systems is one of the most important advances in the
field of water resources during the 60’s through 80’s. Many of the studies conducted were
successful in practice, especially for planning purposes while the same level of success was not
attained in operations optimization (Yeh, 1985). Before that time, the most used approach to
handle the operation of simple reservoirs systems, such as a single-purpose single reservoir, was
the Critical Period Analysis (Hall, et al., 1969; Duranyildiz & Bayazit, 1988; Christensen &
Soliman, 1989; Wyatt, 1996). Despite being simple, the single-purpose single reservoir system
faces several challenges in operation either technical challenges, seasonal variations in
parameters of the system, or running against license constraints. For the more complicated
systems, such as multi-purpose multireservoir systems, several optimization techniques were
developed. These include simulation, linear, nonlinear, and dynamic programming, applied
separately or in combinations. (Wyatt, 1996) stated that “The advantage of these methods over
critical period analysis can be attributed to their considering operating costs over the entire whole
of the flow series simulated, rather than just minimising costs during the most critical periods of
reservoir draw-down”.

Nowadays, optimization techniques are adopted for the operations planning of all the
reservoir systems regardless of their complexity. The selection of the most appropriate method is
yet challenging. The main issue is that the deficiencies of these techniques are hard to quantify
and it depends to large extent on the characteristics of each system (Wyatt, 1996). When the

complexity of the system increases the number of possible operating policies and variable
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combinations increase exponentially, which increases the computational effort associated
(Wyatt, 1996).

In order to make sure of the feasibility of the optimal solutions deduced by the
optimization models or on other words, simulation modeling studies should also be performed
(Labadie, 2004). For that, using a combination of both simulation and optimization models

would be of a great benefit and in some cases a necessity in order to obtain the optimal policy.

2.3.  Bellman’s Principle of Optimality

From (Bellman, 1957), Bellman’s principle of optimality is such that “ An optimal
policy has the property that whatever the initial state and the initial decisions are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the first
decision”.

Bellman also defined Dynamic Programming as” the theory of multistage decision
processes”. The word “Dynamic” here means that this approach can handle the sequential or
multi-stage decision problem and that is why it is efficient in making sequences of interrelated

decisions (Nadalal & Bogardi, 2007).

2.4.  Principle of Progressive Optimality

(Howson & Sancho, 1975) were the first to suggest this principle to use it to solve
multistate dynamic programming problems. It is a successive approximation using a general two
overlapped stages solution. One of the advantages of the algorithm is that it requires little storage
resources. As might be inferred, it depends on or could be considered as an extension of the

Bellman’s Principle of Optimality. The Principle of Progressive Optimality states that "The



optimal path has the property that each pair of decision sets is optimal in relation to its
initial and terminal values" (Howson & Sancho, 1975). Using the principle of progressive
optimality makes it unnecessary to discretize the state space (Yeh, 1985).

(Turgeon, 1981a) applied this principle to solve the short-term multireservoir operations
scheduling problem.

A case study was performed using the application of the principle on four hydroelectric
plants in series and it proved effective. Head variations, spills and time delays between upstream
and downstream reservoirs were all taken into consideration (Turgeon, 2007). The author
summarized the characteristics of the problem he was tackling as follows: nonlinear objective
function, non-separable production functions, state and decision variables are bounded and the
problem is stochastic due to the inflows into the system and the electricity demand. The
advantages of this method compared to the traditional Principle of Optimality according to the
same researcher are:

1. No discretization is required for the state variables;

2. Dimensionality problem is non-existing;

3. Non-convexity (such as in in production function) and discontinuity (like in cost

function); are solvable using this technique unlike other techniques;

4. Convergence is monotonic and global optimum is reached; and

5. Relatively easy programming and fast execution.

2.5.  Advantages and Challenges of Dynamic Programming (DP) Technique

Dynamic Programming (DP) has the capabilities to decompose the problem into sub-
problems that can be solved sequentially over the planning periods (Abdalla, 2007). The DP
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approach is based on the Bellman’s Principle of Optimality. The number of discrete DP variables
equals the number of state values times the number of decision variables which is guaranteed to
be less than in LP (Yakowitz, 1982).

Applications of the DP are very broad; however, the technique suffers from two curses
that limit its applications to solve problems. The first curse is the curse of dimensionality which
means that the problem size increases exponentially with increasing of the state-space which
makes solving the problem in reasonable time very computationally expensive and time
consuming (Bellman, 1957). (Yakowitz, 1982) stated that “the exponential growth in memory
and CPU time requirements with increase in dimension of the state vector (i.e., the ‘curse of
dimensionality') is the greatest single hindrance to dynamic programming solution of large-scale
optimal control problems”. Some attempts were made to overcome the curse of dimensionality
such as: making coarse grid, use of dynamic programming successive approximation,
incremental dynamic programming, differential dynamic programming (Labadie, 2004). These
variations will be discussed in later sections of this chapter. The advances in the computational
capabilities of modern computers are one of the best solutions to the dimensionality problem.
With those advances, the impact of this curse is alleviated but not eliminated. The second curse
is the curse of modeling which means that when the real system that is being modeled gets
complex, it is hard to model it using the DP technique (Bertsekas, 1995; Wyatt, 1996). The
solution is to limit the number of storage states employed in the model when dealing with two or
three reservoir systems (Wyatt, 1996). In other words, the solution to this problem is to under-
represent the system or to approximate it.

According to (Wyatt, 1996; Nadalal & Bogardi, 2007; Abdalla, 2007; Pereira & Pinto,

1991), advantages of DP include:



1. It can be extended to multistage problems as well as stochastic case;

2. It handles discrete values and the nonlinearity;

3. The computational effort increases linearly when increasing the number of stages in the
model;

4. 1t is suitable for problems where the decision variable takes a discrete or an integer form;
and

5. It can handle nonlinearity, non-convexity, and even the discontinuity of the relations
between the objective functions and constraints.
DP is widely applied and well-suited to the reservoir operation and operations planning

problems. Its popularity comes from the possibility of translating of the water resources features

such as nonlinearity and stochasticity into a DP formulation (Yeh, 1985).

2.6.  Deterministic Dynamic Programming Techniques

2.6.1. Incremental Dynamic Programming Models (IDP)

In conventional DP, the state variables (usually set as reservoir storage or forebay in the
reservoir operation problem) are discretized. Simultaneous derivation of operation policies for all
the reservoirs and having a dense discretization is required in order to have close-to-global
optimum operation policy in these systems (Nadalal & Bogardi, 2007). The disadvantage of this
is that it makes it hard to use the conventional DP because of the curse of dimensionality
(Nadalal & Bogardi, 2007) as previously mentioned.

The Incremental Dynamic Programming (IDP) technique was introduced by (Larson, 1968).
Instead of using the entire state-space to search for the optimal solution as the DP does, IDP uses

a pre-specified number of state variables to visit. In other words, the IDP algorithm restricts the
10



state space to a corridor around the current given solution (Labadie, 2004). This idea has inspired
the author of the research at hand in developing some solutions to increase the capacity of his
model, which is discussed in Chapters 3, 4 and 5. IDP uses the recursive equation of DP to
search for a better trajectory starting with some arbitrary feasible solution (initial trial trajectory)
which serves as the first approximation of the optimal trajectory. The IDP creates what is called
“corridor” around this initial trajectory. The corridor specifies the state variables to be visited in
each time step in which the width of the corridor is the difference between the upper and lower
bounds created around the state variable based on the initial trajectory. The trajectory obtained
from this iteration is used as the new trial trajectory for the new iteration. The computation cycle
continues until a convergence to the global optimal solution occurs. The convergence criterion is
pre-specified for the system to prevent infinite calculations as the IDP solution might exhibit
monotonic behavior (Nadalal & Bogardi, 2007).

IDP has some shortcomings such as: hardship of interpolation over the corridor and
selection of discretization intervals and sensitivity of the IDP to the initially assumed storage

trajectories (Labadie, 2004).

2.6.2. Differential Dynamic Programming Models

(Jacobson & Mayne, 1970) developed the Differential Dynamic Programming technique
for the purpose of overcoming the dimensionality problems in DP. This technique uses an
analytical solution, such as Taylor’s series expansion, instead of discretization of the state space
(Labadie, 2004; Abdalla, 2007), which makes it more suitable for application on the
multireservoir systems. (Yeh, 1985) stated that when the system dynamics are not linear and the
objective function is not quadratic, then the Differential Dynamic Programming is one of the best

11



options. The differentiability of both the objective functions and the constraints is required to

apply this technique (Labadie, 2004) which limits the application of this approach.

2.6.3.

Dual Dynamic Programming Models (DDP)

DDP is inspired by the Benders’ Decomposition Algorithm. (Pereira & Pinto, 1991)

summarized the steps of the two-stage DDP algorithm as follows:

1.

are:

3.

4.

Set the initial value of approximate future value (cost) function, upper bound and lower
bound;

Solve the approximate first stage problem;

Calculate the lower bound, if the convergence criterion is satisfied: stop otherwise, go to
the next step;

Solve the second stage problem (calculate the approximate future value function and
update the value of the upper bound);

Increment the number of vertices through which the approximate future value function is
constructed; and

Go to the Step 2 again

The advantages of the DDP compared to other techniques such as the conventional DP

Discretization is not necessary;
It provides upper and lower bounds for each iteration;
It could be extended to solve multistage problems; and

It could be also extended to the stochastic case (SDDP), which will be discussed later in

this chapter.
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2.7. Stochastic Dynamic Programming Techniques

2.7.1. Conventional Stochastic Dynamic Programming (SDP)

Stochastic Dynamic Programming (SDP) is one of the most powerful and commonly
used techniques to aid decision making in reservoir operation. SDP is well-established in long-
term planning of multireservoir systems (Yeh, 1985). The inflows, electricity demands, and
market prices are examples of stochastic variables that may be considered in the reservoir

operations planning problem.

The optimal operating policy in SDP is derived using the Bellman’s backward recursive
relationship (Bellman, 1957). The convergence is determined by two criteria (Nadalal &
Bogardi, 2007): stabilization of the incremental change in the optimal value according to the
Bellman recursive formula and stabilization of the operating policy. The objective is usually to
maximize the total benefit, which consists of current benefits coming from operations at present
plus the discounted value coming from future use of stored water within the given

planning/operating horizon.

As mentioned before, there are two major problems with using the SDP technique to

solve large-scale problems: the curse of dimensionality and the curse of modeling.

(Arvanitidis & Rosing, 1970) developed one of the earliest applications of SDP in reservoir
operation which had a primary goal of determining the optimal monthly hydropower generation
of a hydroelectric system. The authors focused on the most important variables to alleviate the
curse of dimensionality. The model output was compared to a well-established rule-curve

operation.
13



(Stedinger, et al., 1984) introduced a medium-term monthly SDP model that forecasted the
current period inflows using available information at that period. The Aswan High Dam on the

Nile river basin in Egypt was used as a case study.

(Tejada-Guibert, et al., 1993) applied the SDP technique for three reservoirs and five
thermal plants using a Markov Chain' and a discrete distribution that approximated a normal

distribution. Penalty functions were used for power and water shortages.

(Druce, 1989; Druce, 1990) developed the Marginal Cost Model (MCM) for operations
planning of the BC Hydro system using the SDP technique. The model uses weather sequences
with equal probabilities to develop the monthly marginal value of water in the Williston
Reservoir for a medium-term planning horizon. The uncertainty in inflows and market prices is
accounted for in the model. At the time the model was created the Williston reservoir marginal
value derived from the model results was used as a proxy for the system marginal price?. Later,
and after several years of development by the System Optimization Group at BC Hydro, this
model is now part of a bigger suite of models where it is coordinated with other models

representing the other components of the system in order to derive the system marginal price.

L It entails the assumption that: the probability of an occurrence happening at a given stage in time depends only on
the previous stage

2 The word” Price” is usually used to refer to the marginal value of energy as opposed to value of water used to
produce this energy
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(Wyatt, 1996) developed two models, one for power-generation reservoir systems and
another for water supply reservoir systems. SDP was used in the two models along with a
simulation model.

(Turgeon, 2005; Turgeon, 2005) investigated the effect of incorporating multi-lag
autocorrelation of inflows and the potential use of multi-lag autocorrelation for a single
hydrologic variable for the solution of the SDP problem. One of the findings is that the flood

and shortage risks decreased as power generation increased.

(Nadalal & Bogardi, 2007) applied the SDP technique to maximize the expected power
generation from the Rantembe Reservoir in Sri Lanka. Operating policies were derived from an
SDP model and then reservoir operation was simulated using historical inflow data. An
improvement to the objective function was noted when storage discretization was refined but

with the shortcoming of experiencing a polynomial increase in computational time.

Unlike other mathematical programming techniques, such as linear and non-linear
programming, very few general purpose dynamic programming (DP) solvers are available. An
example of software available for solving DP and SDP problems is the CSUDP model, which is
generalized dynamic programming software developed at the Colorado State University (USA).
This software can handle “multidimensional problems, stochastic problems, and certain classes

of Markov decision processes” (Labadie, 2003).

The general SDP procedure, considering the inflow as the only stochastic variable, is

illustrated in Figure 1.
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Figure 1: SDP Procedure (Nadalal & Bogardi, 2007)

2.7.2. Stochastic Dynamic Programming with Function Approximation

One of the most successful approaches used to alleviate the complexity of the reservoir
system modeling problem is function approximation. Also, it is considered one of the most
effective solutions to the dimensionality problem. In this method, state-space discretization is not
needed any more as the near optimal value is expressed at each state/stage point in functional
form. The value function can be approximated in many ways using linear function, polynomial
function, piecewise-linear piecewise-polynomial or splines.
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(Lamond, 2003) used the piecewise-polynomial functions to approximate the future value
function. He applied this algorithm on a single hydroelectric reservoir with finite and discrete

time horizon assuming a piecewise -inear concave reward for the production function.

2.7.3. Dynamic Programming with Successive Approximation (DPSA)

Stochastic Dynamic Programming using Successive Approximation (DPSA in short) is
used to handle the problem of reservoirs in parallel (Turgeon, 1980; Christensen & Soliman,
1989). It optimizes one reservoir at a time. Unfortunately, the major drawback of this approach is
that it does not take the dependence of operation of reservoirs on each other’s energy content
(storage) (Christensen & Soliman, 1989); in addition, with DPSA, the computation time and

resources needed for the problem to converge are relatively large.

2.7.4. Aggregation and Decomposition SDP

(Arvanitidis & Rosing, 1970) and later (Turgeon, 1981b) adopted the method of
aggregation/decomposition of a group of reservoirs in series into one equivalent reservoir. Each
reservoir contributions were weighted according to its energy conversion factor (HK). The
aggregation procedure was performed on storage, inflows and outflows.

This approach was proposed as a solution to the computational infeasibility problem the authors
faced when applying a conventional SDP algorithm on more than three reservoirs.

The criticism to this method is that it does not account for parameters such as local
constraints of reservoirs, which limits the application of this approach to the most systematic

reservoir systems. In spite of that, the Aggregation and Decomposition SDP technique proved
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effective in long-term planning studies in cases where decomposed reservoir systems are
sufficiently similar (Christensen & Soliman, 1989).

(Archibald, et al., 1997) added a conditional probability that allows switching between
inflow scenarios at the beginning of each week. The modeling was done using four-state

variables instead of two in the work of (Turgeon, 1981b).

2.7.5. Chance-constrained Programming Model and the Linear Decision Rules

Chance-constrained stochastic Programming (CCP) is a technique that applies the
probability conditions on constraints. It is mostly suited for application on multipurpose
reservoirs. The main advantage of this technique is alleviation of the problem of estimating the
cost function, (Yeh, 1985). The CCP implicitly converts the stochastic problem to an equivalent
deterministic problem that could be solved more easily (Abdalla, 2007).

Linear Decision Rules (LDR) can be considered as an add-in to the CCP. They relate the
releases to storage and remove the dependency on random storage levels which allows the
releases to be specified at the beginning of each time period (Yeh, 1985; Labadie, 2004). In other
words, the optimization is no longer dependent on storage variables; alternatively, it depends on
a decision parameter. In addition, LDR eliminates the mathematical complexity in CCP
formulation. On the other hands LDR is considered as an additional constraint in itself and it
does not take the complete stochasticity of the streamflow into consideration. Applying the LDR,
the number of constraints gets smaller which reduces the probability of converging to an optimal

policy, (Yeh, 1985).
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2.7.6. Stochastic Dual Dynamic Programming (SDDP)

The SDDP is a combination of Stochastic Dynamic Programming (SDP) and
stochastic linear or nonlinear programming using the Duality Theory® (with conservation of
the convexity condition). The algorithm is based on the approximation of the cost-to-go
functions (value functions) of SDP using a piecewise-linear function. The approximation
mechanism can be done in two ways. The first is derived from Benders’ decomposition
method as in (Pereira & Pinto, 1991). The second method is performing the approximation
on a grid as in (Read & George, 1990; Tilmant, et al., 2008). Using SDDP with the latter type
requires it to be performed on a relatively coarse grid to avoid increasing the number of
inflow alternatives exponentially (Lamond & Boukhtouta, 1996)*. The approximated cost-
to-go function is obtained from the dual solutions of the problem at each stage. One of the
most remarkable features of the algorithm is that it does not require the state- space to be
discretized. By this, dimensionality problem is alleviated.

SDDP can be described as a two-stage problem. In the first stage, a decision is taken
given a trial decision, and then a number m of second stage problem will exist (Pereira &
Pinto, 1991; Lamond & Boukhtouta, 1996). For the multistage problems of the second stage,
each sub-problem represents one stage corresponding to one period. At each stage, sub-

problems of one period are being solved.

% It states that an optimization problem is viewed as a primal problem or a dual problem. Solving the dual

problem provides a lower bound to the solution of the primal one.
4 Assuming that inflows are the only stochastic variable in the problem
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(Pereira & Pinto, 1991) applied the SDDP model on 39 hydroelectric plants in Brazil,
22 of which have reservoirs while the rest are run-of-the-river plants. The planning horizon
used was 10 periods. Inflows were represented as independent random variables. The total
number of variables and constraints were close to 150,000 for each stage problem.

(Tilmant, et al., 2008) applied a SDDP model on the Euphrates River. An assumption
was made that the system is interconnected and fully integrated between Turkey and Syria
which is not the case in reality. The reason, as the authors stated, is that they wanted to show
how much benefits can be achieved from an integrated system planning approach. The
modeled water usage included power generation and irrigation.

(Guan, et al., 2017) implemented the SDDP technique for the BC Hydro System. The
model uses stochastic inflows and the Columbia River Treaty (CRT)® and other agreements
to generate the water value function. For this purpose, two independent models were
developed: the inflow model to generate forecasts of inflow volumes in the freshet period and
monthly inflows and the CRT model to model operations for storage for flood control and
other accounts. The SDDP implementation was benchmarked against several operations
planning studies. An extensive testing and sensitivity analysis was performed to ensure the
robustness and practicality of the model.

(Dias, et al., 2010) stated that “Nowadays, the SDDP methodology is used in many
countries, as in the case of the Brazilian power system, where the SDDP with aggregated
reservoirs is still the official methodology used for determining the long-term hydrothermal

system operation, the short run marginal cost, among other applications.”

® Details on the CRT can be found in Chapter 3
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(Lamond & Boukhtouta, 1996) stated that it is not recommended to use SDDP in
cases of nonlinearity or non-convexity. Also, (Dias, et al., 2010) explained that although the
SDDP is one of the fastest techniques when it comes to computer time, it might give
solutions that are far from the optimal solution, obtained by other techniques such as SDP, in
case of not estimating the cost-to-go function properly for all the important parts of the

problem’s state-space.

2.7.7. Sampling Stochastic Dynamic Programming (SSDP)

(Kelman, et al., 1990) were the first to propose the Sampling Stochastic Dynamic
Programming technique (SSDP). They defined it as “a technique that captures the complex
temporal and spatial structure of the streamflow process by using large number of sample
streamflow sequences”. The authors presented this technique as a solution to the problems of
poor representation of the system stochasticity and computation limitations that are
inherently existent in traditional techniques .SSDP was originally designed for online
operation using forecasted stream flows but later was extended to operations planning using
historical stream flows (Lee & Labadie, 2007). The technique uses streamflow scenarios to
represent the stochastic inflow processes. Like the deterministic optimization techniques, this
approach still assumes the perfect foreknowledge in updating the optimal value function (Lee
& Labadie, 2007). In other words, the current scenario continues with certainty into the
future and the optimal value function is developed for the specific streamflow scenario.
Moving from one inflow scenario to another requires the knowledge of the transition

probability from each flow to another. One of the challenges in using the SSDP is initializing
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the terminal optimal value function as a boundary condition otherwise the model will empty
all the reservoirs by the end of the time horizon (Lee & Labadie, 2007).

(Kelman, et al., 1990) developed a SSDP model that handles the complexity of the

streamflow process by using a large number of sample streamflow sequences. The authors
included what they called the “best inflow forecast” in the model as a hydrologic state
variable to improve the reservoir operating policy. The model was applied on a case study to
check its effectiveness on a hydroelectric system at the Feather River in California.
(Lee & Labadie, 2007), in their comparative state-of-the-world study, used the SSDP as one
of the benchmarking techniques. The SSDP performance was good in some aspects while
performed poor in others. To enhance its performance, the authors suggested using more
reliable inflow forecasting models to be fed to the SSDP model which shows how sensitive
the technique is to the inflow scenarios used.

(Schaffer, 2015) developed a SSDP model to maximize the value of water in storage
in the BC Hydro system. The author investigated the use of different hydrologic inputs on the
SSDP model performance such as: historical record data, inflows and forecasts generated
from an autoregressive lag-1 model, and BC Hydro’s ensemble streamflow prediction
forecasts. Results revealed the significance of using forecasts earlier in the freshet period
compared to the rest of the water year.

(Blair, 2017) developed a SSDP model for the Columbia River System, BC, Canada.
Building on (Faber & Stedinger, 2001), the model (MUREO) incorporates probabilistic
persistent reservoir constraints. The constraints are non-optional, persist over multiple stages,

and are either a function of historic inflows, or a function of seasonal volume forecasts from
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a future stage. The model has two state variables: the non-treaty storage account® and the
Kinbasket Reservoir storage. The model could be run for horizon for up to 6 years on a
monthly time step. The implementation took advantage of the recent cloud computing and
storage capabilities such that the user is able to run it either on a local computer or on the
Amazon Cloud. To optimize the operations planning of the BC Hydro system, MUREO is
run in an iterative fashion to coordinate with the aforementioned MCM (Druce, 1989; Druce,

1990) model and other models representing the rest of the BC Hydro system.

6 Treaty here refers to the CRT
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Chapter 3: Development of a Stochastic Dynamic Programming
Optimization Model for Operations Planning of a Multireservoir

Hydroelectric System

3.1. Background on the BC Hydro System

3.1.1. BC Hydro’s System

The Province of

British Columbia is one of

the leading producers of

hydroelectric  power in

N M, SHRUM

I PEACE CANYON

Canada. The total installed
generating capacity of the N
BC Hydro system is 12.05
GW (BC Hydro, 2017) of
which more than 90% is
hydropower. BC Hydro

serves 95% of the

population in  British

Figure 2: A Map of British Columbia Illustrating the Main
Power Generation Plants and Local and Interconnected
Transmission Lines, (BC Transmission Corporation, 2010)

Columbia and produces
about 80% of the total
power generated in the province (BC Hydro, 2013; BC Hydro, 2017). There are 61 dams and

more than 30 hydro plants in the BC Hydro system.
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The major river systems in BC are: the Peace system meeting 34% of electrical
demand, the Columbia system meeting 31% of electrical demand, the Kootenay Canal and
Seven Mile plants meeting 13% of electrical demand, and 23 small hydropower plants
meeting 16% of electrical demand (BC Hydro, 2000)’. As of 2013, the remaining 6% of
demand is served by independent power producers (IPPs) and thermal generating facilities
(gas-fired and combustion turbines). The majority of the energy produced by the power
system is from renewable sources with close to 2,000 MW coming from run-of-river
projects, biomass projects and other renewable resources. BC Hydro meets the domestic
electrical load of its service area and also trades energy in regional markets in Alberta, the
Northwest USA and California through its subsidiary Powerex (BC Hydro, 2000; BC Hydro,

2013).

Optimizing the operation of the main storage reservoirs in the BC Hydro system is
quite challenging due to the uncertainties that must be dealt with given the significant multi-
year reservoir storage capabilities. The existence of a transmission network connecting the
system with regional markets adds one more dimension to the complexity of the system.

It is not an easy task to optimize the planning of operations of the system under the various
constraints that the BC Hydro system encounters such as: the physical generation constraints,
environmental and non-power requirements, water licenses and international treaties, to name

a few.

3.1.2. Columbia River Treaty

7
These percentages are averages and vary from year to year
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The Columbia River Treaty (CRT) between Canada and the United States was ratified
in 1964. The implementation of the treaty is the responsibility of the Canadian entity (BC
Hydro) and the two American entities (Bonneville Power Administration and the US Army
Corps of Engineers). The main features of the CRT include: building large storage reservoirs
(completed in the 60’s and 70’s), streamflow regulation, sharing flood control benefits,
sharing power generation benefits, determining the authorities on evacuation of flood control
space, water diversion, mechanisms to resolve emerging disputes and the options to terminate
or extend the treaty. Of concern to this research, the CRT imposes a number of constraints on
Canadian reservoir operations and these constraints are included in operations planning

models developed/used by BC Hydro.
3.1.3. Representation of the BC Hydro System in the Modeling Algorithm

Six plants and their associated reservoirs on two river systems are explicitly included
in the optimization model. Three on the Peace River: G.M. Shrum (GMS) and Williston
Reservoir, Peace Canyon (PCN) and Dinosaur Reservoir downstream of GMS, and Site-C®
(STC) and Site-C Reservoir downstream of PCN. The other three are on the Columbia River:
Mica (MCA) and Kinbasket Reservoir, Revelstoke (REV) and Revelstoke Reservoir
downstream of MCA, and Arrow Lakes Hydro (ALH) and Arrow Lakes Reservoir
downstream of REV. All these plants are optimized except ALH due to the complexity
inherent in modeling the CRT. ALH generation is fixed along with power generation from

other sources in BC.

8 A . . .. .
Site-C is currently under construction and is included in some long-term resource forecasts.
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A storage plant® is defined as a plant that has multi-year storage capacity and thus its
storage is modeled as a state variable in the optimization model. GMS and MCA are modeled
as storage plants because they are immediately downstream of the two largest reservoirs in
the BC Hydro system. A run-of-the-river plant (ROTR) is a plant that does not have much
storage capability and it simply passes all the water it receives within a period that is less
than the time step modeled. PCN, STC, REV and ALH *° are modeled as run-of-the-river

(ROTR) plants.
3.2. Approach and Context

The model developed as part of the current research is particularly concerned with the
two largest reservoirs in the BC Hydro system, Williston and Kinbasket reservoirs. In
addition to these two reservoirs there are four other reservoirs that are represented as ROTR.
Several constraints and characteristics that are related to the seix reservoirs in particular or to
the BC Hydro system in general are included in the model. The name of the model is
Stochastic Dynamic Programming Optimization Model for Six Reservoirs or SDPOMG6R for
short.

The development of this model was part of a capital project at BC Hydro, The Water
Value Project (Abdalla, et al., 2013), to develop multi-reservoir stochastic optimization

models to generate water value and marginal value functions that best represent the expected

® The words “plant” and “project” are used synonymously to refer to the same facility.
0 ALH is an exception here since although as it has quite large storage capabilities it was modeled as a ROTR

plant to simplify the algorithm.
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value of water in storage and the marginal value of the multi-year storage reservoirs in the
system. The objective is to obtain the optimum operating policies to maximize the revenue of
BC Hydro from reservoir operation.

This model was developed primarily to be used as a benchmarking tool for multiagent
reinforcement learning model (MARL), which is under development by the same team as
part of the Water Value Project, as well as against other already-developed or under-
development models such as Reinforcement Learning Reservoir Optimization (RLROM)
Model, Stochastic Dual Dynamic Programming (SDDP) model, Sampling Stochastic

Dynamic Programming (SSDP) model and Stochastic Linear Programming (SLP) model.

3.3.  Objectives of the Model Development

The SDPOMG6R model is developed to:

1. Improve on currently used models of multireservoir long/medium term operations
planning;

2. Increase the number of reservoirs taken into consideration in the model (better
representation of the real system);

3. Evaluate the marginal value of water for multi-reservoirs (better operations planning);
and

4. Capture part of the complexity and the inherent uncertainties of the system.

3.4.  Modeling of the Problem

3.4.1. State Variables
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State variables in the model are the storage states, which are structured in two groups
in the model: initial storage states and terminal storage states.
The initial storage state is fixed along all the time steps to enable the backward recursion
value iteration procedure. The range of the initial storage states for each reservoir is
controllable and can be changed to obtain a measure of the sensitivity of reservoir operation
within a certain range of storage. For normal operations planning, the range is usually chosen
to cover the storage state trajectory that will be described later in this manuscript.
The terminal storage states for each reservoir vary with initial states, time steps, release
decision and inflow values. For each time step and initial state, each single release decision
and each single inflow value, there is a unique range of terminal states covering all the
possible states that can be visited given the historic operation and the physical limits. The
bounds of the range of the terminal storage states are also controllable and usually lie within

the storage state trajectory.

3.4.2. Decision Variables

There is one decision variable per reservoir used in the SDPOMG6R, which is the total
release from each plant. The discretized values of the total release are calculated from the
plant spill limits which are provided to the model in a data file. For each set of total release
data, another set of values is deduced from the turbine release limits. This set is then used to
calculate the generation corresponding to that release given the condition that it cannot
exceed the following two values: the discretized plant spill value (the decision variable), and
the difference in storage between the starting storage state and the terminal storage state
given a specific value of the inflow.
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3.4.3. Stochastic Variables

The expected inflow to each reservoir per time step is represented by a discrete
probability distribution functions. This distribution is developed from 60 years of historical
monthly inflows. These historical values are obtained from the BC Hydro records,
CRO/Flocal and other sources internal to BC Hydro. The number of bins used in each
discrete distribution is variable depending on the range of inflow values at hand and the
inflow step (increment) adopted. A frequency analysis was carried out for different
discretized inflow increments that were determined by the range of historical monthly
inflows. In the current implementation of the algorithm, these increments determine the
discretization of other state spaces such as the storage state-space and plant release decision-
space. Several references, such as (Nadalal & Bogardi, 2007), recommend that if the actual
distribution does not have a zero bin then a zero bin with very low probability should be
added to the distribution to achieve a representative state probability transition matrix. In
winter months (December, January and February) the range of historical inflows is normally
narrow and 4 to 5 bins were found to be sufficient to cover the distribution, whereas in the
freshet months (May and June), when the inflow is snowmelt-dominated, the distribution
range is large and the number of bins range from 8 to 11. At all times the minimum number
of bins was set to 4. Figure 3 illustrates an example of the discretized June inflow

probabilities for the Williston Reservoir.
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Discretization of the 0.3

inflow-space is performed only 0.25
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inflow and probability of their Figure 3: Probability Distribution for the Inflows

associated  upstream  storage to the Williston Reservoir for the Month of June

projects.
3.4.4. Space Discretization and Transitions

3.4.4.1. Discretization of State-space and Decision-space
One of the important considerations affecting the accuracy and shape of the value

function in the SDP algorithm is how to properly discretize the state and decision space
variables in the optimization problem (Nadalal & Bogardi, 2007). For the case discussed here
those include: the storage state-space, the inflow-space, and the decision-space of plant
releases. It is well known that finer discretization yields better results, but unfortunately this
is limited by the available computational resources and the time needed to solve the problem.
The sensitivity of the algorithm and the quality of the solution, to the discretization increment

are discussed in Chapter 5.
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3.4.4.2. Transition Matrix and State Transitions

As discussed earlier, inflow is the only stochastic variable that is explicitly
represented in the SDP solution algorithm of the SDPOMG6R model. The inflow probability
can be used to calculate each reservoir’s state transition probabilities for a given initial
storage state. To calculate these state transition probabilities, the procedure outlined in the

following steps was followed:

1. For each reservoir and for a given hydraulically feasible transition from one storage
state to another, the probability of the state transition is set equal to the inflow
probability and is used to calculate the state transition probability. If the transition is
not hydraulically feasible then its probability is set equal to zero;

2. The global' state transition probability (joint probability) for the system from a
global state to another global state is equal to the product of the transition
probabilities; and

3. The global transition probabilities are then used to calculate the expected values of

the different terms in the value function equation®?.

Calculation and storage of the transition matrix is one of the major challenges that
arise when applying the SDP technique to this type of problems. This challenge was
primarily addressed by using a dynamic storage range corridor, which is discussed later in

the manuscript.

it involves all storage reservoirs modeled (e.g., the Williston and Kinbasket reservoirs in this context)

12 biscussed in Problem Formulation later in this chapter
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3.4.5. Storage-Generation Curves (HK Curves)

One of the most important aspects of the hydropower problem is how the HK values
are accurately calculated as that level of accuracy affects the generation calculations and
accordingly the optimum policy. For each reservoir and from historic data, a 3" degree
polynomial regression equation is generated and used to deduce the proper HK values for
each transition storage state. The equation used in the model calculates the HK value as a
function of both starting storage state and terminal storage state (linearly interpolated

between the two states).
3.4.6. Storage-Forebay Curves

Forebay elevation is not used in any of the core calculations or constraints in the
model; instead, all the calculations are done using the storage volume of the reservoirs.
However, the forebay elevation is calculated as a by-product of the model. A regression
equation between the storage and the forebay elevation for each reservoir is developed as can
be seen in Figure 4. The sources of the data used to develop the regression equations is the
CRO/Flocal. These equations are then used in the model to calculate the forebay elevation as

a function of the storage for both the initial and terminal states.
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Figure 4. GMS and MCA Storage-Forebay Curves

3.4.7. Representation of Unit Outage

It is important to note that the outages that are tackled here are the scheduled/planned
outages of the plants and not forced outages. The latter are covered through a coefficient for
contingency reserves/availability on generation. The main source of the outage schedule data
used for the outage representation in the SDPOMG6R is the data files of the GOM model
(Fane, 2003). First, the numbers from that file are mapped to the binary system to represent
the outages of units and the duration of each outage. After that, the outages are aggregated to
monthly time steps. Table 1 shows the outage schedule for one of the plants (GMS). The
outage percentage is multiplied by the generation to calculate the maximum possible

generation for each time step per plant.
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Table 1: Conversion of Binary Outages to a Generation Factor

Decimal 0 383 495 511 831 999 1007 1023
Binary
a 5 5 5 5 5 5 Total | Generation Factor
— — — — (e] — —
o — o — — o o —
Month - = = 3 b b b
g d d S — — —
— — — d p e p
1 0% 0% 0% 0% 0% 0% 68% 32% 100% 0.932
2 0% 0% 0% 0% 0% 0% 0% 100% | 100% 1.000
3 0% 0% 0% 0% 0% 0% 0% 100% | 100% 1.000
4 0% 0% 0% 0% 0% 0% 0% 100% | 100% 1.000
5 0% 0% 0% 0% 0% 0% 0% 100% | 100% 1.000
6 0% 0% 0% 0% 0% 0% 23% 77% 100% 0.977
7 0% 0% 0% 0% 0% 100% 0% 0% 100% 0.800
8 0% 48% 23% 0% 10% 19% 0% 0% 100% 0.807
9 0% 23% 0% 13% 63% 0% 0% 0% 100% 0.816
10 0% 0% 0% 35% 0% 0% 0% 65% 100% 0.965
11 0% 0% 0% 0% 0% 0% 0% 100% | 100% 1.000
12 0% 0% 0% 0% 0% 0% 0% 100% | 100% 1.000

3.4.8. Load-Resource Balance

Calculation of generation in the SDPOMG6R model is governed by the load resource
balance equation. This equation can be simplified as:
For each time step,
> Generation (modeled hydroplants + un-modeled hydroplants + IPPs + thermal) — Load +

Forward contracts = Net Export (surplus or deficit) Equation 1

35




> Generation: represents the sum of all energy feeding into the system including the
modeled hydroelectric plants (GMS, PCN, MCA, REV, ALH, and STC), the Independent
Power Producers (IPPs), thermal plants and other sources of energy to the system including
the un-modeled hydroplants.

Load: represents the domestic demand that has to be satisfied as a first priority by the BC
Hydro system.

Import/ Export: The sum of left hand side (LHS) of the equation is considered an import if
it is a negative number and an export if it is a positive number, and is subject to the
transmission line limits which are inputs to the model as well.

Forward contracts: are the forward sales that BC Hydro is committed to fulfill during the

planning horizon, which could be either imports or exports for each time step.
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Figure 5: Elements in the Load-Resource Balance Equation

Figure 5 illustrates the load, summation of IPPs, thermal, and other sources of

generation and the import and export limits. Any deficit will be covered by the generation
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from the hydroelectric plants and imports if needed; any surplus will be exported or spilled if
needed. For instance, the area under the light blue line with red markers represents the deficit

that should be covered by the hydroelectric plants and the imports (Abdalla, 2007).

3.4.9. Representation of Prices

The approach followed in this work is to adjust the average forecasted monthly
energy prices at the Mid-C trading hub by applying a price multiplier that captures the effect
of the variability of inflow conditions from the average water conditions in the Pacific
Northwest region. In wet water years, using the forecast total seasonal flow at The Dalles
near the mouth of the Columbia River, the price multiplier is less than 1 and the
corresponding regional electricity market prices are less than average. Under dry conditions
the multiplier is greater than one and the prices are above the average. The total inflow to the
system is calculated and correlated with the Columbia River inflows at The Dalles to
calculate the price multipliers which are used to scale the Mid-C market prices for different

scenarios using monthly regression equations as shown in Figure 6.
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Figure 6: Prices for a Forecast Water Year for Different Total System Inflow Scenarios
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The coefficients of those equations are extracted for each month in each future water
year and are then used to calculate a new set of regional price scaling factors. Wheeling
charges are then added or subtracted to create import and export prices, respectively, at the

BC-US border.

3.4.10. State-space Discretization and Generation of Discretized Values

One of the governing factors in the current model and in the SDP technique in general
is how to properly discretize the state space, as the value function and its shape are directly
impacted by how the sta-e space is discretized. Furthermore, from what had been discovered
through the SDPOMG6R modeling process, not only the state-space but also both of the
inflows and the releases need to be optimally discretized. Also, they all need to be of the
same discretization step (increment) at least in each time step for each reservoir. The size of
the discretization step is limited by the computation capacity of the computer/server that the
model execution is performed on as well as the capacity of the coding language (AMPL in
this case).

The code was written and indexed in a way that the discretization could be hybrid,
which means that each reservoir can have its own discretization step and also for each

reservoir the discretization step can vary by each time step.

3.4.11. Approximations

The approximations that are used in developing the code itself, in creating the data or

in developing any regression equations are:
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1. The maximum and minimum bounds of the state space are inputted as rough values;
and these limits are first rounded to nearest discretization step; and
2. Several regression equations are used in the model such as price-inflow regression

equation, HK regression equations and Forebay-storage regression equations.
3.5.  Problem Formulation and Solution Algorithm
3.5.1. Objective Function and Calculation of the VValue Function

The objective is to maximize the value of the hydropower resources. This is
accomplished by optimizing the system dispatch to capture electricity market opportunities in
the planning horizon while satisfying the domestic load. The objective function is expressed

in the following equation®®.

PV, (S; jt) Equation
Be(Sj 0 ) j0e) + 2
- Zr}fwf Yy * z [Pre(Sjj=6rSjjeeers @) j5t) * PVigq (S t41)]
Sj e+l
where,
B:(S) 10 jt)

= CR; (Sj%0a),j%0)+ 1C; (Sjj-0,aj,j-¢) + ER (S)j7.0,2),j7c)

+ DRt - SPt(Sj,j*,t’ aj_j*’t) .
Equation

13 Characters used in equations are defined in the List of Symbols in the beginning of this manuscript.
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where, j,j €] forj=#j*

As can be seen from Equation 2 that the present value of water in storage, PV (*) is
calculated as the sum of two terms: the expected income B (-) for the set of decisions in the
current period, and the discounted expected future value of water in storage in the next stage.
Equation 3 shows that the expected income, or policy income, is the expected value of
contract sales revenue (CR), cost of imports (IC), revenue from exports (ER), and the
revenue/cost of satisfying the domestic load (DR). Also, a spill penalty function (SP) is added

to discourage solutions requiring spill.

There are three classical methods that can be used to solve Equation 2: policy
iteration, linear programming, and value iteration. Value iteration is the most commonly used
method and is adopted in this work. Figure 7 shows the application of the value iteration
method in the model through a process called Backward Recursion which updates the value
function starting with the last time step (stage) in the planning horizon and moving
backwards.

After the value function converges, the marginal value of energy can be computed by
differentiating the value function with respect to storage for a given state, as shown in the

following equation, Equation 4.

OPVL(S; j* 1) Equation 4

gt = 3Sj ¢ * HK;1(Sjr)

MVW, (S
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3.5.2. Main Constraints

The objective function above is subjected to the following constraints:

1. Load-resources balance:

J K
S.t. Z Gj,t(sj,tJ Sj,t+1J aj’t) + z 8kt (Ij,t' aj't) + GRt + Clt - CEt

— ST(S 6 L j 00 @) 65 S e41)

= L,
Equation 5
2. Mass (hydraulic) balance:
For the storage projects (WSR and KBT),
s.t. S+ 1 — TQj,t(Sj,t: Sjt+1 aj,t) - SQj,t(Sj,t: Sjt+1) aj,t) = Sjt+1
Equation 6
For ROTR projects,
S. t. ik,j,t(lj,t) + aj,t - tqk,j,t(lj,t' aj,t) - qu,j,t(lj,tl a]"t) = 0 Equatlon 7

where iy tqy: » and sqy ;. are computed only when storage project (j € J) and ROTR

project (k € K) are hydraulically connected.

3. Storage limits:
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S.t. LSj't < Sj,t < USj,t

Equation 8
3. Turbine flow limits:
For the storage projects,
s.t. TQ_min; t( it t+1) < TQj,t(Sj,t' jt+1 Qj, t) < TQ_max;, t( it t+1)
Equation 9
For ROTR projects,
s.t. tg_ming, < tq; (L aj,) < tq_maxy,
Equation 10
4. Total plant discharge limits:
s.t. PQ_miny; < PQu(aj;) < PQ_maxy,
Equation 11
5. Transmission limits:
when the spot trade activity is import,
s.t. STe(Sj o0, 1 jorr@j 0, S joee1) + Clp < LTI,
Equation 12
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when the spot trade activity is export,

s.t. STt(Sj,j*,t’ Ij,j*,tl aj,j*,t, Sj,j*,t+1) + CEt < LTEt

Equation 13
6. Generation limits:
For the storage projects,
s.t. Gomin, <G i(SjSjer1,a5,) < G_max;j,
Equation 14
For ROTR projects,
s.t. G_ming, < gk,t(lj,t,aj,t) < G_maxy;
Equation 15

3.5.3. Solution Algorithm

The solution algorithm is illustrated in Figure 8 and it consists of three main
modules. The first is the Discretizer that discretizes the storage state-space and the release
decision-space. The main data sets used by this module are the storage corridor for the
storage projects for the planning horizon, which will be detailed in later sections, the discrete
inflow probability distribution for the planning horizon, and the limits on plant discharge for

the storage projects for the planning horizon. This module prepares the discretized starting
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and terminal storage states for each time step as well as the discretized releases. These

outputs are used in the second module.

The second module is the SDP model which implements the SDP algorithm and
applies the constraints in each time step. These outputs include: turbine flow, spill, total
system inflow, generation, transition probability, forebay, spot electricity market trade,

policy income, and the marginal values of water and energy.

The third module is the Value Iteration module which develops the water value functions for

the time horizon considered.

In addition to the main modules discussed above, there are eight smaller modules that
perform other calculations including the inflow regression analyses for ROTR, HK, price
multiplier calculations, and a module to calculate the capacity limits for plant generation and

turbine discharge limits.

The details and the code of the modules mentioned above can be found in Appendix A.1
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3.6. Capabilities

Extensive testing of the model has shown that it is able to solve the problem for up to
36 monthly time steps (3 years) producing practicaly acceptable water value and marginal

value functions up to a problem size of ~ 164 million states per time step.

It is expected that, with further enhancements of the algorithm, the model could
handle a much larger problem and could also be extended to include more state variables.
The development of a dynamic storage-state corridor using the simulated historical data
significantly accelerated the convergence of the algorithm and allowed the solution of larger
problems, but care must be taken to ensure that the derived solutions are robust and globally

optimal.

Flexibility is one of the most important features of the current model, and it is well
known that SDP solution algorithms are not typically very flexible and are custom built for
specific systems. This flexibility is a result of enhancements made to the algorithm and the

formulation of the model coding in AMPL, which provided the following advantages:

1. The increment of all the state-spaces and the storage corridor can be controlled and
changed easily for each reservoir for each time step;
2. The problem can be solved for one storage reservoir while fixing the states of the

other storage reservoir** simply by changing few control parameters; and

4 This option allows the model to solve for one storage reservoir given a fixed state of the
other reservoir.
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3. The model can be run either directly on a personal computer (or a server) using the
command prompt or by using a scheduling program that uses simple scripts to

optimize the use and sharing of computing assets.

3.7. Limitations

Because of the nature of the SDP technique, as well as the complexity of the system
investigated herein, there are several limitations of the algorithm. Some of these limitations
could be overcome with the advances in computing resources and the programming
languages capabilities. Other limitations are likely to persist in future versions of the model
or extension of it. Some of these limitations are: the stochasticity of domestic electricity load
and prices is not currently represented, the accuracy of the existing regression equations
representing the prices and other variables could be improved, and the model only contains
variables representing six major reservoirs in the BC Hydro system while fixing the output of
other resources and therefore it simplifies the real system; in addition, several other

environmental or operational constraints are not modeled.

3.8.  Issues Experienced in Model Development and Code Run

Several problems were experienced in developing the model as well as in its outputs:

1. The shapes of the value function and the marginal value of water function heavily
depend on the discretization used and the inflow values and their probabilities. It was
a challenge to find the right combination of this data that produce a practically

acceptable shape of each function;
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. As the problems of dimensionality and modeling are inherent in the SDP modeling, it
was expected to experience problems related to these two curses;

Sometimes the resulting output files are too big to store;

Indexing is cumbersome which is partially due to the nature of coding in AMPL and
partially due to the size of the problem at hand; and

Both the transition probability and value iteration calculations are sensitive to

changes in indexing or other changes and tracing these sensitivities is challenging.
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Chapter 4: Results

4.1. Introduction

In this chapter few samples from the model results are illustrated in graphical form.
All the results illustrated are normalized for readability and data confidentiality reasons.

Discussion of the results is kept to minimum as more details are presented in Chapter 5.
4.2.  Sample Results for Two Cases of State-space Discretization

There are several cases that have been thoroughly investigated and tested (please see
Table 6) in Chapter 5. For brevity, only samples of two cases of them are shown in the
following graphs. The cases are:

CASE A: Storage state increment is 500 cms-day for the Williston Reservoir and 1000 cms-
day for the Kinbasket Reservoir (CASE A); and

CASE B: Storage state increment is 1000 cms-day for both of the Williston Reservoir and
the Kinbasket Reservaoir.

Figure 9 below shows a three dimensional graphical representation of the water value
functions of both of the Williston Reservoir and the Kinbasket Reservoir. As expected, the
value of water in storage is lower when there is less water in both reservoirs. This value
increases with any incremental increase in the amount of water in storage in one or both of
the reservoirs. This increase continues until a certain point where the surface almost levels.
This means that the incremental increase of water in storage has little to no effect on the total

value of water in storage. It could be noted that the farthest tip of the surface (top right)
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slightly drops after the surface has leveled and that could be attributed to the boundary

conditions.

Water Value Function for different Storage Values- The Month of December
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Figure 9: Three Dimensional Water Value for the Williston Reservoir and the
Kinbasket Reservoir for the Month of December- CASE A

Figure 10 to Figure 13 show the normalized value of water (left hand side) and the
normalized marginal value of water (right hand side) in the Kinbasket Reservoir for different
storage-states at the Williston Reservoir for CASE A. Each figure represents one of the
selected months. Those months are selected to represent different stages of the water year
and energy demand; Namely, October (a shoulder month), January (a winter month), May (a

freshet month) and August (a summer month).
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Values- The Month of October
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Figure 10: Water Value and Marginal Value of Water for the Kinbasket Reservoir for
the Month of October- CASE A
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Figure 11: Water Value and Marginal Value of Water for the Kinbasket Reservoir for
the Month of January- CASE A
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Kinbasket Water Value for Different Williston Storage
Values- The Month of May
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Figure 12: Water Value and Marginal Value of Water for the Kinbasket Reservoir for
the Month of May- CASE A

Kinbasket Water Value for Different Williston Storage
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Figure 13: Water Value and Marginal Value of Water for the Kinbasket Reservoir for
the Month of August- CASE A

Figure 14 to Figure 17 show the normalized value of water (left hand side) and the

normalized marginal value of water (right hand side) in the Williston Reservoir for different
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storage-states at the Kinbasket Reservoir for CASE A. The months selected for illustration

are the same as discussed before.

Williston Water Value for Different Williston Storage
Values- The Month of October
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Figure 14: Water Value and Marginal VValue of Water for the Williston Reservoir for
the Month of October- CASE A
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Figure 15: Water Value and Marginal Value of Water for the Williston Reservoir for
the Month of January- CASE A
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Williston Water Value for Different Williston Storage
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Figure 16: Water Value and Marginal Value of Water for the Williston Reservoir for
the Month of May- CASE A
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Figure 17: Water Value and Marginal Value of Water for the Williston Reservoir for
the Month of August- CASE A

Figure 18 to Figure 21 show the normalized value of water (left hand side) and the

normalized marginal value of water (right hand side) in the Kinbasket Reservoir for different
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storage-states at the Williston Reservoir for CASE B. The months selected for illustration are

the same as discussed before.
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Figure 18: Water Value and Marginal Value of Water for the Kinbasket Reservoir for
the Month of October- CASE B
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Figure 19: Water Value and Marginal Value of Water for the Kinbasket Reservoir for
the Month of January- CASE B
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Kinbasket Water Value for Different Williston Storage
Values- The Month of May
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Figure 20: Water Value and Marginal Value of Water for the Kinbasket Reservoir for
the Month of May- CASE B
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Figure 21: Water Value and Marginal Value of Water for the Kinbasket Reservoir for
the Month of August- CASE B

Figure 22 to Figure 25 show the normalized value of water (left hand side) and the

normalized marginal value of water (right hand side) in the Williston Reservoir for different

57




storage-states at the Kinbasket Reservoir for CASE B. The months selected for illustration

are the same as discussed before.
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Figure 22: Water Value and Marginal VValue of Water for the Williston Reservoir for
the Month of October- CASE B
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Figure 23: Water Value and Marginal Value of Water for the Williston Reservoir for
the Month of January- CASE B
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Williston Water Value for different Williston Storage
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Figure 24: Water Value and Marginal VValue of Water for the Williston Reservoir for
the Month of May- CASE B
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Figure 25: Water Value and Marginal Value of Water for the Williston Reservoir for
the Month of August- CASE B
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Figure 26 shows the variation in the monthly value of water in storage for selected
storage combinations of both storage reservoirs over the water year for CASE A. Similarly,
Figure 27 shows these variations for CASE B. Comparing these two cases, it could be
concluded that CASE A which has the finer discretization yields higher value of water on

average as well as smoother change in the value of water from month to month.
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Figure 26: Value of Water in Storage of the Williston Reservoir and the Kinbasket
Reservoir along the Water Year (October to September)- CASE A

On the other hand, comparing the marginal value of water in CASE A and CASE B,
setting CASE A as the base case as illustrated in Figure 28, shows that the marginal value of
water in generally higher in CASE B which might be due to the coarser grid and hence the
higher value of the derivatives of the value function. It could be also noticed that there is a
trend to that change as it gets smaller in the freshet period and grow bigger towards the

shoulder months.
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Value of Water in Storage for Different Williston and Kinbasket Storage Combinations over the Water Year
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Figure 27: Value of Water in Storage of the Williston Reservoir and the Kinbasket
Reservoir along the Water Year (October to September)- CASE B
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4.3. Results of Intoducing the Storage State-space Corridor

One of the contributions of the algorithm used in the modeling is the use of the state-
space corridor as opposed to using a fixed state-space for all the stages. This is a way to limit
the state-space points visited and hence alleviating the computation effort. The details of this
corridor are described in Chapter 5.

At an earlier stage of the model development, the fixed state-space was used until it
was realized that a different approach is needed to alleviate the dimensionality problem to be
able to solve a bigger and more complex problem. In this section, the results of using the
corridor are compared to the results of using a fixed state-space. For brevity, only one case of
state-space discretization is discussed which is CASE B in the previous section- Case of
Storage State Increment of 1000 cms-d for both of the Williston Reservoir the Kinbasket
Reservoir .These results are laid out in a graphical form.

Since the graphs of the value function and the marginal value of water for the
CORRIDOR case have been illustrated in the previous section 4.2 (Figure 18 to Figure 25),
the graphs that are shown in the following figures (Figure 29 to Figure 36) are only for the
FIXED case. These graphs show that both of the value of water and the marginal value
curves are sparser and more flat compared to the COORIDOR case where the same curves
are more clustered. This suggests that using the CORRIDOR enabled the model to deduce a
better operating policy and value of water for the different storages state-space combinations.

Other advantages of the CORRIDOR are discussed in details in Chapter 5.
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Figure 29: Water Value and Marginal Value of Water for the Kinbasket Reservoir for
the Month of October- FIXED Case
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Figure 30: Water Value and Marginal Value of Water for the Kinbasket Reservoir for
the Month of January- FIXED Case
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Kinbasket Water Value for Different Williston Storage
Values- The Month of May
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Figure 31: Water Value and Marginal Value of Water for the Kinbasket Reservoir for
the Month of May- FIXED Case
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Figure 32: Water Value and Marginal Value of Water for the Kinbasket Reservoir for
the Month of August- FIXED Case
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Figure 33: Water Value and Marginal Value of Water for the Williston Reservoir for
the Month of October- FIXED Case
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Figure 34: Water Value and Marginal VValue of Water for the Williston Reservoir for
the Month of January- FIXED Case
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Figure 35: Water Value and Marginal VValue of Water for the Williston Reservoir for
the Month of May- FIXED Case
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Figure 36: Water Value and Marginal Value of Water for the Williston Reservoir for
the Month of August- FIXED Case
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Chapter 5: Assessing the Impact of Storage State and Decision Space
Discretization on Solution Efficiency and Precision of a Stochastic Dynamic

Programming Algorithm in a Multireservoir Operations Planning Model

5.1.Introduction

The SDPOMG6R model has gone through extensive testing. In this chapter, the results
of sensitivity analyses, which were done as part of this extensive testing of the model, are
discussed. The sensitivity analysis results discussed are for impact of introducing the state-
space corridor, the impact of the state-space discretization and the sensitivity of results to the
spill penalty function. The core material included in this chapter has been published in

(Ayad, et al., 2013).
5.2.  Assessing the Impact of Introducing a Storage State-space Corridor

Seventy three years of historical data were simulated to generate potential monthly
storage states for the Williston and Kinbasket reservoirs. From this data, the upper and lower
bounds of monthly storage levels were determined. Figure 37 shows the storage corridor for

the Williston Reservoir while Figure 38 shows the storage corridor for Kinbasket Reservoir.

Storage buffers' are added to the storage bands shown in the figure above. The resulting
data is then used to generate discretized storage states for both reservoirs for each time step

using the Discretizer module as discussed earlier.

15 Usually one state up and one state down at each stage; the exact value depends on the chosen increment.
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It can be noted that both reservoirs are drafted during the winter period and then refilled
during the freshet period. This drafting/refilling operation takes into consideration the
prevailing hydrologic regime in these basins, the domestic electrical demand, and the

seasonal trends in market prices.
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Figure 37: Simulated historical storage bands for the Williston Reservoir

Using this state-space corridor provides several advantages: the first is to have a
realistic state-space for each time step which allows better representation of the real system
and the second is to have a smaller problem size therefore reducing the required
computational resources needed to solve the problem. By using the state-space corridor, it is
also possible to extend the planning horizon, to run the model with finer space discretization,

and to add more state variables in future implementations. However, care must be taken to
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ensure that the selected state-space corridor does not cause the algorithm to choose sub-

optimal solutions or result in infeasibilities for some state transitions, particularly near the

upper and lower storage limits.
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Figure 38: Simulated historical storage bands for the Kinbasket Reservoir

A comparison between running the model for a fixed state-space’® (FIXED case)

versus using the storage corridor (CORRIDOR case) was performed to assess the impact of

using the corridor on the problem solution efficiency and precision of the output. The storage

states-space was discretized at 1000 cms-d for both reservoirs. The reason for using this

increment was that it was not possible to run the FIXED case for smaller increments because

16 By using only the physical maximum and minimum storage values at all stages in the entire horizon.

69



of the problem’s dimensions. The following results compare runs for 12, 24 and 36 time

steps™.

Comparing the two cases, it was found that it took on average about double the time

to run FIXED cases as compared to CORRIDOR cases and that the trend of the increase in

time was linear for both cases as illustrated in Figure 39.

Setting the FIXED CASE As the base case, and for a 12 time-step run, the average

difference in the value of water in storage was -1.12% between the two cases, while the

average difference in the marginal value of energy was 8.96% and -5.81% for Williston and

Kinbasket respectively.

Repeating the same analysis for
the 24 time steps run, the
corresponding  differences were -
1.04%, 10.36%, and -3.42%. For the
36 time-step trial, the corresponding
differences were -1.04%, 10.87% and -
0.12%. It should be noted that the
differences in the marginal values of

energy for Williston Reservoir were
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Figure 39: Run Times for FIXED Case vs.

CORRIDOR Case

17 All the runs in this manuscript are done on a server with 48 GB of RAM.
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higher than those for the Kinbasket Reservoir. This is due to the larger operation range of the

Williston as compared to Kinbasket (approximately 1.65 larger).

As a result of this work, it is apparent that using the storage state-space corridor can
significantly impact the accuracy of the results, but care must be taken in defining the

corridor and specifying the state discretization increments for such problems.

5.3.Assessing the Impact of State-space Discretization

The solution efficiency of the Table 2: Storage State Discretization Cases

problem as well as the precision of the

Storage state Storage state
.. Problem
output is impacted by the state-space . :
increment for increment for .
size per
discretization in the SDP technique. | case | the Williston the Kinbasket | .
time step,
The smaller the space increments, the Reservoir, Reservoir, million
more precise the output, but that comes cms-d cms-d
. . _ . 1 500 1000 23.33
at the cost of increasing the dimensions
2 750 750 13.12
of the problem and hence may
3 750 1000 6.62
jeopardize the solution efficiency of the
4 1000 500 14.02
problem. A trade-off between the
5 1000 750 5.04
accuracy of the output and the solution
6 1000 1000 2.54

efficiency of the problem is tested in

this section.

A group of six cases were investigated, all for a planning horizon of 24 months and
all using the selected storage state-space corridor discussed above. The discretization
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parameter tested is the increment of the storage states, which is the same as the increment of

the inflow discrete distribution and the

&0

increment of the discretized decision space. g Meam 1
- )
A &o —-——J
The different cases and the corresponding 2 7
= 40 # Runtime
problem size are shown in Table 2. = w0 — Expon. (Run tims)
E
=]
Comparing the run time for each case & ..
u
. . . E
showed an exponentially increasing trend - < 10
§ L
- - - |:| 4
i.e. as the problem size increases the run 0o o0 1008 1= 00 2000 2e 00
. . . . Problem Size millions
time increases exponentially as shown in
Figure 40. Case 1, with the largest problem Figure 40: Problem Size vs. Run Time for
size, was taken as the base case to compare Different Cases

the other cases to. It should be noted that cases with larger problem sizes were tested (up to

~164 million states per time step) but they are not analyzed here.

It was noted that refining the discretization of the problem space remarkably enhances
the smoothness, curvature, and shapes of both of the value function and the marginal value of

energy function.

Given the above results, it can be concluded that finer discretization of the state-space
will yield more accurate estimates of the value of water in storage and marginal value of

water functions.
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5.4.Sensitivity of Results to Spill Penalty Values

As discussed earlier, a penalty in the form of an import
Table 3: Different Cases

price multiplier is used to estimate the cost of spill. Eight cases  for the Penalty Function

were tested for the same storage state-space corridor for 24 | Case | Penalty Multiplier
stages at an increment of 1000 cms.d for both storage reservoirs i 020
to investigate the sensitivity of the model to the penalty used. 3 6,5
Table 3 shows the cases tested. Case 1 was taken as the base : 120
case to compare the other cases to. 6 2.00
7 10.00
In general, the higher the penalty the lower the value of 8 50.00

water in storage is. At the higher storage states the effect became more pronounced because,
at those states, the penalty had more effect as the reservoir was more likely to spill in those
states. It was also noticed that the value of water in storage was 85% lower than the base

case, on average, when the penalty value was set to very high values (cases 7 and 8).

On the other hand the marginal value of energy for both reservoirs increased for cases
2 through 6 with the highest increase for case 5, which corresponds to a penalty multiplier of
1.5. Because the penalty is very high for cases 7 and 8, the marginal value of energy

decreased for both reservoirs for these cases.

One important note is that, if high and low storage states are excluded, the ratio of the

marginal value of energy in Kinbasket to the marginal value of energy of Williston lies
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within reasonable limits for Cases 4, 5, and 6 *® while the ratio is significantly higher for

other cases, particularly Cases 1, 2, and 3.

It could be concluded, based on the tested cases, that using a penalty multiplier of 1 to
2 is the best option to obtain reasonable®® marginal values of water of storage as compared to

historically observed results.

18 Reasonable limits are assumed to be the ratio of total HK of the Columbia River system to the total HK of
the Peace River system, which is equal to ~1.23 on average.
19 Comparing them to the actual market prices and looking into actual trade schedules for the spot market and

other historically observed results.
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Chapter 6: Conclusions, Recommendations and Future Work

6.1. Conclusions

Extensive testing of the model developed as part of the current research has shown
that it is able to solve the problem for up to 36 monthly time steps (3 years) producing
practical water value and marginal value functions up to a problem size of ~ 164 million

states per time step.

It is expected that, with further enhancements of the algorithm, the model could
handle a much larger problem and could easily be extended to include more state variables.
The development of a dynamic storage-state corridor using the simulated historical data
significantly accelerated the convergence of the algorithm and allowed the solution of larger
problems but care must be taken to ensure that the derived solutions are robust and globally

optimal.

Flexibility is one of the most important features of the current model. It is well known
that SDP solution algorithms are not typically very flexible as they are custom-built for
specific reservoirs and systems. The flexibility of the SDPOM6R model is a result of
enhancements made to the algorithm and the formulation of the model coding in AMPL,

which provided the following advantages:

1. The increment of all the state spaces and the storage corridor can be controlled and easily

changed for each reservoir for each time step;
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2. The problem can be run for one storage reservoir while fixing the states of the other
storage reservoir®’;

3. The modeling algorithm is generalized so that the user can easily adapt it and change
model mode simply by changing few control parameters; and

4. The model can be run either directly on a personal computer (or a server) using the
command prompt or by using a scheduling program that uses simple scripts to optimize

the use and sharing of computing assets.

Because of the nature of the SDP technique, as well as the complexity of the system
investigated herein, there are several limitations of the algorithm. Some of these limitations
might be overcome while others are likely to persist in future versions of the model or
adaptation of the same technique. Some of these limitations are: the stochasticity of load and
prices is not currently represented, the accuracy of the existing regression equations
representing the prices and other variables could be improved, and the model only contains
variables representing six major plants in the BC Hydro system while fixing the output of

other resources and therefore it simplifies the real system.
6.2.  Proposed Future Enhancements to the Model Developed

As discussed in Chapter 3 and Chapter 5, there are several features of the model that
need to be enhanced along with some features that could be added in order to get a more

robust and representative model and obtain more practical functions of the water value and

% This option allows the model to solve for one storage reservoir given a fixed state of the other reservoir.
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the marginal value of water. Several functions and features need to be added to the

SDPOMG6R such as:

1.

To split the state variable for Kinbasket into two state variables: Kinbasket Reservoir
storage and non-treaty storage as well as to represent the Kinbasket and Arrow Lakes
flex storage accounts to better represent the Columbia River Treaty operation of the
Columbia River system;

To include new storage limits derived from flood control curves from the Columbia
River Treaty operating plans, and

To introduce sub-time step functionality such as: peak load hours (PLH), heavy load
hours (HLH), and light load hours (LLH) in order to better capture the electricity
market depth and price variability.

The following list presents the features that are included in the current modeling but

need to be better represented, enhanced or modified:

1.

2.

6.3.

Representation of prices to replace the currently used regression equations;
Representation of load stochasticity;

Representation of inflows;

Representation of the transmission limits need to be revised and enhanced; and

HK calculation procedure could be enhanced.

Future Work and Recommendations

An extensive literature survey has been conducted, but not included in the current

manuscript, on both reinforcement learning and the multiagent reinforcement learning
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techniques. These two techniques are closely related and are based on the SDP technique that
was used to develop the SDPOM6R Model.

Below is a list of the work which has been conducted by the author of this
manuscript, but not included in it:

1. Enhancement and testing work that was performed on the models developed by
(Abdalla, 2007; Shabani, 2009);

2. A framework for the use of Multi-agent Reinforcement Learning (MARL) technique.
Based on both of the literature survey and the modeling work mentioned above, the

following is recommended:

1. Explore the possibility of developing a full working version of MARL model that
better represent the system and its inherent stochasticity and uncertainty and ensure
the proper coordination between components of the system through the artificial
intelligence and the MARL approach adopted in this model,;

2. Benchmark the model above against the SDPOMG6R model as well as the other

models developed as part of the Water Value Project.
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Appendices

Appendix A: Running the SDPOM6RM Model

A.1. Code and Computation Details

The model is composed of three main modules, the Discretizer , the SDP Model and the
Value Iteration Model. In addition to these main modules, there are several small modules that
calculate specific variables. The code and the computation detauils in each one of these modules

are listed below. All code is listed in the AMPL syntax.
A.1.1. Discretizer Model

A.1.1.1. Code
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HEERERAAEE Discretizer Hodel#¥¥¥¥fffiiiiiss
#¥#Used to descritize the state—space and the deciosn—-spaceXfFEFEiEisis
EREEEREE Created by Amr Avad##fpfiss

set Plants ordered:

set Reservoirs ordered;

set ROTR_Plants ordered:

param Online ROTR{ROTR_Plants}:

param Account_Spill Penalty:

param Penalty Ratio:

param Start_Months:# the start time of the study

param End_Months; # the end time of the study

param Delta_Months:

param Mid_Months_1:

param Mid Honths_2:

=et Honths:=Start_Months. End Months ordered:

set Study_Years ordered:

set Month Name ordered:;

set State{Reservoirs, Honths} ordered ;

set Inflows {Reservoirs, Months} ordered:

set Stater{r in Reservoirs, t in Months, s in State[r.t]} ordered:

set Rel_Decision{Reservoirs,MHonths} ordered ;# this is the total release decision from each reservoir including both the turbine releases and the unforced
spills.

set Out_In_ flow{Plants Honths} ordered:#

param Prob_Inflow {r in Reservoirs, t in Months, Inflows[r.,t]}:

param Days_Months {Months} default 30;

param Days_Months Dflt default 30:

set No Units{Plants, Months}#Humbers of units cosidered for each plant

param Max_QT_storage Pt{r in Reservoirs.t in Months, No_Units[r, tparam Hax_Gen_storage_Pt{r in Reservoirs.t in MHonths, No_Units[r.t]}:
param Abs Max_Gen_Cap{r in Reservoirs.t in Honths, No Units[r.t]}:

param Abs QT Max{r in Reservoirs.t in Months, No Units[r.t]}:

param Exp Imp Margin default 9.11;

param Int_Rate;# Interest rate

param Load_Reward default 0%

param u;

param o;

param N_States{Reservoirs., Months}# Number of states

param N_Staters{r in Reservoirs.t in Months, State[r.t]. nu in No_Units[r.t]};# NHunber of end states

param N_Releases{r in Reservoirs.t in Honths, nu in No Units[r.t]}:

param Max States{Reservoirs}.# Hax value of the state/plant/month + buffer

param Min States{Reservoirs}.# MHin wvalue of the state/plant/month - buffer

param Max Staters{Reservoirs, Months}.# Maz wvalue of the ending state/plant/month + buffer

param Min Staters{Reservoirs, Months} ;¥ Min value of the ending states/plant/month - buffer

param Abs Max States {Reservoirs}; #Maxzimum absolute storage value for the specified plant:

param Abs Min_ States {Reservolrs} #Minimum absolute storage value for the specified plant:

set counter {r in Reservoirs.t in Months}=1. N_States[r,t]+1;

set counterr {r in Reservoirs, t in Months, s in State[r.t]., nu in No_Units[r.t]}=1. N_Staters[r.t.s., nul+l ;
set counterel {r in Reservoirs, t in Honths, nu in No_Units[r.t]}=1..N_Releases[r.t.nul+l;

param count ;

param Delta_States {Reservoirs, Months} default 15000;#% Calculated state step size rounded to nearst 5

param Delta_Staters {Reservoirs, Months} default 15000;# Calculated state step size rounded to nearst 5
param Delta_Releases {Reservoirs, Months}# Calculated Releases step size rounded to nearst §

param n:# number of steps of inflow taken as steps for the storage

param Desctz_States {r in Reservoirs.t in Months, counter[r t]}: % the generated states upon the data provided { Max, Hin, No. of desired states)
param Desctz_Staters {r in Reservoirs, t in Months, = in State[r.t].nu in No_Units[r.t]., counterr[r.t.s.nul};# the generated states upon the data provided
( Ma=x, Min, Fo. of desired states)

param Desctz_Releases {r in Reservoirs, t in Months, nu in No_Units[r.t]. counterel[r.t.nul}.# the generated Releases upon the data provided { Maxz., Hin,
QP_Max, QP_Min)
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param Inflow_Step {r in Reservoirs, Honths};

param Max_ States Act{Reservoirs., Months} # Hax value of the state/plant/month + buffer

param Min_ States Act{Reservoirs, Months} # Hin value of the state/plant/month - buffer

param Max_ Staters Act{r in Reservoirs.t in Months, State[r.t]}.# Max wvalue of the states/plant/month + buffer

param Min_Staters Act{r in Reservoirs.t in Months, State[r.t]. nu in No_Units[r.t]}:# Min wvalue of the state/plant/month - buffer

param QP Max Act {r in Reservoirs.t in Honths, nu in No Units[r.t]}: # limits on max. discharge by plants:

param QP Min Act {r in Reservoirs.t in MHonths, nu in No Units[r.t]}:# Limits on min. discharge by plants: effective but not used

param Run_Single Res{r in Reservoirs}. #adds the flexibility of runnlng the model for one resrevoir for a fized storage in the other one
param Single Storage{r in Reservoirs}. # adds the flexibility of running the model for one resrevoir for a fixed storage in the other one
R

for { v in Version}

1
data ("Data_1_"&wvwvé&".dat"):

besssssdssssdsssdsssssder eSS SSSSESSEEEFFFFEEESESEEEEEF T

let Delta_Months:= round((End Months-Start_Months+1)-/3.0):

let Mid_Months_1:= Start_Months+ Delta_Months-1:

let Mid_Months_2:= Mid_Months 1+ Delta_Months;

bessss s RS ESER S S S ERFFFEEE S S S S5 ST EFFFE

option display_width 250;

option display_round 3;

Fifesd CREATING THE STATES. added the flexibility of running the model for one reservoir for a fixed storage in the other one

let {r in Reservoirs, t in Months} Inflow Step[r.t]:= if last{Inflows [r.t])- first( Inflows [r.t])= 0 and t=first (Months) then first (Inflows [r.t])
else if last( Inflows [r.t])— first{ Inflows [r.t])= 0 and first (Months)<t<last (Months) then Inflow_Step[r.t-1] else if last( Inflows [r.t])- first(

Inflows [r.t])= 0 and t=last (Months) then Inflow_Step[r.first(Months)] else if card (Inflows[r.t])>2 then min (member(2, Inflows [r.t])-first( Inflows [

r,t]), member(3, Inflows [r.t])-member{2, Inflows [r.t])) else member(2, Inflows [r.t])-first( Inflows [r.t])
print"paramn "> Inflow_Step.out:
display Inflow _Step> Inflow Step.out;

let {r in Reservoirs, t in Honths} Delta_States[r.t] := (n*Inflow Step[r.t]* Days_Months Dflt) ¥ can use also "floor" and "ceil" functions instead of round

let {r in Reservoirs, t in Honths} Hax States Act[r.t]:= if Run_Single Res[r]=0 then round (Max States[r]-/(Delta_States[r.t]).0)*({Delta_States[r.t])else
round {(Single Storage[r]/Delta_States[r.t]).0)*Delta_States[r.t] ¥ Hax value of the states/plant/month + buffer

let {r in Reservoirs, t in Months} Min_States_Act[r.t]:=if Run_Single_Res[r]=D then round (Min_States[r]/(Delta_States[r.t]).0)*(Delta_States[r.t]) else
round ({Single Storage[r]/Delta_States[r.t]).0)*Delta_States[r.t] # Min walue of the state/plant/month — buffer

let {r in Reservoirs, t in Months} N_States[r.t]:= (Max_States_Act[r.t]- Min_States_Act[r.t])~ (Delta_States[r.t])

for { r in Reservoirs, t in Months}

let count:=1;
for { ¢ in counter [r.t]}

{
let Desctz_States[r.t, c] := Hin States Act[r,t]+Delta_States[r.t]*(count-1)
let count:=count+l;

# Writing the created states in a data file in order to read it again for the optimizer
for { r in Reservoirs, t in Honths}

print "set State ["&r&", "&t&"]:=" >("States.dat")
for {c in counter [r.t]}

printf "%12.0f", Desctz_States[r.t., c]>("States.dat");

}
print ";" > ("States.dat"):
printf ““n" >("States.dat")
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FAEAEAY Limits on plant discharge

param QP_Max {p in Plants.t in Honths, No Units[p.t]}: # limits on max. discharge by plants:
param QP _Min {p in Plants.t in Months, No_Units[p.t]}:; # limits on max. discharge by plants:
FREXERE Limits on Turbine Discharge

param QT_Min { Reservoirs., Months}.# Limits on min. discharge by turbines: effective but not used
RS At

for { v in Version}

{

data ("Data_2_"&wé&".dat"):

¥

e e dd e e d eSS EEESESSS SIS SIS I I EEEEEFEEEFFFFEFS
for{rr in 1..3}

if rr=1 then {

let u:= Start_Months:

let o:= Mid_Honths_1:

else if rr=2 then {
let u:= Mid Months 1+1:;

let o:= Mid _MHonths_2:
else{
let u:= Mid Months 2+1;

let o:= End_Months:

¥
HEAAAAAAAAAR CREATING THE STATERS
let { r in Reservoirs, t in Months: u <=t<=0} Delta_Staters[r.t] := (n*Inflow Step [r.t]*Days_Months Dflt):

let {r in Reservoirs, t in Months, s in State[r,t]} Max_Staters Act[r.t.s)]:=if Run_Single_Res[r]=0 then round (maz{min(s+last(Inflows [r., t])*
Days_Months Dflt Max Staters[r.t]). Min_ Staters[r.t])/(Delta_Staters[r.t]).0)*(Delta_Staters[r.t]) else round (({Single_Storage[r] Delta_Staters[r.t]). 0)=

Delta_Staters[r.t] ¥ Maxz value of the state/plant/month + buffer
let {r in Reservoirs., t in Months, s in State[r.t].nu in No_Units[r.t]} Min_ Staters_Act[r.t.s.nu]l:=if Run_Single Res[r]=0 then round{min(max

(s+(first(

Inflows [r.t])-QP Max[r,t.nu])*Days_Months_Dflt Min Staters[r.t]), Max_Staters[r.t])/(Delta_Staters[r.t]).0)*(Delta_Staters[r.t]) else round ((

Single_Storage[r]/Delta_Staters[r.t]).0)*Delta_Staters[r.t]:# Min wvalue of the state/plant/month - buffer
let {r in Reservoirs, t in Months, s in State[r.t].nu in No Units[r.t]} N_Staters[r.t.s, nu)l:= (Max Staters Act[r.t., s]- Min_Staters_Act[r.t
Delta_Staters[r.t]);

for { r in Reservoirs.t in Months.s in State[r.t]. nu in No_Units[r.t]: u <=t<=o}

let count:=1;
for { ¢ in counterr [r.t.=s.nul}

let Desctz_Staters[r.t.s.nu, c] := if t< last (Months) then Min_Staters_Act[r.t.s. nul+Delta_Staters[r.t]*(count-1) else Min_Staters_Act[r.
s.nul+Delta_Staters[r,first (Honths)]*(count-1):
let count:=count+l;

b

#¥¥#Writing the created staters in a data file in order to read it again for the optimizer
for { r in Reservoirs.t in Honths,s in State[r.t]. nu in No Units[r.t]: u <=t<=o}

print "set Stater ["&r&","&t&","&s&"]:=" >("Staters_"&rr&".dat"):
for {c in counterr [r.t.=.nul}

printf "%12 . 0f",Desctz_Staters[r.t.s.nu, c]>("Staters_"&rr&".dat");

print ";" > ("Staters "&rr&" .dat"):
printf "“n" >{"Staters "&rr&" .dat");
¥

.8, nul)s {

first (Months),
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FAEXXREREREX Creating the Release Decisions: plant releases

let {r in Reservoirs, t in Months, nu in No_Units[r.t]} QP _Min_Act[r.t.nu]:= round (QP_Min[r.,t.nu]/Inflow_Step [r.t].0)*{Inflow Step [r.t])
the state/plant/month + buffer

let {r in Reservoirs, t in Months, nu in No_Units[r.t]} QP _Max_Act[r.t.nu]:= round (QP_Max[r.,t.nu]/Inflow_Step [r.t].0)*({Inflow Step [r.t])
the state/plant/month — buffer

let {r in Reservoirs, t in Months} Delta_Releases[r.t] := n*Inflow_Step [r.t].# can use also "floor" and "ceil" functions instead of round
let {r in Reservoirs, t i i

for { r in Reservoirs}
for {t in Months, nu in No_Units[r.t]: u <=t<=o}

let count:=1;

for { c in counterel [r.,t.nul}

{

let Desctz_Releases[r.t, nu.c] :=QP Min_Act [r.t.nu] +Delta_Releases [r.t]*{count-1):
let count:=count+l;

¥

I

¥

# Writing the created <<< Release Decions »>»>>> in a data file in order to read it again for the optimizer XFXEEEREERERERERERERRER
for { r in Reservoirs}

for {t in Months, nu in No_Units[r.t]: u <=t<=0}

print "set Rel Decision ["&r&"."&t&"]:=" >("Rel_Decision_"&rr&" .dat"):
for {c in counterel [r.t,nul}

printf "%12 . 3f",Desctz_Releases[r.t.nu.c]>("Rel_Decision_"&rré&" .dat");

print ":" > ("Rel_Decision_"é&rré&" .dat"):
printf "“n" >("Rel_Decision_"&rr&".dat"):
b

}

Print " A A A AR
Print " A AR
print "##Discretization of State-space and Decision Variable is done##";
Print " E A R R
Print A A AR
close;

;¥ Max wvalue of

;¥ Min wvalue of

in HMonths, nu in No_Units[r.t]} N_Releases[r.t.nu]:= (QP_Max Act[r.t.nu]- QP_Min Act[r.t.nu))/ {(Delta_Releases[r.t]):
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A.1.1.2. Computation Details

Table 4: Calculations Details in the Discretizer Model

Step Parameter Notes

Number Calculated

1 Delta_States, The increment of the starting, terminal states and plant

Delta_Staters. release respectively. They are calculated as multiples of
Delta_Releases the inflows increment. When the multiple equals 1, they
are exactly the same value as the inflow increment.

2 Max_States_Act, | A rounded up/down number for the maximum/minimum

Min_States_ Act | starting state to the nearest “Delta_States”

3 N_States The number of starting states between the”
Max_States Act” and the “Min_States Act”

4 Max_Staters_Act | A rounded up number for the maximum terminal state to
the nearest “Delta_Staters” capped by the maximum
inflow in a given stage.

5 Min_Staters_Act | A rounded down number for the minimum terminal state
to the nearest “Delta_Staters” capped by the minimum
inflow and the maximum plant release in a given stage.

6 N_Staters The number of terminal states between the”
Max_Staters Act” and the “Min_Staters Act” in a given
stage.

7 QP_Max_Act A rounded up/down number for the maximum/minimum

,QP_Min_Act plant release in a given stage to the nearest
“Delta_States”.
8 N_Releases The number of plant releases in a given stage.

A.1.2. SDP Model

A.1.2.1. Code
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## This is the SDP for 6 Reseroirs

## Created by Amr Avad

## Modified on May 20th 2011 to cope with Ziad recommendations, he required one unified release Rel Decision[ 'GMS',t]., Rel_Decision[ 'MCA'.t] and
one unified load####d

## Modified Sunday July 10th 2011. 24

#¥ Modified Wednesday August 10th 2011. A4 suggestions by Guan Ziming{cleaning the code, added Rel_Decision['GMS'.t]., Rel_Decision['MCA'.t] to the
Trans_Prob and Trans_Prob S)

##% Modified Friday August 19th. A4 { modifieying it to work for 3 plants)this model was converted again to 2 plants only on Oct 1st 2011

## Modified Wednesday August 24th Indexed the HK over plants, time, starting state and ending state. AA

## Modified Monday August 29th Added some parametrs and sets to automate the state generation { Variable states Model).

## Modified Sept 2011 to add several parameters, they are tagged by "Hew Sept 2011 #¥EAydyddddadadatatd st da et pyass

## Modified Oct 4th : Added the generation of IPPs and thermal as flat files. Generate the FB data from storage data

## Modified Oct 9th: Tried to add some parameters to conclude the optimization output but I think it is not working right ( something wrong with my
logic)

## Modifying the entire formulation after Ziad's meeting on Oct 12.( the modification was holistic and touched most of the indexing and
formulation)

## Modifying the model to index the terminal state over inflows so as to limit the visits from the initial states to the possible terminal states,
8th December 2011

## The model can now calculate the HVW and MV of Energy for each reservoir

#¥ I an trylng to implement penalty in the calculations { it didn't work and I commented it out)

##% NHow using Inflow S500_Smoothed and Inflow 500_Smoothed zero{better as it gives more realistic PV values) June 2012

## found out that the best descrlitization is 1000 cms for MCA and 500, 750 or 100 for GMS.

## Trying out version L9 which has the plant releases indexed over the storage states.(didn't work, back to L8 again)

#it# Best working version so far is L8, July 3rd 2012...

##% July 4th 2012, updates (L8-——->L10) added functionality to retrieve the optimum policy, dates of the stages**needs enhancements**, using the
actual days in different months in generation calculation.

## Corrected the FB and the HK regression equations. . July Sth

## Added FB equations for REV, PCN. July 6th.

####¢ Best working version so far is L10, July 6th 2012. ..

## the optimal monthly trade values are now produced as an output in the model July 12th 2012..

## Introduced the Availabilty parameter to the model July 12th 2012.

## July 13th 2012..... Migration from wersion (L10-—->L11)..the difference i=s that I am trying to implement Maxz Gen Limits that is a function of the
storage (i.e. considering the loss of head in the turbine capacity)

#* July 16th 2012..... Migrating from version (L11-—->L12). . adopting the use of turbine release as a function of the storage which was first
introduced in wversion L9 before but the total plant releases were used back then not the turbine releases

E3 4 Added parameters Max QT _storage Pt, Max Gen_storage Pt., Abs Max Gen_Cap and set No_Units

¥ July 17tk 2012 2oy HK equations were modified {( better accuracy)..

## July 24th 2012..... Added parameter Abs_ QT Max

#¥ July 3lst 2012.. ... The names of the data files that have been dramatically changed were named" ==x=zx L12.dat"

## August 2nd 2012... Finally after the modifications from L10--3>L12 have been implemented, now the results are quite acceptable.

.33 Added a data file " Units.dat" and modified the parameter No Units As well as the parameters : Max QT storage Pt

Hax_ Gen_storage_Pt, Abs_Max_Gen_Cap, Abs QT Max,to be indexed over stages so that the study can be flexible to include adding a unit or number of
units on-line in the middle of the study

.34 Added a data file "Turbine Gen_ Spec.dat"

#¥ August 3rd 2012... .Created a new data file "OR.dat" for relibility of operation
E3 9 Starting to add PCH and REV and may be ARD.

Operating Reserve"

*E Adding the new parameters "Inflow_ROTR, Tot_Inflow_ROTR" and modifying the parameter" Total_Sys_Inflow" and adding the data
file" Inflows_ ROTR"

## August 7th 2012....the parameter "OR" is noticed to cause the MVW to concide at one graph in some cases!.

3 Added a new data files Corr_ Matric, Inflow ORTR and the set ROTR_Plants

X Migrating from L12-—-> L13: calculating the PCN and REV generation compared to using fixed walues in the previous wversion.
*E Added severeal parameters to calculate the HK, Turbine release, spill, generation for both PCN and REV

## August 8th 2012. .. Extended the Outage.dat file to include REV and PCH.

29 Added a new set " Plants" that contains all the storage and non-storage plants="ROTR plants" and accordingly changed the
indexing of several parameters to match that.

b33 Added a new data file ' Out In_flow.da

FOLLOWS THE 'let' COMMAND CAUSES THE CODE TO STOP WITHOUT GIVING ANY HARNINGSIII( bug)

b33 The names of the data files that have been dramatically changed were named" ===z _L13 dat"

## August 9th 2012... Added the set'Version' and files 'Version.dat' and 'Version.mod' to control which veriosn the user likes to run and populated
it back from wveriosn L13 to L8.
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k23 Big change to the file SDP.run to match the changes after adding the set Version which resulted in automating the version
selection.

## August 10th 2012.. Migrating from Version L13--> L14: Indexing the QP_Max parameter over the units.which led to changing the indexing of 11
parameters in the file Discretizer QP .mod.

b33 Veriosn L14 is working fine now

## August 13th 2012 Higrating from Veriosn Ll4—-> L15: Taking out most of the regression equations from the main code" SDP.mod" and distributig
them in (6) model files, each taking the same exact name of the parameter it calculates.

*i

## Sept 12th 2012.... Migrating from Version L15--> L16: correlating the REV and ARD inflows to MCA & PCH to GMS which needed to change the
indexing of the parameter Inflow ROTR and using a new model files Inflow ROTR.mod instead of Inflow ROTR.dat. Also several parameters related to
generation and Trade had their indexing changed. Also the file HK_ROTR.mod was changed.

b3

## Sept 19th 2012.... Migrating from Version L16--> L17: Adding and modeling Site_C (STC) as a ROTR plant

34 Found and error in Veriosn L16 ( DON'T USE IT ANY MORE)

b33 Changed the equation that calculates the prices

b33 Now, the output folder name contains the version name, number of stages the model was run for and the current time and added
a time_log file called " Run_Times Stats.amr"

## Oct 4th 2012...... Found a bug in generating the staters range in the Discretizer model and fixed it back to versions L17, L1S
b3 As per Ziad request, I have added parameters to Calculate the MVVU ( previously it was the MVE only)

b33 Fized some bugs in the discretizer model to be able to receive any set of Inflow data.

b 33

A R R AR RN RRR
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## January 4th 2013.. Migrating from Version L17--> L18: Basically adding flexability to the model to work with or without any of the ROTR
plants.Parameters Online ROTR was added. Main files changed are: SDP_L18 .mod, Discretizer 118 .mod, Horizon_118 .dat. Inflow ROTR_L18.mod.
HEK_RoTR_L17 .mod; HE_rough_L18 mod

*E Use the total HK for all the plants on one river to caculate the Marginal value of water/
energy in the storage plant instead of using the HK of this plant only. Parameter HK_rough was modified

b33 OR was commented out from the generation

## January 8th 2013.. Added the ARD inflow to the total system inflow. It only affects the prices not the generation as ARD generation is not
optimized.
b3 Added three new parameters Gen PCN_fixed, Gen_REV_fixed, Gen_ARD fixed to used fixed generatrion for those ROTR plants when
not needed to be optimized.New data file was created for this purpose{Gen_ ROTR _Fizxed 118.dat)

## Janaury 10th 2013. Added a new parameter Gen STC_fizxed to complete the ROTR group fixed generation. Got the numbers from a recent study by
Joel Evans (Reference is at Gen ROTR Fixed_ L18 .dat))
b33 Added a new paarmeter to evaluate the domestic load (param Load_Reward)...didn't work as expected.

## January 18th 2013. Moved the price calculations to a new separate model file: (Prices_ &wvé . mod)
b3 Adding the flexibility to run the model for one storage reservoir only if needed. Main affected files are: Horizon.dat,
SDP.mod, Descretizer QP .mod.
b33 As a result of the change above, the model can be run now for GHS only, HCA only or even for one point of storage for GHS and
MCA(produces one value for PV per stage)

Hodified the Spot_Buy and Spot_Sell Calaculations to account for contract Exp/Imp in the tie limits.
## Modified the HK_ROTR calculations,. Main file affcted is HK_ROTR_&Vé&.mod.
##¥ January 22nd 2013. Added penalty on spilled water/energy which is taken into account in the reward function. New paramneters were added:
Account_Spill_Penalty, param Penalty_Ratio, Tot_Spilled_Energy., Ex Penalty_Spilled_Energy. Files affected are: Sdp_&V&.mod, Descretizer Qp &Vé& . mod
and Horizon_ é&Vé.dat. Added the flexibility to set the penalty-on-spills calculations onsoff .

#E
#¥ January 24th 2013. Removed the value iteration procedure to a new model file: Value IterationédVé . mod.
b33 Energy_Curt_Tie Exp Energy Curt_Tie Imp

##¥ January 28th 2013. .a new data file is created "Disc_ Space "&wé&" .dat" to include the output files created by the Discretizer &Vé&.mod.
b33 Changed how the parameter "Tot_Spilled_ Energy iz calculated

34 Minor changes to two parameters: Max Gen_Limits and QT_Max for better regression. That affected the files Hax Gen_é&wé& . mod and
PT_MAH_&V&.mod,
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## February S5th 2013. New output file is created "Final Results_Listed.out" so that the results are copied from this file to a VBA spreadsheet
called "PV_Grapher+3D.xlsm". Pushing the button in this spreadsheet will draw all the necessary graphs needed for presentation. NHote that it is not
dependent on the number of stages or states. It needs the user to provide some simple information to start.

## February 27th 2013 .the above output files is now created in another form ".csv" as well as in the old form ".out"
#i

## May 10th 2013 Fizxed a bug in renaming the output folder

Ha

S 0 0 G A

option log_file 'screen. out':
option eexit -100000000;##¥ this option is to force AMPL to continue runnning even after 10 warning messages which usually are generated because
the data read are more than the horizon specified needs. .

set Plants ordered; # set of all plants considered in the system
set Reservoirs ordered:## set of storage plants considered
set ROTR_Plants ordered.#® set of plants that have small/ no storage capacity and considered as Run-of-the-river plants"ROTR".

param Online ROTR{ROTR_Plants}:

param Start_Months:# the start time of the study. controlled from the ' Horizon.dat' file

param End_Months; # the end time of the study

set Months:=Start_Months. End_Months ordered:## the span of the time horizon

set Month_Name ordered:

set Study_Years ordered;## future study years

set Stage_Name ordered:= setof { j in Study_Years. i in Month_Name} if i='Oct' or i= 'Nov' or i='Dec' then i & "_" & j else 1 & "_" & j+1:;
set Stages ordered; #used in renaming the output folder

set State{Reservoirs, Months} ordered:## starting state at esach time step

set Rel_Decision{Reservoirs,Months} ordered .# total release decision from each reservoir including both the turbine releases and the forced
spills.

set Inflows {Reservoirs, Months} circular; # natural inflows to each reservoir., the only stochastic wariable in the problem so far

set Stater{r in Reservoirs, t in Months, s in State[r.t]} ordered; ## teraminal state at each time step
param Prob Inflow {r in Reservoirs. t in Months. Inflows[r.t]}. # Discrete probability distribution of the inflows
set Load {Months} # load = local demand

param Flow_Corr{Reservoirs,ROTR_Plants}.# flow correlation between the storage plants and the run-of-the-river plants

param Inflow_ROTR{ROTR_Plants.r in Reservoirs .t in Months, Inflows[r.t]} default 0:# deterministic inflows to PCN and REV# added August 2012
param Tot_Inflow_ROTR{rp in ROTR_Plants.r in Reservoirs, t in Months, Inflows[r.t].d in Rel_Decision[r.t]}: # total inflow to the PCHN "Dinosaur"
reservoir and REV reservoir

param Upper_Bound State{Reservoirs. Honths}:

param Lower Bound State{Reservoirs. Honths}:

param Upper Bound_Stater{Reservoirs. Months}:

param Lower_ Bound_Stater{Reservoirs, Months}:

param Total_Sys Inflow{ t in Months ,il in Inflows['GHS',t],12 in Inflows[ 'MCA',t]}.# summation of the total inflow to the systems which is used to
generate the price set.

#param Probability_Mtrx Size{r in Reservoirs, t in Months.= in State[r.t].i in Inflows[r.t].Stater[r.t.=]. Rel_Decision[ 'GHS'.t].

Rel_Decision[ 'MCA'.t]}: # I didn't activate it yet but I have a fitted form from Excel = [{ number of states* number of staters * Number of Inflow
scenarios) " { number of reservoirs)]* number of decisions .i.e. (s*w*l)"rxd ||

param Int_Rate.# Interest rate

param Gama# Discount rate

param iter default 0:

paramn Exp_ Imp Margin default 9.11;: ## difference between the import and export prices, fixed

param Load_Reward default 0;#

param Run_Single Res{r in Reservoirs}. # add the flexibility of running the model for one resrevoir for a fizxed storage in the other one
param Single Storage{r in Reservoirs}. # add the flexibility of running the model for one resrevoir for a fized storage in the other one
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param n:#¥ number of inflow increments taken as storage increment.

param Days Months {Months} default 30;## number of days in each month

param Days_Months Dflt default 30;

#param Ni111:=1122002211;#"NON" symbolic:#¥ dummy paramster

R R AR AR RR AR

param Max States{Reservoirs}.¥ Max wvalue of the state/plant/month + buffer

param Min States{Reservoirs}.# Min wvalue of the states/plant/month - buffer

param Maxz_Staters{Reservoirs, Months} # Hax value of the ending statesplant/month + buffer

param Min Staters{Reservoirs, Months} # Min wvalue of the ending states/plant/month — buffer

param Abs Max States {Reservoirs}. #Mazimum absolute storage value for the specified plant:

param Abs_Min States {Reservoirs}; #Minimum absolute storage value for the specified plant;

param Delta_States {Reservoirs, Months} default 15000:# Calculated state step size rounded to nearst S

param Inflow_Step {r in Reservoirs, HMonths} default 500

B R R R R R

FEEXEEX Plant's turbines outflow outflows upper bounds Logic: not all the resulting +ve ER s S S iddidfif i ididi S S Sl Sl S S Sl g

RHEXEEE Trade (to =ell in the spot market) could be used as it should be compared to the max. that could be F¥EEFEEEEEREREERERERERNRNERERERARRERSR
ERERXEE generated by the plant and then the min of them will be considered in the PV function R AR R RRRRRRRRE
param Max Gen_Limits {r in Reservoirs.t in Months, s in State[r.t].Stater[r.t.=]}: #limits on ma=inum generation of plant

param Min_Gen_Limits {r in Reservoirs, t in Months}: #limits on minimum generation of plant:

param Outage{p in Plants, t in Honths} default 1: # Factors <=100% representing the mazximnum generation capacity ratio which is reduced by the
outage schedule

param Availability{p in Plants, t in Months} default 1; ¥ Factors <=100% representing the experience-based estimated online time of the plants
during the month

param OR{r in Reservoirs, t in Honths} default 0.05; #Operating Reserve percentage# could be used as a constraint on generation. .
##paramneters"G_ORO, G_RM_BUFFER, DepCap" and file ORO.dat#

param G_OR{r in Reservoirs, t in Honths, s in State[r.t]., w in Stater([r.t.s]. Rel_Decision[r.t]} default 0;#Operating Reserve amount in GUhi =see
the above parameter "OR"#

set No_Units{p in Plants, t in Months}#Numbers of units cosidered for each plant.

Hxxpgdy IPP and thermal

param IPP_Therm{ Months}.¥ generation of the IPP and thermal. Added to the plants generation to get the total generation of the system

0 0 0 0 0 0

param Term_W {r in Reservoirs, t in Months.s in State[r.t].i in Inflows[r.t]. Stater[r.t.s]. Rel_Decision[r.t]}:

param Generation{r in Reservoirs, t in Months, = in State[r.t]. w in Stater[r.t.=]. Rel_Decision[r.t]} default 0:

param Gen_ROTR{rp in ROTR_Plants.r in Reservoirs. t in Months.i in Inflows[r.t].Rel_Decision[r.t] }:

param Gen PCHN_fixed{t in Honths}:

param Gen_REV_fizxed{t in Months}:

param Gen_ ARD fixed{t in Months}:

param Gen STC fixed{t in Honths}:

param Tot_Gen{t in Months,sl in State[ 'GHS',t].s2 in State[ 'MCA',t].il in Inflows['GMS',t].1i2 in

Inflows[ 'MCA',t] Stater['GHS' ,t.sl].Stater[ 'HCA',t,s2], Rel_Decision['GMS',t]., Rel_Decision[ 'MCA',t]}

#param Monthly Gen {t in Months.sl in State['GMS'.t].s2 in State[ 'MCA',t].il in Inflows['GMS'.t].12 in

Inflows[ 'MCA', t].Stater[ 'GHS'.t . sl], Stater[ 'MCA'.t.s2], Rel_Decision['GMS'.t], Rel_Decision[ 'MCA'.t]}

param Trade {t in Months, =1 in State[ 'GHS',t]. =2 in State[ 'HCA',t].,1il in Inflows[ 'GHS',t].12 in Inflows[ 'MCA',t].Stater[ 'GHS',t,sl].Stater[ MCA',

t.=s2]. Rel_Decision[ 'GHS'.t]. Rel_Decision[ 'MCA', t]}:

param State Prob{r in Reservoirs.t in Months, = in State[r.t]. i in Inflows[r.t]. Stater[r.t.=s]. Rel Decision[r.t]}: #Calculated
param Trans_Prob {t in Months.sl in State[ 'GHS',t]. =2 in State[ 'MCA',t].il in Inflows['GHS',t].i2 in

Inflows[ 'MCA' ,t].Stater[ 'GHS'.t,sl] Stater[ 'MCA',t.s2]. Rel_Decision['GMS',t].Rel_Decision[ 'MCA' . t]}; #Calculated

param Trans_Prob S {t in Honths, sl in State[ 'GHS'.t], =2 in State[ 'HCA',t].Stater[ 'GHS',t.sl].Stater[ 'MCA',t.=s2].Rel_Decision[ 'GHS'.t].
Rel_Decision[ 'MCA'.t]}: #Calculated

param Trans_Prob S S {t in Months., sl in State[ 'GHS',t], s2 in State[ 'HCA'.t].Rel Decision['GHS',t], Rel_Decision[ 'MCA', t]}:

param Contr_Exp {t in Months}:

param Contr_Imp {t in Months}:

param Spot_Buy {t in Months, sl in State[ 'GMS'.t]., s2 in State[ 'MCA',t].il in Inflows['GHS',t].i2 in

Inflows[ 'MCA',t] Stater[ 'GHMS',t,sl],Stater[ 'HCA',t,=s2], Rel_Decision['GMS',t]. Rel_Decision['MCA' t]}: #Calculated
param Spot_Sell {t in Months, sl in State['GHS',t], s2 in State[ 'MCA'.t].il in Inflows['GMS'.t].i2 in

Inflows[ 'MCA',t]. Stater[ 'GHS', t,.=sl1].Stater[ 'HCA',.t,=2]. Rel Decision[ 'GHS',.t]. Rel Decision[ 'MCA', t]}; #Calculated
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param Energy_Curt_Tie_Imp{t in Months, sl in State[ 'GHS',t]., s2 in State[ 'HCA'.t].1l in Inflows['GMS',t].12 in Inflows[ 'MCA', t].Stater[ 'GHS'.t,sl].

Stater[ 'HCA',.t,s2]. Rel_Decision[ 'GHS'.t], Rel_Decision[ 'MCA', t]}: #Calculated

param Energy Curt_Tie Exp{t in Months, sl in State[ 'GHS',t]. =2 in State[ 'HCA',t].il in Inflows['GHS',t].1i2 in Inflows[ 'MCA',t].Stater[ 'GHS'.t,=1].
Stater[ 'MCA'.t,s2]. Rel Decision[ 'GHS'.t], Rel_Decision[ 'MCA', t]}: #Calculated

param Max Mthly Spot_Buy GW {t in Months}: #Calculated

param Min Mthly Spot_Buy GW {t in Months}: #Calculated

param Max Mthly Spot_Sell GW {t in Months}: #Calculated

param Min_Mthly Spot_Sell GW {t in Months}: #Calculated

param Optimum_Spot_Export_GW{t in Months, sl in State[ 'GHS'.t], =2 in State[ 'MCA' t]}:
param Optimum_Spot_Import_GW{t in Months, sl in State[ 'GHS',t], =2 in State[ 'MCA' t]}:

#param Infeasible Spot_Buy {t in Months, sl in State['GMS',t]., =2 in State[ 'MCA',t].il in Inflows['GMS',.t].i2 in
Inflows[ 'HCA' . t] . Stater['GHS' t,.=1], Stater['MCA' ,t.=2)]. Rel Decision['GMS',t]. Rel Decision[ 'MCA',t]}:; #Calculated
#param Infeasible Spot_Sell {t in Months, sl in State['GHS',t], =2 in State[ 'MCA'.t].il in Inflows['GHS',t],i2 in
Inflows[ 'MCA', t], Stater[ 'GMS'. .t ,sl].Stater[ 'MCA'.t.s2]., Rel_Decision['GMS'.t]. Rel_ Decision[ 'MCA',t]}: #Calculated

param EX¥ Imp_Cost{t in Months.sl in State[ 'GHS'.t].s2 in State[ 'HCA'.t].Rel_Decision['GHS',t]. Rel_Decision[ 'HCA', t]} :
#Calculated

param EX_Ezp Rev {t in Months,sl in State[ 'GMS',t].s2 in State[ 'MCA',t].Rel_Decision[ 'GHS',t]. Rel_Decision['MCA'.t]}
#Calculated

param Cont_Rev{t in Months.=sl in State[ 'GMS',t].=2 in State[ 'HCA',t].Rel_Decision[ 'GHS',t].Rel_ Decision[ 'MCA',t]} default 0 ;
#Calculated

param Policy_Income {t in Months, =l in State[ 'GHS'.t].s2 in State[ 'MCA'.t], Rel_Decision['GHS'.t]., Rel_Decision[ 'MCA',t]} :
#Calculated

param PV{t in Months.sl in State[ 'GMS',.t].s2 in State[ 'MCA',t]. Rel_ Decision[ 'GHS',t], Rel_Decision[ 'MCA',t]} default 1:

param PV_Max {t in Months., sl in State[ 'GHS',t].s2 in State[ 'MCA'.t]} default 100; #Calculated

param PV_Fin {t in Months, sl in State['GHS',t], s2 in State['MCA',t]} default 100; #Calculated: future cost to
go function

param PV_diff{t in Months.sl in State[ 'GHS'.t]., s2 in State[ 'HCA'.t]}: #Calculated

param PV_diff_ total default 10;

param Optimum_Policy_GMS{t in Months, sl in State['GMS',t],sZ in State['MCA',t]}; #Calculated

param Optimum_Policy_MCA{t in Months, =1 in State[ 'GHS'.t].=2 in State[ 'HCA',t]}:

param HK{ r in Reservoirs, t in Months.,s in State [r.t]. w in Stater[r tosTE ;

param HK_ROTR {rp in ROTR_Plants.r in Reservoirs., t in Honths,i in Inflows[r, t] Rel Decision[r.t]}:

############ Declaring Splll Paraneters ¥#¥FXFXAERRARARER

param Turbine_Release{r in Reservoirs.,t in Months,s in State [r.t].w in Stater[r.t,s]. Rel_Decision[r,t]}:

param Plant_Release{r in Reservoirs.t in Honths, Rel_Decision[r.t]}:

param Spill{r in Reservoirs.t in Months.s in State [r.t].w in Stater[r.t.s]. Rel_Decision[r.t]}:

param Turbine_Release_ROTR{rp in ROTR_Plants.r in Reservoirs, t in Honths, i in Inflows[r.t]. Rel_Decision[r.t]}: # PCN and REV turbine release
param Spill_ROTR{rp in ROTR_Plants, r in Reservoirs, t in Months, i in Inflows[r.t]. Rel_Decision[r.t]}; # PCH and REV spills

param Tot_Spilled Energy{t in Months,sl in State[ 'GHS',t].s2 in State[ 'MCA',t].il in Inflows['GHMS',t].12 in Inflows[ 'MCA',t],Stater[ 'GHS',t,=sl].
Stater[ 'HCA',.t,=2]. Rel_Decision[ 'GHS'.t], Rel_Decision[ 'MCA', 6 t]}:##

param Ex_Penalty_Spilled Energy{t in Months, sl in State[ 'GMS',t].s2 in State[ 'MCA',t]. Rel_Decision['GHMS'.t], Rel_Decision[ 'MCA', t]}.#

param Account_Spill Penalty; #

param Penalty_Ratio:#

#param Penalty{r in Reservoirs.t in Months,s in State [r.t].i in Inflows[r.t].w in Stater[r.t.,s]., Rel_Decision[r.t]}:

#param Tot_Penalty{t in Months,=l in State['GHS'.t].=2 in State[ 'MCA'.t].il in Inflows['GHS'.t].1i2 in

Inflows[ 'MCA',t], Stater[ 'GMS'.t sl1].Stater['MCA'.t,=s2]. Rel_Decision['GHMS',t]., Rel_Decision['MCA'.t]} :

#param EX Penalty{t in Months,sl in State[ 'GMS',t].=s2 in State[ 'MCA',t] Rel Decision['GHMS',t],Rel_Decision[ 'HCA' t]} #Calculated
#\ check of Hydraulic Balnace and Load-Resource Balance and Feasibilty

paran Hydraulic_Balance {r in Reservoirs.t in Months, s in State[r.t]. i in Inflows[r.t], w in Stater[r.t.s]. d in Rel Decision[r.t]} .# Units are
in cmns.day

param Load_Reseource Balance {t in Months,=sl in State[ 'GHS',.t].=2 in State[ 'HCA'.t].1il in Inflows[ 'GHS',t],i2 in

Inflows[ 'MCA',t], Stater[ 'GHS',t,sl1],Stater[ 'MCA',t,s2]., Rel_Decision[ 'GMS',t], Rel Decision[ 'MCA',t]} ### Units are in MWH

95



#param Feasibility_Check {t in Months, sl in State['GMS'.t].s2 in State[ 'MCA',t].il in Inflows['GMS',t].i2 in Inflows['MCA',t].wl in

Stater[ 'GHS'.t.=sl1].w2 in Stater['HCA',t.=s2], dl in Rel Decision['GHS'.t]. d2 in Rel_Decision[ 'MCA',t]}### Feasibility Check

¥ Declaring parameters for Trade limits of TransmissiondXFEEXEEXERXRRERR

param Trade Exp Limit{Months}.# Ezport trade limit##

param Trade Imp_Limit{Months}.# Imnport trade limit##

HAEEEEX Limits on plant discharge

#old¥param QP _Max {Reservoirs, Months}:; # limits on max. discharge by plants:

param QP_Max {p in Plants, t in Months, No Units[p.t]}: # limits on max. discharge by plants:

Hparam QP_Min { Reservoirs, Months}:# Limits on min. discharge by plants: effective but not used

param QP_Min {p in Plants. t in Months., No Units[p.t]}. # limits on max. discharge by plants:

HAEEEEE Limits on Turbine Discharge

param QT_Max {r in Reservoirs.t in Months.s in State[r.t].Stater[r.t.s]}. # Modified to be indexed over the storage ....limits on max. discharge
by turbines: effective but not used

param QT_Min { Reservoirs., Months}:# Limits on min. discharge by turbines: effectiwve but not used

param Max QT storage_Pt{r in Reservoirs., t in Honths, No_Units[r.t]}.# the storage point at which the turbine release peaks then goes down beacuse
of reaching the generator capacity.

param Max_ Gen_storage Pt{r in Reservoirs, t in Months, No_Units[r.t]}.# the storage point at which the generator capacity peaks then levels beacuse
of reaching the generator capacity.

param Abs_ Max_Gen Cap{p in Plants, t in Months, No Units[p.t]}.# the generator capacity corresponsing to the number of units used

param Abs_ : QT Max{p in Plants, t in Months, No Units[p.t]}.# Absolute mazimum value of turbine release

param Start_Time:= ctime()symbolic:

AR R AR EE THE DATA FILES 142

for { v in Version}

{

data ("Data_1_"&wvwé&" .dat");
data ("Data_2_ "&vé&".dat"):
data ("Disc_Space "&wvé&" .dat");

1

A R

printf "“n" >Run_Times Stats.amr:

printf "HEfdddtEEet et et AR 2L SRun_Tines_Stats.anr:
printf "“n" >Run_Times Stats.amr:

for { v in Version}

i
print"This run is done by Version "&v&" of the SDPOMZR model for "&End_Months&" Stages..." > Run_Times Stats.amr:

H

printf "EEEEEEEREEEE R R R R R A" >Run_Times_Stats.amr:
printf "“n" >Run_Times Stats. amnr:

print"This run started at "&Start_Time&""> Run_Times_Stats.amr;

printf "“n" >Run_Times Stats.amr:

HEpdigd HK calculations

for { v in Version}

commands ("HE_"&wé&" mod"):

1

R R R R R R R R R R R R #display HEK>HK out;
ERERERE parameters for Prices Calculations

param a {t in Months}:

param b {t in Months}:

param c {t in Honths}:

param dd {t in Months}:

param Exp Price {t in Months.il in Inflows['GHS',t].1i2 in Inflows[ 'MCA'. t]
param Imp_Price {t in Months,il in Inflows['GHMS',t].1i2 in Inflows['MCA ]
param Cont_Price {t in Months,il in Inflows['GHS'.t].12 in Inflows[ 'MCA'.t]
T A A R A A 448 THE Prices data data Price_ | Coef .
claculate the Exp, Imp and contracted prices.

#include Price_Coef_Flat .dat ¥####¥ Coefficients of the 2nd degree polynomial equation used to claculate the Exp, Imp and contracted prices.
2 THE DATA for { v in Version}

{

D-\-v-'w-'wu

at ¥ Coefficients of the 2nd degree polynomial equation used to
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data ("Data_3_"&w&".dat"):

T
# Inflows from the ROTR Plants#tis g g g g g g g g g 00 n 0 00 60 6 8 60 6
for { v in Version}

commands ("Inflow_ROTR_"&wé&" mod");
3
-

for { v in Version}

commands ("Prices_ "&vé&" mod"):

let Gama:= 1/{1+Int_Rate):

option display_width 250;
option display_round 4:

H#EXFXLOOPING FOR STAGES
print "set Stages:=" > ("Set_Stages.use");
printf "“n" >({"Set_Stages. use"):

for {t in Months }#### looping for MHonths#EiEi
i

display t;
##¥ Calculating the turbine limits
for { v in Version}

commands ("QT_Max_"&vé&" mod");

¥

FHERERCalculating the core parameters

let { r in Reservoirs, s in State[r.t]. 1 in Inflows[r.t].w in Stater[r.t.=]. d in Rel_ Decision[r.t]} Term_ W [r.t.s.i.w.d] :=

({s)sDays_Months Dflt)+i-d;: #¥{(s—w)/Days Months[t])+i; ¥ potential of free water (to be released-discharged =) to use for generation and/or forced
spills for each plant . .Units cms

let {r in Reservoirs, d in Rel_Decision[r.t]} Plant_Release[r.t.d]:=d:

let {r in Reservoirs, s in State[r.t], w in Stater[r.t.s]. d in Rel_ Decision[r.t]} Turbine Release [r.t.s.w.d]:= min (QT Hax[r.t.s.w].
Plant_Release[r.t.d]); ###¥ Hourly rate of energy produced by plant in MWh

let {r in Reservoirs, s in State[r.t]. w in Stater[r.t.s]., d in Rel_Decision[r.t]} Spill[r.t,s.w.,d]:={d) -Turbine_Release [r.t.=s.w.d]:

let {r in Reservoirs, s in State[r.t]. i in Inflows[r.t]. w in Stater[r.t.s]. d in Rel_Decision[r,t]} Hydraulic_Balance [r. t.s.i.w.d]:=Term_W
[r.t.=.1,w.d]-(w/Days Honths Dflt) # SiW [r.t.=.1i.w.d]-{d):

display Spill»spill.out:

##¥ Calculating the total inflows, turbine releases, spills and HK to PCH, REV and STC

let {i2 in Inflows['MCA',t].d2 in Rel_ Decision[ 'MCA',t]} Tot_Inflow ROTR['REV', 'MCA',t,12.d2]:= if Online ROTR[ 'REV']=1 then
Inflow_ROTR['REV', 'MCA',t,12]+d2 else 0;

let {il in Inflows['GMS',t].dl in Rel_Decision['GMS',t]} Tot_Inflow_ROTR['PCH', 'GMS',t,il1.d1]:= if Online ROTR[ 'PCH']=1 then
Inflow_ROTR['PCH', 'GMS',t,i11]+dl else 0;

let {il in Inflows['GMS',t].dl in Rel_Decision['GMS',6t]} Tot_Inflow ROTR[ 'STC', 'GHMS',t,il1,dl1]:= if Online ROTR[ 'STC']=1 then
Inflow_ROTR['STC', 'GMS',t,il]+Inflow_ROTR['PCN', 'GMS',t,il]+dl else 0;#+ Tot_ Inflow ROTR[ PCN',('GMS' t.il,0i] :

let { 12 in Inflows['MCA'.t]. nu in No Units['REV',t].d2 in Rel_Decision[ 'MCA', t]} Turblne_Release ROTR[ 'REV', 'MCA',t,12,d2]):= if
Online_ROTR[ 'REV']=1 then min (Abs QT _Max[ 'REV',t,.nu],k Tot_Inflow ROTR[ 'REV', 'MCA',t.,i12.d2] ) e

let { i1 in Inflows['GHS'.t]. nu in No Units['PCH',t].dl in Rel_Decision[ 'GHS', t]} Turblne_Release ROTR[ 'PCH', 'GHS',t,i1,d1]:= if
Online_ROTR[ 'PCH']1=1 then min (Abs_ QT _Max[ 'PCH',t,nu], Tot_Inflow ROTR['PCH', 'GMS',t,i1l1.dl1l] ) else 0;

let { il in Inflows['GHMS'.t]., nu in No Units['STC',t].,dl in Rel_Decision['GHS',t]} Turbine_Release_ROTR['STC', 'GHS',t,il1,d1]:= if
Online_ROTR[ 'STC']1=1 then min (Abs_QT Max[ 'STC',t.nu].,Tot_Inflow_ROTR['STC',6 'GMS',t.11,d1] ) else 0:




let {i2 in Inflows[ 'HCA',t], d2 in Rel_Decision[ 'HCA',t]} Spill ROTR['REV', 'MCA',t,12,d2]:= if Online ROTR[ 'REV']=1 and
Tot_Inflow ROTR['REV', 'MCA',t,1i2,d2]> Turbine Release ROTR['REV', 'MCA',t,i2.d2]then

Tot_Inflow ROTR['REV', 'MCA',t,i2,d2]-Turbine Release ROTR[ 'REV', 'MCA',t,12.d2] else 0:

let {il in Inflows['GHS',t]. dl in Rel_Decision[ 'GHS',t]} Spill_ROTR['PCH', 'GHMS',t,il1.d1]:= if Online ROTR[ 'PCH']=1 and
Tot_Inflow ROTR['PCH', 'GMS',t,il,d1]> Turbine Release ROTR[ 'PCH', 'GHS',t,il.dl]then
Tot_Inflow ROTR['PCH', 'GHMS',t,il,d1]-Turbine Release ROTR[ 'PCH', 'GMS',t,il.dl] else 0:

let {il in Inflows['GHS',t]. dl in Rel_Decision['GHS',t]} Spill_ ROTR[ 'STC', 'GMS',t,il.d1]:
Tot_Inflow ROTR['STC', 'GHS',t,1i1,d1]> Turbine Release ROTR[ 'STC', 'GHMS',t.,il,dl]then
Tot_Inflow ROTR['STC', 'GMS',t,il,d1]-Turbine_Release ROTR[ 'STC', 'GHS',t,il,dl] else 0;

if Online ROTR['STC']=1 and

display Turbine_Release, Turbine Release_ROTR>TSI.out:

#### Calculating HK for the ROTR plants
for { v in Version}

{
commands ("HE _ROTR_"&wé&" mod");

¥

display HK_ROTR>HK_ROTR.out;

##EEX Calculating the Generation limits
for { v in Version}

commands ("Max Gen_Limits "&wvé&" mod"):

#¥#¥ Calculating Generation and Trade" Generation:affecting the PV function
let {p in Plants, r in Reservoirs, s in State[r.t]. w in Stater[r.t.,s)], d in Rel_Decision[r.t]. nu in No Units[r.t]} Generation[r.t.s.w.d]:= min(
Turbine_Release [r.t.s.w.d]*HK [r.t, s.w].Hax Gen_Limits[r.t.s.w])*Days_Months[t]*24*0utage[p.t]*Availability[p.t]:

let {r in Reservoirs, s in State[r.t], w in Stater[r.t.s]. d in Rel_Decision[r.t], nu in No_Units[r.t]} G _OR[r.t.s.w.d]:= OR[r.t]=
Generation[r.t.s,w.d].# units are in HMUh

let {p in Plants, 12 in Inflows[ 'HCA',t].d2 in Rel Dec181on[ MCA&'.t]. nu in No Unlts[ REV'.t]}

Online ROTR['REV']=1 then min( Turblne Release ROTR[ 'REV', 'MCA',t,12,d2]*HK_ROTR[ 'REV' 'MCA o

24*0utage[p t]*Avallablllty[p t] else if Online . ROTR[ ' REV 1=2 then Gen_REV_fixed[t] else 0;

let {p in Plants, il in Inflows['GHS'.t].dl in Rel D801310n[ GHS',t]. nu in No Unlts[ PCHN',t]} Gen_ROTR['PCH', 'GHS', t,il,d1]:=if

Online ROTR['PCH']=1 then min( Turblne Release ROTR[ 'PCH', 'GMS',t,il,d1]=HK_ROTR[ 'PCH', ‘GMS ,t.11,d1], Abs Max Gen_Cap[ 'PCH'.t.nu])*Days_Months[t]*

24*0Qutage[p. t]*Availability[p.t] else if 0nline_ROTR['PCN']=2 then Gen_PCN_fixed[t] else 0;

let {p in Plants, il in Inflows['GMS',t].dl in Rel_Decision['GHS'.t], nu in No_Units['STC',t]} Gen_ROTR['STC',6 'GMS',t,il1,d1]:=if

Online ROTR[ 'STC']=1 then min{ Turbine_Release ROTR[ 'STC', 'GHS',t,1l,d1]=HK_ROTR[ 'STC', 'GMC‘ t,i1,d1]. Abs Max Gen_Cap[ 'STC',t,nu])*Days_Months[t]=*
¥

Gen_ROTR[ 'REV', 'MCA',t,12,d2]:=if
12,d2]., Abs_Max_Gen_Cap[ 'REV',t.nu])*Days_Months[t]*

24*Qutage[p. t]*Availability[p.t] else if Online ROTR[ 'STC']1=2 then Gen_STC fixed[t] else 0:;
let {p in Plants, 12 in Inflows[ 'HMCA',t].d2 in Rel_Decision[ 'MCA',t]., nu in No_Units[ 'REV',t]
Online ROTR[ 'ARD']=2 then Gen_ARD fized [t] else 0:

Gen_ROTR['ARD', 'MCA', t,i2,d2]:=if

let {rp in ROTR_Plants, sl in State[ 'GHS',t].s2 in State[ 'MCA'.t].il in Inflows['GHS',t].i2 in Inflows['MCA'.t]. wl in Stater['GHS',.t.sl1l].w2 in
Stater[ 'MCA' ,t.s2] ., dl in Rel_Decision['GMS',t], d2 in Rel_Decision['MCA'.t]} Tot_Gen[t.sl,s2,1i1,i2,wl,w2,dl,d2]:= Generation[ 'GMS',t.sl.wl,dl]+
Generation[ 'HCA',t.s2,w2,d2]+IPP_Therm[t]+ Gen_ ROTR['PCN',6 'GHS',t,il,d1]+ Gen_ROTR['STC', 'GMS',t.,il,d1]+ Gen_ROTR[ 'REV',6 'MCA',t,i2,
d2]+Gen_ROTR[ 'ARD', 'MCA',t,12, d2]; ####Units are in MWh##¥if Generation[ 'GMS',t.=1,1il,wl,dl]=0 or Generation[ 'MCA'.t.s2,1i2,w2,d2]=0 then 0 else
let {1 in Load[t].=sl in State[ 'GHS',t].=2 in State[ 'MCA',t].1il in Inflows[ 'GHS',t].1i2 in Inflows[ 'HCA',t], wl in Stater['GHS',t.sl].w2 in

Stater[ 'MCA',t,=2], dl in Rel_Decision[ 'GMS',t]., d2 in Rel Decision[ 'MCA',t]} Trade[t.sl.=2.11,1i2,wl,w2,d1l.d2] := Tot_Gen[t.=l,s2.11.1i2 wl, w2,d1l,
d2]-1-Contr Exp [t]+Contr_Imp [t] #if Tot_Gen[t.sl.=2,11,i2,wl,w2.d1.d2]=0 then 0 else Tot_Gen[t.=sl.=2,il1,1i2.wl,w2.dl.d2]-1-Contr_E=xp [t] :# This
i= the load-Resource Balance Equation to get the Trade ( Ezport/ Import) values ¥Units are in MUh¥#if Tot_Gen[t.sl.=2.11.1i2,wl,w2,dl1.d2]= 0 then 0
else

display Generation, Gen_ROTR,Tot_Gen> Gen.out:

##X#E Transition Probability Calculations#ffffffdifit ittty iyttt ety sass

let {r in Reservoirs}Upper_Bound State[r.t]:= last (State [r.t])

let {r in Reservoirs}Lower_ Bound_State[r.t]:= first (State [r.t]):

let {r in Reservoirs}Upper_Bound Stater[r.t]:= max{s in State [r.t]} last (Stater[r.t.=s]):

let {r in Reservoirs}Llower_Bound_ Stater[r.t]:= min{s in State [r.t]} first (Stater [r.t.=s]):

#display Upper_Bound_State, Lower_Bound_State, Upper_Bound_Stater, Lower_ Bound_Stater>Bounds. out;
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let {r in Reservoirs.s in State[r.t], i in Inflows[r.t]. w in Stater[r.t.s]. d in Rel_Decision[r.t]:Lower_Bound_Stater[r.t]<

w<Upper_Bound_Stater[r.t]} State Prob[r.t.s.i.w.d] := if Hydraulic_Balance [r, t.s.i.w.d]=0 then Prob Inflow[r.t.ilelse 0;

Haee i

let {r in Reservoirs.s in State[r.t]. i in Inflows[r.t]. w in Stater[r.t.s]. d in Rel_Decision[r.t]:Lower_Bound_Stater[r.t]= w} State Prob[r.t.s.1i,
w,d] := if Hydraulic_Balance [r. t.s.i,w.d] <=0 then Prob Inflow[r.t.ilelse 0;

Haex i

let {r in Reservoirs.s in State[r.t], i in Inflows[r.t]. w in Stater[r.t.s]. d in Rel_Decision[r.t]:w=Upper_Bound_Stater[r.t]}

State Prob[r.t.=s.i.w.d] := if Hydraulic Balance [r. t.s.i.w.d]»=0 then Prob_ Inflow[r.t.ilelse 0:

# those two are constrained with Trade limits and other limits

let {1 in Load[t].sl in State[ 'GHS'.t].s2 in State[ 'MCA',t] ,il in Inflows['GHMS'.t].i2 in Inflows[ 'MCA',t].wl in Stater['GHS'.t.sl].w2 in
Stater[ 'HCA' . t.s2], dl in Rel Decision['GMS'.t]. d2 in Rel_Decision[ 'MCA',t]} Spot_Buy[t.=sl.s2.11,i2,wl,w2,d1.d2] := if Trade[t.sl.s2.11,1i2,.wl, w2,
dl,d2] < 0 then max ((-Trade_Imp Limit[t]*Days Months[t]*24+Contr_Imp [t]).Trade[t.sl.=s2.1i1,1i2,wl,w2,d1.d2]) else 0.# accounts for contract
Ezp/Imnp in the tie limits.

let {1 in Load[t].=sl in State[ 'GHS',t].s2 in State[ 'MCA',t] ,il in Inflows['GHS',t].1i2 in Inflows[ 'MCA',t].wl in Stater['GHS'.t.=1].w2 in

Stater[ 'MCA',t.s2], dl in Rel Decision['GHMS',.t], d2 in Rel_Decision['MCA',t]} Spot_Sell[t.sl,s2.i1,i2,wl,w2,d1,d2] := if Trade[t.sl.s2.il,i2, wl,
w2.,dl,d2] >0 then min {((Trade_Exp Limit[t]*Days Months[t]*24-Contr_Exp [t]).Trade[t.sl.s2.11.i2,wl,w2,d1l.d2]) else 0;¥ accounts for contract
Exp/Imnp in the tie limits.

let {1 in Load[t].sl in State['GMS',t].s2 in State[ 'MCA',t] ,il in Inflows['GMS',t].i2 in Inflows['MCA'.t].wl in Stater['GMS',t.sl].w2 in

Stater[ 'MCA',t,=2], dl in Rel_Decision['GHS',t], d2 in Rel_Decision[ 'MCA',t]} Energy_Curt_Tie_Imp[t.sl.s2,11,12,wl,w2,d1.d2] := if Trade[t.sl.s2.
11,12, wl,w2,d1,d2] < Spot_Buy [t.=sl,s2,11,i2 ,wl,w2.d1.d2]< 0 then Trade[t.=1.=2.11,12,wl, w2,d1,d2]-Spot_Buy[t.=sl,=s2,11,12,wl,w2.d1.d2] else 0:#
calculates energy curtialed from Exp due to tie limits.

let {1 in Load[t].sl in State[ 'GHS',t].=2 in State[ 'MCA',t] .il in Inflows['GHS',.t].1i2 in Inflows[ 'MCA',.t].wl in Stater['GHS',t.=1].w2 in

Stater[ 'MCA',t.s2], dl in Rel Decision['GHMS',.t], d2 in Rel_Decision['MCA',t]} Energy_Curt_Tie Exp[t.sl.s2.il1,i2,wl,w2,dl1,d2] := if Trade[t.sl.s2.
i1,i2, wl,w2,dl,d2] > Spot_Sell[t.sl,s2,i1,i2,wl,w2.d1.d2]> 0 then Trade[t.sl.s2.11,i2,wl,w2,d1,d2]-Spot_Sell[t.sl.s2,1i1,i2,wl,w2,d1.d2] else 0%
calculates energy curtialed from Exp due to tie limits. this amount should be backed off by the plant or spilled

let { =1 in State[ 'GHS',t].s2 in State[ 'MCA',t].il in Inflows['GMS',t],1i2 in Inflows['HCA'.t],wl in Stater['GHS',t.sl1l].w2 in Stater[ 'MCA', t,s2], dil
in Rel_Decision['GHS',t]., d2 in Rel_Decision[ 'HCA',t]} Tot_Spilled_Energy [t.sl.s2.1i1.1i2,wl,w2,d1.,d2]:= (Spill['GHMS'.t, =l wl dl1]=HK ['GHS'. t,
s1,wl]+Spill[ 'HMCA'  t.s2,w2,d2]*HK ['MCA',t, s2,w2]+ Spill_ROTR['REV', 'MCA',t,12,d2]*HK_ROTR['REV',6 'MCA',t,12,d2]+ Spill_ROTR['PCH', 'GMS',t,il,d1]=
HK_ROTR[ 'PCH', 'GMS',t,11,d1]+5Spill_ROTR[ 'STC', 'GMS',t,il,d1]=HK_ROTR[ 'STC', 'GMS',t,il,d1])*Days _Months[t]*24-Energy_Curt_Tie_Imp[t.sl,s2,i1,12,wl,
w2,dl,d2]+ Energy_Curt_Tie Exp[t.sl.=2.il1.1i2.wl,w2.d1,d2] :

let Max Mthly Spot_Buy GU[t]:= —mln{sl in State[ 'GHS' ], =2 in State[ 'MCA',t].1l1 in Inflows['GHS',t].12 in Inflows[ 'HCA'.t].wl in Stater[ 'GHS'. t
=1].w2 in Stater[ 'HCA',t.=2]. dl in Rel DEClSan[ GHS' t]. d2 in Rel De01310n[ MCA*', t]}Sth_Buy[t,sl,SZ,il,iZ,wl,wZ,dl,d2]/1UUU;

let Min_Mthly Spot_Buy GUW[t]:= max{sl in State[ 'GHS' t] s2 in State[ 'HCA'.t].11 in Inflows['GHS',t].,1i2 in Inflows[ 'MCA'.t].wl in

Stater[ 'GHS'.t.=1].w2 in Stater[ 'HCA', t,s2], dil 1n Rel _Deci=sion[ 'GHS',t], d2 in Rel_DecisiDn['MCA t]}Spot Buy[t.=sl,s2, 11 12,wl, w2.d1, d2]/IUUU;
let Max_ Mthly Spot_Sell GUW[t]:= max{sl in State[ '( ] =2 in State[ 'HCA',t].1il in Inflows['GHS',t].1i2 in Inflows['MCA',t].wl in Stater['GHS'.t
sl].w2 in Stater[ 'MCA'.t.s2], dl in Rel_Decision[' GMS t]. d2 in Rel_Decision['HCA',t]}Spot_Sell[t sl,s2,il,i2,wl, w2,d1, d2]/1000

let Min_Mthly Spot_Sell GW[t]:= min{sl in State[‘GHS',t], s2 in State[ 'MCA'.t].il in Inflows['GHMS',t].,1i2 in Inflows['MCA',t].wl in Stater[ 'GHMS'.t
s1].w2 in Stater['MCA',t.s2], dl in Rel_Decision['GMS',t], d2 in Rel_Decision[ 'MCA',6t]}Spot_Sell[t.sl,s2,i1,i2,wl,w2,d1,d2]-1000;

let {1 in Load[t].sl in State[ 'GHS',t].s2 in State[ 'MCA',t] , il in Inflows[ GHMS',t].12 in Inflows[ 'MCA',.t].wl in Stater['GHMS'.t.sl].w2 in

Stater[ 'MCA',t.s2], dl in Rel_Decision['GMS'.t], d2 in Rel_Decision[ 'MCA',t]} Trans > Prob[t.sl.=s2.1i1,12, wl w2,dl,d2] := State Prob['GMS'.t,sl,il,
wl, dl]*State Prob[ 'MCA', t,s2,12,w2.d2] :

let {1 in Ioad[t] =1 in State[ 'GMS',t].=2 in State[ 'HCA'.t].wl in Stater[ 'GHS' ., t,sl].w2 in Stater[ 'HCA',t,=2]. dl in Rel_ Decision[ 'GMS',t], d2 in
Rel D801510n[ MCA',t]} Trans Prob_S[t.sl.s2,wl,w2,d1.d2] := sum { il in Inflows['GMS',t].,i2 in Inflows['MCA',t]} Trans Prob[t.sl.s2,il,i2,wl, w2,dl,

let {1 in Load[t].sl in State[ 'GHS',t].s2 in State[ 'MCA',t], dl in Rel_Decision['GMS'.t], d2 in Rel_Decision['MCA',t]} Trans_Prob S S[t.sl,s2.d1.
d2] := sum { wl in Stater['GHS',t.=sl1].w2 in Stater[ 'HCA',t.=2]} Trans_Prob S[t.=l.=s2.wl,w2,dl.,d2]:

#check of Hydraulic Balnace and Load-Resource Balance and Feasibility

let {1 in Load[t].sl in State[ 'GHS',t].s2 in State[ 'MCA',t].il in Inflows['GHS'.t].i2 in Inflows[ 'MCA'.t].wl in Stater['GHS',t,sl].w2 in

Stater[ 'HCA'.t,=2], dl in Rel_ Decision[ 'GHS'.t]., d2 in Rel_Decision[ 'MCA',K6 t]}Load_Reseource Balance [t, =1.=s2.11,1i2 . wl,w2.,d1.d2]):=

Generation[ 'GHS',t,=l,wl,.dl]+Generation[ 'MCA', t,=2,w2,d2]+IPP_Therm[t]+ Gen_ROTR[ 'PCH', 'GMS',t,il.d1]+

Gen_ROTR[ 'STC', 'GHS',t,i1,d1]+Gen_ROTR[ 'REV', 'MCA',t,12,d2]+Gen_ROTR[ 'ARD', 'MCA',t,12,d2]-Contr_E=zp [t]+ Contr_Imp [t]- Spot_Buy [t.sl.s2,il.12,wl,
w2,d1,d2]- Spot_Sell [t.sl,s2,i1,12,wl,w2.d1,d2]-1;
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let {1 in Load[t].sl in State[ 'GHS',t].s2 in State[ 'HCA'.t] . dl in Rel_ Decision['GHS',t]. d2 in Rel_Decision[ 'MCA',t]} EX Ezxp Rev[t.sl.s2.dl1.d2]
:= sum { il in Inflows['GHS',t].12 in Inflows['MCA',t],wl in Stater['GHS'.t.=l1].w2 in Stater[ 'MCA'.t,s2]} Spot_Sell[t.=sl.s2.11.12.wl, w2,d1,d2] =
Trans Prob[t.sl,s2,i1,12,wl,w2,dl,d2] *Exp Price[t,i1,i12]-1000000 ; # Expected spot market sell revenue

let {r in Reservoirs. 1l in Load[t] . =1 in State[ 'GHS',t],s2 in State[ 'HCA',t] ., dl in Rel Decision['GHS'.t]. d2 in Rel_Decision[ 'HCA', t]}
Cont_Rev[t.=sl,s2.d1,d2] := sum { il in Inflows['GHS',t].1i2 in Inflows['MCA'.t].wl in Stater['GHS'.t.sl].w2 in Stater[ 'MCA'.t.s2]} (Contr_E=zp [t]-
Contr_Imp [t]) *Trans Prob[t.sl.s2.il1,1i2,wl,w2,dl1,d2] * Cont_Price[t,il,i2]-1000000 ; # Contracts Revenue

#let {1 in Load[t].=l in State['GHS',t].=2 in State['MCA',t] ., dl in Rel_Decision['GMS',t], d2 in Rel_Decision['HMCA',t]} EX Penalty[t.=sl,s2.d1,d2]
= sum { il in Inflows['GMS',t].1i2 in Inflows['HCA'.t].wl in Stater['GHS',t.,=l1],w2 in Stater[ 'MCA'.t,s2]} Tot_Penalty[t.=sl.=s2,11,12 wl, w2,dl,.d2] =
Trans_Prob[t.sl.s2.i1,i2,wl,w2,d1.d2] *Imp Price[t.il,12]*10-1000000 ; & Expected spot market sell revenue

let { =1 in State[ 'GHS'.t].s2 in State[ 'MCA',t]. dl in Rel Decision['GHMS',t], d2 in Rel_ Decision[ 'MCA', t]}
Ex_Penalty Spilled_Energy[t.=l.s2.d1.d2]:= sum { il in Inflows['GHS',t].1i2 in Inflows[ 'HCA',t].wl in Stater['GHS',t.=1].w2 in Stater[ 'MCA', t,s2]}
Tot_Spilled_Energy [t.sl.s2.11,12,wl,w2,dl,d2]*Trans Prob[t.sl,.s2,11,12,wl,w2,d1,d2] *(-Imp_Price[t,i1,12]-1000000);

let {1 in Load[t] . sl in State[ 'GMS',t].s2 in State[ 'MCA'.t] . dl in Rel_Decision['GHS',t], d2 in Rel_Decision['MCA'.t]} Policy_Income [t.sl,s2,
dl,d2] := Cont_Rewvw[t.sl,s2,d1.d2] + EX¥ Imp Cost[t.sl.s2.d1.d2]+ E¥ Exp Rev[t.sl,s2,d1.d2]+ l* Load_Reward-1000000 + if Account_Spill_ Penalty=1 then
Ex_Penalty_Spilled_Energy[t.sl,s2,dl.d2]*Penalty_Ratio else 0;

b ES S e d eSS ERESFFEE TS SEEFEE S ESEFEEEEESEFEEE RS EET S8

reset data Term_ W Plant_Release Spill Hydraulic_Balance Tot_Gen Trade Trade State_Prob EX¥ Imp Cost E¥X_Exp Rev
Cont_Rev Plant_Release Spill; #Trans Prob, Spot_Buy Spot_Sell Generation

print "Finished Basics Month: "&té&"".

printf "%12 0f",t>> Set_Stages.use:

}# looping over the Months

print ";" > ("Set_Stages.use"):

ARRERRRRERERRER AR AR R LR E R Declaring the Forebay parameters and calculating them

param FBi{r in Reservoirs, t in Months, State[r.t]}; # Initial forebay

param FBf{r in Reservoirs, t in Months.= in State[r.t].Stater[r.t.s]}.¥ Final forebay

P s ddEE S e E S EEFEEEEESFFFEEEEEEFFFEEEEEEFFFE SRS FFFESEE S FFFEEEE S FFFE S S

for { v in Version}

commands ("FB_ "&vé&" mod"):

1
S

purge HK Tot_Gen Trade State_Prob EX¥ Imp Cost EX Exp Rev Cont_Rev Plant_Release Spill
#Trans Prob, Spot_Sell., Spot_Buy Term_W Generation
purge Trade_Exzp Limit Trade_Imp_Limit Prob_ Inflow Min_Gen_ Limits QT_Min QP Max QP _Min Outage IPP_Therm

Contr_Trans;#¥Inflows , Max Gen_ Limits, QT Max
RARRARRARRARRRREE ITERATION XEXXXRXXXXXABRARRARRARRAREE Iterating over the PV Total Difference, to get the optimum policy PROCEDURE
for { v in Version}

commands ("Value Iteration_"&vé&" mod"):

h
T
shell 'md Outputdata’;

cd Outputdata;

#¥#kDeclaring the stages' dates
print "set Honths:=" >("Stage_Name.out"):
for { t in HMonths}

print member(t,Stage Name)>("Stage Name.out"):
print ";" > ("Stage Name.out"):

printf "“n" >("Stage Name.out"):

display Months>({"Stage_Name.out"):

display Stage Name >("Stage Name out"):

B AR
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display PV_Max > ("PV_Final out"):

display PV>PV.out:

display Optimum_Policy GMS, Optimum_Policy_MCA, PV_Max, Optimum_Spot_Export_GW,Optimum_Spot_Import_GW >Optimum_Policy.out:
HEEXXERRERRXERERERERERRRRRRRRRRR LR LR RREREREEE End of the Iterations

#HCALCULATING THE MARGINAL VALUE OF WATER/ENERGY FOR EACH RESERVOIR

param MVW_GHS{ t in Months, sl in State[ 'GHS'.t], =2 in State[ 'MCA',t]} ;#¥Marginal value of water. . units are in $/cms
param MVW_MCA{ t in Months. sl in State[ 'GHS'.t].s2 in State[ 'MCA',t]} :#Marginal value of water. units are in $-/cms
param MVE GHS{ t in Months, sl in State[ 'GHS'.t]., =2 in State[ 'MCA',.t]} ;#Marginal value of water. . units are in $/HUh
param MVE_MCA{ t in Months, sl in State[ 'GHMS'.t].s2 in State[ 'HCA',t]} .#Marginal wvalue of water..units are in $-/MVh

param dl{ t in Honths}:

param d2{ t in Months}:

param HK_rough{ r in Reservoirs, t in Months.s in State [r.t]};# a rough estimate for HK to use in MVVW calculations:
edii;

##E# Calculating HE_rough that is used to calculate the HV of energy

for { v in Version}

commands ("HE_rough_"&v&" .mod"):

cd Outputdata:

let { r in Reservoirs, t in Months} Delta_States[r.t] := (n*Inflow_Step[r.t]* Days Months Dflt).# units are in cms.day., can use also "floor" and

"ceil" functions instead of round
let{t in Months} dl[t]:=Delta_States[ 'GHS'.t]:
let{t in Months}d2[t]:=Delta_States[ 'MCA' . t]:

for{ t in Months.s2 in State[ 'HCA', t]}

{

let { =1 in State[ 'GHS', t]}HVU_GHS[t.=1.s2]:= if Run_Single_Res[ 'GMS']=0 and =s1< last (State[ 'GHS',t]) then (PV_Fin[t.sl+4dl[t].s2]-
PV_Fin[t.=sl.s2])%*1le6” (Delta_States[ 'GMS',t]%*24) else if Run_Single Res[ 'GMS']=0 then MVW_GHS[t.sl-dl[t].s2] else O0;

let { =1 in State[ 'GHS',6t]}MVE_GHS[t.,=sl1l,=2):= if Run_Single Res[ 'GHMS']=0 and sl1< last (State[ 'GMS',t]) then (PV_Fin[t.sl+dl[t].s2]-
PV_Fin[t.sl,s2])*lebs (Delta_States[ 'GMS',t]=*HK_rough ['GHMS',t, sl1]%*24) else if Run_Single Res['GHMS']=0 then MVE_GMS[t,sl-dl[t].s2] else 0:

s
for{ t in Months, sl in State[ 'GHS',t]}

{
let { =2 in State[ 'MCA', t]}MVU_MCA[t.=sl1.s2)]:= if Run_Single_ Res[ 'HCA']=0 and =2< last (State[ 'MCA',t]) then (PV_Fin[t.=l,s2+d2[t]]-
PV_Fin[t.sl.s2])%*1leb” (Delta_States[ 'HCA',t]%*24) else if Run_Single Res[ 'HCA']=0 then MVW_MCA[t sl ,s2-d2[t]]:

let { s2 in State[ 'MCA', t]}MVE_MCA[t . =sl.,s2]:= if Run_Single Res[ 'MCA']=0 and s2< last (State[ 'MCA',t]) then (PV_Fin[t.sl, s2+d2[t]]-
PV_Fin[t.sl,s2])*1lebs (Delta_States[ 'MCA',t]*HK rough ['HCA',t, s2]%24) else if Run_Single Res['MCA']=0 then MVE_MCA[t, sl ,s2-d2[t]] else O0:
T

display HVW_GHMS > HVW_GHS . out:
display HVW_MCA > MVW_MCA out;

display MVE_GHMS > MVE_GHS.out:

display MVE_MCA > MVE_MCA out;

display Max Mthly Spot_Buy_ GW, Min Mthly Spot_Buy_ GW, Max Mthly Spot_Sell GW, Min_ Mthly Spot_Sell GW> Trade_ Stats.out:
display FBi,LFBf>FB.out:

display Hax Gen_Limits, QT _Max., Turbine Release> Turbine Limits.out;

display HK_rough>HK_rough.out:

print" Month GHS_Storage MCA_Storage Value_Function, M$ MVE_GHS, $/MUh MVE_MCA,K $/MUh" > Final_ Results_Listed.out:
print" Month GHS_Storage MCA_Storage Value Function,K M$ MVE_GHS, $/MUh MVE_MCA, K $/MUh" > Final Results Listed.csv:
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print" Month GHS_Storage MCA_Storage Value_Function, H$ MVE_GHMS, $/MUh MVE_MCA, $/MWh" > Final_ Results Listed.out:
print" Month GHS_Storage MCA_Storage Value Function, H$ HVE_GHS, $/MUh MVE_MCA, 6 $/MWh" > Final_ Results_Listed.csv:

for {t in Months.=sl in State[ 'GHS',t].=2 in State[ 'HCA', t]}
{

printf "X%4 . 0f %6 . 0f %6 . 0f %6.0f %6 . 2f %6.2f".t,s1,s2, PV_Max[t.sl,.s2]. MVE_GMS[t.sl.s2], MVE_MCA[t.,sl.s2] > Final_Results_Listed.out;
printf "“n" >Final_ Results Listed.out:
printf "%4 0f %6.0f %6 . 0f %6.0f %6.2f %6 .2f".,t,=s1,s2 PV _Max[t.=s1l.s2]. MVE_GMS[t.=sl.s2]. MVE_MCA[t.sl.s2] > Final_Results_Listed.csv;
printf "“n" >Final_ Results Listed.csv:

¥

ediw

Print " A AR
pPrint " R AR
for { v in Version}

{
print " #EEEEEEEEEEEEs  SDPOMER Model, Version "&vé&" is finished . Thank VYou #####ssyyyyssss”;
¥

DX Lrut " 0 R
Print A

AREEALEEX Renaming the output folder to include Version name, Humber of time steps. Current date and timed#FfFEXifyfyfyfystsssts

param Time_hr:=if floor{{time()-1356998400)-3600) <=12 then floor((time()-1356998400)-/3600) else floor((time()-1356998400)-3600) -12;#¥ returns the
current time (in seconds since 00:00:00 1 Jan. 1970 GHMT)

param Time _min:=if floor({time()-1356998400)/3600) <=12 then round({(time()-1356998400)/3600-Time_hr)*60,0) else round({{time()-1356998400)/3600-(
Time_hr+12))%*60,0);

param AM_PH:=if floor((time()-1356998400),3600) <12 then "AH" else "PH":

param CTIME= ctime()symbolic:

data;

include Set_Stages.use;

for { v in Version}

if floor{{time({)-1349334001)-3600) <12

then

print"shell’' ren Outputdata Ouputdata_Vr. "&v&"_ Stagesfrom"&Start_Months&"to"&End_Monthsé&" "&Inflow Step[ 'GHS',K first({Stages)]&"cms.forGHS_"&
Inflow Step[ 'MCA', first({Stages)]&"cms. forMCA@(Hr "&Time_hré&"~Hin "&Time_miné&" AM)':" > RenameFolder .mod:

else

print“shell’' ren Outputdata Ouputdata_Vr. "&v&"_ Stagesfrom"&Start_Months&"to"&End_Months&" "&Inflow Step[ 'GHS', K first({Stages)]&"cms. forGHS_"&
Inflow Step[ 'MCA', first{Stages)]&"cns. forMCA@(Hr "&Time_hré&"~Min "&Time_min&" PH)'." > RenameFolder mod:

H

display ctime():

commands ("RenameFolder mod"):

print"This run ended at "&CTIME&""> Run_Times Stats.amr;
B AR

reset
RERAREARERRERARERRERRRRRRERAES END OF THE CODER AR A AR E A AR RR
R R AR RR
close;
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A.1.2.2. Computation Details

Table 5: Calculations Details in the SDP Model

Step
Number

Parameter

Calculated

Function

1

Total_Sys_Inflow

Sums up the inflows to the plants included in the
model including the storage and non-storage plants.

Exp_Price, Imp_Price,

Cont_Price

Calculate the prices for import, export and contract
prices using regression equations that relate the energy
prices to the total inflow of the system. For a given
inflows combination, the difference between import
and export prices is fixed while the contract prices are

the average of them.

Term_W

For each point of starting storage state, release
decision and inflow, this parameter calculates the
actual terminal storage that corresponding to those

values.

Turbine_Release

Calculates the turbine flow for the storage plants (i.e.
GM Shrum and Mica) which is capped by the release

decision and the maximum turbine flow (QT_Max).

Spill

The difference between the release decision and the

turbine release.

Hydraulic_Balance

The difference between the actual terminal storage and
the discretized terminal storage. It is mainly used to
assign the state probability and the transition

probability.

Tot_Inflow_ROTR

Sums up the natural inflow to a given run-of-the-river
(ROTR) plant to the flows coming from all the plants
at the upstream of this plant.
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Step Parameter Function

Number | Calculated

8 Turbine_Release_ RO | Calculates the turbine flow for the ROTR plants (i.e.

TR PCN, REV and STC) from the total flow to each plant
capped by absolute maximum turbine flow
(Abs_QT_Max).

9 Spill_ROTR The difference between the ROTR total flow and the
ROTR turbine release.

10 Generation The storage plants generation calculated as the turbine
release times the HK capped by the Max_Gen_Limits
and the Abs_Max_Gen_Capacity considering both of
the outage and the availability factors.

11 Gen_ROTR The ROTR plants generation calculated as the turbine
release times the HK capped by the
Abs_Max_Gen_Capacity considering both of the
outage and the availability factors.

12 Tot_Gen Total energy generated from the system in MWhr
including the storage plants, ROTR plants, IPPS,
thermal plants and fixed generation from the non-
optimized plants such as ARD.

13 Trade Is the amount of energy surplus or deficit after
satisfying the long-term contracts and meeting the
domestic load.

14 State_Prob The state transition probability from a given starting

state to a given terminal states for each storage
reservoir using the logic discussed earlier in the
document. The size of the resulting matrix equals the
number of stages times number of starting states times
number of inflows times the number of ending states

times the number of release decisions.
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Step
Number

Parameter

Calculated

Function

15

Spot_Buy, Spot_Sell

Is the trade but capped by the export/import

transmission limits

16

Trans_Prob

Is the State_Prob of a storage reservoir times the
State_Prob of the other reservoir. The size of the
matrix equals the size of State_Prob matrix of GM
Shrum times the size of the State_Prob matrix of

Mica.

17

Trans_Prob_S

Is the summation of the Trans_Prob matrix over
different combination of inflows to the storage plants

18

Load_Reseource_Bala

nce

Is the energy balance of the system calculated as the
total generation from the system minus the domestic

load and the trade.

19

EX_Imp_Cost

Expected import cost calculated as Spot_Buy times the
Trans_Prob times the Imp_Price and summing the
outcome over different combinations of inflows and

terminal states for the storage reservoirs.

20

EX_Exp_Rev

Expected export revenue calculated as Spot_Sell times
the Trans_Prob times the Exp_Price and summing the
outcome over different combinations of inflows and

terminal states for the storage reservoirs.

21

Cont_Rev

Expected revenue/cost related to the long-term
contracts calculated as contract trade times the
Trans_Prob times the Cont_Price and summing the
outcome over different combinations of inflows and

terminal states for the storage reservoirs.

22

Policy_Income

Is the current total expected revenue/cost for a given
time step for different combinations of release

decisions and starting states of the storage reservoirs,
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Step Parameter Function
Number | Calculated
calculated as the summation of EX_Imp_Cost,
EX_Exp_Rev and Cont_Rev.
23 Value iteration Calculates the value of water in storage along a pre-
calculations determined time horizon considering a pre-defined
tolerance for convergence. The details of the
procedure are discussed earlier in the document.
24 Optimum_Policy GM | Parameters that pick the release decisions for the
S, storage plants that gives the maximum value of water.
Optimum_Policy_MC
A
25 MVW_GMS, Is the marginal value of water which is the slope of the
MVW_MCA water value function for the storage reservoir.
26 MVE_GMS, Is the marginal value of energy in $MWhr calculated
MVE_MCA as the marginal value of water for GMS/ MCA divided

by the total HK of the plants on the Peace River
system (GMS, PCN, STC)/ the Columbia River
system (MCA, REV).
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A.1.3. Value Iteration Model

A.1.3.1. Code

repeat while ( PV_diff_total > .25)

let iter := iter + 1;
display iter:
for {t in last {(HMonths)..first {(Months) by -1 }

update data;

let { =1 in State[ 'GHS'.t].=s2 in State[ 'MCA',t]} PV_Fin[t.sl.=2] := if t=End_Months then PV_Mazx[Start_Months,.=l,s2] else PV_Max[t+l,sl.=2] ;

let { =1 in State[ 'GHS'.,t].=s2 in State[ 'MCA',t]., =1 in Rel_ Decision['GHMS',t].=2 in Rel_Decision[ 'MCA',t]} PV[t,sl,=s2,xl1, =®2] := Policy_Income[t.sl,s2.=1,
®2]+{Gama)*Trans Prob S_S[t.sl.s2.x1,x2] * PV_Fin[t.=sl.s2];#sum {wl in Stater['GHS'.t.=l].w2 in Stater['MCA'.t.s2]} Trans Prob S[t, =l1.=2.wl.w2.=1,
22]*PV_Fin[t.sl,s2]; ### Trans Prob S S[t.sl.s2.d1.d2] *PV_Fin[t.sl,s2]

update data:

let { =1 in State[ 'GHS',t].s2 in State[ 'MCA',t]}PV_Max [t.=1.22] := max { =1 in Rel_Decision[ 'GHS',t]. =2 in Rel_Decision[ 'MCA',t]} PV[t.=sl.=2.xl, =2]
update data:

let { sl in State[ 'GMS',t].s2 in State[ 'MCA', t]}PV_diff[t.sl,s2] := PV_Max[t,sl,s2]-PV_Fin[t,sl.s2];

update data:

2
let PV_diff total:= abs{sum {t in Months.,sl in State[ 'GHS',t]., =2 in State[ 'MCA' t]} PV_diff[t.=sl.s2]):

+
#¥#¥ Retrieving the optimum policy XXEFEEAEERRRRERARARRRRR
for{ t in Months, sl in State[ 'GHS'.t].s2 in State[ 'MCA'.t]. =1 in Rel_Decision['GMS',t]. ®2 in Rel_Decision[ 'MCA',t]}

{

if PV[t.sl,s2,21, =2]= PV_Max [t.=sl.s2]

then{

let Optimum_Policy GHMS[t.=sl.s2]:= =1;

let Optimum_Policy MCA [t.sl.s2]:= =®2;# union =2 else 0;

let Optimum_Spot_Export_GUW[t.sl,=2]:=sum { il in Inflows[ 'GHS',t].1i2 in Inflows[ 'MCA',t].wl in Stater[ 'GHS',t.=sl].w2 in Stater[ 'HCA'.t,=2]}Spot_Sell[t.=1.
=2,11,12,wl, w2, =21, =2]% Trans Prob[t.=sl.=2.11,12,wl, w2, ,=x1l,=22] ~1000;

let Optimum_Spot_Import_GW[t.sl.s2]:=sum { il in Inflows['GMS',t],12 in Inflows[ 'MCA',.t].wl in Stater[ 'GMS'.t,=sl1l].w2 in

Stater[ 'MCA',t.=s2]}Spot_Buy[t.=sl.s2.1i1,12,wl, w2, %1, ,22]%* Trans_Prob[t.sl,s2.11,12,.wl, w2, ,x1,x2]71000;

1

g

&
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A.1.4. Other Modules

A.1.4.1. Code

1. HK Model

## This is the model that calculates HK for the plants as a fucntion of starting and ending storages.

let{ t in Months,sl in State ['GMS'.t], wl in Stater[ 'GHMS',t,=1]} HK ['GHS'.t, =1,wl] := —0.0000000000001%({=s14+wl)~/2)"2 + 0.000000645%({=1+wl) 2)+
1.2083; # eguation modified on July 17th 2012
let{ t in Months,.s2 in State ['HCA',t], w2 in Stater[ 'MCA',t,=s2]} HK ['MCA'.t, =2.w2] := -0.0000000000038%({=2+w2)/2)"2 + 0.00000395%((s24+w2)/2) +

0.7155: % equation modified on July 17th 2012 (generally they are lower values now for lower storages and almost the same for high storages)#MCA
average 1.405 max 1.635 min 1.153

let{ t in Months,s3 in State ['ARD'.t]., w3 in Stater['ARD',t,s2]} HK ['ARD',t, s2,w2] := 0.0641*log({(s3+w3)-/2) - 0.565; # ARD average 0.113 nax
18 7 min 0.042%% needs revision

#let{ t in Months,=4 in State ['PCH'.t]. w4 in Stater['PCN',.t.=2]} HK ['PCH'.t, =2.w2] := min{.3612, ma=x(0.3335,0.00009%( (=s4+wd)/2) + 0.115));#PCN
average 0.346 max 0.361 min 0.334

#let{ t in Months,sS in State ['REV',t], w5 in Stater['REV',t,s2]} HK ['REV'.t, s2,w2]
1.208 min 1.170

0.0000079%( {=5+w5)/2)+ 0.7168;#REV average 1.189 nax

2. HK ROTR Model

##¥ This file caculates the HK for the Run-of-the-river projects.
#¥ As per the discussion with Ziad, HK _ROTR equation were modified so as to get higher wvalues for low releases. January 18th, 2013

let{il in Inflows['GMS',t], dl in Rel Decision['GMS' t]} HK_ROTR['PCH', 'GMS',t,il1l.d1]:= min(0.343 max({0.343-2, 0.00000000247%(Turbine_Release_ROTR
['PCH','GHMS',t,i1,d1])"2.4580)).
let{i2 in Inflows['HMCA',t], d2 in Rel Decision[ 'MCA',t]} HEK_ROTR['REV', 'MCA',t,1i2.d2]:= min{1l.140.max(1.140-2, 0.00000708000%{Turbine_Release ROTR
['REV';'MCA'.t,12,d2])"1.5227));
let{il in Inflows['GHS',t], dl in Rel Decision[ 'GHS', t]} HEK_ROTR['STC','GMS',t.,il,d1]:= min{0.430, max(0.430-2, 0.00001050000%{Turbine Release ROTR
['STC','GMS',t,11,d1])"1.3550)):

display HK_ROTR>HK.out:
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3. HK Rough Model

## this file is last modified on January 4th 2013
## Calculates the HK as a functuion of the starting state only.
let{t in Months,sl in State ['GMS',.t]} HK rough ['GMS',t, sl1] :=
if Online_ROTR[ 'FPCH']=1 and Online_ROTR[ 'STC']=1 then -0.0000000000001%(s
else if Online_ROTR[ 'PCHN']=1 and Online_ROTR[ 'STC']=0 then -0.0000000000001%(s

1) 000000645%(=1)+ 1.2083 + 0.343+ 0.430
1)
else i1f Online ROTR[ 'PCH']=0 and Online ROTR[ 'STC']=1 then -0.0000000000001%(=s1)
1)
00

0.

0.000000645%(=1)+ 1.2083 + 0.343

0.000000645%(=1)+ 1.2083 + 0.430
else —0.0000000000001%(= 0.
nax HKs for PCHN and STC respectively® modified Julyl7th 2012 -0.00000000000000 1

000000645%({=s1)+ 1.2083 #¥# the last two constants are the

2
2
2
2
2%{=1)"3 + 0.00000000000116%{=1)"2 + 0.0000003%(s1) + 1.2728;

+
+
+
+
(

~
~
~
~
0

let{t in Months,=2 in State ['HCA',t]} HK _rough ['HMCA' t, =2] :=

if Online ROTR['REV']=1 then —0.0000000000038%{=2)"2 + 0.00000395%{=s2) + 0.7155+1.14
else —0.0000000000038%(=s2)"2 + 0.00000395%(=s2) + 0.7155; # the last constant is the max HK for REV# modified August
7th, modified Julyl7th 2012 3.43E-18%(=2)"3 — 0.0000000000082%{=2)"2 + 0.000004%(=s2) + 0.9573;

|

#let{t in Months,=3 in State ['ARD'.t]} HK rough ['ARD'.t, =3]
#let{t in Months.,=s4 in State ['PCH',t]} HK rough ['PCH'.t, =4]
#let{t in Months,=s5 in State ['REV',t]} HK_rough ['REV'.t, =§5]
#display HK rough> HK_rough.out;

0.0641%log{=3) — 0.565;
minf.3612,max(0.3335,0.00009%*{=s4) + 0.115));
0.0000079%(=5)+ 0.7168;

nunn
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4. Inflow ROTR Model

## Calculates the inflow to the ROTR plants as a function of the inflows to Williston and Kinbasket
## The source is: J:“\PS\Power Planning“00_CRT 2014 Studies“Phase 2\OperatingStudy \TTYcontinuesl35C\HYSIMNHYSIH Data File20120517 =ls
## Note that the flow numbers in this file is the total flows to a given plant i.e PCHN flows are from GMS plus all the other natural
inflows...etc. all of this had to be compiled to come up with approximate numbers for the natural inflow only.
## modified December 2012 to eliminate any —ve inflow generated from the regression equations

r# this file is last modified on January 4th 2013

#ge PCH:
for {t in Months.il in Inflows['GHS',t]}

{
if Online_ROTR[ 'PCH']=1
then

let Inflow_ROTR['PCH', 'GMS',t, il]:

if i1=0 then
else if t=1 or t =13 or t = 25 or t =37 then
else if t= 2 or t =14 or t = 26 or t =38 then
else if t= 3 or ‘t =15 or t = 27 or ‘t =39 then
else if t= 4 or t =16 or t = 28 or t =40 then
else if t= 5 or t =17 or t = 29 or t =41 then
else if t= 6 or t =18 or t = 30 or t =42 then
else if t= 7 ort =19 or t = 31 or t =43 then
else if t= 8 or t =20 or t = 32 or t =44 then
else if t= 9 or t =21 or t = 33 or t =45 then
else if t= 10 or t =22 or t = 34 or t =46 then
else if t= 11 or t =23 or t = 35 or t =47 then
else
else let Inflow ROTR['PCH', 'GHMS',t, 11]:=0;
¥
R Site C:
for {t in Months,il in Inflows['GMS', t]}
if Online_ROTR[ 'STC']=1
then
let Inflow_ROTR['STC','GHMS'.t, il]:=

if i1=0 then
else if t=1 or t =13 or t = 25 or t =37 then
else if t= 2 or t =14 or t = 26 or t =38 then
else if t= 3 or t =15 or t = 27 or t =39 then
else if t= 4 or t =16 or t = 28 or t =40 then
—0.0370%11 + 33.269 but it generates -ve inflows
else if t= 5§ or t =17 or t = 29 or t =41 then
else if t= 6 or t =18 or t = 30 or t =42 then
—0.0089%il1 + 18.543 but it generates —-ve inflows
else if t= 7 or t =19 or t = 31 or t =43 then
else if t= 8 or t =20 or t = 32 or t =44 then
else if t= 9 or t =21 or t = 33 or t =45 then
else if t= 10 or t =22 or t = 34 or t =46 then
else if t= 11 or t =23 or t = 35 or t =47 then

else

max{0,
nax(0,
mnax{0,
mna=x(0,
nax(0,
max(0,
mnax({0,
max(0,
max{0,
nax(0,
max({0,
ma=x(0,

max(0,
nax(0,
max(0,
nax(0,

nax(0,
nax(0,

max(0,
nax(0,
na=x(0,
nax(0,
max{0,
max(0,

e e e e e e e e e e e

oooooo oo oooo

.0137%11 - 0.2997)
.0102%i1 + 0.8020)
.0090%i1 + 0.3041)
.0010%*1i1 + 2.1384)
.0049%i1 + 0.9278)
.0098%1i1 — 0.1398)
.0124%i1 - 0.0037)
.0098%*i1 + 15.299)
.0125%*11 + 1.5336)
.0080%*i1 + 6.1454)
.0120%1i1 - 2.1790)
.0110%i1 — 0.4526);
.03840%i1 + 41.536)
.07970%i1 + 7.9809)
.12820%1i1 - 16.412)
.00370%1i1 + 33.269)
.00290%*i1 + 16.158)
.0089%*i1 + 18.5430)
.03690%i1 + 34.550)
.04710%i1 + 134.79)
.04710%11 + 134.79)
.09790%i1 + 86.725)
.33333%11 - 179.29)
.07430%11 + 32.576):

#this one is created and tweaked manually:

#this one is created and tweaked manually:

original is

original is
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5. Maximum Generation Limits Model

Calculates the genration limits as a function of number of units and starting and ending storages

# Modified Janaury 28th , 2013. ..

# GHS. ..
let {s in State['GHS'.t]. w in Stater['GHS'.t.s]. nu in No _Units['GMS',t]} Max Gen_Limits ['GMS'.t . s, w]:=
if = <= Hax Gen_storage Pt['GMS',t, nu] and w <= Max Gen_storage Pt['GHS',t, nu] then min(—0.000000003%( (s+w)-2)"2+0.00306%( (s+w) 2)+
2281 .8, Abs_Max Gen_ Cap[ 'GHS',t.nu])
lze if = > Max Gen storage Pt['GMS',t, nu] and w > Max Gen_storage Pt[ 'GHS',t, nu] then Abs Max Gen_Cap[ 'GHS', t,.nu]
Else if s > Max Gen_storage Pt['GHS',t, nu] and w <= Max Gen_storage Pt['GHS',t, nu] then {min{—0.000000003%w"2+0.00306%w+2281.8,
bs Max Gen_ Cap[ 'GHS',t.nu]) +Abs Max Gen Cap[ 'GHS'.t.nul) 2
Eelse {min(-0.000000003%="2+0.00306%=+2281.8,
Abs_Max_Gen_Cap[ 'GHMS',t.nu]) +ibs Max Gen Cap[ 'GHS'.,t.nul)-72:# GHS 10 units## updated January 28th, 2013
W# HMCA. . .

let {s in State[ 'MCA'.t]. w in Stater['MCA'.t.s]., nu in No_Units[ 'MCA',t]} Max _Gen_Limits ['MCA'.t . s.w]:=
if nu =4
then if (s+w)/2 <= Max Gen_storage Pt[ 'MCA',t, nu] then min{-0.000000012%{{s+w)/2)"2 + 0.0092%{{s+w)/2) + 236.74, Abs Max Gen Cap[ 'MCA',t.nu]) else
libs Max_ Gen_Cap[ 'HCA'.t, nu]
Else if nu=5

then if (s+w)/2 <= Max Gen_storage Pt['MCA', t.nu] then min{-0.000000019%{{s+w)/2)"2+0.0126%((s+w)/2)+246.85,  Abs Max Gen_Cap[ 'MCA',t.nu]) else
Abs Max Gen_Cap[ 'HCA',t, nu]

Else if nu=6

then if (s+w)/2 <= Max Gen storage Pt['MCA'.t, nu] then min (-0.000000022%{{s+w)/2)"2 + 0.0153%((s+w)~/2)+ 265.88, Abs Max Gen_Cap[ 'HCA',t.nu)]) else
Abs_Max_Gen_Cap[ 'HCA',t. nu];# MCA 4,5,6 units# updated Janaury 28th, 2013
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6. Maximum Turbine Limits Model

# Calculates turbine limits as a function of number of units and the starting and ending states.
#Julyleth 2012%%8%

## january 28th, 2013... trying this new formulation...

¥ GHS.....
let {s in State[ 'GMS'.t].w in Stater['GHS',t.=]. nu in No Units['GMS' . t]} QT Max ['GHS', t.s.w]:=
min (Abs QT_Max[ 'GMS',t nu],

if s <=Max QT storage Pt[ 'GHS', t.nu] and w <=Max_QT_storage Pt['GMS' t.nu] then -0.00000000102%{{s+w)/2)"2 + 0.001*(s+w) 2 + 1922.6
else 1if = » Max QT _storage Pt['GHS'.t.nu] and w > Hax QT storage Pt[ 'GHS',t,nu)] then 0.000000000008%( (s+w)/2)"2— 0.00067%(s+w) /2 + 2361.4
else if s > Max QT storage Pt['GMS',t.nu] and w <=Max QT storage Pt['GMS',t.nu] then (0.000000000008%="2— 0.00067%= + 2361.4-0.00000000102%w"2 +
0.001%w + 1922.6)72
else {0.000000000008%w"2— 0.00067%w + 2361.4-0.00000000102%="2 +
0.001%s + 1922.6)72 ) ¥#¥ New: Julyleth 2012###¥ modified January 28th, 2013

## MCA. ..
let {s in State[ 'MCA',t].w in Stater['MCA'.t.s]. nu in No_Units['MCA'.t]} QT _Max [ 'MCA'.t.s.w]:=
min (Abs QT _Max[ 'MCA',t nu],
,nu] then —-0.0000000045%({{=s+w)/2)"2+ 0.003%(s+w)~ 2+ 753.96
,nu] then 0.000000009%{{s+w)/2)"2 — 0.00703%(s+w)~ 2 + 2480.2

if nu=4 and (s+w)/2<=Max QT =storage Pt[ 'MCA'.,t
t
t.nu] then —0.000000007%((s+w)-2)"2 + 0.00418%(=s+w) 2+ 917 .96
t
t
t

else if nu=4 and (s+w)/2 >Max QT storage Pt[ 'HCL',
else if nu=5 and (s+w)/2<=Hax QT storage Pt[ 'MCiA',
else if nu=5 and (s+w)/2> Max QT _storage_ Pt[ 'MC4',
else if nu=6 and (s+w)/2<=Max_QT storage Pt[ 'HCL',
else if nu=6 and (s+w)/2> Max QT storage Pt[ 'HCA',
Julyléeth 2012%#¥# updated Janaury 28th 2013.

.nu] then 0.00000001%{(s+w)~/2)"2— 0.00815%(s+w)~ 2 + 3007.7
,nu] then -0.000000009%((s+w)/2)"2+ 0.0052%({=+w)~-2)+ 1089.5
,nu] then 0.0000000122%((s+w)~2)"2 — 0.0097%({(s+w)/2)+ 3562.6) ## MCA 4, 5, & units### New:

7. FB Model

# Calculates the FB as the a function of storage

let { t in Months, = in State['GHMS',t]} FBi['GMS',t.=]:= 0.000000000000000045%="3 — 0.000000000073%s"2 + 0.000092%=s + 640.53;

let {t in Months, = in State['MCA',t]} FBi['MCA',t,s]:= 0.0000000000000025%="3 — 0.00000000215%="2 + 0.00082%=s + 637 ### It is giving higher
numbers than the right numbers!!!

#let {t in Months, = in State['ARD'.t]} FBi['ARD'.t.=]:= 0.00053%= + 419;

#let {t in Months, s in State['PCN',t]} FBi['PCN'.t.s]:=0.00000004%="2 + 0.0103%= + 475.19;

#let {t in Months, = in State['REV',t]} FBi['REV',t,=]:=-0.000000004%="2 + 0.0013%=s + 510.16;

let {t in Honths.,s in State[ 'GHS',t].w in Stater['GHMS', t.=]} FBf['GHS'.t,s,w]:= 0.000000000000000045%yw"3 — 0.0000000000%w"2 + 0.000092%w + 6£40.53;
let {t in Months.s in State[ 'MCA'.t].w in Stater[ 'MCA', t.s]} FBf['MCA',t.s,w]:= 0.0000000000000025%w"3 — 0.00000000215%w"2 + 0.00082%w + 637;
#let {t in Months.s in State['ARD'.t].w in Stater['ARD'.t.=s]} FBf['ARD',.t.=.w]:= 0.00053%y + 419;

#let {t in Months,s in State['PCN',t].w in Stater['PCHN'.t.=s]} FBf['PCN'.t,=.w]:=0.00000004%w"2 + 0.0103%w + 475.19;

#let {t in Months.s in State['REV'.t].w in Stater['REV'.t,s]} FBf['REV'.t,s,w]:=-0.000000004%w"2 + 0.0013%y + 510.16;
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8. Prices Model

#prices modeling: caluclates the export/import prices as a function of the total flow to the systen

let {t in Months, il in Inflows[ 'GMS',t], 12 in Inflows[ 'MCA',t]}Total_ Sys Inflow[t.,il,12]:= {(11+4i2)+ (Inflow ROTR ['PCH', 'GHS',t,il1l]+Inflow_ROTR
['REV', 'MCA&"'.t,12]+Inflow_ROTR ['STC', 'GMS',t,il]+Inflow_ROTR ['ARD',6 'MCA', t,1i2]):#units are in cms# modified August 2012

let {t in Months, il in Inflows['GMS',t]., i2 in Inflows['MCA',t]:1130 or i2>0} E=xp Price[t.il,i2]:= max (0.a[t]* c[t]*(Total_Sys Inflow[t,il,i2])}"
b[t]-dd[t]) :#this is the original>>>>>###max (0, a[t]* (Total Sys_Inflow[t,i1,12])" b[t]): # power (x"y) equation

let {t in Months, il in Inflows['GHMS',t], 12 in Inflows[ 'MCA',t]:i1=0 and i2=0} E=xp_Price[t,il,i2]:= max (0.a[t]* c[t]%*{0.50%Inflow_Step[ 'GMS',t])
* b[t]-dd[t]) :#this is the original>>>>>###max (0, a[t]* (Total Sys Inflow[t.il1.i2])" b[t]): # power (x"y) equation

let {t in Months, il in Inflows['GHS',t], 12 in Inflows[ 'MCA'.t]} Imp_Price[t.i1l1,12]:= Exp_Price([t.il.i2]+ Exp Imp Margin: #E=xp Price[t.il.i2]+
Exp_Imnp Margin*l0: ¥

let {t in Months, il in Inflows['GHMS',t], 12 in Inflows[ 'MCA',t]} Cont_Price[t.il,i2]:= (Exp Price[t.il.i2]+ Ezp_Imp_Margin-2);
#(Exp_Price[t.il1,12]/4): %

delete a.b.c;

display E=zp Price, Imp Price, Cont_Price> Prices.out:
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A.1.4.2. Computation Details

Table 6: List of the Other Modules and Their Functions

Module Parameter Function
Calculated

HK "&v&".mod" | HK Calculates the HK values for the storage plants as a
function of each pair of starting and terminal storage
states through regression equations capped by the
maximum absolute value of the HK for the storage
plants

HK ROTR_"&v& | HK_ROTR Calculated the HK values of the run-of-the-river plants

".mod as a function of the total flow that passes by those
plants.

HK rough_"&v&" | HK rough Calculates the total HK values on a river system for a

.mod" given starting storage state of the storage plants. For
instance, HK _rough for peace river would be the
summation of the GMS’s HK, PCN’s HK and STC’s
HK for a given GMS starting state.

Inflow_ROTR_"& | Inflow_ROTR | Calculated the natural inflows to the run-of-the-river

v&".mod plants as a function of the upstream storage plants
through regression equations deduced from historical
inflows.

Max_Gen_Limits_ | Max_Gen_Li | Calculates the maximum generation for the storage

"&v&".mod" mits plants as a function of the starting and ending storage

capped by the absolute maximum generation capacity
that dictates the generation curve after a certain point.
The calculation is made through regression equations

that relate the storage to generation.
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Module Parameter Function
Calculated
QT_Max__ "&v&" | QT_Max Calculates the maximum turbine flow for the storage
.mod" plants as a function of the starting and terminal storage
capped by the absolute turbine flow capacity that is
when reached the flow must be reduced to account for
the generator capacity. The calculation is made
through regression equations that relate the turbine
flow to generation.
"FB_"&v&".mod" | FBI, FBf Calculates the forebay corresponding to staring states
“FBi” and the forebay corresponding to terminal states
“FBf”. The calculation is done through regression
equations that relate the storage to the forebay.
“Prices "&v&". | Imp_Price, Calculates the prices as a function of total system
mod" Exp_Price, inflows
Cont_Price
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A.2. Main Sets and Parameters of the Model

In the tables below, Table 7 and Table 8, the details of the main sets used in the

SDPOMGR are presented.

Table 7: Main Sets and Parameters of the Model in an Alphabetical Order

Set Definition Indexed Over | Files2. Notes

counter A counter for the number | Reservoirs The range is 1 to
of starting storage states at number of starting
each time step storage states

counterel A counter for the number | Reservoirs & The range is 1 to
of water release decisions | Months number of release

decisions

Counter A counter for the number | Reservoirs, The range is 1 to
of terminal storage states | Months, State number of terminal
at each time step & Inflows storage states

Inflows Set of Inflow values for Reservoirs & Inflows.da | Units in cms. The

each time step

Months

t

range is The starting
month to the end
month (

controllable)

2! Other than the main modules (Discretizer, Value Iteration and SDP)

116




Set Definition Indexed Over | Files2. Notes

Load Electricity local demand Months Load.dat Units in MWh
for each time step

Months Time step (monthly)

Rel_Decision Set of total water release Reservoirs & | Rel_Decis | Total here means
decisions for each time Months ion.dat the sum of spills and
step turbine releases,

units in cms

Reservoirs Set of reservoirs involved Horizon.d
in the optimization process at

State Set of starting storage Reservoirs States.dat | Units in cms.day

Stater Set of terminal storage Reservoirs, Staters.dat | Units in cms.day
states for each reservoir Months, State
for each time step & Inflows

Study_Years Set of the future years YMD.dat

used in the study

Table 8: The Main Parameters Used in the SDP Model in an Alphabetical Order

Parameter Definition Indexed Over | Files Notes
a Coefficient provided ina | Months Price_Coe
flat file to calculate f.dat
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Parameter Definition Indexed Over | Files Notes
Import/Export/ contracted
prices
B Coefficient provided ina | Months Price_Coe
flat file to calculate f.dat
import/export/ contracted
prices
Cont_Price Prices of contracted Months&
energy Inflows
Cont_Rev Revenue from contracted Months, Load,
energy StateRel_Decisi
on
Contr_Trans Contracted amount of Months Contr_Tra | Units in MWh
energy (imports/exports) ns.dat
Days_Months Number of days in each Study_Years & | YMD.dat
month for the entire Months
planning horizon
Delta_Releases Increment of total releases | Reservoirs & Units in cms

Months

Delta_Staters

Increment of terminal

storage states

Reservoirs &

Months

Units in cms.day

Delta_States

Increment of starting

Reservoirs

Units in cms.day
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Parameter Definition Indexed Over | Files Notes
storage states
Desctz_Releases | Generated values of Reservoirs, Units in cms.day
releases according to the | Months &
pre-calculated release counterel
increment and
maximum/minimum plant
releases provided
Desctz_Staters Generated values of Reservoirs, Units in cms.day
terminal storage states Months, State,
according to the pre- Inflows &
calculated state increment, counter
maximum/ minimum
storage values, starting
states and inflow values
Desctz_States Generated values of Reservoirs & Units in cms.day
starting storage states counter
according to the pre-
calculated state increment
and maximum/ minimum
storage values provided
End_Months The last monthly time step Horizon.d
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Parameter Definition Indexed Over | Files Notes
in the planning horizon at
EX_Exp_Rev Expected revenue from the | Months, Load, Units are in million
spot market exports State & $
Rel_Decision
EX_Imp_Cost Expected cost from the Months, Load, Units are in million
spot market imports State & $
Rel_Decision
EX_Income Expected total income Months, Load, Units are in million
from export, import and State & $
contracts Rel_Decision
Exp_lmp_Margin | Difference between export default 9.11, units are
and import prices in$
Exp_Price Prices of exported energy | Months & Units are in $
Inflows
FBf Final forebay at each time Reservoirs, Units are inm
step corresponding to a Months, State,
certain storage Inflows & Stater
FBi Starting forebay at each time | Reservoirs, Units are inm
step corresponding to a Months & State
certain storage
Generation Calculated generation of Reservoirs, Units in MWh

each plant

Months, State,
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Parameter Definition Indexed Over | Files Notes
Inflows, Stater&
Rel_Decision
HK_rough a rough estimate for HK to Reservoirs,
use in MVW Months & State
HK Reservoirs,
Months, State,
Inflows & Stater
Imp_Price Prices of imported energy Unitsin $
Inflow_Step Reservoirs & Units in cms
Months
IPP_Therm Generation of the Months Units in MWh
independent power producers
(IPP) and thermal plants.
Added to the plants
generation to get the total
generation of the system
involved
Iter Counter for number of
iterations used to
convergence in the value
iteration procedure
Max_Gen_Limits | Limits on maximum Reservoirs & Gen_Limit | Units in MWh
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Parameter Definition Indexed Over | Files Notes
generation of each plant Months s.dat

Max_Staters_Act | Rounded number for Reservoirs, Units in cms.day
maximum terminal storage | Months, State
states &Inflows

Max_Staters Provided value for Reservoirs & State_Spa | Units in cms.day
maximum terminal storage | Months ce.dat
states for each reservoir in
each time step

Max_States_Act | Rounded number for Reservoirs Units in cms.day
maximum starting storage
states

Max_States Provided value for Reservoirs State_Spa | Units in cms.day
maximum starting storage ce.dat
states for each reservoir

Min_Gen_Limits | Limits on minimum Reservoirs & Gen_Limit | Units in MWh
generation of each plant Months s.dat

Min_Staters_Act | Rounded number for Reservoirs, Units in cms.day
minimum terminal storage | Months & State
states

Min_Staters Provided value for Reservoirs & State_Spa | Units in cms.day
minimum terminal storage | Months ce.dat
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Parameter Definition Indexed Over | Files Notes
states for each reservoir in
each time step
Min_States_Act Reservoirs Units in cms.day
Min_States Provided value for Reservoirs State_Spa | Units in cms.day
minimum starting storage ce.dat
states for each reservoir
MVW_GMS Marginal value of water at Months, State Units are in $/MWh
GMS & State
MVW_MCA Marginal value of water at Months, State Units are in $/MWh
GMS & State
N_Releases Number of releases Reservoirs &
generated according to the | Months
release increment and
maximum/minimum
releases for each plant
N_Staters Number of terminal Reservoirs,

storage states generated
according to the storage
increment,
maximum/minimum

storage states , starting

Months, State &

Inflows
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Parameter

Definition

Indexed Over

Files

Notes

storage states and inflows
for each plant in each time

step

N_States

Number of starting storage
states generated according
to the storage increment
and maximum/minimum
storage states ,for each

plant

Reservoirs

Outage

Factors <=1 representing the
maximum generation
capacity ratio taken the
outage schedule into

consideration

Reservoirs &

Months

Outage.dat

Plant_Release

Plant release for each time
step depending on the
hydraulic balance and

plant release limits

Reservoirs,
Months, State,
Inflows, Stater

& Rel_Decision

Units in cms

Policy_Income

The total income of the
policy which is the sum of

the revenue from import,

Months, Load,
State &

Rel Decision

Units in million $
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Parameter Definition Indexed Over | Files Notes
export and contract
transactions.
Prob_Inflow The probability of each Reservoirs, Inflows.da
inflow value provided for | Months & t
each plant in a certain time | INflows
step
PV_diff total, The total and sequential Months & State Units in million $
PV_diff difference of the present
value of water; used in the
value iteration procedure
PV_Fin, Maximum present value of | Months & State Units in million $
PV_Max, water at a certain time step
PV_Temp over the terminal storage
states and inflow scenarios
PV Present water value Months, Load, Units in million $
State
&Rel_Decision
QP_Max Maximum plant release Reservoirs & QP_Limits | Units in cms
Months dat
QP_Max_Act Rounded value for Reservoirs & Units in cms

maximum plant release

Months
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Parameter Definition Indexed Over | Files Notes
QP_Min Minimum plant release Reservoirs & QP_Limits | Units in cmc
Months dat
QP_Min_Act Rounded value for Reservoirs & Units in cms
minimum plant release Months
QT_Max Maximum turbine release | Reservoirs & QT_Limit | Unitsincmc
Months s.dat
QT_Min Minimum turbine release | Reservoirs & QT _Limit | Units in cms
Months s.dat
Rate Interest rate Default 0.05858
(monthly rate)
Siw The surplus/deficit of Reservoirs, Units in cms.day
water in each reservoir Months, State,
due to a transition froma | 'Nflows, Stater
storage state to another & Rel_Decision
including the inflows and
excluding the releases
(Starting storage+Inflow-
terminal storage)
Spill Forced spills ( Non-power | Reservoirs, Units in cmc

spills)

Months, State,

Inflows, Stater
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Parameter Definition Indexed Over | Files Notes
& Rel_Decision
Spot_Buy Months, Load, Units in million $
State, Inflows,
Stater&
Rel_Decision
Spot_Sell Months, Load, Units in million $
State, Inflows,
Stater&
Rel_Decision
Start_Months The first monthly time Horizon.d
step in the planning at
horizon
State_Prob The probability attached to | Reservoirs,

each storage transition

state according to the

Months, State,

Inflows, Stater

values of the inflow and | & Rel-Decision
releases used

Total_Sys_Inflow | Summation of the system | Months & Units in cms
inflows for each time step | Inflows

Tot_Gen Total system generation Months, State, Units in MWh

including thermal plants

and the IPPs

Inflows, Stater

& Rel_Decision
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Parameter Definition Indexed Over | Files Notes
Trade Export or Import spot Months, Load, Units in MWh
energy transactions State, Inflows,
Stater &
Rel_Decision
Trade_Exp_Limit | Export limits according to | Months TradeLimi | Units in MWh
the capacity of ts.dat
transmission lines and
other considerations
Trade_Imp_Limit | Import limits according to | Months TradeLimi | Units in MWh
the capacity of ts.dat

transmission lines and

other considerations

Trans_Prob

The joint probability of the
transition from a
combination storage state
of the reservoir considered
to another combination of

terminal storage states

Months, Load ,
State, Inflows,
Stater &

Rel_Decision

Trans_Prob_S

Sum of transition
probability over the

terminal storage states and

Months, Load,
State &

Rel_Decision
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Parameter

Definition

Indexed Over

Files

Notes

inflows

Turbine_Release

Outflows coming through
turbines to generate

electricity (power spills)

Reservoirs,
Months, State,
Inflows, Stater

& Rel_Decision

Units are in cms
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A.3. How to Run the Model

The main steps that the user has to follow are illustrated in the following workflow

diagram.

User can pick the version desired to run according to the
desired level of details. To make things easier, there is a

brief documentation on each version in the same file.

Version.dat

Some of the plants have expansion plans in the

Horizon_ (# of version).dat

near future, so if the run involves future years
beyond 2018 user is advised to go and check the

number of units used for each plant in this file.

K/\/hen the user looks into the -
file Data_1_(# of version).dat,

State_Space.dat

\
Units.dat

Where user can determine the length of the time horizon he/she
likes to run the model for. Also, user can select the run-of-the-river

plants considered in the run.

This file identifies the limits of the storage state-space
of the storage plants. The user can control these limits

according the scope of the study he/she is performing.

Having a look at these files representing the main data
files used will give the user an idea about the different

data sets involved in the run.

he/she will find out which

inflow data file is currently

activated and then he/she can go

Data_1_ (# of version).dat, Data_3_ (# of version).dat, and

Data_3_ (# of version).dat

increment the model space is

discretized by.

\ O

and open this files to check the
inflow data used and the D

The Inflows file

ﬂ)ptional: the user can go and check
all the other model files in the folder

(i.e. filename.mod) to check how the

Other Model Files if desired

In the folder, user can find different versions of the
Inflows files; each has a unique name that identifies its
content. The increment of the inflows in a given inflows
file sets the increment of the decision-space and the

state-space for each storage reservoir.

The output files in this sub-folder are
named in a way that enables the user to

understand what data is included ineach

regression equations of several

parameters in the main model are

formulated.

Run the file “SDP.run” in AMPL on the server or using the

AMPL Job Manager

file.

D The output folder will be created as a sub-folder inside the same folder that has the data files. The name of this
sub-folder includes the number of stages included and the version used and the time of the run.

Aftermath files (screen.out and

Run_Times_Stats.amr)

Check these files if interested in developing statistics

about the run you have just finished

Figure 41: Schematic of the Main Steps Needed to Run the SDPOM6RM Model
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